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The current status of analytic higher-order perturbative computations of total cross sections and decay
widths in Quantum Chromodynamics is reviewed. Important issues are the methodology of
renormalization-group evaluations, the ambiguities of the renormalization scheme and its scale, and
the technical challenge of calculating many-loop diagrams. As examples, the authors consider the
quantities s tot(e1e2→hadrons) and G(t2→nt1hadrons) up to O(as

3) as well as G(H→hadrons) up
to O(as

2). The evaluation of the four-loop QED beta function is also described. The problem of
theoretical uncertainty estimates in perturbative calculations is briefly discussed.
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I. INTRODUCTION

The standard model of strong interactions, quantum
chromodynamics (for a brief review, see Tavkhelidze,
1994, and references therein), is becoming a quantitative
theory for treating aspects of hadrons and their interac-
tions. The asymptotic freedom and infrared divergences
of the theory have strong influences on the calculation
techniques. At low energy one can resort to numerical
lattice calculations, or, to some extent, to the operator
product expansion techniques, but at high energy in pro-
cesses involving large four-momentum transfer, the as-
ymptotic freedom justifies a perturbative calculational
scheme.
In exclusive reactions where details of the final state

are measured, it is easy to enforce high-momentum
transfer, and the validity of the perturbation expansion
is well tested. The major applications of perturbative
QCD and its phenomenology have recently been re-
viewed in these pages (Sterman et al., 1995). In the
present review, we focus on inclusive observables,
namely, total cross sections and decay widths. Here the
large four-momentum is provided by the initial energy
of the system, if the reaction goes through a single quan-
tum in the electroweak sector. The specific processes we
consider are the total cross section for electron-positron
annihilation into hadrons and the hadronic decay widths
of the tau lepton and the Higgs boson.
In perturbative QCD, the rates for these processes

may be expressed as a power series in the strong-
coupling constant as . The inclusive rates start with well-
known constant terms independent of as—the Born ap-
proximation; our objective in this review is the
calculation of higher-order terms in the series. There are
two important issues to be considered. First is the meth-
odological one—how to obtain physical observables
from the first principles of the theory using dispersion
relations, operator product expansion, renormalization-
group and other techniques. The second issue is how to
interpret the results, since the running coupling constant
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as is defined in the renormalization-group approach
with a scale. Truncation of the perturbation expansion
always introduces some dependence on the scale and the
renormalization scheme. The question is how best to
pick an optimal scheme and/or a scale in order to mini-
mize this theoretical ambiguity.
Another issue is the technical one of calculating the

higher-order graphs. A number of techniques have been
applied to the problem of calculating multiloop Feyn-
man diagrams. A recursive algorithm for analytic evalu-
ation of one-, two-, and three-loop propagator-type dia-
grams has been given by Chetyrkin and Tkachov (1981)
and Tkachov (1981, 1983a). This algorithm is applicable
to the theory with massless particles. It allows one to
expand contributions to propagators up to the three-
loop level as a Laurent series in e5(42D)/2, with D
the (noninteger) dimension of space-time. The above al-
gorithm has been applied to a wide class of problems up
to the four-loop level. These include, for example, calcu-
lations of renormalization constants, renormalization-
group functions, cross sections, and decay widths. We
note once again that this algorithm deals only with mass-
less propagator-type diagrams. Nevertheless, due to the
remarkable properties of dimensional regularization
(’t Hooft and Veltman, 1972) and the minimal subtrac-
tion prescription (’t Hooft, 1973), namely, that the
counter-terms are polynomials in dimensional param-
eters within minimal subtraction (Collins, 1974; Speer,
1974; see also the textbook by Collins, 1984), a wide
class of problems can be reduced to the evaluation of
propagator-type diagrams (Vladimirov, 1978, 1980). At
high energies, in some cases, it is possible to neglect the
masses of participating particles and consider massless
diagrams. The mass corrections of the type m2n/sn,
where s is the center-of-mass energy squared, can also
be evaluated through the calculation of massless dia-
grams (see, for example, Gorishny, Kataev, and Larin,
1986; Surguladze, 1989a, 1994a, 1994b, 1994c). Feynman
graphs can also contain virtual heavy-particle propaga-
tors regardless of the energy scale of the particular pro-
cess. If the masses of the virtual particles are much
larger than the energy scale, one can neglect them, since
their effects are suppressed by powers of large mass,
according to the decoupling theorem (Appelquist and
Carazzone, 1975). However, in some cases, such effects
may not be entirely negligible (Soper and Surguladze,
1994). The prescriptions for studying asymptotic expan-
sions of Feynman integrals in powers of m2/s can be
obtained from Chetyrkin and Tkachov (1982), Tkachov
(1983b, 1983c, 1991, 1993), and Chetyrkin (1991; see also
Smirnov, 1990, 1991, and references therein). An exact
general expression for one-loop, N-point, massive Feyn-
man integrals has been obtained by Davydychev (1991)
and Boos and Davydychev (1992). This expression con-
tains the generalized hypergeometric function and is
complicated, except for some particular cases. An alter-
native method for massive Feynman integrals has been
suggested by Kotikov (1991).
In practice, the perturbative calculation of physical

quantities is very cumbersome and tedious beyond the

one-loop level, especially in realistic quantum-field-
theory models such as QCD. However, the recursive al-
gorithms allow convenient implementation within alge-
braic programming systems such as REDUCE (Hearn,
1973), SCHOONSCHIP (Veltman, 1967, 1991; Strubbe,
1974), and FORM (Vermaseren, 1989). Several com-
puter programs were written in the last decade for ana-
lytic computation of multiloop Feynman diagrams.
Among them we mention the programs that fully imple-
ment the above-mentioned recursive algorithms. The
program LOOPS (Surguladze and Tkachov, 1989a),
written on the REDUCE system, calculates one- and
two-loop massless, propagator-type Feynman diagrams
for arbitrary structure in the numerator of the integrand
and for an arbitrary space-time dimension. The program
MINCER (Gorishny, Larin, Surguladze, and Tkachov,
1989), written on the SCHOONSCHIP system, and the
program HEPLoops (Surguladze, 1992), written on the
FORM system, calculate one-, two-, and three-loop
massless, propagator-type diagrams. The status of the
existing program packages has been discussed recently
by Surguladze (1994d). The above methods, algorithms,
and computer programs allow one to make significant
progress on high-order analytic perturbative calculations
of several important physical observables.
As we have already mentioned, there is an outstand-

ing problem in perturbative calculations, namely, the
renormalization scheme and scale ambiguities of
perturbation-theory predictions. Several approaches
have been suggested to deal with these ambiguities.
Among them we consider the so-called fastest apparent
convergence approach (Grunberg, 1980), which suggests
one absorb the leading QCD corrections in the defini-
tion of the ‘‘effective’’ running coupling. We also con-
sider an approach based on the principle of minimal sen-
sitivity of the physical observables to nonphysical
parameters (Stevenson, 1981a, 1981b), and the Brodsky,
Lepage, and Mackenzie (BLM, 1983) method, which
suggests that one fix the scale according to the size of
quark vacuum polarization effects. The commensurate
scale relations of Brodsky and Lu (1994, 1995) allow one
to make scale-fixed perturbative predictions without re-
ferring to the particular renormalization prescription.
In recent work, some authors try to predict the per-

turbative coefficients without calculating the relevant
Feynman graphs. First, we mention the method of West
(1991), which is based on renormalizability, analyticity
arguments, and the saddle-point technique. For com-
ments on this work, see Barclay and Maxwell (1992a),
Brown and Yaffe (1992), Surguladze and Samuel (1992a,
1992b), and Duncan et al. (1993). The method of Samuel
et al.. (Samuel and Li, 1994a, 1994b, 1994c; Samuel, Li,
and Steinfelds, 1994a, 1994b, 1994c), based on Padé ap-
proximants, works surprisingly well for a large number
of cases considered. Recent developments have put the
Padé approximant method on a much more rigorous ba-
sis, which may justify its application to perturbation se-
ries in QED, QCD, and atomic physics. This is discussed
in recent papers (e.g., Samuel, Ellis, and Karliner, 1995;
Ellis, Gardi, Karliner, and Samuel, 1996). An alternative
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method for estimating higher-order perturbative contri-
butions can be obtained based on Stevenson’s (1981a,
1981b) approach (Surguladze and Samuel, 1993; Kataev
and Starshenko, 1994). The important problem of the
large-order behavior of perturbation theory has been
considered by Barclay and Maxwell (1992b) and Brown
and Yaffe (1992). That problem has been discussed for
the past 20 years. Other papers on that subject have
been collected in the book edited by Le Guillou and
Zinn-Justin (1990). The application of renormalon cal-
culus in the study of the behavior of perturbative QCD
series is the subject of intensive discussion in the recent
literature (e.g., Mueller, 1992; Zakharov, 1992; Lovett-
Turner and Maxwell, 1994; Vainshtein and Zakharov,
1994; Soper and Surguladze, 1995a, 1995b).
After some introductory comments, we turn to the

discussion of the analytic high-order perturbative calcu-
lations of several physical observables, which have been
completed recently with the help of the above-
mentioned methods, algorithms, and computer pro-
grams. First, we consider the analytic calculation of
R(s) in electron-positron annihilation at the four-loop
level of perturbative QCD (Surguladze and Samuel,
1991a, 1991b, see also Gorishny, Kataev, and Larin,
1991), which turned out to be the most difficult among
problems of this type. This is the first and so far the only
four-loop calculation of a physical quantity in QCD.1 As
a by-product, the four-loop Rt in tau decay (Samuel and
Surguladze, 1991, see also Gorishny, Kataev, and Larin,
1991) and four-loop QED b function (Surguladze, 1990;
Gorishny, Kataev, and Larin, 1990) have been
evaluated.2 For earlier works, we mention, for instance,
the calculation of the three-loop correction to R(s) in
electron-positron annihilation (Chetyrkin, Kataev, and
Tkachov, 1979; Dine and Sapirstein, 1979; Celmaster and
Gonsalves, 1980), the calculation of the three-loop QCD
b function (Tarasov, Vladimirov, and Zharkov, 1980),
and the calculation of the three-loop anomalous dimen-
sions of quark masses (Tarasov, 1982). We should also
like to list some other three- and two-loop calculations.
These are the calculation of the total decay width of the
neutral Higgs boson into hadrons at the three-loop level
(Gorishny, Kataev, Larin, and Surguladze, 1990, 1991b;
Surguladze, 1994a, 1994b), the calculation of the two-
and three-loop Wilson coefficients in QCD sum rules
(Surguladze and Tkachov, 1986, 1988, 1989b, 1990), and
the calculation of the two-loop anomalous dimensions of
the proton current (Pivovarov and Surguladze, 1991). So
far only one five-loop calculation exists. This is the cal-
culation of the five-loop renormalization-group func-
tions in f4 theory (Kleinert et al., 1991).
The paper is organized as follows. In Sec. II we intro-

duce our notation and present some general relations.

Relevant methods and tools of perturbative QCD are
discussed. We briefly consider the necessary dispersion
relation, the operator product expansion (OPE), the
renormalization relations, and the method for evalua-
tion of the renormalization constants. We also discuss
the main ideas of the method of projectors for calculat-
ing Wilson coefficients in the OPE. In Sec. III we evalu-
ate the quantity G(H→hadrons) at the three-loop level.
In Sec. IV we calculate corrections to the correlation
functions due to nonvanishing quark masses. In Sec. V
we describe the calculation of Wilson coefficient func-
tions of the dim=4 operators in the OPE of the two-
point correlation functions of quark currents. In Sec.
VI we describe the four-loop calculation of
s tot(e

1e2→hadrons). Sections VII and VIII are dedi-
cated to the evaluation of G(t2→nt1hadrons) and the
QED b function, respectively. In Sec. IX we discuss the
problem of the renormalization scheme and scale ambi-
guity of perturbative QCD results. As an example, we
consider calculated quantities and use the known ap-
proaches to try to fix the scheme-scale parameter within
the one-parameter family of MS-type schemes. We also
outline the original method of scheme-invariant analysis
and the optimization procedure of Stevenson (1981a,
1981b). The paper ends with concluding comments.

II. CALCULATIONAL METHODS

A. Notation and general relations of perturbative QCD

Throughout this paper we work within the standard
model of strong interactions—QCD. For a review on
QCD, see, for example, Marciano and Pagels (1978),
Mueller (1981), Reya (1981), and Altarelli (1982). For a
textbook, see, for example, Yndurain (1983), Quigg
(1986), Muta (1987), and Ellis and Stirling (1990). For
the most recent source, see, for example, Sterman et al.
(1995). The four-loop QED calculations will be dis-
cussed in Sec. VIII.
The Lagrangian density of standard QCD is

L~x !521/4~Gmn
a !22

1
2aG

~]mAm
a !21(

f
q̄ f~ i ]̂2mf!qf

1g(
f
q̄ fT

aÂaqf1]mca†~]mdac1gfabcAm
b !cc,

(2.1)

where Gmn
a 5]mAn

a2]nAm
a 1gfabcAm

bAn
c (a51,2, . . . ,8)

are the Yang-Mills field (Yang and Mills, 1954)
strengths, Aa and qf are gluon and quark fields, mf are
the quark masses, ca are the Faddeev-Popov ghosts, and
aG is the gauge parameter. We use the standard notation
]̂5gm]m and Âa5gmAm

a . The index f enumerates the
quark flavors, the total number of which is N . The gen-
erators Ta of the SU c(N) gauge group, the structure
constants fabc and dabc, obey the following relations:

1This calculation was attempted earlier by Gorishny, Kataev,
and Larin (1988), but unfortunately, errors were found.
2For a joint publication of the results of two independent
calculations of the four-loop QED b-function, see Gorishny,
Kataev, Larin, and Surguladze (1991a).
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@Ta,Tb#5ifabcTc, $Ta,Tb%5
1
N

dab1dabcTc,

facdfbcd5CAdab, TaTa5CF1̂, trTaTb5Tdab.
(2.2)

The eigenvalues of the Casimir operators for the adjoint

(NA58) and the fundamental (NF53) representations
of SU c(3) are

CA53, CF54/3, and T51/2, dabcdabc540/3.
(2.3)

We use the standard QCD Feynman rules (see, for
example, Abers and Lee, 1973; Muta, 1987).
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The sum of all momenta coming in each vertex of the Feynman diagram is zero (momentum conservation).

In general, the Feynman integral constructed accord-
ing to the above rules is divergent. There are two kinds
of divergences. One, the so-called ultraviolet (UV) di-
vergence, is due to large integration momenta, and the
other one, the so-called infrared divergence, is associ-
ated with the small integration momenta in the massless
limit. The most convenient regularization of Feynman
integrals is dimensional regularization (Ashmore, 1972;
Bollini and Giambiagi, 1972; Cicuta and Montaldi, 1972;
’t Hooft and Veltman, 1972), where the space-time di-
mension is analytically continued from the physical
value, 4, to a complex value D5422« . In the limit
«→0, the divergences appear as poles 1/« , defining the
counterterms. One of the remarkable properties of di-
mensional regularization is that the Ward identities im-
plied by gauge invariance are maintained for arbitrary
space-time dimension D , in contrast with the old Pauli-
Villars regularization (Pauli and Villars, 1949). Another
useful property is a convenience in practical multiloop
calculations. Thus, in dimensional regularization, we for-
mally replace *d4P/(2p)4→*dDP/(2p)D. It is straight-
forward to extend the necessary tensor algebra into D
dimensions. For example, gmngmn5D , Trgmgn54gmn ,
etc. For the complete list of formulas see, for example,
Collins (1984) and Narison (1982). Note, however, that
the extension of the usual definition of the matrix g5

g55
1
4!

«abmngagbgmgn

is not straightforward. The totally antisymmetric tensor
«abmn is defined only in the four-dimensional space. In
some cases the calculation of the quantities involving
g5 is still possible within dimensional regularization. For
a discussion of the problem of g5 in dimensional regu-
larization, see Delbourgo and Akyeampong (1974),
Trueman (1979), Bonneau (1980), Narison (1982), Col-
lins (1984), and Larin (1993). For a calculation involving

g5 within dimensional regularization, see, for example,
Pivovarov and Surguladze (1991).
In order to get finite physical quantities, the diver-

gences in dimensionally regularized Feynman integrals,
appearing as poles in 1/« , need to be subtracted by
adopting some specific rule. This rule is usually called a
renormalization scheme. Throughout this paper we use
’t Hooft’s minimal subtraction (MS) scheme (’t Hooft,
1973). The subtraction of divergences is equivalent to
the redefinition (renormalization) of the parameters
(coupling, mass, and gauge-fixing parameter) and fields
in the original ‘‘bare’’ Lagrangian

as
B5m2«Zas

as , g2/4p[as ,

mB5mZm , (2.4)

aG
B5aGZG .

m is a quantity of dimension of mass which is introduced
within dimensional regularization in order to make an
action dimensionless. Superscript B denotes the un-
renormalized quantity. We renormalize the gluon, quark,
and ghost fields analogously. Within the MS scheme the
N-point Green’s function is renormalized in the follow-
ing way,

G~p1 , . . . ,pN ,g ,m ,aG ,m!5ZGGB~p1 , . . . pN ,g ,m ,aG!,
(2.5)

where ZG is a polynomial in 1/« , and thus multiplying by
ZG , we subtract only pole parts from the divergent
GB. The evaluation of the renormalization constants Z
will be discussed in the next subsections.
It is easy to see that the m parameter entered through

the renormalization, and hence the unrenormalized
Green’s function is independent of m ,

m
d

dm
GB~p1 , . . . ,pN ,g ,m ,aG!50.
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Using Eq. (2.5) and expanding the full derivative, we get
the renormalization-group equation in the following
form,

Fm2
]

]m21b~as!as

]

]as
2gm~as!m

]

]m
1bG~as!

]

]aG
2gGG

3G~p1 , . . . ,pN ,m ,as ,aG ,m!50. (2.6)

The QCD renormalization-group functions—the b func-
tion and the anomalous dimension functions—g are de-
fined in the following way,

asb~as!5m2
das

dm2,

bG~as!5m2
daG

dm2 ,

(2.7)
gm~as!52

m2

m

dm

dm2,

gG~as!5
m2

ZG

dZG

dm2 ,

with bare coupling and mass fixed. In the present paper
we use the renormalization-group equation in the above
form. The other forms are also known in the literature.
The group properties of the renormalization were first
discovered by Stueckelberg and Peterman (1953). The
ultraviolet asymptotics of the Green’s function was stud-
ied by Gell-Mann and Low (1954) in quantum electro-
dynamics using the group of multiplicative renormaliza-
tions. The renormalization-group formalism was further
developed in the original works by Bogolyubov and
Shirkov (1956). For a detailed monograph, see Bogoly-
ubov and Shirkov (1980). The renormalization-group
equation was studied by Callan (1970) and Symanzik
(1970). For a recent historical review, see Shirkov (1992)
and references therein.
The renormalization-group b function and anomalous

dimensions of quark masses are calculated up to the
three-loop level (Tarasov, Vladimirov, and Zharkov,
1980; Tarasov, 1982). The QCD b function up to and
including the three-loop level in MS-type schemes is

b~as!52b0

as

p
2b1S as

p D 22b2S as

p D 31O~as
4!, (2.8)

where (Tarasov, Vladimirov, and Zharkov, 1980)

b05
1
4S 113 CA2

4
3
TN D ,

b15
1
16S 343 CA

2 2
20
3
CATN24CFTN D ,

b25
1
64S 285754

CA
3 2

1415
27

CA
2 TN1

158
27

CAT
2N2

2
205
9
CACFTN1

44
9
CFT

2N212CF
2TN D .

The quark mass anomalous dimension up to and includ-
ing three-loop level is

gm~as!5g0

as

p
1g1S as

p D 21g2S as

p D 31O~as
4!, (2.9)

where (Tarasov, 1982)

g05
3
4
CF ,

g15
1
16S 32CF

21
97
6
CFCA2

10
3
CFTN D ,

g25
1
64F1292 CF

32
129
4
CF
2CA1

11413
108

CFCA
2

2~46248z~3 !!CF
2TN2S 55627 148z~3 ! DCFCATN

2
140
27

CFT
2N2G .

As shown by Caswell and Wilczek (1974) and Banyai,
Marculescu, and Vescan (1974), the above renor-
malization-group functions are gauge independent,
which greatly simplifies their evaluation. In fact, the
QCD b function and the quark mass anomalous dimen-
sion have been evaluated in the Feynman gauge
aG51. We note that the perturbative coefficients of the
renormalization-group functions are the same within the
one-parameter family of the MS-type schemes. Note
also the independence of these perturbative coefficients
on the quark masses by their definition within the MS-
type schemes.

B. Vacuum polarization function and dispersion relation

The vacuum polarization functions for various types
of quark currents are crucial in the theoretical evalua-
tion of total cross sections and decay widths. Indeed, for
example, the quantity s tot(e

1e2→hadrons), according
to the well-known optical theorem (see, e.g., the text-
book by Bogolyubov and Shirkov, 1980), is proportional
to the imaginary part of the function P(q21i0), defined
from the hadronic vacuum polarization function

Pmn~q !5iE eiqx^Tjm~x !jn~0 !&0 d
4x

5~gmnQ
22QmQn!P~Q2!

1

~4p!2
. (2.10)

Here, jm(x)5Qfq̄fgmqf , Qf is the electric charge of the
quark of flavor f , and Q252q2 is the Euclidean mo-
mentum squared. The sum over all participating quark
flavors is assumed in P . The transverse form in the
right-hand side is conditioned by the conservation of
electromagnetic currents. In this paper we also consider
the two-point function of quark axial-vector currents as-
sociated with the quantity G(Z→hadrons) and the two-
point function of quark scalar currents associated with
the quantity G(H→hadrons)—the total decay width of
the neutral standard-model Higgs boson into hadrons.
The renormalized vacuum polarization function obeys

the dispersion relation
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P~Q2!5
4
3Es0

` R~s !

s1Q2 ds2subtractions, (2.11)

where

R~s !5
s tot~e

1e2→hadrons!
s~e1e2→m1m2!

5
3
4p

ImP~s1i0 !. (2.12)

Recall also that the muon pair-production cross section
s(e1e2→m1m2)54pa2/3s , where a5e2/4p is the
electromagnetic fine-structure constant. The above dis-
persion relation allows one to connect the experimen-
tally measurable quantity R(s) to the P(Q2) calculable
perturbatively in the deep Euclidean region (Q2 is large
compared to the typical hadron mass). For the discus-
sion on theoretical calculability of R(s), see earlier ref-
erences: Adler (1974); Appelquist and Politzer (1975);
de Rújula and Georgi (1976); Poggio, Quinn, and Wein-
berg (1976); Shankar (1977); and Barnett, Dine, and
McLerran (1980). The combination of the idea of local
duality in the dispersion relations (Logunov, Soloviov,
and Tavkhelidze, 1967) and the operator product expan-
sion technique (Wilson, 1969) became a basis of various
versions of QCD sum rules (Shifman, Vainshtein, and
Zakharov, 1979; Krasnikov, Pivovarov, and Tavkhelidze,
1983; Novikov et al., 1985). For a review, see Novikov
et al. (1978), Shifman (1992), and references therein.
The methods of QCD sum rules are widely used to ob-
tain quantitative information on the observed hadron
spectrum and to extract the fundamental theoretical pa-
rameters.
In practice, sometimes it is more convenient to intro-

duce the Adler function (Adler, 1974)

D~Q2!52
3
4

]

] logQ2P~Q2!5Q2E
s0

` R~s !

~s1Q2!2
ds .

(2.13)

The derivative here avoids an inconvenient extra sub-
traction in the right-hand side.
The leading (parton) approximation of D(Q2) in the

zero quark mass limit coincides with R(s),

D~Q2!53(
f
Qf

2 , (2.14)

where the sum runs over all participating quark charges
at the given energy; 3 stands for the number of different
colors. The leading ‘‘non-QCD’’ contribution is com-
pletely free of ultraviolet divergences, while the P(Q2)
needs an additive renormalization even at the leading
order. At higher orders of perturbative expansion of the
D function, the ultraviolet divergences appear and one
should employ a procedure (usually called renormaliza-
tion scheme) for their subtraction order-by-order. Be-
cause of ambiguity in the choice of subtraction scheme,
the amplitude calculated within the perturbation theory
depends on nonphysical parameters. Within the one-
parameter family of the MS-type schemes (’t Hooft,
1973), such a parameter is usually called m . Thus, up to
power corrections, the D amplitude will be a function of
log(m2/Q2) and the strong coupling as . On the other

hand, since D is connected to the observable R(s), it
cannot depend on our subjective choice of the nonphysi-
cal parameter m . This can be achieved if the strong cou-
pling becomes a function of m , providing independence
of observables on the choice of parameter m . Here, it is
assumed that all orders of perturbation theory are
summed up. Otherwise, if one considers a truncated se-
ries, the m dependence remains. The problem of
scheme-scale dependence and some possible solutions
will be discussed later in this review. The set of transfor-
mations that leave observables independent of renor-
malization parameters has a group character and forms
the renormalization group. The renormalization group
in renormalizable theories (like QCD) fixes the depen-
dence of the coupling on the m parameter.
The function D(Q2) calculated in perturbative QCD

within the MS-type schemes obeys the renormalization-
group equation

S m2
]

]m21b~as!as

]

]as
2gm~as!m

]

]m D
3D~m2/Q2,m ,as!50. (2.15)

Below, we consider the limit of the massless light quarks
and the infinitely large top mass which decouples (Ap-
pelquist and Carazzone, 1975). The solution of Eq.
(2.15) at m25Q2 is

D(m2/Q2,as~m!)5D(1,as~Q !)5(
i>0

Ri(as~Q !/p)i,

(2.16)

where the as(m
2) is the running coupling, usually pa-

rametrized up to the three-loop level as follows,

as~m2!

p
5

1
b0L

2
b1logL

b0
3L2 1

1

b0
5L3~b1

2log2L2b1
2logL

1b2b02b1
2!1O~L24!, (2.17)

where L5log(m2/L2). Parametrization (2.17) has the
same form, and the QCD b-function coefficients are the
same within the MS-type schemes. The scale parameter
L depends on the particular modification of the MS pre-
scription. In fact, L is used to parametrize other versions
of renormalization prescriptions as well. It is shown by
Celmaster and Gonsalves (1979) that the transformation
relations valid to all orders between L’s defined by any
two renormalization prescriptions can be deduced from
a one-loop calculation. Comparing the bare coupling
constants within different renormalization prescriptions
and using the results for the one-loop renormalization
constants and the property of asymptotic freedom, one
obtains, for example, for momentum subtraction
(MOM) and MS schemes (Celmaster and Gonsalves,
1979),

LMS5LMOMexpFA~aG ,N !

4b0
G , (2.18)

where
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A~aG ,N !5CAF2
11
6

~gE2ln4p!1
11
3

1
23
72
I

1
3
8

aG~12I !2
1
12

aG
2 ~32I !1

1
24

aG
3 G

1TNF23~gE2ln4p!2
4
3

2
8
9
I G (2.19)

and the integral

I522E
0

1 lnx
x22x11

dx52.3439072 . . . . (2.20)

One note due to Stevenson (1981b, 1994) is in order.
Despite its convenient form, the parametrization (2.17)
produces an additional ambiguity due to the freedom
with a particular definition of L parameter, even when
the renormalization prescription is already specified.
This problem was discussed by Abbot (1980), Shirkov
(1980), Monsay and Rosenzweig (1981), Stevenson
(1981b), and Radyushkin (1983). In fact, one can take
advantage of this freedom in the choice of L and try to
optimize the expansion in 1/L . Indeed, as was shown by
Radyushkin (1983), if one takes 0.6L in Eq. (2.17) in-
stead of standard L (Buras, Floratos, Ross, and Sachra-
jda, 1977), then the 1/L2 and 1/L3 terms contribute only
a few percent for a reasonably wide range of m . On the
other hand, Stevenson (1981b, 1994) has suggested that
the entire problem of ambiguity in the definition of L
can be avoided by abandoning the 1/L expansion and
solving the renormalization-group equation (2.7) for as
and resulting transcendental equation numerically, using
the truncated b function.
According to the operator product expansion tech-

nique (Wilson, 1969), one can separate perturbative and
nonperturbative contributions to the function P(Q2).
As shown by Shifman, Vainshtein, and Zakharov (1979),
this function can be represented in the following form,

P~Q2!5perturbation theory1 (
n>2

Cn~Q !^On&0
Q2n

1 instanton contributions, (2.21)

where ^On&0 denote vacuum condensates parametrizing
the nonperturbative contributions, and Cn(Q) are their
coefficient functions. The last term in the above equa-
tion describes the instanton contributions, which, in the
case of electromagnetic currents, was estimated to be
small (Krasnikov and Tavkhelidze, 1982; Kartvelishvili
and Margvelashvili, 1995). The coefficient functions of
the condensates can be calculated within perturbation
theory. High-order perturbative corrections to the coef-
ficient functions of dimension 4 and 6 power terms have
been calculated in Loladze, Surguladze, and Tkachov
(1984, 1985) and Surguladze and Tkachov (1989b, 1990)
and also in Chetyrkin, Gorishny, and Spiridonov (1985),
and those of dimension 6 power terms have been calcu-
lated in Lanin, Chetyrkin, and Spiridonov (1986) . In
Sec. II.E we discuss the method for evaluating Wilson
coefficient functions. Examples will be outlined in Sec.

IV. Note that we consider the region of very high ener-
gies where, in fact, only perturbation-theory contribu-
tions survive in P(Q2). The nonperturbative correc-
tions could have some (small) effect in the case, for
instance, of t lepton decay (see Sec. VII). Note also that,
in fact, the effects of neglected light quark masses are
not entirely negligible in some phenomenological appli-
cations (see Sec. IV).

C. Renormalization relations

There are several approaches for the ultraviolet renor-
malization of Green’s functions known in the literature.
Throughout this paper we use ’t Hooft’s minimal sub-
traction method (’t Hooft, 1971, 1973). For alternative
prescriptions, we refer to the works by Gell-Mann and
Low (1954), Weinberg (1967), Callan (1970), Symanzik
(1970), and Collins, Wilczek, and Zee (1978). For an
analysis of various renormalization methods, see Collins
and Macfarlane (1974). For a review, see, for example,
Narison (1982) and the textbook by Collins (1984) and
references therein. We focus on the renormalization re-
lation for the two-point correlation function of quark
currents relevant for the further evaluation of total cross
sections and decay widths.
It is known that the vacuum polarization function is

renormalized additively,

P~m2/Q2,as!5PB~m2/Q2,as
B!1ZP[finite. (2.22)

The bare coupling as
B is related to the renormalized one

by the relation (2.4). The perturbative expansion for
Zas

can be found based on Eqs. (2.7) and (2.8), the MS
definition of Zas

, and the renormalization-group equa-
tion

m2
d

dm2as
B50. (2.23)

We obtain

Zas
512

as

p

b0

«
1S as

p D 2S b0
2

«2
2

b1

2« D
2S as

p D 3S b0
3

«3
2
7
6

b0b1

«2
1

b2

3« D 1O~as
4!. (2.24)

In general, the polarization function depends on quark
masses, and we shall need the relation between ‘‘bare’’
and renormalized masses up to O(as

2) (Tarasov, 1982),

~mf
B!25mf

2H 12S as

4p D 6CF

«
1S as

4p D 2
3CFF ~11CA118CF24TN !

1
«2

2S 976 CA1
3
2
CF2

10
3
TN D 1«G1O~as

3!J . (2.25)

Within the minimal subtraction prescription (’t Hooft,
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1973), the renormalization constant ZP can be ex-
pressed as the following double sum,

ZP5 (
2l<k,0

l.0

S as

p D l21

Zl ,k«
k, (2.26)

where Zlk are numbers. Furthermore, for the ‘‘bare’’
vacuum polarization function, one has the following ex-
pansion in a perturbation series,

PBS m2

Q2,as
BD 5 (

2l<k
l.0

S as
B

p D l21S m2

Q2D l«P l ,k«
k, (2.27)

where the first index denotes the number of loops of the
corresponding Feynman diagrams at the given order of
as . Substituting Eqs. (2.27) and (2.22) into the definition
(2.13), we obtain, after the renormalization of the cou-
pling via (2.24), at m25Q2

D~as!5
3
4H P1,211

as

p F2P2,22

1
«

12P2,21G1S as

p D 2F 1«2~3P3,2322b0P2,22!1
1
«

~3P3,2222b0P2,21!1~3P3,2122b0P2,0!G
1S as

p D 3F 1«3~4P4,2426b0P3,2312b0
2P2,22!1

1
«2

~4P4,2326b0P3,222b1P2,2212b0
2P2,21!

1
1
«

~4P4,2226b0P3,212b1P2,2112b0
2P2,0!1~4P4,2126b0P3,02b1P2,012b0

2P2,1!G1O~as
4!J . (2.28)

Because of the renormalization-group invariance of D(m2/Q2,as), in the above equation we take m25Q2 to avoid
unnecessary logarithms. The renormalized expression for the D function must be finite in the limit «→0. Thus the
coefficients of pole terms must vanish identically. This implies relations between the perturbative coefficients of P
and the QCD b function. First, we note that, prior to any renormalization, the leading poles must cancel at each
order of as in the sum of all relevant Feynman diagrams. As shown by the actual calculation, this happens in each
gauge-invariant set of diagrams.

P4,245P3,235P2,2250. (2.29)

Moreover, from the cancellation of nonleading poles, we get

3P3,2222b0P2,2150,

4P4,2326b0P3,2212b0
2P2,2150, (2.30)

4P4,2226b0P3,212b1P2,2112b0
2P2,050.

The above relations provide powerful tests of the calculation at its intermediate stages and are crucial.
From Eq. (2.22) we see that fully renormalized P(Q2,as) must be finite. Thus, substituting Eqs. (2.24)–(2.27) and

(2.29) in Eq. (2.22), we obtain the following expression for the divergent part of P(m2/Q2,as) at m25Q2,

divP~as!5
1
«

~P1,211Z1,21!1
as

p F1«~P2,211Z2,21!G1S as

p D 2F 1«2~P3,222b0P2,211Z3,22!1
1
«

~P3,212b0P2,01Z3,21!G
1S as

p D 3F 1«3~P4,2322b0P3,221b0
2P2,211Z4,23!1

1
«2

~P4,2222b0P3,211b0
2P2,02b1P2,21/21Z4,22!

1
1
«

~P4,2122b0P3,01b0
2P2,12b1P2,0/21Z4,21!G[0. (2.31)

The leading poles in ZP are absent at each order of as
(Z2,225Z3,235Z4,2450) except the zeroth order. Tak-
ing into account Eq. (2.30), we obtain the other set of
relations between the perturbative coefficients of P , Z
and QCD b function,

3Z3,221b0Z2,2150,

2Z4,231b0Z3,2250, (2.32)

4Z4,2212b0Z3,211b1Z2,2150.

P1,2152Z1,21 ,

P2,2152Z2,21 ,

P3,2252Z3,222b0Z2,21 ,

P3,2152Z3,211b0P2,0 , (2.33)

P4,2152Z4,2112b0P3,01b1P2,0/22b0
2P2,1 ,

P4,2252Z4,2222b0Z3,212b1Z2,21/21b0
2P2,0 ,

P4,2352Z4,2322b0Z3,222b0
2Z2,21 .
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In Sec. VI, the above relations will be used in the calcu-
lation of the four-loop total cross section in electron-
positron annihilation.

D. Method for evaluation of renormalization constants

We now discuss the evaluation of renormalization
constants within ’t Hooft’s MS scheme ( ’t Hooft, 1973),
using Vladimirov’s method (Vladimirov, 1978) and the
so-called infrared rearrangement procedure (Vlad-
imirov, 1980; Chetyrkin and Tkachov, 1982).
To calculate the renormalization constant ZG for the

one-particle-irreducible Green’s function G , it is conve-
nient to use the following representation (Vladimirov,
1978),

ZG512KR8G . (2.34)

The operator K picks out all singular terms from the
Laurent series in « ,

K(
i
c i«

i5(
i,0

ci«
i.

R8 is defined by the recursive relation

R8G5G2(
Gi

KR8G1•••KR8Gn3G /~G1ø•••øGn! ,

(2.35)

where the sum runs over all sets of one-particle-
irreducible divergent subgraphs Gi of the diagram G .
G /(G11•••1Gn)

is the diagram G with the subgraphs
G1 , . . . ,Gn shrunk to a point. In fact, R8 is the ordinary
Bogolyubov-Parasyuk R operation (Bogolyubov and
Parasyuk, 1956, 1957; for a textbook, see Bogolyubov
and Shirkov, 1980) without the last (overall) subtraction.
Thus, R8 subtracts all ‘‘internal’’ divergences only and is
connected to the ordinary R operation in the following
way,

R5~12K !R8.

To calculate the renormalization constant Z in Eq.
(2.22), one should write a diagram representation of P
and applyKR8 to the corresponding graphs [Eq. (2.34)]
or, in other words, one should evaluate the counterterms
for each graph. The benefit of using relation (2.34) is
based on the fact that the KR8 for each diagram is a
polynomial in dimensional parameters (Collins, 1974;
Speer, 1974). This fundamental property of ’t Hooft’s
minimal subtraction prescription is the basic idea of the
various versions of the infrared rearrangement tech-
nique (Vladimirov, 1980; Chetyrkin and Tkachov, 1982).
As an example, we demonstrate the application of the

KR8 operation to the three-loop QCD diagram contrib-
uting to the O(as

2) total cross section for the process
e1e2→hadrons.

The benefit of using the KR8 operation, besides its
convenience in actual calculations, is as follows. Using
the fact that the result of the KR8 operation is a poly-
nomial in masses and external momenta of the diagram,
one can remove the dependence on the external mo-
menta by differentiating (usually twice is sufficient) with
respect to the external momentum and then setting the
external momentum to zero. However, in this case infra-

red divergences appear. In order to prevent this, one can
introduce a new fictitious external momentum as an in-
frared regulator flowing along some of the lines of the
diagram (Chetyrkin and Tkachov, 1982). Alternatively,
one can introduce a fictitious mass in one of the lines of
the diagram as an infrared regulator (Vladimirov, 1980).
An appropriate choice of the fictitious momentum can
drastically simplify the topology of the given diagram.
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Both versions of the so-called infrared rearrangement
procedure simplify the calculation and make it possible
to evaluate counterterms to four- and five-loop dia-
grams. The main result of the application of the infrared
rearrangement technique can be formulated as follows.
The problem of calculating the counterterms of an arbi-
trary l-loop diagram with an arbitrary number of masses
and external momenta within the MS prescription can
be reduced to the problem of calculating some
(l21)-loop massless integrals to O(«0) with only one
external momentum. In the later sections, the full calcu-
lational procedure will be demonstrated for a typical
four-loop diagram contributing to the photon renormal-
ization constant.

E. Evaluation of Wilson coefficient functions
in operator product expansion

In this subsection we briefly discuss the problem of
the evaluation of higher-twist operator contributions to
the hadronic vacuum polarization function. Those con-
tributions are relevant in the analysis of nonperturbative
contributions in some processes (e.g., hadronic decay of
the t lepton). We use the Wilson operator product ex-
pansion technique (Wilson, 1969)—the mathematical
apparatus allowing a factorization of the short-distance
contributions, which are calculable perturbatively, and
large-distance effects, which can be parametrized with
the vacuum condensates (Shifman, Vainshtein, and Za-
kharov, 1979; Novikov et al., 1985). In the perturbative
evaluation of Wilson coefficient functions, we rely on the
so-called method of projectors (Gorishny, Larin, and
Tkachov, 1983; Gorishny and Larin, 1987; see also Pivo-
varov and Tkachov, 1988, 1993 and references therein).
An actual calculation for the coefficient functions of the
operators of dim=4 has been performed in the work by
Loladze, Surguladze, and Tkachov (1984, 1985) and Sur-
guladze and Tkachov (1989b, 1990). The present discus-
sion is based mainly on those works. Below, we demon-
strate the above technique in the case of the coefficient
functions of gluon and quark condensates.
Consider the operator product expansion of the T

product of two quark currents in the deep Euclidean
region, 2q25Q2→`

T ~Q !5iE d4x eiqxTJ~x !J~0 !5(
i
Ci~Q !Oi~0 !,

(2.36)

where J are quark currents. Ci(Q) are c-number coef-
ficient functions containing all dependence on Q . Oi are
local operators forming, in general, a complete basis. If
the currents J are gauge invariant, then, after averaging
over the vacuum, only gauge-invariant operators con-
tribute to the right-hand side of Eq. (2.36). However, the
renormalization procedure mixes gauge-invariant opera-
tors with noninvariant ones, and one has to consider the
complete basis of operators of the given dimension. The
following set of operators of the dimension 4,

O15~Gmn
a !2, O2

f 5mfq̄fqf ,

O3
f 5q̄ f~ i ]̂2mf1gTaÂa!qf ,

O45~]mc̄
a!~]mc

a!1~]mdab1gfabcAm
c !An

bGmn
a

2g(
f
q̄ fT

aÂaqf , (2.37)

O55]mc̄
a~]mdab1gfabcAm

c !cb,

is closed under renormalization, together with the ‘‘op-
erator’’ ;m4 (Spiridonov, 1984; Loladze, Surguladze,
and Tkachov, 1984, 1985). Our aim is to calculate coef-
ficient functions of gauge-invariant operators O1 and
O2

f . Note that ;m4 operators can be ignored because of
the special structure of the renormalization matrix for
the basis (2.37). The Feynman rules for the operators
(2.37) are (Surguladze and Tkachov, 1990)

(2.38)

The operators of the basis (2.37) are renormalized as
follows,

Oi5~ZO! ijOj
B , (2.39)

where the superscript B marks the same operators as in
(2.37) but built from the ‘‘bare’’ fields, masses, and cou-
plings. The structure of the renormalization matrix ZO
has been studied by Spiridonov (1984). In the MS-type
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schemes, ZO has the following form (Surguladze and
Tkachov, 1990),

(2.40)

where only the matrix elements A and B are relevant,

A5S 12
b~as!

« D 21

,

B5
4gm~as!

« S 12
b~as!

« D 21

. (2.41)

Inserting Eq. (2.39) into the expansion (2.36), we get

T ~Q !5(
i ,j
Ci~Q !Oi

B~ZO! ij . (2.42)

Following the method of projectors (Gorishny, Larin,
and Tkachov, 1983), we define the projectors p i satisfy-
ing the orthogonality condition and vanishing on higher
spin operators,

p i@Oj
B#5d ij ,

(2.43)
p i@higher spin operators#50.

Projectors p i applied on the left-hand side of Eq. (2.42)
separate in the right-hand side the coefficient functions
in which we are interested,

p j@T ~Q !#5(
i
Ci~Q !~ZO! ij . (2.44)

We find the coefficient functions

Ci~Q !5(
j

p j@T ~Q !#~ZO
21! ji . (2.45)

Our aim is to find the coefficient functions of gauge-
invariant operators O15(Gmn)

2 and O2
f 5mfq̄fqf .

So, we need to construct the corresponding projectors
p1 and p2

f . Let us represent p i as linear combinations
of some ‘‘elementary’’ projectors P j defined in the fol-
lowing way,

(2.46)

where the parentheses contain the one-particle-
irreducible Green’s function with one operator insertion.
In the case of P 2

f and P 3
f , the traces are calculated

over Lorentz spinor and color indices.
Acting by the projectors P j on the operators (2.37),

we obtain

P 1@O1#58D~D21 !, P 1@O4#54D~D21 !,

P 2
f @O2

f8#5d ff8, P 2
f @O3

f8#52d ff8, P 3
f @O3

f8#5Dd ff8,
(2.47)

P 4@O4#5P 4@O5#52D ,

P 5@O5#5D .

The results that are not shown in the above list are iden-
tically zero. From definition (2.43) and Eq. (2.47), we
obtain the explicit form for the projectors p1 and p2

f ,

p15
1

8D~D21 !
@P 122~D21 !P 414~D21 !P 5# ,

p2
f 5P 2

f 1
1
D
P 3

f . (2.48)

Combining Eqs. (2.40) and (2.41) with Eq. (2.45), we
get our final expressions for the coefficient functions
C1(Q) and C2

f (Q) (Surguladze and Tkachov, 1989b,
1990),

C1~Q !5p1@T ~Q !#S 12
b~as!

« D ,
(2.49)

C2
f ~Q !5p2

f @T ~Q !#2p1@T ~Q !#
4gm~as!

«
.

The above expressions have a closed form and are valid
at any order of perturbation theory. We note that T
must be constructed with unrenormalized couplings and
fields before one applies the projectors p i .
The general theory of Euclidean asymptotic expan-

sions of Feynman integrals and the methods applicable
to high-order perturbative calculations have been devel-
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oped in the works of Tkachov (1983b, 1983c, 1991,
1993), Chetyrkin and Tkachov (1982), and Chetyrkin
(1991; see also Smirnov 1990, 1991 and references
therein). The technique developed in these works allows
one to derive operator product expansions in the MS
scheme for any Feynman integral. For more general dis-
cussion and further details, we refer to the above works
and to the original calculations (Surguladze and Tka-
chov, 1989a, 1989b, 1990). In Sec. V we present a short
description of the calculation of the coefficient functions
of gluon and quark condensates up to O(as

2).

III. G(H→HADRONS) TO O(as
2)

A. The decay rate in terms of running parameters

In this subsection, using the above methods, we calcu-
late the O(as

2) corrections to the total hadronic decay
width of the standard-model Higgs boson in the massless
quark limit (Gorishny, Kataev, Larin, and Surguladze,
1990, 1991b; Surguladze, 1994b) (see Fig. 1).
The standard SU(2)3U(1) Lagrangian density of a

fermion-Higgs interaction is

L52gYq̄fqfH52~A2GF!1/2mfq̄fqfH

52~A2GF!1/2j fH . (3.1)

The decay width of a scalar Higgs boson to the quark-
antiquark pair is determined by the imaginary part of
the two-point correlation function,

P~Q252s ,mf!5iE eiqx^Tjf~x !j f~0 !&0 d
4x , (3.2)

of the quark scalar currents j f5mfq̄fqf in the following
way,

GH→qfq̄f
5

A2GF

MH
ImP~s1i0,mf!U

s5MH
2
. (3.3)

MH is the Higgs mass. The total decay width will be the
sum over all participating (depending onMH) quark fla-
vors,

G~H→hadrons!5 (
f5u ,d ,s , . . .

GH→qfq̄f
. (3.4)

We follow the work by Gorishny, Kataev, Larin, and
Surguladze (1990) and, in analogy to the vector channel,
introduce the Adler function (Adler, 1974),

D~Q2,mf!5Q2
d

dQ2

P~Q2,mf!

Q2 . (3.5)

The derivative avoids the additive renormalization of
P . In fact, it is possible to proceed without the introduc-
tion of the D function and deal directly with the corre-
lation function P (Surguladze, 1994b). Indeed, we are
interested in ImP(s1i0,mf). Since the overall MS
renormalization constant has no terms like log
(m2/Q2)n/«k, its imaginary part vanishes identically. The
absence of the pole logarithms in renormalization con-
stants is a general feature of MS-type schemes.
The D function obeys the homogeneous

renormalization-group equation

S m2
]

]m21b~as!as

]

]as
2gm~as!

]

] logmf
D

3D~m2/Q2,mf ,as!50. (3.6)

The QCD b function and the mass anomalous dimen-
sion gm are known up to the three-loop approximation
and have been given in the previous section. The plan
for evaluation of GH→qfq̄f

is as follows. First, we write the
diagram representation for P(Q2,mf) according to the
standard Feynman rules up to the desired loop level.
Second, we evaluate the Feynman diagrams using di-
mensional regularization and renormalize the coupling
and quark masses within the MS renormalization pre-
scription. Finally, to get the decay rate, we analytically
continue the result for the D function obtained from Eq.
(3.5) from Euclidean to Minkowski space. Following the
above plan, we now demonstrate the calculation of
GH→qfq̄f

up to the three-loop level. First of all, note that
the correlation function P and the related D function
depend on quark masses. The algorithms for evaluation
of the three-loop Feynman diagrams constructed with
the propagators of massive particles have not yet been
developed. However, in the deep Euclidean region
(Q2→`), it is possible to simplify the calculation using
the expansion in terms of the small parameter mf

2/Q2,

1

mf
2Q2P~Q2,mf!5P~Q2!1OSmf

2

Q2D . (3.7)

Such an expansion is legitimate, since we consider a
Higgs boson much heavier than the typical hadronic
mass scale. In this section we calculate the first term in
the above expansion and the related decay rate. This is
equivalent to the assumption that all five quarks are
massless and the top quark decouples (mt→`).
The diagrammatic representation for P in somewhat

symbolic form looks like

FIG. 1. The process H→hadrons.
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(3.8)

Next, we evaluate one-, two-, and three-loop massless Feynman diagrams. By simple power counting, it is easy to find
that, in general, the above diagrams are UV divergent. The unrenormalized contribution from a typical three-loop
diagram in the MS renormalization scheme (Bardeen, Buras, Duke, and Muta, 1978) reads

where mf
B is the f-flavor quark mass originating from the

quark mass dependence of the Yukawa coupling. z(3),
z(4), and z(5) are ordinary Riemann z functions. The
number 2 in front of the diagram stands for the symme-
try factor. The algorithms for the evaluation of
propagator-type one-, two-, and three-loop massless
Feynman diagrams have been given by Tkachov (1981,
1983a) and Chetyrkin and Tkachov (1981). For the de-
scription of the algorithms, see Gorishny, Larin, Surgu-
ladze, and Tkachov (1989). The results given in this sec-
tion were reobtained with the help of the program
HEPLoops (Surguladze, 1992), and the previous results
(Gorishny, Kataev, Larin, and Surguladze, 1990, 1991a,

1991b) were independently confirmed (Surguladze,
1994b).
As one can see, each three-loop diagram may contain,

in general, a pole with power <3. In the vector channel,
after summing the results for all diagrams with an appro-
priate symmetry and SU(N) group factor, the leading
pole cancels. This is the consequence of the conservation
of electromagnetic currents. In the scalar channel, the
leading poles remain in P . This is related to the quark
mass dependence of the coupling.
Evaluating the unrenormalized correlation function

(3.2) and using the definition (3.5), we obtain the un-
renormalized D function in the massless limit,

DS mMS
2

Q2 ,asD 5
1

~4p!2
NF~mf

B!2H S mMS
2

Q2 D «

~214«18«2!1S as
B

4p
D S mMS

2

Q2 D 2«

CFF12« 1581«~227248z~3 !!G
1S as

B

4p
D 2S mMS

2

Q2 D 3«

CFFCFS 36«21279
«

1
3139
2

2360z~3 ! D 1CAS 22«21201
«

1
2511
2

2300z~3 ! D
2TNS 8

«2
1
68
«

1414296z~3 ! D G1O~as
3!J . (3.9)

The above expression requires the renormalization of the strong coupling [Eq. (2.24)] and the multiplicative renor-
malization [Eq. (2.25)] originating from the quark mass dependence of the Yukawa coupling.
Expanding the factors (mMS

2 /Q2) l« in terms of « and performing the renormalizations of the coupling and the quark
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mass, we get a finite analytical expression for the D function in the MS scheme,

DS mMS
2

Q2 ,asD 5
NF

8p2mf
2H 11S as

4p
DCFF1716logS mMS

2

Q2 D G1S as

4p
D 2CFFCFS 6914 236z~3 ! D 1CAS 8934 262z~3 ! D

2TN(65216z~3 !)1logS mMS
2

Q2 D S 105CF1
284
3
CA2

88
3
TN D 1log2S mMS

2

Q2 D ~18CF111CA24TN !G J .
(3.10)

For standard QCD with the color SU c(3)-symmetry
group, the analytical result for the D function reads
(Surguladze, 1989d)

DS mMS
2

Q2 ,asD 5
3
8p2mf

2H 11S as

p
D F173 12logS mMS

2

Q2 D G
1S as

p
D 2F10801144

2
39
2

z~3 !

2S 65242
2
3

z~3 ! DN1logS mMS
2

Q2 D S 1063 2
11
9
N D

1log2S mMS
2

Q2 D S 194 2
1
6
N D G J . (3.11)

This completes the evaluation of the correlation func-
tion of the two scalar quark currents in the massless
limit at the three-loop approximation.
There is one crucial test of this calculation based on

renormalization-group constraints. The solution of the
renormalization-group equation (3.6) can be conve-
niently rewritten as

DS m2

Q2,mf~m!,as~m! D
5

3
8p2mf

2~m! (
0<j<i

S as~m!

p D iaijlogj m2

Q2. (3.12)

Applying the differential operator m2d/dm2 to both
sides of Eq. (3.12), taking into account the
renormalization-group invariance of the D function and
Eqs. (2.8) and (2.9), we obtain to O(as)

a1152g0a00 , (3.13)

to O(as
2)

a2152g1a001~b012g0!a10 ,
(3.14)

a225~b012g0!
a11
2

5~b012g0!g0a00 ,

and to O(as
3)

a3152~b01g0!a201~b112g1!a1012g2a00 ,

a325~b01g0!a211~b112g1!
a11
2

5~b01g0!@2g1a001~b012g0!a10#

1~b112g1!g0a00 , (3.15)

a335
2
3

~b01g0!a225
2
3

g0~b01g0!~b012g0!a00 .

The relations (3.13) and (3.14) provide a powerful check
of our calculation, while the relations (3.15) allow us to
evaluate the log terms to O(as

3), without explicit calcu-
lations of the corresponding four-loop diagrams. With
those relations, the information available at present,
namely, the QCD b function, mass anomalous dimen-
sion, and the two-point correlation function up to the
three-loop level, is fully exploited. In fact, similar rela-
tions can be derived for the correlation function P .
However, the renormalization-group equation for P is
not a homogeneous one, and the anomalous dimension
function up to the corresponding order of as is neces-
sary.
We evaluate the decay rate of the neutral Higgs boson

into a quark-antiquark pair by analytical continuation of
D(m2/Q2,mf(m),as(m)) from Euclidean to Minkowski
space. The total decay rate can be obtained by summing
up over all participating quark flavors,

G~H→hadrons!

5
3A2GFMH

8p (
f5u ,d ,s , . . .

mf
2H 11

as

p S 173 12 log
mMS
2

MH
2 D

1S as

p D 2F10801144
2
19
2

z~2 !2
39
2

z~3 !1
106
3
log

mMS
2

MH
2

1
19
4
log2

mMS
2

MH
2 2NS 65242

1
3

z~2 !2
2
3

z~3 !

1
11
9
log

mMS
2

MH
2 1

1
6
log2

mMS
2

MH
2 D G J . (3.16)

The Riemann function z(2)5p2/6 arose from the ana-
lytical continuation of the log 2mMS

2 /Q2 term and
z(3)51.202 056 903. The procedure of analytical con-
tinuation and the appearance of additional invariant
contributions have been discussed in several earlier
works (Krasnikov and Pivovarov, 1982; Pennington and
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Ross, 1982; Radyushkin, 1982; Pivovarov, 1992a). Note
that in some cases those additional corrections are large
and affect the result significantly. This is especially true
for the total cross section in the process
e1e2→hadrons. To minimize such corrections, it was
proposed, for instance, to redefine the expansion param-
eter (Pennington and Ross, 1982; Radyushkin, 1982).

B. The decay rate in terms of pole quark mass

For the heavy flavor decay mode of the Higgs, it is
relevant to parametrize the decay rate in terms of quark
pole mass (see, e.g., Kniehl, 1994a). Let us rewrite the
result for GH→qfq̄f

in terms of pole quark mass, assuming
that heavy quark is not exactly on-shell. This subsection
is based mainly on recent findings (Surguladze, 1994a,
1994b).
Solving the renormalization-group equation for the

quark mass [Eq. (2.7)], we obtain the following scaling
law for the running quark mass:

mf~m1!

mf~m2!
5

f(as~m1!)
f(as~m2!)

, (3.17)

where

f(as~m!)5S 2b0

as~m!

p D g0/b0H 11S g1

b0
2

b1g0

b0
2 Das~m!

p

1
1
2F S g1

b0
2

b1g0

b0
2 D 21g2

b0
2

b1g1

b0
2 2

b2g0

b0
2 1

b1
2g0

b0
3 G

3S as~m!

p D 2J . (3.18)

In the above equation, all appropriate quantities are
evaluated for N active quark flavors. N can be deter-
mined according to the scale of MH . At present, we
usually consider N55.
For the running coupling, we obtain the following

evolution equation to O(as
3) (Surguladze, 1994b),

as
~n !~m1!

p
5

as
~N !~m2!

p
1S as

~N !~m2!

p D 2S b0
~N !log

m2
2

m1
21

1
6(l log

ml
2

m1
2 D

1S as
~N !~m2!

p D 3Fb1
~N !log

m2
2

m1
21

19
24(l log

ml
2

m1
21S b0

~N !log
m2
2

m1
21

1
6(l log

ml
2

m1
2 D 2225

72
~N2n !G , (3.19)

where the superscript N (n) indicates that the corre-
sponding quantity is evaluated for N (n) numbers of
participating quark flavors. Conventionally (see, e.g.,
Marciano, 1984), N (n) is specified to be the number of
quark flavors with mass <m2 (<m1). However, Eq.
(3.19) is relevant for any n<N and arbitrary m1 and
m2 , regardless of the conventional specification of the
number of quark flavors. The logml/m1 terms are due to
the ‘‘quark threshold’’ crossing effects, and the constant
coefficients 1/65b0

(k21)2b0
(k) , 19/245b1

(k21)2b1
(k) rep-

resent the contributions of the quark loop in the b func-
tion. The sum runs over N2n quark flavors (e.g., l5b if
n54 and N55). Note that ml is the pole mass of the
quark with flavor l . For the on-shell definitions of the
quark masses, Eq. (3.19) changes—the constant 225/72
should be replaced by 17/72. The above equation is de-
rived based on Eq. (2.17), the QCD matching conditions
for as at quark thresholds (Bernreuter and Wetzel, 1982;
Marciano, 1984; Barnett, Haber, and Soper, 1988; Rod-
rigo and Santamaria, 1993) and the one-loop relation
between on-shell and pole quark masses. Equation
(3.19) is consistent with the QCD matching relation at
mf(mf) (Bernreuter and Wetzel, 1982),

as
~Nf21 !(mf~mf!)5as

~Nf!(mf~mf!)1@as
~Nf!(mf~mf!)#

3

3~CA/9217CF/96!/p2. (3.20)

Here and below, Nf is the number of quark flavors

u ,d , . . . ,f . Note that the nonlogarithmic constant at
O(as

3) in Eq. (3.19) will not contribute in further analy-
sis.
Next, using the scaling properties of the MS running

mass and Eq. (3.19), one obtains the following matching
condition,

mf
(N21)~m!5mf

(N)~m!H 11S as
~N !~m!

p D 2

3Fd~mf,mf8!2
5
36
log

m2

mf
22

1
12
log2

m2

mf
2

1
1
6
log

m2

mf
2log

m2

mf8
2 2

2
9
log

mf8
2

mf
2 G J , (3.21)

where the constant terms are 1/125g0(b0
(k21)2b0

(k))/2,
5/365g1

(k21)2g1
(k) , and 2/95CF(b0

(k21)2b0
(k)). In gen-

eral, the d(mf ,mf8) is the finite contribution of the
single virtual heavier quark with mass mf8, entering
when one increases the number of flavors from N21 to
N (one can also consider the particular case mf85mf).
From the two-loop on-shell quark mass renormaliza-

tion, one has (Broadhurst, Gray, and Schilcher, 1991)

d~mf ,mf8!52z~2 !/3271/1441~4/3!D~mf8/mf!,
(3.22)

where
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D~r !5
1
4F log2r1z~2 !2S logr1

3
2 D r2

2~11r !~11r3!L1~r !2~12r !~12r3!L2~r !G ,
(3.23)

L6~r !5E
0

1/r
dx

logx
x61

.

L6(r) can be evaluated for different quark mass ratios
r numerically. We relate the MS quark mass mf(mf) to
the pole mass mf using the O(as

2) on-shell results of
Broadhurst, Gray, and Schilcher (1991),

mf
~Nf!~mf!5mfF12

4
3

as
~Nf!~mf!

p
1S 16

9
2KfD

3S as
~Nf!~mf!

p
D 2G , (3.24)

where

Kf5
3817
288

1
2
3

~21log2 !z~2 !2
1
6

z~3 !2
Nf

3 S z~2 !1
71
48D

1
4
3 (
ml<mf

DSml

mf
D . (3.25)

The first four terms in Kf represent the QCD contribu-

tion with Nf massless quarks, while the sum is the cor-
rection due to the Nf nonvanishing quark masses.
Combining Eqs. (3.17), (3.18), and (3.19)–(3.24), one

obtains the relation between the MS quark mass
mf(MH), renormalized at MH and evaluated for the
N-flavor theory, and the pole quark mass mf (Surgu-
ladze, 1994b),

mf
~N !~MH!5mfH 12

as
~N !~MH!

p S 431g0log
MH

2

mf
2 D

2S as
~N !~MH!

p D 2FKf1 (
mf,mf8,MH

d~mf ,mf8!

2
16
9

1S g1
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4
3

g01
4
3
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~N !D logMH

2

mf
2

1
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2
~b0

~N !2g0!log
2
MH

2

mf
2 G J . (3.26)

Note that N is specified according to the size of MH and
has no correlation with the quark mass mf . Thus, for
instance, one can apply Eq. (3.26) to the charm mass
mc

(5)(MH) evaluated for five-flavor theory.
Substituting Eqs. (3.26) and (3.25) and appropriate

b-function and mass anomalous dimension coefficients
(see Sec. II) into Eq. (3.16), one obtains the decay rate
in terms of the pole quark masses,
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3A2GFMH
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mf
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3 (
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DSml

mf
D G J .
(3.27)

Recall that at the beginning we neglected terms that
were suppressed by powers mf

2/MH
2 . Such corrections to

the decay rate, in general, may not be entirely negligible
and must be taken into account in precise numerical
analyses. Those corrections due to the nonvanishing
quark masses have also been calculated. For the explicit
results, we refer to the original works (Surguladze,
1994a, 1994b; Chetyrkin and Kwiatkowski, 1995; Kniehl,
1995a). In the next section we give the results for the
quark mass corrections to the correlation functions P .
The full analytical result for the decay rate of

H→qfq̄f in terms of pole quark masses, including the
leading-order (two-loop) QCD corrections, has been ob-
tained independently by several groups: Braaten and
Leveille (1980), Inami and Kubota (1981), and Drees
and Hikasa (1990). In the work by Sakai (1980), the
two-loop result has been obtained in the zero quark
mass limit,

GH→qfq̄f
5
3A2GFMH

8p
mf

2S 12
4mf

2

MH
2 D 3/2

3F11
as~MH!

p
d~1 !S mf

2
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2 D 1O~as

2!G , (3.28)

where

d~1 !5
4
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h
1
3134h2213h4

16h3 logv1
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v5
11h

12h
, h5S 12

4mf
2
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2 D 1/2

and the Spence function is defined as usual,

Li2~x !52E
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x
dx

log~12x !

x
5 (

n51

` xn

n2
.

The expansion of the right-hand side of Eq. (3.28) in a
power series in terms of small mf

2/MH
2 has the following

form,

GH→qfq̄f
5
3A2GFMH

8p
mf

2H S 126
mf

2

MH
2 1••• D

1
as~MH!

p F322 log
MH

2

mf
2

2
mf

2

MH
2 S 8224 log

MH
2

mf
2 D 1•••G1O~as

2!J , (3.29)

where the periods cover higher-order terms
;(mf/MH)

2k, k52,3 . . . . One can see that the leading
terms agree with the result (3.27).
Numerically, the MS high-order QCD corrections for

the considered process are large and reduce the decay
rates by about 40%.

IV. QUARK MASS CORRECTIONS
TO THE CORRELATION FUNCTIONS

In Sec. III we neglected all quark masses in the corre-
sponding Feynman diagrams in comparison with the mo-
mentum scale of the problem. In other words, we calcu-
lated the leading term in the expansion in terms of small
mf

2/s (for the Higgs boson decay, s5MH
2 ) in the limit of

the infinitely heavy top quark, mt→` . However, in the
real world, quarks are massive and the leading term in
the above expansion may not always give a satisfactory
approximation. On the other hand, starting at O(as

2), a
virtual heavy quark can also appear in certain topologi-
cal types of Feynman diagrams (Figs. 2 and 3) regardless
of the momentum scale of the problem.
According to the decoupling theorem (Appelquist

and Carazzone, 1975), virtual quarks much heavier than
the momentum scale of the problem decouple. However,

in the process of Z boson decay, for instance, the effect
of the top quark may not be entirely negligible, since
mt is not much greater thanMZ . A similar role could be
played by the charm quark in the hadronic decay of the
tau lepton. The evaluation of the virtual top quark con-
tribution (Fig. 2) to the decay rate Z→hadrons and re-
lated quantities was done by Kniehl (1990), Soper and
Surguladze (1994), and Hoang, Jezabek, Kühn, and
Teubner (1994) without the use of large or small mass
approximations. The correction turned out to be moder-
ate and in good agreement with the results obtained
with the help of the large mass expansion technique
(Chetyrkin, 1993a). The contribution of the diagrams in
Fig. 2, in the presence of a virtual heavy quark, to the
two-point correlation function of the electromagnetic
quark currents was evaluated previously by Wetzel and
Bernreuther (1981). Kniehl and Kühn (1989, 1990) cal-
culated the O(as

2) correction to the decay rate
Z→hadrons due to the large mass’ splitting in the top-
bottom doublet (Fig. 3). This correction turned out to be
large and important.
In Sec. IV we consider only the leading correction in

the expansion in terms of small quark mass. For the cal-
culations of virtual heavy quark contributions, we refer
the reader to the above-mentioned original works (see
also Kniehl, 1994b, 1995b). The discussion in this section
is based on the works by Surguladze (1994a, 1994b,
1994c).
Let us expand the full two-point correlation function,

defined by Eq. (2.10) in the vector channel and by Eq.
(3.2) in the scalar and pseudoscalar channels, in powers
of mf

2/Q2 in the ‘‘deep’’ Euclidean region,

S 1

mf
2Q2D dP~Q2,mf ,mV!5P1~Q

2!1
mf

2

Q2Pmf
2~Q2!

1 (
V5u ,d ,s ,c ,b

mV
2

Q2PmV
2 ~Q2!

1••• , (4.1)

where d50 in the vector channel and d51 in the scalar
and pseudoscalar channels. The last term in the above
expansion is due to the Feynman diagrams containing a
virtual fermionic loop. Note, however, that in the vector
channel the contribution from the diagrams in Fig. 3
vanishes according to Furry’s theorem (Furry, 1937).
In order to evaluate the coefficient functions in the

right-hand side of Eq. (4.1), it is sufficient to write the
diagrammatic representation for P(Q2,mf

B ,mV
B) up to

the desired level of perturbation theory and apply the
appropriate projector. To O(as

2), one has

Pmf
2nmV

2k~Q2,as!5
1

~2n !!~2k !!S d

dmf
BD 2nS d

dmV
BD 2k

3H P~Q2,mf
B,mV

B,as
B!

~mf
B!2dQ2~d2n2k ! J mf

B5mV
B50

as
B→Zaas

3~Zm
2 !~11d !, (4.2)

FIG. 2. O(as
2) Feynman diagrams responsible for the virtual

heavy-quark contribution.

FIG. 3. O(as
2) Feynman diagrams responsible for the contri-

bution due to the top-bottom mass splitting.
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where n ,k50,1, n1k<1, and superscript B denotes the
‘‘bare’’ quantities. The mass-renormalization constant
Zm5mf

B/mf can be obtained from Eq. (2.25). The Feyn-
man diagrams contributing to the Pmf

2nmV
2k are the same

as those for the calculation of P1 [see Eq. (3.8)] but with
massive fermion propagators. The calculations of all
one-, two-, and three-loop diagrams have been per-
formed using the program HEPLoops (Surguladze,
1992).
The obtained expressions for P i at each order of as

are polynomials with respect to 1/« and logmMS
2 /Q2.

The poles can be removed by an additive renormaliza-
tion. We note that there are no terms like
(1/«n)(logmMS

2 /Q2)k. They appear only at higher orders

;mf
2mf

4/Q4 and represent infrared mass logarithms.
The corresponding prescription similar to the Bogoly-
ubov ultraviolet R operation has been worked out by
Chetyrkin, Gorishny, and Tkachov (1982), Tkachov
(1983b, 1983c), and Gorishny, Larin, and Tkachov
(1983a, 1983b, 1983c; see also Tkachov, 1991, 1993 and
references therein). The infrared mass singularities were
studied earlier by Marciano (1975). In the present paper
we consider only the terms ;mf

2/Q2, which are suffi-
cient for most of the phenomenologically interesting ap-
plications.
In the vector channel, we obtain the following MS

analytical result (Gorishny, Kataev, and Larin, 1986; Sur-
guladze, 1994c),

Pmf
2S mMS

2

Q2 ,asD 5
NF

~4p!2
H 282S as

p
DCFS 16112 log

mMS
2

Q2 D 2S as

p
D 2FCF

2 S 166724
2
5
3

z~3 !2
70
3

z~5 !1
51
2
log

mMS
2

Q2 19 log2
mMS
2

Q2 D
1CFCAS 144724

1
16
3

z~3 !2
85
3

z~5 !1
185
6
log

mMS
2

Q2 1
11
2
log2

mMS
2

Q2 D
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Q2 D G J , (4.3)

PmV
2 S mMS

2

Q2 ,asD 5
NF

~4p!2
S as

p
D 2CFTF643 216z~3 !G . (4.4)

The contribution to the physical process, in particular,
to the decay rate of Z→hadrons, can be obtained simply
by taking the imaginary part in the right-hand side of
Eqs. (4.3) and (4.4) at Q252s1i0. We note that the
Pmf

2 and PmV
2 turned out to be finite. No overall subtrac-

tion is necessary. Moreover, one can see that the imagi-
nary part or the contribution to the decay rate vanishes
at the parton level. This can be checked by the calcula-
tion of the parton contribution in the vector channel
with explicit dependence on quark mass. Indeed, calcu-
lating the trivial fermionic loop, we obtain

PpartonS mMS
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2q2
,
mf
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2q2D 5
NF

~4p2!F 43 1
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28E
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22x~12x !q2

mMS
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Taking the discontinuity under the integral and then
evaluating the trivial integral with the Q function, we
obtain

1
2pi

discPpartonS mMS
2

2q2
,
mf

2

2q2D
5

NF

~4p2!
S 11

2mf
2

q2 DA124mf
2/q2

5
NF

~4p2!
OSmf

4

q4 D . (4.6)

The ;mf
2/Q2 contribution to the Adler D function can

be obtained from Eqs. (4.3) and (4.4) by differentiating
with respect to Q2.
There is some confusion in the literature concerning

the above results. Initially, the corrections ;mf
2/Q2 in

the vector channel were calculated by Gorishny, Kataev,
and Larin (1986). Later, in similar calculations (Surgu-
ladze, 1989a), a slightly different result was obtained,
which was confirmed in further publications (see, e.g.,
Kataev, 1990, 1991). However, in recent works (Chetyr-
kin and Kwiatkowski, 1993; Surguladze, 1994c), the ini-
tial result of Gorishny, Kataev, and Larin (1986) has
been confirmed. Unfortunately, in the analysis of the
mass corrections to the Z decay rates (Chetyrkin and
Kühn, 1990), the incorrect result was used. Fortunately,
the main conclusions of Chetyrkin and Kühn (1990) are
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not affected. Summarizing, we note that the results (4.3) and (4.4) (Gorishny, Kataev, and Larin, 1986; Chetyrkin and
Kwiatkowski, 1993; Surguladze, 1994c) seem now to be reliable.
In the scalar channel, the result for the standard SUc(3) gauge group reads (Surguladze, 1994b)

Pmf
2SmMS

2

Q2 ,asD 52
1
4p2H 1219 log

mMS
2

Q2 1S as

p
D S 94236z~3 !160 log

mMS
2

Q2 118 log2
mMS
2

Q2 D
1S as

p
D 2F1724516

2
1690
3

z~3 !23z~4 !1
385
3

z~5 !1S 71498 2249z~3 ! D logmMS
2

Q2 1
1113
4

log2
mMS
2

Q2

1
81
2
log3

mMS
2

Q2 2NS 81724 26z~3 !1S 31312 26z~3 ! D logmMS
2

Q2 1
15
2
log2

mMS
2

Q2 1log3
mMS
2

Q2 D G1‘‘simple poles’’J ,
(4.7)

PmV
2 S mMS

2

Q2 ,asD 5
1
4p2S as

p
D 2F8316 log

mMS
2

Q2 1‘‘simple pole’’G , (4.8)

where under the ‘‘simple pole’’ we mean number/«k with no dependence on logm2/Q2. The simple poles have no
imaginary part and consequently will not contribute to the observable quantities at the given order of as . Note that
the PmV

2 in Eq. (4.8) does not include the contribution from the triangle anomaly-type graphs pictured in Fig. 3.

Those graphs make the following additional contribution to P in Eq. (4.1) (Surguladze, 1994b),

1 (
f85u ,d ,s ,c ,b

mf8
2

Q2 3
1
4p2S as

p
D 2F1183 220z~3 !210z~5 !112 log

mMS
2

Q2 1‘‘simple pole’’G . (4.9)

The above results are relevant for the decay rate of the standard-model Higgs boson into a quark-antiquark pair,
calculated in the previous section in the massless quark limit. Corrections ;mf

2/MH
2 can be obtained from Eqs. (4.7),

(4.8), and (4.9) (Surguladze, 1994b).
In the pseudoscalar channel, we define the quark currents as j f5mfq̄fig5qf . We also define the g5 matrix in

D-dimensional space-time as an object with the following properties,

$g5 ,gm%50, g5g551. (4.10)

The above definition causes no problems in dimensional regularization when there are two g5 matrices in a closed
fermionic loop. We obtain (Surguladze, 1994a)

Pmf
2S mMS

2

Q2 ,asD 52
1
4p2H 3 log

mMS
2

Q2 1S as

p
D S 6212z~3 !14 log

mMS
2

Q2 16 log2
mMS
2

Q2 D
1S as

p
D 2F2

6713
144

2116z~3 !2z~4 !1
235
3

z~5 !1S 142924
283z~3 ! D logmMS

2

Q2 1
155
4
log2

mMS
2

Q2

1
27
2
log3

mMS
2

Q2 2NS 2
31
72

2
2
3

z~3 !1S 9422z~3 ! D log mMS
2

Q2 1
7
6
log2

mMS
2

Q2 1
1
3
log3

mMS
2

Q2 D G
1‘‘simple poles’’J , (4.11)

PmV
2 S mMS

2

Q2 ,asD 5
1
4p2S as

p
D 2F8

3
16 log

mM̄S
2

Q2 1‘‘simple pole’’G . (4.12)

The result for the pseudoscalar channel is relevant, for instance, for the decay rates of the minimal supersymmetric
version of the Higgs particle into a quark-antiquark pair (see Surguladze, 1994a).
Finally, we present the results of calculation of the ;mf

2/Q2 corrections to the correlation function in the axial
channel (Soper and Surguladze, 1994; Surguladze, 1994c). We use the following definition of the correlation function,

iE d4x eiqx^Tjm
f ~x !jn

f ~0 !&05gmnQ
2P~Q ,mf!2QmQnP8~Q ,mf!, (4.13)

where jm
f 5q̄ fgmg5qf . Note that in the axial channel the correlation function is not transverse, in contrast to the vector

channel. However, for the decay rate of the Z boson, only the ;gmn part in Eq. (4.13) is relevant.
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The expansions of P and P8 in terms of small mf
2/Q2 have the same form as those in the vector channel [Eq. (4.1)].

The coefficient functions in this expansion can be calculated according to Eq. (4.2) in the vector channel. In the
calculations of one-, two-, and three-loop Feynman diagrams, the program HEPLoops (Surguladze, 1992) was used.
The final results for the SU c(3) gauge group read (Soper and Surguladze, 1994; Surguladze, 1994c)

Pmf
2S mMS

2

Q2 ,asD 5
1
4p2H 616 log

mMS
2

Q2 1S as

p
D S 1072 224z~3 !122 log

mMS
2

Q2 16 log2
mMS
2

Q2 D
1S as

p
D 2F32416 2387z~3 !2

3
2

z~4 !1165z~5 !1S 822124
2117z~3 ! D logmMS

2

Q2 1
155
2
log2

mMS
2

Q2 1
19
2
log3

mMS
2

Q2

2NS 85736 2
32
3

z~3 !1S 15112 24z~3 ! D logmMS
2

Q2 1
8
3
log2

mMS
2

Q2 1
1
3
log3

mMS
2

Q2 D G1‘‘simple poles’’J , (4.14)

PmV
2 S mMS

2

Q2 ,asD 5
1
4p2S as

p
D 2F323 28z~3 !G , (4.15)

Pmf
28 S mMS

2

Q2 ,asD 5
1
4p2H 261S as

p
D S 212212 log

mMS
2

Q2 D 1S as

p
D 2F2

4681
24

234z~3 !1115z~5 !2
215
2
log

mMS
2

Q2 2
57
2
log2

mMS
2

Q2

2NS 2
55
12

2
8
3

z~3 !2
11
3
log

mMS
2

Q2 2log2
mMS
2

Q2 D G1‘‘simple poles’’J (4.16)

PmV
28 5PmV

2 . (4.17)

The results given in this section can be tested using
the renormalization group. Namely, the relations similar
to Eqs. (3.13), (3.14), and (3.15) can be obtained here
(Surguladze, 1994a, 1994b, 1994c). In fact, in the vector
channel, one can obtain the O(as

3) logarithmic terms
without actual calculation of the corresponding four-
loop diagrams. On the other hand, the leading logarith-
mic terms in P function form the corresponding contri-
bution to the decay rates of, for instance, the Z boson
(Chetyrkin and Kühn, 1990; Chetyrkin, Kühn, and Kwi-
atkowski, 1992; Surguladze, 1994c). In the axial channel
the situation is more complicated. Here, because the
renormalization-group equation similar to Eq. (3.6) is no
longer a homogeneous one, the renormalization-group
approach is restricted to O(as

2).

V. TWO-LOOP COEFFICIENT FUNCTIONS
OF dim54 POWER CORRECTIONS

In this section we outline the calculations of the two-
loop coefficient functions of dim=4 power corrections.
We consider the contributions that appear in the short-
distance expansion of the correlation function of two
flavor-diagonal vector, scalar, and pseudoscalar currents
constructed from light quark fields. The methods and
corresponding references are given in the earlier sec-
tions. The corrections for the vector channel have been
evaluated in Loladze, Surguladze, and Tkachov (1984,
1985) and Surguladze and Tkachov (1988). In the scalar

and pseudoscalar channels, the calculation has been per-
formed in Surguladze and Tkachov (1990). The calcula-
tion for vector and axial-vector channels has been per-
formed in Chetyrkin, Gorishny, and Spiridonov (1985),
where the previous results for the vector channel have
been confirmed and the calculation extended for flavor-
nondiagonal currents as well. The three-loop correction
to the coefficient function of gluon condensate in the
scalar channel has also been computed in Surguladze
and Tkachov (1989b). For the calculation of dimension 8
terms in the operator product expansion, see also
Broadhurst and Generalis (1985). Here we follow the
work by Surguladze and Tkachov (1990).
Consider first the T product of flavor-diagonal vector

currents of light quarks

T mn
f8 ~Q !5iE d4x eiqxTJm

f8~x !Jn
f8~0 !, (5.1)

where Jm
f85q̄ f8gmqf8. Taking into account the current

conservation and operator product expansion technique
(Wilson, 1969) for large momentum transfer (Q2→`),
we write

T mn
f8 ~Q !5~gmnQ

22QmQn!HC01
1
Q4@CG2~Q2!~Gmn

a !2

1Cq̄q
f8 ~Q2!mf8q̄ f8qf8#1•••J , (5.2)

where C0 is the coefficient function of the unity operator
including the terms ;mf

2/Q2 discussed in the previous
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section. The period covers the operators of higher twists.
For the scalar and pseudoscalar channels, the transverse
factor in the above equation is absent. To simplify the
calculation, we contract over the Lorentz indices m and
n . Then the expressions for Ci defined in Eq. (5.2) co-

incide with the ones in Eq. (2.49), if T mn

f8 (Q) is replaced

by T mm
f8 (Q)/(D21)Q2, where D5422« . Let us re-

write Eqs. (2.49) in a somewhat symbolic diagrammatic
representation to O(as

2),

(5.3)

The total number of two-loop graphs contributing to
CG2 is 30 and, to Cq̄q

f , 38. There is a simple rule for
generating the appropriate graphs at O(as

n). One
should take the graphs contributing to O(as

(n11)) in the
unity operator and disconnect one fermion line in all
possible ways for the coefficient function Cq̄q

f . For the
coefficient function CG2, it is necessary to write all the
diagrams with one disconnected gluon line (relevant for
the projector P 1), all the diagrams with one discon-
nected ghost line (relevant for the projector P 4), and all
the diagrams with disconnected gluon-ghost-ghost ver-
tex (relevant for the projector P 5). To see this, recall
Eqs. (2.46). Acting with the projectors P j on the appro-
priate diagrams, the calculations are reduced to the
evaluation of one- and two-loop propagator-type mass-
less Feynman integrals. In the original calculation
(Loladze, Surguladze, and Tkachov, 1984, 1985; Surgu-
ladze and Tkachov, 1988, 1990), all Feynman integrals
were evaluated analytically using the REDUCE (Hearn,
1973) program LOOPS (Surguladze and Tkachov,
1989a).
The MS results for the projectors P j in the vector

channel read

P 1@T mm
f8 #5

1
Q4CF

NF

NA

as
B

p H 48232«

1
as
B

p FCF~212!1CAS 18« 242172z~3 ! D G
1O~as

2!J , (5.4)

P 4@T mm
f8 #5

1
Q4CF

NF

NA
CAS as

B

p D 2S 3«29112z~3 ! D 1O~as
3!,

(5.5)

P 5@T mm
f8 #501O~as

3!, (5.6)

SP 2
fÞf81

1
D
P 3

fÞf8D @T mm
f8 #

5
1
Q4CFTS as

B

p D 2S 24« 260196z~3 ! D 1O~as
3!, (5.7)

SP 2
f5f81

1
D
P 3

f5f8D @T mm
f8 #5

1
Q4H 61

as
B

p
CFS 321

11
4

« D
1S as

B

p D 2CFFCF

387
16

1CAS 118«
1
7
16D

1TS 34«
2
15
4

16z~3 ! D
2TNS 12«

1
7
4 D G1O~as

3!J .
(5.8)

The vanishing of P 5@T mm
f8 # at the two-loop level is the

consequence of gauge invariance, as was shown by Spiri-
donov (1987). Combining Eqs. (2.48) and (2.49) with the
above results and renormalizing the bare coupling via
Eq. (2.24), we obtain MS O(as

2) analytical expressions
for the coefficient functions in the vector channel (Sur-
guladze and Tkachov, 1990),
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CG2~Q2!5
1
Q4CF

NF

NA

1
6

as

p F11
as

p SCA

2
2
CF

4 D1O~as
2!G ,
(5.9)

Cq̄q
f5f8~Q2!5

1
Q4H 21

as

p

CF

2 F11
as

p S 1298 CF2
25
18
CA

2
5
9
TN1T(2314z~3 !)D1O~as

2!G J (5.10)

Cq̄q
fÞf8~Q2!5

1
Q4S as

p D 2CFTS 2
3
2

12z~3 ! D1O~as
3!. (5.11)

The above results are gauge invariant. This statement
was checked by straightforward calculation in an arbi-
trary covariant gauge up to the term ;« (Surguladze
and Tkachov, 1990). The dependence on the gauge pa-
rameter canceled. Thus it is simplest to perform the cal-
culation in the Feynman gauge. For simplicity, we have
omitted the terms ;log(mMS

2 /Q2), taking mMS
2

5Q2. The
dependence on m can be restored via the renormaliza-
tion group (see below). Note that the coefficient func-
tion Cq̄

fÞf8 is due to the diagrams pictured in Fig. 4 with
disconnected fermion lines of the virtual loop (see also
Fig. 2).
Specifically for QCD with the SU c(3) symmetry

group, we obtain

CG2~Q2!5
1
Q4

1
12

as

p S 11
as

p

7
6

1O~as
2! D , (5.12)

Cq̄q
f5f8~Q2!5

1
Q4H 21

2
3

as

p F11
as

p S 956 12z~3 !2
5
18
N D

1O~as
2!G J , (5.13)

Cq̄q
fÞf8~Q2!5

1
Q4S as

p D 2S 211
4
3

z~3 ! D1O~as
3!. (5.14)

Note the very large O(as
2) coefficient in Eq. (5.13).

However, this coefficient is renormalization scheme de-
pendent and requires special analysis (see below).
In the scalar and pseudoscalar channels, the general

expression for the coefficient functions (2.45) takes the
form

Ci~Q !5Zm
2 (

j
p jF T ~Q !

~mf
B!2G~ZO

21! ji , (5.15)

where Zm5mf
B/mf is the quark mass-renormalization

constant [see Eq. (2.25)]. The g5 matrix is defined within
the dimensional regularization according to Eq. (4.10).
It is easy to see that in the calculations of CG2, two
matrices ig5 can be anticommuted over the fermion

propagators and can ‘‘annihilate’’ each other so that the
results in both channels coincide. The calculational pro-
cedure is exactly the same as it was for the vector chan-
nel, except for the need for mass renormalization. The
results for the coefficient functions CG2 and Cq̄q

f in the
MS scheme are as follows (Surguladze and Tkachov,
1986, 1990). In the (pseudo)scalar channel,

CG2~Q2!5
1
Q2CF

NF

NA

1
4

as

p F11
as

p S 32CA1
3
4
CFD

1O~as
2!G . (5.16)

In the scalar channel,

Cq̄q
f5f8~Q2!5

1
Q2H 31

as

p

39
4
CFS 11

as

p FCFS 447208
2
21
13

z~3 ! D
1CAS 389144

1
3
26

z~3 ! D2
5
39
T2

25
36
TN G

1O~as
2!J , (5.17)

Cq̄q
fÞf8~Q2!5

1
Q2S as

p D 2CFTS 2
5
4 D1O~as

3!, (5.18)

and, in the pseudoscalar channel,

Cq̄q
f5f8~Q2!52

1
Q2H 11

as

p

17
4
CFS 11

as

p FCFS 583272
2
45
17

z~3 ! D
1CAS 2443816

1
27
34

z~3 ! D1
5
17
T2

167
204

TN G
1 O(as

2) D J . (5.19)

The result for Cq̄q
fÞf8 coincides with the analogous one

for the scalar channel.
Let us turn to the renormalization-group analysis of

the above results. In this particular case it is possible to
use the following trick (Surguladze and Tkachov, 1990).
Note first that the vacuum average of the renormalized
operators G2 and mq̄q and their coefficient functions
depend on the renormalization parameter m and there-
fore are not convenient for further analysis. However, as
was shown by Collins, Duncan, and Joglekar (1977; see
also Nielsen, 1977; Tarrach, 1982; and Narison and Tar-
rach, 1983), the vacuum average of the trace of the
energy-momentum tensor

^Qaa&052
b~as!

2b0
^~Gmn

a !2&01S 12
2gm~as!

b0
D

3(
f

^mfq̄fqf&0 (5.20)

is renormalization-group invariant. On the other hand,
in the MS-type schemes, the quark condensate
^mfq̄fqf&0 is renormalization-group invariant to all or-
ders of perturbation theory (see, e.g., Tarrach, 1982).
One can introduce the renormalization-group-invariant
quantity

FIG. 4. Two-loop diagrams forming Cq̄q
fÞf8 .
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V52
b~as!

b0
^~Gmn

a !2&02
4gm~as!

b0
(
f

^mfq̄fqf&0 (5.21)

so that the new coefficient functions defined from the
equation

CG2S m2

Q2,asD ^~Gmn
a !2&01Cq̄q

f S m2

Q2,asD(
f

^mfq̄fqf&0

5C̄G2S m2

Q2,asDV1C̄q̄q
f S m2

Q2,asD(
f

^mfq̄fqf&0 (5.22)

should be the renormalization-group invariants. This is
true, since the left-hand side of Eq. (5.22) is directly
connected to the observables (Shifman, Vainshtein, and
Zakharov, 1979) and, consequently, is invariant. From
Eqs. (5.21) and (5.22), we find the invariant coefficient
functions corresponding to the invariant combinations
of the gluon and quark condensates,

C̄G2S m2

Q2,asD52
b0

b~as!
CG2S m2

Q2,asD , (5.23)

C̄q̄q
f S m2

Q2,asD5Cq̄q
f S m2

Q2,asD2
4gm~as!

b~as!
CG2S m2

Q2,asD .
(5.24)

Note that, in fact, there are terms of the type mf
2mf8

2

or/and mf
4 in the right-hand side of Eq. (5.22). However,

these terms obviously do not affect our equations for
invariant coefficient functions. The two-loop coefficient
functions for ;m4 terms have been calculated by
Chetyrkin, Gorishny, and Spiridonov (1985). The contri-
butions from such terms are negligible for phenomeno-
logical applications and will not be discussed here.
Now one can use the renormalization-group invari-

ance of the coefficient functions and write

C̄iS m2

Q2,asD5C̄i(1,as~Q
2!). (5.25)

Reevaluating the coefficient functions for the u ,d ,s
light quarks (N53), we obtain the following results in
the MS scheme. In the vector channel

C̄G2(as~Q
2!)5

1
Q4

1
12S 12

as~Q
2!

p
0.61111O~as

2! D ,
(5.26)

C̄q̄q
f5f8(as~Q

2!)5
1
Q42F110.4074

as~Q
2!

p

3S 11
as~Q

2!

p
14.81801O~as

2! D G .
(5.27)

In the scalar channel

C̄G2(as~Q
2!)5

1
Q2

1
8S 11

as~Q
2!

p
3.72221O~as

2! D ,
(5.28)

C̄q̄q
f5f8(as~Q

2!)5
1
Q23F114.4074

as~Q
2!

p

3S 11
as~Q

2!

p
7.68791O~as

2! D G .
(5.29)

In the pseudoscalar channel

C̄q̄q
f5f8(as~Q

2!)52
1
Q2F115.4444

as~Q
2!

p

3S 11
as~Q

2!

p
9.45591O~as

2! D G .
(5.30)

For all channels

C̄q̄q
fÞf8(as~Q

2!)5Cq̄q
fÞf8(as~Q

2!)1O~as
3!. (5.31)

Note, again, very large O(as
2) corrections for the coef-

ficient functions of quark condensates in the MS scheme.
The running coupling is evaluated at the typical had-
ronic mass scale. The O(as) corrections have also been
calculated for the dim=6 operators (Lanin, Spiridonov,
and Chetyrkin, 1986). We also mention the calculations
in the case of heavy quark currents (see, e.g., Broadhurst
et al.., 1994 and references therein).

VI. R(s) IN ELECTRON-POSITRON ANNIHILATION
TO O(as

3)

In this section we present an outline of the evaluation
of the corrections up to O(as

3) to the total cross section
in the process e1e2→hadrons (Fig. 5) in the limit of
zero light quark masses and infinitely large top mass. We
also mention the QCD evaluation of the hadronic decay
rates of the Z boson and the relevant quark mass ef-
fects.
These calculations were first attempted by Gorishny,

Kataev, and Larin (1988). However, it was shown that
those results were incorrect. Indeed, about five years
ago an independent calculation of the above quantity
was completed (Surguladze and Samuel, 1991a, 1991b).
The result is much smaller and has the opposite sign

FIG. 5. The process e1e2→hadrons. The shaded bulb includes
any interactions of quarks and gluons (or ghosts) allowed in
QCD. The dots cover any relevant number of gluon and quark
propagators.
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compared with the old 1988 result. This finding was con-
firmed shortly after that by Gorishny, Kataev, and Larin
(1991).
In the process shown in Fig. 5, an electron-positron

pair annihilates, producing either a photon or a Z bo-
son, which further produces quark-antiquark pairs (in
QED) plus gluons (if strong interactions are ‘‘switched
on’’). Finally, quarks, through hadronization, form had-
ronic final states with probability equal to 1 (confine-
ment hypothesis), and the total cross section is given by

s tot~e
1e2→hadrons!5

4pa2

3s
3(

f
Qf

2~11d QCD!, (6.1)

where s is the total center-of-mass energy squared; Qf is
the electric charge of the quark flavor f participating at
the given energy; factor 3 stands for the number of color
degrees of freedom; and dQCD stands for the strong-
interaction contributions. The hadronic production in
electron-positron annihilation is usually characterized in
terms of the R ratio—the total hadronic cross section
normalized by the muon pair-production cross section,

R~s !5
s tot~e

1e2→hadrons!
s~e1e2→m1m2!

53(
f
Qf

2~11dQCD!. (6.2)

The above expressions are relevant at energies much
less than the Z mass (As!MZ), corresponding, for in-
stance, to the PEP/PETRA energy range. At LEP the
effects of the Z boson become important. The corre-
sponding R ratio is defined as a ratio of the hadronic
and electronic widths of the Z boson,

RZ5
G~Z→hadrons!

G~Z→e1e2!
. (6.3)

Note that the total hadronic width of the Z boson in the
above equation is the sum of the vector and axial
current-induced decay rates. Strictly speaking, those
rates get different strong-interaction contributions. In
this section we calculate the QCD corrections in the vec-
tor channel—dQCD in the limit of massless light quarks
and the infinitely large top mass. This quantity is, in fact,
relevant for the axial part as well. To get the complete
axial decay rate, additional contributions are necessary.
For details, see the original works: Chetyrkin and Kühn
(1990); Kniehl (1990); Kniehl and Kühn (1990); Chetyr-
kin, Kühn, and Kwiatkowski (1992); Chetyrkin (1993a);
Soper and Surguladze (1994); Surguladze (1994c); the
review articles by Kniehl (1994b, 1995b); Soper and Sur-
guladze (1995a); and Sec. IV of this paper.

A. R(s) via renormalization constants

The vacuum polarization function P(Q2) defined in
Eq. (2.10) has a cut along the negative Q2 axis in the
massless case. The ratio R(s) can be found by taking the
imaginary part of P(s1i0), according to Eq. (2.12). Al-
ternatively, R(s) can also be found from Eq. (2.13),
which in combination with Eq. (2.16) gives to O(as

3)

R~s !5R01
as~s !

p
R11S as~s !

p D 2R2

1S as~s !

p D 3SR32
p2b0

2

3
R1D . (6.4)

The origin of the large and negative scheme-scale-
independent term R1p

2b0
2/3 can be understood if one

takes into account the presence of ;log3m2/s terms at
O(as

3) in the P function and

1
p
Im log3~s1i0 !523 log2s1p2.

The term R1 at O(as
3) is due to the coupling renormal-

ization. Note that the Ri in the above equation are the
perturbative coefficients of the D(Q2) function defined
in Eq. (2.13). For the definition of the procedure of ana-
lytical continuation and the origin of additional ;p2

terms, see also Krasnikov and Pivovarov (1982), Pen-
nington and Ross (1982), Radyushkin (1982), and Pivo-
varov (1992a).
Substituting Eq. (2.27) with the renormalized strong

coupling into Eq. (2.12) and taking into account rela-
tions (2.29), (2.30), and (2.33), we obtain

R~s !52
3
4HZ1,211

as~m!

p
~2Z2,21!1S as~m!

p D 2
3S 3Z3,212b0P2,012b0Z2,21log

m2

s D
1S as~m!

p D 3F4Z4,2122b0P3,02b1P2,012b0
2P2,1

2
2p2b0

2

3
Z2,211~6b0Z3,2112b1Z2,2122b0

2P2,0!

3log
m2

s
12b0

2Z2,21log
2

m2

s G1O~as
4!J . (6.5)

Note that the appearance of perturbative coefficients of
the renormalization constant in the above equation is
totally due to the relations (2.33). In fact, ZP has only
simple poles and hence no imaginary part. The latter is
the specific feature of the MS prescription. Equation
(6.5) exhibits one of the main ideas of this calculation.
Namely, in order to calculate the l-loop contribution to
R , it suffices to calculate the l-loop counterterm ZP to
the bare quantity PB, and the (l21)-loop approxima-
tion to PB. In other words, the minimal information
necessary to obtain the four-loop R(s) is contained in
the divergent part of the one-loop diagram, two-loop
diagrams calculated up to ;« terms, three-loop dia-
grams calculated up to the finite parts in the limit
«→0, and only leading ;1/« terms in the overall coun-
terterms of the four-loop diagrams. In fact, as we dem-
onstrate in Sec. VI.B, using the infrared rearrangement
procedure (Vladimirov, 1980; Chetyrkin and Tkachov,
1982), one can complete the entire calculation dealing
effectively with only three-loop diagrams. We mention
once again that, through the procedure of infrared rear-
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rangement, within the MS prescription, the problem of
calculation of the counterterms to arbitrary l-loop dia-
grams with an arbitrary number of masses and external
momenta can be reduced to the calculation of
(l21)-loop propagator-type massless integrals up to fi-
nite terms. In our case l54. On the other hand, the
recursive-type algorithms for multiloop Feynman inte-
grals (Chetyrkin and Tkachov, 1981; Tkachov, 1981,
1983a, 1983b) and their computer implementation (Sur-
guladze and Tkachov, 1989a; see also Gorishny, Larin,
Surguladze, and Tkachov, 1989; Surguladze, 1989b,
1989c, 1992) allow one to calculate propagator-type
Feynman diagrams to three-loop level.

B. Full calculational procedure
with a typical four-loop diagram

In this subsection we demonstrate the full calcula-
tional procedure for a typical four-loop diagram pictured
in Fig. 6, which contributes to the photon renormaliza-
tion constant ZP and hence to the R ratio. To simplify
the description, in some cases we shall avoid compli-
cated equations, substituting for them their graphical
representation.
We need to evaluate the counterterm to the diagram

pictured in Fig. 6. In other words, we should evaluate
2KR8 for this diagram (see Sec. II.D). A simple power
counting shows that the given diagram diverges as

G; lim
Q→`

Q4D214,

and the superficial degree of divergence is 2. Using the
fact that the counterterm has only a polynomial depen-
dence on the external momenta Q within the MS pre-
scription, one can remove such a dependence by differ-
entiating the diagram twice with respect to Q and then
setting the external momentum to zero. At the next step,
since there is no dependence on the external momen-
tum, one can introduce a new, fictitious external momen-
tum flowing through one of the diagram lines. This line
should be chosen in a way that simplifies the topology of
the diagram and avoids infrared divergences. The above
procedure for the diagram in Fig. 6 is displayed in the
following graphical equation,

(6.6)

FIG. 6. A typical four-loop nonplanar-type diagram contribut-
ing to R(s).
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where the dot and dashes on the lines result from differentiating the corresponding fermion propagators

Boxes contain the corresponding three-loop propagator-
type subgraphs with subtracted divergences—complete
R operation (Fig. 7). The dotted lines mean that this line
is temporarily ‘‘torn.’’ After the evaluation of boxes, the
parts of the torn line should be pasted and a trivial
fourth-loop integration should be done, taking into ac-
count the corresponding exponents of the propagators
due to the three-, two-, and one-loop ‘‘box’’ insertions.
The above procedure gives a great simplification of the
problem. Indeed, the evaluation of the four-loop coun-
terterm is reduced to the evaluation of three-, two-, and
one-loop graphs.
The complete R operation of the three-loop diagram

insertions corresponding to the ones on the right-hand
side of Eq. (6.6) is given in Fig. 7. Graphs in the brackets
correspond to two- and three-loop counterterms. There
is no one-loop divergent subgraph in this particular dia-
gram. Thus

~Gi![KR8$Gi%,

where Gi is any divergent subgraph of the given dia-
gram. It is easy to recognize that the two-loop subgraph
in Fig. 7 does not have subdivergences (only an overall
one), and the corresponding counterterm is simply the
pole part of this subgraph,

Analogously, because of the topology, the three-loop
counterterm does not have a subdivergence and the cor-
responding counterterm is the pole part of this diagram,

If, in general, a diagram contains divergent subgraphs,
then the recursive formula (2.35) should be used.
As a result of the above manipulations, we managed

to reduce the problem of calculation of the counterterm
to the four-loop diagram pictured in Fig. 6 to the calcu-
lation of several three-, two-, and one-loop diagrams
shown in Fig. 7. Note, however, that the ‘‘dots’’ and
‘‘dashes’’ on the diagram lines make their evaluation sig-
nificantly more difficult. The computer programs for
analytical programming systems capable of handling
such calculations are the SCHOONSCHIP program
MINCER (Gorishny, Larin, Surguladze, and Tkachov,
1989; Surguladze, 1989b, 1989c) and the FORM pro-
gram HEPLoops (Surguladze, 1992). The latter is espe-
cially well suited for large-scale calculations and is much
more efficient than the MINCER program.
It is important to stress that, in fact, it is sufficient to

evaluate only the KR8 for the relevant three-loop sub-
graphs. In other words, it is not necessary to calculate
separately three-loop counterterms similar to the graph
in the last brackets for the box A in Fig. 7. Indeed, a
more detailed analysis gives

R$G%5R8$G%2~12D/2!K S 1
12D/2

R8$G% D , (6.7)

where G is the corresponding three-loop subgraph. The
above relation allows simple computer implementation
and facilitates calculations considerably.
The complete R operation for each four-loop diagram

generally has the form

S m2

Q2D 4«

f4~«!2(
l51

3 S m2

Q2D ~42l !«

cl~1/«!f42l~«!,

where f i(«) is the result of the calculation of the corre-
sponding Feynman graphs including the last trivial loop
integration, and cl are the l-loop counterterms, polyno-

FIG. 7. Complete R operation for the three-loop subgraphs.
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mials in 1/« . As we already mentioned, in the MS-type
renormalization scheme, the counterterm for a particu-
lar diagram is a polynomial in dimensional parameters
(see, e.g., the textbook by Collins, 1984 and references
therein). Thus the terms of the type (1/«)nlnm(m2/Q2),
which appear due to the expansion of the factors
(m2/Q2) l« into the Laurent series in « , must be canceled
in the final answer for the particular diagram. This can
be used to test the calculations at the graph-by-graph
level. Recall that we calculate the counterterm Z4,i to
the four-loop diagram.
Finally, for the contribution to the ZP of the diagram

pictured in Fig. 6, we obtain the following result,

S as

4p D 3NFCF~CF2CA!~CF2CA/2!
1

322«

3F4 1«3226
1
«2

1
65
4
1
«

240z~3 !
1
«G .

The CPU time for the above diagram on a 0.8 MFlop
IBM compatible mainframe was over 6 hours. The ex-
tended version of the program MINCER for the system
SCHOONSCHIP was used. Note that the above result,
as well as the total result for the photon renormalization
constant, does not depend on any modification of the
minimal subtraction prescription.

C. Four-loop results

In this subsection, we present results and some of the
details of the O(as

3) QCD evaluation of the ratio R(s)
in electron-positron annihilation (Surguladze and Sam-
uel, 1991a, 1991b).
The total number of topologically distinct Feynman

diagrams contributing to Z1,i is 1; to Z2,i , 2; to Z3,i , 17;
and to Z4,i , 98. However, after application of the infra-
red rearrangement procedure, which, as discussed ear-

lier, involves differentiating twice with respect to the ex-
ternal momentum of the diagram, the number of four-
loop graphs that need to be calculated increases to
approximately 250. Furthermore, there are one-, two-,
and three-loop diagrams, approximately 600, that need
to be calculated to subtract subdivergences (evaluate
R8) for all four-loop diagrams.
All analytical calculations of the four-loop diagrams

have been performed by using the program, which is an
extended version (Surguladze, 1989c) of the program
MINCER (Gorishny, Larin, Surguladze, and Tkachov,
1989; Surguladze, 1989b). This version includes new sub-
programs for fourth-loop integration and for ultraviolet
renormalization. Evaluation of one- and two-loop coun-
terterms has been done by using the program LOOPS
(Surguladze and Tkachov, 1989a). The above programs
are written on the algebraic programming systems
SCHOONSCHIP (Veltman, 1967; Strubbe, 1974) and
REDUCE (Hearn, 1973), respectively. The full calcula-
tion took over 700 hours of CPU time on three IBM
compatible 0.8 MFlop EC-1037 mainframes with the
SCHOONSCHIP system. We have also recalculated
some of the difficult four-loop diagrams with
HEPLoops—a new program for analytical multiloop
calculations (Surguladze, 1992). The status of these and
some other programs has been reviewed recently in Sur-
guladze (1994d).
In the diagram calculations the Feynman gauge is

used. The momentum integrations are performed within
the MS modification (Bardeen, Buras, Duke, and Muta,
1978) of the minimal subtraction prescription
(’t Hooft, 1973), which amounts to formally setting
g5z(2)5log4p50. A discussion of the scheme depen-
dence of the results is given at the end of this section
and in Sec. IX. The full graph-by-graph results will be
published elsewhere.
The analytical result for the four-loop photon renor-

malization constant reads

Zph[11
a

4p
ZP511NF

a

4p(
f
Qf

2H 2
4
3
1
«

1
as

4pF1«~22CF!G1S as

4p D 2F 1«2S 229 CFCA2
8
9
NTCFD

1
1
«S 23CF

22
133
27

CFCA1
44
27
NTCFD G1S as

4p D 3F 1«3S 2
121
27

CFCA
2 1

88
27
NTCFCA2

16
27
N2T2CFD

1
1
«2S 2

11
9
CF
2CA1

2381
162

CFCA
2 2

14
9
NTCF

22
778
81

NTCFCA1
88
81
N2T2CFD

1
1
«S 232 CF

31S 2
430
27

1
88
9

z~3 ! DCF
2CA1S 2

5815
972

2
88
9

z~3 ! DCFCA
2 1S 33827 2

176
9

z~3 ! DNTCF
2

1S 769243
1
176
9

z~3 ! DNTCFCA1
308
243

N2T2CFD G1O~as
4!J 1

a

4pS as

4p D 3S (
f
QfD 2S dabc4 D 2S 2

176
9

1
128
3

z~3 ! D 1« .
(6.8)
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It should be stressed that the Riemann z functions,
z(4) and z(5), which appear at the individual graph
level, cancel in the above expression. Moreover, as we
have observed, the z(4) has disappeared within each
gauge-invariant set of diagrams. Note that z(3) disap-
pears for QED (CF51,CA50,T51) except the last
term, which comes from the ‘‘light-by-light’’-type dia-
grams (Fig. 8). The diagrams pictured in Fig. 8 are some
of the most complicated ones, and the computation of
each of them requires over 80 h of CPU time. Note,
however, that the second and fourth diagrams in Fig. 8
differ correspondingly from the first and third ones only
by the SU(N) group weights. So, in fact, only two of
them have been calculated. The result (6.8) does not

depend on the particular modification of the minimal
subtraction prescription.

In order to evaluate R(s) to O(as
3), besides the four-

loop ZP we calculate the unrenormalized hadronic
vacuum polarization function PB(Q2) to the three-loop
level. We get the following analytical result in the MS
scheme.

PBS mMS
2

Q2 ,as
BD 5NF(

f
Qf

2H S mMS
2

Q2 D «F43 1
«

1
20
9

1
112
27

«1
656
81

«22
28
9

z~3 !«2G
1S as

B

4p
D S mMS

2

Q2 D 2«

CFF21«1
55
3

216z~3 !1«S 171118
2
152
3

z~3 !224z~4 ! D G
1S as

B

4p
D 2S mMS

2

Q2 D 3«FCF
2 S 2

2
3
1
«

2
286
9

2
296
3

z~3 !1160z~5 ! D
1CFCAS 449 1

«2
1
1948
27

1
«

2
176
3

z~3 !
1
«

1
50339
81

2
3488
9

z~3 !288z~4 !2
80
3

z~5 ! D
1NTCFS 2

16
9

1
«2

2
704
27

1
«

1
64
3

z~3 !
1
«

2
17668
81

1
1216
9

z~3 !132z~4 ! D G J . (6.9)

The above result depends on the particular modifications of the minimal subtraction prescription, unlike the result for
the renormalization constant (6.8).
Substituting the expressions for the relevant Zi ,j and P i ,j , extracted by comparing Eqs. (6.8) and (6.9) to Eqs.

(2.26) and (2.27), into Eq. (6.5) and recalling the values for b0 and b1 from Eq. (2.8), we get the following MS
analytical result for R(s) at the four-loop level,

RMS~s !5NF(
f
Qf

2H 11S as~s !

4p D ~3CF!1S as~s !

4p D 2FCF
2 S 2

3
2 D 1CFCAS 1232 244z~3 ! D 1NTCF~222116z~3 !!G

1S as~s !

4p D 3FCF
3 S 2

69
2 D 1CF

2CA~21272572z~3 !1880z~5 !!CFCA
2 S 9044554

2
10948
9

z~3 !2
440
3

z~5 ! D
1NTCF

2 (2291304z~3 !2320z~5 !)1NTCFCAS 2
31040
27

1
7168
9

z~3 !1
160
3

z~5 ! D
1N2T2CFS 483227

2
1216
9

z~3 ! D 2p2CFS 113 CA2
4
3
NT D 2G1O~as

4!J
1S as~s !

4p D 3S (
f
QfD 2S dabc4 D 2F1763 2128z~3 !G1O~as

4!. (6.10)

The logarithmic contributions are absorbed in the running coupling by taking m25s . Those contributions will be

FIG. 8. ‘‘Light-by-light’’-type diagrams.
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presented explicitly in Sec. IX. Note that z(5) appears in the final result due to the contributions from P3,0 . The last
term ;(( fQf)

2 comes from the so-called light-by-light-type diagrams (Fig. 8). For standard QCD with the SU c(3)
gauge group, we obtain

RMS~s !53(
f
Qf

2H 11
as~s !

p
1S as~s !

p D 2F36524 211z~3 !2NS 11122
2
3

z~3 ! D G1S as~s !

p D 3F87029288
2
121
8

z~2 !2
1103
4

z~3 !

1
275
6

z~5 !1NS 2
7847
216

1
11
6

z~2 !1
262
9

z~3 !2
25
9

z~5 ! D 1N2S 151162
2
1
18

z~2 !2
19
27

z~3 ! D G J
1S (

f
QfD 2S as~s !

p D 3F55722
5
3

z~3 !G1O~as
4!. (6.11)

Finally, taking into account the values for the rele-
vant Riemann z functions, z(2)5p2/6, z(3)
51.2020569 . . . , and z(5)51.0369278 . . . , we obtain
the numerical form

RMS~s !53(
f
Qf

2F11
as~s !

p
1S as~s !

p D 2~1.985720.1153N !

1S as~s !

p D 3~26.636821.2001N20.0052N2!G
2S (

f
QfD 2S as~s !

p D 31.23951O~as
4!. (6.12)

Note that only 19 four-loop diagrams contribute to the
term ;N and 2 four-loop diagrams contribute to the
term ;N2. The most complicated diagrams are pictured
in Fig. 9. The CPU time for each of them was over 100 h,
and the intermediate expression had as many as ;105–
106 terms.
It is known that the perturbative coefficients for

R(s) are scheme dependent. The above result was ob-
tained in the modified minimal subtraction, the so-called
MS scheme introduced by Bardeen, Buras, Duke, and
Muta (1978). While the scheme-scale-dependence prob-
lem will be discussed in Sec. IX, here we present the
results for a couple of other versions of the minimal
subtraction scheme. First, we consider the so-called G
scheme (Chetyrkin and Tkachov, 1979, 1981; Chetyrkin,
Kataev, and Tkachov, 1980), which is convenient for
practical multiloop calculations. The G scheme is de-
fined in such a way that the trivial one-loop integral in
this scheme is

m2«E d422«p

~2p!422«

1
p2~p2k !2

5
1

~4p!2S m2

k2 D
«1
«
.

The result for R(s) in this scheme is

RG~s !53(
f
Qf

2F11
as~s !

p
1S as~s !

p D 2~23.51410.218N !

1S as~s !

p D 3~210.98020.692N10.029N2!G
2S (

f
QfD 2S as~s !

p D 31.2401O~as
4!. (6.13)

The parametrization of the running coupling in the
above equation has the same form as that in Eq. (2.17).
However, the parameter L has to be changed to some
other parameter LG .
Finally, in the original MS scheme ( ’t Hooft, 1973), we

get

RMS~s !53(
f
Qf

2F11
as~s !

p
1S as~s !

p D 2~7.35920.441N !

1S as~s !

p D 3~56.02628.778N10.176N2!G
2S (

f
QfD 2S as~s !

p D 31.2401O~as
4!. (6.14)

Note that the corresponding term ;N at O(a s
2) given

in Narison (1982) is incorrect.
As one can see, starting from O(as

2) the results
heavily depend on the choice of the particular modifica-
tions of the minimal subtraction scheme. This depen-
dence, called renormalization-group ambiguity of per-
turbative results, is an important problem and deserves
special consideration. We shall return to this issue in
Sec. IX.
Concluding this section, we mention once again that

the results of the above-described calculation of the
four-loop correction to the R(s) have been published in
Surguladze and Samuel (1991a, 1991b) and

FIG. 9. Some of the most complicated diagrams.
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independently3 in Gorishny, Kataev, and Larin (1991)
and hence, most likely, the above results are reliable.
Interesting relations between the radiative corrections
for different observables, found by Brodsky and Lu
(1994, 1995), serve, in particular, as another confirma-
tion of our results.

VII. G(t2→nt1HADRONS) TO O(as
3)

The other important inclusive process for phenom-
enology and testing the standard model is the hadronic
decay of the t lepton (Fig. 10). For a recent review see,
for instance, Pich (1994a). For earlier references see Al-
tarelli (1992), Marciano (1992), and Pich (1991).
In this section, using our result of four-loop calcula-

tion of the s tot(e
1e2→hadrons) (Surguladze and Sam-

uel, 1991a, 1991b), we evaluate the hadronic decay rate
of the t lepton to O(as

3) in perturbative QCD (Pich,
1990; Gorishny, Kataev, and Larin, 1991; Samuel and
Surguladze, 1991; see also Braaten, Narison, and Pich,
1991; Diberder and Pich, 1992a, 1992b; Pich, 1992a,
1992b; Pivovarov, 1992b). We also comment on the sta-
tus of the nonperturbative corrections to this quantity.
We follow the method first suggested by Tsai (1971),

Shankar (1977), and Lam and Yan (1977) for theoretical
evaluation of heavy lepton decay rates. This method has
been further developed for the t lepton, including the
higher-order perturbative corrections and involving the
operator product expansion technique (Wilson, 1969) to
analyze the nonperturbative contributions (Schilcher
and Tran, 1984; Braaten, 1988; Narison and Pich, 1988).
As was shown in the above works, by combining the
operator product expansion technique and analyticity
properties of the correlation function of quark currents,
the ratio

Rt5
G~t2→nt1hadrons!

G~t2→nte
2n̄e!

(7.1)

is calculable in perturbative QCD. Strictly speaking, be-
sides the QCD perturbative parts, the nonperturbative
and weak contributions should be included to estimate
Rt . There are instanton contributions as well. However,
it was shown recently by Nason and Porrati (1994; see

also Kartvelishvili and Margvelashvili, 1995) that these
contributions are completely negligible due to the chiral
suppression factor mumdms/Mt

2 . The Rt can be written
as the following sum,

Rt5Rt
pert1Rt

nonpert1Rt
weak . (7.2)

A. Perturbative QCD contributions

The quantity Rt
pert can be expressed as the following

integral over the invariant mass of the hadronic decay
products of the t lepton (Lam and Yan, 1977; Braaten,
1988),

Rt
pert5

3
4pE0Mt

2 ds

Mt
2S 12

s

Mt
2D 2F S 112

s

Mt
2D ImPT~s1i0 !

1ImPL~s1i0 !G , (7.3)

where Mt is the mass of the t lepton. The functions
PT and PL are the transverse and longitudinal parts of
the correlation function of weak currents of quarks
coupled to a W boson. In fact, PT ,L are the appropriate
combinations of vector and axial parts corresponding to
the vector and axial currents of u ,d ,s light quarks (for
details, see, for example, Pich, 1994a). The expression
for Rt

pert in the form of (7.3) is not quite useful. The
problem is that the correlation functions involved can-
not be calculated at low energies because of the large
nonperturbative effects that invalidate perturbative ap-
proach. However, simple analyticity properties of the
correlation functions allow us to evaluate the integral in
(7.3). Indeed, the function P is analytic in the complex
s plane everywhere except the positive real axis. Ac-
cording to the Cauchy integral theorem, an integral over
s along the closed contour C11C2 (Fig. 11) of the prod-
uct of P(s) with any nonsingular function f(s) is zero.
On the other hand, the imaginary part of the correla-

tion function is proportional to its discontinuity across
the positive real axis. So, the following relation holds,

3See, however, the discussion in the last three paragraphs of
Sec. 3 in the review article by Surguladze (1994d).

FIG. 10. Hadronic decay of the t lepton.

FIG. 11. Integration contour.
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E
0

Mt
2

ds f~s !Im~s !5
1
2iEC1

ds f~s !P~s !

52
1
2iEC2

ds f~s !P~s !, (7.4)

where the C2 is the circle of radius usu5Mt
2 (Fig. 11).

The benefit of the above relation is that, on the right-
hand side, one needs to calculate the correlation func-
tion for usu at Mt

2 . It is to be hoped that Mt is large
enough to use the operator product expansion in powers
of 1/Mt

2 , and the as(Mt) is small enough to use pertur-
bative expansion in as . Then the perturbative method
can, in principle, be used to calculate the leading term in
the operator product expansion and the higher-twist
terms can be estimated semiphenomenologically.
Using Eq. (7.4), one can express the perturbative part

of the ratio Rt by an integral over the invariant mass s
of the final-state hadrons along the contour C2 in the
complex s plane (Fig. 11). In the chiral limit,
mu5md5ms50, the currents are conserved and the
longitudinal part of the P(s) is absent. In the axial chan-
nel, PL(s)5O(mf

2/s); see Sec. IV). For the Rt
pert , we

get

Rt
pert5

3i
8pEC2

ds

Mt
2S 12

s

Mt
2D 2F S 112

s

Mt
2DPT~s !G . (7.5)

Note that the factor (12s/Mt
2)2 suppresses the contri-

bution from the region near the positive real axis where
the P(s) has a branch cut (Braaten, 1988). To simplify
the description, we use the chiral limit, which is a perfect
approximation for Rt . On the other hand, the mass cor-
rections can be included with the calculation very similar
to that in Sec. IV. The actual calculations show (Chetyr-
kin and Kwiatkowski, 1993; see also recent analyses in
Pich, 1994a) that the effects of quark mass corrections
on Rt are well below 1% and can be neglected. Note
also that, in the massless quark limit, the contributions
from vector and axial channels to P coincide at any
given order of perturbation theory; evidently, the results
are flavor independent. So, in this case, for evaluation of

PT(s) in Eq. (7.5), we use our earlier results for the
electromagnetic two-point correlation function that con-
tributes to R(s) in electron-positron annihilation (Sec.
VI).
The function PT(s) can be related to the D(s) func-

tion defined in Sec. II as follows,

2
3
4
s
d

ds
PT~s !5

( f5d ,suVufu2

( fQf
2 D~s !, (7.6)

where Vud and Vus are the Kobayashi-Maskawa matrix
elements. uVudu21uVusu250.99860.002 (see, for ex-
ample, Pich, 1994b). The factor in the right-hand side of
Eq. (7.6) is due to the replacement of the electromag-
netic currents by charged weak currents in the correla-
tion function. Note also that evidently the light-by-light-
type graphs (Fig. 8) do not contribute to the decay width
of the t lepton. Thus the term ;(( fQf)

2 drops out in
the D function. The perturbative coefficients of D(s)
have been given in the previous section up to the four-
loop level in the vector channel [see Eqs. (2.16) and
(6.11)].
Performing the contour integration in Eq. (7.5) using

the relations (7.6) and (2.16), and replacing as(s) by
as(Mt) using the evolution equation (3.19), we obtain in
terms of perturbative coefficients of R(s)

Rt
pert5

uVudu21uVusu2

( fQf
2 HR01

as~Mt
2!

p
R1

1S as~Mt
2!

p D 2SR21
19
12

b0R1D 1S as~Mt
2!

p D 3
3FR31

19
6
R2b01

19
12
R1b11S 26572 2

p2

3 DR1b0
2G

1O~as
4!J , (7.7)

where, as we have already mentioned, the term
;(( fQf)

2 should be omitted in R3 .
Substituting the relevant expressions for Ri and b i

from the previous sections, we obtain the O(as
3) analyti-

cal result in the MS scheme,

Rt
pert~Mt

2!5NF~ uVudu21uVusu2!H 11
as~Mt

2!

p S 34CFD 1S as~Mt
2!

p D 2FCF
2 S 2

3
32D 1CFCAS 947192

2
11
4

z~3 ! D
1NTCFS 2

85
48

1z~3 ! D G1S as~Mt
2!

p D 3FCF
3 S 2

69
128D 1CF

2CAS 2
1733
768

2
143
16

z~3 !1
55
4

z~5 ! D
1CFCA

2 S 55971513824
2
2591
96

z~3 !2
55
24

z~5 ! D 1NTCF
2 S 2

125
192

1
19
4

z~3 !25z~5 ! D
1NTCFCAS 2

24359
864

1
73
4

z~3 !1
5
6

z~5 ! D 1N2T2CFS 3935864
2
19
6

z~3 ! D 2
p2

64
CFS 113 CA2

4
3
NT D 2G1O~as

4!J .
(7.8)

Within the standard QCD with the SU c(3) gauge group, we obtain
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Rt
pert~Mt

2!53~0.99860.002!H 11
as~Mt

2!

p
1S as~Mt

2!

p D 2F31316 211z~3 !2NS 85722
2
3

z~3 ! D G
1S as~Mt

2!

p D 3F5443791152
2
121
8

z~2 !2
8917
24

z~3 !1
275
6

z~5 !1NS 2
8203
144

1
11
6

z~2 !1
733
18

z~3 !2
25
9

z~5 ! D
1N2S 39352592

2
1
18

z~2 !2
19
18

z~3 ! D G1O~as
4!J

N53

, (7.9)

and a numerical form reads

Rt
pert~Mt

2!53~0.99860.002!F11
as~Mt!

p

15.2023S as~Mt!

p D 2126.366S as~Mt!

p D 3
1O~as

4!G . (7.10)

B. On the nonperturbative and electroweak contributions

The nonperturbative contributions to Rt can be ex-
pressed as a power series of corrections in 1/Mt

2 ,

Rt
nonpert;

C2(mf
2~Mt!,uc)

Mt
2 1(

i>2

C2i^O2i&0
Mt

2i , (7.11)

where the mf are u ,d ,s running quark masses, ^O2i&0
are the so-called vacuum condensates, which can be ob-
tained phenomenologically, and the Ci are their coeffi-
cient functions describing short-distance effects. Note
that in Eq. (7.11) we formally include part of the pure
perturbative corrections (the first term), which is due to
the nonvanishing u ,d ,s quark masses. These corrections
for the u and d quarks are completely negligible. The
contribution coming from the s quark is suppressed by
sin 2uC and is also below 1% (Pich, 1990). Presently, the
only way to estimate the strong-interaction effects in the
condensate contributions is by perturbation theory. The
coefficient functions C2i are asymptotic perturbative se-
ries in terms of as . In order to estimate the nonpertur-
bative contributions, one needs to sum up the power
series of the QCD perturbative series. In the previous
section we described the calculation of the high-order
perturbative QCD contributions to the coefficient func-
tions of the dimension 4 power corrections (gluon,
^asG

2&0 and quark, ^mfq̄fqf&0 condensates). It was
shown (Loladze, Surguladze, and Tkachov, 1985; Surgu-
ladze and Tkachov, 1989b, 1990) that the high-order per-
turbative corrections to some of the coefficient functions
are too large. For instance, for the coefficient function of
the condensate ^mss̄s&0 in the vector channel [see Eq.
(5.27)], Leff'30LMS . This indicates that the
renormalization-group-invariant criteria to the perturba-
tive calculability of the QCD contributions to the coef-
ficient function are not fulfilled. The coefficient func-
tions of the dimension 6 condensates are calculated up

to O(as) (Lanin, Spiridonov, and Chetyrkin, 1986); to
analyze the corresponding series, one needs at least the
next-to-leading correction. The above uncertainty in co-
efficient functions C2i allows one to estimate the con-
densate contributions probably not better than their or-
der of magnitude. There is another source of theoretical
uncertainties in the evaluation of condensate contribu-
tions of dimension 6 and higher, where the operator ba-
sis of expansion includes a large number of operators.
Presently, there are no precise methods for estimating
their matrix elements. For the matrix elements of four-
quark operators (dimension 6), the vacuum saturation
approximation (Shifman, Vainshtein, and Zakharov,
1979) is used to express them as the square of the two-
quark matrix elements. However, the vacuum saturation
approximation is not expected to be precise enough in
order to use it in the analyses of the tiny nonperturba-
tive contributions (see, for example, analysis by Al-
tarelli, 1992; see also a brief discussion in Surguladze
and Samuel, 1992b). Indeed, as found by Braaten (1988)
and Pich (1990, 1992a, 1992b, 1994a), the nonperturba-
tive corrections are below the 1% level with large theo-
retical error. The contributions of dim=4 condensates
start at O(as

2) and thus are suppressed by two powers of
as . The dim=6 and dim=8 corrections are suppressed by
the inverse powers of Mt (Mt

6 and Mt
8 , respectively)

and are small. On the other hand, the corrections in
vector and axial channels have opposite signs, and they
largely cancel each other; so the total relative error is
even larger. In the works by Pumplin (1989, 1990), it was
shown that the uncertainty due to threshold effects
makes a significant contribution in the theoretical error
for Rt . In the works by Altarelli (1992) and Altarelli,
Nason, and Ridolfi (1994), an ambiguity ;L2/Mt

2 is dis-
cussed. Earlier, Zakharov (1992) argued that such dim=2
terms in Eq. (7.11) can be generated by ultraviolet
renormalons. For an alternative point of view on the
effects of possible dim=2 terms, see Narison (1994).
However, this issue is still a subject of intensive discus-
sions and likely is far from being settled.
Summarizing, we note that the above-mentioned ma-

jor sources of theoretical uncertainties in the evaluation
of small power corrections place certain restrictions on
the precision theoretical prediction of Rt and conse-
quently on as(Mt). Fortunately, the nonperturbative
corrections are suppressed and the hadronic decay of
the t still remains as a good source to extract the low
energy as .
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Finally, we note that the electroweak contributions
Rt
weak were calculated by Marciano and Sirlin (1988) and

Braaten and Li (1990). Those corrections contain loga-
rithms of Mt/MZ and are not negligible. The leading-
order electroweak corrections given roughly +2% con-
tributions to Rt (see, for example, Pich, 1994a).

VIII. FOUR-LOOP QED RENORMALIZATION-GROUP
FUNCTIONS

In this section we outline the calculation of the stan-
dard QED renormalization-group functions at the four-
loop level in the minimal and momentum subtraction
schemes. These quantities can be obtained as an inter-
mediate result of the calculations of R(s), described in
the previous sections, by replacing the SU c(3) gauge
group invariants for the corresponding diagrams in a
proper way. The results of two independent calculations
of the four-loop QED b function by Surguladze (1990)
and also by Gorishny, Kataev, and Larin (1990) have
been reported in the joint publications by Gorishny, Ka-
taev, Larin, and Surguladze (1991a, 1991c).

A. General formulas

The Lagrangian density of standard QED is

LQED52
1
4
FmnF

mn1i(
j

c̄ jg
mDmc j2(

j
mjc̄ jc j

2
1

2aG
]mA

m]mA
m, (8.1)

where Fmn5]mAn2]nAm and Dm5]m2ieAm . aG is the
gauge parameter; mj are the fermion masses; c and
Am are the fermion and photon fields; and e is the elec-
tric charge.
Renormalization constants are defined by the rela-

tions

cB5m2«AZFc ,

AB
m5m2«AZphA

m,
(8.2)

aB5m2«Zaa ~a5e2/4p!,

aG
B5ZGaG .

For the fermion-fermion-photon vertex renormalization,
one has

m22«Zvert ec̄gmA
mc5m22«AZaZphZFec̄gmA

mc .
(8.3)

According to the Ward identity in QED (Ward, 1950),
Zvert5ZF , which implies from Eq. (8.3) the identity

ZaZph51. (8.4)

From Eqs. (8.2) and (8.4) we get

aB5m2«Zph
21a . (8.5)

The gauge invariance of the QED Lagrangian implies
the absence of the counterterm for the gauge-fixing term
in (8.1), and thus ZG5Zph .

Using the relation (8.5) and the renormalization-
group invariance of ‘‘bare’’ coupling m2daB/dm250,
taking into account that Zph depends on m only via a
and also the standard definition of the QED MS b func-
tion

bQED
MS ~a!5

1
4p

m2
da

dm2U
aB fixed

, (8.6)

we obtain a convenient expression for the further evalu-
ation of the b function,

bQED
MS ~a!52

1
4p

lim
«→0

«a

12a
]

]a
logZph

. (8.7)

B. Four-loop results

The photon field renormalization constant Zph can be
found from the QED relation, analogous to Eq. (6.8),
where only 58 QED four-loop diagrams contribute to
P(m2/Q2,a). The prescription for the evaluation of the
diagram contributions to the PB is analogous to the one
described in Sec. II. The total CPU time on the three
IBM compatible mainframes was approximately 400
hours. Setting CF51, CA50, T51, and as5a in Eq.
(6.8), we obtain the four-loop photon renormalization
constant in QED, corresponding to the minimal subtrac-
tion prescription,

Zph5N2
a

4p

4
3«
N2S a

4p D 22«N
2S a

4p D 3F 8
9«2

N2
1
«S 231

44
27
N D GN

2S a

4p D 4H 16
27«3

N21
1
«2S 149 N2

88
81
N2D

2
1
«F232 2S 1909 2

208
9

z~3 ! DN1
308
243

N2G JN . (8.8)

Substituting the expression for Zph into Eq. (8.7), we
obtain the following result for the four-loop QED b
function in the MS-type schemes,

bQED
MS ~a!5

4
3
NS a

4p D 214NS a

4p D 32NS 21
44
9
N D S a

4p D 4
2NF462S 76027 2

832
9

z~3 ! DN1
1232
243

N2G S a

4p D 5.
(8.9)

It is useful for further applications to present the result
for the Johnson-Willey-Baker F1 function (Johnson,
Willey, and Baker, 1967; Baker and Johnson, 1971;
Johnson and Baker, 1973). This function can be obtained
from the result for b QED

MS by subtracting the contribu-
tions of the diagrams with fermion loop insertions into
the photon lines and reducing the power in a/4p by 1
(with N51). We obtain
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F1~a!5
4
3S a

4p D14S a

4p D 222S a

4p D 3246S a

4p D 4. (8.10)

Note that all coefficients up to four-loop level are ratio-
nal numbers. The results for most of the individual
graphs do contain transcendental z(3), z(4), and
z(5). The z(4) and z(5) cancel within each gauge-
invariant set of diagrams. The three-loop results agree
with the ones obtained by de Rafael and Rosner (1974).
It is possible to recalculate the MS QED b function in
the form of the Gell-Mann–Low C(a) function—the
QED b function in the MOM scheme. See details in
Gorishny, Kataev, Larin, and Surguladze (1991a; see also
Adler, 1972 and de Rafael and Rosner, 1974). We obtain
the Gell-Mann–Low C function at the four-loop level,

C~a!5
4
3
NS a

4p D 214NS a

4p D 32NF21S 1849 2
64
3

z~3 ! DNG
3S a

4p D 42NF462S 1041
512
3

z~3 !2
1280
3

z~5 ! DN
2S 1282

256
3

z~3 ! DN2G S a

4p D 5. (8.11)

The O(a4) result agrees with the one obtained by Baker
and Johnson (1969) and Acharya and Nigam (1978,
1985).
Recently, Broadhurst, Kataev, and Tarasov (1993) car-

ried out an additional calculation necessary to convert
the four-loop MS QED b function to the four-loop
QED on-shell b function, usually called the Callan-
Symanzik function bQED

CS (Callan, 1970; Symanzik, 1970,
1971). This function is defined as

bQED
CS ~a!5

me

a

da

dme
U

aB fixed

, (8.12)

where me is the electron pole mass. The subtraction pre-
scription in this case requires all subtractions to be on-
shell. The three-loop bQED

CS was calculated long ago by
de Rafael and Rosner (1974). The four-loop result has
the following form (Broadhurst, Kataev, and Tarasov,
1993),

bQED
CS ~a!5

2
3
NS a

p D1
1
2
NS a

p D 22NS 1161
7
9
N D S a

p D 3
2NF23642S 1242

5
3

z~2 !1
8
3

z~2 !ln22
35
48

z~3 ! DN
2S 901648

2
8
9

z~2 !2
7
48

z~3 ! DN2G S a

p D 4. (8.13)

IX. RENORMALIZATION-GROUP AMBIGUITY
OF PERTURBATIVE QCD PREDICTIONS

In the previous sections we have demonstrated the
calculation of some of the important observables within
the framework of perturbative QCD. This involves cal-
culation of a large number of Feynman diagrams and
requires a very large amount of computer and human

resources. For example, to O(as
3) we have calculated 98

(effectively 250) four-loop Feynman diagrams. The next
order requires calculation of approximately 600–700
five-loop diagrams. Calculations of such a scale are ex-
tremely difficult. On the other hand, perturbative QCD
series are asymptotic ones, and the question of how
many orders need to be calculated can be answered only
from estimates of remainders (see, for example, the text-
book by Collins, 1984). Moreover, perturbative coeffi-
cients beyond the two-loop level, as well as the expan-
sion parameter, are scheme-scale dependent. The
scheme-scale ambiguity, a fundamental property of the
renormalization-group calculations in QCD, does not al-
low one to obtain reliable estimates from the first few
calculated terms without involving additional criteria.
In this section we discuss the extraction of reliable

estimates for observable quantities within perturbation
theory. The problem of scheme-scale dependence of per-
turbative QCD predictions will be considered first
within the MS prescription, and then we shall outline a
scheme-invariant approach along the lines of Stevenson
(1981a, 1981b). We apply the three known approaches
for resolving the scheme-scale ambiguity. As a result, we
fix the scheme-scale parameter, within the framework of
MS prescription, for which all of the criteria tested are
satisfied for the quantity R(s) at the four-loop level
(Surguladze and Samuel, 1993). On the other hand, we
estimate the theoretical error by using the scheme-scale
dependence as a measure of the theoretical uncertainty
(Surguladze and Samuel, 1993; Surguladze, 1994b). We
also mention the recent discovery of commensurate
scale relations by Brodsky and Lu (1994, 1995). These
relations allow one to connect several physical observ-
ables, providing important tests of QCD without
scheme-scale ambiguity.

A. Perturbative QCD series: How many loops
should be evaluated?

The R ratio in electron-positron annihilation is given
within perturbation theory in the form

R~s !5r0F11r1S s

m2Das~m!

p
1r2S s

m2D S as~m!

p D 2
1r3S s

m2D S as~m!

p D 31••• G . (9.1)

Our further discussion is quite general and can be ap-
plied to other observables like Rt or Higgs decay rates.
We consider high enough energies, where R is a function
of a single variable—the center-of-mass energy squared.
Our aim is to evaluate pure QCD effects in R , which
start with the term O(as), within the minimal subtrac-
tion prescription (’t Hooft, 1973). We should stress here
that the calculational methods allowing one to evaluate
perturbative corrections up to the four-loop order (up to
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the five-loop in some cases) is essentially based on some
of the unique features of the MS prescription, and our
choice seems to be well justified. There is an ambiguity
in the choice of renormalization scale parameter m .
Usually we set m25s and absorb the large logarithms in
the definition of the running coupling. On the other
hand, the choice m25xs (x[et) for all x gives equiva-
lent expansions. Evidently, the sum of ‘‘all’’ terms in Eq.
(9.1) does not depend on the choice of m . However, in
practice, we deal with truncated series, where the sum
has a nontrivial dependence on the choice of renormal-
ization parameter. Here we keep the ‘‘natural’’ choice
m25s , and the ambiguity is transferred to the prescrip-
tion *d4p→*d422«p(m2et1O(«))«. By changing t , one
gets different MS-type schemes. One can always reex-
pand (9.1) in a new scheme [with a new L in (2.17)] and
so redistribute the values of ri (i.1). All these schemes
are equivalent. On the other hand, a new scheme may
be ‘‘better,’’ but one can conclude this based only on the
knowledge of remainders. The problem of scheme-scale
ambiguity, which, in fact, is a problem of remainders, can
be formulated as follows. How does one choose (‘‘opti-
mize’’) the scheme (or L) in order to make the remainder
minimal in the series of the type (9.1) for the given range
of energy, and what is the numerical uncertainty of the
approximation (9.1)? Here one should also distinguish
the following two questions. First, what is the best accu-
racy to which the given quantity is calculable via pertur-
bation theory? Second, what is the accuracy of the given
approximation? A few notes are in order. It is known
that perturbative QCD series are asymptotic ones. No
reliable estimates of the remainders are known at
present. However, it is known from the theory of asymp-
totic series (see, for example, Dingle, 1973) that

U(
i51

N

ria
i~s !2R~s !U5RN→DRmin, when N →N opt.

(9.2)

This means that the remainder RN goes to its minimal
value DRmin when the number of orders goes to its op-
timal value N opt . Inclusion of the next-to-N opt orders
will lead away from the correct value. It is known (see,
for example, Dingle, 1973) that for a sign-alternating as-
ymptotic series, the remainder can be estimated by the
first neglected term (or by the last included term). How-
ever, it is still unknown whether the QCD perturbative
series has this character. We assume as a hypothesis that
within QCD one can estimate the remainder by the first
neglected or last included term. Now, the minimal pos-
sible error, which defines the best accuracy of the per-
turbation theory for the given quantity, has an order of
DRmin;rN 11a

N 11(s), N →N opt . Note that both the
number N opt and the value of the DRmin depend on the
range of energy for the given process. We once again
emphasize that the remainder depends on the choice of
particular scheme and scale parameters, and its estimate
makes sense only for the ‘‘optimized’’ renormalization

scheme, which is unique for the given physical observ-
able. In fact, it was argued (Stevenson, 1984, 1994) that
the ‘‘optimized’’ series can still converge even when the
series in any fixed renormalization scheme is factorially
divergent, if the ‘‘optimized’’ couplant shrinks in higher
orders (see also Buckley, Duncan, and Jones, 1993).
However, whether this applies to QCD is unknown.

B. R(s) within the one-parameter family
of the MS-type schemes and scale ambiguity problem

Using the results of our four-loop calculations, we ob-
tain the analytical result for R(s) with perturbative co-
efficients explicitly depending on the scheme-scale pa-
rameter (Surguladze and Samuel, 1993),

R~s ,t !5R01
as~s ,t !

p
R11S as~s ,t !

p D 2~R21b0R1t !

1S as~s ,t !
p D 3FR32

p2

3
b0
2R11~2b0R2

1b1R1!t1b0
2R1t

2G . (9.3)

Recalling the values of the MS perturbative coefficients
Ri from Eqs. (6.4) and (6.10) and the b i coefficients
from Eq. (2.8), we obtain numerically

R~s ,t !53(
f
Qf

2H 11
as~s ,t !

p
1S as~s ,t !

p D 2
3@~1.985712.75t !2N~0.115310.1667t !#

1S as~s ,t !
p D 3@~26.6369117.2964t17.5625t2!

2N~1.200112.0877t10.9167t2!

1N2~20.005210.0384t10.0278t2!#J
2S (

f
QfD 2S as~s ,t !

p D 31.23951O~as
4!, (9.4)

where as(s ,t) can be parametrized in the form of (2.17)
with m5s and L→L t5e2t/2LMS . Obviously, t50 corre-
sponds to the MS scheme [Eq. (6.12)]; t5ln4p2g will
transform the result to the original MS scheme [’t Hooft,
1973; Eq. (6.14)]; t522 corresponds to the G scheme
introduced by Chetyrkin and Tkachov (1979, 1981) [Eq.
(6.13)]. Note that because of the one-parameter nature
of the MS prescription, the t-dependent terms in Eq.
(9.4) would represent also the scale dependence of the
perturbative coefficients within the MS if one changes
t→logm2/s and takes as(s ,t) with s replaced by m2 and
t50.
Several approaches were suggested to deal with the

scheme-scale-remainder problem. Among them we con-
sider the following ones: fastest apparent convergence
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(FAC; Grunberg, 1980, 1982, 1984), where the next-to-
leading perturbative correction is absorbed in the defi-
nition of the ‘‘effective’’ running coupling and the
scheme-scale parameter is fixed accordingly; principle of
minimal sensitivity (PMS) of the approximant to the
variation of nonphysical parameters (Stevenson, 1981a,
1981b, 1982, 1984; see also Mattingly and Stevenson,
1992, 1994); and the Brodsky-Lepage-Mackenzie (BLM)
approach (Brodsky, Lepage, and Mackenzie, 1983),
which suggests one fix the scale by the size of the quark
vacuum polarization effects resulting in the indepen-
dence of the next-to-leading-order perturbative correc-
tion of the number of quark flavors N . For discussions
of these scheme-scale-setting methods, see Celmaster
and Stevenson (1983), Brodsky and Lu (1992), and
Stevenson (1992). The optimization of perturbation
theory has previously been studied by Kramer and
Lampe (1988) and Bethke (1989) for jet cross sections in
electron-positron annihilation. The optimized perturba-
tion theory is tested for different physical quantities in
QED and QCD by Field (1993). The scale ambiguity
problem has been considered by Lu and de Melo (1991)
for the f3 model. The scheme-scale ambiguity problem
for the quantities R(s) and Rt has been discussed by
Maxwell and Nicholls (1990), Chyla, Kataev, and Larin
(1991), and Grunberg and Kataev (1992). Further study
of the PMS method has been done by Raczka (1995).
We apply the above methods to Eq. (9.1) and find a

scale that gives good results for all criteria considered
(Surguladze and Samuel, 1993). We start by noting that,
in general, the renormalization scheme-scale depen-
dence of perturbative results are parametrized by the
scale parameter, say, m and the renormalization-
prescription-dependent coefficients of the b function
(Stevenson, 1981a, 1981b). We should stress, however,
that the b function is independent of any modification of
the MS-type prescriptions; but starting from b2 , the co-
efficients of the b function do depend on the particular
choice of subtraction prescription other than MS. In or-
der to better visualize our discussion, we consider first
the optimization procedures within the MS prescription.
In other words, we fix the scheme-dependent perturba-
tive coefficients of b function to their MS values and
consider only the scale variation.
In Fig. 12 we have plotted r3(t) for different N [see

Eqs. (9.1) and (9.4)]. As one can see, within the region
t;(21.5,20.5), r3 has a very weak dependence on the
number of flavors N as well as on the parameter t . Cor-
responding to the three-loop coefficient r2(t), straight
lines intersect in one point for t'20.7, which is obvious
from Eq. (9.4). This value corresponds to the BLM
result (Brodsky, Lepage, and Mackenzie, 1983)
m25mMS

2 e0.710, and at this scale the flavor dependence is
absorbed into the definition of the coupling.
In Fig. 13 we have plotted the dependence of the par-

tial sums

Rn~ t !5 (
m51

n

rm~ t !~as/p!m, n51,2,3

on the parameter t . Here the parametrization (2.17) was
used, log s/LMS

2
59 and N55. The general picture does

not change for other reasonable values of log and N .
One can see that PMS (Stevenson, 1981a, 1981b) works
perfectly for a wide range of the logarithmic scale pa-
rameter t;(21,13) for the four-loop approximant and
t;(22,0) for the three-loop approximant. A similar
analysis at the three-loop level was done by Radyushkin
(1983). According to the above analysis, we found that
the BLM scale t520.710 is good at the four-loop level
as well (Fig. 12), and this value is within the minimal
sensitivity region (Fig. 13). Moreover, we found that if
the t parameter is chosen in the following analytical
form t54z(3)211/21O(«), which is equivalent to the
definition of a new, say, MS̃ modification of the MS
scheme

LMS̃5exp@22z~3 !111/41O~«!#LMS , (9.5)

then the N dependence and the z(3) terms cancel ex-
actly at the three-loop level. As a result, r251/12.
Within this scheme the four-loop correction is almost
independent of the number of flavors. The full result for

FIG. 12. r3(t) for different N .

FIG. 13. The approximants Rn vs the scale parameter t .
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the R ratio for the arbitrary number of flavors can be
written in the following simple form,

R~s !5s(
f
Qf

2F11
as

p
1
1
12S as

p D 22S as

p D 3~16.260.5!G
2S (

f
QfD 2S as

p D 31.21O~as
4!, (9.6)

where the small uncertainty 60.5 stands for the remain-
der dependence on the number of flavors at O(as

3) for
all physically reasonable N and is completely negligible
for phenomenology. The last term is also very small,
;0.4(as/p)

3. The running coupling can be param-
etrized in the standard form (2.17) with
LMS̃51.41LMS .
Using the FAC approach (Grunberg, 1980, 1982,

1984), we rewrite Eq. (9.6) as

R~s !53(
f
Qf

2F11
as
eff

p
1O~as

3!G , (9.7)

where the three-loop correction is absorbed into the
definition of the effective coupling given by Eq. (2.17)
with the L replaced by

Leff'LMS̃expS 1
2b0

r2
r1

D'1.02LMS̃ .

As one can see, the new scheme MS̃ almost coincides
with the effective one, and the fastest convergence is
guaranteed within the wide range of energy defined by
the renormalization-group-invariant criteria

s

Leff
2 ;

s

LMS̃
2 @1.

Similar analyses can be done for the semihadronic de-
cay rates of the t lepton calculated to O(as

3) in Sec. VII.
The result for the ratio Rt in the MS̃ scheme reads

Rt53~0.99860.002!F11
as~Mt

2!

p
13.65S as~Mt

2!

p D 2
19.83S as~Mt

2!

p D 3G1O~as
4! (9.8)

and to be compared to Eq. (7.10). Note that the
as(MZ) is parametrized with the LMS̃51.41LMS .
In Fig. 14 we plot one-, two-, and three-loop approxi-

mants to the GH→bb̄ in terms of running quark mass
[Eqs. (3.12)–(3.16), with N55 and mf5mb] vs the scale
parameter t (Surguladze, 1994b).
One can see that the higher-order corrections dimin-

ish the scale dependence from 40% to nearly 5%. The
solid curve, corresponding to the three-loop result, be-
came flat in the wide range of the logarithmic scale pa-
rameter t . Moreover, the choice t50 (MS scheme) sat-
isfies Stevenson’s principle of minimal sensitivity
(Stevenson, 1981a, 1981b).
Let us now try to estimate the theoretical uncertainty

in calculations of R by the last included term in the cor-

responding perturbative expansion. We get for the QCD
contribution within the MS̃ scheme the following result,

dQCD
MS̃ [

R~s !2r0
r0

5
as

p
1
1
12S as

p D 22~16.260.5!S as

p D 3
6~dQCD

err 54% !. (9.9)

The analysis of Fig. 13 shows that the deviation of the
four-loop approximant from the constant is also about
4% within a reasonably wide range of the t parameter.
This is consistent with Stevenson’s principle. One should
note that the above error estimate is only for the mass-
less quark limit. There are several different types of ad-
ditional contributions, including those due to nonvanish-
ing quark masses. This may change the above error
estimate. All of the necessary information on the status
of the additional corrections can be found in Kniehl
(1994b, 1995b) and in Soper and Surgladze (1995a).
As we have already mentioned, recently Brodsky and

Lu (1994, 1995) found the relations between the effec-
tive couplings aA and aB for the physical observables
A and B in the following form,

aA~mA!5aB~mB!S 11rA/B
aB

p
1••• D . (9.10)

The ratio of the scales of the corresponding processes
mA/mB is chosen according to the BLM scale-setting
prescription so that rA/B is independent of the number
of flavors. Thus, evolving aA and aB , they pass the
quark thresholds at the same scale. It is shown that the
relative scales satisfy the transitivity rule

mA

mB
5

mA

mC
3

mC

mB
.

So, C may correspond to any intermediate theoretical
scheme such as MS, MS, etc., and the perturbative re-
sults can be tested without a reference to them. One of
the impressive results of this method is a surprisingly
simple relation between the effective couplings for the
quantities R and Rt to the next-to-next-leading order
(Brodsky and Lu, 1994, 1995),

FIG. 14. The approximants of the GH→bb̄ vs the scale param-
eter t .
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at~Mt!

p
5

aR~m!

p
, m5MtexpF2

19
24

2
169
128

aR~Mt!

p G .
For more details and the relations between various
other observables, we refer to the original works by
Brodsky and Lu (1994, 1995).

C. On scheme-invariant analyses

Let us now outline the original method of scheme-
invariant analyses for the perturbation-theory results by
Stevenson (1981a, 1981b, 1982, 1984). We note first that
our analyses of perturbation series for R(s) and Rt have
been done in Sec. IX.B within the one-parameter family
of the MS-type schemes, where all b-function coeffi-
cients are the same for any modification of MS. In the
PMS method, renormalization scale and scheme depen-
dence is parametrized by the scale parameter m/L and
the scheme-dependent coefficients of the b function
b2 ,b3 , . . . . Then the principle of minimal sensitivity is
applied to the variation of the above parameters, and, to
O(as

3), the ‘‘optimized’’ scheme corresponds to a flat
two-dimensional surface. Our curve for R3 in Fig. 13 is
just a one-dimensional slice at the particular MS value of
the b2 . The main points of the PMS formalism are as
follows. [For the scheme-invariant analyses of R(s) to
O(as

3), see Mattingly and Stevenson, 1994]. To use fa-
miliar standard notation, we rewrite Eq. (2.7) for the
couplant a[as(m)/p

b
]a

]t
52ba2~11ca1c2a

21••• !, (9.11)

where

t5b ln
m

L
, b52b0 , c5

b1

b0
(9.12)

and for any modification of the minimal subtraction pre-
scription, the scheme-dependent coefficient c25b2/b0 .
The scheme and scale can now be parametrized by the
quantities RS[(t ,c2 ,c3 , . . . ). The principle of minimal
sensitivity can be written as

dRn

d~t ;c2 ,c3 , . . . !
50. (9.13)

The number of scheme-scale parameters in the above
equation is strongly correlated with n . Indeed, it is not
difficult to show that the following self-consistency con-
dition should hold for the nth approximant,

]Rn

]~RS !
5O~an11!. (9.14)

This shows that the perturbative coefficients ri can de-
pend on renormalization scheme only through param-
eters t ;c2 , . . . ,ci21 . Applying the principle of minimal
sensitivity in the form (9.13) to the approximants R2 and
R3 and taking into account (9.14), one finds that the
quantities

r1[t2r2 ,

r2[r31c22S r21c

2 D
2

(9.15)

are renormalization scheme independent. Similar invari-
ants can be constructed at each order of perturbation
theory. The choice of t as a function of the ratio m/L
emphasizes that the renormalization scheme depen-
dence involves only the ratio of these quantities, and the
optimization deals with t but not m . The ‘‘optimal’’ val-
ues of renormalization scheme parameters t̄ and c̄2 are
defined by the following equations. To O(as

2),

dR2~t!

dt U
t5 t̄

50. (9.16)

To O(as
3),

]R3~t ,c2!
]t U

t5 t̄

50, (9.17)

]R3~t ,c2!
]c2

U
c25 c̄2

50. (9.18)

Solving the above equations along with Eqs. (9.15) for
the renormalization scheme invariants and Eq. (9.11) for
the couplant with the truncated MS b function, using the
MS values of r2 and r3 , one finds the ‘‘optimized’’ values
of t̄ , c̄2 and corresponding ‘‘optimized’’ approximants to
O(as

3). The theoretical error can be estimated, as in
Sec. IX.B, by the last calculated term. One obtains the
following ‘‘optimized’’ result for the QCD contribution
in R(34 GeV) in the massless quark limit (Mattingly and
Stevenson, 1994; Stevenson, 1994),

dQCD
PMS 50.05160.001. (9.19)

It is important to note that the above optimization
procedure yields a negative value for the r2 invariant.
This results in the existence of a solution of the equation

7
4

1cā*13r2~ ā* !250 (9.20)

with respect to ā*—the value of the couplant for which
the optimized third-order b function vanishes. This al-
lows one, in principle, to do some analysis for R(s) at
the low energies As→0 (Mattingly and Stevenson,
1992).
Finally, we also mention that the FAC approach

(Grunberg, 1980, 1982, 1984) is a special case of the
PMS method (Stevenson, 1981a, 1981b, 269, 1984). In-
deed, in the FAC approach all higher-order approxi-
mants are equal to the effective couplant [compare to
Eqs. (9.16) and (9.18)]. From Eqs. (9.15), one gets
r15t and r25c2 in the FAC approach.

X. CONCLUSIONS

We reviewed the current development of calculational
methods, algorithms, and computer programs that allow
one to evaluate the characteristics of the phenomeno-
logically important physical processes to higher orders
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of perturbative QCD. We have considered
Z→hadrons, t2→nt1hadrons, H→hadrons. The de-
scribed methods are applicable to a wide class of calcu-
lational problems of modern high-energy physics. We
outlined the analytical three- and four-loop calculations
for the above-mentioned processes.
The methods of analytical perturbative calculations

available at present allow one, in principle, to evaluate
various decay rates, cross sections, and coefficient
functions in the operator product expansion,
renormalization-group functions, etc., up to and includ-
ing the five-loop level. This would correspond, for in-
stance, to the decay rate in the process Z→hadrons to
O(as

4). It seems that such a high order will completely
fit the experimental state of the problem in the observ-
able future. Indeed, for example, the 4% estimate of the
theoretical error for the decay rate of Z boson is based
on the O(as

3) calculation. The present experimental er-
ror at LEP is about 5%.
The involvement of the heavier quarks in the physical

processes makes it necessary to develop methods for cal-
culation of the Feynman graphs with the propagators of
massive particles. The expansion in terms of large or
small masses may not always give satisfactory results.
The problem of the renormalization-group ambiguity

of the perturbation-theory results and of various meth-
ods for resummation of higher-order corrections is a
subject of growing interest and discussions in the litera-
ture.
The future development of analytical programming

tools towards the full automation of high-order calcula-
tions would be welcome. This would greatly reduce the
chance of errors in the calculations. On the other hand,
the computer package with full implementation of the
algorithm of high-order analytical perturbative calcula-
tions would make it realistic to step up by one more
order.
We recognize that it is unavoidable that some of the

relevant references have not been mentioned. We assure
the reader that this is due only to our unintentional ig-
norance.
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tions,’’ València University Preprint No. FTUV/94-62.
Pivovarov, A. A., 1992a, Nuovo Cimento A 105, 813.
Pivovarov, A. A., 1992b, Z. Phys. C 53, 461.
Pivovarov, A. A., and L. R. Surguladze, 1991, Nucl. Phys. B
360, 97.

Pivovarov, G. B., and F. V. Tkachov, 1988, Teor. Mat. Fiz. 77,
51 [Theor. Math. Phys. (USSR) 77, 1038 (1988)].
Pivovarov, G. B., and F. V. Tkachov, 1993, Int. J. Mod. Phys. A
8, 2241.
Poggio, E., H. Quinn, and S. Weinberg, 1976, Phys. Rev. D 13,
1958.
Politzer, H. D., 1973, Phys. Rev. Lett. 30, 1346.
Pumplin, J., 1989, Phys. Rev. Lett. 63, 576.
Pumplin, J., 1990, Phys. Rev. D 41, 900.
Quigg, C., 1983, Gauge Theories of the Strong, Weak and Elec-
tromagnetic Interactions, Frontiers in Physics Vol. 56 (Ben-
jamin, New York).
Raczka, P. A., 1995, Z. Phys. C 65, 481.
Radyushkin, A. V., 1982, ‘‘Optimized L-parametrization for
the QCD running coupling constant in spacelike and timelike
regions,’’ Dubna Joint Institute for Nuclear Research Pre-
print No. E2-82-159.
Radyushkin, A. V., 1983, Fiz. Elem. Chastits At. Yadra 14, 58.
Reinders, L. J., H. R. Rubinstein, and S. Yazaki, 1985, Phys.
Rep. 127, 1.
Reya, E., 1981, Phys. Rep. 69, 195.
Rodrigo, G., and A. Santamaria, 1993, Phys. Lett. B 313, 441.
Sakai, N., 1980, Phys. Rev. D 22, 2220.
Salam, A., 1969, in Elementary Particle Theory, edited by N.
Svartholm (Almqvist & Wiksells, Stockholm), p. 367.
Samuel, M. A., J. Ellis, and M. Karliner, 1995, Phys. Rev. Lett.
74, 4380.
Samuel, M. A., and G. Li, 1994a, Int. J. Theor. Phys. 33, 1461.
Samuel, M. A., and G. Li, 1994b, Phys. Lett. B 331, 114.
Samuel, M. A., and G. Li, 1994c, Int. J. Theor. Phys. 33, 2207.
Samuel, M. A., G. Li, and E. Steinfelds, 1994a, ‘‘On estimating
perturbative coefficients in quantum field theory and statisti-
cal physics,’’ Oklahoma State University Preprint No. RN-
278.
Samuel, M. A., G. Li, and E. Steinfelds, 1994b, Phys. Lett. B
323, 188.
Samuel, M. A., G. Li, and E. Steinfelds, 1994c, Phys. Rev. D
48, 869.
Samuel, M. A., and L. R. Surguladze, 1991, Phys. Rev. D 44,
1602.
Schilcher, K., and M. D. Tran, 1984, Phys. Rev. D 29, 570.
Shankar, R., 1977, Phys. Rev. D 15, 755.
Shifman, M. A., 1992, Vacuum Structure and QCD Sum Rules
(Elsevier, New York/Amsterdam).
Shifman, M. A., A. I. Vainshtein, and V. I. Zakharov, 1979,
Nucl. Phys. B 147, 385.
Shirkov, D. V., 1980, ‘‘Three loop approximation for running
coupling constant in quantum chromodynamics,’’ Dubna
Joint Institute for Nuclear Research Preprint No. E2-80-609.
Shirkov, D. V., 1992, ‘‘Historical remarks on the renormaliza-
tion group,’’ Max-Planck-Institute Preprint No. MPI-PAE/
PTh 55/92.
Sirlin, A., 1993a, ‘‘Universality of the weak interactions,’’ New
York University Preprint No. 93-0526.
Sirlin, A., 1993b, ‘‘Status of the standard electroweak model,’’
New York University Preprint No. NYU-TH-93-06-04.
Smirnov, A. A., 1990, Commun. Math. Phys. 134, 109.
Smirnov, V. A., 1991, Renormalization and Asymptotic Expan-
sions (Birkhauser, Basel, Switzerland).
Smirnov, V. A., and K. G. Chetyrkin, 1985, Teor. Mat. Fiz. 63,
208 [Theor. Math. Phys. (USSR) 63, 462 (1985)].

301L. R. Surguladze and M. A. Samuel: Decay widths and total cross sections

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



Soper, D. E., 1995, in ‘‘QCD and High Energy Interactions,’’
Proceedings of the XXXth Rencontres de Moriond, edited by
J. Tran Thanh Van (Les Arcs, France), in press.
Soper, D. E., and L. R. Surguladze, 1994, Phys. Rev. Lett. 73,
2958.
Soper, D. E., and L. R. Surguladze, 1995a, in ‘‘QCD and High
Energy Interactions,’’ Proceedings of the XXXth Rencontres
de Moriond, edited by J. Tran Thanh Van (Les Arcs, France),
in press.
Soper, D. E., and L. R. Surguladze, 1995b, ‘‘On the QCD Per-
turbative Expansion for e1e2→hadrons,’’ Bulletin Board
hep-ph/9511258, Phys. Rev. D (to be published).
Speer, E. R., 1974, J. Math. Phys. 15, 1.
Spiridonov, V. P., 1984, ‘‘Anomalous dimension of G2 and b

function,’’ Moscow Institute for Nuclear Research Preprint
No. P-378.
Spiridonov, V. P., 1987, Yad. Fiz. 46, 302 [Sov. J. Nucl. Phys.]
Sterman, G., et al., 1995, Rev. Mod. Phys. 67, 157.
Stevenson, P. M., 1981a, Phys. Lett. B 100, 61.
Stevenson, P. M., 1981b, Phys. Rev. D 23, 2916.
Stevenson, P. M., 1982, Nucl. Phys. B 203, 472.
Stevenson, P. M., 1984, Nucl. Phys. B 231, 65.
Stevenson, P. M., 1992, ‘‘Response to Brodsky and Lu’s Letter:
On the self-consistency of scale setting methods,’’ Rice Uni-
versity Preprint No. DOE-ER-40717-2; Bulletin Board: hep-
ph/9211327.
Stevenson, P. M., 1994, private communication.
Strubbe, H., 1974, Comput. Phys. Commun. 8, 1.
Stueckelberg, E. C. G., and A. Peterman, 1953, Helv. Phys.
Acta 26, 499.
Surguladze, L. R., 1989a, ‘‘O(m2) contributions to correlators
of quark currents: three-loop approximation,’’ Moscow Insti-
tute for Nuclear Research Preprint No. P-639.
Surguladze, L. R., 1989b, ‘‘Structure of the program for multi-
loop calculations in quantum field theory on the SCHOONS-
CHIP system,’’ Moscow Institute for Nuclear Research Pre-
print No. P-643.
Surguladze, L. R., 1989c, ‘‘Program MINCER in four-loop cal-
culations’’ (unpublished).
Surguladze, L. R., 1989d, Yad. Fiz. 50, 604 [Sov. J. Nucl. Phys.
50, 372 (1989)].
Surguladze, L. R., 1990, ‘‘Four-loop QED b function’’ (unpub-
lished).
Surguladze, L. R., 1992, ‘‘A program for analytical perturba-
tive calculations in high energy physics up to four loops for
the FORM system,’’ Fermilab Preprint No. FERMILAB-
PUB 92/191-T.
Surguladze, L. R., 1994a, Phys. Lett. B 338, 229.
Surguladze, L. R., 1994b, Phys. Lett. B 341, 60.
Surguladze, L. R., 1994c, ‘‘Quark mass corrections to the Z
boson decay rates,’’ University of Oregon Preprint No. OITS-
554.
Surguladze, L. R., 1994d, Int. J. Mod. Phys. C 5, 1089.
Surguladze, L. R., and M. A. Samuel, 1991a, in Beyond the
Standard Model II, Proceedings of the International Confer-
ence, Norman, Okalahoma, 1990, edited by K. Milton, R.
Kantowski, and M. A. Samuel (World Scientific, Singapore),
p. 206.
Surguladze, L. R., and M. A. Samuel, 1991b, Phys. Rev. Lett.
66, 560.
Surguladze, L. R., and M. A. Samuel, 1992a, ‘‘On West’s as-
ymptotic estimate of perturbative coefficients of R(s) in

e1e2 annihilation,’’ Oklahoma State University Preprint No.
RN-268A.
Surguladze, L. R., and M. A. Samuel, 1992b, ‘‘Four-loop per-
turbative calculations of s tot(e

1e2→hadrons), G(t→nt

+hadrons) and QED b function,’’ Fermilab Preprint No.
FERMILAB-PUB 92/192-T.
Surguladze, L. R., and M. A. Samuel, 1993, Phys. Lett. B 309,
157.
Surguladze, L. R., and F. V. Tkachov, 1986, ‘‘Three-loop coef-
ficient functions of gluon and quark condensates in QCD sum
rules for light mesons,’’ Moscow Institute for Nuclear Re-
search Preprint No. P-501.
Surguladze, L. R., and F. V. Tkachov, 1988, Teor. Mat. Fiz. 75,
245 [Theor. Math. Phys. (USSR) 75, 502 (1988)].
Surguladze, L. R., and F. V. Tkachov, 1989a, Comput. Phys.
Commun. 55, 205.
Surguladze, L. R., and F. V. Tkachov, 1989b, Mod. Phys. Lett.
A 4, 765.
Surguladze, L. R., and F. V. Tkachov, 1990, Nucl. Phys. B 331,
35.
Symanzik, K., 1970, Commun. Math. Phys. 18, 227.
Symanzik, K., 1971, Commun. Math. 23, 49.
Tarasov, O. V., 1982, ‘‘Anomalous dimensions of quark masses
in three-loop approximation,’’ Dubna Joint Institute for
Nuclear Research Preprint No. JINR-P2-82-900.
Tarasov, O. V., A. A. Vladimirov, and A. Yu. Zharkov, 1980,
Phys. Lett. B 93, 429.
Tarrach, R., 1982, Nucl. Phys. B 196, 45.
Tavkhelidze, A. N., 1994, ‘‘Color, colored quarks, quantum
chromodynamics,’’ Dubna Joint Institute for Nuclear Re-
search Preprint No. JINR-E2-94-372.
’t Hooft, G., 1971, Nucl. Phys. B 33, 173.
’t Hooft, G., 1973, Nucl. Phys. B 61, 455.
’t Hooft, G., and M. Veltman, 1972, Nucl. Phys. B 44, 189.
Tkachov, F. V., 1981, Phys. Lett. B 100, 65.
Tkachov, F. V., 1983a, Teor. Mat. Fiz. 56, 350 [Theor. Math.
Phys. (USSR) 56, 866 (1983)].
Tkachov, F. V., 1983b, Phys. Lett. B 124, 212.
Tkachov, F. V., 1983c, Phys. Lett. B 125, 85.
Tkachov, F. V., 1991, ‘‘Euclidean Asympotic Expansions of
Green Functions,’’ Fermilab Preprint No. FERMILAB-PUB-
91/347-T.
Tkachov, F. V., 1993, Int. J. Mod. Phys. A 8, 2047.
Trueman, T. L., 1979, Phys. Lett. B 88, 331.
Tsai, Y. S., 1971, Phys. Rev. D 4, 2821.
Vainshtein, A. I., and V. I. Zakharov, 1994, Phys. Rev. Lett. 73,
1207.
Veltman, M., 1967, ‘‘SCHOONSCHIP, A CDC 6600 program
for symbolic evaluation of algebraic expressions’’ (CERN,
Geneva).
Veltman, M., 1991, ‘‘SCHOONSCHIP, A program for symbol
handling’’ (Michigan).
Vermaseren, J. A. M., 1989, FORM, User’s Manual (NIKHEP,
Amsterdam).
Vladimirov, A. A., 1978, Teor. Mat. Fiz. 36, 271 [Theor. Math.
Phys. (USSR) 36, 732 (1979)].
Vladimirov, A. A., 1980, Teor. Mat. Fiz. 43, 280 [Theor. Math.
Phys. (USSR) 43, 417 (1980)].
Ward, J. C., 1950, Phys. Rev. 78, 182.
Weinberg, S., 1967, Phys. Rev. Lett. 19, 1264.
Weinberg, S., 1973, Phys. Rev. D 8, 3497.
West, G. B., 1991, Phys. Rev. Lett. 67, 1388.

302 L. R. Surguladze and M. A. Samuel: Decay widths and total cross sections

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



Wetzel, W., and W. Bernreuther, 1981, Phys. Rev. D 24, 2724.
Wilson, K. G., 1969, Phys. Rev. 179, 1499.
Yang, C. N., and R. L. Mills, 1954, Phys. Rev. 96, 191.
Yennie, D. R., S. C. Frautschi, and H. Suura, 1961, Ann. Phys.
13, 379.

Yndurain, F. J., 1983, QCD: An Introduction to the Theory of
Quarks and Gluons (Springer-Verlag, Berlin).
Zakharov, V. I., 1992, Nucl. Phys. B 385, 452.
Zweig, G., 1964, ‘‘An SU(3) model for strong interaction sym-
metry and its breaking,’’ CERN Preprint No. TH.412.

303L. R. Surguladze and M. A. Samuel: Decay widths and total cross sections

Rev. Mod. Phys., Vol. 68, No. 1, January 1996


