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A theory is given for the ground-state properties of short-ranged interacting spin- 12 fermions moving
in a periodic potential, based on a combination of renormalization-group ideas, the harmonic
(Luttinger) liquid approach, and the symmetry properties of the Hubbard model, for a wide range of
interactions and arbitrary fillings. For rational filling factors the outcome depends nontrivially on the
parity of the order of the 2kF umklapp scattering: even values fall into a universality class
characterized by a separation of charge and spin degrees of freedom in the long-wavelength limit,
while the action for the case of odd orders does not have this property, thus leading to distinct phase
diagrams. It is argued that even when the long-wavelength action does exhibit a spin-charge
separation it is not always an accurate approximation, particularly for the case of strong repulsion
between electrons of the same spin. This leads to a classification of the possible ground states,
associated correlation exponents, and phase transitions. The translational correlation exponents upon
approaching insulator phases (existing at exact commensuration) by changing electron density can be
related to the fractional charge of the solitons, using the Landauer rule.
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I. INTRODUCTON

A. Introduction and motivation

The static and transport properties of a one-
dimensional system of electrons moving in a periodic
potential are determined by the interplay between three
conflicting forces.
The first is the system’s quantum nature (i.e., the un-

certainty principle), which pushes it towards disorder
and lack of any correlation among the particles. Even in
higher dimensionality, where quantum fluctuations are
expected to be less important, they still are more impor-
tant than the interactions, so that the Landau Fermi-
liquid theory successfully represents much of the phys-
ics. One-dimensional many-body problems are more
complex (Emery, 1979a; Solyom, 1979)—indeed, an in-
teracting system does not properly have a Fermi surface
at all (Luttinger, 1963; Gutfreund and Schick, 1968)—
but, parts of the Fermi language remain useful.
The second determining force is the interaction be-

tween the particles, which will be different for particles
of the same spin and particles of different spin. Under
this heading we can include the Pauli exclusion prin-
ciple, whose effect in one dimension can be imitated by
a contact interaction between particles of the same spin.
The interparticle interactions make the system behave
more like an elastic fluid (the Luttinger liquid) with a
low-energy excitation spectrum of acoustic type; it be-
comes almost meaningful to talk about interparticle
spacings. The interactions between particles of different
spins can further lead to correlations in the spin density,
so that in various limits we may have an uncorrelated
fluid, a ‘‘superconductor’’ composed of pairs of opposite
spin, or an ‘‘antiferromagnet’’ with spin orientation al-
ternating along the line.1

The presence of an external periodic potential further
complicates the problem. If the interparticle spacing is
commensurate with the period of the potential, the
properties of the system can be greatly modified; with
sufficiently weak quantum fluctuations the particles will
be completely localized and an insulator results. Even in
the conducting phase there is a decrease in the conduc-
tance near commensuration. Repulsive interparticle
forces will facilitate the ability of the external potential
to localize the particles, because they tend to make the
particle spacing more uniform and thus accentuate the
periodicity.
The spin-up and spin-down electrons are physically

identical and have the same interactions with particles of
the same spin. The interparticle interaction between the
two degenerate systems is never a small perturbation,
and the resulting eigenstates are the sum and difference

of the two fields. Thus the natural variables for the prob-
lem are the charge density (↑+↓) and spin density (↑−↓).
For a translationally invariant system, this separation of
spin and charge is a rigorous property. However, a peri-
odic potential can destroy this separation, notably when
the spin ordering is incommensurate with the periodicity
of the potential, or when the interaction between par-
ticles of the same spin is very strong. However, in most
cases of interest, the spin and charge fields are un-
coupled, and the original problem is split into two sim-
pler ones.
A great deal of the description of the interacting

quantum fluid can be given in terms of the parameters
gC* and gS* . These are defined as the exponents that
characterize the algebraic decay of the two-point corre-
lation functions due to charge (‘‘C’’) and spin (‘‘S’’) fluc-
tuations (this will be discussed further in Sec. I.F). They
can be computed from the parameters of the harmonic
description of the system: the mass density, compressibil-
ity, and susceptibility; and they are conveniently thought
of as measures of the degree of quantum fluctuation in
the system.

1. Exact solutions

Exact solutions have played an important role in fur-
thering our understanding of the properties of one-
dimensional systems. Several solutions are particularly
relevant to the present discussion:

(a) Gaudin (1967, 1983) and Yang (1967) calculated
the ground-state energy, spectrum, and wave func-
tions for the continuum Hubbard model (fermions
with a delta-function interaction between opposite
spins) by means of the Bethe ansatz. They found
that this model leads to a metal for repulsive inter-
actions and a superconductor for attractive interac-
tions.

(b) Lieb and Wu (1968) gave the equivalent treatment
for the lattice version of the same problem (fermi-
ons with interaction between particles of opposite
spin on the same site), which is then the simplest
model for the effect of a periodic external poten-
tial. They found that attractive interactions always
lead to a superconductor, and that repulsive inter-
actions lead to a metal, except at half-filling, where
an antiferromagnetic insulator results. There are
no phenomena associated with other rational fill-
ings.

(c) Luther and Emery (1974) found that the spin part
of a translationally invariant model allowing for in-
teraction between particles of the same spin could
be solved by transforming it into a ‘‘superconduc-
tor’’ model (free-fermion-like excitations with
filled and empty bands, separated by a gap) for a
special ratio of the unlike-spin/like-spin interac-
tion, which corresponds to a particular value of gS .
We shall refer to this set of parameters as the
Luther-Emery line.

(d) Emery, Luther, and Peschel (1976) considered the
lattice version with a half-filled band and showed

1We hasten to note that this characterization in terms of spa-
tial ordering of the spin does not confer all the other proper-
ties associated with antiferromagnetism and superconductivity
in higher dimensionality; in what follows we shall encounter
insulating ‘‘superconductors’’ and perfectly conducting ‘‘anti-
ferromagnets’’.
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that an analogous solution can be obtained for the
charge degrees of freedom for a particular value of
gC . The corresponding phase is an antiferromag-
net.

(e) Pokrovsky and Talapov (1979) solved exactly a
model of the commensurate-incommensurate tran-
sition in two dimensions at finite temperature. This
is related to the metal-insulator transition in a one-
dimensional quantum system, through the path-
integral representation of the quantum problem.
Their solution describes the behavior along the
Luther-Emery line at and away from half-filling.

(f) Schulz (1980) calculated the density correlations
near the commensurate-incommensurate transition
(i.e., near the metal-insulator transition of a frac-
tionally filled band, in the quantum context).

(g) Haldane (1982) solved the one-dimensional quan-
tum sine-Gordon theory with nonzero soliton den-
sity. His solution gives a general description of the
metal-insulator transition and contains the solu-
tions of Luther and Emery, Pokrovsky and Tal-
apov, and Schulz as special cases.

(h) Efetov and Larkin (1975) found an exact solution
for a lattice model of attractive fermions (with at-
traction between particles of the same spin, in ad-
dition to a large negative Hubbard interaction) at
half-filling for a special value of the intraparticle
interaction that corresponds to gC=4. This is a con-
ductive phase.

(i) Emery (1976) related a generalized Hubbard
model in the limit of strong Hubbard attraction to
the exactly solved (Luther and Peschel, 1975)
quantum XXZ spin-chain problem and was able to
calculate the exponent gC* for a range of nearest-
neighbor attraction, reproducing the result of Efe-
tov and Larkin as a special case. These models al-
ways yielded conducting phases, with gC*
approaching 2 (the free-fermion value) in the Hub-
bard limit.

(j) Fowler (1978) extended Emery’s connection to the
case of nearest-neighbor repulsion and showed that
the resulting phases are all insulators with an en-
ergy gap that, for small nearest-neighbor interac-
tions, behaves in a way typical of a Kosterlitz-
Thouless transition. Together with Emery’s work,
this suggests that the Hubbard model is a marginal
case and lies along the boundary between metal
and insulator for an attractive Hubbard interac-
tion.

(k) Luther (1976, 1977) has argued that, for a repulsive
interspin interaction, there is again a relationship
with the quantum XXZ chain, yielding an antifer-
romagnet at half-filling with any interaction
strength.

(l) Schulz (1990) solved exactly a quarter-filled gener-
alized Hubbard model with infinite Hubbard repul-
sion and showed that there is a transition from the
metal to the insulator phase for sufficiently repul-
sive nearest-neighbor interactions. He also calcu-

lated gC* in the conducting phase as a function of
nearest-neighbor interaction.

2. Phenomenological approaches

At the time that exact solutions were being formu-
lated, important advances were made with phenomeno-
logical approaches.
Perturbative renormalization-group analysis has been

very useful in indicating that one-dimensional many-
body problems have behavior quite different from that
implied by the Landau Fermi-liquid theory (Emery,
1979a; Solyom, 1979).
Much of the current activity in the field is related to

the elucidation of another phenomenological idea, the
‘‘harmonic’’ (or Luttinger) liquid. First put forward in
the 1970s (Popov, 1972; Efetov and Larkin, 1975) and
then emphasized by Haldane (1980, 1981a–1981c), it al-
lows us to calculate explicitly the correlation
exponents—which to a considerable extent characterize
the macroscopic properties of the quantum fluid—
without directly evaluating the corresponding correla-
tion functions.
Schulz (1990, 1991) applied this approach to the sim-

plest nontrivial lattice model of interacting spin-12 fermi-
ons, the Hubbard model, and thereby provided us with a
detailed description of the crossover between weak and
strong interactions as well as of the metal-insulator tran-
sition that occurs at half-filling. Another important step
was made by Giamarchi (1991), who argued that the
results for the exponents of the correlation functions of
the Hubbard model in the vicinity of half-filling are ge-
neric features of any Luttinger liquid.
Conformal field theory (Bogoliubov and Korepin,

1988, 1989; Frahm and Korepin, 1990, 1994; Kawakami
and Yang, 1990) has also been applied to this problem,
with similar results.

3. An overview of the present approach

Our discussion will be more closely allied with the
phenomenological approaches, though our theory is cer-
tainly influenced by knowledge of the exact results. We
shall attempt to convince the reader that there is a great
deal of universality in one-dimensional models, an idea
pioneered by Luther and Peschel (1975). The starting
point and the derivation of the basic equations is similar
to the approach of Emery (1979b).
As already noted, the interacting electron system is

best represented in the long-wavelength limit in terms of
fields representing the fluctuations in the spin and
charge densities. In the vicinity of rational filling k/l
(where k/l is an irreducible fraction), the most impor-
tant processes are 2lkF and 4lkF umklapp scattering,
where kF is the Fermi wave vector. When l is even, the
spin and charge degrees of freedom are decoupled, and
the theory reduces to a pair of independent sine-Gordon
models. This model can be studied using perturbative
renormalization, and we shall adopt the renormalization
language generally.
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The simplest case is half-filling (l=2), because the
Hubbard model has a particle-hole symmetry, which fur-
ther simplifies the phase diagram. The renormalization-
group diagram describing the flow of the charge degrees
of freedom is so constrained by the symmetry of the
problem that we think we understand it completely for a
wide range of interactions. Comparison of this diagram
with various exact results puts them in appropriate
places in the flow. The Hubbard model itself is a mar-
ginal case, dividing the regime of insulating and conduct-
ing phases, so that any generalization that suppresses
quantum fluctuations (e.g., a short-ranged repulsive in-
teraction between particles of the same spin) leads to an
insulator, while a generalization that increases the quan-
tum fluctuations (e.g., an attractive short-range interac-
tion) will yield a conductor. For this reason we shall
dedicate considerable effort to the characterization of
this model in the limits of large and small Hubbard in-
teraction. Then the behavior of generalizations of the
Hubbard model can be predicted rather simply. The be-
havior of the correlation functions near half-filling can
also be understood phenomenologically by introducing a
condition cutting off the flow on a length scale corre-
sponding to the average distance between the vacancies
or extra particles.
The vicinity of other rational filling factors k/l is more

complex. For even l , there continues to be a separation
of charge and spin degrees of freedom, but for odd l the
separation is not achieved and the problem falls into a
different universality class, which we discuss in Sec. V.C.
Even when the spin-charge separation does exist, the
corresponding action is still not accurate enough to de-
scribe physical systems with strong repulsion between
electrons of the same spin. We shall identify these new
contributions and find a corresponding set of exponents.
All this puts some limitations on the existing results (Gi-
amarchi, 1991) and classifies possible phases, phase tran-
sitions, and types of critical singularities that can be
found in generic interacting spin-1/2 fermionic systems
in one dimension.

B. The model

In one dimension the distinction between bosons and
spinless fermions is not as significant as it is in higher
dimensionality, because we cannot go from a configura-
tion to one with exchanged particles without having two
particles at the same point in space at some intermediate
stage. If we restrict ourselves to the sector in which the
particles are in order along the line (x1<x2<•••<xM),
the Pauli exclusion principle reduces to a boundary con-
dition specifying the vanishing of the wave function
whenever two particles are at the same coordinate. It
follows that, for any interacting fermion problem, there
is a corresponding interacting boson problem (for ex-
ample, free fermions correspond to hard-core point
bosons) that has many of the same physical properties.
In what follows we shall use this correspondence to treat
the system in the bosonic representation. However, we

shall keep the language of the fermionic representation,
since this is the problem of interest.
Introduction of spin does not greatly complicate the

problem. For any choice of the axis of quantization, the
fermionic wave function has a representation in terms of
the coordinates of the two populations of ‘‘spin-up’’ and
‘‘spin-down’’ particles; the number of particles of each
type is fixed whenever the total spin is a good quantum
number.
We may then introduce the basic model for this paper:

two sets of particles, possibly with different (spin-
dependent) like-spin and unlike-spin interactions, mov-
ing in an external potential. Restricting ourselves to two-
body forces, we can write the action as follows:

A5E dtH (
j51

N Fm2 S dxjdt D 22mG1W(
i,j

N

da~xi2xj!

1(
j51

N

V~xj!1(
j51

N Fm2 S dyjdt D 22mG1W(
i,j

N

da~yi2yj!

1(
j51

N

V~yj!1U(
i ,j

N

da~xi2yj!J , (1.1)

where t is the imaginary time variable, N is the number
of particles of each spin direction (the total is 2N par-
ticles), m is the particle mass, the x’s and y’s stand for
the coordinates of the particles of the two types, m is
their common chemical potential, W is the amplitude of
the interaction between like spins, V(x) is a spin-
independent external potential of period b : V(x1b)
5V(x), U is the amplitude of the unlike-spin (Hub-
bard) interaction, and the notation da(x) refers to any
well-localized function with characteristic size a that re-
duces to the mathematical d function as a→0. The wave
function in path-integral representation corresponding
to the action (1.1) can be viewed as a classical partition
function for a collection of 2N interacting line objects
running along the t direction (the world lines of the two
different kinds of particles) subjected to an external po-
tential with the chemical potential controlling the aver-
age line (particle) density n5N/L , where L is the size
of the system. The role of temperature in the equivalent
classical two-dimensional problem is played by Planck’s
constant.
As already noted, this action describes bosons of two

different types, but can be interpreted as describing
spin-1/2 fermions if we choose the ‘‘on-site’’ part (the
part having true delta-function form) of the like-spin in-
teraction to be infinite. For instance, noninteracting free
fermions are described by hard-core bosons, which is the
case W=`, a=0, V=0, and U=0; the continuum version
of the Hubbard model is given by W=`, a=0, V=0, and
finite U . The absolute value of the wave function for
fermions with a short-ranged attractive interaction be-
tween particles of the same spin is indistinguishable
from the wave function for bosons with finite W outside
the range of the interaction; in this sense the two sys-
tems are equivalent insofar as their density correlations
are concerned. Exchange symmetry means that we need
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to know only the wave function in one region
x1<x2<x3•••<xN . The fermionic wave function neces-
sarily vanishes at the boundaries, but for attractive fer-
mions can be rapidly varying close to them, with an ef-
fective boundary condition that mimics soft-core
repulsive bosons. In the resulting ‘‘bosonic’’ picture we
always have W>0 to prevent collapse of the ground
state.

C. Reduction to a field theory

The derivation of a long-wavelength continuum ver-
sion of the original microscopic action (1.1) is analogous
to that of Kolomeisky (1993) and is given in the Appen-
dix. Here we only outline the main steps.
The displacements of the particles of each population

with respect to their classical positions will be repre-
sented by the fields u↑(x ,t) and u↓(x ,t), where the ar-
rows indicate the spin directions. The interaction terms
between particles of the same type (theW terms) will be
treated in the harmonic liquid approximation, which
represents the interactions between the particles by a
compliance. This gives a nonlinear two-component field
theory, in which the fields u↑ and u↓ are coupled both
through the U terms and through the harmonic part of
the long-wavelength action, which contains their mixed
spatial derivatives.

The harmonic part of the action can be diagonalized
by the introduction of new variables C describing the
center-of-mass motion of the spin populations, and S
describing the relative displacement of one spin popula-
tion with respect to the other:

C5
u↑1u↓

2
, S5

u↑2u↓
2

. (1.2)

As the nomenclature suggests, this corresponds to the
transformation to the charge- and spin-density operators
that diagonalize quantum Hamiltonians in other ap-
proaches (Emery, 1979a, 1979b; Solyom, 1979); the vari-
able C describes the center-of-mass motion of the two
populations and represents fluctuations in the charge,
while S describes the relative displacements of one spin
population with respect to the other and is then a spin
degree of freedom.
The external potential is expanded into a Fourier se-

ries (see Appendix), and approximations are made ap-
propriate to the assumption that we are concerned with
the effects of fluctuations having wavelengths long com-
pared to the interparticle distance n−1. We also assume
that the filling factor is close to an irreducible fraction
nb5k/l , which then selects the terms arising from a par-
ticular Fourier component k of the potential and a par-
ticular order l of umklapp scattering as being particu-
larly important. Then the action takes the form

A5Aharmonic1Acorrelation1Aexternal , (1.3a)

where

Aharmonic5
1
2 E dxdt~mSṠ

21KSS821mCĊ
21KCC82!, (1.3b)

Acorrelation5G1E dxdt cos 4pnS , (1.3c)

Aexternal5H G2E dxdt cos 2p~rx2nlC !1G3E dxdt cos4p~rx2nlC ! for l even

G2E dxdt cos 2p~rx2nlC !cos 2pnS1G3E dxdt cos4p~rx2nlC ! for l odd
(1.3d)

where r=unl2k/bu.
We claim that this is the correct form for the long-

wavelength action regardless of the strength of the
short-range interactions, and that it can be written down
at the outset. The harmonic part comes from the as-
sumption that each spin population can be regarded to
be a harmonic fluid and that the interaction between
spin populations is short ranged. The structure of the
nonlinear terms is dictated by symmetry considerations.

1. The harmonic terms

Aharmonic describes a pair of translationally invariant
fluids. The dots and primes in Eq. (1.3b) represent time
and space derivatives. The effective mass density mC and

the reduced mass density mS are simply related to the
particle density and mass. The other two parameters
characterizing the harmonic fluids are the compliances
KC and KS , which are determined by the unlike-spin
and like-spin interactions.
The macroscopic properties of the system may also be

described in the harmonic approximation, as long as
Acorrelation and Aexternal are irrelevant, by an action of the
same form with renormalized parameters mC* , mS* ,
KC* , and KS* that take into account the effects of
Acorrelation and Aexternal (as well as the effects of terms
that have already been dropped). Here there is an addi-
tional physical interpretation: KC* and KS* determine the
change in free energy caused by changes in mass density
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and spin density, and they are proportional to the recip-
rocal of compressibility and the susceptibility, respec-
tively. In the absence of an external potential, transla-
tional symmetry implies that

mC*52 mn. (1.4a)

For the continuum Hubbard model [the W=`, a=0
case of Eq. (1.1)], the values of the phenomenological
constants appearing in Eq. (1.2) are

mC5mS52 mn, (1.4b)

KC52p2\2n3/m~11mU/p2\2n !, (1.4c)

KS52p2\2n3/m~12mU/p2\2n !, (1.4d)

valid in the limit that uUu!p2\2n/m .
These relationships and the generalization to the case

of finite W are derived in the Appendix.

2. Correlations between opposite spins

The Acorrelation describes an important effect of the
unlike-spin interaction: it causes correlations in the rela-
tive positions of particles of the two spins. The coupling
constant G1 takes the value G1=2n

2U in the limit of weak
Hubbard interaction and a=0, and in general has the
same sign as U ; then for a repulsive Hubbard interaction
the second term is minimized if 2nS takes on half-
integer values (antiferromagnetic order), and for an at-
tractive Hubbard interaction 2nS takes on integer val-
ues, representing a tendency for particles of opposite
spin to pair. Thus the effect of this term will be to at-
tempt to bring about an ordering of the field S , which
will be signaled by the appearance of a gap in its spec-
trum.

3. Effect of the external potential

Aexternal describes the most important consequences of
the external potential. The potential will be most effec-
tive when the average spacing of the particles is com-
mensurate with one of its Fourier components; when
these are not exactly the same there will be a finite den-
sity of discommensurations. This is measured by the pa-
rameter r = unl2k/bu, where the index l is the order of
2kF scattering and k is the index of the Fourier compo-
nent; at commensuration, nb5k/l and r=0. In writing
Aexternal we have displayed the terms for just one l and
k ; there is actually an infinite set of these, but the rel-
evant term has small r. The precise values of the coeffi-
cients G2 and G3 are not important, except that we shall
need to know that, in the limit of weak Hubbard inter-
action U , the parameter G2 is proportional to U for l>1
and approaches a constant as U→0 and l=1, while the
parameter G3 is always proportional to U (see Appen-
dix).

4. Separation of spin and charge

The variables C and S represent the charge and spin
degrees of freedom, which are not coupled by Aharmonic
or Acorrelation . As explained above, this is a natural con-

sequence of the symmetry between up and down spin in
a translationally invariant theory. However, Aexternal can
couple them when l is odd. The origin of the differing
forms for even and odd l (Schulz, 1994; Kolomeisky and
Straley, 1995) is explained in Fig. 1: when l is odd (as in
the case of the one-third filled band), the external po-
tential provides a bias favoring paired order over anti-
ferromagnetic order of the spins; in contrast, when l is
even (as in the case of the half-filled band), these two
orderings are treated equivalently and there apparently
is no coupling between the spin and charge degrees of
freedom. This separation of spin and charge degrees of
freedom greatly simplifies the problem when l is even.
Indeed, for l even, the G3 term of Aexternal can be
dropped, since it will always be less relevant than the G2
term. However, there are higher-order terms that have
been dropped from Eq. (1.3d) that do couple the fields.
These terms may invalidate the spin-charge separation
in the strong-coupling limit.
For odd l the two fields are explicitly coupled; these

cases will have to be treated separately. This arises in
particular for the filled band, but also, for example, in
the 1

3-filling case.

5. Why the harmonic theory is the appropriate model in one
dimension

The field theory expressed in Eq. (1.3) starts from an
elasticity theory: the description is in terms of the sound
and spin waves of the system. This might be regarded as
an unusual place to start; certainly in three dimensions
we would expect that single-particle degrees of freedom
were more important, and indeed the theory for that

FIG. 1. Sketches of various extremal configurations of inter-
acting one-dimensional spin- 12 fermions in a periodic potential
for the cases of 1

2 (a and b) and 1
3 (c–e) filled bands in the

classical limit. The particles are represented by arrows indicat-
ing the spin direction, and the potential is shown by the solid
curves. For the case of interspin attraction, the ground-state
configurations (a and c) are insensitive to the parity of the
denominator of the filling factor. For the case of interspin re-
pulsion, the ground-state configuration is antiferromagnetic for
the half-filling (b). For the case of 1

3 filling, the ground-state
configuration is not antiferromagnetic (d); instead it is dimeric
(e).
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case is written that way. However, in the present case we
can give arguments why (1.3) is an adequate model and
an appropriate long-wavelength description.
A single-particle excitation is, to first approximation, a

motion of a single particle, ignoring the presence of the
others. However, in a one-dimensional fermionic system,
this description is useless, at least on scales exceeding
the mean interparticle spacing, because the particles
cannot pass each other at all. Thus the collective modes
are a better description.
In higher dimensions the particles may or may not be

able to move around each other, and then we can have
liquids as well as solids. In one dimension the particles
cannot freely move past each other, and as a result the
possible condensed phases are closer to being solids.
Any system will have sound waves, because these are

the Goldstone modes that correspond to the breaking of
translational symmetry. We know that this description is
incomplete in higher-dimensional systems whenever
transverse phonon modes are absent, as they are in flu-
ids and gases. In one dimension, however, the compres-
sional modes necessarily exist, and these exhaust the one
degree of freedom each particle has: the single-particle
motions are already implicitly included in our descrip-
tion.

D. The correlation exponents

Two important dimensionless combinations can be
formed from the parameters of the harmonic part of the
action (1.3b):

gS5
p\~2n !2

AmSKS

, (1.5a)

gC5
p\~2n !2

AmCKC

. (1.5b)

We shall refer to these generically as gn (n = C ,S). The
parameter 2n that appears in Eq. (1.5) is the total elec-
tron density. With the bare m’s and K’s these character-
ize the degree of quantum fluctuation in the spin and
charge subsystems. For sufficiently large gn , Acorrelation
and Aexternal are irrelevant (as are the higher-order irrel-
evant operators, which are not written down). We define
renormalized parameters gn* , mn* , and Kn* that charac-
terize the long-distance behavior in that case (Popov,
1972; Efetov and Larkin, 1975; Haldane, 1980, 1981a–
1981c). Our definition for gn (other than the notation)
coincides with that of Kane and Fisher (1992a). Essen-
tially the same exponents (1.5) have appeared by other
names in previous approaches, as described in Table I.

If one or both collective modes of the system are gap-
less, they can be characterized by the corresponding
sound velocities,

cn*
25Kn* /mn* , n5C ,S . (1.6)

Therefore the correlation exponents and the associated
long-wavelength properties of the spin-12 quantum fluid
are determined by the renormalized parameters mn* and
Kn* whenever the corresponding mode is gapless. In this
case the form of Aharmonic (1.3b) as well as the physical
meaning of the fields S and C (1.2) imply that the pa-
rameter KS* is determined by the susceptibility of the
system, while KC* is governed by the compressibility:

KC*52n2
]m

]n
[~2n !2

]m

]~2n !
, (1.7)

where the second representation is again in terms of the
total particle density 2n . These formulas were used by
Schulz (1990, 1991) to extract gC* from the exact solution
of the Hubbard model (Lieb and Wu, 1968).
The model (1.1) contained the parameters m , U , W ,

n5N/L , a , and an amplitude and period for the poten-
tial V(x). In going to the long-wavelength action (1.2),
the first five determine the four microscopic values for
mn and Kn according to Eqs. (1.4a)–(1.4d). If the mea-
surable properties of the system are such that spin and
charge degrees of freedom do not interact on a macro-
scopic scale, then each subsystem that is a harmonic liq-
uid is described completely in terms of its renormalized
parameters mn* , Kn* . The mean interparticle distance
n−1 sets a ‘‘microscopic’’ scale in the problem, and the
combinations nAmn* /Kn* set ‘‘elementary’’ time scales.
These two are of secondary importance to the equilib-
rium properties of the system, as they just specify what
units are being used. On the other hand, the only dimen-
sionless combinations that can be comprised out of
mn* , Kn* , n , and Planck’s constant \ have the form
(1.5a), (1.5b). These will play a central role in determin-
ing the macroscopic properties of the system. This argu-
ment also suggests that the combinations (1.5a), (1.5b),
which comprise the bare parameters of the problem, will
be important in determining the role of the nonlinear
terms of the action (1.3). Renormalization theory will
provide the prescription for determining how the micro-
scopic values of gC and gS combine with the nonlinear
part of the action to determine the measurable expo-
nents gC* and gS* .

1. One-point density correlations

We show now how to relate the parameters gn (1.5)
with the properties of the density correlations of the

TABLE I. Various choices for correlation exponents and their notations used in the literature.

This paper
Kane and Fisher,

1992a
Emery,

1979a, 1979b
Solyom,
1979

Schulz, 1990, 1991;
Giamarchi, 1991

Charge exponent gC gr 2uc 2gr 2Kr

Spin exponent gS gs 2us 2gs 2Ks
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quantum liquid. Other correlation functions can be also
readily found (Emery, 1979a; Solyom, 1979). The
method we are using is a generalization of a similar cal-
culation of correlations in classical two-dimensional
crystals (Landau and Lifshitz, 1980).
Let us define d0(x) as the density function character-

izing each spin population without quantum fluctuations.
Under these circumstances the particle positions are fro-
zen in an equidistant periodic configuration, and the
function d0(x) can be decomposed into a Fourier series:

d0~x !5(
G

dGe
iGx, G52pnr , r50,61,62, . . . . (1.8)

Here the G’s are the reciprocal lattice ‘‘vectors’’; the
Fourier coefficient dG50 is just the average particle den-
sity n . Taking into account the zero-point motion leads
us to the result that the particles forming a one-
dimensional lattice undergo dynamical fluctuations de-
scribed by the fields u↓ and u↑ [see Appendix, and Eq.
(1.2)]. Since u↓ and u↑ are slowly varying as functions of
position (uu↓8u,uu↑8u ! 1), the dynamical density functions
can be found from Eq. (1.8) by taking into account the
local shifts from the equidistant positions:

d↑~x ,t !5d0@x2u↑~x ,t !#5(
G

dGexpiG~x2u↑!

5(
G

dGe
iGxe2iG~C1S !, (1.9)

d↓~x ,t !5d0@x2u↓~x ,t !#5(
G

dGexpiG~x2u↓!

5(
G

dGe
iGxe2iG~C2S !, (1.10)

where d↑ and d↓ are density functions corresponding to
the two spin populations, and we used the definitions
(1.2).
The averaging of Eqs. (1.9) and (1.10) over quantum

fluctuations can be performed by a Gaussian averaging
procedure, because the probability distributions for the
fluctuating fields C and S will be given by actions qua-
dratic in C and S with (or without) gaps in every case we
shall consider. Then

^d↑~x ,t !&5^d↓~x ,t !&

5(
G

dG expS 2
G2

2
~^C2&1^S2&! D eiGx, (1.11)

where ^•••& is the average over zero-point motion. When
the spectrum has a gap, the average of the square of the
corresponding field is finite; for a gapless spectrum the
average is infinite. When both spectra have gaps, the
effect of quantum fluctuations leads to a Debye-Waller
factor exp[2(G2/2)(^C2&1^S2&)]: long-range crystal-
line order is not destroyed by quantum effects.

When the system has a gapless mode, the correspond-
ing mean value ^C2& or ^S2& is infinite: the Debye-Waller
factor is zero for GÞ0, and only the term with G=0
contributes. Then Eq. (1.11) reduces to the homoge-
neous density

^d↑~x ,t !&5^d↓~x ,t !&5n . (1.12)

In this case quantum fluctuations destroy the long-range
crystalline order in one dimension—a situation that is
closely analogous to the destruction of the long-range
order by thermal fluctuations in classical two-
dimensional systems of continuous symmetry (Landau
and Lifshitz, 1980; Mermin and Wagner, 1966; Mermin,
1967; Hohenberg, 1967).

2. Two-point density correlations

The averaged density functions (1.12) do not suffice to
characterize the phases in which there is a gapless mode.
In these cases we have to look at the second moments of
Eqs. (1.9) and (1.10). Several correlation functions can
be constructed.
First, there is the function ^d↑(x1 ,t1)d↑(x2 ,t2)& that

characterizes correlations inside one of the spin popula-
tions. From the Fourier expansion (1.9) one gets

^d↑~x1 ,t1!d↑~x2 ,t2!&5 (
G ,G8

dGdG8e
iGx11iG8x2

3^e2iGC12iG8C2&

3^e2iGS12iG8S2&. (1.13)

When C or S is gapless, the averaging of the corre-
sponding exponential gives zero except for the terms
G52G8 (Landau and Lifshitz, 1980). Then we get in-
stead of (1.13)

^d↑~x1 ,t1!d↑~x2 ,t2!&5(
G

udGu2eiG~x12x2!

3^e2iG~C12C2!&^e2iG~S12S2!& .

(1.14)

First, we assume that we are inside the gapless or
normal-metal phase. Calculating the averages in (1.14)
with the help of the harmonic part of the action (1.3)
with renormalized mn* and Kn* , we get
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^d↑~x1 ,t1!d↑~x2 ,t2!&2n2}
cos2pn~x12x2!

@~x12x2!
21cC*

2~ t12t2!
2#gC* /4@~x12x2!

21cS*
2~ t12t2!

2#gS* /4
, (1.15)

where we kept only the leading contributions G=0,
62pn and used the definitions (1.5). This expression is
valid when the denominators are large. The amplitude
of the oscillations decays as a power law with distance
and time differences (and thus quite slowly relative to an
exponential decay), and is called algebraic order (Ko-
sterlitz and Thouless, 1973; Kosterlitz, 1974; Landau and
Lifshitz, 1980). The exponent of the long-distance (time)
behavior of equal-time (space) correlation functions is
governed by the sum (gC* 1 gS* )/2.
To find the behavior of the correlation function in the

presence of a spin-density gap, we have to look at Eq.
(1.14) again. Now the average ^e2iG(S12S2)& is finite in
the limit of large separation between the points (x1 ,t1)
and (x2 ,t2). Thus, in this case, we get

^d↑~x1 ,t1!d↑~x2 ,t2!&s2n2

}
cos 2pn~x12x2!

@~x12x2!
21cC*

2~ t12t2!
2#gC* /4

, (1.16)

which can be obtained formally from Eq. (1.15) by set-
ting gS* 5 0; here ^•••&n means that there is a gap in sub-
system n.
The evaluation of the function (1.14) in the phase hav-

ing a charge-density gap gives rise to the expression

^d↑~x1 ,t1!d↑~x2 ,t2!&C2n2

}
cos2pn~x12x2!

@~x12x2!
21cS*

2~ t12t2!
2#gS* /4

. (1.17)

Obviously we can replace the ↑ spins by ↓ spins in Eqs.
(1.15)–(1.17).
Let us now consider the function

^d↑(x1 ,t1)d↓(x2 ,t2)&, which contains information about
the correlations of particles of opposite spins. Using
Eqs. (1.9) and (1.10), one gets

^d↑~x1 ,t1!d↓~x2 ,t2!&5 (
G ,G8

dGdG8 ,e
iGx11iG8x2

3^e2iGC12iG8C2&

3^e2iGS11iG8S2&. (1.18)

First we assume that we are in the normal-metal phase,
where both C and S are gapless fields. As before we
conclude that the first average in (1.18) singles out the
contributions with G52G8, while the second one does
that for G5G8. The two conditions can be satisfied si-
multaneously only for G5G8=0, which means that only
the homogeneous term of the sum (1.18) survives.
Therefore we get

^d↑~x1 ,t1!d↓~x2 ,t2!&5n2. (1.19)

Thus we obtain the result that electrons of opposite spin
are not correlated at large distances (times) in the
normal-metal phase. Of course, there is some short-
ranged correlation lost in going to the long-wavelength
approximation.
In the spin-density wave phase there is a spin-density

gap, and only the variable C in Eq. (1.18) is gapless. The
first average in (1.18) singles out the terms with
G52G8, with the result that the function (1.18) has
exactly the same asymptotic dependence as the function
(1.16), thus implying that there is a correlation between
particles having opposite spins, which decays algebra-
ically with distance and time.
In the phase having only a charge-density gap, the

variable S is gapless and the second average in (1.18)
singles out the terms with G5G8. Therefore we find
that

^d↑~x1 ,t1!d↓~x2 ,t2!&c2n2}
cos@2pn~x11x2!1f#

@~x12x2!
21cS*

2~ t12t2!
2#gs* /4

, (1.20)

where the constant f arises because the Fourier coeffi-
cients dG in Eq. (1.8) are in general complex. We see
that there is a correlation between particles of opposite
spin and that translational invariance is broken inside
this phase, since the correlation function between the
points (x1 ,t1) and (x2 ,t2) is not expressed entirely in
terms of the difference x12x2 . This implies that the
presence of a charge-density gap suffices to produce an
insulator.

3. The Green’s function

In higher than one dimension, fermion systems are
described almost entirely in terms of single-particle
properties (as in the Landau Fermi-liquid theory); there
the case of noninteracting particles gives a good refer-
ence model. The present description, in contrast, is en-
tirely in terms of the system’s collective modes, and the
Fermi surface does not play any role. In fact, there is no
discontinuity in the occupancy of single-particle states at
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kF . This can be shown using the present description
(Straley and Kolomeisky, 1995).
To simplify matters, consider a quantum liquid of fer-

mions of one spin type. In our description it will have a
macroscopic action

Aharmonic5
1
2 E dxdt~m* u̇21K* u82!. (1.21)

The quantity we wish to calculate is

G~x ,t50 !5^c†~x ,01!c~0,0!&, (1.22)

where c†(x ,t) is the operator that creates a fermion.
From the point of view of the path-integral formalism
that we are using, we must imagine a field of world lines
running in the t direction, and the expectation value in
Eq. (1.22) measures the average amplitude for having a
world line that ends at (0,0) and another that begins at
(x ,0), within an ensemble with weights determined by
Eq. (1.21).
We shall estimate G(x ,0) by regarding the imaginary

time axis as another space direction, so that the con-
tinuum is a two-dimensional crystal of world lines, into
which c† inserts a half-line or dislocation, while c inserts
an opposite dislocation, as sketched in Fig. 2. Each dis-
location gives rise to a distortion in the field u which has
Burger’s vector n−1 (because one world line has disap-
peared); the distortion falls off as x−1 and thus gives a
logarithmic energy (logarithmic action, in the quantum
problem) (Chaikin and Lubensky, 1995)

Edislocation pair5
Am*K*

2pn2
ln~nx !1Ecore . (1.23)

The core energy Ecore is large, so that the density of
dislocations is small; in fact we shall assume that there is
just one pair present. The wave function for the quan-
tum problem is the partition function at ‘‘temperature’’

\ for the world-line crystal, and so the probability that
they are found at a distance x from each other is then
proportional to

Prob~x !}exp~2Edislocation pair /\!}~nx !21/2g* , (1.24)

where g* is defined similarly to (1.5),

g*5
p\n2

Am*K*
. (1.25)

Equation (1.24) gives the scaling behavior of the
Green’s function for a bosonic system. There is a second
phenomenon that has to be taken into account to evalu-
ate G(x ,0) for the fermion problem: its sign depends on
the number of fermion lines that have been jumped over
to get from 0 to x . For a perfect crystal of lines, this
would be just nx [G}(21)nx], but in the presence of
quantum fluctuations there is an averaging over contri-
butions of varying sign. We can estimate this part as
^exp{ipn[x1u(x)2u(0)]}&. This is another Gaussian
average and gives cos(pnx)x2g* /2. Combining these two
factors gives the estimate

G~x ,0!}cos~pnx !x2~g* /211/2g* !. (1.26)

The Fourier transform of this gives the single-particle
momentum distribution ^nk&, and near kF5pn has the
form

^nk&5const2sgn~k2kF!uk2kFua, (1.27)

where a=g* /211/2g*21. In the argument for the spin-
1
2 case the spin and charge degrees of freedom are un-
coupled; the exponent a becomes a 5 gC* /8 1 gS* /8
1 gC*

21/2 1 gS*
21/2 2 1. For the free-fermion case this

gives a=0; for any other combination of the gn* it is posi-
tive, giving a smoother descent of ^nk& at kF .
This is not a rigorous derivation, since we have put in

the fermion character of the problem by hand; however,
it is possible to represent the fermion field operators in
terms of bosonic operators (Schotte and Schotte, 1969;
Schotte, 1970; Blume, Emery, and Luther, 1970; Luther
and Emery, 1974; Mandelstam, 1975) and thereby obtain
the results of this section, and calculate other two-point
correlation functions (Emery, 1979a, 1979b).

E. Commensuration and near commensuration

When the particle spacing is incommensurate with the
external potential, nb is irrational, and for no order l of
umklapp scattering and Fourier component k of the ex-
ternal potential does r=unl2k/bu vanish. On length
scales large compared with 1/r, the anharmonic terms in
the action (1.3) involving the charge degrees of freedom
are oscillatory; they are then irrelevant in the sense that
they cannot halt transport and there is no gap in the
spectrum of the field C , if even the r=0 system has a gap.
Physically this occurs because there is a finite density
(measured by r) of discommensurations at which there
is a shift in registry of the pattern of long-range order
that is present at r=0.

FIG. 2. Dislocation pair in a two-dimensional crystal of world
lines. The configuration of the particle world lines is shown in
one member of the ensemble. A particle is removed at (x=0,
t=0), terminating a line, and another particle is added else-
where, giving rise to another half-line. The wandering of the
lines represents quantum fluctuations.
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In the presence of a spin-sensitive external field (such
as the magnetic field), there is a similar situation for the
spin field S : the density (n↑ ,n↓) of the up and down
spins (and thus average spacing) may be different, lead-
ing to discommensurations in the spin ordering of den-
sity n↑2n↓ .
Since every number nb is close to many rational val-

ues, one might be concerned that disentangling the vari-
ous commensurabilities will be a difficult process. How-
ever, we shall see below (Sec. V) that umklapp
scattering of order l is not important for gC@1/l2, so that
rational fractions with small denominators are of the
greatest interest.
In an ordered phase (having a gap in any spectrum),

there is some form of long-range order, and the correla-
tion functions behave as if the corresponding gn* were
zero. The correlation exponents attain this value discon-
tinuously, however, and the discontinuity depends on
how the ordered phase is approached. At commensura-
tion (for example, by varying the strength of the exter-
nal potential) there is a minimum universal value gn,min ;
when one varies the density or magnetization, the limit-
ing value of the renormalized exponent gn* is exactly half
as large. The latter exponents characterize ordered
phases via the correlation properties of an infinitely di-
lute gas of discommensurations, which are the solitons
of the corresponding fields, and behave like a gas of
particles with short-range repulsive interactions.

F. Correlations and nomenclature

Since we shall frequently be referring to the various
correlated phases, we shall give them names suggestive
of their characteristics.
Any phase not having a charge-density gap is a con-

ductor, and the conductance is given by gC* e
2/h (Mattis,

1974; Luther and Peschel, 1974; Apel and Rice, 1982;
Kane and Fisher, 1992a). It should be noted that the
conductivity of the T=0 material is either zero or infinity,
since there is no dissipative mechanism. There are three
cases, depending on the sign and relevance of the
unlike-spin interaction (parametrized by U): the super-
conductor, the conducting antiferromagnet, and the nor-
mal metal.
A conductor having a spin-density gap and no net spin

at any place will be referred to as a superconductor, be-
cause it has Cooper pairs—but the diamagnetism is not
perfect, and the conductance is finite (still gC* e

2/h). The
other phase having a spin-density gap has antiferromag-
netic order and will be referred to as an antiferromag-
net. This can be a conductor if there is no charge-density
gap. Attractive unlike-spin interactions will promote su-
perconductivity, while repulsive interactions will favor
antiferromagnetic order.
The normal metal has no gap in either spectrum.
This nomenclature is a simplified version of the con-

ventional one (Emery, 1979a; Solyom, 1979) which dis-
tinguishes the possible conducting phases by the pres-
ence or absence of a spin-density gap and further by the

behavior of certain correlation functions. According to
this scheme, there are at least four different conducting
phases: (1) metallic with dominant spin-density fluctua-
tions but no spin-density gap and gC<2; (2) metallic with
dominant triplet pairing fluctuations but no spin-density
gap and gC>2; (3) metallic with dominant charge-density
fluctuations in the presence of a spin-density gap and
gC<2; and (4) metallic with dominant singlet pairing
fluctuations in the presence of a spin-density gap and
gC>2. Type (3) we have called an antiferromagnetic con-
ductor, and type (4) is our superconductor. We have not
distinguished between types (1) and (2), which we just
call a normal metal, because there is no phase transition
at gC=2.
Any phase having a charge-density gap is an insulator.

There are four insulating phases (again depending on
the sign of U): the nonmagnetic insulator with a spin-
density gap (which can be visualized as pinned Cooper
pairs); the antiferromagnetic insulator without a spin-
density gap and having only algebraic antiferromagnetic
order [with correlation function given by Eq. (1.20)]; the
antiferromagnetic insulator, which has a spin-density gap
and long-range antiferromagnetic order; and for odd or-
der of umklapp scattering (which can occur when nb
5k/l with l odd) there can be a dimerized insulator, in
which the spins are unevenly spaced.
This classification singles out phases that can be de-

scribed in terms of the charge- and spin-density correla-
tion functions. There can be ordered phases in which the
correlations are more subtle—for example, the bond or-
dering that occurs in the fermionic version of the XXY
model (Emery and Noguera, 1988; Noguera and Emery,
1989), in which adjacent pairs of sites are occupied by a
singlet wave function: it has a gap in the charge-density
wave spectrum, but gives no signature in the charge-
density correlations. Since our phase diagrams empha-
size the presence or absence of gaps in the spectra, these
phases will be distinguished from the disordered phases,
but the possibility of more than one kind of ordered
phase may be overlooked.

G. The renormalization-group language

Our intention is to determine which phases will arise
for various regimes of large and small quantum fluctua-
tions (as parametrized by gC and gS) and various choices
for other parameters. We shall be using renormalization
methods to determine the phase diagram and physical
behavior, which involves the study of a set of differential
equations describing the consequences of a sequential
integrating-out of the shortest-wavelength fluctuations.
In special limits these differential equations can be con-
structed and are quite useful in elucidating the behavior
near phase transitions and other singular limits.
Important conceptual tools will be flow diagrams,

which represent the assumed result of an exact renor-
malization treatment. These consist of lines describing
how the parameters of the model evolve, according to
the renormalization differential equations; each line can
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be read as specifying the combinations of parameters
that define a family of models that are physically equiva-
lent. The end point of the renormalization yields the
macroscopic physical properties.
We do not actually know how to construct the general

renormalization differential equations, but argue that
symmetry and exact solutions for special cases, as well as
what we can learn from perturbation about various lim-
its, so constrain the flow diagram that we can claim to
know it. The elements that go into the construction are
the perturbative renormalization-group results appropri-
ate to the cases of weak and strong Hubbard interaction;
these limits are connected by the results for the con-
tinuum Hubbard model, which has been exactly solved.
In the discussion of phase transitions using the renor-

malization group, a marginal renormalization-group tra-
jectory (or separatrix) is of special interest. It may cor-
respond to the locus of a special physical model whose
microscopic Hamiltonian has an extra symmetry; such
models are especially amenable to being exactly solved.
This can have implications that go beyond the perturba-

tive renormalization group. The Hubbard model will
play an important role in what follows, because it lies
exactly on the separatrix of the renormalization-group
flow.

II. IN THE VICINITY OF HALF-FILLING

We begin with the case of the half-filled band and its
vicinity, because this case introduces many of the general
ideas, while remaining well connected to exact results.
The lattice models at half-filling have particle-hole sym-
metry, which simplifies the discussion. This is physically
important, because the effects of the periodic potential
are quite pronounced.
A one-dimensional electronic system with a half-filled

band is the case l=2 of the action (1.3). The spin and
charge degrees of freedom are uncoupled and can be
discussed separately. The G2 term is always more rel-
evant than the G3 term in Eq. (1.3d), so that the latter
can be discarded; the action (1.3a)–(1.3d) reduces to

A5
1
2 E dxdt~mSṠ

21KSS82!12n2UE dxdt cos4pnS1
1
2 E dxdt~mCĊ

21KCC82!

12n2VE dxdt cos~2prx24pnC !. (2.1)

The prefactors of the cosine terms are given for the limit
of weak Hubbard interaction (for U not small, the coef-
ficients would be functions of U) and a=0; the parameter
V is proportional to both the amplitude of the periodic
potential and the Hubbard parameter U (see Appen-
dix). The derivation given in the Appendix is valid only
for a weak periodic potential. However, the same func-
tional form with V5U appears upon direct bosonization
of the weakly interacting lattice version of the Hubbard
model near half-filling (Giamarchi, 1991). The param-
eter r=u2n21/bu measures the deviation from the ex-
actly half-filled band case nb=1

2. Equivalent quantum
Hamiltonians have been given previously (Emery,
1979a, 1979b; Solyom, 1979; Schulz, 1990, 1991; Giamar-
chi, 1991). The 2n2U term corresponds to the backward-
scattering amplitude, while 2n2V is the amplitude of the
4pn54kF umklapp scattering.
The amplitude U of the interaction between particles

of opposite spin plays several roles in Eq. (2.1): it con-
tributes to the values of KC and KS , as described by
(A16) and (A17); it determines the coefficient of the
anharmonic term for the spin separation variable and
contributes to the corresponding coefficient for the
charge variable. We shall treat these different terms as
independent, because in what follows we shall be using
renormalization methods to determine the phase dia-

gram and physical behavior. The renormalization equa-
tions describe the mutual evolution of the parameters of
the harmonic part and the amplitude of the anharmonic
terms; the microscopic value U plays a role in setting the
initial values for all of these, but we shall choose to refer
to the amplitude of one of the anharmonic terms in
terms of a renormalized U , as if this were the only way
U entered the theory. In writing (2.1) we have promoted
this distinction by explicitly displaying only some of the
U dependence.
In the following sections we develop the flow diagram

relevant to half-filling. In Sec. II.A we explore the limit
of weak Hubbard interaction and show that the lattice
model corresponds to the separatrix of the continuum
translationally invariant problem. In Sec. II.B we trace
the dependence of gC on the strength of the Hubbard
parameter, which then determines the locus of initial
conditions for the renormalization study of the lattice
model. This section also discusses the vicinity of gC=1,
which is an invariant line of the flow, and corresponds to
the exactly solved Emery-Luther-Peschel model. Section
II.C discusses the vicinity of gC=4, which is another in-
variant line of the flow, and corresponds to the Efetov-
Larkin model. In Sec. II.D we bring all these ideas to-
gether to construct the flow diagram for gC versus V. In
Sec. II.E we carry over some of these results to gS* .
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A. Weak Hubbard interaction

1. Point interactions (a50)

When the Hubbard interaction that couples particles
of opposite spin is small, it is relevant to compare it to
the case of noninteracting spin populations. To this end
we introduce the spinless analog of Eq. (1.5b) (Kane and
Fisher, 1992a, 1992b), which we already met in Eq.
(1.25)

g5
p\n2

AmnK~n !
. (2.2)

This parameter characterizes the degree of quantum
fluctuation for noninteracting spin populations, with
K(n) given by the analog of Eq. (1.7),

K~n !5n2
]m~n ,U50 !

]n
. (2.3)

In the continuum Hubbard model, electrons of the same
spin do not interact with each other; therefore
m05m(n ,U50)5p2\2n2/2m , and we find from Eqs.
(2.2) and (2.3) that g=1. It can be seen that g<1 for the
case of like-spin repulsion and g>1 if there is a like-spin
attraction (Kane and Fisher, 1992a, 1992b). In the limits
uuu5n2uUu/K(n)!1, and a=0, the bare values of gn (1.5)
can be expressed (see Appendix) in terms of g (2.2) and
the dimensionless strength of the Hubbard interaction u :

gS52g~11u/2!, (2.4)

gC52g~12u/2!. (2.5)

For the continuum Hubbard model, g=1, and the param-
eter u reduces to u5mU/p2\2n5U/p\vF , where vF is
the Fermi velocity; Eqs. (2.4) and (2.5) then reproduce
the known results (Emery, 1979a; Solyom, 1979; Schulz,
1990, 1991; Giamarchi, 1991).
The model (1.1) and subsequent discussion were all in

terms of a continuum model. However, the lattice model
is similar in important ways: the parameters mn , vF , and
Kn are different, but they combine to give Eqs. (2.4) and
(2.5) again, with g=1 and u5U/p\vF for the Hubbard
model.
We have introduced the parameter gC in Eq. (1.5b) to

describe the case of half-filling; when we generalize from
the half-filled band (l=2) to general commensuration (in
Sec. V), we shall find a quite similar description in terms
of the parameter l2gC/4 for even l , or l

2gC for odd l .

2. Perturbative renormalization group (uuu!1): spin degrees
of freedom

The spin and charge degrees of freedom are already
decoupled in the action (2.1), and for the weakly inter-
acting case uuu!1 each is of sine-Gordon type. Perturba-
tive renormalization-group analysis (Wiegmann, 1978)
can be used to describe the phase transitions between
different ground states. The perturbative
renormalization-group equations describe the effect of
integrating out the short-wavelength components of the
field (up to some length scale L), and take the form of

differential equations describing how the parameters of
the action evolve as this integration is done (Ma, 1976),
in terms of an independent variable t=ln(nL).
The equations for the ‘‘spin’’ parameters of the action,

valid for gS close to 2, are the Kosterlitz equations (Ko-
sterlitz, 1974; Wiegmann, 1978):

du

dt
5~22gS!u , (2.6a)

dgS
dt

52C1u
2, (2.6b)

where C1 is the first of a series of numerical constants
Ci . Equations (2.6a) and (2.6b) describe a generic inter-
acting system in the limit uuu!1, but we shall adopt the
initial condition (2.4) in addition, which requires a=0.
The physical content of these equations is that inter-

action always causes the macroscopic gS(L→`) to be
less than its initial value and that the effective interac-
tion decreases whenever gS>2 (representing the effect of
large quantum fluctuations) but increases in the more
classical case gS<2. Thus there are two general types of
trajectories: those which tend asymptotically towards the
Kosterlitz fixed line, gS>2, u=0, and those for which gS
goes below 2 and uuu increases without bound. They are
separated by the special lines gS 5 2 6 AC1u .
The continuum Hubbard model with no periodic po-

tential present is a part of the general picture described
by Eqs. (2.4) with g=1 and (2.6a) and (2.6b). It is a very
simple case in that it is specified by the one dimension-
less parameter u , the amplitude of the zero-range inter-
action between particles of the opposite spin. Renormal-
ization cannot generate any other interactions, and so
the renormalized Hubbard model is again a Hubbard
model, with a different value for the parameter u : the
family of Hubbard models lies along a single flow line of
the renormalization transformation. This must in fact be
the separatrix, because the free-fermion model is con-
tained within the family as the case u=0, gS=2. This ar-
gument goes beyond the perturbative renormalization
group and has several important consequences (Emery,
1979a; Solyom, 1979):
The coefficient C1 must be unity, so that the line of

initial conditions [(2.4) evaluated at g=1] is also the
separatrix (Emery, 1979a).
For repulsive interactions, gS>2 [again according to

Eq. (2.4)], so that under renormalization u is steadily
decreasing. We conclude that the anharmonic term in
Eq. (2.1) is irrelevant, implying that Acorrelation fails to
induce antiferromagnetic arrangement of the particles;
there is no cutoff to the renormalization, so that for any
u>0 the measurable exponent gS* is given exactly by
gS*=2.
For attractive interactions, gS<2, and uuu is steadily

increasing under renormalization. The anharmonic term
is relevant, which means that there is a spin-density gap,
and indicates the presence of the superconducting
phase; however, the renormalization carries us out of the
perturbative regime. The perturbative renormalization
group does not tell us where the flow goes and thus fails
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to determine the value gS(U52`). We shall give argu-
ments below (Sec. II.E) leading to the conclusion that
the flow approaches a fixed point gS(U52`)=1.
The conclusion that there is a phase transition be-

tween superconductor and normal metal at U=0 is sup-
ported by the exact solutions of the continuum Hubbard
model by Gaudin (1967, 1983) and Yang (1967). How-
ever, these results do not help us trace the separatrix,
because the renormalization always carries us to one of
the fixed points without stopping.

3. Perturbative renormalization group (uuu!1): charge
degrees of freedom

The anharmonic terms involving the charge degrees of
freedom have their origin in the periodic potential; the
charge part of the translationally invariant Hubbard
model has a purely harmonic action. The resulting rela-
tionship between gC and the Hubbard interaction u can
be found from the exact solutions of Gaudin (1967,
1983) and Yang (1967), which describe the continuation
of the perturbative description (2.5) (with g=1).
The long-wavelength behavior of the lattice Hubbard

model is described by Eq. (2.1); the lattice is represented
by a special value for the parameter V that measures the
strength of the periodic potential. We can again argue
that this model should go into itself under renormaliza-
tion and thus must lie on the separatrix of the renormal-
ization equations. Exactly at half-filling (r=0), the equa-
tions for the ‘‘charge’’ parameters of the action, valid for
gC close to 2, are the Kosterlitz equations (Kosterlitz,
1974; Wiegmann, 1978):

dv
dt

5~22gC!v , (2.7a)

dgC
dt

52C1v
2, (2.7b)

where v5mV/p2\2n is the dimensionless amplitude of
the periodic potential.
The coefficient C1 is again unity; the initial conditions

relating gC to u for the Hubbard model are given by Eq.
(2.5) with g=1. Comparing these, we see that the re-
quirement that the Hubbard model lie along the separa-
trix gC521v implies u5v . This argument establishes
the value of V in Eq. (2.1) for which the continuum
model in a periodic potential is equivalent to the lattice
model, in agreement with Giamarchi’s result (1991).
For attractive interactions, gC>2 [again according to

Eq. (2.5), with g=1], so that under renormalization v is
steadily decreasing. We conclude that the umklapp scat-
tering term in Eq. (2.1) is irrelevant, implying that the
periodic potential fails to localize the particles; exactly at
half-filling there is no cutoff to the renormalization, and
then for any u<0 the measurable exponent gC* is given
exactly by gC* 5 2.
For repulsive interactions, gC<2, and v is steadily in-

creasing under renormalization. The umklapp scattering
is relevant, which means that there is a charge-density
gap; however, the renormalization carries us out of the

perturbative regime. The perturbative renormalization
group does not tell us where the flow goes and thus fails
to determine the value gC(V5`). We shall give argu-
ments below (Sec. II.B) leading to the conclusion
gC(V5`)=1.
The case in which r is small but not zero can also be

understood from these equations; as the length scale in-
creases, the spatial oscillations in the interaction terms
[the last term of Eq. (2.1)] become more important and
cut off the flow for Lr'1 (Horovitz et al., 1983). The
final value gC* that is reached is the macroscopically
measurable one.

B. Strong Hubbard repulsion

We shall now discuss the locus of the separatrix of the
exact renormalization-group equations, which will help
us to understand the flows in the gS–u and gC–v planes.
We must note that the resulting flow picture is not the
flow diagram for the sine-Gordon action (2.1), because
(2.1) is valid only for small u and v . Moreover, higher-
order terms that are not written down in Eq. (2.1) will
somehow affect the outcome. These nonlinearities lead
to some ambiguity in the choice of parameters for com-
parison of models; we shall assume they can be chosen
so that the locus of initial conditions for the lattice Hub-
bard model will be given by v5u(gC) for the continuum
(translationally invariant) Hubbard model for all gC ,
and not just in the perturbative regime. We shall show
that this is a sensible assumption.
In the limit of weak interactions uuu!1, the separatrix

for charge degrees of freedom is given by Eq. (2.5) with
g=1. In the case u@1 the infinitely strong repulsion be-
tween particles of opposite spin plays a role similar to
the Pauli principle between particles of the same spin, so
that the u=+` limit of the equation of state is the same
as that of spinless free fermions with doubled particle
density: m(u51` ,n)5m0(2n)5p2\2(2n)2/2m . Substi-
tuting this into Eq. (1.7) and using Eqs. (1.4) and (1.5),
one gets for the u=+` limit of the separatrix gC=1. Cor-
rections of order 1/u to this result will be found below.

1. Translationally invariant problem, u.0

The translationally invariant version of (1.1) has been
studied by Kolomeisky (1992) using a different version
of the renormalization group appropriate to the case of
a dilute limit. The appropriate variables for this case are
the dimensionless quantities

u5
mU

p2\2n
, (2.8)

w5
mW

p2\2n
. (2.9)

In the dilute limit the spin direction is irrelevant, as
already argued [see the n dependence of Eqs. (2.8) and
(2.9)], and the problem reduces to free fermions. The
lowest-order correction to the free-fermion result for the
equation of state can be found (Kolomeisky, 1992):
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m5
p2\2~2n !2

2m F11~2C2/3!S na2
1
u

2
1
w D G . (2.10)

With Eqs. (1.5b) and (1.7), this implies

KC5
8p2\2n3

m F11C2S na2
1
u

2
1
w D G , (2.11a)

gC512C2S na2
1
u

2
1
w D , (2.11b)

which is valid if the correction to unity on the right-hand
side is small. The Hubbard model is the special case a=0,
w=`, so that its locus (and therefore the locus of the
separatrix) in the limit u→+` is given by

gC511C2 /u . (2.12)

The same result can be obtained from the Bethe ansatz
equations of Gaudin (1983) and Yang (1967). However,
our method also allows us to find the loci of more gen-
eral short-ranged models in the limit u→+`. When a is
finite and w=`, then for na'1/u the correction in Eq.
(2.11) vanishes in all orders (Kolomeisky, 1992). For
mUa/\2>1 the correction in (2.11) changes sign. Allow-
ing w to be finite corresponds to the presence of a short-
ranged attraction between electrons of the same spin.
The fact that the separatrix of the exact

renormalization-group equations as well as the loci of
short-ranged fermion models approach the same univer-
sal limit gC=1 for u→+` and na→0 strongly suggests
that the line gC=1 itself is a special line of the exact
renormalization group.

2. Free fermions on the lattice and the invariant line

We have been able to make analytic progress in the
case u@1 because this limit reduces to a system of free
fermions. It is useful to calculate the exponent gC* for the
system of free spinless fermions on a lattice of period b ,
which can be regarded as a special case of the more
general problem (1.1). The chemical potential for a sys-
tem of lattice fermions of density 2n is
m=(\2/mb2)(1−cos 2pnb), from which the coefficient
KC* (1.7) can be calculated. Since translational symmetry
is broken, we must use the expression for the sound ve-
locity cC* 5 (\/mb)sin 2pnb and Eqs. (1.6) and (1.7) to
evaluate the coefficient mC* . The result is that again gC*
5 1 independent of density and other parameters. This
implies that there is no renormalization of the con-
tinuum gC , the renormalization-group trajectory at
gC=1 is strictly vertical, and the direction of the flow is
upwards, since the half-filled-band infinitely repulsive
Hubbard model is an ordinary band insulator.

3. Finite r and soliton gas

That gC=1 is an invariant upgoing line of the exact
renormalization-group equations is a very important
claim, because it locates the stable fixed point corre-
sponding to the Mott insulating phase, which will be im-
portant for a wide range of systems. We can arrive at this

same limiting behavior by consideration of small finite r
in Eq. (2.1), for the case of arbitrary U>0.
For finite r the action (2.1) is translationally invariant.

Umklapp scattering is irrelevant but still leads to a
renormalization of mC and KC . The effect of finite r can
also be understood in terms of the flow picture of a sys-
tem with r=0 (Horovitz et al., 1983): starting at some
initial point of the flow diagram, one follows some tra-
jectory, stopping when the scale rL*'1 is reached. On
larger length scales the cosine function in the charge
part of the action is rapidly oscillating and the renormal-
ization coming from the umklapp term is cut off; the
corresponding value of gC* (L* ' 1/r) can be read off the
flow diagram. The value of the scale parameter t corre-
sponding to the interruption point is t*'ln(n/r), to loga-
rithmic accuracy. This shows that t*→` as r→0, thus
telling us that the finite value gC(v→`) is the limiting
value of the correlation exponent as one approaches ex-
act commensuration by changing the particle density.
In the present case there will be a charge-density gap,

so that there is long-range order in the charge subsystem
on scales exceeding a correlation length j, which is the
spatial extent of the solitons, the elementary excitations
of the insulator phase. Up to model-dependent numbers,
the soliton energy can be estimated as follows:

Es'E dxKCC82'KCj~1/nj!2'KCj~b/j!2

5KCb
2/j . (2.13)

For r=0, the solitons can be excited only in the form of
soliton-antisoliton pairs and therefore the charge-
density gap is twice the soliton energy. The parameter r
in Eq. (2.1) is defined in such a way that it gives us the
net soliton density imposed by the deviation from half-
filling.
Since there are two length scales, the soliton width j

and intersoliton distance r−1, two qualitatively different
regimes are possible. For rj@1, the solitons overlap and
are not well defined objects. In this case the dependence
gC* (r) can be extracted from the perturbative
renormalization-group equations by the prescription of
Horovitz et al. (1983) only if the correlation length is
large enough: jn'j/b@1. The case rj!1 is beyond the
range of validity of the perturbative renormalization
group, and a new universal picture occurs: we have a
very low density of solitons with short-range repulsion
between them, which can be approximated by treating
the solitons as a gas of spinless noninteracting free fer-
mions (Pokrovsky and Talapov, 1979; Schulz, 1980, 1990,
1991).
The exponent gC* can be calculated in the limit rj!1

as follows (Kolomeisky, 1993): let us introduce the aux-
iliary soliton displacement field f(x ,t) in terms of which
the long-wavelength version of the charge part of (2.1)
has the form

AC5
1
2 E dxdt~l1 ḟ

21l2f8
2!. (2.14)
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Galilean invariance fixes l1=br, where b is the soliton
mass; and l2 is determined by the compressibility of the
soliton (free-fermion) gas l2=p2\2r3/b. The fields C in
Eq. (2.1) and f in Eq. (2.14) are related by r]f52n]C .
This transforms Eq. (2.14) into the harmonic terms of
the charge part of (2.1) with

mC*5br~2n/r!2, (2.15)

KC*5
p2\2r3

b
~2n/r!2. (2.16)

The parameters KC* and mC* give us via Eqs. (1.4) and
(1.7) the critical behavior of compressibility and effec-
tive mass, respectively, as r→0. We note that Eqs. (2.15)
and (2.16) contain a single model-dependent parameter,
the soliton mass b. When one evaluates gC* from Eq.
(1.5) with these mC* and KC* , all the parameters cancel
each other and one gets again gC* 5 1. Since taking the
limit r→0 is equivalent to the macroscopic limit t→` of
the renormalization group, we conclude that on the
scales nje−t!1 (which is the same as rj!1) any
renormalization-group trajectory approaches the stable
fixed point gC* 5 1, v*=`.
Renormalization-group equations valid on the scales

nje−t!1 can be derived by using a more accurate de-
scription of the intersoliton interactions, namely, that
solitons behave like finite-ranged repulsive bosons. The
ground-state properties of a dilute system of bosons with
interparticle repulsion of the form Wda(x) have been
studied (Kolomeisky and Straley, 1992) and the ground-
state properties found to be governed by the flow of the
dimensionless pseudopotential w'mbWa/\2 (mb is the
bosonic mass) towards a stable fixed point, which corre-
sponds to the free-fermion answer gC*51 we just de-
rived. The corrections to this result follow from a dilute-
ness condition. The connection with the present
problem is as follows: an intersoliton repulsion of the
form Esexp(−x/j) can be presented as Esjdj(x) with the
correspondence Esj→W , j→a ; the soliton mass is given
by b'Es/c C

2 5mCEs/KC , so mb→mCEs/KC ; the dilute-
ness condition is the same as rj!1, and the interruption
condition coincides with that of Horovitz et al. (1983).
Using the correspondence outlined as well as the defini-
tion (1.5) and the estimate (2.13), one finds that up to a
factor of order unity the pseudopotential w transforms
into something proportional to 1/g C

2 . Substituting this
into the renormalization-group equation for the pseudo-
potential given by Kolomeisky and Straley (1992), one
obtains the renormalization-group equation replacing
Eq. (2.7b) on the scales nje2t'(j/b)e2t!1:

dgC
2

dt
512gC

2 . (2.17)

What actually comes from the renormalization-group
equation of Kolomeisky and Straley (1992) has some
unknown numerical constant instead of unity on the
right-hand side of Eq. (2.17): we cannot trace the exact
correspondence between the pseudopotential of Kolom-

eisky and Straley (1992) and gC and recover unity from
the free-fermion arguments.
The minimal spatial scale in Eq. (2.17) is L'j, and for

nonzero r the dependence gC* (r) follows from the solu-
tion of (2.17) interrupted on a scale t* such as
rjet*5F1 , where F1 is the first of a series of dimension-
less functions of interaction, Fi , the precise form of
which cannot be captured accurately by the
renormalization-group method. Thus we obtain

~gC* !2511
~gC!221

F1
rj . (2.18)

An analogous result has been found by Schulz (1980)
and Haldane (1982) via exact solutions of the sine-
Gordon model with nonzero soliton density. The model-
dependent parameters in Eq. (2.18) are gC , F1 , and j.
The answer (2.18) is valid for any physical model if

the insulator phase existing at half-filling is approached
by changing the particle density (Giarmarchi, 1991); this
result also depends on the assumed accuracy of separa-
tion of spin and charge degrees of freedom. The bare
values for gC come from Eq. (2.11) in the limit u@1 and
from (2.5) for uuu!1 and a=0. Equation (2.18) is valid in
the vicinity gC* 5 1 and thus can be rewritten as

gC*511
gC21
F1

rj (2.19)

if the initial gC is close to unity. This equation can be
used to find the strong-coupling analog of Eq. (2.7a).
The idea is that Eqs. (2.18) and (2.19) describe a family
of models including the Hubbard model for which the
locus of initial values is simultaneously the
renormalization-group trajectory. To find the measur-
able gC* starting from some initial point with coordinates
(gC ,v5u), we substitute Eq. (2.12) into Eq. (2.19) and
obtain

gC*511
C2

uF1
rj , (2.20)

where for the Hubbard model the function F1 depends
only on u . On the other hand, the interruption point
(gC* ,v* ) belongs to the same curve (2.12):

gC*511
C2

v*
.

Comparing this with Eq. (2.20), we conclude that
v*5uF1/rj , which via the connection t*=ln(F1/rj) im-
plies that v evolves as

dv
dt

5v , (2.21)

which is the same as (2.7a) evaluated at gC51. The sys-
tem of Eqs. (2.17) and (2.21) was suggested by Straley
and Kolomeisky (1993) to describe the strong-coupling
regime of the sine-Gordon theory.

C. Strong Hubbard attraction

We now turn to the case in which the Hubbard inter-
action is strong and attractive: uuu@1,u,0. In the limit
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of infinitely strong attraction, particles of opposite spin
will form strongly coupled pairs distributed with the
density n . This system is isomorphic to a free-fermion
gas of particles of mass 2m ; the chemical potential is
p2\2n2/4m . To find the u=−` limit of the equation of
state of the original system, we note that removing a
single electron from the system will cost half of the pair
binding energy and half of its kinetic energy, so that the
equation of state is m(u=−`, n)=const+p2\2n2/8m ,
where the const stands for half of the binding energy
and is density independent. Substituting this into Eq.
(1.7) and using Eqs. (1.4) and (1.5), we find that the
u=−` limit of the Hubbard line is gC=4. A correction of
order 1/u to this result can be found from the Bethe
ansatz equations (Gaudin, 1967, 1983), implying that the
equation of the separatrix of the exact renormalization-
group equations has the asymptotic form

gC541C3 /u . (2.22)

1. Translationally invariant problem, u,0

The loci of various physical models in the vicinity of
the point gC=4, u=−` can be inferred from the results of
Kolomeisky (1992), who studied the translationally in-
variant version of the original action (1.1) in the dilute
limit. In the present context this corresponds to large
absolute values of the dimensionless amplitude of the
Hubbard interaction u5Um/p2\2n . For u→+` the
long-distance properties of the system are governed by
the flow of the renormalization-group equations of Ko-
lomeisky (1992) to a stable free-fermion fixed point un-
derlying the result (2.12). For large negative u , the mac-
roscopic behavior of the system is determined by the
flow towards another stable fixed point (u*=−`, w*'1),
which corresponds to the result (2.22). We can deduce
that this fixed point describes a system of pairs because
the divergence of the flow in the variable u indicates the
formation of a two-particle bound state; simultaneously
the flow is stable along the w direction and directed to-
wards a positive finite value of w* , thus implying that
the system of pairs is stable and behaves like a free-
fermion system in the dilute limit. The presence of this
fixed point implies that the locus of any physical model
approaches the limit gC=4 for U<0 and na→0. Since the
fixed-point value w* can be approached from both
above and below, we conclude that the same is true for
the limiting value gC=4.

2. gC54 is also an invariant line

Similar to what was found for the limit of strong re-
pulsive interaction, the line gC=4 is an invariant line of
the exact renormalization-group equations. We can
show this by using the argument we already gave to cal-
culate the exponent gC* for a lattice system of free fer-
mions (see Sec. II.B.2). Noting that now the particle
density is n , the particle masses are 2m , and each par-
ticle consists of a pair of the original particles (of oppo-
site spins), we conclude that gC* for the lattice system is
not renormalized from its continuum value gC=4. The

direction of the flow on the line gC=4 is opposite to that
on the invariant line gC=1, since free spinless fermions
at half-filling are in a conductive phase. The direction of
the flow in the vicinity of the line gC=4 is also opposite
to that in the vicinity of the line gC=1 and can be in-
ferred from the results of Yang and Yang (1966) and
Haldane (1980), which also imply that the line gC=4 is
an invariant line. Some additional evidence will be pre-
sented below.

D. The flow diagram and loci of physical models

1. The flow diagram

Now we are ready to produce a flow diagram describ-
ing the behavior of the charge degrees of freedom (Fig.
3). Its components are a flow pattern and a locus of
initial conditions. The flow pattern (represented by the

FIG. 3. Flow diagram describing the behavior of the charge
degrees of freedom for the case of half-filling in terms of the
dimensionless strength of the Hubbard interaction
v5u5n2U/K(n) [see Eq. (2.3)] and the quantum correlation
parameter gC [see Eq. (1.5b)]. The arrows indicate the direc-
tion of the flow and the lines labeled a through e show sche-
matically the loci of initial conditions corresponding to various
physical models of short-ranged interacting spin- 12 fermions.
The two invariant lines at gC=1 and gC=4 correspond to the
Emery-Luther-Peschel and Efetov-Larkin exact solutions, re-
spectively. The notation is as follows: (a) the Hubbard model,
which is simultaneously the separatrix of the exact
renormalization-group equations; (b) a fermion model with a
finite-range interaction between particles of opposite spin (ex-
tended Hubbard model) that approaches the Hubbard model
(the curve a) in the limit of point interaction; (c), (d) fermion
models with a finite-range interaction between particles of op-
posite spin and an attractive finite-range interaction between
particles of the same spin. The attraction strength is larger for
curve (d), which simultaneously has the topology of the ex-
tended Hubbard model with nearest-neighbor attraction; (e)
this curve has the topology of the extended Hubbard model
with nearest-neighbor repulsion.
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arrows) is a property of the system with general interac-
tions; it describes how its descriptive parameters evolve
under renormalization. The microscopic parameters of a
particular model fix a point on this diagram; following
the arrows leads us to a different set of parameters,
which characterize the macroscopic behavior. In an at-
tempt to show how various initial conditions might be
achieved, we have drawn in lines representing the loci of
some specified one-parameter families of models.
The key feature of the flow diagram is the Hubbard

line, which is the locus of initial conditions for the lattice
Hubbard model and also the trajectory of its flow. In the
weak-coupling regime it is given by Eq. (2.5) with g=1;
for the case of large Hubbard repulsion it behaves ac-
cording to Eq. (2.12) and in the limit of strong Hubbard
attraction according to Eq. (2.22). These three limiting
behaviors can be connected into a smooth curve a
shown in Fig. 3. We assume that the whole curve can be
obtained from the Bethe ansatz equations of Gaudin
(1967, 1983) and Yang (1967). Its significance is that it
determines one of the separatrices; the symmetry with
respect to the reversal of the sign of v (the particle-hole
symmetry of the lattice Hubbard model) produces the
second separatrix.
The behavior of the lattice Hubbard model (already

known from the solution of Lieb and Wu, 1968) can be
interpreted as follows: Under renormalization, this fam-
ily of models stays on the separatrix. For attractive Hub-
bard interaction (gC>2), the periodic potential (that is,
the lattice itself) is not a relevant perturbation and the
system is translationally invariant macroscopically (we
need to look at the behavior of the spin degrees of free-
dom to determine that it is a superconductor); at half-
filling the renormalization does not stop and arrives at
gC* 5 2 exactly. For repulsive interactions, the lattice is a
relevant perturbation; except at half-filling, the renor-
malization is stopped by the incommensuration of lattice
and interelectron spacing, yielding a metal, while at half-
filling an insulating phase (an antiferromagnet) results.
The loci of other physical models are shown by

dashed lines b–d .
Curve b describes a system of fermions interacting via

a finite-range unlike-spin interaction (the Hubbard
model has a d-function interaction of zero range). For
u→+` its locus is given by Eq. (2.11) with infinite w . For
small u its locus can be understood as follows: since
electrons of the same spin do not interact with each
other, Eq. (2.5) would imply that gC522u as for the
Hubbard model. However, Eq. (2.5) is only the a=0
limit, and continuity then implies that for a not equal to
zero one must have gC522uf(na) where f(x) is some
function having the property f(x→0)→1. We expect
that in general f(x)>1, since the model under consider-
ation is more repulsive than the positive u Hubbard
model and more attractive than the negative u Hubbard
model. Accordingly, curve b goes below the Hubbard
line for u>0 and above the Hubbard line for u<0; the
two curves intersect only at u=0. For u→+` there is a
limiting value gC<1 that approaches the universal limit
gC=1 linearly in density, as can be seen from Eqs. (2.8)

and (2.11). For u→−` there exists a limiting value gC>4
that approaches the universal limit gC=4 as na→0. The
results of Kolomeisky (1992) do not tell us how the uni-
versal value gC=4 is achieved in the dilute limit for nega-
tive u . For the Hubbard model we have a linear depen-
dence [see Eqs. (2.22) and (2.8)], and we assert that this
is the case in general.
For finiteW one has an extra attraction between elec-

trons of the same spin, and the locus of the correspond-
ing models is presented schematically by curves c
(mWa/\2>1) and d (0<mWa/\2<1). The u→+` limit is
given by Eq. (2.11). As in the case of curve b , the small
u limit is given by gC52g2guf(na) [compare with Eq.
(2.5)] with g>1. The curves c and d are shown for the
special case 1<g<2; in principle the crossing with the gC
axis can be anywhere to the right of gC=2.
It is useful to understand how the models described by

the action (1.1) are related to the extended Hubbard
model (Emery, 1979a; Solyom, 1979). The extended
Hubbard model is intrinsically a lattice model, and so
there cannot be a one-to-one correspondence with the
translationally invariant part of (1.1). However, the
trend can be traced by noting that the finite range of
interparticle interaction will lead to a nearest-neighbor
interaction in the lattice problem. Therefore curve b of
Fig. 3 can be roughly associated with the locus of the
extended Hubbard model with nearest-neighbor repul-
sion for u>0, whereas the curves b–d can be considered
as leading under the renormalization group to macro-
scopic behavior similar to that of extended Hubbard
models with nearest-neighbor attraction for u<0. In view
of these observations, we believe that the locus of the
extended Hubbard model always goes below the Hub-
bard line for the case of nearest-neighbor repulsion and
always above the Hubbard line for the case of nearest-
neighbor attraction. The former is presented schemati-
cally by curve e of Fig. 3 and the latter has the same
typical behavior as curve d .

2. Generality

In concluding this section we want to comment on the
generality of the flow diagram derived here. Over an
important range of parameters, the interacting electron
problem is strongly similar to the sine-Gordon problem,
which then serves as a pertinent reference model, al-
though we cannot connect the locus of the separatrix of
the renormalization-group equations describing the sine-
Gordon system with any specific exactly soluble model.
In the perturbative limit, the renormalization argument
was developed for the sine-Gordon theory (Wiegmann,
1978; Kosterlitz, 1974). The soliton arguments used to
elucidate the features associated with the invariant line
gC=1 are model independent and therefore apply to any
model exhibiting soliton excitations, including the sine-
Gordon system. Thus the presence of the invariant line
at gC=1 with the associated features of the
renormalization-group flow is another universal part of
the sine-Gordon model not captured by the Kosterlitz
perturbative renormalization group, as was recognized
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by Straley and Kolomeisky (1993). The situation is less
clear with regard to the presence of the invariant line
gC=4: renormalization arguments applied to the sine-
Gordon theory (Horovitz et al., 1983) imply that the de-
pendence of the correlation exponent on density at com-
mensuration should always exhibit a residual singularity
which becomes increasingly weak in the strong quantum
(large gC) limit. However, there are exactly solvable lat-
tice models (Gaudin, 1973; Haldane, 1988; Shastry, 1988;
Sutherland, 1989) that would seem to be describable in
terms of sine-Gordon models (Kolomeisky, 1993) and
that indicate that the ground-state energy is analytic in
this regime. This might indicate a distinction between
the various models in this limit or reveal another general
feature of quantum systems with a periodic perturba-
tion. We shall not claim that the feature at gC=4 is uni-
versal, but that it is specific for the one-dimensional
electron gas model.

E. The exponent gS*

The spin part of the action (2.1) is also a sine-Gordon
system, and the study of its behavior in many respects is
just a transcription of the r=0 case of gC . The flow dia-
gram strongly resembles Fig. 3, with horizontal axis gS
and vertical axis u . Note that the coefficient of the an-
harmonic term for the spin variable has its origin in the
Hubbard interaction itself, rather than from the periodic
potential. Because there is no x dependence in the spin-
dependent anharmonic term of Eq. (2.1), there is no cut-
off to the renormalization, in the absence of a net mag-
netic moment. Another difference may arise: we do not
know whether gS=4 is an invariant line. The locus of
initial conditions for the Hubbard models (lattice and
continuum) is the ascending separatrix, as suggested by
Eq. (2.4), so that attractive and repulsive Hubbard inter-
actions play reversed roles from the case of gC .
We conclude from this flow diagram that the exponent

gS* approaches the universal limit gS*51 for any attrac-
tive Hubbard model. This value can be measured in the
presence of a perturbation that violates the spin up-
down symmetry of the action (1.1), for example, when
an external magnetic field produces a small magnetiza-
tion and thus a finite density of spin solitons. The line
gS=1 itself corresponds to the family of models solved by
Luther and Emery (1974).

III. COMPARISON WITH OTHER APPROACHES

The aim of this section is to point out the relationship
of the flow picture to previous results and to convince
the reader that our point of view provides a natural con-
text for previous results.

A. Repulsive Hubbard interaction

The limit of strong interactions has been studied using
several approaches, in particular the connections to ex-
actly soluble models. Emery, Luther, and Peschel (1976),
following the ideas of Luther and Emery (1974), found

an exact solution of the lattice one-dimensional electron
gas at half-filling for a special value of the interparticle
repulsion at which the problem becomes equivalent to a
free-fermion problem with a gap. Then they used
renormalization-group arguments to look at other val-
ues of couplings at which the problem is not exactly
soluble. We identify this special value with the crossing
of the locus of the repulsive extended Hubbard model
(curve e in Fig. 3) with the invariant line gC=1, the
Luther-Emery line (Luther and Emery, 1974). Since the
Luther-Emery line is attractive, the conclusion derived
from the exact solution for a specific coupling (Emery,
Luther, and Peschel, 1976), that there is a charge-density
gap, can be extended for any model within the basin of
attraction of the fixed points gC*51, v*=6`. We see
from Fig. 3 that the extended Hubbard model with
nearest-neighbor repulsion and any sign of Hubbard in-
teraction falls into this category. To calculate the charge-
density gap via Eq. (2.13) we have to understand how to
define the correlation length j in terms of the flow pic-
ture. In the theory of critical phenomena (Ma, 1976), the
correlation length is defined as a scale on which an ini-
tially small coupling strength renormalizes up to a value
of order unity. Applying this definition to the range of
small positive u and gC in the interval between 1 and 2,
we can see from Fig. 3 that we must get a formula for
the energy gap in which gC enters as a parameter be-
cause flow becomes more and more vertical as one
moves away from the value gC=2. This is in qualitative
agreement with arguments based on the connection with
the partition function of the classical two-dimensional
Coulomb gas (Emery, Luther, and Peschel, 1976) as well
as with a connection with the XYZ model (Luther, 1976,
1977). Quantitative agreement can be obtained if we as-
sume that for gC'1 the variable v evolves according to
Eq. (2.7a) on scales larger than the mean interparticle
distance n−1—what we actually demonstrated was that
the variable v obeys Eq. (2.21) for scales much larger
than the correlation length j and gC'1.

B. Strong Hubbard attraction

For the case of strong Hubbard attraction, Efetov and
Larkin (1975) have found an exact solution of the prob-
lem for a special value of a dimensionless combination
involving both Hubbard and nearest-neighbor attrac-
tion: here the system turned out to be isomorphic to a
free-fermion system of pairs comprised of the original
particles of opposite spin. This solution corresponds to
the crossing of the lines b–d of Fig. 3 with the invariant
line gC=4, and the Efetov-Larkin result gC* 5 4 can be
read off the flow diagram.
A more general problem of the extended Hubbard

model with strong Hubbard attraction was considered
by Emery (1976) by means of a mapping onto the ex-
actly soluble (Luther and Peschel, 1975) quantum XXZ
spin chain. For a range of parameters Emery produced
an exact expression for the exponent as a function of
interactions. In terms of our flow picture (Fig. 3), this
range of parameters corresponds to the initial conditions
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between the Hubbard separatrix a and the Efetov-
Larkin line in the limit v=u=−`. The flow carries those
initial values onto the segment [2;4] of the Kosterlitz
fixed line gC>2, v=0, and the boundary values 2 and 4
are achieved for the Hubbard model and on the Efetov-
Larkin line, respectively, in correspondence with Emery
(1976).
A connection with the XXZ quantum spin chain has

been further exploited by Fowler (1978) to gain under-
standing of the ground state of the extended Hubbard
model with strong Hubbard attraction and nearest-
neighbor repulsion: this is the region below the Hubbard
separatrix a and v=u=−` in Fig. 3. The flow picture im-
plies that there is a long-range order in the charge vari-
ables, and in the limit of weak nearest-neighbor repul-
sion the expression for the correlation length must have
a form typical for a Kosterlitz-Thouless phase transition
(Kosterlitz and Thouless, 1973; Kosterlitz, 1974), with
the distance from the phase transition point propor-
tional to the amplitude of the nearest-neighbor repul-
sion; this is in agreement with Fowler (1978).
We note that all the cases for which exact results are

available correspond to the loci of initial conditions
directly related to special trajectories of the
renormalization-group equations. This may be a generic
property of the phenomenon of exact solubility (Kolom-
eisky, 1994).

IV. APPLICATIONS

The results of previous sections can be used to find
the dependence of the correlation exponent gC* on the
electron density and interactions. The idea is that the
initial point of the flow is given by the locus of the con-
tinuum problem and the presence of a small finite r sets
an interruption scale. Far from half-filling, the flow
should stop almost immediately; in particular, in the
limit of vanishing filling one should come back to the
continuum gC . Several generic types of behavior for gC
are considered below.

A. The Hubbard model

The lattice version of the Hubbard model has been
exactly solved and the correlation exponents for it
evaluated (Bogoliubov and Korepin, 1988, 1989; Schulz,
1990, 1991; Frahm and Korepin, 1990, 1994; Kawakami
and Yang, 1990) using the exact Bethe ansatz equations
of Lieb and Wu (1968); however, the renormalization-
group treatment sheds new light on the meaning of the
exact results and allows generalization to more complex
models. The locus of initial values for the Hubbard
model is the separatrix a of Fig. 3. The direction of the
flow tells us that the value of gC* is never larger than the
bare (continuum) gC; the separatrix is confined between
the Luther-Emery and the Efetov-Larkin lines, which
implies the inequalities

1<gC*<2 (4.1)

for repulsive interactions and

2<gC*<4 (4.2)

for attractive interactions.

1. Repulsive interaction

For repulsive interaction the initial point of the flow is
on the unstable part of the separatrix. As can be seen
from Fig. 3 and the definition (2.8), the universal value
gC* 5 1 is achieved for any Hubbard repulsion in the limit
of half-filling, for any filling in the limit of infinite Hub-
bard repulsion, and for any Hubbard repulsion in the
dilute limit n→0.
Near half-filling, the relationship between gC* , gC ,

and r is given by Eq. (2.18), where the coefficient of r
involves a function F1 of the dimensionless interaction.

u85u~nb51 !5mUb/p2\2. (4.3)

The correlation length j is anomalously large in the limit
u8→0, since u8=0 is a metal-insulator phase-transition
point for the Hubbard model. To satisfy the scaling hy-
pothesis (Ma, 1976), j must be the only length scale for
u8→0; using this constraint and substituting Eq. (2.5)
evaluated at g=1 into Eq. (2.18), we obtain F1(u8
→0)→const and, correspondingly,

gC*511C4rj . (4.4)

In the limit of strong repulsion u8→+` and near half-
filling, we can rewrite Eq. (2.20) as

gC*511
C2

2u8F1~u8!
rj . (4.5)

In the limit of strong repulsion and not very close to
half-filling, we can use the continuum result (2.12),
which can be presented in the form

gC*511
C2

u8
nb . (4.6)

This makes it easier to guess a functional form that sum-
marizes both Eq. (4.5) and Eq. (4.6) in the limit of
strong repulsion u8→+` and any filling. A lattice expres-
sion for gC* will reduce to the continuum result (4.6)
when the lattice period b goes to zero. Therefore the
combination nb in Eq. (4.6) must be a lowest-order ex-
pansion of some bounded periodic function of nb with
unit period, having its second zero at the half-filling
(4.5). This immediately implies that for u8→+` we shall
have, instead of Eq. (4.5),

gC*511
C5

u8
u2nb21u (4.7)

and F1(u8)b/j(u8)→const as u8→+`. The dependence
of j on u8 can be found from Eq. (2.13) because the
soliton energy is proportional to the charge-density gap,
and the charge-density gap behaves as U/b as u8→+`
(Lieb and Wu, 1968; Ovchinnikov, 1969). Estimating KC
in Eq. (2.13) from the continuum free-fermion limit
u8→+`, we obtain b/j'u8, thus implying that
F1(u8)'1/u8 as u8→+`.
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These conclusions are in agreement with the results of
the exact calculations of Frahm and Korepin (1990,
1994), who combined the Bethe ansatz solution for the
Hubbard model with the principles of conformal field
theory. The calculations of Frahm and Korepin (1990,
1994) improve on Eqs. (4.4)–(4.7) by giving all the nu-
merical constants Ci as well as the function F1(u8);
however, they do not tell us why the limit of strong re-
pulsion and any filling, any repulsion and small density,
and half-filling and any repulsion are the same: the
renormalization-group features standing behind these
properties are important for a large family of short-
range interacting spin-12 fermions.
The behavior of gC* for u8→0 (u→0) can be found

from the perturbative renormalization-group equations
(2.7a) and (2.7b) whenever the interruption point of the
flow is within their range of validity. Solving Eqs. (2.7a)
and (2.7b), one gets

gC*522
u

12u ln~C6n/r!
, (4.8)

which is valid whenever

u ln~C6n/r!!1. (4.9)

As half-filling (r→0) is approached with arbitrarily small
fixed u , this inequality is eventually violated and gC*
crosses over to the dependence (4.4). The range of va-
lidity of (4.8) is thus extremely small for small u . No
direct analytical expression is known describing the vi-
cinity of gC* ' 2 for u ln(C6n/r)@1 and u!1; as can be
seen from Fig. 3, this is a singular limit, since the starting
point of the flow is asymptotically close to the unstable
fixed point (gC=2, v=0), while the interruption point is
asymptotically close to the stable fixed point (gC=1, v=
+`).

2. Attractive interaction

For the case of the attractive Hubbard model, the
physics is governed by the flow towards the stable fixed
point (gC=2, v=0); upon approaching half-filling for any
attraction strength, the interruption point eventually en-
ters the range of validity of the perturbative renormal-
ization group. For small negative u the second term in
Eq. (4.8) is not singular, and we can continue to use it to
describe the limit r→0. We can rewrite Eq. (4.8) in a
form similar to that of Horovitz et al. (1983),

gC*5211/ln~F2~u !n/r!, (4.10)

which is valid for any u<0 and r→0 with some unknown
function F2(u). In the limit of weak attraction, the form
of F2(u) can be deduced by comparison of Eqs. (4.8)
and (4.10): F2(u→−0)'exp(−1/u). For the case of the
half-filled infinitely attractive Hubbard model, the
renormalization-group flow starts at (gC=4, v5u=−`)
and ends at (gC=2, v=0), which means that, near half-
filling and infinite Hubbard attraction, the interruption
point of the flow will be slightly above the value gC=2,
thus implying that F2(u→−`)→const.

For the case of strong Hubbard attraction and far
from half-filling we can use the continuum result (2.22),
which can be written to resemble Eq. (4.6) as follows:

gC*541
C3

u8
nb . (4.11)

The first impression is that Eq. (4.11) might be valid for
small nb and u8→−` but this is not the case. Indeed for
u8=−` Eq. (4.11) predicts that gC* 5 4, whereas direct in-
spection of the flow diagram (Fig. 3) shows that starting
at gC=4, v=u=−` depending on the filling factor one
ends up at any value of gC* between 2 and 4 but always
below 4. This argument implies that the 1/u8 depen-
dence in Eq. (4.11) is not the limit of u8→−` in the
lattice problem but rather is the limit of weak attraction
uu8u!1. Further, we must have both nb/uu8u!1 and
nb!1. We can write down instead of Eq. (4.11)

gC*541F3~u8!nb (4.12)

with a wider range of validity: fixed u8, nb→0, and
nb/u8→0. For u8→−0, the function F3 behaves as 1/u8,
while for u8→−` it approaches a negative constant, as
implied by the picture of the renormalization-group
flow.
Our conclusions about the attractive Hubbard model

are in agreement with the results of exact calculations of
Bogoliubov and Korepin (1988, 1989). We must note
that their calculations go beyond what we find, in that
they give all the functions Fi as well as the numerical
constants. Our expression for the function F2 matches
their u→−0 result only with exponential accuracy. This
could be corrected by starting from the third-order per-
turbative renormalization-group equations of Emery,
Luther, and Peschel (1976).
A convenient way to present the results is to show the

dependence of gC* on nb for various interaction
strengths (4.3). In extracting these dependences from
Fig. 3, one must take into account that for a given u8 the
corresponding initial value of v5u5u8/nb [see Eqs.
(2.8) and (4.3)] ranges between ` (or −`, depending on
the interaction sign) and 2u8 as the filling factor changes
from zero to half-filling. The degree of downwards
renormalization of the corresponding bare gC will pro-
gressively grow upon approaching half-filling. The re-
sults are shown in Fig. 4: the behavior in the dilute limit
as well as in the vicinity of half-filling is known analyti-
cally, and the rest follows from the flow diagram quali-
tatively. Various parts of this figure have been given pre-
viously (Bogoliubov and Korepin, 1988, 1989; Schulz,
1990, 1991; Frahm and Korepin, 1990, 1994; Kawakami
and Yang, 1990) using the exact Bethe ansatz equations
of Lieb and Wu (1968).
Figure 4 was constructed by numerical integration of a

set of differential equations, which are generalizations of
(2.7a) and (2.7b) that include the invariant lines at gC=1
and gC=4 and have the appropriate behavior in the soli-
ton regime [where they reduce to (2.17) and (2.21)]:

dv
dt

5~22gC!v , (4.13)
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dgC
dt

5~12gC!~42gC!
v2

11v2
F~rbet!, (4.14)

where F(x) is a function that goes to zero rapidly for
x>1 and has the limit F(0)=1

3; this serves to cut off the
flow when r=(1/b)22n is not zero. The separatrix for
this set of equations can be found analytically. For Fig. 4,
initial values for v and gC were chosen to lie along the
separatrix, and the differential equation followed until
gC had stopped changing, either due to its arrival at a
fixed point or to the function F(x) having cut it off. The
solid lines in this figure give the final values gC* as a
function of nb for fixed u85unb . The two subsequent
figures were constructed the same way, using other loci
of initial conditions. The resulting pictures are schematic
representations that incorporate the proper asymptotic
behaviors.
The behavior shown in Fig. 4 for nb→ 1

2 requires some
comment. As described by Eq. (4.10), gC* always goes to
2 with a nonanalytic singularity for attractive interac-
tions (which is the case gC* . 2). For repulsive interac-
tions, gC*→1 linearly in 1

2−nb (which is the case
gC* , 2). However, for small u8 the slope (which is deter-
mined by j) is very large.

B. Beyond the Hubbard model

Direct inspection of the flow diagram of Fig. 3 shows
that the Hubbard model is a marginal model. Even a
small change can lead to significant differences in terms
of the renormalized gC* . We shall illustrate this using the
loci of models (curves e and d of Fig. 3) associated with
the extended Hubbard model; other models can be ana-
lyzed similarly.

1. The extended Hubbard model with nearest-neighbor
repulsion

The extended Hubbard model with nearest-neighbor
repulsion (curve e of Fig. 3) always lies below the Hub-
bard separatrix, indicating the presence of a charge-
density gap exactly at half-filling independent of the sign
of the Hubbard interaction. For other fillings the mea-
surable gC* ranges between 4 and 1 for negative Hubbard
interaction and 2g>1 and can go below unity for positive
Hubbard interaction, as can be inferred from Fig. 3. Us-
ing the same rules as for the Hubbard model and noting
that in the dilute limit the locus of any short-ranged
model approaches the limits gC=1 or gC=4, we can
readily construct the analog of Fig. 4. The results are
shown in Fig. 5. We see that now gC* can go below unity
if the locus of initial conditions is below the Luther-
Emery line of Fig. 3. Moreover, we cannot transform
Fig. 5 onto Fig. 4 by continuously tuning the strength of
the nearest-neighbor repulsion to zero (g→1) because
the Hubbard model is marginal. We also note that the
dot-dashed line of Fig. 5, gC* 5 2g , which supposedly de-
scribes noninteracting spin populations, is an artifact of
the approximation (spin-charge separation) used in de-
riving the action (1.3). For zero Hubbard interaction, the
terms that were neglected in Eqs. (1.3) (see Appendix)
will renormalize the continuum value gC52g . However,
for 1<2g<2, the renormalization is significant only in the
limit of the completely filled band and will be discussed
later along with the case 2g<1.

2. The extended Hubbard model with nearest-neighbor
attraction

The extended Hubbard model with nearest-neighbor
attraction (curve d of Fig. 3) always lies above the Hub-
bard separatrix. Thus it crosses an attractive separatrix,

FIG. 4. Schematic plot of the correlation exponent gC* for the
Hubbard model as a function of band filling for different val-
ues of mUb/p2\2. The top curve is for infinite attraction, the
bottom straight line gC=1 is for infinite repulsion, and the in-
teraction grows from the top to the bottom. The straight line
gC=2 describes free lattice fermions.

FIG. 5. Schematic plot of the correlation exponent gC* for the
extended Hubbard model with fixed nearest-neighbor repul-
sion characterized by 1<2g<2 as a function of band filling for
different values of the Hubbard interaction u85mUb/p2\2;
the top curve is for u8=−`, the bottom curve is for u8=+`, and
the interaction grows from the top to the bottom. The straight
line at gC* 5 1 corresponds to the crossing of curve e of Fig. 3
with the Luther-Emery line.
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which implies that for some finite value of the Hubbard
repulsion there is a metal-insulator phase transition at
half-filling belonging to the Kosterlitz-Thouless univer-
sality class. To the right of the intersection (see Fig. 3),
the flow carries any initial point onto the Kosterlitz fixed
line gC>2, v=0, restoring the translational symmetry. In
the vicinity of half-filling, the dependence gC* (r) follows
from the interrupted perturbative renormalization-
group equations (2.7a) and (2.7b) (see Horovitz et al.,
1983):

gC* ~r!5gC* ~0 !1~r/n !2@gC* ~0 !22#F4 , (4.15)

where gC* (0) . 2 and F4 is some unknown function of
interactions that changes sign at gC* (0) 5 4: F4>0 for 2
, gC* (0) , 4 and F4<0 for gC* (0) . 4. The residual singu-
larity (4.15) does not occur within the Hubbard model at
all.
Exactly at the crossing (phase transition) point we

shall have, instead of (4.13), the analog of Eq. (4.10):

gC*5211/ln~F5n/r! (4.16)

with some unknown function F5 . For g→1+0 it behaves
with exponential accuracy like F5'exp[1/(g−1)].
To the left of the crossing point a charge-density gap

opens up exactly at half-filling, and upon approaching
the insulator by changing the filling factor we eventually
reach the universal regime given by Eqs. (2.15), (2.16),
and (2.18). The filling dependence of gC* is constructed
using the same rules that led us to Figs. 4 and 5. The
results are shown in Fig. 6. We note that now gC* can go
above 4 if the locus of initial conditions is above the
Efetov-Larkin line of Fig. 3. There are residual singu-
larities at half-filling for gC* (nb 5 1

2) > 2. They are given
by Eq. (4.15) for gC* (nb 5 1

2).2 and by Eq. (4.16) for

gC* (nb 5 1
2) 5 2. As in the case of the extended Hubbard

model with nearest-neighbor repulsion, Fig. 6 cannot be
transformed continuously into Fig. 4 by going to the
limit of vanishing nearest-neighbor repulsion, and the
dot-dashed line gC* 5 2g is an artifact of the approxima-
tion based on the separation of charge and spin degrees
of freedom.

V. UMKLAPP SCATTERING OF ARBITRARY ORDER

Up to now we have studied the effect of the 4kF um-
klapp scattering on the correlation properties of a one-
dimensional quantum liquid, asserting that this process
is the most important one near half-filling. Here we shall
investigate the role of higher-order umklapp scattering
(relevant for nb5k/l with lÞ2), which will justify some
results and modify others. We shall find that higher-
order umklapp scattering will lead to insulating phases
for sufficiently large repulsion between particles of the
same spin, but that the Hubbard model and its near
neighbors are not significantly affected. We shall also
find that spin and charge separation will fail for very
strong interactions between particles of the same kind.
The action (1.3a)–(1.3d) takes on essentially different

forms depending on the parity of the denominator of the
filling factor, which implies that the results for even and
odd l will be substantially different; for odd l , the sepa-
ration of spin and charge fails in many regimes.

A. Umklapp scattering of even order

For even l , there is no coupling between spin and
charge degrees of freedom, to the accuracy of the ap-
proximations underlying Eqs. (1.3a)–(1.3d). There is
some coupling, however, which will be discussed in Sec.
V.B. The action takes the form

A5
1
2 E dxdt~mSṠ

21KSS82!1G1E dxdt cos4pnS

1
1
2 E dxdt~mCĊ

21KCC82!

1G2E dxdt cos 2p~rx2nlC !, (5.1)

where the G3 contribution was dropped as being less rel-
evant than the G2 term. The spin parts of this equation
are the same as before [Eq. (2.1)], and so we shall focus
on the charge part of Eq. (5.1). This is still a sine-
Gordon action, with the significant difference that the
periodicity of the cosine function has changed.

1. The flow diagram

The flow will have features near l2gC/4=2 associated
with the Kosterlitz-Thouless phase transition and other
features near l2gC/4=1 associated with the Luther-
Emery line (Luther and Emery, 1974), as in Fig. 3. Also
as in Fig. 3, the corresponding flow diagram can be pre-
sented in terms of v and gC , since G2}u , which sets the
initial value for v . It should be pointed out that G2 is not

FIG. 6. Schematic plot of the correlation exponent gC* for the
extended Hubbard model with fixed nearest-neighbor attrac-
tion characterized by 2<2g<4. The straight line at gC*54 cor-
responds to the crossing of curve d of Fig. 3 with the Efetov-
Larkin line. The curve that starts at gC* (0)51 and ends at
gC* (

1
2)52 corresponds to the critical point of the metal-

insulator phase transition occurring at half-filling.
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the same number that occurred in Eq. (2.1)—this is a
different term of an expansion and owes its existence to
a different Fourier component of the external potential.
It is shown schematically in Fig. 7, together with the loci
of initial conditions for the extended Hubbard model
taken from Fig. 3.
The flow diagram is not necessarily symmetric with

respect to reversal of sign of v , because there is no
particle-hole symmetry (but it does have this symmetry
to perturbative accuracy). The v→+` limit of the attrac-
tive separatrix must lie below gC=1. There cannot be a
crossing point between the attractive separatrix and the
locus of initial conditions for the Hubbard model (curve
a of Fig. 7), because that would imply a phase transition
into an insulating phase with filling factor k/l and l>2,
thus contradicting the exact result of Lieb and Wu
(1968) that only the half-filled Hubbard model under-
goes a metal-insulator transition. We have no arguments
to place this limit more accurately.
The arguments of Sec. II based on the correlation

properties of free lattice fermions can again be applied
to show that the renormalization-group trajectories at
gC=1 and gC=4 are vertical. The trajectories for 1<gC<4
are directed towards the v=0 axis and presumably al-
most vertical, since here we are very far away from the
Kosterlitz end point at l2gC/4=2 for even l>2. In fact, it
seems likely that they are strictly vertical for gC>1. Oth-
erwise the effect of the 2kFl umklapp scattering in the
limit r→0 would be manifested in a residual singularity
(Horovitz et al., 1983) generalizing Eq. (4.15)

l2gC* ~r!/45l2gC* ~0 !/41F6~r/n !2@ l2gC* ~0 !/422# (5.2)

whenever l2gC* (0)/4 . 2. This would include the Hub-
bard model for l>2, since for nb5k/l , the Hubbard
model has gC* in the interval [1; 4], thus contradicting the

exact results (Lieb and Wu, 1968; Ovchinnikov, 1969;
Frahm and Korepin, 1990, 1994; Kawakami and Yang,
1990), which do not indicate residual singularities of this
form. This conflict can be resolved if F6[0 inside the
interval [1; 4]. Then there is no physical reason for
F6 to be nonzero to the right of gC=4, since this region
of strong quantum fluctuations is very distant from the
end point l2gC/4=2 of the Kosterlitz fixed line. There-
fore 2kFl scattering does not affect our previous results
for either the Hubbard model or the extended Hubbard
model with nearest-neighbor attraction (curve d of Fig.
7).
We can infer from Fig. 7 that, for even l>2, residual

singularities of the sort represented by Eq. (5.2) can oc-
cur for the extended Hubbard model with nearest-
neighbor repulsion, should the locus of initial conditions
reach the region where the flow is no longer vertical. For
sufficiently large nearest-neighbor repulsion, curve e of
Fig. 7 can cross the attractive Kosterlitz separatrix, indi-
cating a phase transition into an insulator with filling
factor k/l . In the limit r→0 we shall have at the crossing
point instead of Eq. (5.2) an analog of Eq. (4.16),

l2gC* /45211/ln~F7n/r!. (5.3)

As can be seen from Fig. 7, for initial values at and
above the crossing of curve e and the attractive separa-
trix, the measurable l2gC* /4 for the extended Hubbard
model with nearest-neighbor repulsion ranges between 2
and some value not larger than l2. The universal phase
transition value l2gC* /4 5 2 is achieved exactly at com-
mensuration nb5k/l ; for the case of infinite Hubbard
repulsion, the exact upper boundary for l2gC* /4 is
l2gC/45l2/4 (or gC=1) for any filling.
For initial values to the left of the crossing of curve e

and the separatrix, the measurable value of l2gC* /4
ranges, depending on filling, from unity to the bare value
l2gC/4 representing the crossing point. The former uni-
versal limit is achieved as r→0; this is completely analo-
gous to the soliton regime in the vicinity of half-filling
(see Sec. II.B.3).

2. The metal-insulator transition (general even l)

The physical picture of the metal-insulator transition
that occurs on approach to the commensuration nb5k/l
when the particle density is changed is analogous to that
in the vicinity of half-filling. There is a very low density
of solitons, which are the elementary excitations of the
commensurate phase with nb5k/l . An estimate of the
soliton energy is given by a generalization of Eq. (2.13):

Es'KCj/~nlj!25KC /~nl !
2j[KCb

2/k2j . (5.4)

Other formulas can be derived straightforwardly (see
Kolomeisky, 1993, for details). Instead of Eqs. (2.15),
(2.16), and (2.18), we shall have

mC*5br~nl/r!2, (5.5)

KC*5
p2\2r3

b
~nl/r!2, (5.6)

FIG. 7. Flow diagram describing the effect of 2kFl umklapp
scattering for even l>2. Only a few trajectories are shown. The
curves a , d , and e taken from Fig. 3 correspond to the loci of
initial conditions for the Hubbard model (a) and extended
Hubbard models with nearest-neighbor attraction (d) and re-
pulsion (e).
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~ l2gC* /4!2511
@~ l2gC/4!221#

F8
rj . (5.7)

Equation (5.7) reproduces a result of Schulz (1980) and
Haldane (1982) for the sine-Gordon action.
In view of these considerations, the results of the pre-

vious section need to be modified only for gC* , 1, and it
is relevant (as can be seen from Figs. 5 and 6) only for
the extended Hubbard model with sufficiently strong
nearest-neighbor repulsion. In this region of parameters,
instead of the smooth curves shown in Fig. 5 we shall
have nonanalytic features of the form (5.2), (5.3), or
(5.7) associated with each rational filling k/l . Which of
the singularities (5.2), (5.3), or (5.7) is realized depends
on whether we are above, at, or below the transition
from metal to an insulator with filling k/l , as was ex-
plained previously. We note that the singularities at half-
filling that are already present in Figs. 5 and 6 are special
cases of the more general expressions (5.2), (5.3), and
(5.7). The behavior in the dilute limit nb→0 is not
changed, since here we have to get back to the con-
tinuum problem.
The density dependence of the correlation exponent

below the Luther-Emery line of Fig. 5 can be imagined
as follows. When we are above the transition point into
the l=4 phase—the next important even commensurate
phase after the l=2 phase—we have residual singularities
of the sort represented by Eq. (5.2) for l>4 and a real
singularity (2.18) at half-filling. We note that the residual
singularities are weaker both in the dilute and in the
almost half-filled limits, since the corresponding frac-
tions involve increasingly large denominators l . As the
nearest-neighbor repulsion is increased, the phase-
transition point into the l=4 phase is eventually reached,
and the behavior in the vicinity of nb=1

4 is described by
Eq. (5.3) with l=4. The singularities at l>4 are still given
by Eq. (5.2). Slightly below the phase-transition point a
real singularity (5.7) with l=4 shows up and persists for
stronger nearest-neighbor repulsion. Upon further in-
crease of the nearest-neighbor repulsion, the l=6 phase
becomes relevant and the type of singularity at nb=1

6

changes from (5.2) via (5.3) to (5.7) as the phase transi-
tion is passed. Then the scenario repeats for l>6 upon
further increase of the nearest-neighbor repulsion.
As will become clear shortly, for the case of odd de-

nominators the scenario described is the same if there is
a spin-density gap; when there is no spin-density gap,
another type of residual singularity replacing Eq. (5.2)
occurs.
Both a qualitative and a quantitative change in the

dependence gC* (nb) is predicted below for sufficiently
strong like-spin repulsion (2g<1), as a result of the fail-
ure of the approximation based on spin-charge separa-
tion at half-filling.

3. The quarter-filled band

The quarter-filled band (l=4) extended Hubbard
model with infinite Hubbard repulsion can be exactly
solved (Schulz, 1990, 1991), providing us with an expres-

sion for gC* . These exact results are in agreement with
those extracted from the flow diagram shown in Fig. 7.
This model has also been studied numerically by Mila

and Zotos (1993), and Fig. 7 could again be used to
demonstrate that the value of the charge exponent gC* at
the metal-insulator transition (the crossing of curve e
with the attractive separatrix of the flow) equals 8/42=1

2.
One can also infer from Fig. 7 that in the conductive
phase in the range 1

2< gC* < 1 the charge exponent gC* is a
decreasing function of nearest-neighbor repulsion, and
that this is going to change for gC* . 1. These conclusions
are in agreement with Mila and Zotos (1993). There are
two features of these numerical results that we cannot
recover: (i) a tendency towards phase separation for
very repulsive nearest-neighbor interaction and interme-
diate Hubbard repulsion, and (ii) a metal-insulator
boundary at infinite nearest-neighbor interaction. We at-
tribute this to the difference in the models (see the dis-
cussion in Sec. II.D.1).

B. Beyond spin-charge separation

Up to now our results have been based on the as-
sumption of spin-charge separation in the action (5.1).
However, this is not an exact property: the nonlinear
terms of (5.1) were singled out as being the most rel-
evant (in the renormalization-group sense) contributions
destabilizing the harmonic part of (5.1), and other terms
that couple spin and charge degrees of freedom were
dropped as being irrelevant (see Appendix). All of our
conclusions based on the soliton picture correspond to
the strong-coupling regime of (5.1), where the nonlinear
terms are strongly relevant. In general, at this point we
cannot neglect the spin-charge interaction.
An indication of the failure of the approximation

based on spin-charge separation is already present in
Figs. 5 and 6, which predict that for noninteracting spin
populations [G1=G2=0 in Eq. (5.1)] the value of the cor-
relation exponent is the same as for the translationally
invariant problem. This is physically incorrect; the non-
interacting spin populations behave as independent
spinless sets of interacting particles moving in a periodic
potential that renormalizes the exponent and will give
rise to a metal-insulator phase transition at a sufficiently
low level of quantum fluctuations. The contributions re-
sponsible for this transition do not couple the fields u↓
and u↑ describing the displacements of electrons of two
spin directions with respect to their classical positions,
and the resulting phases are not describable in terms of
the spin and charge variables C and S [see Eq. (1.2)].
The outcome can be understood by combining the re-
sults of Kolomeisky (1993), describing spinless interact-
ing particles moving in a periodic potential, with those
implied by the properties of the action (5.1). The results
for possible phases and correlation exponents of spinless
fermions moving in periodic potential with filling factor
k/l are accumulated in Table II. The value of the corre-
lation exponent is given both in terms of g (2.2) and gn
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(1.5) to make it easier to compare with the cases in
which there is an unlike-spin interaction. We start from
the case of half-filling.

1. The flow diagram for half-filling

The flow picture is shown in Fig. 8, and the possible
phases are described in Table III. The flow takes place in
a multidimensional space of parameters gn and Gi and
what is shown in Fig. 8 is just a projection onto the
gC2gS plane. For small u , however, we can read off the
initial value v5u with the aid of Eqs. (2.4) and (2.5):

ug5gC2gS (5.8)

(initially v5u). This describes the region of the multidi-
mensional space referred to above, which is accessible
by the generalized Hubbard models. In the sectors for
which spin-charge separation is a good approximation,
the flows along the two axes are practically independent,
and each can be understood by reference to the flow
along the gC axis in Fig. 3. This consideration generates
several of the special lines of Fig. 8, as follows: the lines
gC=2 and gS=2 give us the limit of stability of the charge
and spin subsystems, correspondingly, with respect to
the appearance of charge- and spin-density gaps. These
are implications of the Kosterlitz theory applied sepa-
rately to the spin and charge parts of the action (5.1) for

l=2. The lines gC=1 and gS=1 are the Luther-Emery in-
variant lines, the satellites of the Kosterlitz-Thouless
phase transitions.
The dashed curve schematically represents the locus

of initial values for the Hubbard model: for small u it is
given by

gC1gS54 (5.9)

[according to Eqs. (2.4) and (2.5) with g=1]. Above the
noninteracting line gC5gS it approaches the limit gC=4,
gS=1, while below the noninteracting line it approaches
the limit gC=1, gS>2, as implied by Fig. 3 and Eq. (2.4).
The symmetry of the problem suggests that the limit for
infinite repulsion is gS=4, and the figures have been
drawn this way, but there is no firm reason for believing
this. Several characteristic renormalization-group trajec-
tories are shown: starting on the Hubbard line one al-
ways ends up at the point gS* 5 1, gC* 5 2 for the case of
attractive interactions, and at the point gS* 5 2, gC* 5 1 for
the case of repulsive interactions. These two points are
the end points of the Kosterlitz-Thouless-Luther-Emery
fixed lines gS* 5 1, gC* > 2, and gS* > 2, gC* 5 1 shown by
the bold lines. The former describes a superconductor,
while the latter corresponds to an antiferromagnetic in-
sulator having only a charge-density gap (antiferromag-
netic insulator I of Table III). The values gC* 5 1 and

TABLE II. Possible phases of noninteracting spin populations (spinless fermions) having filling factor nb5k/l .

Phase Correlation exponents
Charge-density

gap
Spin-density

gap Elementary excitations

Normal metal l2g*>2, or
l2gS*5 l2gC*>4

no not applicable charge phonons

Mott insulator l2g*=1, or
l2gS*5 l2gC*52

yes not applicable soliton-antisoliton pairs

TABLE III. Possible phases of half-filled interacting spin- 12 electronic system. Any phase has its counterpart through spin-
charge symmetry (normal metal transforms onto itself); in terms of the correlation exponents it corresponds to the permutation
of gC* and gS* .

Phase Correlation exponents
Charge-density

gap
Spin-density

gap Elementary excitations

Normal metal gC* > 2,gS* > 2 no no charge and spin phonons
Superconductor gC* > 2,gS* 5 1 no yes charge phonons, spin soliton-

antisoliton pairs
Antiferromagnetic
insulator I

gC* 5 1,gS* > 2 yes no charge soliton-antisoliton
pairs, spin phonons

Nonmagnetic ‘‘pair’’
insulator I (U<0)

gC*5gS*51 yes yes charge and spin soliton-
antisoliton pairs

Antiferromagnetic
insulator II (U>0)

gC*5gS*51 yes yes charge and spin soliton-
antisoliton pairs

Nonmagnetic ‘‘pair’’
insulator II (U<0)

gC*5gS*5
1
2 yes yes soliton-antisoliton pairs of

noninteracting spin
populations

Antiferromagnetic
insulator III (U>0)

gC*5gS*5
1
2 yes yes soliton-antisoliton pairs of

noninteracting spin
populations

200 E. B. Kolomeisky and J. P. Straley: Interacting fermions in one dimension

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



gS*51 can be attained only in the limits of half-filling
and zero magnetization, respectively. The sufficient con-
ditions for being a superconductor or an antiferromag-
net without a spin-density gap are as follows: any physi-
cal model situated between the attractive (upper
dashed) part of the Hubbard line and the line gS=2 will
be a superconductor with the exponents gS*51 and
gC*>2, whereas models located between the repulsive
(lower dashed) part of the Hubbard line and the line
gC=2 are antiferromagnetic insulators with the expo-
nents gC* 5 1, gS* > 2. The necessary conditions are actu-
ally less restrictive and have to be found separately for
each specific model. There is no point in looking for
them unless the locus of initial values is known accu-
rately.
Figure 8 demonstrates that the Hubbard model is a

marginal system, so that generalized Hubbard models
having loci below the Hubbard line (but not very far
from it) will end up at the fixed point gC*5gS*51 de-
scribing two different insulator phases: from the attrac-
tive side it is a nonmagnetic insulator comprised of
evenly distributed pairs of the original particles (non-
magnetic ‘‘pair’’ insulator I of Table III), whereas from
the repulsive side it is an antiferromagnetic insulator
with each minimum of the periodic potential occupied
(antiferromagnetic insulator II of Table III); these insu-
lating phases have both charge- and spin-density gaps.
It is tempting to consider still more general models, in

which the initial gC , gS , and v can be chosen indepen-
dently. These can also be understood, in that the Hub-
bard model lies along a surface in this higher-
dimensional problem which contains the three fixed
points (gC=2, gS=1), (gC=1, gS=2), and (gC=2, gS=2).

This surface separates the region of parameters that cor-
responds to models with gaps in both spectra from the
region in which one or both spectra are gapless.

2. Half-filling: effects of the failure of spin-charge separation

Up to now we have not found any qualitative differ-
ences from the physical picture based on spin-charge
separation. However, along the noninteracting line
gC5gS a new phenomenon appears: the behavior for
interacting spin populations does not correctly extrapo-
late to the noninteracting case.
If one starts on the noninteracting line one should

always stay there, i.e., the noninteracting line is an in-
variant line, and the two spin populations will order in-
dependently if at all. As in our previous results there are
two features of the renormalization-group flow associ-
ated with the noninteracting line gC5gS : there is a
Kosterlitz-Thouless metal-insulator phase transition at
g*52/l2=1

2 or gC* 5 gS* 5 2g* 5 1 (Kolomeisky, 1993); all
the trajectories for gC* 5 gS* , 1 approach a stable fixed
point gC* 5 gS*5 1

2 given by the Luther-Emery condition
(Kolomeisky, 1993; Straley and Kolomeisky, 1993). The
flow diagram is further constrained by the implications
of Eq. (5.1) for l=2 that the lines gC=1 and gS=1 are
invariant lines having some range of attraction.
What is new in Fig. 8 is the stable fixed point at gC*

5gS*5 1
2, which is beyond the approximation based on

spin-charge separation. This is the Luther-Emery stable
fixed point of the noninteracting spin populations, but
the picture of the flow outside the noninteracting line
implies that it must be an attractor within the whole
region gS,1,gC,1. The insulating phases described by
this new fixed point are again the nonmagnetic insulator
(nonmagnetic ‘‘pair’’ insulator II of Table III) and the
antiferromagnetic insulator (antiferromagnetic insulator
III of Table III) having both charge and spin-density
gaps; from the point of view of the noninteracting spin
populations, the two phases differ in whether the two
spin types happen to order in the same or different
minima of the potential. As in the previous case, the
value gC*5gS*5 1

2 can be probed in the limits of half-
filling and zero magnetization.
The two fixed points at gC* 5 gS*5 1

2 and gC* 5 gS* 5 1
correspond to different phases in that the elementary
excitations of the former are close to being solitons of
the noninteracting spin populations, whereas the el-
ementary excitations of the latter are spin and charge
solitons of the spin and charge parts of the action (5.1)
for l=2.
Putting the locus of initial values gC1gS54g [implied

by (2.4) and (2.5)] on Fig. 8, we conclude that in the
limit of weak Hubbard repulsion the physics is deter-
mined by the Luther-Emery fixed point gC*5gS*5 1

2 of
the noninteracting spin populations if the like-spin re-
pulsion is sufficiently large so that g<1

2.
Figure 8 also demonstrates why it was permissible to

neglect the coupling between spin and charge variables
for weak like-spin repulsion: an external periodic poten-
tial does not localize the noninteracting spin populations

FIG. 8. Schematic flow picture for a half-filled band problem
beyond the approximation based on spin-charge separation.
The bold segments indicate the stable parts of the Kosterlitz
fixed lines corresponding to an antiferromagnetic insulator
having only a charge-density gap (gC* 5 1, gS* > 2), to a super-
conductor (gS* 5 1, gC* > 2), and to translationally invariant
noninteracting spin populations (gC* 5 gS* > 1). The locus of the
Hubbard model is shown by the dashed line, and a few trajec-
tories are indicated by arrows.
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for gC* 5 gS* > 1. This stable segment up to the free-
fermion point gC5gS=2 is shown by the bold line. How-
ever, within the same range of parameters, the introduc-
tion of an arbitrarily small Hubbard interaction changes
the physical picture completely, thus creating a gap in at
least one of the collective modes.
There is one more feature specific to the half-filled

band problem: the position of the end point of the Ko-
sterlitz fixed line for noninteracting spin populations
gC* 5 gS* > 1 coincides with the crossing of the Luther-
Emery lines gC=1, gS=1 that determine the physics
whenever the approximation based on spin-charge sepa-
ration is accurate. These points will be distinct for other
fillings.
Figure 9 presents the consequences of Fig. 8 in an-

other way. Here we imagine that the anharmonic parts
of the action (5.1) are small, and indicate what phase
results from various combinations of the microscopic gC
and gS . The positions of the boundaries between the
various phases depend on the values of G1 and G2 (in a
way that can be deduced from the directions of flow in
Fig. 8); in drawing this figure we have assumed that the
Gi are small (which is physically correct only in the vi-
cinity of the noninteracting line gC5gS).

3. Less than half-filling: even denominators

The arguments already presented for the case of half-
filling will work in very much the same way for less than
half-filling with even denominators. Therefore we shall
focus on the differences that arise because the noninter-
acting line gC5gS is no longer a symmetry line between
spin and charge degrees of freedom when l>2. The re-
sults are shown in Fig. 10, and the possible phases are
listed in Table IV.
As in Fig. 8, the range of stability of the harmonic

parts of the action (5.1) with respect to the appearance

of density gaps is given by the straight lines l2gC/4=2,
gS=2. The Luther-Emery lines associated with those are
l2gC/4=1, gS=1; their crossing produces the stable fixed
point l2gC* /4 5 gS* 5 1. The stable Kosterlitz-Thouless-
Luther-Emery fixed line l2gC* /4 5 1, gS* > 2 describes an
antiferromagnetic insulator having only a charge-density
gap (antiferromagnetic insulator I of Table IV, general-
izing that of Table III for any even l). Likewise, the
stable line gS* 5 1, l2gC* /4> 2 corresponds to a phase hav-
ing only a spin-density gap. This phase is superconduc-
tive and has the exponents gS* 5 1, gC* > 1 for the case of
an attractive Hubbard interaction (superconductor I of
Table IV, analogous to that of Table III). As can be seen
from Fig. 10, this is not the only regime that yields a
superconductor; for 2<l2gC/4<l2/4, a Hubbard attrac-
tion also leads to a superconductor, for which the expo-
nents lie along the noninteraction line gC5gS (super-
conductor II of Table IV). We expect that this
superconductive phase is different from superconductor
I, since it corresponds to the final points of the flow
located on the noninteracting line gC5gS rather than on
the Luther-Emery line gS=1. Therefore we cannot say
much about its elementary excitations (question mark in
Table IV). Naively, one can expect that the particles of
opposite spin forming Cooper pairs are more weakly
coupled to each other than in superconductor I. This
phase does not have an analog in the half-filling case. Its
nature and even its existence need to be further studied.
In addition to these superconducting phases, there is

another phase with a spin-density gap: a conductor with
an antiferromagnetic configuration of electrons of oppo-
site spin. This will be the case for the repulsive Hubbard

FIG. 9. Phase diagram for half-filling. Here we have labeled
the various regions of the (gC ,gS) plane to indicate which
phase results from each combination of microscopic values,
assuming the anharmonicity to be small. Each region is thus
the basin of accumulation of the fixed points and lines of Fig. 8.

FIG. 10. Schematic flow picture for a less than half-filled band
problem with even l>2 beyond the approximation based on
spin-charge separation. The bold segments indicate the stable
parts of the Kosterlitz fixed lines corresponding to an antifer-
romagnetic insulator having only a charge-density gap (l2gC* /4
5 1, gS* > 2), to either a superconductor or a conductive anti-
ferromagnet (gS* 5 1, l2gC* /4 > 2), and to translationally invari-
ant noninteracting spin populations (gC* 5 gS* > 4/l2). The locus
of the Hubbard model is shown by the dashed line, and a few
trajectories are indicated by arrows.
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interaction and 2 < l2gC* /4 < l2/2. The locus of the expo-
nents for this phase is gS* 5 1, for 2 < l2gC* /4< l2/4 (anti-
ferromagnetic conductor I of Table IV), and the seg-
ment of the noninteracting line gC5gS for 1 < gC* < 2
(antiferromagnetic conductor II of Table IV). This latter
phase is a repulsive analog of superconductor II of Table
IV. Its nature and elementary excitations need to be fur-
ther studied. The conductive antiferromagnet phases oc-
cur only for less than half-filling.
For general l , the periodic potential does not localize

the noninteracting spin populations as long as l2g*>2
or l2gC* /4 > 1 (Table II). This gives the locus of the stable
part of the Kosterlitz fixed line; the associated Luther-
Emery fixed point is located at l2gC* /4 5 1

2, l
2gS* 5 2 and

determines the physics for l2gC/4<1 and attractive
unlike-spin interactions. The corresponding phase is a
nonmagnetic insulator formed from uniformly spaced
pairs of the original particles of opposite spin and having
both charge- and spin-density gaps (nonmagnetic ‘‘pair’’
insulator II of Table IV). Figure 10 shows that another,
somewhat ‘‘weaker,’’ nonmagnetic insulator phase is
possible, with the exponents located on the noninteract-
ing line gC5gS , and 1<l2gC/4<2 (nonmagnetic ‘‘pair’’
insulator I of Table IV). This phase can be considered a
result of localization of the superconductor II phase by a
periodic potential. Once again, the properties of this
phase need to be further explored.
The fixed point l2gC* /4 5 1

2, gS* 5 2/l2 is unstable for re-
pulsive interactions, and the physics is determined by
the flow to the stable fixed point l2gC/4* 5 gS* 5 1 de-
scribing an antiferromagnetic insulator having both
charge- and spin-density gaps (antiferromagnetic insula-

tor II of Table IV). For a large level of quantum fluctua-
tions in the spin subsystem, such that gS* > 2, an antifer-
romagnetic insulator (l2gC* /45 1) may be formed, having
only a charge-density gap (antiferromagnetic insulator I
of Table IV, generalizing that of Table III for even de-
nominators). Some of the phases of Table IV are high-
lighted by the mark * . These phases are insensitive to
the parity of the umklapp scattering and exist for both
even and odd l .
Now that we have described the possible ground

states, we need to determine under what circumstances
they can occur. The Hubbard model itself is either a
gapless normalmetalwith gS* 5 2, 1 < gC* < 2 (for the case
of repulsive interactions) or a superconductor with gS*
5 1, 2 < gC* < 4. The generalized Hubbard models with
weak Hubbard interaction have loci of initial conditions
parallel to this: gC1gS54g [according to Eqs. (2.4) and
(2.5)]. When a like-spin attraction is turned on (g>1),
the range of superconductivity will shrink. When a like-
spin repulsion is turned on (g<1), there will appear a
range of stability of the conductive antiferromagnet.
This conductive antiferromagnet transforms into an an-
tiferromagnetic insulator described by the fixed point
l2gC* /45 gS* 5 1 as the degree of interparticle repulsion is
further increased. Likewise, to transform superconduc-
tor I into the nonmagnetic ‘‘pair’’ insulator II (passing by
superconductor II, and the nonmagnetic ‘‘pair’’ insulator
I) described by the fixed point l2gC* /4 5 1

2, gS* 5 2/l2, one
should further increase the like-spin repulsion keeping
the Hubbard interaction attractive. The antiferromag-
netic insulator I described by the fixed line l2gC* /4 5 1,

TABLE IV. Possible phases of a less than half-filled interacting spin-12 electronic system having filling factor k/l with even l>2.
The phases marked with an asterisk * also exist for odd l with exactly the same properties. The question mark corresponds to
phases for which we do not know the elementary excitations; moreover, their existence is not firmly established.

Phase Correlation exponents
Charge-density

gap
Spin-density

gap Elementary excitations

Normal metal l2gC* /4> 2,gS* > 2 no no charge and spin phonons

Superconductor I* gC* > 1,gS* 5 1 no yes charge phonons, spin soliton-
antisoliton pairs

Superconductor II* gC* 5gS* , 2< l2gC* /4< l2/4 no yes ?

Antiferromagnetic
conductor I*

2< l2gC* /4< l2/4,gS* 51 no yes charge phonons, spin soliton-
antisoliton pairs

Antiferromagnetic
conductor II*

gC* 5gS* , 1<gC* <2 no yes ?

Nonmagnetic ‘‘pair’’
insulator I*

gC* 5gS* , 1< l2gC* /4<2 yes yes ?

Nonmagnetic ‘‘pair’’
insulator II*

l2gC*5 l2gS*52 yes yes soliton-antisoliton pairs of
noninteracting spin
populations

Antiferromagnetic
insulator I

l2gC* /45 1,gS* > 2 yes no charge soliton-antisoliton
pair, spin phonons

Antiferromagnetic
insulator II

l2gC* /45gS*51 yes yes charge and spin soliton-
antisoliton pairs
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gS*>2 can be realized if the level of quantum fluctua-
tions is small in the charge subsystem and large for the
spin variable. Such conditions could possibly be satisfied
for sufficiently strong Hubbard repulsion and could
more probably be satisfied in the presence of a finite
range of interaction, but we cannot make reliable pre-
dictions without knowing accurate loci.
We remind the reader that in all the cases when there

is a density gap in a subsystem n, the corresponding non-
zero value of gn* given in the tables needs to be under-
stood as a limiting value upon approaching this density
phase by turning the filling factor towards nb5k/l , and
(or) magnetization to zero.

C. Umklapp scattering of odd order

For fractional fillings nb5k/l with odd l , there is a
complete failure of the separability of the spin and
charge degrees of freedom, represented by the G2 term
in Eq. (1.3d). Let us introduce the dimensionless fields

c52nS , w52nlC . (5.10)

These cause the action to take the form

A5
1
2 E dxdtS mS

4n2
ċ21

KS

4n2
c82D1G1E dxdt cos2p~2dx2c!1

1
2 E dxdtS mC

4l2n2
ẇ21

KC

4l2n2
w82D

1G2E dxdt cosp~2rx2w!cosp~2dx2c!1G3E dxdt cos2p~2rx2w! (5.11)

in which an auxiliary parameter d has been introduced,
which plays a role similar to that of finite r in Eqs. (1.3)
and (5.1) and will help us to understand the strong-
coupling regime of (5.11) for r=d=0. Physically, finite d
corresponds to an excess of particles of one spin direc-
tion over the other, and thus is proportional to the mag-
netization. The coupling of the charge and spin degrees
of freedom arises because the antiferromagnetic ar-
rangement of the spins cannot be commensurate with
the external potential. In the presence of this coupling,
the G3 term must be included; its more rapid spatial
variation will lead to the appearance of factors l2 (e.g.,
l2gC instead of l2gC/4), where just l

2/4 appeared previ-
ously.
The action (5.11) is invariant with respect to the trans-

formation

c↔w , mS↔mC /l
2, KS↔KC /l

2, G1↔G3 , r↔d ,
(5.12)

which maps the charge and spin degrees of freedom
onto each other. For nonzero r and d the action (5.11) is
also invariant with respect to infinitesimal shifts of the
fields c and w; for r=d=0, Eq. (5.11) has the transforma-
tional property

c→c11 ~or w→w11 !, G2→2G2 . (5.13)

The stationary manifold of the transformation (5.12),

mS5mC /l
2, KS5KC /l

2, G15G3 , (5.14)

defines the invariant line in the (gS ,gC) plane:

l2gC5gS , (5.15)

which coincides with that of noninteracting spin popula-
tions gC5gS for l=1.
First we analyze the action (5.11) for r=d=0 perturba-

tively, i.e., we consider all the G terms to be small per-

turbations with respect to the harmonic part of the ac-
tion. This perturbative renormalization-group analysis is
in the spirit of the standard treatment of the sine-
Gordon action (Wiegmann, 1978). Working to second
order in the G’s, we get the set of the renormalization-
group equations

dG1

dt
5G1~22gS!1G2

2~gS2l2gC!, (5.16)

dG3

dt
5G3~22l2gC!1G2

2~ l2gC2gS!, (5.17)

dG2

dt
5G2S 22

gS1l2gC
4 D2G2~G1gS1G3l

2gC!, (5.18)

dgS
dt

52G1
2C7gS

32
G2
2C7

4
gS
2~gS1l2gC!, (5.19)

d~ l2gC!

dt
52G3

2C7~ l
2gC!32

G2
2C7

4
~ l2gC!2~ l2gC1gS!.

(5.20)

Here the G’s are the dimensionless analogs of the origi-
nal G’s in Eq. (5.11). In terms of the parameters gS and
l2gC , the transformation (5.12) reduces to the permuta-
tion gS↔l2gC , G1↔G3 . Equations (5.16)–(5.20) have this
symmetry as well as the symmetry G2→−G2 , which de-
rives from Eq. (5.13). We note that off the invariant line
gS5l2gC the G1,3 contributions are always generated un-
der renormalization, even if they were originally absent.
However, if one starts from noninteracting sets of par-
ticles, an unlike-spin interaction (the G1,3 terms) is not
generated under renormalization. For l>1, all the G’s are
zero on the noninteracting line gC5gS and Eqs. (5.16)–
(5.20) do not generate the G1,3 terms. For l=1 and u=0,
the initial G1,3 are zero while G2 is finite; the unlike-spin
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interaction terms, G1,3, are not generated in this case,
since the positions of the noninteracting line gC5gS and
the invariant line (5.15) coincide for l=1.
The main conclusion of the study of this set of equa-

tions is that sufficiently far into the region

gS>2, (5.21)

l2gC>2, (5.22)

gS1l2gC>8, (5.23)

the interactions Gi are irrelevant, and the flow fails to
carry us out of this region. This is the normal metal. If
the flow goes out of this region, there is a Kosterlitz-
Thouless transition to a different phase having a gap in
the spectrum for at least one of the fields S or C ; how-
ever, further analysis is beyond the range of the pertur-
bative treatment.
The strong-coupling regime of the action (5.11) can be

understood from a different viewpoint. First, we assume
that we are inside a phase having only a spin-density
gap. This will always be the case if d=0 and r is finite in
Eq. (5.11) and either gS<2 or l

2gC1gS<8. We can inte-
grate out the noncritical spin-density degrees of freedom
(the field c). After that the w-dependent part of the ac-
tion (5.11) acquires the form

AC5
1
2 E dxdtS mC

4l2n2
ẇ21

KC

4l2n2
w82D

1G28E dxdt cosp~2rx2w!

1G3E dxdt cos2p~2rx2w!. (5.24)

Here G28 comes from a Gaussian averaging of cospc
over the zero-point motion:

G285G2expS 2
p2

2 ^c2& D , (5.25)

where the presence of the spin-density gap guarantees
that ^c2& is finite. Dropping the last (less relevant) term
of Eq. (5.24) and going back to the variable C (5.10), we
recover an action that has the same functional form as
the charge part of Eq. (5.1) with G2 replaced by G28
(5.25). Therefore we can immediately translate most of
the results for the present purposes.
First of all for r=0 the G28 term in (5.24) is irrelevant

for l2gC* /4 > 2, and we have a phase having only a spin-
density gap. Combined with the perturbative condition
gS* , 2 [compare with Eq. (5.21)], this gives us the range
of stability of the spin-density wave phase. Inside this
phase the presence of the irrelevant umklapp scattering
term G28 in (5.24) could manifest itself in residual singu-
larities of the form (5.2) or (5.3). For l2gC* /4 , 2 and r=0
an extra charge-density gap opens up, and in the vicinity
of commensuration r→0 the critical behavior is gov-
erned by the presence of the Luther-Emery line at
l2gC* /45 1. This is given by Eqs. (5.5)–(5.7) with different
nonuniversal parameters.

Then there can be a regime in which there is no spin-
density gap; this will always be the case if d in Eq. (5.11)
is nonzero. After we integrate out the spin-density de-
grees of freedom, the w-dependent part of the action
(5.11) acquires the form

AC5
1
2 E dxdtS mC

4l2n2
ẇ21

KC

4l2n2
w82D

1G3E dxdt cos2p~2rx2w!. (5.26)

This is again a sine-Gordon action, and for r=0 the G3
term is irrelevant if l2gC* > 2. Inside this phase the pres-
ence of the irrelevant umklapp scattering term G3 in
(5.26) could manifest itself, similarly to Eqs. (5.2) and
(5.3), in residual singularities of the form

l2gC* ~r!5l2gC* ~0 !1F9~r/n !2@ l2gC* ~0 !22# (5.27)

above the phase transition and

l2gC*5211/ln~F10n/r! (5.28)

at the phase transition.
Below the phase transition point a charge-density gap

opens up, and the critical behavior for r→0 is governed
by the presence of the Luther-Emery line at l2gC=1. It is
given, analogously to Eq. (5.7), as

~ l2gC* !2511
~ l2gC!221

F11
rj . (5.29)

Up to now we have considered the charge degrees of
freedom while integrating out the spin modes. We can
repeat the same analysis for the spin subsystem by inte-
grating out the charge modes. The results can be written
down immediately with the help of the transformational
property (5.12). We shall have two extra invariant lines
at gS=1 and gS=4. The critical behavior in the vicinity of
the former (i.e., in the limit of zero magnetization) is

gS*
2511

gS
221

F12
dz , (5.30)

where z is the width of the spin soliton, while in the
vicinity of the latter one has

gS*
25161

gS
2216

F13
dz . (5.31)

We note that the nonuniversal charge (j) and spin (z)
soliton widths in Eqs. (5.7), (5.29), and (5.30), (5.31),
respectively, are different. Similarly to Eqs. (5.2), (5.3),
(5.27), and (5.28), the effect of irrelevant backward scat-
tering, depending on the presence of the charge-density
gap, could be manifested in residual singularities having
one of the following forms:

gS* ~d!5gS~0 !1F14~d/n !gS* ~0 !/224, (5.32)

gS*5811/ln~F15n/d!, (5.33)

gS* ~d!5gS* ~0 !1F16~d/n !2@gS* ~0 !22#, (5.34)

gS*5211/ln~F17n/d!. (5.35)
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The crossings of the invariant lines l2gC=4, l
2gC=1,

gS=4, and gS=1 produce fixed points that govern the
physics in the strong-coupling regime. As was explained
previously, this is the same as the limit r, d→0.
The case l=1 and l>1 will be considered separately,

because only for l=1 does the invariant line (5.15) of the
transformation (5.12) coincide with the noninteracting
line gC5gS . Also note that the action (5.11) is more
accurate for l=1. Then we have G1,3=0 and G2Þ0 on the
noninteracting line, whereas for l>1 we have Gi=0, and
to provide physical renormalization of gn due to the
presence of external periodicity we shall need to take
into account terms that are not present in Eq. (5.1) (see
Appendix). Starting on the noninteracting line gC5gS ,
one must always stay on this line, i.e., the noninteracting
line is simultaneously the renormalization-group trajec-
tory.

1. Completely filled band and its vicinity

For a continuum model with a periodic potential, the
completely filled band (that is, nb=1) is not at all trivial
in the case of strong quantum fluctuations: interband
mixing can eliminate the charge-density gap altogether,
giving a conductor. Even for a lattice model, which for
the filled band is an insulator, the vicinity of this limit is
of interest, because we can verify that we obtain the
physical behavior predicted (through hole-particle sym-
metry) for a dilute system.
In the absence of any unlike-spin interaction for l=1,

the action (5.1) splits into two independent sine-Gordon
actions describing each spin population moving in a pe-
riodic potential. This potential is irrelevant if gC* 5 gS*
> 4. If this condition is violated, the particles will be
localized. In terms of the flow picture, we shall have a
Kosterlitz-Thouless transition at gC5gS54 and a
Luther-Emery feature at gC5gS52. From these consid-
erations we deduce the flow picture, Fig. 11; the results
on possible phases are assembled in Table V. The behav-
ior in the perturbative regime (5.21)–(5.24) is described
by the renormalization-group equations (5.16)–(5.20)
and is not shown. The boundary between weak-coupling
and strong-coupling behavior is given by the envelope of
the lines gS=2, gC1gS=8, and gC=2. Outside this enve-
lope the system is in a normal-metal phase (first entry of
Table V). To understand the direction of the flow in the
strong-coupling regime, we take into account the impli-
cations of the perturbative equations (5.16)–(5.20), the
fact that invariant manifolds associated with the Luther-
Emery condition have some range of attraction, and the
continuity arguments.
We see from Fig. 11 that the exponents gn are not

independent and there are several possible strong-
coupling outcomes, depending on the initial conditions.
When the macroscopic behavior is governed by the

fixed line gC* 5 1, gS* > 8, we have an antiferromagnetic
insulator (this is the region of the Hubbard repulsion)
having only a charge-density gap; the value gC* 5 1 is
probed upon approaching the commensuration r→0.

When the macroscopic behavior is governed by the
stable fixed point gC* 5 1, gS* 5 4, the ground-state con-
figuration is that of evenly spaced ‘‘dimers’’ formed from
the original particles of opposite spin. Here we shall
have both charge- and spin-density gaps (dimer insulator
I of Table V). The values gC* 5 1 and gS* 5 4 are probed
upon approaching the commensuration r→0 and in the
limit of zero magnetization d→0.
For noninteracting spin populations, the outcome de-

pends on the degree of like-spin interaction. Here the
locus of initial conditions is given by gC5gS52g [com-
pare Eqs. (2.4) and (2.5) for u=0] so that for 1<2g<4 the
physics is governed by the flow towards the noninteract-
ing free-fermion fixed point gS* 5 gC* 5 2. For noninter-
acting spin populations, Fig. 11 seems to predict that
there is one more special feature (in addition to those of
Kosterlitz and Thouless, for g=2, and Luther and Emery,
at g=1) for spinless particles moving in a periodic poten-
tial, that the point 2g=1 might be an attractor for 2g<1.
We think that this feature is an illusion, since Fig. 11 is
not a literal flow diagram but a slice from a multidimen-
sional flow diagram involving also the parameters Gi .
Exact results of Haldane (1982) on the sine-Gordon
model tell us that there are no extra features of the sys-
tem beyond those of Kosterlitz and Thouless and Luther
and Emery. In other words, starting anywhere on the
noninteracting line gC5gS in the strong-coupling re-
gime, one ends up at the Luther-Emery (free-fermion)
fixed point gC* 5 gS* 5 2. Onemay speculate that the fixed
point gC* 5 gS* 5 1 does attract physical models in the
presence of finite Hubbard interaction for gC<1 and
gS<1. Then the resulting phases are as follows: for an
attractive Hubbard interaction, one has a nonmagnetic
insulator formed from evenly distributed pairs of the
original particles of opposite spin (the nonmagnetic
‘‘pair’’ insulator II of Table V), whereas for a repulsive

FIG. 11. Schematic renormalization-group diagram describing
the flow of the parameters gn for l=1; only the strong-coupling
regime given by the conditions opposite to Eqs. (5.21)–(5.23) is
shown.
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Hubbard interaction we have a ‘‘dimer’’ insulator having
both charge- and spin-density gaps (dimer insulator II of
Table V). The existence of insulators governed by the
fixed point gC5gS51 is under question, as are their
properties. We think that there is reason to believe that
the fixed point gC5gS51 is real, because it attracts
physical models with gC<1 and gS<1. For the same
range of g’s the approximation based on spin-charge
separation fails in the case of half-filling (see Sec. V.B.1).
We expect that this fact can manifest itself in a change of
physics for the completely filled band.
When the macroscopic behavior is governed by the

stable fixed point gC* 5 4, gS* 5 1, the ground-state con-
figuration is that of evenly distributed pairs formed from
the original particles of opposite spin. Here we shall
have both charge- and spin-density gaps (nonmagnetic
‘‘pair’’ insulator I of Table V). The values gC* 5 4, gS*
5 1, can be probed in the limits r, d→0.
Finally, when the macroscopic behavior is governed

by the fixed line gS* 5 1, gC* > 8, we have a collection of
pairs forming a superconductor. The value gS* 5 1 is
probed only in the limit of vanishing magnetization
d→0.
The noninteracting line gC5gS for 1,gS5gC,4 and

the lines gC=1 and gS=1 for gS<1 and gC<1, respectively,
are phase transition lines between various insulator
phases having both charge- and spin-density gaps.
In drawing Fig. 11 we assumed that the locus of the

Hubbard model coincides with the marginal trajectory
that connects the free-fermion point (gC=2, gS=2) to the
stable fixed points (gC=4, gS=1) and (gC=1, gS=4). For
either sign of the Hubbard interaction the system is an
insulator having both charge- and spin-density gaps.
However, the ground-state configuration generally de-
pends on the sign of the interaction. For the case of a
repulsive interaction (below the noninteracting line
gC5gS), we have a ‘‘dimer’’ insulator I, while for the
case of an attractive interaction we shall have a ‘‘pair’’
insulator I (see Table V). For lattice models in which the

particles are allowed to occupy only the lattice sites,
there is no clear spatial distinction between ‘‘dimer’’ and
‘‘pair’’ insulators, since for a completely filled band in
the absence of vacant sites each lattice site will be occu-
pied by two electrons of opposite spin. However, the
distinction between the two phases manifests itself in
different values of correlation exponents as complete
filling is approached and (or) magnetization is tuned to
zero.
The Hubbard model has particle-hole symmetry

around half-filling, thus giving us an independent way of
checking the flow of Fig. 11. For a repulsive Hubbard
interaction and an almost filled band, the dependence
gC* (r) is given by Eq. (5.29) with l=1, and the universal
value gC* 5 1 is approached linearly in the hole (or soli-
ton) density r from above. This dependence can be
mapped onto the dilute limit [see Eqs. (2.12) and (4.6)
and the repulsive portion of Fig. 4], implying a relation-
ship between the nonuniversal parameters of Eqs. (2.12)
and (5.29).
The same is true for an attractive Hubbard interac-

tion. Here the dependence gC* (r) is given by Eq. (5.7)
with l=1, and the universal value gC* 5 4 is approached
linearly in the hole density r from below, being consis-
tent with the dilute limit [see Eqs. (2.22), (4.11), and
(4.12) and the attractive portion of Fig. 4].
There are many systems that do not have particle-hole

symmetry. For example, a system of two independent
sets of particles having some like-spin interaction does
not have this property. For the situations shown in Figs.
5 and 6 by dot-dashed lines, the actual dependence
gC* (nb) starts from gC* (0) 5 2g and ends at gC* (1) 5 2, as
implied by the flow of Fig. 11.
Figure 12 presents the consequences of Fig. 11 in an-

other way. Here we imagine that the anharmonic parts
of the action (5.1) are small, and indicate what phase
results from various combinations of the microscopic gC
and gS . The positions of the boundaries between the

TABLE V. Possible phases of a completely filled interacting spin- 12 electronic system. Any phase has its counterpart through
the spin-charge permutational symmetry of gC* and gS* . The question mark has the same meaning as in Table IV.

Phase Correlation exponents
Charge-density

gap
Spin-density

gap Elementary excitations

Normal metal gC* > 2,gS* > 2,
gC*1gS*>8

no no charge and spin phonons

Superconductor gC* > 8,gS* 5 1 no yes charge phonons, spin soliton-
antisoliton pairs

Antiferromagnetic
insulator

gC* 5 1,gS* > 8 yes no charge soliton-antisoliton
pairs, spin phonons

Nonmagnetic ‘‘pair’’
insulator I

gC* 5 4,gS* 5 1 yes yes charge and spin soliton-anti-
soliton pairs

‘‘Dimer’’ insulator I gC* 5 1,gS* 5 4 yes yes charge and spin soliton-anti-
soliton pairs

Nonmagnetic ‘‘pair’’
insulator II (U<0)

gC*5gS*51 yes yes ?

‘‘Dimer’’ insulator II
(U>0)

gC*5gS*51 yes yes ?
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various phases depend on the values of G1 and G2 (in a
way that can be deduced from the directions of flow in
Fig. 11). In drawing this figure we assumed that the Gi
are small (which is physically correct only in the vicinity
of the noninteracting line gC5gS).

2. Unfilled band: umklapp scattering of odd order

Now we consider the case of odd denominators with
l>1. It has already been explained that the action (5.11)
fails to describe noninteracting spin populations cor-
rectly for l>1. However, in the presence of an arbitrarily
small unlike-spin interaction, the action (5.11) is a
proper long-distance limit at least at some range of pa-
rameters, since the contributions important for noninter-
acting spin populations become irrelevant in the pres-
ence of unlike-spin interactions if we are not deeply
inside the strong-coupling regime. Similar to the case of
even denominators, the outcome can be understood by
combining the results of the analysis of the action (5.11)
with the implications set by the properties of noninter-
acting spin populations moving in a periodic potential
(Kolomeisky, 1993).
We shall use the flow diagram of Fig. 11 as a starting

point for understanding the l>1 situation. The argu-
ments followed in the discussion of the l=1 case are gen-
eral and imply that in terms of l2gC versus gS the flow
has invariant lines at l2gC=1, l

2gC=4, gS=1, and gS=4.
The line l2gC5gS is not a trajectory in general, however.
The fixed points at l2gC=1, gS=4 and l2gC=4, gS=1 are
stable, implying that there exists an unstable fixed point
for 1<l2gC<4 and 1<gS<4 analogous to the Luther-
Emery (free-fermion) point of Fig. 11. Also analogously
to Fig. 11 there are stable fixed lines at l2gC=1, gS>8,
and gS=1, l

2gC>8. In these respects the phase diagram

has the same topology as Fig. 11; the difference comes
from the constraint that the noninteracting line
l2gC5l2gS must be an invariant line, so that its crossings
with the invariant lines l2gC=1, l

2gC=4, and gS=1 will
produce extra fixed points. The resulting flow picture is
shown in Fig. 13, and the results on possible phases are
collected in Table VI. The part of the flow above the
noninteracting line gC5gS having common features with
that of Fig. 10 is not shown. The phases insensitive to the
parity of the order of the umklapp scattering are shown
only in Table IV, highlighted by an asterisk. The origin
of the parity-independent features is that, for the case of
an attractive Hubbard interaction, there is a tendency to
form pairs that act as a single population of new par-
ticles. For these combined particles with no internal
(spin) degrees of freedom, the issue of parity does not
exist at all. Since the pairs consist of the original par-
ticles, this argument is only suggestive. We can see from
Fig. 13 that parity manifests itself for l2gC* < 1 even for
an attractive unlike-spin interaction. Here we have a
nonmagnetic insulator with the exponents l2gC* 5 l2gS*
5 1 that has no analog in Fig. 10 (nonmagnetic ‘‘pair’’
insulator III of Table VI, generalizing nonmagnetic
‘‘pair’’ insulator II of Table V for any odd l).
As in Fig. 10, the Luther-Emery fixed point of the

noninteracting spin population l2gC* 5 l2gS* 5 2 is un-
stable for a repulsive Hubbard interaction, and for some
range of parameters the outcome is governed by the
flow to the stable fixed point l2gC* 5 4, gS* 5 1, which has
its analog in Fig. 10. Two other fixed points of Fig. 13,
l2gC* 5 gS* 5 1 and l2gC* 5 1, gS* 5 4, do not have any ana-
logs for even l . These two fixed points, as well as l2gC*
5 4, gS* 5 1, describe three different ‘‘dimer’’ insulators
(see Table VI). ‘‘Dimer’’ insulators I and II of Table VI

FIG. 12. Phase diagram for a filled band. Here we have labeled
the various regions of the (gC ,gS) plane to indicate which
phase results from each combination of microscopic values,
assuming the anharmonicity to be small. Each region is thus
the basin of accumulation of the fixed points and lines of Fig.
11.

FIG. 13. Schematic renormalization-group diagram describing
the flow of the parameters gn for odd l>1; only the strong-
coupling regime, given by the conditions opposite to Eqs.
(5.21)–(5.23), is shown. The parts of the flow in common with
that of Fig. 10 (l2gC>7) or identical to that of Fig. 11 (gS>7)
are not shown.
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generalize those of Table V; ‘‘dimer’’ insulator III of
Table VI has no analog for the completely filled (l=1)
case (Table V).
Two more phases are possible for a repulsive Hubbard

interaction. One of them, existing for l2gC* > 8, is com-
pletely analogous to the conductive antiferromagnet we
found for even l : they even have the same range of sta-
bility. Another phase is an antiferromagnetic insulator
having l2gC* 5 1 andgS* > 8.

D. The exponent gC* and fractional charge

The value of the translational correlation exponent
gC* can be used to determine the elementary charge of
solitons, which turns out to be fractional in general. This
is an example of the general idea that topological exci-
tations in broken-symmetry systems carry fractional
charge (Heeger et al., 1988).
The exponent gC* determines the conductance of a

spin-12 quantum liquid according to the rule

G5gC* e
2/h (5.36)

(Apel and Rice, 1982; Kane and Fisher, 1992a, 1992b).
For noninteracting fermions, this reduces to G =2e2/h
[see Eq. (2.5) for g=1 and u=0], which is Landauer’s rule
G =e2/h per channel (Landauer, 1970), since the two spin
states provide two channels. In the present language, the
derivation of this expression is as follows: Let the right
and left extremities of our one-dimensional system be in
equilibrium with reservoirs with chemical potentials dif-
fering by eV , where V is the applied voltage. There will
be an excess of 2eV ]n/]m states filled on one side (the
right side, for definiteness) relative to the other, of which
half are excitations moving to the left, with velocity
cC* 5 AKC* /mC* (1.6). Thus there is a current I

5 e2cC* ]n/]mV flowing across the system, and the con-
ductance is G 5 I /V 5 e2cC* ]n/]m . Rewriting this in
terms of KC* 5 2n2]m/]n [Eq. (1.7)] reproduces (5.36)
with gC* given by 4pn2\/AmC*KC* , in agreement with Eq.

(1.5b). The essential point is that the density of states
]n/]m is the same as the compressibility in one dimen-
sion.
As we have seen, the insulator phases of our system

are characterized by the value of the exponent gC* as-
ymptotically close to commensuration. In this regime
the system is conductive and can be described as a dilute
gas of solitons, which are isomorphic to free fermions.
We can also define a soliton charge Q by applying Lan-
dauer’s rule to the gas of solitons. When the charge-
carrying solitons are the nonlinear excitations of the
field C [Eq. (1.2)], they are spinless, so that G =Q2/h .
There are also cases for which the solitons have spin 1

2,
so that G =2Q2/h . This occurs when the solitons are the
nonlinear excitations of the fields u↓ and u↑ (1.2); this
situation can be realized only when the physics is deter-
mined by the Luther-Emery fixed point of noninteract-
ing spin populations. Comparing the two expressions for
the conductance gives

Q5eAgC* (5.37)

for charge-carrying solitons of the field C (1.2), or

Q5eAgC* /2 (5.38)

for solitons of noninteracting spin populations.
The cases of even- and odd-order umklapp scattering

are best treated separately.

1. Umklapp scattering of even order

For half-filling, the insulating phases having soliton
excitations give exponent values gC* 5 1 and gC*5 1

2 (see
Fig. 8). The former describes antiferromagnetic insula-
tors I and II, and nonmagnetic ‘‘pair’’ insulator I of
Table III. From Eq. (5.37) we find that the solitons of
those phases carry charge e and zero spin, as was found
previously by Su, Schrieffer, and Heeger (1980).
The value gC*5 1

2 (see Fig. 8) describes nonmagnetic
‘‘pair’’ insulator II and antiferromagnetic insulator III of
Table III, and the corresponding fixed point coincides
with that of Luther and Emery of the noninteracting

TABLE VI. Possible phases of a partially filled interacting spin- 12 electronic system having filling factor k/l with odd l . Phases
of Table IV having an asterisk * are also present but not displayed. The question mark has the same meaning as in Tables IV
and V.

Phase Correlation exponents
Charge-density

gap
Spin-density

gap Elementary excitations

Normal metal l2gC* > 2,gS* > 2
l2gC*1gS*>8

no no charge and spin phonons

Nonmagnetic ‘‘pair’’
insulator III

l2gC*5 l2gS*51 yes yes ?

Antiferromagnetic
insulator

l2gC* 5 1,gS* > 8 yes no charge soliton-antisoliton
pairs, spin phonons

‘‘Dimer’’ insulator I l2gC* 5 1,gS* 5 4 yes yes charge and spin soliton-
antisoliton pairs

‘‘Dimer’’ insulator II l2gC*5gS*51 yes yes ?
‘‘Dimer’’ insulator III l2gC* 5 4,gS* 5 1 yes yes charge and spin soliton-

antisoliton pairs
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spin populations. From (5.38) we find that the solitons of
the noninteracting spin populations at half-filling carry
the charge e/2 in accordance with existing results
(Jackiw and Rebbi, 1976; Rice et al., 1976; Su and Schri-
effer, 1981; Heeger et al., 1988).
For less than half-filling, there are again two possible

outcomes pertinent to charged solitons: l2gC* /4 5 1 and
l2gC* /45 1

2 (see Fig. 10). The former describes antiferro-
magnetic insulators I and II of Table IV, and from Eq.
(5.37) we find that solitons of these insulators carry the
charge

Q52e/l , (5.39)

in agreement with the counting arguments of Su and
Schrieffer (1981). For half-filling (l=2), this is the case
Q5e already described. From the present point of view,
getting the electronic charge e (and not some fraction of
it) is practically an accident.
The value l2gC* /45 1

2 describes the nonmagnetic ‘‘pair’’
insulator II of Table IV; its elementary excitations are
soliton-antisoliton pairs of the noninteracting spin popu-
lations. From Eq. (5.38), we find that the solitons of the
noninteracting spin populations carry the charge Q5e/l ,
in accordance with Rice et al. (1976), Jackiw and Rebbi
(1976), and Heeger et al. (1988).

2. Umklapp scattering of odd order

For a completely filled band, there are three values of
gC* corresponding to insulators with soliton excitations
(see Fig. 11): gC* 5 4, gC* 5 1, and gC* 5 2. The first de-
scribes the nonmagnetic ‘‘pair’’ insulator I of Table V.
From Eq. (5.37) we find the soliton charge Q52e . This
is the special (l=1) case of the more general result (5.39),
since particles of opposite spin form pairs, thus making
the issue of parity of the order of umklapp scattering
irrelevant. The value gC* 5 1 corresponds to an antiferro-
magnetic insulator and the ‘‘dimer’’ insulator I of Table
V. From Eq. (5.37) we find that the solitons of these
phases carry charge e . The value gC* 5 2 describes the
Mott insulator of the noninteracting spin populations
(Table II). From (5.38) we find Q5e , which is a special
(l=1) case of the more general result Q5e/l for spinless
particles (Jackiw and Rebbi, 1976; Rice et al., 1976; Hee-
ger et al., 1988).
For an incompletely filled band, there are also three

values of gC* corresponding to insulators with soliton ex-
citations (see Fig. 13): l2gC* 5 2 (nonmagnetic ‘‘pair’’ in-
sulator II of Table IV), l2gC* 5 4 (‘‘dimer’’ insulator III of
Table VI), and l2gC* 5 1 (‘‘dimer’’ insulator I, antiferro-
magnetic insulator of Table VI). The first value needs to
be substituted into Eq. (5.38), since we are at the fixed
point of noninteracting spin populations. This gives
Q5e/l , as we already found for even orders of umklapp
scattering. This result is parity-insensitive, since the
ground-state configuration is a collection of periodically
distributed pairs of the original particles. The value
l2gC* 5 4 belongs to the case of Eq. (5.37) and reproduces
Eq. (5.39) found for even l . Here the ‘‘dimer’’ ground-

state configuration has no analog for even l , but the cor-
responding solitonic charge is still given by the common
formula (5.39).
A new result is found if one substitutes the third value

l2gC* 5 1 into Eq. (5.37):

Q5e/l . (5.40)

This result does not have an analog for even l . We con-
clude that solitons of ‘‘dimer’’ insulator I and antiferro-
magnetic insulators of Table VI carry the charge given
by Eq. (5.40). A special case of this general expression
was found above for l=1. The result (5.40) might be bet-
ter written Q52e/2l , since it is the subharmonic of or-
der 2l [the G3 term of (1.3)], or 4lkF umklapp scattering
is responsible for the formation of the ‘‘dimer’’ insulator
I and the antiferromagnetic insulator of Table VI. The
result (5.40) could have been guessed directly from this
observation as well as from the counting arguments of
Su and Schrieffer (1981), which depend on nothing more
than charge conservation. Then, reversing the logic of
this section, the connection with the Landauer rule pro-
vides us with an independent and elementary derivation
of the correlation exponents gC* confirming the
renormalization-group results.

VI. CONCLUSION

In this paper we have constructed a general unifying
approach for the study of the ground-state properties of
interacting spin-12 fermions moving in a periodic poten-
tial. We were able to classify many of the possible types
of ground states as well as to determine the correlation
exponents associated with these phases. In particular, we
found that filling factors with even and odd denomina-
tors form distinct universality classes which can be char-
acterized according to the form of the long-wavelength
action. In the case of even denominators, the spin and
charge variables are separated in the long-wavelength
action, while for odd denominators spin-charge separa-
tion is not achieved in the long-distance limit, thus lead-
ing to different physical behavior. The physical reason
for this selectivity is perhaps not parity but the degen-
eracy factor: for particles of arbitrary spin S , the physi-
cal behavior for filling factors with denominators that
are a multiple of 2S+1 is expected to be different from
that for other denominators.
The theory we have developed is phenomenological in

spirit and therefore determines which answers can be
found in principle. A further study of microscopic mod-
els is necessary to find the actual conditions of realiza-
tion for various regimes of physical behavior as well as
to understand the detailed spatial organization of
‘‘dimer’’ phases.
We have left some questions open. As noted by the

question marks on Tables III and V, there are a number
of phases whose existence is indicated by the renormal-
ization flows, but which are not clearly characterized.
We hope that the general ideas developed in this pa-

per can be used to analyze problems such as the case of
the presence of a magnetic field and the combined effect
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of impurities and periodic potential. We think that these
methods can be used to look at the case in which under-
lying particles have an arbitrary number of internal de-
grees of freedom (for instance, arbitrary spin). The sim-
plest problem of this sort—classification of the ground
states of a translationally invariant many-component
quantum liquid—was solved recently (Kolomeisky and
Straley, 1994).
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APPENDIX: DERIVATION OF THE LONG-WAVELENGTH
ACTION (1.3a)–(1.3d)

Here we derive the terms in the action equations
(1.3a)–(1.3d) in the limit of weak Hubbard interaction U

and weak periodic potential V(x). We represent the po-
sitions of the particles in terms of their displacement
away from uniform spacing,

xj5jn211u↑j ; yj5jn211u↓j , (A1)

and then use Poisson’s summation formula to write

(
j
V~xj!5n (

q52`

` E V@x1u↑~x !#e2pniqxdx (A2)

5 (
q52`

` E V@x#e2pniq@x2u↑~x !#

3~12]u↑ /]x !dx , (A3)

where now we are regarding u↑(x) and u↓(x) to be con-
tinuous (and, in fact, slowly varying) functions of x ; in
Eq. (A3) we have changed the variables to x̃5x1u↑(x),
and then ignored the difference between u↑(x) and
u↑( x̃). This transforms Eq. (1.1) to

A5
1
2 (

S5↑ ,↓
E dxdtFmnS ]uS

]t D1KS ]uS
]x D 212m̃n

]uS
]x G1n (

S5↑ ,↓
E dxdtS 12

]uS
]x D(

p
V~x !e2pipn@x2uS~x !#

1n2E dxdydtS 12
]u↑
]x D S 12

]u↓
]y D(

p ,q
Ud~x2y !e2pin@p~x2u↑~x !!1q~y2u↓~x !!# (A4)

where we have used the harmonic liquid approximation
(u]uS/]x u!1) to describe like-spin interactions, and
dropped background terms that do not depend on u↑
and u↓ .
The compliance K describes the long-wavelength part

of the interactions within a single spin population. It can
be calculated exactly when the dependence of the
chemical potential on particle density is known:
K5n2]m(n ,U50)/]n . This compliance contains not
only the interparticle forces but quantum effects coming
from the relative accessibility of phase space—entropic
effects, in the language of the two-dimensional gas of
world lines.
An important example is the case in which the par-

ticles constituting each spin population are free fermions
[in terms of the Action (1.1), this is the case W=`, a=0,
V=0, and U=0]; then m=p2\2n2/2m and K5p2\2n3/m .
Even though the particles interact only when they touch,
we can consistently continue to assume u]u/]xu and u]n/
]x u!1, because the condition that the lines cannot touch
anywhere implies that they are held away from each
other almost everywhere. For the case of interfermion
repulsion [which in terms of (1.1) can be modeled by
W=`, aÞ0, V=0, and U=0], one has m>p2\2n2/2m and
K.p2\2n3/m . The case of interfermion attraction is in-

cluded in (1.1) when, for example, a=0, V=0, U=0, and
W is finite. Here one has m<p2\2n2/2m , and
K,p2\2n3/m , respectively.
In Eq. (A4), ]u↑/]x and ]u↓/]x represent the fluctua-

tions in particle density about homogeneity. We must
impose *dxdt(]uS/]x)=0 if the particle density is to be
correctly specified by n . The parameter m̃n is a
Lagrange multiplier which ensures this condition; m̃ it-
self is a contribution to the chemical potential.
Of course, we can do the integration over y in the last

term, bringing it to the form

n2UE dxdt~12u↑8!~12u↓8!(
p ,q

e2pinx~p1q !22pin~pu↑1qu↓!,

(A5)

where primes stand for spatial derivatives.
To put the action into harmonic liquid form we must

eliminate the terms that are linear in the spatial deriva-
tives. Collecting these, we have

2n (
S5↑ ,↓

uS8V~x !2n2U (
S5↑ ,↓

uS81m̃n (
S5↑ ,↓

uS8 . (A6)

In equilibrium these terms must cancel on average;
this determines both the chemical potential and the ac-
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tual particle distribution, which is modulated by the ex-
ternal potential. We select the parameter m̃ to cancel the
interaction between unlike spins: m̃5nU . This implies a
connection between the equations of state of interacting
(UÞ0) and noninteracting particles (U=0):

m~n !5m0~n !1nU . (A7)

Equation (A7) has a typical perturbative form. We
shall specify its range of validity later. The remainder of
the linear part in (A6) can be absorbed in the harmonic
part of the action by the shift

u↑→u↑1h , u↓→u↓1h (A8)

where

h~x !5Ex nV~z !dz

K1n2U
. (A9)

After this transformation the action acquires the form,
to lowest order in the spatial derivatives,

A5
1
2 E dxdt@mn~ u̇↑

21u̇↓
2!1K~u↑8

21u↓8
2!12n2Uu↑8u↓8#1E dxdt(

p
8Vp~x !e2pinp~x2u↑!

1E dxdt(
q

8Vq~x !e2pinq~x2u↓!1E dxdt(
p ,q

8Wp1q~x !e2pinx~p1q !22pin~pu↑1qu↓!, (A10)

where the dots stand for time derivatives, (8 means that
the homogeneous terms have been removed, and we in-
troduced the following notation:

Vp~x !5nS 12
nV~x !

K1n2U DV~x !e22pinph~x !, (A11)

Wp1q~x !5n2US 12
nV~x !

K1n2U D 2e22pin~p1q !h~x !. (A12)

This latter expression is misleading in that it suggests
that Wp1q is nonzero even when the periodic potential
is absent, when in fact it is the coefficient of terms in Eq.
(A10) that break translational symmetry. The resolution
is that the terms in (A12) that are independent of V
make no contribution to (A10) and should be dropped.
Then for small U and V(x),Wp1q(x)'22n3UV(x)/K .
It is useful to extract the p1q=0 contribution explic-

itly from the last term of Eq. (A10) and to introduce the
charge and spin fields S and C defined in Eq. (1.2). This
transformation diagonalizes the harmonic part of the ac-
tion (A10), leading to

A5
1
2 E dxdt@mCĊ

21mSṠ
21KCC821KSS82#

12E dxdt(
q

8Vq~x !e2pinq~x2C !cos2pnqS

1E dxdt (
p1qÞ0

Wp1q~x !e2pin~p1q !~x2C !22pin~p2q !S

1E dxdt(
q

8W0~x !e24pinqS. (A13)

The action (A13) is a general long-wavelength action
describing the behavior of a spin-12 quantum liquid in an
external potential of general nature, and the final result
(A13) is actually more general than the derivation given.
The coefficients of the harmonic part of (A13) are given
by

mC52mn , (A14)

mS52mn , (A15)

KC52K~11u !, (A16)

KS52K~12u !, (A17)

where we have introduced the dimensionless parameter
of the interaction between spins

u5n2U/K . (A18)

Equations (A14)–(A18), as well as Eqs. (A11) and
(A12) for the functions Vp(x) andWp1q(x), are pertur-
bative and valid if

uuu!1 (A19)

and if the absolute value of the derivative h8(x) (A9),
which is a local deformation of the harmonic liquid, is
small with respect to unity. Beyond this approximation
the expressions (A11), (A12), and (A14)–(A18) are no
longer valid, even though the long-wavelength action
still has the functional form (A13) with undetermined
phenomenological parameters. The combination of Eqs.
(A14)–(A18) and Eqs. (1.5) and (2.3) gives the results
(2.4) and (2.5).
For periodic V(x)5V(x1b), the potentials Vq(x)

and Wp1q(x) in Eq. (A13) are also periodic functions
[see Eqs. (A9), (A11), and (A12)] and can be decom-
posed into a Fourier series:

2Vl~x !5(
k
Vl ,ke

2i~2p/b !kx, (A20)

Wp1q~x !5(
k
Wp1q ,ke

2i~2p/b !kx, (A21)

where Vlk and Wp1q ,k are Fourier coefficients satisfying

V2l ,2k5Vl ,k* , W2l ,2k5Wl ,k* . (A22)

Substituting (A20) and (A21) into Eq. (A13), we obtain
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A5
1
2 E dxdt@mCĊ

21mSṠ
21KCC821KSS82#1E dxdt(

l ,k
8Vl ,ke

2pix@ ln2~k/b !#22pilnCcos2pnlS

1E dxdt (
p1qÞ0,k

Wp1q ,ke
2pix@n~p1q !2~k/b !#22pi~p1q !nC22pin~p2q !S1G1E dxdt cos4pnS , (A23)

where G1=2n
2U , and where we have dropped the peri-

odic contribution to the last term of (A23) [the external
potential part in the function W0(x) from (A12)] due to
its oscillating behavior, which cannot be affected by
changing the particle density. On the other hand, the
oscillating dependence of the second and the third sums
in (A23) can be altered by changing the particle density.
If the filling factor nb is equal to a fraction k/l , the
corresponding Fourier harmonic is commensurate with
the interparticle distance, and an insulating phase can
occur. For incommensurate fillings the oscillating depen-
dences in (A23) are not compensated, and the corre-
sponding terms are irrelevant in the renormalization-
group sense.
To find the form of the phase diagram and to describe

the phase transitions for the case of a commensurate
filling factor, we have to single out the dominant contri-
butions from the sums in (A23). If nb5k/l is an irreduc-
ible fraction, the Vlk harmonic is the most relevant one
that contributes to the first sum. In general all the terms
from the second sum in (A23) for which p1q5l will
contribute equally. Now we have to determine the most
important contribution in view of differing spin parts.
Since the presence of the variable S in the form
cos2pnlS in the first sum, or as e22pin(p2q)S in the sec-
ond sum, increases the effect of quantum fluctuations on
the otherwise identical C part, the idea is to select the
term that gives the smallest possible contribution. For a
fixed denominator l we can do nothing with cos2plnS ,
but we are free to minimize the absolute value of the
difference p2q inside the exponential e22pin(p2q)S for
fixed l5p1q . Here the outcome clearly depends on the
parity of l . For even l , the minimal absolute value of the
difference is zero and is achieved for p5q5l/2, whereas
for odd l the minimum of up2qu is unity. We conclude
that the contributions we have just identified are more
important than those coming from the V term of the
action (A23), except at l=1, for which they are equally
important. The V contributions are those responsible for
physics whenever the approximation based on spin-
charge separation is not accurate enough.
In collecting the relevant contributions, we note that

the functions Vl(x) and Wp1q(x) from Eqs. (A11) and
(A12) have common (modulo p) phases. Extracting this
phase by a shift in the variable C , we finally get the
action (1.3a)–(1.3d), with the following parameters:

G252uW1,1u12uV1,1u for l51,

G252uWl ,ku for l.1, (A24)

G352uW2l ,2ku for l>1.

For the case of half-filling, the parameter V appearing in
Eq. (2.1) is given by

V5G2/2n
25uW2,1u/n2. (A25)
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