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The current understanding of finite-temperature phase transitions in QCD is reviewed. A critical
discussion of refined phase-transition criteria in numerical lattice simulations and of analytical tools
going beyond the mean-field level in effective continuum models for QCD is presented. Theoretical
predictions about the order of the transitions are compared with possible experimental manifestations
in heavy-ion collisions. Various places in phenomenological descriptions are pointed out where more
reliable data for QCD’s equation of state would help in selecting the most realistic scenario among
those proposed. Unanswered questions are raised about the relevance of calculations that assume
thermodynamic equilibrium. Promising new approaches for implementing nonequilibrium aspects of
the thermodynamics of heavy-ion collisions are described. [S0034-6861(96)00302-9]
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I. INTRODUCTION

Phase transitions are found over a wide range of tem-
peratures. They start near absolute zero with the Mott
transitions (Mott, 1968) from superconductor to insula-
tor and are common between 102 K and 103 K. Nine
orders of magnitude higher one finds the phase transi-
tions discussed here. At a temperature typical of the
QCD scale (LMS;200 MeV) nuclear matter melts. At
this temperature quarks and gluons cease to be confined
inside hadrons and begin moving freely. Three orders of
magnitude higher is the next phase transition at which
the electromagnetic and weak interactions are unified.
These two transitions may seem exotic, but according

to the big bang theory they have occurred at least once
in the universe. The electroweak transition is predicted
to have taken place at 10210 s, and the deconfinement
transition at 1026 s after the big bang. The deconfine-
ment transition occurred when the temperature of the
universe dropped to the order of tera degrees, i.e., to a
scale Tc;(2.3260.6)31012 K or 200650 MeV. [The
conversion from natural energy units (MeV) to degrees
Kelvin (K) is determined by the Boltzmann constant
kB;8.631025 (eV/K) or (100 MeV;1.1631012 K).]
These temperatures with time scales of 10223 s and typi-
cal distances of 1 fm may now be achievable in the labo-
ratory. At CERN one reaches energy densities around
1.5–2.5 GeV/fm3, and higher densities are expected
when Relativistic Heavy-Ion Collider (RHIC) experi-
ments come on-line at Brookhaven (Stachel, 1994).
We have glibly mentioned ‘‘the QCD transition,’’ as if

it were unique. However, there are really two, and they

take place if either the temperature or the density
crosses some critical point.
Each transition is well defined in some limit of QCD.

If the quark masses are infinite, one has the
deconfinement transition. If the quark masses are zero,
one has the chiral (symmetry-restoring) transition. It is
not yet clear whether these transitions persist for physi-
cal quark masses or whether they will occur together. If
they take place at different temperatures, one expects
the chiral transition to occur after the deconfinement
transition (Banks and Casher, 1980; Campbell et al.,
1990). Lattice results indicate, however, that both tran-
sitions coincide at the same critical point. One of them
can then be regarded as driving the other, and the na-
ture of the transition will be determined by the driving
symmetry. Here it is assumed that both happen simulta-
neously, unless stated otherwise.
As mentioned above, a transition is expected for both

increasing density and increasing temperature. This re-
view concentrates on the effects of temperature, as this
is the area in which the lattice is strong and many partial
or preliminary results are available.
One usually has many length, or equivalently energy,

scales playing a role at a phase transition. This makes it
impossible, in most cases, to find a suitable expansion
parameter for a perturbative treatment. In addition,
QCD is asymptotically free in the UV limit, but has a
coupling g(T)'1 near the phase transition. Thus a non-
perturbative approach must be used; lattice regulariza-
tion may be the only means of calculating the properties
of the phase transition from first principles.
One expects, naively, a phase transition in QCD if the

density rises to the point at which the hadrons begin to
overlap. This will be around 0.5 GeV/fm3, the energy
density in a proton.
Similarly, for temperatures above the QCD scale pa-

rameter, T.LMS5200 MeV, one expects a phase tran-
sition. At extremely high temperatures, T@LMS , with
typical momenta Q'T , the coupling Q2/LMS

2 becomes
weak, and resummed finite-temperature perturbation
theory (Braaten and Pisarski, 1990a, 1990b, 1990c,
1990d, 1992a, 1992b) may be applied.
There are three natural length scales in the QCD

plasma, lp5 1/T,le5 1/gT,lm5 1/g2T (DeGrand and
DeTar, 1986). The first gives the range over which per-
turbation theory may be applied, the second corre-
sponds to the scale set by the chromoelectric mass, and
the third to the scale set by the chromomagnetic mass.
The latter two scales reflect the increasingly nonpertur-
bative nature of long-range interactions in the plasma
and the lack of screening in the magnetic sector.
Although these long-range interactions are strong and

may lead to a type of dynamic confinement in the
plasma, the bulk properties, the equation of state, etc.
are still dominated by short-range interactions, so per-
turbation theory may well be valid at high temperatures
for these quantities.
More evidence that the chromomagnetic, long-range

sector of QCD may have a complicated, nonperturba-
tive structure comes from the phenomenon of dimen-
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sional reduction. In (311)-dimensional Euclidean field
theory, the imaginary time dimension is proportional to
the inverse temperature, lt } 1/T . Thus the theory re-
duces, in the high-temperature limit, to three-
dimensional QCD (Reisz and Petersson, 1991; Kärk-
käinen et al., 1992, 1993, 1994; Reisz, 1992).
Deriving the properties of the QCD phase transition

is clearly difficult. After all, it is analogous to deriving
the properties of boiling water directly from the quan-
tum Hamiltonian of water molecules. So the thermody-
namics of the phases and the order of the transitions
between them have only recently been settled for pure
gauge theory, despite nearly two decades of computer
simulations.
The order of a phase transition is one of the basic

thermodynamic classifications. A phase transition is said
to be of first order if there is at least one finite gap in the
first derivatives of a suitable thermodynamic potential in
the thermodynamic limit. A finite latent heat often goes
along with a gap in the order parameter. A transition is
said to be of second order if there is a powerlike singu-
larity in at least one of the second derivatives of the
potential. If the thermodynamic potential is analytic
over the whole temperature range (for temperature-
driven transitions), the phase conversion is called a
crossover phenomenon.
In general the order of the QCD transitions depends

on the number of colors Nc , the number of flavors
Nf , the current quark masses, and more subtle effects
related to the IR and UV cutoffs. The deconfinement
transition is now believed to be of first order for three
colors (Fukugita et al., 1989; Gavai et al., 1989), and the
equation of state is known in the limit of infinite quark
masses (Engels, Fingberg, et al., 1990; Laermann et al.,
1995). Similarly the chiral transition is believed to be of
second order for two massless flavors (Pisarski and Wil-
czek, 1984; Karsch, 1994) and of first order for three or
more massless flavors (Pisarski and Wilczek, 1984; Gavai
and Karsch, 1985; Gavai et al., 1987; Brown et al., 1990a;
1990b; Iwasaki, 1995; Iwasaki, Kanaya, Kaya, et al.,
1995). These results do not contradict each other. They
just indicate the sensitivity of the order to the involved
approximations and should be taken as a warning not to
jump to conclusions.
Ultimately one is interested in the physically relevant

case of two light quarks (up and down), and one heavier
quark (the strange quark). This case is still under discus-
sion. It is an open question whether the chiral transition
and the deconfinement transition persist for realistic
quark masses.
The order of a phase transition has far-reaching phe-

nomenological consequences. Phenomenological impli-
cations of QCD transitions are supposed to be visible in
relativistic heavy-ion collisions and astrophysics. For a
first-order transition one expects metastabilities with la-
tent heat, interfaces, supercooling and overheating, etc.
The experimental consequences of a first-order transi-
tion make it relatively easy to see, especially if the
plasma ‘‘explodes’’ into the hadronic phase (Cleymans
et al., 1986). A second-order transition, lacking a jump in

the energy density, may be less easy to see experimen-
tally. However, it has divergent correlation lengths in
the thermodynamic limit. These may also lead to observ-
able consequences (Bialas and Peschanski, 1988; Wilc-
zek, 1992; Bjorken et al., 1993; Rajagopal and Wilczek,
1993a, 1993b; Gavin et al., 1994a, 1994b), in analogy to
the well-known phenomenon of critical opalescence.
Perhaps most likely is a smooth crossover, as in the

transition to an electric plasma from a molecular or
atomic gas. One will have a smooth transition from a
pion gas at low temperatures to a quark gluon plasma at
high temperatures, with a highly nontrivial mixture of
excitations in the neighborhood of the crossover. If one
has a sharp crossover phenomenon with a rapid change
in thermodynamic quantities over a small temperature
interval (say of the order of 10 MeV), there is still some
chance for measurable effects in experiments. For ex-
ample, double F peaks in the dilepton invariant mass
spectrum are still predicted as a signature for the phase
conversion, as long as the crossover phenomenon is
rapid enough (Ko and Asakawa, 1994; Ko, 1995).
The situation is further complicated by the nature of

the experiments. Ultrarelativistic heavy-ion collisions
have a finite volume expanding in time. The finite vol-
ume smooths out the nonanalyticities in the free energy.
The high-temperature matter created in the collisions
may not reach equilibrium either, and does have differ-
ent processes dominating in different regions of phase
space. It becomes a nontrivial task to find ‘‘thermom-
eters’’ to tune and measure the temperature of the tran-
sient hot plasma. Thus no clear signal of the phase tran-
sition is known, although a number of signals has been
proposed, and the quantities measured so far can usually
be modeled by both a hot hadron gas and a quark-gluon
plasma.
In the early universe we have different competing

scales. The expansion of the universe is rather slow in
units of QCD. If a typical time scale of QCD is taken as
1/Tc (;1 fm/c;10223 s), the Hubble time is of the or-
der of 1019/Tc . Thus there is enough time for equilibra-
tion before and after the transition. The spatial volume
V of the universe, 1026 s after the big bang, appears as
almost infinite in units of QCD. In units of Tc it is given
as VTc

357.131055(200 MeV/Tc)
3, if the physical corre-

lation length j is taken as j(Tc)Tc51.3860.24 in the
deconfinement phase. This leads to a rather small upper
bound on the amount of supercooling during a (hypo-
thetical) first-order deconfinement transition (Banerjee
and Gavai, 1992). The effect of supercooling is an im-
portant ingredient in the argument for why one should
see remnants of the early QCD transition even today. A
first-order deconfinement transition could have led to
inhomogeneities in the baryon number density in the
early universe. If these inhomogeneities survived until
the epoch of primordial nucleosynthesis, they could
have influenced the light-element abundances and led to
deviations from values obtained in the standard scenario
(without a phase transition) (Applegate et al., 1987;
Fuller et al., 1988; Schramm et al., 1992). It is these de-
viations in the light-element abundances which have
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been predicted as a visible remnant today. Meanwhile
this prediction has become rather questionable. Initial
inhomogeneities that are compatible with the rather
small supercooling are most likely insufficient to induce
well separated proton-rich and neutron-rich regions.
Pronounced inhomogeneities in the proton and neutron
distributions are a precondition for a considerable
change in the initial conditions of primordial nucleosyn-
thesis.
Lattice Monte Carlo simulations become rather time

consuming when one tries to simulate a realistic situa-
tion with small but nonzero quark masses. The CPU
time of a typical simulation with dynamical quarks is of
the order of months or even years. From the viewpoint
of one less familiar with the lattice approach, it is diffi-
cult to understand why, for example, extensive Monte
Carlo calculations have been performed to simulate a
strongly interacting system with eight nearly massless
flavors, when only two flavors are light in nature. With-
out a deeper understanding of the lattice methods one is
left with the impression that the field of QCD computer
simulations has decoupled from the field of heavy-ion
collisions. The connection between both areas of re-
search seems sometimes to be lost.
It would be overly ambitious to attempt, in this article,

to close the gaps between the various approaches to un-
derstanding the finite-temperature transitions of QCD.
This review will focus on the progress made in determin-
ing the nature of the phase transitions, and the develop-
ment of sophisticated tools for this purpose. The com-
plexity of the task and the time needed to turn the hints
of today into firm answers will be explained.
The organization of the paper is as follows. Section

II.A gives some background from statistical physics. We
summarize the main steps in a renormalization-group
approach, for both infinite and finite volume, and recall
some concepts for distinguishing first- and second-order
transitions, independently of the specific QCD dynam-
ics. In Sec. II.B we deal with a renormalization-group
analysis applied to QCD. Such an analysis provides a
guide for a more detailed investigation of the phase dia-
gram.
In view of the anticipated nonperturbative nature of

the transition and the need for simulating QCD rather
than a simplified model, it is natural to start with the
lattice approach (Sec. III). From numerous papers we
select a few to explain the kind of progress that has been
made. Section III.A serves mainly to give the basic
ideas, to fix the notations, and to introduce some calcu-
lational tools of lattice gauge theory.
Section III.B deals with the pure gauge theory without

matter fields. We describe the controversy over the or-
der of the deconfinement transition in SU(3) gauge
theory (Sec. II.B.1). Thermodynamics on the lattice is
the topic of Sec. III.B.2. For a long time it has been
taken for granted that the effect of matter on the tran-
sition is only to weaken the strength of its order. Hence
various interface or surface tensions have been calcu-
lated as further characteristics of the transition dynam-
ics. Interface tensions refer to free energies associated

with interfaces between different realizations of the
plasma phase, between the phases of broken and re-
stored chiral symmetry, or between the phases of decon-
finement (plasma phase) and confinement (hadronic
phase). A reliable estimate of their values at the transi-
tion point could play a selective role in the phase-
transition scenarios. A measurement of the interface
tension in SU(3) gauge theory is presented in Sec.
III.B.3. Intimately related to the topic of interface ten-
sions are the phenomenological implications of the
QCD transition in the early universe. In Sec. III.B.4, we
summarize the argument for finding relics of the early
QCD transition.
Section III.C is devoted to the inclusion of dynamical

fermions. Here we restrict the discussion mostly to the
staggered fermion formulation. In Sec. III.C.1 we list the
pitfalls of the lattice, including infrared, ultraviolet, and
finite-mass artifacts. We describe a finite-size scaling
analysis in the presence of fermions in Sec. III.C.2.
Finite-mass artifacts (analyzed in a finite-mass scaling
analysis) refer to the necessity of extrapolating results to
the chiral limit from finite-mass calculations (Sec.
III.C.3). Examples of the subtleties of UV artifacts are
given in Secs. III.C.3 and III.C.4. In Sec. III.C.5 we
present results for the cases of two and three light-
fermion flavors, which come closest to the physical cur-
rent quark masses. Recent results on the equation of
state for two-flavor QCD are explained in Sec. III.C.6.
Wilson fermions are the topic of Sec. III.C.7.
A brief review of lattice simulations at finite baryon

density is presented in Sec. III.D.
The lattice approach plays an important role for

QCD. It has the advantage of starting from first prin-
ciples. But even if lattice calculations finally succeed in
providing reliable predictions, there is some need for
further alternatives. In a typical Monte Carlo calcula-
tion, QCD’s full partition function is simulated at once
(if we disregard the involved approximations for a mo-
ment). From such a simulation one does not get an in-
tuitive insight into why a result comes out in a particular
way. Effective models try to fill this lack. They are usu-
ally not derived from QCD in a strict sense, but share
some important symmetries with QCD. Accordingly we
consider models for quark and gluonic degrees of free-
dom separately (Secs. IV.A and IV.B).
In Sec. IV.A we concentrate on theoretical tools that

go beyond the mean-field level: the renormalization-
group approach (Sec. IV.A.1), chiral perturbation
theory (Secs. IV.A.2 and IV.A.3), and a 1/N expansion
(Sec. IV.A.4). The renormalization group leads to spe-
cific predictions for the critical indices and the tempera-
ture dependence of meson masses close to Tc . These
predictions may serve as working hypotheses for lattice
simulations (Wilczek, 1992; Rajagopal and Wilczek,
1993a, 1993b).
Chiral perturbation theory is well established for de-

scribing QCD at low energies and small temperatures.
We outline the derivation of chiral condensates as a
function of temperature in Sec. IV.A.2. Of particular
interest are the influence of finite current quark masses
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and an estimate of the contribution of heavier mesons to
thermodynamic quantities. Heavier mesons turn out to
be non-negligible in the phase-transition region, con-
trary to one’s naive expectation (Gerber and Leutwyler,
1989). Although chiral perturbation theory fails in the
vicinity of the transition region, it leads to an upper
bound for the latent heat, when Clausius-Clapeyron re-
lations are applied to QCD in a hypothetical first-order
transition (Leutwyler, 1992; Sec. IV.A.3). The bound ex-
cludes strong supercooling scenarios and thus may be of
particular interest to phenomenologists.
In Sec. IV.A.4 we apply a 1/N expansion to the linear

SU(3)3SU(3) sigma model. Here large N refers to the
number of flavors. The topics are the mass sensitivity of
the chiral transition and thermodynamics for physical
values of (pseudo)scalar meson masses. An attempt is
made to locate the phase boundary between first-order
chiral transitions and crossover phenomena in meson
mass space (Meyer-Ortmanns and Schaefer, 1996).
As an example of a simplified physical picture of the

interaction dynamics in a pure gauge theory, we con-
sider Patel’s color flux-tube models (Patel 1984a; 1984b)
in Sec. IV.B.1. In the flux-tube models the SU(3) decon-
finement transition occurs when the network of color
flux tubes becomes infinitely connected. The models
abandon symmetry breaking as a driving mechanism for
the deconfinement transition. Section IV.B.2 deals with
dual Ginzburg-Landau models, explaining the confine-
ment property of QCD in terms of a dual Meissner ef-
fect.
If quark and gluonic degrees of freedom are included

in an effective Lagrangian for QCD, their interplay in
the transition dynamics may be investigated. We con-
sider the outlook for such attempts in Sec. IV.B.3.
Section V is devoted to heavy-ion collisions. Although

the application of a thermodynamic concept is not fully
established, throughout the review we adopt the view-
point that a thermodynamic description of nucleus-
nucleus collisions is meaningful. After a recapitulation
of basic concepts in relativistic hydrodynamics (Sec.
V.B), we point out possibilities for measuring thermody-
namic observables (Sec. V.C.1). Substructures in dilep-
ton spectra and enhanced strangeness production, which
could be sensitive to the underlying transition dynamics,
are the topic of Secs. V.C.2 and V.C.3. Pion interferom-
etry, measurements of multiplicity fluctuations, and in-
termittency are powerful experimental tools in heavy-
ion collisions. They may also be utilized for inferring the
order of the QCD transition (Secs. V.C.4, V.C.5, and
V.C.6). The common difficulty for all of these experi-
mental devices is to find a unique signature for a certain
type of transition. Thus a flattening in the ^pT& distribu-
tion of charged pions as a function of multiplicity distri-
butions in rapidity space is compatible with a first-order
transition, but lack of available phase space serves as an
alternative and much simpler explanation (van Hove,
1985).
We shall not cover the issue of preequilibrium pro-

duction, although it is likely to be relevant in some ways.
Section V.D is concerned with off-equilibrium theory.

Estimates of the nucleation rate and transport coeffi-
cients are two examples of attempts to incorporate the
knowledge of equilibrium QCD in situations slightly off
equilibrium. An alternative off-equilibrium process is
large domain coarsening. Under certain conditions it is
more likely to be the relevant mechanism for phase
separation at the transition point (Sec. V.D.3). Plasma
evolution far out of equilibrium is the topic of the final
section, V.D.4. Methods of nonequilibrium physics and
the powerful concept of dynamic universality classes be-
come applicable if the hot plasma is quenched via almost
instantaneous cooling (Rajagopal and Wilczek, 1993a,
1993b). Large correlation volumes may be created in
spite of a small equilibrium correlation length, which is
hampered from growing due to the finite pion mass. In
realistic heavy-ion experiments the hypothetical plasma
presumably cools neither adiabatically nor instanta-
neously, and the physical masses are likely not to be
light enough for inducing large correlation volumes with
the aid of nonequilibrium amplification. Nevertheless,
we conclude Sec. V with some ideas about dynamic uni-
versality, as it may be challenging and stimulating to
consider a quench of a hot quark-gluon plasma as some
kind of gedanken-experiment.
In Sec. VI we summarize the most important points of

the preceding sections. We list the main results, the open
questions, and interesting perspectives for further stud-
ies.
Unavoidably, a selection of papers has been cited

from among numerous others related to the same topic,
in order to keep the article readable. If I do not refer to
a paper in spite of its relevance, this may be a result of
ignorance.

II. GENERAL BACKGROUND

A. Phase transitions in statistical systems

1. First- and second-order transitions
in the infinite-volume limit

The order of a phase transition is one of the basic
thermodynamic classifications. It concerns the thermo-
dynamic potential and its derivatives at the transition.
The thermodynamic potential V is the free energy F for
a ferromagnet or the Gibbs free energy G5F1pV for a
fluid. In Eqs. (2.1) we recall the basic thermodynamic
formulas for a magnet:

Z~T ,H ,V !5E DU e2bH~U !, (2.1a)

F52T lnZ , (2.1b)

E52
] lnZ

]b
, S52S ]F

]T D
H

, M52S ]F

]H D
T

,

(2.1c)

cH5S ]E

]T D
H

, cH ,M5TS ]S

]T D
H ,M

, (2.1d)
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xT5
1
V S ]M

]H D
T

.

Here H denotes the spin Hamiltonian, b is the inverse
temperature, the Boltzmann constant kB has been set
equal to 1 everywhere, H is an external magnetic field,
V is the volume, and *DU stands for the sum over all
spin configurations $U%, weighted with the Boltzmann
factor exp$2bH%. Equation (2.1b) defines the free en-
ergy F , depending on T , H , and V , of a system in a
finite volume V . In the large-volume limit the free-
energy density f is given as f5limV→` F(V)/V , with
F(V)[*Vd

dx f(x) in d space dimensions. The free en-
ergy is assumed to depend on the scaling fields T and
H . In view of a finite-size scaling analysis, we retain the
dependence on V . The parameters T and H are on an
equal footing—both may drive a phase transition. One
speaks of a temperature-driven or a field-driven transi-
tion. In QCD we focus our discussion on temperature-
driven transitions (although density- or ‘‘mass-driven’’
transitions may be considered as well). First derivatives
of the free energy with respect to T or H lead to the
internal energy E , the entropy S , or the magnetization
M according to Eq. (2.1c). The magnetization is the con-
jugate variable to the external field and plays the role of
an order parameter in the case of a magnet. More gen-
erally, it plays the role of an order parameter if the ex-
ternal field explicitly breaks the symmetry, which may be
spontaneously broken at a phase transition.
On the second level of derivatives [Eqs. (2.1d)] we

have the specific heat c (at constant H and/or M , re-
spectively) and the isothermal susceptibility xT . For a
fluid, the isothermal susceptibility would be replaced by
the compressibility k .
In the infinite-volume limit, a phase transition is sig-

nalled by a singularity (in the sense of nonanalyticity) in
the thermodynamical potential V . If there is a finite dis-
continuity in at least one of the first derivatives of V , the
transition is called first order. In the case of a ferromag-
net, there is a jump in the magnetization if one passes
through the transition temperature from the phase of
broken symmetry to the symmetric phase. This gives
M the name of an order parameter, as M indicates the
order of spins. In this way it tells us the phase in which
the system is encountered at a given temperature.
The remaining first derivatives of F with respect to

T , the internal energy and entropy, usually also show a
discontinuity at the transition point. A gap in the en-
tropy is associated with a finite latent heat
DQ5Tc•DS , but there need not be such a gap. (Con-
sider a transition in a ferromagnet between states of
magnetization opposite in sign but equal in magnitude.
The latent heat would vanish in this case, while the mag-
netization would jump between values of opposite sign.)
Conversely, there may be a finite latent heat without a
gap in the order parameter at the transition point.
The second derivatives of the thermodynamic poten-

tial at a first-order transition are typically d-function sin-
gularities (corresponding to the discontinuities in the
first derivatives) or finite.

According to the original Ehrenfest classification of
phase transitions, nth-order transitions are defined by
the occurrence of discontinuities (rather than diver-
gences) in the nth-order derivative of the appropriate
thermodynamical potential. In M. E. Fisher’s terminol-
ogy, one distinguishes between first-order and continu-
ous (or higher-order) transitions. In continuous transi-
tions the first derivatives of V are continuous, whereas
second derivatives are either discontinuous or divergent.
In a second-order transition at least one of the second
derivatives of V is divergent. (If there are at most finite
discontinuities in the second derivatives, the transition is
of higher than second order.) Hence the order param-
eter M will vanish continuously at the transition point.
The susceptibility xT and the specific heat c typically

both diverge in a second-order transition. (Again it is
not necessary that both of them diverge.) Here the di-
vergences are power-law singularities. They are charac-
terized by critical indices. For example, in the infinite-
volume limit the susceptibility scales close to Tc
according to xT[2(]2f/]H2)T}u12T/Tcu2g with an
index g , f as defined above, and the specific heat accord-
ing to cH[2T(]2F/]T2)H }u 12T/Tcu2a with critical
index a .

a. The Landau free energy

One criterion for the order of the phase transition is
given by Landau’s theory (Landau and Lifschitz, 1958;
Aizu, 1970; Michel, 1980; Toledano, 1981). It consists in
an expansion of the free energy in powers of the order
parameter. The allowed terms in this expansion are fur-
ther selected by symmetry arguments. Phase transitions
can be classified according to the transformation behav-
ior of their order parameters under a symmetry transfor-
mation. In this introductory section we discuss only an
order parameter described by a scalar field f . In QCD
applications the scalar f will be replaced by an
O(N)-vector with N components or an SU(3) matrix
parametrized by two independent directions of possible
‘‘ordering’’ (see Sec. IV).
The ansatz of a free-energy functional for a scalar or-

der parameter f in d space dimensions is given as

F$f~x !%5E ddxH a(¹f~x !)21
r

2
f2~x !

1
l

4
f4~x !2hf~x !J . (2.2)

For vanishing h this is the simplest form that admits
spontaneous symmetry breaking. Although F is reflec-
tion invariant (if h50), the ground state need not be so.
F may take its minimum for nonvanishing values 6f0
Þ 0 (later denoted as ^f&), depending on the values of
a , r , and l . The ‘‘couplings’’ a , r , l , and h should be
considered as parameters, where a , l.0. In the ex-
ample of a magnet, the condition l.0 corresponds to
the physical condition that the magnetization is
bounded. Later r has the meaning of a mass squared,
l of a coupling strength of the interaction, and h of an

478 Hildegard Meyer-Ortmanns: Phase transitions in QCD

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



external field. In the vicinity of a second-order transition
the order parameter is small (more generally, if fluctua-
tions in the field are allowed, its average expectation
value is small), hence one drops higher powers of f . A
further assumption is that f is slowly varying in space
[thus there are no higher derivative terms than (¹f)2].
A f3 term is missing if a symmetry under sign inversion
f→2f is required for vanishing h . For h50 it is easily
verified that Eq. (2.2) predicts a second-order phase
transition. For r,0 two stable states are predicted with
magnetizations 6f0 . The condition r50 defines the
critical temperature. Thus one may write for r

r5 r̃~T2Tc!. (2.3)

Figures 1(a) and 1(b) display the typical signatures of a
second-order transition. The nontrivial minima at 6f0
move continuously inwards as the temperature is in-
creased towards Tc , where the Z(2) symmetry is re-
stored [Fig. 1(a)]. Figure 1(b) illustrates the vanishing of
the order parameter as a function of T and the power-
law divergence in the susceptibility.
For fixed temperature T,Tc , a field-driven transition

can be considered as a function of h . In this case the
transition is of first order, and f jumps from A(2r/l) to
2A(2r/l) as h changes sign.
Although the ansatz (2.2) was originally proposed for

second-order transitions, temperature-driven first-order
transitions can be described as well. We mention two
possibilities.
(i) l,0 in Eq. (2.2). The coupling l can play the role

of a renormalized coupling. In later applications of
QCD, l occurs as a renormalized coupling in an effec-
tive description of QCD. It varies as a function of the
value that is chosen for the strange-quark mass ms . For
certain values of ms , l becomes negative. If l,0, one
has to include a term } f6 with positive coefficient to
stabilize the free-energy functional (see Sec. IV.A.1).
When we add a term (k/6)f6(x) to Eq. (2.2) (k.0),
F has two local minima over a certain temperature in-
terval T0,T,T1 , where T0 and T1 have the meaning
of stability limits of the disordered phase in the ordered,
and the ordered phase in the disordered, respectively.
At Tc the minima are equally deep, and the order pa-

rameter jumps from f056(3l/4k)1/2 to zero. In general
l may change its sign as function of an external param-
eter P (P[ms in our example of Sec. IV). When l
changes its sign at some value P* , a line Tc(P) of
second-order transitions ends at a so-called tricritical
point Tt5Tc(P* ) and continues as a line of first-order
transitions. Tricritical behavior is predicated to occur for
QCD in certain limiting cases (see Sec. IV).
(ii) a cubic term in Eq. (2.2). If such a term is not

suppressed by a symmetry argument, it admits a first-
order temperature-driven transition. For l.0, F has
two minima at f050 and at f0 Þ 0 over a temperature
interval T0,T,T1 . If the cubic term is written as
(a/3)f3(x), the nontrivial minimum at Tc occurs for
f0529r/a . The very existence of a cubic term in an
effective potential for the electroweak phase transition
has been under much debate in the last few years. In the
simplest models for the electroweak transition the order
parameter is an O(N) vector field, where r , l , and a
are renormalized parameters. Here we add a warning. A
cubic term in the classical potential of Eq. (2.2) does not
guarantee that the transition will be first order. If the
transition is weakly first order in the sense that the maxi-
mum between zero and the nontrivial minimum is not
high, the transition may be washed out by fluctuations of
the order-parameter field. Such fluctuations will be dis-
cussed below.
Landau’s concept of the free energy and the criterion

for the order of the transition is widely used in applica-
tions of particle physics. Two caveats should be men-
tioned at least. The first one concerns convexity proper-
ties, the second the validity range of the mean-field
approximation.
(i) Convexity properties. It is known from general

thermodynamic principles that thermodynamic poten-
tials in thermal equilibrium are convex functions of their
variables. The nonconvex shape of Fig. 1 and the co-
existing minima for a first-order transition are obviously
at odds with the general expectation. Landau’s free en-
ergy is a macroscopic concept. Its nonconvex and physi-
cal realization may be understood as a coarse-grained
free energy arising in an intermediate step from a micro-
scopic to a macroscopic scale.
To be specific, let us start with a microscopic spin

Hamiltonian H($si%) depending on spin variables si as-
sociated with sites i of a hypercubic lattice. As a first
step short-wavelength fluctuations are eliminated by di-
viding the lattice into cells of linear dimensions L and
introducing new variables f(x) in a block spin transfor-
mation according to

f~x !5
1
Ld (

iPLd~x !

si . (2.4)

Here x is a site on the block lattice, and the block spin
variable f is identified with an order-parameter field as
it enters the ansatz (2.2). In this way we make the con-
nection to Landau’s ‘‘mean-field’’ free energy F5Fmf .
The dynamics of a coarse-grained block lattice with field
variables f(x) is determined by the so-called coarse-
grained Hamiltonian HCG . It is obtained as

FIG. 1. Signature for a second-order phase transition: (a) Lan-
dau’s free energy as function of the scalar order-parameter
field f ; (b) order parameter f and associated susceptibility
above (x1) and below (x2) Tc as function of the temperature
T .
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e2bHCG@f~x !#5E DsiP~@f~x !# ,@si# !e2bH@si#, (2.5)

where the path integral extends over all spin configura-
tions @si# under the constraint that a particular configu-
ration @f(x)# on the block lattice [determined according
to Eq. (2.4)] is kept fixed. The constraint is denoted by
P(•••). Such a block spin transformation may be iter-
ated. The general folklore is then (although it is ex-
tremely hard to prove rigorously) that, after a sufficient
number of iterations, HCG@f(x)# has the form of the
Landau free energy F5Fmf if one is close to a second-
order phase transition. At such a transition the correla-
tion length j diverges, and the condition L!j on the
linear cell size L is easily satisfied.
The bulk free energy F of a system governed by the

Hamiltonian HCG is then obtained by integrating over
all remaining configurations @f# according to

F52
1
b
lnZ52

1
b
ln E Df exp$2bFmf@f~x !#%.

(2.6)

If it is justified to evaluate Eq. (2.6) in a saddle-point
approximation, i.e., to drop *Df and take Fmf$% at its
minimum f0 , the result is

F5Fmf . (2.7)

Thus the free energy coincides with its mean-field value,
the Landau free energy. Landau’s free energy is inher-
ently a mean-field approximation. For a spin system, the
order parameter is the magnetization. The Landau free
energy is an expansion in terms of mean values of spins.
It does not include a summation over all spin configura-
tions according to

F52
1
b
ln E Dsiexp$2bH@si#%. (2.8)

(ii) The validity of the mean-field approximation. Next
we address the question of when one is allowed to ig-
nore fluctuations in the order-parameter field, i.e., to
drop *Df in Eq. (2.6) and take Fmf for F . On a micro-
scopic level this amounts to a replacement of spin-spin
interactions by some average background represented
by f[M . The validity of the mean-field approximation
is guaranteed if the fluctuations df[f(x)2f0 in the
order-parameter field are small compared to the order
parameter itself, i.e.,

^~df~x !!2&!f0
2 , (2.9)

where the average ^•••& should be taken over all cells of
the coarse-grained lattice. Upon using the fluctuation
dissipation theorem, we find that Eq. (2.9) translates to
(see, for example, Binder, 1987)

1!Rd~12T/Tc!
~42d !/2, (2.10)

where R is the interaction range. Mean-field theory be-
comes exact if the dimensionality, the range of interac-
tions, or the number of interacting neighbors becomes
infinite (the large-N approximation, where N is the
number of order-parameter components).

Mean-field theory often gives correct qualitative pre-
dictions for phase diagrams of three-dimensional sys-
tems, which can be effective models for high-
temperature QCD. As the dimensionality increases,
mean-field theory improves, while numerical calcula-
tions get harder. The critical dimension depends on the
form of the Landau free-energy expansion. Symmetry
considerations are essential for constructing Landau’s
free energy. As both finite-temperature transitions of
QCD are supposed to be driven by symmetry breaking,
it is natural to construct effective actions for QCD fol-
lowing Landau’s assumptions.
If condition (2.10) is violated, one should use the

renormalization-group approach (Wegner, 1972; Fisher,
1974; Wilson and Kogut, 1974; Ma, 1976) to describe
critical phenomena.

b. The renormalization-group approach
in the infinite-volume limit

In this section we review the main steps of the
renormalization-group approach in the infinite-volume
limit as a tool for describing critical phenomena for
second-order transitions. This approach leads to predic-
tions of critical indices and scaling relations between
them.
In the renormalization-group approach one attempts

to solve the path integral (2.8) in iterated steps. (It is
useful to visualize these steps as block spin transforma-
tions in a spin system.) One step refers to one applica-
tion of a renormalization-group transformation Rb in
coordinate space. The transformation increases the scale
by a factor b.1, hence b is called the scale factor. A
series of Hamiltonians H(n) is generated along with the
iterated application of Rb , and depends on the fields
f(n) and couplings g(n) after n steps. For simplicity let
us denote the set of couplings after n steps as g and after
(n11) steps as g(1). The relation between H(n11) and
H(n) implies for the coarse-grained free-energy density
f(g) after one application of Rb

f~g !5G~g !1b2df~g ~1 !! (2.11)

with the same functional dependence f on both sides of
the equality sign. The rescaling factor b2d is necessary
to account for the reduction of the effective degrees of
freedom after one step by N(1)5b2dN . To keep the free
energy F5*ddx f(x) constant under the operation
Rb , one has to compensate for the reduced volume on
the block lattice by a factor b2d,1. The term G(g)
denotes the contribution to f which is regular in g .
Similarly the correlation length on the ‘‘block lattice’’

is reduced by a factor b21 in one step,

j~g ~1 !!5b21j~g !. (2.12)

At criticality (T5Tc), H(n→`) is supposed to con-
verge to a nontrivial fixed-point Hamiltonian H(g* ),
which is invariant under the transformation R . The set
of fixed-point couplings g* that is invariant under R im-
plies

j~g* !5b21j~g* !. (2.13)
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Equation (2.13) is only compatible with a vanishing or a
diverging correlation length, since b.1 by assumption.
Singularities of thermodynamic functions arise as the

critical point is approached. Their power-law diver-
gences are characterized by critical exponents. Critical
exponents can be derived in the renormalization group
approach, when the transformation R acting in the pa-
rameter space of couplings is linearized in the vicinity of
the fixed point. Let H(g) denote a Hamiltonian ‘‘close
to’’ the fixed-point Hamiltonian, close in the sense that
g'g* , such that we can write

H~g !5H~g* !1(
i
qiOi1oF S (

i
qi
2D 1/2G . (2.14)

The scaling operators Oi are taken as eigenfunctions of
R , while the coefficients qi are the scaling fields, mea-
suring the distance in coupling parameter space between
g and g* . In a typical second order transition we have

q15k1t ,

q25k2h , (2.15)

t5~T2Tc!/Tc ,

where k1 and k2 are constants, t is the reduced tempera-
ture, and h is an external field. The eigenvalues L i of the
scaling operators Oi may be written as bl i due to an
imposed semigroup property of R . Thus we have

RbH~g !5H~g* !1(
i
qib

l iOi (2.16)

under the action of R . Scaling fields for which l i.0 are
called relevant, those with l i50 marginal, and those
with l i,0 irrelevant. In the linearized version of Eq.
(2.16), the relevant and marginal scaling fields (or cou-
plings) have to vanish (e.g., T→Tc and h→0) for
H(g) converging to H(g* ).
The free-energy density f and the correlation length

j can be expressed as functions of the scaling fields by
using Eqs. (2.11) and (2.12). For a concrete application
one has to specify the relevant scaling fields. Further
fields qa refer to marginal and irrelevant scaling fields.
As we are interested in a temperature-driven second-
order phase transition in the presence of an external
field h (for applications to QCD, see Sec. III.C.3), we
choose q1 and q2 as the only relevant scaling fields ac-
cording to Eq. (2.15). A frequently used notation is
l1[yt for the thermal exponent and l2[yh for the mag-
netic exponent. Here we only indicate the subsequent
steps. The singular parts of f and j are written in terms
of the reduced temperature times a scaling amplitude.
The scaling amplitudes are assumed to admit an analytic
expansion in their arguments. This implies that in the
vicinity of Tc (utu!1) contributions of irrelevant scaling
fields may be neglected. We explicitly mention this as-
sumption because the condition utu!1 is easily violated
in numerical applications.
The asymptotic behavior of f is then given as

f~ t ,h50 !'G~0 !1Af
~6 !utud/l1, (2.17)

where Af
6 denotes the scaling amplitude for f , and the

signs (6) refer to the approach of Tc from above or
below. This behavior implies the scaling relation

22a5d/l1 , (2.18)

where a is the critical exponent characterizing the scal-
ing behavior of the specific heat close to Tc . For the
correlation length one obtains

j~ t ,h50 !'Aj
~6 !utu21/l1, utu!1. (2.19)

From Eq. (2.19) one can see that the critical exponent
n characterizing the divergence of the correlation length
may be identified as

n51/l1 . (2.20)

Finally we denote the relations for the magnetization
M and the susceptibility x in the zero-field limit
(h50),

M~ t ,0!5
]f

]h U
h50

'M01AM
~2 !~2t !d/l12l2 /l1, t,0,

(2.21a)

x~ t ,0!5
]2f

]h2 U
h50

'x01Ax
~6 !utud/l122l2 /l1, utu!1

(2.21b)

with splitting analogous to Eq. (2.17) in the singular
parts and additive analytic contributions M0 and x0 ,
originating in derivatives of the analytic part G . The
exponent l1 is distinguished as long as we consider
temperature-driven transitions.
Note that only the leading singular terms in the ex-

pansion of Af
6uh50 and Aj

6uh50 in powers of
(qautu2la /l1) with la /l1,0 have been kept in Eqs.
(2.21), (2.19), and (2.17). As emphasized above, this is
justified as long as utu!1. Due to critical slowing down, it
is inherently difficult in a Monte Carlo simulation to sat-
isfy the condition utu!1. If one observes, in measured
critical indices, deviations from theoretical expectations,
one should keep in mind that contributions from irrel-
evant terms are one possible explanation.

2. Finite-size scaling analysis

Monte Carlo simulations are necessarily performed in
a finite volume. Effects of the finite size are certainly
important, both when the volume is small compared to
physical length scales and when the physical scales are
given by long-wavelength fluctuations or massless
modes. Massless modes feel the finite volume however
large the size of the system.
It is well known that finite-size effects render it diffi-

cult to infer the order of a phase transition. Even quali-
tative conclusions may be misleading. A truly second-
order transition may look like first order showing a
double-peak structure in the probability distribution of
the internal energy or magnetization. The double-peak
structure is a typical signal for the coexistence of phases
at a first-order transition. In this case, however, it is a
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finite-size artifact. It would eventually vanish if the vol-
ume were further increased.
Conversely, large correlation lengths in a finite vol-

ume suggest a second-order transition. The correlation
length may be truly large, but finite. The finite value
would be visible if the volume were further increased,
through a further increase might involve a practical
problem of computer time. A second possible reason for
a large correlation length is a particle-like excitation in
the spectrum, which gets its mass from the volume and
decouples in the infinite-volume limit. In such a case the
associated correlation length does not correspond to a
bulk correlation length. Moreover, one has to be careful
about the order of the critical temperature (T→Tc) and
the thermodynamic (V→`) limits. If T→Tc is taken
first, the correlation length diverges in the case of a
(truly) first-order transition. A misinterpretation of data
for a correlation length was at the heart of the contro-
versy over the order of the deconfinement transition in
the pure SU(3) gauge theory (see Sec. III.B.1).
Fortunately there are characteristic signatures in a fi-

nite volume, which anticipate the behavior in the ther-
modynamic limit. A careful analysis of these signatures
allows one to determine the order of the transition. The
measurements should be performed as a function of a
varying volume. A measurement for a single size is not
conclusive in general.
In the following we discuss the finite-size scaling be-

havior of singularities in thermodynamic functions. We
consider the case of second-order transitions first.

a. Second-order transitions

The renormalization-group approach is an appropri-
ate framework in which to discuss finite-size effects (see,
for example, Barber, 1983). It puts the size of the system
on an equal footing with other relevant scaling fields like
temperature, mass, and magnetic field.
The central conjecture of a finite-size scaling analysis

is to a thermodynamic function P , which admits a criti-
cal singularity in the infinite-volume limit, characterized
by an index m ,

P`~ t !;AP
6utu2m, (2.22)

where the reduced temperature t has been defined in
Eq. (2.15), and A6 are the amplitudes obtained in the
limit T→Tc with t.0(1) or t,0(2). Consider a sys-
tem, that is finite in at least one dimension with linear
size L . The conjecture about the finite-size behavior of
P is

PL~ t !5utu2mQP
~6 !(L/j`~ t !), (2.23)

where L is assumed to be large and T close to Tc ,
L@1, utu!1, and j` denotes the correlation length in the
infinite-volume limit. The derivation of Eq. (2.23) in a
renormalization-group approach is essentially the same
as in the infinite-volume limit. The additional ingredi-
ents are arguments for why L can be considered as a
scaling field. There may be a conflict in principle. Al-
ready in a single renormalization transformation nonlo-

cal terms are generated in the Hamiltonian. Thus the
system size should be sufficiently large to account for all
nonlocal couplings one wants to keep.
The assumption is that close to the critical point one

need keep only a few couplings. Once this set of
couplings has been fixed, L can be chosen sufficiently
large compared to the typical interaction range. In
further distinction to the infinite-volume limit, the
renormalization-group transformations can be iterated
only a finite number of times, as the scale increases by a
factor b.1 in each step. Here the allowed number of
steps should be sufficiently large. It is also taken for
granted that the stability of a set of fixed-point couplings
g*5Rbg* and the semigroup property of R are pre-
served in a finite volume. Under these assumptions
L21 may be treated as an additional scaling field.
The ansatz for the free-energy density in terms of scal-

ing fields and eigenvalues of R then takes a similar form
to that of the infinite-volume analysis. It is given as

f~k1t ,k2h ,qa ,L !5G~k1t ,k2h ,qa!1utud/l1f ~6 !

3~hutu2w2,qautu2w2,Lutu1/l1!,

(2.24)

where b has been chosen large enough that bl1utu;1
and f2 stands for l2 /l1 . Equation (2.24) implies the
finite-size scaling behavior of various derived quantities.
For the zero-field susceptibility we find

xL~ t !5x~ t ,h50,L !5
]2f

]h2 U
h50

5x01Ax
~6 !~Lutu1/l1!utud/l122w2. (2.25)

Irrelevant terms have been dropped on the right-hand
side of Eq. (2.25). The analytic part x0 stays finite as
T→Tc . It may be dropped for large volumes if the sec-
ond term is singular as T→Tc . If the argument of
Ax

(6) is expressed in terms of x`(t), it is easily shown
that the scaling behavior of x takes the form of Eq.
(2.23) with P[x and m[g .
Let us see what Eqs. (2.22) and (2.23) imply for the

explicit L dependence of P . In order to guarantee that

lim
L→`

PL~ t !5P`~ t !, (2.26)

the amplitude QP
(6) has to satisfy

lim
x→`

QP
~6 !~x !5AP

~6 ! , (2.27)

where x[L/j` . The limit x→0 is realized if T→Tc for
fixed L,` . This is the limit we are interested in. In this
case PL(t50) should be finite. Hence the singularity of
P`(t) has to be compensated for by the scaling function
QP

(6)(x) according to

QP
~6 !~x !;xm/n for x→0, (2.28)

where we have used j`(t);utu2n for t→0. It follows
from Eqs. (2.23) and (2.28) that

PL~Tc!5PL~ t50 !;Lm/n. (2.29)
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The last relation (2.29) predicts for the susceptibility

xL~Tc!;Lg/n (2.30)

and for the specific heat

cL~Tc!;La/n. (2.31)

Finally we state the scaling behavior of the correlation
length in a finite volume:

jL~ t !5j`~ t !Qj
~6 !(L/j`~ t !). (2.32)

Refined criteria for a second-order phase transition
take finite lattice sizes into account according to Eqs.
(2.30), (2.31), and (2.32). Note that these formulas have
been derived under the conditions L@1 and utu!1. One
should make sure that these conditions are satisfied in
the actual simulations, otherwise subleading corrections
must be kept.
An important feature of finite-size scaling analysis in

the renormalization-group approach is the similar treat-
ment of the system size and other scaling fields. Treat-
ment on an equal footing is manifest in Eq. (2.24). The
inverse extension 1/L appears as a relevant scaling field
with eigenvalue l i51, i[1/L . To obtain the critical
limit, all scaling fields that are relevant with respect to
the fixed-point set of couplings have to vanish:
t→0(T→Tc), h→0, and 1/L→0. As long as j`(t)!L ,
finite-size effects are negligible. If utu is so small that
(j`(t)/L);0(1), or if L is not sufficiently large, finite-
size corrections may drastically alter the thermodynamic
behavior.
Thus the formal treatment of 1/L is the same as the

treatment of an external field. The external field may be
a mass. From physical applications it is well known that
the finite volume can act like a mass. An obvious mani-
festation is the finite correlation length as result of a
finite volume or of a nonvanishing mass. The analogy
goes even further. Consider an Ising model in four di-
mensions in a finite volume. In the broken phase there is
always a finite probability of tunneling between degen-
erate states with magnetization 61. Below Tc the Ising
model can be approximated by the effective potential of
an anharmonic oscillator, where the mass in the effective
action is proportional to the volume. The corresponding
‘‘particle’’ decouples in the infinite-volume limit. The
kink describing tunneling between states of opposite
magnetization is associated with a so-called vacuum tun-
neling energy. This energy goes to infinity along with the
volume (spin flips of the entire system are rather un-
likely in a very large volume; see Meyer-Ortmanns,
1989).

b. First-order transitions

Finite-size scaling analysis for first-order transitions is
inherently more difficult than for second-order transi-
tions. The correlation length stays finite even in the
infinite-volume limit as T→Tc after L→` , so j` /L is
no longer a sensible scaling variable as in Eq. (2.32). In
the second-order case it is the thermal eigenvalue 1/n of
the renormalization-group transformation that controls

rounding and shifting of the algebraic singularities, both
being of the order of L21/n.
The goal of finite-size scaling analysis for first-order

transitions is to predict the rounding and shifting of
d-function singularities in the second derivatives of a
thermodynamic potential due to the finite volume (e.g.,
in the specific heat due to a latent heat, or in the suscep-
tibility due to a jump in the order parameter).
The volume has to be finite in at least one direction.

This time the rounding of the singularity, the width of
the sharp crossover region, and the shift in the transition
temperature are predicted to be of the order L2d,
where d is the dimension of the system.
Before we go into the subtleties of refined criteria,

which are based on the precise form of the rounding and
shifting as a function of L , we summarize some qualita-
tive signatures of a first-order transition in a typical
Monte Carlo simulation. Qualitative signatures are es-
sentially the large or infinite-volume signatures that we
call ‘‘naive’’ criteria for inferring the order of the tran-
sition:
(i) Some thermodynamic quantities (e.g., the internal

energy) are almost discontinuous at the transition.
(ii) A starting configuration that is half ordered and

half disordered relaxes to very different equilibrium
states on both sides of Tc (rather than frequently tun-
neling between both sides). In a second-order transition
the system relaxes to an equilibrium configuration inde-
pendently of the initial condition.
(iii) At infinite volume, tunneling between both

phases is completely suppressed; at small volumes tun-
neling may be mixed with fluctuations of statistical ori-
gin. For large volumes tunneling events are clearly visible
in a Monte Carlo simulation. The system is in the or-
dered phase with a probability exp$2LdF0(b)%, and in
the disordered phase with a probability exp$2LdFd(b)%,
where F0 and Fd denote the free energies in the ordered
and disordered phases, respectively. If the time history is
followed over a number of Monte Carlo iterations, it
shows flip-flops between states of different ‘‘magnetiza-
tions.’’ The frequency of flip-flops decreases with in-
creasing volume.
(iv) Another manifestation of tunneling shows up in

the probability distribution PE for the internal energy
E(b). For large volumes it is sharply peaked at the en-
ergy values of the ordered (E0) and disordered (Ed)
phases. The deep valley between these peaks reflects the
rare number of tunneling events. If the initial condition
is an ordered start, the probability is large to find E0 for
E . For a disordered start, it is large to find Ed . This is
nothing but a sign of metastability.
(v) Hysteresis effects are observed even away from the

transition temperature.
The qualitative signature of a pronounced double-

peak structure can be made more quantitative when it is
analyzed as a function of the lattice size. In this way we
are led to refined criteria.
A precise form for finite-size scaling has been sought

following different approaches. One possibility is
the incorporation of first-order transitions in the
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renormalization-group approach. First-order transitions
are then associated with a discontinuity fixed point at
zero temperature (Nienhuis and Nauenberg, 1975; van
Leeuwen, 1975). In this approach one would derive the
finite-size scaling as special cases of Eq. (2.24). For ex-
ample, Eq. (2.30) for the susceptibility
xL;L(g/n)5L(2l22d) gives a scaling proportional to the
volume xL;Ld with l25d . Similarly Eq. (2.31) for the
specific heat cL;La/n5L2l12d gives cL;Ld with
l15d . The dimensionality d is the only eigenvalue of
the discontinuity fixed point.
Scaling behavior at a first order transition can also be

discussed independently of the existence of such a dis-
continuity fixed point. A phenomenological approach
was developed by Imry (1980), Fisher and Berker
(1982), Privman and Fisher (1983), Binder and Landau
(1984), and Challa et al. (1986).
More recently exact results have been obtained by

Borgs and Kotecky (1990) and Borgs et al. (1991) for
models that can be represented by a contour expansion
with small activities like the q-state Potts model for
large q . The partition function Z(b ,L) in a finite lattice
of volume Ld with periodic boundary conditions is ex-
panded according to

Z~b ,L !5e2Ldbfd~b!1qe2Ldbfo~b!

1O~e2bL!e2bf~b!Ld
, b.0. (2.33)

The free energy is the minimum of fd and fo , where the
indices o and d stand for ordered and disordered, and
b is a constant larger than zero. In what follows we dis-
cuss predictions of the phenomenological two-peak
Gaussian model for the energy probability distribution
PL(E), which was been introduced by Binder and Lan-
dau (1984) and Challa et al. (1986). This model is related
to the rigorous expansion (2.33) by an inverse Laplace
transform. Therefore results of the phenomenological
model may be compared to exact results and improved
in a more systematic finite-size scaling analysis (Billoire,
Gupta, et al., 1990; Billoire, Lacaze, Morel, 1990). We
present part of their results in the following.

c. The two-peak Gaussian model

The basic quantity for temperature (energy
E)-driven transitions in the first-order case is the prob-
ability distribution PL(E) of the internal energy. [For
field-driven transitions E is replaced by the magnetiza-
tion s (Binder and Landau, 1984).] For large volumes
and away from the transition point, PL(E) is given by a
simple Gaussian. This can be seen when the exponent is
expanded around its maximum as a function of the in-
ternal energy. The double-peak structure of PL(E) in
the vicinity of a first-order transition is then easily un-
derstood when one notices that the exponent is extremal
for two values, Ẽo(b) and Ẽd(b), one for each of the
coexisting phases. As a phenomenological ansatz, the
energy probability density PL(E) is now replaced by a
sum of two Gaussian distributions. It is plausible that

their width should be determined by the distance from
Tc . Expanding Ẽ(b) around Tc leads to

PL~E !5AF aoAco
e

2Ldbc
2~E2Eo2codT !2

2co

1
ad
Acd

e
2Ldbc

2~E2Ed2cddT !2

2cd
G . (2.34)

Here Eo ,d and co ,d are the infinite-volume energy and
specific heat in the pure ordered and disordered phases,
respectively, A is a normalization factor, dT is defined
as dT5(bc2b)/bc

2 , and ao , ad are weight factors for
each phase,

ao5qe2D, ad5eD. (2.35)

The factor q corresponds to q ways of realizing the bro-
ken phase in the q-state Potts model; q52 for the (6)
magnetizations in the Ising model. Finally D is given as

D5
Ld

2
b(Fo~b!2Fd~b!)

;
Ld

2
~b2bc!SEo2Ed1

1
2

~co2cd!dT D . (2.36)

Equations (2.34)–(2.36) predict energy moments cor-
rectly up to order L1/d.
A specific feature of a first-order transition is the

sharpening of the double-peak structure as the volume
increases. Tunneling between phases is less likely the
larger the volume is. The spin configurations corre-
sponding to mixed states lead to an energy E that lies
between the peaks at Eo and Ed . [The distribution of
these ‘‘intermediate’’ energies is not correctly repre-
sented by the superposition of Gaussians according to
Eq. (2.34).] Contributions of mixed states vanish in the
infinite-volume limit, as long as they are equilibrium
configurations. Nothing is said about the phase conver-
sion itself, which may proceed as an off-equilibrium pro-
cess with ‘‘droplet’’ formation.
The double-peak structure and the criteria we present

in the following are essentially based on the double-
valued internal energy Eo and Ed at the transition point.
The free energies are degenerate in this case.
Let us first consider rounding in the specific heat and

the shifting of the transition point. The specific heat in
the volume Ld is, as usual, obtained as

cL5Ldb2~^E2&L2^E&L
2 !, (2.37)

where

^E&L5E
2`

1`

PL~E !E dE

with PL(E) given by Eqs. (2.34)–(2.36). Its maximum
cL max occurs for an inverse temperature

b~cL max!5bc2
lnq

Ed2E0

1
Ld 1O~1/L2d!. (2.38)

Equation (2.38) shows that the shift of the critical tem-
perature in the finite-volume value compared to the
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infinite-volume value is of the order of 1/Ld. The height
of the maximum in the specific heat cL max is derived to
be proportional to the volume,

cL max5Ld
bc
2

4
~E2Ed!21terms of order ~1 !. (2.39)

Thus Eqs. (2.38) and (2.39) display the anticipated vol-
ume dependence of shifting and rounding in a first-order
temperature-driven transition. Subleading corrections of
O(1/L2d) in Eq. (2.38) and of O(1) in Eq. (2.39) have
been determined by Lee and Kosterlitz (1991).

d. Binder’s cumulant

Instead of calculations of the PL(E) distribution it-
self, certain moments and cumulants of the energy prob-
ability distribution have been proven to be suitable indi-
cators of the order of the transition in a finite volume.
An important example is Binder’s cumulant (Challa
et al., 1986), defined as

B5
1
3 S 12

^E4&

^E2&2D . (2.40)

It vanishes in the infinite-volume limit for all tempera-
tures apart from the transition, where B gets a finite
value from tunneling between coexisting phases of a
first-order transition. It also vanishes in the case of a
second-order transition. Calculating the moments ^E4&
and ^E2& from Eqs. (2.34)–(2.36) with the use of Eq.
(2.37), we find that B takes its minimum Bmin at (Bil-
loire, Gupta, et al., 1990; and Billoire, Lacaze, and Mo-
rel, 1990)

Bmin5
2~Eo

22Ed
2 !2

12~EoEd!2
1O~1/Ld! (2.41)

at an inverse temperature

b~Bmin!5bc2
ln@q~Eo /Ed!2#

Ed2Eo

1
Ld 1OS 1

L2dD . (2.42)

The shifting of the critical temperature in Eq. (2.42) is
again of order 1/Ld. A nonvanishing value of Bmin sig-
nals a first order transition. Analogous formulas can be
derived for the spin probability distribution PL(s), im-
plying that the maximum of the susceptibility is propor-
tional to the volume.
Binder’s cumulant depends on the choice of an arbi-

trary additive constant, which may be added to the en-
ergy. This has led to consideration of the quantity U4
(Billoire et al., 1992)

U4[
^~E2^E&!4&

^~E2^E&!2&2
. (2.43)

Apart from a first-order transition point, U4 can be
shown to be larger than 1. Its minimum is given as

U4min511
8~Co1Cd!

Ldb t
2~Eo2Ed!2

1O~1/L2d!. (2.44)

The power-law corrections to CL max , Bmin , and U4min
should be contrasted with exponential corrections to

bulk quantities like the average internal energy E ,
which are directly obtained as derivatives of Z . Accord-
ing to Eq. (2.33), Z itself has only exponential correc-
tions from the finite volume.
In Table I we summarize criteria for distinguishing

first- and second-order transitions in a finite volume.
The indicated volume dependence should be understood
as a leading term in a large-volume expansion. Similarly
the numbers 0 or 1 indicate limiting values, which are
approached as T→Tc . Recall that a/n and g/n<d for a
second-order transition. Thus a typical test in a Monte
Carlo simulation could be a calculation of cL max /L

d. If
this ratio as a function of Ld goes to a nonvanishing
constant for large values of L , a first-order transition is
signalled; if it approaches zero, the transition must be of
second or higher order.
The two-phase coexistence at Tc refers to the Ising

model. The analytic results for leading and subleading
finite-size scaling behavior have been derived by Billoire
et al. (1992) for the more general case of
d-dimensional q-state Potts models, which include the
familiar Ising model for q52. Potts models have served
as a testing ground for the above criteria.

e. q-state Potts models

The Hamiltonian of a d-dimensional q-state Potts
model is given as

H52(̂
ij&

dsi ,sj. (2.45)

The spin variables si are associated with sites on a
d-dimensional hypercubic lattice. They can take q dif-
ferent integer values. The sum extends over nearest-
neighbor pairs ^ij&. The symmetry group leaving H in-
variant is the permutation group of q elements. The
q53 Potts model in three dimensions plays a distin-
guished role in QCD. It shares the global Z(3) symme-
try with the pure SU(3) gauge theory. The restoration
of the spontaneously broken Z(3) symmetry at finite
temperature is assumed to drive the deconfinement tran-
sition in the pure gauge theory.
Beyond this application to QCD, Potts models pro-

vide a suitable testing ground for numerical methods.
Exact results are available for comparison in certain spe-
cial cases of q and d . The strength of the first order
varies as a function of q . The q55 model has a weakly
first-order transition accompanied by a tiny latent heat

TABLE I. Criteria for distinguishing between first- and
second-order transitions in a large but finite volume.

Criterion Fist order Second order

PL(E) double peak single peak
cL max }Ld }La/n

xmax }Ld }Lg/n

b(cL max)2bc }L2d }L−1/n

Bmin >0 →0
U4min →1 >1
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of DQ5Ed2Eo50.052 92 in lattice units and a large
correlation length of 2000 in lattice units at the transi-
tion point (Billoire, 1991). The transition in the q510
model is strongly first order, DQ50.696 05 and j;6,
both quantities measured in lattice units (Billoire,
Gupta, et al., 1990). Obviously the transition in the
q55 Potts model is easily misinterpreted as being of
second order. The linear lattice size has to exceed the
large value of j;2000.
Simulations of the 2d-q=10 Potts model have been

performed by Billoire et al. (1992) to check the limiting
behavior of (cL max /L

d), Bmin , U4min , and c(b t) (b t be-
ing the infinite-volume transition point). According to
the above predictions these quantities should scale as
(const1+const2/Ld). Deviations have been observed,
which do not behave in a simple way as a function of
L . Two possible reasons for the discrepancies are men-
tioned by the authors: q510 may not be in the large-q
limit, for which Eq. (2.33) was derived, or L may not be
sufficiently large to be in the asymptotic regime.
Therefore a two-dimensional q=20 Potts model was

simulated in addition (Billoire et al., 1992). The first-
order transition there is even stronger than in the
q510 case. Thus the asymptotic behavior in L should
set in earlier than for q510, ‘‘earlier’’ means for smaller
volumes. (The ratio that counts is j/L .) Here the agree-
ment with the theoretical predictions is reasonable.
Let us summarize so far. Computer simulations are

always performed in a finite volume, whereas the order
of a phase transition is usually formulated in the infinite-
volume limit. Although this formulation is very conve-
nient, it is not the only appropriate way to proceed. The
good news comes from finite-size scaling analysis. From
the information obtained in a finite volume one can pre-
dict whether the transition is going to be of first or sec-
ond order in the thermodynamic limit. (Likewise a small
mass can play the role of a scaling field. A finite-mass
scaling analysis is suited for an extrapolation to the zero-
mass limit.) From a practical point of view, a finite-size
scaling analysis may be less useful, since it is derived for
finite but large volumes. The original hope was to disen-
tangle first- and second-order signatures even for mod-
erate lattice sizes by using refined criteria. The results
for the two-dimensional q=10 Potts model were some-
what discouraging. One has to have such large volumes
to verify the predictions of a finite-size scaling analysis
that the ‘‘naive’’ criteria are equally applicable for infer-
ring the order of the transition. This statement refers to
weakly first-order transitions. Otherwise the asymptotic
region of a large volumes would be easily realized as
j/L!1 for moderate values of L when j was sufficiently
small.
Typical volumes in Monte Carlo calculations for QCD

are marginal in large finite size. For QCD transitions it
seems difficult ever to get into the asymptotic regime of
large volumes. Right from the beginning one is re-
stricted to much smaller volumes when simulating full
QCD rather than a spin model. The final efficiency of
refined criteria is, however, a question of size, which has
to be answered in the concrete model of interest. The

value of the correlation length in a first-order transition
depends on details of the dynamics. For QCD the larg-
est correlation length is likely not to be small compared
to the typical lattice size.
This concludes our overview of the concepts and re-

sults of statistical mechanics. As we turn now (and for
the remainder of this review) to applications in QCD,
we give a dictionary of correspondences between ther-
modynamic quantities in statistical physics and their
counterparts in QCD in (Table II).
The second and third columns refer to transitions in

liquid/gas or ferromagnetic systems. Two analogies may
be seen between the magnet and the fluid systems. The
first is between the sets (T ,p ,V) of a fluid and
(T ,H ,2M) in a magnet. The second is between
(T ,% ,m) in a fluid and (T ,M ,H) in a magnet (Stanley,
1971). The external field H is the thermodynamic vari-
able conjugate to the order parameter M . Likewise the
chemical potential is conjugate to the density % , where
% is the order parameter for a fluid/gas transition. The
replacement of V by (2M) and p by H transforms al-
most all equations for a fluid/gas system into the corre-
sponding equations for a magnet.
In the last two rows various response functions are

listed, describing the response of the system to a stimu-
lus in the temperature or in an external field. They are
second derivatives of the thermodynamic potential V ,
while the order parameter is obtained as a first deriva-
tive of V with respect to the conjugate field. The last
column shows the associated critical exponents charac-
terizing the singular behavior of thermodynamic func-
tions in a second-order transition.
The QCD transitions refer to limiting cases of vanish-

ing quark masses (chiral symmetry) or infinite quark
masses [Z(3) symmetry]. A further column is devoted to
the chiral transition described on an effective level (here
in the linear sigma model), where the quark and gluonic
substructures of mesons are disregarded. If one is inter-
ested in the evolution of a QCD-plasma ‘‘fluid,’’
(T ,p ,V) is an appropriate set of thermodynamic vari-
ables entering the equation of state.
Formally the current quark masses mq will be shown

to play the same role as an external magnetic field H in
a ferromagnet. On an effective level this analogy is more
manifest, as nonvanishing quark masses will be de-
scribed by external fields «0 ,«8 ; see Sec. IV.A.4. One
may make use of this analogy to guess, from results in
the massless or pure gauge limits, the effects of finite
quark masses on the order of the QCD transitions.
The most popular order parameters in QCD are the

quark condensate ^q̄q& [or ^q̄q& and ^ s̄s&] or the me-
sonic condensates ^s0&, ^s8& on the mesonic level for
the chiral transition, and the expectation value of the
Wilson line ^L& for the deconfinement transition. The
ability to predict the sigma-meson and pion-meson mass
from a critical equation of state (Sec. IV.A.1) sounds
less surprising if one keeps this table of analogies in
mind.
The indices b and s at Tc refer to the approach of

Tc from the symmetric or the broken phase. For the
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deconfinement transition, the phase of broken Z(3)
symmetry is realized above Tc ; thus the commonly used
(6) signs to indicate the approach from above or below
Tc would be misleading in this case. Note that the sin-
gular behavior of the ‘‘magnetization,’’ i.e., the order
parameter, is characterized by a thermal exponent b as
T→Tc

b and by a ‘‘magnetic’’ exponent 1/d as ‘‘H’’→0 at
Tc .

B. Phase transitions in QCD

In a continuum notation the QCD Lagrangian is given
as

L5Lg1Lm

where

Lg52
1
4
Fmn
a ~x !Famn~x !

Lm5c̄~x !~ igmDm2M !c~x !

and

Fmn
a ~x ![]mAn

a~x !2]nAm
a ~x !1gfabcAm

b ~x !An
c~x !

Dm[]m2i•g
la

2
Am

a ~x !. (2.46)

Here Am
a are the gauge fields, ca ,f ,c , c̄a ,f ,c denote the

quark fields where a is a Dirac index, f51, . . . ,Nf labels
the flavors, and c51, . . . ,Nc labels the colors. The
gauge coupling constant is denoted as g , the structure
constants as fabc , and la are the generators of the fun-
damental representation of SU(Nf), a51, . . . ,8 for
Nf53, where la are the Gell-Mann matrices. The quark
mass matrix is denoted as M .
As a first step in the investigation of the phase struc-

ture one may consider certain limiting cases of Eq.
(2.46). One limit is the pure gauge theory, where
L5Lg . This is the limit of infinitely heavy quark masses
and will be discussed in Sec. II.B.2. The topic of the
following section is the limit of massless quarks, which
is called the chiral limit. In the chiral limit the
QCD Lagrangian is invariant under global
U(1)V3SU(Nf)L3U(1)A3SU(Nf)R transformations.
The U(1)V invariance corresponds to the baryon num-
ber conservation. The invariance under axial U(1)A
transformations is only classically preserved. On the
quantum level it is broken via the axial anomaly. Even
in the presence of an anomaly, axial ZA(Nf) symmetry
remains (Callan et al., 1976). At zero temperature the
invariance under ZA(Nf)3SU(Nf)L3SU(Nf)R chiral
transformations is assumed to be spontaneously broken
by the QCD vacuum to the vector SU(Nf)V symmetry.
For Nf52 this isospin symmetry is realized in the had-
ronic spectrum to a very good approximation. For
Nf53 the realization of SU(3)V symmetry is a little
more questionable. Nevertheless it is also frequently
considered as an approximate symmetry of QCD.

1. Renormalization-group analysis in the chiral limit

Rather than directly studying the QCD Lagrangian
(2.46) one can analyze chiral symmetry breaking in an
effective Lagrangian, which shares the chiral symmetry
properties of QCD. The Lagrangian is formulated in
terms of a self-interacting Nf3Nf matrix field f . Chiral
symmetry breaking is parametrized in terms of f ij ac-
cording to f ij;^q̄ i(11g5)qj&, where f transforms
under transformations of Gf[UA(1)3SU(Nf)L
3SU(Nf)R according to

f→f85exp~ ia!U1fU2 . (2.47)

Here U1 and U2 are arbitrary and independent
SU(Nf) matrices, while a generates a UA(1) transfor-
mation. The most general renormalizable Lagrangian in
terms of f that is consistent with the chiral symmetry
properties of QCD is given as (Pisarski and Wilczek,
1984)

L5
1
2
Tr~]mf1!~]mf!2

m2

2
Tr~f1f!

2
p2

3
f1~Tr f1f!2

2
p2

3
f2Tr~f1f!21g~det f1det f1!. (2.48)

As a necessary condition for stability at large values of
f , f2 and (f11f2 /Nf) have to be larger than zero. The
determinant term accounts for the anomaly. It vanishes
in the pure gauge case (Nf50) and in the limit of infi-
nite colors Nc5` (Witten, 1979). At zero temperature
the vacuum expectation value ^f& is SU(Nf) symmetric
and different from zero, m2,0. Spontaneous symmetry
breaking is associated with an SU(Nf) massless multip-
let of Goldstone bosons and a massive flavor singlet
h8.
In Table III we summarize the results of a

renormalization-group analysis by Pisarski and Wilczek
(1984) of the order of chiral phase transitions. These
transitions are driven by chiral symmetry restoration as
the temperature is raised.
For each number of flavors three cases are distin-

guished: a vanishing anomaly corresponding to a vanish-

TABLE III. Order of the chiral transition as a function of the
number of flavors (Nf) and the anomaly strength (g), partly
conjectural.

Nf

g=0
Nc=`

g=const
of order 1

g5g(T)
g(T);dI(T)

1 Second order no transition no transition
O(2) exponents

2 First order Second order First order
O(4) exponents O(2)3O(4) symmetry

3 First order First order First order
UA(1)3SU(3)3SU(3)
symmetry

>4 First order First order First order
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ing number of flavors or an infinite number of colors,
g=const of order 1, where ‘‘const’’ refers to the assumed
temperature independence of g , and g5g(T). Here
g(T) is taken to be approximately equal to the instanton
density dI , which is supposed to vanish at high tempera-
tures. In the following we summarize how the conjec-
tures of Table III arise in a renormalization group analy-
sis.
In the previous section we mentioned the real-space

renormalization-group approach as a tool for describing
critical phenomena. An alternative approach to the con-
struction of renormalization-group equations, which is
utilized here, is the « expansion performed in momen-
tum space. Starting from a Hamiltonian in terms of an
order-parameter field f , one integrates out large mo-
menta (large momenta in contrast to short length scales
in the real-space approach). The new Hamiltonian in
terms of the new field variables is arranged to have the
same form as the old one. The new couplings should be
understood as renormalized couplings. They are ob-
tained in a perturbative expansion. The coefficients of
the expansion depend analytically on the dimension d .
For our applications the appropriate small expansion pa-
rameter is «5d24.
Normally a change in the scale of momenta induces

intricate changes in the action and in derived quantities
like correlation functions, with certain exceptions which
we know from the previous section. Simple scaling be-
havior is recovered if the set of couplings reaches a
value such that any further change in the scale of mo-
menta does not affect them. This is the point in coupling
parameter space where the Hamiltonian approaches a
fixed-point Hamiltonian.
In the present framework fixed points occur as zeros

of the b functions. In the case of one coupling, the b
function gives the change in the renormalized coupling
under a change in momentum scale. Equivalently the
b function gives the change of the dimensionless renor-
malized coupling u under a change of the dimensionless
bare coupling u0 according to

b~u !52eS ] lnu0
]u D 21

5(
n
an~e!un, (2.49)

where the coefficients an depend on « . Given a set of
bare couplings in parameter space at a certain momen-
tum scale, the question arises whether, and under what
conditions, the renormalized couplings v flow into the
fixed point v* (and hence lead to a second-order phase
transition). The answer is given as a condition for the
occurrence of an infrared-stable fixed point v* . The sta-
bility criterion is that the matrix

v ij[
]b i

]v j
(2.50)

have real and positive eigenvalues at v5v* . Here v and
v* stand for sets of couplings, b i are the associated b
functions.
The b functions for a chiral SU(Nf)3SU(Nf) linear

sigma model in the absence of an anomaly (case g50 in

Table III) were derived within an « expansion (Pater-
son, 1981). When the two functions b1 and b2 for f1 and
f2 are inserted in Eq. (2.50), the stability criterion may
be applied to search for IR-stable fixed points. The re-
sults are summarized in the first column of Table III. For
0<Nf,& , the IR-stable fixed point has f2*50 with
O(2Nf) critical exponents. No infrared-stable fixed
point occurs for Nf.) , if f1 , f2 are of order « .
For some time it has been taken for granted that the

absence of an infrared-stable fixed point implies a first-
order phase transition (Bak et al., 1976). The absence or
existence of an IR-stable fixed point is, however, less
conclusive than was originally supposed. The existence
of an IR-stable fixed point does not exclude a first order-
phase transition (there may be a region in coupling pa-
rameter space that is not attracted by the fixed point).
Conversely, the absence of an IR-stable fixed point does
not exclude a second-order phase transition. Instead of
the fixed-point criterion, precise conditions for the oc-
currence of a first-order phase transition have been
specified by Iacobson and Amit (1981). The framework
is again the renormalization-group approach, using the
e expansion. The prediction of first-order phase transi-
tions applies to all multicomponent f4 theories with
more than one dimensionless coupling constant. The in-
teraction term of a multicomponent f4 theory can be
written as

}gijklf if jfkf l , (2.51)

where i ,j ,k ,l P $1, . . . ,N%. The quartic terms of the lin-
ear sigma model, Eq. (2.48), can be recast in this form.
Explicit expressions can be found, for example, Paterson
(1981). As long as the quartic terms proportional to f1
and f2 in Eq. (2.48) are independent of each other (as is
the case for Nf53), the criteria of Iacobson and Amit
are satisfied by the linear sigma model, and a first-order
chiral transition is predicted for Nf>2.
Note that these predictions are neither conjectures

nor rigorous statements. They are not only based on the
absence of an IR-stable fixed point, but derived within
the perturbative framework with «!1. Nonperturbative
features are not attainable in this approach. One may try
to extrapolate the results from four- to three-
dimensional models by setting «51 (although «!1 has
been assumed in deriving the « expansion). Examples
are known (Bak et al., 1976) in which the results to lead-
ing order in « remain a good guide for «51.
The second column of Table III subsumes the sugges-

tions for the order of the chiral transition in the pres-
ence of a temperature-independent strength of the
anomaly, and g is assumed to be of the order of the
other couplings f1 and f2 . For two flavors the det term in
Eq. (2.48) acts like a mass term. Thus it may change the
order of the transition depending on the magnitude of
g . For three flavors, the det-term is trilinear in the ma-
trix elements of f . A cubic term on the classical level is
usually regarded as sufficient for inducing a first order
phase transition (although we know from the discussion
in Sec. II.A that a weakly first-order transition, pre-
dicted on the classical level, may be wiped out by fluc-
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tuations; hence the classical cubic term makes the first
order transition likely, but is no guarantee of its occur-
rence).
For Nf54 Pisarski and Wilczek (1984) argue again

with the absence of an IR-stable fixed point in favor of a
first-order transition. (The gÞ0 case is not covered by
the analysis of Iacobson and Amit.) As claimed by
Paterson (1981), the fixed-point structure of the
SU(4)3SU(4) linear sigma model is unchanged, when
a term }g(det f1det f1) is included. For N.4 the
det term is an irrelevant operator and should not change
the critical behavior.
The effective symmetry of the linear sigma model, Eq.

(2.48) may change as a function of temperature, if the
anomaly strength is temperature dependent and deter-
mined by the density of instantons dI(T). Since
dI(T)→0 as T→` (Gross et al., 1981), g could be small
at the transition temperature compared to the T50
value. Thus the axial UA(1) symmetry would be par-
tially restored. Predictions accounting for this partial
symmetry restoration as a result of decreasing g are
listed in the third column of Table III. For further de-
tails on the consequences of an approximate UA(1) res-
toration, we refer the reader to the original references.
The effective Lagrangian (2.48) can be extended to

include nonzero bare (meson) masses. The simplest an-
satz has the form (tr M f) and is linear in the mass
matrix M . Formally it acts as a background magnetic
field. The formal analogy is evident if we recall that the
linear sigma model can be rewritten as a multicompo-
nent f4 theory with an additional (multicomponent)
f3 term (the det term) and a symmetry breaking mass
term, that is linear in f . In this way it takes the form of
the Landau free-energy functional Eq. (2.2) for a multi-
component order-parameter field f in an external field.
For later comparison we note that the magnetic-field

term is proportional to the mass and vanishes in the
chiral limit. In the other extreme case of infinitely heavy
quark masses, the effective magnetic field of pure gauge
theories will be shown to be proportional to (e2m), thus
vanishing in the infinite-mass limit (m→`). We shall
come back to this point at the end of the next section.
To summarize so far, conjectures about the order of

the chiral transition as function of Nf are based on a
perturbative renormalization-group analysis in momen-
tum space. The analysis has been performed for an ef-
fective SU(Nf)3SU(Nf) linear sigma model sharing the
chiral symmetry properties of QCD. None of the conjec-
tures is rigorously proven. Some of them (g50) are
verified within an « expansion, others (g Þ 0) are based
on the absence of an infrared-stable fixed point when a
first-order transition is predicted, a criterion that should
be used with care.
From statistical physics it is known that a first-order

transition remains first order when a background field is
introduced and the field is sufficiently weak. Otherwise
the transition may be washed out completely. The rela-
tive size of the latent heat compared to the strength of
the external field, i.e. the values of the quark masses,
decides whether the Nf53 chiral transition is preserved

under realistic QCD conditions or not. This question
cannot be answered within a renormalization-group
analysis, but only by detailed calculations. The
renormalization-group approach is nevertheless a good
place to start.

2. The limit of a pure SU(Nc) gauge theory

In this section we deal with the quenched limit of
QCD. The quenched limit is obtained as the number of
flavors goes to zero or the quark masses are sent to in-
finity. The gluonic vacuum in a background of infinitely
heavy quarks may be probed by test quarks. In pertur-
bation theory this means that virtual quark loops are
suppressed.
In the quenched limit the theory has an extra global

symmetry, which results from the periodicity of the
gauge fields in the temperature direction. The partition
function may be represented as a functional integral
over gauge fields, which are periodic in Euclidean time
with period b51/T . The periodicity condition arises as a
consequence of the trace in the definition of the thermo-
dynamical potential

Z5E
Am~b ,x!5Am~0,x!

DA

3expH 2
1
g2 E0

b

dtE d3x
1
4
TrFmn

2 J . (2.52)

(We still use a continuum notation for the path integral
over all gauge fields Am with Yang-Mills field strength
Fmn .) Gauge transformations that are compatible with
the periodicity condition need only be periodic up to an
element cN of the center Z(N) of the gauge group
SU(N). Thus a gauge transformation must obey

V~x,0!5cNV~x,b! for all x (2.53)

with cN P Z(N). The nth element cN
n of Z(N) is given

as exp(2pin/N). It is easily checked that the generalized
gauge transformation (2.53) leaves all topologically
trivial Wilson loops invariant (in particular, those ap-
pearing in the action) and thus the action itself.
This means that the extra symmetry is generated by

the action of local gauge transformations, which are pe-
riodic up to an arbitrary element of the center modulo
strictly periodic local gauge transformations. The essen-
tial ingredient, which ensures the invariance of topologi-
cally trivial loops under the additional symmetry, is the
property of center elements to commute with all ele-
ments of the group.
The issue of the transition from a confinement phase

at low temperatures to the deconfinement phase at high
temperatures can be related to the issue of whether the
pure glue vacuum of QCD is Z(N) invariant like the
action. As it turns out, the transition from the confine-
ment to the deconfinement phase may be explained as a
spontaneous breaking of the extra Z(N) symmetry at
finite temperature.
Qualitatively the quark gluon plasma can be probed

by a heavy test quark. The free energy of this test quark
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should be infinite in the confinement phase, but finite in
the deconfinement phase. It may be computed as the
expectation value of the Wilson line also called a Polya-
kov loop or a thermal Wilson loop. The Wilson line L is
defined as the spatially local operator

L~x![TrP expS E
0

b

dt A0~ t ,x! D , (2.54)

where P stands for the path-ordered product. The Wil-
son line is a topologically nontrivial loop. It is closed due
to the periodic boundary conditions and transforms non-
trivially under the center transformations

L~x!→cNL~x!. (2.55)

Thus L can have a vanishing expectation value. Con-
versely, a nonvanishing expectation value can be taken
as the signal of a spontaneous breakdown of the global
Z(N) symmetry of the action. We have

^L~x!&5e2bF~x!5 H 0finite confinement
deconfinement. (2.56)

Here F(x) denotes the free energy of an isolated test
quark. This behavior qualifies the Wilson line expecta-
tion value as an order parameter for the confinement/
deconfinement phases of QCD in the absence of dy-
namical quarks.
It is natural to look for an effective action of the

SU(N) gauge theory in terms of the order parameter
field, which means in terms of L . Such an effective ac-
tion could simplify the investigation of the phase struc-
ture of pure QCD, if universality arguments may be
used. Svetitsky and Yaffe (1982a, 1982b) have given
plausible arguments that a suitable candidate for such an
effective action is a Z(N) spin theory.
The result of an integration over spatial gauge fields is

an effective action in terms of Wilson lines. The Wilson
lines [originally given in terms of elements of the
SU(N) Lie algebra], are represented by Z(N) variables.
The action is argued to be short ranged. The high-
temperature behavior of the (3+1)-dimensional theory is
determined by the dynamics of the three-dimensional
SU(N) gauge theory. Three-dimensional SU(N) gauge
theories show an area law for Wilson loops (Feynman,
1981) with short-range correlations. The range of inter-
actions is supposed to stay finite over the entire tem-
perature range.
The effective action is invariant under Z(N) transfor-

mations. The Z(N) symmetry can be spontaneously
broken at high temperatures, but is restored at low tem-
peratures and ensures confinement.
The path-integral representation of the original

SU(N) gauge theory is then replaced by

e2bVV5(
$si%

expS 2
1

g2~T !
H@$si%# D . (2.57)

Here si P Z(N), the sum extends over all Z(N) spin
configurations, and V is the thermodynamic potential.

a. Effective vs physical temperatures

In the original action of Eq. (2.52) g parametrizes the
interaction strength. When the time dependence of the

field is dropped, the *0
bdt can be performed to yield a

prefactor of the remaining three-dimensional action
(2b/g2). The b factor can be absorbed by a rescaling of
the fields such that the action in three dimensions takes
the same form as the original action in four dimensions.
Now the prefactor plays the role of an inverse tempera-
ture of the 3d model. Thus g2 is identified with Teff , the
effective temperature of a classical spin system de-
scribed by the partition function of Eq. (2.57). For Teff
small, the ‘‘spin system’’ is in the ordered phase, and we
have ^L& Þ 0 corresponding to deconfinement. Decon-
finement is realized at high physical temperatures T , for
which g is small due to asymptotic freedom. A small
value of g means a small value of Teff , which is consis-
tent with the initial assumption. Thus a low effective
temperature Teff corresponds to a high physical tem-
perature T and vice versa. This explains why the order
parameter vanishes in the low-T phase and signals ‘‘or-
der’’ in the high-T phase.
The coupling g becomes manifestly temperature de-

pendent when high frequency contributions are inte-
grated out in passing from the (311)-dimensional to
the 3-dimensional theory.

b. The phase structure of Z(N) spin models

The phase structure of Z(N) spin models has been
studied in statistical physics for various values of N and
space dimension d21. If a second-order transition is
predicted in the spin model, one could attempt to locate
the renormalization-group fixed point and consider the
simpler spin model as a fixed point theory in the univer-
sality class of the SU(N) theory.
A table for various Z(N), SU(N), and U(1) models

in dimensions d52, 3, and >4 can be found in
Svetitsky and Yaffe, (1982b). Here we mention the cases
of two and three colors.
The spin model, which is associated with a

(311)-dimensional SU(2) gauge theory at high tem-
peratures, is the Ising model in three dimensions. The 3d
Ising model is known to have a second-order phase tran-
sition.
The case of Nc53 in d53 is particular. In the space

of three-dimensional Z(3)-symmetric theories no
infrared-stable renormalization-group fixed point is
known. A specific realization of a Z(3)-symmetric spin
theory is the three-state Potts model (see Sec. II.A),
which is known to have a first-order transition. The fa-
mous cubic term on the classical level, driving the tran-
sition to first order, is allowed by the Z(3) symmetry.
The potential of a Z(3)-symmetric theory of a single
complex scalar field L(x) may be written as the sum of a
U(1)-symmetric term depending on uLu2 and a term de-
pending on Re LN. In d53, a U(1) gauge theory has a
second-order transition (see for example, Pfeuty and
Toulouse, 1977). A term Re @L(x)3# explicitly breaks
U(1) symmetry down to Z(3). In the renormalization-
group sense it is relevant enough to affect the critical
behavior of the U(1) theory.
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Thus the conjecture of Svetitsky and Yaffe is that in
the absence of an IR-stable fixed point the original
(3+1)-dimensional SU(3) gauge theory has a first-order
finite-temperature phase transition as well. The predic-
tion was confirmed in early Monte Carlo calculations
(e.g., Celik et al., 1983a, 1983b), then cast into doubt
(Bacilieri et al., 1988, see also the introduction and Sec.
III.B below), and has been reestablished in more recent
calculations by Fukugita et al. (1989). Before we report
on this controversy in Sec. III.B.1, let us consider the
influence of dynamical quarks on the deconfinement
transition.

c. Inclusion of dynamical quarks

From spin systems we know that a first-order transi-
tion stays first order if the magnetic field is sufficiently
small. The gaps in thermodynamic quantities are only
continuously deformed for a perturbatively small exter-
nal field. The magnetization, however, ceases to be a
good order parameter, as it is always finite due to the
presence of an external background field.
Similarly the Wilson line may be expected to fail as an

order parameter when dynamical quarks are included.
The physical reason is easily understood. The free en-
ergy of an isolated test quark no longer diverges (^L&
Þ 0 for all temperatures). When the flux tube between
two test quarks is sufficiently stretched, a qq̄ pair is
popped out of the vacuum. The test quarks may always
form finite-energy bound states with dynamical quarks.
Since the deconfinement transition was supposed to

be driven by the spontaneous symmetry breaking of glo-
bal Z(3) symmetry, we consider the invariance of the
QCD action under Z(3) transformations in the pres-
ence of dynamical quarks. The generalized gauge trans-
formations, Eq. (2.53), are periodic only up to an ele-
ment of the center of the gauge group. While the
periodic boundary conditions on the gauge field are pre-
served under the generalized transformations, the anti-
periodic boundary conditions on the quark fields are
not. Imposing

c~x,b!52c~x,0! (2.58)

on the quark fields as before, we find that Eq. (2.58)
transforms under a generalized gauge transformation
with U(x,b)5cN

i U(x,0), where i labels the center ele-
ments, according to

c~x,b!→U~x,b!c~x,b!5cN
i U~x,0!c~x,b!

52cN
i U~x,0!c~x,0!. (2.59)

Equation (2.59) shows that the gauge transformed fields
U•c (under the generalized gauge transformation) no
longer satisfy antiperiodic boundary conditions. If we
compare the path integral over all gauge-field configura-
tions in the absence and presence of dynamical quarks
satisfying Eq. (2.58), configurations differing by general-
ized gauge transformations get the same Boltzmann
weight in the absence of quarks, but a different weight in
their presence. Hence the effect of dynamical quarks is

an explicit symmetry breaking of the Z(N)-symmetry.
Its strength is determined by the values of the quark
masses.

d. Finite quark masses and external fields

The analogy between an external field in a spin system
and dynamical quarks in QCD becomes manifest when
the quarks are integrated out. Integration over quark
degrees of freedom induces an external field on the ef-
fective level of spin models (Banks and Ukawa, 1983;
DeGrand and DeTar, 1983). We refer the reader to the
work of DeGrand and DeTar (1983) and anticipate re-
sults from lattice gauge theory.
Consider a four-dimensional SU(3) lattice gauge

theory with fermions at high temperatures. The original
action consists of a gauge field part Sg and a fermionic
part SF . The fermionic part may be written as
SF(U)5(c̄M(U)c [dropping all indices, where U is
the SU(3) gauge field and M the fermion matrix, ex-
plicit expressions will be given later]. When the Grass-
mann variables are integrated out, the effective action
takes the form

Seff@U#5Sg@U#1Tr lnM@U# . (2.60)

In the high-temperature and strong-coupling limit of the
SU(3) gauge theory it can be shown that the gauge part
Sg transforms into the action of a 3d three-state Potts
model. (For the Potts model, see Sec. II.A.) The fermi-
onic part of Eq. (2.60) simplifies, when it is treated in a
hopping-parameter expansion. The hopping parameter
k may be related to the bare quark mass m of the origi-
nal action according to

k;
1
2
e2mt, (2.61)

where m•t is the bare quark mass in lattice units and
t is the lattice spacing in the time direction. [Equation
(2.61) holds only at strong coupling and for small values
of k .] The result for the fermionic term together with
the simplified gauge part leads to the following effective
action (for zero chemical potential):

Seff52Fba

t (
n ,m

Rezn* zn1m̂1h~k!(
n

ReznG .
(2.62)

Here a is the lattice spacing in spatial directions. The
sums go over all sites n and nearest-neighbor pairs
(n ,n1m̂), m̂ is the unit vector in the mth direction, and
zn are elements of Z(3). The coupling h is the external
field, which is a remnant of the dynamical fermions. The
k dependence is explicitly known and approximately
given as

h~k!;24k . (2.63)

With the help of Eq. (2.61) we see that h vanishes with
k for infinitely heavy quark masses, in the limit of a pure
gauge theory. The strength of the external field grows
with decreasing quark mass. Hence sufficiently light
quark masses will completely wash out the first order
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transition in the 3d three-state Potts model. DeGrand
and DeTar (1983) obtain for the critical strength of the
magnetic field hcr5 2/3 (ln 22 2/3). This result was ob-
tained in a mean-field analysis. It holds for a cubic lattice
in three dimensions. At the critical field (mass), the line
of first order transitions terminates at a second-order
critical point and disappears for larger fields (smaller
masses).
A particular virtue of the lattice ‘‘derivation’’ of the

effective action Eq. (2.62) is that it allows a calculation
of the effective coupling in terms of parameters of the
original action [here h5h(k)]. In this respect the effec-
tive Potts model differs from the effective Lagrangian of
chiral perturbation theory (see Sec. IV.A.2), where the
Lagrangian parameters have to be fixed from an experi-
mental input. The price one has to pay for such a deri-
vation on the lattice are the involved approximations
(strong coupling and high-temperature expansions).
Strong-coupling results on the lattice must be extrapo-
lated to continuum results over a long distance in cou-
pling parameter space. It remains to be shown that the
qualitative predictions of the effective Z(N) Potts mod-
els survive the continuum limit.
In summary of Sec. II.B, the renormalization-group

analyses of Pisarski and Wilczek, and of Svetitsky and
Yaffe refer to the idealized limits of vanishing or infinite
quark masses, respectively. They were performed in the
SU(Nf)3SU(Nf) linear sigma model and in Z(N) spin
models rather than directly in QCD. Studies in these
limiting cases reveal a dependence of the order of QCD
transitions on the number of flavors and the number of
colors. The case of physical interest is included for three
colors and two or three light flavors. The outcome of the
renormalization-group analysis is the message that one
has to do hard work in the following sense. Model cal-
culations in terms of a scalar field theory with an
N-component order-parameter field would suffice to
model QCD, if the transition were also conjectured to
be of second order in the case of three light flavors, or,
more realistically, two light and one heavier flavor. One
would be free to choose as simple a model as possible
within the conjectured universality class. Since the de-
confinement and the chiral transitions are expected to
be of first order (for three colors and three massless
flavors; see, for example, Karsch, 1990), the transition
depends on details of the dynamics, in this case the dy-
namics of full QCD.
Compared to the scale of Tc , two quarks (up, down)

are light, three are heavy (charm, bottom, top), but the
strange quark happens to be just of the order of Tc . In
the thermodynamics of QCD, the quark masses play the
same role as external magnetic fields in temperature-
driven transitions of ferromagnets. From this analogy
one must expect that the effects of finite masses depend
on their actual values. Results in the idealized limit may
even change qualitatively under their influence. Thus a
challenge for further investigations of the phase struc-
ture of QCD is to find out which of the alternatives
displayed in Figs. 2(a) and 2(b) is realized. Partly con-
jectural diagrams are shown in the (m ,T) plane, where

m stands for a generic current quark mass, and
Nf535Nc is assumed. For comparison, an (H ,T) dia-
gram for a ferromagnet and a (p ,T) diagram for a
liquid/gas system are shown in Figs. 2(c) and 2(d). For
m50, a first-order chiral transition is predicted at some
temperature Tch . The chiral transition continues to be
of first order, but in a weakened form, as long as the
mass is smaller than a critical value (corresponding to
hch,hcr). For m5` or k50 the first-order deconfine-
ment transition occurs at some temperature Td . It will
persist as long as h(k)[hd is smaller than some h̃cr or
m.mcr . Both transitions may ‘‘meet’’ and coincide for
intermediate mass values [Fig. 2(a)] or they may not
meet [Fig. 2(b)]. In the latter case the discontinuities
disappear completely. The dynamical quark masses are
then too large for the chiral transition and too small for
the deconfinement transition to persist. The chiral sym-
metric deconfining high-temperature region is then
smoothly connected with the chiral symmetry-broken,
confined, low-temperature world of daily life. To date
lattice results suggest that Fig. 2(b) gives a more realistic
description. Lattice calculations are the topic of the next
section.

III. THE LATTICE APPROACH TO THE QCD TRANSITION

A. A primer for lattice gauge theory

This section serves mainly to establish the notation of
lattice gauge theory. We list the basic definitions, sum-
marize some tools that are relevant to the phase transi-
tions, and point out sources of error for misleading re-
sults. For pedagogical introductions we refer the reader
to the literature (see, for example, Kogut, 1983; Creutz
et al., 1983; or more recently, Rothe, 1992; Montvay and
Münster, 1994).

FIG. 2. Hypothetical phase diagrams of QCD in the (m ,T)
plane, where T is the temperature, and m stands for generic
current quark masses: (a) the transitions survive the external
fields and coincide, (b) both transitions are washed out for
intermediate (realistic?) mass values; (c) an (H ,T) diagram
for a ferromagnet; and (d) a (p ,T) diagram for a liquid/gas
system. For further explanations see the text.
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The partition function of an SU(N) gauge theory in-
teracting with matter fields can be written in the Euclid-
ean path-integral formulation as

Z5E DAmDc Dc̄ exp@2S~Am ,c̄ ,c ;g ,mi!# , (3.1)

where the action depends on the gauge fields Am , quark
fields c̄ , c , the gauge coupling g , and the quark masses
mi . The action is given by

S5E
0

b

dtE d3x L~Am ,c̄ ,c ;g ,mi!, (3.2)

where L is the QCD Lagrangian [Eq. (2.46)] for Nf fla-
vors and Nc colors. The chemical potential is set to zero.
At finite temperature the gauge and matter fields have
to satisfy the following boundary conditions:

Am~x,0!5Am~x,b!

c~x,0!52c~x,b! for all x,m (3.3)

c̄~x,0!52c̄~x,b!.

One usually has periodic boundary conditions in the
spatial directions in computer simulations. Note that the
finite temperature enters only via the boundary condi-
tions; b denotes the inverse temperature.
In finite-temperature physics, a typical task is to

evaluate the thermal expectation value of a physical ob-
servable O . The thermal expectation value, defined as

^O&5
1
Z
Tre2bHO , (3.4)

takes the following form in the path-integral formula-
tion:

^O&5
*pbcDAmDc Dc̄ Oe2S

*pbcDAmDc Dc̄ e2S , (3.5)

where pbc stands for the periodic (antiperiodic) bound-
ary conditions as specified in Eq. (3.3). The functional
integral (3.5) is by itself not well defined. Many schemes
may be used to perform the functional integration in an
approximate way.
One possibility, which is particularly suited to the

nonperturbative nature of the phase transition, is the
lattice formulation. The (3+1)-dimensional spacetime
continuum is discretized commonly on a hypercubic lat-
tice. The lattice provides a gauge-invariant regulariza-
tion scheme. Lattice results may be extrapolated to the
continuum limit in the very end. Lattice artifacts can be
controlled via renormalization-group equations and
should vanish in the continuum limit. In practice it may
be quite subtle and intricate to disentangle lattice arti-
facts from continuum physics.
A gauge-invariant lattice action is conveniently de-

fined in terms of link variables U(x ,m)[Ux
m , associated

with a link (x ,m) leaving site x in direction m , and mat-
ter variables c(x)[cx , c̄(x)[c̄x , associated with sites
on the lattice. We keep the continuum notation for the
discrete sites (x,x0). The link variables are elements of

the gauge group SU(N) and replace the continuum
gauge fields Am . In the continuum limit these are re-
lated as

Ux
m5expS iga(

i51

8

l iAm
i ~x !D . (3.6)

If the matter fields are fermions, as in the QCD action,
c and c̄ are Grassmann variables satisfying the usual
anticommutation relations

$c~x !,c~y !%50, $c̄~x !,c̄~y !%50. (3.7)

The matter fields carry spin, color, and flavor indices, as
indicated in Eq. (2.46). The lattice discretized version of
the partition function then takes the form

Z5E
pbc

)
x ,m

dUx
m)

x
dc~x !dc̄~x !

3exp@2S~Ux
m ,c̄x ,cx ;g

2,mi ,as /at!# . (3.8)

In contrast to the symbolic notation in Eq. (3.5), the
measure DUDcDc̄[PdUPdcdc̄ has a well-defined
meaning in Eq. (3.8). The products extend over all link
and site variables of the lattice, dUx

m refers to the
(gauge-invariant) Haar measure on the SU(N) gauge
group, and dcdc̄ is the usual measure over Grassmann
variables for each site x . The action depends on the
gauge coupling g2 and the quark masses mi
(i51, . . . ,Nf) as before, but has an additional depen-
dence on the lattice spacings in spatial (as) and tempo-
ral (at) directions. The lattice spacing, or equivalently
the bare coupling, may be chosen independently in
the spatial and temporal directions. This is sometimes
utilized in finite-temperature calculations of thermo-
dynamical quantities.

1. The lattice action

Two requirements have to be satisfied by a lattice ac-
tion. The first is the reproduction of the classical con-
tinuum limit. In the limit of as5at→0, the action must
approach the continuum form of Eq. (3.2). The second is
local gauge invariance, i.e., an invariance under local
gauge transformations V(x), acting according to

Ux
m→~Ux

m!85V~x !Ux
mV~x1m̂ !,

c~x !→c8~x !5V~x !c~x !. (3.9)

(The second requirement is commonly used, but actually
not necessary. Actions with non-compact gauge groups
recover local gauge invariance only in the continuum
limit.) These requirements are not very restrictive. They
leave us with a variety of possible lattice formulations.
Here we state only the most popular choices, which are
sufficient for what follows.
For the gauge part of the action the Wilson form

(Wilson, 1974), is the most widely adopted, while for the
fermionic part, two choices areWilson fermions (Wilson,
1974) and staggered or Kogut-Susskind fermions (Kogut
and Susskind, 1975; Susskind, 1977). We distin-
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guish explicitly between spacelike and timelike quanti-
ties, to make the appearance of temperature explicit.
The Wilson form for the gauge part is defined as

Sg5
2N•at

gs
2
•as

(
x

m,n,4

Px
mn1

2N•as

gt
2
•at

(
x

m,4

Px
m4 ,

where

Px
mn512

1
N
Re TrUx

mUx1m̂
n Ux1m̂

m1 Ux
n1 (3.10)

contains a product of gauge-field variables along the
boundary of an elementary plaquette of the lattice,
N53 for SU(3), and Tr denotes the trace in color
space.
The first term of the action is a sum over plaquettes,

that contain only spacelike links, whereas the second
term involves timelike links as well. It can be easily
checked that Wilson’s formulation (3.10) satisfies both
requirements for a lattice action.
To find an appropriate form for the fermionic part of

the action turns out to be more difficult. A naive trans-
lation of the continuum Dirac action leads to a lattice
action that actually describes 2d(516) species of fermi-
ons in the naive continuum limit rather than the in-
tended one species of the original continuum action.
‘‘No-Go’’ theorems by Nielsen and Ninomiya (1981a,
1981b) explain the failure of naive transcription and tell
us that no lattice formulation of the fermionic action
exists that is satisfactory in all aspects. If one insists on a
local action, either continuous chiral symmetry is com-
pletely lost on the lattice or one ends up with too many
flavors.
We consider two popular choices, Wilson fermions

and staggered fermions. The former choice gets rid of
the species doubling at the expense of breaking all con-
tinuous chiral symmetries explicitly in the limit of
M→0. The latter choice keeps a U(1)3U(1) chiral
symmetry for all lattice couplings, a welcome feature for
an investigation of chiral symmetry restoration. The
price is too many flavors in the continuum limit (al-
though the number is reduced with respect to the naive
formulation) and a broken flavor symmetry on the lat-
tice. For derivations and details of lattice fermions we
refer the reader to the textbooks (e.g., Rothe, 1992;
Montvay and Münster, 1994) or reviews (Creutz et al.,
1983; Kogut, 1983). Here we only summarize the results.

2. The Wilson action and hopping parameters

In the Wilson action the bare masses mi are hidden in
the hopping parameters in spacelike (ks

(i)) and timelike
(kt

(i)) directions, one for each flavor i , where i labels the
Nf species of flavors in the continuum limit. For the free
gauge theory, (Ux

m51) and as5at , ks
(i)5kt

(i)5k(i), the
relation to the bare quark masses is

1
2

~1/k~ i !21/kc!5exp~mia !21 (3.11)

with kc51/8. For massless quarks k(i)5kc . In the inter-
acting theory, the dependence of kc on g

2 is not known.
This is an undesirable feature in Monte Carlo calcula-
tions when hopping parameter values should be trans-
lated to quark masses to check the relevance of the re-
sults for realistic mass values.
While the flavor symmetry is well defined and con-

served for all lattice spacings by the Wilson action, all
chiral symmetries are explicitly broken even in the mass-
less case (mi50 or k(i)5kc). ‘‘All’’ chiral symmetries
should be contrasted with remnants of the full invari-
ance under certain subgroups. Recall our original inten-
tion to study the phase structure within the lattice ap-
proach. A chiral symmetry restoration at finite
temperature in the massless limit should be signalled by
a melting of the condensate ^c̄c&. Such a ‘‘melting’’ is
prejudiced right from the beginning, if an explicit chiral
symmetry breaking is involved, as it is in the Wilson
formulation.

3. Staggered fermions and flavor symmetries

Staggered fermions are frequently used in studies of
the chiral phase transition. A careful inspection of the
origin of the species doubling in the naive formulation
suggests the possibility of eliminating the unwanted fer-
mions by doubling the effective lattice spacing. This
amounts to a distribution of the fermionic degrees of
freedom over the original lattice in such a way that the
effective lattice spacing for each type of Grassmann
variable is twice the fundamental lattice spacing. It turns
out that in d dimensions 2d/2 fermion fields are neces-
sary to place a different fermionic degree of freedom at
each site of an elementary hypercube on the lattice. This
indicates the origin of the integer multiple of four flavor
degrees in the continuum for four dimensions, which is
attainable by a description with staggered fermions.
A realization of these ideas is rather involved. The

sites of the hypercube will be occupied by single-
component spinors x f , x̄ f , which may be multicompo-
nent in flavor space, f51, . . . ,n . (This number n should
be distinguished from the desired number Nf of con-
tinuum flavors.) The x’s and x̄’s are certain linear com-
binations of the original fields c , c̄ . In the end of a
simulation in terms of (x ,x̄) fields, the results for the
(c ,c̄) fields have to be reconstructed.
The action for staggered fermions in terms of (x ,x̄)

fields is defined by

SF[(
x ,x8

(
f51

n

x̄ f~x !Qx ,x8
f x f~x8!

with

Qx ,x8
f

5
1
as

(
i51

3

Dx ,x8
~ i !

1
1
ab

Dx ,x8
~4 !

1mfdx ,x8

and
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Dx ,x8
~m!

5
1
2

Gm~x !@Ux
mdx ,x82m̂2Ux8

m1dx ,x81m̂#Gm~x !

5~21 !x11x21•••1xm21. (3.12)

The only remnant of the Dirac structure is hidden in the
phases Gm . The staggered fermion action depends on
the quark masses mf . The index f labels the species of
‘‘staggered’’ flavors. Their number n is often set to 1,
since n staggered species on the lattice correspond to
Nf54•n flavors in the continuum. The case n51 comes
closest to Nf53, for which QCD is approximately chiral
invariant. More precisely, for n51 and d54 one has 16
x’s in each elementary hypercube. It can be shown that
these 16 x’s can be combined to define a quark field with
four flavors in the continuum, more generally with
Nf54•n flavors. A nonzero lattice spacing breaks the
flavor symmetry between the 4n flavors, and it breaks
the chiral U(4n)3U(4n) symmetry of the continuum
limit of the staggered fermion action for mf50 down to
U(n)3U(n).
It is the U(1)3U(1) remnant of the full chiral sym-

metry (which is left for n51 and arbitrary lattice spac-
ing) that is the desired feature for investigating chiral
symmetry restoration.
Wilson fermions and staggered fermions appear qua-

dratically in the action. In general, fermion fields can
only occur quadratically in a renormalizable four-
dimensional field theory. Thus fermions are usually in-
tegrated out. This seems to be the only tractable way in
numerical and analytical calculations, since the fermion
fields are Grassmann variables. The integrals are per-
formed using the well-known formulas of Berezin inte-
gration (Berezin, 1966). The result is

Z5E
pbc

)
x ,m

dUx
me2Sgdetl~Q!, (3.13)

where Q is given by the action for Wilson fermions and
by Eq. (3.12) for staggered fermions. The power l equals
Nf , the number of continuum flavors, for Wilson fermi-
ons, and l equals n for staggered fermions (recall that
n5Nf/4). For a positive-definite Q one may use
det Q5exp(Tr ln Q), which leads to

Z5E
pbc

)
x ,m

dUx
me2Seff

with

Seff~$Ux
m%!5Sg~$Ux

m%!2l Tr ln@Q~$Ux
m%!# , (3.14)

where the trace extends over spin, color, and flavor in-
dices. Thus a simulation of Eq. (3.14) with l51 describes
Nf54 in the continuum limit, if staggered fermions are
used for Q. For Wilson fermions det Q(U) is real and
positive for values of the hopping parameter less than
1/8 (Seiler, 1982).

4. Sources of error

For staggered fermions (and vanishing chemical po-
tential) det Q is positive, but its eigenvalues are not al-

ways positive. This is an annoying feature of a represen-
tation in terms of pseudofermions. Therefore in actual
simulations @2l TrQ(xm)# in the effective action of Eq.
(3.14) is replaced by (2l Tr ln@Q̂Q̂1(U)#). Consider
first Q̂5Q. The term Tr ln QQ1 is proportional to
(det Q)2, thus the replacement induces a further dou-
bling of flavor degrees of freedom from n to 2n . To
compensate for this doubling, one reduces the number
of degrees of freedom in Q by a factor of 2 by a further
doubling of the effective lattice spacing. Let us call the
corresponding fermion operator Q̂. Due to the even-odd
symmetry of the determinant, one has det Q
5det Q̂even det Q̂odd . Thus Tr ln Q is actually simulated
as Tr ln Q̂Q̂1. This induces an error, which is not well
under control. Another uncontrolled error entering the
formulation for staggered fermions is due to flavor-
exchanging currents. The flavor symmetry is violated for
a finite lattice spacing. By claiming that their contribu-
tion vanishes in the continuum limit, one may induce an
error similar to that induced when one says that the ir-
relevant additive terms in the Wilson action vanish in
the continuum limit. It is well known that the very irrel-
evant terms in the Wilson action are essential for repro-
ducing the right axial anomaly in the continuum limit.

5. Translation from lattice units to physical units

A basic step in understanding the lattice approach is
the translation of lattice results into physical units. For
illustration let us consider the measurement of a mass.
Such a measurement on the lattice typically yields a di-
mensionless number of the order of 1. The dimension-
less lattice mass m latt is related to the physical mass m
via the lattice spacing a . From simple dimensional argu-
ments we have

m5m latta
21 (3.15)

in units where \c51. (In these units 100 MeV
;0.5 fm21.) In other words, the lattice mass m latt is
measured in units of a21. Other variables are obtained
similarly, energy densities in units of a24, etc.
When a lattice mass is interpreted as m•a and m

(MeV) is known from experiment, Eq. (3.15) gives
‘‘the’’ lattice spacing in physical units. More precisely it
gives a(g) (MeV21) at coupling g , if g stands for the
bare input parameter(s) of the lattice Lagrangian, which
have been used in the measurement of m latt . In a pure
gauge theory g is the bare gauge coupling. The lattice
spacing obtained in this way is unique, i.e., independent
of the choice of physical input m [MeV], only if one is in
(or close to) the continuum limit.
Let us assume we have determined a (MeV21) or

a (fm) from a first mass measurement as indicated
above and measure a second mass m̃ latt in lattice units.
The physical value m̃ [MeV] is then predicted from the
lattice simulation and can be compared with the experi-
mental value. Furthermore, once a(g) is known as a
function of g in units of MeV21 or fm, it makes sense to
associate strong couplings (g@1) with coarse-grained
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lattices (say a.1 fm), and weak couplings with a fine
grain size close to the continuum description. The very
existence of such a universal mapping between bare cou-
plings and lattice spacings in physical units is based on
the renormalization-group equation. In case of an
SU(Nc) gauge theory with Nc colors and Nf massless
flavors, the renormalization-group equation relates g2

and a in the continuum limit (for perturbatively small
couplings g2→0) according to

aLL5~b0g
2!2b1/2b0

2
e21/2b0g

2
,

b05
1

16p2 F11 Nc

3
2
2
3
NfG , (3.16)

b15S 1
16p2D 2F343 Nc

22S 103 Nc1
Nc

221

Nc
DNfG .

If lattice calculations are performed at sufficiently small
values of g , an observable in lattice units should scale as
a function of g in a way that is determined by a(g)
according to Eq. (3.16). For a mass in lattice units this
implies

~ma !~g !5m@a~g !# . (3.17)

If such a scaling behavior is observed, the asymptotic
scaling regime has been reached. The lattice spacing can
then be replaced by the scale parameter L latt , which
represents the only parameter in QCD with Nf massless
flavors and has to be fixed from experiment.
The physical volume V and temperature T are given

in terms of the lattice spacing as

V5Ns
3as

3 ,
1
b

[T5
1

Ntat
. (3.18)

For at5as5a , the volume and temperature may be
converted in to units of fm if a(g) is taken from Eq.
(3.16).
For at Þ as , the relations at(gs ,gt) and as(gs ,gt)

can be determined in the case of a pure gauge theory
[Eq. (3.10)] as follows. We use the notations

2N
gs

[bs ,
2N
gt

[bt , j[
as

at
[

a

at
, bg[

2N
g2

, (3.19)

where gs , gt have been introduced in Eq. (3.10) and
bg denotes the bare coupling on an isotropic Euclidean
lattice. Here bg is large when g is small, as for the physi-
cal temperature (cf. the remarks in Sec. II.B.2). Thus
one may also think of bg as some kind of effective tem-
perature (rather than an effective inverse temperature as
the notation suggests). The two relations that replace
g(a) for the isotropic case are written as

bs5j21b@11cs~j!g21O~g4!# ,

bt5jb@11ct~j!g21O~g4!# . (3.20)

The coefficients cs and ct have been perturbatively de-
termined by Karsch (1982). With j5a/at and g5g(a)
from Eq. (3.16), Eq. (3.20) can be solved for a5as and
at in terms of bs and bt , the couplings of the pure

gauge action. The relations as(bs ,bt) and at(bs ,bt)
replace a(g) on an anisotropic lattice in thermodynamic
calculations.

6. The critical temperature Tc

In QCD the critical temperature Tc depends on the
number of colors (Nc), the number of flavors (Nf), the
current quark masses mq , and the volume V . The finite
volume induces a shift of Tc of the order of 1/V , if V
denotes the d-dimensional volume of the system. The
finite light-quark masses give an effect of a few percent
compared to the value of Tc in the chiral limit. The
strongest dependence comes from the number of flavors.
Tc varies about 100 MeV between Tc;150 MeV for two
light flavors and Tc(Nf50);260 MeV for a pure gauge
theory (DeTar, 1995). This is easily understood in a per-
colation picture. The transition is assumed to occur
when a critical hadron density is reached at which the
hadrons start overlapping, a condition we mentioned
briefly in the introduction. A much lower temperature is
then needed for creating a critical hadron density out of
light pions with a mass of the order of Tc , than out of
heavy glueball states. The lightest states in a pure gauge
theory are glueballs with a mass of the order of 5Tc .
For a smooth crossover phenomenon Tc is no longer

defined. However, if there is a narrow temperature in-
terval with rapid changes in thermodynamic quantities,
it makes some sense to associate a ‘‘pseudocritical’’ or
‘‘crossover’’ temperature Tc with the rapid crossover re-
gion. More precisely, the crossover temperature is de-
fined as the temperature of maximum change in an ob-
servable (e.g., the chiral condensate). Alternatively it is
the temperature of the peak in some susceptibility. Both
pseudocritical values for Tc must agree, only if the sus-
ceptibility is the derivative of the particular observable
whose maximum change defines Tc .

7. A test of asymptotic scaling

Usually one measures the critical coupling gc rather
than the critical temperature Tc . Order parameters are
plotted as functions of g [or b51/(6g2)] to show their
behavior as a function of T . For simplicity let us con-
sider an isotropic lattice as5at5a and the limit of a
pure gauge theory with bare coupling g . For a given
number Nt of lattice sites in the timelike direction, the
temperature may be varied by tuning a via g according
to Eq. (3.18). From a physical point of view it is not
surprising that the temperature may be implicitly varied
via the coupling, as both are related through asymptotic
freedom. Starting in the strong-coupling region g@1 and
lowering g , we encounter the transition from confine-
ment to the deconfinement phase at a certain coupling
gc . Alternatively, g can be kept fixed, but Nt varied
from smaller to larger values (say from Nt52 to
Nt58). In this way the transition region is passed from
deconfinement to the confinement phase, if g and Nt are
in an appropriate range.
One would like to simulate the lattice system for large

values of Nt to keep the finite-size effects small. For
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large Nt a rather small coupling is necessary to reach the
high-temperature phase. The larger Nt , the smaller is
the critical coupling gc , which corresponds to the tran-
sition temperature Tc . In practice, the computer time
rises rapidly if g is small. This explains why typical ex-
tensions in the time direction are limited to Nt5 6, 8, or
12, when fermions are included.
The effect of fermions is a further reduction of the

effective lattice spacing at at the same coupling g com-
pared to the pure gauge case. Even larger values of Nt

are needed to reach the transition region. Small values
of Nt require stronger couplings g in the presence of
fermions. One should keep in mind that one is far out-
side the asymptotic scaling region, if dynamical fermions
are simulated at small Nt .
A test of asymptotic scaling is the very first check of

whether the measured critical coupling gc has some rel-
evance for a critical temperature in the continuum limit.
When the temporal size Nt is increased, the transition
should occur at a smaller lattice spacing a(gc) so that
Tc51/@Nta(gc)# remains constant. For small couplings
g , the relation gc(Nt) should scale as

Tc /LL5Nt
21~b0gc

2!b1/2b0
2
e1/2b0gc

2
. (3.21)

Equation (3.21) follows from Eqs. (3.16) and (3.18). Cal-
culations for an SU(2) and SU(3) gauge theory have
been performed up to Nt516. A measurement of gc
shows strong violations of asymptotic scaling according
to Eq. (3.21) (see, for example, Karsch, 1993).
Asymptotic scaling violations have also been observed

in other observables. They seem to be universal. Thus it
should be possible to absorb the scaling violations in a
‘‘renormalization’’ of the bare coupling to an effective
coupling which accounts for rapid fluctuations in the ac-
tion in an intermediate coupling range. This idea turned
out to be successful (Altmeyer et al., 1993). As a func-
tion of an effective coupling Tc /LMS has a much weaker
dependence on Nt . An extrapolation to the continuum
limit seems to be justified, leading to (Karsch, 1993)

Tc

LMS
5H 1.2360.11, SU(2) gauge theory

1.0360.19, SU(3) gauge theory.
(3.22)

8. Translation to physical units

A second check as to whether the critical temperature
on the lattice has some relevance for the continuum
limit is a translation to physical units. The outcome
should be independent of the choice of the experimental
input. In the pure SU(3) gauge theory, Tc is approxi-
mately independent of the physical input. It is 239(13)
MeV from the string tension As5420620 MeV, 239(23)
MeV from the r mass and 225(30) MeV from the
nucleon mass (Karsch, 1993).
For QCD with two light flavors in the staggered ferm-

ion formulation the crossover temperature is estimated
as 140–160 MeV (DeTar, 1995). The experimental input
comes from the r mass with 770 MeV. The critical tem-
perature is then determined as

Tc ~MeV!5
770 ~MeV!

~mra !~6/gc
2 ,mqa !Nt

. (3.23)

The r mass in lattice units mra (depending on the bare
gauge coupling gc and the bare quark masses mq) is
calculated as a function of gc and mqa from a fit to
several zero-temperature simulations (see DeTar, 1995,
and references therein). Note that in Eq. (3.23) the r
mass [MeV] is kept fixed at its physical value of 770
MeV, while the bare quark masses mqa are allowed to
vary to unphysical values leading to unphysical r masses
as well. As emphasized by DeTar (1995), one should
further keep in mind that the nucleon to-rho mass ratio
is approximately 20% above its physical value over the
range of lattice parameters, where mra is measured.
Also the mp /mr ratio comes out twice to three times the
experimental value, because the bare quark masses are
still too large. Thus the r mass is not (yet) a perfect
candidate for conversion from lattice units into physical
units.
In earlier lattice simulations thermodynamic quanti-

ties were plotted as a function of 6/g2. Nowadays one
often finds plots vs T (MeV). The translation should be
made with care, as the mapping between 6/g2 and T is
not (yet) unique.

9. Numerical simulations

So far we have specified the measure, boundary con-
ditions, and lattice action for the path integral of Eq.
(3.8). We have sketched how numbers from the lattice
can be translated into physical units, and what a crite-
rion for the relevance of lattice results for continuum
physics looks like. Numerical and analytical methods
can be utilized to attack the functional integrations of
Eq. (3.8). Analytical methods are usually applicable in
limits where small expansion parameters are available.
The hopping parameter expansion is an expansion in
small values of k , around the limit of infinite quark
masses. The strong coupling expansion applies for large
values of the bare gauge coupling g . As mentioned
above, it is intrinsically difficult to find a small expansion
parameter in the transition region, where g is neither
weak nor strong. Thus it is not surprising that many re-
sults on the phase structure in the vicinity of Tc are
based on numerical simulations. The most important ap-
proach is the Monte Carlo method.

a. Monte Carlo on the lattice

In a Monte Carlo procedure a set of field configura-
tions $Ux

m%(1)•••$Ux
m%(N) is generated such that the Bolt-

zmann factor is absorbed in the selection of configura-
tions. For a positive-definite and real action S@$Ux

m%# ,
the expectation value of an observable O defined as

^O&5
*Px ,mdUx

me2bS@$Ux
m%#O~$Ux

m%!

*Px ,mdUx
me2bS@$Ux

m%#
(3.24)

[a lattice version of Eq. (3.5) for a pure gauge theory]
equals
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^O&5 lim
N→`

1
N (

i51

N

O~$Ux
m% i! (3.25)

and is approximated by the arithmetic average over a
finite number of configurations,

^O&N'
1
N (

i51

N

O~$Ux
m% i!. (3.26)

The observables in Eq. (3.26) are evaluated on an en-
semble of configurations which are representative of the
coupling (temperature) b21. The configurations are se-
lected according to the probability distribution

P~U !D~U ![
e2bS@U#

Z
DU , (3.27)

where DU and Z are shorthand notations of the expres-
sions in Eq. (3.24). The fundamental idea of the Monte
Carlo method is stated by the law of large numbers,
which tells us that under very general conditions on the
probability measure limN→`^O&N5^O&.
The sequence of configurations is generated with a

Markov process. An easy way of constructing a Markov
process, that has a particular distribution P as its fixed
point is to choose the transition probabilities
Q :($Ux

m%(i)→$Ux
m%(f )) from an initial configuration

$Ux
m% i to a final configuration $Ux

m%f to satisfy the de-
tailed balance condition

P@U ~ i !#Q~U ~ i !→U ~f !!DU5P@U ~f !#Q~U ~f !→U ~ i !!DU .
(3.28)

The fixed-point distribution is in our application the
Boltzmann equilibrium distribution. A particular way of
realizing the detailed balance condition is the Metropo-
lis algorithm (Metropolis et al., 1953).
The Metropolis algorithm is an example of a local up-

dating procedure. One starts from an initial configura-
tion, which may be chosen ordered @Ux

m51 for all links
(cold start)] or disordered @Ux

m P SU(N) random for all
links (hot start)], or mixed. A single new link variable
Ux

m8 is then chosen randomly and always accepted as a
replacement for the old variable if it lowers the action,
i.e., DS5S($U%8)2S($U%),0. Otherwise the change is
accepted with a conditional probability. For DS.0 a
random number r with 0<r<1 is selected. If r,e2DS,
the new variable U8 is still accepted for replacing the old
one; otherwise one goes back to $Ux

m% and repeats the
steps as indicated above.
In this way all links of the lattice are changed, either

randomly or successively. Such a sweep through the en-
tire lattice is counted as one Monte Carlo iteration. Usu-
ally hundreds or thousands of such iterations are neces-
sary before the equilibrium distribution is reached. The
expectation value of the observable is then obtained ac-
cording to Eq. (3.26), where the sum extends only over
the last N equilibrated (or thermalized) configurations.
When fermions are included, one encounters a tech-

nical problem due to the nonlocality of the effective ac-
tion Eq. (3.14). The nonlocality refers to the det term or
equivalently to the Tr ln Q term. For staggered fermions

the matrix Q has (3Ns
3
•Nb)

2 complex elements. In the
local Metropolis algorithm this matrix should be calcu-
lated for every link in every iteration, which renders it
impracticable.

b. The hybrid Monte Carlo algorithm

In the last decade much effort has been invested in
improving algorithms for QCD with dynamical quarks
(for a review, see the lectures by Toussaint 1988 or Her-
rmann and Karsch, 1991). Integration over the fermions
led to the factor det l(Q) in Eq. (3.13). While Q was a
local operator, coupling only nearest neighbors on the
lattice, det Q is nonlocal. A calculation of det Q with
exp$2Sg% as Boltzmann factor should be avoided. The
idea is to bosonize det Q and to ‘‘lift’’ Q into the expo-
nent. The bosonization is performed with the pseudofer-
mion method of Petcher and Weingarten (1981).
The pseudofermion method (Petcher and Weingarten,

1981) is based on the following formula for the determi-
nant:

detQ5
1

detQ21 5E Dl*Dl e2(x ,ylx*Qxy
21ly. (3.29)

Here l ,l* are complex bosonic (pseudofermionic) vari-
ables. Note that Q has to be a positive-definite matrix
for the Gaussian integral in Eq. (3.29) to converge. If we
identify Q with the fermionic matrix of Eq. (3.13), Q has
negative eigenvalues. This is the reason why Q is re-
placed by Q1Q at the cost of doubling the number of
fermionic flavors or (for compensating this doubling) by
Q̂1Q̂ , where x fields live on even and x̄ fields on odd
sites. (Another reason for the replacement is that it is
convenient for easily generating the pseudofermion
fields from a heat bath.) Via the doubling (Q→QQ1)
configurations leading to negative eigenvalues of Q are
mapped on the same contribution to the effective action
as those with positive eigenvalues, although ln detQ in
the original effective action is not given as Tr lnQ for
negative eigenvalues. Thus the error entering this way is
difficult to control.
Like det Q, the action in Eq. (3.29) is nonlocal. Hence

we see, when the bosonic part (2(x ,ylx*Qxy
21ly) is

added to the gauge part of the QCD action to account
for fermions, we need a nonlocal updating procedure. A
practical method, which is free of uncontrolled errors
and often used nowadays in QCD applications, is the
hybrid Monte Carlo algorithm (Duane et al., 1987). It
has to be combined with the pseudofermion representa-
tion to yield a feasible simulation of QCD. The hybrid
Monte Carlo algorithm is a stochastic hybrid of a Lange-
vin and a microcanonical algorithm, for which an addi-
tional Monte Carlo acceptance test has been built in to
remove the systematic errors of the stochastic hybrid.
The stochastic hybrid algorithm combines the virtues of
the Langevin and the microcanonical (or molecular dy-
namics) algorithms. Both algorithms use equations of
motion to select new variables.
In the Langevin algorithm (Parisi and Wu, 1981;

Fukugita and Ukawa, 1985; Batrouni et al., 1985), the
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equation of motion is a partial differential equation,
which is of first order in time. The finite step size in time
entering the discretized version has to be extrapolated
to zero by varying its size. This is time consuming and an
unwanted feature.
The microcanonical algorithm (Callaway and Rah-

man, 1982, 1983) is based on the observation that the
Euclidean path integral of a quantum field theory in four
dimensions can be written as a partition function for a
system of classical statistical mechanics in four spatial
dimensions with a canonical Hamiltonian that governs
the dynamics in a fifth new ‘‘time’’ variable. This time
t may be identified with the simulation time. The algo-
rithm determines the new variables Fx(t) and their ca-
nonically conjugate momenta px(t) in a fully determin-
istic way. Here one moves faster through phase space
(f ,p)→(f8,p8)→ ••• , but at the price of losing ergod-
icity.
The stochastic hybrid algorithm (Duane, 1985) inter-

rupts the integration of Hamilton’s equation of motion
along a single trajectory with fixed energy. The interrup-
tion is made once in a while for a refreshment of mo-
menta. The new parameter, which enters and should be
optimized, is the frequency of momenta refreshment. If
it is low, the algorithm is as slow as the Langevin algo-
rithm, if it is too high, ergodicity will be violated. Yet
there is a systematic error in the hybrid algorithm intro-
duced by the finite time step in the integration proce-
dure, which leads to a violation of energy conservation.
The idea of the hybrid Monte Carlo algorithm is to

absorb this energy violation in a ‘‘superimposed’’ Monte
Carlo procedure. The phase-space configurations at the
end of every molecular dynamics chain are subjected a
Metropolis acceptance test. If the time step is too large,
the energy violation too strong, the (F ,p) configuration
is likely to be rejected. When the energy is conserved,
the configuration is always accepted. In this way the sys-
tematic error due to finite integration steps is elimi-
nated.
Above we have sketched a number of intermediate

steps in developing the hybrid Monte Carlo algorithm,
in order to give an idea of how complex the problem of
finding efficient algorithms is. Although the hybrid
Monte Carlo algorithm moves the system quickly
through configuration space, it is slow due to a matrix
inversion, which enters the equations of motion. The
matrix inversion is usually performed with the conjugate
gradient method. The number of conjugent gradient
steps is proportional to (mf

21) and takes more than 90%
of the CPU time. The hybrid Monte Carlo acceptance
rate is proportional to (mf

23/4) and the autocorrelation
time } mf

21 (Karsch, 1992). For example, one lattice up-
date on a 16338 lattice with mf50.01 takes about 20
min on a 200 MFlop machine. Here we see why it is so
difficult to work with small bare-quark masses. Quark
masses should be as small as possible to avoid an uncon-
trolled extrapolation to the chiral limit, but some ex-
trapolation is unavoidable.
More generally we can see why Monte Carlo simula-

tions of lattice QCD are so time consuming when dy-

namical fermions are included. It is extremely hard to
satisfy the following requirements simultaneously:
(i) The masses are small enough to guarantee a safe

extrapolation to the chiral limit.
(ii) The volume is large enough to avoid finite-size

effects.
(iii) The bare coupling is small enough to be in the

asymptotic scaling regime.

B. Pure gauge theory

1. The order of the SU(3) deconfinement transition

The deconfinement transition in a pure SU(3) gauge
theory is believed to be of first order. For several years
this point was the subject of a lively debate in the litera-
ture, due to the use of different criteria to determine the
order from a numerical analysis. In Sec. II we distin-
guished between ‘‘naive’’ and ‘‘refined’’ criteria. In this
section we shall illustrate their application to the decon-
finement transition.
Early calculations of Kogut et al. (1983) and Celik

et al. (1983a, 1983b) found a strong first-order decon-
finement transition. The conclusions were based on hys-
teresis effects, signals for coexisting states, and abrupt
quantitative changes in bulk thermodynamic quantities
like the internal energy density. One finds in fact an
explicit suggestion that hydrodynamic models of the
quark gluon plasma and models of hadronization should
incorporate a ‘‘hard, first-order transition’’ (Kogut et al.,
1983).
These results were questioned by Bacilieri et al., 1988,

who claimed to see strong indications for a second-order
deconfinement transition. The claim was based on find-
ing a correlation length that grows proportional to the
lattice size, as the size was increased. The results of Ba-
cilieri et al. led to a careful reinvestigation of the decon-
finement transition.
From Sec. II.B we recall the renormalization-group

analysis of Svetitsky and Yaffe (1982a, 1982b), in which
it was argued that an effective theory for an order pa-
rameter of a (3+1)-dimensional SU(N) gauge theory
shares the global symmetry with three-dimensional
Z(N) spin models. In particular, knowledge about
Z(3) spin models was exploited to predict a first-order
phase transition for the case of an SU(3) gauge theory,
based on absence of an IR-stable fixed point in Z(3)
spin systems.
A possible second-order phase transition in an

SU(3) gauge theory would cast some doubts on the uni-
versality arguments. While it was not difficult to ‘‘de-
rive’’ the Z(3) symmetry of the effective action in terms
of the order-parameter field, it was harder to argue in
favor of the locality of the spin model. Thus the question
of nonlocal interaction terms in the effective action was
addressed by Fukugita et al. (1989 and 1990a) and by
Gavai et al. (1989) and Gavai and Karsch (1989) in sub-
sequent papers.
In general the order of the transition does depend on

the type of effective couplings. These couplings are gen-
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erated when the original degrees of freedom are par-
tially integrated out. Nonlocal couplings could cause the
SU(3) transition to be of second order. This suspicion
was supported by earlier results of Fucito and Vulpiani
(1982), who stated that already small anti-ferromagnetic
next-to-nearest-neighbor (NNN) couplings in addition
to the leading ferromagnetic nearest neighbor (NN) cou-
pling induce a second-order transition in a three-
dimensional Z(3) Potts model. It was suggested that
likewise a small antiferromagnetic nnn coupling could
induce a second-order transition in the SU(3) decon-
finement transition.
Both transitions in variants of the Z(3) Potts model

and in the original SU(3) gauge theory were then stud-
ied by applying refined criteria compared to earlier cal-
culations. Here we report in greater detail on the results
of Gavai et al. (1989) on the Z(3) Potts model and of
Fukugita et al. (1989) on the SU(3) gauge theory. In
both models the first-order nature of the transition was
verified with a variety of criteria, and the results of the
APE group are now thought to have been most likely a
misinterpretation of the measured data.
Let us recall from Sec. II the distinction between na-

ive and refined criteria. Naive criteria are signs of meta-
stabilities, hysteresis effects, two-state-signals, or jumps
in thermodynamic quantities. Typically all these signa-
tures occur in a truly first-order transition. If we call
them ‘‘naive,’’ we refer only to their incautious use when
the signatures are taken for granted from measurements
for a single lattice size. Early lattice simulations were
‘‘naive’’ in this sense. Compared to present standards
they were also performed on rather small lattices.
Refined criteria refer to a finite-size scaling analysis of

bulk and ‘‘special’’ quantities. Examples of bulk quanti-
ties are the internal energy density « , the specific heat
c , or the order-parameter susceptibility x . Finite-size
corrections to the average internal energy are exponen-
tially suppressed. The shifting and rounding effects in
the peaks of c and x are of the order of 1/V in first-order
transitions (see Sec. II).
By ‘‘special quantities’’ we mean distribution func-

tions of the order parameter P(O), and derived mo-
ments or cumulants like Binder’s cumulant; see Table II.
In general they have power-law finite-size correction
and are practically applicable for very large volumes,
where these power-law corrections are suppressed.
Similarly correlation lengths show power-law correc-

tions. Even their very definition in a finite volume is
rather intricate compared to bulk quantities. Their prac-
tical utility for a finite-size scaling analysis turns out to
be questionable, as we show below.
We turn now to concrete applications of both kinds of

criteria. Kogut et al. (1983) found large gaps in the inter-
nal energies of gluons (and fermions in the quenched
approximation). The lattice size was 2383 and 4383.
Celik et al. (1983a, 1983b) recorded two-state signals
from hot and cold starts, indicating two coexisting
phases with different expectation values of the Wilson
line at the critical coupling. On lattices with 83 and
10332 (or 33, 4) sites they also found a large latent

heat measured as the difference in gluonic internal en-
ergies (D«/Tc

453.7560.25). Lattice expressions for the
latent heat and other thermodynamic quantities will be
given in Sec. III.B.2.
Brown, Christ, et al. (1988) performed a study concur-

rent with that of Bacilieri et al. (1988). They still found a
first-order deconfining transition, but it was less strong,
with signs of an increasing correlation length. The lattice
volumes were enlarged to 16334 and 16336 and
24334 and 24336. The values for the latent heat [ob-
tained from the gap in («1p)] were D«/Tc

452.54
60.12 for Nb54 and D«/Tc

452.4860.24 for Nb56. This
is 60% and 25% smaller than the earlier values on
smaller lattices, respectively.
Correlation lengths are determined from a fit of Wil-

son line correlation functions [see Eq. (3.40) and (3.41)
below for the definition] with a string potential ansatz in
the confinement phase and a screened Yukawa potential
in the deconfinement phase. The results are increasing
correlation lengths by a factor of 2 to 3 on both sides of
the transition. The relatively large correlation length can
be traced back to the 3d Z(3) Potts model (see our
discussion in Sec. II.A).
Bacilieri et al. (1988) focused their study on Wilson

line correlation functions. Large correlation lengths
were found, increasing proportional to the lattice size.
This increase was interpreted as suggestive of a second-
order transition. Only a careful finite-size scaling analy-
sis of correlation lengths can show that this interpreta-
tion is most likely not adequate. Such an analysis is
rather involved. Therefore we devote the following sec-
tion to it.

a. Correlation lengths, mass gaps, and tunneling events

We use a notation that is independent of the applica-
tion in a spin or gauge model. We shall distinguish physi-
cal and tunneling correlation lengths j(p) and j(t) with
associated mass scales m(p) and m(t) both in the finite
and the infinite volume. A physical or bulk correlation
length in the infinite-volume limit can be defined via the
decay of the connected pair correlation Cc as a function
of the distance z according to

Cc~z !5C~z !2B ——→
z→`

Ae2m~p !z, (3.30a)

j~p ![1/m ~p !. (3.30b)

Here C is the unsubtracted, disconnected pair correla-
tion and B stands for the constant disconnected part,
which is different from zero in the phase of spontane-
ously broken symmetry. The inverse correlation length
j(p)215m(p) is called the physical mass gap.
In the conventional lore it is the infinite-volume cor-

relation length which diverges as b→bc for a second-
order transition and stays finite in the first-order case.
Here we would like to stress the order of limits,
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lim
b→bc

2

lim
L→`

jL
~p !~b ,L !

5 lim
b→bc

2

j~p !~b!H→` second order

→const,` first order.
(3.31)

In the opposite order,

lim
L→`

lim
b→bc

2

jL
~p !~b ,L !

5 lim
L→`

jL
~p !~bc ,L !H→` second order

→` first order.
(3.32)

The ‘‘critical’’ correlation length jL
(p)(bc ,L) also di-

verges at bc in the infinite-volume limit in the case of a
first-order transition (Blöte and Nightingale, 1982; Priv-
man and Fisher, 1983). This behavior is familiar, if we
recall from Sec. II.A that singularities in second deriva-
tives of thermodynamical potentials occur for first-order
transitions as well. The only difference in the second-
order case is the type of divergence: d-function singulari-
ties may occur in the specific heat and the magnetic sus-
ceptibility, when the infinite-volume limit is taken
at criticality. Thus a diverging correlation length
jL
(p)(bc ,L) for L→` is not conclusive evidence for a
second-order transition.
In the following discussion we consider infinite-

volume correlation lengths according to Eq. (3.31). In
Table IV we compare the behavior of the physical and
tunneling correlation lengths and their associated mass
scales in the infinite-volume limit.
In the first row of Table IV we have listed the behav-

ior of the physical mass gap and its associated bulk cor-
relation length, when the critical coupling bc is ap-
proached from the symmetric phase (i.e., bc from
below), denoted as b→bc

2 . In the first-order case j(p)

stays finite, while it diverges as b→bc
2 for a second-

order transition. In the broken phase the physical mass
gap stays finite in both cases (second row).
In the lower two rows we introduce an ‘‘unphysical’’

mass gap m(unp) and its corresponding tunneling corre-
lation length j(t). In the symmetric phase both quantities
coincide with m(p) and j(p), respectively, while j(t) is

always infinite in the broken phase in the infinite-
volume limit. Here m(unp) may be defined via an analo-
gous relation to Eq. (3.30a), but this time via the decay
of the disconnected correlation function,

C~z ! ——→
z→`

e2m~unp!z. (3.33)

The vanishing of m(unp) defined via Eq. (3.33) just re-
flects the nonvanishing constant B in the broken phase,
which prevents an exponential decay of the correlation
due to spontaneous symmetry breaking. The relation to
the associated tunneling correlation length is not as
simple as in Eq. (3.30b).
From an analysis of the transfer matrix one expects in

general that the (disconnected pair) correlation function
will be a coherent sum of its eigenvalues. If we consider
only the two smallest eigenvalues above the ground
state, the correlation C(z) may be written as

C~z !;a1e
2z/j~p !

1a2e
2z/j~ t !

, (3.34)

which should be compared with Eq. (3.33). Equation
(3.34) defines the tunneling correlation length j(t), or
more precisely, j(t) arises in the spectrum of the transfer
matrix from the level splitting associated with tunneling
between different degenerate vacua. (We anticipated
this effect in Sec. II.A.)
This tunneling has a finite probability as long as the

volume is finite, resulting in a finite jL
(t) , but the poten-

tial barrier between the degenerate ground states be-
comes infinitely high in the infinite-volume limit, leading
to

lim
L→`

jL
~ t !5` . (3.35)

From Eq. (3.34) we recognize that as L→` the diverg-
ing j(t) gives rise to the constant disconnected term B in
the correlation function Eq. (3.30a).
In a finite volume both length scales j(p) and j(t) are

necessarily finite and, when considered at criticality [cf.
Eq. (3.32)] both increase with increasing volume at a
first-order transition. Thus there is a twofold risk of mis-
interpreting an increasing correlation length: the order
of limits has not been properly arranged and j(t) is in-
tertwined with j(p).
Concrete realizations of the correlation function C are

spin-spin or Wilson line pair correlations, if we deal with
applications in the SU(3) deconfinement transition. We
give the infinite-volume definitions, written for a large
but finite volume V5L3.
In the 3d three-state Potts model considered by Gavai

et al. (1989), the spin-spin correlations are defined as

C1~z !5
1
6V K (

i
s is j

1L , (3.36)

where z5ui2ju and the corresponding zero-momentum
projection reads

C0~z !5
1
6L K (

i51

L

s̄is̄ j
1L . (3.37)

Here si is the spin at site i and s̄ i the average spin over

TABLE IV. Infinite-volume behavior of the mass gap, the tun-
neling mass m(unp), and their corresponding correlation
lengths.

Phase
First-order
transition

Second-order
transition

Symmetric m(p) stays finite
as b→b c

2
m(p)→(b2bc)

n→0
as b→b c

2

j(p)→`

Broken m(p) and j(p) are finite m(p) and j(p)

are finite
Symmetric m(unp) stays finite as

b→b c
2

m(unp);(bc−b)n→0
as b→b c

2,
j(t)→`

Broken m(unp)=0, j(t)=` m(unp)=0, j(t)=`
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a plane i , while z denotes the distance between planes
i and j along one of the principal axes of the lattice. The
connected part

Ci ,c~z !5Ci~z !2 lim
z→`

Ci~z !, i50,1, (3.38)

defines the physical correlation length j(p) as

1/j~p !52 lim
z→`

1
z
lnCi ,c~z ! (3.39)

in accordance with Eq. (3.30a).
The analogous quantity C0(z) for an SU(3) lattice

gauge theory was considered by Fukugita et al. (1989)
and is the zero-momentum correlation function of Wil-
son lines

C0~z !5
1
3L (

i51

3

(
z851

L

^V̄i~z8!V̄i
1~z81z !&, (3.40)

where i labels the planes, and V̄i(z) is the average of
Wilson lines Vn over the ith plane. In this model
ni5z , where

Vn5
1
3
TrS )

t51

Nt

U ~n ,t!
~4 ! D , (3.41)

i.e., the trace of the product over gauge-field variables
U(n ,t)

(4) P SU(3) associated with timelike links leaving the
site (n ,t) in direction 4; n denotes the spatial coordi-
nates. The additive constant B of Eq. (3.30a), which can
be split off in C0(z), is given by u^V&u2.
Bacilieri et al. (1988) calculated Wilson line pair cor-

relations essentially with the same formulas as (3.40)
and (3.41). They used a source method, in which all link
variables with z coordinate 1 were fixed to the identity
matrix 1. The ir correlation reads

C1~z !5K 1
LxLy

Re (
x ,y

V~x ,y ,z !•1L , (3.42)

where V(x ,y ,z)[Vn from Eq. (3.41).

b. Adaptation to the finite volume

The above definitions for the various correlation
lengths are applicable in the large-volume limit, that is,
if limL→` in Eq. (3.31) is approximately realized. As
subleading corrections from the finite-volume limit are
powerlike, the large-distance behavior of correlations
(z→`) is not accessible on lattices of moderate size.
For first-order transitions it is rather hard to predict

the finite-size dependence from first principles. [The ap-
proach of Borgs and Kotecky (1990) comes closest to a
rigorous derivation.] In general one has to make at some
place an ansatz. The double-peak Gaussian ansatz for
the distribution function PL(E) has led to definite pre-
dictions of the finite-size behavior.
Likewise it requires an ansatz for the functional form

of the correlation function CL(Z) in a finite volume. A
procedure that was adopted by Gavai et al. (1989) and
Bacilieri et al. (1988) is to form ratios of correlation
functions,

Ri~z !5
Ci~z !

Ci~z11 !
. (3.43)

A finite-volume ansatz for Ci(z), which was inspired by
the infinite-volume decay and adapted to the choice of
periodic boundary conditions on a cubic lattice, is

Ci~z !5Ai@exp~2z/j!/zi

1exp~2@L2z#/j!/~L2z ! i# , (3.44)

where j stands for a generic correlation length and
i50,1. Equation (3.44) includes only the first image of a
source in the z direction, the one that is a distance L
apart. Multimirror images (accounting for images a dis-
tance nL apart) should be also included, if the correla-
tion can become large compared to the considered vol-
ume.
The careful analysis of Gavai et al. for the 3d Z(3)

Potts model shows that different methods of extracting
the physical correlation length j(p) from data on finite
lattices do not agree in the critical region, although they
do agree away from Tc . Depending on the ansatz for
Ri , j seems to grow with L , or to stay finite (j;10 in
lattice units) in the vicinity of Tc . The former behavior
is compatible with j5j(t) as L→` , the latter with
j5j(p), i.e., a physical mass gap which stays finite at
Tc and indicates the first-order nature of the transition.
To summarize, it is the very definition of a correlation

length in a finite volume, the order of limits (L→` and
b→bc) and the occurrence of the tunneling correlation
length, which impede the finite-size analysis of correla-
tion functions.
After this digression we proceed with concrete appli-

cations in the SU(3) deconfinement transition. Bacilieri
et al. (1988) considered ratios of finite-volume correla-
tions according to Eq. (3.44), with C1 given by Eq.
(3.44), very similar to the observables that were later
considered by Gavai et al. (1989). Rather than measur-
ing the correlations Ci(z), they applied a so-called
smearing procedure (Albanese et al., 1987) to generate
operators weakly coupled to the high-energy fluctua-
tions. We do not go into technical details, although the
smearing technique is quite important for following the
decay of the correlation over a large distance up to 15
z slices on a lattice of cylindrical geometry 12234834.
Alternatively ‘‘the’’ correlation length j , defined via

Eqs. (3.30a) and (3.42) was measured from a three-
parameter fit with C(z)5A cosh@m 1

2 Lz2z#. The state-
ments of the paper by Bacilieri et al. about the increas-
ing correlation length refer to this length scale j51/m .
When m coincides with the physical mass gap m(p), it is
related to the string tension s via m(p)5sNb . This re-
lation holds in a pure gauge theory. Thus the statement
about the physical correlation length j(p) tells us the
behavior of the string tension in the critical region of the
SU(3) gauge theory.
The resolution of the contradicting statements about

the order of the phase transition seems to lie in this
ansatz and its interpretation,
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C~z !→Ae2mz1B . (3.45)

In the critical region it should probably be replaced by
an ansatz like Eq. (3.34) to account for both correlation
lengths j(p) and j(t). If j(t) dominates, the mass m in Eq.
(3.45) reflects the increase of j(t) rather than j(p).
A systematic finite-size study of the 3d 3-state Potts

model was performed by Gavai et al. (1989). The Hamil-
tonian of the Potts model was specified in Sec. II. It is
equivalent to a Z(3) spin model. The volume depen-
dence was studied for bulk quantities like the average
action E and the order parameter S . When S and E
were plotted as a function of b , the crossover region
became sharper with increasing volume. A typical mani-
festation of coexisting phases was verified, and the func-
tion b(L ,E) was multivalued. One coupling (tempera-
ture) was compatible with several values of the free
energy at the transition point.
Flip-flop signals in the order parameter were observed

as a function of the Monte Carlo time. They are re-
flected in a double-peak structure of the order-
parameter distribution PL(S). Figure 3 verifies what we
expect from the general considerations of Sec. II. With
increasing volume the double-peak structure becomes
more pronounced. (In a truly second-order transition it
fades away at larger volumes.)
In the critical region the rounding and shifting of ther-

modynamic quantities was governed by the thermal ex-
ponent l1[yT51/n5d/(22a), where yT5d for a first-
order transition (see Sec. II). In particular, the critical
coupling should be shifted according to

bc ,L2bc}L
2yT, (3.46)

and the width of the critical region sL should shrink as

sL}L2yT. (3.47)

The finite-volume critical coupling bc ,L and the width
sL were extracted from a Gaussian fit for the relative
population density of both phases in the critical region,
and, alternatively, by the midpoint and length of the
coupling interval (0.367<b<0.36703), where flip-flops

were observed on a 483 lattice. Results for both quanti-
ties were compatible with yT5d , i.e., with a first-order
finite-size scaling behavior.
The careful analysis of finite-volume correlation

lengths was anticipated in the previous subsection. An
estimate for the inverse physical mass gap leads to
j(p)(bc);10 in lattice units. Thus it stays finite at Tc as
it should for a first order transition.
The inclusion of an antiferromagnetic next-to-nearest-

neighbor coupling with a relative coupling strength of
g520.2 does not change the qualitative result of a first-
order transition (Gavai and Karsch, 1989). The disconti-
nuity in the order parameter is of the same magnitude as
for g50.0, but the latent heat is found to be smaller by
a factor of 2.
This result is interesting, as it corrects the naive ex-

pectation that a large gap in the order parameter goes
along with a large latent heat. It raises the possibility
that the deconfinement transition in the SU(3) gauge
theory is associated with a small latent heat due to
slightly nonlocal effective couplings, even if the jump in
the order parameter is not small. For the actual size of
the latent heat in the SU(3) gauge theory, see Sec.
III.B.2.
Finally we come to the SU(3) gauge theory as consid-

ered by Fukugita et al. (1989). Their lattice size ranged
over 8334 to 36334 sites. Two-state signals were ob-
served for the size Ns58228. The distinction between
the two-states became conspicuous with increasing vol-
ume. Likewise the double-peak structure in the order
parameter distribution, where P(uVu) (V was the Wil-
son line operator of Eq. (3.41) was more pronounced for
a larger lattice size.
The susceptibility of the Wilson line was given as

x5V@^~ReV!2&2^ReV&2# . (3.48)

Here V was defined as in Eq. (3.41), where Re V is
taken as the projection of (SnVn /V) onto the nearest
Z(3) axis on the complex V plane. The results for the
maximum in the susceptibility led to a scaling of
xmax}V

g/(d•n) with g/(d•n)50.99(6) and a width
Db}V21/(dn) with 1/(dn)50.95(5), in reasonable agree-
ment with the expected values of 1.
The ‘‘unphysical’’ mass gap m(unp) defined in

Eq. (3.33) was obtained from a fit of C0(z)
5A cosh@m(unp)(z2Ns/2)# . The expected behavior in
the infinite-volume limit is shown in Table IV. For a first
order transition in a finite volume, m(unp) should de-
crease more sharper as V→` than for a second-order
transition. In fact, a crossing of the family of functions
m(unp)(L ,b) was observed, which is qualitatively in
agreement with the expectations, although a detailed
quantitative understanding is missing.
The physical mass gap m(p) was read off from an an-

satz as Eq. (3.30a) with B5u^V&u2, where the exponen-
tial was replaced by a cosh to account for the periodic
boundary conditions. It is small, but stays finite at bc
(see Table IV).
Fukugita et al. (1989; Fukugita, Okawa, and Ukawa,

1990) also addressed the question of nonlocal couplings

FIG. 3. Double-peak structure of the probability distribution
PL(S) of the order parameter S for L530 at b50.36675,
L536 at b50.367, and L548 at b50.367025. From Gavai
et al. (1989).
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on an effective level of the SU(3) gauge theory. An an-
swer requires explicit construction of the effective
Z(3) action from the original SU(3) gauge theory. The
Z(3) variables are not introduced ad hoc (i.e., by as-
sumption), but expressed in terms of the original field
variables. An ‘‘effective’’ Z(3) spin vn is defined as the
projection of Vn to the nearest Z(3) axis (normalized to
unit length). The generic form of an effective action in
terms of vn variables is written as

Seff5(
a

baOa~$vn%!. (3.49)

Here Oa are Z(3)-invariant monomials in vn , ba are
the associated couplings, local as well as nonlocal, e.g.,
NNN couplings. First correlation functions of the mono-
mials Oa are calculated from the ensemble of vn’s, gen-
erated in the original SU(3) Monte Carlo runs. The
number of terms labeled by a is truncated by hand. Next
the couplings ba are determined with the aid of
Schwinger-Dyson equations. This method is known from
Monte Carlo renormalization-group calculations
(Gonzalez-Arroyo and Okawa, 1987).
The results are as follows. Effective two-spin cou-

plings decreased to values less than 1023 for distances
larger than 3 between the two spins (on a 24334 lattice
with b55.6925). Three- and four-spin couplings were
smaller than (122)31023. The effective couplings de-
creased exponentially with distance, as anticipated by
Svetitsky and Yaffe from the phase structure of the as-
sociated three-dimensional SU(3) gauge theory.
The two-spin couplings (in particular the NNN cou-

plings), which were derived quantities in this case,
turned out to be all positive. There is no sign of ‘‘anti-
ferromagnetism.’’
Like other numerical investigations this derivation is

not rigorous. In particular, it involves a truncation in the
effective action, which is, however, unavoidable. In this
sense none of the Monte Carlo results actually prove the
first order of the deconfinement transition, but different
derivations give strong hints pointing in the same direc-
tion: the deconfinement transition in the pure SU(3)
gauge theory is of first order. The controversy about this
topic has been settled. The situation becomes consider-
ably more involved when fermions are included.

2. Thermodynamics on the lattice

An important contribution of lattice QCD to phenom-
enological applications of the QCD transition is a pre-
diction of QCD’s equation of state. The behavior of the
pressure p , the internal energy density e , and the en-
tropy density s are of most interest for seeking observ-
able effects in heavy-ion collisions. In this section we
summarize the lattice expressions of thermodynamic
quantities and outline an approach due to Engel, Fing-
berg, et al. (1990) for deriving the equation of state in an
entirely nonperturbative framework. The method over-
comes former inconsistencies observed for the pressure.
Here we consider its application to the pure SU(N)

gauge theory followed by a discussion of finite-size ef-
fects in the regions of critical and high temperature.
From Sec. II.A we recall the continuum expressions

for the energy density e and the pressure p as
e5(T2/V)]/]T lnZ and p5T(]/]V)lnZ. One way of
calculating these quantities on the lattice is to transcribe
the derivatives with respect to T and V on the lattice.
This has led to introduction of different lattice spacings
for the temporal (ab) and spatial (as) directions and is
the reason why we have specified the lattice action di-
rectly on an asymmetric lattice. The derivatives are re-
placed according to

]

]T
→

1
Nt

]

]at

]

]V
→

1

3as
2Ns

3

]

]as
. (3.50)

After performing the appropriate lattice derivatives
of lnZ, we set the lattice spacings equal again,
as5ab5a .
Let us consider the first derivatives of the partition

function. The order parameter for the pure gauge theory
is the thermal Wilson line. Its lattice expression has been
given in Eqs. (3.41) and (3.42). The order parameter for
the chiral condensate will be given in Eqs. (3.112a) and
(3.112b) in Sec. III.C.
The lattice expression for the internal energy density

gets a contribution from the gluonic part and the fermi-
onic part,

e5eG1eF . (3.51)

For completeness we give also the formula for the fer-
mionic part. The continuum expression

e52
1
V

]~ lnZ !

]~1/T !
5
1
V K ]S

]~1/T ! L (3.52)

is transcribed to

e5
1

Ns
3as

3Nt
K ]S

]at
L (3.53)

with S given by the Wilson action or the action for stag-
gered fermions (see Sec. III.A).
The energy density contains a contribution from the

vacuum, which is a b-independent infinite constant (see
Bernard, 1974). When the vacuum contributions from
the gluons eG ,vac and the fermions eF ,vac at T50 are
subtracted, the resulting lattice expressions are

eG52N~Ns
3Nta

4!F g22K (
x

m,n,4

Px
mn2 (

x
m,4

Px
m4L

2cs8 K (
x

m,n,4

Px
mnL 2ct8K (

x
m,4

Px
m4L G2eG ,vac

(3.54)

and

eF5Nf~4Ns
3Nta

4!21^Tr$D ~4 !~D1m !21%&2eF ,vac ,
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where mf has been set to m for all flavors f in Eq. (3.54)
and

a5as5at , D5 (
m51

4

D ~m!,

cs852a]gs
22/]atuat5as

, cb852a]gt
22/]atuat5as

,

eG ,vac5N~Ns
4a4!21@2cs82ct8#• (

x
m,n

Px
mn ,

eF ,vac53Nf~16a
4!21. (3.55)

The notation has already been introduced in Sec. III.A.
Note that the energy densities scale with (1/a4). An un-
certainty in a(g) in units of [MeV] is amplified to the
fourth power in the results for e . Further, we see that
e is expressed in certain plaquette expectation values,
which are easily accessible in a Monte Carlo simulation.
In principle the coefficients cs8 and ct8 can be determined
nonperturbatively from lattice simulations (for first at-
tempts see Blum et al., 1995a), but in the past the per-
turbative values (Karsch, 1982; Trinchero, 1983) were
used in the otherwise nonperturbative expressions. The
use of perturbative values is questionable from the be-
ginning. For the SU(3) gauge theory, large deviations
from the perturbative b function are known to occur for
g>1, and the b function a .dg/da is related to the coef-
ficients cs8 and ct8 via

a
dg

da
5g3S ]gs

22

]j
1

]gt
22

]j D
j51

(3.56)

with j[as /at , (see Sec. III.A). Therefore significant
nonperturbative contributions must be expected for cs8
and ct8 as well.
The perturbative ingredients have actually led to in-

consistencies in measurements of the pressure. The pres-
sure turned out to be negative and discontinuous across
the transition point. In consequence the values for the
latent heat were not consistent. For a continuous pres-
sure the latent heat DL should be the same, whether it is
calculated as

D~e1p !/Tc
4[DL1 (3.57)

or

D~e23p !/Tc
4[DL2 .

Both Eqs. (3.57) are simple expressions in terms of
plaquette expectation values. Fukugita, Okawa, and
Ukawa (1990) found for an SU(3) gauge theory

DL152.54~12! and DL253.78~20!. (3.58)

The discrepancy between DL1 and DL2 is clearly out-
side the statistical error bars. In an independent simula-
tion, Deng (1989) found

Dp/Tc
4520.29~15! (3.59)

for the discontinuity in the pressure.
These difficulties have been overcome by a different

approach to lattice thermodynamics, which can be per-

formed entirely within a nonperturbative framework.
The additional quantity now is the b function a .dg/da
from QCD, which is known in a nonperturbative region
of couplings g from Monte Carlo renormalization group
calculations. Otherwise only plaquette expectation val-
ues have to be calculated, as before. This approach was
proposed by Engels, Fingberg, Karsch, et al. (1990). The
steps are as follows.
(i) The free-energy density is calculated from an inte-

gration over its derivative with respect to b , since the
logarithm of the partition function is not directly acces-
sible within the Monte Carlo approach. With
f52 T/V ln Z one takes the derivative with respect to
the gauge coupling b52N/g2

2
] lnZ

]b
5^SG&56Ns

3NtPT , (3.60)

where SG is the gauge part of the action [e.g., given by
Eq. (3.10)] and PT is a short notation of the plaquette
expectation value at temperature T , calculated on a lat-
tice of size Ns

3Nt . If P0 denotes the corresponding zero-
temperature expectation value, evaluated on a lattice of
size Ns

4 , the difference of free-energy densities f at cou-
pling b and b1 is

f

T4 U
b1

b

526Nt
4E

b1

b

db8@P02PT# . (3.61)

(ii) Now an additional assumption enters, which is
strictly satisfied only for an infinitely large lattice. It is
the relation ln Z5V] ln Z/]V, which is valid for homo-
geneous systems in large volumes. From
p5T(]/]V)lnZ and Eq. (3.61) one obtains

p~b!52@f~b!2f~b1!# . (3.62)

In Eq. (3.62) b1 has been chosen small enough that
p(b1);0.
(iii) A second quantity, which has appeared in Eq.

(3.57) and is easily calculable on the lattice, is the inter-
action measure D

D5
e23p
T4 5212NNt

4a
dg22

da
@P02PT# . (3.63)

As the name suggests, D vanishes for an ideal gas
(where e53p ; see Sec. V).
(iv) The advantage of calculating D first rather than

e is that D no longer depends on cs8 and ct8 , but on the
QCD b function B(g),

B~g !52a
dg22

da
. (3.64)

To evaluate D in a nonperturbative coupling regime re-
quires a knowledge of the b function for nonperturba-
tive couplings as well. This function has been inferred
from Monte Carlo renormalization-group studies
(Hoek, 1990; Akemi et al., 1993). The functional form
suggested in by Hoek (1990) was been used by Laer-
mann et al. (1995) in fits to the more recent data from
Akemi et al. (1993). The remaining terms in D and f are
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calculated in a Monte Carlo simulation. Once we have
f and D , we know e and the entropy density s (with
f5e2Ts). Using this approach, we find that the previ-
ously mentioned problems with the pressure have disap-
peared; p stays positive and behaves continuously at
Tc .
A fully nonperturbative approach alone does not

guarantee that the equation of state on the lattice will be
relevant for continuum physics. Earlier simulations have
been performed for a time extension of four lattice spac-
ings, although Nt;10 is needed for the continuum limit.
The Nt dependence was been studied in the case of

the SU(3) deconfinement transition by Boyd et al.
(1995). The temporal lattice size was varied from
(Nt54 with Ns516) to (Nt56 with Ns532) and
(Nt58 with Ns532). The dominant type of finite-size
effect depends on the temperature. At high tempera-
tures there is an intimate relation between finite-size
(IR) artifacts and finite-cutoff (UV) artifacts, although
the distinction between them may naively suggest their
decoupling. The relation between IR and UV artifacts
may be seen as follows. A reduction of at ,s(g) (fm) as a
function of g goes along with an increase in temperature
T (MeV), if Nt is kept fixed. In this way continuum
behavior is mixed with high-temperature behavior. For a
small lattice spacing, only the high-momentum modes
are cut off which give the main contribution to the en-
ergy density and pressure at high temperatures. For a
larger lattice spacing at lower temperatures, lower-
momentum modes are also cut off, but the energy den-
sity and pressure grow approximately with T4. Thus the
finite-cutoff effects, induced by the finite number of time
slices, are largest for high temperatures.
The Nt51/(aT) dependence of the gluonic part of

the energy density of an ideal gluon gas is estimated as
(Karsch, 1995)

egluonic~Nt!5~Nc
221 !Fp2

15
1
2p4

63
1

~Nt!
2 1OS 1

Nt
4D G .
(3.65)

For Nt54, egluonic(4) is 50% larger than the correspond-
ing Stefan-Boltzmann value in the continuum. The lead-
ing 1/Nt

2 dependence has been used by Karsch et al. to
extrapolate Nt56, 8 data for e and p to the continuum
limit. Figures 4(a) and 4(b) show the energy density and
pressure for the various lattice sizes, including the ex-
pected increase of finite-size/finite-cutoff effects with
temperature. There are strong deviations by about 20%
from ideal-gas behavior (indicated by the horizontal
lines) for temperatures at least up to 3Tc in the con-
tinuum limit. It should further be noticed that the pres-
sure p increases more slowly with T than the energy
density e . This leads to a strong deviation of the sound
velocity from the ideal-gas value. The velocity of sound
can be an input from first principles to applications in
heavy-ion collisions; see Sec. V.
The latent heat is indicated by the vertical bar in Fig.

4(a); the value is taken from Iwasaki et al. (1992). It is
further reduced compared to earlier results (e.g., of
Brown et al., 1988). The result is

De

Tc
4 5H 2.4460.24 Nt54,

1.8060.18 Nt56.
(3.66)

The latent heat is only 30% of the energy of an ideal gas
at Tc .
The interaction measure D is shown in Fig. 5 for three

lattices. The deviation from ideal-gas behavior is largest
in the transition region, going logarithmically to zero
with increasing temperature. The interaction measure is
obviously less sensitive to finite-size/finite cutoff effects
than e and p separately. The deviations from the ideal
gas behavior are assumed to be due to the nonperturba-
tive infrared structure of QCD, which is less sensitive to
UV effects. The results of Fig. 5 support this assumption
and indicate that QCD’s IR structure plays an important
role even at high temperatures. As mentioned in the
introduction (Sec. I), it is an oversimplification from as-
ymptotic freedom that QCD behaves fully perturba-
tively at high temperatures.
In physical units the result for the interaction measure

is given by (Karsch, 1995)

FIG. 4. Energy density (a) and pressure (b) in an SU(3) pure
gauge theory on 16334, 32336 and 32338 lattices. Ordinate
quantities are divided by T4, rendering them dimensionless.
The dashed horizontal lines indicate the corresponding results
for an ideal gas on lattices of the same size. The solid horizon-
tal line shows the Stefan-Boltzmann result in the continuum
limit. From Karsch (1995).

FIG. 5. Interaction measure e23p normalized to T4 (dimen-
sionless units) for a pure SU(3) gauge theory for different lat-
tice sizes. From Karsch (1995).
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e23p'2.4 GeV/fm3 at T51.1Tc . (3.67)

In Eq. (3.67) the string tension s with As;420 MeV has
been used as physical input. Thus the main contribution
to the interaction measure comes from the zero tem-
perature gluon condensate ^G2&052.0 GeV/fm3, noting
that the trace anomaly (e23p) is related to the gluon
condensates at zero and finite temperature according to

e23p5^G2&02^G2&T . (3.68)

As argued above, UV artifacts induced by finite tem-
poral extension play a dominant role in the high-
temperature region but a minor role in the transition
region. Their main contributions to finite-size effects in
the transition region come from the low-momentum
modes, in particular if a correlation length becomes
large. In case of the pure SU(2) gauge theory, the stan-
dard finite-size scaling analysis for second order phase
transitions can be applied to the nonanalytic behavior of
the free-energy density. The finite-size effects are con-
trolled by the ratio Ns /Nt5TV1/3 rather than by 1/Nt
as in the high-temperature region. In particular, the nor-
malized critical energy density ecrit/Tc

4 should scale as a
function of TV1/3 with critical indices of the three-
dimensional Ising model (cf. Sec. II.B.2). This scaling
behavior has been verified by Engels et al. (1995). An
extrapolation to the infinite-volume limit leads to

ecrit/Tc
450.256~23! (3.69)

for a pure SU(2) gauge theory. This result may be con-
sidered as free of lattice artifacts. It is a continuum re-
sult, although not continuum physics, because of two
colors and the absence of dynamical fermions.
To summarize, reliable data for QCD’s equation of

state exist for the limiting cases of a pure SU(2) and
SU(3) gauge theory. Earlier discrepancies in results on
the pressure have been removed by using fully nonper-
turbative ingredients in the derivation. To test the rel-
evance of the lattice results for continuum physics, a
careful finite-size scaling analysis has been performed.
The finite-size effects are under control, as the predicted
dependence on Nt and Ns has been confirmed in the
simulations. Therefore an extrapolation to the con-
tinuum limit [Nt→` , a•T→0, T (MeV) fixed] is safe.
Such tests should become standard in future lattice
simulations.
The fully perturbative equation of state can also be

applied when dynamical fermions are included. We re-
port on first attempts in this direction in Sec. III.C.6.
However, a finite-size scaling analysis gets much more
involved in the presence of dynamical fermions. For suf-
ficiently large quark masses, the singularities of the first-
order SU(3) or the second-order SU(2) deconfinement
transitions will be rounded anyway. One then has to dis-
entangle which part of the rounding comes from finite
volume and which from finite masses (see Secs. III.C.2
and III.C.3).

3. Interface tensions in QCD

In recent years the interface (or surface) tension has
been frequently calculated for models of QCD. Like the

latent heat, the surface tension is an important measure
of the strength of a first-order transition. The interface
occurs between phases, which coexist at the critical tem-
perature. A large surface tension leads to a strong super-
cooling effect. The onset of the phase conversion is de-
layed as the critical temperature is reached. One
possible scenario for the phase conversion is droplet for-
mation. Once the system has sufficiently supercooled be-
low the critical temperature, the gain in energy from the
conversion to the new phase can compensate for the
energy loss in interface free energy, and the phase con-
version sets in.
In applications to QCD, different kinds of interfaces

must be distinguished. In a first-order chiral transition
we have interfaces between phases with broken and re-
stored chiral symmetry. Interfaces between the decon-
finement and the confinement phases may occur in a
first-order deconfinement transition. They will be con-
sidered below for calculations of interface tensions. Fur-
thermore different realizations of the plasma phase are
separated by interfaces. Such interfaces occur not only
in the region around Tc , but throughout the phase of
broken Z(3) symmetry above Tc . One specific phase
realization corresponds to a spatial domain character-
ized by a certain expectation value of the Wilson line
operator. The associated interface free-energy density is
called an ordered/ordered interface tension soo , whereas
an interface between the plasma and the hadronic phase
leads to an ordered/disordered interface tension sod . We
write ‘‘plasma phase’’ as a common name for the decon-
finement and/or chiral symmetric phase and ‘‘hadronic
phase’’ for the confinement and/or chiral symmetry-
broken phase. Via the relative magnitude of both quan-
tities at Tc one may gain some insight about the degree
of wetting.
Wetting is an alternative or competing mechanism to

droplet formation. One phase may spread along a two-
dimensional front into the other. As stated in a liquid/
gas picture, a droplet of liquid may wet an interface be-
tween a gas and a solid when these phases coexist.
Whether the wetting is complete or not depends on the
relative size of soo and sod .
In QCD the issue of wetting was raised by Frei and

Patkós (1989). It was studied in systems that share the
global Z(3) symmetry, in the three-state Potts model,
and in an effective model of Polyakov loops. Later the
question of wetting at the deconfinement transition was
investigated in an effective three-dimensional
Z(3)-symmetric F4 model for the Polyakov loop (Trap-
penberg and Wiese, 1992). In this model the confine-
ment phase completely wets the different realizations of
the deconfinement phase at Tc .
So far these results are not applicable to QCD transi-

tions under realistic conditions, since fermions have
been excluded. Recall that the inclusion of fermion
masses may completely wash out the first-order nature
of the chiral and the deconfinement transition. A
smooth crossover phenomenon prevents the occurrence
of different coexisting phases and their associated inter-
faces. If the hints of today are confirmed in the future,
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that both transitions fade away for physical fermion
masses, the various interface tensions have no impact on
applications in the early universe or relativistic heavy-
ion collisions.

a. How to measure an interface tension

Consider a system in which a domain with volume
VH in the (hadronic) phase H is embedded in a second
phase Q (the quark-gluon plasma phase) with volume
VQ . If we denote by fh and fQ the free-energy densities
of both phases, the free energy F of the total system is
given as

F5Fs1~VHfH1VQfQ!, (3.70)

where F differs from the sum of the domain free ener-
gies just by an amount Fs and Fs equals the free energy
associated with the interface separating both domains.
As long as VH and VQ are finite, and a homogeneous

external field b is applied, Fs will actually be zero. Ther-
mal equilibrium forbids the coexistence of phases as
stable configurations in a finite volume. The system will
tunnel from one phase into the other. A transient coex-
istence can only result from metastability effects. If one
wants to measure the surface tension directly as the ex-
cess free energy due to an interface in a finite system,
one has to stabilize the interface by an external field
gradient Db . Again the order of limits is essential,

lim
Db→0

lim
VH ,VQ→`

Fs /A5s , (3.71)

where s is the surface free energy Fs per unit interfacial
area A and Db stands for a generic field gradient.
For temperature-driven transitions in QCD an appro-

priate ‘‘field’’ gradient is provided by the temperature.
To have a preferred direction, we consider a spacetime
lattice with cylindrical spatial geometry, i.e.,
Lx3Ly3Lz3Nt with Lx5Ly!Lz . Choosing half of
the lattice links (z51,2, . . . Lz/2) at a temperature
larger than Tc (corresponding to a coupling
b[6/g2.bc) and the other half (z5Lz/211, . . . ,Lz)
below Tc (b,bc), we introduce into the system an in-
terface between the deconfinement and confinement
phases. It will be located somewhere ‘‘between’’
z5Lz/2 and Lz/211. Early calculations of the surface
tension in an SU(3) gauge theory were performed along
these lines (Kajantie et al., 1990). The procedure in-
volved an extrapolation Db→0 at the very end. The re-
sult, obtained for a time extension of Nt=2, was
s/Tc

350.2460.06. This value is probably too large by an
order of magnitude (see below), first because of possible
finite-size effects due to the small extension in the time
direction, and second because the extrapolation to
Db→0 may be not safe. An external field can lead to
suppression of fluctuations of the interface, if it is strong
enough, causing the interface to look more rigid than it
would be in the Db→0 limit.
Most of the work to date on interface calculations in

SU(3) gauge theory has concentrated on time extensions
of Nt52, as the measurements are rather time consum-
ing (Potvin and Rebbi, 1989; Huang et al. 1990; Kajantie

et al., 1991; Grossmann et al., 1992; Janke, 1992). Results
for Nt54 can be found in Brower et al. (1992); Potvin
and Rebbi (1991); Grossmann and Laursen (1993). In
the following we report on work by Iwasaki et al. (1994),
who extended the number of time slices up to Nt56.
Iwasaki et al. applied the histogram method, intro-

duced by Binder (1981 and 1982) for Ising-type systems,
to an SU(3) gauge theory. The histogram method is
based on the analysis of probability distributions P(V)
of order parameters V in the vicinity of the phase tran-
sition. As we have seen in Sec. II.A, the probability dis-
tribution P(V) develops a characteristic double-peak
structure close to Tc . The structure grows more pro-
nounced as the volume is increased. This behavior was
identified as a characteristic signature for a first-order
transition in a finite volume (see Fig. 3). The valley be-
tween the peaks corresponds to configurations with in-
terfaces that are more suppressed the larger the volume.
As the suppression comes from the extra costs in in-

terface free energy, it is plausible that the value of s
may be inferred from the position of the maxima and
minimum of P(V) as a function of volume. In the for-
mulas below periodic boundary conditions are assumed,
with a cylinder geometry satiisfying (Nx ,Ny!Nz). Thus
two interfaces will be created in the (x ,y) plane with a
total area of 2A52NxNya

2, where a is the lattice con-
stant. The order parameter V will be identified with the
Polyakov loop.
The ansatz for the probability distribution P(V),

which was chosen by Iwasaki et al. (1994), is then given
as

P~V!5P1~V!1P2~V!1Pm~V!

with

Pi~V!5ciexp~2f iV/T !exp@2~V2V i!
2/di

2#

~ i51,2! (3.72)

Pm~V!5cmexp@2~f1V11f2V2!/T2s2A/T# ,

where the following notations are involved. The order
parameters V1 and V2 denote the values in the confine-
ment and deconfinement phases, f1 and f2 the corre-
sponding free-energy densities, and V1 and V2 are the
volumes occupied by each of the coexisting phases. The
coefficients ci and di depend on the volume. In Eq.
(3.72) for P(V) we recognize the superposition of the
Gaussians around the characteristic peaks for each
phase. The third term Pm(V) gives the probability for
finding the mixed phase. Here is the place where the
interface tension enters. The probability Pm(V) de-
pends on V via the volumes V1 and V2 , which are oc-
cupied by both phases such that VV5V1V11V2V2 .
The weight factors exp(2fiV/T)(i51,2) are propor-

tional to the probabilities for the system to reside in the
confinement or deconfinement phase. While f1 and f2
are degenerate at Tc in the infinite-volume limit, they
are in general different in a finite volume. To determine
s in a finite volume V , one has to define ŝV[sV /Tc

3 , in
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such a way that the leading Vi dependence in the expo-
nent cancels out. The cancellation is achieved if ŝV is
defined according to

ŝV[
2Nt

2

2NxNy
log

pmin
~pmax,1!

g1~pmax,2!
g2
. (3.73)

Here pmax,1 and pmax,2 are the two maxima of P(V),
while pmin denotes the minimum between the two peaks.
The powers g1 and g2 denote the weights of the contri-
butions of V1 and V2 to V at the minimum, i.e.,
V5g1V11g2V2 . The infinite-volume limit of ŝV is the
value for the interface tension in units of Tc ,

ŝ[s/Tc
35 lim

V→`

ŝV . (3.74)

The actual measurement of ŝV is more subtle. The
subtleties concern the choice of order parameter, the
critical coupling in a finite volume, and the determina-
tion of pmax and pmin. Candidates for order parameters
are the action density or the Polyakov loop. The Polya-
kov loop is a complex-valued observable. The distribu-
tion P(V) develops four peaks near Tc corresponding to
the confinement phase with V i50 and three realizations
of the deconfinement phase in the directions
exp(i2pn/3),n50,1,2. To reduce the numerical effort of
obtaining high quality data, Iwasaki et al. have projected
V on the real axis by taking the absolute value Vabs or
by rotating it with exp(i2pn/3) so that 2p/3
,argV<p/3 and then taking the real part, leading to
Vrot . The dependence of the results on this choice was
checked.
The choice of the critical coupling in a finite volume

was a nontrivial issue. It should guarantee the correct
infinite-volume limit of bc . Here Iwasaki et al. adjusted
bc so that the peaks of the histograms for Vrot had equal
height.
Because the actual minimum and maxima of the his-

tograms might be contaminated due to statistical fluc-
tuations, the extrema were read off from third-order
polynomial fits to the histograms in the vicinity of the
extrema.
Only the leading volume dependence drops out of

ŝV , when it is calculated according to Eq. (3.73). Sub-
leading corrections in 1/V arise, for example, from fluc-
tuations of V in the bulk phases, capillary wave fluctua-
tions of the interfaces, and zero modes corresponding to
the translation of interfaces in the direction perpendicu-
lar to the interfaces. If the geometry of the lattice devi-
ates from an idealized cylinder in the z direction, inter-
faces are no longer restricted to the xy plane, but sweep
out in other directions as well. All of these finite-volume
effects were taken into account by making an appropri-
ate ansatz for the volume-dependent prefactors in the
formula for pmin /pmax . For further details we refer the
readers to Iwasaki et al. (1993).
An important point about the actual measurement of

s concerns the generation of histograms. In SU(3)
gauge theory high-statistics histograms were available
from the QCDPAX collaboration (Iwasaki et al., 1991;
Iwasaki, Kanaya, Yoshiié 1992). They were used as in-

put in the s measurements of Iwasaki et al. (1994). If
such histograms are not available for the quantities one
is interested in, one can make use of a more advanced
method, the so-called multicanonical algorithms, to gen-
erate such histograms.

b. Multicanonical algorithms

We briefly digress from the s measurement to sketch
the idea of a multicanonical updating procedure. This
was developed by Berg and Neuhaus (1991) and first
applied to two-dimensional q-state Potts models. For
large volumes it is notoriously difficult to generate con-
figurations corresponding to the valley between the two
peaks. These configurations are suppressed by the large
amount of surface free energy, which is just the quantity
of interest. The reason is that usual local upgrading pro-
cedures, like the Metropolis or heat-bath algorithms, are
designed for single-peaked distributions P(V). Configu-
rations are selected with an importance sampling ac-
cording to their Boltzmann weight exp$2bS%. A precise
calculation of the maxima and minimum of the double-
peak structure of P(V) requires frequent tunneling
through the minimum, implying exponentially large au-
tocorrelation times t } exp$2sLd21%.
The idea of the so-called multicanonical approach is

to generate an auxiliary distribution P8(V) (see Fig. 6)
that does not suffer from the original problems, but that
can be related to the canonical distribution in a control-
lable way. Figure 6 gives an example of the auxiliary
distribution as a function of the action density s[S/V ,
which is approximately flat between the two maxima.
We have

PL8 ~S !}nL~S !PB8 ~S !. (3.75)

The index L stands for the linear size L , nL(S) denotes
the spectral density, and PB8 (S) has the form of a Bolt-
zmann weight factor. In practice one starts with a guess
for the parameters in the exponent of PB8 (S) such that
PL8 (S) is approximately flat. Configurations with the
multicanonical probability PB8 are generated with a gen-
eralized Metropolis or heat-bath updating procedure.

FIG. 6. Auxiliary multicanonical probability distribution as a
function of the action density s , measured in dimensionless
lattice units. From Berg and Neuhaus (1991).

510 Hildegard Meyer-Ortmanns: Phase transitions in QCD

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



The original distribution PL(S) [or PL(V)] is then ob-
tained from PL8 (S) by reweighting (Baumann and Berg,
1985; Ferrenberg and Swendsen, 1988, 1989).
The efficiency of the multicanonical algorithm has

been well established (see, for example, Berg and Neu-
haus, 1992; Janke, 1992). The algorithm has been gener-
alized to an SU(3) gauge theory by Grossmann et al.
(1992), where the time extent was restricted to Nt52.
For Nt54 Grossmann and Laursen (1993) used the his-
tograms of the QCDPAX collaboration (Iwasaki et al.,
1991; Iwasaki, Kanaya, Yoshié et al. 1992) and Fukugita
et al. (1989). Their Nt54 results for s are compatible
with the results of Iwasaki et al. (1994), which we discuss
below.
The results of Iwasaki et al. (1994) are based on the

histograms of the QCDPAX collaboration for lattices of
temporal extent Nt54 and 6 and spatial sizes ranging
from NxNyNz5122324, 242336, 203, 243, and
362348. An extrapolation to the infinite-volume limit
leads to

s/Tc
35H 0.0292~22! for Nt54,

0.0218~33! for Nt56.
(3.76)

The results do not depend on the actual choice of order
parameter (Vrot or Vabs). To assess the relevance of
these numbers for the continuum limit, one has to check
the scaling property, i.e., sending Nt→`(a→0) while
keeping Tc in physical units fixed. It is obvious from Eq.
(3.76) that s/Tc

3 violates scaling. The scaling violation is
even more obvious if the Nt52 value is included
@s/Tc

350.103(7)# . A similar violation of scaling has
been observed for the latent heat DL , when it is mea-
sured from the same data of the QCDPAX collabora-
tion (Iwasaki et al., 1991; Iwasaki, Kanaya, Yoshié et al.,
1992). Thus it is not surprising that the scaling violation
approximately drops out if certain ratios of DL and s
are considered. Such a ratio is given by

a2516ps3/~3DL2T !, (3.77)

which enters the amount of supercooling and the aver-
age distance between nucleated bubbles in the early uni-
verse. Let us see what the results for s/Tc

3 of Iwasaki
et al. (1994) imply for possible relics of the QCD transi-
tion in the early universe.

4. Phenomenological implications for the early universe

The QCD transition happened at ;1026 sec after the
big bang, when the universe cooled down to a tempera-
ture of ;150–200 MeV. In the following we describe
one possible scenario for the succeeding evolution,
which has been frequently discussed in the literature
(e.g., Kajantie and Kurki-Suonio, 1986; Fuller et al.,
1988; Applegate et al., 1987; Applegate, 1991; Meyer
et al., 1991; Schramm et al., 1992).
If the QCD transition is of first order and proceeds via

bubble formation, the nucleation will not set in exactly
at Tc , but start at some lower temperature Ti at time
t i . The plasma phase supercools until the gain in free
energy due to the phase conversion can compensate the

costs in interface free energy between the coexisting
phases. The degree of supercooling cannot be too large,
as the cooling of the universe goes adiabatically slowly
as viewed from the scale of QCD.
In the vicinity of the QCD transition two very differ-

ent time scales enter the evolution: the QCD time scale
of the order of 1/Tc;1fm/c;0.33310223 s and the
Hubble time of the order of 1/x50.3631024

s;1019/Tc with x5A8pGB/3, where G is the gravita-
tional constant and B the vacuum energy density repre-
sented by the bag constant. The time dependence of
temperature T(t) follows from Einstein’s equations
combined with QCD’s equation of state [e.g., the bag
model equation of state (Kajantie and Kurki-Suonio,
1986)]. It is given by

2dT

Tdt
5

1
2t

}
T2

MPl
(3.78)

with MPl denoting the Planck mass, i.e., the expansion
rate is 10219 times slower than typical time scales in
QCD.
At time t i and temperature Ti nucleation sets in, and

bubbles of critical radius are formed. Their growth rate
is slow compared to that of the shock waves they emit.
The shock waves propagate with the velocity of sound
vsh51/) . They reheat the plasma to some higher tem-
perature Ti . The release of latent heat prevents further
nucleation in regions of space that have been affected by
shock waves. In such regions only bubbles will grow that
have been created before. The creation and growth of
bubbles continues, until the shock waves which are emit-
ted from various nucleation centers collide.
At this time (t5tPT), when the entire universe has

been affected by shock waves, nucleation shuts off. A
new scale becomes important. It is the average distance
R between hadronic bubbles at the time when the shock
waves collide. This scale is a measure of the inhomoge-
neities in the baryon number density. During the coex-
istence of both phases most of the baryon number re-
sides in the plasma phase. Since the hadronic bubbles
are nucleated through random thermal or quantum pro-
cesses, they contain on average no net baryon number.
In thermal and chemical equilibrium the chemical po-
tentials mQ(B), mh(B), associated with the elementary
baryon charge, are equal in both phases (h and q). The
ratio of the baryon number density in the quark (q) and
hadron (h) phases, nB(q)/nB(h), is approximately
given by exp(mNc

2/Tc), where mN is the nucleon mass,
since the light current quark masses are almost zero.
A competing scale to the scale of baryon number den-

sity fluctuations is the neutron diffusion length. The dif-
fusion length of neutrons depends on the age of the uni-
verse. In the period where the age of the universe is
20 ms to 1 s old, the weak interactions are fast enough
to ensure a uniform neutron-to-proton ratio. The ratio
of neutrons to protons is given by @exp(mn2mp)/kBT#.
Protons and neutrons diffuse along with each other.
Neutrons really diffuse, protons diffuse by converting
into a neutron through the weak interaction, diffusing,
and converting back. At the age of ;1 sec, when the
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temperature falls to ;1 MeV, the weak and electromag-
netic interactions decouple. The weak interaction drops
out of equilibrium. The neutrons remain neutrons, the
protons remain protons. The proton diffusion length is
very short, because the proton is electrically charged.
The diffusion length of neutrons is larger by several or-
ders of magnitude. If the baryon number density fluctua-
tions survive until the decoupling of weak interactions,
the neutrons will diffuse out of regions that are rich in
baryon number. Thus baryon-rich regions are trans-
formed into neutron-poor (or proton-rich) regions, and
vice versa, baryon-poor regions become rich in the num-
ber of neutrons. The ratio exp@(mn2mp)/kBT# becomes
spatially inhomogeneous.
Neutron-rich and proton-rich regions constitute dif-

ferent initial conditions for primordial nucleosynthesis.
An inhomogeneous universe uses neutrons less ‘‘effi-
ciently’’ than a homogeneous one. (In proton-rich re-
gions, two neutrons makes one alpha, while four neu-
trons are needed in a neutron-rich part
(4n→2p12n→1a). It has been shown by Applegate
et al. (1987) that primordial nucleosynthesis in an inho-
mogeneous universe leads to a distinctive pattern in the
light-element abundances. In particular, the production
of 7Li is increased as compared to the standard scenario
without baryon number inhomogeneities.
Thus the alluring prediction of this scenario is that the

observation of light-element abundances today provides
a snapshot of the universe at its infancy (the time period
of the QCD transition). Clearly it is a question of rela-
tive size of the competing scales, whether the inhomoge-
neities in the baryon number densities characterized by
the mean interbubble separation R transform into varia-
tions in the n/p-ratio determined by the neutron diffu-
sion length. If R is too large, neutron diffusion will not
leave an effect. If R is too small, the baryon number
inhomogeneities are washed out, as both neutrons and
protons diffuse over these scales. In addition, back dif-
fusion of neutrons into proton-rich regions must be
taken into account. This process further reduces the
range of length scales over which QCD inhomogeneities
can affect the primordial nucleosynthesis.
Finally, let us indicate how the average interbubble

distance R depends on the surface tension s . (Notice
that in this context s belongs to one of the few quanti-
ties that can be calculated from first principles and does
not depend on the ‘‘choice’’ of scenario.) The average
separation R defined at the time when the shock waves
collide is given by (Kajantie and Kurki-Suonio, 1986)

R5tgrowthvsh , (3.79)

where vsh51/) is the velocity of the shock waves (as
introduced above), and tgrowth denotes the time interval
between the onset of nucleation and its completion,
when shock waves start colliding. The duration tgrowth is
known, once the fraction f of the universe that has been
affected by shock-wave fronts goes to 1. This fraction is
determined by the nucleation rate G per unit time and
volume, according to

f~ t !5E
t i

t
dt8G~ t8!

4p

3
@vsh~ t82t !#3. (3.80)

In classical nucleation theory, the rate G is propor-
tional to T4 exp(2Fb /T), where Fb is the free energy of
a bubble of critical size or the minimal work for nucle-
ating a bubble. Before nucleation the free energy
Fbefore52p(V1V8), where V and V8 are the volumes
of the coexisting phases. After nucleation we have
Fafter52pV2pV81sA . For one spherical bubble it
follows that Fafter2Fbefore52(p82p) 4p/3 r31s4pr2.
A bubble of critical radius satisfies
](Fafter2Fbefore)/]r50, leading to

Fb5
16p

3
s3

~ph2pq!2
. (3.81)

It remains to express the difference in pressures of both
phases via the latent heat DL . We have
DL5Tc(]/]T)(pq2ph) such that in the vicinity of Tc it
follows (ph2pq)5DL(Tc2T)/Tc or

Fb5a2TcSTc2T

Tc
D 22

(3.82)

with a25@16ps3/(3DL2Tc)# . Notice that the surface
tension and the latent heat enter the nucleation rate
only in the combination of a . The degree of supercooling
is determined as (Tc2TPT)/Tc , TPT is defined as the
temperature, where the nucleation shuts off or the frac-
tion f(t) approaches 1. From G(T) and f(T) the degree
of supercooling is finally obtained as (Iwasaki et al.,
1994)

~Tc2TPT!/Tc}ax̃21/2 (3.83)

and the average separation of nucleation centers as

R'vshp
1/3e x̃/4x̃23/2Tc

21a

with

x̃[4 ln~Tc
2/C!,

C52]T/]t . (3.84)

For the QCD transition in the early universe x̃'173,
Tc'150 MeV, vsh'1/) . Now we are ready to insert the
value for a which was obtained by Iwasaki et al. (1994)
from a measurement of the surface tension and the
value DL taken from the QCDPAX collaboration
(Iwasaki et al., 1991; Iwasaki, Kanaya, Yoshé et al.,
1992). The degree of supercooling turns out to be as
small as

~Tc2TPT!/Tc55.6~1.4!31024, (3.85)

and the average distance between hadronic bubbles

R522~5 ! mm. (3.86)

The value of R is clearly too small to lead to an observ-
able relic in the present-day light-element abundances
(see, for example, Meyer et al., 1991).
One should keep in mind that the calculation of s in

the pure SU(3) gauge theory does not directly apply to
the QCD transition in the early universe, although the
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main conclusions probably would remain unchanged.
Dynamical matter fields will not increase the degree of
supercooling. In general matter fields weaken (or even
completely wash out) a first-order transition.

C. Including dynamical fermions

The ambiguity in studying the order of the deconfine-
ment transition in the SU(3) gauge theory was caused
by the finite volume. A finite-size scaling analysis has
resolved the controversy. It is natural to attempt a finite-
size scaling analysis in the presence of dynamical fermi-
ons, as well. Other artifacts can superimpose on finite-
size effects. In Sec. III.C.1 below, we summarize some
typical pitfalls in lattice calculations. In Sec. III.C.2 we
report on the finite-size scaling analysis of the chiral
transition by Fukugita, Mino, Okawa, and Ukawa
(1990). The results are not yet conclusive. Possible ef-
fects of finite quark masses are disregarded, although
finite masses amount to an ordering effect, which may
well compete with the finite volume. Therefore we turn
in Sec. III.C.3 to a finite mass scaling analysis. It serves
to discriminate possible UV artifacts in the chiral tran-
sition. Bulk transitions are a further manifestation of UV
effects. With the example of Nf58 flavor QCD we illus-
trate bulk transitions in Sec. III.C.4. Results for the
more realistic cases of two and three flavors are summa-
rized in Sec. III.C.5. The equation of state for two-flavor
QCD is the topic of Sec. III.C.6. In Sec. III.C.7 we sum-
marize the progress that has been achieved with Wilson
fermions.

1. Pitfalls on the lattice

(i) Finite size effects. Finite-size effects are specific to
the Monte Carlo approach, which is frequently used in
lattice calculations. They contaminate any numerical cal-
culation performed in a finite volume, if the largest cor-
relation length of the system is not small compared to
the smallest linear size. In the case of first-order transi-
tions we have presented a phenomenological approach
(see Sec. II). The formulas of Sec. II for the scaling of
the specific heat or the susceptibility as a function of
linear size L hold in the zero-external-field limit h50.
As we have seen in Sec. III.A, Monte Carlo calcula-

tions of QCD with dynamical fermions are necessarily
performed at finite bare quark masses. The updating
time is estimated to increase proportional to mf

211/4 .
The chiral limit mf→0 must be extrapolated. Thus a
second pitfall is a contamination of data through finite-
mass effects.
(ii) Finite mass effects. In Sec. II we stressed the simi-

larity between the finite volume L3 and an external field
h , and between an external field and finite quark
masses. In the vicinity of Tc one may consider a finite-
mass scaling analysis at vanishing 1/L rather than a
finite-size scaling analysis at vanishing h . For a moment
let us assume that the condition 1/L→0 is satisfied to a
sufficient accuracy. A mass scaling analysis then pro-
vides a tool to control the rounding of algebraic singu-
larities in correlation functions due to finite quark

masses. The precondition is a second-order phase tran-
sition. (An analogous analysis may be performed for a
first-order transition and rounding effects due to finite
masses as well.) The need of extrapolation to zero
masses is specific for exploring the chiral limit, when
dynamical fermions are included.
(iii) Artifacts due to the UV-cutoff. A third class of

pitfalls, which is known from the pure SU(N) gauge
theory and is common to any latticized version of a con-
tinuum model, comprises are artifacts due to the UV
cutoff. Here we distinguish three manifestations. The
most obvious occurs in the interpretation of any physical
observable, when the lattice units are translated to
physical units. In Sec. III.A we have already discussed
the ambiguity in predicting Tc (MeV). Such an ambigu-
ity occurs for QCD transitions in the presence of dy-
namical quarks, when the quark mass in lattice units,
e.g., ma50.025, is translated into units of MeV, al-
though the lattice is rather coarse grained and a mass
splitting according to m .a is not unique.
A less obvious and more subtle UV artifact is a

change in the effective symmetry group of the lattice
action as a function of the bare coupling. This artifact is
a consequence of the ‘‘No-Go’’ theorems referring to
lattice regularized actions for fermions. As mentioned in
Sec. III.A, the lattice action with massless fermions has a
global U(n)3U(n) symmetry for n species of staggered
fermions. Only in the continuum limit well the full
SU(Nf)3SU(Nf) flavor symmetry be restored with
Nf54n . Far outside the continuum region, the lattice
action has only global U(1)3U(1) symmetry for n51.
A global U(1)3U(1) symmetry may trigger a

second-order phase transition with O(2) critical expo-
nents, whereas the spontaneous breaking of the restored
SU(4)3SU(4) symmetry in the corresponding con-
tinuum limit is supposed to induce a first-order transi-
tion (Pisarski and Wilczek, 1984). Thus the order of the
chiral transition may change when passing from strong
to weak couplings. Such a possibility has been discussed
by Boyd et al. (1992) and will be the topic of Sec. III.C.3.
If one expects an SU(2)3SU(2) flavor symmetry for

the continuum limit, one should also expect the con-
tinuum phase transition to be of second order. In that
case only the critical exponents would change in passing
from strong to weak couplings.
If one wants to describe an odd number of flavors in

the continuum limit within the staggered fermion formu-
lation, one usually ‘‘corrects’’ for the desired number of
continuum flavors on the level of determinants. The cor-
rection is performed after integrating over the fermionic
degrees of freedom, whereas the fermionic operator Q
is that of the original lattice action. The flavor symmetry
in the original action is broken and describes at least
four flavors in the continuum limit. The representation
of the prefactor of the determinant-term in Eq. (3.14) as
Nf/4 cannot be derived. It should be considered as a
prescription when Nf is not an integer multiple of 4. In
this case it is even more difficult to infer the symmetry
that drives the phase transition and leads to a vanishing
condensate above Tc .
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The UV effects mectioned so far are modifications of
the critical indices or the order of the chiral transition. A
third manifestation of the UV cutoff are bulk transitions.
Here the very transition itself is an artifact of the lattice.
Bulk transitions are not restricted to QCD with dynami-
cal fermions. They occur in pure SU(N) gauge theories
as well. As an illustration we consider the example of
Nf58-QCD in Sec. III.C.4. For eight flavors the bulk
transition is either dominant or superimposed on the
usual finite-temperature transition of QCD.

2. Finite-size scaling analysis

Fukugita, Mino, Okawa, and Ukawa (1990) per-
formed a finite-size scaling analysis of the chiral transi-
tion in the presence of fermions. In this analysis the fer-
mionic action is given by Eqs. (3.12). The quark mass
mf is chosen as 0.025 for Nf52 and as 0.025 and
0.0125 for Nf54 [with l5Nf/4 in Eq. (3.14)]. The chiral
condensate ^x̄x& and the Wilson line V are taken as
order parameters, although they strictly have this mean-
ing only in the limiting cases mf→0 and mf→` , respec-
tively. The expectation value of the chiral condensate is
calculated according to Eq. (3.112) below. The Wilson
line expectation value is defined as

^ReV&5
^(xReV~x !&

Ns
3 ,

ReV~x !5N21Re Tr )
t51

Nt

Ux ,t
~4 ! (3.87)

with N5Ns
3 .Nt . Otherwise the notations are the same

as those introduced in Sec. III.B.1. The expectation
value ^•••& is calculated with the measure and the effec-
tive action of Eqs. (3.14). The temporal extent is fixed to
Nt54, while the spatial size is varied between Ns

3543

and Ns
35123. The adopted algorithm is the R algorithm

of Gottlieb et al. (1987a) with a time-step size of
Dt50.02. The accuracy of this algorithm has been
checked against the exact hybrid Monte Carlo algo-
rithm.
Figure 7 shows the time history of the Wilson line

Re V for Nf52 and mf50.025 on an Ns
334 lattice for

various spatial lattice extents. It illustrates that the ‘‘na-
ive’’ criteria for identifying a first-order chiral transition
are not unique for small lattices. The signatures of inter-
est are signs of metastabilities and associated two-state
signals.
The time evolution should be compared with Fig. 8,

where the time history of Re V is displayed for the four-
flavor case at mf50.025 on an Ns34 lattice for several
values of Ns . In the Nf54 case, distinct flip-flops are
seen for Ns5 6 and 8, and a single event for Ns512.
(The tunneling rate goes to zero in the infinite volume
limit.) For Ns510 no flip-flop is visible, but a metasta-
bility is observed as a two-state separation. When tran-
sitions between both phases occur via tunneling and tun-
neling events are rare, the phases are metastable over a
long time. The system remains in the ordered phase over

thousands of iterations starting from an ordered start
and in the disordered phase for a random start.
A crucial ambiguity is hidden in what is called ‘‘long

time.’’ A comparison of Figs. 7 and 8 shows a significant
difference in time scales. The fluctuations in Fig. 7 look
more irregular on a large scale. On a short time scale the
interpretation may change. Consider Fig. 7 for the
8334 lattice. If the runs had been stopped after 2000
iterations, the fluctuations (probably of statistical origin)
could have been misinterpreted as a two-state signal. In
the longer run of 10 000 iterations they look like a sta-
tistical fluctuation.
Figure 8 indicates for the 10334 lattice how important

a check of the dependence on initial conditions is
(whether one uses a hot or a cold start). From a single
run one can never exclude the possibilty that a flip-flop
will occur, if one waits for a long enough time. For large
volumes, the metastabilities can be so pronounced that
the system is in one phase over the entire simulation.
The phase is interpreted as a truly stable phase and a
first-order transition is easily overlooked. Thus the
choice of the volume has to be optimized. It should be
neither too small to see distinct flip-flops nor too large to
see them at all.
Further indications of a first-order transition are taken

from the finite-size scaling behavior of various suscepti-
bilites. Susceptibilities are ‘‘magnetic’’ response func-
tions that can be expressed in terms of an order param-
eter O according to

FIG. 7. Time history of the Wilson line ReV for Nf52 and
mf50.025 on an Ns

334 lattice with Ns54, 6, 8, and 12 for (a),
(b), (c), and (d). The time unit is set by one trajectory in the
R algorithm, and t denotes the number of such trajectories.
From Fukugita, Mino et al. (1990).
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x5V~^O2&2^O&2!. (3.88)

Fukugita et al. investigated the finite-size scaling of x for
different choices of the order-parameter field: the Wil-
son line Re V, the chiral condensate x̄x (not to be con-
fused with the susceptibility itself), and the average
plaquette P[TrU(]P), where U(]P) denotes the
product of U’s along the boundary of a plaquette.
From Sec. II and Table II we recall that the peak in

the susceptibility xmax should scale with the volume V
according to xmax5const1a.Vp, where p51 for a first-
order transition and p,1 for a second-order transition.
The constant accounts for a contribution from the regu-
lar part of the free energy, which cannot be neglected as
long as the volume is relatively small.
Runs with Ns>10 showing no flip-flops are of no

practical use for a finite-size scaling test with x , since the
formulas are based on phase coexistence in the sample
with a nonvanishing weight. A two-parameter fit for a
and p of the ansatz for xmax with various values of
const(>0) leads to an estimate of 0.78,p,1.1 for the
Wilson line susceptibility in the case of four flavors. For
comparison we mention the result for the pure SU(3)
gauge theory with a first-order transition (Fukugita,
Okawa, and Ukawa 1989, 1990), where the exponent p
was estimated as 0.86,p,1.0. The authors conclude
from the estimate in the four-flavor case that it is con-

sistent with a first order transition.
Results for other susceptibilities lead to even larger

bounds on p ; in particular, for the two-flavor case they
are not conclusive.
For a further test of the order of the phase transition,

we recall the definition of Binder’s cumulant, Eq. (2.40).
The minimum of Binder’s cumulant vanishes for a
second-order transition, but goes to a finite value (>0)
in the case of a first-order transition. Fukugita et al. used
a slightly different normalization,

VL512
1
3

^P4&

^P2&2
. (3.89)

Here P denotes the average plaquette. The minimum
VL ,min should approach 2/3 for a second-order transition
as the volume increases. [For the explicit volume depen-
dence, see Eq. (2.41)]. When VL ,min is plotted as a func-
tion of 1/V , the trend is obvious that VL ,min does not
approach 2/3 for four-flavor QCD. This is a further in-
dication of a first-order transition. For two flavors, the
deviation from 2/3 is smaller than for four flavors, al-
though larger than in the pure gauge limit (Nf50). The
difference of (VL ,min22/3) goes almost to zero for
Nf50. This is rather surprising, as the transition is
known to be of first order for zero flavors. Thus the
analysis of Binder’s cumulant turns out to be inconclu-
sive as well.
It was suggested by Fukugita, Mino, Okawa, and

Ukawa (1990) that the relatively large quark mass of
mf50.025 might interfere with the finite size of the sys-
tem. Therefore the two-flavor simulations were repeated
for a smaller mass value of mf50.0125 (Fukugita et al.,
1991). The characteristic features were very similar to
those for mf50.025, and the order of the two-flavor
transition could not be determined there either. The fa-
vored possibilities were ‘‘no transition for finite mf’’ or
‘‘a second-order transition in the mf→0 limit,’’ but a
first-order transition was not excluded.
This concludes our discussion of infrared artifacts. In

the next two sections we turn to ultraviolet artifacts.

3. Finite-mass scaling analysis

In this section we discuss ultraviolet artifacts of phase
transitions in more detail. We refer the reader to the
work of Boyd et al. (1992) dealing with possible changes
in critical indices and a change in the order of the chiral
transition as a function of the bare coupling.
In the strong-coupling limit the staggered fermion ac-

tion of QCD is given by Eqs. (3.12) with one difference.
An additional coupling g is introduced in the action,
which is related to the anisotropy in the spatial and tem-
poral lattice spacing in the weak-coupling limit. It should
not be confused with the critical index g , which will be
considered later. The meaning of the notation should be
clear from the context. The fermion operator Q is writ-
ten as

Qxx85 (
m51

3

Dxx8;m1gDx ,x8;s1mdxx8 (3.90)

FIG. 8. Time history of the Wilson line as in Fig. 7, but with
Nf54 and Ns54, 6, 8, 10, and 12 for (a), (b), (c), and (e).
From Fukugita, Mino et al., (1990).
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with D as in Eqs. (3.12). The temperature is varied by
varying the coupling g on lattices with a fixed number of
time slices Nt . The chiral-symmetry-restoring transition
is observed at some value g(Nt) with g(Nt)→` for
Nt→` . The role of g is analogous but not identical to
that of the anisotropy parameter j [Eq. (3.19)] at weak
couplings, which is directly related to the lattice spacings
ab and as and hence to the temperature T51/(Ntab).
The particular role of the strong-coupling limit can be
guessed from the special case in which j51 and
as5ab . An attempt to reach the high-temperature re-
gion in the strong-coupling (b50) limit requires
Nt,1.
For vanishing quark masses the action (3.12) for one

species of staggered fermions (n51) is invariant under
global U(1)3U(1) transformations acting on even lat-
tices sites according to

x85eiax , x̄85e2ibx̄

and on odd sites

x85eibx , x̄85e2iax̄ . (3.91)

For finite mass m in Eq. (3.90) this symmetry is explic-
itly broken to U(1).
Mean-field calculations of Damgaard et al. (1986) and

Fäldt and Petersson (1986) and numerical calculations of
Klaetke and Mütter (1990) for SU(2) suggest that the
chiral QCD transition is of second order in the strong-
coupling limit. Second-order transitions are immediately
washed out in the presence of an external field, as we
know from statistical physics. The singularities in ther-
modynamical functions will be rounded when the
infinite-volume limit is taken at fixed, nonvanishing
quark mass.
The critical index characterizing the ‘‘finite-mass scal-

ing’’ at criticality is 1/d (see Table II). It is defined as

lim
Ns→`

^c̄c&~m ,t ,Ns!u t50}m
1/d, (3.92a)

where the reduced temperature t5(T2Tc)/Tc is now
replaced by

t5
g2g0

g0
, (3.92b)

and the order parameter

^c̄c&5
1

Ns
3Nt

]

]m
lnZ~m ,g! (3.93)

is the chiral condensate of strong-coupling QCD. Here
we have renamed the staggered fermion fields x,x̄ as c,c̄
to avoid confusion with the susceptibility x later on. It
can be expressed in terms of expectation values of
monomers, which are easily calculable on the lattice
(see, for example, Karsch and Mütter, 1989).
Further recall the critical index g (see Table II), which

specifies the singular behavior of the susceptibility x ,
when T approaches Tc at zero field (here zero mass),

x~ t !5 lim
m→0

lim
Ns→`

x~ t ,m ,Ns!}t2g,

x~ t ,m ,Ns!5
]2lnZ
]m2 . (3.94)

Note the order of the limits. To measure g , one first has
to take the infinite-volume limit and next the zero-mass
limit. (In the opposite order the order parameter would
vanish in the broken phase due to tunneling events in
the finite volume.) Equation (3.94) is still a zero-mass
limit.
A finite-mass scaling analysis proceeds in complete

analogy to a finite-size scaling analysis. The rounding
and shifting effects on singularities are derived from a
scaling ansatz for the free-energy density. The nonana-
lytic part of the free-energy density of a generic statisti-
cal ensemble in the presence of an external field (the
finite quark mass) is written as

f~ t ,m !5b21f~bytt ,byhm !, (3.95)

where b is an arbitrary scale factor as in Sec. II, and yt
and yh are the thermal and magnetic critical exponents
(yt[l1 ,yh[l2 in our notation of Sec. II). Choosing the
scale factor

b5m2 1/yh, (3.96)

we find that the free-energy density transforms to

f~ t ,m !5m1/yhf~ tm2 yt /yh,1!. (3.97)

Equation (3.97) implies the finite-mass scaling behavior
of the order parameter ^c̄c&(t ,m) and the susceptibility
x(t ,m) in the vicinity of g0 (the critical coupling)

^c̄c&~ t ,m !5m1/dF~ tm2 yt /yh! (3.98)

and

x~ t ,m !5
1
d
m ~1/d! 21FF~ tm2yt /yh!

2
yt

12yh
tm2 yt /yhF8~ tm2 yt /yh!G , (3.99)

where F and F8 are scaling functions. It follows that the
peak of the finite-mass susceptibility occurs at

tm5cmyt /yh (3.100)

and scales according to

x~ t050,m !}m ~1/d!21. (3.101)

Equation (3.101) should be compared with Eq. (2.30) for
the finite-size scaling of the peak in the susceptibility.
Equation (3.100) gives the shift in the critical coupling
g0 or in the reduced critical coupling t0→tm due to the
finite quark mass.
With d5yh /(12yh) it can be seen that the exponent

d can be measured from the shift in tm according to Eq.
(3.100), or from Eq. (3.99) for the susceptibility, or from
the mass dependence of the order parameter Eq. (3.98)
at t5t0[0.
For a second-order transition, the exponent d is char-

acteristic for the universality class of the action. Thus a
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measurement of d is of much interest for verifying that
the restoration of the U(1)3U(1) symmetry drives the
phase transition at g0 .
Boyd et al. (1992) have proposed a related quantity,

the chiral cumulant, to measure d and t0 from finite-
mass calculations. It has analogous properties to Bind-
er’s cumulant [cf. Eq. (2.40)] and is defined as

D~ t ,m !5
mx

^c̄c&
5
1

d
2
ytxF8~x !

yhF~x !
, (3.102)

with x[tm2yt /yh. It follows from Eqs. (3.98) and (3.99)
that D(0,m) gives 1/d . The slope of D increases with
decreasing m ,

D8~m !5
]D

]t U
t50

}m2 yt /yh, (3.103)

in such a way that the ratio D itself has a Q-function
shape for vanishing m ,

lim
m→0

D~ t ,m !5H 1 t.0,

1/d t50,

0 t,0 .

(3.104)

Equation (3.104) follows from the definition of D and
Eqs. (3.98) and (3.99). When the ratios of D(t ,m) are
plotted as a function of t for various values of m , the
curves cross at the m50 critical point t0 . The crossing
comes from the fact that D increases with decreasing
m for g.g0 and decreases with decreasing m for
g,g0 . This behavior is analogous to that of Binder’s
cumulant (^O4&/^O2&2) where O stands either for the
order parameter or for the internal energy E . In this
way one may extrapolate the zero-mass critical point t0
from a series of finite-mass measurements (cf. Binder,
1981).
Such a determination of the zero-mass critical cou-

pling is in principle free of an uncontrolled extrapola-
tion. However, corrections originate in irrelevant terms,
which may not be sufficiently suppressed in the vicinity
of g0 , and in contributions coming from the regular part
of the free energy (see Sec. II). A further source that
leads to interfering effects with the finite-mass scaling
behavior is the finite lattice volume used in the Monte
Carlo simulation. As we have seen above, the formulas
(3.98), (3.99), (3.100), (3.104) hold in the infinite-volume
limit. In general finite-mass and finite-volume effects are
competing ordering effects. The relative sizes of both
effects determine whether one is allowed to neglect one
with respect to the other.
Let us compare the mass-scaling behavior of the peak

in the susceptibility in the infinite-volume limit [Eq.
(3.99)]

xpeak}m
~1/d!21 for L→` (3.105)

with the finite-size scaling behavior in the zero-mass
limit [Eq. (2.30)]

xpeak}L
g/n for m→0. (3.106)

The correction coming from L,` as m→0 is small
compared to the rounding due to m.0 as L→` , if

m.const3L2b,

b5
gd

n~d21 !
, (3.107)

following from Eqs. (3.105) and (3.106). On the other
hand, the quark mass has to be chosen sufficiently small
to keep the contributions from the regular part of the
free-energy density small. To keep the corrections small,
the quark mass must be reduced proportional to
1/ANt, when Nt is increased in the contributions from
the regular part.
The chiral condensate, the susceptibility, and D have

also been measured in a Monte Carlo simulation for
strong-coupling QCD using the monomer-dimer algo-
rithm (Karsch and Mütter, 1989). The lattice size
Ns

33Nt was chosen as Ns54,8,16 and Nt54. The val-
ues for the bare fermion masses were m50.005, 0.01,
0.02, 0.04, and 0.1. The results were in agreement with
expectations: the chiral condensate vanished in the sym-
metric phase, when the mass approached zero. In the
critical region g52.3–2.4 the finite-size effects were
strong. For a smaller lattice a larger mass was necessary
to keep finite-size effects negligible in accordance with
condition (3.107). In Eq. (3.107) the critical indices g ,
d , n are taken from three-dimensional Z(2) or O(N)
models, for which b;O(2). Hence the finite-size effects
should be small for a 16334 lattice over the entire mass
range.
The chiral condensate ^c̄c& decreased smoothly in the

transition region g;2.3–2.4 as a function of g without
any signal of a first-order phase transition. The distribu-
tion Pm(^c̄c&) of the order parameter showed no sign
of a double-peak structure (cf. Sec. II). We recall that
the same lattice action as Eqs. (3.12) with (3.92) in the
weak-coupling limit led to a first-order transition (Gavai
et al., 1990), where the continuum symmetry group
SU(4)3SU(4) of four-flavor QCD seemed to be suffi-
ciently restored to induce the first-order transition.
The height of the peak in the susceptibility increased

with decreasing m , but the statistics were not sufficient
to measure d according to Eqs. (3.98) and (3.99). Instead
d and the critical coupling g0 were estimated from a
simulation of D with the result

2.35,gc,2.4,

0.18,
1
d

,0.25. (3.108)

The curves D(g) for different quark masses crossed in
the vicinity of g52.35. The result for d is in agreement
with d for the three-dimensional O(2) spin model
@d54.755(6)# . It justifies the hypothesis that strong-
coupling QCD in the staggered fermion formulation is
in the same universality class as the 3d O(2) spin
model. The reason is the U(1)3U(1) remnant of the
SU(Nf)3SU(Nf) continuum symmetry for one species
of staggered fermions.
A more subtle case is that of Nf52 in the continuum,

where the renormalization-group analysis of Pisarski
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and Wilczek suggests a second-order transition with
O(4) critical exponents. This hypothesis was recently
questioned by Kocić and Kogut (1995) in an analysis of
the three-dimensional Gross-Neveu model. Kocić and
Kogut find mean-field scaling behavior rather than the
expected universality of the two-dimensional Ising
model. This casts some doubt on the conventional lore
that actions for composed scalars (i.e., scalar mesons
composed of quark bilinears) share the universality class
with sigma models for fundamental scalars. In particular,
the chiral transition in two-flavor QCD might have
mean-field rather than O(4) critical exponents.
In Monte Carlo simulations with staggered fermions,

l5n5Nf/4 is set to 1/2 in the effective action, Eq. (3.14).
No sign of a first-order transition has been found by
Brown et al. (1990a, 1990b) for the two-flavor case. Thus
a second-order transition is favored in the massless limit.
The question now arises whether this continuous behav-
ior is a remnant of the strong-coupling U(1)3U(1)
symmetry restoration or a restoration of the desired
SU(2)3SU(2) continuum symmetry with either O(4)
or mean-field exponents. Karsch (1994) and Karsch and
Laermann (1994) performed a finite-mass scaling analy-
sis of critical exponents in two-flavor QCD to decide
which of the three possibilities was realized: O(2),
O(4), or mean-field exponents. The exponent
1/(bd)5yt /yh was read off from Eq. (3.100), expressed
in terms of the critical and pseudocritical couplings gc
and gpc , respectively,

6/gpc
2 ~mqa !56/gc

2~0 !1~mqaNt!
1/bd. (3.109)

The exponent 1/d was determined from the chiral cumu-
lant Eq. (3.102) evaluated at x5t50. The results are
summarized in Table V and compared with O(4),
O(2), and mean-field values. The QCD result for
1/(bd) is consistent with the O(2) and mean-field re-
sults, but slightly outside the error bars of the O(4)
value. For 1/d the QCD result is less consistent with
mean-field values, but in good agreement with the
O(4) and O(2) values.
DeTar (1995) has analyzed the scaling behavior of

^c̄c& as function of a scaled temperature [see Eq. (3.98)]
with O(4) critical exponents over a wide range of avail-
able data. The agreement is good apart from Nt512
data. The origin of this discrepancy has still to be clari-
fied. Possible explanations are a shift of the crossover
temperature as a function of Nt , erroneous extrapola-
tions of lattice mass measurements, or the very scaling
hypothesis with O(4) exponents. A clear identification
of mean-field values in two-flavor QCD would certainly

be an important first step in gaining a deeper under-
standing of critical behavior in field theories with fermi-
ons.
The caveat concerning unwanted features of the

strong-coupling symmetries also applies to the case of
three flavors in the staggered fermion formulation. In
the worst case, a crossover phenomenon might be the
result of a second-order transition in the strong-coupling
regime, which is immediately washed out when finite
masses are included. The crossover phenomenon then
would be an ultraviolet artifact indicating that the bare
coupling g was still too strong.
Once a second-order phase transition has been iden-

tified, a measurement of critical indices is not a minor
detail for its further characterization. As we have seen,
at finite temperatures and fixed Nt the continuum limit
coincides with the high-temperature limit. Thus one has
to increase Nt to shift the critical coupling towards
smaller values. The large-volume limit is necessary for
the continuum limit at low temperatures. In Monte
Carlo simulations extrapolations to zero mass, zero lat-
tice spacing, and infinite volume are unavoidable. In the
vicinity of a second-order phase transition, the critical
exponents enter the extrapolation formulas. Thus their
correct identification and knowledge of their precise val-
ues are needed for taking the right limits.
If finite-mass or finite-size scaling analysis is not prac-

ticable or applicable, an alternative fermion formula-
tion, that of the Wilson fermions, should be explored to
reestablish the type of phase transition that has been
observed in the staggered formulation. In particular,
when odd numbers of flavors are described in the stag-
gered fermion formulation, it is difficult to ascertain how
the trick of doubling and reducing the flavor degrees of
freedom affects the effective symmetry of the lattice ac-
tion which triggers the phase transition.

4. Bulk transitions

Bulk transitions are phase transitions at zero tempera-
ture. Their very occurrence is a lattice artifact. Latti-
cized systems are systems of statistical mechanics with
their own dynamics. They do not care about a well-
defined continuum limit. Generic phase transitions can
occur at some critical coupling, while the temperature is
zero. Their physical meaning depends on the context.
They have no physical relevance for continuum QCD, if
they do not ‘‘survive’’ the continuum limit. Thus one
would like to ignore them completely, but one is not
allowed to do so.
The phenomenon of bulk transitions in lattice gauge

theory is known from the pure gauge sector. According
to the conventional lore on four-dimensional lattice
gauge theories, there should be no zero-temperature
phase transition for non-Abelian SU(N) gauge groups
separating the strong-coupling (g2@1) from the weak-
coupling (g2!1) region. This is a desired feature, as it
should guarantee that the continuum limit of lattice
gauge theory includes both the confinement properties
(proven on the lattice for strong couplings) and asymp-

TABLE V. Critical exponents 1/bd and 1/d for two-flavor
QCD in comparison with O(4), O(2), and mean-field critical
exponents.

Two-flavor
QCD O(4) O(2)

Mean
field

1/(bd) 0.7760.14 0.5560.02 0.6060.01 0.67
1/d 0.21<1/d<0.26 0.208(2)60.003 0.2080(3)60.0003 0.33
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totic freedom in the weak-coupling regime. A bulk tran-
sition may in principle destroy the confinement proper-
ties of the strong-coupling regime.
Monte Carlo calculations for the SU(2) and SU(3)

gauge groups with fields in the fundamental representa-
tion have verified the conventional lore. For N>4 first-
order bulk transitions have been found for the SU(4)
lattice gauge theory by Moriarty (1981) and for the
SU(5) theory by Creutz (1981). Creutz argues, however,
that the confinement property is not lost at weak cou-
plings in spite of the transition.
In SU(2) and SU(3) gauge theories one observes, in-

stead, a rapid crossover phenomenon between the
strong and weak coupling regimes. This is explained by a
nearby critical point in the (b ,bA) plane, where
b[2N/g2 as above and bA denotes the coupling of a
TrAU(]P) term in the adjoint representation of
SU(N). For two colors we have a mixed SU(2)-SO(3)
lattice action. A small bA leads to a bulk transition
(Bhanot and Creutz, 1981), which is absent for bA50.
The interplay of bulk and thermal transitions in

SU(2) and SU(3) gauge theories has been recently re-
investigated by Gavai et al. (1994), Gavai and Mathur
(1995), and Blum et al. (1995b). A bulk transition is sig-
nalled if the location of the phase boundary stays fixed
in coupling parameter space, independently of the num-
ber of time slices. In contrast, continuum universality for
the thermal transition requires a shift of the critical cou-
plings towards smaller values, as Nt is increased (cf. Sec.
III.A). For the mixed fundamental/adjoint SU(2) ac-
tion, Gavai and Marthur (1995) found a shift towards
weaker couplings of both the thermal and the bulk tran-
sition boundaries at Nt56. This result casts some doubt
on the interpretation of the first-order phase boundary
as a bulk transition.
For the SU(3) mixed fundamental/adjoint action, the

bulk and thermal phase boundaries coalesce for Nt54,
but split into two lines for small enough couplings and
larger values of Nt (Nt56,8; Blum et al., 1995c). The
shift of the thermal transition line towards weaker cou-
plings for increasing Nt supports the hypothesis of con-
tinuum universality.
The peculiar behavior that is sometimes found for the

phase structure of QCD with dynamical fermions has
been attributed to bulk transitions in mixed
fundamental/adjoint actions. These actions arise as ef-
fective actions from the integration over fermions. It is
still an open question whether the inclusion of dynami-
calWilson fermion leads to a strong enough adjoint term
in the SU(3) mixed action to explain the phase structure
for Wilson fermions at large k and Nt56 (Rummu-
kainen et al., 1995).
Similarly the integration over eight dynamical flavors

in the staggered fermion scheme has been conjectured
to induce an adjoint term of the SU(2)-SO(3) mixed
action in the effective action. This provides a possible
explanation of the bulk transition, which is seen in
Nf58 QCD (for Nt>8 time slices; Brown et al., 1992).
We discuss the eight-flavor case now in more detail.

The action for two species of staggered fermions is
given by Eqs. (3.12). Integration over the fermionic vari-
ables leads to

S52
1
3

b(
p

Re TrU~]P !2
Nf

4
ln det~QQ1! (3.110)

with

Q5D1ma ,

where D is the Dirac operator acting on an SU(3) trip-
let field f according to

~Df!x5
1
2 (

m
Gm~x !@Ux

m1fx1m̂2Ux2m̂
m fx2m̂# . (3.111)

Here the number of continuum flavors Nf is chosen as 8,
corresponding to l5Nf/452 species of staggered fermi-
ons. The dynamical quark mass ma is chosen flavor in-
dependently as 0.015 throughout all simulations. The
gauge coupling b56/g2 is varied between 4.5 and 5.0.
The lattice size is 1633Nt with Nt54, 8, 16, and 32.
One may wonder why the special case of eight light

flavors is of any interest at all, as only two (or three)
quark flavors are approximately massless in nature. Nev-
ertheless the reason for us is a physical one. Usually the
strength of the chiral transition is thought to grow with
an increasing number of flavors. Earlier work on 8334
(Kogut et al., 1985; Fukugita et al., 1988), 64 (Kogut and
Sinclair, 1988a), 84 (Kogut and Sinclair, 1988a; Fukugita
et al., 1988), and 16334 and 36 (Ohta and Kim, 1991)
lattices shows a strong first-order transition. A compari-
son of the transition for 2, 3, 4, and 8 flavors reveals a
strengthening of the transition as the number of flavors
increases (Ohta and Kim, 1991; also Gottlieb, 1991),
where the range of time slices Nt lies between 4 and 8.
Usually this tendency is interpreted as a reflection of a

physically plausible effect: The chiral transition becomes
more pronounced the higher the number of flavors that
drive the transition, whatever the ‘‘driving dynamics’’ in
detail may be. Results about the Nf58 transition expose
this tendency as a possible lattice artifact and have given
rise to further studies in effective models about the sup-
posed flavor dependence of the chiral transition.
Let us first give a qualitative description of the dia-

gram displayed in Fig. 9. It is partly conjectural and sum-
marizes the results for the Nf58 transition of Brown
et al. (1992; see also Christ, 1992b; Dong and Christ,
1992). The solid line locates the bulk transition separat-
ing the parameter space into a weak-coupling
(b>bc56/gc

2) and a strong-coupling (b<bc) phase. For
a temporal extent Nt>8 the transition becomes Nt in-
dependent and occurs at the same critical coupling
bc54.73(1) forNt58 andNt 5 16 or at bc54.64(1) for
Nt58 and bc54.62(1) when the finite time-step inter-
val Dt in the integration step is varied (see below). This
behavior signals the bulk feature of the transition.

a. Identification of the lattice artifact

As mentioned above, in the usual finite-temperature
transition with a correspondence in continuum field
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theory, the critical coupling (temperature) should scale
with Nt such that the physical transition temperature
Tc5@Nta(g)#

21 remains constant (see Sec. III.A.).
Thus it is the absence of a shift in bc when Nt is in-
creased which suggests a possible lattice artifact. The
persistence of the transition on a symmetric (T50)
164 lattice further supports the interpretation as a bulk
transition.
While the strong-coupling phase shares features with

the usual chirally broken phase at Nt54,6, the structure
of the weak-coupling phase (on the right-hand side of
the bulk transition) is more complex and less obvious in
its physical meaning. The weak-coupling phase is
crossed by a hypothetical finite-temperature transition,
which should be relevant for the continuum limit. It
separates regions with chiral symmetry broken (^x̄x&
Þ 0) and chiral symmetry restored (^x̄x&50) features.
The conventional finite-temperature transition may be
recovered on very large lattices (Nt.32).
The solid squares in Fig. 9 refer to parameters of ac-

tual simulations, while the open squares locate the criti-
cal couplings.
In what follows we sketch the criteria that led to the

conjectures of Fig. 9.

b. Basic observables

Basic observables are the chiral condensate and had-
ron masses. Of particular interest is their dependence on
the bare quark masses. The chiral condensate of stag-
gered fermion fields, defined as

^x̄x&5
1
3

1

Ns
3Nt

(
x

^x̄xxx& (3.112a)

with a sum over all lattice sites x , is estimated by

^x̄x&5
1
3

1

Ns
3Nt

K K (
xx8

hx~D1m !x ,x8
21 hx8L L

5
1
3

1

Ns
3Nt

K K (
xx8

hx(m~DD11m2!21)xx8hx8L L .
(3.112b)

For each site x , hx is an independent, complex three-
vector of Gaussian random numbers. This representa-
tion of ^x̄x& follows from the effective action in terms of
pseudofermionic fields hx ; see Sec. III.A. Equation
(3.112b) shows the nonlocality of the fermionic conden-
sate. The expectation value ^^•••&& denotes an average
over gauge fields and random three-vectors hx .
The mass m entering Eqs. (3.112) should be identical

with m of the effective action, as it enters the determi-
nant in the path integral. Strictly speaking, the full cal-
culations should be repeated for several quark mass val-
ues, if the quark condensate and the hadron propagators
are to be checked on their quark mass dependence. The
observables are then measured on new sets of equili-
brated gauge-field configurations depending on the
quark mass via the fermionic determinant. This way of
proceeding costs an enormous amount of computing
time.
In the actual measurements Brown et al. calculated

the observables on the same set of configurations, gen-
erated for an action with ma50.015, but with varying
valence quark masses: mval50.004, 0.01, 0.025, and 0.05.
Valence quark masses enter the observables via the
propagator, whereas sea-quark masses are used for the
determinant in simulations with dynamical fermions.
The mass entering Eqs. (3.112) should be identified with
a valence quark mass.
A conclusive criterion for studying the chiral transi-

tion is the scaling behavior of the chiral condensate
^x̄x& and the pion mass mp as a function of quark mass
m in the limit of m→0. Spontaneous chiral symmetry
breaking is indicated if ^x̄x& stays finite for m→0, while
mp(m) should vanish in the same limit. From chiral per-
turbation theory and partial conservation of axial vector
current (PCAC) relations, one expects mp

2 to vanish lin-
early in the quark masses. As is argued by Brown et al.,
the limit mval→0 for fixed msea may be conclusive as
well.
The simulation method is the R algorithm of Gottlieb

et al. (1987a). The R algorithm contains finite time-step
errors of the order (Dt)2, but requires half the number
of Dirac propagator inversions per unit Monte Carlo
time compared to the exact hybrid Monte Carlo method
of Duane et al. (1987), when it used for the eight-flavor
case.

c. Determination of the critical coupling

An accurate determination of the critical coupling is
essential for an identification of the bulk transition.
Here one faces the usual dilemma encountered for
strong first-order transitions. If the volume is chosen too
large, strong metastabilities make both phases stable

FIG. 9. Generic phase diagram in the Ntb plane for eight
flavor QCD, where b56/g2 and Nt is the temporal extent of
the lattice. Units are dimensionless lattice units. The full line
locates the bulk transition, the dashed line suggests a possible
finite-temperature transition. Solid squares label parameter
values where simulations have been actually performed, while
open squares locate critical couplings. From Brown et al.
(1992).
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within a large range of couplings. This requires long
Monte Carlo runs on large lattices. Metastabilities are
less pronounced when the volume is small, but then the
data are contaminated with strong finite-size effects.
This problem is solved in the simulations of Brown

et al. by starting with a mixed phase configuration. Small
changes in the coupling cause the system to evolve rap-
idly into one of the phases, which by itself is a typical
signal for a first-order transition. Starting from a mixed
phase configuration, the evaluation of ^x̄x& is followed
for several values of b to get upper and lower bounds on
bc .
The first order of the bulk transition is concluded

from Figs. 10 and 11. Figure 10 shows the evolution of
^x̄x& starting from hot and cold starts for b54.65 on a
163316 lattice. The first order is signalled by the persis-
tence of two phases over a time scale considerably larger
than the equilibration time. This criterion was men-
tioned in Sec. II as one of the naive criteria that are
applicable for strongly first-order transitions. A further
evidence comes from the jump in the order parameter
seen in Fig. 10, which is interpreted as a tunneling event
between coexisting phases in the transition region (see
Sec. II). The evolution of the order parameter for the
163332 lattice at b54.6 is shown for a cold start. A cold

start corresponds to an ‘‘ordered’’ configuration typical
of the weak-coupling phase (for a finite-temperature
transition typical of the deconfinement phase). Since the
critical coupling bc54.73, the value b54.6 belongs to
the strong-coupling regime. The tunneling event that oc-
curs at t;250 time units suggests that the enforced
weak-coupling phase (via the initial configuration) be-
comes unstable at the strong-coupling value b54.6.

d. Indications of chiral symmetry restoration

For Nt54, 6, and 8 time slices, the weak-coupling
phase (on the right-hand side of the solid line in Fig. 9)
shows the typical features of chiral symmetry restora-
tion. The condensate ^x̄x& extrapolates linearly to zero
as mval→0. For Nt516 and/or 32, the strong-coupling
phase has the typical features of a chiral symmetry bro-
ken phase.
Thus one would like to observe indications of chiral

symmetry restoration in the weak-coupling phase. The
value of ^x̄x& becomes smaller when going from strong
to weak couplings, but less small than expected from
naive scaling arguments. It extrapolates to zero as
mval→0, but in a nonlinear way, while mp

2 extrapolates
to a nonvanishing value. It is speculated that for
Nt516 and b54.65 the weak-coupling phase is itself
near a finite-temperature transition region.
For a larger value of b (b55.0), chiral symmetric be-

havior is manifest: hadronic screening lengths show par-
ity doubling, ^x̄x& extrapolates linearly to zero as
mval→0, and mpÞ0 for mval50, varying little with
mval . For further (technical) details we refer the reader
to the original reference (Brown et al., 1992).
Our discussion may have demonstrated that the bulk

transition does not merely replace the finite-
temperature transition such that it could be ignored as a
lattice artifact. It seems to be superimposed on the struc-
ture of a finite-temperature transition. For a smaller
number of flavors (Nf52,3,4), no bulk transition has
been observed. There it may be even more difficult to
discriminate precursors of the bulk transition at Nf58
from continuum behavior.
Brown et al. (1992) attempt to explain the bulk tran-

sition as an outgrowth of the rapid crossover region seen
in the pure SU(3) gauge theory for b55.6. As the sys-
tem goes from strong to weak couplings in this region, a
strong deviation from the scaling behavior predicted by
the perturbative b function is seen (Kennedy et al.,
1985). Adding light dynamical quarks to the pure gauge
action, the crossover region narrows with increasing
number of flavors. The sharper the crossover, the stron-
ger the violation of perturbative scaling and the larger
the increase in slope of Nt vs b56/g2. A plot of Nt vs
bc for Nf50, 2, 4, and 8 flavors supports this view.
In concluding we summarize the phase structure that

is expected for various temporal extents. For small val-
ues of Nt (Nt<4) one has to work with a coarse-
grained lattice to reach the transition region. The scale is
controlled by the lattice spacing. A single finite-

FIG. 10. Hot (upper curve) and cold (lower curve) start evo-
lution of ^x̄x& on a 164 lattice at b54.65. The time unit is set
by one trajectory in the R algorithm; t denotes the number of
such trajectories. For further definitions, see the text. From
Brown et al. (1992).

FIG. 11. Evolution of ^x̄x& from a cold start on a 163332
lattice with b54.60. The jump at t'250 is interpreted as tun-
neling from the metastable, weak-coupling phase to the stable,
strong-coupling phase at this b value. The time unit is set by
one trajectory in the R algorithm; t denotes the number of
such trajectories. From Brown et al. (1992).
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temperature transition is observed, but its relevance to a
finite-temperature transition in the continuum is not ob-
vious.
At intermediate values of Nt (4<Nt<16) the corre-

sponding critical couplings fall in the crossover region. A
change occurs in what is called the relevant scale. At the
end of the crossover region the scale becomes loosely
related to the lattice spacing, but controlled by the con-
tinuum behavior. This rapid change of relevant scales is
manifest in a bulk transition preventing any smooth
change of Nt vs b ; both quantities are apparently unre-
lated.
For larger values of Nt (>32) (as well as a simulta-

neous extension of the spatial lattice size to mimic a
finite-temperature box), the transition region is expected
to lie in a coupling regime, where the lattice is rather
fine grained. The bulk transition has disappeared, and a
finite-temperature transition recurs. This time it will be
related to the chiral transition of continuum QCD (tak-
ing for granted that it does recur).
Thus the Nf58 simulations—although far from mod-

eling realistic QCD systems—allow an identification of
lattice artifacts that may also influence more realistic lat-
tice simulations (Nf52,3) in a weakened form.

5. Results for two and three flavors

The limiting cases we have discussed in the previous
sections are not close to the realistic conditions of QCD.
The pure gauge theory, the limit of four and eight nearly
massless flavors, and the strong-coupling approximation
may be regarded as tools for gaining some insight into
the dynamical origin of the QCD transitions. They can
further give some hints about the stability of QCD re-
sults with respect to variations of input parameters. Of
particular interest is the role of the quark masses. For
example, a crossover phenomenon for experimental
quark masses may be understood as the result of mass
values that are too small to sustain a first-order decon-
finement transition and too large to sustain the chiral
transition. Such a conclusion can be drawn if unrealistic
mass values have been studied before.
Now let us turn to the cases of two and three flavors,

which come closest to the experimental relation of two
light [mu;md;527 (MeV)] and one less light
@ms;1502180 (MeV)] flavor. Here we discuss the re-
sults of Brown et al. (1990a, 1990b), which are still rep-
resentative for two light and one heavier flavor.
The simulations of Brown et al. are performed in the

staggered fermion formulation. As we have argued
above, the staggered formulation represents intrinsically
only integer multiples of four continuum flavors. The
projection on two or three flavors is enforced by writing
l of the effective action in Eq. (3.14) as Nf/4. Although
the local fermionic operator Q describes Nf54n (n in-
teger) flavors, one allows Nf to take the desired con-
tinuum value and uses as a prescription for the effective
action

Seff5
1
3

b(
p
Re TrUS ]p2

1
4
Nu ,dln det~D1mu ,da !

2
1
4
Nsln det~D1msa !, (3.113)

where b56/g2, U(]p) denotes the product of U8s
P SU(3) along the boundary ]p of a plaquette p , Nu ,d is
the number of continuum up- and down flavors, that is,
2, and Ns is the number of strange flavors in the con-
tinuum, Ns51. The Dirac operator D is given by Eq.
(3.12). It describes four flavors of quarks in the con-
tinuum limit. Thus the representation of the prefactor
n as Nf/4 cannot be derived from an integration of a
local action over fermionic degrees of freedom. The lo-
cal staggered fermion action leads to Nf54n , hence one
should call Eq. (3.113) a ‘‘prescription.’’
The condensate is given by Eqs. (3.112). The algo-

rithm evolving the gauge fields with respect to the action
Eq. (3.113) is the R algorithm of Gottlieb et al. (1987a)
with a step size of Dt50.0078 for Nf52 and 0.01 for
Nf53. The lattice size is fixed to 16334. Table VI lists
the quark masses that were considered together with the
results for the chiral transition. The results are based on
Figs. 12(a)–12(d).
No transition for the two-flavor case is concluded

from the time evolution of the ordered and disordered
starts; see Fig. 12(a). No sign of metastability is seen, as
the two starts mix together without clear tunneling
events. In Fig. 12(b) the absence of a double-peak struc-
ture is taken as an indication for ‘‘no transition.’’
Figure 12(c) shows the case of three light degenerate

flavors. Here a two-state signal is visible. Over more
than 2000 time units, the system stays in the ordered
(disordered) phase depending on the starting condition.
For two light and one heavy flavor [Fig. 12(d)]—the case
that comes closest to realistic mass relations—the order
parameter evolves similarly to Fig. 12(a). Clear signs of
metastability and two-phase coexistence are absent. This
result is in conflict with earlier conclusions of a clear
transition on an 8334 lattice (Gavai et al., 1989; Kogut
and Sinclair, 1988b) and with some evidence for a first-
order transition (Kogut and Sinclair, 1989).
At first glance the absence of first-order signals under

realistic quark mass conditions have far-reaching conse-
quences for phenomenological implications in heavy-ion
collisions. Many predictions rely on the first-order na-
ture of the chiral transition for three flavors (see Sec. V).
From a practical point of view the alternative between a
truly first-order transition and a crossover phenomenon

TABLE VI. Mass parameters and results for two and three
flavors. The quantity a represents the lattice constant and
masses are given in lattice units.

Nf mu ,d•a ms•a Results of Brown et al. (1990a)

2 0.01 ` no transition
2 0.025 ` no transition
3 0.025 0.025 first-order transition
3 0.025 0.1 no transition
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may not be distinguishable when the volume is small.
The more sensible question to ask is whether the cross-
over is rapid enough to produce a sufficiently large gap
in entropy densities over a small temperature interval.
The preliminary answer seems to be positive, even for
the Nf52 case.
The jump in entropy density occurs within a b interval

that corresponds to a temperature interval of less than
10 MeV. In Sec. V.C we shall see that an entropy jump
over a finite, but small, temperature range is in principle
sufficient to induce multiplicity fluctuations beyond the
statistical noise.
Although a translation from lattice units into physical

units should be made with care for the considered b
value of 5.171, it is of interest to estimate bounds on the
critical quark masses in units of MeV. If we take
a (MeV21) from Born et al. (1989), the set of masses
mua5mda50.025, msa50.1 corresponds to mu5md
;12 MeV, ms;50 MeV. These mass values give an up-
per bound on the critical quark masses at which the chi-
ral transition changes from first order to second order.
In the case of three degenerate flavors Nf53, two-

state signals are observed for mu ,d ,s50.025 (see Table
VI), while no clear signals of metastability are seen for
mu ,d ,s50.075 (Gavai and Karsch, 1985; Gavai et al.,
1987), leading to an estimate for the critical lattice quark
masses in physical units of 12 MeV<mu ,d ,s

crit <38 MeV.
These numbers should be compared with more recent
results on critical quark masses obtained in Wilson’s
fermion scheme; see Sec. III.C.7. Lattice quark masses
in physical units are related to the current quark masses
in units of MeV by an unknown multiplicative renormal-
ization factor.

Finally we come to the reliability of the results for two
and three flavors. All simulations reported so far have
been performed on a 16334 lattice. A temporal extent
of four time slices leads to a transition region in the
coupling range, where the lattice is rather coarse
grained. For a pure gauge theory Nt>10 is necessary to
reach the continuum region. The effect of fermions is to
further lower the effective lattice spacing, so that an
even larger temporal extent would be necessary to reach
the range of asymptotic scaling.
The ‘‘distance’’ from the continuum limit is visible in

the results of Brown et al. (1990a, 1990b) for hadron
masses that were obtained in separate T50 simulations
on a 163324 lattice with b55.171, mu ,da50.025, and
msa50.1. These calculations were performed to test the
scaling properties in the considered coupling regime.
The masses of two kaons that are degenerate in their
flavor content in the continuum limit still differ by a
factor of 2. The nucleon-over-rho mass ratio mN /mr is
obtained as 1.5(1) in contrast to its physical value of
1.22. The ratio of mK /mr50.46(1) is smaller than its
physical value of 0.64. This suggests that the strange
mass entering the lattice K meson is smaller than its
physical value. Hence the first-order transition for three
flavors disappears even before the strange mass adopts
its physical value. The unphysical masses of the flavor
partners can influence the transition dynamics in a way
that is difficult to control.
Other UV artifacts due to the coarse-grained lattice

may be hidden in the results. From the discussion in Sec.
III.C.3 it cannot be excluded that the smooth behavior
for the two-flavor case is a remnant of strong-coupling
U(1)3U(1) symmetry. Going to larger Nt values, it
may happen that a first-order transition recurs. The
same warning applies to the three-flavor case with one
heavy and two light flavors, as the U(1)3U(1) symme-
try at strong couplings leads to a second-order transition
independent of the number of fermionic flavors.
Concerning possible superimposed features from the

bulk Nf58 transition, Nt54 is probably below the dan-
gerous temporal sizes, where the associated coupling
values fall in the crossover region from strong to weak
couplings.
From experience with other simulations it is clear that

the lattice size of 16334 is not large enough to be in the
asymptotic large-volume region, where finite-size effects
can be excluded.
More recent results for the two-flavor case of stag-

gered fermions have been obtained for larger b values
(i.e., smaller couplings), larger temporal extent 83163,
and/or smaller values of the bare quark masses. The
bare quark masses are ma50.00625 (HTMCGC col-
laboration, see Bitar et al., 1993; Gottlieb et al., 1993,
and Bernard et al., 1995a), ma50.004 (Columbia group,
see Mawhinney, 1993), and ma50.008 and 0.016 on
243312 lattices (Bernard et al., 1995a, 1995b). The quali-
tative conclusions are the same. There is a rapid cross-
over for finite quark masses. As a sign of progress it
should be mentioned that the pion mass has decreased
to the order of Tc for the lowest value of the bare quark

FIG. 12. Evolution of (x̄x) with various numbers of flavors,
where a is the lattice constant and ma are masses in lattice
units: (a) Nf52 with ma50.01 and b55.265. Evolution of
^x̄x& without clear tunneling events. Solid curve, ordered start;
dotted curve, disordered start. (b) Nf52 with ma50.01. Over-
lapping histograms from left to right, b55.275, 5.265, 5.25.
Counts are in units of trajectories in phase space. (c) Nf53
with ma50.025, b55.132. Evolutions signal a first-order tran-
sition. Solid curve, ordered start; dotted curve, disordered
start. (d) Nf53, b55.171 with nearly physical masses:
mu ,da50.025, msa50.1. The evolution of ^x̄x& signals no tran-
sition. From Brown et al. (1990a).
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mass. In earlier calculations (e.g., Brown et al., 1990a,
1990b) it was too large for heavier mesons to decay into
pions.
Another good indicator of the crossover phenomenon

is the baryon number susceptibility. It is expected to be
small in the low-temperature phase, since the baryon
number can only be changed by creating or destroying a
baryon, but large in the high-temperature phase, where
it is sufficient to create or destroy single quarks to
change the baryon number. Bernard et al. (1995a,
1995b) used the coupling dependence of the baryon
number susceptibility x to determine the crossover cou-
pling 6/gc

2 for two-flavor QCD at given quark masses.
They also plotted the baryon number susceptibility as a
function of T (MeV) for various lattice sizes. The T de-
pendence was obtained from T/mr51/(Nt•a•mr), if
the zero-temperature spectrum calculations of mra were
extrapolated to the gauge coupling and the quark mass
values of the thermodynamic simulations. Once the Nt
dependence is under control, a plot of x(T) is of much
interest for phenomenological applications. The baryon
number susceptibility affects QCD’s equation of state,
hadronization processes, and heavy-ion collisions.
We conclude with a summary of conjectures and re-

sults for two and three flavors (based on the work of
Brown et al., 1990a, 1990b) in Fig. 13. Indicated are the
presence or absence of the finite-temperature QCD
transitions as a function of the quark masses msa and
mu ,da in lattice units. The solid line indicates second-
order transitions, the shaded areas enclose mass values
leading to first-order transitions. The concave shape of
the critical boundary is hypothetical. The solid circles
refer to mass points where a first-order transition is
seen, the solid squares to points where no transition is
found in the simulations of Brown et al. (1990a, 1990b).
The dashed circle is located at the physical value of the

ratio of strange- to up-quark masses. Error bars for the
location of the various points relative to the phase
boundaries have been left out. The mass point (0,0) is
the chiral limit of three flavors with an SU(3)3SU(3)
symmetry in the continuum limit and a first-order tran-
sition. The pure gauge theory in the upper right corner
of the diagram (mu ,d5` , ms5`) has an exact Z(3)
symmetry both in the continuum and on the lattice for
three colors. The transition is of first order.
The line (mu ,d50, ms) has an SU(2)3SU(2) con-

tinuum symmetry and a conjectured second-order tran-
sition above some tricritical strange-quark mass, where
the line of first-order transitions ends. The universality
class of QCD may change along the second-order tran-
sition line. There have been several proposals for candi-
dates of the universality class: the O(4) model if
mu ,d50 and ms is large; a tricritical f6 model in the
vicinity of the tricritical point (Wilczek, 1992; Rajagopal
and Wilczek, 1993a, 1993b; see Sec. IV.A.1); and an
Ising model along the concave part when mu ,dÞ0
(Gavin et al., 1994a). An identification of the appropri-
ate universality class of QCD along the critical phase
boundary is still in an exploratory stage. The precise lo-
cation of the critical phase boundary is under debate. In
particular, the location of the tricritical mass point on
the (mu ,d50) axis is as yet unknown. Both fermion
schemes agree on the existence of a first-order transition
region, but do not agree about its extent. In the stag-
gered scheme the physical mass point lies outside, while
in Wilson’s scheme it lies inside the first-order region.
Strong-coupling artifacts act in opposite directions in
both schemes. As mentioned above, the smooth behav-
ior in the staggered formulation may be a result of the
U(1)3U(1)-symmetry at strong couplings, while the
first-order behavior in Wilson’s formulation may be
caused by light-fermion doublers at strong couplings
(see Sec. III.C.7). Results for Wilson fermions will be
summarized in Sec. III.C.7.

6. The equation of state for two-flavor QCD

Blum et al. (1995a, 1995b) have studied the energy
density and pressure as a function of temperature for
two light flavors in the staggered fermion formulation of
QCD. The ir approach is based on fully nonperturbative
ingredients along the same lines as in the pure gauge
theory (cf. Sec. III.B.2). The generalization comes from
the dependence of observables on the gauge coupling
6/g2 and the bare light-quark mass mqa . Thus the b
function now has two components,

b~6/g2, amq!5S ]~6/g2!
] lna

,
]~amq!

] lna D . (3.114)

For a number of points in (amq ,6/g
2) space, the b func-

tion was extracted from data for (mpa) and (mra) mea-
sured as functions of 6/g2 and amq . To find the change
d(amq) for a given change d(6/g2) such that the physics
remained the same, Blum et al. kept the mass ratio
mp /mr fixed. An alternative way of finding two equa-
tions for the two unknown functions (amq)(a) and

FIG. 13. Generic phase diagram, partly conjectural, for two
and three flavors. Solid lines indicate supposed second-order
transitions, shaded areas first order transitions; d, mass param-
eters where the transition is seen; j, where the transition is
absent. The dashed circle locates the physical mass point.
From Brown et al. (1990a).
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(6/g2)(a) is to fit mp /mr and mra as functions of
mqa and G , leading to a5a(6/g2,mqa). The inverse
function then yields the b function corresponding to a
symmetric change of lattice spacings.
The nonperturbative b function enters the interaction

measure according to

~e23p !a4522
]~6/g2!
] lna

~PT2P0!

2
]~amq!

] lna
~^c̄c&T2^c̄c&0!. (3.115)

Here PT ,0 denote the average plaquette expectation val-
ues at temperature T or zero, respectively. They are cal-
culated as

PT ,05
1

2Ns
3Nt

] lnZT ,0~amq ,6/g
2!

]~G !
, (3.116)

where ^c̄c&T ,0 are the corresponding light-quark con-
densates,

^c̄c&T ,05
1

Ns
3Nt

] lnZT ,0~amq ,6/g
2!

]~amq!
. (3.117)

The pressure p is calculated by integrating either of the
two relations

p

T4 52Nt
4E

cold

6/g2

d~6/g82!@PNt
~6/g82,amq!

2P0~6/g82,amq!# , (3.118)

[cf. Eq. (3.61) in Sec. III.B.2] or

p

T4 5Nt
4E

cold

a•mq
d~amq!8@^c̄c~6/g2,~amq!8!&T

2^c̄c~6/g2,~amq!8!&0# . (3.119)

The lower limit for the integration should be chosen so
that the contribution of the integrand is negligible. Here
the subscript ‘‘cold’’ stands for the cold symmetric lat-
tice at zero temperature. The energy density is then ob-
tained from Eqs. (3.118) and (3.119) combined with Eq.
(3.115). The results are shown in the two upper curves of
Fig. 14 for two light bare-quark masses. The lower
curves denote three times the pressure. Although there
is no transition in the strict sense, there is still a rapid
rise in the energy density over a temperature interval of
the order of 10 MeV around a temperature of 150 MeV.
A slower rise in the pressure is also seen. A shift of the
transition interval to higher temperatures is observed for
lower bare-quark masses. This qualitative feature seems
to be at odds with observations in effective models,
where finite light-quark masses delay the melting com-
pared to the chiral limit; see Secs. IV.A.2 and IV.A.4.
The simulations of Blum et al. (1995a) were per-

formed for temporal extensions of Nt54 or Nt5Ns

with Ns58, 12, or 16. From the discussion of finite-size
effects in case of the pure SU(N) gauge theories (Secs.
III.B.1 and III.B.2) we expect that the temporal extent
of Nt54 will not be large enough for us to interpret the

lattice results as continuum physics. An extrapolation to
the high-temperature region and a comparison with per-
turbative calculations would be a good test which has
not yet been carried out. Thus the equation of state for
two-flavor QCD is still in an exploratory stage.

7. Simulations with Wilson fermions

To confirm the conclusions of the last sections within
the lattice approach, investigations using the Wilson for-
mulation are indispensable. Staying within the same
scheme it would be difficult to control the approxima-
tions of the desired continuum symmetries.
In the staggered fermion formulation, the chiral limit

can be obtained by varying the bare mass ma in the
Lagrangian to smaller values and extrapolating ma50
in the end. In contrast, the chiral limit in the Wilson
fermion formulation must be determined as a one-
dimensional submanifold kc(b) in the two-dimensional
(b ,k) plane, where b56/g2 denotes the inverse gauge
coupling and k the hopping parameters. kc(b) is the line
of critical hopping parameters which characterize the
chiral limit. The chiral limit can be defined as the van-
ishing of the pion mass on zero-temperature lattices.
Another possibility is to determine kc(b) by the loca-
tion of zeros in the fermion determinant. The two defi-
nitions are in general not equivalent, as the former in-
volves an average over many gauge-field configurations,
while the latter does depend on the configuration. Other
definitions of kc on finite-volume lattices have been pro-
posed by Bochicchio et al. (1985), Iwasaki et al. (1989)
and Bitar et al. (1991).
In the following we discuss the QCD transitions in a

space of four parameters: the number of flavors Nf , the
number of time slices Nt , the coupling b56/g2, and the
hopping parameter k . The line of finite-temperature
phase transitions/crossover phenomena from the
confinement/chiral symmetry broken phase to the
deconfinement/chiral symmetric phase will be denoted
by kT(b), while kd(b) stands for a line of bulk decon-

FIG. 14. Energy density (upper two curves) and three times
the pressure (lower curve) vs temperature—ordinate quanti-
ties are normalized to T4 and are dimensionless—in the stag-
gered fermion scheme of QCD with two light flavors
@a•mq50.025 (octagons) and a•mq50.1 (squares)]. From
Blum et al. (1995a).
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finement transitions (further explanations follow below).
It may be useful to visualize the change of parameters
by a look at Fig. 15. Figure 15 indicates the shift of the
thermal transition line kT(b) between the confinement
and deconfinement phases as a function of Nt and Nf .
Larger Nt shifts the transition towards the continuum
limit. Note that kT(b) hits kc(b) only at rather strong
couplings. The qualitative features hold for Nf<6.

a. Difficulties with Wilson fermions

Fukugita et al. (1986) were the first to point out cer-
tain obstacles that may hamper the investigation of the
confinement phase in the chiral limit with Wilson fermi-
ons. For Nf54, Nt53, and spatial lattice sizes of 53 they
performed simulations for 3.0,b,6.0 and 0,k,0.25.
They defined the transition region of the deconfinement
transition as the range of b over which the Polyakov
loop and the gluon energy density varied rapidly. The
result was that the transition line kT(b) did not meet
the chiral line kC(b) down to b;3.5. The lines were
running almost parallel to each other to the strong-
coupling regime without crossing. The warning of Fuku-
gita et al. was that the line of critical hopping parameters
may remain in the high-temperature phase for any finite
lattice size. If this is indeed the case, it would be impos-
sible to describe the confinement phase in the chiral
limit within the Wilson formulation. The warning was
extended to spectroscopic calculations with Wilson fer-
mions, which might reflect high-temperature behavior at
kc , if the spatial lattice size were not sufficiently large.
Results of Bitar et al. (1991) for Nf52 Wilson fermi-

ons on 4383 lattices pointed in the same direction. The
hopping parameter was varied over the range
0.12<k<0.19, while the coupling region was
4.5,b,6.0. The phase-transition line kT(b) was deter-
mined in this range, i.e, the transition/crossover coupling
bT lay between 5.12 and 5.13 for k50.17. If the chiral
limit is defined as the vanishing of the pion mass on
zero-temperature lattices, the chiral limit is nowhere
reached in the low-temperature phase on the 4383 lat-
tice in the above parameter range. The conclusion is, if

the line kT(b) ever reaches the chiral limit line kc(b), it
must be in the strong-coupling regime for these small
lattice sizes.
Thermodynamics with Wilson fermions was reinvesti-

gated by Iwasaki, Kanaya, Sakai, and Yoshié (1992,
1993). They varied the number of flavors between 2 and
18. The number of time slices was extended from
Nt54 to Nt56,8 with spatial lattices of 82310 and to
Nt518 with NxNyNz5182324. We distinguish between
their results for Nf>7 and Nf,7.
Nf,7. In the strong-coupling limit (b50) quarks

were confined in the chiral limit. For Nf56 the critical
hopping parameter was given as kc50.25. The line
kc(b) was defined as the values of k where mp

2 vanished
in the confinement phase with a linear extrapolation in
terms of 1/k . The confining behavior was concluded
from the fact that the number of iterations for the quark
matrix inversion N inv exceeded 10 000 for Nf56 with
Nt54 at kc , while it was of O(100) for Nf>7 under the
same conditions otherwise. The large value of N inv was
attributed to the existence of zero eigenvalues of the
quark matrix.
The most interesting question concerns the existence

of a crossing point of the kT(b) and the kc(b) lines at
some b.0. In the simulations of Iwasaki, Kanaya, Sakai,
and Yoshié (1992) the answer is positive. For Nf52 and
Nt54 the crossing point bcT occurs at 3.9<bcT<4.0
with kc;0.222. The pion mass is consistent with zero at
bcT . The chiral transition is of second order or a cross-
over phenomenon. For Nf56 and Nt54, the crossing
point lies in the range 0.2<bcT<0.3 with kc;0.25, the
chiral transition is of first order, and the value of mp

2

depends on the initial configuration.
For Nf52 and Nt518 the crossing point bcT is only

slightly shifted towards the continuum region,
bcT;4.525.0. The unwelcome message is that one has
to go to temporal extents Nt.18 to obtain a confining
chiral limit closer to the continuum limit (i.e., for
b.5.0).
Nf>7. Here we have to distinguish between a line

kd(b) of bulk transitions that separates the chiral limit
kc(b) from the confinement region, and the line
kT(b) of finite-temperature transitions. In the strong-
coupling limit (b50) the phase of deconfinement and
chiral symmetry restoration is realized for k.kd
(b50). The transition is stable under an increase of
Nt to Nt518. Therefore the transition is called a bulk
transition; see the discussion of bulk transitions for
Nf58 Kogut-Susskind fermions in Sec. III.C.4. The
kd(b) line of bulk transitions extends to b.0. In addi-
tion there is the kT(b) line at b.0, which reaches the
kd(b) line without crossing the chiral limit. For Nf57
and 12, the quark mass is O(1) in units of a21 at kd . If
this behavior persists in the continuum limit, confine-
ment is lost for Nf>7. Recall that asymptotic freedom is
lost in QCD if Nf>17.
Peculiar behavior of the phase structure was found by

the MILC collaboration (Blum et al., 1994) for Nf52 at
Nt54 or 6. At Nt54 the transition was smooth for light
and heavy quark masses, but sharp for intermediate

FIG. 15. Line of critical hopping parameters kc and thermal
transition line kT vs b56/g2. The arrows indicate the shift of
kT(b) towards weaker couplings for increasing Nt and stron-
ger couplings for increasing Nf . The qualitative shape of the
curves remains unchanged for Nf<6.
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masses with b;5.0. This is at odds with the general ex-
pectation that the strength of the crossover should
monotonically decrease with increasing masses. At
Nt56 a first-order phase transition with clear two-state
signals was seen in simulations at k50.17, 0.18, and
0.19. It was interpreted as a bulk transition located in
the vicinity of the thermal crossover (Blum et al., 1994).
Fortunately the lattice artifacts seem to disappear in a
more recent simulation of the MILC collaboration (Ber-
nard et al., 1995b) at larger Nt (Nt58) at 6/g255.3 over
a range of k values up to kc;0.168. The thermal cross-
over is now shifted to a slightly smaller kT;0.167, in
qualitative agreement with Fig. 14.

b. 211 flavors and critical quark masses

The Tsukuba group (Iwasaki, Kanaya, Kaya, et al.,
1995) performed simulations on 8231034 and 12334
lattices for the physically interesting case of two light
and one heavier flavor. The lattice parameters were
translated to physical quark masses of mu ,d;0,
ms;400 MeV and mu ,d5ms;150 MeV. The hopping
parameters were chosen as k(u ,d)5kc for the light
quarks, while k(s) followed from measurements of
mra , 2mqa as functions of (1/k21/kc) with kc(b) refer-
ring to the two-flavor case. The results of mra as func-
tion of Nf ,Nt ,b were used to set the scale. If the physi-
cal mass mr of 770 MeV is identified with
@mr(kc)a#/a , it follows that there should be a lattice
spacing of a;0.8 GeV21 for b<4.7. Once
a (GeV21) is known, one can find mqa and the associ-
ated values of (1/k(s)21/kc) corresponding to mq;0,
ms;400 MeV and mu ,d ,s;150 MeV.
One should recall that mra , i.e., the r mass in lattice

units, was measured at rather strong couplings (Nt54)
on small volumes with varying quark mass input mqa .
Keeping mq fixed at 770 MeV assumes that mq (MeV) is
independent of mq (MeV), which it is not. Furthermore
the value of a (GeV21) obtained from mra and mr

(GeV) at such strong couplings is certainly not universal,
i.e., independent of the lattice observable. Thus the
translation from lattice parameters b,k(u ,d ,s) to physical
parameters a (GeV21) and mu ,d ,s (MeV) should be
made with care.
The time histories of the plaquette expectation value

show two-state signals with states depending on the ini-
tial configuration for both values of ms (ms5150 and
400 MeV). Future simulations with larger temporal ex-
tensions at weaker couplings will be needed to show
whether the first-order signals survive the continuum
limit or share the fate of the signals of the
Nf52-simulations at Nt54,6 (Blum et al., 1994), fading
away on larger lattices. At strong couplings the fermion
doublers in the Wilson formulation are still too light to
decouple. It is known that the strength of the first-order
transitions increases with the number of light flavors.
Thus the first order at large ms (;400 MeV) might be
an UV artifact of the strong couplings caused by the
small number of time slices.

At present the first-order behavior is in disagreement
with the lattice results of the Columbia group (see Sec.
III.C.5) and with results in effective continuum models
(Meyer-Ortmanns and Schaefer, 1996; see Sec. IV.A.4).
It is of interest to compare the estimates for the criti-

cal quark masses up to which a clear first-order signal is
seen with results obtained for staggered fermions and in
effective models for QCD. For three degenerate flavors,
the Wilson fermion scheme gives mu ,d ,s

crit >140 MeV or
mu ,d ,s

crit a>0.175(2), as compared to 12–38 MeV for stag-
gered fermions (Sec. V.C.5). For nondegenerate flavors
it is mu ,d

crit<3 MeV, ms
crit<54 MeV in the

SU(3)3SU(3) linear sigma model (see Sec. IV.A.4 be-
low).
To sum up, although the translation to physical mass

units may suggest continuum physics, it would be prema-
ture to call the lattice result of a first-order chiral tran-
sition for physical quark masses continuum physics of
the ‘‘real world.’’

c. Improved actions

The experience with Wilson fermions in the original
formulation has shown that the simulations are either
inconclusive, due to lattice artifacts at strong couplings,
or expensive due to volumes that should be even larger
than for staggered fermions to avoid lattice artifacts.
Thus it is natural to attempt an approach with an im-
proved action. Improved actions are supposed to accel-
erate the approach to the continuum limit. One such
choice has been adopted by the Tsukuba group
(Iwasaki, Kanaya, Kärkkäinen, et al., 1994; Iwasaki,
Kanaya, Sakai, and Yoshié, 1995). So far the improve-
ment concerns the gauge part of the full QCD action,
while the fermionic part remains in Wilson’s formula-
tion. The form of the improved pure gauge action was
proposed by Iwasaki (1983). Besides the usual plaquette
term it contains a 132 loop with coefficients determined
by a block-spin renormalization-group analysis. The pre-
liminary results for full QCD with the renormalization-
group improved action look promising. The improved
gauge part seems to reduce (or remove) the lattice arti-
facts for Nf52 and Nt54 (6) observed by the MILC
collaboration (mentioned above).
A quantitative measure of acceleration towards the

continuum limit is obtained from the difference in (in-
verse) couplings b , which lead to approximately the
same lattice spacing a . The improved action needs only
b52.0, while the standard action needs b;5.0 for
a2151.01 GeV (if the r mass is calculated on an
83316 lattice and used as input to set the physical scale).
It is not surprising that, for small lattices without im-

proved actions, the Wilson and staggered fermion
schemes give different results. One manifestation of this
discrepancy is given by an estimate of Tc in physical
units for two flavors and four time slices. For Wilson
fermions Tc is estimated as 22163 MeV, whereas
Tc514266 MeV for staggered fermions (Bitar et al.,
1991). A more recent estimate of Tc from Wilson fermi-
ons leads to Tc;152214

118 MeV (Bernard et al.,
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1995b) as compared to 140 MeV<Tc<160 MeV for
staggered fermions (DeTar, 1995). Future simulations
will show whether other quantities show the same ten-
dency for both fermion formulations to approach the
same continuum behavior.

D. QCD at finite baryon density

The most convenient way of describing quark or
nuclear matter at high density is to introduce a chemical
potential mq for quarks. From asymptotic freedom one
would naively expect that chiral symmetry is restored
and quarks are deconfined above a critical value of
mq , mq

crit and above a critical temperature Tc . A critical
line (Tc , mq

crit) will separate the plasma and the hadron
phase in a (T ,m) diagram. The shape is indicated in Fig.
16. It is qualitatively reproduced in a bag model calcula-
tion at finite T and finite mq (Cleymans et al., 1986).
Note in particular that chiral symmetry is always re-
stored above the critical temperature for mq50,
Tc ,mq50 , and above the critical potential for T50,
mq ,T50
crit . In the bag model one considers an ideal gas of

nucleons in the hadronic phase, and of quarks and glu-
ons in the plasma phase. A real-valued non-negative en-
ergy difference at T50 and the critical chemical poten-
tial mb

crit for baryons is then obtained if mb
crit satisfies

M<mb
crit<3M/~2& !, (3.120)

where M denotes the nucleon mass. The chemical po-
tentials for quarks and baryons are related at the transi-
tion point via

3mq
crit5mb

crit . (3.121)

Conceptually mq ,b
crit should be distinguished from thresh-

old values mq ,b
t . In the bag model the threshold value

for mb is given by the nucleon mass M ,

mb
t 5M , (3.122)

because a real-valued, nonvanishing baryon number
density is only obtained for mb.M . Note that mb

crit

within the bound of Eq. (3.120) is always close to mb
t , so

that the finite-m phase transition at mb
crit may not be dis-

tinguishable from a threshold effect at mb
t in practical

calculations. Threshold effects are in fact seen on the
lattice (see the summary of results below). We turn now
to the lattice approach to finite-m (and finite-T) transi-
tions.
A naive translation of the continuum expression onto

the lattice leads to quadratic divergences of the internal
energy density e in the continuum limit. The solution of
this earlier difficulty is provided by introducing a chemi-
cal potential for quarks ma into the fermion matrix as
ema, multiplying the forward links in the time direction,
and e2ma multiplying the backward links (Hasenfratz
and Karsch, 1983).
For simplicity one may think of this as performing

lattice simulations at finite density in the quenched ap-
proximation. It turns out that the quenched approxima-
tion leads to results that contradict intuitive expecta-
tions. Physical observables should be independent of m
as long as m is smaller than some threshold value mc .
The threshold is related to the threshold for baryon pro-
duction. In the confining phase, baryons made of three
quarks will be produced that are bound together with an
effective chemical potential 3m . Once 3m exceeds the
value of the baryon mass, a finite baryon density will
populate the system. In the quenched approximation the
threshold comes out as mca5mp

2 /2 even in the case of
SU(3), where mp is the pion mass. The threshold
should depend on the baryon mass, and the baryon mass
should stay finite in the chiral limit.
For a finite quark mass the chiral condensate shows

some threshold behavior in the sense that ^c̄c& stays
constant for awhile and then goes to zero with increasing
m , but ^c̄c& vanishes in the chiral limit as soon as
m.0. This behavior also is at variance with the expecta-
tion. A critical density should be exceeded before chiral
symmetry is restored.
Davies and Klepfish (1991) have argued that the

strange threshold behavior amc5mp
2 /2 is really an arti-

fact of the quenched approximation and not of the finite
volume or the strong coupling, as one might have sus-
pected. Their argument is based on the fact that the
gauge loops contributing to the pion propagator are un-
affected by the chemical potential in the quenched ap-
proximation. The failure of the quenched approximation
is shown for gauge couplings b56/g2 ranging from 0.0 to
6.2.
If the full fermion determinant detM is included in

lattice Monte Carlo simulations, the problem starts for
SU(N) gauge theories with N>3. In this case the deter-
minant is a complex number for mÞ0. Therefore the fac-
tor detM exp(2Sg) (where Sg denotes the pure gauge
part of the action) can no longer be used as a probability
for generating configurations in a Monte Carlo simula-
tion as is usually possible when detM is a positive real
number. Nevertheless one can generate gauge-field con-
figurations with some probability P(U), which is fre-
quently chosen as P(U)5udet(M)uexp(2Sg). The expec-
tation value for an observable O is then calculated as

FIG. 16. Qualitative temperature dependence of the critical
chemical quark potential mq

crit .
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^O&5F E DU O det~M !e2SgG YF E DU det~M !e2SgG
5^Oeif&P /^e

if&P , (3.123)

where ^•••&P denotes the average over configurations
with respect to the measure DUP(U) and eif is the
phase of the determinant. At m50 and m5` ,
^eif&P51. Therefore a simulation according to the
above prescription is feasible for small and large values
of m . For intermediate values of m , ^eif& is very small.
The phase f fluctuates violently from configuration to
configuration. A report on how far one can push this
method from the extreme values m50 and m5` can be
found in Toussaint (1990); see also Vladikas (1988).
One attempt to minimize the large fluctuations of f is

found in a detailed study of the grand canonical parti-
tion function (Gibbs, 1986; Barbour and Sabeur, 1990).
It can be shown that the characteristic polynomial for
the fermion propagator matrix is an expansion of the
grand canonical partition functions for fixed quark num-
ber. Here it is nontrivial to measure the expansion coef-
ficients ^an&. Monte Carlo measurements of the canoni-
cal partition functions within this expansion have been
performed in an SU(3) gauge theory by Barbour et al.
(1988), Barbour and Sabeur (1990), Barbour and Bell
(1992), and Hasenfratz and Toussaint (1992) and are re-
viewed by Barbour (1992).
As an analytical alternative to the Monte Carlo simu-

lations, lattice calculations have been performed at
strong coupling in a 1/d and 1/g2 expansion (Bilić,
Demeterfi, and Petersson, 1992; Bilić, Karsch, and
Redlich, 1992). Here d denotes the spacetime dimension
and g is the bare gauge coupling. The earlier pathologi-
cal threshold behavior in Monte Carlo simulations (with
a threshold proportional to mp and vanishing for
mq→0) does not, fortunately, occur in the analytical ap-
proach. Compared to the g5` limit, at finite coupling
the threshold increases with 1/g2, while the baryon mass
mb decreases. The difference between the threshold and
mb becomes smaller at weaker couplings. This is to be
expected, as the difference is a measure of the nuclear
binding energy, which is large at strong couplings. Note
that the threshold value is different from the baryon
mass in contrast to Eq. (3.122), which was derived in an
ideal-gas picture for nucleons.
Above a temperature of the order of 220 MeV, chiral

symmetry is restored for any mb>0, in qualitative agree-
ment with Fig. 16. Below this value, the chiral transition
is of first order, but occurs at larger critical chemical
potentials for increasing 6/g2, as one would expect from
the considerations above. For mb,mb

t one is in the chiral
symmetry broken QCD vacuum without nuclear matter
(Bilić, Demeterfi, and Petersson, 1992).
A more detailed study of the threshold effect of zero

temperature and finite m was performed by Bilić,
Karsch, and Redlich (1992). The threshold behavior
turned out to be flavor independent, in contrast to the
strong flavor dependence of the (m50, finite-T) transi-
tion. Apparently a threshold effect need not be a phase

transition. At strong coupling, however, the threshold
effect seemed to coincide with the finite-m chiral phase
transition. Again the threshold value at strong coupling
lay somewhat below the nucleon mass. The coincidence
of the threshold effect with the finite-m phase transition
was likely an artifact of strong couplings. At the thresh-
old value m t, the baryon number density jumped from
zero to the maximal occupation of lattice sites.
In the continuum limit at zero temperature one may

expect to see a threshold effect at m t separate from the
phase transition at mcrit.m t. In that case the threshold
effect corresponds to a ‘‘transition’’ from the QCD
vacuum to nuclear matter with broken chiral symmetry,
and the phase transition restores chiral symmetry above
the critical mq ,b

crit .
So far the lattice results confirm some qualitative fea-

tures of Fig. 16, but they are seriously plagued with ar-
tifacts of strong couplings in the analytical approach and
of intermediate couplings in the Monte Carlo approach.
Mean-field calculations of QCD at finite baryon den-

sity have been performed in a number of effective mod-
els for QCD in the continuum. See for example,
Asakawa and Yazaki (1989), Lutz et al. (1992), or the
review by Hatsuda (1992). Some of these calculations
will be also mentioned in Sec. IV.

IV. EFFECTIVE MODELS IN THE CONTINUUM

A. Models for quark degrees of freedom

In Secs. II and III we described effective models on
the lattice, where the Z(N) Potts model was of particu-
lar importance. As a common feature these models
could be derived from lattice QCD in some coupling or
temperature limit or in a renormalization-group ap-
proach. They suffer from the same shortcomings as the
lattice approximation to the original model (full QCD).
Their relevance for the continuum limit has first to be
established. In this section we discuss effective models in
the spacetime continuum and offer some remarks on
dual Ginzburg-Landau models (on the lattice) in Sec.
IV.B.2. Studies of the phase structure of QCD are fre-
quently performed in a mean-field approach. The meth-
ods we have selected for more detailed discussion in this
section go beyond the mean-field level in various ways.
We begin by illustrating the power of the renormal-

ization group with the work of Wilczek (1992) and Ra-
jagopal and Wilczek (1993a, 1993b), who consider a
three-dimensional SU(2)3SU(2) linear sigma model as
a model for the chiral phase-transition region. In Sec.
IV.A.2 we outline the approach of chiral perturbation
theory, which is well established as a description of low-
energy and low-temperature QCD. We discuss the re-
sults of Gerber and Leutwyler (1989). The leading term
in a series of actions for chiral perturbation theory is a
nonlinear SU(2)3SU(2) sigma model in four dimen-
sions. Although chiral perturbation theory fails to de-
scribe the transition region (and thus cannot predict the
order of the phase transition), it allows an estimate of
the latent heat in the case of a (hypothetical) first-order
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transition (Leutwyler, 1992; see Sec. IV.A.3). In Sec.
IV.A.4 we discuss the mass sensitivity of the chiral tran-
sition and the equation of state for physical meson
masses (Meyer-Ortmanns and Schaefer, 1996).

1. QCD and dysprosium

In this section we discuss the work of Wilczek (1992)
and Rajagopal and Wilczek (1993a, 1993b), who offer an
effective description of QCD that is supposed to be valid
just in the vicinity of the chiral transition. Their ap-
proach is based on three hypotheses.
(1) In the limit of two massless flavors, QCD is in the

static universality class of an N54 Heisenberg ferro-
magnet when all other quark masses are infinite and
T;Tc .
(2) In the limit of two massless flavors, QCD is in the

static universality class of the f6 Landau-Ginzburg
model when the strange-quark mass is near a (tricritical)
value ms* , the remaining quark masses are infinite, and
T;Tc .
(3) QCD with two massless flavors is in the dynamical

universality class of an O(4) antiferromagnet.
These conjectures may be regarded as working hy-

potheses for lattice simulations of the chiral transition.
Before we describe their predictive power, let us com-
ment on the two basic assumptions.
(i) QCD is well approximated by the limit of two

massless flavors (mu5md50).
(ii) The lightest excitations in the spectrum at zero

temperature maintain their dominant role up to the
transition region (T;Tc). The transition of two-flavor
QCD is expected to be of second order.
Possible objections could be the following.
(a) Even the lightest quark flavors are not massless.

Their finite values lead to a pion mass of mp;135 MeV.
Unless the quark masses correspond to critical values
(which is not likely), a second-order transition amounts
to an inadequate idealization.
(b) From lattice calculations one knows that the chiral

transition is of first order for four flavors, if the masses
are not too large. For two light and one heavier flavor
the transition is replaced by a crossover phenomenon.
(c) It is unlikely and implausible that a theory as in-

tricate as QCD can be reduced to a model as simple as a
scalar O(4) model.
(d) Finally the pions lose their dominant role in the

transition region.
We shall argue against the first three objections and

postpone to Sec. IV.A.2 arguments in favor of (d).
Reply to (a): The light quark masses have nonvanish-

ing values, but their values are small compared to the
energy scale of the critical temperature. Thus it makes
sense to consider mu ,md as perturbations around the
chiral limit, where the transition should be of second
order, if Nf52. The renormalization-group approach
can account for small-finite mass values. Their ‘‘perturb-
ing’’ effect on the critical behavior in the chiral limit can
be parametrized with critical indices. Thus there is a pre-
dictable parametrization of the deviation from the

idealized limit. We recall from Sec. II that the mass
plays a role comparable to that of the scaling field of the
inverse volume in a renormalization-group analysis.
Power-law singularities of a second-order transition will
be rounded due to the finite volume and due to a finite
mass. As we know from Sec. II, the rounding is specific
for the second order, if the volume is sufficiently large.
The deviation from the L5` limit can be predicted in a
well-known way.
Similarly there is a good chance that the extrapolation

from finite masses to the chiral limit is under control. It
is under control if the deviations can be parametrized
with the critical indices of a second-order transition. For
a check of this assumption it would be sufficient to mea-
sure certain correlations (e.g., the specific heat) at differ-
ent small, but finite, quark masses and compare the
change in the rounding effects with the predictions of
the renormalization-group analysis.
Reply to (b): In view of the physical values for the

current quark masses, four light flavors are certainly less
realistic than two. Typical signatures of a first-order
transition (a nonvanishing latent heat, hysteresis effects,
and abrupt changes in the order parameters) are absent
for two flavors. Support for a second-order transition in
two-flavor QCD is taken from lattice calculations of
Gottlieb et al. (1987, 1989); Brown et al. (1990a, 1990b);
Gottlieb (1991); Bernard et al. (1992). The rise in the
specific heat and the critical slowing down are compat-
ible with a second-order transition. As argued in Sec.
III, lattice results are not yet fully conclusive. Hence
they do not prove any of the conjectures about two-
flavor QCD.
Reply to (c): Note that the hypotheses (1)–(3) refer to

QCD only in the critical region (T;Tc). There it may
well be that the complicated substructure of QCD is not
important for the transition dynamics; in which case one
is free to replace QCD by the simplest model belonging
to the same universality class. In condensed-matter
physics many examples are known for which universality
is used in the same spirit, such as the critical behavior of
a binary mixture like isobutyric acid plus water, which
shares the universality class of an Ising model in three
dimensions.
What, then, is the right choice of universality class? In

the case of two-flavor QCD, Wilczek’s proposal is the
universality class of an O(4) Heisenberg ferromagnet.
This proposal has been recently questioned by Kocic
and Kogut (1995), claiming that QCD with its quark bi-
linear composite scalar mesons does not belong to the
same universality class as sigma models with their fun-
damental scalars. Their warning is based on a study in a
three-dimensional Gross-Neveu model that exhibits
mean-field scaling rather than the expected two-
dimensional Ising universality. Let us see how one is led
to the idea of an O(4) Heisenberg ferromagnet in a
natural way, and where the warnings of Kocic and
Kogut would change the line of arguments.
Landau’s free energy was introduced as a framework

for discussing the phase structure; see Sec. II.A, Eq.
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(2.2). It is constructed as a power series in the order-
parameter field. Landau’s theory corresponds to a
mean-field approximation. In general it leads to wrong
predictions of characteristic singularities (e.g., the corre-
lation length at Tc .). The physical reason are large scale
fluctuations in the order-parameter field, although the
average magnitude of the order parameter is small.
The theoretical breakthrough came with Wilson’s

renormalization-group concept (Wilson and Kogut,
1974). It leads to a systematic way of constructing an
action in terms of the relevant degrees of freedom at
Tc and answers the question of why the resulting action
is representative in some sense. The action is con-
structed as a limiting (fixed-point) theory after a number
of renormalization-group transformations. If the theory
is exactly scale invariant at Tc, such a limiting theory
exists. Scale invariance implies that models at different
scales (uru!j , i.e., scales much smaller than the correla-
tion length j but larger than the microscopic scales,
share the leading singularity structure.
In case of the chiral transition, these renormalization-

group steps are not explicitly performed. The limiting
theory in terms of pion fields (and their parity partners)
is argued to arise out of such a procedure. More pre-
cisely only the zero modes of these fields are assumed to
survive the iterated renormalization-group steps. The
pions are the lightest modes at zero temperature, and
the zero modes are the only modes that do not acquire a
mass contribution } (2pnT) from the Matsubara sum.
Thus the renormalized mass parameter m2(T) in the re-
sulting action should be understood as an effective mass
of the zero modes, which vanishes as T approaches Tc
from above.
An essential outcome of the renormalization-group

approach is an explanation of universality. Universality
defines in which sense the limiting theory is representa-
tive of a whole class of models, belonging to the same
universality class. Once the order-parameter field is
specified, the fixed-point theory in terms of these fields
depends only on the dimensionality and the symmetry,
which is assumed to be broken or restored at the transi-
tion. Models with the same underlying symmetry, order-
parameter fields, and singularity structure in thermody-
namic functions define a universality class.
Thus it is sufficient to find an order-parameter field,

construct an action in terms of this field, and restrict the
allowed terms by the requirement of chiral symmetry.
The order-parameter field for the chiral transition
should at least contain the pion multiplet. For two mass-
less flavors, the QCD Lagrangian is invariant under the
SU(2)L3SU(2)R3U(1)B symmetry of independent
SU(2) rotations of left- and right-handed fields and the
vector baryon number symmetry. At the phase transi-
tion, the symmetry is assumed to be broken to
SU(2)L1R3U(1)L1R . One choice of an order param-
eter for the chiral transition is the quark bilinear

Mj
i5^q̄L

i qRj&, (4.1)

transforming under SU(2)L3SU(2)R according to

M→U1MV , (4.2)

where U and V represent independent unitary transfor-
mations of the left-and right-handed quark fields. In the
following the quark substructure of Mj

i will be disre-
garded. [This is the main point that is questionable ac-
cording to Kocic and Kogut (1995)].
As long as M are general complex 232-matrices, the

Lagrangian has too much symmetry @U(2)3U(2)# . A
restriction ofM to an SU(2) representation removes the
additional U(1) symmetry. A possible choice for the
SU(2) representation is O(4)'SU(2)3SU(2), where
M is parametrized in terms of four real parameters
(s ,p)5fa (a=1, . . . ,4),

M5s1ipt, (4.3)

where t denote the Pauli matrices. Thus M contains the
pion multiplet along with the scalar meson s . The action
in terms of fa, which is invariant under
SU(2)3SU(2), is given as

S5E d3xH 12 ] ifa] ifa1
m2

2
fafa1

l

4
~fafa!

2J .
(4.4)

The action takes the same form as the Landau-Ginzburg
free energy F in Sec. II.A. It could be identified with F if
the path integral with S of Eq. (4.4) were evaluated in
the mean-field approximation. Note that S is an action
in terms of zero modes. The Euclidean time dependence
of fa has been dropped. Equivalently the nÞ0 Matsu-
bara modes of the original four-dimensional theory are
neglected. [The treatment of the SU(2)3SU(2) sigma
model in the following section, IV.A.2, will differ in this
respect, and time dependence there will be retained].
Here the action Eq. (4.4) should be understood as an

effective action for the chiral transition. It coincides with
the familiar linear sigma model of Gell-Mann and Levy
(1960) up to the absence of nucleons and the dimension
3. Nucleon and quark fields are both omitted, as they
refer to ‘‘microscopic substructures,’’ which are claimed
to be irrelevant for the transition. Moreover the action
(4.4) agrees with the action of an N54 Heisenberg fer-
romagnet, which is believed to model a magnetic transi-
tion in dysprosium (Malmström and Geldart, 1980). This
is the reason why Wilczek calls dysprosium an ‘‘analog
computer’’ for QCD and explains the title of this sec-
tion.
The O(4) model in three dimensions has been exten-

sively studied in statistical physics (Bervillier, 1976; Ho-
henberg et al., 1976; Lipatov, 1977; Baker et al., 1978). It
is known to have a second-order transition with
m2(T)→0 as T→Tc from above. In the following we
summarize the results for critical exponents, taken from
these references and Wilczek (1992).
As usual we distinguish between the response to a

stimulus in T and to a stimulus in h , where h is an
external field (see Table II). In this context the meaning
of the external field is that of nonvanishing current
quark masses.
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a. Response to a stimulus in T

The response of the O(4) ‘‘magnet’’ to a deviation
from Tc is measured by the specific heat c and the quark
pair correlation j in the limit of strictly vanishing quark
masses (mp50). The singular behavior of the specific
heat is characterized by the index a , and is given by

c~T ! ——→
T→Tc

6

A6uT2Tcu2a61less singular terms

(4.5)

with a520.1960.06. The behavior of the quark pair
correlation is characterized by the index n according to

j ——→
T→Tc

6

B6uT2Tcu2n61less singular terms (4.6)

with n50.7360.02, where j is determined by

2ln^q̄~x !q~x !q̄~0 !q~0 !&→
uxu
j

(4.7)

at large distances uxu. The 6 signs refer to the approach
of Tc from temperatures T.Tc(1) or T,Tc(2). The
exponents a6 and n6 do not depend on the approach of
Tc . The amplitudes A6 and B6 are universal and are
known, as well.
Note that a is negative. Thus there is only a cusp in

the specific heat, no true singularity in the infinite-
volume limit. This is compatible with the definition of a
second-order transition (see Sec. II.A), but not so com-
mon. Usually more than one of the second derivatives of
the thermodynamic potential diverges with power-law
singularities.
We recall from Table II that the critical index b de-

termines the behavior of the order parameter ^ufu& as
T approaches Tc in the massless limit. We have

^ufu&;U T2Tc

Tc
Ub

for T2Tc,0. (4.8)

with b50.3860.01.
The results for the critical indices a , n , and b should

be checked by lattice simulations of the condensate cor-
relations Eq. (4.7) and the specific heat (T]S/]T). In
principle this check can be performed, although an ex-
trapolation to the zero-mass limit and the struggle with
critical slowing down are unavoidable.

b. Response to a stimulus in m

The simplest mass term that can be added to the ac-
tion and that is invariant under vector SU(2) transfor-
mations and discrete P and T transformations, is given
by ms , where m denotes the common quark mass.
Table II in Sec. II tells us how we should translate the
compressibility in a liquid/gas system and the suscepti-
bility in a ferromagnet into order parameters for the
chiral transition. The corresponding quantity is the
variation of the condensate as a function of m ,

]^q̄q&
]m

→C6uT2Tcu2g61less singular terms. (4.9)

The approach to Tc is characterized by the critical expo-
nent g (with g15g2), and the amplitudes C6 are uni-
versal.
The second exponent d concerns the response of the

condensate to a change in m at Tc ,

^q̄q&→m1/d1less singular terms, T5Tc . (4.10)

Here the results for the O(4) model are g51.4460.04
and d54.8260.05.

c. The critical equation of state

Wilczek’s first hypothesis can be further used to pre-
dict the temperature dependence of the pion and the
sigma masses in the vicinity of Tc . These functions can
be calculated as a function of the underlying quark
masses. The important relation is a critical equation of
state, which includes the results for g , b , and d of the
previous sections as special cases. An equation of state
in a liquid/gas system can be formulated as a relation
between p , V , and T , p5p(V ,T). In a ferromagnet
such a relation translates to H5H(M ,T) with the nota-
tions of Table II, while in QCD it reads
m5m(^q̄q&,T), and in the linear sigma model
m5m(^s&5^ufu&,T). In the ‘‘magnetic’’ language of
Brézin et al. (1973) the critical equation of state is given
as

H

Md 5k1g~k2tuMu2 1/b![f~ t/M1/b!, (4.11)

where t5 (T2Tc)/Tc , g is a universal function, and
k1 ,k2 are nonuniversal constants. For the O(4) model
the function f has been calculated by Brézin et al. (1973)
to order «2 in the « expansion. Without derivation we
state the expressions for mp

2 and ms
2 in terms of the

function f at small t and H([^s&) (Rajagopal and Wil-
czek, 1993a, 1993b):

mp
2 5Md21f~x !, (4.12a)

ms
25Md21S df~x !2

x

b
f8~x ! D (4.12b)

with x[t/M1/b. Note that the relations hold at finite
temperature. Thus we have to specify which mass is
meant by mp

2 ,ms
2 . The definitions used by Rajagopal

and Wilczek (1993a, 1993b) are

ms
225E d3x G00 , mp

22d ij5E d3x Gij , (4.13)

where Gab(x)[^f(x)af(0)b&2^fa&^fb& and f0[s ,
fi5pi , i51,2,3.
If the masses are defined according to Eq. (4.13), they

are related to the spatial correlation functions in the
equilibrium theory. They are sensitive to static screening
lengths. ‘‘Static’’ correlation lengths should be seen in
contrast to dynamic length scales, which are relevant in
the context of the dynamic universality class of an
O(4) Heisenberg antiferromagnet.
In the chiral limit above Tc (t.0 and H→0) the criti-
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cal equation of state gives the expected degeneracy be-
tween mp

2 and ms
2 ,

ms
25mp

2 5ctg for x→` . (4.14)

In the chiral limit below Tc (t,0 and H→0) it follows
from Eq. (4.12) that mp

2 } H , i.e., mp
2 } m , the familiar

proportionality from zero temperature. On the other
hand, Eq. (4.12a) follows from mp

2 5 H/M , which reads
in a literal translation according to Table II

mp
2 5

m

^q̄q&
. (4.15)

This is less familiar in view of the T50 PCAC relation

fp
2mp

2 52m^q̄q&. (4.16)

Equations (4.15) and (4.16) do not contradict each
other, if fp is identified with fp5^0usu0&. The last rela-
tion is compatible with a definition of fp via the axial
current of the linear sigma model at zero temperature. If
we had started with Eq. (4.16) and used fp5^0usu0&, the
resulting relation at T;Tc might not be considered as
derived from the T50 relation (4.16). This point has
been emphasized by Rajagopal and Wilczek (1993a,
1993b). The masses mp

2 in Eqs. (4.15) and (4.16) cannot
be the same as the notation suggests. In Eq. (4.15) mp is
the mass in the (311)-dimensional Lorentz-invariant
T50 theory. In Eq. (4.16) it resembles a screening mass
in a 3D theory.
The result for the sigma mass at temperature T,Tc in

the limit of vanishing quark mass reads

S bms
2

Md21D 21

→c11c2S HMdD 2e/2

. (4.17)

Here b denotes the critical exponent of the ‘‘magnetiza-
tion,’’ c1 and c2 are constants, and e is the remnant of
the e expansion.
To summarize: The critical equation of state (4.11)

may serve as a working hypothesis for lattice simula-
tions. Its various limits are predictions for the scaling
behavior of mp

2 [Eq. (4.15)], ms
2 [Eq. (4.17)], or

ms
25mp

2 [Eq. (4.17)] in the chiral symmetric phase. In
particular, the quantitative predictions for the critical in-
dices b,g,d referring to the condensate as a function of
m and T are ready for numerical tests.

d. The role of the strange quark mass

We come now to the second hypothesis concerning
the role of the strange-quark mass in the chiral transi-
tion. So far we have implicitly assumed that the remain-
ing quark masses ms , mc , mb , and mt are infinite. This
is certainly justified for the charm, bottom, and top
quark masses, which are large compared to the chiral
transition temperature, but the strange-quark mass is
just of the order of the transition temperature. Thus it
can influence thermodynamic quantities in a nontrivial
way. Such an influence is already visible in lattice results.
If ms is infinite, the chiral transition seems to be of sec-
ond order. We have quoted the references above. If it is

zero, renormalization-group arguments predict a first-
order transition (Pisarski and Wilczek, 1984). Numerical
simulations for three light flavors verify this conjecture
(see, for example, Gottlieb, 1991). Hence a critical value
ms* should exist at which the second-order transition
changes into a first-order transition. Usually such an end
point, where the order changes from first into second, is
called a tricritical point. The physical value of ms is un-
likely to coincide with ms* , but it may be close by.
Therefore it is tempting to describe the realistic mass
parameters as a perturbation around the idealized tri-
critical limit. If such an ansatz is justified, the deviations
from tricriticality are under control.
According to the second hypothesis, a simple model

that shares the universality class of QCD with two mass-
less flavors of quarks, T;Tc and ms near ms* , is the
f6 Landau-Ginzburg model. Its action reads

S5E d3xH 12 ~¹f!21
m2

2
f21

l

4
~f2!2

1
k

6
~f2!32HsJ . (4.18)

The field f is the same as in Eq. (4.4). The explicit sym-
metry breaking due to (2Hs) has been added to ac-
count for finite masses mu ,d . The f6 term arises as fol-
lows. The effect of a finite strange-quark mass is to
renormalize the mass and coupling m2 and l in Eq. (4.4).
For example, one contribution to the renormalization of
l comes from a K-meson exchange between two pions.
The ‘‘amount’’ of renormalization depends on ms . The
effect of a mass and coupling renormalization is a shift
in Tc as long as l stays positive. If l is negative the
model becomes unstable, and a f6 term is needed for
stabilization. It is easily checked that, for l,0 and fixed,
the minimum of the free energy jumps discontinuously
from zero to a finite value ulu/(2k) when
m25l2/(4k). (For l.0 and fixed, the minimum moves
continuously from zero to positive values, when m2 goes
through zero, as one enters the broken phase.) Hence
the value of ms* can be defined as the strange-quark
mass for which the renormalized coupling l vanishes. At
this point the second order of the l.0 region changes
into first order (l,0 region).
Singularities of thermodynamic functions are univer-

sal near tricritical points. Thus one may again employ
results from statistical physics. Tricritical exponents of
the f6 model have been calculated by Lawrie and Sar-
bach (1984). Of particular interest is the result for a ,
which they find to be a5 1/2 . Note that now a.0 [in
contrast to the three-dimensional O(4) model], indicat-
ing a true divergence of the specific heat when T→Tc
and ms→ms* . In lattice calculations ms can be tuned to
small values. A qualitative change in the shape of the
cusp in the specific heat would be a hint of the presence
of a tricritical point nearby. This illustrates the predic-
tive power of the second hypothesis of Rajagopal and
Wilczek (1993a, 1993b) and Wilczek (1992).
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The third hypothesis concerns the chiral transition
and its relation to dynamic universality classes. So far we
have dealt with static properties of equilibrium QCD.
The third hypothesis may be relevant for off-equilibrium
situations in heavy-ion collisions. Therefore we post-
pone discussion of it to Sec. V.D.3.
Lattice simulations in full QCD can measure critical

and tricritical indices in the vicinity of Tc (and
ms;ms* ). If these results disagree with the predictions
of the above conjectures, it would be for several reasons.
One possible reason is the size of the subleading terms
in Eqs. (4.6), (4.9), and (4.10). The subleading terms are
only small so long as the parameters T and ms are in the
close vicinity of the critical values Tc and ms* . Correc-
tions from subleading terms do not invalidate the hy-
pothesis. The ansatz would fail if the physical values for
mu , md , and ms perturbed the idealized situation of
two-flavor QCD too strongly to reveal the underlying
substructure of the chiral limit. Furthermore, while
SU(2)3SU(2) is a sensible choice for the symmetry
group, it is not unique. If SU(2)3SU(2) were replaced
by SU(3)3SU(3), it would become impossible to adapt
the hypothesis to the change in the symmetry group.
Along with the second order of the transition, the uni-
versality arguments would be lost, which were so wel-
come for justifying a replacement of QCD by scalar
O(4) models.
Finally it is a question of size whether corrections due

to nonzero modes and heavier mesons are negligible at
Tc . In the next section we present an attempt to include
heavier mesons, in a four-dimensional SU(2)3SU(2)
nonlinear sigma model. The results cast some doubt on
the very ansatz for the three-dimensional action in terms
of f[(s ,p).

2. The chiral transition in chiral perturbation theory

It is tempting to extrapolate results from low tempera-
tures to the transition region. Pions, as the lightest had-
rons, are most easily excited at low temperatures. One
may expect that they remain the only relevant degrees
of freedom up to Tc . Current quark masses are small
compared to the scale of the transition temperature.
Thus the naive conclusion would be that their effect, if
any, is negligible. Based on these simplifying assump-
tions one might study the chiral limit of an O(4) model
as an effective description of the chiral transition region
(T;Tc). The results of Gerber and Leutwyler (1989)
suggest that this line of argument is too naive. We
present their results in this section.
Chiral perturbation fails to describe the transition re-

gion, but leads to reliable predictions for the condensate
and other thermodynamic quantities at small tempera-
tures. The influence of finite quark masses on the T de-
pendence of ^q̄q&, « , and p can be analyzed in the low-
temperature region. The effect of heavier mesonic
modes may be estimated in a dilute-gas approximation
for somewhat higher temperatures. Non-negligible ef-
fects of finite quark masses and heavier mesons show up

in the marginal validity range of chiral perturbation
theory. Their extrapolations to the transition region can
be summarized as follows.
(i) Below T5150 MeV the nonzero quark masses re-

duce the temperature dependence of the condensate by
roughly a factor of 2.
(ii) The effect of massive states on the energy density

«(T) is even more significant. In the chiral limit the en-
ergy stored in the massive states reaches the order of the
energy stored in the pions when T;130 MeV. Neverthe-
less the massive states may be diluted at this tempera-
ture. The main part of the energy is the rest energy of
the massive states. At T;200 MeV the mean distance
between two particles is reduced to d50.9 fm. This es-
timate is based on the density formula for a free gas.
The approximation of a dilute free gas of massive states
is then no longer justified. Below T;100 MeV massive
states may be neglected.
(iii) At T;200 MeV the dilute-gas approximation for

the massive modes predicts a melting of the condensate,
even if the pions are completely ignored. This sheds
some light on the idealization of the predominant role of
pions in the chiral transition (which we anticipated at
the end of the previous section).
(iv) The extrapolated value of Tc decreases from

;190 MeV to ;170 MeV when heavier mesons are in-
cluded in the chiral limit.
(v) Tc decreases from ;240 MeV to ;190 MeV when

heavier mesons are included at finite quark masses.
While heavier mesons accelerate the melting of the con-
densate, nonvanishing quark masses delay the melting
by ;20 MeV.
Let us briefly recall why chiral perturbation theory is a

suitable framework for describing QCD at low tempera-
tures. Chiral perturbation theory is an expansion in
small momenta. Its applicability to QCD is based on the
fact that strong interactions are weak at low energies.
This is a consequence of chiral symmetry. The chiral
symmetry of QCD in the massless limit implies that the
interaction strength is proportional to the square of the
energy if the energy is small. At low temperatures, the
properties of the hadron gas are determined by the light-
est excitations. The lightest hadrons are the pions. At
low temperatures the average momenta of the pions are
small. Thus strong interactions between the pions may
be treated perturbatively in the framework of chiral per-
turbation theory.
To be specific, we consider the SU(2)R3SU(2)L chi-

ral symmetry. The particle content is given by the three
pion components p0, p2, and p1. A fourth component
corresponding to the s mode is frozen due to the non-
linear realization of the symmetry. The pion field is de-
scribed by a matrix field U(x)PSU(2). It transforms
under global chiral rotations according to

U~x !→VRU~x !VL
1 , (4.19)

where VR ,VLPSU(2) and U(x) is parametrized as
U(x)5exp$itw(x)/f %. Here t denotes the Pauli matri-
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ces, f will later be identified with the pion constant, and
the components of w represent the three components of
the pion field.
If one allows only for small four-momenta of the

pions, the field U(x) is slowly varying. It is then conve-
nient to expand the Lagrangian in powers of derivatives
of the fields ]mU , equivalent to a power series in exter-
nal momenta p . The ansatz is given as

Leff5L ~0 !1L ~2 !1L ~4 !1••• . (4.20)

The upper index counts the number of derivatives ]m ,
hence L(0) does not depend on U and can be dropped.
Lorentz invariance forbids odd powers in the deriva-
tives. First we consider the chiral limit with a massless
pion field. The form of L(2n) is then completely deter-
mined by the symmetry requirement, i.e., invariance un-
der SU(2)R3SU(2)L chiral transformations. This leads
to

L ~2 !5
f2

4
Tr]mU

1]mU . (4.21)

Note that this term is just the familiar nonlinear
SU(2)3SU(2) sigma model. The interaction between
the pion fields is described in a loop expansion with w
fields propagating in the loops. The only place where the
finite temperature enters is in the boundary conditions,
which lead to modified propagators. The power counting
rules for graphs associated with the free energy are
modified compared to the rules for chiral perturbation
theory in the loop expansion at zero temperature. The
only modification consists in having temperature replace
the external momenta. There is a one-to-one correspon-
dence between the order in the low-temperature expan-
sion and the loop expansion of chiral perturbation
theory.
The expansion parameter is T2/(8f2) . Since an in-

creasing number in these loops corresponds to a higher
order in the low-temperature expansion, L(2n),
n51,2 . . . is to be expanded in powers of w to the order
needed for the desired accuracy in the low-T expansion.
Up to terms of order w6 we find, for example, for L(2)

L ~2 !5
1
2

]mw]mw1
1
6f2

~w]mw!

3~w]mw!2
1
6f2

~]mw]mw!w21O~w6!. (4.22)

Note that the chiral symmetry fixes L(2) up to one
constant f , which may be identified with fp in the chiral
limit. At the order of p4, two further dimensionless cou-
plings enter the effective Lagrangian. They have to be
fixed from experiment.
Away from the chiral limit, the mass terms for the

pion field induce an explicit breaking of the chiral sym-
metry in the effective Lagrangian. In the chiral limit the
guiding principle for constructing L is an expansion in
powers of external momenta. It can be maintained in the
presence of mass terms if the quark masses are small
compared to the relevant physical scales of the theory.

The full effective Lagrangian is Taylor expanded in
powers of m . The derivative expansion can be superim-
posed on the Taylor expansion, term by term. In this
way additional terms involving powers of m are gener-
ated, which break the chiral symmetry explicitly. The
power counting in external momenta of the chiral limit
goes through if mp is taken to be of the order of p . Since
the pion mass square M2 to lowest order in chiral per-
turbation theory is given as M25mp

2 5(mu1md)B (B
being the T50 condensate, and mp being the physical
pion mass), the quark masses are counted as quantities
of order p2. Inclusion of mass terms then leads to the
following modifications in L(2):

L ~2 !5
f2

4
$Tr~]mU

1]mU !2Tr@M2~U1U1!#%. (4.23)

L(4) now depends on four input parameters
l1 , . . . ,l4 (Gasser and Leutwyler, 1984). Thus the main
effect of finite quark masses is an increase in the number
of input parameters. Once the effective action is deter-
mined and the input parameters are fixed from experi-
ment, the thermodynamics of the pion gas can be de-
rived in the usual way.
The partition function is given as the path integral

over all pion field configurations that are periodic in the
Euclidean time direction, U(x,x41b)5U(x,x4):

Z5E DU expH 2E
R33S1

d4x~L ~2 !1••• !J , (4.24)

where L(2) is given by Eq. (4.23). The couplings of
L(2n) are treated as temperature independent. The or-
der parameter, energy density « , pressure p , and en-
tropy density s follow from the free-energy density F in
the standard way [F5 21/bV ln Z in the large-volume
limit, where Z is given by Eq. (4.24)].
To obtain a low-temperature expansion of Z , one ex-

pands Leff in powers of w .
Let us illustrate the power counting in the expansion

parameters for the case in which the free-energy density
is to be determined including terms of order T8. This is
the accuracy achieved by Gerber and Leutwyler (1989).
To obtain F to the order of T8, one must expand L to

order p8, with contributions coming from L(2), L(4),
L(6), and L(8). Tree graphs are generated from all terms
L(2), . . . ,L(8); one-loop graphs contain vertices of L(4)

and L(6), two-loop graphs contain vertices of L(2) and
L(4), and three-loop graphs are generated by L(2). Thus
L(2) has to be specified in terms of w including powers
of the order w6. Divergent integrals are treated in di-
mensional regularization.
The leading contribution of the Lagrangian L(2) con-

tains a free-field term (i.e., a term quadratic in w with
mass M2, the lowest-order contribution to the pion
mass). Further terms of the Lagrangian are kept as per-
turbations depending on their importance at low ener-
gies. In this way chiral perturbation theory also provides
a systematic expansion for thermodynamic quantities. It
goes beyond the mean-field level, where one is fre-
quently stuck in the treatment of effective models.
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In the chiral limit the free-energy density F takes the
general form

F5 (
m ,n50,1, . . .

cmn~T
2!m~T2logT !n1O~e2Me /T!.

(4.25)

The correction of the order exp$2Me /T% stands for
the contribution of particles that remain massive in the
chiral limit, andMe denotes the lightest of these masses.
A similar expression can be derived in the presence of

finite quark masses when a common small expansion pa-
rameter l is introduced such that T→lT ,m→l2m . The
formula for F then holds in powers of l and logl with
l-independent coefficients cmn , which are now non-
trivial functions of (mp /T).

a. The free-field case

Let us first ignore the interactions between the pions
and consider L(2). It leads to the following familiar ex-
pressions for the free-energy density F, the pressure p ,
and the condensate ^q̄q& for an ideal gas of pions with
mass mp :

F5«02p5«013TE d3p

~2p!3
ln$2e2E/T%1••• ,

E5Ap21mp
2 . (4.26)

Here «0 is the vacuum energy density at T50. In the
chiral limit the result for F is

F5«02
p2

30
T41••• (4.27)

with the T4 law for the pressure of a free gas. The con-
densate is obtained as

^q̄q&5
]F
m

5
]«0
]m

1
3
2

]mp
2

]m E d3p

~2p!3
1

E~eE/T21 !
.

(4.28)

The first term on the right-hand side gives the conden-
sate at temperature T50. Using the PCAC relation,

fp
2mp

2 52m^0uq̄qu0&$11O~m !%, (4.29)

the condensate in the chiral limit is given by

^q̄q&5^0uq̄qu0&H 12
T2

8f2
1•••J , (4.30)

where f5fp up to terms of order m , which are counted
as order (T2). Thus the difference shows up in T4 terms.
Equation (4.30) shows the melting of the condensate as
the temperature increases. Simultaneously the pion den-
sity np grows according to

np50.365T3 (4.31)

in the massless limit. Physically the increase in number
density can be made responsible for the melting process.
For m Þ 0, the integral in Eq. (4.28) becomes a func-

tion of mp /T .

b. Including interactions up to three loops

Let us see next how the results for p , « , and ^q̄q&
change when interactions are included. It is clearly be-
yond the scope of this review to go into the details of the
three-loop calculation. Nor shall we explain, how the
various constants in the effective Lagrangian and the
logarithmic scales are fixed from experimental observ-
ables (the pion mass, the pion decay constant, and vari-
ous scattering lengths).

c. Results in the chiral limit without heavier mesons

The low-temperature expansion for the pressure is
given as

p5
p2

30
T4H 11

T4

36f4
ln

Lp

T
1O~T6!J . (4.32)

Here Lp5275665 MeV, and mp , fp , and the I=0,
D-wave (i.e., L=2) scattering length were used as experi-
mental input data.
The low-temperature expansion for the energy den-

sity «5T(]p/]T)2p follows as

«5
p2

10
T4H 11

T4

108f4 S 7 ln Lp

T
21 D1O~T6!J .

(4.33)

The general expression for the condensate can be writ-
ten as

^q̄q&5^0uq̄qu0&H 11
c

f2
]p

]mp
2 J (4.34)

with

c52f2
S ]mp

2

]m D
^0uq̄qu0&

[cf. Eqs. (4.28), (4.30) above]. Hence one needs to know
p5p(mp

2 ) (Leutwyler, 1988). The temperature-
independent term c has to be determined; c51 in the
chiral limit. The result for ^q̄q& including terms of order
T6 takes the form

^q̄q&5^0uq̄qu0&H 12x2
1
6
x22

16
9

x3lnS TLq
D1O~T8!J

x5
T2

~8f2!
, Lq54706110 MeV. (4.35)

The expansion parameter x shows that the tempera-
ture scale is determined by A8f;250 MeV. The scale
Lq is fixed in an analogous way to Lp . Both scales Lp
and Lq can be expressed in terms of a single scale Lb ,
which is fixed from pp scattering. Thus to describe the
behavior of the pressure p to order T8 and of ^q̄q& to
order T6 one needs only two constants, fp and Lb . This
does not leave much room for phenomenological fitting
and demonstrates the predictive power of chiral pertur-
bation theory.
The results for ^q̄q& and the energy density « are dis-

played in Fig. 17.
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It is tempting to read off a transition temperature of
Tc;190 MeV, if the three-loop curve is extrapolated to
a temperature where the condensate vanishes. This ex-
trapolation suffers from two error sources. The error
bars on the three-loop curve refer only to the uncer-
tainty in the constants f and Lb , and not to the finite-
temperature corrections of Eq. (4.35). Contributions of
massive states to F have been left out so far. They are
no longer negligible when T exceeds 150 MeV. Below
we shall discuss the influence of massive states further.
The energy density in Fig. 18 grows with T up to

T;180 MeV. The decrease of «/T4 for higher tempera-
tures indicates the invalidity of the expansion scheme.

d. Nonvanishing quark-masses

Nonvanishing quark-masses change the general ex-
pression for the pressure, where certain constants of the
chiral limit now depend on mp also via m . The result for
the quark condensate is shown in Fig. 19. The effect of
finite quark masses is that it takes longer for the conden-
sate to melt. The extrapolated transition temperature is
;240 MeV (which lies far outside the validity range of
the approximation). The error bars indicate the uncer-
tainties in four input parameters, which have to be fixed
from experiment for m.0.
A comparison of Figs. 17 and 19 shows that the effect

of finite quark masses is substantial even inside the va-
lidity range of the chiral expansion. The reason why the
tiny quark masses may cause such changes in the final
results is that they are confined to pions. It is the pion
mass (;140 MeV) that enters the Boltzmann factors in
the thermodynamic formulas for the hadronic phase.

e. Influence of heavier mesons

In an expansion around the chiral limit, quark masses
must be treated as perturbations when they are incorpo-
rated in an expansion of chiral perturbation theory. A
perturbative treatment of mu and md is certainly justi-
fied, as the up- and down-quarks are light compared to
the energy scale of Tc . Mesons containing strange
quarks are accordingly heavier than the pions. Fre-
quently they are argued to be negligible in the thermo-
dynamics, as massive states are suppressed by their Boltz-
mann factors exp$2M/T%. This argument fails for higher
temperatures, in particular in the vicinity of the transi-
tion.
One way of including (part of the) heavier mesons is

to extend the symmetry group from SU(2)3SU(2) to
SU(3)3SU(3) (see Sec. IV.A.4). In the framework of
chiral perturbation theory this means that ms should
also be treated perturbatively.
A further alternative is to treat all massive mesons

(other than pions) on an equal footing and consider
their number density and energy density in a dilute-gas
approximation (Gerber and Leutwyler, 1989). In a
dilute-gas approximation the interactions between the
mesons are neglected. This justifies an ansatz for the
change in the free-energy density according to

DF52
1
2
T4(

i
h0S TMi

D . (4.36)

The sum extends over all mesons tabulated in the par-
ticle data booklet apart from pions. It is clear that many
small contributions may accumulate to a non-negligible
amount. The change DF is due to a change in the pres-
sure. The term 1/2T4h0(T/Mi) gives the pressure of a
free boson gas of particles with mass Mi . The function
h0 can be expressed in terms of Bessel functions. The
induced change in the condensate (due to the mass
Mi) follows from Eq. (4.28) with mp replaced by Mi . It
is given as

D^q̄q&5T2(
i
h1SMi

T D S ]Mi

]m2DMi (4.37)

where

T2h15E d3p

~2p!3
1
E

1
eE/T21

or equivalently

D^q̄q&52^0uq̄qu0&
T2

f2 (
i
h1S TMi

D Mim

mp
2

]Mi

]m
.

(4.38)

Here we have used the lowest-order PCAC relation for
fp
2mp

2 . The derivative ]Mi /]m can be estimated in the
nonrelativistic quark model, where it equals Ni , i.e., the
number of valence quarks of type u or d . Equation
(4.38) explains the effect of massive states on the melt-
ing of the condensate, accelerating the melting and low-
ering the transition temperature. In Fig. 20 the melting
of the chiral condensate is compared for the three-loop
pion contribution and the superposition of pions plus
massive states. The extrapolated transition temperature
is around 190 MeV, smaller than Tc without heavier me-
sons, but ;20 MeV larger than in the chiral limit with
heavier mesons. The shaded area reflects the uncertainty
of (m ]Mi /]m) entering the estimate for the contribu-
tion of massive states [Eq. (4.38)]. The acceleration of
the melting process due to the massive states is more
pronounced for realistic quark masses than for vanishing
ones. In the chiral limit the melting of the condensate is
mainly enforced by the pions, which play a more distin-
guished role, and thus the condensate is less sensitive to
heavier mesons.
At temperatures T.150 MeV pions have lost their

dominant role in melting the condensate. If lattice cal-
culations or other approximation schemes support a
value of Tc.150 MeV, it is challenging to elucidate just
how the massive modes drive ^q̄q& to zero. It would
seem to be very worthwhile to improve on the dilute-gas
approximation. A suggestion due to Gerber and Leut-
wyler (1989) is to treat the mutual interactions between
the massive states in some bootstrap model, modified
and adapted to QCD (see, for example, Hagedorn, 1985,
1983).
More recently the temperature dependence of the

normalized light-quark condensate has been derived by
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Bunatian and Wambach (1994) in a nonperturbative ap-
proach. The approach is known from phonon-phonon
interactions in condensed-matter physics (e.g., Luttinger
and Ward, 1960; Fulde and Wagner, 1971) and may be
more appropriate to the transition region. In the chiral
limit the critical temperature is identified as the point
where the residue of the single-pion propagator be-
comes purely imaginary. The pion interactions are de-
scribed by the Weinberg Lagrangian (Weinberg, 1966,
1967, 1979). The thermodynamic potential for the inter-
acting pion gas is determined in the Hartree approxima-
tion. After using the Gell-Mann-Oakes-Renner relation,
Bunatian and Wambach find that the normalized light-
quark condensate follows from ]V/]mp

2 , where V de-
notes the difference in free-energy densities at T50 and
T.0. The results confirm chiral perturbation theory up
to temperatures ,100 MeV, but are clearly different in
the transition region, where chiral perturbation theory is
expected to fail.

3. Clausius-Clapeyron equation for QCD

We recall the Clausius-Clapeyron equation for a
liquid/vapor system in statistical physics. It was derived
in the last century by Clapeyron (1834) and Clausius
(1850). The Clausius-Clapeyron equation relates the dis-
continuity in the order parameter to the latent heat
when the phase transition is of first order. For a liquid/
gas system the order parameter is the specific volume or
the volume per molecule, and the latent heat equals the
entropy gap per molecule. The ratio of the discontinui-
ties in the specific volume and the entropy is determined
by the dependence of the critical temperature on pres-
sure during the transition. The relation is given as

]Tc

]p
5
vgas2vfluid
sgas2sfluid

5
discv
discs

, (4.39)

where disc stands for discontinuity.
With the help of Table II, Eq. (4.39) can be translated

to QCD, where it reads

]Tc

]mq
5
Tcdisc^q̄q&T

disce
. (4.40)

The pressure is replaced by the current quark mass
mq . The conjugate variable of mq is the order param-

eter ^q̄q& at temperature T . The chiral condensate is
determined as a response of the partition function to a
change in the quark mass,

^q̄q&T52
1
V

]

]mq
lnZ . (4.41)

We sketch the derivation of Eq. (4.40) and show how it
leads to a bound on the latent heat in a hypothetical
first-order chiral transition. The derivation is due to
Leutwyler (1992). First note that the discontinuity in the
energy density e5(T]p/]T2p) can be expressed by the
gap in the entropy density

disce5Tcdisc
]p

]T
. (4.42)

From Eq. (4.41) with lnZ5V(p2e0), where e0 is the
vacuum energy density, it follows that

^q̄q&T5
]e0
]mq

2
]p

]mq
5^0uq̄qu0&2

]p

]mq
. (4.43)

If we expand the pressure in the vicinity of Tc according
to

p5pc1~T2Tc!
]p

]T U
Tc

1••• , (4.44)

p depends on mq via pc and Tc ,

]p

]mq
5

]pc
]mq

2
]Tc

]mq

]p

]T U
T5Tc

. (4.45)

Next we insert Eq. (4.45) into Eq. (4.43) and apply
‘‘disc’’ on both sides. The result is

disc^q̄q&T5
]Tc

]mq
disc

]p

]T U
T5Tc

. (4.46)

While p is continuous at Tc (as in the case of a first-
order transition), ]p/]T may jump. From Eqs. (4.42)
and (4.46) we finally obtain Eq. (4.40).
Let us see what the Clausius-Clapeyron relation im-

plies for the change in the critical temperature DTc
when the physical values for the current quark masses
mu and md are replaced by their chiral limits. As mu ,d
are small compared to Tc , we may expand

FIG. 17. Quark condensate, normalized to the zero-
temperature value, as a function of temperature in the chiral
limit. From Gerber and Leutwyler (1989).

FIG. 18. Energy density of the pion gas (normalized to the
corresponding Stefan-Boltzmann value eSB) in the chiral limit.
From Gerber and Leutwyler (1989).
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DTc5mu

]Tc

]mu
1md

]Tc

]md
, (4.47)

where ]Tc /]mu ,d is given by Eq. (4.40). It remains to
replace the quark masses in Eq. (4.47) by means of the
Gell-Mann-Oakes-Renner relation (Gell-Mann et al.,
1968), mu^ūu&T501md^d̄d&T50;fp

2mp
2; 20 MeV/fm3.

The result is

DTc

Tc
5U disc^q̄q&T.0

^q̄q&T50
UU fp

2mp
2

disc e
U . (4.48)

This relation restricts the size of the latent heat disc e by
the sensitivity DTc /Tc of the critical temperature to the
quark masses. An upper bound on the discontinuity in e
corresponds to an upper bound on the (hypothetical)
gap in the order parameter.
To get an estimate for this bound, we take Tc;140

MeV as a lower bound on the chiral transition tempera-
ture. The number density n of the hadron gas grows
with temperature. At Tc;140 MeV n increases by
;30% in passing from the physical quark masses to the
chiral limit (mu ,d→0) (see Leutwyler, 1992). This esti-
mate is based on a dilute-gas approximation, where the
change in the particle abundances is only induced by the
change in their masses as a function of mu ,d . If the onset
of the phase transition is determined by the average vol-
ume per particle, a smaller transition temperature has to
compensate for the increased density to get the same
average volume. A 30% increase in the density n in-
duces a decrease of 5% in Tc , i.e., DTc /Tc;5% under
the above conditions. For the maximal jump of ^q̄q&Tc
one thus finds

disc e,0.4
GeV
fm3 . (4.49)

This value is in good agreement with the bound on the
latent heat obtained in a large-N approximation to the
SU(3)3SU(3) linear sigma model (Meyer-Ortmanns
and Schaefer, 1996), which will be described the next
section. For comparison we mention the gap in the glu-
onic energy density in a pure SU(3) gauge theory (Laer-
mann et al., 1995). Laermann et al. find discontinuity
egluonic /Tc

4;1.5 or discegluonic;0.9 GeV/fm3 for Tc
5260 MeV.
For a larger value of discontinuity e , say

;2 GeV/fm3, the Clausius-Clapeyron relation implies
DTc /Tc,1%. Results of chiral perturbation theory in-
dicate that such a small change in the critical tempera-
ture is rather unlikely. The condensate and the energy
density are rather sensitive to the pion mass mp .
Chiral perturbation theory cannot predict the order of

the phase transition, as it loses its validity in the transi-
tion region, but it does provide a useful upper bound on
the latent heat. This bound should be noticed in particu-
lar by phenomenologists, who like a large latent heat for
visible effects in heavy-ion collisions. Scenarios based on
such an assumption may be incompatible with the un-
derlying QCD.

4. Mass sensitivity of the chiral transition

In this section we discuss two topics. The first is the
mass sensitivity of the chiral transition in the
SU(3)3SU(3) linear sigma model. We give estimates
for critical meson/quark masses at which the first-order
chiral transition becomes of second order and turns into
a smooth crossover phenomenon for larger masses. The
second topic is the equation of state for physical meson
masses.

a. Mass sensitivity

The mass sensitivity of the order of the chiral transi-
tion is important for any realistic predictions of heavy-
ion collisions. To estimate the effect of finite masses on
the chiral transition we recall the analogy to a ferromag-
net or a liquid/gas system. Quark masses are analogous
to the pressure in a liquid/gas system or an external
magnetic field in a ferromagnet. If the pressure exceeds
a critical value, the first-order transition from a liquid to
a gas ceases to occur, and is replaced by a smooth cross-
over between the liquid and the gas phases. Similarly a
first-order transition in a Z(3) Potts model becomes a
second-order transition for a critical value of the exter-
nal field and disappears beyond this strength.
When the analogy to a statistical system is translated

to an effective model for QCD, the question concerning
the effect of finite masses can be posed in the following
way. Are the physical meson masses too small for the

FIG. 19. Quark condensate, normalized to the zero-
temperature value, for nonzero quark mass (mp5140 MeV).
From Gerber and Leutwyler (1989).

FIG. 20. Temperature dependence of the quark condensate
(normalized to the zero-temperature value) for nonzero quark
masses. The shaded area represents the superposition of the
contributions generated by pions and by massive states. From
Gerber and Leutwyler (1989).
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chiral transition to maintain its first order? In Sec. III we
have described an attempt to answer this question
within the lattice approach (see Fig. 13). Here we study
the same question on the mesonic level. The bare-quark
masses msa and mu ,da of Fig. 13 should be replaced by
meson masses with and without strange-quark content.
A first attempt to estimate the critical phase boundary

between mass parameters of first-order transitions and
crossover phenomena was made by (Meyer-Ortmanns
et al., 1992) in the linear SU(3)3SU(3) sigma model.
More recently Gavin, Goksch, and Pisarski (1994a) ad-
dressed a similar question in the same sigma model
within a mean-field approach. In the remainder of this
section we shall focus on the results of a finite-mass
analysis of Meyer-Ortmanns and Schaefer (1996) in a
large-Nf approximation. As a quantitative measure of
the distance (in mass parameter space) between the
physical and critical meson masses, we consider the ratio
of the associated critical to physical light-quark masses
mu ,d

crit /mu ,d . If this ratio turns out to be much smaller
than 1, physical masses lie deeply in the crossover re-
gion, and it is difficult to imagine any signatures specific
for the phase conversion from the plasma to the hadron
phase. The most attractive possibility is a ratio of the
order of 1. In that case the physical masses are almost
‘‘critical,’’ and effects due to a large correlation length
should be visible. Nonuniversal features of the sigma
model are then negligible, and the reduction of QCD to
an effective model in the same universality class is an
allowed simplification.
Here we would like to recall that sigma models may

not be the right candidates for sharing a universality
class with QCD (Kocić and Kogut, 1995). As long as the
deviations from ideal second-order behavior are pertur-
batively small, however, they are theoretically under
control (see, for example, the finite-mass scaling analysis
of Boyd et al., 1992, Rajagopal and Wilczek, 1993a,
1993b, or Kocić et al., 1993). A comparison of critical
indices in the effective model and on the lattice serves as
a check of the conjectured universality class.

b. Choice of the model

In our application we assume that the restoration of
spontaneously broken SU(3)3SU(3) symmetry is the
driving mechanism for the chiral phase transition. De-
viations in the spectrum from the idealized octet of
pseudoscalar Goldstone bosons are parametrized by
terms that break the SU(3)3SU(3) symmetry explic-
itly. The assumption in our simplification is that only
mesons associated with the SU(3)3SU(3) multiplets
are important for the phase transition. The criterion is
chiral symmetry (rather than the size of the meson
masses, otherwise one should include r mesons or oth-
ers as well). The reason why we have chosen
SU(3)3SU(3) rather than SU(2)3SU(2) is to account
for the influence of the strange-quark mass on the ther-
modynamics. With SU(3)3SU(3) we also include some
of the heavier mesons. From Sec. IV.A.2 we know that
heavier mesons are non-negligible in the transition re-
gion.

We have chosen the sigma model as an effective
model for the low-temperature phase of QCD
(T<Tc). In the low-temperature phase, quarks are con-
fined to hadrons, and chiral symmetry is spontaneously
broken. The meson spectrum reflects some remnants of
this symmetry breaking. In the transition region the use
of the model becomes questionable; the model certainly
fails above Tc as a description of the plasma phase.
We use the sigma model in a similar spirit to that in

which we used the O(4) model in Sec. II.A.1. Its action
is constructed in terms of QCD’s chiral order-parameter
field f , where f now is a complex 333 matrix, param-
etrized as

f5
1

A2 S (
l50

8

~s l1ip l!l lD . (4.50)

Here l l denote the Gell-Mann matrices, p l are the pseu-
doscalar mesons, and s l are the scalar mesons. The me-
sonic order-parameter field is bilinear in the left-handed
and right-handed quark fields f ij5^q̄ i

Lqj
R&. In the sigma

model the quark structure is ignored by construction for
all temperatures T>0. In terms of f the Lagrangian
reads

L5E d4xH 12 Tr~]mf]mf1!J 2
1
2

m0
2Tr~ff1!

1f1~Trff1!21f2Tr~ff1!2

1g~detf1detf1!2e0s02e8s8 . (4.51)

Note that there are two independent quartic terms with
couplings f1 and f2 . The determinantal terms are cubic
in the components of f , g is the ‘‘instanton’’ coupling
that takes care of the right h-h8 mass splitting, and m0

2 is
the coupling of the quadratic term. The external field
e0 gives a common mass to the (pseudo)scalar meson
octet, while e8 accounts for the right mass splitting inside
the (pseudo)scalar meson octet.

c. Tree-level parametrization at zero temperature

The parameters m0
2 , f1 , f2 , g , e0 , e8 of the Lagrang-

ian (4.51) should be chosen such that the model repro-
duces the experimental values of the (pseudo)scalar me-
son masses. The parametrization of the sigma model is
not unique (Chan and Haymaker, 1973; Meyer-
Ortmanns et al., 1992; Gavin et al., 1994a). Here we are
interested in a tuning of meson masses in terms of a few
parameters. Suitable parameters are the external fields
e0 ,e8 . These induce finite quark masses according to

2e05a~2m̂1ms!,

2e85b~m̂2ms!, (4.52)

where m̂[(mu1md)/2, a and b are constants. Equa-
tion (4.52) follows from an identification of terms in the
Lagrangians for quarks and mesons, which transform
identically under SU(3)3SU(3). The meson masses are
determined for given e0 ,e8 , once the couplings m0

2 ,
f1 ,f2 ,g are specified and the condensates ^s0&T50 ,
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^s8&T50 are calculated for given m0
2 ,f1 ,f2 ,g . Thus we

vary the quark and meson masses by varying e0 and
e8 . The chiral limit is obtained for e0505e8 . The cou-
plings m0

2 ,f1 ,f2 ,g are then determined from the mass
input in the chiral limit, i.e., mp5mK5mh50,
mh85850, msh8

5800, msh
5600, where all masses are in

units of (MeV) and fp594 MeV. Next we keep m0
2 ,f1 ,

f2 ,g fixed to their values in the chiral limit and change
e0 ,e8 . The choice e850, e0Þ0 leads to an
SU(3)-symmetric case with only one order-parameter
field s0 , for which the numerics considerably simplifies.
Meson masses with almost experimental values are in-
duced for e050.0265 GeV3, e8520.0345 GeV3.
The results are listed in Table VII and compared to

the experimental values.
In this way we have constructed a mapping

$mu ,d ,ms%↔~e0 ,e8!↔$mMeson
2 % (4.53)

between quark and meson masses.
It remains to translate the meson condensates at zero

temperature to the light- and strange-quark conden-
sates. In the same way as we obtained Eq. (4.52), we find
here

^q̄q&5
e0

2m̂1ms
^s0&1

e8
2~m̂2ms!

^s8&,

^ s̄s&5
e0

2m̂1ms
^s0&2

e8
m̂2ms

^s8&. (4.54)

Equations (4.54) are derived at zero temperature. We
take these relations as temperature independent and use
them to determine ^q̂q&(T), ^ ŝs&(T) from the measured
values for ^s0&(T), ^s8&(T); see below.

d. Critical meson masses in a mean-field calculation

Although the method is crude, it is instructive to get a
first estimate for critical meson/quark masses. Later the
results will be compared with estimates from a large-N
approach. In a mean-field calculation the full effective
potential is replaced by the classical part in terms of two
constant background fields s0 ,s8 . For simplicity we
consider here only the SU(3)-symmetric case, where
e8505s8 , e0Þ0, s0 denotes a constant background
field. The effect of a finite (high) temperature in a mean-

field calculation is renormalization of the quadratic term
in the Lagrangian. Thus a finite temperature can be
mimicked by tuning m0

2 while keeping the other cou-
plings f1 ,f2 ,g fixed. For a critical field e0

crit , the first-
order transition simply disappears, and so does the cubic
term in Uclass . At e0

crit Uclass starts with a term propor-
tional to (s02s0

crit)4, where s0
crit is the minimum of

Uclass for critical values m0
2crit ,e0

crit . Thus we have

Uclass~s0!52
1
2

m0
2s0

21
2g

3)
s0
31S f11 f2

3 Ds0
4

2e0s0 , (4.55a)

Uclassucrit~s0!5
1
4!

]4Uclass

]s0
4 U

crit

~s02s0
crit!41o~s0

5!.

(4.55b)

Here ucrit means ‘‘evaluated at critical parameters.’’ Note
that Uclass in Eq. (4.55a) takes the same form as a free-
energy functional for a liquid/gas system. It supports the
analogy between a liquid/gas system and the chiral tran-
sition in QCD as mentioned in the dictionary of corre-
spondences of Table II. The vanishing of the first three
derivatives in Eq. (4.55b) determines s0

crit , m0
2crit , and

e0
crit as functions of f1 , f2 , and g . In the physical case of

e050.0265 @GeV3# , e8520.0345 @GeV3# we obtain

mu ,d
crit

mu ,d
;0.0360.02. (4.56)

Such a small ratio of 3% for the critical to physical light-
quark masses would mean that the chiral phase transi-
tion is easily washed out by tiny quark masses, and for
physical quark masses one is left with a rather smooth
crossover phenomenon.
Our interest in the mean-field result is the order of

magnitude of this ratio. Recall that a first-order transi-
tion can have different origins. One such origin is a cubic
term in the classical part of the potential. A second is a
f6 term which may be needed for stabilization of the
free energy when the quartic coupling picks up a nega-
tive sign due to renormalization effects. For two or more
independent relevant couplings, a further first-order
transition can be a so-called fluctuation-induced transi-
tion. Since the linear SU(3)3SU(3) sigma model con-

TABLE VII. Tree-level parametrization of the SU(3)3SU(3) linear sigma model (input data taken from experiment).

Input
m0
2 [GeV2] f1 f2 g [MeV] fp [MeV] e0 [GeV

3] e8 [GeV
3]

5.96310−2 4.17 4.48 −1812.0 94 0.0265 −0.0345

Output (all masses are in units of [MeV])

Mass values mp mK mh mh8 msp
msK

msh
msh8

Realistic 129.3 490.7 544.7 1 045.5 1 011.6 1 031.2 1 198.0 749.5

Experimental 138.0 495.7 547.5 957.8 980 if 1 322.0 if 1 476.0 if 975 if
sp[a0 sK[K0* sh[f0(1476) sh8[f0(975)
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tains two such couplings, f1 and f2 , the chiral transition
may be mainly fluctuation induced. This hypothesis has
been recently discussed by Gavin et al. (1994a, 1994b);
see also Jacobsen and Amit (1981), Paterson (1981),
Shen (1993).
If the order of magnitude of the ratio (4.56) changes

beyond the mean-field level, it casts some doubt on the
simplified description of Eq. (4.55a) and favors the hy-
pothesis of a fluctuation-induced transition.

e. The large-Nf approach

Ultimately we are interested in the temperature de-
pendence of the meson condensates ^s0&(T), ^s8&(T).
The condensates are determined as the minima of the
constrained free-energy density under the constraint on
the average values

T

V E
0

1/T
dtE d3x s0,8~x,t!5s̄0,8 , (4.57)

where s̄0,8 are prescribed values for the background
fields, while the same average value should vanish for
s l , l 51, . . . ,7 and p l , l 51, . . . ,8. The relation to the
full partition function is given by

Z5E ds0E ds8exp$2bVUeff~s0 ,s8!%

5E ds0E ds8E Df constraint3e2*d4xL @f#,

(4.58)

with ordinary integrals for the s0,8 integrations.
As a next step we convert the quartic part of the in-

teraction to quadratic form by applying a matrix version
of the Hubbard-Stratonovich transformation (Stra-
tonovich, 1958; Hubbard, 1959; Frei and Patkós, 1990).
It reads

exp$2b@f1~Trf8f81!21f2Tr~f8f81!2#%

5constE
c2i`

c1i`
DS~x !exp$TrS212e Tr~Sf8f81!

12a Tr~f8f81!TrS%, (4.59a)

where f8(x) is an N3N matrix field and

e25bf2 ,

2ea13a25bf1 . (4.59b)

The path integral over the auxiliary field S(x) is evalu-
ated in a saddle-point approximation. We replace S(x)
by sad3diag(1,1,1). The saddle-point approximation
corresponds to the leading term in a 1/N expansion
in an O(N) model (Coleman et al., 1974). The
SU(3)3SU(3) linear sigma model reduces to an
O(18) model for g5f250. The N518 mesonic modes
correspond to Nf53 flavors (N52Nf

2). Therefore we
call our approximation ‘‘large-Nf . ’’
The advantage of the large-Nf approximation is that

we end up with an effectively free field theory. The only

remnant of the interaction is hidden in the dispersion
relation

vQ
2 5p21sad1m0

21mQ
2 . (4.60)

Here Q51, . . . ,8 labels the particle multiplets, mQ
2 are

the mass squares defined by the quadratic terms in the
fluctuating fields, and sad is the contribution from the
auxiliary field.
The final expression for Ueff(s0 ,s8 ,sad) contains a

classical part Uclass , a part coming from the quadratiza-
tion Usaddle , a zero-point energy part that is dropped,
and a thermal part U th ,

Ueff~s0 ,s8 ,sad!5Uclass1Usaddle1U th

U th5
1
b (

Q51

8

g~Q !E d3p

~2p!3
ln~12e2bvQ!, (4.61)

where g(Q) are the multiplicities of the multiplets, e.g.,
g(1)53 for three pions, etc. The full expression for
Ueff can be found in Meyer-Ortmanns and Schaefer
(1996).
The expression for Ueff(s0 ,s8 ,sad) is evaluated in a

high-temperature expansion and—alternatively—fully
numerically. The high-temperature expansion for a free
field theory is standard. Since we are interested in the
low-temperature phase (T<Tc), the most we can ex-
pect from a high-temperature expansion are qualitative
results. The numerical evaluation of Ueff looks quite
straightforward, but it is hampered by imaginary parts in
the effective potential. Although the final maximum in
the saddle point and the minima in s0 ,s8 turn out to lie
in the region of real-valued Ueff , the routines encounter
imaginary parts in intermediate steps. The choice of ini-
tial values for the saddle point, s0 ,s8 has to be opti-
mized to make the numerical evaluation tractable.

f. Results for critical quark/meson masses

In the large-Nf approximation the chiral transition is
washed out for an average pseudoscalar octet mass
>203 [MeV] if the ratio of ms /mu ,d is kept fixed at its
realistic value 18.2. This gives an upper bound on the
first-order transition region. For the corresponding criti-
cal quark masses we find

mu ,d
crit<2.9660.85 MeV,

ms
crit<54615.4 MeV, (4.62a)

or a ratio of

mu ,d
crit /mu ,d;0.2660.08. (4.62b)

In the SU(3)-symmetric case with three degenerate fla-
vors, the common critical pseudoscalar mass is only
<51 MeV, and mu ,d

crit<0.960.14 MeV. Thus the critical
mass values depend on the direction in mass parameter
space. Our values are clearly below the estimates for
Wilson fermions (ms

crit>400 MeV for mu ,d;0, and
mu ,d ,s

crit >140 MeV in the degenerate case). They are of
the same order as the estimates for staggered fermions
(mu ,d

crit<12 MeV, ms
crit<50 MeV) for the Nf5211 case,
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but below the bound for Nf53,12 MeV <mu ,d ,s
crit <38

(MeV), see Secs. III.C.5 and III.C.7. Thus our ratio
mu ,d

crit /mu ,d;30% lies between the mean-field value of
;3% and the lattice estimates. The intermediate value
for the large-Nf result is plausible, as ‘‘large-N’’ goes
beyond ‘‘mean-field’’ due to the resummation of a cer-
tain subclass of Feynman diagrams (Jain, 1993), whereas
lattice Monte Carlo simulations include all quantum
fluctuations at once. It should be kept in mind, however,
that a direct comparision between lattice quark masses
in physical units and current quark masses (as we are
using here) is questionable (see the argument in Sec.
III.C.5 above).
A ratio of 30% is certainly not large enough for pre-

dicting visible remnants of a nearby second-order chiral
transition. There is some hope that the ratio gets closer
to 1 if further fluctuations are included in the effective
model and the true nature of the chiral transition is fluc-
tuation induced.
We have measured the weakening of the first-order

transition in the SU(3)-symmetric case (e850). The
gap in the light-quark condensate above T5177 MeV
slowly decreases for finite meson masses. It has disap-
peared for an external field strength of
e056.631024 GeV3 (see Fig. 21). Similarly the barrier
height between the coexisting minima in the effective
potential decreases from 1.431024 GeV/fm3 in the chi-
ral limit to 2.131026 GeV/fm3 for e05231024 GeV3

and e850.
We want to conclude with an interesting speculation

of Gavin et al. (1994a) about the universality class of
the SU(3)3SU(3) sigma model. It is based on the
observation that the mass of sh8 vanishes for a specific
choice of tree-level parameters f1 ,f2 ,g ,m0

2 . If the
renormalization-group flow were to drive the couplings
towards these values in the vicinity of Tc , the light mass

could lead to large correlation volumes. If the sh8 were
the only light mode, the universality would be Ising-like,
in contrast to O(4).

g. An upper bound on the latent heat

For physical meson masses we find a sharp crossover
phenomenon in the light-quark condensate between
T5181.5 and 192.5 MeV, in which ^q̄q&T decreases to
50% of ^q̄q&T50 over a temperature interval of
DT510 MeV. The strange-quark condensate ^ s̄s&T stays
almost constant up to a temperature of ;200 MeV; see
Fig. 22.
Similar results are found for the energy density and

the entropy density (Fig. 23). Both quantities behave
smoothly as a function of T over the entire temperature
range up to large errors in the transition region. From
these errors we obtain an upper bound on a finite latent
heat DL of

DL<0.2 GeV/fm3, (4.63)

which is compatible with our data. The value is in agree-
ment with Leutwyler’s bound of 0.4 GeV/fm3 (Leut-
wyler, 1992), which was obtained from Clausius-
Clapeyron relations in the framework of chiral
perturbation theory; see Sec. IV.A.3. Further note that
this upper bound is only 10% of the value predicted by
the naive bag model equation of state. To our knowl-
edge it is still unclear whether 0.2 GeV/fm3 latent heat
is sufficiently large to induce measurable signatures in
heavy-ion experiments.
Furthermore we have calculated the difference

e(T2)/T2
42e(T1)/T1

4[De/‘‘Tc
4’’. Here T15181.5 MeV

and T25192.6 MeV denote the temperatures at which
the rapid crossover sets in and ends, respectively. In a
first-order transition with a finite discontinuity,
T15T25Tc . Hence we can compare our value for
De/‘‘Tc

4’’50.29 with the ratio for the gluonic energy
density Degluonic /Tc

4 on the lattice in a pure SU(3) gauge
theory. The lattice result is egluonic /Tc;1.5 or
discegluonic;0.9 GeV/fm3 for Tc5260 MeV as men-
tioned above. Our bound on the chiral contribution to
the total gap in the energy density over Tc

4 is smaller by
almost an order of magnitude than the gluonic contribu-
tion. This should be taken as a warning not to jump to
conclusions from our results concerning relativistic
heavy-ion experiments. So far we have investigated only
the contribution from chiral symmetry to the full equa-
tion of state for a hot hadron gas. The contribution from
gluonic degrees of freedom has been completely left out.
It is a question of relative size, which effects in the full
deconfinement/chiral transition are dominant.
It seems to us very worthwhile to elaborate alterna-

tive inclusions of heavier mesons in the chiral transition
region. From the work of Gerber and Leutwyler (1989)
it has become clear that heavier mesons are increasingly
important when T exceeds 100 MeV. I regard our pa-
rametrization of the scalar and pseudoscalar meson
masses in the SU(3)3SU(3) linear sigma model as just
one ansatz for including a portion of the heavier mesons.

FIG. 21. The light-quark condensate normalized to its value at
zero temperature ^q̄q&T /^q̄q&0 as a function of T in the
SU(3)-symmetric case. The external field e0 is introduced as
an explicit symmetry-breaking term in the action to induce
nonvanishing meson/quark masses. The weakening of the first-
order transition is obvious, when e0 @GeV3# is varied between
e050 (3), 231024(L), 2.531024 (+), and 6.631024 (h).
From Meyer-Ortmanns and Schaefet (1996).
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This portion is determined by the assumed underlying
chiral symmetry. A further assumption is that deviations
from the broken SU(3)3SU(3) symmetry can be pa-
rametrized by two external fields, breaking the symme-
try explicitly. Such an ansatz seems to be justified in the
sense that the predictions of the pseudoscalar meson
masses agree reasonably with experimental values.
An alternative point of view is the following.

SU(2)3SU(2) is the true symmetry with only pions as
idealized Goldstone bosons and one external field to ac-
count for the finite pion mass, while all other mesons—

scalar, pseudoscalar, and vector mesons—are treated on
an equal footing. Gerber and Leutwyler (1989) take this
point of view when they describe all mesons (apart from
the pion) in a dilute-gas approximation, in order to
study their influence on the chiral phase transition. The
quantum virial expansion of thermodynamic quantities
in a hot pion gas provides a further alternative. Heavier
mesons enter the second virial coefficient via their con-
tribution to experimentally measured phase shifts of
pp scattering (Welke et al., 1990). A more general
framework is the generalized Beth-Uhlenbeck approach
(see, for example, Schmidt et al., 1990), in which the
scattering phase shifts of pp scattering are replaced by
thermodynamic T matrix elements, characterizing the
interacting pion gas at finite temperature and density.
When the quantum virial expansion or the generalized
Beth-Uhlenbeck approach are applied to a pion gas, the
underlying chiral symmetry of QCD plays a less promi-
nent role in the description than it does in our treatment
in the SU(3)3SU(3) linear sigma model.

B. Models for gluonic degrees of freedom

1. A network of strings

The color flux-tube models of Patel (1984a, 1984b)
were developed to describe the deconfinement phase
transition. Quark degrees of freedom can be included as
well. Let us first consider the case of a pure SU(2) or
SU(3) gauge theory. We recall from Sec. III that the
spontaneous breaking of the global Z(2) or Z(3) sym-

FIG. 22. Light (^q̄q&) and strange (^ s̄s&) quark condensates normalized to their corresponding values at zero temperature as
functions of temperature. The crossover behavior is most rapid in the range 181.5<T<192.6 [MeV]. From Meyer-Ortmanns and
Schaefer (1996).

FIG. 23. Large-Nf-approximation: 3, Entropy density s over
T3; L, energy density e over T4; +, pressure p over T4. The
meson masses have been chosen at their physical values. Or-
dinate quantities are dimensionless.
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metry is associated with a phase transition from the con-
finement to the deconfinement phase. The order param-
eter is the expectation value of the Wilson line. It
vanishes when the free energy to find an isolated test
quark in the system grows to infinity. It is different from
zero in the deconfinement phase.
Effective Z(N) spin models for the deconfinement

transition have been presented above (Sec. III). They
can be derived from the SU(N) lattice gauge theory in
the high-temperature limit and share the essential extra
symmetry of QCD. In the limit of infinitely heavy
masses, this is the global Z(N) symmetry. For high tem-
peratures the gauge fields are almost frozen to unity ma-
trices. Lowering the temperature increases the disorder.
One big cluster of aligned spins breaks up into several
clusters. Below the transition point the system is, if we
use ‘‘magnetic’’ language, completed disordered. The
formulation in terms of spin systems is natural for
Z(N) models. Intuitively, however, it is much less clear
how this picture should be translated to the original
SU(N) degrees of freedom.
Patel’s description is complementary to the above

model. It starts at T50 and follows the evolution of the
system as the temperature is increased. Symmetry
breaking is no longer the driving force for the system to
undergo a phase transition. It is replaced by entropy
production.
Below we present a heuristic description. The picture

is based on the flux-tube model of the deconfinement
transition. Flux tubes connect quarks and antiquarks in
strong-coupling expansions on the lattice. Thus one
would not expect that they leave some remnant in the
continuum limit. On the other hand, they are also the
ingredients of phenomenological continuum descrip-
tions like string models for hadrons. We add a few re-
marks about the yo-yo string in the end.
Several properties of flux tubes or strings have to be

specified first. Strings in Patel’s models are characterized
by three parameters: the string tension s , the string
width w , and the rigidity parameter a . [The notation of
the parameter a suggests its actual meaning as an (effec-
tive) lattice constant.] We assume that there is a con-
stant energy per unit length along the string; this is s .
The string has a constant width w . It has a certain resis-
tance against bending. It has to go at least a distance a
apart, before it can change its orientation. The distance
a is of the order of 1 fm. On the lattice a naturally
coincides with the lattice constant, at which the strings
bend at right angles. Here the constant a will not be
tuned to zero in the end. Its role resembles that of a
lattice constant in models of condensed-matter physics
(models in continuum spacetime, where the constant a is
given by the physical lattice constant). In Patel’s flux-
tube theory the parameters a , s , and w must be fixed
from experimental input.
Two further assumptions about flux tubes must be

specified to get a well-defined model. Flux tubes can ter-
minate only on quarks. Their interaction occurs at bary-
onic vertices. The constants s,w ,a are treated as tem-
perature independent. The only driving force of the

phase transition is the increasing entropy of the flux
tubes when the temperature is turned on.

a. The SU(2) case

Based on these ingredients let us see how far heuristic
arguments can lead us in a pure SU(2) gauge theory.
The only allowed flux-tube structures are closed loops
differing only in size and shape, i.e., in the length of the
string. Physically these loops may be interpreted as glue-
balls. The partition function is written as

Z5 (
loops

N~ loops!e2E~ loop!/T. (4.64)

The sum runs over all loops of fixed length la (in physi-
cal units). The energy of such a loop is given as sla . The
combinatorial prefactor N gives the number of loops of
length la . The dependence of N on the rigidity param-
eter a is essential, as it provides the possibility of a phase
transition. How often strings like to bend is a function of
temperature and rigidity.
Consider random walks without backstepping of

length l (in lattice units) on a lattice of spacing a . Back-
stepping should be forbidden for a physical string. This
number is given as (2d21) l in d dimensions. The con-
straint that the walks should perform closed loops leads
to a power-law correction in l to N . It will not be speci-
fied further, because it is irrelevant in the large-l limit.
The partition function is then proportional to

Z;(
l
expF2lS sa

T
2ln5 D G (4.65)

in three dimensions. The dimension is chosen as 3 since
the string model is constructed to provide an alternative
description to the three-dimensional Z(N) spin model
for the deconfinement transition. As T increases, the av-
erage length of the loops becomes larger. A phase tran-
sition is signalled if Z diverges. This happens for large
l if (s•a/T5ln5), that is, at

Tc5sa/ln5. (4.66)

The effective string tension seff defined via
exp$2laseff /T% vanishes continuously at Tc ,

seff5s2
T ln5
a

——→
T→Tc

0 , (4.67)

while the average length of the loops diverges. Both fea-
tures suggest a second-order phase transition.
To see its relation to the deconfinement transition, we

have to probe the system at Tc with a static q̄q pair. If it
costs a finite amount of energy to isolate both quarks at
an infinite distance, we have reached the deconfinement
phase. Equivalently deconfinement is manifest if the q
and q̄ are a finite distance apart, but only rather loosely
correlated. Color screening requires that a flux tube con-
nect the quarks of our probe. With increasing tempera-
ture the flux reorients itself more and more often. It
oscillates between its end points; see Fig. 24.
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Since one quark knows about its partner only via the
connecting string, this information is lost if the string
becomes infinitely long. This is just what happens at
Tc , where it costs no extra free energy to create an in-
finitely long flux tube. Thus at T>Tc both quarks (q and
q̄) are effectively independent of each other and free.
This means deconfinement.
To get a quantitative estimate of the transition tem-

perature, we must fix the string tension and the rigidity
parameter in physical units, or the product of both in
lattice units. In the strong-coupling approximation of the
lattice theory, the lowest-lying O1 glueball at T50 is
given by a square loop

mO154sa . (4.68)

The string parameters are assumed to be temperature
independent, hence one can take this T50 result to fix
Tc ,

Tc5mO1/4 ln5. (4.69)

Lattice Monte Carlo calculations give a slightly larger
value.

b. The SU(3) case

Next let us consider the pure SU(3) gauge theory.
Two new features must be accounted for. Quarks and
antiquarks are no longer in equivalent representations
of SU(3). Thus a direction is associated with a string,
indicating whether it terminates in a quark or an anti-
quark. (The quarks and antiquarks are test quarks in the
pure gauge theory.) Furthermore, a flux-tube represen-
tation of a baryon or antibaryon requires that a string be
able to bifurcate at a vertex v ; see Fig. 25. This reflects
the previous assumption that flux tubes interact only at
baryonic vertices. The diagrammatic rules for allowed
string structures in the SU(3) case follow from the al-
lowed vertices, shown in Fig. 26. This excludes closed
loops made up of an odd number of links.

The ansatz for the partition function can be chosen
analogously to the SU(2) case. The sum over loops has
to be replaced by a sum over more complicated topo-
logical structures which resemble nets. A nonvanishing
energy v is associated with each vertex to respect the
additional bifurcation degree of freedom. At zero tem-
perature the vacuum is filled with closed loops made out
of nets of strings; see Fig. 27. These are virtual ‘‘glue-
balls.’’
As the temperature is increased, the size and density

of these structures grow. In contrast to the SU(2) case,
the phase transition is not induced by a divergence in
the length of strings. A new qualitative feature enters,
the connectivity of the network. A phase transition oc-
curs if an infinite network is generated, infinite in the
sense that each string is connected with the entire vol-
ume of the lattice. Between any given pair of flux-tube
segments one can find a flux-tube path on the lattice that
connects them.
The definition of ‘‘critical temperature’’ can be made

more precise. This type of phase transition is well known
in condensed-matter physics as a percolation transition.
Examples of percolation transitions are gelation transi-
tions in the context of polymer chains (Flory, 1941a,
1941b). To find a quantitative measure for the connec-
tivity of the network, one has to distinguish between
relevant and irrelevant links of the network. If relevant
links are removed, the infinite network is destroyed. In
the same sense irrelevant links are not essential for con-
nectivity. The fraction f of relevant links depends on the
temperature and the specific underlying dynamics. It can
be easily estimated that 2/3,f,1. The lower bound is
realized at Tc , where the network is minimally con-
nected. The upper bound means maximal connectivity.
It is challenging to look at the deconfinement transi-

tion as a percolation transition. Again we have to answer,
first, what happens to a static test quark when it is put
into the network below or above the percolation transi-
tion. Below Tc the free energy of an isolated quark is
infinite, because the flux tube originating from this
quark may not terminate on any closed loop that is a
finite distance apart. It is excluded by the diagrammati-
cally forbidden flux-tube structures. Instead the string
attached to the quark has to fuse with the string of an

FIG. 24. Flux tubes between static quarks in pure SU(2)
gauge theory: (a) at low temperatures; (b) at high tempera-
tures.

FIG. 26. Allowed vertices for the SU(3) gauge theory.

FIG. 27. SU(3) vacuum at low temperatures filled with glue-
balls.

FIG. 25. String bifurcation for a baryon (a) and an antibaryon
(b).
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antiquark of the test probe. When both q and q̄ can be
considered as isolated or free, to separate them that
much costs an infinite amount of free energy, since we
have assumed a constant energy per unit length of the
string.
Above Tc the distance between the q and q̄ need no

longer be infinite for both to lose their correlation (to
behave effectively as free test probes). Already at a fi-
nite separation the correlation is weak due to the pres-
ence of the infinite network to which they are attached.
Now the clusters of closed loops are connected, and the
corresponding flux-tube structures for a q̄q pair at finite
distance are allowed (see Fig. 28). The costs in energy
due to the long, dense, and connected flux tubes are
compensated by the gain in entropy. Thus the free en-
ergy of a configuration in which q and q̄ test quarks
have lost any information about each other is finite. The
q and q̄ are effectively free. We have ended in the de-
confinement phase.
For a crude estimate of Tc one has to specify the

amount of extra energy due to bifurcation points.
In our heuristic argument it remains to explain the

first order of the deconfinement phase transition in the
SU(3) case. Either one refers to the percolation transi-
tion where the transition is known to be of first order, or
one proves directly for the colored network of the QCD
flux that it costs a finite interface free energy at Tc for
both phases to coexist. Such a coexistence may be visu-
alized as a hole in the network. Roughly speaking, when
the loose ends at the boundary of the hole are tied to the
network again, it costs interface energy proportional to
the area and leads to a reduction in entropy.

c. Inclusion of matter fields

Dynamical quarks can be easily introduced into flux-
tube models, since the flux tube picture does not rely on
any symmetry argument, and the extra global Z(N)
symmetry is explicitly broken in the presence of dynami-
cal quarks. Recall that the limit of a pure gauge theory
may be considered as the m→` limit of full QCD. Thus
we are interested in the effect when the quark mass is
lowered or a Z(N) symmetry-breaking field is switched
on.
Second-order phase transitions in ferromagnets are

known to disappear when the magnets are exposed to an
external magnetic field, regardless of its strength. Simi-
larly the second-order transition of the pure SU(2)
gauge theory ceases to occur: there is always a finite
probability of an infinitely long string’s breaking up due
to the creation of a qq̄ pair out of the vacuum. The
probability is proportional to le22m/T; it is finite, even if
the quark mass is very large, as long as l→` . (Infinitely
long strings turned out to be responsible for the second
order phase transition in this picture.) The expected
change is that the phase transition from the confinement
to the deconfinement region is replaced by a crossover
from tightly to weakly bound qq̄ pairs.
The SU(3) case is more subtle. Again it is known

from statistical physics that first-order transitions are

stable with respect to small perturbations of an external
field. Hence we still expect for large enough quark
masses a deconfinement transition, and it is still the Wil-
son line expectation value which would indicate the
transition by a discontinuity at Tc . However, ^L& will
fail to remain a good order parameter when the quark
mass is further lowered. It was sensitivity to Z(N) sym-
metry which qualified ^L& as an order parameter in the
m→` case. Now, where the symmetry is explicitly bro-
ken independently of the phase, we have to look for new
criteria that tell us the phase of the system at a given
temperature. This is the screening property, which is dif-
ferent in the high- and low-temperature phases. At low
temperatures, color charges are screened due to break-
age of strings. At high temperatures, flux tubes do not
break, but get attached to large networks of strings, at
least for very heavy masses. For lighter masses, quarks
can also break strings at high temperature. (We see that
the clear distinction between low- and high-T phases
may get lost depending on the value of the quark mass.)
The probability of string breakage at high tempera-

ture is determined by the energy costs of popping a qq̄
pair out of the vacuum and the competing gain in en-
tropy by breaking a link. Lighter masses facilitate break-
ing of links. Less surface energy is necessary to stabilize
a hole in an infinitely connected network. Clearly there
should be a critical mass at which the surface energy
vanishes at Tc and the number of broken flux tubes ex-
ceeds the critical number of irrelevant links. Once rel-
evant links are broken, by definition, the network ceases
to exist.
In Patel’s models one has a heuristic understanding of

how the transition temperature should scale as a func-
tion of quark masses. As the quark mass decreases,
string breakage is facilitated. It becomes more difficult
to generate an infinitely connected network. Thus Tc
should increase with decreasing m . The opposite ten-
dency is observed in numerical simulations.
The above line of argument suggests that the transi-

tion will always disappear in the m→0 limit. The energy
cost for the creation of a qq̄ pair is zero. Recall, how-
ever, that it is precisely in the m→0 limit where chiral
symmetry comes into play and generates dynamical
masses at low temperatures. In the chiral limit, scalar
mesons are believed to obtain their finite masses exclu-
sively from chiral symmetry breaking. In the preceding
sections we have investigated just the opposite effect:
perturbing around the chiral limit, turning on an exter-
nal field by increasing m from zero towards realistic val-
ues.

FIG. 28. Flux-tube structures: (a) disallowed structure below
Tc , (b) allowed structure above Tc .
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In the chiral limit the strength of the first-order tran-
sition is thought to increase for an increasing number of
flavors. On the other hand, in the same chiral limit, there
is a gain in entropy due to easy string breakage as a
remnant of the deconfinement transition. It is difficult to
estimate whether a critical number of flavors exists that
will enable one of the competing effects to win.
The combination of two tendencies may result in a

crossover phenomenon at intermediate masses. The
quark masses are so small that the deconfinement tran-
sition has disappeared, and an infinitely connected net-
work can no longer be formed, yet they are too large for
effects of chiral symmetry breaking to be important, and
the chiral transition is washed out as well. It remains to
be seen whether realistic quark masses occur in a win-
dow where both transitions are replaced by crossover
phenomena.
As long as chiral symmetry is not implemented in the

massless limit, such competing effects cannot be re-
solved by Patel’s models, even if matter fields are in-
cluded.
Our presentation so far might have suggested that a

description of the deconfinement transition in terms of
color flux tubes gets stuck on the heuristic level. This is
not the case. A three-dimensional action can be formu-
lated in terms of occupation number variables (Patel,
1984b). These variables live on a lattice with lattice con-
stant a and take on values in the positive integers. The
flux-tube variables are associated with the links, the
quarks and vertex variables with the sites of the lattice.
The input parameters for the action are the string ten-
sion s , the lattice constant a , the quark mass m , and the
vertex coupling v . If Gauss’s law is implemented, the
model is equivalent to a three-dimensional XY model
with nearest-neighbor coupling in a uniform magnetic
field h and a magnetic field p . Mean-field calculations in
various limiting cases of this action support the heuristic
arguments (Patel, 1984b). The model can be extended to
include several numbers of flavors and chemical poten-
tials.
Let us summarize the virtues of the color flux-tube

model. It abandons symmetry breaking as a driving
force of the phase transition, at least as a primary force.
This is desirable as an alternative way of understanding
the transition dynamics in mass parameter regions,
where the symmetry concept is questionable. Here the
deconfinement transition has been described in analogy
to a gas/liquid transition at finite temperature for differ-
ent values of the pressure. The pressure plays the role of
the quark masses. The order parameter is the density or
the volume. Its change is discontinuous when the tem-
perature is increased, as long as the pressure is low
enough. In the QCD case, ^L& jumps at the transition as
long as the quarks are heavy enough. As in the QCD
case with nonzero masses, there is no symmetry in the
gas/liquid system that could easily distinguish between
both phases. In a (p ,T) diagram the liquid and gas
phases may be smoothly connected as well. For analo-
gies we refer the reader to Table II.

The deconfinement transition here resembles a gela-
tion transition, in which the connectivity of the color
flux-tube network is an essential characteristic of
SU(3). A similar intuitive understanding of the chiral
transition is still lacking when it is described in the
framework of the sigma model. For the chiral transition
it is less clear what the competing effects to string break-
age or network formation could be.
It seems rather worthwhile to incorporate chiral sym-

metry properties in color flux-tube models or vice versa
to supplement sigma models with flux tubes for the glu-
onic degrees of freedom.
We conclude with a few remarks on phenomenologi-

cal string models for hadrons. Experimentalists describe
the phenomenology of heavy-ion collisions with Monte
Carlo codes that are based on relativistic microscopic
models. String formation and fragmentation are essen-
tial ingredients. These models share some features with
cellular automata. One tries to find a set of rules for
string formation and breakage (fragmentation) such that
observed particle multiplicities and ^pT& spectra are re-
produced for given initial conditions. An example of
such a string model is the VENUS code of Werner
(1989), utilizing the concept of yo-yo strings. Strings are
formed via color exchange.
One may suspect that yo-yo strings in VENUS share

only the name, and so far little else, with Patel’s color
flux-tube strings. The yo-yo string is elastic, its elasticity
characterized by the string tension. Closed loops are for-
bidden; the flux can terminate only on colored partons
(quarks, diquarks etc.). The end-points are characterized
by their flavor content. Yo-yo strings are allowed to
stretch, break, and participate in a collective motion.
They cannot bend or bifurcate. There is no space for
thermodynamic concepts, for a transient plasma in the
early stage of the collision, and no way to model a phase
transition in the present formulation.
Patel’s strings are neither one-dimensional rigid tubes

connecting the colored end points, nor arbitrarily pli-
able. The rigidity constant is essential for modulating the
entropy and initiating the phase transition. The range of
possible applications of VENUS-type models may be ex-
tended if the strings are not restricted to yo-yos, but
allowed to close, bend, and bifurcate.

2. Dual Ginzburg-Landau models

The main idea in dual Ginzburg-Landau models is to
explain the confinement mechanism by a dual Meissner
effect. Let us recall the Meissner effect in a supercon-
ductor. The magnetic field is expelled from the embed-
ding superconducting medium and concentrated in a flux
tube between magnetic monopoles of opposite charge.
The constant energy per unit flux tube causes the inter-
action between monopole charges to increase linearly
for large distances. In the superconducting state of
metal, the electrons generate Cooper pairs. The super-
conducting medium is characterized by an order param-
eter c , and ucu2 represents the density of Cooper pairs.
The order parameter vanishes in the normal conducting
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state where Cooper pairs are absent. The transition to
the superconducting phase is triggered by the condensa-
tion of Cooper pairs.
A dual Meissner effect may be an appealing explana-

tion for confinement. In the dual Meissner effect the
role of the (chromo)electric and (chromo)magnetic
fields is reversed. The chromoelectric field between the
chromoelectric charges of quarks and antiquarks is ex-
pelled from the embedding confinement vacuum. The
chromoelectric flux tube leads to a linear rise in the en-
ergy between quarks at large distances. The transition to
the confinement phase is triggered by a condensation of
chromomagnetic monopoles.
The interest in models based on such a heuristic ex-

planation has recently revived. The dual Meissner effect
seems to be realized in compact lattice QED (Polyakov,
1975; Banks et al., 1977; DeGrand and Toussaint, 1980;
Stack and Wensley, 1992). The main task in QCD is to
identify the magnetic monopoles. This identification
should be possible (’t Hooft, 1981) after an Abelian pro-
jection. An Abelian projection of QCD amounts to a
partial gauge fixing. There are many ways of extracting
an Abelian theory out of non-Abelian QCD. Popular
choices are a variety of unitary gauges and the maximal
Abelian gauge (Kronfeld et al., 1987; Suzuki and Yot-
suyanagi, 1990, 1991; Suzuki, 1993). The maximal Abe-
lian gauge turns out to be a particularly useful way of
demonstrating the dual Meissner effect. If the ‘‘non-
Abelian part’’ of the gauge freedom is fixed, the original
SU(3) gauge symmetry is reduced to the maximal Abe-
lian torus group U(1)3U(1). QCD becomes an effec-
tive theory of abelian ‘‘electric’’ charges, ‘‘photons,’’ and
‘‘magnetic’’ monopoles with respect to U(1)3U(1). The
photon fields are the regular part of the Abelian field,
the magnetic monopoles the pointlike singular part. The
monopole part is isolated from the U(1) field following
a procedure proposed by DeGrand and Toussaint
(1980). ’t Hooft’s conjecture about the dominant role of
monopoles seems to be realized in the maximal Abelian
gauge. The conjecture may be verified in several steps.
(i) Typical indicators of confinement are the string

tension, the Wilson loop, and the Polyakov loop. It is
natural to test whether their expectation values from full
lattice QCD can be reproduced by the Abelian variables
alone. This is indeed what is observed. The phenomenon
is called Abelian dominance (Suzuki and Yotsuyanagi,
1990, 1991; Hioki et al., 1991; Suzuki, 1993; Matsubara
et al., 1994).
(ii) More specifically one would like to know which

part of the Abelian residual variables is responsible for
the observed Abelian dominance. Here it turns out that
the monopole contributions alone determine the string
tension and the Polyakov loop in an SU(2) and SU(3)
pure gauge theory (Shiba and Suzuki, 1994; Kitahara
et al., 1995, 1995b; Ejiri et al., 1995; Matsubara et al.,
1995; Miyamura, 1995). The similar behavior of Abelian
and conventional Polyakov loop expectation values is
seen not only in the maximal Abelian gauge, but also in
a number of different U(1) projections.

(iii) Once the relevant degrees of freedom have been
identified, the next question concerns their dynamics.
Which monopoles are important in the confinement and
deconfinement phases? What drives the phase transi-
tion? Here some partial answers are known. In the con-
finement phase one has a long monopole in each con-
figuration, while long monopole configurations are
absent in the deconfinement region (Kitahara et al.,
1995a, 1995b). This is easily understood from the main
difference between low- and high-temperature QCD.
The difference in the monopole dynamics comes from
the bound on the maximal monopole extension due to
the large or small number of time slices. The driving
mechanism for the deconfinement transition is supposed
to be the balance of the entropy and energy of maximal
extended monopoles (see the preceding section for a
similar explanation in the flux-tube model). Further
studies are, however, necessary to clarify the calculation
of the entropy of monopoles (Kitahara et al., 1995a,
1995b). The difference in the order of the deconfine-
ment transition for SU(2) and SU(3) remains to be ex-
plained.
(iv) The observation of Abelian dominance and the

identification of long monopoles as the most important
field configurations in the confinement mechanism sug-
gest construction of an effective action in terms of these
monopoles. Effective monopole actions have been con-
sidered in compact QED and SU(2) QCD (Shiba and
Suzuki, 1994a, 1994b, 1995). Extended monopoles can
be implemented as well by performing a block spin
transformation on the dual lattice. The results obtained
so far indicate an interesting scaling behavior, giving
some hope that the effective action actually describes
continuum physics.
The results in dual Ginzburg-Landau models look

rather encouraging. The dependence on the finite vol-
ume deserves further study on larger lattices to make
sure that the dynamics of Abelian U(1)3U(1) mono-
poles of lattice QCD survive the continuum limit. The
gauge dependence of the proposed confinement mecha-
nism is another open question. So far most of the fea-
tures of the dual Meissner effect have been observed in
the maximal Abelian gauge. Recently Chernodub et al.
(1995) have studied the pure SU(2) gauge theory in dif-
ferent Abelian projections. Their results suggest the
conclusion that the topological configurations relevant
for confinement do depend on the gauge. Monopole
condensation as a mechanism for confinement appears
as a specific feature of the maximal Abelian gauge. So-
called minopoles replace monopoles in the ‘‘minimal’’
Abelian gauge, and stringlike topological objects may be
important as well. Such a translation of the confinement
mechanism between different gauges deserves further
investigation. Remarks on unitary gauges can be found
in Matsubara et al., (1995) and Suzuki and Yotsuyanagi,
(1991).

3. Some further approaches

We conclude this section about effective models with
a look at some possible future directions. Descriptions
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including quark degrees of freedom have been left out
so far. Moreover the string networks of the preceding
section cannot be regarded as representative of the va-
riety of models that have been proposed for gluonic de-
grees of freedom.
An important class of models for the gluonic sector

are instanton descriptions of the QCD vacuum (Shuryak,
1984). The idea is that the most important (nonpertur-
bative) contributions to the QCD partition function
come from instantons and anti-instantons at short dis-
tance scales. Dyakonov and Mirlin (1988) and Kanki
(1988) have considered the instanton vacuum at finite
temperature. Within a variational approach they have
shown that the ‘‘evaporation’’ of instantons and anti-
instantons out of the vacuum leads to chiral symmetry
restoration as the temperature is increased.
Ilgenfritz and Shuryak (1989) and Nowak et al. (1989)

have extended the analysis of instanton models to the
inclusion of quark degrees of freedom. The qualitative
conclusion of these authors is a crossover phenomenon
rather than a chiral transition, when finite quark masses
are included. Their results were obtained within mean-
field-type calculations.
Frequently it is the symmetry of the underlying QCD

action that is taken as a guiding construction principle
for the effective action. Applying this principle to the
gluonic sector, one may look for the analog of the chiral
condensate and the role it plays in the deconfinement
(and chiral) transition. A natural analog is the gluon
condensate ^FmnF

mn&, if Fmn denotes the QCD field-
strength tensor.
With regard to the gluon condensate we recall the

basic symmetry of QCD related to the condensate. At
the classical level the QCD Lagrangian with massless
quarks is invariant under scale transformations
xm→elxm with some real constant l . The corresponding
(classically conserved) current is the dilatation current
Sm5Tmnx

n, where Tmn is the energy-momentum tensor.
On the quantum level, even massless QCD is no longer
scale invariant. It is broken by the scale or trace
anomaly of QCD,

]mS
m5Tm

m5
b~g !

2g
FmnF

mn. (4.70)

Here b(g) denotes the beta function of QCD, and g is
the coupling. The perturbative contribution to one-loop
order is given as (2g3/16p2)(112 2/3Nf).
Schechter (1980) has proposed an effective action for

both mesonic and gluonic degrees of freedom. In
the limit of zero quark masses this action is invariant
under the SU(Nf)L3SU(Nf)R chiral transformation
(3U(1)V baryon number); it reproduces the axial
U(1) anomaly (the chiral anomaly) and in addition the
trace anomaly of QCD.
For definiteness we state the result for the effective

Lagrangian, as used by Campbell et al. (1990):

L5Lm1Lg, (4.71)

Lm5
1

16p2 fp2~x/x0!
2Tr]mU]mU1

2c~x/x0!
3Tr(mq~U1U1!)2

1
2
m0

2f0
2~x/x0!

4,

Lg5
1
2

]mx]mx1BF14 x0
41x4ln~x/e1/4x0!G .

The following notations are involved. Gluonic degrees
of freedom are represented by a scalar gluonium field
x with scale dimension 1. It is assumed to take a nonva-
nishing vacuum expectation value x05^0uxu0&, and thus
scale invariance is spontaneously broken on the effective
level. The matter fields are represented by U ,

U~x !5expS i(
i50

8

l if i~x !YfpD . (4.72)

The fields f i , i50, . . . ,8 denote the nine pseudoscalar
meson fields. The light-quark mass matrix is given by
mq5diag(mu ,md ,ms). Up to prefactors depending on x
and x0 , the matter part of the Lagrangian is the familiar
nonlinear SU(3)3SU(3) sigma model (first term of
Lm), plus a term proportional to the quark masses’
breaking chiral symmetry explicitly, plus a third term
(}f0

2) accounting for the ninth pseudoscalar meson. All
terms are multiplied by prefactors correcting for the
right scale dimensions.
The specific form of the potential for the gluonic part

Lg was proposed by Schechter (1980). This term was
designed to guarantee the trace anomaly according to

]mS
m52Bx4, (4.73)

where B is the vacuum energy density of the pure gauge
sector. Equation (4.73) leads to the identification

^0u~b/2g !FmnF
mnu0&52Bx0

4X . (4.74)

Campbell et al. (1990) used the Lagrangian (4.71) as the
starting point for their thermodynamic considerations.
The matter part of the Lagrangian is easily modified.

Patkós (1991) used the linear version of the
SU(3)3SU(3) sigma model for Lm to calculate the sur-
face tension of the first-order chiral transition under the
inclusion of gluonic degrees of freedom.
Kusaka and Weise (1992) have chosen the Nambu–

Jona-Lasinio (NJL) Lagrangian with SU(2)L3SU(2)R
symmetry. An interesting relation can be read off from
their Lagrangian. Due to the prefactors (x/x0)

3 in Eq.
(4.71), the quark condensate is not only determined by
the meson condensate ^0uU1U1u0&, but knows about
the gluon condensate as well. Such a relation reads, in
the effective model of Kusaka and Weise (1992),

^ūu&5^d̄d&52
1

NfG
S x0

xm
D 2^s&. (4.75)

Here x05^0uxu0& denotes the mean-field vacuum expec-
tation value as above, xm minimizes the potential term
of Lg , and G is the four-quark coupling.
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When this relation is extrapolated to temperatures
larger than zero, an interesting feature arises. Chiral
symmetry may be restored (^ūu&T→0), either because
the mesonic part ^s& has melted or because the gluon
condensate x0 vanishes. This leads to an inequality be-
tween the chiral (Tch) and the deconfinement (Td) tran-
sition temperatures

Tch<Td . (4.76)

The interplay between both condensates can be studied
this way. To question of ‘‘who drives whom’’ in the
phase transition may be answered in these models.
The chiral phase transition has been investigated as a

function of temperature and/or density in a variety of
Nambu–Jona-Lasinio models (Hatsuda and Kunihiro,
1985, 1987; Bernard and Meissner, 1988; Kunihiro, 1989,
1991; Klimt et al., 1990; Lutz et al., 1992). In general the
calculations were performed within a mean-field ap-
proach. The common conclusion was that under realistic
conditions for coupling strengths (or quark masses) the
chiral transition is replaced by a crossover phenomenon.
An extended NJL model has been derived by Bijnens

et al. (1993) as a low-energy approximation to QCD.
Starting from basic QCD, they integrated out gluon
fields or alternatively gluon fields and quark fields within
a certain approximation in the path-integral formula-
tion. The resulting extended NJL model includes various
low-energy models in appropriate limit cases, in particu-
lar, the chiral quark model of Manohar and Georgi
(1984), which extends the linear sigma model of our pre-
vious sections.
Let us finally discuss the chiral quark model in a little

more detail. Originally this model was proposed by
Manohar and Georgi as an effective model for quarks,
gluons, and Goldstone bosons to explain the success of
nonrelativistic quark models. Gocksch (1991) has con-
sidered a version of the chiral quark model in which
gluonic degrees of freedom are dropped and the Gold-
stone part is realized as the linear SU(2)3SU(2) sigma
model. The Lagrangian is given by

L5
1
2

@~]ms!21~]mp!2#1
m2

2
~s21p2!

1
l

4!
~s21p2!21cs1C̄@]”1g~s2ig5tp!#C .

(4.77)

The notation is obvious from earlier notations in the
text. Note that the Goldstone bosons (p) and the s
channel are treated on an equal footing with the quark
degrees of freedom. This accounts for the prominent
role the pions and the sigma meson play among the low-
mass hadrons in the chiral transition. They cannot be
described as states of weakly interacting quarks. (The
well-known price of this treatment is double counting.
For example, there is a pseudoscalar q̄q bound state as
well as the ‘‘fundamental’’ pion state.)
Gocksch performed mean-field calculations at finite

temperature based on the Lagrangian (4.77). In this way
he was able to reproduce lattice results for static had-

ronic screening lengths and the quark number suscepti-
bility (Gocksch et al., 1988; Gottlieb et al., 1987c). There
are different ways that chiral symmetry may be restored
above the transition. One possibility is parity doubling
of the known hadron spectrum (McLerran, 1986; DeTar
and Kunihiro, 1989). Parity partners should be degener-
ate in their mass above the chiral transition, but still in
the confinement phase.
The more standard symmetry restoration is realized

through massless quarks. The results of Gocksch indi-
cate that the lattice data for the % meson and nucleon
screening masses can be understood in terms of nearby
massless propagating quarks, while the p and s modes
cannot be explained this way. This favors the realization
of chiral symmetry restoration in the ‘‘standard’’ way,
i.e., via massless quarks with degenerate mp and ms

masses in the chiral symmetric phase.
The chiral quark model (4.77) gives a nice example of

an effective model that allows explicit comparison with
lattice results and is able to explain them. Such an agree-
ment justifies the reduction of the ansatz for the effec-
tive Lagrangian. In this particular case it confirms the
prominent role of the sigma and pions. It remains un-
clear whether double counting in the chiral quark model
has any contaminating effect on the results.
Interesting directions for future work are combina-

tions of ‘‘chiral’’ and ‘‘gluonic’’ effective models to study
the interplay between both types of transitions. Dual
Ginzburg-Landau models may be promising candidates
for describing both aspects, confinement and chiral sym-
metry. For first attempts see, for example, Miyamura
(1995). It should be verified that the U(1)3U(1) Abe-
lian monopoles survive the continuum limit and main-
tain their dominant role in the presence of dynamical
quarks. An interesting question then is, how does the
confinement mechanism in terms of Abelian monopole
condensation translate to different conditions for gauge
fixing?
Unlike QCD there is no unique favorite action on the

effective level. Therefore one should study the variation
of the results under different reductions of the underly-
ing full QCD. This applies to generic effective models.

V. RELATIVISTIC HEAVY-ION COLLISIONS

A. Scales and observables

The experimental possibilities for testing the QCD
predictions of finite-temperature phase transitions from
normal hadronic matter to a quark-gluon plasma are
limited if we face the transition temperature of
'1012 K. Most probably, the QCD transition occurred
1026 seconds after the big bang when the universe
cooled down to the transition temperature. It is very
questionable whether any remnants of the transition can
be seen today. Promising alternatives to reproducing the
QCD transition in some kind of little bang in laboratory
experiments are heavy-ion collisions at ultrarelativistic
energies. In such collisions a large amount of the initial
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kinetic energy would be concentrated in a short space-
time interval and form a fireball of matter which could
reach thermal equilibrium.
In the last decade, it has become technically feasible

to create matter with energy densities 10–100 times that
of ordinary nuclear matter (see, for example, Jacob and
Satz, 1982 or Schmidt and Schukraft, 1993). The avail-
able energy for particle production is specified in terms
of As , where As is the total center-of-mass energy. In
1992 the AGS accelerator at Brookhaven National
Laboratory (BNL) produced very heavy-ion beams of
197Au with momenta of 11.4/c GeV per nucleon (Bar-
rette, 1994). At the CERN SPS accelerator, 200 GeV/n
are reached for beams up to 32S—still ‘‘light’’ heavy
ions. Since November 1994, a Pb beam of 160 GeV/c per
nucleon has been available at the SPS accelerator. Fu-
ture experiments are planned starting in 2006, in which a
value of As56300 GeV/n-n (n-n stands for nucleon-
nucleon) for lead should be reached at the CERN Lin-
ear Hadron Collider. At the Relativistic Heavy-Ion Col-
lider of BNL As5200 GeV/n-n will be reached in 1999.
Given the value of As and the mass number A of

colliding ions, one would like to estimate the initial tem-
peratures that can be reached in such a collision. The
basic observable is the multiplicity per unit rapidity
dN/dY of secondary hadrons which are emitted in the
collision. If one extrapolates the known relation be-
tween As and (dN/dY)p in proton-proton collisions to
central nucleus (A)-nucleus (A) collisions, the relation
is given as (Satz, 1990a)

S dNdY D
AA

50.8AalnAs (5.1)

with a>1.1. This leads to multiplicity densities of about
480 at midrapidity (including neutrons and neutral
pions) at the Brookhaven AGS accelerator (Barrette
et al., 1995) for Au1Au, and to an estimate of 790 for
the maximal dN/dY (when all hadrons are included) for
Pb1Pb at the SPS accelerator at CERN (Margetis et al.,
1995). At CERN’s Linear Hadron Collider, for
As56300 GeV/n-n multiplicity densities of 1500–2500
are expected according to Eq. (5.1). The multiplicity
density of the final-state hadrons can be related to the
initial-state energy density « either with (approximate)
energy conservation (free flow) or entropy conservation
(see Sec. V.B.1). For free flow the relation is given by

«5$~dN/dY !AmT%/~pRA
2 t!. (5.2)

Here RA is the nuclear radius, mT the transverse mass,
and t the equilibration time. With t'1 fm/c and
mT'0.5 GeV, Eq. (5.2) leads to an average initial en-
ergy density of 1.5–2.5 GeV/fm3 for central Pb-Pb colli-
sions at the SPS accelerator and 4.6–7.8 GeV/fm3 at the
Linear Hadron Collider. For Si1Pb-collisions at the
AGS accelerator of BNL, the initial energy density has
been estimated as 0.6 GeV/fm3 (Stachel and Young,
1992).
The energy density is translated to a temperature ac-

cording to an ideal-gas relation «}T4, where the pro-

portionality constant depends on the number of in-
cluded degrees of freedom. For three massless quark
flavors, the initial temperature for Pb-Pb collisions at
CERN’s SPS accelerator ranges from 170 to 190 MeV
(free-flow assumption) or 160–190 MeV (isentropic ex-
pansion). If we compare these values to estimates from
lattice calculations including dynamical fermions, AGS
and SPS energies could produce temperatures slightly
above Tc . Pronounced signatures of a plasma via ther-
mal radiation can only be expected if the initial tempera-
ture Ti is well above Tc . More recent estimates of Ti by
Geiger (1992a, 1992b), Kapusta et al. (1992), and
Shuryak (1992) give more optimistic values for Ti , pre-
dicting that Ti;5002600 MeV should be reached (see
also below).
In applying these formulas, we have implicitly made

use of the fact that energy, entropy, and temperature are
well-defined notions in describing the collision. This as-
sumption will be discussed later on.
At this point, let us pause for a comparison with the

observation of a phase transition under daily life condi-
tions, the boiling of water. Usually one does not appre-
ciate all the well-defined experimental conditions. The
fluid container has a fixed volume, the fluid is at rest and
in thermal equilibrium. Calibrated thermometers are at
hand, whose Hg column grows linearly in the considered
temperature range. The phase transition is easily seen as
conversion from the liquid to the vapor phase, while the
temperature stays constant. Moreover, heating sources
are available such that tuning of the temperature does
not pose a problem. The temperature may be tuned
adiabatically or quenched as one likes.
It is not surprising that at temperatures where had-

ronic matter gets dissolved into its components, the ex-
perimental conditions change drastically. In collider ex-
periments the volume is not fixed in the evolution of the
plasma to the hadron gas. At high collision energies the
nuclei interpenetrate each other at the collision and re-
cede as Lorentz-contracted pancakes, leaving a hot
vacuum with secondaries of the collisions between them
(in the central rapidity region). After hadronization this
hot area is primarily a pion gas.
At Linear Hadron Collider energies the volume at the

transition is estimated to be 5–8 times larger than the
initial volume; for Pb-Pb collisions the critical volume is
of the order of 800–1200 fm3. After the transition the
system continues expanding until freezeout, where inter-
actions can be neglected and/or the mean free path of
particles becomes of the order of the size of the system.
(Both definitions of ‘‘freeze-out’’ lead to different esti-
mates for freezeout volumes). At the Linear Hadron
Collider, freezeout volumes could be of the order of
104 to 105 fm3 (Satz, 1990a).
Next we come to various time scales involved in

heavy-ion collisions. Note that the total duration of a
‘‘little bang’’ is only of the order of 10223 sec. (The char-
acteristic length scale of 1 fm is a very short distance for
light to pass by.) Time scales are the equilibration time
t0 , the freezeout time, the delay caused by a possible
first-order phase transition, the conversion rate of one
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phase into the other, and the expansion rate. All of them
are between say 0.1 and 100 fm/c . The largest value re-
fers to an extreme delay of freezeout due to strong su-
percooling, the smallest one corresponds to a more re-
cent estimate for the equilibration time (Shuryak, 1992).
The equilibration time is the time it takes until the sys-
tem reaches a stage of local thermodynamic equilibrium,
when it has passed an intermediate preequilibrium stage
after the bang. ‘‘Local equilibrium’’ means that energy,
entropy, pressure, and temperature can be locally de-
fined. In contrast to our water-boiling experiment, the
temperature is—after it is defined at all—a function of
space and time T(x,t) in a volume whose geometry is
not even fixed, but depends on the impact-parameter
value b .
Volumes of the order of thousands of fm3 and time

scales of some tens of fm/c can be measured with pion
interferometry, especially a time delay due to a transi-
tion (see Sec. V.C.4). The lifetime of the fireball is esti-
mated to be 10–20 fm/c for Si+Pb(Au) collisions at 14.6
GeV/n-n from pion interferometry measurements at the
Brookhaven AGS accelerator (see, for example, Stachel,
E814 Collaboration, 1994).
Temperature scales that should be distinguished are

the initial temperature at the onset of local equilibrium
Ti , the transition temperature Tc , possible values of
superheating/supercooling effects, and the decoupling
temperature Td (of the order of the pion mass).
Candidates for thermometers are thermal photon and

dilepton spectra (Shuryak, 1978; see also Gyulassy,
1984). The differential cross section of dilepton produc-
tion as a function of the invariant lepton pair mass M
and the rapidity Y , (d2s/dM2dY)Y50 , is predicted to
scale according to exp(2M/T), where T is the tempera-
ture of the emitting system. Unfortunately these ther-
mometers like to hide in the background of other dilep-
tons. Thermal dileptons are difficult to identify in the
total dileptonic yield (see Sec. V.C.2). Pions also have
been proposed as thermometers for measuring the freez-
eout temperature (Brown, Stachel, and Welke, 1991).
Pions from the decay of the D(33) resonance have a
characteristic pT distribution that is very different from
that of primary pions. The ratio of D(33) resonances to
nucleons sensitively depends on the temperature via
Boltzmann factors. Thus a measurement of the pT dis-
tribution permits the identification of decay pions and a
measurement of the temperature-dependent ratio of
D(33) resonances to nucleons.
If it is difficult to measure the temperature, let us see

how we can tune it. The initial temperature changes with
the initial energy density («}T4 for an ideal gas), and
that depends on lnAs . Thus in principle one could vary
s for a given nucleus A . Due to the lnAs dependence
this would require a large variation in the incident-beam
energy, accompanied by a considerable loss in the lumi-
nosity, if As is reduced (Ludlam and Samios, 1988; Satz,
1990a). For asymmetric collisions between small and
large nuclei, the energy can be increased by going from
peripheral to central collisions, i.e., by varying the im-
pact parameter. For symmetric collisions the realistic

possibility that remains is the variation of A , i.e., the
type of nucleus itself. Going from SS to UU collisions
roughly gives a gain in energy density by a factor of 7–8
at the price that the volume changes as well. Going from
fixed-target to collider experiments one expects a factor
of 2–4 increase of the initial temperature Ti . The esti-
mate of Ti at the AGS and SPS accelerator is about
190–200 MeV; at the Relativistic Heavy-ion Collider
Ti’s will be reached between 400 and 500 MeV, at Lin-
ear Hadron Collider at CERN it may be 600–900 MeV.
Last but not least, to complete our comparison to a

phase transition under ‘‘normal’’ conditions, we have to
find observable signatures of the QCD transition. The
goal is to identify observables that could reflect almost
constant pressure or temperature over an interval where
energy and entropy densities (« and s) change rapidly,
where the phase conversion takes place. Typical observ-
ables at our disposal in heavy-ion collisions are multi-
plicity distributions in rapidity space and average trans-
verse momenta ^pT&. It turns out (see Sec. V.C.1) that
^pT& values can be a measure of the initial pressure and
temperature, while (dN/dY) distributions depend on
the initial values of « and s . Thus a T-« diagram corre-
sponds to a ^pT&-dN/dY plot.
There are a variety of other signatures that are in

principle sensitive to a transient plasma and to the tran-
sition dynamics as well. They are discussed in Secs. V.C
and V.D.
Let us summarize the main complications we have to

face in heavy-ion experiments. The basic assumptions
that the fireball is large enough and long-lived enough to
reach thermal equilibrium, and that thermodynamic
concepts apply have to be checked and justified. Due to
expansion dynamics, different competing time and
length scales are involved. The spacetime expansion
from initial thermalization until freezeout has to be
traced back from the final observables, if one wants to
compare the signatures with predictions of static, micro-
scopic equilibrium quantities. Usually one traces back
using a hydrodynamic description.
Hydrodynamics is a useful computational tool in esti-

mating bulk features like leptonic or hadronic particle
yields, multiplicity fluctuations, orders of lifetimes, etc.
Note also that hydrodynamics describes off-equilibrium
situations although it is based on local equilibrium con-
ditions. The system is expanding and cooling and out of
global equilibrium. In this sense, hydrodynamics is also a
conceptual framework in which to treat nonequilibrium
situations in such a way that all the information of equi-
librium QCD is not lost. This information includes the
equation of state, elementary cross sections, structure
functions, and other derived quantities of equilibrium
thermodynamics which we have partly outlined above.
There are a few other concepts that are useful in

treating off-equilibrium aspects of heavy-ion collisions.
We shall discuss the determination of the nucleation
rate of hadronic bubbles in the plasma according to
Langer’s approach in condensed-matter physics
(Langer, 1969; Csernai and Kapusta, 1992a, 1992b; Sec.
V.D.1), an alternative process for phase conversion
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(large domain coarsening) in Sec. V.D.2 (Borrill and
Gleiser, 1995), a calculation of transport coefficients
based on a combination of linear response theory with
hydrodynamic concepts (Sec. V.D.3), and the concept of
dynamical universality applied to systems far from (Ra-
jagopal and Wilczek, 1993a, 1993b; Sec. V.D.4).
The effect of a phase transition on the hydrodynami-

cal flow depends on the type of phase-transition dynam-
ics. If the transition is of first order but proceeds
smoothly, close to equilibrium, the effect is just to slow
down the expansion. Discontinuities in thermodynamic
quantities would be reflected in shocklike discontinuities
of the fluid. If the transition is of first order but involves
metastable states—a supercooled plasma or a super-
heated hadron gas—deflagrations or detonations may
evolve with the possible effect of large multiplicity fluc-
tuations (Sec. V.C.5).
Such explosive processes are one source of entropy

production during the evolution. Other sources are dis-
sipation effects and the freezeout transition. All of them
are estimated to produce little extra entropy, so that the
approximation of entropy conservation during the evo-
lution seems to be justified (Blaizot and Ollitrault, 1990,
and references therein).
Although dissipation effects on entropy production

may be small, pure glue is rather viscous. It is amusing to
estimate the viscosity of a gluon gas at tera degrees in
comparison to ‘‘normal’’ gases. For T close to Tc the
shear viscosity is of the order of the L-QCD scale. Thus
it is 1016 times the viscosity of a classical gas under ‘‘nor-
mal’’ conditions (where it is 1025 kg/m s; Hosoya and
Kajantie, 1985).
The main ingredients in a hydrodynamic description

are the initial conditions (Sec. V.B.1) and the equation
of state (Sec. V.B.2). Before we go into detail, let us
quote some numbers from Cleymans et al. (1986) to
show that the basic condition for applying a hydrody-
namic description is not violated too much: The mean
free path of a particle in a medium has to be much
smaller than the size L of the medium. The mean free
path of a quark at an initial energy density of 2.7 GeV/
fm3 for UU collisions is supposed to be 0.22 fm, as com-
pared to a diameter of 15 fm for a uranium nucleus. The
corresponding quark density is 9 quarks/fm3. Groups
presently working on three-dimensional hydrodynamics
for relativistic heavy-ion collisions are those of Venugo-
palan et al. (1994), Waldhauser et al. (1992), and Bravina
et al. (1993).
We close this section with a warning concerning the

following subsections. The reader will not find any
weighing of the evidence for the transition to be of ei-
ther first or second order. We leave this question open
until the end.

B. The hydrodynamic framework

The derivation of the hydrodynamic equations can be
found in various textbooks (e.g., Landau and Lifshitz,
1959), and their adaptation to heavy-ion collisions is de-
scribed in the work of Cooper and Frye (1974) or in

reviews by Cleymans et al. (1986) or Blaizot and Olli-
trault (1990). For completeness we sketch the main steps
in deriving an appropriate form for heavy-ion collisions.
The adaptation to heavy-ion collisions amounts to a suit-
able choice of coordinates and a set of initial conditions
based on experimental observations.
Hydrodynamic equations describe the evolution of a

gas (or fluid) in space and time. The gas is specified by a
local temperature, pressure, energy, entropy, and veloc-
ity. The equations result from constraints of energy and
momentum conservation and other conserved quantities
like the baryon number. If we first neglect dissipative
effects (viscosity, thermal conductivity), the energy-
momentum tensor of a relativistic perfect fluid in motion
with velocity um is obtained by a Lorentz boost from its
rest frame as

Tmn5~«1p !umun2gmnp . (5.3)

The equations for energy-momentum and baryon num-
ber conservation are

]mT
mn50 (5.4a)

and

]mJ
m5]m~nBu

m!50, (5.4b)

respectively, where nB(x,t) is the local baryon number
density. Using Eq. (5.3), contraction of Eq. (5.4a) with
un leads to

un]n«1~«1p !]nu
n50, (5.5)

where e denotes the energy density and p the pressure.
An analogous equation can be derived for the entropy
density s , which can be converted to a temperature
equation in the baryon free case. Contracting Eq. (5.4a)
with (gnr2unur) leads to the second hydrodynamic
equation,

~«1p !ut]tul2]lp1ulu
t]tp50 . (5.6)

The next step is to choose coordinates adapted to a
plasma evolution in cylinder geometry, where the z axis
is commonly identified with the beam axis. Now one can
express Eqs. (5.5) and (5.6) in coordinates z and t ; the
four-velocity um of the matter is written as

um5
1

A12vz
22vr

2 ~1,vz ,vr,0!. (5.7)

For vanishing radical velocity vr (which is frequently
used as an approximation), the remaining components
of um are parametrized according to

um5~coshu ,sinhu ,0,0! (5.8a)

where u is the fluid rapidity, defined via

u5arctanvz . (5.8b)

A more convenient choice of variables are the spacetime
rapidity h defined as

h5
1
2
ln
t1z

t2z
(5.9)
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and the proper time t

t5At22z2

with the inverse transformations

t5t coshh ,

z5t sinhh . (5.10)

Note that the fluid rapidity coincides with the spacetime
rapidity in the case of vz5z/t .
In terms of these new coordinates, the hydrodynamic

equations (5.5) and (5.6) for a longitudinal motion are

t
]«

]t
1tanh~u2h!

]«

]h
1~«1p !F ]u

]h
1tanh~u2h!t

]u

]t G
50 (5.11a)

and

]p

]h
1tanh~u2h!t

]p

]t
1~«1p !Ft ]u

]t
1tanh~u2h!

]u

]h G
50. (5.11b)

This set is complemented by a third equation, which fol-
lows from baryon number conservation (Kajantie et al.,
1983),

t
]nB
]t

1nB
]u

]h
1tanh~u2h!S ]nB

]h
1nBt

]u

]t D50.

(5.12)

Now we have three equations (5.11)–(5.12) for four un-
known functions: the energy density « , the pressure p ,
the fluid rapidity u , and the baryon number density
nB , all of them being functions of h and t in a longitu-
dinal expansion. Thus, in order to find solutions of the
set (5.11)–(5.12), we have to supply one additional equa-
tion and to specify the initial conditions. The additional
equation is an equation of state relating « and p or T and
s . (Other combinations are possible as well.) As an ex-
ample, we will discuss the bag model equation of state;
see Sec. V.B.2. Several proposals have been made for
the initial conditions. Here we sketch only the Bjorken-
Shuryak expansion scenario. We discuss the longitudinal
solutions of Eqs. (5.11)–(5.12) for this choice. The solu-
tions considerably simplify in this special case, which
may be one reason why they are frequently used in the
hydrodynamic treatments of matter evolution in heavy-
ion collisions.
Radial solutions of Eqs. (5.11) are rarefaction waves

propagating from the boundary into the fluid with the
velocity of sound. They differ in an essential way from
Bjorken’s scaling solution as they are independent of
proper time t . Radial solutions enter measurements of
enthalpy and pressure, see Sec. V.C.1.

1. Bjorken-Shuryak expansion scenario

In the Bjorken-Shuryak scenario (Shuryak, 1978;
Bjorken, 1983), several experimental observations are
taken into account. The phenomenon of ‘‘nuclear trans-
parency’’ leads to a separate treatment of the central

rapidity and the fragmentation region. In nuclear trans-
parency a large fraction of the incoming energy is car-
ried away by two receding nucleons in a nucleon-
nucleon collision at high energy. Similarly, in a nucleus-
nucleus collision the baryon contents of the colliding
nuclei interpenetrate at the collision and recede as two
Lorentz-contracted pancakes after the collision. The
central rapidity region refers to the fluid of quanta con-
tained in the region between the receding pancakes. In
the hadronic phase it consists mostly of pions. Thus it
should be a good approximation to neglect the baryon
number. Setting nB50 leads to a first simplification of
the set of hydrodynamic equations. Separate treatment
of the central and fragmentation regions is justified only
if both regions are well separated in phase space. Ex-
perimental conditions should be checked to guarantee
this, otherwise an analysis in this picture is not adequate
(Blaizot and Ollitrault, 1990). At future colliders (the
Relativistic Heavy-ion Collider and Linear Hadron Col-
lider) these conditions may be satisfied.
Secondly, pronounced space-time correlations are ob-

served in particle production in the sense that particles
with large longitudinal momenta are produced at a late
time, those with low momenta promptly, in the center-
of-mass system. This is nothing but the twin paradox.
Particles live longer when their velocities are higher. In
Bjorken and Shuryak’s ansatz the effect of time dilata-
tion is incorporated in the boundary conditions. Con-
sider an ensemble of particles that are produced at
z505t . If it is only the proper time t that determines
the moment of disintegration, all particles that measure
the same t in their rest frame constitute an initial con-
dition at t5t0 . That is, the initial condition refers to a
hyperbola At22z25t0 of constant proper time t0 . The
spacetime rapidity or light-cone variable h=1/2lnt1z/
t2z specifies the position on this hyperbola. Two dis-
tinct positions are related via a Lorentz boost in the z
direction. Since particles in the fluid element are sup-
posed to move as free particles, their velocity compo-
nent vz is given by z/t . The physics of a z slice of a fluid
element at time t is equivalent to the physics of a z8 slice
at time t85z8/vz . This is the scaling property in
Bjorken’s scaling ansatz. For vz5z/t , the spacetime ra-
pidity h equals the rapidity Y ,

Y5
1
2
ln
11vz
12vz

5
1
2
ln
E1pz
E2pz

, (5.13)

if the four-momentum pI is parametrized as
pI 5(E ,pz ,pt), where pt is the transverse momentum.
A third feature observed in proton-proton collisions is

the plateau structure of inclusive cross sections when
they are plotted as functions of Y . A plateau for central
values of Y is also expected for nucleus-nucleus colli-
sions. At least the particle multiplicity depends only
weakly on Y for central rapidities (Bjorken, 1983). Ac-
cordingly, a further simplifying assumption seems to be
justified. The local thermodynamic quantities like
« ,p ,T ,s depend only on t0 , but not on h(t0), when the
hydrodynamic expansion commences. Thus the initial
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condition is invariant under Lorentz boosts in the z di-
rection. The dynamics preserves Lorentz covariance,
which is most easily seen from the tensor equation
(5.4a). Therefore we shall look for solutions
«(t),s(t),T(t) of Eqs. (5.11) depending merely on t .
Inserting vz5z/t in the collective four-velocity of the
fluid leads to

um5
1

A12vz
22vr

2 ~1,vz ,vr,0!5~ t/t ,z/t ,0,0!

5~coshh ,sinhh ,0,0!. (5.14)

A comparison with Eq. (5.8a) shows that the fluid rapid-
ity can be identified with the space-time rapidity h ,
which furthermore coincides with the rapidity Y . With
h5u , Eqs. (5.11) simplify to

t
]«

]t
1«1p50

]p

]Y
50. (5.15)

The baryon number is set to zero in the following con-
siderations. The entropy equation for s(t) simplifies to

t
]s

]t
1s50 , (5.16)

where the relations uh50 and (ut5utcoshh2uzsinhh)
have been used. The solution is

s

s0
5

t0
t
. (5.17)

As can be seen, upon integration over d3x5tdY d2x ,
the entropy per given rapidity interval remains constant
as long as the hydrodynamic equations can be applied.
This need not hold throughout all stages of the expan-
sion, especially not close to freezeout or in the interme-
diate period, where the plasma converts to the hadronic
phase in one or another way. Let us assume that it holds
approximately. Then the important feature of Eq. (5.29)
is that it allows us to infer the entropy density in the
initial state (more precisely s0t0) from an observation in
the final state (the pion multiplicity); see Sec. V.C.1. Un-
der the same assumptions as above, the temperature
equation simplifies in (t ,h) coordinates to

cs
21t]tlnT50 (5.18)

for m50, where cs denotes the velocity of sound and, by
definition,

cs
25

]p

]e
. (5.19)

Integration of Eq. (5.18) gives

T5T0~t0 /t!cs
2
. (5.20)

For a massless free gas, the speed of sound is 1/) in
units where c51. Thus the temperature drops more
slowly than the entropy density. In fact, the predicted
decrease may be too slow, since transverse expansion
has been neglected so far.

Finally, we have to solve Eq. (5.15) for the energy
density as a function of proper time. One possibility is to
use an equation of state (in principle, it should be the
equation of state of QCD) to eliminate the pressure in
Eq. (5.15). The result is that the energy density de-
creases not merely because of the expanding volume in
proper time, but also due to the pressure exerted by the
gas of the covolume. We come back to the equation of
state in the next section. Note that the velocity in the
transverse direction vr has been neglected so far. We
shall sometimes abbreviate the solutions in the Bjorken-
Shuryak scenario as Bjorken’s scaling solution.

2. The bag model equation of state

Although the bag model leads to a crude description
of the equation of state for QCD, we devote a short
subsection to it, since it is often used in combination
with the hydrodynamic equations and leads to quantita-
tive predictions in the end. In the MIT bag model, the
basic features of QCD—confinement and asymptotic
freedom—are effectively incorporated via bags (Chodos
et al., 1974; Johnson, 1975). In the hadronic phase,
quarks and gluons are allowed to move freely or with
perturbatively small interactions inside small volumes of
space inside the bags. Outside the bags, the quarks are
forbidden to move as free particles. The vacuum outside
the bags is given a constant energy density B (the bag
constant), which keeps the quarks and gluons confined
to the bags. During the phase transition, latent heat is
necessary to liberate the color degrees of freedom. It
turns out to be proportional to B . Its original value
(0.145 GeV4; De Grand et al., 1975) was based on fitting
the mass spectrum at T50 and low density in the MIT
bag model. The effective value for the ‘‘vacuum pres-
sure’’ B , which should be used in the quark gluon
plasma phase at a baryonic matter density of nB=1/fm

3,
is 0.5 GeV/fm3 (Shuryak, 1988).
An additive shift B in the energy density of the

plasma due to the vacuum energy is obtained if ln Z of
an otherwise free gas of quarks and gluons is shifted by
2BV/T , that is,

T lnZ(plasma phase)=free-gas contribution2BV/T .
(5.21)

The free-gas contribution follows from the usual expres-
sion for a free gas of particles and antiparticles with
mass m , chemical potential m , and degeneracy factor
g . In the large-volume limit it is given by

lnZ~T ,m ,V !5
gV

6p2T E
0

`

dK
K4

~K21m2!1/2

3F 1
exp$@~K21m2!1/22m#/T%61

1
1

exp$@~K21m2!1/21m#/T%61 G , (5.22)

where the + sign refers to fermions and the 2 sign to
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bosons. Adding up the various contributions from
bosons (gluons), fermions (quarks and antiquarks), and
the vacuum, one is led to

T lnZ5
1
6
NcNfVS 730 p2T41mq

2T21
1
2p2 mq

4 D
1

p2

45
NgVT

42BV . (5.23)

Here Nc is the number of colors, Nf the number of fla-
vors, Ng the number of gluons, and mq the chemical
potential due to quarks. The standard thermodynamic
relations Eqs. (2.1) lead to the following expressions for
the energy density, pressure, and entropy density in the
plasma phase:

«p5111aT41B , (5.24a)

pp537aT42B , (5.24b)

sp5148aT3, (5.24c)

where a5p2/90. These expressions hold for m50,
Nc53, Nf52, Ng58. The general expression for «p is

«p5
NcNf

p2 S 7p4

60
T4D1

p2

15
NgT

41B . (5.25)

From Eqs. (5.24a) and (5.24b) we can easily read off the
bag model equation of state in the plasma phase as

p5 1
3 ~«24B !, (5.26)

which remains valid for mÞ0.
Similarly, expressions for « , p , and s are obtained in

the hadron phase, when it is described as a free gas of
the lightest mesons and baryons, i.e., pions, nucleons,
and antinucleons, where the baryonic contribution is
sometimes omitted. For pions analytic expressions for
« , p , and s can be derived in terms of modified Bessel
functions following from Eq. (5.22). Contributions of the
nucleon-antinucleon gas can be calculated numerically.
Heavier mass particles are often omitted for moderate
temperatures (T<250 MeV), although the restriction
to pions is rather questionable above Tc>150 MeV (see
Sec. IV.A.2). Here we state the result for the limit of a
gas of massless pions:

«h59aT4, (5.27a)

ph53aT4, (5.27b)

sh512aT3, (5.27c)

so that

«h53ph (5.28)

is the bag-model equation of state in the hadron phase.
The finite T (and finite m) transition occurs, when the
following Gibbs criteria are satisfied:

ph5pp5pc , (5.29a)

Th5Tp5Tc , (5.29b)

m53mq5mc . (5.29c)

The indices h ,p stand for the hadron and plasma phases,
c for the critical value, and m is the chemical potential
associated with nucleons. Pressure balance at Tc relates
Tc to the bag constant

Tc5~B/34a !1/4. (5.30)

The latent heat, determined as the gap in the energy
densities «p2«h at the transition, is 4B in this model,
e.g., for an effective bag constant of 0.5 GeV/fm3 the
latent heat is 2 GeV/fm3.
Almost by construction the bag model leads to a first-

order transition at finite T and vanishing m . There is a
finite gap in energy and entropy densities, while the
pressure is continuous. Note that in the mixed phase, the
velocity of sound cs vanishes, since cs5dp/d«uTc50.
This is true only so long as m50. An exception is a
second-order transition at mc Þ 0, but Tc50 for a par-
ticular value of B , which we shall not consider further
here (see Cleymans et al., 1986).
Equations (5.26) and (5.28) can easily be combined to

a single equation by using u functions as projections on
the distinct phases above and below Tc . Similarly it is
not difficult to formulate an equation of state for a
second-order transition by smoothly interpolating the
steplike behavior of the bag model equation of state.
Such an ansatz has been proposed by Blaizot and Olli-
trault (1990) for s(T). Although the interpolation is ad
hoc, it provides a useful check of how sensitively phe-
nomenological implications depend on the order of the
transition. The difficulty is to derive such an equation for
a second-order transition within an effective model. The
O(4) model in three dimensions allows a second-order
transition, but is supposed to describe only the low-
temperature phase of QCD (T<Tc) or the immediate
vicinity above Tc , where pions and sigma mesons have
not yet dissolved into their constituents.
The bag model does not provide an adequate descrip-

tion of the transition region. Even at the transition
point, the plasma and the hadron phases are treated as
noninteracting gases differing only in the degrees of
freedom and the vacuum energy. An increasing number
of hints warns against a naive counting of the number of
modes, treating them the same as in the limiting cases of
high and low temperatures. In particular, the number of
degrees of freedom of a hadron gas is a delicate prob-
lem, if the change of hadron masses as a function of
temperature and density is respected. In this case a
counting of pion and nucleon degrees of freedom is cer-
tainly insufficient. In the vicinity of Tc the confinement/
deconfinement properties should be implemented in a
slightly more sophisticated way than with a single pa-
rameter B . Nevertheless the bag model is frequently
used for temperatures T;Tc . The reason is probably its
very tractable analytic form compared to (preliminary)
plots of numerical simulations.
At high or low temperatures the bag model is more

adequate; the gluonic sector may be treated as a gas of
noninteracting glueballs at low T and of gluons at high
T .
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Various improvements on QCD’s equation of state
have been proposed within the framework of the bag
model. Finite quark masses and perturbative QCD cor-
rections to the partons inside the bag can be taken into
account (Kapusta, 1979; Shuryak, 1979), leading to cor-
rections of e , p , and s . Strange quarks, finite masses for
pions, and higher-mass hadrons can also be included.
The ultimate goal is an equation of state from lattice

QCD with dynamical quarks, which is merely based on
nonperturbative ingredients (see Sec. III.B). The nu-
merical data should then be presented in a feasible para-
metric form to facilitate their handling.
In the next section we shall see what we can learn

directly from heavy-ion experiments about QCD’s equa-
tion of state.

C. Signatures sensitive to the nature
of the phase transition

Here we described theoretical and experimental tools
that are sensitive to the nature of the transition, in par-
ticular to its order. The sensitivity holds at least in prin-
ciple. A dependence on the transition dynamics is some-
times hidden in the spacetime expansion. The signatures
reveal characteristic features like time delays, nucleation
of bubbles, strong correlations, or large fluctuations in
an indirect way.
Let us start with direct experimental tests of the equa-

tion of state. We sketch the possibilities for measuring
thermodynamic quantities.

1. Thermodynamic observables

The basic observables at our disposal in heavy-ion col-
lisions are the rapidity distributions of final-state par-
ticles and their transverse momentum distributions. An
extraction of the equation of state requires measurable
observables that are related to «(T ,m), s(T ,m), or
p(T ,m). The signals of a first-order transition in a finite
volume may be qualitatively very similar to those for a
sharp crossover phenomenon, consisting in a rapid rise
in the effective number of degrees of freedom over a
small range of temperatures, say less than 10 MeV.
These numbers are revealed in s/T3 or «/T4; see, for
example, Eqs. (5.24) of the bag model equation of state.
Thus we have to identify the observables that are related
to s , « , p , and T . Roughly speaking, temperature and
pressure are measured by the average transverse mo-
mentum ^pT& (as usual under certain restrictive condi-
tions), energy and entropy by the particle multiplicity
distribution in rapidity space.
We consider the baryon-free case, m50. Four quanti-

ties s , « , p , and T have to be determined. An equation
of state is a relation between any two of these four vari-
ables [«(p), s(T), s(«)]. It can be obtained from ex-
periments (and compared with theoretical predictions) if
two relations are used as experimental input. For ex-
ample, if «(T) and p(T) are known, s(T) follows from
dp/dT5s , and «(p) is the equation of state. Alterna-
tively, if the initial condition s0(t0) is fixed from a mea-
surement of dN/dY , then s(t) and T(t) and thus

s(T) are known from the hydrodynamic equations, and
p(T) follows as an integral over s . Suppose that the
second relation is provided by a measurement of ^pT& as
a function of s1/3, where ^pT& is related to s/« (see be-
low) and s1/3 } T . The knowledge of (s/«)(T) yields
«(T); thus all relations are known (Blaizot and Olli-
trault, 1990).
In the following subsections we explain the relations

between dN/dY and s0 or «0 , ^pT& and «/s or T , as well
as ^pT& and p or («1p). We will show why ^pT& vs
^dN/dY& diagrams are roughly equivalent to (T vs s) or
(T vs «) diagrams. In the case of a phase transition a
flattening of the ^pT& distribution is expected, which was
originally proposed by van Hove (1982) as a possible
signature for a phase transition.

a. Entropy measurements

The basic step is to identify the entropy density with
the particle density in the final state. The final-state par-
ticles consist mostly of pions. Pions are nearly massless
bosons, and thus their entropy S is approximately pro-
portional to their number N . For the densities we have

s5an (5.31)

with a53.6 for a free gas of massless pions. The rapidity
distribution is obtained from the particle density by an
appropriate integration. When the four-volume element
is expressed in terms of the spacetime rapidity h and the
proper time t , it follows for N

N5E n d4x5E nt dt dh d2x , (5.32)

or for the number of particles per unit rapidity at a fixed
final proper time t f

dN

dh
5E n~t f ,h ,x !•t fd

2x . (5.33)

From Eqs. (5.31) and (5.17) we have

dN

dh
5E d2x t f

1
a
s~t f ,h ,x !

5E d2x t0
1
a
s0~t0 ,h ,x !. (5.34)

If the initial entropy density is taken to be independent
of the transverse coordinates x , we find that the final
rapidity distribution of multiplicity is proportional to the
initial entropy density

dN

dh
5t

1
a
•s0~t0 ,h!AT , (5.35)

where AT5pR2 is the transverse size of the nucleus.
For example, the multiplicity per unit rapidity may be
about 150 for a central collision of 16O with R;3 fm on
a heavy nucleus [Blaizot and Ollitrault (1990)]. If the
initial (=equilibration) time is estimated as 1 fm/c , it
implies a value of ;20 fm23 for the initial entropy den-
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sity. We shall see next what is further needed to extrapo-
late the initial temperature and the initial energy den-
sity.

b. Energy measurements

To derive an expression similar to Eq. (5.35) for the
initial energy density e0 , we need a relation between
s0 and «0 and «0 and T0 to eliminate T0 . From the
thermodynamic relation («1p5Ts) and the bag model
equation of state we find

~e02B !~11cs
2!5T0s0 . (5.36)

In Eq. (5.36) the factor 1/3 for a massless free gas has
been replaced by cs

2 . Next we use Eq. (5.24a) of the bag
model in the plasma phase (assuming that the initial
temperature is high enough for the system to be in the
plasma phase),

«02B5gT0
4 . (5.37)

Again the exponent can be generalized to 111/cs
2 . The

degeneracy factor g in the case of two massless u and
d quarks, their antiquarks and gluons is given by

g5
p2

30 S 23232333
7
8

1238 D5111a . (5.38)

The different factors correspond to the spin, quark, an-
tiquark, color, flavor, and gluon degrees of freedom; 7/8
arises from the Fermi-Dirac statistics. When T0 is elimi-
nated in Eq. (5.37) via (5.36), and (5.35) is solved for
s0 , we obtain

«05B1gF a

AT~11cs
2!gt0

dN

dh G 11cs
2

. (5.39)

Equation (5.39) gives the promised relation between the
final-state rapidity distribution and the initial energy
density e0 .

c. Transverse momentum distributions

A second important class of observables comprises av-
erage transverse momentum distributions. First we con-
sider the relation between the average transverse mo-
mentum ^pT& and E/S . For a thermalized fluid at rest,
the momentum distribution is isotropic. For an ultrarela-
tivistic fluid the total momentum is equal to the energy,
so that the average transverse momentum is propor-
tional to the energy per particle [Blaizot and Ollitrault
(1990)],

^pT&5
p

4
E/N . (5.40)

If we replace E and N by the corresponding densities, it
remains to express the particle density n in terms of the
entropy density via Eq. (5.31),

^pT&5
ap

4
«

s
. (5.41)

This is already a relation of the type we are looking for.
Note that «/s scales approximately with T and s with

T3. Measuring ^pT& as a function of s0
1/3 by varying

dN/dY accordingly could in principle provide a check of
a theoretically predicted relation between «/s and T .
When «/s is calculated from the bag model equation

of state and plotted against (s0 /sc)
1/3, it displays a fea-

ture that turns out to be characteristic of generic ^pT&
distributions: a flattening in the region where the initial
entropy density s0 is chosen to have the critical value
sc , accompanied by a linear rise is for small ratios
(s0 /sc)

1/3 (low temperatures) where «/s and s1/3 are pro-
portional to each other.
Unfortunately Eq. (5.41) is too simple to be true. As

the QCD plasma fluid undergoes a transverse and a lon-
gitudinal expansion, the simple relation between ^pT&
and the initial temperature via s0 gets lost. The decou-
pling temperature Td at freezeout and the time at which
the transverse expansion sets in enter as new scales. The
essential point is whether decoupling and hadronization
happen before or after the transverse expansion be-
comes important. The results of Blaizot and Ollitrault
(1990) are the following. If the system decouples before
the transverse expansion sets in, ^pT& is not sensitive to
the equation of state, but characterizes a fluid at rest at
the decoupling temperature. In the opposite case (de-
coupling after transverse expansion), ^pT& is roughly
that of a thermal distribution with a three-dimensional
expansion at decoupling. As an effect of longitudinal ex-
pansion, s0 has to be replaced in the naive expression
(5.41) in an appropriate way. The longitudinal expansion
diminishes the available energy for transverse expan-
sion.
The value of ^pT& is no longer proportional to «/s .

The modified ^pT& diagram as a function of the initial
entropy density can be compared with the diagram re-
sulting from a bag model equation of state combined
with a hydrodynamic expansion. The qualitative feature
of each is the same: a flattening of ^pT&/Tc for initial
entropy values lying in the transition region. The physi-
cal reason for this similarity is reduced pressure on indi-
vidual particles if the entropy content is distributed
among more degrees of freedom in a transient plasma.
A smaller value for the pressure leads to a reduced av-
erage transverse momentum.

d. Enthalpy and pressure

The average transverse momentum ^pT& can be pre-
dicted from solutions of the hydrodynamic equations.
The transverse velocity component is parametrized in
terms of rapidity variables. The average transverse mo-
mentum is written in terms of the average transverse
rapidity YT (due to thermal motion) and the fluid rapid-
ity u according to

^pT&5mpsinh~YT1u!. (5.42)

Enthalpy measurements can be performed via ^pT&, if
the fluid rapidity u is determined as function of the ini-
tial enthalpy according to (Cleymans et al., 1986)

uR5
cs

11cs
2 ln

«01p0
«1p

, (5.43)
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where uR is a solution of the set of longitudinal hydro-
dynamic equations, specialized to rarefaction waves
uR . Solving Eq. (5.42) for u with u given by Eq. (5.43),
we find for large pT /mp that ^pT& is proportional to
euR, thus

^pT&;
mp

2 S «01p0
«1p D cs /~11cs

2
!

. (5.44)

Now we must express the right-hand side of Eq. (5.44) in
terms of measurable quantities. We write the initial en-
thalpy as T•s0 , eliminate T0 in favor of e0 with an equa-
tion of state, and replace s0 and «0 via Eqs. (5.35) and
(5.39).
Barometers are provided by ^pT& distributions as a

function of the pressure. The fluid rapidity is now con-
sidered as a function of the final energy density e f . The
analogous relation to Eq. (5.43) reads (Gyulassy, 1984)

u~« f!5
cs

11cs
2 lnS p0pf D , (5.45)

leading to

^pT&5
mp

2
eYTS p0pf D

cs /~11cs
2
!

. (5.46)

Equation (5.45) is derived from a set of hydrodynamic
equations in which the longitudinal expansion has been
neglected for simplicity. Equation (5.46) explains why
^pT& distributions are called barometers. If the speed of
sound and the pressure pf in the final state are known, a
measurement of ^pT& allows one to estimate the initial
pressure p0 . Equation (5.46) gives ^pT& for a hadron
gas, which is described as a massless ideal pion gas with
rarefaction waves in the transverse direction, but with-
out longitudinal expansion.
The transverse flow is overestimated as long as the

longitudinal expansion is neglected. If p0 /pf or e0 /e f in
Eq. (5.46) are replaced by the pion rapidity density
dN/dY , the resulting ^pT& values are actually too large
as compared to experimentally measured values. The
fluid feels transverse pressure gradients when the rar-
efaction wave arrives at a fluid element. The arrival is
somewhat delayed, since the wave moves inwards with
the speed of sound. Thus some energy has already gone
into longitudinal expansion, and less energy is available
for transverse motion. Formally this effect can be in-
cluded by an appropriate form factor, which should be
multiplied on the right-hand sides of Eqs. (5.46) and
(5.41) [see Gyulassy (1984), Baym (1984a, 1994b),
Blaizot and Ollitrault (1990) for further details]. The ter-
minology of calling ^pT& a ‘‘barometer’’ for heavy-ion
collisions goes back to Gyulassy (1984). Gyulassy fur-
ther identifies thermometers and seismometers in con-
nection with dilepton production and large multiplicity
fluctuations; see Secs. V.C.2 and V.C.5 below.
To summarize, bulk quantities like e(T), p(T),

s(T), derived quantities like the velocity of sound, the
enthalpy, the energy per degree of freedom e/s (Redlich
and Satz, 1986), and QCD’s equation of state are calcu-
lable on the lattice. The equation of state including dy-

namical fermions and a finite chemical potential should
finally replace the bag model equation of state, which
entered the derivation of various relations in the preced-
ing section. Equations (5.35) and (5.44) are a remark-
able example of relations between observables that are
directly accessible in experiments and on the lattice. Ini-
tial energy and entropy are related to the pion multiplic-
ity per unit rapidity. A variation of dN/dY amounts to a
variation of s0 or e0 . On the other hand, ^pT& can be a
measure of the freezeout temperature and is sensitive to
the pressure. Thus a flattening of ^pT& in a ^pT& vs
dN/dY diagram could be nothing else but a reflection of
a slow change of temperature and pressure during a
rapid rise in energy and entropy densities, i.e., a rapid
crossover or a first-order transition in a finite volume.
The typical shape of a ^pT& vs dN/dY diagram, which is
schematically drawn in Fig. 29 has actually been seen at
the Tevatron (Alexopoulos et al., 1990). Figure 30,
shows the average transverse momentum ^pT& of K6

and p6 in pp̄ collisions as a function of the charged-
particle multiplicity per unit rapidity. Unfortunately a
sharp crossover or a phase transition are not the only
explanations for the shape. The flattening could be just a
kinematic effect (lack of available energy). Kinematic
constraints like energy conservation require that ^pT& go
to zero at the boundaries of the allowed rapidity interval
(Schmidt and Schukraft, 1993). Rescattering effects or
minijet production are further alternatives to explain an
increase followed by a flattening effect (Eskola and

FIG. 29. Hypothetical correlation between the average trans-
verse momentum ^pT& and the multiplicity of final-state par-
ticles in a given rapidity interval dN/dY . The vertical line
separates the areas of hadronic phase (left) and the transition
region (right).

FIG. 30. The average transverse momenum ^pT& of K6 and
p6 in pp̄ collisions as a function of the charged-particle mul-
tiplicity per unit rapidity. From Satz (1990a).
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Lindfors, 1990; Satz, 1990a, 1990b). The multiplicity in-
creases only slowly with the incident kinetic energy. The
relevant variable has been identified as s0t0 /scR0 ,
where t0 is the proper time, at which the hydrodynami-
cal evolution starts, s0 is the entropy density at that time,
R0 is the initial radius, and sc the entropy density at the
critical temperature (Blaizot and Ollitrault, 1990). This
variable should be larger than 1 to see an effect of the
transverse expansion. Thus it is not sufficient that the
initial entropy density s0 be larger than the critical value
sc , which one might naively expect. The inverse initial
radius 1/R0 is proportional to 1/B , where B is the mass
number of the smaller of the colliding nuclei. Therefore
the use of heavier nuclei in the collision may not help,
but make things worse. For a review about the available
data on ^pT& distributions we refer the reader to
Schmidt and Schukraft (1993).

2. Dileptons and real photons

a. Dileptons

We assume that the initial energy densities of a colli-
sion between nuclei A of the projectile and nuclei B of
the target are high enough so that a quark-gluon plasma
is initially generated. Since the size of the system pro-
duced in such a collision is not too large and the electro-
magnetic cross section is small, all dileptons can escape,
especially those from the hottest dense state of the
plasma. Dileptons will be emitted at all stages of the
evolution, from the initial plasma phase through an in-
termediate mixture of plasma and hadron phases to the
hadron phase at freezeout. Thus, in contrast to hadronic
yields, dileptons are sensitive to the whole spacetime
history of the evolution. The relevant kinematic vari-
ables for dileptonic cross sections are the invariant mass
M of the dilepton pair and its transverse momentum
pT . A typical observable is the differencial multiplicity
R . This is the multiplicity of dileptons per invariant mass
squared M2, transverse momentum pT and unit rapidity
interval DY ,

R5
dN

dM2d2pTdY
5E

V
d4x

dN

d4x d4p
. (5.47)

Here R is a spacetime integral over the multiplicity rate
dN/d4xd4p , which is the production rate at a given
four-momentum pI of the dilepton pair at a spacetime
point (x,t). The quantity dN/d4xd4p depends on the
temperature T via (x,t), and therefore on the phase of
the system, since the temperature is a function of the
spacetime coordinate of the evolution. The phase
(plasma or hadron) determines the dominant production
mechanisms contributing to the elementary cross sec-
tions and the structure functions in dN/d4xd4p . The
structure functions reflect the medium in which the el-
ementary processes take place (quarks inside a pion or
in a heat bath of other partons). Collective effects of the
plasma may also influence the production rate for a
given value of (x,t).
In a given phase, several sources are usually respon-

sible for dilepton production. We are mostly interested

in thermal collisions reflecting thermodynamic proper-
ties of the supposed heat bath environment. Thermal
collisions are certainly not the only way to produce
dileptons. Other mechanisms are Drell-Yan production,
preequilibrium production in the plasma phase, and
dilepton generation from pions via r-resonance decays
in the hadronic phase. Thermal dileptons result from
parton collisions in a medium which can be character-
ized by a local temperature. They are specific for a
plasma or a hadron gas that can be described with ther-
modynamic concepts; they are absent from hadron-
hadron collisions.
Finally, we want to find out the mass range DM in

which the differential multiplicity R is dominated by
thermal dileptons. In this range R should be sensitive to
the kinetics of the phase transition and in particular to
its order. Let us assume that R(x,t) has been calculated
as a function of T(x,t). The spacetime integral in Eq.
(5.47) can be performed if the missing relation
T5T(x,t) is known. Such a relation is provided by the
hydrodynamic approach. So far it is the only framework
which is detailed enough to predict particle spectra ac-
cording to Eq. (5.47). Further simplifying assumptions
are made. These include Bjorken’s scaling ansatz and
the neglection of transverse flow, which lead to the con-
servation of entropy. As we have seen above, the had-
ronic multiplicity of the final state can be related to the
initial conditions under the assumption of entropy con-
servation. Once the entropy density S is known as func-
tion of time, the time dependence of T follows immedi-
ately if s(T) is known. This is where the equation of
state enters. Further assumptions about the kinetics of
the phase transition are necessary to justify the applica-
tion of hydrodynamic concepts throughout all stages of
the evolution.
We will now outline the predictions of Cleymans et al.

(1987) for thermal dilepton spectra, which are derived
for different scenarios of the phase transition. The rea-
son we have selected this reference eventhough it is not
the most recent one in this field is that it explicitly ad-
dresses the influence of the order of the phase transition
on the dilepton production rate. Although the ingredi-
ents do not represent the latest state of the art, the rep-
resentation is suited for illustrating which features of
dileptonic yields are sensitive at all to the dynamics of
the phase transition. Later we comment on areas of pos-
sible improvements and extensions.
Consider a particle production rate that is differential

in x and p . The general expression for the thermal rate
of lepton pairs (here written for m1m2 rather than
e1e2) in the independent-particle approximation of ki-
netic theory (Kapusta and Gale, 1987) is given by

dN

d4xd4p
5E d3q1

2E1~2p!3
f~q1!E d3q2

2E2~2p!3
f~q2!

3E d3q1

2E1~2p!3
E d3q2

2E2~2p!3

3uM~p1p̄2→m1m2u2d~p2q12q2!. (5.48)
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Here M is the matrix element for the process of lepto-
production from particles p1 and p̄2 with momenta q1
and q2 , p is the momentum of the lepton pair and q1

and q2 are the momenta of m1 and m2, respectively.
The statistical distributions f(q1) and f(q2) measure the
probability of finding particles p1 and p̄2 with momenta
q1 and q2 in the given medium. The dileptons do not
receive such factors, since we assume that rescattering of
the electromagnetically interacting particles can be ne-
glected. The cross section is small, and the plasma vol-
ume is assumed not to be too large. In terms of cross
section s , Eq. (5.48) reads

dN

d4xd4p
5E d3q1

~2p!3
d3q2
~2p!3

vq1q2s~p1p̄2→m1m2!

3f1~q1!f2~q2!d~p2q12q2! (5.49)

upon integration over the lepton momenta; vq1 ,q2 de-
notes the relative velocity of particles p1 and p̄2 :

vq1q25
A~q1q2!

22mp1,2
4

E1E2
. (5.50)

In the plasma phase the lowest order process for dilep-
ton production is the same as in Drell-Yan production:
two quarks annihilate via a virtual photon to yield a
lepton pair

qq̄→g*→m1m2. (5.51)

The momentum distribution functions f1 and f2 of the
quarks q and antiquarks q̄ are given by the Fermi-Dirac
distributions:

fq5
6

e ~uI qI 2m!/T11
, f q̄5

6

e ~uI qĪ 1m!/T11
. (5.52)

The chemical potential m is set to zero in the end, uI is
the local four-velocity of the plasma fluid element in the
fixed laboratory frame, and qI (qĪ ) is the four-momentum
of the quark (antiquark). For the hydrodynamic sce-
nario, a longitudinal expansion will be used with vanish-
ing transverse velocity of the plasma. With this in mind,
it is convenient to express the product uI •qI in terms of
the transverse invariant mass M , the rapidity Y of the
lepton pair, and the plasma spacetime rapidity u :

uI •qI 5MTcosh~u2Y !, (5.53a)

where MT is the transverse mass, and

MT5AM21pT
2 , (5.53b)

Y5
1
2
ln
E1pz
E2pz

, (5.53c)

u5arctanhv , (5.53d)

with v5z/t denoting the collective fluid velocity. If the
transverse mass is large compared to the temperature,
the exponentials are sharply peaked around u5Y . In
this case no final u dependence is left. Upon integration
over the dilepton momentum, the result for the dilepton
rate in the plasma phase at a spacetime point

xI 5(t ,xT ,y) (y being the local spacetime rapidity of a
fluid element) and four-momentum pI 5(MT cosh Y,
pT , MT sinh Y) is given by

dNP

d4xd4p
5

a2

4p4 F11
2m2

M2 G
3F12

4m2

M2 G1/2e2E/TKP~pI ,T ,m!(
i
e i
2 .

(5.54)

The index P stands for plasma phase, the quantities ei
are the charges of the quarks, a is the electromagnetic
coupling, constant, m stands for the lepton mass and
KP is a function that depends on xI via T , which we will
not specify further at this stage; it is characteristic for the
plasma phase.
In the hadronic phase it is the invariant massM of the

dilepton pair that determines which process makes the
leading contribution to the elementary cross section s in
Eq. (5.49). For small-mass pairs (small compared to the
r peak), bremsstrahlung-type emission of soft virtual
photons is important. For masses M well above the or-
der of Tc , processes of the type hh̄→g*→m1m2 play a
role, where hh̄ are hadrons others than pions. Their
thermal production should be suppressed due to the
relatively low temperatures, unless the in-medium
masses are changed due to effects of chiral symmetry
restoration, which may be dramatic! The only process
that has been considered thus far in Cleymans et al.,
(1987) is p1p2→r→m1m2. The electromagnetic cross
section s(M) is modified by the strong interactions of
the pions, leading to

sp~M !5Fp
2 ~M !S 12

4mp
2

M2 D 1/2s~M !, (5.55a)

where

s~M !5
4p

3
a2

M2 F11
2mm

2

M2 GF12
4mm

2

M2 G 1/2. (5.55b)

The pion form factor Fp is calculated in the vector-
meson-dominance approximation, in which only the r
pole is kept in the sum over all r-like resonances.
Furthermore, the functions f1 and f2 in Eq. (5.49)

have to be replaced by Bose-Einstein distributions. The
result for the dilepton rate in the hadron phase is given
by

dNH

d4xd4p
5

a2

48p4 F112
mp

2

M2GF124
mp

2

M2G 3/2uFp~M2!u2

3exp$2E/T%•KH~p ,T !, (5.56)

where KH is a slightly different function from KP in Eq.
(5.54).

b. Integration over the spacetime history

The assumption of Bjorken’s scaling solution for the
hydrodynamical expansion simplifies the evaluation of
the spacetime integration. The appropriate representa-
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tion of the volume element is d4x5tdtdyd2xT , where t
is the proper time coordinate in a comoving reference
frame with the fluid, y is the spacetime rapidity (denoted
as h above), xT are the transverse coordinates. The
transverse velocity is neglected, the transverse distribu-
tions of thermodynamic quantities are taken as step
functions, and the energy density «, pressure p , entropy
density s , and temperature T depend then only on the
time t. The dileptonic yields per invariant mass, trans-
verse momentum and unit rapidity interval dY are given
by

dNPh~hydro!

dM2d2pTdY
5
1
2 E

t i

tf
t dtE

ymin

ymax
dy

dNPh

d4x d4p
@T~t!# .

(5.57)

The index Ph indicates the dependence on the phase,
t f2t i is the duration of a certain phase or a mixture of
phases, and y varies between the minimal (ymin) and
maximal (ymax) spacetime rapidity of the beam. The
equation of state enters the cooling law T(t), and the
phase duration is sensitive to the dynamics of the tran-
sition.
Cleymans et al. (1987) have discussed the following

scenarios:
(i) A first order transition described by a bag model

equation of state proceeding in equilibrium or with su-
percooling and subsequent superheating.
(ii) A second order transition with an equation of

state taken from lattice Monte Carlo results (Redlich
and Satz, 1986).
As we saw in Sec. V.B.2, the bag model equation of state
leads to a T3 dependence of the entropy density and is
typical for an ideal gas. In the baryonless plasma phase
for two massless flavors, the entropy density is given by
sP54337p2T3/90. In the hadron phase described as an
ideal gas of massless pions we have sH52p2T3/15. In
the case of the second-order transition s(T) has been
read off from numerical data of Redlich and Satz (1986),
which were obtained using lattice QCD. Using the scal-
ing solution for isentropic flow [s(t)t5const, see Sec.
V.B.1], we find the relations T(t). When the scaled tem-
perature T/T0 is plotted as a function of the scaled
eigentime t/t0 (where T0 and t0 refer to the initial val-
ues chosen as T05284 MeV and t051 fm/c), the char-
acteristic difference between a first-order transition pro-
ceeding in equilibrium and a second-order transition is
that the average temperature is higher in the quark-
gluon plasma phase and lower in the hadronic phase for
a second-order transition. Having T(t) at hand, the in-
tegration in Eq. (5.57) can be carried out. Depending on
the scenario, four production rates are distinguishable:
(i) The dilepton production rate in the pure plasma

phase produced in the time interval between t0 and
tP , where T(t) is given as T0(t0 /t)

1/3 for the bag
model equation of state.
(ii) The dilepton production rate in the pure hadronic

phase produced during the interval between tH and the
freezeout time (where the application of hydrodynamic
concepts is already questionable).

(iii) If there is a coexistence of phases as is expected in
the first-order case, there is a mixed phase at tempera-
ture Tc , where the plasma and hadron phases contribute
dNP /dM

2d2pTdY and dNH /d
2Md2pTdY , respec-

tively. Both rates are calculated separately. Their rela-
tive weight is described by a factor f , which is the frac-
tion of the entropy in the plasma phase. Its value follows
from s(t)t5const and the constraint

s~t!5f~t!sP1@12f~t!#sH . (5.58)

The entropy densities sP and sH remain constant for
constant T5Tc .
The ratio sP /sH of entropy densities also gives an es-

timate for the time scales tH and tP , as
tH /tP5sP /sH537/3 if we assume for a moment that the
naive counting of degrees of freedom is appropriate
close to Tc . This ratio is frequently quoted in the litera-
ture, although the number three in the hadronic phase
(resulting from three pions) is most likely incorrect. The
large difference in entropy densities between the two
phases explains the long duration time of the mixed
phase. It takes time to rearrange the effective degrees of
freedom since they have to be reduced by an order of
magnitude for the above counting when the conversion
to the hadronic phase sets in.
We display the results of Cleymans et al. (1987) only

for the cases of (a) a first-order transition with Maxwell
construction and (b) a second-order transition. Upon in-
tegration over the transverse momenta, the resulting
dileptonic production rates dN/dM2dY at Y50
GeV22 are shown in Figs. 31(a) and 31(b). The main
difference is the extent of the interference region in

FIG. 31. Production rate of muon pairs vs the invariant mass
M of the dilepton pair calculated (a) for a first-order transition
and (b) for a second-order transition. The dashed-dotted line
indicates the hadron contribution; the dashed line shows the
quark contribution; the solid line is the sum of the quark and
hadron contributions. The two vertical lines separate regions
in which different phases make the dominant contribution,
from left to right: the hadronic phase, the interference region,
the quark-gluon plasma phase. From Cleymans et al. (1987).
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which both phases contribute to dilepton production. It
is considerably smaller for a second-order transition. In
this case, the production mechanisms change instanta-
neously at Tc , while those of both phases would be at
work in the coexistence phase of a first-order transition.
The width of the interference region does not yet pro-

vide a signal that is suitable for experiments to infer the
phase-transition dynamics. The sudden change in the
production mechanism is reflected in the average trans-
verse momentum ^pT& of the dilepton pair, or even
more clearly in its derivative with respect to M . The
average ^pT& can be derived from the differential multi-
plicity R . A plot of d^pT&/dM as a function of M for
both transition scenarios shows a peak in the
d^pT&/dM distribution for a second-order transition.
Thus a peak in the d^pT&/dM distribution is a possible
candidate for a signal of a second-order phase transition
(keeping in mind all approximations that have been ap-
plied so far). As outlined by Cleymans et al. (1987), such
a sudden change in the slope of ^pT& as a function of
M can be also produced by a higher-mass resonance like
the r8 (1600). To disentangle the origins of bumps in the
^pT& spectra, one should vary the initial temperature. At
a higher initial temperature, the contribution from the
plasma phase to the dilepton rate increases. A peak
structure in the ^pT& spectrum due to a second-order
transition will be evident for low initial temperatures,
while higher initial temperatures are necessary to see a
similar structure in a first-order scenario.
Yet another possibility may lead to a sudden change

in ^pT&(M). Dilepton rates are calculated in such a way
that they do not automatically interpolate smoothly at
Tc , although they should do so in the case of a second-
order transition, where no discontinuities should be seen
in thermodynamic observables. Cleymans et al. (1987)
have investigated the influence of smoothly interpolat-
ing the rates between both phases. The bump structure,
however, survived the interpolation between
dNP /d

4xd4p and dNH /d
4xd4p .

In general, it is necessary to calculate the electromag-
netic current-current correlation W(x ,p) (whose space-
time integral is proportional to dN/dM2dpTdY) in
terms of one effective model that replaces the bag model
in the case of a second-order transition. We mentioned
this point already in Sec. V.B.2.
So far we have been concerned with thermal produc-

tion rates and specific features reflecting the transition
dynamics in the rate dependence of the invariant mass
M . In heavy-ion experiments it is obviously an objective
of high priority to guarantee that thermal dileptons can
be distinguished from various background sources. In
the order of increasing masses, we have Dalitz pairs, soft
gluon bremsstrahlung, hadronic resonance decays, pre-
equilibrium production, and Drell-Yan production in
the very early stage of the collision.
Ruuskanen (1990) has derived an analytic expression

for the integrated thermal production rate R . The char-
acteristic feature of this expression concerns the T and
MT dependence compared to other production mecha-
nisms @MT5(M21pT

2 )1/2 denotes the transverse mass,

which is used instead of the transverse momentum pT].
The dependence of the thermal rates on the initial tem-
perature Ti is strong, proportional to Ti

6 compared to
the Ti

3 dependence of a Drell-Yan rate. Recall that Ti at
equilibration time t i can be related to the hadronic mul-
tiplicity in the final state according to

~t iTi
3!2}~dNp /dY !2, (5.59)

if an isentropic expansion scheme is assumed. This al-
lows an identification of thermal dileptons via their
strong (quadratic) dependence on pion multiplicity fluc-
tuations; Drell-Yan production rates show only a linear
dependence. At fixed multiplicity (i.e., fixed t iTi

3), the
thermal production rates are expected to show an ap-
proximate power-law behavior proportional to MT

26 in
the range MT /Ti,5.5,MT /Tc (Ruuskanen, 1990) with
a ^pT

2 & dependence proportional toM2, and an exponen-
tial decrease in the dilepton production rate for large
MT /Ti , with ^pT

2 & showing a linear dependence on M .
For an initial temperature of 600 MeV, the window of
the MT

26 dependence of the transverse-mass spectrum
lies between 1 and 3 GeV. Its lower end has to face a
background from the hadronic phase, its upper end the
Drell-Yan background.
Thus the first goal of a measurement of dilepton rates

in a collision of heavy-ion nuclei is to identify a window
in the transverse-mass spectrum that shows the behavior
of a thermal rate produced in the plasma phase. It is
easier to filter out theMT

26 dependent part if high initial
temperatures are reached in the experiment. For de-
tailed calculations of the different backgrounds and their
competition with thermal rates we refer the reader to,
for example, Ruuskanen (1992), Weldon (1991), Kajan-
tie and Miettinen (1981), and to McLerran and Toimela
(1985). For more recent predictions of the dilepton spec-
trum at energies of the CERN Linear Hadron Collider,
see Redlich et al. (1992). The effect of various equations
of state on the transverse expansion and the dilepton
production rate is discussed in Kataja et al., (1992). The
background of dileptons from r decays is usually consid-
ered undesirable from the point of view of thermal
dilepton identification. Recently it has been shown by
Heinz and Lee (1992) that such dileptons may contain
valuable information on the lifetime of the hadronic
phase; that is why they are called ‘‘fast clocks’’ for
heavy-ion collisions. The overall judgement is that the
identification of thermal rates in the different phases is
difficult but not completely unrealistic. Yet it seems to
be an order of magnitude more difficult to infer specific
features of the transition itself from structures of R or
^pT& distributions as functions of M .
To summarize, the approximations that enter predic-

tions of dilepton production rates, along the lines we
have indicated above, are:
(i) Uncertainties in the background to thermal dilep-

tons. The Drell-Yan background is the one that is best
understood. Corrections due to higher orders in QCD
have been assumed to be small, in fact they are large in
the usual deep-inelastic structure-function approach.
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[For recent results on Drell-Yan production at collider
energies including O(as

2) contributions we refer the
reader to van Neerven (1995).] Deviations from the lin-
ear dependence of the structure functions on the mass
number A (entering the Drell-Yan cross section for col-
liding nuclei) are assumed to be negligible in the rel-
evant mass range (M52–6 GeV). Probably the least
understood rates are those that are produced shortly af-
ter the collision but before the onset of thermal equilib-
rium. Effective models are needed to describe nonequi-
librium properties of the evolution of the initial state. In
the fluxtube model of Kajantie and Matsui (1985) and
Bialas and Czyz (1984, 1985), dilepton rates depend on
the strength of the color field that is formed after the
color exchange between the colliding nuclei. The new
production mechanism relies on plasma oscillations of
quarks and antiquarks. In the mass range of a few GeV,
which is of special interest for thermal production, the
worst perspective is that both the thermal and the Drell-
Yan productions—including all their specific
signatures—are buried under the yields of plasma oscil-
lations. For further discussions, see also Bialas et al.
(1988) and Bialas and Blaizot (1985).
(ii) The applicability of hydrodynamic concepts make

it possible to evaluate the integral over the spacetime
history of production rates at a given point in phase
space. This is marginal in several aspects. The volumes
are not so large compared to the mean free paths, at
least not close to freeze-out, where by definition the sys-
tem is so diluted that interactions can be neglected. The
scale of the equilibration time is estimated in a purely
phenomenological way. Thus it cannot really be argued
which time t0 is to be used for the onset of hydrody-
namic expansion. The adiabatic expansion guarantees
the conservation of entropy and leads to a simple rela-
tion between entropy and time. During the phase con-
version this condition may be violated.
(iii) The bag model equation of state has been used

close to Tc , although strong deviations from the ideal-
gas behavior are expected there. Lattice Monte Carlo
calculations should do their best to include the effect of
dynamical fermions as realistically as possible and to de-
rive an equation of state for temperatures close to Tc .
In deriving the equation of state that was used by Cley-
mans et al. (1987), which led to a second-order transi-
tion, the fermions were treated in the hopping param-
eter expansion; the parameters involved are known not
to be close enough to the continuum limit. A more real-
istic equation of state obtained from lattice calculations
with dynamical fermions can be found, for example in,
Christ (1992), although it should not be considered as
the realistic equation of state for QCD (see Sec. III.B.2).
Given the hydrodynamic approach and the equation of
state, further simplifications were made in deriving the
results we have shown. We have neglected effects due to
(i) A realistic nuclear geometry
(ii) The impact parameter dependence. In particular,

the initial temperature profile depends on a nonzero im-
pact parameter b0.

(iii) The transverse-coordinate dependence of tem-
perature at all stages of the evolution.
(iv) The transverse flow of the hadron/plasma fluid.

When transverse flow is included, hadronic rates can be
reduced by an order of magnitude due to the reduced
lifetime of mixed and hadronic phases, see Fig. 9 of
Ruuskanen (1990).
(v) Last, but not least, the possible temperature and

density dependence of the masses that are involved in
dilepton production. Meson masses can be expressed in
terms of the chiral condensate ^c̄c&; they should be sen-
sitive to the order of the transition. Either ^c̄c& vanishes
smoothly when approaching Tc from below, or two val-
ues of ^c̄c& coexist at Tc , a large value and a small one.
Finally we refer the reader to the work by Geiger and
Kapusta (1993), Shuryak and Xiong (1993), and Ruus-
kanen (1992) for more recent references in this field.
When dileptons are produced from vector-meson de-

cays, the dilepton rates are also sensitive to the phase
transition dynamics via vector-meson mass changes in
the medium both as a function of T and m . We have
skipped this possible manifestation of the transition dy-
namics, as we are not aware of any specific prediction to
date.

c. Real photons

Real photons should be understood in contrast to vir-
tual photons in dilepton production. Like dileptons, they
indicate the electromagnetic response to the plasma evo-
lution. They can provide clean signals in the sense that
they escape from different stages of the system with
rather small interaction cross sections. According to
their production conditions, the three major contribu-
tions to real photons are direct photons from partonic
processes in the initial state, thermal photons from both
phases, and decay photons produced at a late stage of
the evolution. At large transverse momenta KT>3
GeV, the lowest order (as) contributions to direct pho-
tons are the gluon-to-photon compton scattering off (an-
ti)quarks q(q̄)g→q(q̄)g , quark-antiquark annihilation
to photon and gluon processes qq̄→gg , and bremsstrah-
lung (with quark fragmentation into the photon). At
very high collision energies, the main contribution to di-
rect photons comes from the fragmentation of jets
(Gupta, 1990). At low transverse momenta KT<3 GeV,
decays of neutral mesons p0, h , h8, and v make a large
contribution. This contribution is particularly difficult to
estimate, but will be measured (Stachel, 1993). The un-
certainty in the estimate arises from a lack of knowledge
of the pT distributions of these mesons in nuclear colli-
sions. For very small transverse momenta (KT<10–20
MeV), hadronic bremsstrahlung is important (Ruus-
kanen, 1992).
A possible window for observing thermal photons

could be in the 2–3 GeV region (Ruuskanen, 1992).
Thermal photons can be produced in both phases. In
earlier calculations, only the plasma contribution was
considered (see, for example, Hwa and Kajantie, 1985).
Thermal photons in the plasma phase are produced via
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the same elementary processes as direct photons; the
difference in the final thermal-photon rate compared to
the direct-photon production rate is a replacement of
the product of structure functions by the square of the
entropy. The contribution from the hadronic phase has
been calculated by Kapusta, Lichard, and Seibert (1991,
1992), with the result that ‘‘a hadron gas shines as
brightly as a quark-gluon plasma’’ at temperatures be-
tween 150–200 MeV.
In the 1 GeV region, thermal-photon production rates

are clearly below those of decay photons. This does not
necessarily imply that thermal rates cannot be mea-
sured. An electromagnetic calorimeter with high energy
resolution and fine granularity has been proposed for
the Relativistic Heavy-ion Collider at Brookhaven; it
aims to measure the ratio of (No. of thermal photons)/
(No. of p0) as a function of pT to within ;3–5%
(Stachel, 1993). In view of Sec. V.D.3, we anticipate that
an accurate measurement of this ratio is rather valuable
for verifying certain remnants of a hypothetical second-
order chiral transition. At large transverse momenta
(>3 GeV), direct photons dominate. The chances for
thermal photons improve at very large multiplicities
dNp /dY of pions, because thermal photons are propor-
tional to (dNp /dY)

2, while photons from pion decay
vary with (dNp /dY). In the intermediate region,
whether or not thermal photons have a chance of being
identified depends sensitively on the shape of the had-
ronic pT spectra, which are not well understood. Real
photons have certain advantages over dileptons. Prompt
real photons originate from the Compton scattering of
gluons and quarks. Gluons equilibrate very rapidly com-
pared to quarks. Therefore the prompt-photon measure-
ment provides a direct (and the only direct) access to the
very early initial phase of the collision, which is not ac-
cessible with dilepton production rates. The signal-to-
noise ratio is expected to be larger than for the dilepton
continuum.
Thus it seems to us that future experiments with large

dNp /dY and high resolution detectors should offer
promising opportunities to look for signatures of a tran-
sient plasma and even for certain substructures in
thermal-photon distributions that could be conclusive in
view of the phase-transition dynamics. The procedure to
calculate the thermal production rate of real photons is
the same as that for dileptons. Once the elementary pro-
cesses are identified and emission rates are calculated in
the stationary plasma or hadronic phase, the result has
to be combined with the spacetime expansion. In a first
approximation one can use Bjorken’s similarity flow and
correct for transverse flow and nuclear geometry in later
steps. For such calculations we refer the reader to Ruus-
kanen (1992) and to references therein. High multiplici-
ties (>4000) and short equilibration times favor
thermal-photon production. We shall have to wait and
see whether the relativistic heavy-ion collider or the lin-
ear hadron collider do indeed reach such multiplicities.

3. Strangeness production

In heavy-ion collisions, an enhancement of certain
particle ratios involving strange quarks is predicted com-

pared to these ratios in hadron-hadron or hadron-
nucleus collisions. Ratios enhanced by a factor of 2 for
K1/p1 have in fact been observed in experiments at the
AGS accelerator at Brookhaven and SPS accelerator at
CERN. A theoretical explanation in terms of a transient
quark-gluon plasma is not compulsory. Rescattering
processes in a hot hadronic gas can also change the ra-
tios in the same direction.
The idea that strangeness could be a possible signa-

ture for a quark-gluon plasma relies on the following
arguments. Strangeness production in the plasma should
be facilitated for two reasons:
(i) Independently of the assumed baryon density, the

threshold energies for strangeness production in the
plasma phase are much lower than those for the produc-
tion of strange baryons or mesons in the hadron phase.
In the hadron phase, strange mesons or baryons are
typically made in a collision of two nonstrange hadrons.
The reaction with the lowest threshold energy already
requires 671 MeV (p1n→L01K11n). In the plasma,
the threshold for ss̄ production is equal to the rest mass
of ss̄ , about 300 MeV. For a given temperature, the den-
sity of noninteracting strange quarks is higher than the
density of noninteracting kaons; these will be discussed
later as an example. In a plasma an s quark has two spin
and three color degrees of freedom. If it is bound in a
K2 or a K̄0 in the hadron phase, only two degrees of
freedom remain. Also, the kaon mass is ;494 MeV,
compared to the current s-quark value of 180630 MeV.
(ii) The second reason applies to a baryon-rich envi-

ronment, which can be found in collisions with high
baryon stopping or in the rapidity range of fragmenta-
tion regions. The Pauli exclusion principle will prohibit
the creation of uū and dd̄ pairs instead of strange pairs.
The light quarks have to supply the large Fermi energy
represented by the chemical potential mB , while the s
quarks are suppressed only by their finite mass. More-
over ū and d̄ quarks have a high probability to recom-
bine with u and d quarks to form gluons. For strange
quarks the recombination to gluons is less likely. Due to
the volume expansion and the decreasing temperature
of the fireball, the process gg←

→ss̄ is soon out of thermal
equilibrium, in other words, it is too slow to proceed in
the inverse direction. In a background that is rich in u
and d quarks (large m), the number of (massless) ū or
d̄ quarks in a free gas is given by

n~ ū !56E d3p

~2p!3
1

exp$~p1m!/T%11
. (5.60)

This number should be compared to the number of
strange quarks

n~s !56E d3p

~2p!3
1

exp$~p21ms
2!1/2/T%11

. (5.61)

To lowest order in perturbative QCD, ss̄ pairs are
created in collisions of two gluons and by annihilation of
light quark and antiquark pairs (Rafelski and Müller,
1982). Rafelski and Müller have shown that gluonic pro-
duction is the dominating mechanism of strangeness
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production. For a small window of the quark mass equal
to 0.5–1 times the temperature, the equilibration time is
similar to the expected lifetime of the plasma phase.
For dileptons it has been sufficient (see the previous

section, Sec. V.C.2) to calculate the differential rate per
given spacetime volume. Due to the very small electro-
magnetic cross section the dileptons of high invariant
mass escape from the plasma without further interac-
tion.
Strange quarks are kept in the subsequent evolution.

This is the essential difference of strange production
compared to dilepton production. In various ways
strange quarks are incorporated as hadronic constituents
during the conversion of the plasma into the hadron
phase. After completion of the conversion, strangeness
is confined to hadrons. The strange hadrons continue to
react via strangeness creation, annihilation or exchange
reactions until freeze out. Thus it is not sufficient to cal-
culate the formation rate of strangeness per unit time
and volume as if the predicted rate would directly cor-
respond to observed multiplicities (as for dilepton pro-
duction).
The rate of change dn/dt in the density n of strange

particles is of primary interest now. Later we shall see
that, in the case of a static plasma, dn/dt is equal to the
rate R if n vanishes, that is, at the start of the produc-
tion. The change goes to zero when the equilibrium
value of n (neq) has been reached. It is a question of
time whether neq can be reached at all. The two compet-
ing time scales are the equilibration time teq , defined by
n(teq)5neq , and the lifespan of the phase in which
strangeness production is considered.
At this point, one can already suspect that the appro-

priate ‘‘choice’’ of the dynamical scenario for the phase
transition is even more essential here than it was in the
case of dilepton production. Time-scale estimates have
more far-reaching consequences in strangeness produc-
tion. The contribution of a thermal rate is not only a
question of size in the sense that it could be certainly
identified only if it is large enough compared to other
backgrounds. Certain rare multistrange hadron species
may completely fail as candidates for quark-gluon
plasma signatures if their equilibration time is just too
long compared to the lifetime of the phase in which they
could have been otherwise produced.
We shall now describe in more detail the differential

equation that determines the equilibration time for a
given species.
We shall not judge the chances of using strangeness

enhancement as a signature for a transient plasma
phase. Moreover, we do not see a way of specifying fea-
tures that could be conclusive in terms of the underlying
phase-transition dynamics. We merely want to give a fla-
vor of the complexity involved in calculating equilibra-
tion times. The ratio of K2/p2 serves only as an ex-
ample. We shall describe the work of Kapusta and
Mekjan (1986) and indicate places for further extensions
or alternative treatments.
The preconditions that are taken for granted are the

following: (a) the rate constant R for producing strange

quarks in the plasma phase is so large that the density
quickly attains its chemical equilibrium value ns

eq , and
(b) the system expands and cools so rapidly that the
strangeness abundance—once strangeness has been
produced—is not lost to a significant extent due to anni-
hilation into gluons. Both conditions ensure that the fa-
cilitated strangeness production in a plasma environ-
ment has a chance to become manifest in possible
plasma signals.
To obtain numbers for particle ratios at the very end,

we have to specify the following.
(i) The kinematical approach and the geometry.

Bjorken’s ansatz of a longitudinal hydrodynamic scaling
expansion is used. Possible effects due to viscosity, heat
conduction, and transverse expansion are neglected.
Viscosity and heat conduction would prolong the de-
crease of temperature as a function of time; transverse
expansion would accelerate it. These effects may or may
not approximately cancel.
(ii) The rapidity range. The central rapidity range has

been chosen to be the region in which the baryon num-
ber approximately vanishes. Hence the calculations are
performed at mB50. This may not be a favorable choice,
in view of the differing sensitivities of ū ,d̄ and s , s̄
quarks with respect to mB , but it simplifies the discus-
sion considerably.
(iii) The equation of state. Once again the bag model

equation of state is used.
(iv) The gross features of the phase transition. Corre-

sponding to the bag model, the phase transition is as-
sumed to be of first order. Two possibilities are consid-
ered: a smooth transition via the Maxwell construction
and a rapid transition with supercooling and subsequent
reheating.
(v) The observable to measure for the strangeness

contents of each phase. For the hadron phase
K2-mesons will be considered.
(vi) The elementary reactions entering the cross sec-

tions in the rate formulas.
(vii) An ansatz for the differential rate equation that

determines the equilibration time.
Let us start at the end and describe the rate equation

as was used in Kapusta and Mekjian (1986). For an ex-
panding plasma, the rate of change in the density of
strange quarks ns is given by

dns~ t !

dt
5Rp~T~ t !!H 12F ns~ t !

ns
eq(T~ t !)G

2J 2
ns~ t !

t
. (5.62)

Here ns
eq is the equilibrium density of strange quarks,

which depends on time via the temperature T . The rate
Rp is defined as the number of specific reactions per unit
time and volume producing ss̄ pairs in the plasma phase.
It corresponds to *d4pdN/(d4xd4p), which also en-
tered the dilepton rate in Sec. V.C.2. Similarly to Eq.
(5.48), the rate is calculated in the independent-particle
limit, that is, according to the ansatz
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R~a11a2→X !5
1

11da1 ,a2
E d3k1

~2p!3
f~k1!E d3k2

~2p!3

3f~k2!s~a11a2→X ;k1 ,k2!vrel , (5.63)

in which the occupation probabilities f(k) are chosen as
Boltzmann weights

f~k!5exp$2~Ak21ma
2!/T%, (5.64)

where ma is the degenerate mass of particle a1 and a2 .
This ansatz neglects possible final-state interactions due
to the influence of Pauli blocking. Here it is consistent
with considering a baryon-free rapidity region. The pref-
actor (1/11d) prevents double counting when gluon
pairs annihilate to ss̄ pairs, vrel denotes the relative ve-
locity between the particles a1 and a2 and is given by a
formula analogous to Eq. (5.50). Finally, s denotes the
elementary cross sections which contribute to R in a
given phase. Note also that the spacetime dependence
enters f via the temperature T .
Some further comments on the rate equation (5.62)

are in order. The last term in Eq. (5.62) is a dilution
term due to the volume expansion. The particle density
will decrease roughly like the entropy density, that is, as
1/t when the volume increases linearly with t . The first
two terms of Eq. (5.62) characterize the rate equation
for a nonexpanding source. Restricting the right-hand
side of Eq. (5.62) to the static part, we note that the
linearized rate equation implies for small deviations
from equilibrium

teq5neq /~2R !, (5.65)

that is, a high rate R implies a short equilibration time.
The cooling law as a function of time depends on the

chosen scenario. In the plasma phase the bag model
equation of state implies a decrease according to

T~ t !5T0~ t0 /t !
1/3. (5.66)

Other quantities entering the rate equation (5.62) are
the equilibrium density ns

eq of strange particles and the
rate Rp (gg or qq̄→ss̄) for producing strange quarks in
the plasma phase. The density ns

eq is approximated by its
Maxwell-Boltzmann limit. The rate Rp is taken from
Müller and Rafelski (1982) and is based on the lowest
order QCD cross section, for which ss̄ pairs are created
via gg→ss̄ , uū→ss̄ , and dd̄→ss̄ . (It remains to be
checked that suppressions due to higher orders in as are
not compensated by large combinatorial factors in the
graphical expansion.) The rate Rp depends on as and
ms as parameters, both of which vary with the renormal-
ization scheme, the energy scale, and the temperature.
Finally, in order to solve the rate equation for ns(t) in

the plasma phase, one has to specify the initial condi-
tion. Since the net strangeness of two cold nuclei is zero,
one can choose to set ns(t0)50, where t0 denotes the
formation time.
The dependence of the rate on this initial condition

should be weak, if the final rate is close to its equilib-
rium value, otherwise it has to be checked carefully. The
conserved charge is the difference of strange and anti-

strange particle numbers. Only as long as strange and
antistrange particles do not interact, their charges are
conserved separately. Thus if the s quark density repre-
sented by the K2 mesons is to be considered separately,
as in Kapusta and Mekjian (1986), one relies on the
treatment of quarks and mesons as effectively ideal
gases in both phases. The treatment as ideal gases is
implemented by the choice of equation of state. As lat-
tice results have shown, the ideal-gas picture is certainly
not correct in the vicinity of Tc—in particular, it fails if
long-range correlations are enforced by a second-order
transition. We stress this point, because in the presence
of interactions between s and s̄ quarks it is not clear
what a sensible measure for the strangeness contents of
each phase could look like.
Next we turn to the rate equations in the intermediate

phase between the onset of hadronization and its
completion. The terms in the rate equation depend on
the scenario. Kapusta and Mekjian (1986) considered
two alternatives, the Maxwell scenario and a phase con-
version with superheating and supercooling effects.
In the first case, the transition proceeds adiabatically.

The system stays in local equilibrium, and Maxwell’s
condition for coexisting phases is assumed to be fulfilled.
The nucleation rate of hadronic bubbles is large com-
pared to the expansion such that a fraction @12f(t)# of
the hadron phase is created immediately after the tem-
perature has reached its critical value Tc . This happens
at time t1 given by

t15~T0 /Tc!
3t0 . (5.67)

Equation (5.67) follows from entropy conservation and
the equation of state (see Sec. V.C.2, where it was de-
rived). Thereafter, the temperature stays constant until
the transition to the hadronic phase is completed. Both
phases contribute to the entropy density according to

s~ t !5f~ t !sp~Tc!1@12f~ t !#sh~Tc!, (5.68)

where sp and sh are the entropy densities in the plasma
and the hadron phases, respectively. Combined with the
time dependence of s(t), this implies that the time de-
pendence of the fraction f(t) is

f~ t !5
37
34

~T0 /Tc!
3
t0
t

2
3
34
. (5.69)

All plasma is converted to the hadron phase by a time
t2 , where t2 follows from f(t2)50:

t25
37
3

t1 . (5.70)

The second scenario (superheating and supercooling)
would be realized if an interface between the hadron
and the plasma phase were to cost excessive energy, that
is, if the surface tension between the plasma and had-
ronic bubbles is large. (As we showed in Sec. III, this is
not likely to be the case.) The onset of the phase transi-
tion is delayed until the temperature has dropped to a
value Tp,Tc . At Tp the system is assumed to transform
instantaneously to the hadron phase. The hadron phase
is superheated to a value Th.Tc , while the plasma was
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supercooled to Tp,Tc . The entropy should not de-
crease (during the transition it may increase), and the
energy is conserved. These assumptions, together with
the bag model equation of state, lead to a prediction of
the time dependence of T in the various time intervals.
In view of the final strangeness contents the interest-

ing feature about the time evolution of temperature is
that the system spends quite a long time in the mixed
phase or in the overheated hadron phase, depending on
the scenario and the initial temperature T0 .
Even the very ansatz for the rate equations depends

on the scenario. The common part is that which de-
scribes the approach to the equilibrium density of
strange particles in a static situation. When matter is
expanding, loss terms in the density have to be included;
these depend on the presence or absence of a phase
mixture. In particular, a coexistence of phases as occurs
in Maxwell’s construction leads to an additional compli-
cation. For the lifespan of the mixed phase the volume
occupied by the hadron phase expands while the frac-
tion of plasma phase shrinks. This structure has to be
superimposed on the common volume expansion.
In both scenarios, the rate changes dn/dt in K2 me-

sons are followed over the period between the onset of
the hadron phase until all of the plasma has been con-
verted. In Maxwell’s scenario, the temperature stays
constant at Tc , while in the supercooling/reheating sce-
nario it drops from Th.Tc to Tc .
Finally, to solve the rate equations for the density of

K2 mesons, we have to determine the rate constants
Rh(T(t)) and Rh(Tc) in the hadronic phase. Here the
possible contributions simplify due to the restriction of a
baryon-free environment. The relevant processes
are p11p2→K11K2, p2p0→K2K0, and p0p0

→K1K2. The corresponding cross sections must be in-
serted: these are inferred from experiments.
After all these specifications we are now ready to

solve the rate equations for ns(t). In heavy-ion colli-
sions, densities are not directly observable as functions
of time. Instead of densities, particle ratios, in our case
K2/p2 ratios, are suitable observables. The volume
drops out, leaving

K2/p2}ns /np2. (5.71)

Here ns is the density of strange particles at freeze-out,
hidden to equal fractions in K2 and K̄0 mesons, and
np2 is the density of p2 mesons. For massless pions and
under the assumption of an ideal gas, the pion number
density is proportional to the pion entropy density s
} T3, which is almost equal to the total entropy density
of the hadronic gas. This leads to

K2 /p2}ns /sh . (5.72)

This ratio should be compared to ns(plasma)/sp , the
ratio of the number of strange quarks in the plasma
phase to the plasma entropy density. The question as to
what would be a good measure for the strangeness con-
tents of the plasma has been raised for some time.
Rather than ns /s , the ratios ns /nd (nd being the number
of down quarks) were considered earlier in Rafelski

(1982). However, the quantity which should replace
np2 in the plasma phase is s and not nd , since all u ,d
and gluonic degrees of freedom (‘‘summed up’’ in the
entropy) must hadronize into pions.
Plots of ns /s and ns /neq as a function of time can be

found in Kapusta and Mekjian (1986) for three sce-
narios: Maxwell construction, the supercooling/
reheating scenario without extra entropy production
(DS50), and with doubling of the entropy at
Tc(DS5S). The curves display some expected features:
the higher the initial temperature, the faster ns reaches
its equilibrium value. For the Maxwell scenario ns /s and
ns /neq are continuous functions of time. After comple-
tion of the phase transition, the final ratio of K2/p2 is
shown in Fig. 32 as function of the initial temperature
T0 for three scenarios and three sets of input parameters
corresponding to the dashed, solid and dotted curves.
Input parameters are the strong coupling as , the
strange-quark mass ms , two cross sections entering the
rates of KK̄ annihilation, and the proper formation time
t0 of the plasma. Obviously in the supercooling/
reheating scenarios with DS50 or DS5S , the K2/p2

ratios are little sensitive to the initial temperature T0
and to the input parameters, and even to the degree of
supercooling and the related entropy production. The
value falls in the range 0.21–0.25. The value of chemical
equilibrium is in this range, at 0.217. The K2/p2 values,
predicted here for heavy-ion collisions, should be com-
pared to the same ratios in p̄p collisions, in which
K2/p2 is 0.0760.02.
In the Maxwell scenario, such an enhancement by a

factor about 3 is seen only for an ‘‘optimistic’’ choice of
parameters (dashed curves in Fig. 32) for all values of
T0>200 MeV. For a ‘‘realistic’’ choice (solid lines in Fig.
32) it is seen only for T0.250 MeV, and for a ‘‘pessi-

FIG. 32. Sensitivity of the ratios K2/p2 at Tc (when the phase
conversion is completed) to the chosen scenario—DS5S , 0, or
Maxwell (M)—and the input parameters. For further explana-
tions see the text. From Kapusta and Mekjian (1986).
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mistic’’ set (dotted lines in Fig. 32) only for large values
of T0 . The physical reason for the higher sensitivity of
the Maxwell scenario to the input parameters is likely to
be the continuous time evolution throughout all stages
of the evolution. There are no jumps in thermodynamic
quantities at Tc to cut off the history of the plasma evo-
lution.
The enhancement of K2/p2 by a factor of 3 com-

pared to p̄p collisions at the same beam energy is to be
interpreted as an indirect sign for a transient plasma
phase. Without the first-order phase transition the life-
time of the hadron phase would be shorter, so short that
there would not be sufficient time to saturate the
K2/p2 ratio to near its equilibrium value. Thus, in con-
trast to dileptons, K2 mesons are not a direct probe of
the high-temperature plasma phase; their abundance is
influenced by the phase transition and the subsequent
evolution in the hadron phase.
This example of an estimate of the strangeness en-

hancement may have illustrated the urgency of calculat-
ing from first principles the equation of state, the latent
heat, the surface tension, the temperature dependence
of couplings and masses, and the order of the phase
transition. Theoretical calculations may help to find the
most realistic scenario. In particular, we have seen the
simplifying power of the bag model equation of state,
which does not justify its use. For strong correlations
between particles close to Tc , the very indicator itself
may fail as a measure for the strangeness contents of
both phases. Also the gain and loss terms in the rate
equations, which describe the dynamical expansion, are
sensitive to details of the phase transition scenario.
The approach of Kapusta and Mekjian (1986) can be

generalized in various aspects, which we mention rather
briefly below. For our limited goal of identifying specific
signatures for the phase transition, a detailed discussion
of a more general framework would only serve to sup-
port further the overall impression: it is extremely diffi-
cult to separate the underlying phase-transition dynam-
ics from strangeness production.
Koch et al. (1986b) have considered the strangeness

production in the plasma phase within a framework,
where the baryochemical potential is nonzero. The rate
equation is considered in an alternative form, including
a linear loss term in ns /ns

eq . The volume expansion is
investigated in the cases of two different time depen-
dences of V and T , one following from the bag model
equation of state and one chosen by hand to simulate a
more rapid expansion. In addition, Koch et al. have
checked the influence of Pauli blocking on final states by
replacing the momentum distributions of strange quarks
in a suitable way.
A more general set of rate equations in the hadronic

phase has been considered in Koch et al. (1986a). The
underlying physical picture is similar to the Maxwell sce-
nario of Kapusta and Mekjian (1986). It is more general
in including baryons and antibaryons in addition to
pions and kaons. A wider spectrum of possible reactions
in the hadron phase has to be taken into account:
strangeness production and exchange reactions, and an-

nihilation processes. The abundances not only of p and
K mesons, but also of N ,Y ,J ,V , and their antiparticles,
have to be followed in their evolution. An additional
term appears in the rate equation for the mixed phase
that is specific for the chosen hadronization process
(here the so called fragmentation-recombination sce-
nario). Needless to say, the way in which the strangeness
abundance of the plasma is modified during the phase
conversion depends on the choice of the hadronization
process. Unfortunately there is a whole variety of frag-
mentation models at one’s disposal.
We conclude with a short and incomplete summary of

the experimental status. The ratios of K1/p1 and
K2/p2 have been measured in the E 802 experiment
(Abbott et al., 1990; Abbott et al., 1991) at the AGS ac-
celerator at Brookhaven and in the NA34 experiment at
the SPS accelerator at CERN (Van Hecke, 1991). Both
experiments operate in a baryon rich region of phase
space, thus we cannot compare the results with the theo-
retical predictions of Kapusta and Mekjian (1986) for a
baryon-free environment. In both experiments the same
trends are seen: an enhancement of K1/K2 ratios
roughly by a factor of 2 when going from hadron-hadron
to hadron-nucleus and nucleus-nucleus collisions,
whereas the K2/p2 ratio increases less strongly or stays
approximately constant. It should be mentioned that the
ratios K1/p1 and K2/p2 are not the only measure for
strangeness enhancement. Another quantification is the
strangeness suppression factor l52ss̄/(uū1dd̄), evalu-
ated by Wroblewski (1985) for pp collisions and applied
to S+S collisions at 200 GeV/nucleon (Seyboth et al.,
1992; Foley et al., 1992). With this criterion one finds a
factor-of-2 strangeness enhancement compared to pp
and pA collisions.
This does not mean that a plasma has been observed.

For many strange particles, the equilibrium values in a
hot extended hadron phase are similar to those in a
quark-gluon plasma. Thus the enhanced particle ratios
do not uniquely signal a transient plasma. If there is
another way to get strangeness into equilibrium by ad-
justing parameters in a hadronic cascade model, one will
never be able to distinguish this possibility from a tran-
sient plasma. A system in equilibrium has lost the
memory of how it got there. There may be exceptions
that provide a unique signal of a plasma (Rafelski,
1991). Enhanced multistrange (anti)baryon production
(antihyperons L̄,J̄2) have been proposed as special
tests for a plasma environment (Eggers and Rafelski,
1991). A hot hadron gas cannot overcome their large
mass barriers.
In Table VIII we recapitulate the ingredients that

have led to the prediction of K2/p2 enhancement in the
baryon-free case. Some freedom of choice is given for
the geometry, the rapidity range, and the initial condi-
tions. This freedom corresponds to the possibility of ex-
perimental tuning of certain parameters such as the ini-
tial energy density. In contrast to that, one is truly not
allowed to choose between various versions for the ki-
nematical approach, the equation of state, the gross fea-
tures of the transition, the rate formula, the contributing

570 Hildegard Meyer-Ortmanns: Phase transitions in QCD

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



elementary processes, and the ansatz for the rate for-
mula or the differential rate equation. These ambiguities
are due to uncertainties in the theoretical description
and shed some light on the reliability of predicted num-
bers in the very end. For example the choice of a strong
supercooling scenario must be regarded as ad hoc.

4. Pion interferometry

Interferometry is nowadays a well-known technique.
It was developed by Hanbury-Brown and Twiss (1954)
almost 40 years ago in astrophysics, as a tool to measure
the size of various stellar objects in the visible and radio
frequency ranges. Figure 33 shows a source that is as-
sumed to emit identical particles from positions P1 and

P2 . The particles are later observed at positions P3 and
P4 . Both emission points may contribute to both obser-
vation points, even if the particles are noninteracting,
but have small relative momenta. The reason lies in the
symmetrization (antisymmetrization) of the quantum-
mechanical wave function in the case of bosons (fermi-
ons). A correlation function is constructed from the
number of counts at P3 and P4 . The particles detected
in astrophysical interferometry experiments are pho-
tons.
The overwhelming majority of particles radiated in

heavy-ion collisions are pions. Thus we describe pion
interferometry as a particularly useful tool in estimating
the lifetime and the final-state size of the source that
radiates the pions. It is evident from the discussion in

TABLE VIII. Flow diagram of ‘‘ingredients’’ for predicting the K−/p− enhancement in the very end (for special notations see the
text).
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the previous sections that we need some measurements
delivering information about the equation of state. Pro-
duction rates of dileptons and strange particles strongly
depend on the duration of a certain phase. Three exten-
sive quantities must be measured to obtain an equation
of state for a static gas with no conserved charge. In
heavy-ion collisions, the total energy and entropy can
always be estimated from experiment (see Sec. V.C.1).
If we know the volume and the fraction of collective
energy at a given time of the collision, we have a single
value in an equation of state corresponding to the con-
ditions at that time. The correlation function measured
in pion interferometry could give an estimate for the size
at freezeout. The main reason that we are reporting on
this experimental tool is the possibility of measuring the
prolongation of lifetime due to a phase transition.
Let us see how we can infer the spacetime structure of

the source from correlations in momentum space. The
correlations refer to two-particle correlations in the pi-
on’s momenta distributions. They are defined as

C~p,q!5P~p,q!/@P~p!P~q!# , (5.73)

where P(p,q) denotes the probability of finding two
pions with three-momenta q and p in the same event. In
terms of rates, C(p,q) is given as

C~p,q!5
d6N

d3pd3q YS d3Nd3p

d3N

d3q D . (5.74)

Thus C is measurable as a ratio of two-pion to one-pion
inclusive yields. Its width is a measure of the inverse
source size. The weaker the correlation, the smaller its
width, and the larger is the source that emits the pions.
Two-pion correlations can arise from different origins.

The only ones that we will discuss in detail are Bose-
Einstein correlations due to the quantum mechanical
symmetrization of the outgoing wave functions of iden-
tical bosons. In the same way, electrons in a metal are
anticorrelated in their spatial distribution due to the fact
that they occupy only a finite volume in momentum
space.
Other causes of correlations due to final-state interac-

tions are hadronic and Coulomb interactions. Coulomb
interactions lead to positive correlations between par-
ticles of opposite charge if the relative momentum is
small. It has yet to be seen to what extent their contri-
bution is averaged out due to a comparable number of
pairs with equal and opposite charges.
A third source for correlations comes from resonance

decays. Pions are detected that are not directly emitted
from the hadronic gas at freeze-out, but which result
from decays of heavier mesons. Such pions may con-

taminate the information regarding the source size.
Bose-Einstein correlations are the only ones that con-

tribute when radiating source is completely chaotic. If
we follow the evolution of the plasma through the phase
transition to the final state of a hadron gas, it consists of
up to ;90% pions in the baryon-free region at freeze-
out, when the pion gas is already rather dilute. [Present
experiments deal with equal nucleon and pion numbers
at the AGS accelerator, Brookhaven, and at the SPS
accelerator, CERN; the ratios used are 1:7 for S+S and
1:5 for S+Ag. At this stage, the baryon-free region is still
an idealization.] The assumption of an incoherent source
for a dilute pion gas seems to be a good approximation
to start with.
We shall therefore focus on the case of a chaotic pion

source. The probability P(p,q) of measuring two pions
with momenta p and q in the same event is given as
(Pratt, 1984)

P~p,q!5P~p!P~q!

1E d4x d4yg~K,x !g~K,y !exp$ik~x2y !%,

(5.75a)

where

P~p!5E d4x g~p,x !, (5.75b)

and where

K5~p1q!/2 (5.75c)

is the average momentum of the pion pair, and

k5p2q (5.75d)

denotes the relative four-momentum. The function
g(K,x) gives the probability of emitting a pion of mo-
mentum K from a spacetime point x ; g(K,x) is called
the emission function. Thus in the simplest case, where
the source is incoherent and only Bose-Einstein correla-
tions relate the wave functions of emitted particles, the
correlation function essentially measures the expecta-
tion value of cos(kr) weighted by the product of emis-
sion functions (r5x2y is the relative distance of the
pions at their source). In other words, the measurable
correlation in momentum space is the Fourier transform
of the emission functions. (A general ansatz for the two-
particle correlation function associated with final-state
interactions in rapidity space can be written in a similar
form.) The probability P(p,q) depends on six degrees of
freedom. Under a further constraint on the spacetime
evolution of the source or on its symmetry properties, it
may be possible to determine the emission function g
from a measurement of P ; g depends originally on seven
degrees of freedom. The final spacetime distribution de-
scribed by the product of emission functions is a result
of the spacetime evolution of the plasma through a pos-
sible phase transition to the hadronic phase. The spatial
distributions of the pions at the moment of freezeout
constitute the radiating pion source in which we are in-
terested. Hence the ansatz for g(K,x) depends on two

FIG. 33. Source emitting photons at points P1 and P2 , which
are registered at P3 and P4 .
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ingredients: the equation of state and the dynamical con-
cept relating the spacetime dependence to thermody-
namic quantities.
Let us recall why a phase transition is expected to

delay the breakup. The moment of freezeout or breakup
tB is determined by the degree of dilution. Equivalently,
it is given by the value of its entropy density s(tB). For
fixed initial energy density and equilibration time t0 , the
initial entropy density for a plasma is considerably
higher than that for a hot pion gas to start with. The
total entropy is assumed to be approximately conserved
during the expansion. Thus it takes longer to reach the
same low entropy density at freezeout if one starts in the
plasma phase. A phase transition must have occurred at
an intermediate stage.
In Fig. 34 (from Bertsch, 1989) we visualize how the

prolonged lifetime is expected to influence the effective
spatial dimension of the source. The beam axis is chosen
in the z direction and labeled xLongitudinal . The two trans-
verse directions are xsidewards and xoutwards , which points
towards the detector. This coincides with the direction
of the main pion stream only if the pions are viewed in a
frame in which they are emitted perpendicular to the
beam. The pion cloud has the shape of a cylinder. Fig. 34
shows a snapshot of the pion sources at freezeout for
both scenarios: a plasma at the beginning or a hot and
dense pion gas. In the latter case, the high density of
pions in the formation zone leads to a rescattering. Thus
the transverse dimensions at freezeout would clearly ex-
ceed the size of the formation zone if the formation zone
were at rest. The longitudinal expansion of the source
modifies the picture in the following way. The collective
flow of the pions singles out a preferred direction. Recall
that in interferometry measurements only pions with al-
most the same momentum are detected. For a moving
source, the probability of detecting such pairs in a cer-
tain direction is reduced. Only pions which come from
the same side of the cylinder as the detector have a
chance of arriving at the detector with nearly the same
momenta. This reduces the transverse dimensions of the
pion cloud considerably in spite of the rescattering ef-
fects (Pratt, 1984; Bertsch, 1989).
A first-order phase transition that proceeds via nucle-

ation of the plasma to the hadronic phase will alter the
picture. The plasma lives only a very short time, so its
transverse expansion may be neglected. In the interme-
diate phase, a possible scenario is that the plasma will

break up into droplets of hadrons. The conversion to the
hadronic phase is slow, because the rearrangement of
degrees of freedom takes time. The pions are emitted
over a longer period at a smaller rate, hence they have
less chance to rescatter. The result is a small sideward
and a large outward dimension of the cloud at the mo-
ment of last interaction. This is illustrated in Fig. 34. The
hope of identifying a (strong) first-order phase transition
via pion interferometry is essentially based on this
scheme: to measure a large source size in the outward
direction at freezeout.
Pratt (1986) derived a functional dependence of the

emission function g for two equations of state (the bag
model equation of state to simulate a phase transition
and an ultrarelativistic pion gas without a phase transi-
tion). As a dynamical concept he used the hydrodynami-
cal equations for two geometries, a spherically symmet-
ric exploding plasma and Bjorken’s scaling solution. For
Bjorken’s scenario, an analytic expression can be ob-
tained, and for the spherically exploding plasma the hy-
drodynamic equations were solved for different initial
conditions. The change in the dynamics caused by a
phase transition is more pronounced the longer the
mixed phase lasts—the pressure stays constant while the
energy is absorbed in latent heat. Qualitatively, the fol-
lowing features can be seen in a plot of C(K ,k) as a
function of k , the relative momentum. Higher average
momentum K leads to a broader correlation, corre-
sponding to a smaller effective source size. This reflects
the collective expansion of the system. One effect of a
phase transition is a reduction of the explosive velocity.
The other effect is only apparent in C when the relative
momentum is chosen parallel to the average momen-
tum. For larger values of K , the correlations drop to
smaller values, indicating a larger size or a longer life-
time of the source. The strengths of the signals depend,
however, on the initial conditions chosen for the spheri-
cally exploding fireball. They may fade away under real-
istic conditions. In order to get information on a tran-
sient phase transition in a cylindrical geometry, the
orientation of the relative momentum k with regard to
the average momentum K has to be chosen in an appro-
priate way. The large outward dimension shows up only
in correlations with k parallel to Kper (Kper being the
transverse component of the average momentum).
The difference between sideward and outward dimen-

sions in a cylindrical geometry has been numerically in-

FIG. 34. Illustration of pion for-
mation zones (shaded area)
emitting pions in the sideward
and outward directions; upper
part, pion clouds (dotted area)
without a phase transition;
lower part, with a transition.
From Bertsch (1989).
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vestigated by Bertsch, Gong, and Tohyama (1988). This
calculation is based on a cascade description of the had-
ronic phase, especially in the period close to freezeout,
when the system is too diluted to justify a hydrodynamic
approach. On the other hand it turns out that a hydro-
dynamic expansion in the sense of a collective transverse
and longitudinal expansion velocity may be reinstated
from a more microscopic starting point, if realistic cas-
cade descriptions are used (Stachel, 1993). In the cas-
cade approach of Bertsch, Gong, McLerran et al. (1988)
individual pions are followed along their classical trajec-
tories. The plasma is assumed to break up into ‘‘blobs’’
that emit and reabsorb pions at a certain rate. Entropy
conservation is no longer assumed, but entropy is pro-
duced during the phase conversion. The freezeout time
is also predicted in this approach. The breakup is de-
scribed as occuring instantaneously, i.e. without super-
cooling delay.
Again one has to specify an ansatz for the emission

function. The classical treatment of pion motions leads
to an emission function which is too singular to display
interference effects. In order to implement interference
effects, the momentum dependence of the source func-
tion is smoothed. Bertsch, Gong, and Tohyama (1988)
devised the following parametrization:

g~x ,K!5f~Kper!te
2~t/t0!2e2~rper /R !2e2~Yr2YK!2/Y0

2
.

(5.76)

The spacetime coordinates are x , the proper time

t5At22z2, rper denoting the transverse position, and
Yr[tanh21(z/t) is the rapidity. The average three-
momentum K is written in terms of the transverse com-
ponents Kper and the momentum rapidity
YK[tanh21(Kz /E). The amplitude f only depends on
Kper. The values for t0 , R , and y0 are chosen as t059
fm/c, R53.3 fm, and Y050.76. Arguments for this
choice can be found in the original paper. The result for
the correlation C(p,q) of finding a pion pair with mo-
menta p and q is obtained from Eq. (5.76) as an integral
over the transverse positions. The integral remaining is
given as

C~p,q!511e2~kperR !2/2E dt dt8dY dY8
4tt8

t0
4pY0

2

3expH 2
t21t82

t0
2 J exp$2@~YK2Y !2

1~YK2Y8!2#/Y0
2%•cos@~pz2qz!~z2z8!

2~Ep2Eq!~ t2t8!# . (5.77)

Here kper[u(p2q)peru has a sideward and an outward
component. The result is a Gaussian in the sideward di-
rection; C measures the transverse size of the source,
which is the same in sideward and outward directions as
long as the time dependence of the distribution is ne-
glected. If the transverse relative momentum is chosen
in the outward direction (i.e., kperp s50, k' 0 Þ 0), the
Gaussian in kperp 0 is modified by the kperp 0 dependence
of Ep and Eq , and the effective size in the outward di-
rection is sensitive to the time correlation as is seen in
Eq. (5.77). The numerical results for sideward and out-
ward correlations are displayed in Figs. 35(a) and 35(b).
The reduced correlation for outward (compared to

sideward) relative momenta reflects the effectively
larger size of the source in this direction, as was antici-
pated above (see Fig. 34).
Expression (5.77) for the pion correlation partly mo-

tivates an ansatz which is sometimes used in real inter-
ferometry experiments (see, for example, Schmidt and
Schukraft, 1993). This is a threefold Gaussian in
kperp 0 , kperp s , and kL (the longitudinal component of
k instead of the rapidity YK). The possibility of having
different length scales RTout

, RTside
, and RTL

in all three
directions is realized [see Eq. (5.78) below].
So far, we have reported on pion interferometry as a

tool for estimating the lifetime of a pion radiating
source. Naturally, the question arises whether it is also
possible to resolve spatial inhomogeneities of bubble
structures in the mixed phase. This question has been
recently addressed by Wieand et al. (1992). The answer
is, in principle, affirmative. Pion interferometry may be a
tool for resolving the grain structure of the hadronic
phase. Clearly, the bubble structure should not be too
fine grained, or it will not be resolvable for the detec-
tors. In practice this does not seem to be a realistic pos-

FIG. 35. Momentum correlations: (a)
sideward transverse momentum correlation
between pions with kperp 050 and
k longitudinal50; (b) outward transverse momen-
tum correlation between pions, with
kperp s50 and k longitudinal50. Solid lines are
the cascade results, dashed lines correspond
to a semianalytic parametrization. From
Bertsch, Gong, and Tohyama, 1988.
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sibility. The theoretical predictions have not yet reached
a stage at which it is clear what should be verified ex-
perimentally.
In reviewing the experimental status of interferometry

measurements, we limit ourselves to a few aspects of
applications in heavy-ion experiments. The primary ob-
servables are the double-pion and single-pion inclusive
distribution functions N(p1 ,p2) and N(p) that deter-
mine the correlation C according to Eq. (5.73). In
Bjorken’s geometry, C depends on five independent
variables, the transverse and longitudinal components of
the average momenta K transv , KL or the rapidity Y , and
the sideward, outward and longitudinal components of
the relative momenta (kper s ,kper 0 ,kL , respectively).
An ansatz which is frequently used by experimentalists
is a simple Gaussian in the relative momentum of the
pion pair. A comparison to the analytic expression, Eq.
(5.77), may indicate the gap between theory and experi-
ment. The parametrization used in the NA35 experi-
ment at the CERN SPS accelerator (Baechler et al.,
1992) is a Gaussian in all three components of the rela-
tive momentum:

C~k!511l exp$2kper s
2 Rper s

2 /2%

3exp$2kper 0
2 Rper 0

2 /2%exp$2kL
2RL

2 /2%, (5.78)

where kper s is orthogonal to K transv and KL , kper 0 is
parallel to K transv and orthogonal to KL , and kL is or-
thogonal to K transv and parallel to KL . Furthermore, l is
the coherence, or chaoticity parameter, which is assumed
to absorb the Coulomb corrections of final-state interac-
tions. It is unity for an incoherent boson source. The
parameters Rper s , Rper 0 , and RL are the observables
that are determined from a fit. Note that the simple
Gaussian ansatz of Eq. (5.78) describes only spatial cor-
relations. The time correlation is more complicated if a
phase transition occurs. The parameters R include some
information on the spacetime evolution of the system
(Ferenc et al., 1992). The data for RL (fm) as a function
of rapidity Y as seen by an observer at fixed Yobs52.5
are consistent with a longitudinally expanding source.
This result is not trivial. Predictions for a static source
are quite different (Makhlin and Sinyukov, 1988). The
longitudinal radius RL can be related to the freezeout or
decoupling time t f . The relation between RL and t f for
a scaling expansion is given as (Makhlin and Sinyukov,
1988)

RL5~2Tf /^mT&!1/2t f (5.79)

in a comoving frame, where Tf is the freezeout tempera-
ture and ^mT& the average transverse pion mass. From
the measured values of RL ,t f is estimated to be in the
range 4.5,t f,6.3 fm/c for 100,Tf,200 MeV (Ferenc
et al., 1992). The difference between the outward and
sideward extensions (Rper 02Rper s) should be a mea-
sure of the duration of pion emission, as was argued
above. The source dimension in the outward direction
has two contributions (see Fig. 34): the effective geomet-
ric depth (which is comparable to the sideward exten-
sion and can be larger than the geometrical size of the

formation zone, due to rescattering effects) and the ef-
fective prolongation due to a reduced particle emission
rate in the case of a phase transition. In Fig. 36 from
Ferenc et al. (1992), it is seen that the difference in the
transverse dimensions is negligible.
For a specification of the rapidity intervals, see Ferenc

(1992). A more careful estimate for the duration of par-
ticle emission is Dt f<2 fm/c . This rules out a long-lived
source (>10 fm/c) as a result of a first-order phase tran-
sition with supercooling delay. Finally, the transverse
size at decoupling time Rtf

turns out to be 1.5–2 times
larger than the geometric size if the geometric size is
estimated as the transverse size of the projected trans-
verse density distribution. This is compatible with a
high-density formation zone, from which the pions first
rescatter before they freeze out. The freezeout volume
becomes independent of the formation volume in this
case; it merely depends on the particle density.
The statistics of the data still have to be improved in

order to check the reliability of the projections of Rper
on Rper s and Rper 0 . One should also keep in mind that
the results for the different length scales could be an
artifact of the simplified ansatz (5.78) for C . It is un-
likely that just one parameter l can absorb the full com-
plexity of different origins of pion correlations. Another
complication may arise from rescattering from the sur-
rounding target spectator matter (Schmidt and
Schukraft, 1993), a ‘‘dirt effect’’ that we have not men-
tioned so far. The relative weights of the contributions
to pion correlations of different origins depend on the
impact parameter. One would like to ignore these ef-
fects, unfortunately one is not allowed to do so.
For comparison, we also mention results of pion inter-

ferometry measurements with the AGS-machine at
Brookhaven National Laboratory (Stachel, 1994; Xu,
1994). The data were taken measured for central 14.6
GeV/n Si+Al- and Si+Pb collisions. At freezeout the re-
sults were as follows. In the center-of-mass frame, the
pions are emitted from a source with transverse radius
Rper56.7 fm and longitudinal radius RL55.0 fm (on av-
erage). The source is nearly spherically symmetric. If
this transverse radius is compared to the initial trans-
verse size of the system Rper(Si)52.9 fm, one finds a
transverse expansion of the system by a factor of 2.3.
Assuming an expansion velocity of v/c50.3 (0.2), the
time scale of the expansion follows as 10 (15) fm/c . The
uncertainty in the expansion velocity is due to resonance
decays. The pion interferometry results lead to a freeze-
out volume of V52400 fm3. A sort of consistency

FIG. 36. Rper 02Rper s [fm] for the indicated collisions. From
Ferenc et al. (1992).
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check is provided by the estimate for the volume, if
freezeout is defined to occur when the average distance
from a given nucleon to the nearest pion is
d5Aspn /p , where spn is the pion-nucleon cross sec-
tion. For a freezeout temperature of 140 MeV and
spn562 mb, one finds V52750 fm3 at freezeout, in rea-
sonable agreement with the interferometry estimate.
In these measurements, the estimates for the radii are

not obtained from a direct fit of a certain functional
form to the data, but by use of a dynamical model [re-
alized in the event generator RQMD—relativistic quan-
tum molecular dynamics (Sorge et al., 1989)] with known
spacetime characteristics of the source. Two-particle
correlations are constructed from the RQMD-generated
single-particle distributions in such a way that the Bose-
Einstein effect is imposed (Xu, 1994). The realistic ex-
perimental parameters are imposed as input data in the
RQMD code.
Although there is no indication of a first-order transi-

tion in these experiments, the important conclusion is
that the hadron gas does have enough time to be in
thermal (and chemical) equilibrium at freezeout. This
supports one of the basic underlying assumptions in ap-
plying thermodynamic concepts.
Signals of a strong first-order transition should not be

missed by pion interferometry. An extension of lifetime
by an order of magnitude should be visible for a certain
projection of the pair’s relative momentum. Nonappear-
ance of such signals is less conclusive. Specific signals for
a second-order transition with a large correlation length
have not yet been invented. Experimental groups that
are at present dealing with pion, kaon and rho interfer-
ometry are the E802 collaboration (Abbot et al., 1992;
Akiba et al., 1993), the E814 collaboration (see Xu,
1994; Stachel, 1994) at Brookhaven, and the NA35 col-
laboration (Seyboth, 1992; Ferenc, 1992), the NA44 col-
laboration (Sarabura et al., 1992), and the WA80 col-
laboration (Peitzmann et al., 1992, 1993a, 1993b) at
CERN. A chance for future high-statistics experiments
may lie in kaon interferometry. The yield of kaons is
considerably lower than that of pions, but kaons are less
plagued by contamination due to resonance decays (Fer-
enc, 1992).

5. Multiplicity fluctuations

The possible signatures of a first-order transition that
we discussed in the preceding sections are based on a
prolonged duration of the matter evolution. Multiplicity
fluctuations rely on additional entropy production,
which might be generated in explosive processes during
the conversion of the plasma to hadronic matter. Several
candidates for hadronization processes have been under
discussion: nucleation in the bulk, ‘‘boiling by cooling’’
(van Hove, 1983), or an adiabatic procedure, in which
the system stays in local thermal equilibrium, and pres-
sure and temperature remain constant during the con-
version. These scenarios do not lead to strong multiplic-
ity fluctuations.
In this section, we describe alternatives to the adia-

batic scenarios. These are hadronization processes via

deflagrations or detonations. They are compatible with a
strong first-order phase transition and a liberation of a
large amount of latent heat, supercooling and/or super-
heating effects during the transition. One of the pro-
posed physical pictures is the following (van Hove,
1985). Energy and entropy densities change drastically
over a small temperature and pressure interval in the
vicinity of Tc . Therefore, the proposed hadronization
mechanism has to provide a fast liberation of the large
entropy and energy of the plasma, and a large energy
has to flow into the hadron phase in an efficient way.
The main part of hadronization occurs at the phase tran-
sition. Hadronization via evaporation of hadronic
bubbles before the transition is negligible in this picture.
Close to the transition temperature, the color fields (in-
duced by the color charges of the plasma) collapse to
flux tubes creating something like a network of strings
(see Patel, 1984a and 1984b, and Sec. IV.B.1). Due to
string formation, stretching, and breaking, plasma drop-
lets will be stopped in their longitudinal expansion or
will break up in a few more droplets. In the next stage,
the main part of the hadronization is assumed to pro-
ceed via ejection of hadrons through the surface of the
plasma blobs with the kinematics and thermodynamics
of a deflagration. Deflagration is said to occur only at
the outer surface, and not in the interior (in the ‘‘bulk’’)
of the plasma droplets. The plasma blobs themselves are
small in size (a few fermi at most).
Let us see which constraints from energy-momentum

and positive entropy production are obtained for defla-
gration or detonation scenarios. Again we use a hydro-
dynamic description and follow Cleymans et al. (1986) to
sketch the derivation of kinematic constraints. Deflagra-
tions start at the surface of the plasma, detonations in its
interior, to form hadronic bubbles. In the case of defla-
grations, the front separating both phases moves more
slowly inwards than the hadrons escape outwards. In the
rest frame of quark matter, the hadrons and the front
move in opposite directions. In detonations, the veloci-
ties of the front and the hadrons are both directed out-
wards, but at different speeds. Usually, the speed of the
hadrons is assumed to be lower than the speed of the
front. When the speed of the hadrons is higher, the rela-
tive velocity of the hadrons with respect to the front is
negative. This explosion is called an eruption and is very
unlikely, as we shall see.
Let us go to the rest frame of the front. Pictorially, in

this frame the front ‘‘eats up’’ the plasma that wants to
pass it. In the case of deflagrations the hadron velocity
exceeds the velocity of quark matter, leading to

tanhuh.tanhuq . (5.80)

Here uh and uq are the fluid rapidities in the hadron and
quark phases, respectively. In usual detonations the
quark matter is ‘‘eaten up’’ faster than the hadronic
bubbles are formed (uh,uq); in eruptions quark- and
hadronic-matter velocities have opposite sign in the rest
frame of the front [see Fig. 37(a)–37(c)].
Thus the difference between deflagrations and (usual)

detonations lies in the relative magnitude of their veloci-
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ties in the rest frame of the separating front. To derive
constraints for pressure, energy, and entropy densities,
we go to the rest frame of the front, in which the flow of
quark and hadronic matter is steady. Derivatives with
respect to proper time ]/]t vanish. Furthermore, we re-
strict the interface separating both phases to a (1+1)-
dimensional planar interface. The interface is chosen to
be infinitesimally thin. Energy-momentum conservation
]mT

mn50 across the front leads to

Tzz5const,

Tz05const (5.81)

in (t ,z) coordinates. The energy-momentum tensor is
taken to be that of a perfect fluid (apart from the place
of discontinuity). The velocity is parametrized in terms
of the fluid rapidity u as usual, according to u05cosh u
and uz5sinh u. Continuity of Tzz and Tz0 across the
front leads to

~«h1ph!sinh2uh1p5~«q1pq!sinh2uq1pq ,

~«h1ph!sinuhcosuh5~«q1pq!sinuqcosuq (5.82)

for a perfect fluid. The subscripts on the energy density «
and pressure p indicate hadronic and quark matter.
Solving for tanh2 uh,q and implementing the unequalities
for uh and uq , Eq. (5.82) gives

«q2pq.«h2ph for deflagrations (5.83)

and

«q2pq,«h2ph for detonations.

Imposing the bag model equation of state (Sec. V.B.2)
with cs51/A3, this means that

«q12B.«h for deflagrations, and

«q12B,«h for detonations. (5.84)

The inequality in Eq. (5.84) for detonations shows that a
strong supercooling is necessary in order for «q to be
small enough to satisfy Eq. (5.84). (The gap between the

energy densities of both phases may be unrealistically
large in the bag model, but it is obvious that some su-
percooling is necessary.) The next constraint on the al-
lowed values of « and p comes from the second law of
thermodynamics. The entropy flux into the front must
not be larger than that out of the front. The condition of
entropy increase across the discontinuity leads to
sh
2 /sq

2>(«h1ph)(«h1pq)/@(«q1pq)(«q1ph)# . For a
perfect fluid, where dissipation effects are absent, en-
tropy is strictly conserved inside each phase
@]m(su

m)50# . It is also approximately conserved across
the front (equality sign above), if the discontinuity in «
is infinitesimally small (van Hove, 1983).
In general, however, deflagrations and detonations

are irreversible processes and do produce entropy. The
equation for sh

2 /sq
2 can be exclusively expressed in terms

of «h and «p by using the thermodynamic relation
Ts5«1p and the equation of state. Finally, the veloci-
ties must be smaller than the velocity of light. This
means

0<tanh2uh ,q<1. (5.85)

The combined constraints for sh
2 /sq

2 and condition (5.85)
limit the values for «q and «h that are compatible with
detonations or deflagrations to a small window. Thus
reliable results for «q and «h and the equation of state
could lead to an exclusion of these scenarios.
Deflagration and detonation solutions of the hydrody-

namic equations have been constructed in a numerical
analysis by Gyulassy et al. (1984). The plasma expansion
is neglected in the initial state, and the baryon number is
set to zero. The constants from energy conservation and
entropy increase are evaluated as indicated above, and
the equation of state is taken from the bag model. The
results are as follows.
Detonations and deflagrations use the latent heat in a

different way. Detonations need strong supercooling
and subsequent strong superheating of the hadron
phase. Deflagrations are possible under less extreme
conditions. They are compatible with mild supercooling.
The calculations have been extended from discontinui-
ties along a single surface to several surfaces, which
means bubble deflagration rather than surface deflagra-
tion. A surface deflagration shock was considered by van
Hove (1985). It seemed to move too slowly into the
plasma to provide a realistic possibility of plasma con-
version to the hadron phase.
Entropy-producing processes can lead to enhanced

rapidity-density fluctuations and to peaks in dN/dY of
the final-state hadrons. These peaks may be isolated or
overlapping, depending on the resolution dY and the
size of a typical scale DY over which N fluctuates. Large
transverse momenta ^pT& are another possible effect.
Multiplicity fluctuations are sometimes called seismom-
eters (Gyulassy, 1984). Experimental hints for ‘‘crests’’
of plasma bubbles are taken from cosmic-ray events
(Iwai et al., 1976 and 1982). The observations are at least
compatible with an explanation of deflagration pro-
cesses in QCD plasma conversions (Gyulassy et al.,
1984; van Hove, 1985).

FIG. 37. Velocities of quark (q) and hadronic (h) matter for
three possible scenarios viewed in the rest frame of the front:
(a) deflagration; (b) usual detonation; (c)detonation as erup-
tion.
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Let us assume that the QCD transitions are truly
sharp crossover phenomena. The question arises
whether there is still a chance for observing deflagra-
tions. The answer seems to be in the affirmative, if we
look at the derivation of deflagrations, for example, in
van Hove (1985). The essential ingredients are a large
variation of « and s over a small interval of T and p .
One ingredient is the small value of p compared to
Ts5«1p . For a crossover phenomenon, the transition
interval is defined as the region of rapid variation of
dp/dT . Van Hove (1985) studied the implications for
deflagrations in both cases, a first- and a second-order
transition. The results were quite similar. Deflagrations
may be realized in heavy-ion collisions in spite of a
smooth crossover only if it is sharp enough. This result is
not surprising. Nucleus-nucleus collisions are performed
in a finite spacetime volume. From numerical simula-
tions we know that a strictly first-order transition and a
sharp crossover phenomenon are practically indistin-
guishable in a finite volume, if the measurement is per-
formed for a single size. Similarly, deflagrations may be
practically the same for first-order transitions and cross-
over phenomena in a finite volume. The finite volume
constitutes part of the physical boundary conditions in
heavy-ion collisions. Experimental results will not ex-
pose finite-volume roundings as artifacts of approxima-
tions to a hypothetical infinite volume world.

6. Intermittency analysis

Experimental manifestations of the QCD transitions
are frequently discussed under the assumption that they
are of first order. As we have seen in Secs. III and IV,
there are indications that the finite-temperature transi-
tion resembles more closely a crossover phenomenon.
The realistic set of quark masses may be close to a ‘‘criti-
cal’’ set in mass parameter space, which could lead to a
second-order transition. A standard physical picture of
critical phenomena in spin systems is a diverging corre-
lation between spins, leading to clusters of aligned spins
of arbitrary length scales. The 3d Z(2) spin system is
supposed to share the universality class of an SU(2)
pure gauge theory; an O(4) ferromagnet is assumed to
share the class of two-flavor QCD.
Thus the question arises how a picture of clusters of

aligned spins in color or isospin space can be transferred
to typical observables in heavy-ion collisions, such as
particle multiplicities. One of the possible answers lies in
the intermittent behavior in rapidity distributions. (For a
particular realization of a second-order transition in the
case of a hot pion gas, see also Sec. V.D.3 below.)
The concept of intermittency was originally intro-

duced in studies of turbulent behavior of fluids
(Zel’dovich et al., 1987). In general, intermittency can be
defined as the appearance of structure in random media.
In the context of particle physics, it has to do with large
fluctuations of charged-particle density in small regions
of phase space. In heavy-ion collisions, intermittency re-
fers to certain moments of rapidity distributions. Other

distributions, such as energy, pseudorapidity, and azi-
muthal angles, can be considered as well (Ochs and
Wosiek, 1988).
Let us first consider a toy model that is universal

enough for applications in different areas. Consider a set
of N balls distributed in a box of total size R intoM cells
of size L (M5R/L). In the case of rapidity distribu-
tions, they correspond to N particles per given unit of
some kinematic range. A cell in a box is a rapidity inter-
val in a certain available rapidity range. For the Ising
model, the balls are the spins on a spacetime lattice R
subdivided into cells of size L . We are interested in the
ball distributions if the resolution of the lattice is made
finer and finer (M→`). There are many ways in which
to realize this limit. One possibility is to keep R constant
and to let L go to zero. This limit is of interest for ra-
pidity distributions, where L stands for the bin size dY
of the rapidity interval. Another realization is the ther-
modynamic limit, with R→` for fixed L . This limit is
usually taken when critical phenomena are discussed in
the infinite volume limit.
The same type of limit is of interest in a second-order

finite temperature transition in spacetime continuum,
which is described by a model of lattice gauge theory.
One may expect that intermittency in the limit of
R→` , with L fixed, has a correspondence in the limit of
R fixed, L→0.
We define the l th normalized moment f l for a given

distribution of N balls as

f l ~M !5F 1M (
m51

M

Km
l G YF S 1M D (

m51

M

KmG l . (5.86)

Here Km denotes the number of balls in the mth cell.
First, we keep N fixed and vary M . In the extreme case
of an equidistribution of N/M balls in each box, it is
easily seen that f l (M) is independent of the grain size,
such that

f l ~M !51 ;l . (5.87)

In the other extreme, a strong fluctuation (where all
balls are concentrated in one box), we find a logarithmic
dependence of ln fl on the ‘‘resolution size’’ L :

lnf l ~M !52~ l 21 !lnL1~ l 21 !lnR . (5.88)

Such behavior of a given distribution with N balls is
called intermittent.
More generally, intermittent behavior is attributed to

average values of f l . The weighted average ^ . . . & of the
l th moments runs over an ensemble of configurations in
a d-dimensional volume Rd divided into M5(R/L)d

cells of equal size Ld. In a multiplicity measurement it
could be an average over all events; in the Ising model it
is the thermodynamic average with Boltzmann weights.
Intermittency is called the property of fluctuations

around some average distribution that lead to a power
law behavior of ^f l & in the number of cells M , or
equivalently if

ln^f l ~L !&52l l lnL1g l ~R !. (5.89)
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Here l l .0 are constant and g l (R) is independent of
L , L being the linear cell size. The constants l l are
called intermittency indices, and are a measure of the
strength of intermittent behavior.
Results for l l and g l in case of a d-dimensional Ising

model can be found in Satz (1989). The essential point at
which criticality enters the derivation of intermittency in
an Ising model is scale invariance at Tc . While the balls
of the toy model are the same independently of the par-
tition of the lattice, one has first to argue why one may
choose the same type of variables on all length scales in
an Ising model. This is justified by self-similarity as
T→Tc , if 1!L!j is satisfied, j being the correlation
length. For a given l , the intermittency indices can be
expressed in terms of the more familiar critical expo-
nents. Like critical exponents, they are universal for all
models belonging to the same universality class.
The mere divergence of a correlation length j is not

sufficient for introducing intermittent behavior. In a 1d
Ising model, where j has an essential singularity rather
than a power-law singularity as in the two- and three-
dimensional cases, the normalized moments f l are
bounded from above for all l (Hajduković and Satz,
1992).
We turn now to intermittent behavior in heavy-ion

experiments. To identify this behavior in rapidity distri-
butions, we consider moments Cl that have been intro-
duced by Bialas and Peschanski (1986), according to

Cl 5
1
M (

m51

M

~Mpm! l . (5.90)

Here M is the number of intervals of size dY in a given
rapidity interval DY5MdY , pm (m51, . . . ,M) denotes
the probability of finding particles in any of these
rapidity intervals dpM . The total distribution
P(p1 , . . . ,pM)dp1 ••• dpM of probabilities for finding
particles in the intervals dp1 ••• dpM is normalized such
that

p11•••1pM51,

E dtE dp1•••dpMP~p1 , . . . ,pM!51 . (5.91)

The variable t stands for additional kinematic variables
such as the energy of the collision. The average moment
^Cl & is obtained as the sum over all configurations in
rapidity space, weighted by the probability distribution
P( )dp

^Cl &5E dtE dp1•••dpMP~p1 , . . . ,pM ;t !

3
1
M (

m51

M

~Mpm! l . (5.92)

In terms of rapidity variables, genuine intermittent be-
havior is signalled, if

ln^Cl &5f l ln~DY/dY !5f l lnM (5.93)

in the limit of dY→0, in other words a logarithmic de-
pendence on the resolution size in the limit of increasing

resolution, which is equivalent to the definition in Eq.
(5.89). Small values for dY correspond to a fine resolu-
tion in rapidity space, and DY is the full considered ra-
pidity interval. The lower bound on dY is given by the
experimental resolution. The intermittency indices f l

vary between O,f l <l 21. They are a measure for the
strength of the intermittent behavior. Intermittency oc-
curs if self-similar fluctuations exist on all scales dY . In
the case of rapidity distributions, intermittency should
be seen in contrast to dynamical fluctuations.
In real experiments we have to deal with finite-size

systems. Statistical fluctuations around the probability
distribution dp1•••dpMP(p1 , . . . ,pM ;t) will always pro-
vide a noisy background for fluctuations of dynamical
origin that we are trying to identify. Unless the multi-
plicity in the events is very high, the probability pm of
finding particles in the rapidity interval m is different
from the measured fraction Km /N of the total multiplic-
ity N . As a filter of dynamical fluctuations, Bialas and
Peschanski (1986) have proposed to consider scaled fac-
torial moments ^F l & of the distribution Q that is actu-
ally measured in the experiment

^F l &5M l (
K1•••KM

Q~K1•••KM!
1
M

3 (
m51

M Km~Km21 !•••~Km2i11 !

N~N21 !•••~N2i11 !
, (5.94a)

where

Q~K1 , . . . ,KM!5E dtE dp1•••dpMP~p1 , . . . ,pM ;t !

3B~p1 , . . . ,pM ;K1 , . . . ,KM!,

(5.94b)

and B is the Bernoulli distribution. The statement is that
the scaled moments ^Cl & of a probability distribution P
are equal to the scaled factorial moments ^F l & of the
experimental distribution Q . It can be shown that
^F l &5^Cl &. Notice the advantage of using ^F l & instead
of ^Cl &. In Eq. (5.94a), ^F l & is exclusively expressed in
quantities which are directly measured. The average in
Eq. (5.94a) can be evaluated by absorbing the weights
Q(•••) in the selection of events.
Further information about the origin of intermittency

is contained in the l -dependence of f l . Equivalently,
one can use the l -dependence of anomalous fractal di-
mensions d l that are related to f l according to

d l 5f l /~ l 21 !. (5.95)

At least two physical mechanisms are known that may
lead to real intermittent behavior in heavy-ion collisions
(real in contrast to fluctuations that are induced by two-
particle correlations). One of these mechanisms is the
QCD transition, if the correlation length diverges at
Tc , or, adapted to the finite volume, the correlation
length spans the typical volume of the collision. In this
case, d l should be approximately independent of l .
Other origins are self-similar cascades, which are at-
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tempts to model the evolution of the plasma to the had-
ronic phase. Here d l will depend on l in general. Un-
fortunately, the l -dependence of d l does not allow a
unique identification of the origin of intermittency. The
independence of d l on l does not guarantee a phase
transition, nor does its dependence exclude a transition.
According to the work by Bialas and Peschanski (1986),
it may be possible to tune the parameters of a self-
similar cascade in such a way that d l does not depend
on l . On the other hand, multifractal phase transitions
are known which lead to an l -dependent d l (although
the latter possibility is not predicted by QCD).
We add a remark on dynamical fluctuations due to

two-particle correlations. In this case, the scaled mo-
ments first rise with decreasing bin size, and then satu-
rate to some constant value below a certain resolution
size dY0 ; dY0 also gives the typical size of the dynami-
cal fluctuations. Two-particle correlations can result
from resonance decays or Bose-Einstein correlations.
For resolutions dY.dY0 , two-particle correlations are
mainly responsible for apparent intermittency effects.
At least in e1e2-reactions, the observed intermittent be-
havior can be fully explained by two-particle correla-
tions within a certain particle-production scheme. For
heavy-ion collisions, the particle-production processes in
the matter evolution are less well understood, but at
least the contribution from Bose-Einstein correlations
can be tested experimentally—see, for example Schmidt
and Schukraft (1993).
We summarize what a measurement of the anomalous

fractal dimension d l can tell us. Assuming that the con-
tribution from two-particle correlations can be sub-
tracted, the following alternatives can be distinguished:
(i) If d l ;0, the fluctuations are of purely statistical

origin. A first-order transition with a correlation length
smaller than the size of the system would be compatible
with such a scenario.
(ii) If d l depends strongly on l , it seems rather un-

likely that the QCD transition itself is responsible for
inducing such multifractal behavior. More likely, there is
a cascade mechanism at work whose vertices should be
chosen to reproduce the observed l -dependence of
d l . For a cascading process one expects d l to depend
linearly on l (Bialas and Peschanski, 1988).
(iii) If d l depends weakly on l , but is clearly different

from zero, a second-order transition provides an expla-
nation for intermittency, but there may be other expla-
nations.
We conclude with a short glance at the experimental

status. Intermittency has been found in e1e2 reactions,
hadron-hadron and heavy-ion collisions—see for ex-
ample, Abreu et al. (1990), Buschbeck and Lipa (1989),
Åkesson et al. (1990), respectively. Qualitatively, differ-
ent experiments agree about the result that intermit-
tency has been observed and that different mechanisms
are at work, as the observed behavior is not uniform.
Quantitatively, they disagree. In Fig. 38 we display the
dependence of the anomalous fractal dimension on
l Óp at As520 GeV (taken from Bialas and Hwa 1991).
Obviously, the l -dependence of d l weakens when pass-

ing from lepton-hadron to hadron-hadron and nucleus-
nucleus collisions. In Bialas and Hwa, (1991), this is in-
terpreted as a result of self-similar cascade mechanisms
in the first two cases, but as a phase transition in the
S-Ag, Br central collisions. The data for Ag, Br colli-
sions, which are consistent with an almost constant non-
zero value of d l , suffer from low statistics (Schmidt and
Schukraft, 1993). Another tendency seen in Fig. 38 is a
decrease in d l when the process becomes more com-
plex, through this decrease is less strong for small values
of l . Thus it may be more than an artifact of generally
small values of d l that d l is almost independent of l for
heavy-ion collisions.
Less encouraging are the high statistics data taken at

the CERN SPS accelerator (Bloomer et al., 1992) for
32S+S and 32S+Au collisions. The slope of ln^F2& vs
(2lndh) (h being the pseudorapidity) is consistent with
a value of zero or less than zero. Thus one of the con-
clusions of the authors is that there is ‘‘no need for new
physics’’ in the sense of fluctuations of unknown dy-
namical origin.
Another systematic trend seems to be well established

by the data. As we have mentioned above, two-particle
correlations may look like intermittency signals as long
as the resolution is not sufficiently high. In fact, for
lighter projectiles like oxygen or silicon, the data for in-
termittency indices f2 can be well fitted as a function of
the average particle density ^r&. Such a scaling law has
been proposed by Seibert (1990) and is based on the
assumption that only two-particle correlations are re-
sponsible for the observed intermittent effects. The op-
timistic news is that, for heavier projectiles such as those
in sulfur-induced reactions such an explanation is not
sufficient. For heavier projectiles, there seems to be a
chance of seeing collective effects. These could be due
to a nearly second-order transition or to a cascade
mechanism during the matter evolution. Last, but not
least, detector effects should be kept in mind as a pos-
sible source for contaminating the data. For further de-
tails on the experimental status we refer the reader to
the review of Schmidt and Schukraft (1993) and refer-
ences therein.

FIG. 38. Anomalous dimensions of pseudorapidity spectra at
s1/2;20 GeV. After Bialas and Hwa (1991).
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Thus the main task in an intermittency analysis is to
disentangle fluctuations of different origins: geometry
(impact-parameter dependence), statistics (finite num-
ber of particles), resonance decays or Bose-Einstein cor-
relations, hadronization along cascade mechanisms, and
a phase transition with a large correlation length. Re-
cently work by Campi and Krivine (1995) questions any
connection between the observation of intermittent be-
havior in the mass distributions of finite nuclei and a
second-order phase transition. In any case, one has to
face a superposition of several backgrounds on the type
of multiplicity fluctuations in which one is primarily in-
terested. Once an interesting structure is filtered from
the backgrounds, the l -dependence of intermittency in-
dices may indicate the specific dynamical origin of this
structure. The situation resembles that for dilepton
rates, where the main practical problem is identification
of thermal rates. Once the thermal rates are identified,
the remaining task is to look for conclusive structures of
the transition scenario (see Sec. V.C.2).

D. Theoretical concepts for off-equilibrium situations

1. Nucleation rate of hadronic bubbles

Many phenomenological implications assume the sce-
nario of a first-order transition, which is often described
by a bag model equation of state. The scenarios differ in
the assumptions about entropy production during the
transition, the amount of supercooling, and the produc-
tion of latent heat.
In this section we describe an approach of Csernai and

Kapusta (1992a and 1992b) for calculating the nucle-
ation rate of hadronic bubbles in the plasma phase. In
principle, such a calculation can select a realistic sce-
nario. For example, it should tell us whether or not a
Maxwell construction of two-phase equilibrium is realis-
tic in view of the total duration of the plasma evolution
to the final hadronized state, a time scale is of the order
of 10–20 fm/c . This requires a nucleation rate suffi-
ciently high that the latent heat is conducted fast enough
from the bubble surfaces for the bubbles to grow. Natu-
rally, transport properties of the latent heat are deter-
mined by properties of the ‘‘conducting’’ medium sur-
rounding the bubble. Relevant properties are the
thermal conductivity, and the shear and bulk viscosities,
if a hydrodynamical description is used. In our case of an
expanding plasma on its way to hadronization, the
plasma viscosity will turn out to determine the nucle-
ation rate of the hadronic bubbles.
The prediction of a definite value for the nucleation

rate and of the time delay due to a first-order transition
is rather ambitious and involves, unavoidably, a number
of assumptions and approximations. Deviations from
equilibrium have to be admitted during the phase tran-
sition, which need not be perturbatively small. One has
to deal with an expanding system of many particles in-
teracting according to the excitation spectrum of QCD.
Quite generally, the nucleation rate of one phase out

of another (in this case the hadronic phase out of the
plasma phase) has the form

I5I0e
2DF/kBT, (5.96)

where DF is the activation energy to form a bubble of
critical size, and kB is Boltzmann’s constant. This is the
usual expression for the rate of a thermally activated
process. More precisely, it is the probability to form a
(hadronic) bubble of critical size per unit time and unit
volume. The activation energy DF can be expressed
more generally as the difference in the free energies be-
tween two configurations with and without a condensed
part of the new phase (it need not have the form of a
droplet). The delicate part is the prefactor I0 , which
describes some sort of quantum and/or thermal fluctua-
tions. It sensitively depends on the context and the ap-
proximation scheme.
A specific realization of Eq. (5.96) is the famous for-

mula of Callan and Coleman (1977) for the decay rate of
the ‘‘false’’ vacuum. The DF in the exponent is given by
the Euclidean action S4 (in four dimensions) of the field
theory considered, evaluated at a solution f of the Eu-
clidean equation of motion satisfying f→0 for
x21t2→` as boundary condition. The prefactor de-
pends on S4 and a ratio of determinants depending on
some zero-temperature (effective) potential V . The oc-
currence of determinants in the prefactor is a common
feature of formulas for decay rates when fluctuations are
taken into account in the Gaussian approximation. Al-
though Callan and Coleman’s formula is sometimes
mentioned in the context of phase transitions in the
early universe, it is not appropriate for calculating a de-
cay rate at finite temperature in a situation out of equi-
librium, such as that encountered in heavy-ion collisions.
A suitable framework is provided by Langer’s ap-

proach (Langer, 1969), which has been generalized to
relativistic field theory and applied to QCD by Csernai
and Kapusta (1992a). We briefly summarize the main
ingredients in Langer’s formalism. The zero-
temperature infinite volume potential in Callan and
Coleman’s formula is replaced by a so called coarse-
grained free energy, which is the appropriate quantity
for describing a phase coexistence in a finite volume.
Langer considers an effectively classical system of N de-
grees of freedom, represented by a set of N coordinates
and their conjugate momenta h i , where i51, . . . ,2N .
These variables need not describe the system on a mi-
croscopic level, but enter the coarse-grained free energy
as some kind of collective coordinates. Whereas the Eu-
clidean action S4 (mentioned above) depends on micro-
scopic variables, the coarse-grained free energy is for-
mulated in terms of ‘mesoscopic’ variables, which are
collective coordinates.
The DF term in Eq. (5.96) keeps its meaning as the

change in (coarse-grained) free energy due to a forma-
tion of one droplet of critical radius R* . The prefactor
I0 of the general formula accounts for (thermal) fluctua-
tions in a specific way. It is written as a product of two
terms

I05
k

2p
V0 , (5.97)
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a statistic factor V0 , which is a measure of phase-space
volume around the saddle point, and a dynamical factor
k . While V0 will be seen to depend on equilibrium
quantities, k knows about off-equilibrium features of the
dynamical expansion. The dynamics may be described
by hydrodynamical equations of motion. Thus we no
longer restricted to the regime of O(4)-invariant Eu-
clidean equations of motion in equilibrium situations. A
direct manifestation of off-equilibrium features is de-
pendence of k on the thermal conductivity in a liquid-
gas system or on the shear and bulk viscosities (r and h,
respectively) in the case of QCD, [see Eq. (5.116) be-
low]. This is clearly a generalization compared to the
approach of Callan and Coleman, however Langer’s for-
mulation does not apply to generic off-equilibrium sys-
tems. The basic assumption is that the conversion pro-
ceeds via nucleation. The nucleation rate comes out as
time independent by construction. The phase transition
is described as the motion of a probability current r in
phase space. It starts at $h0%, the metastable phase,
passes most likely a saddle point $h̄%, where the current
is assumed to be stationary

] tr50, (5.98)

and ends in the stable-phase configuration $h f%. The
configuration $h̄% differs from $h0% by just one critical
droplet of new phase. To allow a stationary current
across the saddle in phase space, there has to be a heat
bath in the background, which replenishes the meta-
stable phase at the same rate as it is lost in the phase-
conversion process. The assumption in Langer’s deriva-
tion is that such a heat bath exists, and is in equilibrium
prior to each interaction with the converting phase. The
probability for a transition between two configurations
$h% and $h8%, induced by thermal fluctuations of the
heat bath, is determined by the same Hamiltonian F that
enters the dynamical part of the system which trans-
forms into the new phase.
The dynamical part is assumed to be governed by

equations of motion of the form

]h i

]t
52(

j51

2N

Mij

]F

]h j
. (5.99)

In general, F plays the role of a Hamiltonian; in an ap-
plication to a hydrodynamical system F has the specific
form of a coarse-grained free energy. Later, F will con-
tain information that is specific for the underlying QCD.
The matrixM is the mobility matrix—in our application,
the coefficients Mij can be read off from a comparison
with the equations of relativistic fluid dynamics. Equa-
tion (5.99) enters the time development of the distribu-
tion function r($h%,t) associated with the variables h i
and gives the probability density over configurations
$h%. For equilibrium configurations, r is proportional to
the Boltzmann weight exp@2F$h%/T#, where F are the
costs in (coarse-grained) free energy of generating such
a configuration. Skipping some steps in the derivation,
we see that the time evolution of r can be finally written
in the form of a continuity equation:

]r$h%

]t
52(

i

]Ji
]h i

with

Ji52(
j
MijS ]F

]h j
r1T

]r

]h j
D , (5.100)

where F is the Hamiltonian and T is the temperature.
The probability current across the saddle is identified
with the decay rate. The prefactor k of Eq. (5.97) gives
the initial exponential growth rate of a bubble that has
just exceeded its critical size R* . It is defined as

k~ t !5
d

dt
ln@R~ t !2R* # . (5.101)

To obtain k from the time evolution of r , Eq. (5.101) is
solved for small deviations n i5h i2h̄ i from the saddle
$h̄%. Note that this is a further assumption entering the
derivation of k . The deviations from the saddle must be
small for the saddle-point approximation to make sense.
For details about the statistical prefactor V0 we refer the
reader to the original literature (Langer, 1969; Langer
and Turski, 1973; Turski and Langer, 1980).
Let us turn next to the application in QCD (Csernai

and Kapusta, 1992a, 1992b). We have to specify the col-
lective variables h i , the coarse-grained free energy F ,
the hydrodynamic equations of motion, and their energy
momentum tensor Tmn . The mobility matrix M and the
stationary configuration $h̄% must be identified.
The collective variables h i are chosen to be energy

density e(r) and flow momentum P(r) at positions r in
the system.
The choice of a coarse-grained free energy F for QCD

is more subtle. The hydrodynamic approach is suitable
for describing nucleation rates in a fluid, since droplet
formation occurs on a semimacroscopic level, where a
large number of particles contribute to a single droplet.
The concept of the coarse-grained free energy is intro-
duced when hydrodynamics is derived from microscopic
kinetic theory (Jackson, 1960; Van Kampen, 1964). The
macroscopic system is divided into cells of a given vol-
ume. Specific densities (e and P in our case) are as-
signed to each cell. If the partition function of the mi-
croscopic system is evaluated under these cellular
constraints on the microscopic variables, one obtains an
effective action (in more field-theoretical language),
named the coarse-grained free energy over kBT . (Note
that this concept is very similar to the constrained effec-
tive potential used in Sec. IV.A.4. In the constrained ef-
fective potential, the entire system is considered as one
cell subjected to a constraint on the vacuum expectation
value of the order parameter field.)
The underlying QCD dynamics enters the interaction

part f(e) of the coarse-grained free energy F for a small
volume of nonuniform energy density e . The grain size
of F is obviously essential for the approximation to
make sense. If the grain size is too small, the use of
hydrodynamic variables is not meaningful; if it is too
large, the coarse-grained free energy cannot resolve the
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substructure of the fluid. This happens if phase separa-
tion occurs within single cells, in which case F would be
a convex function of the local average energy density
e . Similarly, the constrained effective potential becomes
convex in the large-volume limit. Thus an ansatz for
f(e) that leads to a nonconvex shape of F as function of
e will indirectly implement the right grain size, which is
sensitive to nonequilibrium properties such as droplet
growth and phase separation. Note that F is nonconvex,
but real; the nonconvex shape is not an artifact of a
perturbative approximation scheme, in which a thermo-
dynamic potential is evaluated in the infinite-volume
limit. The very grain structure is implemented in the
choice of hydrodynamic variables, implicitly involving
averages over cells.
As an ansatz for f(e), Csernai and Kapusta (1992a)

chose a fourth-order polynomial in (e2e0), where e0 is
the location of the top of the potential barrier. The co-
efficients depend on the energy densities in the hadron
and plasma phases, and on the curvature f 09 of f(e) at
e0 . In the full ansatz for F , one is left with two free
parameters, f 09 and the coefficient K of the derivative
term (¹e)2. Both parameters can be expressed in terms
of the interface tension s and the interface thickness
2j0 . Here j0 denotes the correlation length defined at
the top of the barrier by j0

2[2K/f 09 . Note that both
quantities (s and j0) can be calculated from first prin-
ciples, that is, from the underlying QCD Lagrangian.
The equations of motion are the equations of relativ-

istic fluid dynamics, ]mT
mn50. In the baryon-free region

of the quark-gluon plasma, we have to deal with a rela-
tivistic system. Without a net baryon number, there is no
distinguishable reference frame in which to define the
flow four-velocity um of the matter. Moreover, the pres-
sure is not small compared to the energy. Therefore um
is defined as the velocity of the collective energy flow.
The stress-energy-momentum tensor for a relativistic dis-
sipative fluid depends on the shear and bulk viscosities
h and z , respectively. It should be noticed that for a
vanishing dissipation part the growth rate of bubbles
would vanish. Similarly, it has been noticed by Langer
and Turski (1973) that the growth rate in a liquid-gas
transition vanishes near the critical point, if the thermal
conductivity is set to zero. The bubbles can only grow if
the latent heat is conducted from the bubble surface.
We skip further details of the derivation and come to

the results. The exponential suppression factor in Eq.
(5.96) depends on the change in free energy DF , if a
hadronic bubble has formed in the QCD plasma at
T,Tc due to a thermal fluctuation. This is given by a
sum of a volume and a surface term, according to

DF5
4p

3
~fh2fp!R314pR2s , (5.102)

where the indices h and p indicate the corresponding
phases. The critical radius R* is given by

R* ~T !5
2s

ph~T !2pp~T !
, (5.103)

where ph and pp denote the pressure in the hadron and
the plasma phase, respectively. (Bubbles with R,R*
collapse, those with R.R* expand.)
The statistical prefactor V0 can be expressed in terms

of the surface tension s , the bubble radius R , the cor-
relation length jp in the plasma phase, and the volume
V , according to

V05
2
3) S s

T D 3/2S RjPD
4

V . (5.104)

The dynamical prefactor k that determines the exponen-
tial growth of a fluctuation n of a droplet of critical size
is derived to be

k5
4s~z14h/3!

~Dw !2R
*
3 , (5.105)

where Dw is the enthalpy difference between the two
phases. Note that k is determined in terms of equilib-
rium quantities s , R* , and w , which are in principle
accessible in lattice calculations, and nonequilibrium
quantities, which are the transport coefficients h and z .
For an ultrarelativistic gas, the bulk viscosity z is much
smaller than the shear viscosity h , which has been esti-
mated to leading order in perturbative QCD by Baym
et al. (1990). For two flavors, the result is

h5
2.11T3

as
2ln~1/as!

, (5.106)

where as is the strong coupling constant at finite tem-
perature.
Eqs. (5.97), (5.104), and (5.105), with DF from Eq.

(5.102), imply that the nucleation rate

I5
4
p S s

3T D 3/2 s~zP14hP/3!R*
jP
4 ~Dw !2

e2DF/T. (5.107)

The input parameters are chosen as follows: s550
MeV/fm2, as50.23, jP50.7 fm, hP514.4 T3 and
B1/45235 MeV for the bag constant that enters the en-
thalpy difference Dw . The pressure and the enthalpy dif-
ference between the hadronic and the plasma phases are
calculated from the bag model equation of state. We
would like to add a comment on the input. More recent
results on the surface tension in pure SU(3) gauge
theory show that the estimate for s of 50 MeV/fm2 that
has been used by Csernai and Kapusta (1992a) is too
large by an order of magnitude, see for example, Sec.
III.B.3, or Kajantie (1992). It would also be quite inter-
esting to update the equation of state, replacing the bag
model values by more recent lattice results, since the
bag model equation of state fails in particular in the
transition region.
The nucleation rate I naturally defines a nucleation

time if I is multiplied by the volume of a bubble of criti-
cal size:

tnucl
21 ~T !5

4p

3
R
*
3 ~T !I~T !. (5.108)

This time scale is a measure for the delay due to super-
cooling. It should be distinguished from the total time
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duration of the phase transition. It just refers to bubbles
of critical size, but neglects bubble growth. When t is
plotted as a function of (T/Tc), one sees that 5% of
supercooling is necessary in order for the nucleation to
set in, when the above input parameters are used. The
use of updated input parameters may considerably re-
duce the degree of supercooling.
A hint on the self-consistency of the approximation

scheme is provided by the temperature dependence of
the critical bubble radius R* , which is determined by
Eq. (5.103). The radius diverges at Tc , but rapidly re-
duces to typical hadronic scales, and even below. At
T/Tc50.9%, R*;0.73 fm. This is comparable to the
correlation length in the plasma phase jP and is of the
order of the surface thickness. For such values of R* ,the approximation scheme breaks down. Therefore the
question arises whether the phase transition has been
completed before or after these low temperatures are
reached. The quantity of interest is the time dependence
of temperature. In the early universe, T drops so slowly
with time that the phase transition is most likely over
before the approximations loose their validity.
For heavy-ion collisions, the time dependence of T

has been estimated by Csernai and Kapusta (1992b).
The T(t) dependence in the bulk phase is known, once
an equation of state is combined with an ansatz for the
expansion scenario, such as Bjorken’s scaling ansatz.
The time dependence of T during the phase conversions
is a more subtle problem. In the Maxwell construction,
T is independent of t right from the beginning. To find
T(t) for a given nucleation rate I , one starts from a
dynamical equation that couples T(t) to the fraction of
space that has been converted to the hadronic phase.
The result for T(t) clearly shows supercooling, super-

heating effects, and a time delay in the temperature de-
crease compared to a Maxwell scenario. When the tem-
perature has decreased to ;0.8Tc , the nucleation is
sufficient for reheating the system up to ;0.95Tc , at
which point further nucleation is stopped. From that
temperature on, the previously created bubbles grow
further until the conversion to the hadronic phase is
complete. Compared to the Maxwell scenario, the time
of completion is delayed by 11 fm/c , leading to an in-
crease in volume at that completion time. The increase
is linear in t in Bjorken’s ansatz. If the entropy density at
completion is only determined by the equation of state
in the pure hadronic phase, but independent of the con-
version procedure, a delay of 11 fm/c implies 30% of
extra entropy generation to keep the entropy density
fixed. This is not negligible in an extrapolation from the
final pion multiplicity to the initial temperature. It has to
be verified whether or not the amount of extra entropy
generation is an artifact of the bag model equation of
state.
Finally, we note that the critical bubble radius in the

late period of the phase conversion is about 1 fm (not
too large in view of the finite size of the system and not
too small for the approximation to hold).
Now let uss return to the question posed in the begin-

ning of this section: Is a Maxwell construction a realistic

scenario? The time dependence of temperature during
the transition, based on the derived nucleation rate I
[Eq. (5.107)], comes out not so different from a Maxwell
construction, which is usually taken as an ad hoc as-
sumption. It remains to be seen whether the similarity
can be maintained if one improves on various approxi-
mations, and the most recent input data are used for the
surface tension, the surface thickness, and the enthalpy
difference.
In Langer’s formalism for deriving the nucleation

rate, an embedding heat bath was assumed to guarantee
a stationary flow in probability space or a time-
independent nucleation rate. Langer’s description does
not apply to a situation far out of equilibrium. The rem-
nants of off-equilibrium are contained in the viscosity
coefficients of the nucleation rate. It may well be that
such a heat bath is not realized at all stages of phase
conversion in heavy-ion collisions. Some time depen-
dence of the nucleation rate is natural, at least at the
onset and the completion of nucleation. A calculation of
time-dependent rates requires a different formalism.
Boyanovsky and Aragao de Carvalho (1993, and

1994) analyzed the thermal activation via sphaleron
transitions in a (1+1)-dimensional field theory, in which
they used a real-time formalism. They obtained a time-
dependent nucleation rate from the real-time evolution
of the initial density matrix along the unstable direction
in configuration space. The rate is rather sensitive to the
initial state, a trait typical of an off-equilibrium process.
The initial state is metastable and was formed after a
period of rapid supercooling.
One may think of the phase transition in heavy-ion

collisions in a similar way. The initial state for the con-
version process is a metastable state arising from a rapid
cooling, rather than being in local equilibrium with a
heat reservoir. The time evolution of the conversion
may come out quite differently, if the heat bath is not
replenished during the conversion process. A compari-
son of nucleation rates calculated in one or the other
way would be quite useful for assessing the estimates of
time delay and extra entropy production, which should
be visible in heavy-ion collisions.
Recent results from the lattice and from studies in

effective models suggest that the transition is weakly
first order—if it is first order at all. In this case, nucle-
ation may completely fail as a conversion mechanism
from the plasma to the hadron phase. Large domain
coarsening might replace nucleations as T approaches
Tc from above. Nonequilibrium aspects in weak first-
order transitions are discussed in the next section.

2. Large domain coarsening

Different nonequilibrium aspects may be relevant for
the transition dynamics. Here we distinguish only be-
tween nucleation and large domain coarsening or spin-
odal decomposition. Nucleation of hadronic bubbles in a
first-order QCD transition was the topic of the preced-
ing section. The physical assumption there was that the
system was still in a homogeneous plasma phase, as Tc
was reached from above. Some supercooling below Tc
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was necessary, until bubbles of critical size could be
formed and the phase conversion could proceed via
nucleation. This scenario is likely to be a realistic de-
scription for a strong first-order transition. The formal
manifestation for the underlying physical assumption is
the saddle-point evaluation of the path integral in
Langer’s formulation, as we saw above. The saddle-
point approximation is justified as long as the fluctua-
tions about the homogeneous metastable ground state
are small. The system should be well localized in the
metastable minimum as the temperature drops below
Tc .
The nonequilibrium dynamics of the phase conversion

may drastically change if the transition is weakly first
order (Borrill and Gleiser, 1995). In spite of a potential
barrier, the system may no longer be well localized in
the metastable minimum, before the temperature drops
below Tc . Large amplitude fluctuations are allowed, and
subcritical bubbles can form above Tc . At Tc the system
is in a completely mixed phase of high- and low-
temperature ‘‘components.’’ The phase mixing is as-
sumed not to be an artifact of the finite volume. (Recall
that spontaneous symmetry breaking, strictly speaking,
occurs only in the infinite-volume limit. Here the volume
is chosen large enough that the tunneling rate between
the different phases is negligible.) If the system starts at
Tc in a mixed phase and then cools below Tc , the phase
separation may evolve by domain coarsening in a way
that resembles spinodal decomposition rather than
nucleation.
Borrill and Gleiser (1995) studied the phase mixing at

Tc as a function of the strength of the first-order transi-
tion. The framework involves discretized scalar field
theories in 311 dimensions. The homogeneous part of
the free-energy density contains a quadratic, a cubic,
and a quartic term in a real scalar field. The couplings in
the quadratic and cubic part are assumed to be tempera-
ture dependent. The precise form is motivated by an
effective potential for the electroweak phase transition,
but the results are applicable to QCD as well. The
strength of the first-order transition is tuned by the quar-
tic coupling l , keeping the cubic coupling fixed. Small
values of l correspond to a high barrier in the effective
potential and a strong first-order transition; large values
of l correspond to a weak first-order transition. The
system is always considered at fixed temperature Tc . It
is prepared so as to be initially well localized in the high-
temperature phase. It is then evolved by a discretized
Markovian Langevin equation with white stochastic
noise to mimic the coupling with a thermal bath.
Let us denote the fractions of the total volume in the

high- and low temperature phases divided by the total
volume a f0 and f1 , respectively. The fraction of the
total volume in each phase, f0(t) or F1(t), is then mea-
sured as a function of time, until the final ensemble-
averaged equilibrium values f 0,1

eq are reached. The
qualitative results of Borrill and Gleiser are the follow-
ing. For small values of l (strong first-order transitions),
the system remains localized in the initial metastable
minimum, f 0

eq;1. For large enough l (sufficiently weak

first-order transitions), f 0
eq approaches 0.5, correspond-

ing to a complete phase mixing at Tc .
A further interesting observation is made, if the equi-

librium fractional population difference at Tc

DFeq5f 0
eq2f 1

eq (5.109)

is plotted as a function of l . The curve suggests a second
order phase transition as a function of l (the control
parameter of the strength of the first-order finite-T tran-
sition). There seems to exist a critical strength of the
first-order transition (obtained for l5lc), so that for
larger values of l (weaker transitions), DF soon ap-
proaches zero, corresponding to a perfect thermal mix-
ing f 0

eq50.55f 1
eq . For smaller values of l (stronger

transitions), DFeq remains close to 1, and the system is
trapped in its homogeneous initial state. Therefore, Bor-
rill and Gleiser proposed, DFeq can be used as an order
parameter for the ‘‘transition’’ from strong to weak first-
order transitions: DFeq is a quantitative measure for how
strong the finite-T transition is.
The prediction of complete thermal mixing at Tc re-

lies on a cooling process, which is slow compared to
other equilibration scales in the system. Keeping T fixed
at Tc , this assumption was implicitly built into the deri-
vation. The narrow transition region between the two
areas of strong and weak first-order transitions may be
related to the fact that the order parameter for the
finite-T transition ^f(t)& is not conserved. For con-
served order parameters in binary mixtures and long in-
ternal equilibration times, the transition between the
two regimes is smooth (Borrill and Gleiser, 1995, and
references therein).
To conclude, we summarize some possible implica-

tions for QCD. The results of Borrill and Gleiser have
shown that the nonequilibrium transition dynamics may
change from nucleation to large domain coarsening in
passing from strong to weak first-order transitions. The
interpolation between both schemes need not be
smooth, and may be a phase transition itself. In QCD it
is likely that the finite-temperature transitions are rather
weakly first order (if they are of first order at all), or
rapid crossover phenomena, which may be indistinguish-
able from a practical point of view. The role of the con-
trol parameter of the strength of the transition will be
played by the current quark masses. If the cooling of the
plasma is slow compared to equilibration time scales of
amplitude fluctuations about the metastable ground
state, the QCD transition may proceed via large domain
coarsening rather than supercooling with subsequent
nucleation.
Observable signatures in heavy-ion collisions will in

general depend on the dominant process during the
phase conversion. Large domain coarsening may result
in similar effects as those expected for second-order
transitions, while the extreme case of strong supercool-
ing would lead to explosive effects.
In view of the results of Borrill and Gleiser, a good

quantitative estimate of the strength of the first-order/
crossover phenomenon no longer appears as a minor
detail, once the order of the transition is determined. It
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is particularly important if the regimes of nucleation and
spinodal decomposition are separated by a narrow range
in the control parameter of the potential barrier. Thor-
ough estimates of time scales for the cooling process and
relaxation phenomena during the phase conversion are
needed to turn the speculations of today into predictions
for observable signatures.

3. Transport coefficients

As we saw in Sec V.D.1, dissipation properties such as
the shear and bulk viscosities of the plasma will influ-
ence the nucleation rate of hadronic bubbles, if the tran-
sition proceeds via nucleation. Viscosity and thermal
conductivity are further sources of entropy production
during the evolution from the initial to the final state.
Although it is sometimes claimed that the amount of
extra entropy is negligible compared to the entropy gen-
erated during a hypothetical supercooling scenario it is
worth calculating; it may well be that there is no super-
cooling at all.
Corresponding to this extra entropy, dissipation leads

to an increase in the final rapidity density of observed
particles. The entropy as a function of time enters vari-
ous production rates, thus an extra entropy will influ-
ence predictions of final rates as well.
Transport processes result from gradients in thermo-

dynamical parameters. Gradients in the temperature
lead to a thermal current, in the velocity field to a fric-
tion force, and in color distributions to a color current.
They are irreversible and are typical nonequilibrium
phenomena that have to be treated with nonequilibrium
methods. We have discussed at length the results from
equilibrium thermodynamics. Typically, they refer to the
existence of phase transitions, critical parameters and
the ingredients for the equation of state. In order to
incorporate all of this knowledge in nonequilibrium ef-
fects, the equilibrium has to play the role of an expan-
sion point, from which small perturbations are allowed.
Thus it is not surprising that transport coefficients are
calculated within some linear response approach. The
linear response refers to the response of the energy-
momentum tensor to the thermodynamic forces (friction
forces, temperature gradients, etc.).
Two approaches are known: the kinetic and the phase

space approach. The kinetic approach emphasizes par-
ticle aspects. Transport processes arise as the result of
collisions between particles (partons or hadrons, de-
pending on the phase). In the vicinity of Tc , kinetic
theory is expected to fail. A hydrodynamic treatment
seems to be more adequate, and is incorporated in the
phase-space approach. In principle, the phase-space ap-
proach applies to all temperatures. The transport coeffi-
cients are expressed in terms of the expectation values
of retarded Green’s functions. Following the work of
Zubarev (1974), Hosoya et al. (1984) elaborated the
phase-space approach for the hydrodynamic regime (al-
though it is not necessarily restricted to that). The hy-
drodynamic description is apparent in the choice of vari-
ables, the locally defined temperature and velocity fields.

As usual, this assumes that the mean-free time of con-
stituent particles is much shorter than the typical relax-
ation time of the system.
Only linear terms in gradients of inhomogeneous dis-

tributions are kept. The system has to be in a late stage
of preequilibrium expansion rather close to equilibrium
to satisfy this condition. Under these restrictions, one
obtains as an expression for the shear viscosity

h52E d3x8E
2`

t
dt1exp$«~ t12t !%

3E
2`

t1
dt8^T12~x,t !T12~x8,t8!&ret (5.110)

in the limit of «→0, where Tmn denote the components
of the energy-momentum tensor. The formulas for the
heat conductivity x and the bulk viscosity z are very
similar; they mainly differ in the components of Tmn .
The expectation value ^•••&ret stands for a retarded
Green’s function in Minkowski time. It is related to the
thermal expectation value ^•••&0 with respect to the
thermal equilibrium distribution according to

^Tmn~x,t !Tmn~x8,t8!&ret52iu~ t82t !

3^@Tmn~x,t !,Tmn~x8,t8!#&0 .

(5.111)

Equation (5.111) is the expression in which we are fi-
nally interested. On the other hand, expectation values
that are easily accessible on the lattice are thermal
Green’s functions in Euclidean time t . They are ex-
pressed via thermal expectation values

^Tmn~x,t!Tmn~0,0!&0 , 0,t,b5
1
T
. (5.112)

The procedure of analytic continuation from Euclidean
to Minkowski time is standard and can be found in
textbooks—see, for example, Kadanoff and Baym
(1962). Here we only sketch the procedure.
In order to relate the retarded Green’s function

GR(x,t) to the thermal function Gb(x,t), one proceeds
via their Fourier transforms G̃R(p,p0) and G̃b(p,vn),
respectively. They have almost identical representations
in terms of the spectral functions r(p,v). We have

G̃b~p,vn!5E dv
r~p,v!

ivn2v
. (5.113)

Here G̃b(p,vn) is defined only on a discrete (but infi-
nite) set of Matsubara frequencies v85vn (due to the
periodicity in Euclidean time). Next, one performs an
analytic continuation of the Fourier coefficients
G̃b(p,vn) for all (nonreal) v8. If there is no essential
singularity at v85` , the unique continuation is

G̃b~p,v8!5E dv
r~p,v!

v82v
. (5.114)

The spectral function is then given by the discontinuity
of G̃b(p,v8) across the real axis. Once we know r , the
Fourier transform of the retarded Green’s function can
be calculated according to
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G̃R~p,p0!5E dv
r~p,v!

p01i«2v
(5.115)

with the same r as in Eq. (5.113). The retarded Green’s
function GR(x,t) then follows as a Fourier transform of
Eq. (5.116). Thus in the ideal case we are done if we are
able to extract the spectral function from certain corr-
elators in Euclidean space. The spectral function is es-
sential not only for analytic continuation; it also allows
an identification of the physical degrees of freedom. In a
given channel C , rc has a pole for each physical degree
of freedom with quantum numbers C , and a branch cut
for every allowed multiparticle state with the same C .
Practically, it is very difficult to determine r in lattice

calculations. Gb(x,t) is known only for a finite (often
small) number of points t i . Therefore, G̃b(p,vn) can-
not be calculated as integral *bdt eivnt (•••), but the
spectral representation of G̃b(p,vn) is just the quantity
of interest.
What can be achieved in spite of these difficulties has

been shown by Karsch and Wyld (1987), who pointed
out the possibilities and limitations of calculating trans-
port coefficients in lattice gauge theory. The approxima-
tion for extracting the spectral function is to make an
ansatz for r involving certain unknown parameters, to
calculate G̃b(p,vn) and Gb(p,t), and to fix the un-
known parameters by fitting Gb(p,t) with Monte Carlo
data.
Kubo-type formulas [see Eq. (5.110)] were used with

an energy-momentum tensor of pure SU(3) lattice gauge
theory. The ansatz for the zero-momentum spectral
function is given as

r~v!5
A~12e2bm!

p S g

~m2v!21g2

2
g

~m1v!21g2D . (5.116)

This involves three parameters: A , g , and m . The
spectral function of a free field theory contains just two,
A and m , thus g represents the interactions. Let us label
the different transport coefficients a i with index i . Cor-
respondingly, the spectral functions r i(v) needed for
the retarded Green’s functions GRi

(t) in the associated
Kubo formulas depend on parameters Ai , g i and mi .
The transport coefficients read, in terms of Ai ,g i , and
mi (Karsch and Wyld, 1987)

a i52Ai~12e2bmi!
2g imi

~g i
21mi

2!2
. (5.117)

This expression can be easily reformulated in dimen-
sionless quantities that are directly measurable on the
lattice: m l 5ma , g/m , 1/T5Nta , and A l 5Aa5, a be-
ing the lattice constant. The goal is to determine A l ,
m l , and g/m from fits of Gb

(i)(t). For example,
Gb

(i)(t) for the shear viscosity is given in terms of space-
space off-diagonal correlations according to

Gb
~h!~t!5(

x
^T12~0,0!T12~x,t!&. (5.118)

This quantity was evaluated on an 8334 lattice. Thus
the time distance t in lattice units is restricted to the
three values 0, 1, and 2; it cannot be larger than 2. In
fact, only G(h)(t) could be measured up to distance 2.
For the other correlators G(z) and G(x), the signal is
already lost in the noise at t52.
The measurements were performed above and below

the critical coupling of the deconfinement transition,
which is at 6/g255.68 for the given lattice size. The mass
parameters mi are more easily accessible than Ai and
g i . They follow from the exponential decay of the cor-
relations. The interesting result is that the correlations
drop rapidly above and below Tc . Especially above
Tc , there still seem to be massive modes in the system
with a large effective mass. Thus there is no indication of
an abrupt change from a free glueball gas below Tc to a
free gluon gas above Tc . Only at low temperatures do
the effective masses approach the lowest values for the
glueball masses obtained from independent calculations
(Berg and Billoire, 1983); in the vicinity of Tc they dif-
fer. Yet one should keep in mind the typical caveats for
any lattice calculation. In particular, the extraction of
masses from short-distance properties could lead to ar-
tificially large values. For the interaction parameter g ,
Karsch and Wyld obtain an upper bound, resulting in an
upper bound for the shear viscosity h of h/T3,9.5. This
bound is in agreement with analytic estimates in the
collision-time approximation of the kinetic approach
(see Hosoya and Kajantie, 1985).
We shall now summarize the lattice calculation of

transport coefficients in the phase-space approach. The
original goal of deriving nonequilibrium properties in
Minkowski space from Euclidean field theory in thermal
equilibrium is divided into two steps. Based on a linear
response approach, the nonequilibrium properties are
first expressed in terms of equilibrium quantities in
Minkowski space. The second step is the analytic con-
tinuation between Minkowski and Euclidean spacetime.
The essential ingredient is the spectral function r . A
basic obstacle to deriving it from Euclidean time corr-
elators measured on the lattice is the rather limited set
of time points. At best, one can only guess an ansatz for
the spectral function that is compatible with the time
correlator. In addition, the correlators Gb of the matrix
elements of Tmn turn out to drop so rapidly that the
small values for Gb are lost in the noise for large dis-
tances. Large distances are needed to project on lowest
excitation states, to justify the very ansatz for Gb . Thus
the values for t , the time distance in lattice units, are too
small both in number and size. From a realistic point of
view, it seems to be impossible to reveal the rich analytic
structure of the spectral function from a lattice ap-
proach. The main part of it will be hidden in the Monte
Carlo noise. Further discussions of transport coefficients
in the lattice approximation and comparisons to the re-
sults of kinetic theory can be found in Horsley and
Schoenmaker (1986) and Schoenmaker and Horsley
(1988).
Heat conductivity and the viscosities are relaxation

phenomena of the energy-momentum with respect to
temperature gradients, friction forces, etc. Their impact
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on the phase transition concerns the phase conversion
(see the preceding section). A direct manifestation of
the phase transition should be visible in a different re-
laxation phenomenon associated with color degrees of
freedom. It is noteworthy that one of the most challeng-
ing properties of a quark-gluon plasma—its color
conductivity—presents itself as a transport phenomenon.
In analogy with the Mott transition from an electric in-
sulator to a conductor, the transition from the hadronic
color insulator to the plasma color conductor should be
manifest in the transport coefficient of color conductiv-
ity, which drops to zero either smoothly or suddenly,
when Tc is approached from above.
Selikhov and Gyulassy (1993) found a surprisingly

small value for the color conductivity, which is deter-
mined by the ratio of the static color electric and mag-
netic screening masses, me and mm , respectively. [Their
assumption is that mm!me . This assumption is not
borne out by lattice simulations in SU(2) and SU(3)
gauge theories, in which mm;me is found for tempera-
tures from Tc up to 2-3 Tc (Boyd, 1995).] The color
conductivity coefficient is calculated from the linear re-
sponse of the system to a weak external field. The rea-
son for the rapid damping of collective color modes is
rapid color diffusion. Color diffusion is characterized by
a specific relaxation time scale tc , which measures the
precession frequency of the color of a parton in a fluc-
tuating background field. This time scale turns out to be
much smaller than a typical momentum relaxation scale
tp , which has been used in (classical) non-Abelian trans-
port theory (see, for example, Heinz, 1986; Baym et al.,
1990; Eskola and Gyulassy, 1993). The small value of
tc explains the poor color conductivity.
Color transport phenomena are still in their infancy

and deserve further attention in future work. One may
think about constructing a device for a ‘‘color amme-
ter.’’
We conclude with some remarks on a promising new

direction in transport theory, which is suited for applica-
tions in heavy-ion collisions. It has been studied by
Zhang and Wilets (1992) and is based on a closed time-
path Green’s function technique (Schwinger, 1961;
Keldysh, 1964 1965) combined with the loop expansion
scheme of Cornwall, Jackiw, and Tomboulis (1974). This
theoretical framework leads to transport equations that
include the generalized Boltzmann equations in the spe-
cial case of the quasiclassical limit. The virtue of this
approach is a unified description of equilibrium and off-
equilibrium systems. The deviations from equilibrium in
the off-equilibrium situations considered are not re-
stricted to a small size, whereas small deviations are nec-
essary for justifying a linear-response approach.
In particular, the framework is well suited for incor-

porating the phase transition. The order parameter
(chosen here to be the chiral condensate of the Nambu–
Jona-Lasinio model) is a dynamical variable that enters
the generalized Boltzmann equations. The Boltzmann
equations reduce to the Vlasov equation in the Hartree
approximation. The Vlasov dynamics control the colli-
sion dynamics, particularly medium effects of chiral

symmetry breaking in transverse flow. The transverse
flow is sensitive directly to the chiral condensate.
A further numerical elaboration of these microscopic

transport equations could lead to predictions of observ-
able signatures for chiral symmetry restoration. Such
predictions should be more reliable (in the sense of be-
ing more realistic) than any predictions based on equi-
librium thermodynamics. Ultimately, full QCD should
be substituted for the Nambu-Jona-Lasinio model used
in the analysis of Zhang and Wilets. A less ambitious
extension would incorporate three rather than two fla-
vors, or vary the effective microscopic model for QCD
to include gluonic degrees of freedom as well.

4. Dynamical universality and disoriented chiral condensates

Most of the proposed experimental consequences of a
QCD transition at finite temperature are based on the
assumption of a first-order transition scenario. As a
manifestation of a second-order transition we discussed
intermittent behavior in Sec. V.C.6. In this section we
describe further consequences of a second-order transi-
tion under an additional assumption of rapid cooling
from the high- to the low-temperature phase. The un-
derlying theory is the three-dimensional O(4) model of
Sec. V.A, which is supposed to describe two-flavor QCD
in the vicinity of Tc and predicts a second-order transi-
tion in the chiral limit. At criticality, long-range order in
an O(4) model leads to large clusters of aligned spins,
or, translated to the particle contents of the sigma
model, large clusters in three-dimensional space, where
the ratio of charged to neutral pions is fixed. The ques-
tion arises whether the cluster size is sufficiently large to
have observable effects. Due to the finite quark masses,
the second order of the transition is an idealization any-
way (unless the masses take tricritical values). Although
the up and down masses are only a few MeV, the in-
duced zero-temperature pion mass is ;135 MeV and
increases further with temperature (Rajagopal and Wil-
czek, 1993a, 1993b). As the lightest particles in the spec-
trum, the pions have the largest correlation length. Thus
the largest correlation length is smaller than (135
MeV)21, which is not large compared to Tc

21 [if we use
Tc;140 MeV for two flavors (Bernard et al., 1992)]. The
number of pions arising from a typical cluster of
‘‘aligned O(4) spins’’ in isospin space can be estimated
from the energy stored in a typical correlation volume in
the vicinity of Tc (Rajagopal and Wilczek, 1993a,
1993b). The estimate is based on lattice results and indi-
cates that not more than one or two pions belong to the
same correlation volume. Thus the hope of seeing clus-
ters of hundreds of pions with a fixed ratio of neutral to
charged pions seems to be gone. The upper bounds on
the maximal size of a correlation volume and the energy
stored in this volume are based on equilibrium thermo-
dynamics. They apply to a phase transition in heavy-ion
collisions, if the system always remains close to local
equilibrium, particularly during the phase transition.
The situation may change drastically, if the transition

proceeds far out of equilibrium via a quench. Let us re-
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call what a quench is in spin systems. The system starts
at high temperature in a completely disordered state.
The temperature is then instantaneously turned to zero.
An example of this is a bar of iron that is plunged into
ice water, rather than being slowly cooled through the
transition point. The high-temperature spin configura-
tion is far out of equilibrium when the thermal fluctua-
tions are suddenly switched off. The equilibrium con-
figuration at zero temperature would be a well ordered
ground state. In condensed-matter physics it is well
known what happens to a high-temperature spin con-
figuration after a quench (Halperin et al., 1974; Hohen-
berg and Halperin, 1977). The system evolves according
to the zero-temperature equations of motion, which de-
termine the universal dynamics of the long-wavelength
modes near Tc . Theories that are described by the same
equations of motion for the long-wavelength modes de-
fine a dynamical universality class. In contrast to static
universality classes, dynamical universality classes are
specified not only by the space dimension and the num-
ber of order-parameter components, but also by those
quantities that are conserved. The important result of
condensed-matter physics (Bray, 1990; Newman et al.,
1990) is that the linear size of a correlation volume
L(t) grows with time according to L(t);tp, where p is
an exponent that depends on the characteristic param-
eters of the dynamical universality class. It is crucial,
from the viewpoint of the application to QCD, that
L(t) does not depend on equilibrium correlation
lengths. Following this digression to condensed-matter
physics, let us return to QCD.
The interesting suggestion of Rajagopal and Wilczek

(1993a; 1993b) is that QCD belongs to the dynamical
universality class of an O(4) antiferromagnet in the vi-
cinity of Tc . The implications of this hypothesis are dis-
cussed below.
The question of interest is the specific way in which

different regions of space relax to the ground state at
low temperature. In the case of an O(4) model, the
ground state at low T is characterized by small oscilla-
tions around the s-direction in isospin space. The
vacuum expectation value of the O(4) field is
^f&5^s ,p&5(fp ,0). If the cooling is adiabatically slow,
it is likely that different clusters of aligned spins relax
independently to the ground state configuration. In con-
trast, if the cooling proceeds via a quench, the long-
wavelength modes relax much more slowly to the equi-
librium configuration. This allows the formation of large
clusters of misaligned spins characterized by a ‘‘mis-
aligned’’ condensate value ^p& Þ 0. Such regions of mis-
aligned condensates have been called disoriented chiral
condensates by Bjorken et al. (1993). They speculated
about events in which the pion yield comes in clusters of
pions aligned in a single direction in isospin space over a
large fraction of the collision volume. When these re-
gions relax coherently to the true ground state with ^s&
Þ 0, a specific radiation of pions is emitted. This radia-
tion is proposed as an observable signature in heavy-ion
collisions. The ‘‘misaligned’’ high-temperature vacuum
is determined by oscillations around some fixed direc-

tion (s ,p) in classical field space. The radiated pions
correspond to a coherent configuration in that direction.
Pions originating from one such cluster of misaligned
condensate have a fixed ratio of charged to neutral
pions. The probability distribution for a given charge
ratio R is predicted as (Rajagopal and Wilczek, 1993a;
1993b)

Prob~R !5
1
2
R21/2, (5.119)

where R is the ratio of neutral pions to the total number
of pions.
Correlations in space are not directly accessible in

heavy-ion collisions. Thus a further relation is needed to
translate correlations in space to measurable correla-
tions in rapidity space. Such a relation is provided by
Bjorken’s scaling ansatz. In Bjorken’s description, dif-
ferent positions in space become different positions in
rapidity space. Given z and t we know the rapidity
Y5 1/2 ln@(11v)/(12v)# (see Sec. V.B.1).
Thus an observable effect of a quenched QCD transi-

tion could be constant ratios of neutral pions to this total
number of pions over large volumes in rapidity space.
Fluctuations in pion multiplicities of this type should be
distinguished from fluctuations originating in exploding
plasma blobs, where the criterion to form a blob is a
genuine nucleation process rather than a fixed direction
in isospin space (see Sec. V.C.5).
Generic spin systems and an O(4) model as the effec-

tive description for QCD share similarities in view of
dynamical universality, but also differ in several aspects,
which we list in the following.
(i) At high temperatures, the O(4) vector will not

really fluctuate in arbitrary directions from cluster to
cluster due to the ‘‘external field’’. The nonvanishing
pion mass singles out a preferred direction even at high
temperatures, assuming that the model has not lost its
validity at high temperatures. The analysis of Bray
(1990) and Newman et al. (1990) has to be extended to
account for the effect of finite quark masses (see Raja-
gopal and Wilczek, 1993a; 1993b).
(ii) The sudden quench as a model for instantaneous

cooling is certainly an idealization of the realistic cooling
process. In Bjorken’s scaling ansatz, T drops according
to T5T0(t0 /t)

cs
2
, more slowly than the corresponding

entropy density if transverse expansion is neglected (cs
is the speed of sound in the medium).
(iii) Strictly speaking it is not possible to talk about a

well ordered ground state at T50. The plasma is ex-
panding until freezeout, at which point the temperature
is larger than zero. After freezeout it no longer makes
sense to call some parameter ‘‘temperature.’’
(iv) Furthermore, a description in terms of field con-

figurations is not convenient when individual particle as-
pects become more relevant. In the very end detectors
register single particles. Even before freezeout the lan-
guage of kinetic theory is more adequate.
(v) The equations of motion at zero temperature have

to be Lorentz invariant in the QCD case. The proposal
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is to use the T50 O(4) linear sigma model to guarantee
Lorentz-invariant equations of motion.
(vi) The plasma is expanding, whereas the ferromag-

net is static.
In spite of the complications in heavy-ion collisions,

there is at least a chance that a fast cooling amplifies the
role of long-wavelength pionic modes during the phase
conversion of the quark-gluon plasma. However, for re-
alistic coupling strengths in the sigma model, their relax-
ation to the low-T equilibrium configuration goes too
fast to allow the formation of large regions of ‘‘mis-
aligned’’ vacuum (Gavin et al., 1994b). Gavin et al. per-
formed a numerical simulation of the zero-temperature
O(4) linear sigma model in the presence of an external
field H , with couplings in the Lagrangian that induce
physical values for fp592.5 MeV, mp5135 MeV, and
ms5600 MeV. In particular, the quartic coupling is
strong (l520). In contrast, simulations at weak cou-
plings corresponding to unrealistically light masses
(mp50.3 MeV and ms51.8 MeV) reproduce the forma-
tion of domains with a field slowly varying about some
nonzero value ^p&. The ‘‘collapse’’ of these domains to
the true ground state is accompanied by characteristic
pion radiation, where the number of pions in a typical
clump could be large enough for detection.
Under realistic conditions, the cooling in heavy-ion

collisions may not be fast enough to sufficiently amplify
the long-wavelength modes, and the wavelengths of the
lightest modes may not be long enough for the forma-
tion of disoriented chiral condensates. For further refer-
ences to disoriented chiral condensates, see Krzywicki
(1994), Huang, (1995), Rajagopal (1995), and references
therein.
A useful tool that helps in assessing the chances of

observing the predicted pion radiation is an energy bud-
get for the chiral and the deconfinement transition (Wil-
czek, 1994). The energy density that is stored in the chi-
ral vacuum (associated with chiral condensation) should
be compared with the energy density of the quark-gluon
plasma for temperatures T>Tc . The decimation of
QCD’s degrees of freedom to pions and the description
of the cooling process as a quench are certainly idealiza-
tions. Within the idealized limits we have seen the pre-
dictive power of the renormalization group approach.
As we argued in Secs. IV.A.1 and IV.A.2, the basic open
question is how important are the heavier modes in
comparison to the light modes associated with spontane-
ous chiral symmetry breaking. One measure for their
importance is their contribution to the total energy den-
sity. The accumulated effects of heavier modes can bury
the interesting (predictable) structures arising from the
singularities in the chiral two-flavor transition. A quench
does not guarantee, but improves the chance for seeing
relics of the chiral transition.
Support from ‘‘experiment’’ is taken from a particular

class of cosmic-ray events called Centauros (Rajagopal
and Wilczek, 1993a, 1993b). In Centauros, isospin invari-
ance seems indeed to be violated. The number of

charged pions strongly exceeds the number of neutral
ones. For further discussion of Centauros see, for ex-
amples, Lattes et al. (1980).

VI. SUMMARY AND CONCLUSIONS

The ultimate question of the order of the finite-
temperature QCD transition for three colors, two light
and one heavier flavor, with physical values for the
quark masses, is open. Closest to this physical case come
lattice simulations with two light and one heavier flavor
in the fermion schemes, with staggered and Wilson fer-
mions. At present their results are in disagreement, pre-
dicting a crossover phenomenon in the staggered formu-
lation (Sec. III.C.5) and a first-order transition in the
Wilson formulation (Sec. III.C.7). Both results may be
still artifacts of the strong couplings inherent in the
simulations.
Partial answers as to the order of the QCD transitions

are known in limiting cases. The first [second] order of
the deconfinement transition in the SU(3) [SU(2)]
Yang-Mills theory seems to be well established (Secs.
III.B.1 and II.B.2). General agreement is also found
concerning the second order of the chiral transition in
the limit of two massless flavors when dynamical fermi-
ons are included. An open question is the universality
class of two-flavor QCD [whether it is O(2), O(4), or
mean field]. Consistent results in different fermion for-
mulations are found for the first order of the chiral tran-
sition in the case of Nf>3 flavors with sufficiently light
masses (Secs. III.C.5 and III.C.7).
An interesting topic for future studies is a determina-

tion of the critical strange-quark mass ms* at which the
first order of the chiral transition changes into second
order. For larger values of ms it stays of second order
for mu ,d50, and disappears otherwise. The location of
the ‘‘critical’’ phase boundary between mass regions of
first-order transitions and crossover phenomena could
tell us how far the physical quark masses are from ‘‘criti-
cal’’ quark masses. It would be appealing, both from
theoretical and experimental points of view, if they were
close. The powerful renormalization-group approach
then becomes applicable for finite mass-scaling predic-
tions. Remnants of a nearby second-order transition
should lead to large correlation lengths and pronounced
effects in relative heavy-ion collider experiments (Secs.
III.C.5, III.C.7, and IV.A.4).
Lattice calculations start from first principles as they

simulate QCD in its discretized version. They are the
nonperturbative tool for studying the phase-transition
region, where many expansion schemes break down. But
they are plagued with artifacts from the finite volume,
the finite lattice constant, and unphysical mass param-
eters. Infrared artifacts may amount to a harmless
rounding of an infinite-volume singularity or a mislead-
ing double-peak structure, suggesting a first-order tran-
sition where it is truly of second order (Sec. II.A.2). Ul-
traviolet artifacts may result in a ‘‘harmless’’ change of
critical exponents [O(2) rather than O(4)] (Sec.
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III.C.3), but also in bulk transitions being a pure lattice
artifact without any impact on continuum physics (Sec.
III.C.4).
Progress on the lattice is not only a question of pow-

erful machines (such as special-purpose computers).
Progress in the past came also from a better control of
ultraviolet and infrared artifacts with finite-size and
finite-mass scaling analysis, using refined criteria devel-
oped in statistical physics. Extrapolations to the infinite-
volume and zero-mass limits are unavoidable in numeri-
cal simulations. Therefore, a precise measurement of
critical exponents is worth the effort, assuring that the
right extrapolation formulas are used (Sec. III.C.5).
The earlier discrepancies between predictions from

staggered and Wilson fermions shrink. Wilson fermions
seem to have a chiral limit in the confinement phase
with broken chiral symmetry at low temperatures, if the
lattice is large enough. The lattice size must be even
larger than for staggered fermions in order to reach the
continuum limit, too large for practicable simulations,
unless improved actions accelerate the approach to the
continuum limit. Work in this direction is in progress
(Sec. III.C.7).
The main contributions from the Euclidean lattice for-

mulation of QCD to physical applications in relativistic
heavy-ion collider experiments should be reliable pre-
dictions of in-equilibrium properties. To these belong
the equation of state, the tension of interfaces between
coexisting phases, and the velocity of sound. A deriva-
tion of the equation of state under the inclusion of dy-
namical fermions is still in an exploratory stage. The de-
pendence on the lattice size has not yet been analyzed,
and the simulations are performed for 2 rather than 2+1
flavors, but the ingredients are fully nonperturbative
(Sec. III.C.6). This represents important progress com-
pared to earlier calculations that used perturbative and
nonperturbative input data in an inconsistent way (see
also Sec. III.B.2).
From results in the pure gauge sector, it has become

clear that strong deviations from the phenomenological
bag model equation of state must be expected in the
transition region. Deviations from the ideal-gas behavior
are pronounced up to temperatures of the order of 2–3
Tc (Sec. III.B.2). So far, many phenomenological appli-
cations are based on the bag model equation of state.
An update is called for, once the lattice results are well
established.
With a reliable calculation of interface tensions, one

could exclude certain scenarios, which are under discus-
sion for RHIC experiments, right from the beginning.
Thus a small value for the interface tension is incompat-
ible with a strong supercooling scenario (Sec. III.B.3).
So far lattice calculations have mainly focused on tem-
perature driven transitions at zero baryon density, the
reasons for which have been explained in Sec. III.D.
Nevertheless, inclusion of a finite chemical potential is
needed for a realistic description of heavy-ion experi-
ments. An idealization of a baryon-free region in the
collisions can be hardly justified.

Studies of the phase structure of QCD in effective
models in the spacetime continuum may give useful
hints about the underlying physical mechanisms. Results
in dual Ginzburg-Landau models suggest that Abelian
U(1)3U(1) monopoles are the most important field
configurations in the confinement mechanism (Sec.
IV.B.2) in the maximal Abelian gauge. Confinement
would then have an explanation as a dual Meissner ef-
fect, but the type of most relevant topological field con-
figurations does depend on the gauge.
Nonequilibrium aspects enter the evolution of the ini-

tially created hot and dense ‘‘fireballs’’ in relativistic
heavy-ion collider experiments and in the transition dy-
namics during the phase conversion. Most of the non-
equilibrium approaches in the past have studied small
deviations from in-equilibrium properties. Field-
theoretical descriptions of nonequilibrium phenomena
are still in their infancy. Recently, they became increas-
ingly important for the electroweak transition in the
early universe. These tools may have fruitful applica-
tions to QCD as well. For example, it is still unclear
whether the conversion from the plasma to the hadron
phase proceeds via nucleation or large-domain coarsen-
ing (Secs. V.D.1 and V.D.2).
For phenomenological discussions of QCD transitions

in laboratory experiments, theoretical concepts are
sometimes missing. Thus it seems to be rather difficult to
derive the equilibration time of the hot initial state from
first principles. Formulas are missing for particle produc-
tion rates in media with long-range correlations. Such
correlations exist at Tc , if the transition is almost of
second order. An interpolation between nuclear struc-
ture functions and thermal Bose-Einstein or Fermi-
Dirac distributions would be desirable to close the gap
between the initial off-equilibrium and the final in-
equilibrium medium.
Altogether the judgement of the experimental situa-

tion is the following. Even from a very conservative
point of view, extended and dense systems have been
observed that display some collective features. Some of
them can be explained with a transient plasma, but al-
ternative mechanisms explain the observed features as
well. To date, the question of the order of the transition
has been of secondary importance in heavy-ion experi-
ments. Once the creation of a plasma phase may be
taken for granted, one can focus on substructures exhib-
iting details of the transition dynamics (Sec. V).
Our aim was to list the most important signatures that

are, at least in principle, sensitive to the transition, and,
in case it is hopeless to see an effect, to argue why it is
hopeless (see, for example, Sec. V.C.3).
In Table IX we summarize signatures in various ex-

perimental tools that may be indicative of a first- or
second-order transition and display alternative explana-
tions in a separate column. Crosses (3) stand for an
affirmative answer, which generally should be taken cau-
tiously, and ‘‘/’’ stands for ‘‘not known.’’ Explanations of
further notations can be found in the corresponding sec-
tions.
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We conclude with the following conjecture. For physi-
cal quark masses, the deconfinement and the chiral tran-
sitions are replaced by rapid crossover phenomena. The
rapid change is seen in the energy and entropy densities
over a temperature interval of the order of 10 MeV, and
in variations of the order-parameter expectations values
such as the Polyakov loop and the light-quark conden-
sate. It would be interesting to investigate on the phe-
nomenological side when a change in one of these quan-
tities might be considered as rapid enough to produce
multiplicity fluctuations in rapidity space beyond the sta-
tistical noise, or clear deviations in dilepton production
rates from the standard rates without a crossover. Is a
temperature interval of 10 MeV resolvable from an ex-
perimental point of view? Finding a quantitative answer
to these questions is a challenge for further studies.
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