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The author reviews methods for generating sub-Poissonian light and related concepts. This light has
energy fluctuations reduced below the level which corresponds to a classical Poissonian process
(shot-noise level). After an introduction to the concept of nonclassical light, an overview is given of
the main methods of quantum-noise reduction. Sub-Poissonian processes are exemplified in different
areas of optics, ranging from single-atom resonance fluorescence to nonlinear optics, laser physics, and
cavity quantum electrodynamics. Emphasis is placed on the conceptual foundations, and on
developments in laser theory that lead to the possibility, already demonstrated experimentally, of
linewidth narrowing and sub-Poissonian light generation in lasers and masers. The sources of quantum
noise in these devices are analyzed, and four noise-suppression methods are discussed in detail:
regularization of the pumping, suppression of spontaneous-emission noise, nonadiabatic evolution of
the atomic variables, and twin-beam generation.
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(v, T))=|hvp+

(1.1)

p2> Vdv.

Einstein observed that this relation, derived from
Planck’s law, is incompatible with the classical wave
theory of light. In fact, the classical theory, which leads
to the Rayleigh-Jeans law for the spectral density, would
yield only the second term on the right-hand side of the
above equation, which could thus be referred to as the
“wave term.” The first term, the other hand, is charac-
teristic of independently moving pointlike quanta with
energy hv (Einstein, 1909a). Indeed, this term, com-
monly called “shot noise,” is the sole contribution to the
variance of a flux of independent particles with random
arrival times (for example, raindrops falling on a roof—
in which case, (€?) would refer to the variance in the
number of raindrops hitting the roof during a fixed time
interval). Therefore, Eq. (1.1) displays both the particle
and the wave aspects of radiation.

For a long time only thermal sources were available,
and Planck’s distribution was considered the cornerstone
of the statistical description of light. This situation
changed drastically with the invention of the first laser in
1960 (Maiman, 1960), which brought about a second
revolution in the concept of light. Lasers work in a situ-
ation far from thermal equilibrium, and generate radia-
tion with a statistical distribution markedly different
from Planck’s formula. In fact, well above the oscillation
threshold, the statistics of the emitted light approaches
that of an ensemble of independent particles, so that
only the shot-noise term is present in Eq. (1.1), corre-
sponding to a Poissonian distribution for the number of
photons. The statistical distinction between laser and
thermal light was experimentally demonstrated in 1965
(Arecchi, 1965).

The new source of light motivated an important theo-
retical effort, aimed at establishing a general framework
for the description of states of radiation. Glauber
(1963b, 1963c) and Sudarshan (1963) introduced phase-
space distributions, which allowed averages of normal-
ordered products of field operators to be computed as
quasiclassical integrals of the corresponding c-number
functions. This result is especially important in view of
the fact, established by Glauber (1963a, 1963b, 1963c,
1965), that photodetection rates can be expressed in
terms of quantum averages of normal-ordered products
of field operators (optical coherence functions), for pho-
todetectors based on photon absorption. For the special
case of thermal light, the phase-space distribution was
derived by Glauber (1963c), while Sudarshan (1963)
proposed a general expression for the weight function in
terms of a series of derivatives of delta functions of ar-
bitrarily high orders, thus demonstrating in principle the
possibility of expressing quantum-mechanical photo-
counting rates as quasiclassical statistical averages, for
any state of the field. This formal correspondence be-
tween the quantum-mechanical and classical statistical
descriptions of optical coherence functions is the essence
of the optical equivalence theorem (Sudarshan, 1963;
Klauder et al., 1965; Mehta and Sudarshan, 1965). These
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developments led to a generalization of Eq. (1.1) for any
kind of radiation. The photon-number variance can be
written (by reexpressing it in terms of normal-ordered
products of field operators and then using the optical
equivalence theorem) as

(An?)={(n=(m)?)=(n)+ [ dlez ) P({az DAUY,
(1.2)
where af ; is the complex amplitude of the field for the

mode with wave vector k and polarization s, the symbol
d{aj;,} stands for the phase-space volume element
N d*ej, and U=S; |ag,|? is the ¢ number corre-
sponding to the total photon number operator 7. The
first term on the right-hand side of this equation corre-
sponds to the particlelike term in Eq. (1.1). The second
term, associated with departure from the Poisson law,
can be interpreted as a quasiclassical variance, the
phase-space Glauber-Sudarshan distribution P({«j })
playing the role of a probability measure. More impor-
tantly, it was realized that P({aj ;}) may become highly
singular and negative. This forbids an interpretation like
Einstein’s, that the second term on the right-hand side of
Eq. (1.2) is associated with a classical wave contribution.
When this term is negative, the photon-number variance
is smaller than the average number of photons, corre-
sponding to a sub-Poissonian distribution.

States of the electromagnetic field for which
P({ags}) is highly singular [more singular than a tem-
pered distribution—note that for a delta function one
would get from Eq. (1.2) a Poissonlike result] or nega-
tive are called “nonclassical states.” Of course this defi-
nition is quite arbitrary, since in principle any state of
the electromagnetic field exhibits a quantum character,
associated with the discreteness of the photon-number
distribution. Historically, the definition was motivated
by the comparison between Egs. (1.1) and (1.2), and,
more generally, by the optical equivalence theorem. The
production of nonclassical states opened up a new field
of research, motivated both by the new and subtle con-
ceptual problems involved, requiring a deeper under-
standing of the nature of light and of its interactions
with matter, and by the possibility, noted above, of ob-
taining light beams with fluctuations below the shot-
noise level.

In fact, nonclassical behavior of light appears already
at the single-atom level, as predicted by Carmichael and
Walls (1976a, 1976b), Cohen-Tannoudji (1977), and
Kimble and Mandel (1976), who established that light
produced in single-atom resonant fluorescence would
display the phenomenon of antibunching. This effect is
associated with two-photon correlation measurements:
the probability of detecting the second photon decreases
as the time delay between the two measurements goes to
zero, due to the fact that the atom that emitted the first
photon must be re-excited before emitting the second
one. This is opposite to the behavior of photons in ther-
mal beams, where intensity fluctuations lead to photon
bunching. Antibunching is closely related to sub-
Poissonian behavior, though not equivalent to it (the re-
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lation between these two properties will be discussed in
Sec. ILF). The first experimental demonstration of anti-
bunching in atomic resonant fluorescence was achieved
in 1977, by Kimble, Dagenais, and Mandel (Kimble
et al., 1977) while the sub-Poissonian behavior of the re-
sulting radiation was verified by Short and Mandel
(1983).

Many other experiments have been carried out since,
dealing not only with photon-number fluctuations, but
also with noise in the quadrature components of the
field. Analogous to the position and momentum of a
harmonic oscillator, these components cannot be mea-
sured simultaneously, and their dispersions are related
through a Heisenberg inequality. Nonlinear interactions
between the electromagnetic field and atomic media
may lead to the compression of noise in one of the com-
ponents, at the expense of increasing the fluctuations in
the other. The first experimental demonstration was due
to Slusher et al. (1985). Several applications have been
envisaged for radiation with reduced quantum fluctua-
tions, in optical communications (Takahashi, 1965;
Yuen, 1976) and precision measurements (Caves, 1981).

This research has also led to developments in laser
theory, adding new insights and interesting refinements
to the original results of the 1960’ (for which, see Lax,
1966a, 1966b; Gordon, 1967; Scully and Lamb, 1967; Lax
and Louisell, 1969; Haken, 1970). Up to 1987, laser light
could still be described in classical terms (i.e., by a
positive-definite probability distribution in phase space).
Below threshold, one had essentially a thermal lamp,
while above threshold the photon-number statistical dis-
tribution would change from super-Poissonian
({(An?)>(n)), as the laser started oscillating, to Poisso-
nian, high above threshold. In 1987, however Machida,
Yamamoto, and Itaya demonstrated generation of sub-
Poissonian light by a semiconductor laser (Machida
et al., 1987). The key point was the control of pumping
noise, which had masked the quantum character of laser
light in previous experiments. A correct understanding
of the sources of quantum noise in lasers, starting with
the pioneer work of Golubev and Sokolov (1984), was
essential for these new developments. Generation of
sub-Poissonian radiation in the microwave region has
also been demonstrated in masers operating in the mi-
croscopic regime (Rempe et al., 1990), even without con-
trol of pumping noise. The inhibition of intensity fluc-
tuations in this case is due to a stabilization mechanism
stemming from a negative differential gain, which is re-
lated to the suppression of spontaneous-emission noise.

Another quantum-mechanical twist came with the dis-
covery of twin-photon beams, which are generated in
certain crystals on pumping by a light beam. The two
photons are emitted simultaneously, the sum of their fre-
quencies being equal to the frequency of the pump. The
same process occurs in two-photon lasers and masers.
The fact that they are emitted simultaneously implies
that their fluctuations are highly correlated. In the non-
degenerate case, in which the two photons differ in fre-
quency, polarization, or propagation direction, it is pos-
sible therefore to obtain fluctuations below shot noise in
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the difference of intensities. A noise reduction factor of
86% below the classical level was achieved by Mertz
et al. (1991). Furthermore, the fluctuations in one of the
beams can be counteracted by monitoring the behavior
of the other beam. This active-control technique has
been demonstrated in several labs.

One can see that the attitude expressed by Einstein in
the quotation that began this section (cited by Pais,
1982) is still justified today. In recent years, several re-
view papers have been devoted to the production and
applications of nonclassical light (Walls, 1983; Loudon
and Knight, 1987; Teich and Saleh, 1989; Reynaud, 1990;
Yamamoto et al., 1990; Fabre, 1992; Kimble, 1992; Rey-
naud et al., 1992; see also the special issues Journal of
the Optical Society of America B4, 1987; Journal of
Modern Optics 34, 1987; and Applied Physics B 55,
1992).

This paper reviews recent work on the generation of
sub-Poissonian light, with emphasis on the basic con-
cepts involved. Several methods are discussed, but par-
ticular attention is given to active devices (lasers and
masers). This distribution of emphasis is dictated by the
fact that the production of nonclassical states by passive
systems has already been extensively covered by previ-
ous reviews, and possible applications of this kind of
radiation have also been discussed in detail (see, for in-
stance, Yamamoto et al., 1990). This does not seem to be
the case, however, for lasers and masers. In fact, detailed
studies of the possibilities of nonclassical light genera-
tion in these devices have led to generalizations of laser
theory, on the fundamental side, and to hopes of pos-
sible application as bright sources of low-noise radiation.

In Sec. II, some of the basic notions related to non-
classical states of light are reviewed, with a discussion of
the connections between several useful concepts, includ-
ing squeezing, sub-Poissonian behavior, and antibunch-
ing. Some applications are also discussed, but a review
of the main experimental achievements is left to Sec. III.
In Sec. 1V, a general analysis is provided of the sources
of quantum noise in lasers and masers, with emphasis on
the physical principles involved. The following two sec-
tions are devoted to the presentation and discussion of
the quantum theory of these devices. Section V presents
the derivation of a generalized master equation for the
corresponding field density matrix. Section VI intro-
duces the Langevin approach, which allows a detailed
treatment of the atomic dynamics and its effects on
quantum-noise reduction. Section VII discusses the pos-
sibility of generating dispersion-free photon-number
states using quantum non-demolition measurements.
Section VIII discusses some general results on two-
photon devices. Section IX contains conclusions and a
tentative outlook.

Il. NONCLASSICAL LIGHT
A. Standard quantum limits

Quantum mechanics imposes fundamental limits on
electromagnetic field measurements. Let us consider the
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electric field operator corresponding to a mode of the
electromagnetic field in a cavity with volume V, with
angular frequency w, at time ¢ (assumed for simplicity to
be linearly polarized):

R Ey . . ..

E(t)=7(ae ot gleioty, 2.1)
where Ey=(hw/V)"? is the one-photon field, 4 and a’
are the photon annihilation and creation operators, with

[d,a"]1=1, and the hats identify operators. The electric
field can be rewritten as
E(t)=Ey(Xcoswt + Ysinot), (22)

where X and Y are the quadrature component opera-
tors, given by

X=LYa+a"h, Y =-ika-ah, (2.3)
so that
oo
[X.Y]=5. (2.4)

The quadratures X and Y correspond to the position
and momentum operators of an harmonic oscillator, as
can be seen from their definitions (2.3).

From (2.4) it follows that the product of the disper-
sions in the measurements of the two quadratures X and
Y satisfies a Heisenberg inequality:

AXAY=1, (2.5)

where AX=((AX?))"2.

For coherent states (Glauber, 1963b, 1965; Sudarshan,
1963; Klauder and Skagerstam, 1987), the above relation
is satisfied as an equality, and the two dispersions are
identical: AX=AY=1/2. A coherent state of the field
corresponds to a displaced harmonic-oscillator ground
state, and can be obtained from the vacuum state
(ground state of the harmonic oscillator) by applying to
it a displacement operator:

|a)=D()[0)=exp(ad’~ a*)[0). (2.6)
where a=|a|exp(i¢) is a complex number, correspond-
ing to the phasor representation of the electromagnetic
field in an Argand diagram. The state |a) is an eigen-
state of the annihilation operator a:

ala)=cala), 2.7
and, as shown by Glauber (1965), it is the state of the
field generated by a classical current. The expansion of
|@) in terms of Fock states of the field (eigenstates of the
number operator i=d'd) is given by

a

WW’

|oz>=e““‘2/220 (2.8)

corresponding to a Poisson distribution of the photon
number:
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2n
pm)=Inla)?=expl— a1
—exp(—(m) " (29)
" |

For this distribution, one has ((An)?)={(n).
Using Eq. (2.8), it is easy to derive the completeness
relation

1

;j d’ala)(a|=1, (2.10)
as well as the relation

[(ala")*=exp(—|a—a']?), (2.11)

so that coherent states do not form an orthonormal set,
implying that Eq. (2.10) is actually an overcompleteness
relation.

B. Squeezed states

Applications in communication or precision measure-
ments require only one of the quadratures of the field. It
is thus possible to circumvent the quantum limitation
expressed by the Heisenberg inequality by reducing the
fluctuation in one of the quadratures below that of a
coherent state, at the expense of increasing the noise in
the other quadrature, preventing the Heisenberg in-
equality from being violated. We call such states
squeezed states (Stoler, 1970, 1971; Yuen, 1975, 1976).
Frequently this name is reserved for the states with a
product of dispersions saturating the Heisenberg rela-
tion. One should note, however, that for the applications
mentioned above, this characteristic is not essential, the
main requirement being the reduction of quantum fluc-
tuations in the quadrature to be used for transmission of
a signal or for a precision measurement.

A special class of squeezed states of the minimum-
uncertainty type may be obtained by applying to the
vacuum state the unitary transformation (Caves, 1981)

U(é=exp[(&a°— &' ?)2], (2.12)
where é=re'? is an arbitrary complex number. It is easy
to show that this transformation amounts to compress-

ing and stretching the two rotated quadratures X' and
Y’, defined by

X'+iV'=(X+iY)e 2. (2.13)
Indeed,

UNOX'U=X"e",

Ut y'ue=y'e’, (2.14)
so that the variances become, in the state
1£)=U(£€)]0),

1
(Eax?g=g e, (2.152)

and
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1

(E|AY 2| &)= 4—e2'. (2.15b)

The above transformation has therefore the effect of
producing a squeezed state with noise below that of a
coherent state in a quadrature making an angle 6/2 with
respect to the phase-space axes, as shown in Fig. 1. The
parameter r is the squeezing factor, and the state |£) is
called squeezed vacuum, even though its average photon
number is different from zero. Indeed,

(éla*al¢)=sinh’r. (2.16)

A more general class of states can be obtained by first
squeezing the vacuum, and then displacing it (Caves,
1981):

|a,&)=D(a)U(§)]0). (2.17)

Equations (2.15) remain valid for these states. The aver-
age photon number is now given by

(a,€|dd|a,&)=|a|*+sinh?r. (2.18)

Coherent squeezed states may also be defined by first
displacing the vacuum state, then squeezing it (Yuen,
1976). The final results are equivalent, so long as the
squeezing and displacement parameters are translated

properly.

C. Quasiprobabilities

A convenient way of representing the states of the
field is through quasiprobability distributions. They al-
low one to write down quantum expectation values of
operators as integrals of the corresponding classical
quantities weighted by the distribution function corre-
sponding to the state. These representations depend on
the chosen order of the operators in the quantum aver-
ages, since in the c-number integral this order is irrel-
evant. Thus, for normal ordering (annihilation operators
to the right, creation operators to the left), one has, for a
one-mode field:

((ﬁT)M&”>=Tr[p(ﬁT)"1é"]=J (a*)"a"P(a)d*a, (2.19)

where P(a) is the Glauber-Sudarshan representation
(Glauber, 1963b; Sudarshan, 1963). This distribution is
very useful from the computational point of view, since
it reduces quantum averages to quasiclassical integrals.
However, it suffers from pathological behavior, espe-
cially when squeezed states are considered. For a coher-
ent state, p=|aglay|, so that Tr[p(a’)"(a)"]
=(a})™af, which corresponds to P(a)=6?(a— ay)
in the above integral. Thus, the normal-ordering repre-
sentation of a coherent state may be taken as a delta
function (due to the overcompleteness of the coherent
states, this representation is not unique). For squeezed
states, P(a) becomes negative, thus justifying the desig-
nation “nonclassical” for these states. This may be seen
by the following explicit calculation:
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(G+a"2—(a+a"h?)

(a®°+a"*+2a"a+1)—(a+a")?]

(
[
=%[1+fdz“P(a)[(a+a*)2—<a+a*>2] ;

(2.20)

which shows that (AX?)<1 only if P(«) is not positive
definite. The constant contribution 4 on the right-hand
side of the above expression comes from the commuta-
tor of 4 and a' in the process of normal-ordering the
original expression. It is thus a manifestation of the
quantum character of the field (“shot noise”). Equation
(2.20) may be written in a more compact form in the
following way:

(AX?y=1+(AX%), (2.21)

where the double dots indicate the normal form of the
operator.

For antinormal ordering, one has the Q representa-
tion, which can be obtained immediately by inserting
Eq. (2.10) into the corresponding quantum-mechanical
average:

1
(a™(a")"y= ;f d’a (alp|la) a™ (a*)", (2.22)
so that
1
0()= 1 (alplo) 02y

It is clear that this representation is always positive,
since p is a positive-definite operator. Also,
|O(a)|<1/m. For a coherent state |a,), one gets from
Eqgs. (2.11) and (2.23) that Q(a)=(1/m)exp(—|a—a|),
i.e., O(«) is a Gaussian in phase space. The section of
this Gaussian with radius 3 may be used to represent the
coherent state in phase space, the radius corresponding
to the dispersion in the measurements of the quadra-
tures of the field. Analogously, the squeezed states
|a,€) may be represented in phase space by ellipses.
This is displayed in Fig. 1, which also exhibits the effect
of the transformation (2.12) on the vacuum state. Note
that, in terms of the Q representation, the equation
equivalent to Eq. (2.20) is

(AX%y=i[(a*+a"+2daa"—1)—(a+a")?]

=4l[—1+fdzaQ(a)[(a+a*)2—<a+a*>2] ,
(2.24)

and therefore squeezing now implies that the integral on
the right-hand side must be smaller than 2 (it is neces-
sarily larger than 1, since (AX?)>0).

Symmetrical ordering of the operators leads to the
Wigner representation W(a) (Wigner, 1932; Hillery
et al., 1984). This can be shown to be always nonsingular
(although it may still attain negative values). Moreover,
for the squeezed states |a, &), it is always positive. Note
that the equation equivalent to Eq. (2.20) is now
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FIG. 1. Vacuum state and squeezed vacuum. The squeezed
state is obtained from the vacuum state by applying the trans-
formation (2.12).

(AXH=1i[(a*+a"+aa"+a'ay—(a+a")?*]

—i [ Paw@l(at a2 (ata). 29

Therefore, for the Wigner representation the dispersion
is given directly by the c-number integral; there is no
shot-noise term. Of course, the final result should be
independent of the representation.

Still other representations have been defined. Thus, a
generalization of the Glauber-Sudarshan representation
was proposed by Drummond and Gardiner (1980): the
positive-P representation is a function of two complex
variables satisfying

{(aT)™ a">=f d’a d*B P(a,B)(B*)"a". (2.26)

It is always positive and nonsingular, at the expense,
however, of doubling the number of variables in phase
space.

D. Number-phase squeezing

A related, though not equivalent, class of quantum-
noise-compressed states are the number-phase squeezed
states. The precise definition of these states requires the
introduction of an operator corresponding to the phase
of an electromagnetic field, which is an old problem in
physics, first attempted by Dirac (1927). This question
was analyzed in detail by Susskind and Glogower
(1964). A Hermitian phase operator was introduced by
Pegg and Barnett (1988, 1989). For a coherent state
|a@), with |a|>1, its average value coincides with the
phase of «, while its variance is given by
(A¢p?*)=1/4(n) (Barnett and Pegg, 1989). Note that the
same value for the dispersion would be obtained from a
phase-space picture, in the limit of large average photon
number, as shown in Fig. 2. Since, for a coherent state,
the photon-number variance is given by ((An)?)=(n),
we have (An?)(A¢?)=1/4, which represents the stan-
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FIG. 2. Phase uncertainty for a coherent state |a).

dard quantum limit in this case. Squeezing in photon
number or in phase is obtained when the respective dis-
persions get smaller than those for a coherent state. The
corresponding states are also “nonclassical,” in the same
sense as for quadrature-squeezed states. In fact, for the
photon-number variance, one has

(An?)=(n)+((a'd*aa—(a"a)*)), (2.27)
or, using the Glauber-Sudarshan representation,
<An2>=<n>+f d*aP(a)(|al*~(lal?))*. (2.28)

This is the equation displayed in the introductory
section—Eq. (1.2)—specialized to the one-mode case.
As discussed before, (An?y<(n) only if P(a) is not
positive definite. For a classical field, Eq. (2.28) exhibits
explicitly the dual nature of light: the first contribution
on the right-hand side is a corpusclelike contribution
(shot noise), while the remaining term is characteristic
of wave fluctuations. However, while for a thermal or a
coherent field this separation is clear cut, this is not so
for a squeezed state, since the integral in this case be-
comes negative, and therefore also reflects the quantum
nature of the state.

E. Relation between quadrature and number squeezing

Quadrature squeezing and photon-number quenching
are not equivalent: squeezed states may have super-
Poissonian photon statistics, and sub-Poissonian states
are not necessarily squeezed.

Indeed, for the Fock state |n), which has zero vari-
ance in photon number, one has

(AXH=(AY*)=5(2n+1)=1. (2.29)

On the other hand, the photon-number variance for
the squeezed states |a,£) given by Eq. (2.17) is

(An?)=|a coshr — a*e'%inhr|*+2 cosh’rsinh?r.  (2.30)
Setting a=|a|e’?, then for =2 ¢+ 7, one has
(An?)=|al?e?"+2 sinh’rcosh?’r. (2.31)

This corresponds to a squeezing that is 7/2 out of phase
with the complex field amplitude (phase-squeezed state),



L. Davidovich: Sub-Poissonian processes 133

0 X 0 X

FIG. 3. (a) Phase-squeezed state. (b) Amplitude-squeezed
state.

as shown in Fig. 3(a). In this situation, the state has in-
creased amplitude fluctuations compared to a coherent

state, and the photon-number statistics is super-
Poissonian.
On the other hand, for =2 ¢, one finds
(An?)=|a|?e”?"+2 sinh?rcosh?r. (2.32)

The squeezing is now in phase with the complex ampli-
tude, and the corresponding state is called an amplitude-
squeezed state —see Fig. 3(b). The first term on the
right-hand side represents the contribution of the
squeezed amplitude, while the second term is associated
with the photon-number fluctuations in the correspond-
ing squeezed-vacuum state. For sufficiently large aver-
age photon numbers, that is, for |a|?>2e? sinh’*rcosh?r,
the first term dominates over the second, and one gets
an amplitude-squeezed state with sub-Poissonian photon
distribution. For r~1, so that the dispersion in the am-
plitude is reduced by a factor e '~0.37, this corre-
sponds to |a|?>>50. Under these conditions, one has also
(n)=~|a|?, so that, using Eq. (2.15), one may write

(An?)~|al?e 2 =4(n)(AX"?), (2.33)

which exhibits a simple relation between the dispersion
in the photon number and the dispersion in the ampli-
tude quadrature. Note that for r=1, one gets
An?~0.14(n), already a highly sub-Poissonian state.
The relation (2.33) corresponds to the classical relation
between intensity and amplitude fluctuations, valid for
small fluctuations:

== 81~2. 25 4=(6)>~4 72(5.7)*. (2.34)

One should note, however, that Eq. (2.33) refers to dis-
persions of operators. In particular, writing as in Eq.
(221) (AX'?)=3+(:AX’?:), one may write Eq. (2.33)
as

(An®)~(n)+4(n)(:AX"%). (2.35)

On the other hand, for a fixed value of the average
number of photons, and as the squeezing factor r in-
creases from zero, one gets first a sub-Poissonian distri-
bution and then, for sufficiently large r, a super-
Poissonian distribution. The latter occurs when
(An?)y>(n), or |a|’e”? +2sinh’r cosh’r>|af>+sinh?r.
For |a|?>1, this relation will be satisfied by r such that
cosh’7>1 and sinh?r cosh?r~¢*/16, so that the inequality
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FIG. 4. Q representation of a laser field highly above thresh-
old. The average number of photons is taken as 50 for illustra-
tion purposes.

becomes e’ >8|a|?, or r>in(8|a?). For |a|?=1000,
this yields r>2.25, corresponding to amplitude squeez-
ing by a factor ¢ "~0.11. The minimum dispersion in
photon number is obtained by minimizing Eq. (2.32).
For r>1, one may approximate as before
sinh?r cosh’r~1xe*", getting then the minimum value of
Eq. (232) for r=3%In(4|af?), corresponding to
(An?) 1in=0.94| a|**~({n))??. The fact that the photon-
number distribution becomes super-Poissonian as the
squeezing increases can be heuristically understood
from Fig. 3(b): as the uncertainty ellipse becomes more
compressed, the range of intensities (squares of the dis-
tances to the origin) associated to the points within it
becomes larger and larger, resulting in a wider photon-
number distribution.

The relation (2.33), or equivalently (2.35), is actually a
very useful one, since it allows the computation of the
photon-number variance, which involves a fourth-order
correlation of field variables, in terms of the amplitude
quadrature variance, which involves second-order corre-
lations. We have demonstrated that this relation holds,
under some conditions, for the squeezed states | a,&). Its
range of validity is much wider, however. It can be ap-
plied, for instance, to a laser far above threshold. The
corresponding photon-number distribution can then be
shown to be very approximately Poissonian, but the
phase distribution is completely random, so that the as-
sociated Q representation looks like a “volcano ring,” as
shown in Fig. 4. Note that, contrary to what happens to
the amplitude-squeezed state displayed in Fig. 3(b), the
region around the peak of the distribution remains equi-
distant from the origin, and the applicability of the rela-
tion (2.33) in this case follows from the fact that the
amplitude fluctuations go to zero as the laser intensity
increases, as will be shown in Sec. V.

Fourth-order correlations of field variables offer a
more detailed description of the statistical behavior of
the field, and unveil further nonclassical properties. One
such is the phenomenon of antibunching, which we re-
view next.
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F. Photon antibunching

Intensity-correlation experiments have provided pow-
erful tools in astronomy, since they allow the determina-
tion of the angular diameter of distant stars (see, for
instance, Mandel and Wolf, 1965; Nussenzveig, 1974).
The first experiment was conducted by Hanbury-Brown
and Twiss (1956). The measured quantity is the joint
probability of counting a photon at ¢ and another at
t+ 7. This probability is, according to Glauber (1963a),
proportional to the normal-ordered correlation function

GA(r)=CA()A(t+1)1), (2.36)

where the double dots indicate normal ordering, and
n(t) is the photon-number operator at time 7. The fact
that G® does not depend on ¢ is characteristic of a
stationary process. The second-order degree of coher-
ence is defined as

@ry= S0 (2.37)
¢ Tl ‘
This quantity describes whether the photons in the beam
tend to group together or stay apart. If g (7)=1, the
probability of joint detection coincides with the prob-
ability of independent detection. This should be the case
when 7—o0, since in this case the memory of the first
photodetection dies out. If g®(7)<g®)(0), the prob-
ability of detecting the second photon decreases with the
time delay, indicating a bunching of photons. If on the
other hand g®(7)> g%(0), the probability of detecting
the second photon increases with the time delay, which
is characteristic of photon antibunching.

For a single-mode field (not necessarily monochro-
matic), one has

(a" a' a a)
((a" a))* -
If this mode is in a coherent state, we have

2@ (0)=1. On the other hand, for a Fock state |n), with
n=2, one has

g2 (0)= (2.38)

1
gP(0)=1--. (2.39)

while for n=0 or n=1, one finds trivially that
g?(0)=0.

More generally, if the state of the field is described by
the Glauber-Sudarshan distribution P({«a; ,}), it follows
from Egs. (2.36) and (2.37) that
Jd{ap JP(ap D) (il ap )’

(Tl e o)

JP{ap DIZi (g > = (| ag
(Zilai*)?

g (0)=

2\\12
=1+ DY

(2.40)

This equation establishes that, for classical fields, with
P({@j})=0, one should have g®(0)=1. It follows
also, by applying the Schwarz inequality to the classical
correlation function corresponding to Eq. (2.36), that
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one should always have g(®(7)<g(®(0), so that classi-
cal fields are never antibunched (Loudon, 1980, 1983).
Therefore, the two properties g*>(0)<1 and
gP(7)>g@(0) are characteristic of nonclassical light
[an instance of the first property is provided by Eq.
(2.39)]. Since g®(7)—1 when 7—o, the property
g®(0)<1 always implies that there is antibunching for
some range of values of 7 [unless g(>)(7) is independent
of 7].

The relation between antibunching and sub-
Poissonian statistics is a subtle one (Mandel, 1986; Zou
and Mandel, 1990). In fact, from Eq. (2.38), one can
show the following relation between the second-order
degree of coherence and the photon-number variance,
for a single-mode field:

(An?)—(n)

(m)>

Therefore, in this case sub-Poissonian statistics implies
g (0)<1, which, unless g®(7) does not depend on 7,
implies antibunching for some range of 7. On the other
hand, one cannot say in general that antibunching leads
to sub-Poissonian statistics, since g*)(7)>g®(0) does
not necessarily imply g(*)(0)<1. In fact, for a stationary
field the variance of the number of photons measured by
a photodetector during a counting interval 7 can be ex-
pressed in terms of g(2)(7) in the following way (Zou
and Mandel, 1990):

g?(0)=1+ (2.41)

(n>2 +T
anty=m) = [ an -1 ig 11 )
If g?(r)<1 for all 7, the field will exhibit sub-
Poissonian statistics. One could have, however,
g (7)>g®(0), while still having super-Poissonian sta-
tistics for some time interval. Furthermore, for a single
monochromatic mode, g®(7) does not depend on 7,
and coincides with the value for 7=0. In this case,
g(z)(O) <1 does not imply antibunching for any counting
interval, since neither short or long time intervals be-
tween photons are favored.

An example of a field that is sub-Poissonian and
bunched may be constructed using two modes with par-
allel K and the same polarization s, but different fre-
quencies w; and w, (Zou and Mandel, 1990). Placing an
equal number n/2 of photons in each mode, one finds

(2) 1 1
g (T)=1—;+§COS[(w1—w2)T], (2.43)
so that, using Eq. (2.42),
1[sin(w;—w,) T2]* 1
2\ N \2] i
(An*)y—(n)=(n) (2 (o1—wy) T2 ol (2.44)

It follows that for certain time intervals, for example
T=2m/|w;— w,|, the photon-counting statistics are sub-
Poissonian. On the other hand, the slope of g®)(7) is
negative for 7=0, so that the photons exhibit short-time
bunching.
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FIG. 5. Method of homodyne detection.

Bunching occurs in a thermal field; this property is
used in stellar interferometry to find the angular diam-
eter of stars. On the other hand, antibunching was pre-
dicted for the fluorescence of a single atom subjected to
a resonant laser field (Carmichael and Walls, 1976a,
1976b; Kimble and Mandel, 1976; Cohen-Tannoudji,
1977). As mentioned in the Introduction, the physical
origin of this phenomenon is the dead time between the
emission of a photon by an atom undergoing de-
excitation and the subsequent emission of a second pho-
ton by the same atom, which requires its reexcitation.

G. Measurement of quadrature squeezing

Several methods have been proposed to measure
quadratures of the electromagnetic field (for a review,
see Loudon and Knight, 1987). The general idea is to
mix the signal to be detected with an intense coherent
signal, called local oscillator, before detection (Yuen and
Shapiro, 1980; Caves, 1981; Yuen and Chan, 1983; Schu-
maker, 1984).

The discussion here is restricted to the method of bal-
anced homodyne detection, sketched in Fig. 5. The field
to be measured (complex amplitude E,) is sent on a
beam splitter, together with a coherent field (complex
amplitude E,) with the same frequency. One then mea-
sures the difference of intensity of the two beams emerg-
ing from the beam splitter (complex amplitudes £, and
E ;). The detection is said to be balanced when the mir-
ror transmits 50% of the incident light.

Let r and ¢ be the reflection and transmission coeffi-
cients of the mirror, respectively. One has then

E.=rE,—tE,, (2.45a)

E,=tE,+rE,, (2.45b)
or, in matrix form,

E. r —t\[E,

E;) =\t E,|- (2.46)

Energy conservation (assuming that losses are negli-
gible) implies that

|ELP+[Eql?=|E > +]Ep|*. (2.47)
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From Egs. (2.46) and (2.47), one finds
| +]e|*=1, (2.482)

rrt—rt*=0. (2.48b)

If one takes r real and equal to \/;, it follows from
Eq. (2.48) that t=+(1—7)"2 Choosing the positive
sign, one has then

E, Vno —V1-7

E, vi—7 V7
Normalizing the intensity to the photon number, and

introducing the annihilation operators through

Eb—>bA,

E,
Ey

(2.49)

E,—a,
Ec_>éa Ed_>d’

one gets, from Eq. (2.49),

é=\pa—\1—1b, (2.50a)
d=\1—na+nb. (2.50b)

For balanced detection, »=1/2, so that
JE A
=7 (a—b),

A1 N
=—=(a+b).
d \/z(a b)

Note that the conditions (2.48) imply that the trans-
formation between the field operators corresponding to
Eq. (2.46) is unitary (this is the requirement for opera-
tors that corresponds to energy conservation for the
classical fields).

The difference between the intensities of the fields
E, and E. is given then by

I=d'd—¢fé=ath+bta. (2.51)

Assuming that the field E;, can be described classically
(as would be the case for a coherent state with large

average photon number), one replaces b Dby
B=Be 1(“'*9 5o that Eq. (2.51) becomes
I=B[ae '+ 0+ gt il0tT07], (2.52)
Since d=daye ', one gets finally
I=B(dje!’+aje 7). (2.53)

This equation shows that the difference in intensity,
measured by the method of homodyne detection, is di-
rectly proportional to the quadrature X (6) of the field
E,, defined by

f((a)=i(& etf+ale (2.54)
N 0 . .
Therefore, by detecting the difference in intensity as the
phase of the local oscillator £, is changed, one can mea-
sure an arbitrary quadrature of the field E£,. In actual
experiments, the phase of the local oscillator is adjusted
to yield the maximum possible quadrature squeezing.



136 L. Davidovich: Sub-Poissonian processes

The shot-noise level is determined by blocking the signal
field, so only the local oscillator field reaches the detec-
tor. The results of the measurements are spectrally ana-
lyzed, allowing determination of the amount of squeez-
ing as a function of the frequency.

H. Effect of dissipation

Dissipation can be simulated by the beam splitter in
Fig. 5, if one assumes that the field E,, is in the vacuum
state. Indeed, in this case, the field £, contains the two
outcomes of a dissipation process: an intensity-reduced
contribution from the signal field E,, and an admixture
of Poisson noise, associated with the vacuum field E,,.
From Eq. (2.50a), one has

(Ac?)y=n(Aa®)y+(1-7)(Ab?), (2.55)
so that, since (Ab%)=1/4,
(Ac®)—i=n((Aa®)—]). (2.56)

Therefore, the smaller 7 is (simulating a stronger dissi-
pation process), the closer the variance of ¢ will be to
the shot-noise level: dissipation spoils squeezing, and ¢
will be less squeezed than 4.

I. Applications of sub-Poissonian light

Applications of squeezed light have been extensively
discussed in the literature (Yamamoto et al., 1990; Rey-
naud, 1990; Walls and Milburn, 1994). For this reason,
only a brief summary will be presented here, restricted
to some of the most important applications envisaged
for sub-Poissonian light.

One of the main possible applications of sub-
Poissonian beams of light is in communication (see, for
instance, Yamamoto et al., 1990), where one wants to
use signals with the lowest possible intensity, and the
least possible-noise. Since dissipation strongly affects
quantum-noise compression, one usually envisages
short-distance communications with low losses, for in-
stance through optical fibers in a local network. A com-
munication system based on photon counting would in-
volve on and off pulses (intensity modulation). An error
rate of 10”7 is considered to be the maximum tolerable.
This error arises because, for a given pulse, there is a
photon-number distribution that allows for a finite prob-
ability of having O photons. Indeed, for the Poissonian
distribution (2.9), one has p(0)=exp(—{n)), so that
p(0)<10~? implies that the average number of photons
in the pulse should be larger than 21. If in addition one
assumes that on and off pulses are sent with equal prob-
abilities, one finds that the average number of photons
should be larger than 10.5. This number is very close to
the best sensitivity obtained for photon communication,
of the order of 50 photons per pulse (Levine and Be-
thea, 1984). Sub-Poissonian pulses would allow reduc-
tion of the minimum average photon number, while still
keeping the bit error smaller than 10~°.

A cavity containing a Fock state of the field was pro-
posed by Braginsky and Vorontsov (1974) as an ex-
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tremely sensitive sensor for small vibrations, which
could be used in the detection of gravitational waves.
Their idea was to couple such a cavity to a massive bar,
and measure the change in the number of photons due
to conversion of vibration phonons. The fact that the
photon number in the cavity is dispersion-free allows the
detection of very small changes in the photon number,
which is essential for the detection of the very weak
forces associated with gravitational waves (Caves et al.,
1980).

Several proposals have been made to increase the
maximum sensitivity of interferometric detectors of
gravitational radiation by using squeezed light (Caves,
1980; Unruh, 1983; Bondurant and Shapiro, 1984; Jackel
and Reynaud, 1990; Pace et al., 1993).

The detection of gravitational waves is but one ex-
ample of the extremely precise measurements made pos-
sible by the utilization of squeezed light. Extensive dis-
cussion can be found in the literature on methods for
measuring very small phase shifts in Mach-Zender inter-
ferometers (Grangier et al., 1987; Xiao et al., 1987), on
the application of squeezed light to increase the sensitiv-
ity of gyroscopes (Ezekiel et al., 1978; Dorschner et al.,
1980; Chow et al., 1985), and on spectroscopy with reso-
lution below the natural linewidth (Gardiner, 1986; Gar-
diner et al., 1987; Parkins and Gardiner, 1988; Polzik
et al., 1992). Noise decrease in interference measure-
ments through the use of sub-Poissonian laser radiation
was discussed by Kolobov and Sokolov (1986).

Photon-number noise can also be reduced in the dif-
ference of twin-photon beams, generated by nonlinear
processes that result in the simultaneous emission of two
photons. The intensity fluctuations in the two beams are
highly correlated. This can be used for instance in very
precise measurements of absorption, by letting one of
the beams cross the resonant sample, and analyzing the
low-noise difference in intensities.

lll. EXPERIMENTS

In recent years, several experiments have demon-
strated the production of nonclassical light. In spite of
the large multiplicity of methods and media, one can
recognize four main classes of processes: (i) processes in
which the atomic medium is essentially passive, playing
the role of a nonlinear refraction index—this is the case
of parametric processes and second-harmonic genera-
tion; (ii) processes in which atoms play an active role,
through their coherence and exchange of energy with
the field—this is the case in resonant atomic fluores-
cence, optical bistability, and sub-Poissonian lasers and
masers; (iii) processes in which there is simultaneous
emission of two nondegenerate photons, leading to re-
duced quantum noise in the difference of intensities—
both parametric devices and two-photon lasers can be
used for this purpose; and (iv) processes in which
quantum-noise reduction results from information ob-
tained through measurements—this is the case for
active-control techniques, in which the measurements
are used to counteract the fluctuations of the light beam,
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and for state-vector projection obtained by continuous
monitoring of the system, for instance through quantum
nondemolition measurements. In the following, the
main experimental achievements are summarized. They
are grouped according to the techniques and media in-
volved.

A. Parametric processes

Most of the experiments leading to the production of
squeezed states are based on parametric processes,
originating from nonlinear optical devices. The process
of parametric amplification is well known from the
swing example: the modulation of the length of a swing
with a frequency twice its oscillation frequency leads to
amplification of one of the quadrature components, and
exponential damping of the other. In nonlinear devices,
it is the index of refraction that is modulated by a pump
field, in such a way that one of the quadrature compo-
nents of the signal field is amplified, and the other is
damped, thus generating a squeezed state.

That a nonlinear medium is essential for obtaining
squeezing can be seen from Eq. (2.12). Indeed, the
squeezing operator can be interpreted as corresponding
to a time-evolution operator, generated by a Hamil-
tonian quadratic in the field operators (Yuen, 1975,
1976):

Ao
H= E( p*a’+ nat?), (3.1)
with & in Eq. (2.12) related to # through ¢=int. This
Hamiltonian describes the creation or annihilation of
pairs of identical photons. The pump field is described
by a ¢ number, and its amplitude E, is incorporated into
the coupling constant. If nzx(z)Ep, where x is the
nth-order susceptibility, one has a degenerate parametric
down-conversion or degenerate three-wave mixing: in this
case, the frequency of the pump field is twice that of the
signal field. If on the other hand 7;=X(3)E12,, one has
degenerate four-wave mixing and the frequency of the
pump field is equal to that of the signal field. While in
the first case one photon of the pump field generates two
photons of the signal field (hence the name “three-wave
mixing”), in the second case one needs two photons of
the pump field in order to produce two photons of the
signal field (thus yielding a four-wave mixing). Of

course, dissipation must also be taken into account.

More generally, one can have the two photons of the
signal field belonging to modes differing in propagation
direction, polarization or frequency, leading to the cor-
responding nondegenerate processes. If w, and w; are
the frequencies of the two modes (conventionally
termed signal and idler beams), and w,, is the frequency
of the pump field, one has w,=w;+ w; for three-wave
mixing, and 2w, = o+ w; for four-wave mixing. The two
processes are illustrated in Fig. 6. Conservation of pho-
ton momentum requires that l€p=l€s+l€i for three-wave
mixing and 21€p=l€s+l€i for four-wave mixing (phase-
matching conditions). This is a limiting factor in the first
case, since then the frequency of the pump field is quite
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FIG. 6. Three- and four-wave mixing in the parametric ampli-
fier. (a) Three-wave mixing. (b) Four-wave mixing.

different from the frequency of the signal and idler
waves, implying quite different values for the nonlinear
index of refraction, so that the relation w,= w,+ w; does
not imply conservation of momenta for aligned beams:
proper nonlinear crystals and frequencies must be cho-
sen to satisfy the phase-matching condition. This condi-
tion is easier to satisfy in the four-wave-mixing case,
since then w, is close to w; and w;: it suffices to choose
an appropriate angle between the three signals [see Fig.
6(b)]. The nonlinearity can be enhanced by making the
process resonant, so that the pump field induces a tran-
sition between two atomic levels. This has, however, the
disadvantage of leading to population of the excited
level, which may decay spontaneously, thus generating
noise which spoils squeezing. One should look therefore
for a compromising detuning: small enough to enhance
the wave-mixing process, but not so small as to produce
too much spontaneous-emission noise.

Since the second- and third-order susceptibilities are
very small, the medium is usually placed inside a high-
Q cavity, causing the system to oscillate, thus enhancing
the nonlinear coupling. In this case, one has an optical
parametric oscillator. The squeezing effect is more pro-
nounced close to the oscillation threshold, where the
fluctuations of the amplified component diverge. Due to
conservation of phase-space volume for the Hamiltonian
process governed by Eq. (3.1), this implies compression
of the fluctuations associated to the other quadrature
component. The validity of this argument depends of
course on the absence of loss for the two quadratures,
either through dissipation or through nonlinear fre-
quency conversion. Large squeezing of the transmitted-
signal mode was predicted in the degenerate optical
parametric oscillator near the oscillation threshold
(Yurke, 1984; Collett and Gardiner, 1984; Collett and
Walls, 1985).

Measurements of squeezing usually employ the tech-
nique of homodyne detection, spectrally analyzing the
intensity difference between the signal and the local os-
cillator field (see Sec. II.G.). One searches for squeezing
as a function of frequency, the desirable feature being a
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large reduction of quantum noise in a wide frequency
band. The first experimental observation of squeezing
was made by Slusher et al. (1985), using resonant four-
wave mixing in a sodium atomic beam, the interaction
taking place inside an optical cavity. They observed am-
plitude squeezing 16% below the shot-noise level. This
result was strongly affected by the spontaneous-emission
noise mentioned above.

A nonresonant four-wave-mixing experiment was per-
formed by Shelby et al. (1986) in a single-mode silica
fiber, cooled to 1.4 K to suppress the phonon-scattering
noise. They observed squeezing of 17% below shot
noise. In this case, squeezing is spoiled by fluctuations in
the index of refraction due to Brillouin scattering
(Shelby et al., 1985).

Four-wave mixing squeezing without an optical cavity
was observed by Maeda et al. (1986), using a dense so-
dium medium.

Three-wave mixing has allowed better results. Wu
etal. (1986, 1988) measured quadrature amplitude
squeezing of 63% (—4 dB) below the shot-noise level,
with a balanced homodyne detection of the nearly de-
generate transmitted-signal beam. The nonlinear me-
dium was a MgO: LiNbO; crystal, placed inside a high-
QO optical cavity, and pumped by the frequency-doubled
output of a 1.06 um Nd:YAG laser. Correcting the result
for the detection-circuit quantum efficiency and the cav-
ity internal loss, it was possible to show that the noise
level of the cavity field was 90% (—10 dB) below shot-
noise level. In spite of the more difficult situation with
respect to phase matching, as mentioned before, the
process of three-wave mixing has two advantages over
the four-wave-mixing method: first, the lower-order non-
linearity allows significant signal levels in a nonresonant
situation, thus eliminating spontaneous emission noise;
and second, since w,= w,+ o;, the pumping frequency is
quite different from the signal frequencies, which allows
easy elimination of noise associated with the pump field.

B. Second-harmonic generation

Second-harmonic generation may be considered as in-
verse to parametric downconversion: the pump field
with frequency , generates a field with frequency
2w, . Again, maximum squeezing is obtained near the
oscillation threshold for the field with frequency 2w,
due to critical fluctuations in one of the quadrature com-
ponents. Amplitude squeezing was demonstrated by
Pereira et al. (1989) and by Sizman et al. (1990). Both
groups used a crystal of MgO: LiNbO ;. While the first
group placed the crystal in an optical cavity, the second
used a monolithic crystal with dielectric mirror coatings
on the end faces of the crystal. They obtained squeezing
of 13% and 40% below shot noise, respectively.

C. Resonant atomic fluorescence

It should be stressed that the Hamiltonian (3.1), as
well as the analogous one for the nondegenerate pro-
cess, replaces the atomic medium by a nonlinear suscep-
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tibility. This procedure disregards the effects of atomic
dynamics. It can be justified if the relaxation constants
of the nonlinear system are large compared to the cavity
decay rate. In this case, the atomic transients die out
very fast, and the atomic variables follow the field adia-
batically (an example of adiabatic elimination of atomic
variables will be discussed in Sec. VI.B.1.). This is the
situation for many of the experiments performed so far.
There are, however, some important exceptions, one of
which corresponds in fact to the first experimental dem-
onstration of nonclassical radiation: the generation of
sub-Poissonian and antibunched light by an atom that
interacts with a resonant laser beam. As discussed in
Sec. IL.F, antibunching in this case results from the fact
that, after emitting a photon, an atom has to be re-
excited before it emits a second photon, implying that
the probability of joint detection of two photons in-
creases as the time interval between detections increases
from zero (vanishing probability) to a time of order the
lifetime of the transition. Experimental demonstration
of antibunching was achieved by Kimble et al. (1977,
1978), with a low-density beam of sodium atoms crossing
a laser beam (see also Dagenais and Mandel, 1978). The
fluctuation in the number of atoms in the interaction
region did not, however, allow demonstration of the sub-
Poissonian character of the radiation [the experiment
established a positive slope for g(?)(7) around 7=0]. On
the other hand, Short and Mandel (1983) measured the
number of photons emitted in a short time interval in
the process of resonance fluorescence, for a very weak
beam of sodium atoms (average distance between atoms
equal to 1 cm), and showed that the corresponding prob-
ability distribution was sub-Poissonian. More recently,
Diedrich and Walther (1987) measured g®)(7) for the
fluorescence of a single atomic ion trapped in a Paul
radio-frequency trap, establishing both the antibunched
and the sub-Poissonian character of the emitted light.

D. Optical bistability

Another example of the important role that may be
played by atomic dynamics is squeezed-state generation
in the phenomenon of optical bistability, which occurs
when a nonlinear medium is placed inside an optical
cavity subjected to an injected field (for a review, see
Lugiato, 1984). Under some conditions, two values of
the output intensity can be obtained for the same inten-
sity of the injected signal, the actual values depending
on the history of the system. The Hamiltonian that de-
scribes the interaction between the atoms and the cavity
mode is

H,=g(R_a"+R.,a), (3.2)

where R, and R_ are collective raising and lowering
operators, respectively, corresponding to a system of N
two-level atoms interacting with the field mode. An in-
jected coherent field may be simulated by adding to the
above Hamiltonian the term g’(A*a+\a'), where \ is
the complex amplitude of the injected field, and g’ is
proportional to the transmission coefficient of the input
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port (semitransparent mirror). It was shown by Car-
michael (1986) that a low-Q cavity can produce better
squeezing than a high-Q cavity, for absorptive optical
bistability (resonant case). Under these conditions, the
atomic variables cannot be eliminated adiabatically, and
full consideration must be given to atomic dynamics.
Generalization of these results to include the dispersive
case was carried out by Castelli et al. (1988) and by Reid
(1988), confirming that the high-Q cavity was less favor-
able for squeezing. The relevant experiments, conducted
by Raizen et al. (1987) and Orozco ef al. (1987), corre-
spond to a situation in which the collective Rabi fre-
quency g\/ﬁ, which is the frequency of the coherent
exchange of energy between atoms and field, is much
larger than the atomic and field decay constants. Under
these conditions, consideration of atomic dynamics is
strictly necessary, in order to account for the coherent
exchange of excitation. The observed amplitude squeez-
ing was 30% below shot noise, when measured by bal-
anced homodyne detection at the collective Rabi fre-
quency, and close to the bistability threshold (where the
phase quadrature undergoes critical fluctuations).

E. Lasers and masers

Atomic dynamics must also be considered in several
possible domains of operation of lasers and masers. One
case is lasers operating in the bad-cavity limit (field re-
laxation much faster than atomic relaxation), which oc-
curs for instance for near-infrared noble-gas lasers and
many far-infrared lasers. Atomic dynamics may then
lead to sub-Poissonian statistics. This will be discussed in
detail in Sec. VI. Careful consideration of atomic dy-
namics is also important for the description of microma-
sers, microlasers, and correlated-emission lasers (see be-
low).

Two-photon lasers have been considered as squeezed-
state generators since Yuen’s proposal of the effective
Hamiltonian (3.1) as a generator of squeezing (Yuen,
1975, 1976). It was soon realized, however, that in lasers
and masers the spontaneous-emission noise associated
with an inverted system ends up destroying any possibil-
ity of obtaining squeezed light at steady state (Lugiato
and Strini, 1982; Reid and Walls, 1983); so that only
transient squeezing is possible (Davidovich et al., 1987).
This is the reason why parametric amplifiers have been
preferred as generators of squeezed light: in these sys-
tems the atoms are far from saturation and there is no
population inversion, so spontaneous emission noise is
negligible, especially when the fields are off resonance
with respect to the atomic transitions.

For these reasons, lasers and masers have been disre-
garded for a long time as generators of light with re-
duced quantum noise; however, three noteworthy excep-
tions should be mentioned.

(i) If the active atoms are pumped into an appropriate
superposition of the lasing levels, quenching of
spontaneous-emission noise may occur, thus leading to
the simultaneous presence of squeezing and gain in a
resonant process. The corresponding devices are called
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FIG. 7. Micromaser experiment. An atomic beam is excited to
a Rydberg level, then injected into a superconducting cavity
having a field mode resonant with the transition between the
atomic excited state and a lower level. The first ionization
chamber ionizes atoms that exit the cavity in the upper state,
while the second chamber ionizes atoms in the lower resonant
state, allowing measurement of the probability of atoms leav-
ing the cavity in the upper or the lower state.

“correlated-emission lasers” (Scully, 1985; Scully and
Zubairy, 1987; Schleich and Scully, 1988; Scully, Wod-
kiewicz, Zubairy, Bergou, Lu, and Meyer ter Vehn, 1988;
Benkert, Scully, and Orszag, 1990; Bergou et al., 1990;
Dutra and Davidovich, 1994). While correlated-emission
lasers based on single-photon transitions give rise to am-
plitude squeezing (Benkert, Scully, and Orszag, 1990),
correlated-emission two-photon lasers may produce
phase squeezing (Scully, Wodkiewicz, Zubairy, Bergou,
Lu, and Meyer ter Vehn, 1988; Bergou et al., 1990; Dutra
and Davidovich, 1994). The fluctuations of the excitation
process, which affect the relative phase between the two
lasing states, may, however, spoil the squeezing in these
devices. This explains why there has been only one ex-
perimental confirmation so far (Winters et al., 1990). On
the other hand, this process is closely related to the in-
jection into a laser of the output signal of another laser.
This method has also been shown to produce amplitude
squeezing (Agarwal et al., 1991; Fontenelle and Davi-
dovich, 1995).

(ii) Spontaneous emission can also be controlled by
sending highly excited atoms (Rydberg atoms) into high-
QO cavities, so that the atomic transit time is smaller than
its decay time. This is the case for micromasers, devices
in which a beam of Rydberg atoms, typically highly ex-
cited rubidium or cesium (having principal quantum
numbers around 50), crosses a high-Q superconducting
cavity that is in resonance with a transition between the
initial state and another Rydberg level (the frequencies
are in the microwave range). Due to the large atomic
dipole moments and the low dissipation in the cavity, it
is possible to reach oscillation with a very low beam
intensity, such that at most one atom in the average is in
the cavity at a time. Successful operation has been ob-
tained both for one-photon transitions between neigh-
boring Rydberg levels (Meschede et al., 1985; Rempe
et al., 1987), and for two-photon transitions between lev-
els with the same parity (Brune et al., 1987). The radia-
tion from such a device is sub-Poissonian for an ex-
tended range of parameters, as demonstrated
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experimentally by Rempe et al. (1990). The field pro-
duced is, however, extremely weak, and cannot be mea-
sured directly. Information about the field is gathered by
detecting the atoms that exit the cavity, and measuring
the probability that they are in the upper or lower reso-
nant level. A typical experiment is sketched in Fig. 7.
Recently, laser oscillation with less than one atom, on
the average, in an optical resonator was demonstrated
by An et al. (1994), thus extending the previous results
to the optical regime. Furthermore, the field can be mea-
sured directly in this case. A detailed discussion will be
presented in Sec. IV.D.2.

(iii) Sub-Poissonian light can also be obtained from
lasers excited by a low-noise source. In usual lasers, the
pumping of the atoms to the excited state (either by
injecting excited atoms into a cavity, as in dye lasers, or
by exciting the atoms in the laser cavity through light or
collisions) can be very well approximated by a Poisso-
nian distribution for the number of atoms excited during
a given time. Most theoretical work on lasers assumes
either implicitly or explicitly this type of distribution.
The pioneer work on lasers pumped in a regular way
(i.e., having equal numbers of atoms pumped in equal
time intervals) was due to Golubev and Sokolov (1984).
Experimental work demonstrating a reduction of ampli-
tude fluctuations due to the regularization of the pump-
ing of a light source was first presented by Teich and
Saleh (1985). They observed sub-Poissonian light com-
ing from a mercury-vapor lamp pumped by a space-
charge-limited electron beam. The space-charge effect,
which is the accumulation of electric charge between the
cathode and the anode of a discharge lamp, was well
known in thermionic tubes: due to the distributed charge
accumulated in space, the charges repel each other and
arrive in the anode in a regular way. Tapster et al. (1987)
observed sub-Poissonian light coming from a light-
emitting diode driven by a constant-current source, and
S. Machida et al. (1987) observed sub-Poissonian light
emitted by semiconductor lasers (both 0.85 um GaAs
and 1.5 um InGaAsP lasers were used) excited by a
regularized electric current (see also Machida and
Yamamoto, 1988, 1989). In these experiments, noise re-
duction from 9% to 19% was obtained over a frequency
range from near dc to 1.1 GHz, corresponding to an
amplitude squeezing of 32% (-1.7 dB). The main limita-
tion came from the measurement system, due to optical
feedback and a limited light-collection efficiency. These
problems were solved by using a direct “face-to-face”
coupling of the laser and the detector, which were both
located inside a cryostat at liquid-helium temperature
(Richardson et al., 1991). In this way, 85% noise reduc-
tion was obtained. Sub-Poissonian behavior from com-
mercial semiconductor lasers, working at room tempera-
ture, can be obtained if one succeeds in eliminating
spurious modes, so they operate in a monomode regime.
This has been accomplished either through injection
locking (Inoue et al., 1993), optical feedback from a grat-
ing (Freeman et al., 1993; Wang et al., 1993), or active
stabilization of the laser temperature (Kitching et al.,
1994). Much theoretical and experimental work has
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been published, both on semiconductor (Yamamoto,
Machida, and Nilsson, 1986; Yamamoto and Machida,
1987; Kennedy and Walls, 1989; Richardson and Shelby,
1990; Lai et al., 1991) and atomic lasers and masers (Ka-
tanaev and Troshin, 1987; Bergou et al., 1989a, 1989b;
Haake et al., 1989, 1990; Marte and Zoller, 1990; Ben-
kert, Scully, Bergou, Davidovich, Hillery, and Orszag,
1990; Guerra et al., 1991; Zhu et al., 1991, 1992; Davi-
dovich et al, 1992; Kolobov et al, 1993). The best
quantum-noise reduction is achieved when the lifetime
of the lower lasing state is much smaller than that of the
upper state: this precludes reexcitation through reab-
sorption of radiation by the lower level, and decreases
spontaneous-emission noise. This problem will be dis-
cussed in detail in Sec. VI. An alternative approach is to
build a laser operating with a closed system of states, so
the same atoms undergo many cycles of pumping and
stimulated emission, producing a dynamic pump-noise
suppression, which results in antibunching of laser pho-
tons (Ralph and Savage, 1991; Ritsch et al., 1991; Ritsch
et al., 1992).

F. Twin-photon beams

For nondegenerate oscillators, an interesting option
for reducing quantum noise is to subtract the intensities
of the twin-photon beams. The underlying nonclassical
property is the simultaneous creation of “twin” signal
and idler photons by parametric downconversion or any
other two-photon-generating technique. In a lossless
cavity, the intracavity field would thus increase in such a
way that the numbers of signal and idler photons would
be exactly equal (zero fluctuation). Since cavity dissipa-
tion is a random process acting independently on each
mode, at steady state the field inside any real lossy cavity
has nonzero fluctuations in the intensity difference.
However, if all the removed photons are detected (as
will be the case for ideal detectors provided dissipation
in the cavity and in the mirrors is negligible), the lossless
zero-noise photon configuration is, after a time interval
much larger than the cavity decay time, exactly repro-
duced at the photodetectors, resulting in a noiseless dif-
ference between the photocurrents for the signal and
idler beams. In the frequency domain, this means that
the noise spectrum vanishes at zero frequency, and that
quantum-noise reduction is expected for frequencies
smaller than the cavity bandwidth.

Parametric processes are involved in all the experi-
ments realized so far. The simultaneity in the emission of
the two photons was established experimentally by
Burnham and Weinberg (1970) and Friberg et al. (1984).
It was shown by Reynaud (1987) and Reynaud et al.
(1987), that in the parametric downconversion the fluc-
tuations in the intensity difference are reduced well be-
low the classical level. Since then, this technique has
been studied both theoretically (Lane et al., 1988; Bjork
and Yamamoto, 1988; Fabre et al., 1989) and experimen-
tally (Heidman et al., 1987; Debuisschert et al., 1989; Na-
bors and Shelby, 1990). A reduction of 30% was ob-
tained by Heidmann et al. (1987) at a frequency of 8



L. Davidovich: Sub-Poissonian processes 141

MHz. They used a type II potassium triphosphate crystal
placed inside an optical cavity, working above oscillation
threshold. In this situation, the crystal emits two cross-
polarized twin photons with approximately the same fre-
quency. The photon beams are separated by polarizing
beam splitters, and absorbed by two photodetectors.
The resulting currents are subtracted and spectrally ana-
lyzed. Using the same technique, Debuisschert et al.
(1989) reported noise reduction of 70% below shot-
noise level. A noise-reduction factor of 86% below the
classical level was achieved by Mertz etal (1991).
Squeezed-vacuum generation using twin beams in
single-pass experiments (no cavity) have the advantage
that the squeezing bandwidth is not limited by the cavity
bandwidth. The lower efficiency due to the absence of a
cavity is compensated for by using higher-intensity
pulsed light. A quadrature squeezing of 75% was dem-
onstrated by Kim and Kumar (1994).

Many applications of twin beams have been devel-
oped. One example is the generation of sub-Poissonian
light using active-control techniques: the quantum noise
of the signal beam can be suppressed by counteracting
its fluctuations with the measurement result for the idler
beam (Walker and Jakeman, 1985; Haus and Iamamoto
1986; Jakeman and Jefferson, 1986; Machida and Yama-
moto, 1986; Stoler and Yurke, 1986; Yamamoto, Imoto,
and Machida, 1986; Yuen, 1986; Rarity, Tapster, and
Jakeman, 1987; Shapiro et al., 1987; Bjork and Yama-
moto, 1988; Teich and Saleh, 1988; Mertz et al., 1990;
Kim and Kumar, 1991, 1992). Another application is the
enhancement of the sensitivity of absorption and
polarization-rotation measurements (Snyder et al., 1990;
Tapster et al., 1991).

G. Quantum nondemolition measurements

It is possible to generate sub-Poissonian states of the
field in a cavity by means of quantum nondemolition
(QOND) measurements. These measurements, by defini-
tion, leave the quantity being measured unaltered, both
in the present and in the future (Braginsky et al., 1977,
Unruh, 1978; Caves et al., 1980; Imoto et al., 1985). QND
measurements of the photon number in a cavity would
allow the detection of very small classical forces acting
on the cavity walls, which would occur if these cavities
were used as sensors of oscillations of bar-type
gravitational-wave detectors.

QND methods are generally based on dispersive and
nonlinear effects. One may, for instance, send a light
beam through a dispersive medium with a nonlinear in-
dex of refraction (Kerr cell). As long as absorption is
kept negligible, the intensity of the beam does not
change. Only its phase changes, but this change does not
affect the intensity. On the other hand, the change in the
index of refraction, and therefore the intensity of the
beam, can be determined by measuring the dephasing of
another beam sent through the same medium (Yama-
moto et al., 1986). This possibility was demonstrated ex-
perimentally by Levenson et al. (1986) and LaPorta et al.
(1989). This measurement can be used to reduce quan-
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tum fluctuations in the original beam through the tech-
nique of active stabilization (Yamamoto et al., 1987;
Caves, 1987), similar to the one used for twin-photon
beams: the intensity fluctuations of the beam are coun-
teracted according to the result of the nondemolition
measurement.

A subtle way of using QND measurements to build
sub-Poissonian states of the field is through the gradual
increase of quantum-mechanical knowledge about the
state of the field, acquired by a continuous QND mea-
surement (Brune et al., 1990; Brune et al., 1992). This
method, which can actually produce a Fock state of the
field in a cavity, will be discussed in detail in Sec. VII.

IV. SOURCES OF QUANTUM NOISE IN LASERS

Well above threshold, the photon-number distribution
in a laser is approximately Poissonian, with a dispersion
equal to the square root of the number of photons. This
noise has three sources: (i) random fluctuations in the
pumping process, which puts the lasing atoms into the
excited state, (ii) spontaneous emission, which randomly
provokes transitions of excited atoms to other states,
thus “stealing” photons from the lasing mode, (iii) cavity
dissipation, associated both to losses in the cavity and to
the random process by which photons are transmitted
through the output coupling mirror.

This section develops a heuristic model that clearly
exhibits the role of these three sources, and is an exten-
sion of the analysis presented by Bergou ef al. (1989a,
1989b).

A. Excitation model

Let us assume that a dense flux of regularly spaced
atoms goes through an excitation region, just before go-
ing into the laser cavity (Fig. 8). It is not necessary to
worry at this moment about how such a beam could be
produced. In the excitation region, the atoms are excited
to an upper level, such that one of the cavity modes is
resonant with a downward transition to a lower level.
Let R be the number of atoms per unit time in the in-
coming beam, and K=R7 the number of atoms that
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reach the excitation region during the time interval 7. If
p is the probability for an atom to get excited, then the
probability A(k,K) that k atoms get excited during the
time 7 is given by
i} K
Ak,K)= K 4.1)

)pk(l—p)K‘k-

The average number of excited atoms and the corre-
sponding variance are easily obtained from Eq. (4.1):

K
k=Y, kAk,K)=pK=rr, (42)
k=0

and
AP=12~k?=(1-p)pK=(1-p)k, (43)

where r=pR is the number of atoms per unit time in the
outgoing atomic beam. One should note that Ak*=0
when p =1, as expected (all the atoms are excited, so the
outgoing beam is also regular), while the result for a
Poissonian distribution is obtained when p—0 and
R—, so that r remains finite. Indeed, in this limit, the
binomial distribution turns into a Poissonian distribu-
tion:

K! k K—k
ImAk,K=r7/p)= lim 1- -
pﬁo/)( Tp) > k|(K_k),P( p)
K=r1lp
) (pK)k B k* _
~lm e e (49

As a matter of fact, one may now even forget about the
excitation model and think about Eq. (4.1) as just a con-
venient way of parameterizing the statistical distribution
of the excited atoms that are brought into interaction
with the cavity field (either by direct injection into the
cavity or by being excited inside the cavity from some
lower-lying state). This parameterization allows one to
go continuously from the regular to the Poissonian case.

After crossing the pumping region, the atoms go on
into the resonant cavity (Fig. 8). Let P(n) be the prob-
ability that an excited atom emits a photon into the las-
ing mode, when there are n photons in the cavity. We
assume that the time scale over which the field distribu-
tion is changing is much larger than either 7 or the flight
time of the atoms through the cavity, so that P(n) can
be taken to be constant over time 7. If k atoms reach the
cavity during this time interval, then the probability that
they release n photons in the cavity is given by

k)= (4.5)

n

k i »
)P(n)"[l—P(n)]k it

The quantity Z47|k) is actually a conditional prob-
ability, i.e., it is the probability of adding n photons to
the cavity in time 7, provided the number of excited
atoms during this time interval is equal to k. The total
probability that n photons are added to cavity in time
7 is then

K
_;%(ﬁ,f):;:‘,o ARk Ak,K), (4.6)
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with A k,K) given by Eq. (4.1). Therefore, in order to
calculate the average of a function of 7, say f(#n), one
can first calculate the conditional average using Eq.
(4.5), and then average the result over the k distribution:

K k
()= 2, Eof(ﬁ)f//”(ﬁlk) Ak,K). (4.7)
One finds therefore
(AY=P(n)k (4.8)
and
((A)2)=[P(n)—P(n)*1k+ P(n)’k?, (4.9)

where the bar indicates the average over the k distribu-
tion. Since 7 is the number of photons emitted into the
cavity during the time interval 7, we have
n=n(t+7)—n(t), where n(t) is the total number of
photons inside the cavity at time ¢. Taking into account
also the results (4.2) and (4.3), one finds

([n(t+7)—n(t)])=rP(n)r,
and
([n(t+7)—n(t)]>)=1—pP)rPr+r*P?7*.  (4.11)

The quantities on the left-hand side of Egs. (4.10) and
(4.11) are the conditional or transition moments, of order
one and two, respectively, of the random process associ-
ated to the photon-number dynamics. In the theory of
random processes (Van Kampen, 1981), the conditional
moments are used to define the coefficients in the
Kramer-Moyal expansion of the conditional probability.
Let A(n,t|lng,ty) be the conditional probability that
there are n photons in the cavity at the instant ¢, if at
ty there were n( photons. Let us assume that the average
number of photons is much larger than one, and let us
approximate the photon-number distribution by a con-
tinuous one. The Kramer-Moyal expansion in this case is
(Van Kampen, 1981)

(4.10)

o0

i P => Al D ,(n)P
E (}’l,t|n0,[0)—/:1 _% [ /(n) (n»t|n0,t0)],
(4.12)
the coefficients D (n) being given by

1
. N N e
D/(n)—hm/“_f dn'(n' —n) An' t+7,|n,t).

T—07

(4.13)

Assuming that the distribution is peaked around a pho-
ton number much greater than 1, and is sufficiently
smooth and sharp, it is often possible to neglect in the
above expansion the derivatives of order higher than
two. One gets then the Fokker-Planck equation (Van
Kampen, 1981; Risken, 1984):

J J B
E-‘”/)(nﬂ”o,lo): - %[Dﬂn)f/)(”ﬂ”o,lo)]

&2
+ a—nz[Dz(l’l)f?(fl,ﬂl’lo ,tO)], (414)
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where D is the drift coefficient and D, is the diffusion
coefficient.
From this equation, it is easy to show that

d
E<n>:J’ anl(n)'%nvﬂn()’tO):<D1(n)>’ (415)

and

d
TLn?) = (n)1=2(D(m))+ 20 ((n—(n)) Dy (m)].
(4.16)

In these equations, the average now refers not only to
the atomic distribution, but also to the photon distribu-
tion inside the cavity. Equation (4.16), relating the diffu-
sion and the drift coefficients, is an example of an Ein-
stein relation (Sargent, 1974; Van Kampen et al., 1981).
In particular, if the drift coefficient vanishes and the dif-
fusion coefficient is constant, one gets from Eq. (4.16)
that (A n?y=(n?)—(n)?>= 2D,t, the characteristic solu-
tion of the diffusion equation.

From Egs. (4.10), (4.11), and (4.13), one obtains the
drift and diffusion coefficients for the photon-number
random process:

(n(t+7)—n(1))

D,(n)=lim (4.17)

7—0

=rP(n),

and

(nt+71)-n?)

D,(n)=Ilim >, =5

7—0

[1=pP(n)]rP(n).

(4.18)

It is clear from Eq. (4.18) that regularization of the
pumping helps to reduce the diffusion coefficient. Note
also that if the deexcitation probability for each atom in
the cavity is small (P<1), the pumping statistics be-
comes irrelevant.

B. Contribution of dissipation

In order to have a steady state, dissipation must be
included. For low temperatures, so that thermal photons
may be neglected, it may be modeled by a master equa-
tion of the form

d
TeP(m)=—ynp(n)+y(n+Dp(n+1), (419)
where p(n) is the probability of finding n photons in the
cavity, and vy is the photon decay rate. Equation (4.19)
states that photons are lost from the n-photon level at a
rate given by yn, and fed to this level from the n+1
level at a rate y(n+1).
From this equation, one finds

d
ﬁz’? —— (4.20)
and
d 2 2
E(An Y=—=2y(An*)+ y¥{(n). (4.21)
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FIG. 9. Gain (solid line) and loss (dashed lines) for a laser, as
functions of the normalized intensity I/Ig, where Ig is the
saturation intensity. The two loss curves correspond to (a) be-
low threshold, and (b) above threshold. The steady-state pho-
ton number is given by the intersection of the two curves. The
open circle indicates that the steady state is stable. The origin
(n=0) is stable below threshold, and unstable above thresh-
old.

Adding up these contributions to Egs. (4.15) and
(4.16), and replacing at the same time D and D, by the
expressions (4.17) and (4.18), one has

d{n)

— =r{P(n))=¥(n),

= (4.22)

and
d
E(Arﬂ)=2r(P(n)(n—<n>))+r<P(n)[1 —-pP(n)])

—29(An*)+ ¥(n). (4.23)

Equation (4.22) is the usual gain-loss equation for lasers
or masers. The first term on the right-hand side repre-
sents gain, associated with deexcitation of pumped at-
oms, while the second term represents for loss (including
that from transmission of the field through the coupling
mirror). If the photon distribution is sufficiently sharp,
one may set (P(n))~P({n)), and Eq. (4.22) becomes
an equation of motion for the average number of pho-
tons, which corresponds to a semiclassical limit of the
theory:
d{n)

7=rP(<n>)—y<n). (4.24)

C. Steady state

Steady-state operation corresponds to d{n)/dt=0, so
that Eq. (4.24) yields for the average photon number
no,

rP(ngy)=yny. (4.25)
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The solutions of this equation correspond graphically to
the intersections of the gain curve with the loss curve.
For a typical laser, this graphical solution is displayed in
Fig. 9, both for above- and below-threshold operation.
The gain curve in this case exhibits the saturation behav-
ior typical of lasers: as the average intensity increases,
the absorption processes between the two lasing levels
become comparable to the stimulated-emission pro-
cesses, so P ceases to increase. The asymptotic value
attained by P depends on the ratio of lifetimes of the
two working levels. Thus, in the limit when the lifetime
7, of the upper level is much larger than the lifetime
7, of the lower level, each active atom returns to the
ground state only from the lower level, and therefore
gives up all its relative excitation to the lasing mode. In
this case, P tends to one when the intensity increases.
For equal lifetimes, each atom returns to the ground
state half the time from the upper state, and half from
the lower state. One has then P—3 when ny—. In
general, if ', and I', are the decay rates of the upper
and lower level, respectively, the probability that the las-
ing mode is fed, at saturation, is given by the relative
probability that the atom is in the upper lasing level, that
is 7,/ (7, +7,)=1p /(T +T}).

In order that the steady-state solution be stable, the
slope of the gain curve must be smaller than that of the
loss curve at the intersection point. In this case, a small
increase in the number of photons around n, will make
loss larger than gain, driving the number of photons
back to ny. On the other hand, a small decrease will
make gain larger than the loss, so again n will go back to
ny. The stability condition is thus

dP((n))

rWl(rz)=n0< Y-

(4.26)

D. Photon-number variance

Let us now go back to Eq. (4.23). For steady-state
operation, one has d(An?)/dt=0, so that

(An%)o=(rly){(P(n)(n—{(n)))
+5(r/y(P(n)[1-pP(n)])+3ng. (427)

This expression allows one to pinpoint the several
contributions to laser noise. The third term on the right-
hand side stems from dissipation, which is thus seen to
contribute half of the usual Poisson noise. The second
term is associated with the gain mechanism. It contains
the effect of randomness in the pumping and in the
spontaneous-emission process. Note that if the photon-
conversion efficiency is maximal, ie., P(n)=1, and
p=1, i.e.,, pumping is regular, then this term is equal to
zero. This is easy to understand physically: for complete
conversion of the atomic excitation into photons, the
photon statistics of the gain process just mirrors the
pumping of the atoms into the excited state. Finally, the
first term on the right-hand side of Eq. (4.27) depends
on the correlation between P(n) and the photon-
number fluctuations n —(n). This term may actually help
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to decrease the dispersion (An?), as long as there is an
anticorrelation between P(n) and n—(n), that is, if
P(n) decreases when n—{n)>0, and increases when
n—(n)<0. This is referred to as negative differential gain
around n=(n); the gain process then provides a stabili-
zation mechanism for the photon-number fluctuations.

Further insight into the expression (4.27) may be ob-
tained by expanding P(n) around P(n,), and keeping
only the terms proportional to the first power of the first
derivative of P(n). Note that, for a photon distribution
sharply peaked around rny>1, each derivative of P(n)
will bring in a new power of 1/n,. Since the relevant
fluctuations should be of order \/n_ , this means that
each new term in this expansion will bring in a new
power of 1/ Vng. This implies that, in lowest order in this
quantity, only the derivative coming from the first term
on the right-hand side of Eq. (4.27) should be consid-
ered. One has then

(An%)o=(rly)P'(no){An?),

+3(rlY)P(no)[1=pP(ng)l+3ine,  (4.28)
where
P’ (ng)= M| e (4.29)
dn_n=ng
Using now Eq. (4.25), one finds
(An)o=(rly)P' (no){An)o+3no[1=pP(ny)]
+3n, (4.30)
which allows one to write, for the variance,
<An2>0:n0[1 —pP(ny)/2] (431)

L=(rly)P'(ng) -

This equation allows one to predict interesting noise-
reduction properties for lasers and micromasers.

1. Lasers

For a laser well above threshold, P'(ny)—0, so the
contribution of the first term on the right-hand side of
Eq. (4.30) vanishes. If furthermore the pumping is Pois-
sonian (p=0), then the contributions of gain and loss
[second and third terms on the right-hand side of Eq.
(4.30)] are both equal to ny/2, and their sum yields the
usual Poissonian result for the variance: (An?),=n,.
For more regular pumping, and using the saturation
limit for the atomic deexcitation probability, one has

r

<An2>o=no< 1- —Fa+be 121) (4.32)

This equation shows that, for I'y)>1",, one can get a
50% reduction in the variance. This result was obtained
for the first time by Golubev and Sokolov (1984). Its
origin should be clear from the above discussion: it rep-
resents the complete elimination of gain noise, due to
the fact that each pumped atom gives up its excitation to
the lasing mode, and therefore just reproduces the
noiseless character of the pumping. The remaining con-
tribution is due to loss (including the random subtrac-
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tion of photons from the cavity by the output coupling
mirror). Note that the derivative contribution in the de-
nominator of Eq. (4.31) is a correction to this result that
takes into account the variation of P(n) with n, and
stems from the first term on the right-hand side of Eq.
(4.27). Since P'(n)>0 for a laser (see Fig. 9), this varia-
tion will act to increase the variance. Therefore, from
this point of view, the super-Poissonian character of la-
ser radiation above threshold may be interpreted as due
to the corresponding positive differential gain, which
amplifies photon-number fluctuations.

Of course, a system with negative differential gain
could produce sub-Poissonian radiation even if the
pumping is Poissonian. Such is the case for the microma-
ser, which is considered in the following.

2. Micromasers

Besides presenting a wealth of interesting effects re-
lated to their quantum nature, micromasers offer a pow-
erful testing ground for basic models in quantum optics,
like the Jaynes-Cummings model (Jaynes and Cum-
mings, 1963). This has motivated a large number of
theoretical papers (Filipowicz et al, 1986a, 1986b;
Krause et al., 1986; Davidovich et al., 1987, Meystre
et al., 1988) since the first experimental demonstration
by Meschede et al. (1985).

Since in these devices the lifetime of the atoms is
larger than their transit times, the gain function is given
by the oscillatory transition probability of one atom in
the presence of a single-mode field. The oscillation fre-
quency (Rabi frequency) is proportional to the atom-
field coupling constant and to the field amplitude, which
is proportional to the square root of the number of pho-
tons. The corresponding semiclassical equation of mo-
tion for the average number of photons is then

d{n
) in(gtyTaD)— ().

(4.33)

where g is the atom-field coupling constant and ¢, is the
interaction time between the atom and the field mode
(assumed here for simplicity to have a constant spatial
profile). The argument of the sine is half the Rabi angle
developed by each atom as it crosses the cavity (a Rabi
angle equal to 77 means that the atom has undergone a
transition from the upper to the lower state). The steady
states correspond to the solutions of the equation

sin?( OiniNNo/Me) =ng /N o, (4.34)

where n.=r/vy is the number of excited atoms that
come into the cavity during the damping time ¢_,,=1/y
and 6,,,=gVn.t, is half the Rabi angle developed by
each atom when there are n., photons in the cavity. A
large value of 6;, indicates that each atom undergoes
many emissions and reabsorptions as it crosses the cav-
ity.

The graphical solutions of Eq. (4.34) are exhibited in
Fig. 10. The oscillation threshold occurs when the slope
of the gain curve coincides with the slope of the loss
curve at the origin. From Eq. (4.34) it is easy to see that
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FIG. 10. Graphical solution for steady states of the microma-
ser, for 6;,,=3m. Normalized gain (solid curve) and normal-
ized loss (dashed curve) are plotted as functions of the normal-
ized number of photons n/n,. Stable and unstable states are
indicated by open and closed circles, respectively.

this happens when 6;,,=1. Figure 10 displays two inter-
esting differences with respect to the laser case. First,
one may now get many stable steady states, indicated by
open circles in Fig. 10 (as before, the solutions are stable
if and only if the slope of the gain curve is smaller than
the slope of the loss curve at the intersection point).
Second, the intersections occur at regions of negative
differential gain. This opens up the possibility of produc-
ing sub-Poissonian radiation even with Poissonian
pumping, which was experimentally verified by Rempe
et al. (1990). The sub-Poissonian behavior will occur
whenever the photon distribution is concentrated
around one of the steady-state solutions of the semiclas-
sical equations, and will be interspersed by super-
Poissonian peaks, which correspond to two or more
steady-state solutions occurring with approximately
equal probabilities. For large values of 6, an interest-
ing effect occurs: as mentioned before, each atom under-
goes then many cycles of emission and reabsorption of
photons, so that a large number of micromaser photons
is emitted by the same atom. This leads to an antibunch-
ing of the radiation, as in the single-atom resonance
fluorescence phenomenon discussed in Sec. II.F, which
remains true even in the super-Poissonian region
(Quang, 1992). The micromaser offers thus a nice ex-
ample of the distinction between antibunching and sub-
Poissonian statistics.

From Eq. (4.33), one can get the corresponding equa-
tion of motion for a laser (with equal lifetimes for the
upper and lower states): it suffices to integrate the gain
term over t,,, with the weight function
7 lexp(—ty/7), where 7 is the lifetime of the lasing
levels. This weight function simulates the exponential
decay of the excited atom, and yields the same result as
would a more realistic approach that included lower lev-
els to which the two lasing levels would decay (Sargent,
Scully, and Lamb, 1974). If 7 is much smaller than the
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atomic transit time, this integration can be taken to in-
finity, leading to
d{n) r (n)ing
a2 1 (nyins Y

(4.35)

where ng=(4g>7*) ! is the saturation intensity.

This expression displays the usual saturating gain
curve, with no negative differential gain. It is clear then
that this feature is intimately connected to the suppres-
sion of spontaneous emission, due to the large lifetime
of the atoms as compared to the interaction time.

E. Production of sub-Poissonian atomic beams
by micromasers

The micromaser field is not directly accessible to mea-
surement. Indeed, introduction of a photodetector into a
micromaser would spoil the Q factor of the cavity, and
furthermore the field that leaks out of the cavity has an
extremely small intensity. Measurement of the field is
thus made by detection of atoms that have crossed the
cavity. The atomic beam serves therefore a twofold pur-
pose: it generates the micromaser field, and at the same
time it is used to measure that field. In fact, if every
atom that comes out of the cavity is detected, the evo-
lution of the field may be markedly different from the
case in which no atom is detected. The interaction be-
tween these two subsystems produces quantum-
mechanical correlations between the atomic and field
states, so that atomic detection may change the state of
the field. However, if the detection efficiency is small,
the fluctuations introduced by the detection process will
be negligible, and the atomic distribution will then re-
flect the field statistics. In fact, it can be shown that if the
field inside the cavity is sub-Poissonian, the distribution
of atoms exiting the cavity in the ground state will also
satisfy this condition. This was actually used by Rempe
et al. (1990) to establish the sub-Poissonian character of
the micromaser field.

This correlation between atomic and field statistics
may be understood from the heuristic analysis presented
in the last section. Indeed, rewriting Eq. (4.34) as

Sinz(gfim\/”—o)zno/”ex, (436)

one can see that as the atomic flux n., increases, the
slope of the loss curve decreases, implying a decrease in
the probability of atomic transition to the lower level.
This decrease compensates the flux increase, resulting in
a sub-Poissonian distribution for the atoms that exit the
cavity in the lower level.

This effect was treated in detail by Rempe and
Walther (1990). Their result is expressed in terms of the
Mandel parameter (Mandel, 1979), defined for the field
as

_{an%)
QF_ <I’l>

a similar definition holding for the factor Q, corre-
sponding to the atoms in the ground state. For a sub-

1, (4.37)
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Poissonian process, Q<0. For a small detection effi-
ciency 7, the relation between these two factors is

Q,=nP(n))Qr2+0p), (4.38)

where P({n)) is the probability that an excited atom
suffers a transition to the ground state when the average
number of photons in the cavity is (n).

This expression also shows that the micromaser can
be used as a generator of sub-Poissonian atomic beams.
The exiting atoms in state |g) could in principle be used
as incoming atoms for another cavity.

A more detailed treatment of the photon statistics,
beyond the above heuristic discussion, requires the full
machinery of quantum mechanics. This will be given in
the following section.

V. QUANTUM THEORY: THE GENERALIZED MASTER
EQUATION

A. Derivation of the master equation

The quantum properties of the field may be described
in terms of the reduced density matrix p. The probabil-
ity of finding n photons in the field is given by
p(n)=(n|p|n). The change in this operator produced by
the passage of a single atom can be described in terms of
a superoperator .7 acting on p:

p(t+At)=7p(t), (5.1)

where At is larger than the interaction time ¢, between
the atom and the cavity field (for a laser, ;,; coincides
with the lifetime of the atom, while for a maser it should
be taken as the transit time). In writing this equation,
one assumes that dissipation due to cavity losses and
transmission is negligible during the time A¢, and there-
fore during ¢, that is, ¢;,<t.,. The superoperator
7% depends on the atomic and field operators and on
the initial conditions for each atom as it starts interact-
ing with the cavity field. Thus, for instance, if the atoms
are initially in the upper state, then taking the diagonal
matrix elements of Eq. (5.1) in the Fock representation,
one would get typically

p(n,t+At) = [t//;/p(t)]nn

:_Wn+1p(n’[)+Wnp(n_Lt)a (52)

where W, is the atomic transition probability from the
upper to the lower resonant state when there are n pho-
tons in the field. Calling I', and I';, the decay rates of the
upper level a and lower level b, respectively, we have
for a laser (Sargent et al., 1974)

W o—Lenins (5.3)
" 2T ,p(1+n/ng)’
where
[op=73(T+T), (5.4)
and
r,r
nszTg} (5.5)
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is the saturation photon number, while g is the atom-
field coupling constant. Note that W, has precisely the
behavior displayed in Fig. 9, attaining at saturation
(n>ng) the value I'y/(I',+TI,). Furthermore, for
r,=T',=1/7, Eq. (5.3) reduces to the gain function in
Eq. (4.35), except of course for the pumping factor r in
that expression, since here the contribution of only one
atom is being considered.

If now k atoms cross the cavity during a time interval
t, and if one assumes that they interact with the field
independently (no cooperative effects), then the change
in the density operator of the field can be described by
the equation (still ignoring losses for the moment)

p()=.7%p(0). (5.6)

Since k is actually a random variable, one should de-
scribe the change in the field by taking a statistical aver-
age of Eq. (5.6). Assuming again a binomial distribution
for the atoms, one finds

K

p(t) =k§0 PR =p)K= 7k p(0)

=[1+p(.Z=1)]1%p(0), (.7)

where K=Rt. From Eq. (5.7), one can now obtain a
generalized master equation by differentiating both
members of this equation with respect to time, and add-
ing the usual loss contribution:

d r
Eﬁ(l)=;log[l+p(./%—1)];3(t)+;%f>(t), (5.8)
where % is a superoperator that represents the dissipa-
tion process. This equation was obtained for the case
p=1 by Golubev and Sokolov (1984), and later general-
ized by several authors (Bergou et al., 1989a, 1989b;
Haake et al., 1989; Davidovich et al., 1992; Bergou and
Hillery, 1994). Detailed consideration of the steps lead-
ing to Eq. (5.8) was given in Davidovich et al. (1992).
There are in fact two crucial approximations involved in
the derivation of Eq. (5.8). The first is a coarse-graining
approximation: one assumes Ap/At~dp/dt, where At is
such that many excited atoms are injected into the cavity
over this time, but the reduced density matrix of the
field does not change appreciably. And second, one as-
sumes that the loss and gain mechanisms act indepen-
dently over the time interval p/r.

The first approximation is very good for normal lasers
and masers, but may lead to wrong results when consid-
ering the time-dependent behavior of micromasers, es-
pecially when the number of photons in the cavity is
very small. In any case, it is not relevant for the steady-
state solution. The second approximation can be shown

to hold exactly for the Poissonian case. It may lead,
however, to incorrect results for the steady state, when
p # 0 (Davidovich et al., 1992).

The superoperator %4 can be constructed explicitly by
considering a model Hamiltonian describing the interac-
tion between the harmonic oscillator corresponding to
the cavity mode, and a bath of harmonic oscillators as-
sociated with the modes of the field outside the cavity
(Cohen-Tannoudji et al., 1988; Gardiner, 1991; Walls and
Milburn, 1994). One finds

Yp=

(np+1)(2apa’—a'ap—pa'a)
2tCaV

+

nr(2a‘pa—aa‘p—paa’), (5.9)

2’tCEIV
where d'(a) is the creation (annihilation) operator for a
photon corresponding to the resonant cavity mode, and
nr is the average number of thermal photons. The diag-
onal elements of Eq. (5.9), in the number representation
and with n;=0, yield the master equation (4.19).

B. Results for Poissonian and regular pumping

When p—0 one gets from Eq. (5.8) the usual Scully-
Lamb master equation (Scully and Lamb, 1967),

d
Eﬁ(z)zr(./%—1);3(t)+,%;3(t). (5.10)
which corresponds therefore to the Poissonian limit of
the generalized master equation.

The same equation is obtained, for arbitrary pumping
statistics, if the action of each atom on p is sufficiently
small (this corresponds to a small probability P of deex-
citation, in the heuristic argument developed in the last
section).

In order to actually use Eq. (5.8) in a specific problem,
one has to expand the logarithm. As shown by Bergou
et al. (1989a, 1989b), the first two terms in the expansion
are all one needs in order to calculate up to second-
order correlation functions (in particular, diffusion coef-
ficients), if the average number of photons is sufficiently
large and the distribution sufficiently narrow. One finds
then

d 1
Eﬁ(t)=r(//é—1)ﬁ(t)+ Erp(//é—l)zﬁ(t)ﬂ%ﬁ(t)-
(5.11)

From this equation, one can derive equations of mo-
tion for the average number of photons and for the dis-
persion, taking matrix elements in the Fock representa-
tion and replacing the operator .7Z by its explicit
expression. Using Eq. (5.2), one finds (taking n;=0 for
simplicity)

D)=L= W, p () Wop(n= D)+ L= W2 p(n)+ W, (W, W, )pn =)= W, W, ip(n=2)]

+y[—npn)+(n+1)p(n+1)].
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(5.12)
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and then
()= 2, np(n)=r{a,)=¥n), (513)
where
p
a,=W, 1 1+§(Wn+l_wn+2) . (514)

This equation should be compared with Eq. (4.22).
Identifying W, with P(n), we see that the
p-dependent terms in the above equation, which repre-
sent quantum corrections to the semiclassical result Eq.
(4.22), do indeed represent very small contributions
for large average photon numbers, and smooth contribu-
tions as well, since W, —W, ,~—dW,/dn
~O(1/n)). Under these conditions, the quantum equa-
tion (5.13) coincides with the semiclassical one (4.22).

For the variance v=(n?)—(n)?, one finds

l}:2r<an(n_<n>)>+r<an_pwn+lwn+2>_270+ 7<n>
(5.15)
In the semiclassical limit (sharp distribution around
(n)>1), we again retrieve Eq. (4.23), obtained in the
heuristic treatment. It is clear then that the same result
should hold for the steady-state variance, namely Eq.
(4.31). In particular, one gets for a laser the result (4.32).

In spite of the fact that it yields reasonable results for
the variance, the generalized master equation (5.8) may
become highly pathological. In fact, it may even give rise
to negative photon-number probabilities (Davidovich
et al., 1992).

The micromaser has been a good testing ground for
the methods presented above. It allows a detailed dis-
cussion of the assumptions and approximations involved
in getting Egs. (5.8) and (5.11). We turn therefore to a
discussion of the quantum theory of this device.

C. Application to the micromaser

For a one-photon micromaser, in which nondecaying
atoms pass through the cavity during a time interval
tint, after being pumped to the excited state, the master
equation is given by Eq. (5.12), with the transition prob-
ability now given by the Rabi oscillation factor:

Wn = Sinz(g \/;tint)s

where g is the electric dipole coupling constant.
Let us first review the results for Poissonian pumping.

(5.16)

1. Poissonian-pumped micromaser

In this case p =0, and the master equation for the di-
agonal matrix elements becomes

p(n)=r{—sin*(g\n+1ty)p(n)+sin’(gnti)p(n—1)]+y(ng+ D (n+1)p(n+1)=np(n)]

+ynqgnp(n—1)—(n+1)p(n)].

At steady state the detailed-balance condition holds:
[rsin*(g\n+ 1)+ ynr(n+1)Ipo(n)

=y(nr+1)(n+1)py(n+1), (5.18)

where p((n) is a steady-state solution of Eq. (5.17). This
recursion relation leads to an explicit form of the steady-
state solution, here expressed in terms of the constants
ne and 6, defined earlier (Filipowicz et al., 1986a):

nn ) Irr

_ nr N xS (aint k/nex)
po(m)=p(O)| =g | 1111+ ok :
(5.19)

The probability p(0) is determined by the normalization
condition X, _,po(n)=1. A typical plot of the steady-
state distribution py(n) is displayed in Fig. 11. The
peaks correspond to the stable steady-state solutions of
the semiclassical analysis (see Fig. 10). From Eq. (5.19)
one may also get the variance at steady state as a func-
tion of the parameter 6,,,. The result is displayed in Fig.
12, and is seen to corroborate our previous heuristic
analysis. The sub-Poissonian behavior is associated with
the negative differential gain displayed in Fig. 10, while
the super-Poissonian peaks correspond to the appear-
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(5.17)

ance of two or more local maxima of comparable mag-
nitude in the photon distribution P(n).

2. Trapping states

For ny=0, Eq. (5.19) presents a very peculiar behav-
ior. One has then

n

Po(m)=p(0)(ney)" 11 [sin*(0smkine) k], (5.20)
If 6, is such that for some n=n, one has
sin?(,V(ny+1)/ne) =0, ie., if

ON(ngt D /ng=qm, q=12,..., (5.21)

then po(n) will vanish for n>n.. These special values
of n define the trapping states (Filipowicz et al., 1986b;
Meystre et al., 1988). An especially interesting case cor-
responds to n,,=0: the vacuum is then a trapping state,
so that as the atoms cross the cavity the field remains in
the vacuum state. The physical origin of this behavior is
evident from Eq. (5.21): each excited atom suffers one
or more complete Rabi turns as it crosses the cavity,
exiting it in the same state, and therefore not leaving any
excitation inside the cavity. Dissipation is harmless in
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FIG. 11. Steady-state photon-number distribution for a micro-
maser, using values n.,=200, n,=0.1, and 6;,,=3 7 and 157.
For 6;,,=157, the distribution becomes three peaked. From
Filipowicz et al. (1986a).

this case: the reservoir temperature being zero, no pho-
ton would come into the cavity, and there is no leaking
out of the cavity, since there are no photons inside.

In the limit of zero dissipation, Fock states can be
obtained with photon numbers different from zero.
These are the remnants of the sub-Poissonian states dis-
cussed before, and correspond to the situation in which
the loss curve in Fig. 10 coincides with the horizontal
axis. Each pair of stable and unstable points merges to-
gether, yielding a marginally stable state (stable from the
left but unstable from the right). From the semiclassical
analysis it is clear that, in this limit, if one starts with a
number of photons between two consecutive marginally
stable states, this number evolves towards the rightmost
one, and stops there, thus justifying the name “trapping
states” for these points. Of course, any small perturba-
tion will make it evolve further towards the next steady
state to the right, and so on.

Quantum mechanically, one arrives at corresponding
conclusions starting from Eq. (5.17), in the limit
ny=7y=0 (Carvalho et al., 1989). One gets

p(”)z_rWn+1P(n)+"Wnp(”_1)» (522)

0 2n 4T 6n 8 101
Oint

FIG. 12. Normalized standard deviation o= ({An?)/{(n))'? as
a function of the parameter 6;,,. Here n.,,=200 and ny=0.1. A
Poissonian distribution corresponds to o=1. From Filipowicz
et al. (1986a).
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FIG. 13. Normalized standard deviation of the photon-number
distribution for a micromaser, for regular (o) and Poissonian
(op) pumping, as a function of 6. (a) op; (b) og/op. Here
ne,=49, np=0, and the atomic velocity dispersion is
Av=0.1v. From Guerra et al. (1991).

where W, is given by Eq. (5.16). The steady-state distri-
bution py(n) must obey, therefore, the relations

Waeipo(n)=W,po(n—1)=...=W;p(0)=C. Thus
2 Wpy(n)= 2 C=2, (5:23)
unless C=0. Since W, <1, one has
2 Wapo(m)= 2 po(n); (5:24)

therefore, for a normalizable p,(n), one must necessar-
ily have C=0, which implies that p,(n)=0, unless
W, +1=0. This means that the steady-state distribution is
concentrated on values of n for which W, ;=0, which
corresponds precisely to the condition (5.21) for the
trapping states. Furthermore, if one starts with a popu-
lation distributed between two consecutive trapping
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states, corresponding, say, to the populations »n’ and n”
(withn">n'+1),sothat p(n) # O onlyif n' <n<n", it
follows from Eq. (5.22) that p(n’'+1) will decrease
steadily to zero, since p(n')=0, and therefore the same
will happen with p(n'+2),...,p(n"—1). Since p(n)
remains normalized, this implies that p(n") approaches
one, and thus the photon-number distribution gets con-
centrated at the rightmost trapping state, exactly as in
the semiclassical analysis. Furthermore, since p(n)=0
for all n except for n=n", it follows that the field
evolves towards a Fock state.

Trapping states provide therefore, in principle, a way
to build up Fock states in cavities. One should note,
however, that the above discussion is highly idealized,
even in the case of the trapping vacuum state, which
does not require the assumption of zero dissipation. The
main point is that it is based on a one-atom Hamil-
tonian. Two-atom events inside the cavity may drasti-
cally change these results. In particular, a Poissonian dis-
tribution for the incoming atoms giving a probability as
small as 1% that two atoms are found in the cavity al-
ready produces an important leaking of the trapped so-
lutions (Orszag et al., 1994; Wehner et al., 1994).

3. Regularly pumped micromaser

For regular pumping, an alternative approach to Eq.
(5.8) can be adopted, based on a step-by-step calculation
(Guerra et al., 1991), which computes the change in the
reduced density matrix of the field after each atom
crosses the cavity:

p(t+t,)=e"" a7 (tin)p(1). (5.25)

Here ¢, is the (constant) time interval between two suc-
cessive atoms. This equation also decouples gain and
loss, but now only over the time ¢;,, of the interaction
between each atom and the cavity mode. The results of
the numerical calculations based on Eq. (5.25) can then
be compared with those resulting from the generalized
master equation (5.8). The main conclusions of this
analysis are the following (Davidovich et al., 1992).
Regularization of the pumping does not necessarily lead
to noise decrease in micromasers. In fact, it is even pos-
sible to get an increase in photon-number variance by
regularizing the atomic excitation (Guerra et al., 1991).
This is due to the fact that a variation of the statistical
parameter p produces a change in the photon-number
probability distribution. In particular, regularization of
the pumping may cause two peaks in that distribution to
assume the same height, leading thus to an increase in
the variance. The generalized master equation (5.8) pro-
vides very good results when the photon-number prob-
ability distribution is sharp and the average number of
photons is large, while the number of Rabi turns in the
cavity is not very large: 6;,<n.,. It may lead, however,
to incorrect results in situations corresponding to multi-
peaked distributions with peaks of approximately equal
height, or when #6,,, becomes of the order of n.. For
001Ny, adding up more terms in the expansion of the
logarithm helps to improve the result, leading to a very
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good approximation, so long as the number of terms is
not comparable to the average number of photons. In
this sense, the successive approximations in this region
behave like an asymptotic expansion. When 6;, be-
comes of the same order as n.,, one should not expect
reliable results from Eq. (5.8), no matter how many
terms are kept in the expansion of the logarithm. One
should note, however, that this region has not been ex-
plored by the experiments to date. Figure 13 compares
the variance of a micromaser for regular and Poissonian
pumping, for several values of 6;,.

The above analysis, based on the master-equation ap-
proach, assumes that different time scales govern the
decay of the field in the cavity and the interaction time
between the atom and the cavity mode. For lasers, this
means that ¢z,,> 7,,7,, while for micromasers one must
have ¢.,,>t;,,. This precludes consideration of effects
associated with atomic dynamics, which will be consid-
ered in the next section, using the Heisenberg-Langevin
approach.

VI. LANGEVIN APPROACH AND ATOMIC DYNAMIC
EFFECTS

Theoretical studies of the nonlinear-dynamic behavior
of single-mode homogeneously broadened lasers deal
frequently with simplified models which are character-
ized by three dynamic variables, namely, field amplitude,
atomic polarization, and population inversion (see, for
instance, Abraham et al., 1988). The dynamic evolution
of such models is governed by three relaxation rates:
v for the population inversion, y, for the polarization,
and « for the field intensity in the cavity (frequently one
has two different population decay rates, for the upper
and the lower lasing levels). Corresponding to the differ-
ent possible relations between these parameters, single-
mode lasers are grouped into four main classes with dif-
ferent dynamic characteristics, as follows (Abraham
et al., 1988):

(i) v. ,v>«; dye lasers are in this class.

(i) y,>k~vy); includes helium-neon (0.6 and
1.154 m) and argon-ion lasers.

(ili) y,>«>1y|; includes ruby, neodymium yttrium
aluminum garnet, carbon dioxide, and semiconductor la-
sers.

(iv) «>vy,,y; near-infrared noble gas lasers and
many far-infrared gas lasers (including He-Ne at
3.39u m) are in this class.

The master-equation theory developed in the last sec-
tion refers to the first of these classes (good-cavity la-
sers). This is a quite limiting feature, especially in view
of the fact that lasers operating in the bad-cavity limit
(i.e., having cavity damping time much shorter than the
atomic damping time) have attracted considerable atten-
tion lately.

There are two reasons for this upsurge of interest.
First, it has been shown that in many systems a careful
consideration of polarization dynamics is essential when
considering the fluctuation spectrum of the produced
light. This is already true for single-atom resonance fluo-
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rescence, and also holds for multiwave mixing in two-
level atoms (Reid and Walls, 1986). For absorptive opti-
cal bistability, Carmichael (1986) showed, in a treatment
that does not adiabatically eliminate the polarization,
that a low-Q cavity may produce better squeezing than a
high-Q cavity. The general case, also without adiabatic
elimination of the polarization, was studied by several
authors (Castelli ef al, 1988; Reid, 1988), confirming
that the high-Q cavity was less favorable for squeezing.
Squeezing enhancement in dispersive optical bistability,
in the regime of low intensities and comparable atomic
and cavity decay rates, was demonstrated experimen-
tally by Raizen et al. (1987) and Orozco et al. (1987).

The second reason for the interest in bad-cavity lasers
is the recent development of semiconductor microlasers.
In these devices a substantial fraction of spontaneous
emission couples to the lasing mode, so that an ex-
tremely low oscillation threshold can be attained, of the
order of one photon (Bjork et al, 1993). A necessary
condition for this to happen is that the spectral width of
the gain curve (I';) be smaller than the width of the
cavity mode (y), which implies a nonadiabatic regime
for the atomic variables.

A theory of quantum fluctuations in a laser that ac-
commodates the four different classes mentioned above
has recently been developed by Kolobov et al. (1993).
While completely analytic, the new theory fully includes
the effects of polarization and population dynamics. In
addition, it takes into account the possibility of non-
Poissonian pumping.

The main results are: (i) a generalization of the
regular-pumping results, to include all possible relative
values between atomic and field decay constants; (ii) a
non-Markovian phase evolution, resulting from the po-
larization dynamics, and implying a short-time reduction
in spontaneous-emission noise, and an important reduc-
tion of the linewidth in the bad-cavity case (large cavity
damping), that is, for lasers of the fourth class; and (iii) a
reduction of up to 50% in noise in the spectrum of am-
plitude fluctuations for the field outside the cavity, for
Poissonian pumping and lasers of the third class, around
a frequency given by the geometric mean of the decay
rates of the field and the lower-level population, when
the decay of this population is much faster than that of
the upper level.

The theoretical framework for this general treatment
is based on the Heisenberg-Langevin equations (Lax,
1968b; Sargent et al., 1974; see also Benkert, Scully, Ber-
gou, Davidovich, Hillery, and Orszag, 1990). The
method is quite general, and can be applied to other
systems, such as lasers with injected signals and coupled
lasers. This is the reason why it is reviewed with some
detail in the following subsections. Even though the lan-
guage used throughout the following sections is more
appropriate for atomic lasers, similar equations can be
applied to semiconductor lasers, with an adequate rein-
terpretation of the atomic variables, such that the atomic
inversion becomes the carrier density (Kennedy and
Walls, 1989).
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Afomic

Mirror 1
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FIG. 14. Ring laser. Mirrors 1 and 2 completely reflect the light
beam, while mirror 3 is partially transparent. The total length
of the ring is L.

A. Heisenberg-Langevin equations

Let us consider a single-mode laser, with the active
atoms inside a ring-shaped cavity of length L and vol-
ume V. This geometry (Fig. 14) implies a propagating
field, which is approximated by a plane wave. The field
is coupled to the outside world through a mirror with
intensity-transmission coefficient equal to 7. The active
medium is composed of homogeneously broadened two-
level atoms having transition frequency w resonant with
a cavity mode. The corresponding Hamiltonian is (for
notational simplicity, hats over operators are dropped)

H=hwa'a+ 2, (E,0)+E,o})
]

+hg ®(t—t,~)(a*(rfe*“5';f+ oltaet* ). (6.1)
]

The first line of this expression represents the sum of the
unperturbed Hamiltonians for the field and the atoms,
while the second line describes the electric dipole inter-
action between atoms and field in the rotating-wave ap-
proximation (Jaynes and Cummings, 1963). In Eq. (6.1),
E, and E, are the energies of the upper and lower
atomic levels, o’,=(|a)(a|)’ and o), =(|b)(b|)’ are the
projection operators corresponding to the resonant up-
per and lower atomic levels, and o/(t)=(|b){a])’ is the
“spin-flip” operator which, applied to the upper state
|a)/, produces the lower state |b), while its adjoint
' (t)"=(|a){b|)’, applied to the lower state, produces
the upper state. The average of ¢/(¢) with respect to the
atomic density operator p’, yields the off-diagonal ma-
trix element of p/, between states a and b, and for this
reason ¢’ is associated with the atomic coherence. In a
similar way, o/, and o/, are associated with the popula-
tions of levels a and b. Furthermore, if the parity of
levels a and b is well defined, the electric dipole opera-
tor will have only off-diagonal matrix elements, and
therefore will be proportional to ¢/, in the two-level
subspace. Therefore, ¢/ may be associated to the atomic
polarization. The function @(¢) is the Heaviside step
function [@(¢)=1 for >0, O(¢)=1/2 for t=0, and
O(t)=0 for t<0], which guarantees that the jth atom,
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localized at ;j, starts interacting with the cavity mode at

time ¢;. The coupling constant g is given by

_ w
87 None, vt

where w=(E,— E,)/f, and p is the magnitude of the
atomic dipole moment (assumed to be real).

From Eq. (6.1), one gets the Heisenberg equations of
motion for the atomic and field operators:

(6.2)

d(l):—iwa(t)—ig; (t—t,»)oj(z)e*i’?rj, (6.32)
31(0)= —iwd (1) +igO (=)o)

~oh(0]e (s, (6.3b)
(1) =ig®(t—t)[at (1) o(r)e 7

— o/t (t)a(t)e’®7], (6.3¢)
h(1)= _ig@(t_l‘/')[aT(t)g-f([)e—i;c;/

— o/t (t)a(t)e’® 7. (63d)

These equations are rather intuitive. The atomic polar-
ization acts as a source for the field, while the atomic
populations are affected by the electric dipole interac-
tion between the polarization and the field.

i(n=-ig3 O t)oy()e 1 = Za(t)+F (),

oi(t)=+ig®(t—t)[al(t)— af;(t)]e”?”/a(t) —Tai(t)+f,(1),
(1) =ig® (1—t)[a* (1) o(t)e " *Ti= ot (1)a(t)e™™ 7] = (T y+ T ) ol (1) + Fi 1),

ol (t)=—ig®(t— t]-)[aT(t)Uf(t)e_i;";/— o (Da(t)e® =T ol (1) + T ol (6)+ ) (0).

For purely radiative decay, the polarization decay rate
I is related to the population decay rates I',, I', and
I'y. Indeed, if ,(¢) and #,(¢) are the probability am-
plitudes for finding an atom in states a and b, the cor-
responding decays are described by the equations
dip,(1)/di=—[(T,+T)1214,(1) and
diy,(t)/dt=(—Tp12) ¢, (t) (the feeding of b by a is not
considered here, since one is interested only in the decay
contributions). This implies that

d d d
E[<¢(t>|b><a|¢(t)>]=b wZ(t)}wa(tH z//;xz)[a wa(t)}

= [T+ Lo+ )25 (1) (1)

= =Ty () (1),

and therefore in this case one has 2I'=T,+T/+T,.
Collision processes may, however, affect the relative
phase between states a and b, without affecting their
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It is convenient to define slowly varying field and spin-
flip operators, subtracting the time-dependence involv-
ing the frequency w:

at)y=e'a(t), da(t)=e'“'a/(t).
It is easy to see that the resulting Heisenberg equations
differ from Eq. (6.3) only in the absence of the terms
proportional to .

One must now add to the above Heisenberg equations
the atomic and field decay, which result from the cou-
pling between these systems and their respective reser-
voirs. The reservoir for the cavity mode corresponds to
the modes of the field external to the cavity, which are
coupled to the internal field through the semitransparent
mirror, while the atomic reservoirs correspond to lower
atomic levels, to which levels a and b are coupled
through collisions or spontaneous emission. The field
can also be damped by absorption at the cavity walls.
These couplings result not only in decay terms, but also
in fluctuation forces (Langevin forces). The diffusion co-
efficients associated with these forces can be obtained
through specific reservoir models (see, for instance,
Cohen-Tannoudji et al., 1988), or, in the case of atomic
forces, by using generalizations of the Einstein relation
(4.16).

One gets then the following Heisenberg-Langevin
equations (the tilde on the operators is dropped in the
following, since from now on all the operators will be
slowly varying ones):

(6.4a)

(6.4b)
(6.4c)

(6.4d)

populations, implying a faster average decay of the co-
herence, and leading to the inequality

2T=T ,+T,+T,. (6.5)

One should note that, in this model, the step functions
turn on the interaction between each atom and the cav-
ity mode, the turning off being accomplished by the
atomic decay to lower (nonresonant) levels. On the
other hand, the fact that one deals here with just one
mode imposes a restriction on the field decay rate: the
width of the cavity mode, given by /2, should be much
smaller than the mode separation 27rc/L.

1. Langevin forces for the field

The Langevin forces are defined by their first- and
second-order moments (Lax, 1966b; Sargent et al., 1974;
Cohen-Tannoudji er al., 1988). For the field Langevin
force F,(t) one gets
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(Fy(1))=0, (6.6)
and

(FUDF (1) =ynpd(1—1"), (6.7a)

(FAOF(t")=y(np+1)8(1—1"), (6.7b)

(F(t)F(t"))=0, (6.7¢)

(Fi(n)Fi(1))=0, (6.7d)

where as before ny is the average number of thermal
photons in the laser cavity, at temperature 7, in the
mode with frequency w. It will be assumed here that
T=0, for simplicity. These moments are sufficient for
complete determination of the fluctuation forces only if
the corresponding statistical process is Gaussian [see, for
instance, Gardiner (1991)].

2. Atomic Langevin forces

The diffusion coefficients for the atomic Langevin
forces may be obtained from the generalized Einstein
relations. Let a system be described by N operators

i, i=1,...,N, satisfying the Heisenberg-Langevin
equations

d ]

E,/di(t)=@,-[,/yl(t), ce () ]+ Fi(t), (6.8)
where the forces F; satisfy the equations

(Fi(1))=0, (6.9)
and

(Fi(OF(t")=2D}"8(t=1"), (6.10)

the index ./ corresponding to the normal order of F ,
F;. Similar relations hold for antinormal ordering.
One shows then the relation

(Fi(t).2)(t)+ 2] () F(1)y=2D"" (6.11)

and also the generalized Einstein relation (Cohen-
Tannoud;ji et al., 1988)

2D =N A )~ T = A D), (6.12)

where Z(%j{’]) is the drift coefficient corresponding to
the equation
. 4 a7t
E(./di(t)./4]-(t))=(;A(,,/Zi./@)). (6.13)
This relation is very useful for finding the atomic dif-

fusion coefficients, due to the fact that the atomic opera-
tors obey a closed algebra, namely,

(o))’=0l, (0})’=0}, (o))’=0,

ool =0/l
(6.14)

For example, the diffusion coefficient corresponding to

the fluctuation force £, ,

(FADf(t")=2D . 8(t—1t"),

do'=al, d'd=0l, do=0,

(6.15)
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can be obtained from Egs. (6.12) and (6.4¢):

da)a o "OJ‘)
E a a_ (IE a

2D, = d al)?
aa E( a)
=(-T,~T!+T,+T.+T,+T){c’)

=T, +T){ch). (6.16)

Applying the same procedure to all possible products of
correlation forces, one gets for the normal-ordered non-
vanishing correlations

(FInF()) =T =T, =T ) (o)) d(t—1t"),  (6.17a)
(FAOfIE)) =@ =T )(h())+T (ol (1))18(t—1"),

(6.17b)
(P fi(t))y=(T,+T )l (1)) 8(t—1"), (6.17¢)
(LD f,(t))y= =T /(1)) 8(t—1"), (6.17d)
(FIOf "))y =T (o] (0)yd1—1"), (6.17¢)
(FUOFE))y =T+ T (ol (1)) (1), (6.17t)
(L fp (1) ==T (1)) 8(t—1"), (6.17g)
(PO f(t))=[Tp(ah(t))+T [ al(£))18(t—1").  (6.17h)

The correlations between forces associated with differ-
ent atoms vanish, as do the correlations involving atom
and field operators, since the corresponding reservoirs
are independent.

3. Macroscopic operators

One is usually interested in the behavior of macro-
scopic observables. The above equations will therefore
be reexpressed in terms of the macroscopic operators,
defined by

M(1)=—iY, O(i—1)ol(t)e k7, (6.18a)
]
N (1)=2 O(t—t)al(1), (6.18b)
]
Ny(t)=2, O(t—t)a)(1). (6.18c¢)

i

The additional factor (—i) in Eq. (6.18a) is introduced
for mathematical convenience. The operator M (t) rep-
resents the macroscopic atomic polarization for the at-
oms that started their interaction with the cavity mode
before ¢. The operators N,(t) and N,(¢) stand for the
macroscopic populations of the upper and lower level,
respectively. The introduction of macroscopic operators
leads in a subtle way to the problem of pumping statis-
tics. Indeed, one should note that, in order to calculate
the average values or correlation functions of the mac-
roscopic operators (6.18), two averages must be imple-
mented, namely, the quantum average and the classical
average over the excitation (or arrival) times ¢; of the
atoms in the cavity. This last average introduces the
pumping statistics.
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With the above definitions of macroscopic atomic op-
erators, Eq. (6.4a) for the electromagnetic field becomes
simpler:

a(t)=—yl2a(t)+gM(t)+F[t). (6.19)

On the other hand, the Langevin equations for the
macroscopic atomic operators are found by differentiat-
ing Eq. (6.18) and replacing in the resulting expression
Egs. (6.4b)—(6.4d) for the individual atomic operators.
For instance, for the operator N,(¢) one finds

N (0)=2 [8(t—t)al(t)+O(1—1)) ()]
]
=; 8(t—t)) ol (t) = (T, +T LN, (1)

—gla®(OM(t)+ M ()a(r)]+ ; O(t—1)fi(1).

(6.20)

The first term on the right-hand side of Eq. (6.20) cor-
responds to the pumping of atoms into the upper lasing
level. Indeed, the average value of this term is

<§ 5<r—zj>o£<t,»>>:<§ 5<t—rj><oi;<r,~>>>

N

=<§]‘, 5(t—t]-)> (6.21)
since (oJé(tj))= 1, due to the fact that the atoms are in-
jected in the upper state. The index S stands for the
classical statistical average, which must still be carried
out. It yields the average pumping rate into the upper
lasing level:

<E 5<r—zj)> =RJ+wdtj5(t—tj)=R.
]

— o0
S

s
N

(6.22)

In view of this result, the first term on the right-hand
side of Eq. (6.20) may be written in the form

> 5(z—zj)a{,(tj)—R},
! (6.23)

which clearly displays a constant drift contribution,
given by R, and a fluctuation force with zero average,
associated with the remaining contribution on the right-
hand side of the above equation. Inserting this result
into (6.20), one finds

N, (t)=R—(T,+T))N,(t)—gla'(t)M(1)
+MT(1)a(1)]+F,(1),

> S(t—t)ol(t)=R+
]

(6.24)
with

Fa<r>=§ @(z—t,-)ﬂ(rn; S(t—1,)ol(t)—R.
(6.25)

The new Langevin operator F,(¢) is the total-noise op-
erator for the macroscopic atomic population N,(¢). It
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incorporates the fluctuations in the population of the
upper level due to radiative decay and to pump fluctua-
tions.

The equations for the macroscopic population of the
lower resonant level and for the macroscopic atomic po-
larization are derived in a similar way:

Ny(t)==T,Ny(t)+T,N, (1) +gla’ ()M (1)

+MT(t)a(t)]+ Fy(t), (6.26)

M(t)=—TM(t)+g[N,(t) = Ny(t)]a(t)+ F (1),
(6.27)

with

Fb(t)=; @(z—t,-)ﬂl',(z)+; S(t—t)ah(t), (6.28)

(6.29)

The correlation functions of the macroscopic Lange-
vin forces may be calculated by using the results already
obtained for the microscopic forces, and considering
also the statistics of injection times. Thus, for instance,

<Fa<z>Fa<r'>>=§ ; O(1—1)0(t' 1)

XL R+ I(1,t')—R?, (6.30)

where

I(tt)=( 2 8(t—t)s(t'—t)) .
ix s

(6.31)

In deriving these expressions, one uses the fact that
£.(t) and a{,(tj) are uncorrelated, since 7;<¢. The first
term on the right-hand side of Eq. (6.30) may be ob-
tained from Egs. (6.15) and (6.16), so that

(Fu()F,(t") =L+ TN (0))o(t=t")+1(1,t")
- R2. (6.32)

The function /(z,t') can be calculated easily in two
extreme cases. For regular pumping, one may set
tj=to+j7, where 7 is the constant time interval between
two successive atoms, and f is an arbitrary time origin.
Since in this case there are no pumping fluctuations,
there is no correlation between the two delta functions
in the products in Eq. (6.31), so that

,Z; S(t—1))8(t' 1)) =R> (6.33)

N

On the other hand, for Poissonian pumping, ¢; is not
correlated with ¢, unless j=k. Separating these two
types of contributions, one has
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<]Ek 5(t—tj)5(t'—tk)> =<; 5(t—tj)5(t’—tj)>

N N

+<2 §(t—tj)5(t'—tk)> .
N

J7k
(6.34)
One finds for the first contribution
<E 5(t—tj)5(t’—tj)> =<5(t—t’)2 5(t—tj)>
! s ! s
=R&(t—1t"). (6.35)
and for the second one may write
<2 5<r—rj>a<r'—zk>>
j7k g
=2 <5(t—tj)>s< > 5(t—tk)> =R?, (6.36)
j k#] s

since the second sum misses just one atom (atom j),
which gives an irrelevant contribution to the average of
the sum (which is equal to R). We get therefore

<Ek 5(t—tj)5(t'—tk)> =R&(t—t')+R%.  (6.37)
Js

S

A detailed treatment, including the intermediate case
between Poissonian and regular pumping, was given by
Benkert, Scully, Bergou, Davidovich, Hillery, and
Orszag (1990). As in the master-equation discussion, the
results depend on a parameter p, which is equal to 1 if
the excitation is regular, and equal to 0 for Poissonian
pumping. Values of p between 0 and 1 correspond to
intermediate statistical distributions. The result for the
function I(z,t") is then simply

I(t,t")=(1—p)R&(t—1t")+R>. (6.38)

For the correlation functions of the Langevin forces
corresponding to the macroscopic operators one finds
then

(F () F,(t"))=[(T,+T ){N()+R(1-p)]

X 8(t—t'"), (6.39a)
(Fa(OFu(t))=[(2T =T ;=T ){Ny(1))+ R]
X8(t—t"), (6.39b)
(Fy()Fy(t")=[T 1 (Np(0)) + TN (1)) ]8(t—1"),
(6.39¢)
(Fp()Fpy(t)y=T o(M(1))(1—1"), (6.39d)
(Fa()Fp(t"))= =T (N, (1))d(t=1"), (6.3%)
(Fu(F,(t")=T AT (M@))s(t—t"), (639
(Fu(D)Fy(1))y==T(M(1))8(1~1"), (6.39g)
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(Fu(O)Fy(t))=[2T =T ,){Ny(1))+ T 1{N,(1))]
X8(t—t"). (6.39h)

Equations (6.19), (6.24), (6.26), and (6.27), together
with the correlation functions (6.7) and (6.39), com-
pletely describe the dynamics of the laser and of its
quantum fluctuations, for arbitrary pumping statistics, if
the Langevin forces are assumed to be Gaussian.

4. Equivalent c-number equations
The operator equations
i()=gM(1)— %a(t)-f—Fy(t), (6.40a)

M(1)=g[N (1)~ Ny(1)]a(t) =T M(1)+ F (1),

40b)
N ()=R—gla" ()M (1)+ M'(t)a(1)]
— (T, +T)N (1) +F,(1), (6.40¢)
Ny()y=gla" ()M (1)+ M (1)a(t)]=T,Ny(1)
+T N () +Fy(1), (6.40d)

cannot be directly solved. However, they may be re-
placed by completely equivalent c-number equations, as
long as one is interested in at most second-order corre-
lation functions of the operators (which is consistent
with the definition of the Langevin forces). The
c-number equations are obtained through the following
steps. One first replaces the operators in the above
equations by ¢ numbers, getting

Aty =g (1)~ % A +7 1), (6.412)

SO =ELN ()= (O] A =T A +T 1),

(6.41b)
N o(6) =R —g[A4* (1) (1) + 7% (1) A1)
— (T + T () + T (1), (6.41c)
Ny (6) = g[ A2 (1) () + 22 (1) A1) =T 1 3(2)
T 00 +.75(0), (6.41d)

where .7, (t) are Langevin noise forces with the follow-
ing properties:

(Zu(0)=0. (6.422)
(T T(t))Y=2T,8(t—1"). (6.42b)

The replacement of operators by ¢ numbers does not
lead in general to unique results, since the equation to
be transformed may contain products of operators that
do not commute with each other. Thus, for instance, the
product a’a=aa’+1 would be transformed by this pro-
cedure into either |.Z|* or |.#|>+1, depending on the
operator form used as a starting point. In this case, in
order to define this operation uniquely, it is necessary to
specify the ordering in the initial expression. Equations
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(6.40) do not present this problem, since they contain on
the right-hand side products of commuting operators.
On the other hand, the calculation of correlation func-
tions from (6.40) leads necessarily to ordering problems.
Thus, from (6.40b), one may write

d . .
2 (M OM D) =(MT ()M () +(M () M(1))

=g(a'(N,—N,)M)
+g(M"(N,—N,)a)

—2T(MTM)+2D 1y, (6.43)
where it has been used that, from Eq. (6.11),
(FyM)y+ (M Fy)=2D ysiy . (6.44)

Equation (6.43) contains products of the polarization
operator with population operators. Since M does not
commute with N, or N, , one has here an ordering prob-
lem. On the other hand, from Egs. (6.41b) and (6.42),
one finds

d : .
A AUO)= (I (O AUO) 2 (0.2,

—g( (N =)
g ( (N =N ) A2
T M5 Y+2T . (6.45)

From Eq. (6.39b), one can see that Egs. (6.43) and (6.45)
coincide if

2T yx =T =T ,—T (A (1)) +R

and if the replacement of operators by ¢ numbers in
(6.43) keeps the order in which these operators are
found in that equation. This motivates the definition of a
“normal order” for field and atomic operators, by the
sequence a’,M" N,,N, ,M,a. Note that Egs. (6.40) are
already in normal order. This is a generalization of the
concept used previously for field operators alone. In
fact, it is also possible to define a phase-space represen-
tation for field and atomic variables, given a certain or-
dering (Louisell, 1973). For the purposes of the present
discussion, however, the explicit form of this distribution
is not needed.

One should still examine what happens with the other
equations. It will become clear that, keeping to the or-
dering defined above, the equivalence of the c-number
and operator equations will require a redefinition of the
diffusion coefficients.

Thus, for instance, from Eq. (6.41b), one gets

d : .
2 MOM ) =(M(OM (1) +{M(1)M(1))

:g<(Na_Nb)aM>+g<M(Na_Nb)a>
—OT(MM)+(FyM)+(MFy). (6.46)

The first two terms on the right-hand side are not in the
previously defined normal order, so they must be reor-
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dered, using the corresponding commutation relations.
While atomic and field operators commute, one has
[M,N,—N,]=2M. This implies

d
2 (MOM(0)=28((N,~N;)Ma)-+2g(Ma)

(6.47)

since 2D 3;3,=0. The corresponding equation for ¢ num-
bers is

—2T(MM),

d
T AOMO)=28((N (=N ) M) = 2D A1)

2D yp- (6.48)

Comparing the right-hand sides of both equations,
one concludes that they are equivalent as long as

2Dy p=28(7(1).A(1)).

All the other diffusion coefficients for the c-number
equations are obtained in analogous ways. The nonvan-
ishing coefficients are the following:

29 pr = 2L =T =T (A WD) + R, (6.492)
2T 4 =28 (). AL)), (6.49b)
2Dy =T 2(1)), (6.49¢)
2%4q= (Lot T ) A W)+ R(1=p)

—g[( A ()2 +. 2% (). A1), (6.49d)

2Dy =T (A B () + TN 0(1)) = g[{2* (1).7(1)

(1) AD)], (6.49%)
2Ty =~ TN () + [ (A (1) 22(0)
+ 25 (1) A1))]. (6.49f)

One should note in particular that for zero temperature,
the diffusion coefficients of the normal-ordered field
fluctuation forces are all equal to zero. This implies that
the fluctuation force .7 ,(¢) in Eq. (6.41a) may be set
equal to zero, a simplifying feature of the normal-
ordered representation.

Equations (6.41) and (6.49) are c-number Langevin
equations completely equivalent to (6.40) with respect
to the calculation of correlation functions up to second
order. They are, however, easier to deal than the opera-
tor equations.

The above equations also allow one to state precisely
in what sense the fluctuation forces are small. The mac-
roscopic atomic variables scale as the number of atoms
in the system. On the other hand, it follows from Eq.
(6.2) that the coupling constant g scales as the square
root of the inverse of this number (assuming that the
volume V of the cavity is of the same order as the vol-
ume of the sample; in general, V is larger than the vol-
ume of the sample, and one should say more precisely
that the coupling constant has an upper bound that
scales as the number of atoms). This, together with Eq.
(6.41a), implies that the field amplitude scales as the
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square root of the number of atoms (so that the intensity
scales as the number of atoms). From Eq. (6.49) one
sees then that the mean squares of the fluctuation forces
also scale as the number of atoms, and so the atomic
fluctuation forces scale as the square root of this num-
ber, and indeed become small compared with the deter-
ministic terms when this number is very large, as is the
case in lasers.

If the fluctuation forces are neglected, one gets a
semiclassical laser theory, which yields the steady-state
solution.

B. Semiclassical theory

One should note first that, in the absence of the fluc-
tuation forces, the field and polarization variables re-
main real, if real initially. In this case, the semiclassical
equations of motion become

CAt)=g (1)~ %./é(t), (6.50a)
U= g[8 =N (O] A ~T 20, (6.50b)
A8 =R—2g /() A1)~ (T, TN (1), (6:50¢)
() =28 1) AL ~T 4y () + T4 (1), (6.50d)

1. Adiabatic elimination and rate equations

The above system of equations is frequently simpli-
fied, when distinct time scales occur for the decays of
different subsets of variables. Thus, for instance, in
He-Ne lasers at 0.6 and 1.15 um, the polarization relax-
ation constant is much larger than those of the popula-
tions or the field (I'>T",,I';,y). Furthermore, I" is also
much larger than the Rabi frequency associated with the
coupling between the polarization and the field in Eqgs.
(6.50c) and (6.50d). Taking this case as an example of
the usual procedure, let us consider the formal solution
of Eq. (6.50b):

dt'e YO (1) =1 (t) ] AL,
(6.51)

where the initial value of the polarization has been
taken as zero, since the atoms are injected in the excited
state. If I' is much larger than the typical rates of varia-
tion of the populations and the field, the terms depend-
ing on the atomic and field variables can be taken out of
the above integral, leading to

t
(t)=g f

1) = ?[(/z/'a(t) — (O], (6.52)
which could also be obtained by equating the time de-
rivative in (6.50b) to zero.

Equation (6.52) shows that, under the above condi-
tions, the polarization follows the other variables in time
(“adiabatic following”). Therefore, the dimension of the
system is reduced, and one says that the polarization is
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adiabatically eliminated. Inserting Eq. (6.52) in Egs.
(6.50a), (6.50c), and (6.50d), the following equations are
obtained:

SN g .
A0 == Z A0+ FLA A=A (014D, (6532)

. 28
A Wd)=R=(T+ T () = = [17(0)

— (O] A, (6.53b)

- . . 2¢%
A= =Ty V(D + T o0+ 5[ (D)

— (0] 2(0). (6.53¢)

Multiplying Eq. (6.53a) by . #(t), and defining I=. 7> as
the intensity of the classical field (normalized to the
number of photons in the cavity), one finds

2

I[(t)=—vI(t)+ 2%[/1/'“0) — N (0)]I(2), (6.54a)
N )=R—= (T +T )N 4(1)
28 . .
o M OENAOINO} (6.54b)
Ay ()==T I (1) +T LN 4 (1)
28 .
+ LU= O (). (6.54c)

These equations show that, in the limit in which the po-
larization can be adiabatically eliminated, the laser is
described by rate equations for the atomic and photon
populations. If in addition the atomic relaxation con-
stants are much larger than y and the Rabi frequency,
then the atomic populations may also be adiabatically
eliminated, and one gets then a single equation for the
number of photons.

2. Steady state

The steady-state solutions of Eq. (6.50) are obtained
by setting the time derivatives equal to zero. One then
finds for the steady-state intensity I(=.72):

Iy=Is(R/IR7—1),
where I is the saturation intensity, given by
_I'T, r,+r,
ST2g7 T,+T)’

(6.55)

(6.56)

and Ry is the threshold pumping rate,

g T 37
The expression (6.56) for I generalizes Eq. (5.5), re-
ducing to it when I')=0 and I'=(T",+T,)/2 (the purely
radiative case).
From Eq. (6.57) one can see that a necessary condi-
tion for laser oscillation is that I',>T",, that is, level b
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must be emptied through decay to lower levels faster
than it is fed by the decay of level a. This is quite
intuitive—otherwise, the population inversion necessary
for laser oscillation could not be maintained. For the
populations, one finds

R—vl,
N 4y = ESA (6.58a)
po _ TaRE o aly (6.58b)
S Ty ‘

Using (6.55) and (6.56), these equations may be ex-
pressed in terms of the steady-state intensity /, and the
saturation intensity /:

. Y Fa+rb
'//1/110: I,b_r, 10+F +F,IS , (6593)
oo Y gy e latls, 6.59b
R Ve VA A VS RN A b (6.59b)

On the other hand, using Eq. (6.50a) one may express
the steady-state atomic polarization in terms of the
steady-state intensity:

'/%ZO = % '/ZO N

(6.60)
the proportionality coefficient being the value at reso-
nance of the atomic susceptibility. Note that if . %, is
real, the same will be true for the steady-state polariza-
tion.

The stability of the above solutions can be checked by
studying the behavior of small fluctuations of the atomic

SN ()= — (T oyt T8N (1) — g Aol SM(L) + 8.00% (1) — g o[ S A1)+ 5.7 (1) ]+ 7o),
SNy (6)= =Ty s () + T8N (1) +g Ao S.7(1)+ 8.70% (1) |+ g o[ 8.4(1) + 8.72% (£)]+.T75(1),
B = =T 8. MU0V + (N =N ) B AN+ AL 8N ()= 8N H(D)]+T7 (1),

S At)=— Y28 1) +g8.7(1),

in which the reality of . %, and . Z, has been used. These
equations can now be solved exactly, by reexpressing
them in terms of the Fourier transforms of the atomic
and field variables:

+o0 .
wm«nzuﬂ*”f di e 5.07,(0),

(6.62)

and analogously for the other dynamic variables. To sim-
plify the notation, the same symbol is used for both
members of the Fourier transform pair, which will be
distinguished therefore through their arguments (time
or frequency). One gets then
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and field variables around the steady state. The general
analysis may become quite complex (Abraham et al.,
1986; Milonni et al., 1987). Indeed, for I')=0 and
I',=T,=T), Egs. (6.50) become equivalent to the Lo-
renz equations (Lorenz, 1963), as shown by Haken
(1975), leading to chaotic behavior. In any case, in order
to calculate the spectra of fluctuations around steady
state, one should identify the regions of stable behavior,
to make sure that those fluctuations do not diverge with
time.

In the next section, the fluctuation forces are again
taken into account, and the dynamics of the fluctuations
around these steady-state solutions is considered. The
measured spectra of field fluctuations will be directly re-
lated to these quantities.

C. Dynamics of fluctuations

The dynamic variables are now expressed as a sum of
the steady-state values plus small fluctuations. It is as-
sumed that the laser is operating sufficiently above
threshold so that the fluctuations of the dynamic vari-
ables are much smaller than their steady-state values (it
will be shown that the fluctuations scale as the square
root of the number of atoms, so that since the dynamic
variables scale as the number of atoms, it will not be
necessary to be very far above threshold). It is also as-
sumed that the linearization is made in a region of pa-
rameters that renders the steady state stable. Neglecting
terms of second order and higher in the fluctuations, one
gets from Eq. (6.41), setting .7 (1) =0, as discussed be-
fore,

(6.61a)
(6.61b)
(6.61c)

(6.61d)

Q8N Q)= — (T +T )1 Q) —g 2 8.74()
+ S (— Q)] —g W[ SAQ)+ 6.7
(—Q)]+7,(Q), (6.63a)

—iQ8) Q)= —T, 81y (Q)+T.81,(Q)
+8. 2 8.7(Q)+ 6.7 (— Q)]

+g [ S AQ)+ 825 (— Q)]+ T75(Q),

(6.63b)
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—iQ82(Q)=—T67(Q)+ 8(N ay= A b,) 0.72(0))

T8 20 0N ()= 8N (W) ]+.7 (D),
(6.63¢)
—iQ8 Q)= — YR8 AQ)+g8.74(Q), (6.63d)

where the ()-dependent fluctuation forces obey the
equations [which follow immediately from the definition
(6.62) and Eq. (6.42)]

(T Q)TH(Q)N=2T7,,6(Q+Q"). (6.64)

Note that, since .7 ,«(t)=.7",(1), it follows that
T x(Q)=7"*,-Q). Furthermore, since .7,(t) and
T (1) are real, one should have .7;(Q) =77 (- Q), for
i=a,b.

The solution of this linear system is easily obtained.
The interesting quantities are the amplitude and phase
quadrature components, which for the choice of phase
made for the steady-state solution (real field) are de-
fined by

SX(1)= %[a/z(m 875 (1], (6.652)
SY(t)= %[d%(t) —8.7%(1)]. (6.65b)

These definitions correspond to the vectors sketched in
Fig. 15. The amplitude and phase fluctuations are paral-
lel and perpendicular to the field, respectively. It will be
shown that while the amplitude fluctuations remain
bounded, the dispersion of the phase fluctuations grows

Imaginary

SA/ |6Y

5¢
'
AO §X Real

FIG. 15. Phase (6Y) and amplitude (5X) quadratures corre-
sponding to a field fluctuation 6.4 around the steady-state
value . 7,. The steady-state phase is chosen so that .7 is ori-
ented along the real axis. The phase fluctuation is given by
8~ 8YI|. 7|, as long as SY/|.7Zy|<1.

with time. This implies that the picture sketched in Fig.

15 has a limited validity in time: due to random fluctua-

tions, the tip of the field vector diffuses around the ori-

gin, while its amplitude is kept approximately constant.
Using (6.62), one gets, from (6.65):

SX(Q)= %[&%(QH s.7*(— )], (6.66a)
6Y(Q)=%[&%(Q)—&%*(—Q)]. (6.66b)

Note that SX*(Q)=8X(—-Q), SY*(Q)=8Y(-Q),
which result from the fact that X (¢) and 8Y(¢) are
real. Solving the system (6.63), one finds

r,+I,—iQ 1 e

= =7, +. 775 (— —i)+g Ay =7,

-8 %0Tp(Q) 1, (6.67a)
= g 7 —*(—
|

where and remain finite in this limit), i.e., the amplitude fluc-
QY24 T —iQ)(Ty—iQ)(T,+T' —iQ) tuations decrease as the intensity increases. This justifies
C(Q)= L4 b a_ 4 ) the common approximation of neglecting the amplitude

g (T, +T,=2iQ)(y—iQ)

(6.68)
Both 6X(Q) and §Y(Q) are proportional to atomic
fluctuation forces, which scale as the square root of the
number of atoms. Therefore, if this number is very large,
as in typical lasers, these fluctuations will indeed be
much smaller than the steady-state values of the corre-
sponding quadratures (which scale as the number of at-
oms), even without going far above threshold. Further-
more, 6X(Q)—0 when .7Z;— (since the atomic
fluctuation forces depend only on the atomic variables
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fluctuations for a laser operating well above threshold.
The analogous result does not hold for §Y(Q),
however—even when the laser operates well above
threshold, phase fluctuations remain important. The sin-
gularity of 8Y () near the origin might lead one to
suspect this result, since it was derived under the linear-
ization assumption. One should note, however, that,
since Y (Q) scales as the square root of the number of
atoms, it is possible to approach the origin arbitrarily
closely, as long as the number of atoms in the system is
sufficiently large.
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Equation (6.67b) displays yet another interesting fea-
ture: the fluctuation in the phase quadrature depends
only on the polarization fluctuation force. This implies

reason why they do not contribute to Eq. (6.67b).
From Egs. (6.64) and (6.67), one finds

that this fluctuation is associated with the spontaneous- (8X(Q)6X(Q))y=(6X 2)06(Q+Q"), (6.69a)
emission process. This result is dependent, however, on
the ordering adopted on going from the operator to the (8Y(Q)8Y(Q"))=(8Y?)08(Q+Q"), (6.69b)
c-number equations. For normal ordering, as noted
above, the field fluctuation forces vanish, and this is the where
|
5X? (T + 1) 7+ 07 r2+0)[(r-r,—Tr./ , +R
= + -T,—T)H.0, +
(X 0= o T aar P r o vz, 4 | T OOHE TR T e R
(I',-T)H)2+0?
2' 92+ nNy— 2' //2 e
+g //O(Fa+r‘;)2+92[2(ra+ra)/1 ag PR]+2g /Ora [”0
(T,+T/)(T,—-T)H+0?
_ 2 ‘2 a a o ro _ ’*2 2
28° % T, 1T Q7 (T'pt b, 2r .1 "0) v25U5 1, (6.70a)
|
sp2 g, 6706 (An”)=(m)+((| 2= (|- D) =(m)+(AF),  (6.71)
( )‘2_92[()//24-1“)24—02] : (6.70b) where (AI%) is the c-number intensity dispersion, in the

Note that (6X?)q and (8Y?), are real and symmetrical
with respect to (), since C(—Q)=C*(Q). While
(8X?) is always bounded (and actually goes to zero as
the intensity increases), this is not the case for
(8Y?)q, which has a singularity at =0. This singular-
ity will be shown to correspond to phase diffusion. It
plays another important role as well, in view of the
Heisenberg inequalities: it opens the way to the possibil-
ity of squeezing at zero frequency of the amplitude
quadrature fluctuations.

The linearization procedure adopted in this section is
closely related to the one used in linear stability analysis.
Here one transformed (6.61) into (6.63) by setting, for a
variable 7" representing an atomic population or the
field amplitude, S877(t)=exp(—iQ)7(Q), 7*(¢)
=exp(—i)87* (—Q); similarly, the stability analysis
sets 677(t) =exp(—st)87(0). This implies that the char-
acteristic polynomial of the linear stability analysis is
proportional to the denominator of Eq. (6.67a), with Q
replaced by —is. In particular, as one gets closer to a
region of laser instability, one of the roots s, of the char-
acteristic polynomial approaches the imaginary axis, im-
plying that the corresponding root Q) of C(Q)+2.72,
with C(Q) given by Eq. (6.68), has a small imaginary
part. This may result in large fluctuations around the
frequency given by the real part of (). Some features of
the spectrum can therefore be explained by proximity to
regions of laser instability.

It will be shown now that the photon-number disper-
sion and the time evolution of the phase dispersion may
also be obtained directly from Eq. (6.70).

D. Photon-number variance

As seen in Eq. (2.28), the photon-number variance
may be written as
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normal-ordered representation, and (n) is the average
number of photons in the state (shot noise). Sufficiently
far above threshold, since the amplitude fluctuations go
to zero, one may use Eq. (2.35) to relate the c-number
intensity dispersion to the amplitude quadrature fluctua-
tion:

(An?)=(n)+4. 726X (1)]?). (6.72)
On the other hand, from Eq. (6.69a), one finds
1 [+=
([6X(1)])*)= ﬁf dQ(6X?)g. (6.73)
One may therefore write
2 +oo
(An?)y=(n)+ ;.///gf dQ(6X%)q . (6.74)

Taking for simplicity I',=0, T',,T";,> vy (first-class la-
sers), one gets

(Any)y=(my{ 14|~ = 2L (675)
r—1 2(T',+Tp )’ '
where r=R/R . Far above threshold (r>1),
0N _ prb
(An*)=(n)|1 2T.AT,)| (6.76)
For I',>T",, this yields
0 p
(An*)=(n) 1—5 . (6.77)
For Poissonian pumping p =0, so that
(An?)=(n), (6.78)

which is typical of a Poisson distribution for the field. On
the other hand, if p=1 (regular pumping), one may ob-
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tain a reduction of up to 50% in the photon-number
dispersion. Note that Eq. (6.76) precisely coincides with
Eq. (4.32).

E. Phase diffusion

For a small phase fluctuation, the spectrum of phase
fluctuations can be easily related to the spectrum of the
phase quadrature fluctuations. Indeed, from Fig. 15 one
is led to

2 1 2
(o¢ )Q=[—0(5Y )a- (6.79)
From Eq. (6.70b), one finds
DST ('}//2+ 1")2 r 2
2y =
(0eD0="07 Garry+ar|yasr) - (680

where D gy is the Schawlow-Townes diffusion coefficient
(Schawlow and Townes, 1958), given by

g2 4,
De¢r=—m—
ST I()F

Replacing /7/'00 in the above expression by Eq.
(6.59a), and using Eq. (6.56), one finds
2
&y, 7
Dst=rr, * a1

(6.81)

(6.82)

In the limit I'>y, Q) (when the polarization may be
eliminated adiabatically), Eq. (6.80) reduces to

(56 0=, (653)
an expression frequently found in the literature.

From Eq. (6.80) one may directly calculate the corre-
lation function of the time derivative of the phase fluc-
tuation:

) oy 1 [+= PPN
(8¢(1)6(t )>=§ﬁ dQe " T0(5¢%)

o 2
=2f+ rg— (y2+T)
27 ) o (y2+T)>+Q?
=(D2)(yR2+T)exp{—(y2+T)|t—t'|},
(6.84)
where
r 2
DZDST ’}//2.—+F) . (685)

When I' becomes much larger than all the other rel-
evant frequencies, this expression becomes

(86(1)8¢(1"))=D 3(1—1"), (6.86)

which corresponds to a Markovian time evolution for
the phase, 8¢(t)=F(¢), the random force F(¢) being
without memory [i.e., (F(¢)F(¢t'))=D&(¢t—t")]. For a fi-
nite polarization relaxation time, one does not get Mar-
kovian behavior for the phase (Scully, Sissman, and
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Benkert, 1988; Scully, Zubairy, and Wodkiewicz, 1988;
Benkert, Scully, Rangwala, and Schleich, 1990; Benkert,
Scully, and Sussman, 1990): the random force F(t) then
acquires a memory, with a characteristic time
7=(y/2+T)~!. This is the time it takes for a photon to
be spontaneously emitted in the coupled atom-field sys-
tem. A time interval <7 is too short to conclude a
spontaneous-emission event—this is the root of the non-
Markovian behavior.
Integrating Eq. (6.84) twice in time, gives

(5902(t)>=J df'J di"(5¢(1") 6¢(1"))
0 0

e*(y/2+[‘)|t|_ 1

=D y2+T

|t]+ (6.87)

For times large compared to the memory time 7, dis-
persion grows linearly with time, characterizing a diffu-
sion process, with diffusion coefficient D. On the other
hand, if >0 is small compared to the memory time, one
may expand the exponential in Eq. (6.87), finding then a
quadratic dependence on time:

11t
(5¢2(t)>~Dt<§;)<Dt. (6.88)
Therefore for short times, phase noise is reduced by a
factor t/27<<1 with respect to the usual expression; the
phase diffusion is limited by the fact that there is too
little time to conclude a spontaneous-emission process
(Scully, Sussman, and Benkert, 1988).

F. Laser linewidth

The power spectrum of the field inside the cavity is
again given by the Wiener-Khinchine theorem (Lax,
1968b; Louisell, 1973):

+o0 )
(A= f dt e"™( 7% (1).2(0)). (6.89)
Well above threshold, one may neglect the amplitude
fluctuations, and write (restoring free evolution of the
field for the sake of clarity)

At~ Age 1@leileot d0) (6.90)

where ¢ is the steady-state value of the field phase, so
that the power spectrum may be written as

(A g~I, f Mdt el pmilde(=2e(0]y = (6,91)

Since the phase fluctuations are proportional to Y,
the statistical distribution for d¢ has the same nature as
the one for §Y. On the other hand JY, together with
6X and the atomic fluctuations, depends linearly on the
fluctuation forces. Thus, if these forces are assumed to
be Gaussian (which is consistent with the fact that they
are the sum of a large number of microscopic fluctuation
forces), the same should be true for the field and atomic
fluctuations, since linear combinations of Gaussian vari-
ables are also Gaussian (Risken, 1984). Therefore one
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may assume that the phase fluctuations follow a Gauss-
ian process, so that the corresponding statistical distribu-
tion is completely determined by its second-order mo-
ments. It follows in particular that

(eiloe(0=30(0)]y — o 126 (1)), (6.92)

Inserting this relation into Eq. (6.91), and using Eq.
(6.87), one arrives at

P D | D m D2+ (y2+T)m 693
(-7)0=200exp 505 | 24 inT| T 20724 T)| (@—Q) 2+ DA+ (y2+ T)mE" (6.93)

|
The usual expression, due to Schawlow and Townes b ou(t)=bin(1) + (1), (6.95)

(Schawlow and Townes, 1958), is recovered when
I'—oo. In this case the only surviving term in the above
sum is the one corresponding to m =0, and one has

Dgrl2
—Q)*+(Dg1/2)*

Therefore, when the polarization follows the field
adiabatically, the power spectrum of the intracavity field
is Lorentzian, with width given by the Schawlow-Townes
diffusion coefficient. From Egs. (6.82) and (6.94), one
sees that the linewidth decreases as the steady-state in-
tensity increases, which is a consequence of the domi-
nance of stimulated processes over spontaneous ones, as
the laser operates farther and farther above threshold.

The spectrum in the general case is shown in Fig. 16,
where it is plotted as a function of the dimensionless
frequency (w—Q)/(Dgr/2). It depends on two dimen-
sionless parameters, D¢t/ and 2I'/y. Since the first pa-
rameter is usually very small, the sum converges very
quickly, and may be approximated by the first term with
m=0 and diffusion coefficient D. Figure 16 displays the
reduction of the linewidth as the polarization lifetime
increases. This effect, which has been known for quite a
long time (Lax, 1966b; Haken, 1970), has only recently
been subjected to experimental test (Kuppens et al,
1994).

(A a=2I, = (6.94)

G. Spectra of the output field

The above results refer to the intracavity field. Usu-
ally, one is interested in the output field. The relation
between the fields inside and outside the cavity was first
discussed by Collett and Gardiner (1984). Based on this
analysis, useful expressions have been obtained for the
spectra of the output fields (Caves and Schumaker, 1985;
Collett and Walls, 1985; Gardiner and Collett, 1985;
Schumaker and Caves, 1985; Gardiner, 1991; Walls and
Milburn, 1994).

The main results may be summarized as follows. As
shown in Fig. 17, the output field results from two con-
tributions: the internal field, transmitted through the
coupling mirror, and the vacuum field incident on the
same mirror. Assuming that losses in the laser are neg-
ligible, so that the only source of field decay is transmis-
sion through the mirror (assumed to be very small), the
output field may be expressed in the following way (Gar-
diner and Collett, 1985):
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where b oy(t), bin(t), and d(r) are the annihilation op-
erators corresponding to the output field, input vacuum,
and intracavity field, respectively (all of them expressed
in the Heisenberg picture). Note that the relative sign
between the transmitted and reflected field on the right-
hand side of Eq. (6.95) agrees with the choice made in
Eq. (2.50b). Equation (6.95), which can be derived from
a reservoir theory with the cavity mode coupled to a
continuum of external modes (Gardiner, 1991), corre-
sponds to the Lehmann-Symanzik-Zimmermann formu-
lation of quantum field theory (Lehmann et al., 1955),
the “out” and “in” fields being asymptotic noninteract-
ing Heisenberg fields.

From Eq. (6.95) one is able to relate the second-order
correlation functions of the fields inside and outside the
cavity; indeed,

< Bgut(t)éout(t,)>:<[\/;éT(t)—i_l;Tin(t)]
X[\ya(t) +b y(t)]). (6.96)

If the initial state of the field is the vacuum, then all
terms in the above equation that have an operator Bin to
the right or an operator Efn to the left give zero contri-
bution, so that

(A2)g|
1

0.5

2 4
(@ -Q)/(Dgp/2)

FIG. 16. Normalized power spectrum for a laser. For the three
curves one has Dgr/y=10"1° (a) 2T'/y=10, the Schawlow-
Townes limit; (b) 2I'/y=1; and (c) 2I'/y=0.3 (long-lived
atomic polarization). From Kolobov et al. (1993).
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(biu(Dbou(t"))=Ha"(a("). (6.97)
The above argument does not, however, allow the cal-
culation of (b (1)bou(t')), since the analogous proce-
dure for this quantity will leave an operator b ;, to the
left. One needs a further ingredient, derived from a cau-
sality condition: the operator a(¢') is independent of
b, (1) for t>1'. Therefore one can write

[a(1").bin(1)]=0,
Assuming that >¢", one has
(BouDbou(t") =([Nya(0) + bin()IN¥a(t) + 5 in(t)])
=y(a(t)a(t")). (6.99)
On the other hand, for t<t' one can use the commuta-
tion relation [b g, (#),bou(t')]=0, which derives from
the fact that b, can be expressed in terms of the free-
field operators corresponding to the modes of the field
outside the cavity (for details, see Gardiner, 1991), to

put the product of out operators in time-ordered form,
getting

t>t'. (6.98)

(boulDboult)y=ATla(n)a(1")]), (6.100)
where T is the time-ordering operator
TTO(t)O(T)]=0(1-)O0(1-), (6.101)

and - (z.) is the largest (smallest) time.

These arguments can be generalized to an arbitrary
normal-ordered product of field operators (Gardiner
and Collett, 1985):

<bj>ut(t1) cee bzut([n)bout(tn+1) s bout(tm»

=" Tla'(ty) ... a'(t,)1T[a(tys1) - .. a(t,y)]),
(6.102)

where T is the time-antiordering operator.
If b! , and by are not in normal order, one should
first reorder them, using the commutation relations

[Dou(t),bl (1) ]=8(t—1"). (6.103)

These results will now be used to derive the spectra of
quadrature fluctuations.

1. Quadrature spectra

The spectrum of fluctuations corresponding to the
quadrature

X,=bou(t)e 1+ b} (1e'?

is again given by the Wiener-Khinchine theorem

(6.104)

V(6,Q)= fjmdr e X p(t+7)— (X o(t+7))]
X[X (1) = (X (1)) ])

:f”dfeiﬂf<xg(z+r),Xe(t)>,

—o0

(6.105)

where (X,Y)=(XY)—(XNY).
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o>

FIG. 17. Input, internal, and output fields.

There is an important conceptual difference between
this spectrum and the one previously defined in terms of
field amplitudes: they refer to different measurement
procedures. The quadrature spectrum corresponds to a
homodyne detection, while the spectrum (6.89) refers to
a direct photodetection measurement of the field
(Glauber, 1963a, 1965).

Note that (6.104) differs from the definitions (2.3) by a
factor 1/2, which is suppressed here for convenience
(this factor is absorbed by the normalization of the spec-
trum). Inserting (6.104) into (6.105), one finds

V0.0 [ dne® Bttt 5luio)

(b5 (t+ 7). o))+ (D ou(t+ 7),5 (1))

Xe 204 (bT (t+7),b] ()] (6.106)

For a stationary field this quantity is independent of
time, so that one may replace for instance
<bout(t+ T)’boul(t)> by <b out( T)about(0)>'

Using Eq. (6.103), one may rewrite the first term on
the right-hand side of Eq. (6.106) in normal order:

V(ng):1+ch dTeiQT [<bAI\ut(0)>bA out(T)>

+ <bAZut( T),B out(0)>
+ <Bout( T)vbAout(O»eizw

(b 1u(7).55,(0))e? 7. (6.107)

The first term on the right-hand side of the above ex-
pression comes from the commutator between the
bosonic operators of the output field. It gives rise to a
constant contribution to the spectrum, analogous to the
one found in Eq. (6.71), and corresponding therefore to
shot noise. One can now apply to Eq. (6.107) the results
of the previous section, rewriting the correlation func-
tions of the output field in terms of those of the intrac-
avity field. Furthermore, since these correlation func-
tions are normal-ordered, they may be replaced by
averages of the ¢ numbers corresponding to the opera-
tors, so that



164 L. Davidovich: Sub-Poissonian processes

V(6,Q)=1+ yf dr e M (2%(0), 1)) +{ A2* (1), 20))+{ A7), 20))e 20+ 2* (1), 2% (0))e??]

=1+ ny dr e (8.2*5(0)8.A(7))+(8.4* (1) 6.4(0)) +(8.24(7)5.2(0))e 20+ (8.2* (1) 6.7% (0))e?].

One should note that, for a coherent state, the fluc-
tuations 8.7 and 8._4* vanish, since coherent states are
eigenstates of the annihilation operator. We have then
V(6,Q2)=1. The spectrum corresponding to a coherent
state reduces to the shot-noise term. Therefore,
V(6,Q2)<1 characterizes the situation in which one has
squeezing, that is, quantum-noise reduction in the
quadrature 6 relative to the value for a coherent state.
Complete noise reduction at some frequency £} occurs
when V(60,Q)=0.

The above spectrum may be reexpressed in terms of
the phase and amplitude quadratures, defined by Eq.
(6.65):

V(G,Q)=1+4yfjc dr e ¥{(8X(7)6X(0))cos’ g

+(8Y(7)8Y(0))sin?>+[(5X (7)Y (0))
+{(8Y(7)5X(0))]coshsin6}. (6.109)

It may also be reexpressed, using (6.69), in terms of the
Fourier components of 6X(¢) and &Y (t) given by
(6.62):

V(60,0)=1+4y[(8X?)gcos>0+ (85Y?)qosin’ 0
—2(8X 8Y)qcosbsind], (6.110)

where (6X8Y)q is defined by (5X(Q)sY(Q'))
=(8X8Y)q8(0+Q").

The spectrum of amplitude fluctuations is obtained
from the above equation by setting =0, and 6= /2
gives the spectrum of phase fluctuations. For 6 between
these two angles, Eq. (6.110) corresponds to the spec-
trum of fluctuations of an arbitrary quadrature. It is easy
to show that the greatest quantum-noise reduction cor-
responds to

ReS(Q) ImS(Q)

|S(Q)| ° |S(Q)|
where S(Q)=(6X?)q—(8Y?)o+2i(6X8Y)q. Since
(6X68Y)q is zero (due to the resonance condition, and
not in general), the greatest quantum-noise reduction

occurs when 6=0, that is, for the amplitude quadrature,
for which

V(Q)=V4(Q)=1+4y(6X?),. (6.111)

This expression, combined with Eq. (6.70a), yields the
spectrum of amplitude fluctuations for any relative mag-
nitude of the atomic and field relaxation constants. Re-

cos20=— sin2 0=
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(6.108)

sults obtained from this expression for different types of
laser families are discussed in the next section.

2. Quantum-noise compression

A detailed study of Eq. (6.111) was made by Kolobov
et al. (1993). In this review only the more interesting
cases, from the point of view of noise reduction, are
discussed. In the following we set I',=0, and define the
dimensionless parameters

b=T/y,
F=RI/R;. (6.112)

Figure 18 displays the normalized spectrum of the
field for a laser belonging to the first family
(a,b,c>1), for p=1 (regular pumping), and for several
values of the normalized pumping parameter r, with
a<<b. One should note the pronounced noise reduction
for zero frequency (that is, at resonance). This is the
counterpart, in the frequency spectrum, of the reduction
in photon-number noise found before. Indeed, the
photon-number dispersion and the output-amplitude
fluctuation spectrum can be related through Eqs. (6.74)
and (6.111), so that

aEFa/77
c=I/vy,

<An2>=<n>+i%2f+wdﬂl[v (Q)—1]. (6.113)
20 0) ., y A ’ :

From this equation, it is clear that (An?)<(n) only if
V 4(Q)<1 in some frequency region.

3
V@ \» @

2,
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O (e) 1 i 1 1

0 1 2 3 49/75

FIG. 18. Normalized spectrum of amplitude fluctuations for a
laser of the first class, for several values of the pumping pa-
rameter r. (a) r=1; (b) r=2; (c) r=3; (d) r=5; and (e)
r=10. In all cases p =1, corresponding to regular pumping, and
I',<TI;, . From Kolobov et al. (1993).
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FIG. 19. Normalized spectrum of amplitude fluctuations for a
laser of the third class, with Poissonian pumping, for several
values of the pumping parameter r. (a) r=3Xx10% (b)
r=5x10% (c) r=10% (d) r=10° In all cases I',/y=0.001,
I'y,/y=0.1. From Kolobov et al. (1993).

For a laser working well above threshold, r>1, it is
possible to eliminate completely the noise at zero fre-
quency. The same behavior is verified for other laser
families (Kolobov et al., 1993): pumping regularization
can completely eliminate noise at zero frequency.

Interesting results are also obtained for Poissonian
pumping. In this case, one also gets amplitude squeezing
for sufficiently intense pumping. This is displayed in Fig.
19, which refers to the third class of lasers defined at the
beginning of this section (¢>1>a,b). One should note
however that the range of pumping required for mean-
ingful squeezing is extremely high, and nonrealistic. The
injection of an external signal from another laser may,
however, reduce these values considerably (Fontenelle
and Davidovich, 1995).

VIl. GENERATION OF FOCK STATES THROUGH
QUANTUM NONDEMOLITION MEASUREMENTS

The utilization of a QND method to produce Fock
states in cavities was discussed by Brune et al. (1990,
1992). The proposed experimental scheme is sketched in
Fig. 20. It consists of a high-Q superconducting cavity
containing the electromagnetic field to be reduced, and

Microwave
Generator

Counters

Excitation

Ioo'ri
/2 Chambers

Microwave
Generator

FIG. 20. Quantum nondemolition measurement in cavity
quantum electrodynamics.
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FIG. 21. Relevant atomic levels for the QND measurement.

placed between two other cavities Ry and R,. A beam
of excited atoms interacts resonantly with the field in
R, and R,, and dispersively with the field in the super-
conducting cavity. Before crossing the first cavity Ry,
the atoms are prepared in a circular Rydberg state, that
is, a state with high principal quantum number and
maximum angular momentum, so as to increase its de-
cay time and increase the atom-field coupling (Hulet
and Kleppner, 1983; Nussenzveig et al., 1991). This state
will be denoted by |a) in the following. The relevant
atomic levels are shown in Fig. 21. Levels i and b have
the same parity, opposite to that of level a. The cavity
mode, with angular frequency w, is slightly detuned
from the a—1i transition, which corresponds to the an-
gular frequency w;,. The field in R; induces resonant
transitions between |a) and the lower-lying Rydberg
state |b). One may assume that the interaction time and
the intensity of the field in R (which is essentially clas-
sical, as is the field in R,) are such that the state of the
atom, after it leaves R, is (Ja)+|b))/\2 (one says then
that the atom suffers a 7/2 pulse). The atom then enters
the superconducting cavity, where due to the dispersive
coupling between the field and the transition a—i, the
state |a) suffers a second-order Stark level shift, given
by —#Q2n/ 4, if the field is in a Fock state |n), where
Q) is the vacuum Rabi coupling between the atomic di-
pole on the a—i transition and the cavity mode, and
d=w—|w,,| is the frequency mismatch (it is assumed
here for simplicity that the Rabi coupling is constant
throughout the cavity). It is assumed that § is sufficiently
large that Q%n/8%<1, and at the same time small com-
pared to the difference in frequency between the a—i
transition and all the other transitions in the Rydberg-
atom spectrum (especially the a—b one). In this case,
only levels @ and i are appreciably affected by the non-
resonant atom-field coupling, which leaves the level b
unperturbed.

If the field in the high-Q cavity is initially in the state
| o) ==,c,|n), then the state of the atom-field system
right after the atom exits that cavity is

1
N

where e= (02 6)t;, is the one-photon phase shift that
originates from the Stark energy shift. The atom then
crosses the cavity R,, where it interacts with another

)= |a>§ cne—i"fln>+|b>§ caln) |, (7.1)
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atom detected in b

P(n)

o

0 n 24

P(n)

atom detected in @

FIG. 22. Modulation of the original photon-
number distribution after detection of the first
atom. The initial distribution, displayed in (a),
is Poissonian with n=10. It is multiplied by
the oscillating fringe function sin’(ne/2), if the
atom is detected in the state a, or
cos’(nel2), if in state b. These functions are

(-]

0 n u

(a) (v)

/2 pulse taking takes |a) again into (|a)+|b))/2, and
|b) into (—|a)+|b))/\2. The correlated atom-field state
becomes

1 .
[W2) =3 |a) 2 (7" =1)e,|n)

. (12)

+|b) D (e +1)c,|n)

After crossing R,, the atom is detected by letting it go
through a set of ionization plates, the first one contain-
ing an electric field that ionizes the atom if it is in state
|a), while the second, with a stronger electric field, ion-
izes the atom if it is in state |b). If the atom is found in
the state |a), then the atom-field system is described by
the state

Ensin(no_t/Z)e_"”E/zc,l|rz)I 73
[En|cn|25in2(ne/2)]1/2 |a>' ( . )

A similar expression applies if the atom is detected in
state |b). Equation (7.3) shows that detection of the
atom changes the field populations, even though the
atom has not exchanged photons with the field (since the
interaction is dispersive). The photon-number probabil-
ity distribution previous to the passage of the atom is
multiplied, after the detection, by a modulation factor
that oscillates with n:

sin’(nef2)
>, Po(n)sin’(nel2)

This modulation is displayed in Fig. 22. Depending on
the choice of €, detection of the first atom may deplete
several populations. For instance, for e=, one has
P{9(n)=0 for all even values of 7.

Detection of successive atoms, with changing veloci-
ties and therefore different values of €, will deplete
other populations, until one is left finally with a single
Fock state, which is stable under the transformation
(7.4). Figure 23 illustrates a typical QND sequence.

|¥.)=

P{(n)= Py(n). (74)

VIIl. TWIN-PHOTON PROCESSES

As discussed in Sec. III.A, twin-photon beams have
led to striking results for quantum-noise reduction. In
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P(n)

represented as a function of n in (b). In the
resulting distributions (c), photon numbers
closest to the “dark fringes” have been
greatly reduced. From Brune et al. (1992).

(c)

parametric downconversion, the essential physical fea-
ture for getting noise reduction in the difference of in-
tensities is simultaneous twin-photon generation. One
would thus expect the result to be valid for any oscillator
sustained by a genuine nondegenerate two-photon pro-
cess (as opposed to cascade transitions, in which an in-
termediate state gets populated, and there is a delay in
the emission of the second photon).

In fact, with only the assumption that the intensity
difference operator /;—1I, is conserved by the paramet-
ric interaction, i.e.,

[H,I,—1,]=0, (8.1)

Reynaud (1987) derived the noise spectrum for the dif-
ference in the transmitted intensities for the Optical
Parametric Oscillator, in the case where the output mir-
ror is the only source of the decay rates of signal and
idler beams, assumed to be equal (“balanced single-

t)

—

e

i

(d)

F

(e)

(b)

Photon number distribution

0 10 20
Photon number

FIG. 23. Typical QND sequence. The initial state is coherent
with n=35, and its photon-number distribution is displayed in
(a). Plots (b)—(f) correspond to the detection of 1, 3, 6, 10, and
15 atoms, respectively. In this realization, the field collapses,
after detection of 15 atoms, into the n=3 Fock state. From
Brune et al. (1992).
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FIG. 24. Relevant level scheme for a two-photon laser.

ported” case). Using the same single property, Graham
(1984) obtained general (and exact) identities for the
steady-state intracavity field fluctuations generated in a
parametric process.

A. Twin-beam effects in two-photon oscillators

Parametric downconversion is but one of the pro-
cesses that lead to twin beams. Twin photons can also be
generated by two-photon masers or lasers. Although
proposed a long time ago (Sorokin and Braslau, 1964;
Prokhorov, 1965), experimental demonstration of these
devices has occurred only recently (Brune et al., 1987,
Gauthier et al., 1992). The main difficulties in the real-
ization of these systems are the exceedingly small gain
on two-photon transitions, and the existence of very
strong competing nonlinear processes, like multiple-
wave mixing and the stimulated Raman effect. However,
for two-photon lasers, Eq. (8.1) does not hold anymore,
due to the presence of a relay level which mediates the
transition between the excited and final atomic states.
The relevant level scheme is shown in Fig. 24. The inter-
mediate level is detuned so as to avoid a two-photon
cascade process, whereas the upper and lower levels are
resonantly coupled to the cavity. The corresponding
Hamiltonian is given by

H:Ha[+HF+(ﬁ Qai a1|a><i|+ﬁQ,~b a2|l><b|+HC),

82)
where H,;, Hy are the Hamiltonians for the three-level
atom and for the signal and idler modes, and Q,;, Q;,
are the a—i and i—b atom-field couplings, in units of
frequency. In this equation, we have neglected the cou-
plings between the upper mode (of frequency w;) and
the i—b transition, and between the lower mode (of
frequency w,) and the a—i transition, corresponding to
the limit |w,— w¢|>A, where A=|w;,— | is the detun-
ing.

The Hamiltonian (8.2) does not commute with
ny—n, even in the large-detuning limit. In fact, the twin-
photon effect appears here as the result of the associa-
tion of the large-A atom-field interaction and the atomic
excitation scheme, which must not provide atoms in the
intermediate state |i).

A generalization of Eq. (8.1) was suggested by Maia
Neto and Davidovich (1992), who derived expressions
for the noise reduction in the intensity difference, for
two-photon lasers. The main assumption is that the fluc-
tuation in the difference between signal and idler pho-
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ton numbers, n,—n,, satisfies the equation

d

E<(n2_n1)k>|gain:0’ k=12, (83)
that is, the gain process is exclusively based on simulta-
neous generation of pairs of signal and idler photons.
Even though (8.3) may be trivially derived from (8.1), it
applies nevertheless to systems for which (8.1) is not
valid. One example is the two-photon laser with a relay
level, described by the above Hamiltonian.

The field master equation for the two-photon laser
cannot be obtained directly from the atom-field Hamil-
tonian, Eq. (8.2). Instead, one needs to consider a
Hamiltonian describing the complete dynamics involved
in the problem, including the excitation. Alternatively,
one may calculate the change in the reduced density ma-
trix of the field due to one atom, and then write down
the master equation by summing up the contributions of
the successive excited atoms introduced into the laser
cavity, as done in Sec. V. In this case, it is easily seen that
Eq. (8.3) holds if and only if the gain part of the master
equation has the form

dP, ,
172
dt

|gain: _A(”1n2)Pn1n2

+A(n1—1, n2—1)Pn1_17n2_1, (84)

where A(nn,) is any function. For a two-photon oscil-
lator, it can be shown that this is equivalent to the con-
dition that the intermediate-level detuning is much
larger than the power-broadened linewidth of the atomic
transitions (Maia Neto and Davidovich, 1992).

If Eq. (8.3) holds, then the following result can be
shown. Let PnanZ(n1n2|p(z)|n1n2) be the probability
of finding n; and n, photons in modes 1 and 2, respec-
tively. Here p(¢) is, as before, the reduced density op-
erator for the field. Taking dissipation into account in
the usual way, this probability distribution satisfies the
equation

dPnlnz(t) dPnlnzl
a  dr lgain— (Y1111 ¥212) Py 0y

+ yl(”l"‘ 1)Pn1+1,n2+ 72(”2+ 1)Pn1,n2+1 .
(8.5)
From Egs. (8.3) and (8.5), one finds

d
E(”z_”1>:_7’2<”2>+ yi{n1), (8.6a)

d
a((”z_’h)z): yi{ni) + yvan2) +2y(ni(ny—ny))

=2y (ny(ny—ny)). (8.6b)

In the case of equal cavity decay rates (balanced case),
the dynamics of the average difference between photon
numbers is independent of the sum (and thus of the gain
process), as may be seen directly from (8.6). The intrac-
avity steady-state moments are, in this case, given by
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(n1)=(nz), 8.7)

((ny— ”1) )= w

(8.8)
On the other hand, for a classical-field distribution,
one must have

((ny=ny)*y—(ny—ny)*=(n +n,). (3.9)

One gets then a squeezing factor of 50% for the intrac-
avity field in the balanced case, either above or below
the threshold of oscillation.

B. Noise spectrum of the output field

The noise spectrum S(w) of the output signal-idler
intensity difference may also be obtained on quite gen-
eral grounds from the condition (8.3), by applying the
input-output theory of Gardiner and Collett (1985),
similarly to what was done in Sec. VI.G. The discussion
here is restricted to the balanced case (cavity damping
times identical for both modes).

The intracavity Heisenberg boson operators aj(t)
(k=1,2) obey the usual commutation rules

[a(t),a ()]=0,
[a(t),al,()]= 8 s,

but the commutators between the operators at different
times involve the dynamics of the field interaction with
the active medium.

The output signal and idler operators are b,(7),
k=1,2. We choose the normalization such that the in-
tensity operators for the transmitted signal and idler
beams, given by

I,=biby, (8.11)

yield the number of transmitted photons per unit time.
As seen in Sec. VI.G, these operators obey the commu-
tation relations

[Dx(2),by(t")]=0, (8.12a)
[bi(£),b ), (t")]= 8 ir S(2—1"). (8.12b)

The spectrum S(w) of fluctuations in the intensity dif-
ference of the signal and idler beams is given by

(8.10a)
(8.10b)

S)= | e =)0 10)0)

—(I,—1,)*]dt, (8.13)

where the average is taken over the steady-state distri-
bution.

In order to calculate S(w) as a function of the intrac-
avity field, using the method developed in Sec. VI.G,
one writes Eq. (8.13) in normal ordering. From Egs.
(8.12) and (8.13), one finds

S(w) <11+12>+f eI — 1) (1) (11— 15)(0):)
1,)*]dt.

—(I, - (8.14)

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

The signal and idler cavity decay rates associated with
transmission through the output mirror M are here as-
sumed to be equal, and given by v,,, while vy is the total
field decay rate (y=1y,,), corresponding to losses from
transmission through the mirrors, as well as from intra-
cavity and mirror absorption.

From Egs. (8.14) and (6.102), S(w) can be expressed
as a function of the intracavity field moments:

S(w)=yM(<n1)+(n2))+2f:dl coswtG(t), (8.15)

where G(¢) is the normally time-ordered autocorrela-
tion function at steady state:

G(t)=vy(:[na(t) —ny(6)][1n2(0)—n1(0)]:)

= y@kgz (—)X(aj(0)[ny(t)—ny(t)]a(0)).

(8.16)

This expression was obtained using the condition (8.7),
valid in the balanced case.

The first two terms on the right-hand side of Eq.
(8.15) correspond to the shot-noise contribution. It is
clear that the noise spectrum will be below shot-noise
level whenever the Fourier transform of G(¢) becomes
negative.

This expression is now explicitly calculated by using
the Quantum Regression Theorem (Lax, 1968a), which
may be summarized in the following way. Let us con-
sider a set of operators A; satisfying the Langevin equa-
tions

dA (t)

—Z CyA (1) + N+ F(1), (8.17)
where the fluctuation forces F;(¢) are assumed to be
delta correlated, corresponding to a Markovian evolu-
tion for the operators:

Multiplying (8.17) by A,(0), and taking the quantum
average of the resulting equations, one gets

d
i (ADAK0) =2 Ci{ADAK0)+A(A4(0))

+(Fi(1)A(0)). (8.19)

Now if ¢ is positive and much larger than the correlation
time of the fluctuation forces [which in (8.18) is assumed
to be zero], the last term on the right-hand side of (8.19)
should vanish, since the operator A;(0) should be un-
correlated with fluctuation forces at later times [in fact,
formal integration of Eq. (8.17) shows that the operators
A;(t) depend only on fluctuation forces in the past].
This is confirmed by a more rigorous analysis, which
takes into account the finite correlation time of the
Langevin forces (Cohen-Tannoudji et al., 1988). The fi-
nal conclusion is that the two-time correlation functions
obey the equations
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S (w/¥)/Sspa

2
W/

FIG. 25. Normalized spectrum of fluctuations of the intensity
difference for a two-photon laser, in the balanced case. Full
line: y/vy,=1.2; dashed line: y/y)y=1. From Maia Neto and
Davidovich (1992).

d
ZADAL0) =2 C{ALDAL0)FALAO)),
(8.20)

which have the same structure as the equations describ-
ing the time evolution of the average values (A;(¢)):

d
E<A,~(t)>=; Ci{A;(1)+N\,;. (8.21)

This result is easily generalized to products of three
operators. Thus, for instance,

d d
T (BO)=(b(0)= 7(A(0)B()C(0)

=(A(0)b(1)C(0)), (t>0), (8.22)

where A, B, b, and C are operators undergoing Mar-
kovian time evolutions. It follows then from Egs. (8.6a),
(8.16), and (8.22) that

d

aG(r)=—yG(t), (8.23)
so that

G(t)=G(0)e ™. (8.24)

Therefore, using the commutation relations (8.10a), one
has

G(t)=vie "[{(ny—ny)?)—(n+ny)]. (8.25)

From Egs. (8.8), (8.15), (8.16), and (8.25), one finally
obtains the noise spectrum:

o’ + ¥V = yyu
S(w):7M<n1+n2>W (8.26)
In Fig. 25, the spectrum S(w) is shown for

v/ yy=12 and y/yy,=1. One should notice that S(w)
approaches the shot-noise level

Ssnot=Ym{n1+ns) (8.27)

when w>y,y,, .
There is a dip in the spectrum for w<y,vy,,, repre-
senting the nonclassical noise reduction discussed ear-

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

lier. This noise reduction is degraded by any loss not
caused by the output mirror M. In particular, the maxi-
mum noise-reduction factor (which occurs at w=0),
given by

Sshot_S(O) _ V_M
Sshot Y

decreases from 1 down to O when 7y/vy,, is increased.
This can be understood simply following the reasoning
outlined in Sec. IIL.F. After a long counting time, many
twin-photon pairs leave the cavity, but a fraction of them
(equal to vy, /vy in the case of ideal detectors) are not
detected. Therefore, at w=0, extra losses introduce
noise exactly as does a detector of quantum efficiency
n=ymly

One can see therefore that when the cavity damping
times are equal, the dynamics of the intensity difference
in two-photon oscillators becomes completely indepen-
dent of the gain mechanism, which allows one to derive
its noise spectrum in a general and exact way. This im-
plies that such different systems as the two-photon laser
and the nondegenerate optical parametric oscillator may
generate output fields with identical intensity-difference
noise spectra. Furthermore, the twin-photon effect in
two-photon lasers is not degraded by the population of
the upper resonant level and its incoherent decay. This is
usually a strong source of noise, which spoils squeezing
in resonant devices.

, (8.28)

IX. CONCLUSIONS AND OUTLOOK

In this review, I have tried to show that the idea of
reducing the quantum noise in light is a unifying con-
cept, which spans several different areas of research in
optics, from nonlinear optics to laser physics and cavity
quantum electrodynamics. It has led to interesting re-
finements in the understanding of quantum noise, and to
new insights into laser theory. Furthermore, it has
touched fundamental questions in quantum measure-
ment theory. What has happened since the invention of
the laser amounts to a conceptual revolution. Its touch-
stone has been the increasing ability to master photon
beams, molding them so as to produce nonclassical
states of the field. Even though abiding by the Heisen-
berg inequalities, these states may exhibit variances
smaller than those of a coherent state, either in a
quadrature, in the photon number, or in the phase of the
field.

Nonclassical properties of light have been observed in
many different situations. Most of the observations refer
to parametric processes, in which the atomic medium
intervenes though a nonlinear index of refraction. In
many instances, however, atomic dynamics plays an es-
sential role, leading to the generation of sub-Poissonian
light in resonant processes like atomic fluorescence, and
in lasers and masers.

The richness of this subject is due not only to the
variety of processes involved, but also to the strong in-
terplay of basic and applied research. Applications of
sub-Poissonian beams and quadrature-squeezed light



170 L. Davidovich: Sub-Poissonian processes

have been envisaged in communications, in precise in-
terferometric measurements, and in the detection of
gravitational waves. At the present moment, there re-
main two obstacles to the practical implementation of
the results obtained in basic research. The first one is the
narrow bandwidth and still-small amount of noise reduc-
tion (reduction of more than 90% is necessary for appli-
cations). The second is the complexity of the techniques
involved, which require very careful control of the ex-
perimental conditions. The rapid succession of major
achievements in this field does, however, inspire opti-
mism for the actual realization of practical devices.
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