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Plasmas that cool by radiation may become unstable to the formation of localized regions of lower
temperature and increased density. Such radiative condensations are common in astrophysical and
laboratory plasmas that are optically thin. Some perspective of the rapidly developing theoretical
understanding of the dynamics of radiative condensations can be given in the framework of simple
models. Radiative condensations are closely related to the condensation mode of the thermal
instability, first studied by G. B. Field. Progress in the analysis of the nonlinear stage of this instability,
achieved recently, employs the hierarchy of time and length scales of the problem. Sets of reduced
equations, which describe the nonlinear dynamics of the radiative condensation, have been developed
separately in the long-, intermediate-, and short-wavelength limits. Being quite different, all these
reduced models predict radiation-driven segregation of the unstable plasma into two different states
(‘‘phases’’) on an intermediate time scale. Subsequent long-time evolution of radiative condensation
may strongly depend on the type of boundary condition for the plasma. Radiative condensations
usually disappear on a longer (thermal conduction related) time scale, if an inflow/outflow of the
plasma is allowed. In this case, regions occupied by one of the ‘‘phases’’ expand until they occupy the
whole plasma. On the contrary, in confined plasmas (no inflow/outflow of the plasma is allowed),
radiative condensations can persist ‘‘forever.’’ Similarities have been explored between radiative
condensations and a number of instabilities of growth, such as the Darrieus-Landau instability and
Ostwald ripening. A new type of shock wave with a nonmonotonic pressure profile, resulting from
radiative condensation dynamics, is described. The role of magnetic fields in radiative condensations
is briefly discussed.
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I. INTRODUCTION

Radiative condensations in optically thin plasmas,
which are subject to some heating and cool radiatively,
have attracted considerable attention since the pioneer-
ing works by Parker (1953) and Field (1965). The main
motivation behind the studies of radiative condensation
has been to explain the formation of dense and cool
localized structures in astrophysical and laboratory plas-
mas, when their masses are less than those required for
gravitational contraction. Indeed, the gravitational en-
ergy of solar prominences (Tandberg-Hanssen, 1974;
Priest, 1989; Ruždjak and Tandberg-Hanssen, 1989) and
of many types of interstellar clouds (Spitzer, 1978; Ka-
plan and Pikel’ner, 1979; Hollenbach and Thronson,
1987; Scheffler and Elsässer, 1987; Tenorio-Tagle et al.,
1989; Burton et al., 1992) is relatively small, so that ra-
diative condensation seems to be the only possible
mechanism by which such localized dense objects can be
formed from an initially homogeneous plasma. Further-
more, such laboratory plasma phenomena as radiating
Z pinches (Braginskii, 1957; Pease, 1957; Lawson, 1959;
Neudachin and Sasorov, 1991) and the so-called
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MARFEs (after the names of their discoverers,
MARmar and WolFE; another version: MultifAceted
Radiation From the Edge) in tokamaks (Terry et al.,
1981; Alladro et al., 1982; Baker et al., 1982; Lipshultz
et al., 1984; Boody et al., 1985; Lipshultz, 1987; Ser-
gienko et al., 1993) are the best-known examples of ra-
diative condensation in hot laboratory plasmas, while a
number of radiation-related contraction phenomena are
known in low-temperature plasma discharges (Nedospa-
sov and Khait, 1979). More material in a certain region
of a plasma usually implies less material in the surround-
ings; therefore ‘‘bubbles’’ and ‘‘voids,’’ frequently dis-
cussed in different astrophysical contexts, are often in-
trinsically related to radiative condensation phenomena,
too.
This review deals with theoretical aspects of radiative

condensations. The reader is advised to consult the ref-
erences given above on observational/experimental as-
pects of solar prominences, interstellar clouds, and
MARFEs.
The simplest theoretical approach to studying radia-

tive condensation processes employs single-component
magnetogasdynamics (or even gasdynamics), with a
proper account of radiative losses in the thermal balance
equation. The most often studied regime is that of an
optically thin plasma. In this regime, quanta, emitted in
the plasma by all types of radiation processes, that con-
tribute to the cooling leave the plasma region without
reabsorption. Therefore one can account for the radia-
tive losses by a properly constructed loss term (see Sec.
II). Usually, one starts with an equilibrium (or, less of-
ten, with either a steady or an unsteady flow) and per-
forms a linear stability analysis. If it exists, radiative con-
densation formation manifests itself in this approach as
a so-called condensation, or radiative condensation, in-
stability, that is, instability with respect to small density
perturbations. This is an important particular case of the
more general thermal instability of radiatively cooling
plasmas (Parker, 1953; Kadomtsev, 1963; Field, 1965).
The basic physics of the initial growth of radiative

condensation is elementary and can be conveniently ex-
plained in the following simple setting. Assume that a
homogeneous optically thin plasma is heated externally,
and the heating rate is uniform and constant in time. Let
the plasma be in thermal equilibrium; that is, the rate of
heating is balanced by the rate of radiative cooling. Now
suppose that there is a local increase in the plasma den-
sity. Since the radiative cooling rate grows with the
plasma density, the temperature in this region starts to
fall. In order to maintain constant pressure (which is a
necessity if the heating/cooling processes are slow on the
acoustic time scale), plasma inflow starts, further in-
creasing the density, and so on. If the perturbation scale
is too small, the perturbation is erased by thermal con-
duction. Otherwise, the instability continues, and the
role of theory is to predict the final state of the system
and the dynamics of approaching it.
It is clear that this simplified picture can be inaccu-

rate, or even misleading, if any of the assumptions we
have made do not hold. Obviously, the constant pressure

regime will not hold if the heating/cooling processes are
fast on the acoustic time scale (Zel’dovich and Novikov,
1983), and we shall discuss this limit in the following.
Moreover, if there are other forces, such as those due to
a magnetic field (with or without shear) and/or to gravity
in addition to the pressure gradient, the equilibrium can
become quite complex, and even more so the stability
analysis (see, e.g., Field, 1965; Defouw, 1970a; Hey-
vaerts, 1974; Hildner, 1974; Chiuderi and Van Hoven,
1979; Drake et al., 1988; Van der Linden et al., 1991).
Additional complicating factors can be steady (Field,
1965; Schwarz et al., 1972) and unsteady (Balbus, 1988)
plasma flows, more complicated ionization-
recombination dynamics (Defouw, 1970b; Goldsmith,
1970), etc. Furthermore, overly dense plasmas cease to
be optically thin, so that a radiation transfer equation
must be invoked. On the contrary, in overly diluted plas-
mas, the fluid description can break down, and a kinetic
description is necessary, which makes the problem much
more difficult. Because of all these complications, even
the first two steps in the study of radiative condensa-
tions, equilibrium and linear stability analyses, some-
times become quite a difficult task; therefore the litera-
ture on the linear theory of radiative condensation
instability in different environments is quite extensive.
Sometimes, one has a strong thermal nonequilibrium

as the initial condition for radiative condensation. An
important example is provided by solar prominences
(Tandberg-Hanssen, 1974; Priest, 1989; Ruždjak and
Tandberg-Hanssen, 1989), which are believed to develop
in response to a strong, sudden perturbation: depression
in the heating at the apex of a coronal magnetic loop,
increased heating of the loop’s footpoints, loop expan-
sion as the result of the shearing of the footpoints, etc.
(Pilkel’ner, 1971; Sasorov, 1975; Engvold and Jensen,
1977; Priest and Smith, 1979; Ribes and Unno, 1980; Po-
land and Mariska, 1986; Mok et al., 1990; Antiochos and
Klimchuk, 1991; Choe and Lee, 1992; Drake et al.,
1993). [The paper of Choe and Lee (1992) includes an
extensive review on prominence formation modeling.]
Having found an instability (or, alternatively, starting

from a strong nonequilibrium), one is generally inter-
ested in the subsequent dynamics. As the deviations of
the physical quantities (temperature, density, etc.) from
their initial values increase, we enter the nonlinear re-
gime. The nonlinear dynamics of the radiative conden-
sation in various contexts were addressed numerically
(see Raju, 1968; Goldsmith, 1970; Schwarz et al., 1972;
Oran et al., 1982; Poland and Mariska, 1986; Klimchuk
et al., 1987; Mok et al., 1990; McCarthy and Drake, 1991;
and Antiochos and Klimchuk, 1991 for one-dimensional
simulations; and Hildner, 1974; Karpen et al., 1988, 1989;
Sparks et al., 1990; Choe and Lee, 1992; and Drake et al.,
1993 for two-dimensional simulations). As the full mag-
netogasdynamic problem with the account of thermal
processes is quite difficult (especially in two and three
dimensions), the basic physics of radiative condensation
dynamics has remained poorly understood until quite
recently.
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A complementary approach to the nonlinear theory of
radiative condensation has been developing since the
end of the 1980s, though its many attributes were known
earlier. This approach deals with the simplest possible
systems exhibiting radiative segregation, and is aimed,
first of all, at understanding the basic physics behind
condensation formation and evolution. In this sense its
spirit is close to that of the theory of self-organization
and pattern formation in a more general context
(Haken, 1978, 1987; Manneville, 1990; Mikhailov, 1990;
Cross and Hohenberg, 1993), where the simplest pos-
sible models, exhibiting a desirable property, are stud-
ied. The difference is that the present approach is based
on a consistent reduction of the original nonlinear fluid
dynamic problem, rather than on constructing conve-
nient model equations.
In this approach, one usually starts with the simplest

equilibria, for which the linear stability analysis is
straightforward and predicts radiative condensation in-
stability. Then a reduced nonlinear model is developed,
which would follow the instability into the nonlinear re-
gime. In doing so, one has to simplify the nonlinear gov-
erning equations. It is the linear theory that often gives
hints on possible reductions of the problem. Indeed, the
linear theory already includes the characteristic time and
length scales of the problem. Reduction of the problem
usually employs strong inequalities between these time
or length scales. A number of reduced sets of nonlinear
equations can thus be developed for different limiting
cases, and they can be investigated analytically and nu-
merically. It is important that, once the reduced models
are developed, they can be employed for a variety of
initial conditions, and not just for a small perturbation
around thermal equilibrium. It appears that the reduced
models, though they take into account only the most
essential factors, are quite meaningful. While achieving
a basic understanding of the physics of radiative conden-
sation within the reduced models, one should be able to
extend them by taking into account additional physical
factors.
In this review a perspective of this rapidly developing

complementary approach is presented. I will be trying to
present the material in sufficient detail and to make this
text essentially self-contained and intelligible for an ad-
vanced graduate student. For the convenience of the
reader, here is a detailed plan of presentation.
Section II contains the governing fluid equations de-

scribing the basic radiative condensation processes in an
unmagnetized plasma. In addition, possible spatially uni-
form equilibria are considered; the classical linear
theory of the radiative condensation instability, devel-
oped by Field (1965), is briefly reviewed; and the char-
acteristic time and length scales of the problem are in-
troduced.
In Sec. III two alternative sets of reduced equations

are presented, corresponding to the intermediate- and
long-wavelength limits of the radiative condensation
process in planar geometry. The role of boundary condi-
tions (‘‘open’’ systems versus ‘‘closed’’ systems) is also
considered.

The intermediate-wavelength limit is reviewed in
some detail in planar geometry in Secs. IV and V. In Sec.
IV we start with isobaric condensations (for which the
pressure is constant both in space and in time) and
briefly review a number of model problems of radiative
collapse or rarefaction of an ‘‘unlimitedly unstable’’
plasma with thermal conduction neglected. In the more
practical case of bistability, radiative segregation into
two phases develops on the radiative cooling time scale,
and then thermal conduction starts to act. We consider
possible large-scale spatially nonuniform equilibria of
the bistable plasma, while taking account of thermal
conduction, and show that such equilibria (correspond-
ing to the so-called area rule) are very unlikely in ‘‘natu-
ral’’ isobaric systems. Instead, the regions occupied by
one of the phases start expanding until all of the plasma
is occupied by this phase. The expansion fronts are
closely related to the condensation and evaporation
fronts, first predicted by Zel’dovich and Pikel’ner (1969)
and by Penston and Brown (1970) and considered in
many subsequent works.
In the opposite regime of confined plasmas (Sec. V),

isobaricity does not hold. Instead, under certain condi-
tions, the uniform plasma pressure (being now a func-
tion of time) proves to approach the special value for
which the area rule holds, so that a long-lived large-scale
segregation equilibrium (coexistence of the two phases)
is achieved. We shall interpret the pattern-forming prop-
erties of confined plasmas in terms of a nonlocal con-
straint (mass conservation) imposed on the system.
Section VI is devoted to the long-wavelength limit of

radiative condensation dynamics in planar geometry.
Here we also start with idealized problems of radiative
collapse or rarefaction of an ‘‘unlimitedly unstable’’
plasma. Then we proceed to the more realistic case of a
saturated radiative condensation and consider possible
segregated equilibria, which can set in at the nonlinear
stage of the instability. In this limit, the equilibria repre-
sent so-called contact discontinuities. We show that, in
an open system, one of the phases starts expanding until
all of the plasma becomes spatially uniform. However,
this time the expansion fronts represent novel shock
waves. These shock waves are quite different from those
described by ‘‘conventional’’ gasdynamics: for example,
they have a nonmonotonic pressure profile. Properties
of these shocks and their role in the dynamics of radia-
tive condensations are discussed. In the confined plasma,
radiative segregation has been shown to persist ‘‘for-
ever’’ as shock waves become impossible and are re-
placed by contact discontinuities.
In Sec. VII we extend the treatment of the

intermediate-wavelength limit to two- and three-
dimensional systems. We discuss here both the reduced
equations and the so-called super-reduced equations de-
scribing the thermal-conduction-controlled later-stage
dynamics of radiatively segregated plasmas. We first
concentrate on confined plasmas and delineate possible
large-scale spatially nonuniform equilibria (condensa-
tion patterns). Then we review the analytical and nu-
merical studies of (linear and nonlinear) stability of
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these patterns and of the background-mediated compe-
tition between them. Then we proceed to isobaric plas-
mas and review the recently discovered instability of
evaporation fronts with respect to transverse perturba-
tions, and its possible consequences in the dynamics of
radiative condensations.
In Sec. VIII we briefly review two examples of radia-

tive condensations in cases when the magnetic field
plays a more active role in the dynamics. The first cor-
responds to plasma motions normal to a straight shear-
free magnetic field. The second concerns a recent at-
tempt to better understand the basic physics behind the
formation of MARFEs in the tokamak plasma edge.
Finally, Sec. IX contains a brief summary and formu-

lates some open problems.

II. GOVERNING EQUATIONS, EQUILIBRIA,
AND INSTABILITY

We start with simple fluid equations (Landau and Lif-
shitz, 1987; Field, 1965) describing the dynamics of an
unmagnetized, optically thin ideal plasma of mass den-
sity r , temperature T , and velocity v, which is heated
externally and cooled radiatively:

dr

dt
1r¹•v50, (1)

r
dv
dt

52¹p1h¹2v1S z1
h

3 D¹~¹•v!, (2)

1
g21

dp

dt
1

g

g21
p¹•v1rL~r ,T !2¹•~K¹T !50, (3)

p5
R

m
rT , (4)

where d/dt5]/]t1v•¹ is the total time derivative; h
and z are the viscosity coefficients; L is the heating-
cooling function (Field, 1965), that is, the difference be-
tween the rate of radiative cooling and the rate of heat-
ing per unit mass; K5K(T) is the (isotropic) thermal
conductivity; g is the specific-heat ratio; m is the effec-
tive molar mass of the plasma; and R is the gas constant.
The form of the function L(r ,T), entering the ther-

mal balance equation, is determined by the specific
mechanisms of heating and radiative cooling and varies
from one application to another. The radiative cooling
part of this function is conventionally written as
rF(T), where the density dependence results from the
binary nature of all types of radiative collisions [notice
that the heating-cooling term in Eq. (3) contains one
more r factor], while the temperature function F(T) de-
pends on the plasma composition and is determined by
many radiation processes. The function F(T) has been
calculated in many works [see, e.g., Dalgarno and Mc-
Cray (1972) and Kaplan and Pikel’ner (1979) for the
interstellar medium; Lepp et al. (1985) for the quasar
gas; Rosner et al. (1978) for the solar corona; and
Stringer (1985) for the tokamak edge plasma]. In all
these cases, this function falls abruptly when the plasma

temperature becomes less than about ten thousand de-
grees. For temperatures larger than about 107 degrees,
the dominant mechanism of radiation is free-free radia-
tion (also called deceleration radiation or bremsstrah-
lung), so that the function F(T) grows like T1/2. For
intermediate temperatures, F(T) behaves nonmono-
tonically. In particular, there is a large temperature in-
terval, when it is falling with T (usually for temperatures
between a few hundred thousand and about 107 de-
grees), which can give rise to the most primitive isoch-
oric mode of thermal instability (Parker, 1953).
Let us return to the Navier-Stokes equation (2). All

forces except the pressure gradient and small viscous
friction are disregarded. This means, in particular, that
we assume the plasma to be isotropic. Alternatively, we
can employ the one-dimensional version of Eqs. (1)–(4),
if we assume that there is a strong magnetic field, which
completely suppresses both transverse plasma motions
and transverse heat conduction.
The simplest possible equilibria of the system (1)–(4)

are spatially uniform: r5r05const, T5T05const,
v50, and L(r0 ,T0)50. In the plane of variables
(r0 ,T0), these equilibria represent curves on which the
heating is exactly balanced by the radiative cooling,
while the heat conduction is naturally ineffective, or
‘‘switched off.’’ Sometimes the equation L50 may have
no ‘‘nontrivial’’ solutions, so that no uniform equilibrium
is possible. (The simplest example for this is a nonzero
radiative cooling with no heating. In this case the plasma
will cool off until its temperature falls to the ‘‘cutoff’’
temperature of a few thousand degrees, when the radia-
tive cooling vanishes.) Additional constraints on the spa-
tially uniform equilibria can be imposed by the bound-
ary conditions of the problem. For example, if the
plasma is in contact with a boundary, which has a pre-
scribed constant temperature, this value of the tempera-
ture is the only possible ‘‘candidate’’ for uniform T0 .
If these idealized, spatially uniform equilibria do exist,

we can study their stability with respect to small pertur-
bations. This problem was solved by Field (1965). He
showed that it is the behavior of the heating-cooling
function L(r ,T) in the vicinity of the equilibrium val-
ues r0 and T0 , the value of thermal conductivity
K(T0), and the perturbation wave number
k5(kx

21ky
21kz

2)1/2 that control thermal stability and, in
the case of instability, its type (isochoric, isobaric, or
isentropic) and growth rate. We shall briefly describe the
results of the linear theory by Field, first introducing the
characteristic time and spatial scales of the problem. As-
sume that the plasma viscosity is zero (we shall return to
a nonzero viscosity in Sec. VI). Let l52p/k be the per-
turbation wavelength. Then ta5l/cs is the characteristic
acoustic time scale, where cs is the acoustic speed. Now,
introduce the thermal conduction time scale tc5l2/k ,
where k5K/r0 is the thermal diffusivity. Finally, intro-
duce the characteristic radiative cooling time scale tr ,
which is independent of the perturbation wavelength.
Correspondingly, we can introduce the characteristic
length scales similar to those defined by Field (1965).
The acoustic length la is defined as cstr , while the con-
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ductive length lc is defined as (ktr)
1/2. Normally, the

acoustic length is much longer than the conductive one,
la@lc . We can say, therefore, that perturbations with
l@la correspond to the long-wavelength limit; those
with lc!l!la (tc@tr@ta), to the intermediate-
wavelength limit; and those with l<lc , to the short-
wavelength limit. This classification is of great impor-
tance to the following discussion.
Linearizing Eqs. (1)–(4) (with h5z50) around a uni-

form equilibrium and looking for solutions proportional
to exp(nt1ik•r), Field (1965) arrived at a cubic disper-
sion relation for the growth (damping) rate n , which
describes three coupled modes. He analyzed this disper-
sion relation numerically and analytically and found the
instability conditions for all modes. We shall be inter-
ested in the radiative condensation instability mode only
and formulate the results of the linear theory separately
in two different limits.
In the combined intermediate- and short-wavelength

limits, the results are the following. If the uniform
plasma equilibrium is isochorically stable,

S ]L

]T D
r

.0, (5)

it is the isobaric instability criterion,

S ]L

]T D
p

5S ]L

]T D
r

2
r

T S ]L

]r D
T

,0 (6)

for r5r0 and T5T0 , that represents the necessary con-
dition for the radiative condensation instability (Field,
1965). The growth rate is equal to

nis5
~g21 !m

gR F2S ]L

]T
2

r0
T0

]L

]r D2k0k
2G , (7)

evaluated at T5T0 and r5r0 . Here k05K(T0)/r0 is
the unperturbed thermal diffusivity. Equation (7) fol-
lows from the cubic dispersion relation by Field in the
intermediate- and short-wavelength limits, k@la

21 .
Since the radiative loss rate in a plasma grows with r ,
the second term in Eq. (5) is destabilizing. As seen from
Eq. (7), in the intermediate-wavelength limit, the growth
rate is almost independent of the wave number (plateau
regime). In the short-wavelength range, thermal conduc-
tion starts to act, and it always has a stabilizing effect,
erasing perturbations with wavelengths shorter than
some threshold wavelength (which typically is of the or-
der of the conductive length).
In the long-wavelength limit, k!la

21 , the three
above-mentioned modes are the ‘‘isochoric’’ mode (un-
stable or stable), the growth (or damping) rate of which
is generally nonzero, while the real part of the frequency
is zero as k→0, and two ‘‘acoustic’’ modes, whose fre-
quencies both tend to zero as k→0. When the isochoric
stability criterion (5) is not satisfied, the two remaining
modes represent propagating acoustic waves modified
by the heating-cooling effects. In the opposite case,
(]L/]T0)r.0, the ‘‘acoustic’’ modes become nonpropa-
gating (one of the modes purely growing; the other,
damped), if the isobaric instability criterion (6) is satis-

fied. The growth rate of this long-wavelength radiative
condensation instability can be easily found from the
general dispersion relation by Field (1965):

nl56kciH 2F S ]L

]T0
D

r

2
r0
T0

S ]L

]r0
D
T
G YS ]L

]T0
D

r

J 1/2
(8)

(Meerson, Steele et al., 1993) where ci
25RT0 /m . Again,

the real part of the mode frequency is zero. Notice that
despite the isobaric criterion for instability, the mode
itself is not isobaric in this limit, the pressure varying
both in space and in time.
The linear increase of the growth rate nl with the

wave number k , predicted by Eq. (8), terminates at
k;la

21 , i.e., outside the long-wavelength limit. If
k@la

21 , we arrive at the intermediate- and short-
wavelength limits with the growth rate (7). Figure 1
(curve 1 and its two asymptotics) shows schematically
the dependence of the linear growth rate on the wave
number k for the case of lc!la , when all three
ranges—the long-, intermediate-, and short-wavelength
ones—are well pronounced. Shown is the plot of the
growth rate n5n(k) and its asymptotics nis and nl from
Eqs. (7) and (8), respectively. One can see that the maxi-
mum growth rate is achieved in the intermediate-
wavelength limit. Roughly speaking, the typical growth
time in this limit is of the order of the radiative cooling
time tr . Curve 2 in Fig. 1 corresponds to the case when
la!lc (Meerson, Steele et al., 1993).

III. REDUCED EQUATIONS IN PLANAR GEOMETRY

Having found an instability with respect to small per-
turbations, one should ask, what determines the further
evolution of the unstable perturbations. Will the system
finally reach a stable equilibrium, develop a regular flow,
or reach a more complicated (even turbulent) state? Is
the instability weak or strong (in other words, will it
saturate at a low or a high level of perturbation)? If a
stable equilibrium is finally reached, will it be spatially
uniform or nonuniform (segregated)? To address these
questions, one clearly needs to go beyond the linear

FIG. 1. Linear growth rate of the radiative condensation insta-
bility vs the perturbation wave number k , and its asymptotics
[after Field (1965) and Meerson, Steele et al. (1993)].
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theory. The governing set of nonlinear equations (1)–(4)
cannot be solved analytically. As to numerical solutions,
they usually address specific problems and particular
choices of parameters and therefore may not give an
overall picture. To try and achieve such a picture, we
should simplify the governing equations. The presence
of different characteristic length and time scales in the
problem makes it possible to reduce the governing set of
equations separately in the combined intermediate- and
short-wavelength limits and in the long-wavelength
limit.
The momentum equation (2) and thermal balance

equation (3) describe relaxation of the system to pres-
sure equilibrium and thermal equilibrium, respectively.
In the intermediate- and short-wavelength limits, it is
pressure balance that sets in first, on the acoustic time
scale. Then a slower evolution proceeds on the radiative
cooling time scale and, later, on the thermal conduction
time scale. Therefore if we are interested in this slower
evolution, we can assume that pressure balance has al-
ready set in (Sasorov, 1988; Meerson, 1989). This ap-
proach implies that we are not interested in the short-
time dynamics developing on the acoustic time scale.
Alternatively, in the long-wavelength limit, the acous-

tic time scale becomes relatively long, and it is thermal
equilibrium that sets in first. Therefore, to investigate
the later stages of the dynamics, which now develop on
the acoustic time scale, we can assume that thermal bal-
ance has already set in. In this case, the radiative cooling
time is the shortest time of the problem, and we are not
interested in what is happening on this shortest time
scale. Obviously, in doing so, we deliberately ‘‘overlook’’
radiative cooling dynamics [in particular, the develop-
ment of the most primitive isochoric instability; see
Parker (1953) and Field (1965)]. More precisely, we as-
sume that, on the shortest, radiative cooling, time scale,
the system ‘‘jumps’’ to an isochorically stable state, and
it is the subsequent slower dynamics that we are inter-
ested in (Meerson and Sasorov, 1987).

A. Intermediate- and short-wavelength limits

Let us consider the intermediate- and short-
wavelength limits in planar geometry. As mentioned
above, pressure balance sets in rapidly, so that we can
replace, in the zero approximation, the complete mo-
mentum equation (2) by the simple relation

]p

]x
50; (9)

that is, the pressure becomes uniform in space. The rest
of the equations take the following form:

dr

dt
1r

]v
]x

50, (10)

1
g21

dp

dt
1

g

g21
p

]v
]x

1rL~r ,T !2
]

]x SK ]T

]x D50,

(11)

p5
R

m
rT , (12)

where d/dt5]/]t1v]/]x , except in Eq. (11), where
dp/dt5]p/]t by Eq. (9).
One can easily check that the linearization of the re-

duced equations (9)–(12) around a uniform equilibrium
predicts the correct growth rate (7).
It is convenient to transfer to scaled variables. First,

we assume that the temperature dependence of the ther-
mal conductivity is powerlike: K(T)5K0T

a, so that the
cases of electron-dominated (a55/2) and neutral-
dominated (a51/2) thermal conductivity can be ac-
counted for properly. Instead of the plasma density, we
introduce the specific volume, u(x ,t)5r21(x ,t), and
eliminate the temperature T(x ,t), using the equation of
state (12). Now the heating-cooling function
L(r ,T)5L @u21,(m/R)pu# depends on u and p . Intro-
ducing scaled variables û5u/u0 and p̂5p/p0 , we define
the dimensionless heating-cooling function lE(û ,p̂):

g21
gpu

LS u21,
m

R
pu D5L0lE~ û ,p̂ !, (13)

where the parameters u0 and p0 and the coefficient L0
are chosen in such a way that the function lE(û ,p̂),
evaluated, for example, at û51 and p̂51, is equal to
unity. In this notation, the conductive Field length dF
(Begelman and McKee, 1990) is the following:

dF
25S m

R D 11a ~g21 !K0p0
au0

11a

gL0
. (14)

Now we can introduce the remaining scaled
variables—x̂5x/dF , t̂5L0t , and v̂5v/(dFL0)—and
rewrite Eqs. (10) and (11) in the following form:

]u

]t
5u

]v
]x

2v
]u

]x
, (15)

ṗ

gp
1

]v
]x

1lE~u ,p !2pa
]

]x S ua
]u

]x D50, (16)

where ṗ[dp(t)/dt and the ‘‘hats’’ are omitted. The two
equations, (15) and (16), include three variables,
u(x ,t), v(x ,t), and p(t); therefore some additional in-
formation must be used. Such information is normally
provided by the boundary conditions. There are many
possible types of boundary conditions, depending on the
specific problem. We shall consider here two cases,
which, in some sense, complement each other.
The first is the case of isobaricity, p5const. It corre-

sponds to a prescribed, constant value of the pressure,
necessarily the same at both boundaries. This condition
models the situation when the plasma region in question
is surrounded by a large amount of ambient plasma
(plasma reservoir). In this case Eq. (16) reduces to the
following relation:

]u

]x
1lE~u ,1!2

]

]x S ua
]u

]x D50, (17)

where we put p51. Notice that in the isobaric regime we
can replace the (scaled) specific volume u by the
(scaled) plasma temperature T .
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Equations (15) and (17) (Meerson, 1989) are much
simpler than the original set of Eqs. (1)–(4), and they
represent the planar isobaric version of the reduced
equations, valid in the intermediate- and short-
wavelength limits. They should be supplemented by two
boundary conditions for the specific volume (or tem-
perature) and by one boundary condition for the veloc-
ity.
The second case corresponds to a plasma volume,

confined by external forces, so that no plasma can enter
or leave the system. As an astrophysical example of such
a confinement, one can consider interstellar gas in the
gravitational field of a galactic disk. Of course, a fully
consistent treatment of this problem would require an
explicit account of gravitation in the equation of motion.
Instead, we effectively replace a smooth gravitational
potential well by a one-dimensional ‘‘box’’ of length L ,
so that the plasma inside the box does not feel gravity
until it reaches the ‘‘walls.’’ Technically, we assume that
the plasma velocity vanishes at both boundaries. From
this immediately follows mass conservation:

E
0

L dx

u~x ,t !
5M5const. (18)

It is natural to prescribe the no-flux boundary condi-
tions for the density (or, equivalently, temperature),
which means ]u/]x50 at x50 and x5L . Then, inte-
grating Eq. (16) over x from 0 to L , we arrive at the
following nonlocal relation:

ṗ

gp
52

1
LE0

L
dxlE~u ,p !, (19)

which represents an evolution equation for the pressure
and makes the set of reduced equations (15), (16), and
(19) closed (Aranson et al., 1993). Equation (19) is very
similar to the ‘‘global’’ pressure equation used by Begel-
man and McKee (1990) for a qualitative analysis of the
global effects of thermal conduction on ‘‘two-phase’’ me-
dia. Essentially, Eq. (19) corresponds to a particular
limit of Begelman and McKee’s analysis. They call this
case isochoric in the sense that ‘‘the mass is effectively
contained within a fixed volume’’ (p. 378). We call the
same case confined plasma, or closed system.
Notice that the isobaric reduced equations (15) and

(17) can be formally obtained from the confined plasma
reduced equations (15), (16), and (19), if we formally
put L5` in the global pressure equation (19) and re-
turn from the specific volume to the temperature vari-
able.
In both cases, the reduced equations look simpler in

Lagrangian mass coordinates. Let us start with the con-
fined plasma equations. Introduce the (scaled) Lagrang-
ian mass coordinate

m5E
0

x dx

u~x ,t !
. (20)

Then, transferring from variables x and t to the new
variables m and t in Eqs. (15), (16), and (19), we arrive
at only two coupled equations (Aranson et al., 1993):

]u

]t
1lL~u ,p !2pa

]

]m S ua21
]u

]m D1
uṗ

gp
50, (21)

ṗ

gp
52

1
LE0

M
dm lL~u ,p !, (22)

where lL(u ,p)5ulE(u ,p), with the boundary condi-
tions ]u/]m50 at m50 and m5M .
Having found u(m ,t) and p(t) from Eqs. (21) and

(22), we can easily determine the plasma velocity

v~m ,t !5E
0

m]u

]t
dm85

]

]tE0
m
u dm8. (23)

Finally, the relationship between Eulerian and Lagrang-
ian coordinates, necessary for a transformation to Eule-
rian coordinates x and t , is given by

x~m ,t !5E
0

m
u~m8,t !dm8. (24)

The mass conservation integral (18) looks trivial in
the Lagrangian coordinates: M5const; that is, the La-
grangian ‘‘length’’ of the box is constant. On the other
hand, the constancy of the ‘‘true’’ (that is, Eulerian) box
length, L5const, while trivial in the Eulerian coordi-
nates, looks like a conservation law in the Lagrangian
coordinates:

E
0

M
u~m ,t !dm5L5const. (25)

In the isobaric case, p5const = 1, the Lagrangian co-
ordinates leave us with only one evolution equation:

]u

]t
1lL~u ,1!2

]

]m S ua21
]u

]m D50. (26)

This equation was obtained by Doroshkevich and
Zel’dovich (1981) in the context of a radiative cooling
wave, and later by Meerson (1989) in the context of the
radiative condensation instability. Equation (26) belongs
to a broad class of the so-called generalized reaction-
diffusion equations.
In contrast to the confined plasma regime, the mass

content of any fixed Eulerian region is not preserved.
Therefore, working with Eq. (26), one should remember
that the Lagrangian ‘‘length’’ M of the computation in-
terval changes in time. Finally, when u(m ,t) is deter-
mined, one finds the velocity from Eq. (23) and returns
to the Eulerian coordinates using Eq. (24).

B. Long-wavelength limit

Let us proceed now to the long-wavelength limit. In
this limit, the local thermal equilibrium sets in rapidly, so
that we can replace the complete thermal balance equa-
tion (3) by the equilibrium condition

L~r ,T !50 (27)

(thermal conduction can be usually neglected for the
long wavelengths). Solving the algebraic equation (27)
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for T5T* (r) and substituting it into equation of state
(4), we obtain the plasma pressure

p5~R/m!rT* ~r!5P~r!,

which is a function of the density only, so that the planar
version of Eqs. (1) and (2) with the effective pressure
p5P(r) represents a closed set:

dr

dt
1r

]v
]x

50, (28)

r
dv
dt

52
]p

]x
1h

]2v
]x2

. (29)

These are the planar long-wavelength reduced equa-
tions for the radiative condensation instability of an iso-
chorically stable plasma (Zel’dovich and Novikov, 1983;
Meerson and Sasorov, 1987; Meerson, Steele et al.,
1993). Pikel’ner (1967) was the first to recognize that the
effective pressure P of an optically thin, radiatively cool-
ing plasma with a cosmic abundance of elements, which
is heated by UV radiation and subcosmic rays, can be a
nonmonotonic function of the density, which can lead to
instability. Indeed, linearizing the reduced equations
near the equilibrium r5r0 and v50, and looking for
solutions in the form of exp(nt1ikx), we obtain
(Zel’dovich and Novikov, 1983; Meerson, Steele et al.,
1993)

n56kS 2
dP

dr0
1

n2k2

4 D 1/22 nk2

2
, (30)

where n5h/r0 is the unperturbed kinematic viscosity. It
can be seen from Eq. (30) that a necessary and sufficient
condition for the instability of one of the two ‘‘acoustic’’
modes is

dP

dr0
,0, (31)

which formally means negative gas compressibility. The
viscosity reduces the growth rate, but it is unable to
quench the instability. An illustrative example of the ef-
fective pressure, for which the instability can develop, is
shown in Fig. 2, where density intervals (0,1) and
(3,`) are stable, while interval (1,3) is unstable (nor-
malized density and pressure units are used). The linear
growth rate (30) increases monotonically with k and be-
comes saturated, approaching 2n21dP/dr0 as k→` (it
should be remembered, however, that the long-
wavelength theory breaks down at k>la

21).
Of course, the growth rate (30), with no viscosity, ex-

actly coincides with the long-wavelength asymptotics (8)
of the ‘‘complete’’ linear growth rate [that is, that follow-
ing from the cubic dispersion relation by Field (1965)].
To prove it, we return to the heating-cooling function
L(r ,T), calculate dP/dr0 at L5const, and substitute
the result in Eq. (30). We immediately arrive at Eq. (8).
In addition to the long-wavelength limit of the radia-

tive condensation instability, Eqs. (28) and (29), with a
nonmonotonic effective pressure p5P(r), describe

other physical systems. The best known of them is the
van der Waals model for real gases, for which the equa-
tion of state is

p~r ,T !5
8Tr

32r
23r2 (32)

(see, e.g., Kittel and Kroemer, 1980), where all the quan-
tities (pressure, density, and temperature) are related to
their critical values. For T,1, the pressure is a non-
monotonic function of r , the falling part of which corre-
sponds to the instability of the overcooled vapor. If one
‘‘quickly’’ prepares (for instance, in a Wilson cloud
chamber) a uniform equilibrium state of such a vapor
and ensures that the subsequent dynamics is isothermal
(or, more generally, polytropic with certain limitations
on the polytrope index), an instability similar to the
long-wavelength radiative condensation instability will
develop.
Therefore we have developed two sets of reduced

equations, which correctly reproduce the predictions of
the linear theory by Field (1965) in the long-,
intermediate-, and short-wavelength limits. The two
‘‘subsets,’’ obtained in the intermediate- and short-
wavelength limits, account for different types of bound-
ary conditions: those for an isobaric plasma, and those
for a confined plasma with no heat and mass exchange
through the boundaries. The reduced equations are ap-
plicable for nonlinear problems as well, unless a new
time or length scale appears in the dynamics that does
not satisfy the assumed hierarchy.

IV. ISOBARIC CONDENSATIONS

We have seen that the dynamics of intermediate- and
short-wavelength isobaric perturbations in a radiatively

FIG. 2. Effective pressure P(r), showing negative gas com-
pressibility on the interval (1,3). Stable points A and B have
the same pressure but different density.
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cooling plasma is described, in Lagrangian coordinates,
by the generalized reaction-diffusion equation (26).
Similar one-component reaction-diffusion equations
have appeared in numerous applications in physics,
chemistry, and biology, starting from the pioneering
works by Fisher (1936) and Kolmogorov et al. (1937) in
the context of mathematical biology. Different aspects of
this equation have been discussed quite extensively (for
reviews and monographs see Frank-Kamenetskii, 1969;
Haken, 1978; Fife, 1979; Akhromeyeva et al., 1989; Mur-
ray, 1989; Mikhailov, 1990; and Cross and Hohenberg,
1993). Obviously, the properties of this equation are de-
termined by the form of function lL(u ,1) and by the
parameter a . As no analytic solution of the reaction-
diffusion equation is generally available, most of the
analytic work on this equation concentrated on
traveling-wave solutions (Frank-Kamenetskii, 1969; Fife,
1979; Murray, 1989; Mikhailov, 1990) and localized ‘‘ex-
plosive’’ solutions (Akhromeyeva et al., 1989). We shall
start with another, much simpler type of solution by con-
sidering the intermediate-wavelength limit. In this limit,
the last term of Eq. (26) is small. Neglecting it, we arrive
at a very simple equation (Meerson, 1989),

]T

]t
1l~T !50, (33)

where we have transferred to the temperature variable
and put lL(T ,1)[l(T). Obviously, the solution will de-
pend on the form of the isobaric heat-loss function
l(T) and on the initial condition. Let l(T) have a zero
(let it be at T51), which is unstable with respect to
small perturbations. This implies that the regions where
the initial condition T(m ,t50).1 will heat up, while
the regions where T(m ,t50),1 will cool down. Since
the pressure remains constant, the heated plasma will
become more dilute, while the cooling plasma will be-
come denser. The (subacoustic) velocity field (23) will
immediately develop to evacuate material from the hot-
ter region to the cooler regions. We see that the La-
grangian coordinates provide an exceptionally simple
and natural framework for the description of a planar
radiative condensation, including its strongly nonlinear
stage. The following dynamics of the condensation are
determined by the form of the isobaric heat-loss func-
tion l(T).

A. Unlimited instability

If l(T) does not have additional zeros, instability de-
velops without limit: either T→0,r→` (collapse), or
T→` ,r→0 (unlimited rarefaction). For some l(T),
these singularities can develop in a finite time. For ex-
ample, ‘‘explosive’’ rarefaction will develop if ul(T)u
grows faster than const •T as T→` . It is quite easy to
obtain different analytical solutions describing this ide-
alized unlimited instability. In some cases, it is even pos-
sible to make the transformation back to the Eulerian
coordinates analytically, as in the following example of
explosive rarefaction (Meerson, 1989). Let us choose the
scaled isobaric heating-cooling function in the form

l~T !5T2T2. (34)

Here we have an unstable equilibrium point T51 and a
stable point T50. The heating rate of regions with
T(m ,t50).1 increases rapidly with the temperature;
therefore the singularity T→` occurs at a point where
T(m ,t50) has the absolute maximum. As an initial con-
dition, consider a small sinusoidal density perturbation
(with the amplitude e!1) around the unstable equilib-
rium. Then, using Eqs. (33), (34), and (23), we obtain
simple, explicit formulas for the flow variables in the
Lagrangian coordinates:

r~m ,t !512eetcosm , (35)

T~m ,t !5~12eetcosm !21, (36)

v~m ,t !5
eetsinm

~12e2e2t!~12eetcosm !

1
2e2e2t

~12e2e2t!3/2
arctanF S 11eet

12eetD
1/2

tan
m

2 G .
(37)

The relationship between the Eulerian and Lagrangian
coordinates follows from Eq. (24):

x~m ,t !5
2

~12e2e2t!1/2
arctanF S 11eet

12eetD
1/2

tan
m

2 G .
(38)

This simple example proves to be quite instructive, be-
cause, using Eq. (38), we can calculate explicitly the flow
variables in the Eulerian coordinates:

r~x ,t !5
12e2e2t

11eetcos~A12e2e2tx !
, (39)

T~x ,t !5
11eetcos~A12e2e2tx !

12e2e2t
, (40)

v~x ,t !5
eet

~12e2e2t!3/2
sin~A12e2e2tx !1

e2e2tx

12e2e2t
. (41)

It can be directly checked that these solutions satisfy the
set of the ‘‘Eulerian’’ equations (15) and (17) with
l(T) from Eq. (34). The character of the singularities in
T(x ,t) and v(x ,t) as t→ln(1/e) is clearly seen from Eqs.
(40) and (41).
In this and other idealized examples (see Meerson,

1989), radiative condensations and rarefactions arise in
‘‘exaggerated’’ forms (singularities developing on a finite
time). More realistic shapes of the heating-cooling func-
tion prevent these singularities from forming. However,
the singularities clearly demonstrate that the radiative
condensation instability is a ‘‘strong’’ instability in the
sense that weak nonlinearities are usually unable to ar-
rest the condensation growth, and they even may accel-
erate it. [This statement also holds in the opposite, long-
wavelength limit (see later), where the mathematical
model is quite different.]
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B. Bistability and triumph of uniformity

More realistic is the case of bistability, when the func-
tion l(T) has more than one stable zero. It is thought to
be typical, for example, for the interstellar medium,
where there can be several such zeros [that is, several
possible equilibrium ‘‘phases’’ of the gas, when heating
(usually by UV radiation and cosmic rays) is balanced
by radiative cooling (Pikel’ner, 1967; Field et al., 1969;
Lepp et al., 1985)]. In this case, those zeros of l(T) that
are adjacent to the ‘‘unstable’’ zero at T51 are stable.
The overcooled regions where T(m ,t50),1 will con-
tinue to cool down and finally approach the lower-
temperature stable equilibrium (let it be T1), while the
overheated regions with T(m ,t50).1 will continue to
heat up and finally approach the higher-temperature
stable equilibrium T2 . In other words, the plasma will
segregate into a two-phase state, in which low-
temperature, high-density ‘‘condensations’’ (phase 1) are
surrounded by high-temperature, low-density ‘‘voids’’
(phase 2). For t@tr , the temperature will develop a
‘‘rectangular’’ profile (alternating domains of phases 1
and 2 with infinitely thin boundaries between them).
The positions of the interphase boundaries in the La-
grangian coordinates coincide with the zeros of the func-
tion T(m ,t50)21. The whole process of segregation of
a thermally bistable gas can be easily described analyti-
cally with the aid of Eq. (33) if we choose, for example,
a cubic polynomial heat-loss function with three zeros,
T1 , 1, and T2 (Meerson, 1989).
However, as large temperature gradients develop at

the boundaries between the two phases, thermal con-
duction [the last term in Eq. (26)] becomes important.
Obviously, thermal conduction broadens the interphase
boundaries: the width of the transition layer becomes of
the order of the conducting Field length (that is, of the
order of unity in our scaled equations). Furthermore, in
the general case, the interphase boundaries start to
move, and traveling fronts [they are called trigger waves
or switching waves in other applications; see Mikhailov
(1990)] develop. These fronts resemble traveling fronts
of the first-order phase transitions, such as solidification
or melting fronts (Kurz and Fisher, 1992), flame propa-
gation in combustion (Zel’dovich et al., 1985), etc. In the
course of time, a single interphase boundary approaches
a traveling-wave solution. Such solutions were consid-
ered, in the context of externally heated and radiatively
cooled bistable plasmas, in many works, starting with
Zel’dovich and Pikel’ner (1969), and Penston and
Brown (1970). (In these early works the plasma motion
was not accounted for properly.) An updated bibliogra-
phy on planar conductive/cooling fronts can be found in
the paper by Ferrara and Shchekinov (1993). In the gen-
eral context of the one-component reaction-diffusion
equation with bistability, the traveling-wave solutions
were studied in a much larger number of works (see the
books cited in the beginning of this section and the ref-
erences therein).
In our notation, the results of these studies are the

following (Dimits and Meerson, 1991). The direction of

motion of a single traveling front is uniquely determined
by the sign of the following integral:

I5E
T1

T2
Ta21l~T !dT[E

T1

T2
TalE~T ,1!dT . (42)

If I,0, the traveling front will move from the low-
temperature side to the high-temperature side (conden-
sation front). If I.0, the traveling front moves in the
opposite direction (evaporation front). In the special
case of I50 (we shall call it the area rule), the front is
standing, rather than moving. Both the propagation
speed and the form of the traveling front in a bistable
medium are uniquely determined by the form of the
function l(T) and by the value of a . Unfortunately, no
analytic solution is generally possible for an arbitrary
l(T) and a . A number of approximate methods for the
calculation of propagation speed were developed in dif-
ferent limiting cases [they are reviewed by Mikhailov
(1990)]. In addition, a number of useful exact analytic
solutions exist for a51 and some specially chosen forms
of l(T) (Frank-Kamenetskii, 1969). For example, for
the cubic polynomial heat-loss function,

l~T !5~T2T1!~T21 !~T2T2!, (43)

a single temperature solution has the following form:

T~j!5
T11T2

2
1
T22T1

2
tanhS 6

T22T1

2A2
j1C D , (44)

where j5m2Vt , C is an arbitrary constant, the upper
sign corresponds to the case T(j)→T1 as j→2` and
T(j)→T2 as j→1` , and the lower sign to the reverse.
The front propagation velocity V is

V56A2@12~T11T2!/2# , (45)

with the same sign rule as before. Using Eq. (44), one
can easily calculate the density and velocity for this
traveling-wave solution. Although these relations are
obtained in Lagrangian coordinates, one can check that
any quantity that is of the form of a steadily moving
front in the Lagrangian coordinates is also a steadily
moving front in the original, Eulerian coordinates (Dim-
its and Meerson, 1991).
The value of the parameter I in any specific problem

is determined (for given mechanisms of heating and
cooling) by the plasma pressure. Therefore there exists a
(very special) area-rule value of the pressure, for which
a single front is standing.
Let us return to the general intermediate-wavelength

initial conditions (Dimits and Meerson, 1991). We have
seen that in the first, radiative, stage of the dynamics, a
‘‘rectangular’’ temperature (and density) profile devel-
ops. Roughly speaking, the duration of the radiative
stage is of the order of the radiative cooling time (if the
values of T1 and T2 do not introduce very large or very
small parameters). During the much longer second stage
(we call it conductive), each of the interphase bound-
aries develops a traveling front solution. These traveling
fronts move almost independently from one another un-
til two of them approach each other (that is, until the
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distance between them becomes comparable with the
front width). Then, as numerical simulations show, these
two fronts accelerate, ‘‘collide,’’ and annihilate. Figures
3(a) and 3(b) show this process, as seen in a numerical
example by Dimits and Meerson (1991). One can see
that, after the annihilation, the plasma in the interaction
region becomes uniform. The duration of the conductive
stage is proportional to the typical distance between the
interphase boundaries, that is, to the average initial size
of the phases, ^L&.
As we have already mentioned, in the special case

I50 (area rule), a single front becomes standing rather
than moving. If we neglect the (exponentially weak) in-
teraction between the fronts, we would arrive at the con-
clusion that the segregated patterns will persist forever.
In fact, this conclusion would be premature. The weak
interaction between the fronts, considered in detail by
Elphick et al. (1992), results in the fronts’ eventual col-

lisions and annihilation, so that the plasma ultimately
becomes uniform again. However, relaxation to the uni-
form state takes a much longer time in this case [an
exponentially long time with respect to the large param-
eter ^L&; see Elphick et al. (1992)].
Let us summarize this section. In an isobaric radia-

tively bistable plasma, radiative condensation can de-
velop only on an intermediate time scale, which is of the
order of the radiative cooling time. On a longer,
thermal-conduction-related time scale (in our scaled
units, it is of the order of ^L&), any intermediate radia-
tive segregation is generally destroyed, and the plasma
becomes uniform again. The parameters of the new uni-
form equilibrium correspond either to the hot phase or
to the cool phase, depending on the sign of the integral
(42). The only exception is provided by the case of a
special area-rule value of the plasma pressure. In this
case radiative condensation exists for a much longer
(though still finite) time. However, realization of this
special value of pressure in any natural isobaric system is
highly unlikely.

V. BISTABILITY IN CONFINED PLASMAS: TRIUMPH
OF SEGREGATION

Radiative condensation in confined plasmas is de-
scribed, in planar geometry, by the reduced equations
(15), (16), and (19) in Eulerian coordinates, or, alterna-
tively, by Eqs. (21) and (22) in Lagrangian coordinates.
These equations are valid for any heating-cooling func-
tion. Following Aranson et al. (1993), we shall concen-
trate on bistability. For a fixed p , the bistable heating-
cooling function l(u ,p), where l means either lL or
lE5lL /u , has an ‘‘unstable’’ root uu(p), surrounded by
two ‘‘stable’’ roots, u1(p),uu(p) and u2(p).uu(p).
The signs of the derivatives ]u1(p)/]p ,]uu(p)/]p , and
]u2(p)/]p can be established in the general case (Aran-
son et al., 1993). Indeed, let us calculate ]u(p)/]p under
the constraint l(u ,p)5const. We have

F]u~p !

]p G
l

52
~]l/]p !u
~]l/]u !p

. (46)

We have assumed that the spatially uniform equilibria
are isochorically stable: (]l/]T)u>0 for u5u1 , uu ,
and u2 . Using the equation of state (4), we see that the
derivative (]l/]p)u , entering Eq. (46), is equal to
u(]l/]T)u . Therefore it is always non-negative, and we
have (]u(p)/]p)l<0 for the isobarically stable equilib-
ria u1 and u2 , and (]u(p)/]p)l>0 for the isobarically
unstable equilibrium uu .

A. Radiative stage

Let us assume that the initial condition u(m ,0) be-
longs to the intermediate-wavelength range and, as a
first step, neglect conductivity. The set of equations (21)
and (22) is more complicated than the single equation
(26) and, even for a zero conduction, no analytic solu-
tion is generally possible. However, for a uniform initial

FIG. 3. Numerical solution of Eq. (26) with u5T . Bistable
heat-loss function lL(u ,1)[l(T) is taken from Eq. (43), and
a51. The initial condition is a sinusoidal perturbation of the
unstable equilibrium T51 in the Lagrangian coordinate. The
time interval between the temperature profiles is 20. The val-
ues of the locally stable temperature equilibria are T150.5 and
T251.2 [the higher-temperature phase survives, figure (a)],
and T150.8 and T251.5 [the lower-temperature phase sur-
vives, figure (b)]. The Lagrangian length of the system
M5105/2; the boundary conditions are periodic.
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condition, u(m ,0)5u0 , the analytic solution is quite
simple and instructive. In this case, Eqs. (21) and (22)
reduce to

u̇5lL~u ,p !S uu0 21 D , (47)

ṗ52
gplL~u ,p !

u0
. (48)

It follows from Eq. (47) that the specific volume remains
unchanged: u(t)5u0 . We assume that the initial pres-
sure p0 is such that u1(p0),u2(p0). Then the pressure
dynamics look as follows. If u0,u1(p0), the pressure
will approach the value p1 such that u1(p1)5u0 . If
u0.u2(p0), the pressure will approach the value p2
such that u2(p2)5u0 . If u1(p0),u0,uu(p0), the pres-
sure will approach either p1 or pu such that
u(pu)5uu . Finally, if uu(p0),u0,u2(p0), then the
pressure will approach either p2 or pu . In other words,
the pressure always adjusts itself so that an arbitrary uni-
form initial condition becomes one of the three equilib-
ria, described by the bistable heating-cooling function.
This process takes a time of the order of unity (which in
‘‘physical’’ units corresponds to the radiative cooling
time scale). As we already know, the ‘‘intermediate’’
equilibrium u05uu is unstable with respect to nonuni-
form perturbations; therefore all (slightly perturbed)
uniform initial conditions, which belong to the ‘‘basin of
attraction’’ of the unstable root uu , will cause segrega-
tion of the plasma into the two phases 1 and 2.
Figure 4 shows an example of radiative segregation

obtained by numerical solution of the Lagrangian equa-
tions (21) and (22) without the conduction term. In this
example (and in other numerical simulations; see be-
low), Aranson et al. (1993) chose the bistable heating-
cooling function lL(u ,p) in the form of a cubic polyno-
mial with respect to u :

l~u ,p !5@u2u1~p !#@u2uu~p !#@u2u2~p !# , (49)

with u1(p)50.5/p , uu(p)5p , and u2(p)52/p . It is seen
that a sharp front develops, the position of which does
not coincide with the point where u(m ,0)5uu . Instead,
the front position is determined now by both the initial
condition and the ‘‘length integral’’ (25). For example, in
the case of a single front developing from a monotonic
initial profile u(m ,0), the front position mf is deter-
mined by one of the following relations:

mf5
u2M2L

u22u1
or mf5

L2u1M

u22u1
, (50)

depending on whether the function u(m ,0) is increasing
or decreasing with m , respectively. In Eulerian coordi-
nates, the corresponding front positions in these two
cases are xf5u1mf and xf5u2mf , respectively. Note
that the resulting specific volumes of the phases 1 and 2,
entering Eq. (50), are determined by the final value of
the plasma pressure. In the calculations presented in Fig.
4, Aranson et al. (1993) choseM550 and the initial con-
ditions p(0)51.0 and u(m ,0)51.0510.4cos(pm/M), so

that the system length is L552.5. The second relation in
Eq. (50) correctly predicts the position of the developing
front in the Lagrangian coordinates, mf'22.5. In the
Eulerian coordinates it corresponds to xf'40.2. In the
case of two fronts, the length integral (25) predicts the
distance between them.
Therefore, in the first, radiative stage of the radiative

condensation instability, the plasma segregates into
‘‘cool drops’’ of phase 2 surrounded by the ‘‘hot gas’’ of
phase 1 (or, alternatively, into ‘‘hot bubbles’’ of phase 1
surrounded by the ‘‘cool fluid’’ of phase 2). The slower
conductive stage of the instability determines the final
state of the system (evaporation of phase 2, condensa-
tion of phase 1, or their prolonged coexistence?) and
requires the inclusion of thermal conduction.

FIG. 4. Segregation developing at the radiative stage of the
radiative condensation instability of a confined plasma. Equa-
tions (21) and (22), without the conduction term, were solved
numerically for the bistable heating-cooling function lL(u ,p)
from Eq. (49). Parameters are u150.5/p ; u252/p ; uu5p ; and
M=50. Shown are (a) initial conditions, u(m ,0)
51.0510.4 cos(pm/M) and p(0)51.0; and (b) and (c), subse-
quent evolution of u(m ,t) and p(t) for scaled times t54 and
12, respectively.
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B. Conductive stage

We assume throughout this section that the size of the
system is very large compared to the conductive Field
length; that is L@1 in the scaled equations. In addition,
in the intermediate-wavelength limit, the front width,
which is of the order of dF in ‘‘physical’’ units (and of the
order of unity in the scaled variables), is very small com-
pared to the typical distance between the fronts. Finally,
in a long system, a typical front is located very far from
the system’s boundaries. Until exponentially large times,
the form of the fronts and their dynamics can be inves-
tigated ignoring exponentially weak interactions be-
tween the fronts and the boundary effects. Therefore an
‘‘elementary’’ object during the conductive stage is an
evolving single front. Our immediate aim is to exploit
the strong inequality L@1 and consider the statics and
dynamics of a single front.
Let us return to Eqs. (15), (16), and (19) in Eulerian

coordinates. (All the results in this section can be ob-
tained in Lagrangian coordinates as well; however, we
prefer to employ Eulerian coordinates at this stage,
since some of the following equations will also be used
in the two- and three-dimensional cases, in which La-
grangian coordinates become less convenient.) Let us
start with an equilibrium, ]/]t5v50. We arrive at the
following equation,

d

dx S ua
du

dx D5p2alE~u ,p !, (51)

which should be solved, in view of what has been men-
tioned above, for each front under the following bound-
ary conditions: u(x52`)5u1(p), u(x51`)5u2(p),
and du/dx50 at both 2` and 1` . When this solution
is found, the alternative solution, for which
u(x52`)5u2(p) and u(x51`)5u1(p), is obtained
simply by putting 2x instead of x .
Multiplying Eq. (51) by uadu/dx , integrating it once,

and using the boundary conditions, we obtain

1
2 S dudx D 25u22ap2aE

u1~p !

u
ualE~u ,p !du (52)

under the area-rule condition I50, discussed in Sec.
IV.B,

E
u1~p !

u2~p !

ualE~u ,p !du50. (53)

An equivalent criterion in the Lagrangian coordinates is
obtained from Eq. (53) by replacing lE by lL /u . Gen-
erally, Eq. (53) can be satisfied only for some discrete
values of p . For example, if lE(u ,p) has the form of a
cubic polynomial (49) and a50, these values of p are
the roots of the equation

2uu~p !5u1~p !1u2~p !. (54)

We assume that such a value of p is unique and denote it
by p* , so that we can replace p by p* in the equilibriumrelation (52). Now we obtain from Eq. (52) the equilib-
rium solution in the following form:

x1const5Ap
*
a

2 E
u1

u
u8adu8YAE

u1

u8
jalE~j ,p* !dj . (55)

For example, the equilibrium solution can be conve-
niently found for the heating-cooling function (49) and
a50:

u* ~x !5
u11u2

2
1
u22u1

2
tanhF u22u1

2A2p*
~x1const!G ,

where u1 and u2 should be evaluated at p5p* from Eq.
(54).
As we noticed earlier, realization of the special case

p5p* , described by the area rule, is highly unlikely in
any natural isobaric system. On the contrary, in confined
plasmas with a ‘‘floating’’ pressure, the pressure can ap-
proach this special value p* with time, so that long-lived
segregated states become possible (Aranson et al.,
1993).
To understand this fact better, let us consider first the

slow motion of a single front arising when the plasma
pressure is close, but not equal, to the equilibrium pres-
sure p* : p5p*1Dp , where uDpu!p* . Using the latter
strong inequality, we can write

lE~u ,p !'lE~u ,p* !1m~u !Dp , (56)

where m(u)5]lE(u ,p)/]p calculated at p5p* . Let us
find the traveling-wave solutions of Eqs. (15) and (16):
u(x ,t)5u(j), v(x ,t)5v(j), where j5x2* tc(t8)dt8
and c(t) is the (slowly varying) front velocity. Equation
(15) yields v(j)5c1ju(j), where j5 const is the flux of
material through the front in the reference frame where
the front is at rest. We substitute this relation and Eq.
(56) into Eq. (16) and obtain

j
du

dj
1lE~u ,p* !1m~u !Dp2pa

d

dj S ua
du

dj D50. (57)

The term (gp* )
21(dDp/dt) is of the next order of

smallness (see below) and has therefore been neglected.
At this stage, we notice that using the quantity j is not
very convenient, since, for a fixed front, the sign of j
depends on our choice of the direction of the coordinate
axis (or, alternatively, for a fixed coordinate axis, on the
sign of du/dj). Instead, we can introduce the projection
jn5j·n of the flux vector j onto the unit vector n, normal
to the front and directed, for concreteness, from phase 1
to phase 2. In the planar case, with which we are work-
ing now, such a definition makes the subsequent equa-
tions independent of the sign of du/dj , which is quite
convenient. Moreover, this definition becomes very con-
venient in the two- and three-dimensional cases, as will
be seen in the subsequent section.
Let us multiply Eq. (57) by uadu/dj and integrate it

over j from 2` to 1` . Because of the smallness of j ,
we can replace ua(du/dj)2 under the integral by its
equilibrium value from Eq. (52). Using the single-front
boundary conditions and Eq. (53), we arrive at the fol-
lowing linear relation between jn and the small pressure
mismatch Dp :
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jn52gDp , (58)

where

g5p
*
a/2E

u1

u2
uam~u !duYE

u1

u2A2E
u1

u
halE~h ,p* !dh du .

(59)

Equation (58) implies that a pressure mismatch Dp
causes a plasma flow through the front. Furthermore,
the flux of material from, say, phase 1 into phase 2 is the
same for every front, as long as the fronts are sufficiently
far from each other and from the boundaries. Defining
the normal plasma velocity components in phases 1 and
2 and the normal component of the front velocity c in
the same way as before, we have

v1 n5cn2gu1Dp , v2 n5cn2gu2Dp , (60)

for phase 1 and 2, respectively.
The g factor in Eq. (59) can be conveniently calcu-

lated for the cubic polynomial lE and a50. The result is
the following:

g5
1

A2
S 2duudp

2
du1
dp

2
du2
dp D , (61)

which should be evaluated at p5p* .
Now we shall use Eq. (58) to simplify the evolution

equation for the pressure, Eq. (19), in the case of
uDpu!p* . One could start directly from Eq. (19) and
calculate the integral, using an asymptotic expansion of
the integrand with respect to the small parameter
uDpu/p* . We shall present here an alternative deriva-
tion, directly using the mass and length conservations.
Consider a radiatively segregated plasma, in which the

pressure is already close to the equilibrium value,
uDpu!p* . The system consists of regions of phases 1
and 2, and the mass transfer between neighboring re-
gions proceeds according to the local relation (58). Ne-
glecting the front widths, we have

L11L25L , M11M25M , (62)

where indices 1 and 2 correspond to the regions of
phases 1 and 2, respectively. If N is the total number of
interphase boundaries (fronts), then the net mass rate of
‘‘evaporation’’ is dM2 /dt5jnN , while the net mass rate
of ‘‘condensation’’ is dM1 /dt52jnN . Recalling that
L1(t)5M1(t)u1(t) and L2(t)5M2(t)u2(t), using
relations (58) and (62), and noticing that
du1,2 /dt5(]u1,2 /]p)l(dp/dt), we arrive at the follow-
ing evolution equation for the pressure:

dp

dt
5g~u22u1!

2^u&~p2p* !YF ^L&S ~u22^u&!
]u1
]p

1~^u&2u1!
]u2
]p D G (63)

(Aranson et al., 1993), where ^L&5L/N , while
^u&5L/M5 const is determined by the initial condition
u(x ,0):

^u&215
1
LE0

L dx

u~x ,0!
. (64)

Generally, u1,2 depend on p . In this case ]u1,2 /]p has
been shown previously to be negative. The expressions
g ,u22^u&, and ^u&2u1 are all positive. Therefore Eq.
(63) predicts relaxation of the pressure to the equilib-
rium value, p→p* . The quantities u1 , u2 , ]u1 /]p ,
and ]u2 /]p , entering Eq. (63), should be evaluated at
p5p* . Therefore the pressure relaxation, described by
Eq. (63), is exponential in time: Dp } exp@2t/(C^L&)#,
where the constant C is determined from Eq. (63). If
neither large nor small factors are introduced by the
roots of heating-cooling function, the constant C is of
the order of unity, so that the (scaled) e-folding time of
the pressure relaxation is of the order of ^L&, which is
the large parameter of the theory. Equation (63) is valid
in Lagrangian coordinates as well. One need only use
the simple relation between lL and lE , lL5ulE , when
calculating the g factor.
In deriving Eq. (63), we assumed that the number of

fronts N is constant. In the beginning of the conductive
stage, this assumption is generally not correct, and fast
motions, ‘‘collisions,’’ and ‘‘annihilations’’ of the fronts
occur, so that irregularities in the pressure dynamics can
be expected. However, towards the end of the conduc-
tive stage, when Dp is already sufficiently small, the
front motion decelerates significantly and the assump-
tion of a constant N becomes true as well, which makes
the final pressure relaxation to p* monotonic (and ex-
ponential).
Since the average distance between the fronts ^L&

proves to be an important characteristic of the dynamics,
a few words seem to be in order on how to determine it.
In simple cases, ^L& is determined by the form of the
Fourier spectrum of the initial perturbation. For ex-
ample, if the Fourier spectrum has a pronounced maxi-
mum at some wavelength (belonging to the
intermediate-wavelength limit), this wavelength will nor-
mally define ^L&. An extreme limit would be a mono-
chromatic initial perturbation, as in Fig. 4, when ^L& is
simply equal to a half of the perturbation wavelength.
On the contrary, if the initial perturbation spectrum has
the form of broadband noise with no preferential wave
number, an a priori determination of ^L& becomes diffi-
cult, and numerical solution of the reduced equations is
required (see below).
Therefore the mass conservation and length constancy

of the system do provide a universal mechanism for per-
sistent radiative condensation: the plasma pressure ap-
proaches the special value p* for which the fronts stop
and the segregated patterns exist for a very long time.
However, since the analytical theory is unable to de-
scribe the ‘‘violent’’ part of the conductive stage, when
the pressure mismatches are still large, and fast front
motions, collisions, and annihilations occur, we shall also
discuss the results of numerical simulations with this sys-
tem (Aranson et al., 1993).
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C. Numerical simulations

Aranson et al. (1993) employed the bistable heating-
cooling function from Eq. (49) and solved numerically
both the Eulerian reduced equations (15), (16), and (19),
and the Lagrangian reduced equations (21) and (22).
For the Eulerian simulations, Aranson et al. (1993)

put a50 [K(T)5K0] and g55/3 and chose lE(u ,p) of
the form given in Eq. (49). The boundary conditions
were the same as in their theory: ]u/]x50 at x50 and
x5L . The initial velocity was always taken to be zero.
For the set of equilibria u151/(2p), uu5p , and

u252/p , the correct order of the equilibria,
u1,uu,u2 , is provided for 1/A2,p,A2, while the
equilibrium (area-rule) value for the pressure is
p*5A5/2. The initial condition for the specific volume
u(x ,0) had the form of very small-amplitude broadband
noise with an average value ^u& which belonged to the
interval (u1(p),u2(p)) for the initial value of the pres-
sure, p(0). The chosen initial condition included both
intermediate- and short-wavelength Fourier compo-
nents.
Aranson et al. (1993) varied the system length and the

initial conditions for the specific volume and pressure. A
typical example of the radiative condensation dynamics
is shown in Fig. 5—where the profile of the specific vol-
ume of the plasma is presented at four successive mo-
ments in time, 16, 30, 40, and 300—and in Fig. 6, where
the pressure evolution is shown, starting from the initial
values ^u&50.8 and p(0)51.0. In this example, the
(scaled) total length of the system L was taken to be
150. The (scaled) total mass of the gas was therefore
M5150/0.85187.5. It is seen that, in the beginning, the

pressure rapidly drops to ^u&50.8. In other words, the
initial condition for the specific volume becomes a per-
turbation around an unstable equilibrium, as predicted
by the ‘‘uniform’’ equations (21) and (22).
Then the linear stage of the radiative condensation

instability starts. The perturbations with too short wave-
lengths are strongly damped in agreement with Eq. (5),
so that they are already absent in Fig. 5. (Noteworthy in
this stage is the U-shaped valley around t515 in Fig. 6.
It is explained by the fact that pressure variations vanish
in the linear theory with respect to u and v , and appear
only in the second order in the perturbation ampli-
tudes.) After that the instability develops nonlinearly,
causing segregation (around t530), while the plasma
pressure rapidly grows. Since the initial perturbation
amplitudes are very small in this example, the radiative
stage takes a somewhat longer time.
After a transient process, a steady coherent pattern

forms, which consists of a lower-density, higher-
temperature ‘‘bubble’’ surrounded by two higher-
density, lower-temperature ‘‘drops.’’ The equilibrium
phase boundaries represent two symmetric fronts, de-
scribed in Sec. V.B. The pattern reaches its steady state
around t580 to 100 radiative times. The distance be-
tween the fronts coincides with that predicted by the
length and mass conservation. The plasma pressure fi-
nally relaxes monotonically to a value very close to
p*5A5/2'1.12, as predicted by the theory. For larger
scaled times (up to t5300), the profile of u and the
plasma pressure do not show any change.
Aranson et al. compared the final stage of the pres-

sure relaxation, found numerically, with that predicted
by Eq. (63). To this end, they calculated the coefficients
entering Eq. (63) for the chosen lL(u ,p), evaluating
them at p5p*5A5/2. Equation (59), for the g factor,
gives g52A2. The only quantity that cannot be found
analytically is the final number of fronts; therefore
Aranson et al. (1993) took it from the numerical results:
N52, which gives ^L&5150/2575. Substituting all the
coefficients into Eq. (63), they obtained dp/dt
'20.057(p2p* ), so that the theoretical prediction of
the relaxation rate is 0.057. Figure 7 shows, on a loga-
rithmic scale, the final stage of the pressure relaxation

FIG. 5. Development of planar steady-state patterns in the
process of radiative condensation. Shown are the dynamics of
the spatial profile of the specific volume u(x ,t), found by the
numerical solution of Eqs. (15), (16), and (19). The heating-
cooling function lE(u ,p) is taken from Eq. (49), with
u150.5/p , u252/p , and uu5p ; parameter a50 and g55/3.
The initial condition for u(x ,t) represents broadband noise
with a small amplitude around u0=0.8. The initial velocity is
zero, and the initial pressure is 1.0. The evolution is shown in
four successive (scaled) time moments: 16 (short dashes), 30
(medium dashes), 40 (long-and-short dashes), and 300 (solid
line).

FIG. 6. Plasma pressure vs time, corresponding to Fig. 5.
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found numerically and its linear approximation. It is
seen that the relaxation is indeed exponential, starting
from t'50. The relaxation rate found numerically is ap-
proximately 0.058, so that the theory predicts the relax-
ation rate with a very good accuracy.
For the numerical solution of the Lagrangian equa-

tions (21) and (22), Aranson et al. (1993) took a51 (a
model thermal diffusivity, proportional to the tempera-
ture) and chose the heating-cooling function from Eq.
(49), but taken for lL(u ,p) instead of for lE , as in the
previous example. The results closely resembled those
shown in Figs. 5–7: formation of long-lived patterns, ac-
companied by pressure relaxation to the special value
determined by the area rule for a single front.

D. Intermediate-wavelength limit: summary and discussion
of the planar case

We have considered the dynamics of planar radiative
condensation in confined plasmas in the intermediate-
wavelength limit. We have described a universal mecha-
nism by which long-lived coherent patterns can develop
in the process of radiative condensation instability.
Long-time two-phase coexistence, generally impossible
in isobaric systems, becomes possible here because the
time-dependent plasma pressure can approach the area-
rule value for which individual fronts separating the
phases become standing rather than moving. Numerical
simulations strongly support and even reinforce these
theoretical predictions, removing the limitation of small
pressure mismatches used in the analytic theory.
So far, we have been considering two stages of the

dynamics. During the first radiative stage, the duration
of which is determined by the radiative cooling time, the
plasma segregates into two thermal phases with sharp
boundaries (fronts) between them. The plasma pressure
varies significantly during this stage. The mass ratio of
the two phases, the number and location of homoge-
neous regions in each of them, and the gas pressure at

the end of the radiative stage depend on the initial con-
ditions. Then the much slower, conductive stage starts,
during which the phase interfaces (fronts) move with
velocities of the order of dFL0 (which is unity in the
scaled equations). Some of the fronts can collide and
annihilate, leading to irregular pressure dynamics. At
the end of the conductive stage, the fronts steadily de-
celerate and finally stop, with p approaching p* expo-
nentially. This implies development of a long-lived
stratification, or pattern formation, via the radiative con-
densation instability. The typical duration of the second
phase is of the order of the average distance between
the fronts, divided by the typical front speed. In the
scaled units, this duration is of the order of ^L&, which is
the large parameter of the theory. It is important that,
for a given heating-cooling function, the equilibrium ra-
tio of masses of the two phases, which set in at the end
of the conductive stage, depends only on the total
plasma mass and the system length. The equilibrium
plasma pressure, developing towards the end of the con-
ductive stage, is determined by the area rule and de-
pends only on the form of the heating-cooling function.
We should stress that persistent segregation, develop-

ing in confined systems, is essentially due to a nonlocal
constraint (in our case, total mass conservation) im-
posed on the system. This constraint leads to a (nonlo-
cal) feedback, arresting the motion of the interface
boundaries (traveling fronts). Similar mechanisms of
persistent one-dimensional pattern formation via a non-
local constraint appear in many other applications in
physics and chemistry (Nedospasov and Khait, 1979; Pis-
men, 1979; Barelko et al., 1981; Gurevich and Mints,
1987; Elmer, 1992; Middya et al., 1993), and their math-
ematical models have been recently extended to higher
dimensions (Rubinstein and Sternberg, 1992; Meerson
and Sasorov, 1996).
An interesting question concerns the character of the

final, third stage of the evolution of this system, when
the weak interfront interaction and boundary effects be-
come important. This question is of academic interest
for sufficiently large systems (such as many interstellar
clouds). However, for smaller systems (closer to the
short-wavelength limit), this stage becomes attainable.
This question has not been addressed authoritatively
yet, but some simple predictions can be made (Aranson
et al., 1993). First, because of the mass conservation, no
complete relaxation to a uniform state is possible during
the third, ‘‘superlong’’ stage, in contrast to the isobaric
case studied by Elphick et al. (1992). Therefore some (at
least rudimentary) pattern structure must exist ‘‘for-
ever.’’ On the other hand, a family of exact equilibrium
solutions of Eq. (51) exists in an unbounded medium,
which represent nonlinear periodic standing tempera-
ture (and density) waves (Meerson, 1989). Solutions
consisting of an integer number of ‘‘segments’’ of such
temperature waves and satisfying the no-flux boundary
conditions can always be constructed (unless the system
is too short and the radiative condensation instability is
suppressed). These solutions provide all possible candi-
dates for the final state, and one can assume that the

FIG. 7. Final pressure relaxation, corresponding to Fig. 6. The
solid line shows the natural logarithm of Q vs time found nu-
merically (Q is the absolute value of the difference between
the pressure and its equilibrium value p* ). The dashed line is
a linear approximation of this dependence.
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‘‘simplest’’ of them, containing only one front, will gen-
erally be stable and therefore realizable as t→` . The
expected (scaled) duration of the third stage must be of
the order of exp@O(L)#, that is, exponentially large with
respect to the ratio of the system length to the conduc-
tive Field length, the large parameter of the theory.
In two- and three-dimensional cases, the conductive

stage becomes more complex as new factors—the trans-
verse stability and curvature of the fronts—affect the
dynamics. These and related problems will be reviewed
in Sec. VII. In the following section we continue our
treatment of planar radiative condensation, but this time
we shall consider the long-wavelength limit.

VI. RADIATIVE CONDENSATIONS
IN THE LONG-WAVELENGTH LIMIT

A. Unlimited instability and ‘‘anomalous’’ gas dynamics

In the long-wavelength limit, the planar dynamics of
radiative condensation is described by Eqs. (28) and (29)
with a nonmonotonic ‘‘effective’’ pressure p5P(r). Let
us first consider quite an interesting limit of the prob-
lem, when the unstable density range is very large.
Meerson and Sasorov (1987) formally extended this den-
sity region to infinity and, neglecting the viscosity, ar-
rived at a model problem of an ideal, everywhere un-
stable flow of a gas with a negative compressibility. They
approximated the unstable part of p5P(r) as follows:

P~r!5A1Br12s, (65)

where A.0, B.0, and s.1 are constants. The pres-
ence of the three fitting parameters A , B , and s makes
it possible to obtain an accurate approximation for P
in the unstable density range in the most widely differ-
ent cases. Introduce the scaled variables x̃5x/L ,
t̃5ct/L , ṽ5v/c , and r̃5r/r0 , where r0 is the charac-
teristic value of the gas density and c25(s21)Br0

2s .
The quantity c is the characteristic gasdynamic velocity
of the problem. Omitting the tildes, rewrite Eq. (29) in
the form

]v
]t

1v
]v
]x

2r2~11s!
]r

]x
50, (66)

while retaining the form for Eq. (28) in the scaled vari-
ables. Like any other planar nonviscous compressible
gas flow, the flow described by Eqs. (28) and (66) can be
reduced, by means of either a Legendre or hodograph
transformation, to a linear partial differential equation
of the second order (see, e.g., Landau and Lifshitz,
1987).
The set of equations (28) and (66) with different par-

ticular values of parameter s has arisen in a whole series
of works in other contexts [such as tearing, Buneman
and parametric instabilities of a plasma, various modu-
lational instabilities, etc.; for an extensive review, see
Trubnikov and Zhdanov (1987), where more than 20
physical examples are listed]. These works go back to
Chaplygin, who studied a particular example of such a
problem in 1896 [Chaplygin’s selected works were pub-

lished in the 1970s; see Chaplygin (1976)]. The peculiar-
ity of the unstable flow (28) and (66) manifests itself in
the fact that the above-mentioned second-order linear
partial differential equation proves to be of the elliptic
type (see below), in contrast to the ‘‘usual’’ hyperbolic
type typical for ‘‘normal’’ (that is, everywhere stable)
gasdynamics. It is well known that the initial-value prob-
lem for elliptic equations is ill posed in the sense that the
solution does not exist for t→` . As it turns out, the
solution always develops a singularity in a finite time.
Physically, there are two possible types of singularities in
the system (28) and (66). In the first, the plasma density
goes to zero (correspondingly, the temperature goes to
infinity). We call this type of singularity explosive rar-
efaction. In the second type, the plasma density goes to
infinity, while the temperature goes to zero, which is
called explosive condensation, or collapse. The singular
character of the solution implies that the ‘‘advective’’
nonlinearities, present in Eqs. (28) and (66), are unable
to stop the instability, and they even accelerate it.
Meerson and Sasorov (1987) and Trubnikov and Zh-

danov (1987) investigated the idealized problem (28)
and (66) analytically for an arbitrary real value of the
parameter s.1. They employed a hodograph transfor-
mation, which consists in going over from the functions
r(x ,t) and v(x ,t) to the functions x(r ,v) and t(r ,v),
where r and v are now considered as the independent
variables. The equations for x(r ,v) and t(r ,v) then take
the form

]

]r
~x2vt !5r2~s12 !

]

]v
~ tr!,

]

]v
~x2vt !52

]

]r
~ tr!,

(67)

whence

S ]2

]r2
1

1
rs12

]2

]v2D ~ tr!50, (68)

x2vt5E S 1
rs12

]~ tr!

]v
dr2

]~ tr!

]r
dv D . (69)

The integrand of Eq. (69) in the (r ,v) plane is, accord-
ing to Eq. (67), a total derivative.
Because of its linearity, Eq. (68) admits, in principle,

the possibility of construction of a general solution. This
is clearly seen if we make the change of variables
t(r ,v)5r1/2F(r2s/2,sv/2). Then, for the function
C5F(r ,z)exp(if/s), by means of Eq. (68), we obtain
the Laplace equation, ¹2C50, in the cylindrical coordi-
nates r ,f ,z . The well-known powerful methods of solu-
tion of the Laplace equation make it possible to obtain a
large set of physically interesting solutions and to inves-
tigate different regimes of flow of the unstable gas. A
very useful technique here turns out to be transforming
to different coordinate systems, such as spherical and
toroidal, in the Laplace equation, which yields a rich
selection of solutions with different properties. Solving
the Laplace equation, we obtain the function t(r ,v).
Then we find x(r ,v) from Eq. (69). Inverting the alge-
braic relations for t(r ,v) and x(r ,v), we obtain the so-
lutions for the density and velocity. Using this technique,
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Meerson and Sasorov (1987) and Trubnikov and Zh-
danov (1987) obtained a number of exact solutions of
the problem, both for explosive rarefaction and for col-
lapse.
Let us start with the case of explosive rarefaction. Be-

cause of the (very strong) instability, the form of the
solution is very sensitive to the initial and boundary con-
ditions. We are interested, most of all, in the behavior of
the gas flow near the singularity r→0 that (we shall as-
sume) arises in the plane x50 at t50. Among different
solutions [including a family of self-similar solutions
which can be found directly from Eqs. (28) and (66)],
there is a special one that corresponds to a small-
amplitude single-mode perturbation of the density and
velocity at t→2` . Near the time moment of singularity,
t50, the selected solution looks like

r5~2t !2/sR~x !, v5~2t !21V~x !, (70)

where

11~s/2!2RsV25Rs2/~s12 !, (71)

E
1

RdR

R

4R22s/~s12 !1~s224 !R2s

~s12 !~R22s/~s12 !2Rs!1/2
52x (72)

(Meerson and Sasorov, 1987).
Notice that the density vanishes, while the velocity of

the gas becomes infinitely large, on a whole segment of
the x axis simultaneously. In Eqs. (70)–(72), the length
of the segment is already specified. In reality, it is
uniquely determined by the wavelength of the initial
perturbation; therefore the form of Eqs. (70)–(72) pre-
sumes a specific choice of the wavelength (see Meerson
and Sasorov, 1987 for details). The behavior of the func-
tions R(x) and V(x) is depicted in Fig. 8. For example,
in the particular case s52, one obtains simple solutions
R5cos22x and V5(1/2)sin2x, first found by Belova
et al. (1980) in another context.
The second type of singularity (collapse) can be con-

veniently studied with the following exact solutions of
Eqs. (28) and (66) (Meerson and Sasorov, 1987):

x52
a1v
r

1
2
3
a2v

32
2a2

s21
v
rs , (73)

t52
a1
r

1a2v
22

2a2
s221

1
rs , (74)

where a1 ,a2.0 are constants. Of course, these relations
must be inverted to yield the density and velocity. Since
s.1, we can neglect the last terms in Eqs. (73) and (74)
as r→` . Then we arrive at a well-known problem of the
inertial motion of the gas, when the role of the pressure
gradient is negligibly small (flow of a gas of noninteract-
ing particles). Arnold et al. (1981) showed that the gas
flow (73) and (74), with the last terms neglected, corre-
sponds to the only structurally stable singularity of the
flow of a gas of noninteracting particles. This result
makes the solution (73) and (74) the selected one for
collapse.
The fact that, when collapse develops, the gas flow

proceeds in the same way as in a gas of noninteracting
particles is physically fairly obvious, since for the chosen
approximation of P(r) in the form (65) we have
P(r)→ const as r→` (and, correspondingly, ¹p→0).
The latter circumstance also holds in the three-
dimensional case, and this makes it possible to detect a
similarity between the radiative condensation collapse,
considered here, and long-wavelength gravitational col-
lapse (Zel’dovich and Novikov, 1983). In the latter case,
Zel’dovich predicted the formation of planar
structures—the celebrated ‘‘Zel’dovich’s pancakes,’’ and
a set of shock waves attached to these structures. In the
problem of a three-dimensional radiative collapse, one
can also expect flattening and formation of a planar con-
densation, including shock waves (Meerson and Sasorov,
1987). [Moreover, in his very elegant paper, Sasorov
(1988) showed that the flattening persists even in the
intermediate-wavelength limit, though the mathematics
he used was quite different. Sasorov neglected thermal
conduction and considered the nonlinear evolution of an
unlimitedly unstable plasma under conditions of isobar-
icity. Choosing specific initial conditions, he was able to
formally reduce the problem to that of the dynamics of
the components of the deformation tensor of a gaseous
ellipsoid, thoroughly investigated by Bogoyavlenskii
(1985). Under these conditions, Sasorov (1988) showed
that a three-dimensional density perturbation develops,
in a finite time, into a two-dimensional structure (‘‘Saso-
rov’s pancake’’).]
The analytical solutions described here in Sec. VI.A

are useful as approximations at some stage of the dy-
namics, if the unstable density region is very broad. Of
course, in reality no singularities will develop, as the
plasma density eventually enters the regions of a normal
gasdynamics, that is, positive compressibility (see Fig. 2).
Therefore we have to consider the complete problem,
Eqs. (28) and (29), of the flow of a gas with an alternate-
sign compressibility. Such a problem was considered by
Meerson, Steele et al. (1993), and we review the results
of their work in Sec. VI.B.

FIG. 8. Spatial structure of the selected self-similar solutions
(70) for the gas density (R) and velocity (V), describing ex-
plosive rarefaction of an ‘‘unlimitedly’’ unstable plasma.
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B. Normal-anomalous gasdynamics and bistability

The similarity between the problem of the flow of a
gas with an alternate-sign compressibility and the prob-
lem of the isothermal dynamics of the van der Waals gas
(see Sec. III) gives a hint about possible final states. In
the van der Waals gas, the instability results in segrega-
tion of the overcooled vapor into two phases: the liquid
and the ‘‘normal’’ vapor, which can coexist in an inho-
mogeneous state (Kittel and Kroemer, 1980). This
means that bistability must exist in the long-wavelength
limit, too. Therefore we shall start with the possible spa-
tially nonuniform equilibria of the long-wavelength re-
duced equations, described by the conditions v50 and
]/]t50, from which follows ]p/]x50.
For such an equilibrium the density ‘‘jumps’’ from,

say, r1 to r2.r1 at some point x0 , while the pressure
remains uniform: P(r1)5P(r2). This equilibrium [the
so-called contact discontinuity; see Landau and Lifshitz
(1987), p. 321] is obviously impossible to attain if both
r1 and r2 belong to the same rising or falling branches
of the P(r) curve [just as it is impossible in the case of a
‘‘normal,’’ that is, growing, P(r)]. However, it becomes
possible when r1 and r2 belong to different rising
branches of P(r), while P(r1)5P(r2), as at the points
A and B in Fig. 2. In the problem of the long-wavelength
radiative condensation, such a contact discontinuity rep-
resents an equilibrium boundary between the cool and
dense plasma on one side and the hot and dilute plasma
on the other. In the van der Waals model, it is the equi-
librium boundary between the coexisting liquid drop
and normal vapor. Notice that this static structure has a
zero thickness, and the viscosity does not play any role.
Therefore we indeed have bistability in the long-
wavelength regime.
A natural generalization of discontinuous equilibria

includes propagating shock waves, which are described
by traveling-wave solutions of Eqs. (28) and (29). As the
plasma velocity in this solution is nonzero, the viscosity
determines a finite width of the shock front.
Looking for traveling-wave solutions, r(x ,t)5r(j)

and v(x ,t)5v(j), where j5x2ct and c is the wave
speed, we arrive at the following equations:

r~v2c !5r1~v12c !5r2~v22c !, (75)

r~v2c !
dv
dj

52
dP

dj
1h

d2v
dj2

, (76)

with the boundary conditions r5r2 ,v5v2 at j52` ,
and r5r1 ,v5v1 at j51` . Using Eq. (75) and integrat-
ing Eq. (76) once, taking account of the boundary con-
ditions, we obtain

hc0r2
d

dj S 1r D52P~r!1P22c0
2
r2
2

r
1c0

2r2 , (77)

where

~v22c !25c0
25

P22P1

r22r1

r1
r2
, (78)

~v12c !25
P22P1

r22r1

r2
r1
, (79)

and P1,25P(r1,2). Furthermore, from Eqs. (78) and
(79),

~v12v2!
25

~P22P1!~r11r2!

r1r2
. (80)

It follows from any of Eqs. (78)–(80) that, if r2.r1 ,
then P2.P1 . Formally speaking, the same inequality, as
well as relations (77)–(80), holds also for ‘‘normal’’ gas-
dynamics (Landau and Lifshitz, 1987). An important dif-
ference, however, is the fact that the inequality P2.P1
can be achieved now not only on one rising branch of
the P(r) curve, but also on its different rising branches.
Therefore shock waves with a monotonic density profile,
but a nonmonotonic pressure profile, are possible. The
front of such an anomalous shock wave represents a nar-
row unstable density region confined by two stable re-
gions of higher and lower density. As a consequence, a
small pressure difference P22P1 in the anomalous
shock wave may correspond to a very large density ratio
r2 /r1 , which results in a small value of c0 and therefore
a narrow shock front [see Eq. (77), where the shock
front width is seen to be proportional to c0].
Another important difference between the ‘‘normal’’

and ‘‘anomalous’’ shocks becomes clear if we try to in-
tegrate Eq. (77) and find the density profile r5r(j) of
the shock wave. Introducing the specific volume
u5r21, we rewrite Eq. (77) as

hc0
u2

du

dj
5F~u ![P21

P22P1

u22u1
~u2u2!2P~1/u !, (81)

where u1,25r1,2
21 . The function F(u) vanishes at u5u1

and u5u2 . The solution of Eq. (81) can be written in an
implicit form as

u2
hc0

j5E
u2

u du8

F~u8!
1const. (82)

For this to describe a shock wave with a monotonic den-
sity profile, the function F(u) must be positive at all
internal points of the interval (u2 ,u1). This criterion
holds automatically in normal gasdynamics, but needs to
be addressed in our case. It can be conveniently checked
if we analyze graphically the relative position of the
curve P(1/u) and the straight line Y(u) passing through
the points (u1 ,P1) and (u2 ,P2):

Y~u !5P22
P22P1

u12u2
~u2u2!. (83)

Positiveness of the function F(u) is achieved if the curve
P(1/u) and the straight line Y(u) do not intersect inside
the interval (u2 ,u1). For a given u1 , the maximum pos-
sible u2 (that is, the minimum possible r2) can be found
from the condition of the straight line Y(u)’s being an
‘‘upper’’ tangent to the curve P(1/u), as shown in line
b of Fig. 9.
Once the above conditions are met, integration in Eq.

(82) gives a desired traveling-wave solution for any pre-
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scribed function P(r) and any admissible pair of r1 and
r2 [see Meerson, Steele et al. (1993) for an example of
such an integration]. However, similar to normal gasdy-
namics, two more conditions have to be checked in or-
der that the anomalous shock wave be stable with re-
spect to small perturbations in the direction of wave
propagation. These are the ‘‘evolutionarity’’ conditions
(Landau and Lifshitz, 1987) requiring the shock wave to
move (i) supersonically relatively to the gas in front of
the shock, and (ii) subsonically relatively to the gas be-
hind the shock. Landau obtained these conditions from
stability arguments only, comparing the number of inde-
pendent parameters n1 characterizing an arbitrary,
small, initial perturbation of a shock to the number of
equations n2 relating these parameters. It appears that,
only if the two evolutionarity conditions (i) and (ii) are
satisfied, we have n15n2 and the shock wave is longitu-
dinally stable. It is important that these arguments do
not invoke any thermodynamic considerations, and so
they remain valid in our case of normal-anomalous gas-
dynamics. In our notation, the evolutionarity conditions
can be written as a double inequality:

r1
r2

S dPdr1
D 1/2,c0,S dPdr2

D 1/2, (84)

where dP/dr1,2 means dP/dr evaluated at r5r1,2 .
Therefore, among the ‘‘elementary objects’’ of the

normal-anomalous gasdynamics equations describing
the long-wavelength limit of the radiative condensation,
there are propagating shock waves and (standing) con-
tact discontinuities. These elementary objects illustrate
the gasdynamic bistability of the system, in contrast to
the thermal bistability observed in the intermediate-
wavelength limit. In Sec. VI.C we shall discuss numerical
solutions of the long-wavelength reduced equations and
the role of these elementary objects in evolutionary
problems.

C. Numerical simulations

For the numerical simulations, Meerson, Steele et al.
(1993) adopted a cubic polynomial for P(r):

P~r!5
r3

9
2
2
3

r21r , (85)

so that

dP

dr
5
1
3

~r21 !~r23 !. (86)

The graph of P(r) is shown in Fig. 2. The region of
instability is 1,r,3. The computational interval was
0,x,2p . Two types of sets of boundary conditions
were used. In the first type, plasma inflow to the system
(or outflow from the system) was allowed from both
boundaries (an ‘‘open’’ system), and a fixed value of the
density and a zero velocity gradient at each boundary
were prescribed. In the second type of boundary condi-
tion, plasma inflow and outflow were not allowed, and
the density gradient and plasma velocity were set to zero
at each boundary (confined plasma).
Meerson, Steele et al. (1993) started with different ini-

tial conditions, mainly in the form of a small density or
velocity perturbation around a uniform equilibrium
r5r0 . Let us discuss here the case of a density pertur-
bation, symmetric with respect to x5p ,

r~x ,t50 !5r02e cos~kx !, (87)

and a zero initial velocity.
When the uniform equilibrium r5r0 was stable [ris-

ing branches of the P(r) curve], Meerson, Steele et al.
(1993) observed propagation of acoustic waves and their
damping by viscosity, as expected. For unstable equilib-
ria [falling branches of the P(r) curve], they observed
localized instability, as predicted by the theory. Since at
fixed r0 and n the linear growth rate (30) increases with
wave number k , it is difficult to follow the evolution of
modes with a small k , since narrow secondary peaks
(emerging because of nonlinearities and numerical er-
rors) become dominant. On the contrary, modes with
sufficiently large k can be conveniently studied as the
linear growth rate for large k approaches a plateau [see
Eq. (30)], so that the secondary peaks do not interfere.
Meerson, Steele et al. (1993) followed the evolution of

the mode k54 in the case of a closed system for the
initial conditions (87) with r051.2, e50.001, and differ-
ent viscosities. As the effective pressure P(r) is smaller
in the region with increased density, inflow of the plasma
into this region starts; so the density there keeps grow-
ing. Figure 10 shows the mode amplitude (plotted loga-
rithmically) versus time for three different values of the
viscosity. It can be seen that, after a short time (neces-
sary for the system to develop a velocity perturbation
consistent with the growing density perturbation), the
mode growth enters the exponential stage predicted by
the linear theory. The growth rates agree with those pre-
dicted by Eq. (30) with an accuracy of 2–3 % for every
value of h . Later, the evolution enters a nonlinear stage,
when the mode amplitude first grows more quickly than
in the linear stage (as predicted by anomalous gasdy-
namics), and then, after some oscillations, it becomes
saturated.

FIG. 9. Graphical analysis of the positiveness of the function
F(u) from Eq. (83), giving, for a fixed u1 , allowable values of
u2 . The curve represents the graph of the effective pressure
P(1/u), while the straight lines a and b represent the function
Y(u) from Eq. (83) for a typical allowable value of u2 (a) and
for the maximum allowable value of u2 (b).
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Figure 11 shows the evolution of the spatial profile of
the same mode k54 for h50.1. It can be seen that
stable nonuniform equilibrium condensations finally de-
velop. As the plasma velocity vanishes at the final stage
and the pressure becomes constant (not shown graphi-

cally), this result means that the plasma is cooler inside
the condensations and hotter outside. The condensation
boundaries clearly represent contact discontinuities,
considered in Sec. VI.B. It is important to note that this
stable equilibrium was made possible by disallowing any
mass supply to the system. The process of formation of
contact discontinuities remains intact for larger viscosi-
ties as well. In these cases, the condensation formation
proceeds more slowly [as the linear growth rate (30) de-
creases], but residual velocities are damped more
quickly.
In an open system, the initial stage of the instability

looks similar. However, the later stage is quite different,
as the forming radiative condensation starts to expand.
The boundaries of the expanding radiative condensation
represent two shock waves with very narrow fronts, trav-
eling away from the center and separating stable higher-
and lower-density regions. Simultaneously, the material
is evacuated from the lower-density periphery to the ex-
panding condensation. The two shock waves represent
anomalous shocks, discussed in Sec. VI.B in the context
of traveling-wave solutions.
Meerson, Steele et al. (1993) performed special nu-

merical experiments to study the shock-wave formation.
They considered an open system and started with a dis-
continuity of the plasma density, r5r l at x,x0 , and
r5rr at x.x0 , such that r l and rr were on the higher-
and lower-density stable branches of the P(r) curve, re-
spectively, while the initial velocity was zero. The higher-
density region x,x0 was chosen to be at a higher pres-
sure than the lower-density region, so that the
discontinuity was expected to move into the lower-
pressure region, that is, from left to right. Since the ini-
tial values of the densities (and zero velocities) on both
sides of the discontinuity did not satisfy any particular
traveling-wave solution, the discontinuity had to break
into several discontinuities, propagating in both direc-
tions, before each of them approached a corresponding
traveling-wave solution.
To save computation time, Meerson, Steele et al.

(1993) started with a density discontinuity close to the
left boundary. Therefore only those discontinuities that
propagate from left to right were expected to settle
down and form a traveling-wave solution. A typical case
of such an experiment is shown in Fig. 12, where the
densities r l and rr were chosen to be 4.9 and 0.5 (corre-
sponding to pressures of 1.97 and 0.35, respectively),
x0 was taken to be 5, and the viscosity was h50.1. This
time a much longer spatial interval, 0,x,24p , was
used to allow the system more time to evolve. Shown in
Fig. 12 are the density profiles at different times. It is
seen that, after some irregular transient stage, the dis-
continuity ‘‘adjusts’’ to a new value of the density on the
left, r254.4, and then propagates with almost a constant
speed. To the right of the wave, the plasma remains
static, while to the left, there is flow to the right, provid-
ing the plasma for the wave front to move. Equations
(78) and (79) link the difference between the traveling-

FIG. 10. Nonlinear evolution of the radiative condensation in-
stability in the long-wavelength limit for the no-flux boundary
conditions. Shown is the maximum density vs time for the ini-
tial condition (87) with r051.2, e50.001, and k54. The vis-
cosity h50.04 (curve a), 0.1 (curve b), and 0.16 (curve c).

FIG. 11. Nonlinear evolution of the radiative condensation in-
stability in the long-wavelength limit. Shown is the density pro-
file vs time for the times t50 (a), 6 (b), 8 (c), and 40 (d). The
viscosity h50.1, and other conditions are the same as in Fig.
10.
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wave speed c and the plasma velocities adjacent to the
front, v1 and v2 , with the densities and pressures to ei-
ther side of the front.
Figure 13 shows separately the time evolution of the

square roots of the left- and right-hand sides of Eq. (79)
in this run. Shown in solid is the computed velocity dif-
ference c2v1 , while in broken is the function

D5SP22P1

r22r1

r2
r1

D 1/2.
It is seen that, starting from t536, the two curves show a
good agreement.
In addition, it was verified that the propagating shock

wave finally developing in Fig. 12 satisfies the two evo-
lutionarity conditions (84). It can also be seen directly
from Fig. 12, where, starting from t540, no perturbation
is present on the right of the shock wave, while a small
acoustic perturbation on the left, arising close to t540,
remains almost immobile, that is, moves to the left in the
shock wave’s reference frame.
Numerical integration in Eq. (77) makes it possible to

find the steady-state density profile of the anomalous
shock [Meerson, Steele et al. (1993)]. It appears that, on
the higher-density side, the profile is much more abrupt
than on the lower-density side. The same feature was
observed in the time-dependent simulations of shock-
wave formation.

D. Long-wavelength limit: summary and discussion
of the planar case

In the nonlinear stage of the long-wavelength radia-
tive condensation instability, dense (and therefore cool)
radiative condensations (‘‘drops of liquid’’) are formed,
surrounded by regions with a depleted density (‘‘bubbles
of vapor’’). After some period of adjustment, accompa-
nied by oscillatory plasma motions, the pressure in the
condensations and in the surrounding lower-density re-
gions becomes uniform. Further evolution of the system
depends on the boundary conditions. In the case of a
free plasma inflow (an open system), the radiative con-
densations expand, their boundaries representing the
anomalous shock waves considered in Sec. VI.B. If the
plasma inflow is not allowed (a closed or confined sys-
tem), stable equilibrium condensations develop, the
boundaries of which represent contact discontinuities.
It should be noted that both the contact discontinui-

ties and the anomalous shock waves have been obtained
in the framework of the long-wavelength reduced equa-
tions. Actually, these equations become invalid as steep
density and temperature gradients develop in the pro-
cess of instability and smaller spatial scales are intro-
duced into the problem. Therefore the true structure of
these ‘‘discontinuities’’ and shocks will not be deter-
mined by the small viscosity effects [employed in nu-
merical simulations of Meerson, Steele et al. (1993)
mainly to avoid wave breaking and to stabilize the nu-
merical scheme]. Instead, one has to consider two addi-
tional physical factors. The first of them is related to the
force balance setting in (for the small spatial scales that
arise) on the same time scale as the thermal balance.
The second factor is the heat conduction starting to act
on the small spatial scales.

FIG. 12. Evolution of an arbitrary discontinuity of the density,
as described by the long-wavelength equations for the radia-
tive condensation instability. At the time moment t50 (profile
1), a discontinuity is initiated with r l54.9 and rr50.5. At sub-
sequent times t510,20,30, . . . ,70 (profiles 2–8), the propagat-
ing discontinuity is adjusting itself and evolving into an anoma-
lous shock wave.

FIG. 13. Comparison of the shock-wave speed from Fig. 12
with its theoretical value. Shown in solid is the computed ve-
locity difference c2v1 , while in broken is the function D .
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In the limiting case of a relatively small heat conduc-
tion, lc!la , and a long-wavelength initial perturbation,
k!la

21 , it is the first factor that dominates. The corre-
sponding nonlinear theory is not available yet. In es-
sence, such a theory should match a long-wavelength
solution outside the fronts with an intermediate-
wavelength solution inside. One can assume that it is
only the front width and structure that will be provided
by a more complete theory, while all ‘‘macroscopic’’ re-
sults for anomalous shock waves (relations between
r1 , v1 , and P1 and r2 , v2 , and P2 and evolutionarity
conditions) will remain intact, as is the case for shock
waves in normal gasdynamics.
Alternatively, in the case of a large heat conduction,

lc!la , one obtains the ‘‘direct crossover’’ regime, when
thermal balance includes a significant heat flux. This re-
gime was studied by Meerson, Steele et al. (1993). The
results describe segregation in closed systems and uni-
formization in open systems. In the former case, the de-
veloping radiative condensation patterns are distinctly
nonuniform.
The last question worth discussing here is that of the

stability of the anomalous shock waves with respect to
small transverse perturbations. Indeed, the one-
dimensional longitudinal stability arguments (leading to
the evolutionarity conditions) are not sufficient, as the
plane-wave front might suffer from corrugation instabil-
ity in the transverse direction. General methods for the
analysis of the transverse stability of shock waves in ar-
bitrary gasdynamics were developed by Dyakov (1954).
Employing Dyakov’s criteria for the case of normal-
anomalous gasdynamics, Meerson and Rutkevich (1994)
verified that the anomalous shock waves are stable with
respect to the corrugation instability.

VII. RADIATIVE CONDENSATIONS IN TWO
AND THREE DIMENSIONS

Now we return to the intermediate-wavelength limit
and extend the treatment to two- and three-dimensional
geometries. We consider an isotropic plasma and assume
that the pressure gradient is the only force acting on it.
In two- and three-dimensional cases, the thermal
conduction-controlled dynamics of radiative condensa-
tion in a bistable plasma becomes more complex, as two
new factors, condensation/evaporation front curvature
and possible transverse front instability, appear. The
front curvature of large-scale patterns is small and there-
fore might seem insignificant. However, it proves to be
quite important in the two following classes of problems.
First, as the pressure of a confined plasma approaches
the area-rule value (see Secs. V.B and V.C) and the front
motions slow down, the curvature effects become domi-
nant. We shall see that they determine both the possible
final states of the system and the dynamics of relaxation
towards the final states. Second, the front curvature rep-
resents an important stabilizing factor for the transverse
instability of evaporation fronts, which can develop, as
we shall see, both in isobaric and in confined plasmas.

Throughout this section we shall follow the recent ex-
tensive work by Aranson et al. (1995), who studied these
problems in detail.

A. Reduced equations

When analyzing the intermediate- and short-
wavelength radiative condensation in two- and three-
dimensional geometries, we cannot replace the momen-
tum equation (2), wherein we neglect the viscosity, by
the condition ¹p50, as this condition is not sufficient
anymore for the determination of the velocity field.
Therefore the reduction procedure should be done more
carefully. In this section we outline two successive reduc-
tions of the governing equations (1)–(4). In the first re-
duction, one eliminates the acoustic modes. The second
reduction (the corresponding equations will be called
super-reduced) addresses plasmas that have already
been radiatively segregated.
Similarly to the planar case, we shall be interested in

two alternative regimes: isobaric condensations and con-
densations in a confined plasma. As we have seen in the
planar case, the reduced equations for the isobaric case
can be formally obtained from those of the confined
plasma by going to the limit of an infinitely large system
in the global pressure equation. It appears that this
property holds in higher dimensions as well. Therefore
we shall start with a confined plasma, and only in Sec.
VII.F consider the isobaric regime.
Consider a plasma confined in some domain V (two

or three dimensional), the maximal dimension of which
is L . We denote uVu as the volume of the region V in the
three-dimensional case or its area in the two-
dimensional case. Assume that the normal components
of the plasma velocity and of the heat flux at the closed
boundary G of the domain V are zero:

~v•nV!uG50, (88)

~¹T•nV!uG50, (89)

where nV is the normal to the boundary V . From Eqs.
(1) and (88) immediately follows mass conservation:

E
V

r~r,t !dr5const. (90)

If the dimensions of the system are much less than the
acoustic Field length, while the plasma motions are slow
in comparison with the speed of sound cs , we can sim-
plify the original set of equations (1)–(4), so that the
reduced system will not include the acoustic mode. For
this purpose, let us represent the total plasma pressure
p(r,t) as the sum of its spatially averaged part P(t) and
a spatially variable part p̃(r,t), so that

p~r,t !5P~ t !1p̃~r,t !. (91)

As the ratio p̃/P;v2/cs
2 is assumed to be small, we can

neglect p̃ in Eqs. (3) and (4). Therefore the set of Eqs.
(1)–(4) with the viscosity neglected can be rewritten as

dr

dt
1r¹•v50, (92)
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r
dv
dt

1¹p̃50, (93)

1
g21

dP

dt
1

g

g21
P¹•v1rL~r ,T !2¹•~K¹T !50,

(94)

P~ t !5
R

m
rT , (95)

with the boundary conditions (88) and (89). In view of
Eq. (95) we can also write

~¹r•nV!uG50. (96)

Note that p̃ appears only in Eq. (93), and it can be
eliminated completely if we apply curl to both sides of
this equation. The resulting relation

¹3S r
dv
dt D50 (97)

replaces Eq. (93). In this sense, Eqs. (92)–(95) with the
boundary conditions (88) and (89) represent a closed
set. These are the reduced equations, applicable to the
intermediate- and short-wavelength limits. The acoustic
modes are eliminated from the equations. It can be
checked that linear stability analysis of spatially uniform
equilibria in the framework of the reduced set of Eqs.
(92)–(95) immediately yields expression (7) for the lin-
ear growth rate.
Integrating Eq. (94) over the volume of the region

V and using the boundary conditions, we obtain the fol-
lowing important relation:

Ṗ~ t !52
g21
uVu EV

rL~r ,T !dr, (98)

which determines the temporal evolution of the average
plasma pressure. Equation (98) is similar to the ‘‘global
pressure equation’’ of Begelman and McKee (1990), and
it generalizes the one-dimensional equation (19).
Now we assume a powerlike thermal conduction, in-

troduce scaled variables, as in the planar case (see Sec.
III.A), and rewrite Eqs. (92)–(94) in the following scaled
form:

du

dt
5u¹•v, (99)

dv
dt

1u¹p̃50, (100)

Ṗ

gP
1¹•v1l~u ,P !2Pa¹•~ua¹u !50 (101)

with the boundary conditions (88) and

~¹u•nV!uG50. (102)

The global pressure equation (98) can be rewritten as

Ṗ

gP
52

1
uVu EV

l~u ,P !dr, (103)

and the carets are henceforth omitted.

In the isobaric regime, the corresponding reduced
equations immediately follow from these by putting
uVu5` in Eq. (103) and changing accordingly the
boundary conditions.

B. Large-scale equilibria

Let us look for possible segregated, that is, spatially
nonuniform, equilibria, v5]/]t50, of Eqs. (99)–(101),
satisfying the boundary condition (102). These are de-
scribed by the following equation:

¹•~ua¹u !5Peq
2al~u ,Peq!, (104)

where Peq is the equilibrium pressure.
Notice that, if they exist, the equilibria described by

Eq. (104) coincide with those of the original (unre-
duced) set of Eqs. (1)–(4). In addition, Eq. (104) holds
in the isobaric regime, the difference being in the selec-
tion of the parameter Peq : in the isobaric regime, Peq is
prescribed by the boundary conditions.
Equations similar to Eq. (104) appear in many con-

texts. For example, the same equation describes possible
equilibria of a one-component, multidimensional,
reaction-diffusion equation (Fife, 1979; Mikhailov,
1990):

]u

]t
52P2al~u ,P !1¹•~ua¹u !. (105)

Finally, in the two-dimensional case, Eq. (104) with
a50 describes a steady vortex flow of an ideal incom-
pressible fluid (Lamb, 1932). In this case u plays the role
of a stream function, so that the vorticity is equal to
¹2u . Obviously, stability of the solutions to Eq. (104) in
all above-mentioned problems depends on the specific
time-dependent governing equations and is different in
all these problems.
Although the one-dimensional solution of Eq. (104) is

elementary (see Sec. V.B), not much is known about
two- and three-dimensional analytic solutions, unless the
function l(u ,P) is a linear function of ua11. A limited
number of particular exact solutions can be found in the
literature for specially selected nonlinear l(u ,P) (Stu-
art, 1967; Batchelor, 1970; Shercliff, 1977; Kaptsov, 1988;
Alfimov et al., 1990). Instead, we shall consider more
general, though approximate, large-scale solutions that
describe segregation of a bistable plasma into large re-
gions occupied by the stable phases 1 (where u5u1) and
2 (where u5u2), with narrow transition layers between
them. Therefore we shall concentrate on the bistable
heating-cooling function l(u ,P). For the large-scale
segregated equilibria, both the right- and the left-hand
sides of Eq. (104) are close to zero everywhere except in
these transition layers. Therefore Eq. (104) is satisfied
‘‘trivially’’ outside the transition layers, while the ‘‘non-
trivial’’ balance between the left- and right-hand sides of
Eq. (104) determines the structure of the transition lay-
ers.
The simplest large-scale segregated equilibria are

those with zero curvature, and they represent alternat-
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ing parallel plasma slabs with u5u1(Peq) and
u5u2(Peq), with widths much larger than unity. In this
case Eq. (104) becomes one dimensional, and we re-
cover the planar solutions discussed in Sec. V.B. In this
case, the equilibrium pressure Peq is equal (with an ex-
ponentially high accuracy) to the special value P* , cor-responding to the area rule.
The simplest solutions with a nonzero curvature rep-

resent a single cylindrical or spherical ‘‘drop’’ (phase 1)
in the ‘‘vapor’’ (phase 2), or, alternatively, ‘‘bubble’’
(phase 2) in the ‘‘liquid’’ (phase 1). In these cases, Eq.
(104) can be rewritten as

d

dr S ua
du

dr D1
d21
r

ua
du

dr
5Peq

2al~u ,Peq!, (106)

where d52 for a circle (in two dimensions) or cylinder
(in three dimensions), and 3 for a sphere. (This and
most of the following relations containing d are formally
valid in the planar case d51 as well.) We assume that
the radius R of any of these objects is much larger than
the width of the transition layer between the phases
(which is of the order of the conductive Field length, or
unity in our scaled variables). As the radial derivative
du/dr falls rapidly outside the transition layer, one can
approximately replace the radial coordinate r by R in
the denominator of the second term of Eq. (106). Now,

for R@1, the second term is much smaller than the first
one, so that we can account for the curvature effects
perturbatively. In the zero-order approximation, we re-
turn to the planar equilibrium problem. This yields the
area rule (53), so that Peq5P* , the area-rule value.
Correspondingly, for the zero-order approximation of
the function u , we have the relation (53) with x replaced
by r .
In the first-order approximation, we can replace the

function u in the second term of Eq. (106) by its zero-
order approximation and expand l(u ,P) in the vicinity
of P5P* :

l~u ,P !'l~u ,P* !1m~u !~P2P* !, (107)

where, as before, m(u)5]l(u ,P)/]P , evaluated at
P5P* , and P2P*!P* .
Now we multiply Eq. (106) by uadu/dr and integrate

it from r50 to the boundary G of the plasma region.
Then, using the fact that du/dr vanishes outside the
transition layer and employing Eqs. (52) and (53), we
arrive at the following relation:

Peq5P*1
f

g
K , (108)

where

f5P
*
a E

u1

u2
uaS E

u1

u
hal~h ,P* !dh D 1/2du YE

u1

u2S E
u1

u
hal~h ,P* !dh D 1/2du , (109)

g5P
*
a/2E

u1

u2
uam~u !du YE

u1

u2S 2E
u1

u
hal~h ,P* !dh D 1/2du . (110)

Therefore we have arrived at a linear relationship be-
tween the small correction Peq2P* to the area-rule
value P* and the small (dimensionless) curvature K of
an equilibrium drop. The curvature K56(d21)/R is
defined here to be positive for a drop and negative for a
bubble. The g factor (110) is the same as in the one-
dimensional theory [see Eq. (59)], while the f factor is
new. Notice that f is always positive, which is important
for the following analysis. For the simplest case of
a50 (temperature-independent conductivity), f51.
Equation (108) has been derived for ‘‘perfect’’ (cylin-

drical or spherical) drops and bubbles. However, its va-
lidity can be significantly extended to large nonspherical
drops and bubbles with a smooth surface. In this case,
the quantity K , entering Eq. (108), is the sum of the
two local principal curvatures (Gray, 1993) of the drop/
bubble surface.
In this new meaning, Eq. (108) has far-reaching con-

sequences. Since the equilibrium pressure must be uni-
form, any equilibrium object must satisfy the condition
of a constant mean curvature of its surface. [Notice a
striking similarity between this problem and a classical

problem of equilibrium of capillary surfaces without
gravity (Finn, 1986). The similarity is quite unexpected,
as no ‘‘conventional’’ surface tension is present in this
problem.]
Most natural equilibrium patterns are those detached

from the boundary G . In this case the constant mean
curvature condition implies that only a circular (in two
dimensions) or spherical (in three dimensions) drop or
bubble (in addition to the zero-curvature, planar equi-
libria) can represent possible large-scale equilibrium
patterns. The equilibrium pressure Peq is related to the
radius of such a perfect radiative condensation accord-
ing to Eq. (108). Furthermore, several circular or spheri-
cal drops/bubbles of the same radius, which are far apart,
can represent possible equilibrium radiative condensa-
tions. It appears, however, that such many-drop (many-
bubble) equilibria are unstable (see below).
Therefore we have identified possible large-scale

equilibrium radiative condensation in a confined plasma.
Next we shall see that stability arguments introduce im-
portant additional limitations.
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C. Higher-dimensional conductive relaxation
and ‘‘super-reduced’’ equations

In the relatively fast, radiative stage of the radiative
condensation instability, the confined bistable plasma
segregates into two locally stable phases. The following
slower dynamics is determined by thermal conduction,
and we call this stage conductive relaxation. Our imme-
diate aim is to briefly describe the ‘‘super-reduced’’
equations that enable one to follow the relaxation of the
system towards any of the equilibria, found in Sec.
VII.B, if these equilibria are stable.
At the end of the radiative stage, the plasma density

and temperature of each of the two phases becomes
close to uniform outside the narrow transition layers, so
that we describe these phases by the uniform values of
their specific volume, u1(P) and u2(P) (therefore ne-
glecting p̃ compared to P everywhere except in ¹p).
Following P(t), u1 and u2 can vary in time. Therefore,
for the phase i (i51,2), the continuity equation (99) can
be rewritten as

¹•vi5
] lnui~P !

]P
Ṗ , (111)

while Eq. (100) takes the following form:

dvi
dt

1ui~P !¹p̃ i50. (112)

Taking curl of Eq. (112), we obtain

]

]t
¹3vi5¹3@vi3~¹3vi!# . (113)

At each interface, Eqs. (111)–(113) should be supple-
mented by matching conditions. In doing so, we treat the
narrow transition layers as discontinuities. This implies,
in particular, that the velocity field is assumed to be
large scale, so that it has no components with wave-
lengths comparable to the conductive Field length.
As usual, the continuity and momentum equations re-

sult in the following matching conditions (Landau and
Lifshitz, 1987):

v in5cn1jnui ~ i51,2!, (114)

v1 n2cn
u1

v1 t5
v2 n2cn

u2
v2 t , (115)

u1S v1 n2cn
u1

D 21p̃15u2S v1 n2cn
u1

D 21p̃2 . (116)

Here wn5w·n is the normal component of any vector
w at each interface, and wt5w2(w·n)n. The normal
vector n was defined after Eq. (57). cn is the normal
component of the front velocity, and jn5(v in2cn)/ui is
the flux of material through the interface.
In its turn, the thermal balance equation provides an

expression for jn . To obtain it, one should transfer to
the reference frame, which moves with the velocity cn ,
use the smallness of the transition layer width, and
match the ‘‘inner’’ and ‘‘outer’’ solutions, as in the one-

dimensional theory of Sec. V.B. For small K and
uP2P* u!P* , one can show that

jn52g~P2P* !1fK (117)

(Aranson et al., 1995).
Equations (88) and (102) remain the boundary condi-

tions for the system. In the segregated plasma that we
are considering now, Eq. (102) is satisfied automatically
at the parts of the boundary G embracing regions occu-
pied by any of the ‘‘pure’’ phases 1 and 2. If an interface
meets the boundary G , the boundary conditions require
each interface to be perpendicular to the boundary at
their ‘‘meeting point.’’
Equations (111) and (112), combined with the match-

ing conditions (114)–(117) at the interfaces and the
boundary conditions, represent a closed set of ‘‘super-
reduced’’ equations and describe the conductive stage of
the dynamics of large-scale radiative condensations in
confined thermally bistable plasmas. It is also possible to
find the corresponding super-reduced forms for the glo-
bal pressure equation (103) and mass conservation:

Ṗ5
P2P*2^K &f/g

^L&

3S g~u22u1!
2^u&

~u22^u&!~]u1 /]P !1~^u&2u1!~]u2 /]P ! D
P5P

*

.

(118)

This equation generalizes the corresponding planar re-
sult (63). The following notation has been used in Eq.
(118):

S5E E
VI

dS (119)

is the total area of interfaces VI ;

^L&5
uVu
S

(120)

is the characteristic size of segregated objects; and

^K &5
1
SE E

VI

K dS . (121)

Finally,

^u&5
uVu

uV1u/u1~P !1uV2u/u2~P !
5uVuS E

V

dr
u~r,0! D 21

(122)

is the average specific volume. This quantity is defined
by the first equality of Eq. (122). The second equality
shows that ^u& is independent of time, which implies
that mass conservation holds in the super-reduced equa-
tions as it should.
Returning to the global pressure equation (118), we

immediately see an important difference between the
one-dimensional case (K50) and the higher-
dimensional cases. The expression in the large parenthe-
ses of Eq. (118) is negative [see discussion after Eq.
(64)]. Therefore, on the time scale t1;^L&, the pressure

240 Baruch Meerson: Nonlinear dynamics of radiative condensations

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



mismatch P2P* approaches f^K &/g (which was zero in
the one-dimensional theory). At the next (slower) stage,
P2P* is approximately equal to f^K &/g . As the aver-
age curvature ^K & is (slowly) time dependent, P2P*
follows f^K &/g ‘‘adiabatically.’’ The time-dependent
quantity ^K &, which does not appear in the one-
dimensional problem, introduces a new ‘‘degree of free-
dom’’ and therefore a new time scale t2 (see later). This
can result in qualitatively new effects, such as instability
with respect to small changes in the sizes of drops and
bubbles, Ostwald ripening type of dynamics, etc. Now
we outline the linearized version of the super-reduced
equations, which are convenient for the analysis of the
linear stability of segregated equilibria. The linearization
is performed near a static equilibrium, so that the unper-
turbed velocity is set to zero. The linearized continuity
equation still looks like Eq. (111), except that the P de-
rivative in the right-hand side should be evaluated now
at P5P* . The linearized Euler equation (112) takes theform

]vi
]t

1ui~P* !¹p̃ i50, (123)

while Eq. (113) yields

]

]t
~¹3vi!50. (124)

This means that if the flow outside the transition layers
is potential at t50, it remains potential for all times.
Furthermore, if the initial velocity is zero, we can intro-
duce, instead of the pressure variation p̃ i , the following
effective potential,

c i~r,t !52E
0

t
p̃ i~r,t8!dt8, (125)

and replace Eq. (123) by the following relation:

vi5ui~P* !¹c i . (126)

Linearization of the matching conditions (114)–(116)
yields the following results. In Eq. (114) we evaluate ui
at P5P* :

v in5cn1jnui~P* !. (127)

In the linear approximation, Eq. (115) is satisfied iden-
tically. Finally, in Eq. (116) the terms proportional to the
square of the velocities can be neglected, so that it can
be written as a continuity condition for the effective po-
tential:

c15c2 . (128)

Another way of linearizing the super-reduced equations
becomes necessary when one studies the stability of a
moving front, like that in the problem outlined in Sec.
VII.F.

D. Higher-dimensional conductive relaxation
in confined plasmas

Aranson et al. (1995) investigated several two- and
three-dimensional stability problems for the equilibria
found in Sec. VII.B. Here we shall briefly describe the
results of these studies.

1. Linear stability of a planar interface

An arbitrary small perturbation of the equilibrium
planar interface in a rectangular box can be represented
as a volumetric perturbation with a zero wave number,
accompanied by a pressure variation, and a set of iso-
baric deformation perturbations with nonzero wave
numbers. All of these perturbations were shown to be
damped independently. The volumetric perturbation re-
laxes on the time scale t1;L@1, predicted by the one-
dimensional theory. The deformation perturbations
(more precisely, their lowest modes) decay much more
slowly, on the time scale t2;L2@t1 .

2. Shape stability of a perfect drop (bubble)

Similarly, the linear stability of a perfectly circular or
spherical drop of radius R (phase 1), which is in equilib-
rium with an ambient ‘‘vapor’’ (phase 2), can be consid-
ered. In this case the equilibrium pressure Peq differs
from the area-rule value P* by the correction f/(gR), aspredicted by Eq. (108). Alternatively, one can consider a
bubble (region 2) surrounded by ‘‘liquid’’ (region 1).
The simplest problem is formulated for a circular or
spherical domain V concentric with the drop/bubble;
however, the results remain valid for a general shape of
the domain if R!L . Similarly to the previous problem,
small volumetric (purely radial) perturbations of the
drop/bubble, which are generally accompanied by a
pressure variation, decouple from small (isobaric) defor-
mations of the perfect shape of the drop/bubble inter-
face. It appears that small deformations are damped
with the characteristic time t2;R2.

3. Radial stability of a perfect drop

Now we consider the dynamics of purely radial pertur-
bations of a single drop, which are accompanied by pres-
sure variations. We shall use the (nonlinearized) super-
reduced equations in the limit of P2P*!P* and will beable to go beyond the linear theory and consider large
variations of the drop radius.
Consider a circular domain V containing a circular

drop of radius R concentric with V and surrounded by
vapor (phase 2). Let uVu5S0 be the area of the domain
V . Let the drop radius and initial pressure be not in
equilibrium, so that the system starts to evolve, P and
R changing in time. Physically, mass and heat exchange
between the drop and the vapor starts. Since the radial
mode decouples from the (damped) azimuthal perturba-
tions, P(t) and R(t) represent the only variables of the
problem, and one needs two ordinary differential equa-
tions to describe the dynamics. The equation for Ṗ is
provided by Eq. (118), where one just needs to calculate
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^K & , ^L&, and ^u& using the two-dimensional versions
of Eqs. (119)–(122). Then we make use of the mass con-
servation in the system,

d

dt S pR2

u1
1
S02pR2

u2
D50. (129)

After differentiation, one should linearize this relation
around P* . Finally, in the limit of a relatively small
drop, pR2!S0 , one obtains the following set of equa-
tions:

Ṗ5
2pu2~u22u1!R

S0]u2 /]P
Fg~P2P* !2

f

RG , (130)

Ṙ5u1Fg~P2P* !2
f

RG , (131)

where u1,25u1,2(P* ), and it has been assumed that nei-
ther u1,2 nor their P derivatives introduce large or small
parameters.
The first integral of this system is

P2
pu2~u22u1!R

2

S0u1]u2 /]P
5const, (132)

so that the integral curves on the phase plane (R ,P)
represent descending quadratic parabolae (remember
that ]u1,2 /]P,0). The presence of this integral makes
the problem solvable analytically. For any initial condi-
tion R(0),P(0) the dynamics is determined by the rela-
tive position of the corresponding integral curve and the
line of equilibria,

g~P2P* !2
f

R
50.

Figure 14 shows the phase plane of the system. The solid
lines are the integral curves (132), while the dashed line

is the line of equilibria. For initial conditions lying on
those integral curves, which do not intersect the line of
equilibria, the drop will never reach an equilibrium. One
can see that it will shrink and disappear in a finite time.
(Actually, the theory breaks down for small drop radii.
However, numerical simulations, free from this limita-
tion, show that the drop evaporation indeed persists un-
til the drop disappears.)
Now consider integral curves, which have two inter-

section points with the line of equilibria. These points
represent two equilibria, the first with a smaller and the
second with a larger drop radius. The smaller-radius
equilibrium proves to be unstable, so that the drop ei-
ther shrinks and disappears, or expands until a new
equilibrium with a larger drop radius is reached.
Therefore the line of equilibria consists of two parts,

unstable and stable. The stability border, dividing the
line of equilibria into these two parts, is the tangency
point between the line of equilibria and an integral
curve. This point can be easily found, and it gives the
minimum value R* of the stable drop radius:

R*5F2
fu1S0]u2 /]P
2pgu2~u22u1!

G1/3. (133)

We see that, while the minimum area of a stable drop,
pR

*
2 , increases with S0 like S0

2/3 , its relative value
pR

*
2 /S0 decreases like S0

21/3 . Equation (133) can also be
obtained from the marginality condition of a linear sta-
bility analysis of Eqs. (130) and (131).
Three-dimensional problems of the radial stability of

a single drop can be analyzed similarly. In summary, an
individual equilibrium drop (bubble) can be either
stable or unstable with respect to a pure radial mode.
An unstable drop (bubble) either shrinks and disappears
in a finite time, or expands until a stable equilibrium is
reached.

4. Nonlocal interaction between drops: Ostwald ripening

Now let us consider interaction between N>2 drops
or bubbles. The radii of the drops are assumed to be
large enough, Ri@1, i51,2, . . . ,N , and the distances
between the drops and the boundary, and between the
drops themselves, are much larger than the drop radii.
In this small-volume-fraction limit, the drop-drop inter-
action results solely from the (spatially uniform) pres-
sure variations in time. This interaction causes radial
variations of the drops, while their shape deformations
remain small. As we have already seen, the interaction
vanishes in equilibrium, when all the drops have the
same radius. However, this equilibrium is unstable (see
below). Therefore our aim is to describe the dynamics of
this system and its relaxation to the final state.
Using Eq. (117) for each of the drops, and the total

mass conservation in the (three-dimensional) system,
Aranson et al. (1995) arrived at the following set of
equations:

dDp

dt
52eS Dp(

i51

N

Ri
22(

i51

N

RiD , (134)

FIG. 14. Phase plane of Eqs. (130) and (131), describing the
dynamics of radial perturbations of a single drop. The solid
lines are the integral curves (132); the dashed line is the line of
equilibria. The numerical values correspond to a specific
choice of the heating-cooling function and parameters of the
problem.
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dRi

dt
5Dp2

1
Ri

, i51,2, . . . ,N , (135)

the first integral of which is

Dp1
e

3(i51

N

Ri
35const. (136)

Here a scaled time t52u1ft and pressure

Dp5
g~P2P* !

2f

have been introduced. Furthermore,

e52
2pgu2~u22u1!

fV0u1
]u2
]P

.0.

Equations (134) and (135) have simple equilibria
Ri5R0 (that is, N identical drops) and Dp51/R0 , which
can be easily shown to be unstable with respect to small
variations of the drop radii. Indeed, a small difference in
any two drops’ radii grows exponentially in time, the
characteristic growth time (in the ‘‘old’’ units of time)
being R0

2 . The monotonic growth of the difference in
the radii of any two drops in time continues far from the
equilibrium. As a consequence, the initial ordering of
the drop radii (let it be R1,R2,•••,RN) persists. On
the other hand, the total volume occupied by the drops
is always finite. It follows that at least one drop must be
shrinking, and it is the smallest drop whose radius first
reaches zero. This singularity develops in a finite time,
so that the smallest drop disappears, and the number of
drops becomes N21. At this stage (after the singular-
ity), we have to redefine the ‘‘initial conditions’’ and the
first integral, then employ the same arguments, and so
on.
Therefore the dynamics of an ensemble of drops pro-

ceeds as a ‘‘cruel’’ competition mediated by the time-
dependent uniform pressure of the system. The smallest
drop shrinks and disappears first. Then goes the second
smallest drop, etc. The process continues until only one
drop (the largest) remains. The same result is valid for
an ensemble of N bubbles. This type of dynamics, when
larger drops thrive at the expense of smaller ones, is
known in the dynamics of the first-order phase transi-
tions as Ostwald ripening (Ostwald, 1900).

5. Many drops’ statistics and universal scalings

Now let us assume that a large number of drops,
N@1, has developed in the earlier conductive stage. In-
troduce the (time-dependent) distribution function of
the drops with respect to their radii, F(R ,t). By defini-
tion, *0

`F(R ,t)dR5n(t), where n(t), the number of
drops per unit volume (drop concentration), is a con-
tinuous function of the scaled time t .
In the limit of a small volume fraction, the distribution

function must satisfy the continuity equation in the
space of radii,

]F

]t
1

]

]R
~ṘF !50, Ṙ5Dp2

1
R
. (137)

The first integral (136) can be rewritten as

Dp1
e0
3 E0

`

R3F~R ,t!dR5Q5const, (138)

where

e052
2pgu2~u22u1!

fu1]u2 /]P
.0.

Equations (137) and (138) represent a closed set. Given
the initial conditions F(R ,0) and Dp(0), they determine
the whole evolution of the system up to the time when
the number of drops becomes small, and the statistic
description fails.
In this formulation the problem becomes very similar

to the classical problem of the kinetics of diffusive de-
composition of supersaturated solid solutions, studied in
the pioneering work by Lifshitz and Slezov (1958). The
main difference lies in the expression for Ṙ , which in
their case included an additional factor 1/R . The mean-
field approach of Lifshitz and Slezov was adopted in
many other systems, showing Ostwald ripening [for a
recent bibliography on the Ostwald ripening theory, in-
cluding an account of finite-volume fraction effects, see
Slezov and Sagalovich (1987), Marder (1987), Brown
(1992), Chen and Voorhees (1993), and Yao et al.
(1993)]. Among them, Wagner (1961) was the first to
consider a diffusively decomposing system with a chemi-
cal reaction on the interphase surface. Surprisingly, Eqs.
(137) and (138) exactly coincide with the corresponding
(scaled) equations of Wagner.
The theory of Lifshitz and Slezov predicts that, for

sufficiently large times, any extended (that is, positive on
the whole interval 0,R,`) distribution function of the
drops with respect to their radii R approaches a univer-
sal self-similar form, which represents an intermediate
asymptotics of the problem. [For an authoritative refer-
ence on self-similarity and intermediate asymptotics, see
the book by Barenblatt (1979).] For the system (137)
and (138), the general form for the self-similar distribu-
tion function is F(R ,t)5t22F(R/t1/2). Correspond-
ingly, the scaled pressure mismatch Dp decreases like
bt21/2. This implies that the ‘‘drop concentration’’ n de-
creases like ht23/2, while the average drop radius grows
like xt1/2. The positive coefficients h , x , and b are
uniquely determined by the zero, first, and second mo-
ments of the function F(j). The function F satisfies an
ordinary differential equation of the first order and a
normalization condition, which one obtains from Eqs.
(137) and (138). This ordinary differential equation can
be integrated by separation of variables, and we arrive
at the following expression:

F~j!5const•juj222bj12u25/2

3expS 23bE j dj

j222bj12 D . (139)
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Further calculations depend on b . It can be checked that
the case of 0,b,A2 must be ruled out as non-
normalizable.
For b5A2, we arrive at the solution found by Wagner

(1961):

F~j!5const•j~A22j!25expS 2
3A2

A22j
D (140)

for j,A2 and F(j)50 elsewhere. The constant is de-
termined by the normalization condition. This solution
vanishes at j5A2 together with all its derivatives. For
the Wagner solution, x5(8/9)A2. Extending the argu-
ments of Lifshitz and Slezov (1958) and Slezov (1978) to
this case, one can see that this particular solution is the
attractor of any extended initial distribution.
In the case of b.A2, formal integration in Eq. (139)

yields

F~j!5const•juj22ju25/213b/~2Ab222 !

3uj12ju25/223b/~2Ab222 !, (141)

where j65b6Ab222. Aranson et al. (1995) con-
structed a positive, nonsingular solution, using Eq. (141)
on the interval (0,j2) and setting F(j)50 for j>j2 .
The condition F(j2)50 requires that b,5A2/4 (other-
wise, F diverges at j5j2).
Therefore there is a one-parameter family of self-

similar distribution functions defined on a quite narrow
interval of the parameter b : A2<b,5A2/4, the left
boundary of which corresponds to the Wagner solution.
[Similar localized distributions can be constructed in the
problem of Lifshitz and Slezov as well, as was shown
numerically by Brown (1989, 1990).] Notice that the ex-
ponents of the power laws of the pressure mismatch,
drop concentration, and average drop radius as func-
tions of time are independent of b . However, the coef-
ficients b, h, and x in the corresponding power laws
(and, of course, the shape of the distribution function)
vary with b .
An important question is which of these self-similar

distributions will actually develop, if one starts from a
prescribed initial distribution. As mentioned above, it is
the Wagner solution (140) that finally sets in for an ex-
tended initial condition. The case of a localized initial
condition requires an additional analysis. [A similar
question of the realizability of different self-similar solu-
tions has arisen for the Lifshitz-Slezov case, where it has
been an object of much controversy (Brown, 1992; Chen
and Voorhees, 1993).] Essentially, this problem concerns
finding the selection rule for the ‘‘correct’’ self-similar
distribution function of the drops. This problem was ad-
dressed quite recently for the model (137), (138) by
Meerson and Sasorov (1996). They considered a local-
ized initial distribution, which is positive on the interval
(0,Rm(t50)) and zero for R.Rm(t50). They showed
that, first, the solution always remains localized on an
interval (0,Rm(t)). Furthermore, the leading term of the
expansion of F(R ,t) in the vicinity of R5Rm(t) can be

written as A(t)@Rm(t)2R#y, where y is uniquely deter-
mined by the initial condition:

y5
d lnF~R ,t50 !

d ln@Rm~ t50 !2R#
U
R5Rm~ t50 !

. (142)

It is crucial that parameter y remains invariant for any
localized solution of the problem. Therefore it is the
double-logarithmic derivative (142) of the initial distri-
bution, evaluated at R5Rm , that selects the correct
self-similar distribution function from Eq. (141).
It should be remembered that, no matter what the

precise form of the ‘‘intermediate’’ self-similar solution
is, the final state of the dynamics must be a single drop
(bubble).

E. Numerical simulations

Aranson et al. (1995) carried out two-dimensional nu-
merical simulations aimed at verifying their super-
reduced conductive relaxation model and some of the
analytical results, discussed previously in Sec. VII. They
worked with the reduced model, described by Eqs. (99),
(101), and (103) and the boundary conditions (88) and
(102). However, instead of the Euler equation (100),
they employed a much simpler equation for the velocity
field:

v5u¹c . (143)

As we have seen, this relation becomes accurate close to
equilibrium P5P* [see Eq. (126)].
The equations were solved in a square domain L3L

with the no-flux boundary conditions. L was varied from
35 to 60, so that it was always much larger than the
conductive Field length (that is, unity in the scaled vari-
ables). The same bistable heating-cooling function (49)
as that used in the planar calculations was employed,
and g55/3 and a50 were chosen. In this case, the area-
rule value of the pressure is P*5A5/2.1.118, while
g52A2.2.828 and f51.
The first series of simulations concerned the dynamics

of a system of two or more drops with different radii.
Figures 15 and 16 show the two-drop dynamics, obtained
numerically. (In these simulations, periodic boundary
conditions with a period L560 were employed.) It is
seen from Figs. 15(a)–15(c) that the smaller drop shrinks
and disappears as predicted, with the larger drop and
vapor thriving at its expense. Figure 16 shows the corre-
sponding pressure history. Calculating the equilibrium
radius Req from the relation

g~P2P* !2
f

R
50

(with P.1.15 as in Fig. 16), we obtain Req.11, which is
quite close to the visible radius of the drop in Fig. 15(c).
Noticeable in Fig. 15 is an almost ideal preservation of
the circular forms of the drops, which justifies the as-
sumption of a purely radial interaction of the drops.
When starting with three drops of different radii, one
observes shrinkage and disappearance of the smallest
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one, followed by shrinkage of the next smallest. There-
fore ‘‘full’’ numerical simulations confirm the theoretical
predictions concerning the Ostwald ripening type of
competition between the drops.
In the next series of runs (Figs. 18–21), the initial con-

dition for u represented broadband ‘‘noise’’: a small-
amplitude multimode perturbation du(x ,y) around a
uniform state u0 . For radiative segregation to develop,
the value of u0 must be somewhere between u1 and
u2 , and not too close to any of them. In the beginning
(stages 1 to 3 of the dynamics), the simulation results
always look similar to the planar case. First, the pressure
drops to u0 , so that u0 quickly becomes an unstable
equilibrium (stage 1). Then the linear stage of the radia-
tive condensation instability develops (stage 2) when the
pressure is almost constant. Perturbations with too short
wavelengths are strongly damped [see Eq. (7)], and they
are already absent after a few units of time. In stage 3,
strong plasma segregation develops: higher-density,
cooler regions are formed (phase 1), which are sur-
rounded by lower-density, hotter regions (phase 2).
The subsequent evolution of the forming patterns was

observed to proceed in two different ways, depending on
the initial conditions. In Figs. 17 and 18, where
u050.9, straightening of the interface between the
phases 1 and 2 occurs, and a slab-type equilibrium de-
velops. Figure 18 shows that the pressure approaches
P*.1.118, in full agreement with the theory. In addi-
tion, the final stage of this straightening is described by
the linearized theory, as predicted. Indeed, in Fig. 17(c),
one can still see a slightly deformed interface, and the
deformation mode is the fundamental, n51. By this
time the shorter-wavelength modes, n52,3, . . . , have
already disappeared, as their damping rates are 4,9, . . .
times higher.
On the contrary, Figs. 19 and 20 (u051.4) show the

process of formation of a single equilibrium circular
drop. Actually, Fig. 19(c) shows a quarter of a drop, a

FIG. 15. Background-mediated competition between two
drops, studied numerically. The initial condition represents two
drops (u5u1) in the ‘‘vapor’’ (u5u2); the initial pressure is
1.2. The dimensions of the system are 60360. Shown are the
specific-volume contours at t55 (a), 45 (b), and 100 (c).

FIG. 16. Pressure history for the same run as in Fig. 15. The
peak at t.57 corresponds to the moment of the disappearance
of the smaller drop. The pressure finally approaches 1.15,
which agrees with the surviving drop’s radius in Fig. 15(c).
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compromise between the drop-type equilibrium and an
‘‘attached’’ equilibrium, obviously possible in the square
domain. The circular form of the forming drop supports
theoretical predictions of the drop stability with respect
to small azimuthal perturbations. The final (equilibrium)
pressure (Fig. 20) agrees with the drop radius and is
predicted quite accurately from initial conditions.
Therefore Aranson et al. (1995) were able to repro-

duce numerically both types of large-scale equilibria
predicted by their theory, verify the stability analyses
based on the super-reduced equations, and observe the
background-mediated competition between drops (Ost-
wald ripening). Direct numerical experiments with a
large number of drops, aimed at investigating the statis-
tical properties of Ostwald ripening, have not been per-
formed yet.

F. Transverse instability of evaporation fronts

We shall discuss here the three-dimensional
intermediate-wavelength dynamics of radiative conden-
sation in plasmas with isobaric boundary conditions. We
already know that the corresponding reduced model is
based upon elimination of the acoustic modes. Consider
a bistable plasma. The initial stages of the dynamics are
not sensitive to the boundary conditions. Indeed, during
the radiative stage of the radiative condensation insta-
bility, the plasma is segregated into two phases. In the
conductive stage, which is next, thermal conduction be-
comes important. One of the phases starts to expand,
while the other shrinks, as predicted by the planar
theory reviewed in Sec. IV. Depending on the sign of the
integral I [see Eq. (42)], either condensation or evapo-
ration occurs. The planar theory predicts that, as the
result of this condensation (evaporation) process, it is
the dense and cool (dilute and hot) phase that will fi-
nally survive. As the plasma pressure is constant and

FIG. 18. Pressure history for the same run as in Fig. 17. The
pressure first drops to 0.9 (so that the radiative condensation
instability starts to develop) and finally approaches the area-
rule value P*51.118.

FIG. 17. Slab-type equilibrium developing from broadband
noise. The initial condition is a small-amplitude multimode
perturbation of u around u050.9. The initial pressure is 1.0;
the dimensions of the system are 40340. Shown are the
specific-volume contours at t510 (a), 20 (b), and 250 (c).
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plasma inflow or outflow is allowed, there is no mecha-
nism that would arrest the front motions and preserve
the segregation. However, the planar front motion can
become unstable with respect to transverse perturba-
tions, and we need a three-dimensional theory to inves-
tigate this problem. In the following we briefly review
the transverse stability theory for the moving condensa-
tion or evaporation fronts.
As we have already seen, the isobaric version of the

reduced equations can be formally obtained from the
equations, derived for confined plasmas, by letting the
size of the ‘‘box’’ go to infinity in the global pressure
equation (98). In addition, one can assume for simplicity
that the pressure P5const is close to the area-rule value
P* : DP5uP2P* u!P* . In this case we can use the
simple linear relation (117) between the flux of matter
jn through the ‘‘discontinuity,’’ the pressure mismatch
DP , and the front curvature K .
Let us consider an unperturbed planar front, which is

located at the plane x50 of a Cartesian coordinate sys-
tem, moving together with the front. A half-space
x.0, indexed by D , is assumed to be downstream; and a
half-space x,0, indexed by U , is upstream. Indices U
and D will also be used for various physical quantities in
the U and D regions, respectively. Depending on the
sign of P2P* , there are two cases. In the first one,
P.P* , phase 1 is downstream, phase 2 is upstream, and
jn,0. In the second, P,P* , phase 2 is downstream,
phase 1 is upstream, and jn.0. Therefore we can write
the unperturbed normal vector n as (sgnjn,0,0). Other
unperturbed values are the following: cn50;
vx /u5const[j5ujnu5guP2P* u (the mass flux across
the front in the downstream direction); v in
5jui(P)[v i ; vit50 (index i stands for D or U);
K50; and et5(0, sgnjn,0) (the unit tangential vector).
Let the function F(x ,y ,z ,t)5x2z(y ,z ,t)50 describe

the (weakly) perturbed position of the front. As the un-

FIG. 19. Drop-type equilibrium developing from broadband
noise. The initial condition is a small-amplitude multimode
perturbation of u around u051.4. The initial pressure is 1.2;
the dimensions of the system are 35335. Shown are the
specific-volume contours at t50 (a), 20 (b), and 180 (c).

FIG. 20. Pressure history for the same run as in Fig. 19. The
pressure first jumps close to 1.4 (so that the radiative conden-
sation instability starts to develop) and finally approaches the
value corresponding to the equilibrium radius of the forming
drop.
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perturbed state is stationary and possesses translational
and axial symmetries, the dependence of all perturbed
physical quantities upon (y ,z ,t) can be chosen propor-
tional to exp(qt1ikyy). Linearizing Eqs. (111), (112), and
(114)–(116) around the moving front, one arrives at the
following dispersion relation:

q212q
kujnuu1u2
u11u2

S 11
fk

ujnu
D1k2jn

2 uU2uD
uU1uD

uDuU

12fk3ujnu
uD
2 uU

uU1uD
50, (144)

where k[ukyu. The real part of one of its roots is always
negative, while the other root,

q52
kju1u2
u11u2

F11
fk

j

2A11
f2k2

j2
1S u2u1 2

u2
u1

D sgnjn22
fk

j

uD
uU

G , (145)

can have a positive real part, which corresponds to in-
stability. Indeed, one can see that evaporation fronts
[for which, always, jn5g(P*2P).0] are unstable
(Req.0) if the perturbation wavelength is sufficiently
large:

0,k,k05
1
2
jn
f

u1
uD

u22u1
u21u1

. (146)

The maximum growth rate can be estimated as
q;u1,2jn

2 /f;(P2P* )
2. It obviously goes to zero with

the pressure mismatch. When P.P* , one has Req,0,
so that condensation fronts are always stable.
It is important to notice that this stability problem is

quite similar to the hydrodynamic stability problem for a
laminar flame propagation, which was investigated in
the pioneering works by Darrieus, Landau, and Mark-
stein (see Landau and Lifshitz, 1987; Zel’dovich et al.,
1985; Pelcé, 1988; Lin̄án and Williams, 1993). These
works predicted a similar instability for sufficiently long
perturbation wavelengths (the so-called Darrieus-
Landau instability). At short wavelengths, the instability
is suppressed by the Markstein effect, related to the
perturbation-induced front curvature. The similarity be-
tween the evaporation front instability and the Darrieus-
Landau instability becomes clear when one notices that
the unperturbed state in both cases consists in a rela-
tively slow (subacoustic) heat and mass flow through a
hydrodynamic discontinuity. It is essential that f.0, so
that no analogs of the thermodiffusive flame instability
(Zel’dovich et al., 1985; Lin̄án and Williams, 1993) or
Mullins-Sekerka instability in solidification (Kurz and
Fisher, 1992) appear.
Nonlinear effects of the Darrieus-Landau instability

in the flame front dynamics (‘‘wrinkled flames’’) were
considered in a number of works, starting from the origi-
nal work of Landau (1944). The instability tends to in-
crease the front’s area, which leads to the front accelera-
tion. In the extreme case, the front surface can even
become fractal (Lin̄án and Williams, 1993). Laboratory

experiments with spherical flames clearly show the
Darrieus-Landau instability and fractalization of the
front (Gostintsev et al., 1988). Recently, fractalization
has been reproduced numerically (Filyand et al., 1994;
Blinnikov and Sasorov, 1996; Blinnikov et al., 1995). In
addition, Blinnikov and Sasorov (1996) and Blinnikov
et al. (1995) have related the fractal dimension of the
flame front surface to the density contrast of the flame,
g f512u1 /u2 .
Theoretical approaches of Filyand et al. (1994), Blin-

nikov et al. (1995), and Blinnikov and Sasorov (1996)
are based on simplified model equations describing the
nonlinear stage of the Darrieus-Landau instability in the
approximation of a potential flow (Sivashinsky, 1977;
Frankel, 1990). Strictly speaking, this approximation is
valid only in the limit of a small density contrast,
g f!1. Formally applying it to the case of g f;1, Filyand
et al. (1994) obtained numerical results quite similar to
the experimental results of Gostintsev et al. (1988). Of
course, one cannot expect that the potential approxima-
tion will work well in the problem of the evaporation
front instability in, say, interstellar medium, which is
usually characterized by very large density contrasts. As
large g f lead to strong vorticity generation, it is quite
possible that the evaporation fronts will be destroyed by
turbulence.
The same transverse instability of the evaporation

fronts can also develop in a confined plasma. As the
pressure mismatch P2P* (and therefore the flux of ma-
terial through the discontinuity jn) is not constant in this
case, the problem is more complicated. However, there
is a simple limit of a ‘‘strong’’ instability, when (at least,
the linear) theory remains valid. Indeed, the pressure
mismatch P2P* can be regarded as almost constant, if
the characteristic growth rate of the Darrieus-Landau-
type instability is much larger than the typical inverse
time t1

21 of the pressure relaxation towards P* . Assum-
ing that neither u1 nor u2 introduce large or small
parameters, we can write this inequality as
uP2P* u@1/^L&, where ^L& is the typical size of pat-
terns. Correspondingly, an opposite inequality is a nec-
essary criterion for the validity of the stability analyses
of confined plasmas in all cases, where evaporation takes
place.
Let us briefly summarize the results of Sec. VII.F.

Condensation fronts are always stable with respect to a
transverse (Darrieus-Landau-type) instability. There-
fore, in isobaric plasmas, the (quasi)planar condensation
fronts, developing after the radiative segregation stage is
completed, will lead to the system uniformization, as
predicted by the planar theory. In confined plasmas, the
curvature-dominated condensation fronts’ dynamics, re-
viewed in Secs. VII.C–VII.E are also unchallenged. On
the contrary, the evaporation fronts’ dynamics can be
quite complicated (both in the isobaric case and at an
earlier stage of the confined plasmas’ dynamics). One
can speculate, however, that the latest stage of the dy-
namics of radiative condensation patterns in a confined
plasma will be always dominated by curvature, as the
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plasma pressure finally approaches P* , and the growthrate of the Darrieus-Landau-type instability vanishes.

VIII. RADIATIVE CONDENSATIONS
AND MAGNETIC FIELDS

In this section we shall briefly consider the role of
magnetic fields in the radiative condensation dynamics.
That this role can be crucial (and can strongly modify
many of the effects described previously) becomes clear
already in the linearized theory. The pioneering work by
Field (1965) studied thermal instability of a plasma in a
uniform magnetic field. It is obvious that for perturba-
tions with wave vectors parallel to the field, the field
does not affect the dynamics. If the wave vector is nor-
mal to the magnetic field, the field introduces two addi-
tional effects. The first is due to the magnetic pressure;
the second (if the plasma is an ideal conductor) is the
property of the field line to be frozen into the plasma.
These two factors combined impede and anisotropize
the plasma condensation. For perturbations oblique to
the magnetic field, the problems become more compli-
cated. In the simplest linearized theory, one obtains a
dispersion relation of the fifth order (Field, 1965), as two
new modes (Alfvén and magnetoacoustic waves) appear
in addition to the three ‘‘old’’ modes. We shall deal in
this section with the two simplest problems, which are
related to the radiative condensation dynamics of mag-
netized plasmas. The first of them describes the radiative
condensation dynamics in the idealized case when the
condensations develop across a straight magnetic field
with no shear. In Sec. VIII.A, we follow Meerson, Priest,
and Steele (1993) and show that, mathematically, this
problem can be reduced to the planar problem with no
magnetic field that we considered before. Section VIII.B
treats another, relatively simple case when the magnetic
field is sufficiently strong, so that it completely sup-
presses the plasma motions across the field (but not the
transverse thermal conduction). In this case, the plasma
is able to redistribute itself along the field in response to
the heat propagation across the field. This simplified
model was developed by Meerson, Petviashvili, and
Tajima (1995) in an attempt to better understand the
basic physics of MARFEs in tokamak edge plasmas.

A. Development of condensations
across the magnetic field

Considering one-dimensional motions of a fully ion-
ized plasma across a magnetic field, we employ a slab
model. The magnetic field B(x ,t) has straight field lines,
and a plasma with the density r(x ,t) is allowed to move
across the field (i.e., along the x axis) with velocity
v(x ,t) under the action of the gradient of the total (ther-
mal + magnetic) pressure, p(x ,t)1B2(x ,t)/8p . The gov-
erning magnetohydrodynamics equations are (see, e.g.,
Priest, 1984)

dr

dt
1r

]v
]x

50, (147)

r
dv
dt
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d
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p5
R

m
rT , (151)

where the heat-loss function can now depend also on the
magnetic field B .
The simplest, spatially uniform equilibria of these

equations, r0 , T0 , p0, and B0 , satisfying the condition
L(r0 ,T0 ,B0)50, are unstable with respect to the radia-
tive condensation mode if

T0LT2
r0Lr1B0LB

11gcA
2 /cs

2 ,0 (152)

(cf. Field, 1965). Indices T , r , and B denote derivatives
with respect to the corresponding variable, evaluated at
its equilibrium value. Furthermore, cs5(gRT0 /m)

1/2 is
the velocity of sound, and cA5B0 /(4pr0)

1/2 is the
Alfvén velocity. Notice that the instability condition usu-
ally becomes more stringent in comparison to that for an
unmagnetized plasma. Physically, it is natural, as the ra-
diatively condensing plasma has to overcome the (build-
ing up) magnetic pressure.
Similar to the unmagnetized plasma case, reduction of

the governing equations is possible if there are strong
inequalities between the characteristic time scales (cor-
respondingly, length scales) of the problem. The charac-
teristic time scales of the problem are the radiative cool-
ing time tr , the magnetoacoustic time tMA
5l/(cA

2 1cs
2)1/2, and the transverse thermal conduction

time tTC5l2/k' , where l is a typical dimension of the
initial perturbation and k'5K' /r0 is the transverse
thermal diffusivity.
In the intermediate-wavelength limits, we have

tMA!tr!tTC , and it is the force equilibrium that sets in
on the fastest, magnetoacoustic time scale. Then a
slower stage of evolution starts when the density, tem-
perature, velocity, and magnetic-field perturbations
evolve on the background of a uniform total pressure:

]

]x Fp~x ,t !1
B2~x ,t !
8p G50.

In the long-wavelength limit, radiation is much faster
than the magnetoacoustic motions. In this case thermal
equilibrium

L~r ,T ,B !50

sets in first, and then slower magnetoacoustic motions
start (we have neglected the transverse thermal conduc-
tion in the last condition). Meerson, Priest, and Steele
(1993) considered both limits. The simplest case is when
the system evolves from a small initial perturbation
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around an unstable uniform equilibrium. In this case the
ratio B/r remains constant in time [see Eq. (149)];
therefore, in both the intermediate- and long-
wavelength limits, one can replace Eq. (149) by the
simple condition

B~x ,t !
r~x ,t !

5
B0

r0
5const. (153)

This relation enables one to eliminate the magnetic field
from the governing equations. As a result, one obtains,
in each of the limits, reduced sets of equations, which
are very similar to the corresponding sets of equations
derived for radiative condensation in unmagnetized
plasmas with the heat-loss function, effective pressure,
etc., modified. Meerson, Priest, and Steele (1993) stud-
ied the dynamics of developing radiative condensation
in these two limits. We shall not present those results
here, as they closely resemble those for unmagnetized
plasmas after the (more stringent) instability criterion
(152) has been satisfied. An important difference is ob-
tained in the intermediate-wavelength limit, in the re-
gime when the total pressure is constant. One finds that
the maximum possible compression of the unstable
plasma is

rmax
r0

5S 11
8pRr0T0

mB2 D 1/2,
which implies that b058pRr0T0 /(mB

2) must be much
larger than 1, if significant plasma condensations across
the field are to be achieved (see also Karpen et al.,
1989). Other details can be found in Meerson, Priest,
and Steele (1993).

B. Multifaceted asymmetric radiation from the edge
of tokamak plasmas (MARFE): simple dynamic model

Impurity radiation at the edge of a tokamak discharge
is well known to represent one of the major factors de-
termining the global stability of the discharge (Vershkov
and Mirnov, 1974; Gibson, 1976; Murakami et al., 1976;
Rebut and Green, 1977; Ohyabu, 1979). At the so-called
density limit, the total impurity radiation power be-
comes equal to the total input power to the tokamak
discharge. Above the density limit, the discharge under-
goes a thermal collapse (Rebut and Green, 1977;
Ohyabu, 1979; Ashby and Hughes, 1981). MARFEs are
observed as standing or moving strongly radiating belts
of short poloidal and radial extent at the edge of toka-
mak plasmas. They develop when the density reaches
about 25% of the density limit. The plasma density in
the MARFE can become comparable to that in the cen-
ter of the discharge. Accordingly, the plasma tempera-
ture in the MARFE is strongly decreased. MARFEs
were observed in almost every tokamak (Terry et al.,
1981; Alladro et al., 1982; Baker et al., 1982; Lipshultz
et al., 1984; Boody et al., 1985; Lipshultz, 1987; Ser-
gienko et al., 1993). They significantly increase the impu-
rity radiation power. On the other hand, experiments
with reproducible MARFEs have been suggested as a

means for edge-plasma diagnostics (Sergienko et al.,
1993). By now it is clear that MARFEs represent radia-
tive condensations (Stringer, 1985; Neuhauser et al.,
1986).
Theoretical studies of MARFEs have proceeded in

three directions: (i) the linear analysis of the radiative
condensation instability, (ii) search for possible
MARFE-like equilibria of a tokamak edge plasma, (iii)
attempts to simulate the process of MARFE formation
numerically. Drake (1987) was the first to understand
that an adequate theory of MARFEs must be at least
two dimensional (2D). Using fluid equations in cylindri-
cal geometry, he analyzed the linear stability of a simple
(constant density, but radially nonuniform temperature)
thermal equilibrium. He showed that the radiative con-
densation instability starts when the plasma density ex-
ceeds a critical threshold that is somewhat lower than
the density limit, in agreement with observations. Fur-
thermore, he found that the poloidally symmetric per-
turbations are normally damped, which explains the ob-
served poloidal asymmetry of MARFEs. Subsequent
extensions of Drake’s linear theory addressed
ionization-recombination balance, edge-density gradi-
ents, different forms of the radiative cooling function
and the ‘‘detached plasma’’ regime (Choudhury and
Kaw, 1989; Morozov, 1992; Deshpande, 1994). It is im-
portant that the instability threshold has been found
quite insensitive to the details of the (poorly known)
radiative cooling function (Drake, 1987; Deshpande,
1994).
The search for possible MARFE-like equilibria in-

volves the analysis of a two-dimensional thermal equi-
librium equation, which includes a (nonlinear) heating-
cooling function and anisotropic heat conduction.
Krasheninnikov (1988) and Kaw et al. (1990) analyzed
simplified versions of this equation for possible poloi-
dally symmetric and asymmetric (MARFE-like) solu-
tions and the transitions between them. Dependence of
the transverse heat conduction on the poloidal angle (re-
sulting from the corresponding magnetic-field depen-
dence) was introduced by Bazdenkov et al. (1990), in an
attempt to interpret the localization of steady-state
MARFEs at the smaller major radius side of tokamaks.
[An alternative to this mechanism is the toroidal varia-
tion on the plasma density which, because of an en-
hanced radiation, provides a ‘‘seed’’ for the radiative
condensation instability at the smaller major radius side
(Drake, 1987).]
The linear stability and 2D equilibrium analyses,

though quite informative, are not sufficient for elucidat-
ing the physics of MARFE formation. This problem re-
quires a nonlinear time-dependent analysis. Neuhauser
et al. (1986) studied the nonlinear radiative condensa-
tion instability dynamics numerically, employing a one-
dimensional multifluid code with the ionization-
recombination balance for the hydrogen and impurities.
A number of interesting effects were found, such as re-
laxation oscillations during a plasma density rise, con-
densation front propagation, and effects related to inho-
mogeneous power and impurity input. However, it
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became clear, after the works of Drake (1987), Krash-
eninnikov (1988), and Kaw et al. (1990), that at least the
2D nonlinear dynamics should be addressed. It has been
done recently by Meerson, Petviashvili, and Tajima
(1995).
Similar to a number of previous studies of MARFEs

[see, e.g., Drake (1987)], Meerson, Petviashvili, and
Tajima (1995) assumed that the tokamak magnetic field
completely suppresses plasma motions across the field,
but not the transverse heat conduction. They started
with the simple fluid equations:

dn

dt
1nbW •¹W v i50, (154)

min
dv i

dt
52bW •¹W p , (155)

3
2
dp

dt
1
5
2
pbW •¹W v i2bW •¹W k ibW •¹W T2¹W '•k'¹W 'T

1L2H50, (156)

where n , T , and p5nT are the plasma concentration,
temperature, and pressure, respectively; bW 5BW /B is a
unit vector along the magnetic field BW ; v i is the longitu-
dinal (along BW ) velocity; mi is the ion mass; k i and k'

are the coefficients of longitudinal and transverse heat
conduction; L5n2F(T) is the radiative cooling func-
tion; and H is a model heating function. The total time
derivative in Eqs. (154)–(156) is d/dt5]/]t1v ibW •¹W .
Proceeding in the spirit of reduced models of radiative

condensations, Meerson, Petviashvili, and Tajima (1995)
explicitly used the fact that the typical longitudinal
acoustic time scale is normally much shorter than the
other relevant time scales (the radiative cooling time
scale and longitudinal and transverse heat-conduction
time scales). In this combined intermediate- and short-
wavelength limit, the plasma pressure rapidly becomes
uniform along the magnetic-field lines, so that the com-
plete Euler equation (155) can be replaced by the simple
relation bW •¹W p50.
It is known that MARFEs develop in a thin region at

the plasma edge. Therefore Meerson, Petviashvili, and
Tajima (1995) considered the problem in slab geometry
(x ,z), supplementing it by periodic boundary conditions
with respect to the magnetic-field direction z . The left
boundary of the plasma, x50, was kept at a constant
temperature T5T0 (this condition simulated the hot
plasma inside the discharge), while the right boundary,
x5a , was kept at a (significantly lower) constant tem-
perature Ta , which simulated the discharge periphery.
The boundary conditions along z were periodic:
n(x ,0)5n(x ,l), T(x ,0)5T(x ,l), and v i(x ,0)5v i(x ,l),
where l52pR , and R was identified with the major ra-
dius of the tokamak. From this periodicity immediately
follows mass conservation along z :

M~x ,t !5E
0

l
n~x ,z ,t !dz5const~ t !. (157)

Introduce the specific volume of the fluid,
u(x ,z ,t)5n21(x ,z ,t), and eliminate the temperature,
using the equation of state. We arrive at the following
two equations for the three variables u(x ,z ,t),
v i(x ,z ,t), and p(x ,t):

du

dt
2u

]v i

]z
50, (158)

3
2

]p

]t
1
5
2
p

]v i

]z
2p

]

]z S k i
]u

]z D2
]

]x S k'

]~pu !

]x D
1L2H50, (159)

where it is assumed that k i , k' , L , and H are ex-
pressed as functions of u and p . Integrating Eq. (159)
with respect to z over the period l , we obtain a nonlocal
evolution equation for the pressure:

]p

]t
52

2
3lE0

l
~L2H !dz1

2
3lE0

l ]

]x S k'

]~pu !

]x Ddz .
(160)

This equation represents one more version of the global
pressure balance equation. Equations (158)–(160) form
a closed set and represent the Eulerian version of the
reduced model of Meerson, Petviashvili, and Tajima
(1995). They can be further simplified by introducing a
Lagrangian mass coordinate along the z axis:

m~x ,z ,t !5E
0

z
u21~x ,z8,t !dz8. (161)

Transforming to the coordinates x and m , we are left
with only two governing equations:

]u

]t
52

2u
5p

~L2H !2
3u
5p

]p

]t
1

2
5M2~x !

]

]sS k i

u

]u

]s D
1
2u
5pS ]

]x
1Y

]

]s Dk'F ]

]x
~pu !1Y

]

]s
~pu !G , (162)

]p

]t
5
2M~x !

3l E
0

1
uS ]

]x
k1Y

]

]s Dk'F ]

]x
~pu !1Y

]

]s
~pu !Gds

2
2M~x !

3l E
0

1
u~L2H !ds , (163)

where M(x)5*0
l u21(x ,z ,t)dz is the (x dependent) to-

tal mass content of each magnetic-field line. Because of
mass conservation along z , the quantity M(x) is inde-
pendent of time and determined solely by the initial
density profile. As usual, the constancy of the system
length l in the z direction, while trivial in the Eulerian
coordinates, appears as a conservation law in the La-
grangian description:

E
0

M~x !

u~x ,m ,t !dm5l . (164)

Furthermore, s5s(x ,z ,t)5m(x ,z ,t)/M(x), while
Y=Y(x ,z ,t)5]s/]x is assumed to be expressed through
s , x , and t.
Equation (162) for u(x ,m ,t) should be solved subject

to the periodic boundary condition with respect to m ,
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u@x ,m5M(x),t#5u(x ,m50,t). The equation is
coupled to the nonlocal evolution equation (163). Again,
this nonlocality is related to some global constraints [this
time, of a constant mass content M(x) and length l of
the system along the magnetic field]. We have already
discussed similar nonlocalities in thermally bistable plas-
mas, in one, two, and three dimensions. The nonlocali-
ties introduce ‘‘global negative feedback’’ and contribute
to the formation of persistent stationary structures, nor-
mally impossible in nonconstrained one-component
reaction-diffusion-type equations. As we have seen, the
mechanism of stationary pattern formation in bistable
systems with global negative feedback consists, essen-
tially, in the arrest of the motion of ‘‘phase-transition’’
fronts, which otherwise would finally make the system

uniform. The arguments, developed for the bistable sys-
tems, can be extended to the more complicated (in par-
ticular, nonbistable) 2D model (162), (163), especially in
the case when a one-dimensional (1D) constant-density
equilibrium, similar to that considered by Drake (1987),
the cylindrical geometry, is unstable with respect to the
radiative condensation instability. Therefore Meerson,
Petviashvili, and Tajima (1995) interpreted the develop-
ment of MARFEs in terms of the formation of station-
ary patterns (in the form of poloidally asymmetric seg-
regated states) in a more complicated reaction-diffusion-
type system with global negative feedback.
To verify this concept and follow the MARFE forma-

tion, Meerson, Petviashvili, and Tajima (1995) solved the
reduced equations (162) and (163) numerically. As nei-
ther the linear theory of the radiative condensation in-
stability (Drake, 1987; Deshpande, 1994) nor the
MARFE-like equilibria (Krasheninnikov, 1988; Kaw
et al., 1990) are very sensitive to the precise form of the
cooling function, Meerson, Petviashvili, and Tajima
(1995) followed Drake (1987) to adopt a rather crude
model of the line radiation from the tokamak edge:
L5u22L0 , for the temperature interval Ta<pu<TL ,
and L50 outside this interval. In addition, TL was
taken to be much smaller than T0 , so that the radiative
cooling was localized near the edge. For simplicity, they
assumed the following model forms of the heat conduc-
tion coefficients: k i5T5pu ,k'51. (Renormalizing
properly the coordinates x and m and rescaling the di-
mensions a and l , we can always scale down the numeri-
cal coefficients in the heat conduction coefficients.) The
simplest case of a zero heating, H50, was chosen.
Figures 21 and 22 show a typical example of the

model edge-plasma dynamics in the case when a
MARFE-like condensation develops. The scaled edge-
plasma dimensions were a515 and l5120, while the pa-
rameters were the following: T0545, Ta51, TL53,
and L053. In this run, the authors started with a small
2D seed plasma condensation with a maximum density
perturbation of 531022 on the background of a con-
stant (and equal to 1) plasma density. The seed conden-

FIG. 21. Formation of a MARFE-like two-dimensional pat-
tern. Shown are equidistant contours of the specific volume of
the plasma u as a function of the coordinate x and Lagrangian
coordinate m at successive times t518 (a), 36 (b), and 90 (c). +
and − indicate the maximum u1 and minimum u2 values of u ,
where u151.37, u250.13 (a), u151.96, u250.083 (b), and
u154.28, u250.074 (c). By the time t590, a steady state is
apparently achieved. The system lengths in the x and z direc-
tions are 15 and 120, respectively.

FIG. 22. Formation of a MARFE-like two-dimensional pat-
tern. Shown is the plasma temperature (equidistant contours)
as a function of coordinate x and Lagrangian coordinate m at
time t590. The system lengths in the x and z directions are 15
and 120, respectively. ‘‘2’’ indicates the minimum temperature
T250.68 (a flat plateau). The maximum temperature T0545
is kept constant at x50, and T5Ta51 at x515.
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sation was exponentially localized close to the middle of
the ‘‘cold wall’’ of the system. For this initial density
profile, the mass content of each magnetic-field line was
almost independent of x and equal to M5120 (with an
accuracy better than 1023). Recall that M serves as the
Lagrangian ‘‘length’’ of the system in the z direction.
The initial pressure profile was one dimensional and lin-
ear in x : p(x ,m ,t50)5T02(T02Ta)(x/a). The con-
stancy of l [Eq. (164)] was checked in order to monitor
the accuracy of computations.
As the initial conditions are not in thermal equilib-

rium, even without the small perturbation (they would
be if it were not for the radiative cooling), the system
starts to evolve. The region with temperature less than
TL is cooling down, as the radiative cooling operates
here, while the heat conduction supplies heat from the
core plasma and tends to smooth the temperature pro-
file. Simultaneously, however, the initial small perturba-
tion grows, and a pronounced 2D (poloidally asymmet-
ric) condensation develops. Figures 21(a) and 21(b) for
the specific-volume dynamics in the coordinates x and
m clearly show that the condensation results from
plasma inflow along the magnetic field. Finally, an appar-
ently stationary, localized, poloidally asymmetric con-
densation is formed, as seen in Fig. 21(c) for the specific
volume and in Fig. 22 for the temperature. (Remember
that m is the Lagrangian mass coordinate. In the original
Eulerian coordinate z , the poloidal extent of the grow-
ing condensation is a few times smaller.)
As expected, MARFE-like condensations develop in

this model if the radiation intensity L0 exceeds a thresh-
old value L0* . With all of the other parameters un-
changed, L0* is found to be about 2.1. (As the authors
did not start from any unstable 1D equilibrium, this
threshold was not expected to coincide with that pre-
dicted by any linear theory.) Below the threshold, a one-
dimensional (poloidally symmetric) equilibrium-
temperature profile sets in, and no condensation
develops. Above the threshold, the poloidal and radial
extent of the steady-state condensation grows with the
‘‘supercriticality’’ L02L0* (it is essential that it remains
nonzero when L02L0*.0 goes to zero). Finally, simu-
lations with other initial pressure profiles give similar
results; therefore Meerson, Petviashvili, and Tajima
(1995) conclude that the MARFE-like structures have
an extensive basin of attraction in the space of initial
conditions.
An immediate extension of this simple model would

be taking into account dependence of the transverse
heat conduction on the coordinate z . This dependence
can simulate the dependence on the poloidal angle, re-
sulting from the corresponding magnetic-field variation.
This addition will enable us to verify the mechanism of
localization of steady-state MARFEs at the smaller ma-
jor radius side of tokamaks suggested by Bazdenkov
et al. (1990). Another extension of the model would in-
clude an attempt to simulate the phenomenon of de-
tached plasma and its role in the development of
MARFEs. [This effect was investigated by Morozov
(1992) in the linear theory.] To this end, one should in-

troduce a low-temperature cutoff in the radiative loss
function at a temperature somewhat higher than the
‘‘cold’’ boundary temperature Ta .

IX. CONCLUDING REMARKS

We have reviewed recent progress in studying the
nonlinear dynamics of radiative condensations in opti-
cally thin plasmas. This progress has been made possible
due to an explicit use of the hierarchy of characteristic
time scales (and corresponding length scales) in the sys-
tem. A number of reduced models have been developed
in recent years, which address the dynamics of radiative
condensation in the long-, intermediate-, and short-
wavelength limits. Sometimes these models have analogs
in other physical and chemical problems, which facili-
tates the ‘‘cross-fertilization’’ between different fields.
Being much simpler than the original unreduced gasdy-
namic (or magnetogasdynamics) equations, the reduced
models prove to be very helpful in understanding the
basic physics of radiative condensation formation and
development. Sometimes, useful analytic solutions de-
scribing the dynamics of radiative condensation can be
obtained.
As the radiative condensation instability is usually

strong, in the sense that the final state of the system is
very different from the initial one, the overall behavior
of the heating-cooling function in a wide range of tem-
peratures and densities becomes important. Some useful
insight into the nature of radiative condensation can be
obtained when this function is approximated in such a
way that the radiative condensation instability proceeds
‘‘unlimitedly.’’ We have observed that conventional (ad-
vective) nonlinearities are usually unable to stop the un-
stable growth, and radiative condensations (or, alterna-
tively, radiative rarefactions) in such cases look like
explosions (that is, develop singularities in a finite time).
A more realistic picture is obtained in the regime of

bistability. In this case, the process of radiative conden-
sation leads naturally to segregation of the radiatively
cooling gas into two ‘‘phases’’ with quite different prop-
erties: a cool and dense phase coexisting (at least, tem-
porarily) with a hot and dilute phase. This process takes
a time of the order of the characteristic radiative cooling
time of the system in the intermediate-wavelength limit,
and of the order of the acoustic time in the long-
wavelength limit. (We give these estimates for the ideal-
ized case of an isotropic plasma and assume that the
temperatures of the cool and hot regions do not intro-
duce large or small parameters.) The further dynamics
prove to be determined by the character of the bound-
ary conditions, namely, whether the system is ‘‘open’’ or
‘‘closed.’’
In open systems (plasma inflow or outflow is allowed),

one of the locally stable phases is actually metastable
and is finally ‘‘consumed,’’ so that radiative segregation
proves to be a transient phenomenon with a lifetime
proportional to the average size of a single pattern of
each of the phases. The process of relaxation towards a
uniform equilibrium proceeds via temperature (and den-
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sity) fronts of evaporation or condensation. The nature
of these fronts is very different in the intermediate- and
long-wavelength limits. In the intermediate-wavelength
limit, the fronts are similar to those predicted by
Zel’dovich and Pikel’ner (1969) and by Penston and
Brown (1970). It has been found recently that, in the
case of evaporation, the fronts are unstable with respect
to transverse perturbations, and this instability (which is
very similar to the well-known Darrieus-Landau insta-
bility of laminar flame propagation) can lead to front
fractalization, acceleration, and, possibly, turbulence. In
the long-wavelength limit, the fronts represent shock
waves of a new type, in which the gas density profile is
monotonic, but the gas pressure profile is not. These
shocks prove to be stable with respect to small longitu-
dinal and transverse perturbations.
In closed or confined systems, the physics of radiative

condensations can be very different. The presence of a
nonlocal, integral constraint (mass conservation) im-
posed on the dynamics makes it possible to arrest the
front motion and thus to facilitate a much longer (even
‘‘eternal’’) coexistence of the two phases. The character-
istic time scale of the relaxation of the confined system
to this coexistence state is proportional to the average
size of a single domain of each of the phases. It is inter-
esting that these general results are independent of the
time-scale hierarchy used in the theory, as they are ob-
tained both in the intermediate- and in the long-
wavelength limits.
Many features of the planar dynamics of radiative

condensations in confined plasmas persist in a more
complicated situation, where the plasma motion remains
one dimensional (along a strong magnetic field), while
the (anisotropic) thermal conduction acts both along
and across the magnetic field. Such a model seems to be
the simplest possible one that provides a physically rea-
sonable description of the formation of MARFEs in tok-
amak edge plasmas. Although no complete theory has
been developed for this model, numerical results with
this model show that, with sufficient radiative cooling,
the nonlocal constraint (mass conservation) does lead to
formation of steady-state MARFE-like structures. Fur-
ther work in this direction will possibly enable us to in-
terpret more of the observed properties of MARFEs.
The previous example shows that reduced models of

radiative condensations can be useful in more compli-
cated situations, when other forces, in addition to pres-
sure gradient, are present. Another such example
represents the recently considered problem of ‘‘quasihy-
drostatic’’ unsteady flows of radiatively cooling self-
gravitating gas clouds (Meerson, Megged, and Tajima,
1996). In this problem, it is the approximate balance be-
tween the pressure gradient and self-gravity force (and,
possibly, Ampère force) that sets in quickly. Then a
‘‘slow’’ flow develops which can lead to very significant
effects (like radiative collapse or explosion) on a rela-
tively long, radiative time scale.
In general, the dynamics of nonplanar radiative con-

densations in a confined plasma can be quite different
from those of the planar ones. Indeed, we have seen that

later-stage dynamics are governed (in the intermediate-
wavelength limit) by the curvature of the interfaces be-
tween the two phases. The front-curvature effects be-
come dominant when the radiative segregation has
already been established, the plasma pressure is close to
the area-rule value P* , and the interface motion slows
down. Then, on a longer time scale, which is propor-
tional to the square of the size of a typical pattern, the
curvature effects lead to smoothening of such patterns.
Possible types of large-scale equilibrium patterns are de-
termined, in confined systems, by the condition of a con-
stant mean curvature of their interfaces, showing simi-
larity to the classical problem of the equilibrium of
weightless capillary surfaces. Therefore the simplest in-
dividual equilibrium clouds or voids in such systems are
perfect balls, two and three dimensional. The stability of
these objects with respect to various types of perturba-
tions has been analyzed. Small perturbations of the per-
fect shape of the equilibrium patterns are shown to be
damped out. On the other hand, the instability of a
single spherical cloud (which we call a drop), with re-
spect to purely radial perturbations, has been described,
and the minimum radius of a stable equilibrium drop has
been determined. Smaller drops either shrink and disap-
pear, or expand until they reach a new, stable equilib-
rium. Furthermore, background-mediated competition
(Ostwald ripening) in an ensemble of drops has been
predicted. Larger drops always thrive at the expense of
smaller drops, and only the largest drop can finally sur-
vive. There exists a one-parameter family of ‘‘universal’’
self-similar distribution functions of the (many) clouds
with respect to their sizes. Correspondingly, there are
power-law scalings of the pressure mismatch, cloud den-
sity, and average cloud radius with time. Solving the self-
similar problem alone does not provide any selection
rule for this family of solutions, so that additional argu-
ments (employing a certain feature of the initial condi-
tion) must be invoked. The (selected) self-similar solu-
tion represents an intermediate asymptotics of the
dynamics, as finally only the largest cloud survives. As
can be expected, many of these phenomena have simi-
larities with those occurring during first-order phase
transitions.
Nonplanar dynamics of radiative condensations in the

long-wavelength regime also represents an interesting
problem. In 1987, the prediction was made about ‘‘ther-
mal pancakes’’ developing during the late stage of radia-
tive collapse. This prediction was based on the similarity
between the late stage of radiative collapse and the late
stage of well-studied gravitational collapse, where the
celebrated ‘‘Zel’dovich’s pancakes’’ are thought to de-
velop. A more realistic approach to this problem must
take into account the eventual stabilization of the radia-
tive condensation instability at large densities. While the
corresponding theory has been elaborated for planar ge-
ometry, its three-dimensional extensions are still lacking.
We expect that flattening will remain intact in the more
complete theory. However, many details are still unclear;
in particular, the role of ‘‘normal-anomalous’’ planar
shock waves. As these shock waves have been shown to
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be stable with respect to three-dimensional perturba-
tions, they can play an important role in the late stage of
radiative collapse.
The original motivation behind the studies of the ra-

diative condensation instability and related segregation
processes in optically thin plasmas was to explain the
strong inhomogeneities observed in many astrophysical
plasmas (such as interstellar and intergalactic clouds and
voids, and solar prominences) and, more recently, radia-
tive condensations in laboratory plasmas (such as
MARFEs). It has been found that a variety of stable,
strongly segregated equilibria is indeed possible and ac-
cessible in confined plasmas (in contrast to isobaric plas-
mas, where the final state is normally uniform). The
simple ‘‘perfect’’ objects that we have found to be in
stable equilibrium seem to be good candidates for
‘‘regular’’ radiative condensation structures observed in
astrophysics and in the laboratory (like ‘‘simple’’ inter-
stellar clouds, solar prominences, and MARFEs). On
the contrary, they cannot explain the frequently ob-
served complexity in the geometric shapes of many in-
terstellar clouds and voids. One can assume that some of
the observed complexity might be related to earlier,
more violent stages of the dynamics, long before any
equilibrium was reached. Indeed, the evaporation-fronts
instability can lead to much more complicated (fractal)
shapes of the evaporating clouds, so that further inves-
tigation of the nonlinear stage of this instability is nec-
essary.
Obviously, more complicated patterns might also ap-

pear, if we take into account some of the effects that we
neglected (gravity, rotation, complicated magnetic-field
geometry, ionization-recombination dynamics, etc.).
Now that substantial progress in the study of the basic
paradigms of radiative segregation has been achieved,
these questions are worth addressing.
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Sergienko, G., K. Höthker, A. Nedospasov, A. Pospieszczyk,
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