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The experimental and theoretical evidence for intrinsic reflection-asymmetric shapes in nuclei is
reviewed. The theoretical methods discussed cover a wide spectrum, from mean-field theory and its
extensions to algebraic and cluster approaches. The experimental data for nuclear ground states and
at low and high spin, cited as evidence for reflection asymmetry, are collected and categorized. The
extensive data on electric dipole transition moments and their theoretical interpretation are surveyed,
along with available data on electric octupole moments. The evidence for reflection-asymmetric
molecular states in light nuclei is summarized. The application of reflection-asymmetric theories to
descriptions of the fission barrier, bimodal fission, superdeformation, and hyperdeformations is
reviewed, and some other perspectives in the wider context of nuclear physics are also given.
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I. INTRODUCTION

The existence of nuclei with stable deformed shapes
was realized early in the history of nuclear physics. The
observation of large quadrupole moments led to the sug-
gestion that some nuclei might have spheroidal shapes,
which was confirmed by the observation of rotational
band structures and measurements of their properties.
For most deformed nuclei, a description as an axial- and
reflection-symmetric spheroid is adequate to reproduce
the band’s spectroscopy. Because such a shape is sym-
metric under space inversion, all members of the rota-
tional band will have the same parity; however, with the
first observation of negative-parity states near the
ground state by the Berkeley group in the 1950s (Asaro
et al., 1953; Stephens et al., 1955), the possibility arose
that some nuclei might have a shape asymmetric under
reflection, such as a pear shape (Strutinsky, 1956; Lee
and Inglis, 1957).
Extensive investigations into the structure of nuclei

with low-lying negative-parity states has led to the con-
clusion that, while reflection-asymmetric shapes can play
a role in the band structure, they are not as stable as the
familiar quadrupole deformations. The situation is illus-
trated by the low-lying spectrum of a representative
case, 224Ra. Its spectrum is compared to that of the lin-
ear molecule HCl in Fig. 1. The molecule’s reflection
asymmetry permits both parities in its rotational spec-
trum, perfectly interleaved according to the energy for-
mula EJ;J(J11). The spectrum of 224Ra has both
parities as well, but in two bands that are displaced from
each other. Nevertheless, there are good reasons for de-
scribing such a system as a common band. Experimen-
tally, not only the proximity of energies, but also the
dipole transitions between the subbands are characteris-

tic of an intrinsic shape having an electric dipole mo-
ment. The displacement of the two parities means that
fluctuations of shape back to symmetry must also be sig-
nificant. In light nuclei, the resonances observed in col-
lisions and other reactions may also be interpreted in
terms of ‘‘molecular states’’ of alpha particles and other
light clusters, which lack reflection symmetry. Analogies
have also been drawn between molecular and baryonic
spectra, describing baryons as symmetric or asymmetric
tops (Iachello, 1989).
This review addresses both experimental and theoreti-

cal progress in this area. On the experimental side, spec-
troscopy has been extended to very high spins, and in-
dicative transitions, including dipole and octupole, can
now be measured. On the theoretical side, following an
early phase of phenomenological theory, we have
moved to an era where stable shapes can be predicted
and understood from self-consistent mean-field theory,
and furthermore the softness of the reflection-
asymmetric deformation that was apparent in Fig. 1 is
described by a more sophisticated theory going beyond
the mean field.
The organization of this review is as follows. Section

II contains the definitions of parameters used to define
the nuclear shape in terms of both mass and charge dis-
tribution. Section III summarizes in detail various theo-
retical approaches, some of which have been reviewed
earlier (Leander, 1985a; Nazarewicz, 1985; Rohoziński,
1988; Åberg et al., 1990). Sections IV and V collect ex-
perimental data pertaining to energy levels and transi-
tions, and ground-state properties, respectively; for pre-
vious reviews of experimental systematics, see Leander
and Sheline (1984), Leander and Chen (1988), Jain et al.
(1990), Ahmad and Butler (1993), and Sheline (1993a).
Section VI explores the properties of the rotating
nuclear reflection-asymmetric shape and discusses them
in terms of experimental observations. Section VII ex-
amines theoretical models of the electric dipole transi-
tion moment, an important observable in this context;
for an earlier review see Butler and Nazarewicz (1991).
Section VIII presents a survey of molecular structures in
nuclei in the sd and fp shell, and of theoretical methods
used to describe these light systems. Section IX discusses
how the concept of octupole mass deformation has been
applied to the description of fission and (more recently)
to super- and hyperdeformed nuclear states. Finally,
Sec. X offers a broader perspective on the consequences
of nuclear reflection asymmetry and on future avenues
of investigation.

II. DEFINITIONS

The anisotropy of nuclear shape is described in terms
of intrinsic moments and deformation parameters.
Shape parametrizations and intrinsic moments specific
to reflection-asymmetric nuclei (e.g., octupole de-

FIG. 1. The low-lying rotational spectra of 224Ra, compared
with that of the H35Cl molecule. The spectrum of 224Ra is
taken from Poynter et al. (1989a). The rotational constants for
the H35Cl molecule are taken from Landolt-Börnstein (1974).
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formed) are discussed below in Sec. II.A (isoscalar mo-
ments) and Sec. II.B (isovector electric dipole moment).

A. Reflection-asymmetric shapes

In many applications, the nuclear shape is param-
etrized in terms of a spherical harmonic (multipole) ex-
pansion. The spheroidal nuclear surface is defined by
means of standard deformation parameters alm describ-
ing the length of the radius vector pointing from the
origin to the surface (Bohr, 1952; Hill and Wheeler,
1953):

R~V!5c~a!R0F11 (
l52

lmax

(
m52l

1l

almYlm* ~V!G , (1)

with c(a) being determined from the volume-
conservation condition and R0=r0A

1/3. The requirement
that the radius be real imposes the condition

~alm!*5~2 !mal2m . (2)

The three dipole deformations, a161 and a10 , are
given by the constraint that fixes the center of mass
(c.m.) at the origin of the body-fixed frame:

E
V
rd3r50, (3)

where V is the total volume enclosed by the surface de-
fined in Eq. (1). For shapes axially symmetric with re-
spect to the z axis, all deformation parameters with m
Þ 0 vanish. The remaining deformation parameters al0
are usually called bl :

bl[al0 . (4)

For a well-defined axial octupole minimum in the to-
tal energy, the intrinsic charge octupole moment is

Q30,c[E 2r3P30rc~r!d
3r, (5)

where rc(r) is the charge density. Assuming rc=const
inside the sharp surface of Eq. (1), Q30,c can be related
to the deformations bl by (Leander and Chen, 1988)

Q30,c5
3

A7p
ZR0

3b̄3 , (6)

where

b̄35b31
5

A4p
S 4A515 b2b31

6
11

b3b4

1
60A7
91A11

b4b51••• D . (7)

The mass octupole moment and corresponding defor-
mations are defined in a similar way.
There exist several parametrizations of reflection-

asymmetric shapes other than the a and b parametriza-
tions discussed above. A compilation of other param-
etrizations is contained in the Appendix.

The number of deformation parameters that appear in
the multipole expansion Eq. (1) grows rapidly with l .
For instance, the general quadrupole-plus-octupole
shape is described by two quadrupole deformations
(a20 and a22 , or b2 and g) and seven independent de-
formations a3m . Figure 2 displays four shapes resulting
from the superposition of axial quadrupole and octupole
deformations with m=0, 1, 2, and 3.
A general parametrization of the combined

quadrupole-octupole field, covering all possible shapes
without double counting, was proposed by Rohoziński
(1990). The basic requirements are that the parametri-
zation obeys simple transformation rules under O h (a
group of 48 transformations changing the names and ar-
rows of the axes), and have simple ranges for the param-
eters. After introducing the seven real Cartesian compo-
nents a3m and b3m (Rohoziński et al., 1982; Rohoziński,
1988),

a305a30 , a36m5
~61 !m

A2
~a3m6ib3m! ~m51,2,3!,

(8)

FIG. 2. Quadrupole-octupole shapes represented by multipole
expansion, Eq. (1). In all cases, the same axial quadrupole de-
formation a20=b2=0.6 is assumed. The four shapes correspond
to octupole deformations with m=0, 1, 2, and 3 @a30=b30 ;
a32m=(21)ma3m=b3m/2; b3m=0.35]. (Courtesy of T. Misu.)
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the latter can be expressed in terms of one ‘‘radial’’ co-
ordinate b3 (b3>0) and six ‘‘angular’’ biharmonic coor-
dinates (d0 ,d1 ,d2 ,g0 ,g1 ,g2) describing both the octu-
pole distortion and its orientation with respect to the
intrinsic frame defined by the quadrupole tensor. The
coordinates given by Eq. (8) can be expressed as

a305b3cosd0cosd1cosg1 ,

a315b3cosd0sind1cosd2cosg2 ,

a325b3cosd0cosd1sing1 ,
(9)b315b3cosd0sind1sind2cosg3 ,

b325b3sind0 ,

b335b3cosd0sind1sind2sing3 ,

where 2p/2<d0<p/2, 0<d i<p/2 (i=1,2), 2p/2<g1
<p/2, 2c2p/2<g2<p/22c , c2p/2<g3<p/21c , and
sinc=A5/8, cosc=A3/8 (Rohoziński, 1990).
Attempts to find a unique parametrization of the

pure-octupole field defining an intrinsic frame (i.e., with-
out involving the quadrupole field) turned out to be less
successful (Hamamoto, Zhang, and Xie, et al., 1991).

B. The electric dipole moment

The nuclear electric dipole moment is a measure of
the shift between the center of charge and the center of
mass of the nucleus. Assuming that nucleons are point-
like particles, the E1 moment is

D5(
i51

Z

ei~rp ,i2Rc.m.!5e~rp2ZRc.m.!. (10)

Neglecting the proton-neutron mass difference
(ARc.m.5rp1rn), D is equal to

D5e
N

A
rp2e

Z

A
rn . (11)

Equation (11) can be written alternatively as

D5e
ZN

A
~rp ,c.m.2rn ,c.m.!, (12)

where rp ,c.m.=rp /Z and rn ,c.m.=rn /N are the center-of-
mass coordinates for protons and neutrons, respectively.
For reflection-symmetric systems, the nucleonic (pro-

ton and neutron) densities have three symmetry planes,
so that ^rn&=^rp&=0, and hence ^D&=0 (the notaton
^•••& denotes the expectation value in the intrinsic
state). However, if density distributions are reflection
asymmetric, then in general rp ,c.m. Þ rn ,c.m. , and a large
static E1 moment may arise in the intrinsic frame. For
an axially deformed system, having ^x&=^y&=0, the in-
trinsic dipole moment is aligned along the symmetry axis
(z axis), and its value D0 can be calculated directly from
Eq. (11). In the most general case of triaxial and
reflection-asymmetric density distributions, the intrinsic
dipole moment is characterized by three spherical com-
ponents, D61 and D0 .

III. THEORETICAL DESCRIPTIONS

In this section, we review the many theoretical ap-
proaches to reflection-asymmetric nuclear shapes. We
begin in Sec. III.A with general arguments, before mov-
ing on to the reflection-asymmetric mean-field approach
(Sec. III.B) and its extensions (Sec. III.C), algebraic ap-
proaches (Sec. III.D), cluster models (Sec.III.E), and,
for completeness, vibrational models (Sec. III.F).

A. Microscopic origin of static octupole deformations

The mechanism responsible for the appearance of
static deformations in nuclei arises from the degeneracy
of eigenvalues of a single-particle Hamiltonian around
the Fermi level, leading to instability with respect to
shape vibrations (spontaneous symmetry breaking). This
is the Jahn-Teller effect (Jahn and Teller, 1937; Rein-
hard and Otten, 1984). Stable reflection-asymmetric de-
formations in the body-fixed frame can be attributed to
a parity-breaking odd-multipolarity interaction which
couples intrinsic states of opposite parity.
To illustrate the transition from symmetric to

reflection-asymmetric shapes, we use arguments based
on the random-phase approximation (RPA) with a sepa-
rable multipole interaction. A simple nuclear Hamil-
tonian representing nuclear vibrations, the pairing-plus-
multipole Hamiltonian, can be written as (Lane, 1964;
Soloviev, 1976):

H5(
j
e jcj

1cj82
1
2(l

kl (
m52l

1l

Qlm
1
•Qlm1Hpair , (13)

where the first term on the right-hand side is the spheri-
cal shell-model potential, the second term represents a
long-range separable multipole-multipole force generat-
ing the collective motion, Hpair is the pairing Hamil-
tonian, and j stands for the set of quantum numbers
(n ,l ,j). In Eq. (13), Qlm is the multipole operator

Qlm
1 5(

jj8
^jufl~r !Ylm~V!uj8&cj

1cj8, (14)

where fl(r) is the radial form factor [given, e.g., by the
derivative of the average potential (Bohr and Mottelson,
1975)]. A coupling between single-particle states of op-
posite parity is produced by the octupole-octupole
(l=3) residual interaction. For the Hamiltonian [Eq.
(13)] representing simple octupole vibrations, the exci-
tations Eoct of the system can be computed by means of
the RPA; they are solutions to the dispersion equation
(Lane and Pendlebury, 1960; Veje, 1966; Soloviev, 1976;
Ring and Schuck, 1980)

(
j ,j8

u^jiQ3i j8&u2~ujv j81uj8v j!
2~Ej1Ej8!

~Ej1Ej8!
22Eoct

2 5
7
k3
, (15)

where Ej=A(ej2l)21D2 are the quasiparticle energies,
and uj and v j are the usual BCS occupation coefficients.
The lowest root of Eq. (15) represents the low-

frequency collective octupole vibration. If the coupling

352 Butler and Nazarewicz: Intrinsic reflection asymmetry

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



constant k3 is relatively small, the system behaves like a
vibrator [Fig. 3(a)]. If the value of k3 is increased, vibra-
tions become more and more collective and the vibra-
tional frequency decreases. At the critical point, defined
by

k3,crit57H (
j ,j8

u^jiQ3i j8&u2~ujv j81uj8v j!
2

Ej1Ej8
J 21

, (16)

the lowest solution of Eq. (15) has zero energy, i.e., the
collective vibrational state becomes degenerate with the
ground state [Fig. 3(b)]. At this point the RPA breaks
down, the system becomes unstable against vibration in-
duced by the octupole-octupole force (Thouless, 1961),
and further increase of the coupling constant leads to
permanent intrinsic octupole deformation [see Fig. 3(c)].
Pairing correlations, through the change in the energy
denominator in Eq. (15) and the reduction of the nu-
merator through the uv factor, tend to increase the criti-
cal value of k3 . One can thus say that pairing has a
tendency to make the system less octupole deformed.
It is important to remember that actual nuclei are

relatively small systems, and that finite-size effects,
which manifest themselves through dynamical correla-
tions (fluctuations), are crucial. The fluctuations wash
out transitions from the ‘‘spherical’’ to the ‘‘deformed’’
phase and result in a smooth and continuous pattern of
Eoct and octupole deformation b3 , proportional to
^01iQ3i32& (see the discussion in Sec. III.C). Even for

the best cases of nuclear stable octupole deformations,
the octupole barriers separating the two degenerate
minima are relatively small, i.e., the extreme limit of the
rigid static octupole deformation shown in Fig. 3(d) is
never approached.
As can be seen in Eq. (16), the necessary condition for

the presence of low-energy octupole collectivity is the
existence, near the Fermi level, of pairs of orbitals
strongly coupled by the octupole interaction. As shown
in Fig. 4, for normally deformed systems the condition
for strong octupole coupling is satisfied for particle num-
bers associated with the maximum DN=1 interaction be-
tween the intruder subshell (l ,j) and the normal-parity
subshell (l 23,j23). The regions of nuclei with strong
octupole correlations correspond to particle numbers
near 34 (g9/2↔p3/2 coupling), 56 (h11/2↔d5/2 coupling),
88 (i13/2↔f7/2 coupling), and 134 (j15/2↔g9/2 coupling).

FIG. 3. Total nuclear energy as a function of octupole defor-
mation b3 , for different values of octupole coupling k3 . The
vibrational limit (a) corresponds to small values of k3 . Here
the octupole stiffness C3=(d

2E/db3
2)b350 , is positive. At the

point of instability (b) k3=k3,crit [Eq. (16)], C3=0 and the sys-
tem becomes unstable to octupole vibrations. For k3.k3,crit (c)
the system is permanently deformed (C3,0); the parity split-
ting results from tunneling between two degenerate minima at
b3=6b̄3 , separated by a barrier VB . In the limit of rigid oc-
tupole deformation (d), i.e, an infinite barrier separating the
minima, the parity splitting vanishes.

FIG. 4. Nuclear spherical single-particle levels. The most im-
portant octupole couplings are indicated.
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That is, the tendency towards octupole deformation oc-
curs just above closed shells.

B. Reflection-asymmetric mean-field approach

The concept of stable octupole deformation appears
naturally in the unconstrained mean-field approach, in
which the average potential, and consequently the total
energy, is a functional of the nucleonic density (Ring
and Schuck, 1980).
The average nuclear mean field, in which nucleons

move as independent particles, can be obtained from the
Hartree-Fock (HF) theory. The starting point is the gen-
eral two-body Hamiltonian

H5(
ij

t ijc i
1cj1

1
4(ijkl v̄ ijklci

1cj
1clck , (17)

where v̄ ijkl is the antisymmetrized matrix element of a
two-body effective (usually density-dependent) force.
The A-body wave function is approximated by a Slater
determinant whose orbitals are determined by minimi-
zation of the total energy. This variation leads to an ei-
genvalue problem which defines both the single-particle
orbitals $F i , i51, . . . ,A% and the single-particle ener-
gies ei :

~ t1G!F i5eiF i . (18)

The resulting self-consistent HF potential,

G ij@r#5(
kl

v̄ ikjlr lk , (19)

depends on the orbitals through the density matrix r .
The pairing (particle-particle) components of the ef-

fective force can be approximated in the framework of
the BCS theory, or they can be treated on the same
footing as the particle-hole interactions through the
Hartree-Fock-Bogolyubov (HFB) theory. The solution
of the HF+BCS or HFB equations gives the binding en-
ergy of the nucleus, either at the local minimum or as a
function of collective parameters qi such as shape defor-
mations (constrained HFB theory).
As early as 1957, Bleuler and Terreaux proposed that

the single-particle wave functions of the nuclear shell
model or the HF method should have no definite parity.
Extension of the HF formulation to the mixed-parity
Slater determinants was accomplished by Amiet and
Huguenin (1963, 1966) and Müller-Schwartz (1967).
If the intrinsic parity is broken, the intrinsic state x is

not an eigenstate of the parity operator P . The states
with good parity p can be constructed by means of pro-
jection:

Cp5N p~11pP !x , N p
2252~11p^xuP ux&!. (20)

The energy of the projected state Ep=^CpuHuCp& is
given by

Ep5E2p
^P &E2^HP &
11p^P &

, (21)

where E=^xuHux& is the HF energy. As can be seen in
Eq. (21) (Amiet and Huguenin, 1966),

E1<E<E2 if E,^HP &/^P &. (22)

The mean value of the parity in the intrinsic state is
usually very small. The wave function of the single-
particle orbital c i can be decomposed into two compo-
nents with good parity

c i5ai
~1 !c i

~1 !1ai
~2 !c i

~2 ! , uai
~1 !u21uai

~2 !u251. (23)

The parity content of the single-particle state is given by

^c iuP uc i&5uai
~1 !u22uai

~2 !u2, (24)

which yields

^xuP ux&5 )
i51,A

~ uai
~1 !u22uai

~2 !u2!. (25)

It is instructive to analyze expressions (21), (22), and
(25) using the simple two-level model proposed by Lip-
kin, Meshkov, and Glick (1965). The model Hamil-
tonian,

H5eK02
1
2
V~K1K11K2K2!, (26)

describes a system of N fermions distributed among two
levels of different parity, each having an N-fold degen-
eracy, and separated by an energy e . The particles inter-
act via a monopole-type residual interaction with
strength V that scatters particles between upper and
lower levels. In Eq. (26), K0 and K6 are quasispin op-
erators. The most general Slater determinant in this case
is (Agassi et al., 1966; Ring and Schuck, 1980)
x5uf&5exp@tan(f/2)K1#u0& . After introducing the ef-
fective coupling strength k3=(N–1)V/e , we can write
the HF energy and the energy of the projected states in
closed form (Agassi et al., 1966).
The critical value of the coupling strength in the

Lipkin-Meshkov-Glick model is k3=1. For k3,1 the
potential-energy curve E(f) has only one minimum, at
f=0 (vibrational limit). For k3.1 a stable deformation
develops, f̄=6arccos(1/k3). The overlap (25) in the
Lipkin-Meshkov-Glick model is given by

^fuP uf&5cosNf , (27)

i.e., the parity content of the HF ground state is close to
zero for large values of k3 . The behavior of E and Ep as
a function of f is displayed in Fig. 5 for k3=0.25, 1, and
2. We see that for large values of k3 the minima of E
and E6 correspond to very similar values of f . This is
not true for smaller values of k3, for which the deforma-
tion of the p521 state (f̄2) is larger than that of the
p=1 state (f̄1). (For realistic calculations, see Fig. 8 be-
low.)

1. Mean-field symmetries

Any mean-field solution, when deformed, breaks one
of the basic symmetries of the nuclear Hamiltonian.
However, not all symmetries of the wave functions are
destroyed in the self-consistent calculations (Ring and
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Schuck, 1980). The remaining self-consistent symmetries
provide a simplification of the calculation as well as a
convenient labeling of the individual orbitals. Among
the possible remaining symmetries, the most usual are
those associated with the following operators (Good-
man, 1974; Bohr and Mottelson, 1975; Bohr, 1976):

(i) time reversal (T);
(ii) space inversion (parity) (P );
(iii) rotation around the symmetry axis (giving rise to

the good quantum number K);
(iv) Rotations Rk=exp(2ipIk), k=1, 2, 3, through the

angle p around the three principal axes of the
mean field (the finite symmetry group defined by
these three rotations is called D2);

(v) reflections Sk5P •Rk
21 through planes containing

the two principal axes of the mean field.

Depending on the underlying mean-field theory and the
constraints, the mean-field solution will possess none or
several of these symmetries.
If the rotation is approximated by means of the crank-

ing approach, one has to analyze the Routhian

Hv5H2vI1 , (28)

rather than the Hamiltonian H . Due to the cranking
term vI1 , the only self-consistent symmetries that can
possibly remain in the rotating nucleus are P , R1 , and
S1 .
To discuss the possible nuclear shapes that remain in-

variant with respect to different self-consistent symme-
tries, it is convenient to perform the multipole decom-
position of the density matrix r :

r5(
lm

rlm (29)

(Dobaczewski and Skalski, 1989). Using Eq. (29), we
can express the average field [Eq. (19)] as (Ring and
Schuck, 1980; Dobaczewski and Skalski, 1989)

G@r#5(
lm

blmQlm , (30)

where bl2m5(21)mblm* and Qlm transforms as a rank-
l spherical tensor. The transformation properties of
spherical tensors Qlm are

PQlmP
215~21 !lQlm , (31)

R1QlmR1
215~21 !lQl2m , (32)

S1QlmS1
215Ql2m . (33)

If the mean field commutes both with P and R1 , the
eigenstates of Hv can be characterized by the intrinsic
parity p and the signature quantum number r , which is
the eigenvalue of R1 . In this case the l-odd components
vanish and blm5(21)mbl2m , i.e., the spherical tensors
Qlm (m Þ 0), appear in the combinations

Qlm8 [Qlm1~21 !mQl2m , m.0. (34)

Relation (34) also holds for the most general field that
commutes with S1 . However, in this case both even and
odd values of l appear in the multipole expansion given
by Eq. (30). (For instance, the octupole shapes shown in
Fig. 2 are S1 invariant.)
The eigenstates of Hv can be characterized by the

simplex quantum number s , which is the eigenvalue of
S1 (Nazarewicz et al., 1984a; Frauendorf and Pash-
kevich, 1984; Nazarewicz and Olanders, 1985a, 1985b).
For the application of simplex symmetry to rotational
spectra, see Sec. VI.
To take advantage of the S1 symmetry, a new single-

particle basis must be constructed. The Goodman trans-
formation (Goodman, 1974) from the strong-coupling
basis uk ,Vk& to basis states of good simplex reads (Naza-
rewicz and Olanders, 1985a, 1985b)

uk ,s51i&5
1

A2
@2uk ,Vk&1~21 !Vk21/2uk ,Vk&], (35)

uk ,s52i&5
1

A2
@ uk ,Vk&1~21 !Vk21/2uk ,Vk&], (36)

where Vk is the single-particle angular momentum pro-
jection on the axis of quantization, and
uk ,Vk&5Tuk ,Vk&, where Tupjm&5p(21) j1mupj2m&.

FIG. 5. HF energy (thick solid line) and projected energy
curves (grey line, positive parity; thin line, negative parity) for
the Lipkin-Mechkov-Glick model as a function of deformation
f for k3=0.25, 1, and 2, and for N=14.
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Symmetry properties of spherical tensors in the basis
given by Eq. (35) were discussed by Leander et al.
(1986). In particular, they demonstrated that the transi-
tion matrix element between parity partners uk ,s& and
uk ,2s& vanishes, i.e., ^k ,suQlmuk ,2s&=0.
In several works, the nonaxial octupole fields have

been treated in selected combinations that guarantee the
presence of some self-consistent symmetries and thus fa-
cilitate calculations. Li et al. (1991) discussed symmetry
properties of the general one-body Hamiltonian and ap-
plied them to triaxial octupole deformations (assuming
one symmetry plane). Skalski (1991) assumed the pres-
ence of two mirror reflections, S1 and S2; this leaves
only even-m components in Eq. (34). In his following
study, Skalski (1992) considered rather general mean
fields containing axially symmetric components with
l=2, 3, 4, and triaxial octupole deformations given by
Eq. (34), the latter treated separately (i.e., one triaxial
deformation at a time).
As discussed by Hamamoto, Mottelson, et al. (1991),

the symmetry groups of the pure-octupole fields [Eq.
(34)] with m=1, 2, and 3, are respectively C2v , Td , and
D3h . This leads to the classification of single-particle
levels in terms of corresponding irreducible representa-
tions (irreps). In the presence of axial reflection-
symmetric shapes the symmetries C2v and D3h are pre-
served, but Td reduces to the lower symmetry D2d
(Skalski, 1992). Consequently, in the presence of an
axial quadrupole field (i) all the single-particle levels of
the same simplex interact in the Q318 field (C2v has one
2D spinor irrep), (ii) there are two groups of noninter-
acting states in the Q328 field (D2d has two nonequivalent
2D spinor irreps), and (iii) there are two groups of non-
interacting states in the Q338 field (D3h has three non-
equivalent 2D spinor irreps). The combination of m=0
and 2, and m=1 and 3 fields reduces the symmetry group
to C2v .
Examples of single-particle diagrams in the Q328 field

can be found in Li and Dudek (1994). Eichler and
Faessler (1970) in their study of the trigonal symmetry in
light nuclei considered systems invariant with respect to
the trigonal C3 symmetry, i.e., with respect to rotations
of 120° about the z axis. (For the a-like nuclei the in-
teresting symmetry point groups are D`h , Td , and
D3h . The group C3 is a common lower-symmetry sub-
group). The self-consistent symmetry in question, C3 ,
conserves the quantum number q=Vmod 3. A tetrahe-
dral perturbation of the spherical harmonic-oscillator
potential was considered by Elliott et al. (1985); they
classified the single-particle levels using the irreps of
Td .

2. Shell-correction method

Mean fields, in which nucleons move as independent
particles, can be obtained from a knowledge of the
forces acting between nucleons using self-consistent HF
theory. For a particular choice of nucleon-nucleon force

and proton and neutron number, the variational prin-
ciple determines whether this field is spherical or de-
formed.
The deformed-shell model developed in the 1950s

(Rainwater, 1950; Moszkowski, 1955; Nilsson, 1955) is
an approximation to the HF approach. Here, the field
G is not determined self-consistently from Eq. (19), but
is assumed to be a phenomenological average potential
which contains a central part, a spin-orbit term, and a
Coulomb potential for protons. All of these terms de-
pend explicitly on a set of external deformation param-
eters defining the nuclear surface.
The earliest calculations employing the reflection-

asymmetric deformed-shell approach (Lee and Inglis,
1957; see also Johansson, 1961) investigated the effect of
spin-orbit coupling on the stability of pear-shaped defor-
mations using wave functions of a spheroidal harmonic-
oscillator potential. Vogel (1968) studied the depen-
dence of the nuclear potential energy on b3 in the 218
<A<232 region using a modified harmonic-oscillator
potential with pairing, and found no cases with nonzero
octupole deformation.
The deformed-shell model alone cannot be used to

predict binding energies. This is because the deformed-
shell model energy differs from the full HF energy by
the two-body interaction term. On the other hand, it is
well known that binding energies are accounted for with
good accuracy by the classical model of the liquid drop
(Myers and Swiatecki, 1969). The two approaches are
merged into the shell-correction (SC) method (also
known as the macroscopic-microscopic, or Nilsson-
Strutinsky method) (Strutinsky, 1967; Brack et al., 1972).
The main assumption of the SC method is that the total
energy of a nucleus can be separated into two parts,

E5Emacr1Eshell , (37)

where Emacr is the macroscopic energy (depending
smoothly on the number of nucleons), and Eshell is the
shell-correction term, which fluctuates with particle
number (reflecting the nonuniformities of the single-
particle level distribution, i.e., shell effects). The macro-
scopic part is usually replaced by the corresponding
liquid-drop (or droplet) model value, while the shell-
correction term is calculated using the deformed
independent-particle model.
Before discussing the results of the SC method, it

should be emphasized that it is not a self-consistent
theory. Thus it should be viewed as a practical recipe,
deficient in a number of respects. Its formal justification
in terms of the HF approach is given by the so-called
Strutinsky energy theorem (Strutinsky, 1974; Brack and
Quentin, 1981). This theorem states that the difference
between the HF energy and the SC energy is of second
order in the density fluctuations, provided that the
deformed-shell potential gives a similar spectrum to the
averaged HF potential.
Möller and Nilsson (1970) calculated the effect on the

potential-energy surface in the lead and actinide region
of simultaneous P3 and P5 degrees of freedom using the
SC method with a modified harmonic-oscillator poten-
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tial, and found instability with respect to octupole defor-
mation (see also Möller, 1972, for a comprehensive de-
scription of the method as applied to an investigation
into the fission process; a different approach was em-
ployed by Mustafa et al. (1973), who used a two-center
model including asymmetric deformation). Möller et al.
(1972) carried out similar calculations, which suggested
that 224Ra has the largest equilibrium octupole deforma-
tion.
In light nuclei, the spin-orbit interaction is relatively

weak and, in addition, the diffuseness of the nuclear sur-
face is comparable to the nuclear radius. Consequently,
the harmonic-oscillator model gives a fairly good ap-
proximation to the nuclear average potential. The first
study of static octupole shapes in light nuclei with N=
Z from 12C to 44Ti, based on the SC method, was car-
ried out by Leander and Larsson (1975). They employed
the modified harmonic-oscillator potential parametrized
through quadrupole (K=0,2), octupole (K=0,3), and
higher-order deformations, finding minima in «3 for
mid-shell nuclei at very large quadrupole deformation.
Hellström (1977) explicitly included triaxial octupole de-
formations with K=2.
In the presence of the small perturbing octupole po-

tential V5b3mQ3m , the shell driving force (i.e., the de-
pendence of the shell correction on deformation) is de-
termined by the second-order correction dE shell

(2) , which
is proportional to the square of the corresponding defor-
mation b3m :

dEshell
~2 ! 5C3mb3m

2 . (38)

(The first-order term vanishes, since the expectation
value of the octupole moment is zero in the parity-
conserving wave function. The exact expression for
dEshell

(2) can be found in Nazarewicz et al., 1995.) The
shell-energy octupole-stiffness coefficient C3m deter-
mines the octupole susceptibility of the shell energy. If
C3m is negative, there exists a shell force favoring stable
deformations. On the other hand, if C3m is positive, the
shell correction tends to restore reflection symmetry.
Since for nuclei with Z&104 the liquid-drop model fa-
vors spherical ground-state shapes, one can say that
stable octupole deformations can only arise from shell-
effects, i.e., from the shell driving force.
The behavior of Eshell obtained in the Woods-Saxon

(WS) potential, as a function of b3 and particle number
(at typical ground-state deformations b2 and b4), is
shown in Fig. 6 (for a similar plot based on the modified
harmonic-oscillator model, see Leander et al., 1982). We
see that the shell correction favors octupole deformation
(C30,0) near particle numbers N=134 and Z=90. Other
octupole-driving particle numbers expected from the SC
method are 34 and 56, in nice agreement with the sche-
matic diagram of Fig. 4. From different combinations of
those particle numbers, several regions of candidates for
reflection-asymmetric shapes emerge.
Möller and Nix (1981) showed that there is a substan-

tial ground-state octupole instability in their calculations
based on the folded Yukawa deformed potential and
Yukawa-plus-exponential macroscopic energy, much

softer to high-multipole deformations than the standard
liquid drop model with sharp surfaces used previously.
This was extended by Leander et al. (1982), who made a
systematic study of the Po-U region. Nazarewicz et al.
(1984b) employed a similar model using the WS poten-
tial to analyze octupole instability in both medium- and
heavy-mass nuclei. The octupole-deformation energy
curves for even-even isotopes of Rn, Ra, Th, and U ob-
tained from the SC+WS model of Nazarewicz et al.
(1984b) are shown in Fig. 7. In the same work, it was
shown that nuclei around 146Ba and 114Xe should also
exhibit octupole instability, although the deformation is
much softer than for the Ra-Th region.
Nazarewicz and co-workers applied the cranked shell-

correction method to investigate the behavior of nuclear
shape as a function of spin for both the Ra-Th region
(Nazarewicz et al., 1984a, 1987) and the region around
Z=58, N=88 (Nazarewicz and Tabor, 1992).
Chasman (1986) investigated the effect of allowing the

hexacontatetrapole deformation (l=6) parameter to
vary freely, instead of being fixed as in earlier studies.
He found that the binding energy increased by approxi-
mately 1 MeV for many nuclei in the mass region 220
,A,230. Chasman and Ahmad (1986) also investi-
gated the g degree of freedom using the SC method with
a WS potential. They found a region of g softness for Ra
and Rn isotopes with 220,A,226 and for several nu-
clei with N=130.
Sobiczewski et al. (1988), Rozmej et al. (1988), and

Ćwiok and Nazarewicz (1989a, 1989b) demonstrated
that by treating higher-order multipole deformations
(b5 ,b6 , . . . ) in a self-consistent manner it is possible to
further lower the octupole minima in a WS model. For
instance, inclusion of higher-order deformations lowers
the octupole minima in 144,146,148Ba by 200–300 keV.
One-quasiparticle bandheads in odd-A actinide nuclei
were calculated in a deformed self-consistent WS model
by Ćwiok and Nazarewicz (1989a, 1991), who pointed
out the importance of specialization energy (i.e., extra
energy required to find a transition state at the octupole
barrier with quantum numbers matching those of the
reflection-asymmetric ground state) for the barrier
heights. In other mass regions, deformed SC-WS calcu-
lations have also been made for 64Ge (Ennis et al., 1991;
Skalski, 1991) and for even-even nuclei near 112Ba
(Skalski, 1990).
As discussed in Secs. II.A and III.B.1, the consistent

treatment of triaxial octupole deformations with m Þ 0 is
difficult. In an early work, Gavron et al. (1977) demon-
strated in SC calculations that the simultaneous inclu-
sion of triaxiality and reflection asymmetry is important
around the third saddle point in actinides (see also
Åberg et al., 1980). Banana-type octupole deformations
(m=1) at superdeformed shapes were investigated by
Chasman (1991) and Skalski (1992) using the SC
method with a WS potential (see Sec. IX.B.2 for more
discussion). Li and Dudek (1994) considered alm defor-
mations with l=2, 3, 4, and 5, and predicted static a32
deformation (with all other deformations vanishing) in
222Rn.
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In the context of metallic clusters, octupole instability
with respect to nonaxial octupole modes Y3m , m Þ 0, has
been investigated by simulating the one-particle spec-
trum of the infinite-well potential using that of a modi-
fied oscillator potential (Hamamoto, Mottelson, et al.
1991; Frisk et al. 1994). It is found that the m=3 and
m=2 octupole deformations, when treated one at a time,
give rise to a strong shell structure.

3. Self-consistent methods

Early HF studies for light nuclei involving parity mix-
ing of intrinsic wave functions were carried out by sev-
eral authors. Kelson (1965) was able to reproduce ap-
proximately the negative-parity collective band in 16O
by projecting out a Slater determinant containing
s1/2p1/2d3/2 states using the HF method with a Rosenfeld

two-body interaction. The mechanism of parity mixing
in single-particle orbitals in the HF framework was also
investigated by several other workers, including Amiet
and Huguenin (1966), Ebenhöh (1966), Röhl (1966),
Parikh and Ullah (1967), and Bassichis and Svenne
(1967), to improve the agreement with the observed
spin-orbit splittings and magnetic moments. Müller-
Schwartz (1968) pointed out that the low-lying 02 state
predicted by Amiet and Huguenin (1966) is unrealistic
and that the ground state in 16O has no parity mixing,
although excited states might have such mixing. This has
been supported by Blomquist and Molinari (1968) and
Burr et al. (1969), who demonstrated that the parity-
breaking deformations are excluded in practically all
cases for light nuclei if realistic interactions (in particu-
lar the tensor force) are included. Krappe and Wahs-
weiler (1967) calculated the energy surfaces of 16O,

FIG. 6. WS proton (top) and neutron (bot-
tom) shell correction plotted versus particle
number and octupole deformation b3 . Other
deformations are b2=0.15, b4=0.08 (Nazare-
wicz et al., 1984b). The contours are labeled
by their values in MeV.
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20Ne, and 24Mg using the single-particle parity-mixed
wave functions and a Hamiltonian with a simple two-
body local potential of Serber-exchange type. They ob-
tained a pronounced octupole softness. Castel and
Svenne (1969) performed HF calculations with the Yale-
Shakin potential for a number of sd nuclei. They calcu-
lated large values of B(E3,32→01), 10–18 s.p.u.
(single-particle units), but in each case found that the
octupole deformation was zero. The most octupole-soft
nuclei were predicted to be 30Si and 38Ar. Giraud and
Sauer (1970) found parity-mixed HF solutions for 16O,
19F, 20Ne, 24Mg, and 28Si using a Gaussian or Yukawa
force with a Rosenfeld-exchange mixture. In particular,
they obtained states of mixed parity and having a triaxial
shape. Eichler and Faessler (1970) investigated the static
octupole shapes with K=0 and 3 in 12C, 16O, and 20Ne
by means of a constrained HF method with the Yale-
Shakin and Volkov potentials. They obtained small
static trigonal octupole moments Q33 . For other parity-
mixed calculations for 16O, see also Do Dang et al.
(1976) and Elliott et al. (1985).
Bonche et al. (1986) performed HF+BCS calculations,

using the Skyrme III effective interaction, of the energy
as a function of deformations q2 and q3 (defined as ex-
pectation values of the quadrupole moment and r3Y30 ,
respectively) of 222Ra. Significantly, they find a mini-

mum for a nonzero value of the octupole moment.
Strong quadrupole-octupole coupling was also predicted
by the HF+BCS calculations of Bonche (1988) for
144Ba. The potential-energy curves versus q3 , corre-
sponding to q2=400, 600, and 800 fm2, are displayed in
Fig. 8. The HF results are compared to the parity-
projected energies given by Eq. (21).
Praharaj (1986) performed parity-mixed deformed HF

calculations for 1422148Ba and 1462148Ce, and showed
that 142,144Ba and 148Ba are unstable to octupole defor-
mation (see, however, the comment in Nazarewicz,
1987).
Robledo et al. (1987) and Egido and Robledo (1990)

employed the HF+BCS method with the Gogny interac-
tion to calculate reflection-asymmetric minima
in 222,224Ra, 222Rn, and 1422148Ba. They obtained
reflection-asymmetric minima in all cases. By constrain-
ing the position of the c.m. coordinate at the origin, they
were able to calculate intrinsic dipole moments in these
nuclei (see Sec. VII.C).

4. Particle-plus-rotor model

There have been several attempts to explain spectro-
scopic properties of reflection-asymmetric nuclei using
concepts based on the particle-plus-rotor model. This is

FIG. 7. Octupole-deformation energy curves
for even-even isotopes of Rn, Ra, Th, and U
obtained in the SC+WS model of Nazarewicz
et al. (1984b). Insets show experimental ener-
gies of the lowest negative-parity states in
these isotopes.
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a highly phenomenological model that aims at reproduc-
tion and interpretation of low-lying experimental spec-
tra. The microscopic input to this model, namely equi-
librium deformations, pairing gaps, and the intrinsic
single-particle Hamiltonian, is taken from self-consistent
HF calculations or from the SC method.
Assuming a large deformation and the strong-

coupling scheme, the particle-plus-rotor Hamiltonian
can be written as (Bohr and Mottelson, 1975)

H5H intr1Hrot , (39)

where the rotor part is given by

Hrot5
\2

2J
~I2j!2 (40)

and the intrinsic part is

H intr5Hcore1Hs.p. . (41)

The single-particle Hamiltonian can be approximated by
the deformed (reflection-asymmetric) field and the BCS
pairing. The space of the reflection-asymmetric particle-
plus-rotor model Hamiltonian is spanned by the symme-
trized wave functions (Bohr and Mottelson, 1975)

CIMKp
n 5N ~11R1!DMK

I ~11pP cP s.p.!FaxK
n , (42)

where N is a normalization constant, P c is the core
parity operator, P s.p. is the valence (single-particle) par-
ity operator, p=61 is the total parity, Fa describes the
core with the same orientation in space as the single-
particle potential, and xK

n is the wave function of the
valence n-quasiparticle configuration (K5V11V2
1•••1Vn).
One of the earliest applications of this model to odd-

A nuclei was that of Zaikin (1966), who calculated
B(E3) rates in 19F. Leander and Sheline (1984) intro-
duced the phenomenological core Hamiltonian that ac-
counts for the parity splitting in the doubly even core,
E(02):

Hcore5
1
2
E~02!~12P c!5

1
2
E~02!~12pP s.p.!. (43)

They applied the model to make extensive investigations
of the spectroscopy of odd-A nuclei, and accounted for
the ground-state properties of odd-A Ra isotopes and
decoupling parameters for K=1/2 bands in Ra and Ac
isotopes, using a folded Yukawa average potential to
calculate single-particle levels. This model was subse-
quently developed by Leander and Chen (1987, 1988)
using a WS deformed potential. The properties of the
low-lying spectra in nuclei with A=219–229 were calcu-
lated and found to be in reasonable agreement with ex-
periment. Finally, Sheline, Chen, and Leander (1988)
applied the model to 223Ra.
Brink et al. (1987) have derived results similar to

those of Leander and Sheline (1984) by taking a model
in which the valence nucleons are coupled to the ob-
served energy spectrum of the even-even core, instead
of a model assuming some particular symmetry for the
intrinsic system. The extension of these techniques to
odd-odd nuclei has been accomplished by Afanasjev
et al. (1991).

C. Beyond the mean field

As already discussed in Sec. III.A, correlations due to
the final size are important in describing properties of
transitional systems. Since even in the best cases the pre-
dicted gain in the ground-state energy due to reflection-
asymmetric deformations (deformation energy) is
around 1–2 MeV, i.e., rather modest, dynamical correc-
tions beyond the mean field play an important role.
The fluctuations smooth out the transition from the

reflection-symmetric (vibrational) to the reflection-
asymmetric (deformed) regime. This is illustrated in Fig.
9, which shows the parity-splitting energy DE between
the first excited state (p=–1) and the ground state

FIG. 8. Potential-energy curves for 144Ba ob-
tained in HF+BCS+Skyrme calculations of
Bonche (1988). The HF results (solid line) are
compared with the parity-projected curves,
E1 (dashed line) and E2 (dashed-dotted
line). The upper portion shows the overlaps,
Eq. ( 25).
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(p=1) for the exact solution of the Lipkin-Meshkov-
Glick model (see Fig. 5). In contrast to the static HF
theory, which exhibits a rapid phase transition at
k3,crit , here the transition from vibrational to deformed
regime is smooth.
Some correlations can be accommodated by means of

parity projection, performed either after or (better) be-
fore variation. However, as discussed by Agassi et al.
(1966) and Robledo (1992), parity projection does not
eliminate the discrepancy around the transition point.
The missing correlations have to be incorporated by
other methods (see below).

1. Generator-coordinate method

A useful tool for describing the dynamical correla-
tions is the generator-coordinate (GC) method (Ring
and Schuck, 1980). The GC wave function is usually
taken as a combination of many (projected) product
states,

C i
~GC!5E dq(

i
f i~q!C i~q!, (44)

where the q ’s are generator coordinates and the gener-
ating functions C i are (projected) eigenstates of the in-
trinsic Hamiltonian (i=0 denotes the vacuum, i=1 the
first excited state, and so on). The wave function in Eq.
(44) is rich enough to accommodate correlations absent
in the mean-field description. In the simplest applica-
tions of this method, the generating functions can be
identified with the collective coordinates. The weight
functions f i(q are determined by means of the varia-
tional principle from the Hill-Wheeler equation.
Marcos et al. (1983) studied the collective path leading

from 20Ne to the separated nuclei 16O + a using both
the constrained HF and GC methods, and found that
20Ne has softness to octupole deformation. A GC ap-
proach to molecular states was developed by, e.g., Lan-
ganke et al. (Langanke, 1982; Langanke et al., 1984) and

Baye and Descouvemont (1983, 1984) who applied it to
E1, E3 transitions and to reduced a-widths in light nu-
clei (for other works, see Sec. VIII).
Bonche et al. (1991) and Meyer et al. (1995) based

their calculations on the axial HF+BCS theory with the
SkM * effective interaction, and used parity projection
and the GC method to investigate the octupole softness
and octupole-quadrupole coupling in the superdeformed
and hyperdeformed minimum of 194Pb. They found an
octupole excitation at about 2 MeV in both methods. A
similar method, but with the SIII Skyrme parametriza-
tion, was used by Heenen et al. (1994) to study octupole
excitations in light Xe and Ba nuclei around 114Ba. They
found strong octupole correlations in this region in both
GC and projected HF+BCS calculations. In the context
of the parity-projected HF+BCS method and its relation
to the GC method, Egido and Robledo (1991a, 1991b)
investigated the importance of parity projection in the
description of the negative-parity states in the light ac-
tinides. They concluded that, although it is an important
effect, it is also necessary to take into account the col-
lective correlations coming from the q3 collective degree
of freedom—and this is particularly important for the
calculation of B(E3)’s. Robledo (1992) investigated the
properties of the Lipkin-Meshkov-Glick model of Eq.
(26). Here, the GC technique reproduces the exact solu-
tion (Ring and Schuck, 1980). To cure discrepancies in
the intermediate region which appear in the projected
HF theory, an alternative approach based on a two-
configuration mixing has been proposed. As shown by
Robledo (1992), this method gives very good agreement
with the exact results for all deformation regimes.
Skalski et al. (1993a) have studied the coupling be-

tween axial quadrupole and octupole modes in
942100Zr using the GC+HF method with various Skyrme
parametrizations.
The importance of nonaxial octupole components

with m=1 and m=2 at superdeformed shapes in
192,194Hg and 194Pb was discussed by Skalski et al.
(1993b). The authors concluded that the m=0 and m=2
octupole modes are to a large extent decoupled. The
results of two-dimensional GC calculations for the
coupled m=0 and m=2 modes are shown in Fig. 10. It is
seen that the first excited state [Fig. 10(c)] can be under-
stood in terms of the pure m=0 vibration, while the sec-
ond excited state [Fig. 10(d)] shows the collective prob-
ability density characteristic of the octupole vibration
with m=2.
The coupling between the axial (m=0) quadrupole

and octupole modes at normal and large deformations
was addressed by two-dimensional GC+HFB+BCS cal-
culations for 194Pb (Bonche et al., 1994; Meyer et al.,
1995). The resulting probability densities suggest that
the picture of independent quadrupole and octupole ex-
citations breaks down quickly with increasing excitation
energy.

2. Time-dependent Hartree-Fock

The time-dependent Hartree-Fock (TDHF) method is
a microscopic quantum-mechanical method that pro-

FIG. 9. The parity-splitting energy DE (in units of e), between
the first excited state (p=–1) and the ground state (p=1) of the
Lipkin-Meshkov-Glick model, solved exactly as a function of
k3 for N=14.

361Butler and Nazarewicz: Intrinsic reflection asymmetry

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



vides a consistent description of all collective and single-
particle aspects of nuclear motion. The time evolution of
the system is given by

i ṙ~ t !5@h~ t !,r~ t !# , (45)

where r is the density matrix, and h is the TDHF Hamil-
tonian, which is the sum of the kinetic energy and the
time-dependent average field G@r(t)# [Eq. (19)]. In this
approach, the system itself determines the path in the
multidimensional energy surface; no self-consistent sym-
metries, restricting the available phase space, are im-
posed. The wave function is a single product state, which
allows for a transparent geometrical interpretation.
Strayer et al. (1984) used this method to study the

time evolution of the a114C↔18O system at energies
near the Coulomb barrier, and determined the frequen-
cies of isovector dipole and isoscalar quadrupole and
octupole giant resonances in 18O. Umar et al. (1985) ex-
tended these calculations to the 12C112C(01) and
a120Ne systems, calculating molecular resonances in
24Mg.
Negele (1989) and Wolff et al. (1992) carried out a

model calculation of fission of 32S in three dimensions,
also involving reflection-asymmetric deformations. They
found a dramatic difference between the results of the
static constrained HF (or adiabatic TDHF) and TDHF
methods (see Sec. X.F).

3. Collective Schrödinger equation

By making the Gaussian-overlap approximation
(GOA), the Hill-Wheeler equation of the GC method is
reduced to the collective Schrödinger equation for the
collective wave function:

HcollC i~q!5EiC i~q!, (46)

where the collective Bohr HamiltonianHcoll depends on
the collective mass parameters, the collective matrix, the
potential energy, and the zero-point energy correction
(Bohr, 1952; Ring and Schuck, 1980). If only one collec-
tive variable is considered, e.g., the octupole moment
q3 , Hcoll can be written as

Hcoll52
1

AG~q3!

]

]q3
AG~q3!

1
2B~q3!

]

]q3
1V~q3!

2Ezpe~q3!, (47)

where G(q3) is the collective metric, B(q3) is the col-
lective mass parameter, V(q3) is the collective potential,
and Ezpe(q3) is the zero-point energy correction. The
collective Schrödinger equation can also be obtained
from the adiabatic TDHF method (Ring and Schuck,
1980). The resulting collective parameters are slightly
different than in the GC+GOA method [for differences
between the two approaches to the collective Schrö-
dinger equation for octupole motion, see Egido and
Robledo (1989, 1990)].
The collective Hamiltonian for octupole vibrations

was studied by Donner and Greiner (1966). Their
Hamiltonian contains a quadrupole-vibrational term, a
rotational term, an octupole-vibrational term, and a
quadrupole-vibrational interaction.
Zaikin (1966) and Krappe and Wille (1969) consid-

ered octupole vibrations with K=0 in the schematic col-
lective Hamiltonian [Eq. (47)] with one collective coor-
dinate b3:

Hcoll52
1

2B30

d2

db3
2 1V~b3!. (48)

The lowest eigenstates of the Hamiltonian [Eq. (48)]
with parity p are approximated [Eq. (20)] by a sum of
two Gaussians centered at b3=6b̄3:

FIG. 10. Potential energy and probability
densities of the three lowest GC-method
states obtained for superdeformed 192Hg in a
two-dimensional (b30 ,b32) calculation (Skal-
ski et al., 1993b): (a) energy (contour-line
spacing 1 MeV); (b) ground state density; (c)
first excited state density; (d) second excited
state density.
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x~b3!5S l

p D 1/4 expF2
l

2
~b32b̄3!

2G . (49)

The quantity l in Eq. (49) is inversely proportional to
the deformation spread of x , and is assumed to be the
variational parameter of the model. In order to obtain
the variational solution, the projected ground-state en-
ergy E1 has been minimized with respect to l . The cal-
culated B(E3) value,

B~E3 !}u^C1ub3uC2&u2}
b̄3
2

12^P &2
, (50)

depends mainly on the value of equilibrium deformation
b̄3 , and is rather insensitive to the height of the octupole
barrier V0 . On the other hand, the parity splitting shows
significant dependence on V0 (Nazarewicz and Tabor,
1992). Equation (50) demonstrates that if the nuclear
potential becomes very soft with respect to the octupole
deformation, the equilibrium deformation becomes a
measure not of the deformation parameter but of the
frequency, mass and inertia parameters describing the
shape vibrations (Zaikin, 1966; Krappe and Wille, 1969;
Bohr and Mottelson, 1975).
Leander and Sheline (1984) applied an intermediate-

coupling scheme to the light actinides. The Hamiltonian
of Eqs. (39)–(41), with Hcore as in Eq. (48), and a
particle-core coupling term approximated by
kQ30r

3P3(u), was diagonalized in the reflection-
symmetric basis

CIMK
n 5N ~11R1!DMK

I Fn3
xK

n , (51)

where Fn3
is an eigenstate of Hcore . In particular, they

obtained a very good description of the transitional
nucleus 229Th. They concluded that, when applied to nu-
clei around 224Th, strong coupling generally works bet-
ter than weak coupling.
Rohoziński and co-workers (Rohoziński, 1978; Ro-

hoziński and Greiner, 1980; Rohoziński et al., 1982; Ro-
hoziński, 1988) extended the collective model of Donner
and Greiner (1966) to take into account anharmonicities
and couplings between modes in a quadrupole-octupole
system. Their collective Hamiltonian can be written as

Hcoll5Hvib1Hrot1Hvib-rot . (52)

The vibrational HamiltonianHvib describes the coupled
intrinsic quadrupole-octupole vibrations, Hrot is the ro-
tational Hamiltonian, and Hvib2rot is the rotation-
vibration Hamiltonian. After introducing the intrinsic
collective variables alm of Eq. (8), and the associated
collective momenta and angular momenta, the Hamil-
tonian [Eq. (52)] acquires a simple geometric interpre-
tation. The total collective angular momentum L is di-
vided into the quadrupole angular momentum L(2) and
the contribution L(3) coming from octupole vibrations
(Donner and Greiner, 1966). The rotational Hamil-
tonian can be further decomposed into a rotor part, a
Coriolis term (involving the coupling between L and
L(3)), and a centrifugal term. The collective Hamil-

tonian, Eq. (52), is diagonalized in the basis of
D2h-invariant wave functions of definite angular mo-
mentum L and parity.
The collective quadrupole-octupole model was ap-

plied to the limiting cases of spherical nuclei and well-
deformed axially symmetric nuclei. Rohoziński and
Greiner (1983) looked at the effects of Coriolis and cen-
trifugal terms for nuclei with stable octupole deforma-
tion. They found dramatic effects on the moments of
inertia and B(E3) rates. A simple collective
quadrupole-octupole Hamiltonian for nuclei with static
quadrupole and octupole deformations was studied by
Dzyublik and Denisov (1993) and Denisov and Dzyublik
(1993). They obtained simple analytic expressions for
the energies of collective states in nuclei with static oc-
tupole deformations. Denisov and Dzyublik (1995)
investigated the collective Hamiltonian with
b2 ,b3 , . . . ,bN deformations, considering also the case
of static equilibrium deformations.
Barts et al. (1984) also took into account the interac-

tion of octupole and quadrupole degrees of freedom. In
their calculations the vibrational variables were sepa-
rated using the Hartree method, and the wave functions
determined using a variational principle. They noted
that the inclusion of both degrees of freedom leads to
strong breaking of the axial symmetry.
Böning et al. (1985) solved Eq. (46) for 226Th assum-

ing the decoupling of odd- and even-multipole deforma-
tions (taken as collective coordinates), and taking con-
stant mass parameters. The rotational degree of
freedom was ignored in these calculations. See also So-
biczewski and Böning (1987) and Böning et al. (1985)
for similar calculations for 224Ra. A similar approach,
but with the mass parameter determined from the hop-
ping model, was applied by Barranco et al. (1988) to the
parity splitting in 222Ra.
Provoost et al. (1984) applied the adiabatic TDHF

method to the a+16O↔20Ne system, and were able to
reproduce the energy difference between the ground
state and the lowest state of the negative-parity band.
More microscopic calculations based on the

GC+GOE and adiabatic TDHF methods with the
Gogny force D1 were performed in order to describe
octupole correlations in the light lanthanides (Egido and
Robledo, 1990, 1991a, 1991b, 1992; Martı́n and Robledo,
1994) and light actinides (Egido and Robledo, 1989,
1991a, 1991b; Robledo et al., 1987, 1988).
Robledo et al. (1988) performed adiabatic TDHF cal-

culations with q2 and q3 as collective variables to calcu-
late the (01)2(02) energy difference and E1,E3 tran-
sition rates for 222Ra. Egido and Robledo (1989) further
applied adiabatic TDHF and GC+GOA techniques to a
series of Ra and Th isotopes. They also applied similar
methods to the 1422148Ba isotopes, and found that the
octupole barriers are not high enough for the nuclei to
be classified as octupole deformed, at least at zero spin
(Egido and Robledo, 1990).
An extensive series of calculations using

q3-constrained HF+BCS and adiabatic TDHF methods
have also been reported (Egido and Robledo, 1992) for
140Ba, 1422150Ce, 1442152Nd, and 1462154Sm.
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4. Other methods

Microscopic many-body calculations were performed
by Chasman (1979, 1980), who predicted parity doublets
in several odd-A Th, Ac and Pa nuclei. These calcula-
tions employed a schematic Hamiltonian as in Eq. (13),
with separable multipole-multipole forces, pairing, and
projected many-body wave functions. Chasman (1989)
has also investigated the role of a l=5 particle-hole in-
teraction, and found that the octupole correlation en-
ergy in the 12 state is also independent of the nuclide,
even though the corresponding changes in the correla-
tion energy associated with the interaction of multipo-
larity l=5 may be large.
In the multiphonon method, the octupole-plus-pairing

Hamiltonian (13) is diagonalized in the truncated basis
of multiphonon states

un&5N n~Q
1!nu0&. (53)

The collective phonons Q1 are calculated microscopi-
cally, in the Tamm-Dancoff approximation. Piepenbring
(1983, 1984, 1985) and Leandri and Piepenbring (1989)
applied this method to the Ra-Th isotopes, 146Ba and
152Sm. The multiphonon method gives a microscopic ex-
planation of the low-lying Kp502 bandhead, for which
the RPA fails, and explains why the corresponding two-
phonon state appears at much higher energies than
2E(02). Jammari et al. (1983) have studied the
quadrupole-octupole multiphonon method using a
simple model involving two degenerate j=3/2 multiplets
with different parities.
Kammuri and Kishimoto (1978) employed the Hamil-

tonian of Eq. (13) with quadrupole-quadrupole and
octupole-octupole interactions and (monopole and
quadrupole) pairing. Using the microscopic boson ex-
pansion technique, they studied properties of negative-
parity bands in 100Ru, 112Cd, 150Sm, and 152Gd.
Properties of negative-parity bands in 72As have been

studied by Petrovici et al. (1994) using a many-
dimensional variational approach based on the configu-
ration mixing of symmetry-projected complex HFB
mean fields. For the Hamiltonian, Petrovici et al. em-
ployed the (slightly modified) G matrix. So far, how-
ever, no systematic calculations of octupole states have
been carried out using this method.

D. Algebraic models

Algebraic approaches to negative-parity states are
usually based on the assumption that the nucleus can be
well described as a system of fermion pairs with angular
momentum 0, 1, 2, and 3 (s , p , d , and f pairs), often
treated as phenomenological bosons. The predictive
power of these models is limited; in most cases they con-
centrate on the reproduction of existing data.
The prescription of describing negative-parity states

by the addition of an f boson to the usual s and d bosons
of the interacting-boson model was first mentioned by
Iachello and Arima (1974), given in more detail by
Arima and Iachello (1975, 1976), and applied to the

nucleus 150Sm by De Voigt et al. (1975). The interacting-
boson Hamiltonian of s , d , and f bosons has the form

HIBM5Hsd1Hf1H int , (54)

where Hsd is the usual interacting-boson Hamiltonian
describing the interacting s and d bosons,

Hf5e f(
m

fm
1fm1

1
2 (
L50,2,4,6

v ffff
L (

M
@f13f1#LM@f3f#LM

(55)

is the general (two-body) f-boson Hamiltonian, and
H int is the general (two-body) interaction between the
positive- and negative-parity bosons. For the inclusion
of the g boson, see Dukelsky et al. (1983).
Because of the large number of parameters involved,

in practical applications various simplifications have
been made, such as assuming conservation of the
f-boson number, or truncating terms in H int . Sujkowski
et al. (1977) and Scholten et al. (1978) described the ex-
citation energies of the 11

2 , 31
2 , 51

2 , and 12
2 , 32

2 levels
in the Sm isotopes (using the sdf interacting-boson
model) as transitional between the vibrational SU5 limit
and the rotational SU3 limit. A systematic study of the
octupole bands in rare-earth nuclei was performed by
Barfield et al. (1986); see also Barfield et al. (1988).
Engel and Iachello (1985, 1987) suggested that

octupole-deformed nuclei should be described by a sys-
tem consisting of both p and f bosons, in addition to s
and d bosons, whereas the description of octupole vibra-
tions requires only additional f bosons. They have char-
acterized the rotational spectra in the SU3 and O4 sym-
metry limits, and concluded that neither can be used to
describe the experimental data, which are transitional
between the octupole vibrational and octupole-
deformed limits. Instead, they diagonalized the U16
Hamiltonian with a dipole-dipole interaction added.
Good fits were obtained for the energy spectra of
218Ra and 1402148Ba (Kusnezov and Iachello, 1988; Liu
et al. 1994). Figure 11 displays the spdf interacting-
boson model fit to the spectrum and the
B(E1)/B(E2) branching ratios of 218Ra (Engel and
Iachello, 1987).
Han et al. (1985) carried out a systematic study of the

negative-parity bands in even-even N=88 nuclei, using a
unified set of parameters. They also found that the de-
scription of E1 transition rates and the position of 12

states could be improved by including a p boson. Otsuka
(1986) investigated the structure of nuclear wave func-
tions in deformed actinide nuclei for an intrinsic Hamil-
tonian containing an octupole and quadrupole (Nilsson)
mean field. He found a significant number of collective
dipole (12) nucleon pairs in the wave functions of low-
lying states, so that p bosons should be added to the
description of these nuclei. Otsuka and Sugita (1988)
described the Kp501, Kp502 bands and transition
moments in 2202232Th (and 220Ra) in terms of an
spdf-boson model. In their calculations they employed
the intrinsic-state formulation (Otsuka, 1986); the intrin-
sic wave function was assumed to be
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F}~x0s
11x1p

11x2d
11x3f

1!Nu0&, (56)

with the amplitudes xi determined from the variational
principle (after angular momentum and parity projec-
tion). The coherent-state method was applied by Alonso
et al. (1995) to the spdf SU3 Hamiltonian with quadru-
pole and octupole interaction. The authors analyzed the
transition to stable octupole deformations as a function
of the octupole coupling constant k3 . Another example
of the application of the coherent-state formulation
based on the projected states of Eq. (56) is the 1/N ex-
pansion of Lac and Morrison (1995). Using the spdf
Hamiltonian, they obtained a good fit to the low-spin
(I<10) spectra of 226,228Th, and to the E1, E2, and E3
transition rates.
Yoshinaga et al. (1993) applied the sdg proton-

neutron interacting-boson model with one f boson to a
description of the negative-parity states in the Ra iso-
topes, assuming that there is no octupole deformation in
these nuclei, at least at low spin. They were able to re-
produce approximately the measured B(E1)/B(E2)

branching ratios in these nuclei by adding the additional
g boson.
Quasimolecular states have also been discussed in the

framework of the algebraic vibron model (Iachello,
1981; 1984). The vibron model is a model of interacting
monopole s (l p=01) and dipole p (l p=12) bosons. Its
group structure is given by the compact group U4 .
There are two dynamical symmetry limits of the vibron
model, O4 and U3 . The former describes a system with
a permanent dipole deformation, the rigid-molecule
limit. The latter, the soft molecular limit, describes the
rotational-vibrational spectrum around a spherical equi-
librium shape. For extensions of the vibron model, see
Daley and Iachello (1986), Cseh (1992). For the relation
between the vibron model and the microscopic cluster
model, see Cseh et al. (1991).
Iachello and Jackson (1982) suggested that a cluster-

ing may play an important role in the structure of heavy
nuclei, and proposed a model in which the cluster states
are built from s , d , and p proton and neutron pairs. This
model is able to reproduce the typical low-lying
negative-parity state bands seen in heavy nuclei, and
small a-decay hindrance factors to members of these
bands. Daley and Iachello (1983) developed this model
further. The algebraic a-cluster model was used to de-
scribe the energy levels of 224Ra, and, with a different
selection of parameter values, the B(E1)/B(E2) ratios
in 218Ra and 222Th (Daley and Gai, 1984). Extensive
calculations of the values of many observables for a
large range of Ra, Th, and U isotopes were presented by
Daly and Barrett (1986). Daly and Nagarajan (1986)
also applied the model to describe the excited collective-
parity bands in 156Gd in terms of a clusters.
Alhassid et al. (1982) proposed that the underlying

structure of an alternating-parity sequence arises from
the existence of a molecular band, suggesting in particu-
lar an a114C molecular band in 18O, and a1214Rn in
218Ra. They gave general expressions for sum rules for
E1 and E2 transitions. Yang and Hwang (1987) ob-
tained good agreement between predictions assuming
molecular structure in a U5 model and the observed lev-
els in 18O and 20Ne. Energy staggering in octupole
bands in deformed nuclei was studied by Chou et al.
(1992) and Casten et al. (1993) in the simplified sdf
interacting-boson model. They noted that the staggered
pattern of the negative-parity bands, as well as their or-
dering, results from underlying dynamical symmetry.
For odd-A systems, where the couplings with the odd

fermion have to be taken into account, Engel et al.
(1987) showed that the decoupling-inversion effect in
225Ra (Sec. V.D.3) is reproduced by the interacting
boson-fermion model in the SU3 limit involving a U16
boson core (as described above) and 4s , 3d , 2g , and
1i13/2 single-particle orbitals (see also Alonso et al.,
1995). For even-even systems Chuu et al. (1993) coupled
the sdf space of the interacting-boson model to a space
spanned by a product of fermion pairs (occupying f5/2
and g9/2 orbitals) coupled to an sd space, to describe
negative-parity energy levels in 64276Ge.

FIG. 11. Theoretical fit to the spectrum (top) and
B(E1)/B(E2) branching ratios (bottom) of 218Ra using the
spdf interacting-boson model (Engel and Iachello, 1987).
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Ceauşescu and Raduta (1976) employed the boson ex-
pansion technique to derive microscopically the
quadrupole-octupole Hamiltonian written in terms of
the quadrupole and octupole boson operators. This
Hamiltonian was applied by Badea et al. (1978) to
150Sm, 152Gd, and 232U using the projected coherent-
state basis.
Catara et al. (1986) have investigated the general na-

ture of negative-parity states in shell-model calculations
truncated to generate S , P , D , and F fermion pairs,
using a schematic quadrupole-quadrupole and octupole-
octupole interaction and space of two degenerate orbit-
als with opposite parities. This collective pair approxi-
mation was extended by Yi et al. (1991) to describe
energy levels in 18O by including particle-hole states
arising from excitation of the core.
Mikhailov et al. (1989) applied an interacting multibo-

son model (spdf bosons) to describe the structure of
218Ra. Dukelski et al. (1985) presented a description of
low-lying octupole collective modes based upon a self-
consistent Hartree-Bose description involving many in-
teracting bosons (l =0, 2, and 3).

E. Cluster models

The natural model for describing cluster configura-
tions in light nuclei is the alpha-cluster model (Denni-
son, 1940, 1954; Morinaga, 1956; Brink, 1957, 1966; Buck
et al., 1975; Rae, 1988). Wildermuth and Kanellopoulos
(1958a, 1958b) considered systems composed of clusters
heavier than an alpha particle, and suggested a descrip-
tion of 20Ne in terms of an a+16O bimolecule [see also
Sheline and Wildermuth (1960) and Cseh and Scheid
(1992) for a discussion of various cluster configurations
in light nuclei].
In the alpha-cluster model (Brink, 1966), the A-body

state is constructed from N=A/4 orbitals (alpha clus-
ters), each representing two protons and two neutrons in
1s1/2 states centered around point Rj (j=1, . . . ,N). The
single-particle wave function can thus be represented by

f i~r!5~2n/p!3/4exp@2n~r2Rj!
2#x i~j!, (57)

where n is the oscillator constant and x(j) is the spin-
isospin function. The total wave function F is given by
the parity- and angular-momentum-projected Slater de-
terminant of the (nonorthogonal) single-particle states
given by Eq. (57). In practical applications, the alpha
coordinates Rj are treated either as variational param-
eters or as collective coordinates in GC calculations.
The formation of clusters in nuclei can be treated

more microscopically by antisymmetrized molecular dy-
namics (Horiuchi, 1991). The antisymmetrized-
molecular-dynamics wave function of the A-nucleon sys-
tem is a parity- and angular-momentum-projected Slater
determinant with the single-particle wave functions [cf.
Eq. (57)]

f j~r!5~2n/p!3/4expF2nS r2 Zj

An
D 21 1

2
Zj
2Gx j~j!, (58)

where Zj (j=1, . . . ,A) are the coordinate parameters of
all nucleons, which are determined from the variational
principle. A sample of antisymmetrized-molecular-
dynamics calculation for 20Ne is shown in Fig. 44 (see
Sec. VIII).

F. Vibrational approaches

In this review we concentrate mainly on static
reflection-asymmetric deformations. Consequently, vi-
brational approaches to octupole modes are discussed
only briefly. For a comprehensive review see Rohoziński
(1988) and references therein.
Historically, the observation of low-lying negative-

parity excitations was explained early on as arising from
octupole vibrations of the nuclear surface (Lane and
Pendlebury, 1960). Early attempts were also made to
reproduce energy levels and transition moments in the
Kp=02 and Kp=22 bands observed in many nuclei by
assuming octupole Y30 vibrations with additional Y362
asymmetric deformation (e.g., Lipas and Davidson,
1961; Davidson, 1962; Lipas, 1963; Leper, 1964). David-
son (1965) proposed a collective octupole Hamiltonian
involving seven octupole degrees of freedom. For a criti-
cal discussion of those early models, see Rohoziński
et al. (1982).
The collective model of octupole vibrations was devel-

oped by Donner and Greiner (1966), who described oc-
tupole states as arising from strong coupling of the oc-
tupole phonon to quadrupole rotational-vibrational
states. They classified the resulting spectrum of energy
levels, and were able to show that the anisotropy of the
vibrations arises from the quadrupole-octupole interac-
tion. The collective octupole coupling between states of
opposite parity was considered by Zaikin (1966), who
studied a collective Bohr Hamiltonian for octupole de-
formations with K=0 and 61, and also considered the
limit of a static octupole deformation.
As mentioned already in Sec. III.A, there have been

many RPA calculations for negative-parity states in
spherical nuclei. Yoshida (1962), Tamura and Udagawa
(1962), Veje (1966), Raduta et al. (1970), and Vdovin
and Soloviev (1983) employed separable octupole-
octupole interactions. Abbas and Zamick (1980) per-
formed RPA calculations with the contact interaction,
and Abbas et al. (1981) investigated the 32 systematics
in even-even nuclei with a continuum RPA+Skyrme ap-
proach [see also Bal’butsev et al. (1991)]. Quasiparticle
RPA calculations of octupole states based on a realistic
density-dependent interaction were carried out for
96Zr by Rosso et al. (1993) and Fayans et al. (1994).
A microscopic approach based on the RPA to the na-

ture of octupole vibrational states in deformed nuclei
was developed by the Dubna group (Soloviev and Vo-
gel, 1963; Soloviev, 1965, 1976; Ivanova et al., 1976). The
Hamiltonian used in their quasiparticle-phonon nuclear
model is that of Eq. (13), with the single-particle Hamil-
tonian represented by the deformed WS potential. In
this model, the microscopic phonons are built from two-
quasiparticle excitations by means of the RPA, and the
quasiparticle-phonon interaction is treated explicitly.
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Nosek et al. (1993a, 1993b) applied the model to parity
doublets in nuclei around 153Eu [see also Alikov et al.
(1988) for inclusion of the Coriolis mixing]. For other
calculations, see Bés (1963), Błocki and Kurcewicz
(1969), Faessler et al. (1967), and Faessler and Plastino
(1967).
Neergård and Vogel (1970a, 1970b) and Vogel (1976)

generalized this approach to account for the Coriolis
coupling between states of the intrinsic octupole quadru-
plet (Kp502,12,22,32). The Hamiltonian of a de-
formed nucleus was taken as

H5H intr1Hrot1HCoriolis , (59)

where

Hrot5
\2

2J
~I22I3

2! (60)

and

HCoriolis52
\2

2J
~I1J21I2J1!, (61)

where I is the total angular momentum and J is the
angular momentum of the octupole phonon. The intrin-
sic Hamiltonian of Eq. (13) was approximated using the
deformed single-particle field (modified harmonic oscil-
lator), stretched octupole-octupole interaction, and
seniority-pairing force. The octupole phonons obtained
in the RPA are mixed by the Coriolis term Eq. (61),
giving rise to the low-lying negative-parity excitations.
The inclusion of the Coriolis coupling is crucial for the
explanation of experimental B(E3) values, excitation
energies of octupole states in deformed nuclei, and large
moments of inertia of octupole bands. In particular,
Neergård and Vogel (1970a, 1970b) demonstrated that
the intrinsic J1 matrix element in the RPA is very close
to the spherical value:

^K11uJ1uK&5A~32K !~31K11 !. (62)

Vogel (1976) extended the RPA calculations to the
higher-spin members of octupole bands. At high spin
values, transition to the two-quasiparticle regime was
predicted. After the two-quasiparticle component in-
volving high-j particles becomes aligned with the rota-
tional axis, the octupole band becomes fragmented. Le-
andri and Piepenbring (1993) diagonalized the
Hamiltonian of Eq. (59) in the strong-coupling two-
quasiparticle basis. They obtained a satisfactory descrip-
tion of low-spin states of negative parity in deformed
nuclei.
If the rotation is treated by means of the cranking

approximation, one has to consider the Routhian given
by Eq. (28). Robledo et al. (1986) applied the cranked
RPA theory based on the Hamiltonian containing the
multipole-multipole interaction with l=2, 3, and 4, with
the multipole operators symmetrized with respect to sig-
nature (Sec. III.B.1), and including the monopole-
pairing interaction. Their calculations reproduce octu-
pole bands in the actinides, and in particular the

transition from the collective octupole regime to the
quasiparticle regime discussed by Vogel (1976).
Since the RPA Hamiltonian of Eq. (13) describes par-

ticles moving in an average potential well, and interact-
ing by schematic velocity-dependent forces, the wave
functions of states with Kp=02 and 12 contain some
admixture of the c.m. motion. In order to project out
this spurious component, one can add to the Hamil-
tonian an additional interaction guaranteeing that the
translational and Galilean invariances

@H ,Pc.m.#50 and @H ,Rc.m.#52i
\

MN
Pc.m. (63)

are satisfied. In Eq. (63) the quantity Pc.m. is the momen-
tum vector of the c.m. In practical applications, the con-
ditions given by Eq. (63) are satisfied on the RPA level
(Pyatov and Salamov, 1977; Kvasil et al., 1981, 1985;
Ćwiok et al., 1984). Neergård and Vogel (1970a, 1970b)
and Robledo et al. (1986) applied this procedure and
found that the c.m. correction is unimportant for the
excitation energies and B(E3) rates of heavy nuclei.
In the context of the c.m. problem, of particular inter-

est is the doubly stretched multipole-multipole sepa-
rable interaction of Sakamoto and Kishimoto (1989), de-
fined in terms of effective octupole operators

Qlm9 5r93Ylm~V9!, xi9[
v i

v0
xi , ~ i51,2,3!. (64)

This interaction can be viewed as an improved conven-
tional multipole-multipole force, especially when ap-
plied together with the harmonic-oscillator potential
with frequencies v i . First, it satisfies nuclear self-
consistency rigorously, even if the system is deformed.
Second, it yields the zero-energy RPA spurious modes,
i.e., it automatically separates the translational and re-
orientation modes. Last, but not least, for this interac-
tion the coupling between octupole and dipole modes
disappears. The doubly stretched octupole interaction
has been used by Mizutori et al. (1990, 1991a, 1991b),
Nakatsukasa et al. (1992, 1993, 1995), and Crowell et al.
(1995) to describe octupole correlations at high spins in
superdeformed bands (see Sec. IX.B.2), and by Nakat-
sukasa et al. (1992, 1994), Nakatsukasa (1996), and
Nazmitdinov and Åberg (1992) to analyze the influence
of deformed-shell structures on octupole vibrations (see
Sec. IX.B.1). Figure 12 (Nakatsukasa, 1996) illustrates
the fragmentation of collective octupole phonons in
238U. In this figure, negative-parity Routhians obtained
in the Nilsson cranked RPA method with the doubly
stretched octupole interaction are shown as a function of
rotational frequency. The lowest-lying rotationally
aligned band built upon an octupole phonon is crossed
at \v'0.25 MeV by a two-quasiparticle neutron band
and quickly loses its collectivity. For higher-lying vibra-
tional bands, this crossing and the following fragmenta-
tion appears at lower frequencies.

IV. EXPERIMENTAL SYSTEMATICS

The experimental evidence for reflection asymmetry
in nuclei, if examined for an isolated nucleus or a par-
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ticular nuclear property, is not compelling. A much
stronger case is evident, however, when a large body of
data containing measurements of many nuclear proper-
ties in many nuclei is examined. A review of such data is
presented in this and subsequent sections.

A. Low-lying 12 and 32 states in even-even nuclei

An obvious manifestation of reflection asymmetry in
nuclei is the occurrence of low-lying negative-parity

states which are collective in nature. States having such
properties were first identified in Ra and Th isotopes
with N'136 by the Berkeley group (Asaro et al., 1953;
Stephens et al., 1954, 1955) using alpha spectroscopy. In
this mass region the 12 and 32 states remain energeti-
cally higher than the 21 and 41 states, respectively,
which rules out a simple interpretation in terms of octu-
pole deformation. Only at higher spin do the negative-
parity states become interspersed regularly with the
positive-parity states (see Sec. IV.B). Figure 13 shows
the variation of the energy of the 12, 32 states as com-
pared to the 21, 41 states for selected lanthanide nuclei;
Fig. 14 shows the corresponding behavior for Ra and Th
isotopes. For actinide nuclei the minimum of the energy
of negative-parity states is very localized in N , while
there are insufficient data to determine the correspond-
ing localization in Z . For the lanthanide region, this
minimum value is attained outside the transitional re-
gion where octupole effects are strongest (N>90). The
systematic behavior of excited negative-parity states has
been discussed by several authors. Neergård and Vogel
(1970a) described the properties of negative-parity
states in Ra and light Th isotopes in terms of the RPA
(see Sec. III.F). Peker et al. (1981) also concluded that a
vibrational interpretation is appropriate, and that the
behavior of the negative-parity states can be explained
in terms of Coriolis coupling between the Kp 502,
12, 22, and 32 bandheads. Sheline (1980) compared the
behavior of these states in actinide nuclei with excited
01 states, and concluded that the Kp502 bands and the
excited Kp501 bands are structurely more related to
each other than to the ground-state band. However, the
nature of the excited 01 states has not been explained
satisfactorily. Żylicz (1986) excluded the interpretation
of these states in terms of harmonic octupole vibrations,
on the grounds that the ratio of energies of the excited
01 and 02 bandheads, which should be 2 for vibrational
structure, is in the range 3–4 for the light Ra nuclei.

FIG. 12. Fragmentation of collective octupole vibrations in
238U. Negative-parity Routhians obtained in the cranked RPA
are shown as a function of rotational frequency. Large, me-
dium, and small circles indicate RPA solutions with E3 tran-
sition amplitudes larger than 200 e fm3, between 100 e fm3

and 200 e fm3, and lower than 100 e fm3, respectively. Filled
(open) circles indicate odd-I (even-I) band members. Experi-
mental bands (Ward et al., 1995) are denoted by stars, dia-
monds, and squares (Nakatsukasa, 1996).

FIG. 13. Excitation energies
(keV) of the yrast 21, 41, 12,
and 32 states in the N=86–90
region.
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Kurcewicz et al. (1976, 1977) looked for lower-lying 01

states populated by alpha decay, without success.
A more extensive analysis of 12 and 32 states in ac-

tinide and lanthanide nuclei has been carried out by
Cottle and Bromley (1986), who characterized the varia-
tion of excitation energy of 32 states in terms of the
onset of quadrupole deformation and the filling of the
lower-energy member of a Dl =3 pair. They also drew
attention to the relation between the relative energies of
the 32 and the 12 states and the ratio of energies be-
tween the 41 and the 21 states (see Fig. 15). Particularly
for the lanthanides, the amount of quadrupole deforma-
tion plays a dominant role in determining the relative
spacing of the 12 and 32 members of the Kp502 band.
This investigation has also been extended (Cottle et al.,
1988; Cottle, 1990a) to other regions.
Zamfir et al. (1989) have established a simple param-

etrization for the energies of 32 states in all nuclei with
A>30 (Fig. 16):

E~31
2!519A21/320.5Nt , (65)

where Nt is the sum of the valence-nucleon numbers.
Deviations from normal behavior characterize nuclei
having the strongest octupole correlations (they are in
the transitional lanthanide and actinide regions).

B. Alternating-parity rotational bands

The striking experimental feature of even-even nuclei
with Z'88, N'134 and Z'60, N'88 is the interspac-
ing of negative- and positive-parity states with the se-
quence I1,(I+1)2,(I+2)1, . . . , for states with I.5. The
first observations of such band structure in heavy nuclei
were in 218Ra (Fernández-Niello et al., 1982) and 222Th
(Ward et al., 1983; Bonin et al., 1983). In medium-mass

nuclei, sequences of nuclear states with similar features
were observed much earlier, for example, in 152Gd (Zol-
nowski et al., 1975), in 150Sm (Sujkowski et al., 1977),
and in 150Gd (Haenni and Sugihara, 1977), but the first
connection with static octupole deformation in this mass
region was made by Phillips et al. (1986), who studied
142,144,146Ba using fission spectroscopy.

FIG. 14. Excitation energies
(keV) of the yrast 21, 41, 12,
and 32 states in the Z=86–92
region.

FIG. 15. The systematic behavior of E(31
2)2E(11

2) in the
regions (a) Z=56–70 and (b) Z=82–90. Parentheses denote
tentative assignments (Cottle and Bromley, 1986).
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Tables I and II list the nuclei in which such bands
have been established, together with the reactions and
experimental methods employed. Figure 17 shows a
typical example, 226Th, in which the sequence has been
observed up to spin 20 (Schüler et al., 1986, Ackermann
et al., 1993). Available data for even-even nuclei with
Z588 and 90, and N=86, 88, and 90 are shown in Figs.
18 and 19. In these figures, the data are plotted as
J /\2 versus \v for each parity band; here J=\Ix /v is
the kinematic moment of inertia, Ix=A(I11/2)22K2

(I , K in units of \) is the angular momentum perpen-
dicular to the symmetry axis, and \v=dE/dIx is the ro-
tational frequency. The division between nuclei exhibit-
ing characteristics of reflection asymmetry and reflection
symmetry is apparent for N.136 for Th nuclei, for
which data are most widely available. The nature of the
symmetry becomes apparent in the plots of
v(p521)/v(p511) versus I . This ratio should equal
1 for perfectly reflection-asymmetric nuclei, but equals
@4(I23)22)]/(4I22) for rotation of an aligned-
octupole phonon (Nazarewicz and Olanders, 1985a) (see
Fig. 20).
In nuclei with Z'60, the degeneracy of the positive

and negative bands is only apparent between I=7 and
I=13, and for N=86 and N=88, in the few cases where
extensive data are available. In 150Sm for example, the
positive-parity band appears to cross a reflection-
symmetric band at I'15 (Urban et al., 1987) see Sec. VI.
For N=90 nuclei the increase in quadrupole deformation
pushes the positive-parity states to much lower energies
than the octupole states, and the latter states are usually
interpreted as being vibrational in origin (see also the
discussion in Sheline and Sood, 1986).
Similar structures to that of even-even octupole nuclei

are observed in transitional odd-mass and odd-odd nu-
clei in which the odd particles are weakly coupled to the
core. Figure 21 shows the yrast sequence of 219Ra
(Cottle et al., 1986) compared to its neighbors 218,220Ra.
(The term ‘‘yrast’’ denotes the lowest-energy state hav-

ing a given angular momentum.) The ground-state band
of 219Ra shows an alternating-parity structure, and is
consistent with an interpretation in terms of an odd neu-
tron weakly coupled to an average 218Ra–220Ra core.
Similar examples have been found in other nuclei with
Z=87–90 and N,132: 217Fr (Aı̈che et al., 1988), 217Ra
(Roy et al., 1984) 219Ac (Drigert and Cizewski, 1985;
Khazrouni et al., 1985; Cristancho et al., 1994), 221Ac
(Aı̈che et al., 1994), 221Th (Dahlinger et al., 1988), and in
the odd-odd nuclei 216Fr (Debray et al., 1990), 218Ac
(Debray et al., 1994), and 220Ac (Schulz et al., 1991). In
the light-lanthanide region the level structure of transi-
tional odd-A nuclei has been interpreted variously in
terms of a h11/2 proton coupled to an octupole phonon,
as in the case of 151Eu (Vermeer et al., 1993, see also
Jongman et al., 1994), and a neutron coupled to a
reflection-symmetric triaxial core in the case of 151Sm
(Khan et al., 1994; see also Basu et al., 1994).
Alternating-parity structures have also been observed in
143Ba (Zhu et al., 1995) and in 149Sm (Basu et al., 1994).
For nuclei farther away from the closed shell, better ex-
amples of parity doubling are seen, as discussed in Sec.
V.D.1.

C. Enhanced E1 transitions

A common property of nuclei exhibiting the features
of reflection asymmetry is the occurrence of relatively
large E1 transition probabilities between the yrast
positive- and negative-parity bands. The B(E1) values
in these mass regions range from 1024 to 1022 s.p.u.
[typical B(E1) values are less than 1025 s.p.u.] Assum-
ing the strong-coupling limit and axial shape, there is a
simple relation between the E1 transition probability
and the intrinsic (transition) electric dipole moment D0
(see Sec. II.B):

B~E1;IK→I8K !5
3
4p

D0
2^IK10uI8K&2. (66)

In the presence of Coriolis coupling and/or triaxiality,
relation (66) has to be modified. For K=1/2, for instance,
there appears in lowest order a signature-dependent
term proportional to (Bohr and Mottelson, 1975)

B~E1;I→I8!5
3
4p

u~I 1
2 10uI8

1
2 !D0

1~21 !I1
1
2~I2 1

2 11uI8 1
2 !D1u2, (67)

where Dm51 is the spherical component of D (see Sec.
II.B). [A similar term appears in nuclei with low-lying
octupole vibrational states, through the Coriolis cou-
pling between K=0 and K=1 bands (see Sec. VII.E)].
In most cases, absolute values of B(E1) are not avail-

able, and D0 has to be extracted from the known
B(E1)/B(E2) branching ratios T(E1)I→I21 /
T(E2)I→I22 , in which case the B(E2) rates are as-
sumed to follow the rotational relationship

B~E2 !5
5
16p

Q0
2^IK20uI8K&2, (68)

FIG. 16. Mass-number dependence of experimental 31
2 ener-

gies, corrected for a 20.5ANt dependence, where Nt is the sum
of the valence-nucleon numbers, Nt5Np1Nn . All non-
doubly-closed shell nuclei with A>30 and Nt,26 are included.
The curve is an A21/3 function (Zamfir et al., 1989).
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where Q0 is the transition quadrupole moment. Since
many nuclei in the mass regions of interest are not good
rotors, the use of the strong-coupling formulas, Eqs. (66)
and (68), is questionable. Nevertheless, they provide a
consistent way to extract D0 from the data. In particular,
for K=0 bands the intrinsic dipole moment is

D0'H 5~I21 !

8~2I21 !

B~E1;I→I21 !

B~E2;I→I22 ! JQ0 . (69)

Tables III and IV give examples of B(E1) values mea-
sured for even-even nuclei in the light-lanthanide and
actinide regions.
The experimental values of D0 are shown in Fig 22,

where they are compared with the theoretical values of
Butler and Nazarewicz (1991) (Sec. VII.B) and of Egido
and Robledo (1991b, 1992) (Sec. VII.C). The trends
shown in Fig. 22 demonstrate that large fluctuations with

TABLE I. Observed alternating-parity rotational bands in nuclei from the Ra-Th region, and reac-
tions used.

Nucleus Reaction Reference

216Fr (Z=87) 208Pb(11B,3n) Debrey et al. (1990)
217Fr 210Pb(11B,4n) Aı̈che et al. (1988)

217Ra (Z=88) 208Pb(12C,3n), 208Pb(13C,4n) Roy et al. (1984)
218Ra 208Pb(13C,3n) Fernández-Niello et al. (1982)

Gono et al. (1986)
13C(208Pb,3n) Gai et al. (1988)
208Pb(14C,4n) Schulz et al. (1989)
208Pb(13C,3n) Wieland et al. (1992b)

219Ra 208Pb(14C,3n) Cottle et al. (1986)
Wieland et al. (1992a)

220Ra 208Pb(18O,a2n) Burrows et al. (1984)
208Pb(14C,2n) Cottle et al. (1984)

Celler et al. (1985)
Shriner et al. (1985)

208Pb(18O,a2n) Smith et al. (1995)
221Ra 210Pb(14C,3n) Fernández-Niello et al. (1991)
224Ra 226Ra(58Ni, 60Ni) Poynter et al. (1989a)

226Ra(a ,a82n) Marten-Tölle et al. (1990)
226Ra 226Ra Coulomb excitation Wollersheim et al. (1993)

226Ra(d ,pn) Ackermann et al. (1993)
218Ac (Z=89) 209Bi(12C,3n) Debray et al. (1994)

209Bi(13C,4n) Debray et al. (1994)
219Ac 209Bi(13C,3n) Drigert and Cizewski (1985, 1986)

Khazrouni et al. (1985)
Cristancho et al. (1994)

220Ac 209Bi(14C,3n) Schulz et al. (1990, 1991)
221Ac 209Bi(14C,2n) Aı̈che et al. (1994)

220Th (Z=90) 208Pb(16O,4n) Bonin et al. (1985)
221Th 208Pb(16O,3n) Dahlinger et al. (1985, 1988)
222Th 208Pb(18O,4n) Ward et al. (1983)

Bonin et al. (1985)
Schwartz et al. (1987)
Smith et al. (1995)

223Th 208Pb(18O,3n) Dahlinger et al. (1988)
224Th 208Pb(18O,2n) Schwartz et al. (1986)

226Ra(a ,6n) Schüler et al. (1986), Ackermann et al. (1993)
225Th 226Ra(a ,5n) Hughes et al. (1990)
226Th 226Ra(a ,4n) Schüler et al. (1986), Ackermann et al. (1993)
228Th 226Ra(a ,2n) Schüler et al. (1986), Ackermann et al. (1993)

230U (Z=92) 230Th(a ,4n) Ackermann et al. (1993)
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Z and N in the values of D0 can occur due to shell
effects. These fluctuations are discussed in more detail in
Sec. VII.
There is less information on the systematic behavior

of D0 as a function of angular momentum. For the tran-
sitional nucleus 218Ra, a decrease in B(E1;I→I21) is
observed in the spin range 6–8, although it is not clear
whether this is associated with the large drop in
B(E2) observed below spin 4 (Gai et al., 1988). Gai
(1988) has pointed out that the fraction of the E2
energy-weighted sum rule exhausted by the lowest 21

state is unusually large for the light Ra and Th nuclei.
Figure 23 displays the available data for the Ra-Th re-
gion for heavier nuclei, whose quadrupole deformation
is rather stable; the rotation-induced variation in the

quadrupole moment should not influence the value of
D0 . For most of these cases the value of D0/Q0 stays
rather constant with spin, at least above I=6. One excep-
tion is 226Ra, where a dip in the value of this quantity is
seen at I'4. This feature cannot be reproduced by
macroscopic-microscopic theories of D0 (Leander et al.,
1986; Butler and Nazarewicz, 1991) for nuclei whose
shape remains constant with spin. For 226Ra this seems
to be the case, as indicated by the behavior of its quad-
rupole and octupole moment (see Sec. IV.D). However,
fluctuations in the value of D0 might be expected be-
cause of the cancellation effects in its macroscopic and
microscopic components that are responsible for small
E1 moments in 224Ra. In the lanthanides, a similar ef-
fect is seen in 146Ba, which shows fluctuations with spin;

TABLE II. Observed alternating-parity rotational bands in nuclei from the Ba-Sm region, and reac-
tions used.

Nucleus Reaction Reference

142Ba (Z=56) 252Cf fission Phillips et al. (1986)
252Cf, 242Pu fission Zhu et al. (1995)

143Ba 252Cf, 242Pu fission Zhu et al. (1995)
144Ba 252Cf fission Phillips et al. (1986)

252Cf, 242Pu fission Zhu et al. (1995)
146Ba 252Cf fission Phillips et al. (1986)

252Cf, 242Pu fission Zhu et al. (1995)

144Ce (Z=58) 252Cf, 242Pu fission Zhu et al. (1995)
146Ce 252Cf fission Phillips et al. (1988)
148Ce 252Cf fission Phillips et al. (1988)

146Nd (Z=60) 150Nd(a ,a84n) Urban et al. (1988)
136Xe(13C,3n) Urban et al. (1991)

148Nd 150Nd(a ,a82n) Urban et al. (1988)
252Cf fission Durell et al. (1988)
148Nd Coulomb excitation Ibbotson et al. (1991, 1993)

151Pm (Z=61) 150Nd(a ,p2n) Vermeer et al. (1990)
Urban et al. (1990)

148Sm (Z=62) 130Te(22Ne,4n) Urban et al. (1991)
149Sm 148Nd(a ,3n) Basu et al. (1994)
150Sm 150Nd(a ,4n) Sujkowski et al. (1977)

Urban et al. (1987)
151Sm 150Nd(a ,3n) Basu et al. (1994)

Khan et al. (1994)

149Eu (Z=63) 139La(13C,3n) Jongman et al. (1994)
150Eu 136Xe(19F,5n)

148Nd(7Li,5n) Jongman et al. (1994)
151Eu 136Xe(19F,4n)

148Nd(7Li,4n) Jongman et al. (1994)
150Nd(6Li,5n) Vermeer et al. (1993)

153Eu 150Nd(7Li,4n) Pearson et al. (1994)

150Gd (Z=64) 150Sm(a ,4n), 152Sm(a ,6n) Haenni and Sugihara (1977)
152Gd 150Sm(a ,2n), 152Sm(a ,4n) Zolnowski et al. (1975)
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for this nucleus the overall value of D0 is rather small,
and is probably sensitive to shell effects (see Sec. VII.B).
In 150Sm the values of D0 are seen to decrease markedly
for transitions deexciting higher-spin members of the
positive-parity ground-state band. This behavior is asso-
ciated with the restoration of reflection symmetry in this
nucleus above spin 10 (see Sec. VI). Similar changes in
D0 are not apparent in

142Ba (Phillips et al., 1986; Mach,
Nazarewicz et al., 1990; Zhu et al., 1995).
The occurrence of large E1 transition strengths be-

tween low-lying states is not confined to nuclei in the
‘‘octupole’’ mass regions around 144Ba and 222Th. The
largest B(E1) so far observed experimentally (Millener
et al., 1983) is 0.36 s.p.u., for the decay of the 1/22 state
in 11Be. It is believed that this strong E1 transition is
related to halo properties of 11Be (see Sec. X.D). Large
E1 transition strengths are also observed in sd-shell nu-
clei for which Z Þ N , for example in 18O (Gai et al.,
1983; see also Sec. VIII.B). In heavy nuclei, studies have
revealed that large E1 transition strengths are observed
between high-spin states in nuclei such as 163Er that are
well removed from the well-established octupole regions
(Butler, 1990; see also Garrett, 1984; Balodis et al., 1991;
Ogaza et al., 1993; Brockstedt et al., 1994; Jongman
et al., 1994). Nuclear resonance fluorescence studies
have shown that the summed isovector E1 strength for
ground-state transitions to low-lying states remains re-
markably constant for the mass region A=150–174
(Zilges et al., 1991; Friedrichs et al., 1992). The strongest
E1 transition observed in these rare-earth nuclei is usu-
ally to the lowest 12 state, although enhanced E1 tran-

sitions have also been observed to excitations near 2.5
MeV in rare-earth nuclei (Kneissl et al., 1993) and near
3.5 MeV in 116,124Sn (Govaert et al., 1994) (these have
been interpreted as arising from two-phonon octupole-
g vibrational excitations). The experimental (e ,e8) form
factor for the lowest 12 state in 48Ti, 164Dy, 232Th, and
238U has been described in terms of surface octupole
vibrations (see Sec. VII.E). Large B(E1) strengths are
also observed for low-lying transitions in nuclei near
closed shells.

D. E3 transitions

For low-lying states in nuclei, the ground-state E3
transitions are predominantly isoscalar, and typically ex-
haust 4–7 % of the isoscalar energy-weighted sum rule
(Kirson, 1982; Pignanelli, 1990). Consequently, low-
energy B(E3) values are good measures of octupole
collectivity (Rohoziński, 1988). In the limit of strong
coupling, the octupole deformation b3 is related

FIG. 17. Level scheme of 226Th, taken from Schüler et al.
(1986; see also Ackermann et al., 1993). The level and transi-
tion energies are in keV.

FIG. 18. Kinematic moment of inertia J /\2 (in MeV21) as a
function of rotational frequency \v (in MeV) for rotational
bands in even-even nuclei with N586,88,90.
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to the reduced transition probability B(E3)↑
[B(E3;01→32) from the ground state to the first 32

state:

b35
4p

ZR3 FB~E3 !↑
e2 G1/2, (70)

where the value of B(E3)↑ can be deduced from the
partial mean lifetime for E3 g-ray emission to the
ground state:

tE3~s !5~0.0123!E~MeV!31
2

27
@B~E3 !↑/e2 fm6#21. (71)

The values of the transition probability and experi-
mental octupole deformations deduced from 0g.s.

1 →31
2

transitions have been compiled (Spear, 1989; see also
Raman et al., 1991) and are displayed in Fig. 24. Spear
and Catford (1990) noted that the maxima in the
B(E3) values at N = 34, 56, 88, and 134, and (more
ambiguously) at Z=30, 40, 62, and 88 (see Fig. 24) are
well correlated with the predicted regions of stable oc-
tupole deformation (Sec. III.B). The values of B(E3)
are typically 30–50 s.p.u. for lanthanide nuclei in the re-
gion of octupole instability; they are plotted as a func-
tion of N in Fig. 25. It is evident that this quantity
reaches a maximum for N=88–90. This might arise from
the change in octupole collectivity between these neu-
tron numbers, as suggested by the corresponding behav-

ior in energy-level spectra (Fig. 18), or from the change
in quadrupole deformation, which splits the E3 strength
over the components Kp502, 12, 22, and 32 (Scholten
et al., 1978).
Raman et al. (1991) analyzed the anharmonicity of the

octupole mode by inspecting the correlation between
B(E3)↑ and E32. Guided by the relation

B~E3 !↑}Z2A1/3E32
21 (72)

obtained in the limit of the hydrodynamical model
(Bohr and Mottelson, 1975), they analyzed the data ac-
cording to the expression

B~E3 !↑Z22A21/35KE32
h , (73)

where the values of K and h were obtained by means of
a least-squares fit to experimental values. They obtained
values of h ranging between h;–0.7 in spherical nuclei
and h;−0.5 in deformed nuclei, indicating strong anhar-
monicities.
Although B(E3;I→I8) has been measured for the

transition from ground-state to the lowest 32-state in
many nuclei, there is less information on this quantity
for higher-lying members of rotational bands in transi-
tional and deformed nuclei. It has been realized that the
yields of high-spin members of octupole bands following
multiple Coulomb excitation are quite sensitive to the
E3 matrix elements connecting them to the ground-state
band (Butler, 1988). Figure 26 shows the experimental
values for l52,3 of the matrix elements

^IiEliI8&5$~2I11 !B~El ;I→I8!%1/2 (74)

5H ~2I11 !~2l11 !

16p J 1/2^I0l0uI80&Ql0,c ,

(75)

obtained for the ground-state Kp501 band and the low-
est Kp502 band in 148Nd (Ibbotson et al., 1993) and in
226Ra (Wollersheim et al., 1993). In Eq. (75), obtained
assuming axial shape and the rotational limit, Q20,c=
Q0, and Q30,c is the octupole moment. For 226Ra both
quadrupole and octupole matrix elements can be fitted
with the constant values Q20,c=750 fm

2 and
Q30,c=3100 fm

3 (Wollersheim et al., 1993). Application
of Eqs. (6) and (7) to the measured matrix elements in
226Ra yields b3'0.10 (Wollersheim et al., 1993), in
agreement with calculations by Leander et al. (1982) and
Sobiczewski et al. (1988) (see Sec. III.B.2). In 148Nd the
corresponding values are Q20,c=400 fm

2 and
Q30,c=1500 fm

3 (Ibbotson et al., 1993), with a value of
b3 ('0.12) somewhat higher than that predicted by
mean-field calculations (Urban et al., 1988).
Nazarewicz and Tabor (1992) have used the collective

model of Krappe and Wille (1969) for octupole defor-
mation (Sec. III.F) to show that B(E3;01→32) is inde-
pendent of the curvature of the nuclear potential,
whereas the parity splitting is a strong function of this
quantity. This implies that if the curvature varies with
angular momentum, Q30,c should remain constant, in
contrast to the parity splitting. In addition to this effect,
Rohoziński and Greiner (1983) have concluded that the

FIG. 19. Kinematic moment of inertia J /\2 (in MeV21) as a
function of rotational frequency \v (in MeV) for rotational
bands in even-even nuclei with Z588,90.
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octupole matrix elements should be roughly indepen-
dent of Coriolis and centrifugal effects, which gives an-
other mechanism for the constancy of Q30,c .
In the sdf version of the IBM (cf. Sec. III.D), the

E3 operator is a one-boson operator obtained by a di-
rect coupling of sf and df bosons to J=3:

Q3m5e3
~sf !$@s13f* #3m1@f13s* #3m%

1e3
~df !$@d13f* #3m1@f13d* #3m%. (76)

Scholten et al. (1978) employed Eq. (76) to calculate
B(E3) values for the Sm isotopes.
For particular closed-shell or sub-shell nuclei in which

there are low-energy particle-hole E3 excitations for
both protons and neutrons, large B(E3,01→32) values
have been observed (Spear, 1989), for example, in 16O
(14 s.p.u.), 40Ca (31 s.p.u.), 132Sn (. 7 s.p.u.; Fogelberg
et al., 1994), and 208Pb (34 s.p.u.). The largest values for
observed transitions have been measured in 96Zr (Mach,
Ćwiok et al., 1990; Ohm et al., 1990; Hofer et al., 1993;

Horen et al., 1993), '50–60 s.p.u.(see Sec. X.A for cal-
culations), and in 148Gd (77611 s.p.u.; Piiparinen et al.,
1993). Large E3 transition strengths have also been re-
ported in the octupole transitional nucleus 229Th be-
tween the ground state and the octupole vibrational
band built upon the ground state (Bemis et al., 1988).
For the E3 transitions in the rotational bands of 148Nd
and 226Ra, deduced from multiple Coulomb excitation
(see above), much larger values have been measured,
for example, 142615 s.p.u. for the 92→61 transition in
226Ra (Wollersheim et al., 1993).

V. PROPERTIES OF LOW-LYING STATES

The measured properties of nuclei in their ground
state (binding energies, decay properties, and properties
of the odd particle) show detailed evidence for strong
octupole correlations, which is quite separate from the
signature given by a rotational spectrum; a review of
these properties is given in this section. For earlier re-
views, the reader is referred to the seminal works of

FIG. 20. Plot of v(p521)/v(p511) ver-
sus I for nuclei with N=86,88,90 and nuclei
with Z=88,90. This ratio should equal unity
for rotating rigidly reflection-asymmetric sys-
tems. The dashed line shows how it varies in
the case of an aligned octupole phonon.
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Leander and co-authors (Leander et al., 1982; Leander
and Sheline, 1984; Leander and Chen, 1988).

A. Binding energies

An early theoretical indicator of intrinsic reflection
asymmetry in nuclei was the necessity of including odd-
mass deformation parameters in calculations of ground-
state masses. Möller and Nix (1981) were the first to
demonstrate that the discrepancies in the calculated and
experimental values of the ground-state masses of nuclei
with Z'88, A'222 were reduced substantially by al-
lowing the octupole-deformation parameter to vary in
their calculations, which were based on the SC method
with the folded Yukawa average potential and the
Yukawa-plus-exponential macroscopic energy. These
calculations were extended by Leander et al. (1982),
who made a systematic study of nuclei with 84<Z<92
and 130<N<140. Leander et al. (1982) pointed out that
the triangular closed classical orbits with Dl 53,6, . . . in
a shell, which give rise to octupole deformation, may
only be present with a realistic nuclear potential such as
the folded Yukawa potential used by them, or a WS
potential, and cannot occur for a modified harmonic-
oscillator potential, which can only favor quadrupole
and hexadecapole distortions. The results of these calcu-
lations are shown in Fig. 27, which shows how the calcu-
lated mass-discrepancies evident for nuclei with Z'88
and N'134 are reduced substantially by octupole defor-
mation. The deviations shown in Fig. 27 occur in pre-

cisely the same nuclei for which the calculated potential
minimum is lowest for a reflection-asymmetric shape.
Möller et al. (1995) have recently compiled masses cal-
culated using both the droplet model and the folded
Yukawa microscopic model, which can be used to map
regions of octupole deformation throughout the periodic
table.
Leander et al. (1982) found that the octupole-

deformed minima are typically 1–2 MeV lower than the
energy in the modified oscillator at the same deforma-
tion. This difference was further discussed by Nazare-
wicz et al. (1984b), who pointed out that the binding-
energy gain Edef,asym associated with reflection-
asymmetric deformations is governed primarily by the
spacing between the strongly interacting subshells with
Dl =3 [see Sec. III.A and Eq. (15)]. For instance, the
energy separation between the spherical 2f7/2 and 1i13/2
proton shells in 224Th is 50 keV in the folded Yukawa
model of Leander et al. (1982), and 600 keV in the WS
model of Nazarewicz et al. (1984b). This translates into
Edef,asym=1 MeV (folded Yukawa) and 450 keV (WS). A
further increase in Edef,asym can be achieved by allowing
for higher-multipolarity deformations in calculations
based on the SC method (Chasman, 1986; Sobiczewski
et al., 1988; Rozmej et al., 1988; Ćwiok and Nazarewicz,
1989a).

B. Alpha-decay properties

The study of alpha decay and the nature of nuclear
states populated by this mechanism was important his-
torically for the identification of low-lying negative-
parity states and their subsequent interpretation in
terms of octupole modes. There is little evidence that
alpha decay in itself is enhanced by the presence of oc-
tupole correlations, as there is no observed correlation
between alpha reduced widths and N ,Z values corre-
sponding to high octupole collectivity; see Fig. 28, taken
from Toth et al. (1986). The figure shows a plot against
neutron number of the reduced widths d2 (Rasmussen,
1959) for ground-state to ground-state alpha transitions
connecting even-even nuclei with 78<Z<100. The dis-
continuity at N=126 is attributed to a shell-structure ef-
fect. Theoretical approaches to alpha decay in which the
four nucleons in the parent nucleus that eventually con-
stitute the alpha particle are described by a shell model
find that the inclusion of octupole deformation increases
the value of d2 by 30% (Insolia et al., 1991). Delion et al.
(1992) used the same technique to make a systematic
study of alpha decay in heavy octupole nuclei using a
restricted (b2 ,b3) deformation space.
The property of alpha decay which does appear to be

important in the determination of octupole collectivity is
the relative decay width to different states in the same
nucleus. This is usually described by the hindrance fac-
tor f , which is a measurement relative to the decay
width to the ground state of even-even nuclei. The sys-
tematics of this quantity for low-lying negative-parity
states in the actinides has been presented by Leander
and Sheline (1984), and more recently extended by

FIG. 21. The yrast sequence of 219Ra, taken from Cottle et al.
(1986), compared to its neighbors 218,220Ra.
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Poynter et al. (1989b); this is shown in Fig. 29. As can be
seen, the values of f for decays to the 12 level decrease
as N becomes smaller, in fact becoming close to unity
for Ra and Rn nuclei with N<136. This has been inter-
preted (Leander and Sheline, 1984) as resulting from a
change of the structure of the low-lying negative-parity
states from dynamic vibration to static octupole defor-
mation.
The systematic study of alpha transitions to excited

states in odd-A nuclei was also carried out by Leander
and Sheline (1984). Their studies showed that, in some
cases, states having opposite parity must possess similar
structures, since there are small hindrance factors to
both states. This is illustrated for the case of the odd-
mass Ac isotopes in Fig. 30. These systematics have been
extended by Sheline and Bossinga (1991; see also She-
line, 1993b), who pointed out that odd-A and odd-odd
nuclei have lower hindrance factors than the corre-

sponding even-even nuclei. The cases where alpha decay
has been observed to such parity doublets (see Sec.
V.D.1) with values of f,100 are presented in Table V.
Unfavored transitions typically have values of f.100.

C. Exotic decay

The question of the possible existence of cluster struc-
ture in ground states of heavy nuclei has attracted much
attention, especially because of the observed exotic de-
cay branches via 14C, 24Ne, 28Mg, and others (Rose and
Jones, 1984; Price, 1989). Several authors have drawn
attention to the similarity in properties between alpha
decay and exotic decay (Poenaru et al. 1984, 1985; Bar-
wick et al., 1986), although Shi and Swiatecki (1987)
have pointed out that exotic decays of heavy nuclei

TABLE III. Experimental intrinsic E1 moments D0 for even-even nuclei from the Ba-Sm region.

Nucleus I range uD0u (expt.) Reference
(e fm)

142Ba I51 0.115(3) Mach, Nazarewicz et al. (1990)
I59 0.13(2) Phillips et al. (1986); Mowbray et al. (1989)

Zhu et al. (1995)
144Ba I57 0.071(10) Phillips et al. (1986); Zhu et al. (1995)

I58–11 0.14(3) Phillips et al. (1986); Zhu et al. (1995)
146Ba I51–3 0.06(4) Mach, Nazarewicz et al. (1990)

I55–7 0.009(3) Phillips et al. (1986); Zhu et al. (1995)

144Ce I57 0.17(5) Mowbray et al. (1989)
146Ce I57 0.11(2) Phillips et al. (1988)

I58–11 0.20(2) Phillips et al. (1988)

146Nd I51 0.14(5) Zilges et al. (1992)
I57–11 0.17(2) Urban et al. (1988); Urban et al. (1991)

148Nd I51 0.24(6) Pitz et al. (1990)
I5124 0.13(3) Ibbotson et al. (1993)
I5528 0.24(3) Ibbotson et al. (1991, 1993)
I56–8 0.23(3) Urban et al. (1988)

150Nd I51 0.26(5) Pitz et al. (1990)

148Sm I51 0.12(2) Metzger et al. (1965, 1976)
I53 0.18(4) Jungclaus, Börner et al. (1993)
I,7 0.13(1) Urban et al. (1991)
I.7 0.22(2) Urban et al. (1991)

150Sm I51 0.202(9) Pitz et al. (1990)
I51 0.118(5) Jungclaus, Börner et al. (1993)
I53 0.185(5) Jungclaus, Börner et al. (1993)
I57–15 0.19(3) Urban et al. (1987)

152Sm I51 0.24(3) Jungclaus, Börner et al. (1993)
I51 0.37(3) Jungclaus, Belgya et al. (1993)
I51 0.313(9) Metzger (1976)
I53 0.34(3) Jungclaus, Börner et al. (1993)
I53 0.38(7) Jungclaus, Belgya et al. (1993)

150Gd I54–6 0.08(2) Haenni and Sugihara (1977)
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TABLE IV. Experimental intrinsic E1 moments D0 for even-even nuclei from the Ra-Th region.

Nucleus I range uD0u (expt.) Reference
(e fm)

218Ra I56 0.23(5) Gai et al. (1988)
I57–11 0.339(17) Gai et al. (1988)

220Ra I57–17 0.27(7) Burrows et al. (1984); Cottle et al. (1984)
222Ra I53 0.38(6) Ruchowska et al. (1992)
224Ra I53–5 0.028(4) Poynter et al. (1989a); Marten-Tölle (1990)

I57–9 ,0.11 Poynter et al. (1989a)
226Ra I51–5 0.06–0.10 Wollersheim et al. (1993)

I57–12 0.12–0.21 Wollersheim et al. (1993)
I57–11 0.16(1) Ackermann et al. (1993)

228Ra I53 0.011(1) Ruchowska et al. (1982)

220Th I56211 0.25(3) Bonin et al. (1985)
222Th I56–15 0.38(7) Ward et al. (1983); Bonin et al. (1983)
224Th I511–17 0.52(2) Ackermann et al. (1993)
226Th I59–19 0.30(1) Ackermann et al. (1993)
228Th I59–13 0.120(3) Ackermann et al. (1993)
230Th I57–15 0.04(1) Lauterbach et al. (1984)

230U I511–13 0.16(5) Ackermann et al. (1993)

FIG. 22. Experimental (with er-
ror bars) and calculated intrin-
sic E1 moments for Ba, Ce, Nd,
Sm, Ra, and Th isotopes. Open
symbols are measurements or
calculations for low-spin states
(I<7); closed symbols are for
higher-spin states (I>8). Calcu-
lated values were obtained us-
ing the SC method with the WS
potential (solid lines; Butler and
Nazarewicz, 1991) and in the
HF-Gogny model (dotted lines;
Egido and Robledo, 1991b,
1992).
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would occur with about the same frequency whether the
parent nucleus were deformed or not.
A connection (Hussonnois et al., 1990a, 1990b, 1991;

Sheline and Ragnarsson, 1991a, 1991b; Dumitrescu,
1994) has been made between the ground-state structure
of reflection-asymmetric 223Ra and the observed (Bril-
lard et al., 1989; Hourani et al., 1991) hindrance factors
of 14C decay to excited states in 209Pb [although recent
high-resolution studies by Hourani et al. (1995) have
failed to confirm the previous observation of large hin-
drance factors for decay to both negative- and positive-
parity states]. This tends to support the suggestion that
there is a link between cluster preformation and strong
octupole collectivity (Herrmann et al., 1986; Depta et al.,
1986; Poenaru et al., 1994), although substantially more
data are required to establish this. (For review, see San-
dulescu and Greiner, 1992; Hussonnois and Ardisson,
1994.)
Delion et al. (1994) have performed microscopic cal-

culations of heavy-cluster spontaneous emission using a
spherical shell-model technique, applied previously to
alpha decay (Delion et al., 1992). They obtained very
good agreement with experiment for 14C decay from
222,224,226Ra, and made a prediction for 114Ba→12C+
102Sn decay, assuming spherical shapes. (For identifica-
tion of 114Ba and its cluster radioactivity, see Gugliel-
metti et al., 1995.)
Cseh et al. (1993) applied the vibron model coupled

with the pseudo-SU3 shell model (Sec. III.D) to de-
scribe clusterization in heavy nuclei. As an example they
considered the clusterization of 224Ra to the 210Pb+14C
system.

D. Spectroscopic properties of the odd particle

The presence of intrinsic reflection-asymmetric defor-
mations influences spectroscopic properties (parity split-
tings, ground-state spins and magnetic moments, Corio-
lis matrix elements, spectroscopic factors, radii,
electromagnetic transitions, alpha-decay rates) of odd-
A and odd-odd nuclei.
Leander and Sheline (1984) reviewed the properties

of odd-A actinide nuclei, and outlined spectroscopic fin-
gerprints of stable octupole deformation. For the spec-
troscopy of the odd-A Ra isotopes, see also the reviews
by Sheline and Sood (1991) and Sheline (1993a).

FIG. 23. D0 /Q0 plotted as a function of spin I for 220Ra
(Smith et al., 1995), 226Ra (Wollersheim et al., 1993; Acker-
mann et al., 1993), 222Th (Smith et al., 1995), 224,226Th (Acker-
mann et al., 1993).

FIG. 24. Plot of uM(E3)u2, the E3 transition strength of
01

1→31
2 transitions for even-even nuclei, as a function of neu-

tron number N (top) and proton number Z (bottom). The
various symbols indicate the experimental procedures used to
obtain the data (Coulomb excitation, lifetime measurements,
inelastic electron scattering, deduction from b3 values ob-
tained from inelastic scattering of particles, and miscellaneous
procedures). The peaks labeled A , B , C , D in the lower plot
occur at Z values of the stable nuclei having N values corre-
sponding to peaks A , B , C , D , respectively, in the upper fig-
ure (Spear and Catford, 1990).
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1. Parity doublets

It was first emphasized by Chasman (1980) that a sig-
nature of intrinsic reflection asymmetry in well-
deformed odd-A nuclei would be the appearance of par-
ity doubling, i.e., for each bandhead there should be
another bandhead close in energy with the same value of
K and opposite parity.
In the reflection-asymmetric particle-plus-rotor of Le-

ander and Sheline (1984), the parity splitting between

members of a parity doublet in odd-A or odd-odd nuclei
is [see Eq. (43)]

DE5E~02!^P s.p.& ; (77)

i.e., it is always reduced compared to the value for the
even-even core [see Eqs. (24) and (25); also Brink et al.
(1987)].
All models of odd-A nuclei predict that the parity

splitting of the K6 bands should be smaller than for the

FIG. 25. Values of B(E3;01
1→31

2) for
nuclei with N=82, 84, 86, 88, and 90.
The data are taken from Spear (1989)
except for 142Ce, 144Nd (taken from
Spear et al., 1989), 146Nd (Sandor et al.,
1993b), 148Nd (Ibbotson et al., 1993),
and 150Nd (Sandor et al., 1993a).

FIG. 26. Plot of E2 and E3 matrix elements versus spin I deduced from Coulomb-excitation measurements for 148Nd (Ibbotson
et al., 1993) and 226Ra (Wollersheim et al., 1993). Solid lines join points calculated assuming a constant electric quadrupole or
octupole moment.
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Kp501 and (extrapolated) 02 bandheads in the adja-
cent even-even nuclei, so that the experimental observa-
tion of parity doublets does not provide a particularly
good test for these models. Also, as pointed out by Le-
ander and Sheline (1984), closely spaced parity doublets
will occur among the Nilsson orbitals in the deformed-
shell model for reflection-symmetric shapes, especially if
pairing reduces the quasiparticle energy spacing. Never-
theless, the observation of a multiple band structure in
223Th (Dahlinger et al., 1988) in particular offers evi-
dence for reflection asymmetry in an odd-mass nucleus.
In this nucleus (see Fig. 31) strong E1 and M1 transi-
tions are seen connecting the bands of different parity
and signature. The energy degeneracy of these bands is
highlighted in Fig. 32, where J /\2 is plotted versus \v
for 223Th and compared with adjacent even-even nuclei.
Similar band structure has been observed in 225Th
(Hughes et al., 1990), which is also compared with adja-
cent even-even nuclei in Fig. 32, in 221Ra (Ackermann
et al., 1989; Fernández-Niello et al., 1991) in 151Pm (Ver-
meer et al., 1990; Urban et al., 1990), and in 153Eu (Pear-
son et al., 1994) (but see next subsection).
At low spin, numerous cases of parity doubling have

been observed, assigned as such usually on the basis of
alpha hindrance factors (see Sec. V.B), although some-
times from the nature of observed electromagnetic tran-
sitions or other spectroscopic properties. The observed
features of these bands are contained within Tables V
and VI, which list the locations of low-lying single-
particle states in actinide and lanthanide nuclei, respec-
tively, together with their important experimental prop-
erties.
The K=0 parity-doublet band in the odd-odd nucleus

FIG. 27. Top: Experimental mass minus calculated mass, with
only the mass-symmetric shape coordinates «2 and «4 included
in the calculations. Dashed contours indicate regions where
there are no experimental data. Bottom: Experimental mass
minus calculated mass, with both mass-symmetric («2 and
«4) and mass-asymmetric («3) coordinates included in the cal-
culations (Leander et al., 1982).

FIG. 28. Reduced widths for s-wave a transitions plotted as a
function of neutron number for nuclei with 78<Z<100. Val-
ues enclosed in parentheses for Z=78 and Z=80 are based on
estimated a branches (Toth et al., 1986).

FIG. 29. Systematics of a hindrance factors f to the 12 (full
curve, round symbols), and the 32 (dotted curves, square sym-
bols), levels in the nuclei shown. N is the neutron number.
Points in brackets are a hindrance factors to levels with un-
confirmed Ip. The lines through the data points are to guide
the eye only (Poynter et al., 1989b).
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224Ac has been observed to have extremely small split-
tings between states of the same spin and opposite parity
(Sheline et al., 1991, 1993). In this nucleus the Newby
splitting, which displaces the even- and odd-spin mem-
bers in K=0 bands, in odd-odd nuclei, has been deter-
mined for each of the K=01 and K=02 bands, and
shown to be consistent (see Table V) with the expecta-
tion for reflection-asymmetric systems of the same abso-
lute value but opposite sign. Recently the K assignments
of this band have been called into question (Ahmad
et al., 1994). For the nucleus 229Pa, on the edge of the
region of octupole deformation, recent experiments us-
ing particle, g , and e2 spectroscopy (Grafen et al., 1991;
Lösch et al., 1994; Levon et al., 1994) have shown that
the original assignment of a 5/26 parity doublet sepa-
rated by 220 eV (Ahmad et al., 1982) has probably no

experimental basis. Sheline (1993b) has pointed out that
the alpha decay of 229Pa suggests that it has octupole
deformation in its ground state, and that there must ex-
ist a 5/26 parity doublet in this nucleus.

2. Ground-state spins and magnetic moments

Indirect evidence for the occurrence of intrinsic re-
flection asymmetry comes from the spectroscopic prop-
erties of the odd particle, e.g., spin, magnetic moment,
decoupling parameter, and transfer spectroscopic factor.
The single-particle orbitals as a function of b2 and b3
are given for protons with Z.82 and neutrons with
N.126 in Fig. 33, taken from Leander and Chen (1988).
The energies of orbitals lying close to each other which
are mixed by the octupole interaction (e.g., g9/2,V55/2 ,
j15/2,V55/2 for neutrons) are strongly perturbed by octu-
pole deformation, so that the ground-state spin and
magnetic moments are expected to be different for
b3=0 and for b3 Þ 0.
The strong-coupling expression for the rotational gy-

romagnetic factor gK (K.1/2),

gK5
1
K

@Kg l 1~gs2g l !^xK
n uszuxK

n &# , (78)

shows that the octupole coupling involving spin-flipped
orbitals may lead to the hybridization of magnetic dipole
properties. (For K=1/2 the magnetic decoupling param-
eter has to be considered.) Sheline and Leander (1983)
applied this expression to describe the magnetic mo-
ments in the 3/26 doublets of 227Ac, and Ragnarsson
(1983) has applied it to the magnetic moments in
225,227Ra. Sheline (1986) has pointed out that in the case
of 223Ra, the similarity in magnetic moments of the
ground state and the 3/22 bandhead at 50.2 keV (see
Table V) can be accounted for naturally by assuming
both are part of a parity doublet. Figure 34 shows the
values of ^xK

n uszuxK
n & in odd-A isotopes of Ac and Pa, as

calculated by Leander and Sheline (1984). The value of
this quantity for 227Ac, extracted from the measured g
factor by means of Eq. (78), agrees well with the predic-
tion of reflection-asymmetric theory.
As yet, however, the data are rather sparse for g fac-

tors measured for the many transitions observed in
parity-doublet bands populated at high spin by heavy-
ion reactions. In the cases of 151Pm (Vermeer et al.,
1990) and 153Eu (Pearson et al., 1994), the intrinsic g
factors obtained from the B(M1)/B(E2) branching ra-
tios are systematically quite different for the transitions
between the positive-parity members and between the
negative-parity members, which suggests that these
bands have different intrinsic structure. Indeed, calcula-
tions of magnetic moments in these nuclei using the
rotor-plus-particle model are able to reproduce the ex-
perimental values without invoking static intrinsic re-
flection asymmetry (Afanasjev and Ragnarsson, 1995;
see also Afanasjev, 1993, and Afanasjev and Mizutori,
1995). More recently, it has been observed that the mag-
netic properties of transitions for each parity of a band

FIG. 30. Experimentally observed favored a decay into closely
spaced parity doublets of odd-A Ac isotopes. The observed
hindrance factors to the right of the levels are normalized to
unity for the ‘‘natural’’ favored transition (Leander and She-
line, 1984). The level energies are in keV.
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TABLE V. Properties of odd-mass and odd-odd nuclei in the Fr-Th region. The energies and Kp values of bandheads are
given, together with values of the decoupling parameter a for K=1/2 bands, a-decay hindrance factor (h.f.) for favored transi-
tions, and intrinsic electric dipole moment D0 for transitions within parity-doublet bands.

Nucleus Kp Energy (keV) a h.f. D0 (e fm) Other

219Fr (Liang et al., 1991)
1
2

2 81 7.03
1
2

1 '330 27.78
5
2

1 384.3 10
5
2

2 490.3 2.9
3
2

2 56.15 9.3 ( 72
2)

3
2

1 369.6 .19 ( 72
1)

221Fr (Sheline, 1988b; Liang, Péghaire et al., 1990)
1
2

2 26.0 4.3 11 ( 72
2) 0.10260.008

1
2

1 145.8 22.6 65 ( 72
1)

3
2

2 36.6 17 0.07660.003
3
2

1 224.6 28
223Fr (Kurcewicz et al., 1992; Sheline et al., 1995)

3
2

2 0 7.6 0.2460.04
3
2

1 160.45 42
1
2

2 55.0 21.36
1
2

1 149.3 0.96
221Ra (Ackermann et al., 1989; Liang, Paris et al., 1990; Fernández-Niello et al., 1991)

5
2

1 0 0.3660.10
5
2

2 103.4
3
2

1 321.3 1.9
3
2

2 485.3 '15
223Ra (Sheline, 1986; Sheline, Chen, and Leander, 1988; Briançon et al., 1990; Abdul-Hadi et al., 1993)

3
2

1 0 0.12460.010 m50.2860.014
3
2

2 50.19 m50.4260.06
5
2

1 234.92 0.04360.012
5
2

2 369.43
1
2

1 286.16 1.35 5.6 ( 12
1) 0.07860.012

16 ( 32
1)

1
2

2 350.50 22.15 36 ( 12
2)

14 ( 32
2)

225Ra (Sheline et al., 1983, 1989; Reich et al., 1986; Helmer et al., 1987; Andersen et al., 1989)
1
2

1 0 1.89 0.1460.02
1
2

2 55.2 22.56
3
2

1 149.9
3
2

2 225.1
5
2

1 236.3 1.57
( 52

2) 394.2 23
227Ra (Borge et al., 1987; Sheline, 1989b; Mach et al., 1994)

3
2

1 0 0.09860.011
3
2

2 90.0
1
2

1 120.7 21.71
1
2

2 296.6 0.62
223Ac (Ahmad et al., 1989; Sheline et al., 1990)

3
2

2 4.1 5.1 ( 52
2)

3
2

1 88.9 '14 ( 52
1)

5
2

2 0 2.5 .0.18
5
2

1 64.6 7.0
225Ac (Ahmad et al., 1984, 1987)

3
2

2 0 0.17160.014
3
2

1 40.1
5
2

2 120.8 7.5
5
2

1 155.7 1.8
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in 147Pm are similar at intermediate spin values. This has
been interpreted as being consistent with this nucleus
having stable octupole deformation in this spin region
(Urban et al., 1995).
Comparison with theory of the ground-state proper-

ties for actinide nuclei has been carried out by Ragnars-
son (1983), Leander and Sheline (1984), Leander and
Chen (1988), Ćwiok and Nazarewicz (1991), and Jain
et al. (1990). The assignment of ground-state orbitals to
these nuclei is given in Fig. 33. In general, the agreement
is very good between the experimental values of Ig.s. and
mg.s. and the values calculated assuming b3'0.1 for Rn,
Fr, Ra, Ac, and Pa isotopes with N<140; but if b350, it
is difficult in some cases to find appropriate orbitals so
that both Ig.s. and mg.s. can be matched by calculations.
Particularly interesting is the nucleus 225Ra, which is ex-
pected to exhibit coexistence of reflection-symmetric
and reflection-asymmetric configurations (Sheline et al.,
1989; Ćwiok and Nazarewicz, 1991). In this case it is
difficult to explain the ground-state spin (I=1/2) (Ah-

mad et al., 1983) without invoking octupole mixing [see,
however, Piepenbring (1984)].
In the light-lanthanide nuclei, similar conclusions

were reached (Leander et al., 1985; Ćwiok and Nazare-
wicz, 1989b) in describing the ground-state spins and
electromagnetic moments of 143,145Cs (Coc et al., 1987)
and 145Ba (Mueller et al., 1983). The structure of parity
doublets in 151Pm and 153,155Eu was studied by Nosek
et al. (1993a) in the quasiparticle-phonon nuclear model
(Sec. III.F). They found strong octupole correlations
only in the K=1/2 states. Spectroscopic properties of
odd-A nuclei around 112Ba have been discussed by
Heenen et al. (1994).
For the odd-odd nuclei 228,230Pa, Herrmann et al.

(1989) have noted that the measured ground-state mag-
netic moments are best fitted by including orbitals which
are associated with large driving forces toward octupole
shapes. Ekström et al. (1986) made a similar analysis of
the ground-state moments of 223,225,227Fr, but was unable
to draw any firm conclusion on the presence of octupole
deformation, as the data were also reproduced by

TABLE V. (Continued).

Nucleus Kp Energy (keV) a h.f. D0 (e fm) Other

227Ac (Sheline and Leander, 1983; Ishii et al., 1985; Martz et al., 1988)
3
2

2 0 0.029760.0001 gK50.9260.06
3
2

1 27.4 gK50.9660.10
( 52

2) 273.1
(52

1) 304.6
1
2

2 354.6 22.01 13 ( 12
2)

5.2 ( 72
2)

1
2

1 435.4 4.56 .35 ( 12
1)

83 ( 72
1)

224Ac (Sheline et al., 1991, 1993; Ahmad et al. 1994)
(02) 0 EN51.99 keV
(01) (22.0) EN520.37 keV
(11) 66.0
(12) 89.3
32 353.9 20
31 360.2 12

223Th (Dahlinger et al., 1988)
5
2

1 0 0.4460.09
5
2

2

225Th (Hughes et al., 1990)
3
2

1 0 0.4060.10
3
2

2

227Th (Liang et al., 1994, 1995)
1
2

1 0 2.97
1
2

2 67.2 22.68
3
2

1 24.3 4465
3
2

2 142.0 '440
5
2

2 448.0
5
2

1 547.0
229Pa (Levon et al., 1994)

1
2

2 15.1 –1.71 0.0960.04
1
2

1 1.51
1
2

2 1540 –1.75
1
2

1 1593 1.90

384 Butler and Nazarewicz: Intrinsic reflection asymmetry

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



particle-rotor calculations which did not include octu-
pole deformation. For the ground-state spins of odd-odd
Francium isotopes with A5220–228, and for 224,226Ac,
Sheline, Chen, and Leander (1988) were able to explain
the values only in terms of parity-mixed orbits.

3. Coriolis matrix elements

In the strong-coupling limit, the diagonal Coriolis ma-
trix element for K=1/2 bands is written in terms of the
decoupling parameter a (Zaikin, 1966; Bohr and Mottel-
son, 1975):

a52p^P s.p.x1/2
n uj1uR1x1/2

n &, (79)

so that opposite-parity states of a doublet having a com-
mon intrinsic structure have values of the decoupling
parameter a of equal magnitude but opposite sign. That
is,

ap5const (80)

within a doublet.
Ragnarsson (1983), and Leander and collaborators

(Leander and Sheline, 1984; Leander and Chen, 1988),
have made a systematic comparison of the experimental
values of a with theoretical calculations using a model

which is either reflection asymmetric or symmetric. Par-
ticularly for 227Ra, reflection asymmetry appears neces-
sary to account for the observed signs of a for the lowest
Kp51/26 band. Figure 35 shows the comparison be-
tween experimental values and values calculated by Le-
ander and Chen (1988) from a reflection-asymmetric
particle-plus-rotor model. The theory predicts some de-
gree of divergence from the strong-coupling limit (80),
but not as much as observed, although overall the agree-
ment between theory and experiment is quite good. For
K.1/2 bands, Leander and Chen (1988) calculated
moment-of-inertia and signature splitting for both parity
bands, and obtained parity decoupling of the same order
as that observed experimentally, although the quality of
the fit is rather poor. They speculated that the observed
smaller size of the Coriolis matrix elements in their cal-
culations for deformed nuclei is brought about by the
presence of octupole deformation. For 219Fr, Liang et al.
(1991) were able to reproduce the experimental values
of the decoupling parameter for the K=1/2 doublet using
the intermediate-coupling scheme based on the
quasiparticle-phonon nuclear model (Sec. III.F), which
assigns quite different quasiparticle character to the
bands of different parity.

4. Spectroscopic factors

An early attempt to reproduce the measured nuclear
structure factors for states populated by one-neutron
transfer reactions using an octupole model was made
by Lo”vho” iden et al. (1986), who studied the
226Ra(t ,a) 225Ra reaction. They were able to reproduce
the measured quantities for states associated with the
j15/2 intruder orbital using matrix elements calculated
assuming nonzero b3 . More extensive calculations have
been carried out for 227Ac, 225Ra, and 227Ra by Leander
and Chen (1988), giving reasonable agreement with ex-
perimental data for relative magnitudes of the nuclear
structure factors, using the reflection-asymmetric
particle-plus-rotor model. In contrast, Martz et al. (1988)
reported that the spectroscopic strengths in 227Ac popu-
lated by the 226Ra(a ,t) and 226Ra(3He,d) reactions are
in better agreement with models which assume reflec-
tion symmetry. Tables of spherical amplitudes CJ , use-
ful for interpretation of one-particle transfer reactions,
have been computed by Chasman (1984) for reflection-
asymmetric valence-proton and -neutron single-particle
states in the A;225 mass region.

5. Radii

The introduction of laser-spectroscopic techniques has
enabled many new isotope-shift measurements to be
made in the actinide and lanthanide region (Aufmuth
et al., 1987). The isotope shift is used to derive the
change d^r2&N ,N8 in the mean-square nuclear-charge ra-
dii between nuclei having neutron numbers N and N8,
which is related to changes in the charge distribution
between these nuclei by

d^r2&5d^r2&sph1
5
4 p^r2& sph~d^b2

2&1d^b3
2&1••• !. (81)

FIG. 31. Level scheme of 223Th. The spin assignment was
made under the assumption of a ground state spin Ip55/21.
The width of the arrows represents the transition intensity.
Dotted transitions are unconfirmed (Dahlinger et al., 1988).
The level and transition energies are in keV.
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Figure 36, taken from Otten (1989), shows how the ex-
perimental value of d^r2&A21,A between neighboring iso-
topes A–1 and A varies for isotopes of Rn (Borchers
et al., 1987), Fr (Coc et al., 1985, 1987), and Ra (Ahmad
et al., 1983, 1985, 1988), as a function of N . This quantity
shows a pronounced odd-even effect between N=132
and N=138, in that d^r2&A21,A for odd A is larger than
d^r2&A21,A for even A , which is opposite to what is ob-
served all over the chart of the nuclides with very few
exceptions. The Th isotopes with N>137 do not exhibit
this effect (Kälber et al., 1989). The inversion of the nor-
mal odd-even staggering in the light actinides has been
associated with the occurrence of strong octupole corre-
lations (Ahmad et al., 1984), with the suggestion that it
arises from the stabilizing effect on the octupole defor-
mation of the odd particle outside the even-even core
(see also Sheline, Jain et al., 1988, 1989). It should be
pointed out, however, that the experimental values for
the Rn, Fr, and Ra isotopes can be well reproduced us-
ing an extended Thomas-Fermi method, even though
the octupole degree of freedom is not included in the
calculation (Buchinger et al., 1994).

For Ba and Cs isotopes around N=88–90, the effect is
masked by the large overall increase observed with the
onset of quadrupole deformation, although Sheline, Jain
et al. (1988) have suggested that the odd-even effect is
attenuated for these nuclei. For the Europium isotopes
there is some evidence of an inversion of d^r2&N ,N21 at
N589 (Dörschel et al., 1984; Ahmad et al., 1985; Alk-
hazov et al., 1990), which may be associated with octu-
pole deformation (Afanasjev, 1993).

6. E1 transitions

Experimentally, the first evidence that the presence of
octupole correlations would give rise to relatively strong
E1 transitions, of order 1023 to 1022 s.p.u. (see Sec.
II.B), came from studies of low-lying transitions in odd
nuclei (for example, Ahmad et al., 1984). In the strong-
coupling limit, the values of the electric dipole moment
D0 for odd-mass nuclei are expected to be the same as
those for the even-even core. Butler and Nazarewicz
(1991) compared the experimental values for even-even
and odd-A nuclei with theoretical predictions of the SC

FIG. 32. Kinematic moment of inertia J /\2

(in MeV21) as a function of rotational fre-
quency \v (in MeV) for ground-state rota-
tional bands in 223Th and 225Th, compared
with their even-even neighbors. The ground-
state spins of 223,225Th are assumed to be 5/2
and 3/2 respectively. The positive (negative)
parity bands are indicated by filled (open)
symbols.
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method. In these calculations, the macroscopic contribu-
tion to D0 should be similar to the even-even neighbors,
although fluctuations can arise from the single-particle
contribution. Leander and Chen (1988) have also car-
ried out calculations for the B(E1) values, including ef-
fects of Coriolis mixing and odd-quasiparticle contribu-
tions.
For Ki=Kf=1/2 transitions, Eq. (66) is modified by the

presence of the signature-dependent term [Eq. (67)]
proportional to D1 . Reich et al. (1986) have determined
the amplitudes D0 and D1 for the 1/26 doublet in
225Ra.

VI. ROTATIONAL PROPERTIES
OF REFLECTION-ASYMMETRIC NUCLEI

Rotational properties of octupole vibrational states
were discussed in a rotor-plus-RPA model by Neergård
and Vogel (1970a, 1970b) and Vogel (1976), and in the
cranked RPA theory by Robledo et al. (1986), Mizutori
et al. (1990, 1991a, 1991b), and Nakatsukasa et al. (1992,
1993, 1995) (see Sec. III.F). In this section we mainly
concentrate on rotational motion of nuclei with stable
reflection-asymmetric deformations.
Quasimolecular rotational bands in a reflection-

asymmetric nucleus can be characterized by the ‘‘sim-
plex’’ s , which is the eigenvalue of the S1 operator [re-
flection through the (y ,z) plane; see Sec. III.B.1].
Simplex has properties similar to those of the signature
quantum number in the absence of reflection symmetry

(Nazarewicz et al., 1984a; Frauendorf and Pashkevich,
1984; Nazarewicz and Olanders, 1985a, 1985b).
The square of the S1 operator is related to the total

number of fermions:

S1
25~21 !A. (82)

The rotational band with simplex s is characterized by
spin states I of alternating parity, (Bohr and Mottelson,
1975)

p5se2ipI. (83)

Thus for reflection-asymmetric systems with an even
number of nucleons, one obtains

s511, Ip501,12,21,32, . . . , (84)

s521, Ip502,11,22,31, . . . , (85)

while for systems with odd particle number one has

s51i , Ip51/21,3/22,5/21,7/22, . . . , (86)

s52i , Ip51/22,3/21,5/22,7/21, . . . . (87)

In the mirror-symmetric case the simplex becomes
s=2pr (r is the signature quantum number).
The general structure of the cranked HFB equations

and their solutions remains the same in the simplex for-
mulation as in the usual signature-parity formulation.
The simplex of the rotating vacuum is s=+1, and the
simplex of an excited n-quasiparticle configuration be-
comes

snqp5s1s2•••sn , (88)

where si is the simplex of the ith particle.
High-spin properties of reflection-asymmetric nuclei

TABLE VI. Similar to Table V, but for odd-mass and odd-odd nuclei in the Pm-Eu region.

Nucleus Kp Energy (keV) a D0 (e fm) Other

151Pm (Sood and Sheline, 1989; Urban et al., 1990; Vermeer et al., 1990)
5
2

1 0 0.1660.04 m51.2960.03
5
2

2 116.8 m52.2060.14
3
2

1 255.6
3
2

2 540.2
152Eu (Sheline and Sood, 1989)

41 89.9 0.076
42 141.8
51 108.1 0.034
52 180.6

153Eu (Sheline and Sood, 1990; Pearson et al., 1994)
5
2

1 0 0.0860.02 m51.533060.0008
5
2

2 97.4 m53.2260.23 or 20.5260.23
154Eu (Sheline, 1989a)

11 71.91 0.05260.008
12 82.82
31 281.68 0.08160.015
32 239.29

155Eu (Sheline and Sood, 1990)
5
2

1 0 0.2260.01 m51.5660.10
5
2

2 104.3 m52.4960.27
1
2

1 922.8 2.14
1
2

2 1106.7 21.11
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were discussed by Nazarewicz and Olanders (1985a) in
the cranking WS model. Octupole coupling between
high-j unique-parity orbitals and normal-parity states
leads to fragmentation of the aligned angular momen-
tum over many quasiparticle states. The angular mo-
mentum content of the lowest Routhians, containing a
significant component of high-j unique-parity states, de-
creases with octupole deformation. On the other hand,
the average alignment of Routhians with a dominant
component of normal parity increases. As a conse-
quence, the quasiparticle-Routhian pattern becomes
more uniform, and many quasiparticle Routhians have
similar alignment.
The fragmentation effect is illustrated in Fig. 37,

which displays the calculated quasiparticle Routhians
for Z=56 and N=88 as functions of rotational frequency,
without (left) and with (right) octupole deformation. As

can be seen in Fig. 37, the frequency of the first band
crossing increases at the reflection-asymmetric shape as
a consequence of the reduced angular momentum align-
ment of the lowest Routhians. In addition, the interac-
tion between the crossing bands increases. Other
diagrams of Routhians as functions of octupole defor-
mation and rotational frequency can be found in Faber
and Płoszajczak (1981), Frauendorf and Pashkevich
(1984), and Åberg (1990).
At high frequencies a shape transition towards b3=0 is

expected after the alignment of the high-j quasiparticles.
Figure 38 illustrates the influence of rotational fre-
quency on the octupole-shell structure. The single-
particle Routhians for N;88 are shown as functions of
b3 for \v=0, 0.3, and 0.6 MeV. At \v=0.3 MeV the
octupole-shell effects are quenched, although the proton
numbers Z=56 and Z=62 and neutron numbers N=88

FIG. 33. Proton single-particle levels
(top) and neutron levels (bottom) in a
WS potential for b2=0–0.18 with b3=0,
for b3=0–0.1 with b2=0.18, and for
b2=0.18–0.10 with b3=0.1. Taken from
Leander and Chen (1988).
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and N=94 are still octupole driving. However, at the
higher rotational frequency \v=0.6 MeV, the octupole-
shell structure is almost completely washed out.
The octupole deformation explains the gradual angu-

lar momentum alignment in the light actinides. Calcula-
tions based on the cranked reflection-asymmetric WS
model reproduce the absence of sharp band crossing in
nuclei around 222Th (Nazarewicz et al., 1984a; 1987).
Figure 39 displays the alignment plot Ix(v) for

222Th.
Nazarewicz et al. (1987) have shown, using the particle-
number projected cranking WS model with pairing, that
the octupole-deformed ground-state band (b2=0.116,
b3=0.104) crosses a neutron-aligned band at \v'0.20
MeV, with a large interaction between the two bands.
At the reflection-symmetric shape (b2=0.12, b3=0) the
quasiparticle alignments are large and band interactions
are small. The four-quasiparticle configurations
n(j15/2)

2p(i13/2)
2 become yrast at I'26; that is, the

shape transition from reflection asymmetric to reflection
symmetric is expected. Experimentally, there is now evi-
dence that the shape transition occurs at I'24 (Smith

et al., 1995; see also Schwartz et al., 1987, 1988) while
220Ra remains reflection asymmetric up to I'30.
A detailed discussion of rotation-induced shape

changes in reflection-asymmetric nuclei from the Ra-Th
and Ba-Ce regions has been given by Nazarewicz (1987),
Nazarewicz et al. (1987), and Nazarewicz and Tabor
(1992). They employed the so-called total Routhian sur-
face method, in which the nuclear mean field is param-

FIG. 34. Values of ^sz& for the 3/2
6 and 5/26 parity doublets

in odd-A isotopes of Ac and Pa. Predictions of reflection-
symmetric («3=0) and reflection-asymmetric («3 Þ 0) mean-
field theory are indicated by dashed and solid lines, respec-
tively (Leander and Sheline, 1984).

FIG. 35. The decoupling factor a times the total parity p for
K=1/2 parity-doublet bands. Filled symbols represent mea-
sured data for the nuclei indicated on the plot; open symbols
with connecting lines to the filled ones show the corresponding
results of core-particle coupling calculations. The x axis gives
the ap of the positive-parity band, and the y axis that of the
negative-parity band. For strong coupling, the points would lie
on the diagonal (dashed) (Leander and Chen, 1988).

FIG. 36. Differential isotope shift d^r2&N21,N for Rn, Fr, and
Ra isotopes, showing regular odd-even staggering below
N=126, and inverted sense for neutron numbers N=133, 135,
and 137 (Otten, 1989).
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etrized by a WS single-particle potential and a BCS pair
field. The energy ESC of the nonrotating state, as a func-
tion of deformation b̂[(b2 ,b3 ,b4 , . . . ), was obtained
by the SC method. The total Routhian at frequency v
and deformation b̂ was thus calculated as

Ev~b̂ !5ESC~ b̂ !1@^H b̂
v
&2^H b̂

v50
&# . (89)

The absolute minimum of the Routhian at fixed v cor-
responds to the solution for a yrast state. Secondary
minima correspond to other solutions, which may be
yrast if they have higher angular momentum. Figure 40
shows the equilibrium deformations as a function of ro-
tational frequency, calculated with this method for the
yrast configuration in doubly even 2202228Th.
Total Routhian surface calculations for nuclei pre-

dicted to have reflection-asymmetric ground states (such
as 144Xe, 144,146Ba, 144,146Ce, 222,224Ra, and 222,224,226Th)
indicate that at medium spins the magnitude of octupole
deformation increases, and the octupole minima are
much better separated than in the ground state. Egido
and Robledo (1990) added the rotational-energy term
I(I11)/2J (q3) to the microscopic collective Hamil-
tonian (valid at I=0) to investigate the behavior of
146Ba at high spins. They obtained stabilization of octu-
pole deformation at high spins.
In general, the enhancement of octupole strength with

rotation (see, for example, the behavior of 220Th in Fig.

40) is caused by (a) weaker pairing correlations for the
octupole shape, which increase the moments of inertia,
and (b) increased octupole mixing between single-
particle states of opposite parity which approach each
other with increasing frequency (Nazarewicz, 1987;
Egido and Robledo, 1990).
As discussed above, in the Ra and Th nuclei shape

changes have been predicted to occur above I=24. In the
Xe-Sm isotopes, the transition to reflection-symmetric
shapes is expected to take place around I=12, which is
much easier to reach experimentally; in 144,146Ba, band
crossings have been observed above I=12 (Zhu et al.,
1995).
The nuclei 218,220Ra, 138,140Xe, 140,142Ba, 142Ce, 144Nd,

and 146,148Sm provide examples of strong quadrupole-
octupole coupling. Their ground-state minima are pre-
dicted to be very b2 and b3 soft, but they become reflec-
tion asymmetric at medium spins. This shape transition
is also associated with an increase in quadrupole defor-
mation. Experimentally, the N=86 isotones are transi-
tional systems showing an interplay between collective
and noncollective modes. In 142Ba, 146Nd, and 148Sm,
the structures on top of the 81 and 112 yrast states have
been interpreted (Urban et al., 1991; Zhu et al., 1995) in
terms of noncollective multiparticle excitations. The
N=84 isotones of Nd, Sm, and Gd do not exhibit rota-
tional behavior, and their excitation spectrum can be in-
terpreted in terms of the spherical shell model, including
octupole phonons (Bargioni et al., 1995). In the Ra-Th
region, spectacular examples of high-spin competition
between noncollective excitations and octupole modes
are the N=130 isotones 218Ra (Schulz et al., 1989) and
219Ac (Cristancho et al., 1994). Both nuclei exhibit en-
hanced E1 transitions and alternating-parity sequences.
But the quadrupole collectivity is weak, as shown by
their irregular quasivibrational spectra. The alignment
process along the yrast line of 218Ra can be reproduced
by the cranked WS calculations with pairing, assuming
very small quadrupole deformation, b2=0.1, and a large
value of b3;0.09 (Schulz et al., 1989; see also Leandri
and Piepenbring, 1993).
The nuclei 226Ra, 228Th, 146Xe, 148Ba, 146,148Nd,

150Sm, and 152Gd are calculated to have well-developed
quadrupole ground-state deformations, but they are b3
soft. At low frequencies, the negative-parity states in
these nuclei can be described in terms of very collective
octupole vibrations. At medium spins, however, the
static theory predicts a shape transition towards b3 Þ 0,
or at least the presence of near-yrast reflection-
asymmetric configurations. The experimental data on
146Nd (Urban et al., 1988), and 150Sm (Urban et al.,
1987), suggest that the above scenario indeed takes
place in these nuclei.
Rotational properties of nuclei around 112Ba were dis-

cussed by Heenen et al. (1994) in their total-Routhian-
surface/WS calculations. They obtained a shape transi-
tion to b3=0 at medium spins resulting from the
alignment of h11/2 neutrons and protons. For reflection-
asymmetric cranked SC calculations for superdeformed
nuclei, see Sec. IX.B.2.

FIG. 37. Proton quasiparticle Routhians for Z=56 (top) and
neutron quasiparticle Routhians for N=88 (bottom) as a func-
tion of rotational freqency. The deformation parameters used
correspond to the yrast configurations of 144Ba. The left panel,
b3=0, is representative of the reflection-symmetric configura-
tions involving aligned neutron (i13/2) and proton (h11/2) pairs.
The right panel, b3=0.1, represents the structure of quasiparti-
cle excitations associated with the reflection-asymmetric
ground band. Levels are labeled by simplex, s5i (solid line)
and s52i (dashed line) (Nazarewicz and Tabor, 1992).
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Kvasil and Nazmitdinov (1985) considered the RPA
using the cranking reflection-asymmetric Hamiltonian
with a pairing interaction plus quadrupole-quadrupole
and octupole-octupole interactions. They gave expres-
sions for energies and E1, E2, and E3 transition mo-
ments of reflection-asymmetric nuclei. Another applica-
tion of the reflection-asymmetric cranked SC method
can be found in work by Faber (1981), who investigated
the influence of angular momentum on the mass distri-
bution of heavy-ion induced fission.
The angular momentum dependence of the parity

splitting in the actinides was discussed by Jolos et al.
(1993, 1994, 1995), who employed the collective Hamil-
tonian of Eq. (48) with the spin-dependent collective po-
tential V(b3 ,I)5U(b3)1A(b3)I(I11). The parity
splitting was estimated using the WKB approximation,
and the resulting phenomenological expression accu-
rately describes the alternating-parity rotational bands
in even-even actinide nuclei. Zamfir et al. (1994) demon-
strated that there is a simple correlation between the
critical angular momentum Ioct at which the parity split-
ting disappears and the energy ratio E(31

2)/E(21
1).

Alonso et al. (1995) used the spdf SU3 Hamiltonian
with quadrupole and octupole interaction to describe
the positive- and negative-parity yrast bands in 226Ra.
They obtained a transition to reflection-asymmetric
shapes at I;9.

VII. INTRINSIC DIPOLE MOMENTS

In the presence of reflection-asymmetric deforma-
tions, a static electric dipole moment may arise in the
intrinsic frame due to a shift between the center of
charge and center of mass. Various theoretical treat-
ments of this effect are discussed below.

A. Macroscopic models for the E1 moment

In the purely geometric picture, isoscalar dipole de-
formations are not independent degrees of freedom, but
are determined from the c.m. condition, Eq. (3).
The collective electric dipole moment Dm appears in

the second order as a product of quadrupole (l=2) and
octupole (l=3) moments, namely,

Dm5@Q23O 3#1m . (90)

Thus one may expect that low-energy E1 collectivity
should be pronounced in nuclei with strong quadrupole
and octupole correlations. If higher moments
(l54,5, . . . ) are present, they also contribute to Dm

through the l↔l+1 coupling (see below).
In the macroscopic liquid-drop model, dipole polar-

ization results from asymmetry of the internal electric
field caused by reflection-asymmetric shape deforma-
tions. Assuming an axially symmetric system, the in-
duced dipole moment is proportional to b2b3 [see Eq.

FIG. 38. Single-particle WS lev-
els for neutrons (top) and pro-
tons (bottom) plotted versus oc-
tupole deformation b3 at fixed
values of b2=0.2 and b4=0.08.
At zero rotational frequency,
\v=0, the single-particle levels
are labeled by V . Intrinsic par-
ity is indicated only at b3=0 (for
b3 Þ 0 intrinsic parity is vio-
lated). At \v.0, the levels are
labeled by means of simplex,
s5i (solid line) and s52i
(dashed line).
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(90)]. Bohr and Mottelson (1957, 1958) and Strutinsky
(1956) calculated the E1 moment in the liquid-drop
model (Strutinsky’s derivation is the technically correct
one). Expressing the liquid-drop energy in terms of
nucleonic densities rp and rn , the local volume polar-
ization of the electric charge becomes

rp2rn
rp1rn

52
1

4Csym
VC~r!, (91)

where Csym is the volume-symmetry coefficient of the
liquid-drop model and VC is the Coulomb potential.
This leads to

D05CLDAZeb2b3 , (92)

where CLD;0.0007 fm (Strutinsky, 1957). (The b2b3
dependence of D0 is often described as the ‘‘lightning
rod’’ or charge-redistribution effect, referring to the ten-
dency of electric charge to move toward regions of the
surface with large curvature.)

Lipas (1963) generalized Eq. (92) to triaxial shapes,
and attempted to calculate values of D0 using octupole
mass parameters from experimental B(E3) values, but
found poor agreement with experiment. Further im-
provements to the liquid-drop contribution to the elec-
tric dipole moment hinged on the development of the
two-fluid liquid-drop (or droplet) model (Myers and
Swiatecki, 1974), which considers not only nuclear den-
sity nonuniformities (denoted in the following by
dr[r–r̃ , where r̃ is the average value of density) but
also the effect of the neutron skin. In the droplet model,
the macroscopic intrinsic dipole moment can be ex-
pressed as (Dorso et al., 1986)

D5Dv-red1Dskin , (93)

where

Dv-red5eE SNA drp2
Z

A
drnD rd3r (94)

is the volume redistribution term, and

Dskin5e
NZ

A

D

V
~R c.m.2Rt! (95)

is the neutron-skin contribution to the dipole moment.
In Eq. (95), D is the neutron-skin layer volume, V is the
nuclear volume, and Rt is the location of the center of
mass of the neutron skin. By further splitting the
neutron-skin contribution into Dskin=Ds1Ds2red , and
combining the volume and surface redistribution terms
into the total redistribution term, Dr=Dv2red + Ds2red ,
one finally obtains

D5Dr1Ds . (96)

It turns out that the two contributions in Eq. (96) are
comparable in magnitude but opposite in sign. Thus, the
presence of the neutron skin leads to a reduction of the
intrinsic dipole moment in the droplet model.
In the limit of small deformations, the macroscopic

FIG. 39. Aligned angular momentum Ix for
222Th, plotted as a

function of rotational frequency. The calculated yrast line is
plotted as a dashed line. The octupole-deformed band (thick
solid line) remains yrast up to I;24. Calculations predict,
however, a backbending at higher spins, caused by crossing
with a four-quasiparticle reflection-symmetric band (b3=0,
thin solid line). The experimental values are also plotted
(Nazarewicz et al., 1987).

FIG. 40. Total Routhian surface predictions of equilibrium de-
formations in doubly even 2202228Th nuclei, at rotational fre-
quencies ranging between 0 and 0.3 MeV/\ (Nazarewicz et al.,
1987).
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dipole moment can be evaluated using a second-order
expansion (Dorso et al., 1986). Considering axial shapes
only, one obtains

D05CrAZe (
l52

lmax21 49

3A35
~l221 !~8l19 !

@~2l11 !~2l13 !#3/2
blbl11

2Cs (
l52

lmax21 A35
15

~l221 !~l13 !

A~2l11 !~2l13 !
blbl11 . (97)

It is seen that the neutron-skin term is very sensitive to
higher multipoles. Indeed, for large l values it behaves
like l2, while the expansion coefficients in the redistri-
bution term are practically l independent. [The validity
of the estimate (97) was questioned by Denisov (1989,
1992), but this criticism has been shown to be without
basis (Myers and Swiatecki, 1991).]
The magnitudes of Cr ,Cs depend on the parameter

values of the droplet-model mass formula. They are
(Dorso et al., 1986)

Cr5
9

56A35
e2

p F1J 1
6L
JK

I1
15
8Q

A21/3G ,
Cs5

15

2pA35
NZ

A
~I2 d̃ !R0 , (98)

where

I5
N2Z

A
, d̃5

I1~9e2/80r0Q !ZA22/3

11~9J/4Q !A21/3 . (99)

In the above, J is the volume symmetry-energy coeffi-
cient, Q is the effective neutron-skin stiffness, K is the
compressibility coefficient, and L is the density symme-
try coefficient. The values of J , Q , K , and L are not
known very accurately. They are usually assumed to be
in the range 25,J,44 MeV, 17,Q,70 MeV, K'240
MeV, and 0,L,100 MeV.
The relation between the exact droplet-model expres-

sions, Eqs. (93)–(95), and the second-order formula (97)
was investigated by Skalski (1994). In the absence of
high-multipole deformations (e.g., if only b2 and b3 are
present), the second-order expansion is rather accurate.
If higher-multipole deformations are taken into account,
the approximate expression quickly diverges from the
exact result with increasing b2 and b3 . However, the
difference can be compensated by changing the droplet-
model parameters Q and L within the range of their
uncertainty.
Since the macroscopic dipole moment is proportional

to b2 , one expects D0 to be very large for superde-
formed, reflection-asymmetric systems. Indeed, for a
large range of b2 values, D0 increases monotonically
with elongation. Interestingly, for fixed values of odd-
multipole deformations, the value of D0 saturates at
large elongations, b2;0.7, and then falls with b2 (Skal-
ski, 1994). This effect arises from the reduction of the
charge-redistribution term for very elongated shapes.
Donner and Greiner (1966), in their collective

quadrupole-octupole model, suggested that the coupling
between the collective amplitudes DGDR of the giant di-

pole resonance and the collective dipole moment of Eq.
(90) gives rise to dipole transitions from collective octu-
pole states.
Karpeshin (1992) has shown that reflection-

asymmetric shapes during prompt fission give rise to
anomalous E1 internal conversion.
By construction, macroscopic models for the intrinsic

dipole moment do not contain shell effects. Those are
discussed in the following section.

B. Shell-correction approach to E1 moments

The microscopic contribution to the E1 moment was
introduced by Leander (1985b) In this approach, the
E1 moment is written as the sum of a macroscopic
(liquid-drop or droplet-model) term and a (renormal-
ized) shell-correction term obtained using a single-
particle potential,

D5Dmacr1Dshell . (100)

The shell-correction contribution Dshell can be ex-
pressed as

Dshell5ep
effN

A
^rp&shell2en

effZ

A
^rn&shell , (101)

where ^r&shell is the shell correction to ^r& . In the pres-
ence of pairing correlations and rotation, it is equal to

^r&shell5(
i ,j

r i ,j^iuruj&2(
i
ni^iurui&, (102)

where r̂ is the single-particle density matrix and ni are
the smoothed single-particle occupation numbers
(Strutinsky, 1967; Brack et al., 1972). In the absence of
rotation, r i ,j5v i

2d i ,j , where v i
2 is the BCS occupation

coefficient for the single-particle state i . As demon-
strated by Leander et al. (1986) and Butler and Nazare-
wicz (1991), the values of ^z&shell behave very regularly
as a function of shell filling. They increase gradually un-
til the middle of the shell, and decrease smoothly in the
upper half of the shell (Fig. 41). These oscillations reflect
the strength of unique-parity orbitals fragmented by the
octupole interaction (Butler and Nazarewicz, 1991).
In contrast to wave functions obtained in the self-

consistent approach based on the microscopic effective
interaction, the single-particle wave functions appearing
in Eq. (102) do not contain correlations of the dipole-
dipole character. The screening effect caused by the
particle-vibration coupling with the E1 giant resonance
(Bohr and Mottelson, 1975) leads to renormalization of
the single-particle matrix elements

^iuruj&eff5~11x ij!^iuruj&, (103)

where x ij is the state-dependent E1 polarizability coef-
ficient [hence eeff=e(1+x ij)]. The average value of x ij ,
denoted x , can be estimated in the harmonic-oscillator
model with a separable dipole-dipole interaction. As-
suming that the particle-hole energies are all equal to
eph , one obtains

393Butler and Nazarewicz: Intrinsic reflection asymmetry

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



x~E !5
eph
2 2EGDR

2

EGDR
2 2E2 , (104)

where EGDR is the energy of the giant dipole resonance
and E is the transition energy. The ground-state (E=0)
value of x is given by (Bohr and Mottelson, 1975; Lean-
der et al., 1986)

xg.s.5
eph
2

EGDR
2 21. (105)

In the axial harmonic oscillator with deformation « and
frequency v0 , assuming the doubly stretched dipole-
dipole interaction (Sakamoto and Kishimoto, 1989), one
obtains eph5\vz5\v0(122«/3), EGDR'1.9\v0(1
22«/3) (K=0), and eph5\v'5\v0(11«/3),
EGDR'1.9\v0(11«/3) (K=1). An interesting conse-
quence of Eq. (105) is that the deformation dependence
in xg.s. cancels out. The deformation-independent
ground-state E1 polarizability coefficient becomes
xg.s.'−0.72.
Leander et al. (1986) performed the analysis of E1

moments in nuclei that were predicted to have ground-
state static deformations. In their calculations, the mac-
roscopic part of the dipole moment was similar to that
obtained by Strutinsky (1957). The shell correction was
obtained using a deformed WS potential. In the calcula-
tions, the cranked SC method was also used to deter-
mine equilibrium shapes for different nuclei at various
values of angular momentum, so that E1 moments could
be evaluated as a function of Z , N , and I . The overall
trend of the experimental results was reproduced in
these calculations for Ra and Th nuclei. One feature
observed is a cancellation of the liquid-drop and shell
correction for 226Ra, which gives a local minimum in
Z , N for the E1 moment. Improvements to these calcu-

lations were made by Butler and Nazarewicz (1991),
who used the droplet model of Dorso et al. (1986) to
take into account effects of the neutron skin. These cal-
culations were able to reproduce the systematic trends
seen in experimental data in both medium-mass and
heavy nuclei (see Fig. 22). The cancellation of liquid-
drop and shell corrections was found to occur also for
224Ra, in agreement with the experimental data (Poyn-
ter et al., 1989a). The particular parametrization em-
ployed in the droplet model gave a very small macro-
scopic contribution to D0 in the lanthanide region. Since
the neutron and proton shell contributions can have op-
posite sign, zero or negative values of D0 can arise. In
particular, cancellation between proton and neutron
contributions to (D0)shell explains the reduced E1 mo-
ment found in 146Ba (Mach, Nazareweicz, et al., 1990).
For several nuclei, such as 148Ba and 226Ra, the calcu-

lations yield a negative value of D0 . This interesting
theoretical prediction can be tested experimentally by,
for example, the measurement of an interference effect
between the E1 and E3 DI=1 g rays. Such a measure-
ment would provide an excellent test for theoretical ap-
proaches aiming at reproducing enhanced E1 rates.
The macroscopic-microscopic approach to the intrin-

sic dipole moment was employed by Skalski (1994) to
estimate the low-energy E1 collectivity in superde-
formed and hyperdeformed configurations (see Sec.
IX.B.2).

C. Self-consistent models

The most extensive and successful microscopic calcu-
lations of E1 moments for ground-state configurations
in medium-mass and heavy even-even nuclei are those
carried out by Egido, Robledo, and coworkers using the
constrained HF+BCS model with the Gogny interaction.
In the first study, based on a pure mean-field approach,
Robledo et al. (1987) calculated intrinsic dipole mo-
ments in 222,224Ra and 222Rn. In the following papers
(Egido and Robledo, 1989, 1990, 1991a, 1991b, 1992;
Robledo et al., 1988; Martı́n and Robledo, 1994) they
solved the collective Schrödinger equation, with and
without parity projection (Sec. III.C.3). They obtained
excellent agreement with experimental B(E1) transition
rates for nuclei from both octupole-deformed and octu-
pole vibrational regions (see Fig. 22) and, in particular,
they reproduced the very low values of D0 in

224Ra and
146Ba.
Skalski et al. (1993b) employed the generator-

coordinate HF+BCS model with the SkM * interaction
to calculate low-energy E1 transitions in superdeformed
Hg and Pb nuclei. For the lowest octupole m=0 states,
they predicted very large D0 moments, ranging between
0.5 e fm and 0.8 e fm. For the m=1 octupole modes, the
calculated D1 values were smaller and negative
(;20.25 e fm). In the two-mode calculations (involving
coupling between the m=0 and m=2 octupole modes),
these values were reduced by about 20%.

FIG. 41. Shell correction to ^z& given by Eq. ( 102), calculated
in a WS model as a function of the numbers of particles filling
the lowest orbits, for protons (filled circles, upper axis) and
neutrons (open circles, lower axis). The deformation used cor-
responds to the calculated ground-state shape of 222Ra (Butler
and Nazarewicz, 1991).
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D. Algebraic models, boson models, and cluster models

In the spdf version of the interacting-boson model
(see Sec. III.D), the E1 operator is a one-boson opera-
tor obtained by a direct coupling of df , pd , and sp
bosons to J=1:

Dm5e1
~df !$@d13f* #1m1@f13d* #1m%

1e1
~pd !$@p13d* #1m1@d13p* #1m%

1e1
~sp !~pm

13s1s13pm* !, (106)

see Han et al. (1985), Engel and Iachello (1987), and
Otsuka and Sugita (1988). By adjustment of the effective

charges e1
(bb8) in Eq. (106), the experimental data can be

fitted, although fine-tuning is required in the cases of
218,220Ra (see Fig. 11; Engel and Iachello, 1987) and
146Ba (Kusnezov and Iachello, 1988, Mach, Nazarewicz
et al., 1990; Zamfir and von Brentano, 1992; Liu et al.,
1994).
For vibrational states, Barfield et al. (1989) concluded

that the E1 operator must include a two-body term in
the sdf interacting-boson model in order to reproduce
the transition rates measured in 144Sm. A similar conclu-
sion was reached by Zamfir et al. (1990), von Brentano
et al. (1992), and Zamfir and von Brentano (1992), who
specified that the two-body operator must arise from
mixing with the giant dipole resonance.
The SU3 limit of expression (106) was applied by

Alonso et al. (1995) to E1 transition rates in 226Ra
(Wollersheim et al., 1993). The main features of the an-
gular momentum pattern of observed D0 values have
been reproduced in the spdf-boson model.
In odd-A nuclei, the effective E1 operator can be

constructed phenomenologically by coupling the odd
quasiparticle to the interacting-boson model core.
Dojnikov and Mikhailov (1994) assumed an sd-boson
core, and performed interacting-boson-fermion model
calculations for B(E1) rates in 77Se. In their descrip-
tion, however, the f-boson contribution has been ne-
glected.
Electric dipole rates in 150Sm were estimated by

Badea et al. (1978) in the coherent-state model based on
the boson expansion method. For the E1 transition op-
erator, they took

Dm5e1$@B2
13B3

1#1m1@B3
13B2#1m1H.c.%, (107)

where B2 (B3) are quadrupole (octupole) phonon op-
erators. Kammuri and Kishimoto (1978) studied
B(E1)/B(E2) ratios in 100Ru, 112Cd, 150Sm, and
152Gd using the microscopic boson expansion technique.
Here the E1 operator arises from the quadrupole-
octupole coupling and is given by an expression similar
to Eq. (107), but with boson operators closely related to
the RPA phonons. Kammuri and Kishimoto (1978)
pointed out that the low-energy E1 strength in 100Ru is
reduced due to proton-neutron cancellation, and is en-
hanced in 150Sm and 152Gd. They concluded that the
calculated E1 rates depend dramatically on shell struc-
ture and on the assumed shell-model space.

For nonconjugate nuclei such as 18O, the interesting
prediction of the cluster model and the vibron model
discussed in Sec. III.D is that of large B(E1) transition
strengths (Nemoto and Bandō, 1972; Buck and Pilt,
1977; Iachello, 1981), which arise if the two clusters have
different charge-mass ratios. Alhassid et al. (1982) have
developed molecular sum rules for radiative deexcita-
tion widths in nuclei comprised of two arbitrary clusters.
For the nucleus (A ,Z) decomposed into two clusters
(A1 ,Z1) and (A2 ,Z2), the energy-weighted molecular
sum rule is given by

S1m~E1 !5
9\2e2

8pm
~Z1A22Z2A1!

2

A1A2A
. (108)

For very asymmetric cluster configurations (such as
those involving a-particle clustering), the molecular sum
rule (108) is considerably smaller than the nuclear sum
rule

S1~E1;A !5
9\2e2

8pm

NZ

A
. (109)

Consequently, the molecular sum rule provides a new
scale (;1022 s.p.u.) for the B(E1) enhancement [see
also the discussion in Suzuki et al. (1985), and Eq.
(112)]. For experimental systematics see Cottle and
Kemper (1991). Sum rules for soft dipole modes in halo
nuclei were discussed by Sagawa et al. (1992) (see Sec.
X.D).

E. Influence of octupole vibrations on E1 moments

Enhanced B(E1) rates can also be present in well-
deformed reflection-symmetric nuclei, due to the cou-
pling to low-lying octupole one-phonon states. This
means that enhanced B(E1)’s do not always indicate
octupole instability.
Kocbach and Vogel (1970) investigated the E1 tran-

sition rates between octupole and ground-state bands.
Due to the Coriolis mixing between the K=0 and K=1
octupole phonons, Eq. (61), the E1 matrix elements are
modified by the presence of a spin-dependent correction
proportional to the ratio Z=D1 /D0 . [For experimental
values of Z see, for example, McGowan and Milner
(1981) (156,158,160Gd, 160Dy); McGowan and Milner
(1993) (232Th); McGowan and Milner (1994) (238U);
Ackermann et al. (1993) (230,232Th).]
In the particle-vibration coupling formulation, the

E1 transition operator can be written as

Dm5Dm
s.p.1ebmr

3Y3m . (110)

The second term in (110) represents the contribution
coming from octupole vibrations, which is usually much
larger than the single-particle term. It has been shown
that after proper adjustment of bm , it is possible to re-
produce the angular momentum dependence of the
measured B(E1) rates.
Early calculations of E1 transition moments between

single-particle states in the Nilsson model with BCS
pairing grossly underestimated the experimental values,
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particularly for DK=0 transitions in rare-earth nuclei
(Monsonego and Piepenbring, 1964; Vergnes and Ras-
mussen, 1965) Improvement was achieved by the addi-
tion of octupole vibrations and particle-vibration inter-
action terms (Monsonego and Piepenbring, 1966;
Faessler et al., 1966) and, additionally, Coriolis coupling
(Bernthal and Rasmussen, 1967). Systematic calcula-
tions of this type have been carried out recently by
Hagemann et al. (1993) using the method described by
Hamamoto et al. (1989); they find that the amplitude of
the octupole term depends not only on Z and N , but
also on the pair of bands selected (see also Hamamoto,
1993). The importance of mixing into low-lying states by
the giant dipole resonance has been stressed by Donner
and Greiner (1966) and Iachello (1985), and the appli-
cation of a model which includes octupole-octupole and
dipole-dipole interaction by Alikov et al. (1988) found
that the contribution from the latter interaction derived
from giant-dipole-resonance parameters plays a domi-
nant role in low-lying transitions in odd Eu and Tb nu-
clei, and in the core 01212 transitions. Similar conclu-
sions have been reached by Guhr et al. (1989), who used
an octupole vibration model which included a small iso-
vector dipole component to describe e2 scattering form
factors, and by Dojnikov et al. (1991), Soloviev and Sus-
hkov (1991, 1994), Zilges et al. (1992), and Govaert et al.
(1994), who paid particular attention to the large E1
strengths found in low-lying states in many nuclei by
nuclear resonance fluorescence studies [see Kneissl et al.
(1993), Cottle (1994), and references therein]. For light
nuclei, Castel et al. (1990) concluded that isospin mixing
from the giant monopole resonance can be more impor-
tant than from the giant dipole resonance.

VIII. MOLECULAR STATES IN LIGHT NUCLEI

The study of light nuclei from the sd region provided
the first evidence for reflection asymmetry in rotating
nuclei. Negative-parity bands with approximately rota-
tional energy spacings have been observed in several nu-
clei. Figure 42 compares the behavior of the Kp502

and 01 bands in 16O and 20Ne; in 16O the negative-
parity states become interleaved with the positive-parity
states at the highest observed spins. Large a-decay
widths are usually associated with the quasimolecular
states (Horiuchi and Suzuki, 1973). Although large E3
strengths have been observed in these nuclei [typically
10–20 s.p.u. for the strongest transitions; see Häusser
et al. (1971) and Krick et al. (1973)], measurements have
been confined to transitions from lower-lying bands,
such as the Kp522 band in 20Ne, or the well-known
transition between the 1/21 ground state and the 5/22

state at 1.35 MeV in 19F.
The E1 strengths are small in the self-conjugate nuclei

(,1024 s.p.u.), but in nuclei with Z Þ N large B(E1)’s
have been observed (Cottle and Kemper, 1991).
The various theoretical descriptions of the negative-

parity states in the light nuclei have invariably invoked a
reflection-asymmetric basis to reproduce the observed
experimental features. The natural model for describing

the large a widths is the alpha-cluster model (Sec.
III.E). Ikeda et al. (1968) suggested that cluster configu-
rations would appear near the threshold energy for de-
cay into the fragments. Figure 43 illustrates this idea,
using the so-called Ikeda diagram (Horiuchi et al., 1972).
The alternative approach is that of the octupole-
deformed mean field (Sec. III.B). For a review of the
relationship between clusterlike configurations and de-
formed states see Rae (1988).

A. 16O

The two bands in 16O built on the 02
1 state at 6.05

MeV and the 12 state at 9.58 MeV can be described
adequately in terms of an a+12C bimolecular system
(Roth and Wildermuth, 1960; Arima et al., 1967; Horiu-
chi and Ikeda, 1968; Nemoto and Bandō, 1972; Suzuki,
1976; Suzuki, 1980; Fujiwara et al., 1980; Baldock and
Stratton, 1985; Descouvemont, 1987, 1991).
In the early HF parity-mixing calculations, Kelson

(1965) discussed the spectrum of 16O in the 1p1/2 , 2s ,
1d shell-model space. In these calculations, the first ex-
cited 01 state of O16 was described in terms of four
particles in the sd shell with a small component in the
p1/2 state; however, Giraud and Sauer (1970) demon-
strated that this parity-mixed state contained a large
spurious component of center-of-mass motion. Do Dang
et al. (1976) performed the HF calculations with parity
projection before variation, and obtained the reflection-
asymmetric ground state and the reflection-symmetric
first excited 01 state.

FIG. 42. The Kp=01 and 02 rotational bands in 16O and
20Ne. The bands shown have large a-decay widths or spectro-
scopic factors, except for the ground-state band in 20Ne. The
assignment of states in 16O is taken from Ajzenberg-Selove
(1986), and in 20Ne from Richards (1984) and Ajzenberg-
Selove (1987).
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Many states in 16O can be described in terms of four-
alpha-particle configurations that break intrinsic parity
(tetrahedron, bent rhomb, kite); see Dennison (1940,
1954), Kameny (1956), Bertsch and Bertozzi (1971),
Robson (1979), Bauhoff et al. (1984), and references
therein. Bauhoff et al. (1984) investigated the structure
of 16O in the alpha-cluster model with parity and angu-
lar momentum projection. They obtained tetrahedral
symmetry for the ground state and several excited states,
such as the 32 state at 6.13 MeV. Elliott et al. (1985)
performed an analysis based on the shell model per-
turbed by the tetrahedral potential, and concluded that
the 01

1
, 32 (6.13 MeV), and 41 (11.09 MeV) states form

a tetrahedral rotational band. They were able to explain
the a-transfer cross sections, and also the measured life-
time for the E3 decay of the 32 state.
The energy spectrum and alpha-particle spectroscopic

factors of the a+12C system have been discussed within
the vibron model (Cseh, 1989; Cseh et al., 1991).

B. 18O

The rotational band in 18O built upon the 02
1 (3.63

MeV) state was identified by Buck et al. (1977), Sakuda
(1977), and Sakuda et al. (1978, 1979) as being an
a114C dinuclear configuration.
Unlike in na nuclei, where E1 transitions are isospin

forbidden, the E1’s within an alternating-parity band
built on the 02

1 state in 18O are large, '1022 s.p.u. (Gai
et al., 1983, 1987, 1989, 1991). The large electric transi-
tion strengths within the band, and the large a-decay

widths of the 32 and 41 members of this band, give
strong support (Gai et al., 1983) to the bimolecular in-
terpretation.
Alhassid et al. (1982) found that for 18O having the

configuration a114C, the measured B(E1) transition
rates within the molecular dipole band in 18O exhaust a
significant fraction of the molecular sum rule, Eq. (108).
Iachello (1985) has estimated that the octupole model
would give much smaller values than are observed ex-
perimentally, although microscopic cluster models
(Baye and Descouvemont, 1984; Assenbaum et al., 1984;
Suzuki et al., 1985) overestimate the B(E1) strength.
The detailed calculations (Descouvemont and Baye,
1985; Funck et al., 1989) also suggest that the positive-
and negative-parity cluster states in 18O have different
intrinsic structure, and therefore cannot be regarded as
being members of the same dipole-molecular band: the
band proposed by Gai et al. (1983) consists of states be-
longing to different molecular bands [see also the discus-
sion in Gai et al. (1989, 1991)]. The foundation of the
molecular dipole states is not supported by recent
a-cluster calculations of Reidemeister and Michel
(1993), in which the parameters of the optical potential
are taken from a114C elastic-scattering data. Instead
they predict a negative-parity inversion-doublet band,
an analogue to the cluster band in 16O. A semimicro-
scopic algebraic cluster model has been applied by Lévai
et al. (1992). They are able to interpret most experimen-
tal states below 10 MeV, and find smaller B(E1) values
than the earlier microscopic cluster calculations, while
still overestimating the experimental values. The TDHF
method has also been applied to the quasimolecular
states in this nucleus, and predicts the existence of giant
resonances in the a114C system having large quadru-
pole and octupole deformation (Strayer et al., 1984;
Umar et al., 1985).

C. 20Ne

A classic example of a reflection-asymmetric light sys-
tem is the nucleus 20Ne. Horiuchi and Ikeda (1968),
Nemoto and Bandō (1972), and Nemoto et al. (1975)
have shown that the Kp502 (5.78 MeV) and Kp504

1

(8.3 MeV) bands of 20Ne have a well-developed struc-
ture corresponding to a 16O+a dinucleus configuration,
while the Kp501 band has an intermediate character,
between clusterlike and shell-like. This is consistent with
the experimental behavior of the a widths (Table VII):
the widths from the negative-parity states remain large,
while the a width of states in the Kp501

1 band decrease
at high spin. Tomoda and Arima (1978) have extended
this description by combining a (2s1d)4 shell-model
space and a 16O+a cluster-model space. A more recent
development has been the use of the GC method to
calculate E1 strengths in 20Ne using a116O T=0 and
T=1 configurations (Descouvemont and Baye, 1986).
For other calculations related to the a+16O clustering in
20Ne, see Hiura et al. (1969), Tanabe and Nemoto
(1974), Yamamoto (1974), Matsuse et al. (1975), Fuji-
wara et al. (1980), Kazama et al. (1984), Kazama (1987),
and Buck et al. (1995). Zhang et al. (1994) applied the

FIG. 43. Ikeda diagram for light nuclei. The threshold energy
for each decay mode (in MeV) is indicated (Horiuchi et al.,
1972).

397Butler and Nazarewicz: Intrinsic reflection asymmetry

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



Bloch-Brink model to 20Ne, and found a low-lying mass-
asymmetric configuration. Dufour et al. (1994) investi-
gated the a116O system using a multicluster GC
method. Kanada-En’yo and Horiuchi (1995a) studied
the structure of the yrast line of 20Ne with antisymme-
trized molecular dynamics (see Sec. III.E). They found
that for both positive- and negative-parity low-spin
states (I,9) the two-cluster structure of a+16O is domi-
nant (see Fig. 44).
Leander and Larsson (1975) obtained octupole insta-

bility for the prolate ground state of 20Ne, caused by the
strong octupole interaction between the [110]1/2 and
[200]1/2 levels. Noto et al. (1976) applied the variational
method with a parity- and angular-momentum-projected
wave function of the quadrupole-plus-octupole
deformed-shell model (Noto et al., 1974) and the Hamil-
tonian with the Volkov effective two-nucleon interac-
tion. They obtained a static Y30 field in 20Ne, and were
able to reproduce the transition energies, the electro-
magnetic transition probabilities, and the charge form
factors in the 01→12 (e ,e8) scattering. Marcos et al.
(1983) performed parity-projected constrained HF cal-
culations supplemented by GC calculations. They also
found softness to octupole deformation in 20Ne, and
were able to reproduce the excitation energy of the 12

state. A microscopic description of the clustering struc-
ture of 20Ne was given by Provoost et al. (1984), using
the quantized adiabatic TDHF theory with parity pro-
jection. They obtained a reflection-asymmetric ground
state, and were able to reproduce the parity splitting.
The energy spectrum and the alpha-particle spectro-

scopic factors of the a+16O system have also been dis-
cussed within the vibron model (Cseh, 1989; Cseh et al.,
1991). Cseh (1993) also investigated a three-dimensional
algebraic description of the a116O cluster.

D. 24Mg

Microscopic calculations using two alpha clusters plus
a 16O core (Katō and Bandō, 1975, 1979) have explained

the ground-state Kp=01 band and the Kp=02 (7.55
MeV) band in terms of the parity doublet. Marsh and
Rae (1986) applied the unconstrained alpha-cluster
model with the Brink-Boeker B1 force. Several calcu-
lated energy minima have been associated with
reflection-asymmetric intrinsic shapes corresponding to
separation channels of 20Ne+a , 16O+2a , 12C+12C, and
12C+3a (Fig. 45). For other cluster-model calculations
for 24Mg, see Pilt and Wheatley (1978), Fujiwara et al.
(1980), Katō et al. (1986), Descouvemont and Baye
(1987, 1989), and Buck et al. (1990).
Noto (1980, 1981) has applied the deformed-shell

model of Noto et al. (1974) to the rotational bands of
24Mg. The calculations predict nonzero static quadru-
pole and octupole moments in the lowest Kp=01, 02,
21, and 32 bands. In particular, they reproduce the ob-
served (Branford et al., 1971) strong E3 transitions in
the low-lying states of 24Mg. The cranked SC calcula-
tions of Leander and Larsson (1975) predict a low-lying
reflection-asymmetric hyperdeformed minimum in
24Mg. This minimum, originating from the mixing be-
tween the [101] and [211] Nilsson states, can be associ-
ated with asymmetric 16O+a+a or 16O+8Be structures
seen in the 16O + 8Be and 20Ne+a resonances [see dis-
cussion in Rae (1988)].

E. 28Si

According to the Ikeda diagram of Fig. 43, the excited
states of 28Si can be described in terms of various cluster
configurations. Bauhoff (1982) extended the microscopic
alpha-cluster model to describe the experimental band
structure of the negative-parity bands in 28Si. Katō et al.
(1985) studied molecular 12C+16O structures (Erb and
Bromley, 1981) using a semimicroscopic cluster model.
Cseh (1992) applied the vibron model coupled to the
SU3 shell model to describe 28Si in terms of a 24Mg+a
configuration. Leander and Larsson (1975) found a hy-
perdeformed octupole shape in 28Si having a similar
configuration to that in 24Mg. The same elongated struc-
ture has also been predicted to occur within the Bloch-
Brink a-cluster model (Zhang et al., 1993; Zhang et al.,
1994).

F. 32S

Leander and Larssen (1975) found an excited mini-
mum corresponding to «350.3, which has a configura-
tion analogous to the hyperdeformed asymmetric
minima in 24Mg and 28Si. The application of the alpha-
cluster model by Zhang et al. (1994) has also yielded an
extremely elongated minimum in this nucleus, having
octupole deformation. Bauhoff et al. (1980), also in the
alpha-cluster model, obtained intrinsic states with C2v
point symmetry. Experimental candidates for molecular
bands having large alpha widths have been reported by
Morita et al. (1985), using the 16O(20Ne, a) reaction and
(at higher energy) by Brenner (1994) using a-particle
elastic scattering (see Fig. 46).

TABLE VII. Experimental behavior of the a widths in 20Ne
(Cseh et al., 1991).

Kp Ip Ex (MeV) ua
2

01
1 01 0 0.15

21 1.63 0.11
41 4.25 0.12
61 8.78 0.085
81 11.95 0.01

02 12 5.79 1.03
32 7.16 0.87
52 10.26 0.90
72 13.69 0.84
92 17.43 0.48

04
1 01 '8.7 0.70

21 '8.8 0.95
41 10.80 0.33
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G. 40Ca

Alpha-cluster calculations have been carried out by
Ogawa et al. (1977), who used the same model as Suzuki
(1976); by Ohkubo and Umehara (1988), who used a
method similar to that of Michel et al. (1986a, 1986b,
1988) (see next section); and by Reidemeister et al.
(1990), who used an extension of the Buck-Dover-Vary
model to describe cluster states. Although the negative-
parity band is predicted to lie lower than in 44Ti, and the
a reduced widths are predicted to be larger (see next
section), it is only recently that the parity-doublet band
has been experimentally observed by Yamaya et al.
(1993), using the 36Ar(6Li,d) reaction.

H. 44Ti

The fp-shell analogue of 20Ne has received consider-
able attention within various types of alpha-cluster mod-
els. Michel et al. (1986a, 1986b, 1988), using parameters
for a squared WS potential from a-particle scattering off
40Ca, predicted the existence of a mixed-parity band at

an excitation just above the a threshold energy. This
prediction has been repeated by Ohkubo (1987, 1988)
using a folding model with an effective two-body force;
by Wada and Horiuchi (1987, 1988) (see also Horiuchi,
1985), using the GC method with a realistic two-body
force, and squared WS potential for the imaginary com-
ponent; and by Merchant et al. (1989), using the Buck-
Dover-Vary model (for review, see Merchant et al.,
1989). Earlier hybrid shell-cluster calculations had also
predicted a negative-parity band lying at a lower excita-
tion energy (Itonaga, 1981). The a-cluster band has
been confirmed experimentally by Yamaya et al. (1990),
who observed a negative-parity band at just above the
a threshold energy using the (6Li,d) reaction (see also
Artemov et al., 1995). There is also experimental evi-
dence for a series of resonances with alternating natural
parity in a- 40Ca elastic scattering at much higher excita-
tion energy (Löhner et al., 1978; Frekers et al., 1983;
Sellschop et al., 1987); these have been interpreted as a
molecular band on the basis of microscopic GC calcula-
tions (Friedrich and Langanke, 1975), and by using the
Brink-Boeker force within the GC method (Langanke,

FIG. 44. Density distributions for 20Ne, calcu-
lated in the parity-projected antisymmetrized
molecular dynamics by Kanada-En’yo and
Horiuchi (1995a). The scale of the axes is in
fm.

399Butler and Nazarewicz: Intrinsic reflection asymmetry

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



1982). The cluster calculations of Merchant et al. (1989)
have also reproduced these states.

IX. LARGE DEFORMATIONS

The microscopic mechanism behind reflection asym-
metry at very elongated shapes (for example, at the fis-

sion barrier, and for superdeformed and hyperdeformed
configurations) is twofold (Johansson, 1961; Gustafson
et al., 1971; Larsson et al., 1974; Ragnarsson et al., 1978;
Bengtsson et al., 1981; Nazarewicz, 1991). First, the oc-
tupole interaction Y30 couples the single-particle orbitals
with asymptotic quantum numbers @NnzL#V and
@N11 nz61 L#V . The largest number of such matrix
elements corresponds to states with the highest possible
value of n' , i.e., with nz=0. The second mechanism is
the octupole interaction between the high-N intruder
orbitals and specific lower-N levels (e.g., levels belong-
ing to the same superdeformed or hyperdeformed shell).
For instance, the same pairs of orbitals, such as
([660]1/2-[530]1/2) or ([770]1/2-[640]1/2), which are re-
sponsible for octupole deformations in the light ac-
tinides, appear close to the Fermi level in superde-
formed configurations around 148Gd and 192Hg.
Another example is the pair of nearly degenerate Nils-
son orbitals [624]9/2 and [512]5/2, which appear at the
Fermi level of superdeformed 194Hg. According to the
calculations of Skalski (1992), these orbitals, strongly
coupled by the Y32 field, are responsible for the m=2
octupole instability in this nucleus.

A. Fission

It has long been recognized that reflection asymmetry
is an important degree of freedom in the description of
the fission process. Below, a short overview of this topic
is given; for more detailed discussion the reader is re-
ferred to the extensive review by Bjo”rnholm and Lynn
(1980).

1. Reflection asymmetry of the fission barrier

Early calculations which included Y30 deformation of
the modified harmonic-oscillator potential (Johansson,
1961) were able to relate the degree of observed mass
asymmetry of fission fragments as a function of Z2/A to
the degree of octupole deformation at the saddle point.
Application of the SC method (Möller and Nilsson,
1970; Pashkevich, 1971; Möller, 1972) allowed improved
calculations of the fission path to be made; these dem-
onstrated that instability with respect to asymmetric dis-
tortion can occur at the second barrier peak. [According
to SC calculations by Gavron et al. (1977) and Åberg
et al. (1980), the reflection-asymmetric third saddle point
also appears unstable with respect to triaxial deforma-
tions.] Self-consistent HF calculations including the
mass-asymmetry degree of freedom in fission have also
been carried out (e.g., Kolb et al., 1974); the accuracy of
these calculations has been improved with better knowl-
edge of the form of the nuclear interaction (see Berger
et al., 1989, and references therein).

2. Bimodal fission

A good example illustrating the importance of the
fragment shell structure in fission is the existence of the
symmetric maximum in the mass distribution of frag-
ments following the fission of nuclei approaching

FIG. 45. Energy minima in 24Mg, calculated (Marsh and Rae,
1986) with the unconstrained alpha-cluster model using the
Brink-Boeker B1 force.

FIG. 46. Mean values of excitation energies of resonance
states in 32S with the same spin I , plotted versus I(I11). A
straight line is fitted to the experimental points. The broken
line is for an alpha particle orbiting the Si nucleus with a
center-to-center radius r=(1.25A1/3+1.6) fm (Brenner, 1994).
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264Fm164 , and, in particular, the simultaneous appear-
ance of two fission modes in 258Fm, with low and high
total kinetic energy of the fragment (Hulet et al., 1986).
The asymmetric two-center model of Mustafa et al.
(1973) showed that the system can revert to symmetry in
the path from the second saddle point to scission, for
certain values of Z and N [see also Maruhn and Greiner
(1974) and Lustig et al. (1980)]. Wilkins et al. (1976) as-
sociated this effect with the presence of the very strong
132Sn+132Sn channel. The shell-correction calculations
(Möller et al., 1987; Pashkevich, 1988; Ćwiok et al.,
1989), involving a rather rich space of nuclear shapes,
predict the existence of several valleys on the potential-
energy surface in the vicinity of the scission point. One
family of fission valleys corresponds to reflection-
symmetric configurations. However, there also exists a
valley in which the asymmetric nuclear shape is close to
the combination of spherical and elongated fragments.
The experimental observation of asymmetry in the fis-

sion mass distribution provides substantial clues to the
nature of the mass distribution of the fissioning nucleus,
but more direct evidence comes from the observation of
nuclear levels at the elongated shapes. In particular,
Blons and his collaborators (for a review, see Blons,
1989, and references therein) have measured fission
resonances in Th and U nuclei. As discussed in Sec.
IX.B.3, these have been interpreted as arising from
reflection-asymmetric hyperdeformed shapes which ex-
ist in the third minimum of the fission barrier.

B. Strongly elongated configurations

1. Shell structure at strongly elongated configurations

The observation of superdeformed (SD) and hyperde-
formed (HD) states constitutes an important confirma-
tion of the shell structure of the nucleus; their unusual
stability can be attributed to strong shell effects that are
present in the average nuclear potential.
The SD and HD shell structures are often explained

in terms of the deformed harmonic-oscillator model. At
large deformations, corresponding to rational oscillator-
frequency ratios (which characterize a rational harmonic
oscillator), strong degeneracy of the harmonic-oscillator
eigenstates occurs, leading to the appearance of SD and
HD magic gaps and magic numbers (Bohr and Mottel-
son, 1975). In the case of an axial rational harmonic os-
cillator with frequencies vz and v' , it is convenient to
write the single-particle energies in terms of the shell
frequency vshell and the shell principal quantum number
Nshell , defined by (Bohr and Mottelson, 1975; Bengtsson
et al., 1981)

v'n'1vznz5vshellNshell , Nshell5n'kz1nzk' ,

vshell5
ṽ

k'kz
, (111)

where vzkz5v'k'5ṽ , and ṽ can be calculated from
the volume-conservation condition. The fact that degen-
erate single-particle orbitals forming SD (k'=1, kz=2)
and HD (k'=1, kz=3) shells have different parities has

profound consequences for the octupole mode, since the
optimum condition for level hybridization is met.
Table VIII displays the energies eph of particle-hole

excitations associated with various components of the
octupole tensor Q3m9 [Eq. (64)] (Nakatsukasa et al., 1992;
Nazarewicz et al., 1992, 1995; Nazmitdinov and Åberg,
1992). For the SD shape, 2v3–v'=0, and the particle-
hole energy corresponding to the m=1 mode is zero for
states belonging to the same SD shell, Nshell52n'1nz
[Eq. (111)]. This suggests that the triaxial modes with
m=1 can play a significant role in open-shell SD nuclei
(see Sec. IX.B.2). Similarly, at the SD oblate shape
(k'=2, kz=1) the rational-harmonic-oscillator model
suggests an instability with respect to m=0 and m=2 oc-
tupole modes.
In quantum-mechanical systems, strong shell effects

(i.e., degeneracies) usually reflect the presence of dy-
namical (self-consistent) symmetries of the Hamiltonian.
This offers additional quantum numbers associated with
the underlying dynamical symmetry, which are the ei-
genvalues of the Casimir operators of the corresponding
symmetry group. The connection between the SU3 dy-
namical symmetry of the rational harmonic oscillator,
nuclear superdeformation, and octupole modes was dis-
cussed by Nazarewicz et al. (1992) and Nazarewicz and
Dobaczewski (1992). The quantum numbers of the ra-
tional harmonic oscillator allow for a transparent classi-
fication of magic numbers at large deformations. In par-
ticular, they justify the scheme of touching harmonic
oscillators suggested by Bengtsson et al. (1981) and
Faber and Płoszajczak (1981).
The idea of the classification scheme is illustrated in

Fig. 47. At SD shapes, two kinds of closed-shell systems
are expected. In the ‘‘asymmetric’’ case (labeled A), the
magic numbers are equal to sums of two consecutive
spherical magic numbers, i.e., N=1, 5, 14, 30, 55, etc. In
the ‘‘symmetric’’ variant (B), the magic numbers are
equal to doubled spherical-oscillator magic numbers,
N=2, 8, 20, 40, 70, etc. The situation becomes slightly
more complex at HD shapes, where the magic numbers
correspond to the superposition of three spherical-
oscillator magic numbers. In the ‘‘strongly asymmetric’’
variant (A) magic numbers N=1, 6, 18, 40, 75, etc., are
obtained by combining two spherical shells N and one
higher shell N +1. In the intermediate situation (B), two
spherical shells N +1 and one lower shell N are com-
bined, i.e., N=2, 9, 24, 50, 90, etc. Finally, in the ‘‘sym-
metric’’ case (C), the magic numbers are equal to
tripled spherical-oscillator magic numbers, i.e, N=3, 12,
30, 60, 105, etc.
The classification scheme shown in Fig. 47 suggests

the description of deformed systems in terms of ‘‘multi-
clusters’’ of spherical magic subsystems, dictated by the
decomposition of the rational-harmonic-oscillator repre-
sentations into the isotropic ones (Nazarewicz et al.,
1992; Nazarewicz and Dobaczewski, 1992). The relation
between multicluster classification and the mean-field
picture was discussed by Nazarewicz and Dobaczewski
(1992), who analyzed the octupole couplings in the
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rational-harmonic-oscillator model using the doubly
stretched octupole interaction, Eq. (64).
The results of rational-harmonic-oscillator calcula-

tions for the shell-energy octupole-stiffness coefficient
C30 [Eq. (38)] (Nazarewicz and Dobaczewski, 1992) are
displayed in Fig. 48. For the spherical shape [Fig. 48(a)]
the octupole-driving shell force is positive, i.e., there is
no tendency to develop stable octupole deformations.
The situation at the SD prolate shape is shown in Fig.
48(b). For particle numbers representing the asymmetric
cases (A), C30 is negative. For the symmetric cases
(B), there is no shell octupole-driving force toward
reflection-asymmetric shapes. Finally, the HD case is il-
lustrated in Fig. 48(c). As expected, for the systems rep-
resenting the asymmetric case of Fig. 47, the shell cor-
rection decreases with octupole deformations, while no
octupole-driving tendency is predicted for the symmetric
case. A similar pattern has also been predicted for the
m Þ 0 octupole modes (Nazarewicz, 1992; Arita andMat-
suyanagi, 1993). A similar result was obtained by
Nazmitdinov and Åberg (1992) and Arita and Matsuy-
anagi (1993) for giant octupole vibrations built on SD
states, namely, a lower vibrational energy arises for the
asymmetric combination of spherical magic numbers
than for the symmetric combination.
Calculations based on realistic mean-field potentials

confirm the prediction of the rational harmonic oscilla-
tor that the particle-number regions favoring reflection-
symmetric or reflection-asymmetric SD and HD shapes
should alternate (Bengtsson et al., 1981; Åberg, 1990;
Höller and Åberg, 1990; Dudek et al., 1990; Li et al.,
1991). As seen in Fig. 49, based on the Nilsson-
Strutinsky model, for SD shapes («=0.6) the tendency
towards mass asymmetry is strongly favored at particle
numbers around 32, 64, and 116, while for particle num-
bers around 44, 86, and 144, the shell correction favors
reflection-symmetric shapes. For HD shapes («=0.9),
the mass asymmetry is strongly favored at particle num-
bers around 34, 82, and 150, while for particle numbers
around 22, 48, 58, 116, and 130, the minimum shell-
correction energy is found at «3=0. Shell-correction
maps as a function of particle number and triaxial octu-
pole deformations were calculated by Li et al. (1991) for
SD nuclei.

2. Superdeformations

The first experimental evidence for octupole correla-
tions in SD configurations at high spins was found by
Cullen et al. (1990) in 193Hg. They explained a low-

frequency pseudocrossing in one of the observed SD
bands in terms of an admixture of an octupole phonon.
Further evidence for octupole vibrations in SD Hg nu-
clei was found by Crowell et al. (1994, 1995), who re-
ported an excited SD band in 190Hg, having a rather
constant moment of inertia, and decaying directly into
the yrast SD band. The extracted B(E1) values, of the
order of 1023 s.p.u., agree well with the results of RPA
calculations (see below). The strongest indication of oc-
tupole correlations in the SD A;150 mass region was
found in excited bands of 152Dy (Dagnall et al., 1994),
where the large-interaction band crossing in one band,
and a decay branch of another band into the yrast SD
band, can be understood in terms of octupole vibrations.

TABLE VIII. Energies of the particle-hole excitation, Deph , associated with the octupole doubly
stretched interaction Q3m9 .

m Deph/\ Optimal conditions for instability

0 v3 , 2v'–v3 , 2v'+v3 , 3v3 superdeformed oblate shapes
1 v' , 2v3–v' , 2v3+v' , 3v' superdeformed prolate shapes
2 v3 , 2v'–v3 , 2v'+v3 superdeformed oblate shapes
3 v' , 3v' no instability

FIG. 47. Spectrum, in units of ṽ, of the rational harmonic
oscillator with k'=1 and kz=2 (SD prolate, left) or kz=3 (HD
prolate, right). Each level is labeled by the principal quantum
number M and quantum numbers (l1l2l3) of the rational
harmonic oscillator. Except for the usual SU3 degeneracy,

1
2

(M11)(M12), there are no additional degeneracies present.
Different positions of the Fermi level for closed-shell systems
A , B , or C are indicated. The schematic diagrams in the bot-
tom portion illustrate the number of occupied particles within
each $l% family in cases A , B , and C (Nazarewicz and Dobac-
zewski, 1992).
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Dudek et al. (1987, 1990) studied the mirror-
asymmetric deformations in high-spin states of SD nu-
clei using the cranked SC method with a WS potential.
They found static octupole minima in a number of nuclei
in the Z;66 and Z;80 mass regions (cf. Höller and
Åberg, 1990).
According to RPA calculations based on the cranked

shell model (Mizutori et al., 1990; Mizutori et al., 1991a,
1991b; Nakatsukasa et al., 1992), low-lying octupole vi-
brations built on the SD shape are rather collective and,
in some cases, can give rise to increased band interac-
tion, shifts in the crossing frequency, reduced angular
momentum alignment, and enhanced E1 transitions (see
Sec. VI). In particular, the RPA calculations of Nakat-
sukasa et al. (1993), based on the doubly stretched octu-
pole interaction of Eq. (64), demonstrate that inclusion
of the coupling between quasiparticle and octupole vi-
brational modes is important for understanding the ex-
perimental data for SD 193Hg. This treatment was suc-
cessfully applied to SD octupole bands in 152Dy
(Nakatsukasa et al., 1995) and 190Hg (Crowell et al.,
1995).
Satuła et al. (1991) concluded, in the SC-WS model,

that nuclei around 192Hg are soft to octupole deforma-

tion b3 . Bonche et al. (1991) and Meyer et al. (1995),
starting from the axial HF+BCS theory with the SkM *
effective interaction, used parity projection and the GC
method to investigate the octupole softness in the SD
minimum of 194Pb. They found octupole states in the
energy range of 2 MeV above the SD ground state.
Delaroche et al. (1992) investigated the octupole soft-
ness of SD 192Hg in the HFB+GOA model with the D1
interaction. They obtained very excited Kp=02 states at
E'8 MeV.
According to the rational-harmonic-oscillator model

discussed in Sec. IX.B.1. triaxial octupole deformations,
and especially the m=1 component, are expected to be
important at SD shapes (Mottelson, 1988). Li et al.
(1991) searched for triaxial octupole shapes in SD nu-
clei, and found stable minima in 158Hf (m=1) and
156Yb (m=2). The effects of m=1 octupole deformations
on the total-energy surface of nuclei from the A=190
mass region were studied by Chasman (1991) using the
cranked shell-correction method with a WS potential. In
many nuclides, minima with rather small quadrupole
and hexadecapole deformations and very large m=1 oc-
tupole deformations have been found to become ap-
proximately yrast at moderate spins. This result was
questioned by Skalski (1992) who concluded, using a
similar model, that the m=1 octupole modes are sup-
pressed by shell effects and by rotation, and that the
softest octupole modes in the SD Hg region are those
with m=0 and 2. In subsequent work, Skalski et al.
(1993b) presented GC calculations for the octupole
modes having m=0, 1, and 2, using the Skyrme SkM *
and SIII effective interactions. They predicted the pres-
ence of collective octupole K=0, 1, and 2 bands at ener-
gies 1.9–2.5 MeV above the SD minimum in Hg and Pb
nuclei. They also calculated large B(E3) transition rates
('30 s.p.u.), depopulating the octupole modes.
To estimate E1 moments in SD nuclei, Skalski (1994)

employed the SC method of Sec. VII.B, with the macro-
scopic part described by the droplet model and the mi-
croscopic part computed using a WS model. In the SD
Gd–Dy region, the shell-correction contributions

FIG. 48. Shell-correction octupole-stiffness coefficient C30 [in
units of 7/(4pv0

4)] as a function of the shell quantum number,
defined as Nshell[n'kz1nz . Magic particle numbers A (with
spin degeneracy included) are indicated for all closed-shell
configurations of the rational harmonic oscillator at (a) spheri-
cal, (b) superdeformed, and (c) hyperdeformed shapes. If C30
is negative (positive), then there is (is not) a shell force favor-
ing stable octupole deformations (Nazarewicz and Dobac-
zewski, 1992).

FIG. 49. Shell energy obtained in the modified oscillator
model (Höller and Åberg, 1990) versus N for SD (top) and
HD (bottom) shapes at «3=0 (solid lines) and «3=0.15 (dashed
lines).
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(D0)shell are negative, and tend to cancel the macro-
scopic part. In the SD Hg-Pb region, in contrast, both
contributions have equal signs, resulting in sizable di-
pole moments.
The GC+HF+BCS calculations by Skalski et al.

(1993b) predicted the presence of very large E1 matrix
elements @B(E1);0.02 s.p.u.] connecting octupole vi-
brational states with the yrast band in SD Hg and Pb
nuclei.

3. Hyperdeformations

Hyperdeformed nuclei, i.e., nuclei with quadrupole
deformations significantly larger than b2=0.6, are known
or predicted in several mass regions. As discussed in Sec.
IX.B.1, HD configurations can be stabilized in some
cases by developing reflection-asymmetric deformations.
Good cases of HD configurations can be found in light
nuclei. For instance, the calculated (Leander and Lars-
son, 1975) low-lying reflection-asymmetric HD mini-
mum in 24Mg can be associated with the asymmetric
16O+a+a (or 16O+8Be) structure (see Sec. VIII.D).
Other examples are the HD states in 36Ar (16O+16O+
a) and 48Cr (16O+16O+16O) (Rae and Merchant, 1992).
HD reflection-asymmetric structures are also discussed
by Faber and Płoszajczak (1981), who performed
cranked SC-WS calculations for nuclei around 28Si.
According to the cranked SC method calculations by

Höller and Åberg (1990), the best candidates for HD
reflection-asymmetric configurations at high spins are
nuclei around 146Gd, 194Hg, and 200Rn. Figure 50
(Åberg, 1993) displays the potential-energy surface for
146Gd at I=60. The reflection-asymmetric HD band
(«2'0.93, «3'0.13) in 146Gd is expected to cross the SD
(reflection-symmetric) band at I;80. The single-particle
properties of HD configurations around 146Gd are dis-
cussed by Åberg (1993). He concluded that, because of
octupole mixing, the high-N classification scheme is ex-
pected to break down in HD configurations; i.e., the cal-
culations suggest rather small differences in the mo-
ments of inertia between different HD bands.
Hyperdeformed reflection-asymmetric states in the

neutron-deficient Hg and Pb isotopes with 98,N,110
have been calculated (Nazarewicz, 1993) to occur at ex-
citation energies .6–7.5 MeV at I=0. These minima are
rather shallow, although due to their large moments of
inertia they become deeper at high angular momenta
(Höller and Åberg, 1990). Energy surfaces in the
A;180 region have been investigated by Chasman and
Robledo (1995), who found octupole softness in the very
extended nuclear shapes in a number of nuclei.
In the actinide nuclei, the HD states are the so-called

third minima around 232Th (Pashkevich, 1971; Möller,
1972). In these nuclei the second saddle point is split,
leading to an excited reflection-asymmetric configura-
tion with large quadrupole and octupole deformations
(b2;0.90, b3;0.35), as predicted in a number of calcu-
lations based on the mean-field approach (Pashkevich,
1971; Möller, 1972; Möller and Nix, 1973; Howard and
Möller, 1980; Bengtsson et al., 1987; Berger et al., 1989;

Pal, 1993; Ćwiok et al., 1994; Rutz et al., 1994). Experi-
mentally, the third minimum is indicated from a micro-
structure in the resonances found in the light actinides
using the (n ,f), (t ,pf), and (d ,pf) reactions (Back et al.,
1972; Blons et al., 1975, 1978, 1984; Bjo”rnholm and
Lynn, 1980; Fabbro et al., 1984; Blons, 1989; Nakagome
et al., 1991). The position and intensities of the reso-
nances observed in the best-studied case, 231Th (Fig. 51),
are best explained as the superposition of two rotational
bands of opposite parity, with K=1/2, and having very
large moments of inertia ('250 MeV21). Evidence for
intrinsic parity mixing comes from the measured asym-
metry in the fission angular distributions (Baumann
et al., 1989). Other evidence supporting the third-
minimum hypothesis comes from analysis of the slopes
of the near-barrier photofission cross sections of ac-
tinides (Bhandari and Al-Kharam, 1989).
A systematic study of HD states in actinides using the

SC method (Bengtsson et al., 1987) yielded very shallow
reflection-asymmetric third minima. The HD states
around 232Th also appear in self-consistent calculations
based on the HFB model with the D1S interaction
(Berger et al., 1989), adiabatic TDHF-Skyrme-Yukawa
calculations (Pal, 1993), and in relativistic mean field cal-
culations (Rutz et al., 1994).
In their systematic calculations for the even-even Rn,

Ra, Th, and U isotopes, based on the SC method with a
WS potential, Ćwiok et al. (1994) employed a many-
dimensional deformation space (b2–b7), allowing for a
rather general description of axially deformed
reflection-asymmetric shapes. The potential-energy sur-
faces in the (b2 ,b3) plane for several even-even Rn, Ra,
Th, and U nuclei, covering the region between the sec-
ond minimum and the outer barrier, are displayed in
Fig. 52. For all the nuclei shown in Fig. 52, there exist
well-developed reflection-asymmetric HD minima
(b2;0.9, 0.35,b3,0.65). It is interesting to note that in
the nuclei around 234U, the HD minimum splits into two
distinct minima with very different values of bl

(l=3–7).

FIG. 50. Potential-energy surface in the («2 ,«3) plane for the
Ip=601 configuration in 146Gd, calculated by Åberg (1993) in
the cranked modified harmonic-oscillator model. The solid
contours are separated by 2 MeV, the intermediate ones by 1
MeV.
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Ćwiok et al. (1994) pointed out that the structure of
the third minimum corresponds to a binuclear configu-
ration involving a spherical (or nearly spherical) heavy
fragment around 132Sn and a well-deformed lighter frag-
ment around 100Zr. This is illustrated in Fig. 53, which
shows the predicted equilibrium shapes of 232Th. The
shape corresponding to the HD minimum looks like a
superposition of the 132Sn and 100Zr ground-state
shapes. Recently, this result has been confirmed by the
self-consistent calculations of Rutz et al. (1994).
The clustering effect predicted in the third minima is a

striking manifestation of nuclear shell structure; in the
rational harmonic oscillator model (Sec. IX.B.1), the
particle numbers 80 and 150 correspond to a situation
which formally resembles one spherical doubly magic
fragment and one well-deformed (or SD) lighter frag-
ment. The very special role played by the 132Sn structure
in the fission process has been noted before in connec-
tion with mass distributions of fission fragments (Wilkins
et al., 1976), the analysis of cold-fission data (Asghar
et al., 1993; Gönnenwein, 1994), measurements of mass
and kinetic-energy distributions for the photofission of
232Th (Piessens et al., 1993), and the existence of two
fission modes around 258Fm (see the discussion in Sec.
IX.A).
The spectroscopic properties of HD minima in ac-

tinides (single-particle levels, parity doublets, decou-
pling parameters, g factors, moments of inertia, etc.)
were discussed by Bengtsson et al. (1987). Skalski (1994)
calculated a very large intrinsic dipole moment in the
HD minimum of 232Th, D0'2.2 e fm.

X. PERSPECTIVES

In this last section, a different landscape of reflection
asymmetry is viewed and suggestions made as to how
this topic could be further explored experimentally and
theoretically.

A. Unexplored mass regions

For nuclei, manifestations of reflection asymmetry in
the intrinsic system, such as interleaved positive- and
negative-parity states, parity doubling in odd-mass sys-
tems, and large odd electric moments, are most pro-
nounced in the Ra-Th region with N'134, and, to a
lesser extent, in the Ba-Sm region with N'88. Other
regions in N ,Z and deformation space are expected to
exhibit similar characteristics whenever there are orbit-
als near the Fermi surface differing by three units in l
and j . For normal deformed nuclei, two examples in the
transitional region above 100Sn have been studied,
114Xe (Rugari et al., 1993) and 110Te (Paul et al., 1994).
Experimental evidence for octupole correlations has
also been cited for other mass regions: 64Ge (Görres
et al., 1987, Ennis et al., 1991); 74Se, 78Kr (Cottle, 1990b;
Cottle et al., 1990); 128Ba (Cottle et al. 1989, Cottle,
1990b, 1991), and 128Gd (Cottle, 1990a) (but see Cottle
et al., 1992, 1993). So far, both SC calculations (Skalski,
1990) and self-consistent calculations (Heenen et al.,

1994) have been applied to the region near 112Ba, and
lend support to a description of these transitional nuclei
having strong octupole collectivity with very shallow oc-
tupole minima. The light Ba nuclei have been investi-
gated using a microscopic treatment which requires a
m=1 octupole component (Piepenbring and Leandri,
1991).
Shell-correction calculations have also been applied to

64Ge, predicting octupole softness at nonzero values of
g (Skalski, 1991; Ennis et al., 1991). Nakatsukasa et al.

FIG. 51. Top: (n ,f) resonances in 231Th. Bottom: resulting
rotational band of alternating parity (Blons et al., 1984).
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(1994) investigated low-energy octupole states in the
even-even proton-rich Kr, Sr, and Zr nuclei using the
quasiparticle RPA. They demonstrated that, unlike in
the heavier nuclei, the octupole collectivity in the light
Kr-Zr region is weak, and not directly correlated with
the excitation energy systematics of the lowest negative-
parity states.
More experimental evidence is needed, particularly

for the transitional nuclei near closed shells or subshells.

These systems are rather difficult to study experimen-
tally, being either very neutron deficient or very neutron
rich. Experimental limitations also restrict at present the
study of 224U, predicted to be the most octupole-
deformed nucleus in its ground state (Nazarewicz et al.,
1984b).
In 96Zr, the strength of the octupole coupling arises

from 2p3/2→1g9/2 proton and 2d5/2→1h11/2 neutron
particle-hole excitations. Ohm et al. (1990) have at-

FIG. 52. The SC-WS total
potential energy for 220,224Rn,
222,226,230Ra, 224,228,232Th, and
226,230,234U, as a function of b2
and b3 . At each (b2 ,b3) point
the energy was minimized with
respect to b4–b7 . The distance
between the solid contour lines
is 0.5 MeV. The additional
dashed contour lines are 0.25
MeV apart. The minima (saddle
points) are marked by dots
(crossed dots) (Ćwiok et al.,
1994).
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tempted to calculate both the excitation energy of the
32 state at 1.897 MeV and the B(E3) strength using the
quasiparticle RPA. The difficulties encountered using
the quasiparticle RPA (Abbas et al., 1981) suggest that
there is a large degree of anharmonicity in the octupole
degree of freedom in this mass region. Octupole corre-
lations in 96Zr were investigated by Fayans et al. (1994)
in the continuum quasiparticle RPA based on a density-
functional approach. They obtained E(31

2)=1.74 MeV
and B(E3)=39.5 s.p.u., in reasonable agreement with
the recent lifetime data (Horen et al., 1993). See also
Rosso et al. (1993). Mach, Ćwiok et al. (1990) have per-
formed SC calculations which suggest that, while 96Zr
contains rather complex anharmonic motion, the neigh-
boring isotope 98Zr should have strong octupole insta-
bility with b350.13 in its ground-state configuration.
Skalski et al. (1993a) have made GC+HF calculations
for 942100Zr. Although they were able to reproduce the
energy of the lowest 32 state, the calculated value of the
B(E3;01→32) in the case of 96Zr was gravely under-
estimated, irrespective of the effective force used.

B. Reflection-asymmetric shapes at large deformations

That strong octupole correlations should exist for cer-
tain SD states is supported by several theoretical calcu-
lations, and is suggested by recent experimental evi-
dence (Sec. IX.B.2). The development of more
sophisticated g-ray arrays will enable the properties of
low-lying octupole bands to be measured systematically
in the SD region. Perhaps more exciting is the possible
occurrence of reflection asymmetry in HD structures

(Blons, 1989, Ćwiok et al., 1994). It remains an experi-
mental challenge to identify bound nuclear states in HD
heavy nuclei.

C. Angular momentum dependence of electromagnetic
moments and reaction aspects

The determination of E3 moments between members
of rotational bands has been performed for a few nuclei
using Coulomb excitation techniques (see Sec. IV.D).
These techniques, which demonstrate directly how octu-
pole collectivity varies with spin, cannot be applied at
present to short-lived nuclei, precluding studies for nu-
clei having the deepest octupole minimum.
More detailed measurements might allow the nature

of the octupole minimum to be determined. Indeed,
static reflection-asymmetric deformations are expected
to show up in the low-energy heavy-ion induced reac-
tions, such as Coulomb excitation or sub-barrier fusion.
Catara et al. (1989) calculated fusion cross sections for
16O induced reactions on 144Ba and different Ra iso-
topes. They concluded that the presence of static octu-
pole deformation gives rise to a significant enhancement
of the total fusion cross section. Consequently, system-
atic measurements of the sub-barrier fusion cross sec-
tions for the chain of isotopes (in which octupole defor-
mation varies quickly with neutron number) could
provide a signature for the presence of octupole defor-
mation. Dasso et al. (1993) studied Coulomb-excitation
patterns for systems with stable octupole deformations.
According to their calculations, the probabilities for
Coulomb excitation of the different members of the ro-
tational band can discriminate between the deformed
and vibrational limits of octupole deformation. In the
static case, the predicted spin population does not de-
pend on the parity of the state, whereas in the vibra-
tional case the population of negative-parity states is
strongly reduced.

D. Halos

Interesting modifications of the E1 strength distribu-
tions have already been observed in nuclei such as 11Li
and 11Be that have very weak binding of their outermost
neutrons (halo nuclei). As pointed out by Uchiyama and
Morinaga (1985), in systems with loosely bound states
the hindrance of low-energy E1 transitions may be re-
moved, since the transition takes place outside the
nucleus where the core polarizability vanishes (see Sec.
VII.B). They introduced a cutoff model in which the
effective charge vanishes inside a certain radius (the
core radius plus the nuclear-force range). Hoshino et al.
(1991) confirmed this assumption in large-scale shell-
model calculations for 11Li and 11Be (see also Hansen
and Jonson, 1987; Bertsch and Foxwell, 1990; Suzuki
and Tosaka, 1990; Hayes and Strottman, 1990; Hayes,
1991; Esbensen and Bertsch, 1992; Danilin et al., 1994).

FIG. 53. Calculated equilibrium shapes of 232Th at the ground-
state (top), fission-isomeric (middle), and third-minimum (bot-
tom) configuration. The values of r1

max and r2
max are 6.42 and

5.22 fm, respectively.
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Sagawa et al. (1992) studied sum rules for soft modes in
halo nuclei. The corresponding E1 sum rule is

Shalo~E1 !5S~E1;A1 !1S~E1;A2 !1S1m~E1 !, (112)

where the sum rules S1m(E1) and S(E1;A) are given
by Eqs. (108) and (109), respectively.
In one-body halo nuclei such as 11Be, or in nuclei such

as 6He or 11Li that can be considered as three-body
halos, reflection-asymmetric intrinsic configurations ap-
pear in calculations (see, for example, Horiuchi et al.,
1994; Fedorov et al., 1994; Kanada-En’yo and Horiuchi,
1995b, 1995c).

E. Parity violation

Parity violation (in the laboratory frame) is caused by
the parity-nonconserving component, VPNC, of the weak
interaction. The magnitude of this effect is of the order
of ap=GFmp

2 /GS;1027, where GF is the Fermi con-
stant and GS is the strong coupling constant.
The relationship between intrinsic reflection asymme-

try and real parity mixing is as follows. First, in nuclei
with reflection-asymmetric shapes there is a large prob-
ability of finding parity doublets very close in energy,
especially in the odd-A and odd-odd systems (Leander
and Sheline, 1984). This is the necessary condition for
experimental studies of parity mixing (Ahmad et al.,
1982; Haxton and Henley, 1983; Adelberger and Hax-
ton, 1985). Second, it can indeed be demonstrated
(Sushkov and Flambaum, 1980; Flambaum and Sushkov,
1980) that the parity-mixing amplitude can be expressed
through the matrix elements of VPNC between the intrin-
sic states characterizing the parity doublet. In particular,
Sushkov and Flambaum (1980) and Flambaum and
Sushkov (1980) pointed out that the spatial parity viola-
tion induced by polarized thermal neutrons observed in
the fission of some actinide nuclei could be related to
the presence of intermediate pear-shaped states during
the fission process.
The latest focus of parity-violation measurements in

nuclei is on symmetry breaking in compound nuclear
states (Bowman et al., 1990; Zhu et al., 1992; Frankle
et al., 1992), motivated by the extremely large enhance-
ment observed for parity violation in neutron reso-
nances. In the statistical approach, the parity-
nonconserving matrix elements are treated as random
variables and, in most cases, this method gives qualita-
tive agreement with experimental data (Zhu et al.,
1992). However, for one nucleus (232Th), strong sign cor-
relations have been observed (Frankle et al., 1992). This
phenomenon has been the subject of much study, and
cannot be explained as a general property of the
nucleon-nucleus weak interaction (Auerbach, 1992;
Bowman et al., 1992). Recently, the nonstatistical effects
in 232Th have been discussed (Auerbach et al., 1995;
Flambaum and Zelevinsky, 1995) in terms of parity dou-
blets resulting from reflection-asymmetric deformations,
which are expected to exist in the third HD minimum of
232Th (see Sec. IX.B.3). In particular, Flambaum and
Zelevinsky (1995) related the parity-mixing amplitude

to the ratio of matrix elements involving the parity-
nonconserving interaction, and to the part of the inter-
action giving rise to nonadiabatic mixing, leading to par-
ity splitting.

F. Reflection-asymmetric deformations
in mesoscopic systems

The presence of reflection-asymmetric deformations
can be attributed to strong shell effects that are present
in the average potential of finite Fermi systems such as
atomic nuclei or metallic clusters (Hamamoto, Mottel-
son, et al., 1991; Frauendorf and Pashkevich, 1993; Frisk
et al., 1994; Koskinen et al., 1995). The shapes of light
nuclei and jellium clusters were studied by Koskinen
et al. (1995) in the symmetry-unrestricted local density
approximation, assuming a simplified energy functional.
The shapes obtained for light N=Z nuclei show a strik-
ing similarity to those of atomic clusters. In particular,
they obtained reflection-asymmetric shapes in jellium
clusters of N=10, 12, 16, and 18 electrons. (For corre-
sponding nuclear examples, see Sec. VIII.)
Figure 38 shows an example of a situation where

the combined reflection-symmetric and reflection-
asymmetric deformations give rise to the new nuclear
shell structure. The single-particle WS levels (v=0 por-
tions), characteristic of nuclei from the Ba-Nd region,
are plotted as a function of octupole deformation b3 .
Due to octupole mixing between the h11/2 and d5/2 sub-
shells, two large energy gaps open up at Z=56 and
Z562 in the proton spectrum. In the neutron system a
large gap at N=88 can be seen; this is a consequence of
the i13/2–f7/2 octupole interaction. A close inspection of
Fig. 38 (v=0) leads to the conclusion that, at large octu-
pole deformations, the single-particle levels become
nearly degenerate, forming quasi-j subshells. For ex-
ample, at b3=0.15, the two orbitals with V=1/2 and 3/2
are close to each other, and just below the Z=56 gap,
forming a ‘‘j’’=3/2 multiplet. Similar ‘‘j’’=5/2 and
‘‘j’’=7/2 multiplets can be seen above the Z=56 and
Z=62 gaps, respectively. An analogous structure can
also be observed in the neutron system.
Theoretically, the variation in the single-particle level

density with shell filling (the level bunching), the exist-
ence of spherical and deformed magic numbers, and the
unusual shell stability of certain shapes in mesoscopic
systems, have an interpretation in terms of semiclassical
periodic orbits (Balian and Bloch, 1972; Bohr and Mot-
telson, 1975; Strutinsky and Magner, 1976). The single-
particle level density and the shell energy can be ex-
pressed (Gutzwiller, 1967, 1971) as a sum over
semiclassical periodic orbits. Consequently, the shell
structure of a many-body system (and hence the pres-
ence or absence of large deformations) has its deep
roots in the nonlinear dynamics of the corresponding
classical Hamiltonian and the geometry of classical or-
bits.
Several authors (Frisk, 1990; Arita and Matsuyanagi,

1993, 1994, 1995; Arita, 1994; Heiss et al., 1994, 1995a,
1995b) have analyzed the classical single-particle motion
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in axially symmetric potentials with quadrupole and oc-
tupole deformations. They demonstrated that strong
shell effects present at large quadrupole and octupole
deformations are associated with bifurcations of short
periodic orbits. Examples of classical periodic orbits for
the harmonic-oscillator Hamiltonian with the doubly
stretched octupole field,

H5hho2l30Mv0
2@r2Y30~V!#88, (113)

are shown in Fig. 54. Such a semiclassical analysis can
shed new light on shell structures stabilizing reflection-
asymmetric shapes, and on associated constants of mo-
tion.
The character of the collective dynamics (and in par-

ticular, the nature of energy dissipation) of independent
classical particles moving in a deformed, axially symmet-
ric container, oscillating with a frequency much smaller
than a typical single-particle frequency, was discussed by
Błocki et al. (1992, 1993, 1995). They demonstrated that
largely ordered motion characteristic of quadrupole
shapes becomes chaotic if octupole and higher-order de-
formations are included. Bauer et al. (1994) considered a
harmonic-oscillator potential with a time-dependent
multipole-multipole force, treated self-consistently.
The problems of strong quantum numbers, strong

shell effects, and so on, appear naturally in the context
of large-amplitude collective motion, which embraces
such phenomena as anharmonic vibrations, shape coex-
istence, exotic decays, fission, fusion, and heavy-ion col-
lisions. All those phenomena involve dynamical interac-
tion between various stable mean fields characterized by
different symmetries. The transition from one stable
mean field to another goes through one of several level
crossings, around which the original symmetry of the
system is broken and the intrinsic quantum numbers dis-
appear. In the context of this Review, two examples of
large-amplitude collective motion can be mentioned,
both related to the physics of quantum-mechanical tun-
neling.
The first example is the description of parity splitting

in a nuclear rotational band. As discussed in Sec. IV.B
and Sec. VI, very small parity splitting between the high-
spin members of the parity doublet has been observed
in, for example, 220Ra. Since most calculations predict
rather modest octupole barriers (1–2 MeV), the unusual
octupole rigidity at high spins, and the variation of the
parity splitting with angular momentum, are challenges
for theoretical models of large-amplitude collective mo-
tion.
The second example deals with the microscopic de-

scriptions of fission and exotic decay. There exist many
descriptions of fission based on the adiabatic assump-
tion, most employing the adiabatic TDHF theory and
variations of it (such as the collective Schrödinger equa-
tion with microscopic mass tensor). By construction,
adiabatic approaches cannot take into account properly
the dynamics of level crossing and the associated sym-
metry breaking (see Sec. III.A). An interesting develop-
ment is the imaginary-time mean-field theory (Levit
et al., 1980; Negele, 1989), which allows for a TDHF

treatment of quantum tunneling. An example of this
method is the description of the fission of 32S in three
dimensions (Wolff et al., 1992). In particular, the cross-
ings between positive- and negative-parity levels give
rise to a dramatic difference between the results of the
static constrained HF (or adiabatic TDHF) and TDHF;
the corresponding collective-motion paths are strongly
influenced by the breaking of reflection symmetry, and
are very different in both cases.
A better understanding of the basic aspects of nuclear

dynamics that govern large-amplitude collective motion
will certainly be provided by the vigorous interdiscipli-
nary interaction between nuclear physics and nonlinear
dynamics.
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APPENDIX: COMPILATION
OF SHAPE PARAMETRIZATIONS

The standard a and b parametrization of the nuclear
shape is introduced in Sec. II.A. This Appendix contains
a brief compilation of other shape parametrizations of
reflection-asymmetric shapes.
For the modified oscillator potential (Nilsson, 1955),

the shape is defined through the equipotential surfaces
of the average field:

r t
25

r0
2

c~ «̄ !
H 112«1P10~u t!2

2
3

«2P20~u t!

12(
l

«lPl~u t!J 21/2

. (A1)

Here, the nuclear radius is denoted by r t because it,
together with the angles entering Pl in Eq. (A1), is de-
fined in the stretched coordinate system (Nilsson, 1955;
Larsson, 1973). The dipole deformation «1 is determined
from Eq. (3). Expressed in terms of Nilsson’s deforma-
tion «3 , the octupole moment Q30,c is given by (Leander
and Chen, 1988)

Q30,c52
6
7
ZR0

3«3 . (A2)

Another way of parametrizing axial shapes has been
suggested by Chasman et al. (1977). Here the deforma-
tions nl are introduced via the transformation

r2→r2FexpS 2n2
3 D sin2u1expS 2

4n2
3 D cos2u

1 (
l53

lmax

nlAl1
1
2
Pl~cosu!G . (A3)

When discussing asymmetric fission, straightforward
expansions in spherical harmonics are not very appropri-
ate. Parametrizations have to be introduced that are ca-
pable of describing the bifurcation of the surface into
two parts. The three-quadratic surface parametrization
of Nix (1969) is sometimes used at large elongations. For
axial systems, the (c ,h ,a) cylindrical parametrization of
nuclear shape is particularly useful (Nix, 1972; Brack
et al., 1972):

~x21y2!/C2

5H ~12z2/C2!~A1Bz2/C21az/C ! for B>0,

~12z2/C2!@~A1az/C ! exp~Bc3z2/C2!# for B,0,

(A4)
where C is determined by the volume-conservation con-
dition, B=2h+(c–1)/2, and A=1/c3–B/5. The parameter
c describes the elongation of the system, h is the neck
coordinate, and a is an asymmetry parameter.

A different parametrization has been used by Pash-
kevich (1971). It is based on the observation that the
nuclear shapes at the saddle point are well approxi-
mated by Cassinian ovals. For axial shapes, the Cassin-
ian coordinates (R ,t) are related to the Cartesian coor-
dinates (x ,y ,z) by the expressions

R5@~x21y21z2!222s~z22x22y2!1s2#1/4,

t5
sgn~z !

A2 H 11
z22x22y22s

R2 J 1/2, (A5)

where s is the squared distance from the focus of the
Cassinian ovals to the origin of coordinates. The surface
R(t)=const defines the Cassinian oval. In order to de-
scribe deviations from such shapes, R is written as a
series in Legendre polynomials:

R~ t !5R0F11(
m

amPm~cos t !G . (A6)

The reflection-asymmetric shapes correspond to odd-m
deformations a , i.e., a1 ,a3 , and so on.
There is no unique way to relate one set of deforma-

tion parameters to another. A standard method of com-
paring shapes is to require equality between the collec-
tive multipole moments Qlm (Dudek et al., 1984;
Nazarewicz and Ragnarsson, 1995). For instance, in first
order, the relations for l=3 deformations are (Rohoziń-
ski, 1988)

b3522Ap

7
«3 , n352A2

7
«3 (A7)

[see Eqs. (6) and (A2)].
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jczak, I. Ragnarsson, and S. Åberg, 1981, Phys. Scr. 24, 200.
Bengtsson, R., I. Ragnarsson, S. Åberg, A. Gyurkovich, A.
Sobiczewski, and K. Pomorski, 1987, Nucl. Phys. A 473, 77.
Berger, J.F., M. Girod, and D. Gogny, 1989, Nucl. Phys. A 502,
85c.
Bernthal, F.M., and J.O. Rasmussen, 1967, Nucl. Phys. A 101,
513.
Bertsch, G.F., and W. Bertozzi, 1971, Nucl. Phys. A 165, 199.
Bertsch, G.F., and J. Foxwell, 1990, Phys. Rev. C 41, 1300.
Bès, D.R., 1963, Nucl. Phys. 49, 544.
Bhandari, B.S., and A.S. Al-Kharam, 1989, Phys. Rev. C 39,
917.
Bjo”rnholm, S., and J.E. Lynn, 1980, Rev. Mod. Phys. 52, 725.
Bleuler, K., and Ch. Terreaux, 1957, Helv. Phys. Acta 30, 183.
Błocki, J., F. Brut, T. Srokowski, and W. Swiatecki, 1992, Nucl.
Phys. A 545, 511c.
Błocki, J., and W. Kurcewicz, 1969, Phys. Lett. B 30, 458.
Błocki, J., J.-J. Shi, and W. Swiatecki, 1993, Nucl. Phys. A 554,
387.
Błocki, J., J. Skalski, and W. Swiatecki, 1995, Preprint No.
LBL-37241.
Blomquist, J., and A. Molinari, 1968, Nucl. Phys. A 106, 545.
Blons, J., 1989, Nucl. Phys. A 502, 121c.
Blons, J., C. Mazur, and D. Paya, 1975, Phys. Rev. Lett. 35,
1749.
Blons, J., C. Mazur, D. Paya, M. Ribrag, and H. Weigmann,
1978, Phys. Rev. Lett. 41, 1282.
Blons, J., C. Mazur, D. Paya, M. Ribrag, and H. Weigmann,
1984, Nucl. Phys. 414, 1.
Bohr, A., 1952, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 26,
No. 14.
Bohr, A., 1976, Rev. Mod. Phys. 48, 365.
Bohr, A., and B.R. Mottelson, 1957, Nucl. Phys. 4, 529.
Bohr, A., and B.R. Mottelson, 1958, Nucl. Phys. 9, 687.
Bohr, A., and B.R. Mottelson, 1975, Nuclear Structure Vol. II
(Benjamin, New York).
Bonche, P., 1988, in The Variety of Nuclear Shapes, edited by
J.D. Garrett et al. (World Scientific, Singapore), p. 302.
Bonche, P., E. Chabanat, B.Q. Chen, J. Dobaczewski, H. Flo-
card, B. Gall, P.-H. Heenen, J. Meyer, N. Tajima, and M.S.
Weiss, 1994, Nucl. Phys. A 574, 185c.
Bonche, P., P.-H. Heenen, H. Flocard, and D. Vautherin, 1986,
Phys. Lett. B 175, 387.
Bonche, P., S.J. Krieger, M.S. Weiss, J. Dobaczewski, H. Flo-
card, and P.-H. Heenen, 1991, Phys. Rev. Lett. 66, 876.
Bonin, W., H. Backe, M. Dahlinger, S. Glienke, D. Habs, E.
Hanelt, E. Kankeleit, and B. Schwartz, 1985, Z. Phys. A 322,
59.
Bonin, W., M. Dahlinger, S. Glienke, E. Kankeleit, M.
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Ćwiok, S., W. Nazarewicz, J.X. Saladin, W. Płóciennik, and A.
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Kazama, H., K. Katō, and H. Tanaka, 1984, Prog. Theor. Phys.
71, 215.
Kelson, I., 1965, Phys. Lett. 16, 143.
Khan, M.K., W. J. Vermeer, W. Urban, J.B. Fitzgerald, A.S.
Mowbray, B.J. Varley, J.L. Durell, and W.R. Phillips, 1994,
Nucl. Phys. A 567, 495.

Khazrouni, S., A. Chevallier, J. Chevallier, O. Helene, G. Ra-
manantsizehena, and N. Schulz, 1985, Z. Phys. A 320, 535.
Kirson, M.W., 1982, Phys. Lett. B 108, 237.
Kneissl, U., A. Zilges, J. Margraf, I. Bauske, P. von Brentano,
H. Friedrichs, R.D. Heil, R.-D. Herzberg, H.H. Pitz, B.
Schlitt, and C. Wesselborg, 1993, Phys. Rev. Lett. 71, 2180.
Kocbach, L., and P. Vogel, 1970, Phys. Lett. B 32, 434.
Kolb, D., R.Y. Cusson, and H.W. Schmitt, 1974, Phys. Rev. C
10, 1529.
Koskinen, M., P.O. Lipas, and M. Manninen, 1995, Nucl. Phys.
A 591, 421.
Krappe, H.J., and H.G. Wahsweiler, 1967, Nucl. Phys. A 104,
633.
Krappe, H.J., and U. Wille, 1969, Nucl. Phys. A 124, 641.
Krick, T.P., N.M. Hinz, and D. Dehnhard, 1973, Nucl. Phys. A
216, 549.
Kurcewicz, W., N. Kaffrell, N. Trautmann, A. Płochocki, J.
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A 559, 100.
Ohkubo, S., 1987, Phys. Rev. C 36, 551.
Ohkubo, S., 1988, Phys. Rev. C 38, 2377.
Ohkubo, S., and K. Umehara, 1988, Prog. Theor. Phys. 80, 598.
Ohm, H., M. Liang, G. Molnár, S. Raman, K. Sistemich, and
W. Unkelbach, 1990, Phys. Lett. B 241, 472.
Otsuka, T., 1986, Phys. Lett. B 182, 256.
Otsuka, T., and M. Sugita, 1988, Phys. Lett. B 209, 140.
Otten, E.W., 1989, in Treatise on Heavy-Ion Science, Vol. 8:
Nuclei Far From Stability, edited by D.A. Bromley (Plenum,
New York), p. 517.
Pal, M.K., 1993, Nucl. Phys. A 556, 201.
Parikh, J.C., and N. Ullah, 1967, Nucl. Phys. A 99, 529.
Pashkevich, V.V., 1971, Nucl. Phys. A 169, 275.
Pashkevich, V.V., 1988, Nucl. Phys. A 477, 1.
Paul, E.S., H.R. Andrews, T.E. Drake, J. DeGraaf, V.P. Jan-
zen, S. Pilotte, D.C. Radford, and D. Ward, 1994, Phys. Rev.
C 50, R534.
Pearson, C.J., W.R. Phillips, J.L. Durell, B.J. Varley, W.J. Ver-
meer, W. Urban, and M.K. Khan, 1994, Phys. Rev. C 49,
R1239.
Peker, L.K., J.H. Hamilton, and J.O. Rasmussen, 1981, Phys.
Rev. C 24, 1336.
Petrovici, A., K.W. Schmid, and A. Faessler, 1994, Nucl. Phys.
A 571, 77.
Phillips, W.R., I. Ahmad, H. Emling, R. Holzmann, R.V.F.
Janssens, T.-L. Khoo, and M.W. Drigert, 1986, Phys. Rev.
Lett. 57, 3257.
Phillips, W.R., R.V.F. Janssens, I. Ahmad, H. Emling, R. Holz-
mann, T.-L. Khoo, and M.W. Drigert, 1988, Phys. Lett. B 212,
402.
Piepenbring, R., 1983, Phys. Rev. C 27, 2968.
Piepenbring, R., 1984, J. Phys. Lett. 45, L-1023.
Piepenbring, R., 1985, Z. Phys. A 322, 495.
Piepenbring, R., and J. Leandri, 1991, Phys. Lett. B 267, 17.
Piessens, M., E. Jacobs, S. Pommé, and D. De Frenne, 1993,
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Rohoziński, S.G., 1978, J. Phys. G 4, 1075.
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J.C. Sens, Ch. Briançon, S. Ćwiok, E. Ruchowska, J.
Fernandez-Niello, Ch. Mittag, and J. Dudek, 1989, Phys. Rev.
Lett. 63, 2645.
Schulz, N., V.R. Vanin, A.J. Kreiner, E. Ruchowska, M.
Aı̈che, Ch. Briançon, A. Chevallier, J. Chevallier, M.E. De-
bray, and J.C. Sens, 1991, Z. Phys. A 339, 325.
Schwartz, B., Ch. Ender, D. Habs, D. Schwalm, M. Dahlinger,
E. Kankeleit, H. Folger, R.S. Simon, and H. Backe, 1986, Z.
Phys. A 323, 489.
Schwartz, B., D. Habs, D. Schwalm, M. Dahlinger, E.
Kankeleit, H. Folger, and R.S. Simon, 1987, GSI Scientific
Report 87-1, p. 31.
Schwartz, B., D. Habs, D. Schwalm, M. Dahlinger, E.
Kankeleit, H. Folger, and R.S. Simon, 1988, GSI Scientific
Report 88-1, p. 33.
Sellschop, J.P.F., A. Zucchiatti, L. Mirman, M.Z.I. Gering, and
E. Di Salvo, 1987, J. Phys. G 13, 1129.
Sheline, R.K., 1980, Phys. Rev. C 21, 1660.
Sheline, R.K., 1986, Phys. Lett. B 166, 269.
Sheline, R.K., 1988a, Phys. Rev. C 37, 423.
Sheline, R.K., 1988b, Phys. Lett. B 205, 11.
Sheline, R.K., 1989a, Phys. Lett. B 219, 222.
Sheline, R.K., 1989b, Phys. Lett. B 222, 179.
Sheline, R.K., 1993a, Int. J. Mod. Phys. E 2, 657.

419Butler and Nazarewicz: Intrinsic reflection asymmetry

Rev. Mod. Phys., Vol. 68, No. 2, April 1996



Sheline, R.K., 1993b, Phys. Rev. C 48, 1003.
Sheline, R.K., and B.B. Bossinga, 1991, Phys. Rev. C 44, 218.
Sheline, R.K., Y.S. Chen, and G.A. Leander, 1988, Nucl. Phys.
A 486, 306.
Sheline, R.K., D. Decman, K. Nybo” , T.F. Thorsteinsen, G.
Lo”vho” iden, E.R. Flynn, J.A. Cizewski, D.K. Burke, G.
Sletten, P. Hill, N. Kaffrell, W. Kurcewicz, G. Nyman, and G.
Leander, 1983, Phys. Lett. B 133, 13.
Sheline, R.K., A.K. Jain, and K. Jain, 1988, Phys. Rev. C 38,
2952.
Sheline, R.K., A.K. Jain, K. Jain, and I. Ragnarsson, 1989,
Phys. Lett. B 219, 47.
Sheline, R.K., J. Kvasil, C.F. Liang, and P. Paris, 1991, Phys.
Rev. C 44, R1732.
Sheline, R.K., J. Kvasil, C.F. Liang, and P. Paris, 1993, J. Phys.
G 19, 617.
Sheline, R.K., and G.A. Leander, 1983, Phys. Rev. Lett. 51,
359.
Sheline, R.K., C.F. Liang, and P. Paris, 1990, Int. J. Mod. Phys.
A 5, 2821.
Sheline, R.K., C.F. Liang, P. Paris, J. Kvasil, and D. Nosek,
1995, Phys. Rev. C 51, 1708.
Sheline, R.K., and I. Ragnarsson, 1991a, Phys. Rev. C 43, 1476.
Sheline, R.K., and I. Ragnarsson, 1991b, Phys. Rev. C 44, 2886.
Sheline, R.K., and P.C. Sood, 1986, Phys. Rev. C 34, 2362.
Sheline, R.K., and P.C. Sood, 1989, Prog. Theor. Phys. 81,
1057.
Sheline, R.K., and P.C. Sood, 1990, Int. J. Mod. Phys. A 5,
2677.
Sheline, R.K., and P.C. Sood, 1991, Fizika (Zagreb) 23, 1.
Sheline, R.K., and K. Wildermuth, 1960, Nucl. Phys. 21, 196.
Shi, Y.-J., and W.J. Swiatecki, 1987, Nucl. Phys. A 464, 205.
Shriner, J.F., Jr., P.D. Cottle, J.F. Ennis, M. Gai, D.A.
Bromley, J.W. Olness, E.K. Warburton, L. Hildingsson, M.A.
Quader, and D.B. Fossan, 1985, Phys. Rev. 32, 1888.
Skalski, J., 1990, Phys. Lett. B 238, 6.
Skalski, J., 1991, Phys. Rev. C 43, 140.
Skalski, J., 1992, Phys. Lett. B 274, 1.
Skalski, J., 1994, Phys. Rev. C 49, 2011.
Skalski, J., P.-H. Heenen, and P. Bonche, 1993a, Nucl. Phys. A
559, 221.
Skalski, J., P.-H. Heenen, P. Bonche, H. Flocard, and J. Meyer,
1993b, Nucl. Phys. A 551, 109.
Smith, J.F., J.F.C. Cocks, N. Schulz, M. Aı̈che, M. Bentaleb,
P.A. Butler, F. Hannachi, G.D. Jones, P.M. Jones, R. Julin, S.
Juutinen, R. Kulessa, E. Lubkiewicz, A. Płochocki, F. Riess,
E. Ruchowska, A. Savelius, J.C. Sens, J. Simpson, and E.
Wolf, 1995, Phys. Rev. Lett. 75, 1050.
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