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We review the present status of QCD corrections to weak decays beyond the leading-logarithmic
approximation, including particle-antiparticle mixing and rare and CP-violating decays. After
presenting the basic formalism for these calculations we discuss in detail the effective Hamiltonians of
all decays for which the next-to-leading-order corrections are known. Subsequently, we present the
phenomenological implications of these calculations. The values of various parameters are updated, in
particular the mass of the newly discovered top quark. One of the central issues in this review are the
theoretical uncertainties related to renormalization-scale ambiguities, which are substantially reduced
by including next-to-leading-order corrections. The impact of this theoretical improvement on the
determination of the Cabibbo-Kobayashi-Maskawa matrix is then illustrated. [S0034-6861(96)00304-2]
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I. INTRODUCTION

In our present day understanding, weak interactions
show the most complicated and diversified pattern of all
the fundamental forces of nature. The standard model of
strong and electroweak interactions is capable of suc-
cessfully describing a large amount of experimental in-
formation quantitatively and even more information
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qualitatively. However, there are many unanswered
questions that still remain, and many of them, such as
electroweak symmetry breaking and the origin of ferm-
ion masses and quark mixing, are closely related to weak
interactions. In addition, the discrete space-time symme-
tries C , P , and T (charge, parity, and time) are re-
spected by the strong and electromagnetic interactions,
but not by the weak interaction. For these reasons, much
effort has been spent on developing a theoretical under-
standing of the weak interaction. An excellent labora-
tory for this enterprise is provided by the very rich phe-
nomenology of weak meson decays.
In this article, we review the subject of next-to-

leading-order QCD corrections to weak meson decays.
The careful investigation of these decays is mandatory
for further testing of the standard model. Of particular
importance is the determination of all Cabbibo-
Kobayashi-Maskawa. (CKM) parameters to an accuracy
that will test the consistency of the standard model, in-
cluding the unitarity of the CKM matrix and its compat-
ibility with the quark masses. Many interesting issues
within this context remain unresolved, for example, di-
rect CP violation in nonleptonic K decays, CP violation
patterns in the B system, and the rare K and B decays
that are sensitive to the effects of virtual heavy particles,
such as the top quark. As experiments achieve better
resolution and discover more rare decay channels, the
corresponding theory has to become more precise as
well, so that the new experimental results can be effi-
ciently used to obtain improved determinations of the
parameters in the standard model and consequently to
allow improved predictions for future experiments.
Since hadrons are involved in all the decays we are

interested in here, QCD effects are unavoidable and
must be quantitatively understood. To accomplish this
task one employs two tools of quantum field theory, the
operator product expansion (OPE) (Wilson and Zim-
mermann, 1972) and the renormalization group (Stueck-
elberg and Petermann, 1953; Gell-Mann and Low, 1954;
Ovsyannikov, 1956; Callan Jr., 1970; Symanzik, 1970;
’t Hooft, 1973; Weinberg, 1973). In the OPE, an ampli-
tude A for a process such as a weak decay may be rep-
resented as (Witten, 1977)

A5^Heff&5(
i
Ci~m ,MW!^Qi~m!&. (1.1)

Here Qi are local operators and Ci are the Wilson coef-
ficients. Both the Ci and Qi depend on the QCD renor-
malization scale m, and Ci depends on the mass of theW
boson and the masses of other heavy particles such as
the top quark as well. One can view the expression of
(iCiQi more intuitively as an effective Hamiltonian for
the process considered, with Qi the effective vertices
and Ci the corresponding coupling constants.
The essential point about the OPE is that it separates

the full problem into two distinct parts, the long-distance
contributions contained in the operator matrix elements
and the short-distance physics described by the Wilson
coefficients. The renormalization scale m separating the
two regimes is typically chosen to be of the order of 1

GeV for kaon decays and a few GeV for the decays ofD
and B mesons. The physical amplitude A , however, can-
not depend on m. The m dependence of the Wilson co-
efficients has to cancel the m dependence present in
^Qi(m)&. In other words it is a matter of choice what
exactly belongs to the matrix elements and what to the
coefficient functions. This cancellation of m dependence
generally involves several terms in the expansion in Eq.
(1.1).
The long-distance part in Eq. (1.1) deals with low-

energy strong interactions and therefore poses a very
difficult problem. Many approaches, like lattice gauge
theory, 1/N expansion, QCD and hadronic sum rules, or
chiral perturbation theory, have been used in the past to
obtain qualitative insight and some quantitative esti-
mates of relevant hadronic matrix elements. In addition
heavy-quark effective theory and heavy-quark expan-
sions have been widely used for B decays. Despite these
efforts the problem is not yet solved satisfactorily.
In general in weak decays of mesons the hadronic ma-

trix elements constitute the most important source of
theoretical uncertainty. There are, however, a few spe-
cial examples of semileptonic rare decays (K+,
KL→p0nn̄ , B→Xsnn̄), where matrix elements needed
can be extracted from well-measured leading decays,
calculated perturbatively, or, as in the case of Bs→mm̄ ,
expressed fully in terms of meson decay constants. Thus
the problem of long-distance QCD can almost be com-
pletely avoided. This makes these decay modes very at-
tractive from a theoretical point of view, although, due
to very small branching ratios, they are quite difficult to
access experimentally.
In contrast to the long-distance contributions the

short-distance QCD interaction can be analyzed system-
atically using well-established field-theoretical methods.
Due to the asymptotic freedom of QCD the strong-
interaction effects at short distances are calculable in
perturbation theory in the strong coupling as(m). In fact
as(m) is small enough in the full range of relevant short-
distance scales of O(MW) down to O(1 GeV) to serve as
a reasonable expansion parameter. However, the pres-
ence of large logarithms ln(MW/m) multiplying as(m),
where m=O(1 GeV), in the calculation of the coefficients
Ci(m ,MW) spoils the validity of the usual perturbation
series. This is a characteristic feature of renormalizable
quantum field theories when vastly different scales are
present. It is therefore necessary to perform a
renormalization-group analysis that allows an efficient
summation of logarithmic terms to all orders in pertur-
bation theory. In this way the usual perturbation theory
is replaced by a renormalized-group improved perturba-
tion theory in which the leading order corresponds to
summing the leading logarithmic terms ;[asln(MW/m)]

n.
Then at next to leading order (NLO), all terms of the
form ;as[asln(MW/m)]

n are summed in addition, and so
on.
The evaluation of the short-distance coefficients in the

renormalized-group improved perturbation theory is
only a part of the entire problem, but one should stress
that it is still indispensible to analyze this part systemati-
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cally; the effective Hamiltonians resulting from the
short-distance analysis provide the necessary basis for
any further computation of weak-decay amplitudes. The
long-distance matrix elements can be treated separately
and will hopefully be known with desired accuracy one
day.
It is worth noting that the short-distance QCD contri-

butions by themselves already have an important impact
on weak-decay processes. In nonleptonic K decays, for
example, they help to explain the famous DI=1/2 rule,
and they generate penguin operators that are relevant
for «8/«. They suppress the semileptonic branching ratio
in heavy-quark decays and produce a significant en-
hancement of the weak radiative process B→Xsg .
Starting with the pioneering work of Galliard and Lee

(1974a) and Altarelli and Maiani (1974), who calculated
the first leading-logarithmic-order QCD effects in weak
decays, considerable efforts have been devoted to the
calculation of short-distance QCD corrections to weak-
meson decay processes. The analysis has been extended
to a large variety of particular modes. Of special interest
are processes sensitive to the virtual contribution of
heavy quarks, like the top quark. A classic example of
this type is the work of Galliard and Lee (1974b), which
analyzed K0-K̄0 mixing and estimated the charm quark
mass prior to its discovery, based on the dependence of
the DS=2 transition on virtual charm. This calculation is
the prototype for present-day analyses of virtual-top
contributions in B0-B̄0 mixing, rare decays, and CP vio-
lation, which are similar in spirit.

Until 1989 most calculations were done in the leading-
logarithmic approximation (Vainshtein et al., 1977; Gil-
man and Wise, 1979, 1980; Guberina and Peccei, 1980),
with the exception of Altarelli et al. (1981), where the
first NLO calculation in the theory of weak decays was
presented. Currently, effective Hamiltonians are avail-
able to NLO for the most important and interesting
cases, as is given in Table I, due to a series of publica-
tions beginning with the work of Burns and Weisz
(1990).
Aside from general increases in accuracy inherent

with going to the next higher order in a perturbation
series expansion, there are several important reasons for
performing these very involved and complicated calcu-
lations of next to leading order:
(i) The NLO approximation tests the validity of the

perturbation theory. In leading order, the ultimate result
is O(1), whereas, at NLO, one first obtains an O(as)
correction relative to the leading order, and one can
check whether it is small enough to justify the perturba-
tive approach.
(ii) The QCD has a scale parameter LMS , but it can-

not be interpreted meaningfully in weak decays without
going to NLO.
(iii) Due to renormalization-group invariance, the

physical amplitudes of decays do not depend on the ex-
act scales at which quark masses are defined. However,
by truncating a perturbation series, renormalization-
group invariance is broken, resulting in scale-dependent
ambiguities in the final answer. These can be reduced

TABLE I. Processes for which NLO QCD corrections have been calculated.

Decay Reference

DF=1 decays

Current-current operators (Altarelli et al., 1981), (Buras and Weisz, 1990)
QCD penguin operators (Buras et al., 1993), (Buras et al., 1993a),

(Ciuchini, Franco, Martinelli, and Reina, 1994)
Electroweak penguin operators (Buras et al., 1993), (Buras et al., 1993a),

(Ciuchini, Franco, Martinelli, and Reina, 1994)
Magnetic penguin operators (Misiak and Münz, 1995)
B(B→Xen) (Altarelli et al., 1981), (Buchalla, 1993),

(Bagan et al., 1994), (Bagan, Ball, Fiol, and
Gosdzinsky, 1995),

Inclusive DS=1 (Jamin and Pich, 1994)

Particle-antiparticle mixing

h1 (Herrlich and Nierste, 1994)
h2 ,hB (Buras et al., 1990)
h3 (Herrlich and Nierste, 1995a)

Rare K- and B-meson decays

KL
0→p0nn̄ , B→l1l2, B→Xsnn̄ (Buchalla and Buras, 1993a)

K1→p1nn̄ , KL→m1m2 (Buchalla and Buras, 1994a)
K1→p1mm̄ (Buchalla and Buras, 1994b)
KL→p0e1e2 (Buras, Lautenbacher, Misiak, and Münz, 1994)
B→Xse

1e2 (Misiak, 1995), (Buras and Münz, 1995)
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considerably by going to NLO.
(iv) The Wilson coefficients are renormalization-

scheme-dependent quantities. The scheme dependence
is first ‘‘felt’’ at NLO, whereas the leading order is com-
pletely insensitive to this important feature. In particu-
lar, this issue is essential for a proper matching of the
short-distance contributions to the long-distance matrix
elements as obtained from lattice calculations.
(v) Certain decays, e.g., KL→p0e1e2 and

B→Xse
1e2, are only sensitive to the top-quark mass at

the next to leading order.
This review article can conceptually be divided into

three parts, ‘‘basic concepts,’’ ‘‘technical calculations,’’
and ‘‘phenomenological applications.’’ This division is
given in the hope of making the review as readable as
possible for a wide audience of physicists.
The first part, Secs. II and III, introduces basic con-

cepts that are utilized in the remainder of the review.
Section II describes important aspects of the standard
model as they relate to weak decays. In particular, the
CKM matrix is shown in two common parametrizations,
and the unitarity triangle is described. Section III out-
lines the basic formalism for the calculation of QCD
effects in weak decays. Beginning with the idea of effec-
tive field theories, we introduce the techniques of the
operator product expansion (OPE) and renormalization
group (RG). The Wilson coefficients Ci are computed
for local operators Qi in the leading-logarithmic and
next-to-leading-logarithmic approximations. In order to
calculate Ci , one must evaluate one-loop and two-loop
anomalous dimensions of Qi , and, more generally,
anomalous-dimension matrices that describe mixing of
Qi under renormalization. General formulas are ob-
tained for Ci and the anomalous dimensions of Qi . Sec-
tion III.F contains the ‘‘master equations’’ for Ci , in-
cluding next-to-leading-order corrections. In particular,
the m and renormalization-scheme dependences are dis-
cussed, and we show how they are cancelled by those
present in the hadronic matrix elements.
The second part, comprised of Secs. IV–XV, is a com-

pendium of effective Hamiltonians for weak decays for
which next-to-leading-order corrections have been cal-
culated (see Table I). We also include the b→sg and
b→sg transitions, which, while not known to NLO, de-
serve special attention. Initial conditions, Ci(MW), are
given, as are a list of all one- and two-loop anomalous-
dimension matrices, and tables of Ci as functions of
LMS , mt , and the renormalization schemes considered.
LMS is the QCD scale, and mt the mass of the top quark.
Using the results and general procedure of Sec. III, we
examine similarities and differences between the differ-
ent decays. In addition, Sec. XIV describes the penguin
box expansion, a version of OPE well suited to study the
top-quark mass dependence of weak decays, and Sec.
XV introduces heavy-quark effective theory, showing
the applications of this formalism to short-distance QCD
corrections. Section XV also includes a summary of
some important NLO results obtained in heavy-quark
effective theory.

The final part of this review (Secs. XVI–XXVI) pre-
sents the phenomenological perspective of weak decays
and can be followed without a deep reading of the sec-
ond part, although Sec. IV is a good reference to under-
stand the general ideas. In Sec. XVI, comments are
made about input parameters, Sec. XVII is an overview
of the leading inclusive B-meson decays, and Sec. XVIII
investigates the unitarity triangle as well as other impor-
tant quantities that will be applied in the remaining sec-
tions. Sections XIX–XXVI analyze particular decays,
their uncertainties with and without NLO corrections,
and their significance to the standard model and its pa-
rameters.

II. STANDARD ELECTROWEAK MODEL

A. Particles and interactions

Throughout this review we will work in the context of
the three-generation model of quarks and leptons, which
is based on the gauge group SU(3)^SU(2)L^U(1)Y
spontaneously broken down to SU(3)^U(1)Q . Here Y
and Q denote the weak-hypercharge and the electric-
charge generators, respectively. SU(3) represents the
symmetry of QCD, which will be discussed in more de-
tail in the following section. Here we review certain fea-
tures of the electroweak part of the standard model that
will be important for the present considerations.
The left-handed leptons and quarks are put in SU(2)L

doublets

S ne
e2 D

L
, S nm

m2 D
L
, S nt

t2 D
L
, (2.1)

S ud8 D
L
, S cs8 D

L
, S t

b8 D
L

(2.2)

with the corresponding right-handed fields transforming
as singlets under SU(2)L . The primes are discussed be-
low. The relevant electroweak charges Q , Y , and the
third component of the weak isospin T3 are collected in
Table II.
The electroweak interactions of quarks and leptons

are mediated by the massive weak gauge bosonsW6 and
Z0 and by the photon A . These interactions are summa-
rized by the Lagrangian

Lint5LCC1LNC , (2.3)

where

TABLE II. Electroweak charges Q , Y , and the third compo-
nent of the weak isospin T3 for quarks and leptons in the stan-
dard model.

nL
e e L

2 e R
2 uL dL uR dR

Q 0 −1 −1 2/3 −1/3 2/3 −1/3
T3 1/2 −1/2 0 1/2 −1/2 0 0
Y −1 −1 −2 1/3 1/3 4/3 −2/3
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LCC5
g2

2&
~Jm

1W1m1Jm
2W2m! (2.4)

describes the charged current interactions and

LNC5eJm
emAm1

g2
2 cosQW

Jm
0Zm (2.5)

the neutral current interactions. Here e is the QED cou-
pling constant, g2 is the SU(2)L coupling constant, and
QW is the Weinberg angle. The currents are given as
follows

Jm
15~ ūd8!V2A1~ c̄s8!V2A1~ t̄b8!V2A1~ n̄ee !V2A

1~ n̄mm!V2A1~ n̄tt!V2A , (2.6)

Jm
em5(

f
Qff̄gmf , (2.7)

Jm
0 5(

f
f̄gm~v f2afg5!f , with (2.8)

v f5T3
f 22Qfsin

2QW , af5T3
f , (2.9)

and Qf and T 3
f denote the charge and the third compo-

nent of the weak isospin of the left-handed fermion fL .
(V2A) refers to gm(1−g5).
In the discussion of weak decays an important role is

played by the Fermi constant

GF

&
5

g2
2

8MW
2 , (2.10)

which has the value

GF51.1663931025 GeV22. (2.11)

Other values of the relevant parameters will be collected
in the Appendix.
The interactions between the gauge bosons are stan-

dard and can be found in any textbook on gauge theo-
ries.
The primes in Eq. (2.2) indicate that the weak eigen-

states (d8,s8,b8) are not equal to the corresponding
mass eigenstates (d ,s ,b) but rather are linear combina-
tions of the latter. This is expressed through the relation

S d8
s8
b8
D 5S Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

D S ds
b
D , (2.12)

where the unitary matrix connecting these two sets of
states is the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix. Many parametrizations of this matrix have been
proposed in the literature. In this review we will use two
parametrizations: the standard parametrization recom-
mended by the Particle Data Group and the Wolfen-
stein parametrization.

B. Standard parametrization

Let us introduce the notation cij=cosuij and sij=sinuij
with i and j being quark generation labels (i ,j=1,2,3).
The standard parametrization is then given as follows
(Particle Data Group, 1994)

V5S c12c13
2s12c232c12s23s13e

id

s12s232c12c23s13e
id

s12c13
c12c232s12s23s13e

id

2s23c122s12c23s13e
id

s13e
2id

s23c13
c23c13

D , (2.13)

where d is the phase necessary for CP violation. cij and
sij can all be chosen to be positive, and d may vary in the
range 0<d<2p. However, the measurements of CP vio-
lation in K decays force d to be in the range 0<d<p.
The extensive phenomenology of the last few years

has shown that s13 and s23 are small numbers, O(10−3)
and O(10−2), respectively. Consequently, to an excellent
accuracy, c13'c23'1 and the four independent param-
eters are

s125uVusu, s135uVubu, s235uVcbu, d , (2.14)

with the phase d extracted from CP-violating transitions
or loop processes sensitive to uVtdu. The latter fact is
based on the observation that, for 0<d<p, there is a
one-to-one correspondence between d and uVtdu given
by

uVtdu5Aa21b222ab cosd , a5uVcdVcbu,

b5uVudVubu. (2.15)

C. Wolfenstein parametrization beyond leading order

We will also use the Wolfenstein parametrization
(Wolfenstein, 1983). It is an approximate parametriza-
tion of the CKM matrix in which each element is ex-
panded as a power series in the small parameter
l=uVusu=0.22.

V5S 12
l2

2
l Al3~%2ih!

2l 12
l2

2
Al2

Al3~12%2ih! 2Al2 1

D
1O~l4!, (2.16)

where the four independent parameters are

l , A , % , h . (2.17)

The Wolfenstein parametrization has several nice fea-
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tures. It offers a very transparent geometrical represen-
tation of the structure of the CKM matrix and allows
one to derive several analytic results to be discussed be-
low. This turns out to be very useful in the phenomenol-
ogy of rare decays and of CP violation.
When using the Wolfenstein parametrization one

should remember that it is an approximation and that in
certain situations neglecting O(l4) terms may give
wrong results. How does one find O(l4) and higher or-
der terms? Since Eq. (2.16) is only an approximation,
the exact definition of l is not unique by terms of the
neglected order O(l4). This is the reason why different
O(l4) terms can be found in the literature. They simply
correspond to different definitions of the expansion pa-
rameter l. Obviously the physics does not depend on
this choice. Here it suffices to find an expansion in l that
allows for simple relations between the parameters in
Eqs. (2.14) and (2.17). This will also restore the unitarity
of the CKM matrix, which in the Wolfenstein parametri-
zation as given in Eq. (2.16) is not satisfied exactly.
To this end we go back to Eq. (2.13) and impose the

relations (Buras, Lautenbacher, and Ostermaier, 1994)

s125l , s235Al2, s13e
2id5Al3~%2ih! (2.18)

to all orders in l. In view of the comments made above
this can certainly be done. It follows that

%5
s13
s12s23

cosd , h5
s13
s12s23

sind . (2.19)

We observe that Eqs. (2.18) and (2.19) simply represent
the change of variables from Eqs. (2.14) to (2.17). Mak-
ing this change of variables in the standard parametriza-
tion (2.13), we find that the CKM matrix as a function of
(l,A ,%,h) satisfies unitarity exactly. We also note that, in
view of c13=1−O(l6), the relations between sij and uViju
in Eq. (2.14) are satisfied to high accuracy. The relations
in Eq. (2.19) have been first used in Schmidtler and
Schubert (1992). However, the improved treatment of
the unitarity triangle presented below goes beyond the
analysis of these authors.
The procedure outlined above automatically gives the

corrections to the Wolfenstein parametrization in Eq.
(2.16). Indeed expressing Eq. (2.13) in terms of Wolfen-
stein parameters using Eq. (2.18) and then expanding in
powers of l, we recover the matrix in Eq. (2.16) and in
addition find explicit corrections of O(l4) and higher-
order terms. Vub remains unchanged. The corrections to
Vus and Vcb appear only at O(l7) and O(l8), respec-
tively. For many practical purposes the corrections to
the real parts can also be neglected. The essential cor-
rections to the imaginary parts are

DVcd52iA2l5h , DVts52iAl4h . (2.20)

These two corrections have to be taken into account in
the discussion of CP violation. On the other hand the
imaginary part of Vcs , which in our expansion in l ap-
pears only at O(l6), can be fully neglected.
In order to improve the accuracy of the unitarity tri-

angle discussed below we will also include the O(l5) cor-
rection to Vtd , which gives

Vtd5Al3~12%̄2ih̄ ! (2.21)

with

%̄5%S 12
l2

2 D , h̄5hS 12
l2

2 D . (2.22)

In order to derive analytic results we need accurate ex-
plicit expressions for l i5VidVis* , where i5c ,t . We have

Iml t52Imlc5hA2l5, (2.23)

Relc52lS 12
l2

2 D , (2.24)

Rel t52S 12
l2

2 DA2l5~12%̄ !. (2.25)

To an accuracy of 0.2% expressions (2.23) and (2.24)
represent the exact formulas obtained using Eq. (2.13).
Equation (2.25) deviates by at most 2% from the exact
formula in the full range of parameters considered. In
order to keep the analytic expressions in the phenom-
enological applications in a transparent form we have
dropped a small O(l7) term in deriving Eq. (2.25). After
inserting Eqs. (2.23)–(2.25) in exact formulas for quan-
tities of interest, further expansion in l should not be
made.

D. Unitarity triangle beyond leading order

The unitarity of the CKM matrix provides us with sev-
eral relations, of which

VudVub* 1VcdVcb* 1VtdVtb* 50 (2.26)

is the most useful one. In the complex plane Eq. (2.26)
can be represented as a triangle, the so-called ‘‘unitarity-
triangle’’ (UT). Phenomenologically this triangle is very
interesting, as it simultaneously involves the elements
Vub , Vcb , and Vtd , the values of which are currently in
dispute.
In the usual analyses of the unitarity triangle only

terms O(l3) are kept in Eq. (2.26) (Dib et al., 1990; Bu-
ras and Harlander, 1992; Harris and Rosner, 1992; Nir,
1992; Schmidtler and Schubert, 1992; Ali and London,
1995). It is, however, straightforward to include the
next-to-leading-O(l5) terms (Buras, Lautenbacher, and
Ostermaier, 1994). We note first that

VcdVcb* 52Al31O~l7!. (2.27)

Thus, to an excellent accuracy, VcdVcb* is real with
uVcdVcb* u 5 Al3. KeepingO(l5) corrections and rescaling
all terms in Eq. (2.26) by Al3, we find

1
Al3 VudVub* 5%̄1ih̄ ,

1
Al3 VtdVtb* 512~ %̄1ih̄ !

(2.28)

with %̄ and h̄ defined in Eq. (2.22). Thus we can repre-
sent Eq. (2.26) as the unitarity triangle in the complex
(%̄ ,h̄) plane. This is shown in Fig. 1. The length of the
side CB that lies on the real axis is unity when Eq. (2.26)
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is rescaled by VcdVcb* . We observe that, beyond the
leading order in l, the point A does not correspond to
(%,h) but to (%̄ ,h̄). Clearly, within 3% accuracy, %̄=%
and h̄=h. Yet in the distant future the accuracy of ex-
perimental results and theoretical calculations may im-
prove considerably, so that the more accurate formula-
tion given here will be appropriate.
Using simple trigonometry one can calculate sin(2fi),

fi=a,b,g, in terms of (%̄ ,h̄) with the result

sin2a5
2h̄~ h̄21%̄22%̄ !

~ %̄21h̄2!@~12%̄ !21h̄2#
, (2.29)

sin2b5
2h̄~12%̄ !

~12%̄ !21h̄2
, (2.30)

sin2g5
2%̄h̄

%̄21h̄2
5

2%h

%21h2 . (2.31)

The lengths CA and BA in the rescaled triangle of Fig.
1, to be denoted by Rb and Rt , respectively, are given by

Rb[
uVudVub* u
uVcdVcb* u

5A%̄21h̄25S 12
l2

2 D 1
l UVub

Vcb
U, (2.32)

Rt[
uVtdVtb* u
uVcdVcb* u

5A~12%̄ !21h̄25
1
l UVtd

Vcb
U. (2.33)

The expressions for Rb and Rt , given here in terms of
(%̄ ,h̄), are excellent approximations. Clearly Rb and Rt
can also be determined by measuring two of the angles
fi :

Rb5
sin~b!

sin~a!
5
sin~a1g!

sin~a!
5

sin~b!

sin~g1b!
, (2.34)

Rt5
sin~g!

sin~a!
5
sin~a1b!

sin~a!
5

sin~g!

sin~g1b!
. (2.35)

III. BASIC FORMALISM

A. Renormalization of QCD

As already emphasized in the Introduction, the effects
of QCD play an important role in the phenomenology of
weak decays of hadrons. In fact, in the theoretical analy-
sis of these decays, the investigation of QCD corrections
is the most difficult and involved part. In the present

subsection we shall briefly recall basic features of pertur-
bative QCD and its renormalization and concentrate on
those aspects that will be needed for the present review.
We also take the opportunity to introduce for later ref-
erence expressions for the running coupling constant,
the running mass, and the corresponding
renormalization-group functions.
The Lagrangian density for QCD is

LQCD52
1
4

~]mAn
a2]nAm

a !~]mAan2]nAam!

2
1
2j

~]mAm
a !21q̄~ i]”2mq!q1xa* ]m]mxa

2
g

2
fabc~]mAn

a2]nAm
a !AbmAcn

2
g2

4
fabefcdeAm

a An
bAcmAdn1gq̄iTij

agmqjAm
a

1gfabc~]mxa* !xbAm
c . (3.1)

Here q5(q1 ,q2 ,q3) is the color triplet of quark flavor
q5u ,d ,s ,c ,b ,t . g is the QCD coupling, Am

a the gluon
field, xa the ghost field, and j the gauge parameter. Ta,
fabc (a ,b ,c=1, . . . ,8) are the generators and structure
constants of SU(3), respectively. From this Lagrangian
one may read off the Feynman rules for QCD, e.g.,
igT ij

agm, for the quark-gluon vertex.
In order to deal with divergences that appear in quan-

tum (loop) corrections to Green functions, the theory
has to be regularized to have an explicit parametrization
of the singularities and subsequently renormalized to
render the Green functions finite. For these purposes we
will employ
(i) Dimensional regularization (DR) by continuation

to D=4−2« space-time dimensions (Ashmore, 1972; Bol-
lini and Giambiagi, 1972a, 1972b; Cicuta and Montaldi,
1972; ’t Hooft and Veltman, 1972a).
(ii) Subtraction of divergences in the minimal subtrac-

tion scheme MS (’t Hooft, 1973) or the modified mini-
mal subtraction scheme (MS) (Bardeen et al., 1978).
To eliminate the divergences one has to renormalize

the fields and parameters in the Lagrangian, in general
through

A0m
a 5Z3

1/2Am
a , q05Zq

1/2q , x0
a5Z̃3

1/2xa,

g05Zggm«, j05Z3j , m05Zmm . (3.2)

The subscript ‘‘0’’ indicates unrenormalized quantities.
The factors Z are the renormalization constants. The
scale m has been introduced to make g dimensionless in
D=4−2« dimensions. Since we will not consider Green
functions with external ghosts, we will not need the
ghost-field renormalization. We also do not need the
gauge-parameter renormalization if we are dealing
with gauge-independent quantities, as, e.g., Wilson-
coefficient functions.
A straightforward way to implement renormalization

is provided by the counterterm method. Thereby the pa-
rameters and fields in the original Lagrangian, which are

FIG. 1. Unitarity triangle in the complex (%̄ ,h̄) plane.
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to be considered as unrenormalized (bare) quantities,
are re-expressed through renormalized ones by means of
Eq. (3.2) from the very beginning. For instance, the
quark kinetic term becomes

LF5q̄0i]”q02m0q̄0q0[q̄i]”q2mq̄q1~Zq21 !q̄i]”q

2~ZqZm21 !mq̄q . (3.3)

The advantage is that only renormalized quantities are
present in the Lagrangian. The counterterms, ;(Z−1),
which also appear, can be formally treated as interaction
terms that contribute to Green functions calculated in
perturbation theory. The Feynman rule for the counter-
terms in Eq. (3.3), for example, reads (p is the quark
momentum)

i~Zq21 !p”2i~ZqZm21 !m . (3.4)

The constants Zi are then determined such that they
cancel the divergences in the Green functions according
to the chosen renormalization scheme. In an analogous
way all renormalization constants can be fixed by con-
sidering the appropriate Green functions.
Of central importance for the study of perturbative-

QCD effects are the renormalization-group equations,
which govern the dependence of renormalized param-
eters and Green functions on the renormalization scale
m. These differential equations are easily derived from
Eq. (3.2) by using the fact that bare quantities are m
independent. In this way one finds that the renormalized
coupling g(m) obeys (Gross, 1976)

d

d lnm
g~m!5b(« ,g~m!), (3.5)

where

b~« ,g !52«g2g
1
Zg

dZg

d lnm
[2«g1b~g !, (3.6)

which defines the b function. Equation (3.5) is valid in
arbitrary dimensions. In four dimensions b(«,g) reduces
to b(g). Similarly, the anomalous dimension of the mass
gm , defined through

dm~m!

d lnm
52gm~g !m~m!, (3.7)

is given by

gm~g !5
1
Zm

dZm

d lnm
. (3.8)

In the MS (MS) scheme, where only the pole terms in
« are present in the renormalization constants Zi , these
can be expanded as

Zi511 (
k51

` 1
«k

Zi ,k~g !. (3.9)

Using Eqs. (3.5) and (3.6) one finds

1
Zi

dZi

d lnm
522g2

]Zi ,1~g !

]g2
, (3.10)

which allows a direct calculation of the renormalization-
group functions from the 1/«-pole part of the renormal-
ization constants. Along these lines one obtains at the
two-loop level, which is required for next-to-leading-
order calculations,

b~g !52b0

g3

16p22b1

g5

~16p2!2
. (3.11)

In terms of

as[
g2

4p
(3.12)

we have

das

d lnm
522b0

as
2

4p
22b1

as
3

~4p!2
. (3.13)

Similarly, the two-loop expression for the quark-mass
anomalous dimension can be written as

gm~as!5gm0

as

4p
1gm1S as

4p D 2. (3.14)

We also give the 1/«-pole part Zq ,1 of the quark-field
renormalization constant Z1 to O(a s

2), which we will
need later on,

Zq ,15a1
as

4p
1a2S as

4p D 2. (3.15)

The coefficients in Eqs. (3.13)–(3.15) are

b05
11N22 f

3
, b15

34
3
N22

10
3
Nf22CFf ,

CF5
N221
2N

, (3.16)

gm056CF , gm15CFS 3CF1
97
3
N2

10
3
f D , (3.17)

a152CF , a25CFS 34 CF2
17
4
N1

1
2
f D , (3.18)

where N is the number of colors and f the number of
quark flavors. The coefficients are given in the MS
(MS) scheme. However, b0 , b1, gm0, and a1 are scheme
independent. The expressions for a1 and a2 in Eq. (3.18)
are valid in Feynman gauge, j=1.
At two-loop order the solution of the

renormalization-group equation (3.13) for as(m) can al-
ways be written in the form

as~m!5
4p

b0ln~m2/L2! F12
b1

b0
2

ln ln~m2/L2!

ln~m2/L2! G , (3.19)

with L the QCD scale. Equation (3.19) gives the running
coupling constant at NLO. as(m) vanishes as m/L→`
due to asymptotic freedom. We remark that, in accor-
dance with the two-loop accuracy, Eq. (3.19) is valid up
to terms of the order O(1/ln3(m2/L2)). For the purpose of
counting orders in 1/ln(m2/L2), the double-logarithmic
expression ln ln(m2/L2) may formally be viewed as a con-
stant. Note that an additional term ;1/ln2(m2/L2), which
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is of the same order as the next-to-leading-order correc-
tion in Eq. (3.19), can always be absorbed into a multi-
plicative redefinition of L. Hence the choice of the form
of Eq. (3.19) is possible without restriction, but one
should keep in mind that the definition of L is related to
this particular choice. The introduction of the MS
scheme and the corresponding definition of LMS and its
relation to LMS is discussed in Section III.F.4.
Finally we write down the two-loop expression for the

running quark mass in the MS (MS) scheme, which re-
sults from integrating Eq. (3.7):

m~m!5m~m !F as~m!

as~m !Ggm0/2b0F11S gm1

2b0
2

b1gm0

2b0
2 D

3
as~m!2as~m !

4p G . (3.20)

B. Operator product expansion in weak decays—
preliminaries

Weak decays of hadrons are mediated through the
weak interactions of their quark constituents. These
hadrons also have strong interactions that have a typical
hadronic energy scale of the order of 1 GeV. Our goal is
therefore to derive an effective low-energy theory de-
scribing the weak interactions of quarks. The formal
framework to achieve this is provided by the operator
product expansion (OPE) (Wilson and Zimmermann,
1972). In order to introduce the main ideas behind it, let
us consider the simple example of the quark-level tran-
sition c→sud̄ , which is relevant for Cabibbo-allowed
decays of D mesons. Disregarding QCD effects for the
moment, the tree-level W-exchange amplitude for
c→sud̄ is simply given by

A5i
GF

&
Vcs* Vud

MW
2

k22MW
2 ~ s̄c !V2A~ ūd !V2A

52i
GF

&
Vcs* Vud~ s̄c !V2A~ ūd !V2A1OS k2

MW
2 D ,
(3.21)

where (V2A) refers to the Lorentz structure gm(1−g5).
Since k , the momentum transfer through the W

propagator, is very small compared to the W mass MW ,
terms of the order O(k2/MW

2 ) can safely be neglected,
and the full amplitude A can be approximated by the
first term on the rhs of Eq. (3.21). Now this term may
obviously also be obtained from an effective Hamil-
tonian defined by

Heff5
GF

&
Vcs* Vud~ s̄c !V2A~ ūd !V2A1••• , (3.22)

where the ellipsis denotes operators of higher dimen-
sions, typically involving derivative terms, which can in
principle be chosen so as to reproduce terms of higher
order in k2/MW

2 of the full amplitude given by Eq.
(3.21). This exercise already provides us with a simple

example of an OPE. The product of two charged-current
operators is expanded into a series of local operators
whose contributions are weighted by effective coupling
constants, the Wilson coefficients.
A more formal basis for this procedure may be given

by considering the generating functional for Green func-
tions in the path-integral formalism. The part of the gen-
erating functional relevant for the present discussion is,
up to an overall normalizing factor, given by

ZW;E @dW1#@dW2#expS iE d4x LW D , (3.23)

where LW is the Lagrangian density containing the ki-
netic terms of the W boson field and its interaction with
charged currents,

LW52
1
2

~]mWn
12]nWm

1!~]mW2n2]nW2m!

1MW
2 Wm

1W2m1
g2

2&
~Jm

1W1m1Jm
2W2m!,

(3.24)

Jm
15Vpnp̄gm~12g5!n , p5~u ,c ,t !

n5~d ,s ,b !, Jm
25~Jm

1!†. (3.25)

Since we are not interested in Green functions with ex-
ternal W lines, we have not introduced external source
terms for the W fields. In the present argument we will
furthermore choose the unitary gauge for theW field for
definiteness, although physical results do not depend on
this choice.
Introducing the operator

Kmn~x ,y !5d~4 !~x2y !@gmn~]21MW
2 !2]m]n# , (3.26)

we may, after discarding a total derivative in the W ki-
netic term, rewrite Eq. (3.23) as

ZW;E @dW1#@dW2#

3expF iE d4x d4y Wm
1~x !Kmn~x ,y !Wn

2~y !

1i
g2

2&
E d4x Jm

1W1m1Jm
2W2mG . (3.27)

The inverse of Kmn , denoted by Dmn , and defined
through

E d4y Kmn~x ,y !Dnl~y ,z !5gm
l d~4 !~x2z ! (3.28)

is just the W propagator in the unitary gauge,

Dmn~x ,y !5E d4k

~2p!4
Dmn~k !e2ik~x2y !, (3.29)

Dmn~k !5
21

k22MW
2 S gmn2

kmkn

MW
2 D . (3.30)
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Performing the Gaussian functional integration over
W6(x) in Eq. (3.27) explicitly, we simplify this expres-
sion to

ZW;expF2iE g2
2

8
Jm

2~x !Dmn~x ,y !Jn
1~y !d4x d4yG .

(3.31)

This result implies a nonlocal action functional for the
quarks

Snl5E d4xLkin

2
g2
2

8 E d4x d4y Jm
2~x !Dmn~x ,y !Jn

1~y !, (3.32)

where the first piece represents the quark kinetic terms
and the second their charged current interactions.
We can now formally expand this second, nonlocal

term in powers of 1/MW
2 to yield a series of local inter-

action operators of dimensions that increase with the
order in 1/MW

2 . To lowest order

Dmn~x ,y !'
gmn

MW
2 d~4 !~x2y !, (3.33)

and the second term in Eq. (3.32) becomes

2
g2
2

8MW
2 E d4x Jm

2~x !J1m~x !, (3.34)

corresponding to the usual effective charged-current in-
teraction Lagrangian

Lint,eff52
GF

&
Jm

2J1m~x !

52
GF

&
Vpn* Vp8n8~ n̄p !V2A~ p̄8n8!V2A , (3.35)

which contains, among other terms, the leading contri-
bution to Eq. (3.22).
The simple considerations we have presented so far

already illustrate several of the basic aspects of the gen-
eral approach.
(i) Formally, the procedure to approximate the inter-

action term in Eq. (3.32) by Eq. (3.34) is an example of
a short-distance OPE. The product of the local opera-
tors J m

2(x) and J n
1(y), to be taken at short distances,

due to the convolution with the massive, short-range W
propagator Dmn(x ,y) [see Eq. (3.33)], is expanded into a
series of composite local operators, of which the leading
term is given by (3.34).
(ii) The dominant contributions in the short-distance

expansion come from the operators of lowest dimension.
In our case these are four-fermion operators of dimen-
sion six, whereas operators of higher dimensions can
usually be neglected in weak decays.
(iii) Note that, as far as the charged-current weak in-

teraction is concerned, no approximation is involved in
the nonlocal interaction term in Eq. (3.32), except that
we do not consider higher-order weak corrections or

processes with external W-boson states. Correspond-
ingly, the OPE series into which the nonlocal interaction
is expanded is equivalent to the original theory when
considered to all orders in 1/MW

2 . In other words, the
full series will reproduce the complete Green functions
for the charged-current weak interactions of quarks. The
truncation of the operator series then yields a systematic
approximation scheme for low-energy processes, ne-
glecting contributions suppressed by powers of k2/MW

2 .
In this way one is able to construct low-energy effective
theories for weak decays.
(iv) In going from the full to the effective theory the

W boson is removed as an explicit, dynamical degree of
freedom. This step is often refered to as ‘‘integrating
out’’ the W boson, a terminology which is very obvious
in the path-integral language discussed above. Alterna-
tively, one could use the canonical-operator formalism,
where the W field, instead of being integrated out, gets
‘‘contracted out’’ through the application of Wick’s
theorem.
(v) The effective local four-fermion interaction terms

are a modern version of the classic Fermi theory of weak
interactions.
(vi) An intuitive interpretation of the OPE formalism

discussed so far is that, from the point of view of low-
energy dynamics, the effects of a short-range exchange
force mediated by a heavy boson approximately corre-
sponds to a point interaction.
(vii) The presentation we have given illustrates fur-

thermore that the approach of evaluating the relevant
Green functions (or amplitudes) directly in order to con-
struct the OPE, as in Eq. (3.21), actually gives the same
result as the more formal technique employing path in-
tegrals. While the latter can give some useful insight into
the general aspects of the method, the former is more
convenient for practical calculations, and we will make
use of it throughout the following discussion.
(viii) Up to now we have not talked about the strong

interactions among quarks, which of course have to be
taken into account. They are described by QCD and can
at short distances be calculated in perturbation theory,
due to the property of asymptotic freedom of QCD. The
corresponding gluon-exchange contributions constitute
quantum corrections to the simplified picture sketched
above, which can in this sense be viewed as a classical
approximation. We will describe the incorporation of
QCD corrections and related additional features they
imply for the OPE in the following section.

C. OPE and short-distance QCD effects

We will now take up the discussion of QCD quantum
corrections at short distances to the OPE for weak de-
cays. A crucial point for this enterprise is the property of
asymptotic freedom of QCD. This allows one to treat
the short-distance corrections, that is the contribution of
hard gluons at energies of the order O(MW) down to
hadronic scales >1 GeV, in perturbation theory. In the
following, we will always restrict ourselves to the leading
dimension-six operators in the OPE and omit the negli-
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gible contributions of higher-dimensional operators.
Staying with the example of c→sud̄ transitions, recall
that the amplitude without QCD was

A052i
GF

&
Vcs* Vud~ s̄ ic i!V2A~ ū jdj!V2A , (3.36)

where the summation over repeated color indices is un-
derstood. This result leads directly to the effective
Hamiltonian of Eq. (3.22), where the color indices have
been suppressed. If we now include QCD effects, the
effective Hamiltonian, constructed to reproduce the
low-energy approximation of the exact theory, is gener-
alized to

Heff5
GF

&
Vcs* Vud~C1Q11C2Q2!, (3.37)

where

Q15~ s̄ ic j!V2A~ ū jdi!V2A , (3.38)

Q25~ s̄ ic i!V2A~ ū jdj!V2A . (3.39)

The essential features of this Hamiltonian are
(i) In addition to the original operator Q2 (with index

2 for historical reasons) a new operator Q1 with the
same flavor form but different color structure is gener-
ated. This is because a gluon linking the two color-
singlet weak-current lines can ‘‘mix’’ the color indices
due to the following relation for the color charges T ij

a

Tik
a Tjl

a52
1
2N

d ikd jl1
1
2

d ild jk . (3.40)

(ii) The Wilson coefficients C1 and C2 , the coupling
constants for the interaction terms Q1 and Q2 , become
calculable nontrivial functions of as , MW , and the
renormalization scale m. If QCD is neglected, they have
the trivial form C1=0 and C2=1, and Eq. (3.37) reduces
to Eq. (3.22).
In order to obtain the final result for the Hamiltonian

of Eq. (3.37), we have to calculate the coefficients C1,2.
These are determined by the requirement that the am-
plitude A in the full theory be reproduced by the corre-
sponding amplitude in the effective theory [Eq. (3.37)],
thus

A52i
GF

&
Vcs* Vud~C1^Q1&1C2^Q2&!. (3.41)

If we calculate the amplitude A and, to the same order
in as , the matrix elements of operators ^Q1& ,^Q2&, we
can obtain C1 and C2 via Eq. (3.41). This procedure is
called matching the full theory onto the effective theory
[Eq. (3.37)].
Here we use the term ‘‘amplitude’’ in the meaning of

‘‘amputated Green function.’’ Correspondingly, opera-
tor matrix elements are—within this perturbative
context—amputated Green functions with operator in-
sertion. In a diagrammatic language these amputated
Green functions are given by Feynman graphs, but with-
out gluonic self-energy corrections in external legs, like,

e.g., in Figs. 2 and 3, for the full and effective theory,
respectively. In the present example penguin diagrams
do not contribute due to the flavor structure of the
c→sud̄ transition.
Evaluating the current-current diagrams of Figs. 2(a)–

2(c), we find, for the full amplitude A to O(as),

A52i
GF

&
Vcs* VudF S 112CF

as

4p
ln

m2

2p2DS2
1

3
N

as

4p
ln

MW
2

2p2
S223

as

4p
ln

MW
2

2p2
S1G . (3.42)

Here we have introduced the spinor amplitudes

FIG. 2. One-loop current-current (a)–(c), penguin (d), and box
(e) diagrams in the full theory. For pure QCD corrections as
considered in this section and, e.g., in Sec. VI, the g and Z0

contributions in diagram (d) and diagram (e) are absent. Pos-
sible left-right or up-down reflected diagrams are not shown.

FIG. 3. One-loop current-current (a)–(c) and penguin (d) dia-
grams contributing to the leading order anomalous dimensions
and matching conditions in the effective theory. The 4-vertex
‘‘^ ^’’ denotes the insertion of a 4-fermion operator Qi . For
pure QCD corrections as considered in this section and, e.g., in
Sec. VI, the contributions from g in diagrams (d.1) and (d.2)
are absent. Again, possible left-right or up-down reflected dia-
grams are not shown.
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S15~ s̄ ic j!V2A~ ū jdi!V2A , (3.43)

S25~ s̄ ic i!V2A~ ū jdj!V2A , (3.44)

which are just the tree-level matrix elements of Q1 and
Q2 . We have employed the Feynman gauge (j=1) and
taken all external quark lines massless and carrying off-
shell momentum p . Furthermore we have kept only
logarithmic corrections ;as·log and discarded constant
contributions of order O(as), which corresponds to the
leading logarithmic approximation. The necessary
renormalization of the quark fields in the MS scheme is
already incorporated into Eq. (3.42). It has removed a
1/« singularity in the first term of Eq. (3.42), which
therefore carries an explicit m dependence.
Under the same conditions, the unrenormalized

current-current matrix elements of the operators Q1 and
Q2 are found to be, from Figs. 3(a)–3(c),

^Q1&
~0 !5F112CF

as

4p S 1« 1ln
m2

2p2D GS1
1

3
N

as

4p S 1« 1ln
m2

2p2DS1
23

as

4p S 1« 1ln
m2

2p2DS2 , (3.45)

^Q2&
~0 !5F112CF

as

4p S 1« 1ln
m2

2p2D GS2
1

3
N

as

4p S 1« 1ln
m2

2p2DS2
23

as

4p S 1« 1ln
m2

2p2DS1 . (3.46)

Again, the divergences in the first terms are eliminated
through field renormalization. However, in contrast to
the full amplitude, the resulting expressions are still di-
vergent. Therefore an additional multiplicative renor-
malization, refered to as operator renormalization, is
necessary:

Qi
~0 !5ZijQj . (3.47)

Since Eqs. (3.45) and (3.46) each involve both S1 and S2 ,
the renormalization constant is in this case a 232 matrix
Z . The relation between the unrenormalized (^Qi&

(0))
and the renormalized (^Qi&) amputated Green func-
tions is then

^Qi&
~0 !5Zq

22Zij^Qj&. (3.48)

From Eqs. (3.45), (3.46), and (3.15) in the MS scheme

Z511
as

4p

1
« S 3/N 23

23 3/N D . (3.49)

It follows that the renormalized matrix elements ^Qi&
are given by

^Q1&5S 112CF

as

4p
ln

m2

2p2DS1
1

3
N

as

4p
ln S m2

2p2DS123
as

4p
ln S m2

2p2DS2 ,
(3.50)

^Q2&5S 112CF

as

4p
ln

m2

2p2DS21 3
N

as

4p
ln S m2

2p2DS2
23

as

4p
ln S m2

2p2DS1 (3.51)

Inserting ^Qi& into Eq. (3.41) and comparing with Eq.
(3.42), we derive

C1523
as

4p
ln
MW

2

m2 , C2511
3
N

as

4p
ln
MW

2

m2 . (3.52)

We digress to add a comment on the renormalization of
the interaction terms in the effective theory. The com-
monly used convention is to introduce, via Eq. (3.48),
the renormalization constants Zij , defined to absorb the
divergences of the operator matrix elements. It is, how-
ever, instructive to view this renormalization in a slightly
different, but of course equivalent, way, corresponding
to the standard counterterm method in perturbative
renormalization. Consider, as usual, the Hamiltonian of
the effective theory as the starting point, with fields and
coupling constants as bare quantities that are renormal-
ized according to (q5s ,c ,u ,d)

q ~0 !5Zq
1/2q , (3.53)

Ci
~0 !5Zij

c Cj . (3.54)

Then the Hamiltonian (Eq. 3.37) is essentially [omitting
the factor (GF /&)Vcs* Vud]

Ci
~0 !Qi~q

~0 !![Zq
2Zij

c CjQi[CiQi1~Zq
2Zij

c 2d ij!CjQi ,
(3.55)

that is, it can be written in terms of renormalized cou-
plings and fields (CiQi) plus counterterms. The argu-
ment q(0) in the first term in Eq. (3.55) indicates that the
interaction term Qi is composed of bare fields. Calculat-
ing the amplitude with the Hamiltonian (Eq. 3.55),
which includes the counterterms, we get the finite renor-
malized result

Zq
2Zij

c Cj^Qi&
~0 !5Cj^Qj&. (3.56)

Hence [compare to Eq. (3.48)]

Zij
c 5Zji

21. (3.57)

In short, it is sometimes useful to keep in mind that one
can think of the ‘‘operator renormalization,’’ which
sounds like a new concept, in terms of the completely
equivalent, but customary, renormalization of the cou-
pling constants Ci , as in any field theory.
Now that we have presented in quite some detail the

derivation of the Wilson coefficients in Eq. (3.52), we
shall discuss and interpret the most important aspects of
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the short-distance expansion for weak decays, which can
be studied very transparently on the explicit example we
have given.
(i) First of all we offer a further remark about the

phenomenon of operator mixing that we encountered in
our example. This occurs because gluonic corrections to
the matrix element of the original operator Q2 are not
just proportional to Q2 itself, but involve the additional
structure Q1 (and vice versa). Therefore, besides a Q2
counterterm, a counterterm ;Q1 is needed to renormal-
ize this matrix element—the operators in question are
said to mix under renormalization. This, however, is just
an algebraic generalization of the usual concepts. In-
deed, if we introduce a different operator basis
Q65(Q26Q1)/2 (with coefficients C65C26C1), the
renormalization becomes diagonal, and matrix elements
of Q+ and Q− are renormalized multiplicatively. In this
new basis the OPE is given by

A[A11A252i
GF

&
Vcs* Vud~C1^Q1&1C2^Q2&!,

(3.58)

where [S65(S26S1)/2],

A652i
GF

&
Vcs* VudF S 112CF

as

4p
ln

m2

2p2DS6

1S 3N 73 D as

4p
lnS MW

2

2p2DS6G , (3.59)

and

^Q6&5S 112CF

as

4p
ln

m2

2p2DS6

1S 3N 73 D as

4p
lnS m2

2p2DS6 , (3.60)

C6511S 3N 73 D as

4p
ln
MW

2

m2 . (3.61)

(ii) In the calculation of the amplitude A in Eq. (3.42)
and of the matrix elements in Eqs. (3.45) and (3.46), the
off-shell momentum p of the external quark legs repre-
sents an infrared regulator. The logarithmic infrared di-
vergence of the gluon correction diagrams [Figs. 2(a)–
2(c) and 3(a)–3(c)] as p2→0 is evident from Eqs. (3.42),
(3.45), and (3.46). A similar observation can be made for
the MW dependence of the full amplitude A . We see
that Eq. (3.42) is logarithmically divergent in the limit
MW→`. This behavior is reflected in the ultraviolet di-
vergences (persisting after field renormalization) of the
matrix elements [Eqs. (3.45), (3.46)] in the effective
theory, whose local interaction terms correspond to the
weak interactions in the infinite MW limit since they are
just the leading contribution of the 1/MW operator prod-
uct expansion. This also implies that the characteristic
logarithmic functional dependence of the leading O(as)
corrections is closely related to the divergence structure
of the effective theory, that is, to the renormalization
constants Zij .

(iii) The most important feature of the OPE is that it
provides a factorization of short-distance (Wilson coef-
ficients) and long-distance (operator matrix elements)
contributions. This is clearly exhibited in our example.
The dependence of the amplitude [Eq. (3.42)] on p2,
representing the long-distance structure of A , is fully
contained in the matrix elements of the local operators
Qi [Eqs. (3.50), (3.51)], whereas the Wilson coefficients
Ci in Eq. (3.52) are free from this dependence. Essen-
tially, this factorization has the form [see Eqs. (3.59)–
(3.61)]

S 11asG ln
MW

2

2p2D 5S 11asG ln
MW

2

m2 D
3S 11asG ln

m2

2p2D , (3.62)

that is, amplitude=coefficient function3operator matrix
element. Thus the logarithm on the lhs is split according
to

ln
MW

2

2p2
5ln

MW
2

m2 1ln
m2

2p2
. (3.63)

Since the logarithmic behavior results from the integra-
tion over some virtual loop momentum, we may,
roughly speaking, rewrite this as

E
2p2

MW
2 dk2

k2
5E

m2

MW
2 dk2

k2
1E

2p2

m2 dk2

k2
, (3.64)

which illustrates that the coefficient contains the contri-
butions from large virtual momenta of the loop correc-
tion from scales m'1 GeV to MW , whereas the low-
energy contributions are separated into the matrix
elements.
Of course, the latter cannot be calculated in perturba-

tion theory for transitions between physical meson
states. The point is that we have calculated the OPE for
unphysical off-shell quark external states only to extract
the Wilson coefficients, which we need to construct the
effective Hamiltonian of Eq. (3.37). For this purpose the
fact that we have considered an unphysical amplitude is
irrelevant, since the coefficient functions do not depend
on the external states, but rather represent the short-
distance structure of the theory. Once we have extracted
the coefficients and written down the effective Hamil-
tonian, the latter can be used, at least in principle, to
evaluate the physically interesting decay amplitudes by
means of some nonperturbative approach.
(iv) In interpreting the role of the scale m, we may

distinguish two different aspects. From the point of view
of the effective theory, m is just a renormalization scale
introduced in the process of renormalizing the effective
local interaction terms by the dimensional method. On
the other hand, from the point of view of the full theory,
m acts as the scale at which the full contribution is sepa-
rated into a low-energy and a high-energy part, as is
evident from the above discussion. For this reason m is
sometimes also called the factorization scale.
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(v) In our case the infrared structure of the amplitude
is characterized by the off-shell momentum p . In general
one could work with any other arbitrary momentum
configuration, on-shell or off-shell, with or without ex-
ternal quark mass, and with infrared divergences regu-
lated by off-shell momenta, quark masses, a fictitious
gluon mass, or by dimensional regularization. In the case
of off-shell momenta the amplitude is furthermore de-
pendent on the gauge parameter of the gluon field. All
these things belong to the infrared or long-distance
structure of the amplitude. Therefore the dependence
on these choices is the same for the full amplitude and
for the operator matrix elements and drops out in the
coefficient functions. To check that this is really the case
for a particular choice is of crucial importance for prac-
tical calculations. On the other hand, one may use this
freedom and choose the treatment of external lines ac-
cording to convenience or taste. However, sometimes it
may seem preferable to keep a slightly more inconve-
nient dependence on external masses and/or gluon
gauge in order to have a useful check that this depen-
dence does indeed cancel out for the Wilson coefficients
one is calculating.

D. The renormalization group

1. Basic concepts

So far we have computed the Wilson coefficient func-
tions [Eq. (3.61)] in ordinary perturbation theory. This,
however, is not sufficient for the problem at hand. The
appropriate scale at which to normalize the hadronic
matrix elements of local operators is a low-energy
scale—low compared to the weak scale MW—of a few
GeV typically. In our example of charm decay
m=O(mc). For such a low scale m, the logarithm
ln(MW

2 /m2) multiplying as(m) in Eq. (3.61) becomes
large. Although as(m) by itself is a valid expansion pa-
rameter down to scales of O(1 GeV), this is no longer
true for the combination as(m)ln(MW

2 /m2). In fact, for
our example [Eq. (3.61)] the first-order correction term,
for m=1 GeV, amounts to 65−130%, even though
as/4p'4%. The reason for this breakdown of the naive
perturbative expansion lies ultimately in the appearance
of largely disparate scales MW and m in the problem at
hand.
This situation can be considerably improved by em-

ploying the method of the renormalization group (RG).
The renormalization group is the group of transforma-
tions between different choices of the renormalization
scale m. The renormalization-group equations describe
the change of renormalized quantities, Green functions,
and parameters, with m in a differential form. As we
shall illustrate below, solving these differential equations
allows one in the leading logarithmic approximation
(LLA), to sum up the terms [asln(MW/m)]

n to all orders
n (n=0, . . . ,`) in perturbation theory. This leads to the
RG-improved perturbation theory. Going one step fur-
ther in this modified expansion, to the next-to-leading-
order logarithmic approximation (NLLA), the summa-
tion is extended to all terms as[asln(MW/m)]

n, and so on.

In this context it is useful to consider asln(MW/m) with a
large logarithm ln(MW/m) as a quantity of O(1)

asln
MW

m
5O~1 !, m!MW . (3.65)

Therefore the series of powers of asln(MW/m) cannot be
truncated. Summed to all orders, it yields again a contri-
bution of O(1). Correspondingly, the next-to-leading-
order logarithms as[asln(MW/m)]

n represent an O(as)
perturbative correction to the leading term.
The renormalization-group equation for the Wilson

coefficient functions follows from the fact that the un-
renormalized Wilson coefficients CW (0)5ZcCW , CW T

5(C1 ,C2), are m independent. Defining the matrix of
anomalous dimensions g by

g5Z21
d

d lnm
Z (3.66)

and recalling that Z c
T5Z21, we obtain the

renormalization-group equation

d

d lnm
CW ~m!5gT~as!CW ~m!. (3.67)

The solution of Eq. (3.67) may formally be written in
terms of a m evolution matrix U as

CW ~m!5U~m ,MW!CW ~MW!. (3.68)

From Eqs. (3.49) and (3.66) we have to first order in as,

g~as!5
as

4p
g~0 !5

as

4p
S 26/N

6
6

26/N D , (3.69)

or, in the diagonal basis,

g6~as!5
as

4p
g6

~0 ! , g6
~0 !566

N71
N

. (3.70)

Note that, if we neglect QCD loop corrections com-
pletely, the couplings CW are independent of m. The non-
trivial m dependence of CW expressed in Eq. (3.67) is a
genuine quantum effect. It implies an anomalous scaling
behavior for the dimensionless coefficients, i.e., one that
is different from the classical theory. For this reason the
factor g is called an anomalous (scale) dimension [com-
pare Eq. (3.67) with (d/d lnm)mn5nmn for an
n-dimensional m-dependent term mn]. Using Eq. (3.13)
the RG equation (3.67) is easily solved with the result

C6~m!5Fas~MW!

as~m! Gg6
~0 !/2b0

C6~MW!. (3.71)

At a scale mW5MW no large logarithms are present, and
C6(MW) can therefore be calculated in ordinary pertur-
bation theory. From Eq. (3.61) we have, to the order
needed for the LLA,

C6~MW!51. (3.72)

Equations (3.71) and (3.72) give the final result for the
coefficients in the LLA of the RG-improved perturba-
tion theory.
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At this point one should emphasize that the choice of
the high-energy matching scale mW5MW is of course
not unique. The only requirement is that the choice of
mW must not introduce large logarithms, ln(MW/mW), in
order not to spoil the applicability of the usual pertur-
bation theory. Therefore mW should be of O(MW). The
logarithmic correction in Eq. (3.61) is then O(as) and is
neglected in LLA. Then, still, C6(mW)=1 and

C6~m!5Fas~mW!

as~m! Gg6
~0 !/2b0

5Fas~MW!

as~m! Gg6
~0 !/2b0

@11O~as!# . (3.73)

A change of mW around the value of MW causes an am-
biguity of O(as) in the coefficient. This ambiguity repre-
sents a theoretical uncertainty in the determination of
C6(m). In order to reduce it, it is necessary to go beyond
the leading order. At NLO the scale ambiguity is then
reduced from O(as) to O(a s

2). We will come back to this
point below. Presently, we will set mW5MW , but it is
important to keep the related uncertainty in mind. Tak-
ing into account the leading-order solution of the RG
equation (3.13) for the coupling, which can be expressed
in the form

as~m !5
as~m!

11b0@as~m!/4p#ln~m2/m2!
, (3.74)

we may rewrite Eq. (3.71) as

C6~m!5S 1

11b0@as~m!/4p#ln~MW
2 /m2! D

g6
~0 !/2b0

. (3.75)

Equation (3.75) contains the logarithmic corrections
;asln(MW

2 /m2) to all orders in as . This shows very
clearly that the leading-logarithmic-order corrections
have been summed up to all orders in perturbation
theory by solving the RG equation. In particular, if we
again expand Eq. (3.75) in powers of as , keeping the
first term only, we recover Eq. (3.61). This observation
demonstrates that the RG method allows one to obtain
solutions that go beyond the conventional perturbation
theory.
Before concluding this subsection, we would like to

introduce two more generalizations of the approach de-
veloped so far, which will appear in the general discus-
sion below.

2. Threshold effects in LLA

First we may generalize the renormalization-group
evolution from MW down to m'mc to include the
threshold effect of heavy quarks like b or t as follows

CW ~m!5U ~f54 !~m ,mb!U ~f55 !~mb ,mW!CW ~mW!, (3.76)

which is valid for the LLA. In our example of the
c→sud̄ transition, the top quark gives no contribution
at all. Being heavier (but comparable) in mass than the
W , it is simply removed from the theory along with the
W boson. In a first step the coefficients at the initial

scale mW'MW are evolved down to mb'mb in an effec-
tive theory with five quark flavors (f=5). Then, again in
the spirit of the effective field-theory technique, for
scales below mb , the bottom quark is also removed as an
explicit degree of freedom from the effective theory,
yielding a new effective theory with only four ‘‘active’’
quark flavors left. The matching corrections between
both theories can be calculated in ordinary perturbation
theory at the scale mb , since, due to mb'mb , no large
logarithms can occur in this procedure. For the same
reason matching corrections of O(as) can be neglected
in LLA, and the coefficients at mb , CW (mb), simply serve
as the initial values for the RG evolution in the four-
quark theory down to m'mc . In addition, continuity of
the running coupling across the threshold mb is imposed
by the requirement

as ,f54~mb ,L
~4 !!5as ,f55~mb ,L

~5 !!, (3.77)

which defines different QCD scales L(f ) for each effec-
tive theory.
Neglecting the b threshold, as we did before [Eq.

(3.68)], one may merely perform the full evolution from
mW to m in an effective four-flavor theory. It turns out
that in some cases the difference of these two ap-
proaches is negligible.
We would like to add a comment on this effective-

field-theory technique. At first sight the idea to ‘‘remove
by hand’’ heavy degrees of freedom may look somewhat
artificial. However, it appears quite natural when not
viewed from the evolution from high towards low ener-
gies but vice versa (which actually corresponds to the
historical way). Suppose only the ‘‘light’’ quarks u , d , s ,
and c were known. Then, in the attempt to formulate a
theory of their weak interactions, one would be led to a
generalized Fermi theory with four quark coupling con-
stants to be determined somehow. Of course, we are in
the lucky position to know the underlying theory in the
form of the standard model. Therefore we can actually
derive the coupling constants of the low-energy effective
theory from ‘‘first principles.’’ This is exactly what is
achieved technically by going through a series of effec-
tive theories, removing heavy degrees of freedom suc-
cessively by means of a step-by-step procedure.

3. Penguin operators

A second, very important issue is the generation of
QCD penguin operators (Vainshtein et al., 1977). Con-
sider, for example, the local operator
( s̄ iui)V2A(ū jdj)V2A , which is directly induced by
W-boson exchange. In this case, additional QCD correc-
tion diagrams, the penguin diagrams, Figs. 3(d.1) and
3(d.2), with a gluon, contribute, and as a consequence
six operators are involved in the mixing under renormal-
ization instead of two. These are

Q15~ s̄ iuj!V2A~ ū jdi!V2A ,

Q25~ s̄ iui!V2A~ ū jdj!V2A ,

Q35~ s̄ idi!V2ASq~ q̄ jqj!V2A ,
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Q45~ s̄ idj!V2ASq~ q̄ jqi!V2A ,

Q55~ s̄ idi!V2ASq~ q̄ jqj!V1A ,

Q65~ s̄ idj!V2ASq~ q̄ jqi!V1A . (3.78)

The sum over q runs over all quark flavors that exist in
the effective theory in question. The operators Q1 and
Q2 are just the ones we have encountered in Sec. III.C,
but with the c quark replaced by u. This modified flavor
structure gives rise to the gluon penguin-type diagrams
shown in Fig. 3(d). Since the gluon coupling is of course
flavor conserving, it is clear that penguins cannot be gen-
erated from the operator ( s̄c)V2A(ūd)V2A . The pen-
guin graphs induce the new local interaction vertices
Q3 ,. . . ,Q6 , which have the same quantum numbers.
Their structure is easily understood. The flavor content
is determined by the ( s̄d)V2A current in the upper part
and by a Sq(q̄q)V vector current due to the gluon cou-
pling in the lower part. For convenience this vector
structure is decomposed into a (V2A) and a (V1A)
part. For each of these, two different color forms arise
due to the color structure of the exchanged gluon [see
Eq. (3.40)]. Together this yields the four operators
Q3 ,. . . ,Q6 . For all operators Q1 ,. . . ,Q6 all possible QCD
corrections (that is all amputated Green functions with
insertion of Qi) of the current-current [Figs. 3(a)–3(c)]
as well as of the penguin type [Figs. 3(d.1) and 3(d.2)]
have to be evaluated. In this process no new operators
are generated, so that Q1 ,. . . ,Q6 form a complete set.
They ‘‘close under renormalization.’’ In analogy to the
case of Sec. III.C the divergent parts of these Green
functions determine, after field renormalization, the op-
erator renormalization constants, which in the present
case form a 636 matrix. The calculation of the corre-
sponding anomalous-dimension matrix and the
renormalization-group analysis then proceeds in the
usual way. We will see that the inclusion of higher-order
electroweak interactions requires the introduction of
still more operators.

E. Summary of basic formalism

We think that, after this rather detailed discussion of
the methods required for the short-distance calculations
in weak decays, it is useful to give a concise summary of
the material covered so far. At the same time this may
serve as an outline of the necessary procedure for prac-
tical calculations. Furthermore, it will also provide a
starting point for the extension of the formalism from
the LLA considered until now to the NLLA to be pre-
sented in the next subsection.
Ultimately our goal is the evaluation of weak-decay

amplitudes involving hadrons in the framework of a low-
energy effective theory of the form

^Heff&5
GF

&
VCKM^QW T~m!&CW ~m!.

The procedure for this calculation can be divided into
the following three steps.

Step 1: Perturbation Theory. Calculation of Wilson co-
efficients CW (mW) at mW'MW to the desired order in as .
Since logarithms of the form ln(mW/MW) are not large,
this can be performed in ordinary perturbation theory. It
amounts to matching the full theory onto a five-quark
effective theory.
Step 2: RG-Improved Perturbation Theory. (i) Calcu-

lation of the anomalous dimensions of the operators. (ii)
Solution of the renormalization-group equation for
CW (m). (iii) Evolution of the coefficients from mW down
to the appropriate low-energy scale m

CW ~m!5U~m ,mW!CW ~mW!.

Step 3: Nonperturbative Regime. Calculation of had-
ronic matrix elements ^QW (m)&, normalized at the appro-
priate low-energy scale m, by means of some nonpertur-
bative method.
Important issues in this procedure are

(i) The OPE achieves a factorization of short- and
long-distance contributions. Correspondingly, in order
to disentangle the short-distance from the long-distance
part and to extract CW (mW) in actual calculations, a
proper matching of the full onto the effective theory has
to be performed. Similar comments apply to the match-
ing of an effective theory with f quark flavors to a theory
with (f−1) flavors during the RG evolution to lower
scales. Furthermore, factorization implies that the m de-
pendence and also the dependence on the renormaliza-
tion scheme, which appears beyond the leading order,
cancel between Ci and ^Qi& . Since the top quark is in-
tegrated out along with theW , the coefficients CW (mW) in
general also contain the full dependence on the top-
quark mass mt .
(ii) A summation of large logarithms by means of the

RG method is necessary. More specifically, in the nth
order of RG-improved perturbation theory the terms of
the form

as
n~m!S as~m!ln

MW

m D k
are summed to all orders in k (k=0,1,2, . . . ). This ap-
proach is justified as long as as(m) is small enough,
which requires that m not be too low, typically not less
than 1 GeV.

F. Wilson coefficients beyond leading order

1. The renormalization-group formalism

We are now going to extend the renormalization-
group formalism for the coefficient functions to the
next-to-leading-order level. Then we shall discuss impor-
tant aspects of the resulting formulas, in particular the
scale and scheme dependences and their cancellation.
As an example, we consider the calculation for the

DS=1 effective Hamiltonian for nonleptonic decays,
which, without QCD effects and for low energy, is given
by
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Heff
DS515

GF

&
Vus* Vud~ s̄u !V2A~ ūd !V2A . (3.79)

At higher energies of course the charm, bottom, and top
quark also have to be taken into account. The Feynman
diagrams contributing to O(as) corrections to this
Hamiltonian are shown in Figs. 2 and 3. Including
current-current as well as penguin-type corrections, the
relevant operator basis consists of the six operators in
Eq. (3.78).
On the one hand, this particular case is very important

by itself, since it provides the theoretical basis for a large
variety of different decay modes. On the other hand, we
keep the discussion fairly general to exhibit all the im-
portant features of a typical case. In addition, the central
formulas of this subsection will be used at several places
later on, although at times they will be extended or
modified to match the specific cases in question. In Secs.
IV–XV of this report we will give a more detailed dis-
cussion of the Hamiltonians relevant for various decays.
Here, we will concentrate on the presentation of the
OPE and renormalization-group formalism.
The effective Hamiltonian for nonleptonic decays

may be written in general as

Heff5
GF

&
(
i
Ci~m!Qi~m![

GF

&
QW T~m!CW ~m!, (3.80)

where the index i runs over all contributing operators, in
our example, Q1 ,. . . ,Q6 of Eq. (3.78). It is straightfor-
ward to apply Heff to D- and B-meson decays as well by
changing the quark flavors appropriately. For the time
being we omit CKM parameters, which can be rein-
serted later on. m is some low-energy scale of O(1 GeV),
O(mc), and O(mb) for K-, D-, and B-meson decays,
respectively. The argument m of the operators Qi(m)
means that their matrix elements are to be normalized at
scale m.
The Wilson coefficient functions are given by

CW ~m!5U~m ,mW!CW ~mW!. (3.81)

The coefficients at the scale mW=O(MW) can be evalu-
ated in perturbation theory. The evolution matrix U
then includes the RG-improved perturbative contribu-
tions from the scale mW down to m.

In the first step we determine CW (mW) from a compari-
son of the amputated Green function with appropriate
external lines in the full theory with the corresponding
amplitude in the effective theory. At NLO we have to
calculate to O(as), including nonlogarithmic, constant
terms. The full amplitude from the current-current and
penguin-type diagrams in Fig. 2 is finite after field renor-
malization and can be written as

A5
GF

&
SW TSAW ~0 !1

as~mW!

4p
AW ~1 !D . (3.82)

Here SW denotes the tree-level matrix elements of the
operators QW . In the effective theory Eq. (3.80) the
current-current and penguin corrections of Fig. 3 have to

be calculated for all the operators Qi . In this case, be-
sides the field renormalization, a renormalization of op-
erators is necessary

Zq
2^QW &~0 !5Z^QW &, (3.83)

where the matrix Z absorbs those divergences of the
Green functions with operator QW insertion that are not
removed by the field renormalization. The renormalized
matrix elements of the operators can then, to O(as), be
written as

^QW ~mW!&5S 11
as~mW!

4p
r DSW , (3.84)

and the amplitude in the effective theory to the same
order becomes

Aeff5
GF

&
SW TS 11

as~mW!

4p
rTDCW ~mW!. (3.85)

Equating Eqs. (3.82) and (3.85) we obtain

CW ~mW!5AW ~0 !1
as~mW!

4p
~AW ~1 !2rTAW ~0 !!. (3.86)

In general AW (1) in Eq. (3.82) involves logarithms
ln(MW

2 /2p2), where p denotes some global external
momentum for the amplitudes in Fig. 2. On the other
hand, the matrix r in Eq. (3.84), characterizing the ra-
diative corrections to ^QW (mW)&, includes ln(−p

2/m W
2 ).

As we have seen in Sec. III.C, these logarithms combine
to ln(MW

2 /m W
2 ) in the Wilson coefficient of Eq. (3.86).

For mW5MW this logarithm vanishes altogether. For
mW=O(MW) the expression ln(MW

2 /m W
2 ) is a ‘‘small

logarithm,’’ and the correction ;asln(MW
2 /m W

2 ), which
could be neglected in LLA, has to be kept in the pertur-
bative calculation at NLO together with constant pieces
of order O(as).
In the second step, the renormalization-group equa-

tion for CW

d

d lnm
CW ~m!5gT~g !CW ~m! (3.87)

has to be solved with the boundary condition Eq. (3.86).
The solution is written with the help of the U matrix as
in Eq. (3.81), where U(m ,mW) obeys the same equation
as CW (m) in Eq. (3.87). The general solution is easily writ-
ten down iteratively

U~m ,m !511E
g~m !

g~m!

dg1
gT~g1!

b~g1!

1E
g~m !

g~m!

dg1E
g~m !

g1
dg2

gT~g1!

b~g1!

gT~g2!

b~g2!

1••• , (3.88)

which, using dg/d lnm=b(g), is readily seen to solve the
renormalization-group equation

d

d lnm
U~m ,m !5gT~g !U~m ,m !. (3.89)
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The series in Eq. (3.88) can be more compactly ex-
pressed by introducing the notion of g ordering

U~m ,m !5TgexpE
g~m !

g~m!

dg8
gT~g8!

b~g8!
, (3.90)

where in the case g(m).g(m) the g-ordering operator
Tg is defined through

Tgf~g1!•••f~gn!5 (
perm

Q~gi12gi2!

3Q~gi22gi3!•••Q~gin21
2gin!

3f~gi1!•••f~gin! (3.91)

and brings about an ordering of the factors f(gi) such
that the coupling constants increase from right to left.
The sum in Eq. (3.91) runs over all permutations
$i1 ,. . . ,in% of $1,2, . . . ,n%. The Tg ordering is necessary
since, in general, the anomalous-dimension matrices at
different couplings do not commute beyond the leading
order, i.e., [g(g1),g(g2)]Þ0.
At next to leading order we have to keep the first two

terms in the perturbative expansions for b(g) [see Eq.
(3.11)] and g(g),

g~as!5g~0 !
as

4p
1g~1 !S as

4p D 2. (3.92)

To this order the evolution matrix U(m ,m) is given by
Buras et al. (1992)

U~m ,m !5S 11
as~m!

4p
J DU ~0 !~m ,m !S 12

as~m !

4p
J D .
(3.93)

U(0) is the evolution matrix in LLA and the matrix J
expresses the next-to-leading order corrections to this
evolution. We have

U ~0 !~m ,m !5VS Fas~m !

as~m!
GgW ~0 !/2b0D

D

V21, (3.94)

where V diagonalizes g(0)T,

gD
~0 !5V21g~0 !TV , (3.95)

and gW (0) is the vector containing the diagonal elements
of the diagonal matrix gD

(0). If we define

G5V21g~1 !TV (3.96)

and a matrix H whose elements are

Hij5d ijg i
~0 !

b1

2b0
22

Gij

2b01g i
~0 !2g j

~0 ! , (3.97)

the matrix J is given by

J5VHV21. (3.98)

The fact that Eq. (3.93) is indeed a solution of the RG
equation (3.89) to the order considered is straightfor-
wardly verified by differentiation with respect to lnm.
Combining the initial values of Eq. (3.86) with the evo-
lution matrix of Eq. (3.93), we obtain

CW ~m!5S 11
as~m!

4p
J DU ~0 !~m ,mW!

3SAW ~0 !1
as~mW!

4p
@AW ~1 !2~rT1J !AW ~0 !# D .

(3.99)

Using Eq. (3.99) we can calculate, for example, the co-
efficients at a scale m=mb=O(mb) in an effective five-
flavor theory, f=5. If we have to evolve the coefficients
to still lower values, we would like to formulate a new
effective theory for m<mb , where now the b quark is also
removed as an explicit degree of freedom. To calculate
the coefficients in this new four-flavor theory at the scale
mb , we have to determine the matching corrections at
this scale.
We follow the same principles as in the case of inte-

grating out the W boson and require

^QW f~m !&TCW f~m !5^QW f21~m !&TCW f21~m ! (3.100)

in the general case of a change from an f-flavor to an
(f−1)-flavor theory at a scale m . The ‘‘full amplitude’’ on
the lhs, which is now in an f-flavor effective theory, is
expanded into matrix elements of the new (f−1)-flavor
theory, multiplied by new Wilson coefficients CW f21.
From Eq. (3.84), determining the matrix elements of op-
erators to O(as), one finds

^QW f~m !&5S 11
as~m !

4p
dr D ^QW f21~m !& , (3.101)

where

dr5r ~f !2r ~f21 !. (3.102)

In Eq. (3.102) we have made explicit the dependence of
the matrix r on the number of quark flavors, which en-
ters in our example via the penguin contributions. From
Eqs. (3.100) and (3.101) we find

CW f21~m !5M~m !CW f~m ! (3.103)

with

M~m !511
as~m !

4p
drT. (3.104)

The general renormalization-group matrix U in Eq.
(3.93), now evaluated for (f−1) flavors, can be used to
evolve CW f21(m) to lower values of the renormalization
scale. It is clear that no large logarithms can appear in
Eq. (3.104) and that therefore the matching corrections,
expressed in the matrix M(m), can be computed in
usual perturbation theory. We note that this type of
matching correction enters in a nontrivial way for the
first time at the NLO level. In the LLA M[1, and one
can simply omit the b flavor components in the penguin
operators when crossing the b threshold.
We also remark that the correction matrix M intro-

duces a small discontinuity of the coefficients, regarded
as functions of m, at the matching scale m . This is, how-
ever, not surprising. In any case the CW (m) are not physi-
cal quantities and their discontinuity precisely cancels
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the effect of removing the heavy-quark flavor from the
operators, which evidently is a ‘‘discontinuous’’ step.
Hence physical amplitudes are not affected and indeed
the behavior of CW at the matching scale ensures that the
same physical result will be obtained whether we choose
to calculate in the f-flavor or in the (f−1)-flavor theory
for scales near the matching scale m .
To conclude, we shall write down what the typical fi-

nal result for the coefficient functions at m'1 GeV, ap-
propriate for K decays, looks like if we combine all the
contributions discussed above. Then we can write

CW ~m!5U3~m ,mc!M~mc!U4~mc ,mb!M~mb!

3U5~mb ,mW!CW ~mW!, (3.105)

where Uf is the evolution matrix for f active flavors. In
the following discussion we will not always include the
flavor thresholds when writing the expression for the
RG evolution. It is clear that they can be added in a
straightforward fashion.

2. The calculation of the anomalous dimensions

The matrix of anomalous dimensions is the most im-
portant ingredient for the renormalization-group calcu-
lation of the Wilson coefficient functions. In the follow-
ing we will summarize the essential steps of its
calculation.
Recall that the evaluation of the amputated Green

functions with insertion of the operators QW gives the
relation

^QW &~0 !5Zq
22Z^QW &[ZGF^QW &, (3.106)

where ^QW &(0),^QW & denote the unrenormalized and
renormalized Green functions, respectively. Zq is the
quark-field renormalization constant, and Z is the renor-
malization constant matrix of the operators QW . The
anomalous dimensions are given by

g~g !5Z21
d

d lnm
Z . (3.107)

In the MS (or MS) scheme the renormalization con-
stants are chosen to absorb the pure pole divergences
1/«k (D=4−2«), but no finite parts. Z can then be ex-
panded in inverse powers of « as follows

Z511 (
k51

` 1
«k

Zk~g !. (3.108)

Using the expression for the b function Eq. (3.6) valid
for arbitrary «, we derive the useful formula (Floratos
et al., 1977)

g~g !522g2
]Z1~g !

]g2
522as

]Z1~as!

]as
. (3.109)

Similar to Eq. (3.108), we expand

Zq511 (
k51

` 1
«k

Zq ,k~g !, (3.110)

ZGF511 (
k51

` 1
«k

ZGF,k~g !. (3.111)

From the calculation of the unrenormalized Green func-
tions Eq. (3.106) we immediately obtain ZGF . Then
what we need to compute g(g) is Z1(g) Eq. (3.109).
From Eqs. (3.106), (3.108), (3.110), and (3.111) we find

Z152Zq ,11ZGF,1 . (3.112)

At NLO we have, from the 1/« poles of the unrenormal-
ized Green functions,

ZGF,15b1
as

4p
1b2S as

4p D 2. (3.113)

The corresponding expression for the well-known factor
Zq ,1 has been quoted in Eq. (3.15). Using Eqs. (3.15),
(3.109), (3.112), and (3.113), we finally obtain for the
one- and two-loop anomalous-dimension matrices g(0)

and g(1) in Eq. (3.92),

g ij
~0 !522@2a1d ij1~b1! ij# , (3.114)

g ij
~1 !524@2a2d ij1~b2! ij# . (3.115)

Equations (3.114) and (3.115) may be used as recipes to
immediately extract the anomalous dimensions from the
divergent parts of the unrenormalized Green functions.

3. Renormalization-scheme dependence

A further issue, which becomes important at next to
leading order, is the dependence of unphysical quanti-
ties, like the Wilson coefficients and the anomalous di-
mensions, on the choice of the renormalization scheme.
This scheme dependence arises because the renormal-
ization prescription involves an arbitrariness in the finite
parts to be subtracted together with the ultraviolet sin-
gularities. Two different schemes are then related by a
finite renormalization. Considering the quantities that
we encountered in Sec. III.F.1, the following are inde-
pendent of the renormalization scheme

b0 , b1 , g~0 !, AW ~0 !, AW ~1 !, rT1J , ^QW &TCW ,
(3.116)

whereas

r , g~1 !, J , CW , ^QW & (3.117)

are scheme dependent.
In the framework of dimensional regularization, one

example of how such a scheme dependence can occur is
the treatment of g5 in D dimensions. Possible choices
are the ‘‘naive dimensional regularization’’ (NDR)
scheme with g5 taken to be anticommuting or the
’t Hooft–Veltman (HV) scheme (’t Hooft and Veltman,
1972b; Breitenlohner and Maison, 1977) with nonanti-
commuting g5 . Another example is the use of operators
in a color singlet or nonsinglet form, such as

Q25~ s̄ iui!V2A~ ū jdj!V2A or

Q̃25~ s̄ idj!V2A~ ū jui!V2A , (3.118)
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where i ,j are color indices. In D=4 dimensions these
operators are equivalent since they are related by a Fi-
erz transformation. In the NDR scheme, however, these
two choices yield different results for r , g(1), and J and
thus constitute two different schemes that are related by
a nontrivial finite renormalization. On the other hand,
both choices give the same r , g(1), and J if the HV
scheme is employed.
Let us now discuss the question of renormalization-

scheme dependences in explicit terms in order to obtain
an overview on how the scheme dependences arise, how
various quantities transform under a change of the
renormalization scheme, and how the cancellation of
scheme dependences is guaranteed for physically rel-
evant quantities.
First of all, it is clear that the product

^QW ~m!&TCW ~m!, (3.119)

representing the full amplitude, is independent of the
renormalization scheme chosen. This is simply due to
the fact that it is precisely the factorization of the ampli-
tude into Wilson coefficients and matrix elements of op-
erators by means of the operator product expansion that
introduces the scheme dependence of CW and ^QW &. In
other words, the scheme dependence of CW and ^QW &
represents the arbitrariness one has in splitting the full
amplitude into coefficients and matrix elements, and the
scheme independence of the combined product Eq.
(3.119) is manifest in the construction of the operator
product expansion.
More explicitly, these quantities are in different

schemes (primed and unprimed), related by

^QW &85S 11
as

4p
s D ^QW & CW 85S 12

as

4p
sTDCW , (3.120)

where s is a constant matrix. Equation (3.120) repre-
sents a finite renormalization of CW and ^QW & . From Equa-
tion (3.84) we immediately obtain

r85r1s . (3.121)

Furthermore, from

^QW ~m!&TCW ~m![^QW ~m!&TU~m ,MW!CW ~MW! (3.122)

we have

U8~m ,MW!5S 12
as~m!

4p
sTDU~m ,MW!

3S 11
as~MW!

4p
sTD . (3.123)

A comparison with Eq. (3.93) yields

J85J2sT. (3.124)

The renormalization-constant matrix in the primed
scheme Z8 follows from Eqs. (3.120) and (3.106)

Z85ZS 12
as

4p
s D . (3.125)

Recalling the definition of the matrix of anomalous di-
mensions, Eqs. (3.107) and (3.92), we derive

g~0 !85g~0 !, g~1 !85g~1 !1@s ,g~0 !#12b0s . (3.126)

With these general formulas at hand it is straightforward
to clarify the cancellation of scheme dependences in all
particular cases. Alternatively, they may be used to
transform scheme-dependent quantities from one
scheme to another, if desired, or to check the compat-
ibility of results obtained in different schemes.
In particular, from Eqs. (3.121) and (3.124) we imme-

diately verify the scheme independence of the matrix
rT1J . This means that, in the expression for CW in Eq.
(3.99), the factor on the right-hand side of U(0), related
to the ‘‘upper end’’ of the evolution, is independent of
the renormalization scheme, as it must be. The same is
true for U(0). On the other hand, CW still depends on the
renormalization scheme through the matrix J to the left
of U(0). As is evident from Eq. (3.120), this dependence
is compensated for by the corresponding scheme depen-
dence of the matrix elements of operators, so that a
physically meaningful result for the decay amplitudes is
obtained. To ensure a proper cancellation of the scheme
dependence, the matrix elements have to be evaluated
in the same scheme (renormalization, g5 , form of opera-
tors) as the coefficient functions, which is a nontrivial
task for the necessary nonperturbative computations. In
other words, beyond the leading order the matching be-
tween short- and long-distance contributions has to be
performed properly not only with respect to the scale m,
but also with respect to the renormalization scheme em-
ployed.

4. Discussion

We will now specialize the presentation of the general
formalism to the case of a single operator (that is with-
out mixing). This situation is, e.g., relevant for the op-
erators Q+ and Q− with four different quark flavors,
which we encountered in Sec. III.C. The resulting sim-
plifications are useful in order to display some more de-
tails of the structure of the calculation and to discuss the
most salient features of the NLO analysis in a transpar-
ent way.
In the case where only one single operator contrib-

utes, the amplitude in the full theory (dynamical W bo-
son) may be written as [see Eq. (3.82)]

A5
GF

&
S 11

as~mW!

4p F2
g~0 !

2
ln

MW
2

2p2
1Ã ~1 !G DS ,

(3.127)

where we have made the logarithmic dependence on the
W mass explicit. In the effective theory the amplitude
reads
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Aeff5
GF

&
C~mW!^Q~mW!&

5
GF

&
C~mW!S 11

as~mW!

4p

3Fg~0 !

2 S ln 2p2

mW
2 1gE2ln 4p D 1 r̃G D S . (3.128)

The divergent pole term 1/« has been subtracted mini-
mally. A comparison of Eqs. (3.127) and (3.128) yields
the Wilson coefficient

C~mW!511
as~mW!

4p F2
g~0 !

2

3S ln MW
2

mW
2 1gE2ln4p D 1BG , (3.129)

where

B5Ã ~1 !2 r̃ . (3.130)

In the leading logarithmic approximation we had simply
C(mW)=1. By contrast, at NLO the O(as) correction
also has to be taken into account. This correction term
exhibits the following new features
(i) The expression gE−ln4p, which is characteristic to

dimensional regularization, appears and is proportional
to g(0).
(ii) A constant term B is present, which depends on

the factorization scheme chosen.
(iii) An explicit logarithmic dependence on the match-

ing scale mW shows up.
We discuss these points one by one.
First, the term gE−ln4p is characteristic for the MS

scheme. It can be eliminated by going from the MS to
the MS scheme. This issue is well known in the litera-
ture. However, we find it useful to briefly repeat the
definition of the MS scheme in the present context, since
this is an important point for NLO analyses.
Consider the RG solution for the coefficient

C~m!5S 11
as~m!

4p
J D Fas~mW!

as~m! Gg~0 !/2b0

3H 11
as~mW!

4p F2
g~0 !

2

3S ln MW
2

mW
2 1gE2ln4p D 1B2JG J . (3.131)

This represents the solution for the MS scheme. There-
fore in Eq. (3.131) as 5 as ,MS . The redefinition of as ,MS
through

as ,MS5as ,MSS 11b0~gE2ln4p!
as ,MS

4p D (3.132)

is a finite renormalization of the coupling, which defines
the MS scheme. Since

@as ,MS~mW!#g~0 !/2b0

8@as ,MS~mW!#g~0 !/2b0

3S 11
g~0 !

2
~gE2ln4p!

as ,MS~mW!

4p D , (3.133)

we see that this transformation eliminates, to the order
considered, the gE−ln4p term in Eq. (3.131). At the
lower end of the evolution the same redefinition yields a
factor

12
g~0 !

2
~gE2ln4p!

as ,MS~m!

4p
, (3.134)

which removes the corresponding factor from the matrix
element [see Eq. (3.128)]

^Q~m!&MS[S 11
g~0 !

2
~gE2ln4p!

as ,MS~m!

4p D
3^Q~m!&MS . (3.135)

At the next-to-leading-logarithmic-order level we are
working at, the transformation [Eq. (3.132)] is equiva-
lent to a redefinition of the scale L according to

LMS
2

54pe2gELMS
2 , (3.136)

as one can verify with the help of Eq. (3.19). In practice,
one can just drop the (gE−ln4p) terms in Eq. (3.131).
Then as(m) and L correspond to the MS scheme.
Throughout the present report it is always understood
that the transformation to MS has been performed.
Then

C~m!5S 11
as~m!

4p
J D Fas~mW!

as~m! Gg~0 !/2b0

3S 11
as~mW!

4p F2
g~0 !

2
ln
MW

2

mW
2 1B2JG D .

(3.137)

Second, from the issue of the MS-MS transformation
or, more generally, an arbitrary redefinition of as (or L),
one should distinguish the renormalization-scheme de-
pendence due to the ambiguity in the renormalization of
the operator. This ambiguity is called ‘‘factorization
scheme dependence,’’ and is the scheme dependence we
have discussed in Sec. III.F.3. A change in the factoriza-
tion scheme transforms g(1), B , and J as

g~1 !85g~1 !12b0s , B85B2s , J85J2s , (3.138)

where s is a constant number. This follows from the for-
mulae in Sec. III.F.3 and the definition of B in Eq.
(3.130). Note that, in the case of a single operator, the
relation between g(1) and J simplifies to

J5
1
2b0

S b1

b0
g~0 !2g~1 !D . (3.139)

Obviously the scheme dependence cancels in the differ-
ence B2J in Eq. (3.137).
Third, due to the explicit mW dependence in the O(as)
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correction term, the coefficient function is, to the order
considered, independent of the precise value of the
matching scale mW , as it must be. Indeed

d

d lnmW
C~m!5O~as

2!, (3.140)

since

d

d lnmW
as~mW!522b0

as~mW!2

4p
1O~as

3!. (3.141)

In the same way one can also convince oneself that
the coefficient function is independent of the heavy-
quark threshold scales, up to terms of the neglected or-
der. Of course the dependence on the low energy scale m
remains and has to be matched with the corresponding
dependence of the operator matrix element. All the
points we have mentioned here also apply in an analo-
gous manner to the case with operator mixing, only the
algebra is slightly more complicated. We would like to
stress once again that it is only at the NLO level that
these features enter the analysis in a nontrivial way, as
should be evident from the presentation we have given
above.

5. Evanescent operators

Finally, we would like to mention the so called eva-
nescent operators. These are operators which exist in
DÞ4 dimensions but vanish in D=4. It has been stressed
by Buras and Weisz (1990) that a correct calculation of
two-loop anomalous dimensions requires a proper treat-
ment of these operators. This discussion has been ex-
tended by Dugan and Grinstein (1991) and further gen-
eralized by Herrlich and Nierste (1995b). In view of the
rather technical nature of this aspect, we refer the inter-
ested reader to the papers referenced above.

IV. GUIDE TO EFFECTIVE HAMILTONIANS

In order to facilitate the presentation of effective
Hamiltonians in weak decays we give a complete com-
pilation of the relevant operators below. Divided into six
classes, these operators play a dominant role in the phe-
nomenology of weak decays. The six classes are given as
follows
Current-Current Operators [Fig. 4(a)].

Q15~ s̄ iuj!V2A~ ū jdi!V2A , Q25~ s̄u !V2A~ ūd !V2A .
(4.1)

QCD Penguin Operators [Fig. 4(b)].

Q35~ s̄d !V2A(
q

~ q̄q !V2A ,

Q45~ s̄ idj!V2A(
q

~ q̄ jqi!V2A , (4.2)

Q55~ s̄d !V2A(
q

~ q̄q !V1A ,

Q65~ s̄ idj!V2A(
q

~ q̄ jqi!V1A . (4.3)

Electroweak Penguin Operators [Fig. 4(c)].

Q75
3
2

~ s̄d !V2A(
q
eq~ q̄q !V1A ,

Q85
3
2

~ s̄ idj!V2A(
q
eq~ q̄ jqi!V1A , (4.4)

Q95
3
2

~ s̄d !V2A(
q
eq~ q̄q !V2A ,

Q105
3
2

~ s̄ idj!V2A(
q
eq~ q̄ jqi!V2A . (4.5)

Magnetic Penguin Operators [Fig. 4(d)].

Q7g5
e

8p2 mbs̄is
mn~11g5!biFmn ,

Q8G5
g

8p2 mbs̄is
mn~11g5!Tij

a bjGmn
a . (4.6)

DS=2 and DB=2 Operators [Fig. 4(e)].

Q~DS52 !5~ s̄d !V2A~ s̄d !V2A ,

Q~DB52 !5~ b̄d !V2A~ b̄d !V2A . (4.7)

FIG. 4. Typical diagrams in the full theory from which the
operators in Eqs. (4.1)–(4.10) originate. The cross in diagram
(d) means a mass insertion. It indicates that magnetic penguins
originate from the mass term on the external line in the usual
QCD or QED penguin diagrams.
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Semileptonic Operators [Fig. 4(f )].

Q7V5~ s̄d !V2A~ ēe !V , Q7A5~ s̄d !V2A~ ēe !A , (4.8)

Q9V5~ b̄s !V2A~ ēe !V , Q10A5~ b̄s !V2A~ ēe !A ,
(4.9)

Q~ n̄n!5~ s̄d !V2A~ n̄n!V2A ,

Q~m̄m!5~ s̄d !V2A~m̄m!V2A , (4.10)

where indices in color-singlet currents have been sup-
pressed for simplicity. Here V6A refers to the Lorentz
structure gm(16g5).
For illustrative purposes, typical diagrams in the full

theory from which the operators of Eqs. (4.1)–(4.10)
originate are shown in Fig. 4.
The operators listed above will enter this review in a

systematic fashion. We begin in Sec. V with the presen-
tation of the effective Hamiltonians involving the
current-current operators Q1 and Q2 only. These effec-
tive Hamiltonians are given in Eqs. (5.4), (5.5), and (5.6)
for DB=1, DC=1, and DS=1 nonleptonic decays, respec-
tively.
In Sec. VI we will generalize the Hamiltonians (5.4)

and (5.6) to include the QCD penguin operators
Q3−Q6 . The corresponding expressions are given in
Eqs. (6.32) and (6.1), respectively. This generalization
does not affect the Wilson coefficients of Q1 and Q2 .
Next in Sec. VII the DS=1 and DB=1 Hamiltonians of

Sec. VI will be generalized to include the electroweak
penguin operators Q72Q10. These generalized Hamilto-
nians are given in Eqs. (7.1) and (7.37) for DS=1 and
DB=1 nonleptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion
of QED effects. Consequently, the coefficients of the
operators Q12Q6 given in this section will differ slightly
from the ones presented in the previous sections.
In Sec. VIII the effective Hamiltonian for

KL→p0e1e2 will be presented. It is given in Eq. (8.1).
This Hamiltonian can be considered as a generalization
of the DS=1 Hamiltonian [Eq. (6.1)] presented in Sec.

VI to include the semileptonic operators Q7V and Q7A.
This generalization does not modify the numerical val-
ues of the DS=1 coefficients Ci (i=1, . . . ,6) given in Sec.
VI.
In Sec. IX we will discuss the effective Hamiltonian

for B→Xsg , written down in Eq. (9.1). This Hamil-
tonian can be considered as a generalization of the
DB=1 Hamiltonian [Eq. (6.32)] to include the magnetic
penguin operators Q7g and Q8G. This generalization
does not modify the numerical values of the DB=1 co-
efficients Ci (i=1, . . . ,6) from Sec. VI.
In Sec. X we present the effective Hamiltonian for

B→Xse
1e2, given in Eq. (10.1), which can be consid-

ered as the generalization of the B→Xsg Hamiltonian
to include the semileptonic operators Q9V and Q10A.
The coefficients Ci (i51,.. . ,6,7g ,8G) given in Sec. IX
are not affected by this generalization.
In Sec. XI the effective Hamiltonians for K1→p1nn̄ ,

KL→m+m−, KL→p0nn̄ , B→Xs ,dnn̄ , and B→l1l2 will
be discussed and are given in Eqs. (11.4), (11.44),
(11.56), and (11.57) respectively. Each of these Hamilto-
nians involves only a single operator, Q(nn̄) or Q(mm̄)
for K1→p1nn̄ , KL→p0nn̄ , and KL→m+m−, with analo-
gous operators for B→Xs ,dnn̄ and B→l1l2.
Finally, Secs. XII and XIII present the effective

Hamiltonians for DS=2 and DB=2 transitions, respec-
tively. These Hamiltonians involve the operators Q(DS
52) and Q(DB52) and can be found in Eqs. (12.1) and
(13.1).
In Table III we give the list of effective Hamiltonians

to be presented below, the equations in which they can
be found, and the list of operators entering different
Hamiltonians.

V. THE EFFECTIVE DF51 HAMILTONIAN:
CURRENT-CURRENT OPERATORS

A. Operators

We begin this compendium by presenting the parts of
effective Hamiltonians involving the current-current op-

TABLE III. Compilation of various processes, equation number of the corresponding effective Hamiltonians, and contributing
operators.

Process Cf. Equation Contributing operators

DF=1, F5B ,C ,S current-current (5.4)–(5.6) Q1 ,Q2

DF=1 pure QCD (6.1),(6.32) Q1 ,. . . ,Q6

DF=1 QCD and electroweak (7.1),(7.37) Q1 ,. . . ,Q10

KL→p0e1e2 (8.1) Q1 ,. . . ,Q6 ,Q7V,Q7A

B→Xsg (9.1) Q1 ,. . . ,Q6 ,Q7g,Q8G

B→Xse
1e2 (10.1) Q1 ,. . ,Q6 ,Q7g,Q8G,Q9V,Q10A

K1→p1nn̄ , (KL→m1m2)SD , KL→p0nn̄ , (11.4),(11.44),(11.56) Q( n̄n),Q(m̄m)
B→Xs ,dnn̄ , B→l1l2 (11.57)

K0-K̄0 mixing (12.1) Q(DS52)
B0-B̄0 mixing (13.1) Q(DB52)
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erators only. These operators generally will be denoted
by Q1 and Q2 , although their flavor structure depends
on the decay considered. To be specific we will consider

Q15~ b̄ icj!V2A~ ū jdi!V2A ,

Q25~ b̄ ici!V2A~ ū jdj!V2A , (5.1)

Q15~ s̄ ic j!V2A~ ū jdi!V2A ,

Q25~ s̄ ic i!V2A~ ū jdj!V2A , (5.2)

Q15~ s̄ iuj!V2A~ ū jdi!V2A ,

Q25~ s̄ iui!V2A~ ū jdj!V2A , (5.3)

for DB=1, DC=1, and DS=1 decays, respectively. Then
the corresponding effective Hamiltonians are given by

Heff~DB51 !5
GF

&
Vcb* Vud@C1~m!Q11C2~m!Q2# ,

m5O~mb!, (5.4)

Heff~DC51 !5
GF

&
Vcs* Vud@C1~m!Q11C2~m!Q2# ,

m5O~mc!, (5.5)

Heff~DS51 !5
GF

&
Vus* Vud@C1~m!Q11C2~m!Q2# ,

m5O~1 GeV!. (5.6)

As we will see in subsequent sections, these Hamilto-
nians have to be generalized to also include penguin op-
erators. This, however, will not change the Wilson coef-
ficients C1(m) and C2(m), except for small O(a)
corrections in a complete analysis that also includes
electroweak penguin operators. For this reason it is use-

ful to present the results for C1,2 separately, as they can
be used in a large class of decays.
When analyzing Q1 and Q2 in isolation, it is useful to

work with the operators Q6 and their coefficients z6

defined by

Q65 1
2 ~Q26Q1!, z65C26C1 . (5.7)

Q+ and Q− do not mix under renormalization, and the
expression for z6(m) is very simple.

B. Wilson coefficients and
renormalization-group evolution

The initial conditions for z6 at m=MW are obtained
using the matching procedure between the full [Figs.
2(a)–2(c)] and effective [Figs. 3(a)–3(c)] theory summa-
rized in Sec. III.F.1. Given the initial conditions for z6

at scale m=MW ,

z6~MW!511
as~MW!

4p
B6 , (5.8)

and using the NLO RG evolution formula [Eq. (3.99)]
for the case without mixing, one finds for the Wilson
coefficients of Q6 at some scale m

z6~m!5F11
as~m!

4p
J6GFas~MW!

as~m! Gd6

3F11
as~MW!

4p
~B62J6!G (5.9)

with

J65
d6

b0
b12

g6
~1 !

2b0
, d65

g6
~0 !

2b0
, (5.10)

TABLE IV. The coefficient C1(m) for B decays.

m [GeV]

LMS
(5)

5 140 MeV LMS
(5)

5225 MeV LMS
(5)

5310 MeV

LO NDR HV LO NDR HV LO NDR HV

4.0 −0.274 −0.175 −0.211 −0.310 −0.197 −0.239 −0.341 −0.216 −0.264
5.0 −0.244 −0.151 −0.184 −0.274 −0.169 −0.208 −0.300 −0.185 −0.228
6.0 −0.221 −0.133 −0.164 −0.248 −0.148 −0.184 −0.269 −0.161 −0.201
7.0 −0.203 −0.118 −0.148 −0.226 −0.132 −0.166 −0.246 −0.143 −0.181
8.0 −0.188 −0.106 −0.135 −0.209 −0.118 −0.151 −0.226 −0.128 −0.164

TABLE V. The coefficient C2(m) for B decays.

m [GeV]

LMS
(5)

5140 MeV LMS
(5)

5225 MeV LMS
(5)

5310 MeV

LO NDR HV LO NDR HV LO NDR HV

4.0 1.121 1.074 1.092 1.141 1.086 1.107 1.158 1.096 1.120
5.0 1.105 1.062 1.078 1.121 1.072 1.090 1.135 1.080 1.101
6.0 1.093 1.054 1.069 1.107 1.062 1.079 1.118 1.068 1.087
7.0 1.084 1.047 1.061 1.096 1.054 1.069 1.106 1.059 1.077
8.0 1.077 1.042 1.055 1.087 1.047 1.062 1.096 1.052 1.069

1149Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



where the coefficients b0 and b1 of the QCD b function
are given by Eq. (3.16). Furthermore, the LO and NLO
expansion coefficients for the anomalous dimensions g6

of Q6 in Eq. (5.10) and the coefficients B6 in Eq. (5.8)
are given by

g6
~0 !5612

N71
2N

, (5.11)

g6
~1 !5

N71
2N F2216

57
N

7
19
3
N6

4
3
f22b0k6G , (5.12)

B65
N71
2N

@6111k6# (5.13)

with N being the number of colors. Here we have intro-
duced the parameter k6 , which conveniently distin-
guishes between various renormalization schemes:

k65H 0, NDR,

74, HV.
(5.14)

Thus, using N=3 in the following, J6 in Eq. (5.10) can
also be written as

J65~J6!NDR1
371
6

k65~J6!NDR6
g6

~0 !

12
k6 . (5.15)

Setting g6
(1) , B6 , and b1 to zero, one arrives at the lead-

ing logarithmic approximation (Altarelli and Maiani,
1974; Gaillard and Lee, 1974a).
The NLO calculations in the NDR and HV schemes

have been presented by Buras and Weisz (1990). In writ-
ing Eq. (5.12) we have incorporated the −2g J

(1) correc-
tion in the HV scheme resulting from the nonvanishing
two-loop anomalous dimension of the weak current,

gJ
~1 !5H 0, NDR,

N221
N

2b0 , HV.
(5.16)

The NLO corrections g6
(1) in the dimensional-reduction

scheme (DRED) have been first considered by Altarelli
et al. (1981) and later confirmed by Buras and Weisz
(1990). Here one has k6=76−N . This value for k6 in
DRED also incorporates a finite renormalization of as

in order to work in all schemes with the usual MS cou-
pling.
As already discussed in Sec. III.F.3, the expression

(B62J6) is scheme independent. The scheme depen-
dence of the Wilson coefficients z6(m) then originates

entirely from the scheme dependence of J6 at the lower
end of the evolution, which can be seen explicitly in Eq.
(5.15).
In order to exhibit the m dependence on the same

footing as the scheme dependence, it is useful to rewrite
Eq. (5.9) in the case of B decays as follows,

z6~m!5F11
as~mb!

4p
J̃6~m!GFas~MW!

as~mb! Gd6

3F11
as~MW!

4p
~B62J6!G (5.17)

with

J̃6~m!5~J6!NDR6
g6

~0 !

12
k61

g6
~0 !

2
lnS m2

mb
2 D , (5.18)

summarizing both the renormalization-scheme depen-
dence and the m dependence. Note that in the first pa-
rentheses in Eq. (5.17) we have set as(m)5as(mb),
since the difference in the scales in this correction is still
of higher order. We also note that a change of the renor-
malization scheme can be compensated for by a change
in m. From Eq. (5.18) we find generally

m i
65mNDRexpS 7

k6
~ i !

12 D , (5.19)

where i denotes a given scheme. From Eq. (5.14) we
then have

mHV5mNDRexpS 13 D . (5.20)

Evidently the change in m relating HV and NDR1 is the
same for z+ and z− and consequently for Ci(m).
This discussion shows that a meaningful analysis of

the m dependence of Ci(m) can only be made simulta-
neously with the analysis of the scheme dependence.
The coefficients Ci(m) for B decays can now be calcu-

lated using

C1~m!5
z1~m!2z2~m!

2
, C2~m!5

z1~m!1z2~m!

2
.

(5.21)

1The relation mDRED
6 =mNDRexp[(261)/4] between NDR and

DRED is more involved. In any case mHV and mDRED
6 are

larger than mNDR .

TABLE VI. The coefficient C1(m) for K decays and D decays.

m [GeV]

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

1.00 −0.602 −0.410 −0.491 −0.742 −0.510 −0.631 −0.899 −0.632 −0.825
1.25 −0.529 −0.356 −0.424 −0.636 −0.430 −0.523 −0.747 −0.512 −0.642
1.50 −0.478 −0.319 −0.379 −0.565 −0.378 −0.457 −0.653 −0.439 −0.543
1.75 −0.439 −0.291 −0.346 −0.514 −0.340 −0.410 −0.587 −0.390 −0.478
2.00 −0.409 −0.269 −0.320 −0.475 −0.311 −0.375 −0.537 −0.353 −0.431
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To this end we set f=5 in the formulas above and use the
two-loop as(m) of Eq. (3.19) with L[LMS

(5) . The actual
numerical values used for as(MZ), or equivalently
LMS
(5) , are collected in the Appendix together with other

numerical input parameters.
In the case of D decays and K decays the relevant

scales are m=O(mc) and m=O(1 GeV), respectively. In
order to calculate Ci(m) for these cases one has to
evolve these coefficients first from m=O(mb) down to
m=O(mc) in an effective theory with f=4. Matching
a s
(5)(mb)5a s

(4)(mb), we find, to a very good approxi-
mation, LMS

(4)
5 (3256110) MeV. Unfortunately, the ne-

cessity to evolve Ci(m) from m=MW down to m=mc in
two different effective theories (f=5 and f=4) and even-
tually, in the case of K decays with f=3 for m<mc , makes
the formulas for Ci(m) in D decays and K decays rather
complicated. They can be found in the work of Buras
et al. (1993b). Fortunately all these complications can be
avoided by a simple trick that reproduces these results
to better than 1.5%. In order to find Ci(m) for 1 GeV
<m<2 GeV one can simply use the master formulas
given above with LMS

(5) replaced by LMS
(4) and an ‘‘effec-

tive’’ number of active flavors f=4.15. This can be veri-
fied by comparing the results presented here with those
in Tables X and XII, where no ‘‘tricks’’ have been used.
The nice feature of this method is that the m and
renormalization-scheme dependences of Ci(m) can still
be studied in simple terms.
The numerical coefficients Ci(m) for B decays are

shown in Tables IV and V for different m and LMS
(5) . In

addition to the results for the NDR and HV renormal-
ization schemes we show the LO values.2 The corre-
sponding results for K decays and D decays are given in
Tables VI and VII.

From Tables IV–IX we observe the following.
(i) The scheme dependence of the Wilson coefficients

is sizable. This is in particular the case of C1 which van-
ishes in the absence of QCD corrections.
(ii) The differences between LO and NLO results in

the case of C1 are large, which shows the importance of
next-to-leading-order corrections. In fact, in the NDR
scheme, the corrections may be as large as 70%. This
comparison of LO and NLO coefficients can, however,
be questioned because, for the chosen values of LMS ,
one has as

(LO)(MZ)50.13560.009 as compared to
as(MZ)=0.11760.007 (Bethke, 1994; Webber, 1994).
Consequently, the difference in LO and NLO results for
Ci originates partly in the change in the value of the
QCD coupling.
(iii) In view of the latter fact it is also instructive to

show the LO results in which the next-to-leading-order
expression for as is used. We give some examples in
Tables VIII and IX. Now the differences between LO
and NLO results is considerably smaller, although still as
large as 30–40% in the case of C1 in the NDR scheme.
(iv) In any case the inclusion of NLO corrections in

NDR and HV schemes weakens the impact of QCD on
the Wilson coefficients of current-current operators. It
is, however, important to keep in mind that such a be-
havior is specific to the scheme chosen and will in gen-
eral be different in other schemes, which reflects the un-
physical nature of the Wilson coefficient functions.
Our discussion has not invoked HQET (cf. Sec. XV).

It is sometimes stated in the literature that at m=mb, in
the case of B decays, one must switch to HQET. In this
case for m<mb the anomalous dimensions g6 differ from
those given above. We should, however, stress that
switching to HQET can be done at any m<mb , provided
the logarithms ln(mb/m) in ^Qi& do not become too
large. Similar comments apply to D decays with respect
to m=mc . Of course the coefficients Ci calculated in
HQET for m<mb are different from the coefficients pre-

2The results for the DRED scheme can be found in the work
of Buras, (1995).

TABLE VII. The coefficient C2(m) for K decays and D decays.

m [GeV]

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

1.00 1.323 1.208 1.259 1.422 1.275 1.358 1.539 1.363 1.506
1.25 1.274 1.174 1.216 1.346 1.221 1.282 1.426 1.277 1.367
1.50 1.241 1.152 1.187 1.298 1.188 1.237 1.358 1.228 1.296
1.75 1.216 1.136 1.167 1.264 1.165 1.207 1.313 1.196 1.252
2.00 1.198 1.123 1.152 1.239 1.148 1.185 1.279 1.174 1.221

TABLE VIII. C1
LO and C2

LO for B decays with as in NLO.

m [GeV]

LMS
(5)

5140 MeV LMS
(5)

5225 MeV LMS
(5)

5310 MeV

C1 C2 C1 C2 C1 C2

4.0 −0.244 1.105 −0.274 1.121 −0.301 1.135
5.0 −0.217 1.091 −0.243 1.105 −0.265 1.116
6.0 −0.197 1.082 −0.220 1.093 −0.239 1.102
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sented here. However, the corresponding matrix ele-
ments ^Qi& in HQET are also different so that the physi-
cal amplitudes remain unchanged.

VI. THE EFFECTIVE DF51 HAMILTONIAN:
INCLUSION OF QCD PENGUIN OPERATORS

In Sec. V we have restricted ourselves to current-
current operators when considering QCD corrections to
the effective DF=1 (F5B ,C ,S) Hamiltonian for weak
decays.
As already mentioned in Sec. III.D.3, e.g., for the

DS=1 case, the special flavor structure of
Q25( s̄u)V2A(ūd)V2A allows not only for QCD correc-
tions of the current-current type as in Figs. 3(a)–3(c),
from which the second current-current operator Q1 is
created. For a complete treatment of QCD corrections,
all possible ways of attaching a gluon to the initial weak
DF=1 transition operator Q2 have to be taken into ac-
count. Therefore attaching gluons to Q2 in the form of
Figs. 3(d.1) and 3(d.2) generates a completely new set of
four-quark operators, the so-called QCD penguin opera-
tors, usually denoted as Q3 ,. . . ,Q6 .

3 This procedure is
often referred to as inserting Q2 into type-1 and type-2
penguin diagrams.
The DS=1 effective Hamiltonian for K→pp at scales

m<mc then reads

Heff~DS51 !5
GF

&
Vus* Vud(

i51

6

@zi~m!1t yi~m!#Qi

(6.1)

with

t52
Vts*Vtd

Vus* Vud
. (6.2)

The set of four-quark operators QW (m) and Wilson coef-
ficients zW (m) and yW (m) will be discussed one by one in
the subsections below.

A. Operators

The basis of four-quark operators for the DS=1 effec-
tive Hamiltonian in Eq. (6.1) is given in explicit form by

Q15~ s̄ iuj!V2A~ ū jdi!V2A , (6.3)

Q25~ s̄u !V2A~ ūd !V2A ,

Q35~ s̄d !V2A(
q

~ q̄q !V2A ,

Q45~ s̄ idj!V2A(
q

~ q̄ jqi!V2A ,

Q55~ s̄d !V2A(
q

~ q̄q !V1A ,

Q65~ s̄ idj!V2A(
q

~ q̄ jqi!V1A .

As already mentioned, this basis closes under QCD
renormalization.
For m<mc the sums over active quark flavors in Eq.

(6.3) run over, u , d , and s . However, when mb.m.mc
is considered, q5c also has to be included. Moreover, in
this case two additional current-current operators have
to be taken into account:

Q1
c5~ s̄ ic j!V2A~ c̄ jdi!V2A , Q2

c5~ s̄c !V2A~ c̄d !V2A ,
(6.4)

and the effective Hamiltonian takes the form

Heff~DS51 !5
GF

&
Vus* VudF ~12t!(

i51

2

zi~m!~Qi2Qi
c!

1t(
i51

6

v i~m!QiG . (6.5)

B. Wilson coefficients

For the Wilson coefficients yi(m) and zi(m) in Eq.
(6.1) one has

yi~m!5v i~m!2zi~m!. (6.6)

The coefficients zi and v i are the components of the
six-dimensional column vectors vW (m) and zW (m). Their
RG evolution is given by

vW ~m!5U3~m ,mc!M~mc!U4~mc ,mb!M~mb!

3U5~mb ,MW!CW ~MW!, (6.7)

3Obviously, whether or not it is possible to form a closed
fermion loop as in a type-1 insertion or to connect the two
currents to yield a continuous fermion line as required for a
type-2 insertion depends strongly on the flavor structure of the
operator considered. For example, for Q2 only the type-2 pen-
guin diagram contributes. This feature can be exploited to ob-
tain NLO anomalous-dimension matrices in the NDR scheme
without the necessity of calculating closed fermion loops with
g5 (Buras et al., 1993; Buras et al., 1993a).

TABLE IX. C1
LO and C2

LO for K and D decays with as in NLO.

m [GeV]

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

C1 C2 C1 C2 C1 C2

1.0 −0.524 1.271 −0.664 1.366 −0.851 1.502
1.5 −0.413 1.201 −0.493 1.250 −0.579 1.307
2.0 −0.354 1.165 −0.412 1.200 −0.469 1.235
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zW ~m!5U3~m ,mc!zW ~mc!. (6.8)

Here Uf(m1 ,m2) denotes the full NLO evolution matrix
for f active flavors. M(mi) is the matching matrix at
quark threshold mi given in Eq. (3.104). These two ma-
trices will be discussed in more detail in Secs. VI.C and
VI.D, respectively.
The initial values CW (MW) necessary for the RG evo-

lution of vW (m) in Eq. (6.7) can be found according to the
procedure of matching the effective (Fig. 3) onto the full
theory (Fig. 2) as summarized in Sec. III.F. For the
NDR scheme one obtains (Buras et al., 1992)

C1~MW!5
11
2

as~MW!

4p
, (6.9)

C2~MW!512
11
6

as~MW!

4p
, (6.10)

C3~MW!52
as~MW!

24p
Ẽ0~xt!, (6.11)

C4~MW!5
as~MW!

8p
Ẽ0~xt!, (6.12)

C5~MW!52
as~MW!

24p
Ẽ0~xt!, (6.13)

C6~MW!5
as~MW!

8p
Ẽ0~xt!, (6.14)

where

E0~x !52
2
3
lnx1

x~18211x2x2!

12~12x !3

1
x2~15216x14x2!

6~12x !4
lnx , (6.15)

Ẽ0~xt!5E0~xt!2
2
3
, (6.16)

with

xt5
mt

2

MW
2 . (6.17)

Here E0(x) results from the evaluation of the gluon
penguin diagrams. The initial values CW (MW) in the HV
scheme can be found in the work of Buras et al. (1992).
In order to calculate the initial conditions zW (mc) for

zi(m) in Eq. (6.8), one has to consider the difference
Q 2

u2Q 2
c of Q2-type current-current operators, as can be

seen explicitly in Eq. (6.5). Due to the Glashow-
Iliopoulos-Maiani (GIM) mechanism the coefficients
zi(m) of penguin operators Qi , iÞ1,2 are zero in five-
and four-flavor theories. The evolution for scales m>mc
then involves only the current-current operators
Q i

u2Q i
c, i=1,2, with initial conditions at scale m=MW

z1~MW!5C1~MW!, z2~MW!5C2~MW!. (6.18)

Q 1,2
u [Q1,2 and Q 1,2

c do not mix with each other under
renormalization. We then find

S z1~mc!

z2~mc!
D5U4~mc ,mb!M~mb!U5~mb ,MW!

3S z1~MW!

z2~MW! D , (6.19)

where this time the evolution matrices U4,5 contain only
the 232 anomalous-dimension submatrices describing
the mixing between current-current operators. The
matching matrix M(mb) is then the corresponding 232
submatrix of the full 636 matrix in Eq. (6.27). For the
particular case of Eq. (6.19) it simplifies to a unit matrix.
When the charm quark is integrated out, the operators
Q 1,2

c disappear from the effective Hamiltonian, and the
coefficients zi(m), iÞ1,2, for penguin operators become
nonzero. In order to calculate zi(mc) for penguin opera-
tors, a proper matching between effective four- and
three-quark theories, that is between Eqs. (6.5) and
(6.1), has to be made. For the three-quark theory one
obtains, in the NDR scheme (Buras et al., 1993b),

zW ~mc!5S z1~mc!

z2~mc!

2as /~24p!Fs~mc!

as /~8p!Fs~mc!

2as /~24p!Fs~mc!

as /~8p!Fs~mc!

D , (6.20)

where

Fs~mc!52 2
3 z2~mc!. (6.21)

In the HV scheme z1,2 are modified, and one has
Fs(mc)=0 or zi(mc)=0 for iÞ1,2.

C. Renormalization-group evolution
and anomalous-dimension matrices

The general RG evolution matrix U(m1 ,m2) from
scale m2 down to m1,m2 in pure QCD is

U~m1 ,m2![Tgexp E
g~m2!

g~m1!

dg8
gs
T~g82!

b~g8!
, (6.22)

with gs(g
2) being the full 636 QCD anomalous-

dimension matrix for Q1 ,. . . ,Q6 .
For the case at hand it can be expanded in terms of as

as follows:

gs~g
2!5

as

4p
gs

~0 !1
as
2

~4p!2
gs

~1 !1••• . (6.23)

Explicit expressions for g s
(0) and g s

(1) will be given be-
low.
From Eq. (6.23) the general QCD evolution matrix

U(m1 ,m2) of Eq. (6.22) can be written as in Eq. (3.93)
(Buras et al., 1992),

U~m1 ,m2!5S 11
as~m1!

4p
J DU ~0 !~m1 ,m2!

3S 12
as~m2!

4p
J D , (6.24)
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where U(0)(m1 ,m2) denotes the evolution matrix in the
leading logarithmic approximation and J summarizes
the NLO correction to this evolution. Therefore the full
matrix U(m1 ,m2) sums logarithms (ast)

n and as(ast)
n

with t=ln(m 2
2/m 1

2). Explicit expressions for

U(0)(m1 ,m2) and J are given in Eqs. (3.94)–(3.98).
The LO anomalous-dimension matrix g s

(0) of Eq.
(6.23) has the explicit form (Altarelli and Maiani, 1974;
Gaillard and Lee, 1974a; Vainshtein et al., 1977; Gilman
and Wise, 1979; Guberina and Peccei, 1980)

gs
~0 !51

26
N

6 0 0 0 0

6
26
N

22
3N

2
3

22
3N

2
3

0 0
222
3N

22
3

24
3N

4
3

0 0 62
2 f
3N

26
N

1
2 f
3

22 f
3N

2 f
3

0 0 0 0
6
N

26

0 0
22 f
3N

2 f
3

22 f
3N

26~211N2!

N
1
2 f
3

2 . (6.25)

The NLO anomalous-dimension matrix g s
(1) of Eq. (6.23) in the NDR scheme reads (Buras et al., 1992; Ciuchini,

Franco, Martinelli, and Reina, 1994)

gs ,NDR
~1 ! uN5351

2
21
2

2
2 f
9

7
2

1
2 f
3

79
9

2
7
3

2
65
9

2
7
3

7
2

1
2 f
3

2
21
2

2
2 f
9

2
202
243

1354
81

2
1192
243

904
81

0 0 2
5911
486

1
71f
9

5983
162

1
f

3
2
2384
243

2
71f
9

1808
81

2
f

3

0 0
379
18

1
56f
243

2
91
6

1
808f
81

2
130
9

2
502 f
243

2
14
3

1
646f
81

0 0
261f
9

211f
3

71
3

1
61f
9

2991
11f
3

0 0
2682 f
243

106f
81

2
225
2

1
1676f
243

2
1343
6

1
1348f
81

2 . (6.26)

In Eqs. (6.25) and (6.26) f denotes the number of active
quark flavors at a certain scale m. The corresponding
results for g s

(1) in the HV scheme can either be obtained
by direct calculation or by using Eq. (3.126). They can
be found in Buras et al. (1992), Ciuchini, Franco, Marti-
nelli, and Reina, 1994, where also the N dependence of
g s
(1) is given.

D. Quark-threshold matching matrix

As discussed in Sec. III.F.1, in general a matching ma-
trix M(m) has to be included in the RG evolution at

NLO when going from a f-flavor effective theory to a
(f−1)-flavor effective theory at quark threshold m=m
(Buras et al., 1992, 1993b).
For the DS=1 decay K→pp in pure QCD, one has

(Buras et al., 1992)

M~m !511
as~m !

4p
drs

T . (6.27)

At the quark thresholds m5mb and m5mc , the matrix
drs is

drs
T52 5

9P~0,0,0,1,0,1! (6.28)

1154 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



with

PT5~0,0,2 1
3 ,1,2

1
3 ,1!. (6.29)

E. Numerical results for the K→pp Wilson coefficients
in pure QCD

Tables X–XII give the DS=1 Wilson coefficients for
Q1 ,. . . ,Q6 in pure QCD. We observe a visible scheme
dependence for all NLO Wilson coefficients. Notably we
find uy6u to be smaller in the HV than in the NDR
scheme. In addition, all coefficients, especially z1 and
y3 ,. . . ,y6 , show a strong dependence on LMS .
Next, at NLO the absolute values for z1,2 and yi are

suppressed relative to their LO results, except for y5 in
HV and y4,6 in NDR for m>mc . The latter behavior is
related to the effect of the matching matrix M(mc) ab-
sent for m>mc . For y3 ,. . . ,y5 there is no visible mt de-
pendence in the range mt=(170615) GeV. For uy6u there
is a relative variation of O(61.5%) for in/decreasing mt .
Finally, a comment on the Wilson coefficients in the

HV scheme as presented here is appropriate. As we
have mentioned in Sec. V.B, the two-loop anomalous
dimension of the weak current in the HV scheme does
not vanish. This peculiar feature of the HV scheme is
also felt in g s

(1). The diagonal terms in g s
(1) acquire ad-

ditional universal large O(N2) terms (44/3)N2, which are
absent in the NDR scheme. These artificial terms can be
removed by working with g s

(1)22g J
(1) instead of g s

(1).

This procedure, adopted in this review and by Buras
et al. (1993b), effectively corresponds to a finite renor-
malization of operators that changes the coefficient of
as/4p in C2

HV(MW) from −13/2 to −7/6. The Rome group
(Ciuchini, Franco, Martinelli, and Reina, 1994) has cho-
sen not to make this additional finite renormalization,
and consequently their coefficients in the HV scheme
differ from the HV coefficients presented here by a uni-
versal factor. They can be found by using

CRome
HV ~m!5F12

as~m!

4p
4CFGCHV~m!. (6.30)

Clearly this difference is compensated for by the corre-
sponding difference in the hadronic matrix elements of
the operators Qi .

F. The DB51 effective Hamiltonian in pure QCD

An important application of the formalism developed
in the previous subsections is for the case of B-meson
decays. The LO calculation can be found, e.g., in the
works of Ponce (1981) and Grinstein (1989), where the
importance of NLO calculations has already been
pointed out. This section can be viewed as the generali-
zation of Grinstein’s analysis beyond the LO approxima-
tion. We will focus on the DB=1, DC=0 part of the ef-
fective Hamiltonian, which is of particular interest for
the study of CP violation in decays to CP selfconjugate

TABLE X. DS=1 Wilson coefficients at m=1 GeV for mt=170 GeV, y15y2[0.

Scheme

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

z1 −0.602 −0.407 −0.491 −0.743 −0.506 −0.636 −0.901 −0.622 −0.836
z2 1.323 1.204 1.260 1.423 1.270 1.362 1.541 1.352 1.515
z3 0.003 0.007 0.004 0.004 0.013 0.007 0.006 0.022 0.015
z4 −0.008 −0.022 −0.010 −0.012 −0.034 −0.016 −0.016 −0.058 −0.029
z5 0.003 0.006 0.003 0.004 0.007 0.004 0.005 0.009 0.005
z6 −0.009 −0.021 −0.009 −0.013 −0.034 −0.014 −0.018 −0.058 −0.025
y3 0.029 0.023 0.026 0.036 0.031 0.036 0.045 0.040 0.048
y4 −0.051 −0.046 −0.048 −0.060 −0.056 −0.059 −0.069 −0.066 −0.072
y5 0.012 0.004 0.013 0.013 −0.001 0.016 0.014 −0.013 0.020
y6 −0.084 −0.076 −0.070 −0.111 −0.109 −0.096 −0.145 −0.166 −0.136

TABLE XI. DS=1 Wilson coefficients at m=mc=1.3 GeV for mt=170 GeV and f=3 effective flavors.
uz3u, . . . ,uz6u are numerically irrelevant relative to uz1,2u . y15y2[0.

Scheme

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

z1 −0.518 −0.344 −0.411 −0.621 −0.412 −0.504 −0.727 −0.487 −0.614
z2 1.266 1.166 1.207 1.336 1.208 1.269 1.411 1.258 1.346
y3 0.026 0.021 0.024 0.032 0.027 0.031 0.039 0.035 0.040
y4 −0.050 −0.046 −0.048 −0.059 −0.056 −0.058 −0.068 −0.067 −0.070
y5 0.013 0.007 0.013 0.015 0.005 0.016 0.016 0.001 0.018
y6 −0.075 −0.067 −0.062 −0.095 −0.088 −0.079 −0.118 −0.116 −0.102
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final states. The part of the Hamiltonian inducing DB=1,
DC=61 transitions involves no penguin operators and
has already been discussed in Sec. V.
At tree-level the effective Hamiltonian of interest

here is simply given by

Heff~DB51 !

5
GF

&
(

q5u ,c
(

q85d ,s
Vqb* Vqq8~ b̄q !V2A~ q̄q8!V2A .

(6.31)

The cases q85d and q85s can be treated separately
and have the same Wilson coefficients Ci(m). Therefore
we will restrict the discussion to q85d in the following.
Using unitarity of the CKM matrix, ju1jc1j t=0 with

j i5Vib* Vid , and the fact that Q 1,2
u and Q 1,2

c have the
same initial conditions at m=MW , one obtains for the
effective DB=1 Hamiltonian at scales m=O(mb),

Heff~DB51 !5
GF

&
H jc@C1~m!Q1

c~m!1C2~m!Q2
c~m!#

1ju@C1~m!Q1
u~m!1C2~m!Q2

u~m!#

2j t(
i53

6

Ci~m!Qi~m!J . (6.32)

Here

Q1
q5~ b̄ iqj!V2A~ q̄ jdi!V2A ,

Q2
q5~ b̄q !V2A~ q̄d !V2A ,

Q35~ b̄d !V2A(
q

~ q̄q !V2A ,

Q45~ b̄ idj!V2A(
q

~ q̄ jqi!V2A ,

Q55~ b̄d !V2A(
q

~ q̄q !V1A ,

Q65~ b̄ idj!V2A(
q

~ q̄ jqi!V1A , (6.33)

where the summation runs over q5u ,d ,s ,c ,b .
The corresponding DB=1 Wilson coefficients at scale

m=O(mb) are simply given by a truncated version of Eq.
(6.7),

CW ~mb!5U5~mb ,MW!CW ~MW!. (6.34)

Here U5 is the 636 RG evolution matrix of Eq. (6.24)
for f=5 active flavors. The initial conditions CW (MW) are
identical to those of Eqs. (6.9)–(6.14) for the DS=1 case.

G. Numerical results for the DB51 Wilson coefficients
in pure QCD

Table XIII lists the DB=1 Wilson coefficients for
Q 1

u ,c ,Q 2
u ,c ,Q3 ,. . . ,Q6 in pure QCD. C1 , C4 , and C6

show a O(20%) scheme dependence, while this depen-
dence is much weaker for the rest of the coefficients.
Similar to the DS=1 case, the numerical values for

DB=1 Wilson coefficients are sensitive to the value of
LMS used to determine as for the RG evolution. The
sensitivity is less pronounced than in the DS=1 case due
to the higher value m=m̄b(mb) of the renormalization
scale, and one finds no visible mt dependence in the
range mt=(170615) GeV.

TABLE XII. DS=1 Wilson coefficients at m=2 GeV for mt=170 GeV. For m>mc the GIM mechanism
gives zi[0, i=3, . . . ,6. y15y2[0.

Scheme

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

z1 −0.411 −0.266 −0.318 −0.477 −0.309 −0.374 −0.541 −0.350 −0.430
z2 1.199 1.121 1.151 1.240 1.145 1.185 1.282 1.170 1.220
y3 0.019 0.019 0.018 0.023 0.023 0.022 0.027 0.027 0.026
y4 −0.040 −0.046 −0.039 −0.046 −0.054 −0.045 −0.052 −0.062 −0.052
y5 0.011 0.010 0.011 0.012 0.010 0.013 0.013 0.010 0.015
y6 −0.055 −0.057 −0.047 −0.067 −0.070 −0.056 −0.078 −0.085 −0.067

TABLE XIII. DB=1 Wilson coefficients at m=m̄b(mb)=4.40 GeV for mt=170 GeV.

Scheme

LMS
(5)

5140 MeV LMS
(5)

5225 MeV LMS
(5)

5310 MeV

LO NDR HV LO NDR HV LO NDR HV

C1 −0.272 −0.164 −0.201 −0.307 −0.184 −0.227 −0.337 −0.202 −0.250
C2 1.120 1.068 1.087 1.139 1.078 1.101 1.155 1.087 1.113
C3 0.012 0.012 0.011 0.013 0.013 0.012 0.015 0.015 0.014
C4 −0.026 −0.031 −0.026 −0.030 −0.035 −0.029 −0.032 −0.038 −0.032
C5 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010
C6 −0.033 −0.035 −0.029 −0.038 −0.041 −0.033 −0.042 −0.046 −0.036
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VII. THE EFFECTIVE DF51 HAMILTONIAN: INCLUSION
OF ELECTROWEAK PENGUIN OPERATORS

In a similar fashion to the creation of the penguin
operators Q3 ,. . . ,Q6 through QCD corrections, the in-
clusion of electroweak corrections, shown in Figs. 2(d)
and 2(e), generates a set of new operators, the so-called
electroweak penguin operators. For the DS=1 decay
K→pp they are usually denoted by Q7 ,. . . ,Q10.
This means that, although now we will have to deal

with more technically involved issues like an extended
operator basis or the possibility of mixed QCD–QED
contributions, the underlying principles in performing
the RG evolution will closely resemble those used in
Sec. VI for pure QCD. Obviously, the fundamental step
has already been made when going from current-current
operators in Sec. V to the inclusion of QCD penguins in
Sec. VI. Hence in this section we will, wherever possible,
only point out the differences between the pure 636
QCD and the combined 10310 QCD-QED case.
The full DS=1 effective Hamiltonian for K→pp at

scales m<mc is, including QCD and QED corrections,4

Heff~DS51 !5
GF

&
Vus* Vud(

i51

10

@zi~m!1t yi~m!#Qi~m!,

(7.1)

witht 5 2Vts*Vtd /(Vus* Vud).

A. Operators

The basis of four-quark operators for the DS=1 effec-
tive Hamiltonian in Eq. (7.1) is given by Q1 ,. . . ,Q6 of
Eq. (6.3) and the electroweak penguin operators

Q75
3
2

~ s̄d !V2A(
q
eq~ q̄q !V1A ,

Q85
3
2

~ s̄ idj!V2A(
q
eq~ q̄ jqi!V1A ,

Q95
3
2

~ s̄d !V2A(
q
eq~ q̄q !V2A ,

Q105
3
2

~ s̄ idj!V2A(
q
eq~ q̄ jqi!V2A . (7.2)

Here, eq denotes the quark electric charge, which re-
flects the electroweak origin of Q7 ,. . . ,Q10. The basis
Q1 ,. . . ,Q10 closes under QCD and QED renormaliza-
tion. Finally, for mb.m.mc , the operators Q 1

c and Q 2
c

of Eq. (6.4) have to be included again in a similar way to
the case of pure QCD.

B. Wilson coefficients

As far as formulas for Wilson coefficients are con-
cerned, the generalization of Sec. VI.B to the present
case is to a large extent straightforward.
First, due to the extended operator basis, vW (m) and

zW (m) in Eqs. (6.7) and (6.8) are now ten-dimensional
column vectors. Furthermore, the substitution

Uf~m1 ,m2!→Uf~m1 ,m2 ,a!

has to be made in the RG evolution equations (6.7),
(6.8), and (6.19). Here Uf(m1 ,m2 ,a) denotes the full
10310 QCD–QED RG evolution matrix for f active fla-
vors. Uf(m1 ,m2 ,a) will still be discussed in more detail
in Sec. VII.C.
The extended initial values CW (MW), including O(a)

corrections and additional entries for Q7 ,. . . ,Q10, can be
obtained from the usual matching procedure between
Figs. 2 and 3. They read, in the NDR scheme (Buras
et al., 1993b),

C1~MW!5
11
2

as~MW!

4p
, (7.3)

C2~MW!512
11
6

as~MW!

4p
2
35
18

a

4p
, (7.4)

C3~MW!52
as~MW!

24p
Ẽ0~xt!1

a

6p

1
sin2uW

3@2B0~xt!1C0~xt!# , (7.5)

C4~MW!5
as~MW!

8p
Ẽ0~xt!, (7.6)

C5~MW!52
as~MW!

24p
Ẽ0~xt!, (7.7)

C6~MW!5
as~MW!

8p
Ẽ0~xt!, (7.8)

C7~MW!5
a

6p
@4C0~xt!1D̃0~xt!# , (7.9)

C8~MW!50, (7.10)

C9~MW!5
a

6p F4C0~xt!1D̃0~xt!

1
1

sin2uW
@10B0~xt!24C0~xt!#G , (7.11)

C10~MW!50, (7.12)

where

B0~x !5
1
4 F x

12x
1

x lnx

~x21 !2G , (7.13)

C0~x !5
x

8 Fx26
x21

1
3x12

~x21 !2
lnx G , (7.14)

4In principle, operators Q115(gs/16p2)mss̄smnT
aG a

mn(1
2g5)d and Q125(eed/16p2)mss̄smnF

mn(12g5)d should also
be considered for K→pp. However, as shown by Bertolini
et al. (1995a), their numerical contribution is negligible. There-
fore Q11 and Q12 will not be included here for K→pp.
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D0~x !52
4
9
lnx1

219x3125x2

36~x21 !3

1
x2~5x222x26 !

18~x21 !4
lnx , (7.15)

D̃0~xt!5D0~xt!2
4
9
. (7.16)

Ẽ0(xt) and xt have already been defined in Eqs. (6.16)
and (6.17), respectively. Here B0(x) results from
the evaluation of the box diagrams, C0(x) from the Z0

penguin, D0(x) from the photon penguin, and E0(x)
in Ẽ0(xt) from the gluon penguin diagrams. UW is the
Weinberg angle. The initial values CW (MW) in the HV
scheme are given by Buras et al. (1993b).
Finally, the generalization of Eq. (6.20) to the

Q1 ,. . . ,Q10 basis is (Buras et al., 1993b)

zW ~mc!51
z1~mc!

z2~mc!

2as /~24p!Fs~mc!

as /~8p!Fs~mc!

2as /~24p!Fs~mc!

as /~8p!Fs~mc!

a/~6p!Fe~mc!

0
a/~6p!Fe~mc!

0

2 , (7.17)

with Fs(mc) given by Eq. (6.21) and

Fe~mc!52
4
9

@3z1~mc!1z2~mc!# . (7.18)

In the HV scheme, in addition to z1,2 differing from their
NDR values, one has Fs(mc)5Fe(mc)=0, and, conse-
quently, zi(mc)=0 for iÞ1,2.

C. Renormalization-group evolution
and anomalous-dimension matrices

Besides an extended operator basis the main differ-
ence between the pure QCD case of Sec. VI and the
present case consists of the additional presence of QED
contributions to the RG evolution. This will make the
actual formulas for the RG evolution matrices more in-
volved. However, the underlying concepts developed in
Secs. V and VI remain the same.
Similar to Eq. (6.22) for pure QCD, the general RG

evolution matrix U(m1 ,m2 ,a) from scale m2 down to
m1,m2 can be written formally as

5

U~m1 ,m2 ,a![Tgexp E
g~m2!

g~m1!

dg8
gT~g82,a!

b~g8!
, (7.19)

with g(g2,a) being now the full 10310 anomalous-
dimension matrix including QCD and QED contribu-
tions. b(g) is defined in Eq. (3.6).
For the case at hand g(g2,a) can be expanded in the

following way

g~g2,a!5gs~g
2!1

a

4p
G~g2!1••• , (7.20)

with the pure as expansion of gs(g
2) given in Eq. (6.23).

The term present due to QED corrections has the ex-
pansion

G~g2!5ge
~0 !1

as

4p
gse

~1 !1••• . (7.21)

Using Eqs. (7.20) and (7.21), we may decompose the
general RG evolution matrix U(m1 ,m2 ,a) of Eq. (7.19)
as follows,

U~m1 ,m2 ,a!5U~m1 ,m2!1
a

4p
R~m1 ,m2!. (7.22)

Here U(m1 ,m2) represents the pure QCD evolution al-
ready encountered in Sec. VI but now generalized to an
extended operator basis. R(m1 ,m2) describes the addi-
tional evolution in the presence of the electromagnetic
interaction. U(m1 ,m2) sums the logarithms (ast)

n and
as(ast)

n with t=ln(m 2
2/m 1

2), whereas R(m1 ,m2) sums
the logarithms t(ast)

n and (ast)
n.

The formula for U(m1 ,m2) has already been given in
Eq. (6.24). The leading-order formula for R(m1 ,m2) is
given by Buchalla et al. (1990) except that a different
overall normalization (a relative factor of −4p in R) has
been used there. Here we give the general expression
for R(m1 ,m2) (Buras et al., 1993b),

R~m1 ,m2!5E
g~m2!

g~m1!

dg8
U~m1 ,m8!GT~g8!U~m8,m2!

b~g8!

[2
2p

b0
VSK ~0 !~m1 ,m2!

1
1
4p (

i51

3

Ki
~1 !~m1 ,m2!DV21, (7.23)

with g8[g(m8).
The matrix kernels in Eq. (7.23) are defined by

(K ~0 !~m1 ,m2!)ij5
Mij

~0 !

ai2aj21 F S as~m2!

as~m1!
D aj 1

as~m1!

2S as~m2!

as~m1!
D ai 1

as~m2!
G , (7.24)

(K1
~1 !~m1 ,m2!)ij

5H Mij
~1 !

ai2aj
F S as~m2!

as~m1!
D aj2S as~m2!

as~m1!
D aiG , iÞj

Mii
~1 !S as~m2!

as~m1!
D ai ln as~m1!

as~m2!
, i5j ,

(7.25)

K2
~1 !~m1 ,m2!52as~m2!K

~0 !~m1 ,m2!H , (7.26)
5We neglect the running of the electromagnetic coupling a,
which is a very good approximation (Buchalla et al., 1990).
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K3
~1 !~m1 ,m2!5as~m1!HK ~0 !~m1 ,m2! (7.27)

with

M ~0 !5V21ge
~0 !TV ,

M ~1 !5V21S gse
~1 !T2

b1

b0
ge

~0 !T1@ge
~0 !T , J# DV . (7.28)

The matrix H is defined in Eq. (3.97) and b0 ,b1 are de-
fined in Eq. (3.16).
After this formal description we now give explicit ex-

pressions for the 10310 LO and NLO anomalous-
dimension matrices g s

(0), g e
(0), g s

(1), and g se
(1). The values

quoted for the NLO matrices are in the NDR scheme
(Buras et al., 1993; Buras et al., 1993a; Ciuchini, Franco,
Martinelli, and Reina, 1994). The corresponding results
for g s

(1) and g se
(1) in the HV scheme can either be ob-

tained by direct calculation or by using the QCD/QED
version of Eq. (3.126) given in Buras et al. (1993a). They
can be found in Buras et al. (1993), Buras et al. (1993a),
Ciuchini et al. (1993a), and Ciuchini et al. (1994a).

The 636 submatrices for Q1 ,. . . ,Q6 of the full LO and
NLO 10310 QCD matrices g s

(0) and g s
(1) are identical to

the corresponding 636 matrices already given in Eqs.
(6.25) and (6.26), respectively. Q1 ,. . . ,Q6 do not mix to
Q7 ,. . . ,Q10 under QCD, hence

@gs
~0 !# ij5@gs

~1 !# ij50, i51,.. . ,6, j57,.. . ,10. (7.29)

The remaining entries for rows 7–10 in g s
(0) (Bijnens and

Wise, 1984) and g s
(1) (Buras et al., 1993; Ciuchini,

Franco, Martinelli, and Reina, 1994) are given in Tables
XIV and XV, respectively. There u and d(f5u1d) de-
note the number of active up- and down-type quark fla-
vors.
The full 10310 matrices g e

(0) (Lusignoli, 1989) and
g se
(1) (Buras et al., 1993a; Ciuchini, Franco, Martinelli,

and Reina, 1994) can be found in Tables XVI and XVII,
respectively.

TABLE XIV. Rows 7–10 of the LO anomalous dimension matrix g s
(0).

(i ,j) 1 2 3 4 5 6 7 8 9 10

7 0 0 0 0 0 0 6
N

−6 0 0

8 0 0 22(u2d/2)
3N

2(u2d/2)
3

22(u2d/2)
3N

2(u2d/2)
3

0 26(211N2)
N

0 0

9 0 0 2
3N

2
2
3

2
3N

2
2
3

0 0 26
N

6

10 0 0 22(u2d/2)
3N

2(u2d/2)
3

22(u2d/2)
3N

2(u2d/2)
3

0 0 6 26
N

TABLE XV. Rows 7–10 of the NLO anomalous dimension matrix g s
(1) for N=3 and NDR.

(i ,j) 1 2 3 4 5

7 0 0 261~u2d/2!

9
211~u2d/2!

3
83~u2d/2!

9

8 0 0 2682~u2d/2!

243
106~u2d/2!

81
704~u2d/2!

243

9 0 0 202
243

1
73~u2d/2!

9
2
1354
81

2
~u2d/2!

3
1192
243

2
71~u2d/2!

9

10 0 0 2
79
9

2
106~u2d/2!

243
7
3

1
826~u2d/2!

81
65
9

2
502~u2d/2!

243
(i ,j) 6 7 8 9 10

7 211~u2d/2!

3
71
3

2
22 f
9

2991
22 f
3

0 0

8 736~u2d/2!

81
2
225
2

14f 2
1343
6

1
68f
9

0 0

9 2
904
81

2
~u2d/2!

3
0 0 2

21
2

2
2 f
9

7
2

1
2 f
3

10 7
3

1
646~u2d/2!

81
0 0 7

2
1
2 f
3

2
21
2

2
2 f
9
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D. Quark-threshold matching matrix

Extending the matching matrixM(m) of Eq. (6.27) to
the simultaneous presence of QCD and QED correc-
tions yields

M~m !511
as~m !

4p
drs

T1
a

4p
dre

T . (7.30)

At scale m=mb the matrices drs and dre are

drs
T5

5
18

P~0,0,0,22,0,22,0,1,0,1!, (7.31)

dre
T5

10
81

P̄~0,0,6,2,6,2,23,21,23,21 !, (7.32)

and, at m=mc ,

drs
T52

5
9
P~0,0,0,1,0,1,0,1,0,1!, (7.33)

dre
T52

40
81

P̄~0,0,3,1,3,1,3,1,3,1! (7.34)

with Eq. (6.29) generalized to

PT5~0,0,2 1
3 ,1,2

1
3 ,1,0,0,0,0!, (7.35)

P̄T5~0,0,0,0,0,0,1,0,1,0!. (7.36)

E. Numerical results for the K →pp Wilson coefficients

Tables XVIII–XX give the DS=1 Wilson coefficients
for Q1 ,. . . ,Q10 in the mixed case of QCD and QED. The

coefficients for the current-current and QCD penguin
operators Q1 ,. . . ,Q6 are only very weakly affected by
the extension of the operator basis to the electroweak
penguin operators Q7 ,. . . ,Q10. Therefore the discussion
for Q1 ,. . . ,Q6 given in connection with Tables X–XII for
the case of pure QCD basically still holds and will not be
repeated here. For the remaining coefficients,
Q7 ,. . . ,Q10, one finds a moderate scheme dependence
for y7 , y9 , and y10 , but a O(9%) one for y8 . The notable
feature of uy6u being larger in NDR than in HV still
holds, but it is now confronted with an exactly opposite
dependence for the other important DS=1 Wilson coef-
ficient, y8 , which is enhanced over its LO value. The
particular dependence of y6 and y8 with respect to
scheme, LO/NLO, and mt (see below) should be kept in
mind for the later discussion of «8/« in Sec. XIX.
We also note that, in the range of mt considered here,

y7 is very small, y9 is essentially unaffected by NLO
QCD corrections, and y10 is suppressed for m > mc . It
should also be stressed that uy9u and uy10u are substan-
tially larger than uy8u, although, as we will see in the
analysis of «8/«, the operator Q8 is more important than
Q9 and Q10 for this ratio. One infers from Tables
XVIII–XX that also in the mixed QCD/QED case, the
Wilson coefficients show a strong dependence on LMS .
In contrast to the coefficients y3 ,. . . ,y6 for QCD pen-

guins, y7 ,. . . ,y10 for the electroweak penguins show a siz-
able mt dependence in the range mt=(170615) GeV.
With increasing/decreasing mt there is a relative varia-
tion of O(619%) and O(610%) for the absolute values
of y8 and y9,10, respectively. This is illustrated further in

TABLE XVI. The LO anomalous dimension matrix g e
(0).

(i ,j) 1 2 3 4 5 6 7 8 9 10

1 2
8
3

0 0 0 0 0
16N

27
0

16N

27
0

2 0 2
8
3

0 0 0 0
16

27
0

16

27
0

3 0 0 0 0 0 0 2
16
27

1
16N~u2d/2!

27
0 2

88
27

1
16N~u2d/2!

27
0

4 0 0 0 0 0 0
216N

27
1
16~u2d/2!

27
0

216N

27
1
16~u2d/2!

27
2
8
3

5 0 0 0 0 0 0
8

3
1
16N~u2d/2!

27
0

16N~u2d/2!

27
0

6 0 0 0 0 0 0
16~u2d/2!

27
8
3

16~u2d/2!

27

0

7 0 0 0 0
4
3

0
4

3
1
16N~u1d/4!

27
0

16N~u1d/4!

27
0

8 0 0 0 0 0
4

3
16~u1d/4!

27
4
3

16~u1d/4!

27
0

9 0 0 2
4
3

0 0 0
8

27
1
16N~u1d/4!

27
0 2

28
27

1
16N~u1d/4!

27
0

10 0 0 0 2
4
3

0 0
8N

27
1
16~u1d/4!

27
0

8N

27
1
16~u1d/4!

27
2
4
3
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TABLE XVII. The NLO anomalous dimension matrix gse
(1) for N=3 and NDR.

(i ,j) 1 2 3 4 5

1 194
9

2
2
3

2
88
243

88
81

2
88
243

2 25
3

2
49
9

2
556
729

556
243

2
556
729

3 0 0 1690
729

2
136~u2d/2!

243
2
1690
243

1
136~u2d/2!

81
232
729

2
136~u2d/2!

243

4 0 0 2
641
243

2
388u
729

1
32d
729

2
655
81

1
388u
243

2
32d
243

88
243

2
388u
729

1
32d
729

5 0 0 2136~u2d/2!

243
136~u2d/2!

81
222

136~u2d/2!

243

6 0 0 2748u
729

1
212d
729

748u
243

2
212d
243

32
748u
729

1
212d
729

7 0 0 2136~u1d/4!

243
136~u1d/4!

81
2
116
9

2
136~u1d/4!

243

8 0 0 2748u
729

2
106d
729

748u
243

1
106d
243

212
748u
729

2
106d
729

9 0 0 7012
729

2
136~u1d/4!

243
764
243

1
136~u1d/4!

81
2
116
729

2
136~u1d/4!

243

10 0 0 1333
243

2
388u
729

2
16d
729

107
81

1
388u
243

1
16d
243

2
44
243

2
388u
729

2
16d
729

(i ,j) 6 7 8 9 10

1 88
81

152
27

40
9

136
27

56
9

2 556
243

2
484
729

2
124
27

2
3148
729

172
27

3 2
232
243

1
136~u2d/2!

81
3136
729

1
104~u2d/2!

27
64
27

1
88~u2d/2!

9
20272
729

1
184~u2d/2!

27
2
112
27

1
8~u2d/2!

9

4 2
88
81

1
388u
243

2
32d
243

2
152
27

1
3140u
729

1
656d
729

2
40
9

2
100u
27

2
16d
27

170
27

1
908u
729

1
1232d
729

2
14
3

1
148u
27

2
80d
27

5 61
136~u2d/2!

81
2
232
9

1
104~u2d/2!

27
40
3

1
88~u2d/2!

9
184~u2d/2!

27
8~u2d/2!

9

6 71
748u
243

2
212d
243

222
5212u
729

1
4832d
729

182
9

1
188u
27

2
160d
27

22260u
729

1
2816d
729

2140u
27

1
64d
27

7 20
3

1
136~u1d/4!

81
2
134
9

1
104~u1d/4!

27
38
3

1
88~u1d/4!

9
184~u1d/4!

27
8~u1d/4!

9

8 91
9

1
748u
243

1
106d
243

22
5212u
729

2
2416d
729

154
9

1
188u
27

1
80d
27

22260u
729

2
1408d
729

2140u
27

2
32d
27

9 116
243

1
136~u1d/4!

81
2
1568
729

1
104~u1d/4!

27
2
32
27

1
88~u1d/4!

9
5578
729

1
184~u1d/4!

27
38
27

1
8~u1d/4!

9

10 44
81

1
388u
243

1
16d
243

76
27

1
3140u
729

2
328d
729

20
9

2
100u
27

1
8d
27

140
27

1
908u
729

2
616d
729

2
28
9

1
148u
27

1
40d
27
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TABLE XVIII. DS=1 Wilson coefficients at m=1 GeV for mt=170 GeV. y15y2[0.

Scheme

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

z1 −0.607 −0.409 −0.494 −0.748 −0.509 −0.640 −0.907 −0.625 −0.841
z2 1.333 1.212 1.267 1.433 1.278 1.371 1.552 1.361 1.525
z3 0.003 0.008 0.004 0.004 0.013 0.007 0.006 0.023 0.015
z4 −0.008 −0.022 −0.010 −0.012 −0.035 −0.017 −0.017 −0.058 −0.029
z5 0.003 0.006 0.003 0.004 0.008 0.004 0.005 0.009 0.005
z6 −0.009 −0.022 −0.009 −0.013 −0.035 −0.014 −0.018 −0.059 −0.025
z7/a 0.004 0.003 −0.003 0.008 0.011 −0.002 0.011 0.021 −0.001
z8/a 0 0.008 0.006 0.001 0.014 0.010 0.001 0.027 0.017
z9/a 0.005 0.007 0 0.008 0.018 0.005 0.012 0.034 0.011
z10/a 0 −0.005 −0.006 −0.001 −0.008 −0.010 −0.001 −0.014 −0.017
y3 0.030 0.025 0.028 0.038 0.032 0.037 0.047 0.042 0.050
y4 −0.052 −0.048 −0.050 −0.061 −0.058 −0.061 −0.071 −0.068 −0.074
y5 0.012 0.005 0.013 0.013 −0.001 0.016 0.014 −0.013 0.021
y6 −0.085 −0.078 −0.071 −0.113 −0.111 −0.097 −0.148 −0.169 −0.139
y7/a 0.027 −0.033 −0.032 0.036 −0.032 −0.030 0.043 −0.031 −0.027
y8/a 0.114 0.121 0.133 0.158 0.173 0.188 0.216 0.254 0.275
y9/a −1.491 −1.479 −1.480 −1.585 −1.576 −1.577 −1.700 −1.718 −1.722
y10/a 0.650 0.540 0.547 0.800 0.690 0.699 0.968 0.892 0.906

TABLE XIX. DS=1 Wilson coefficients at m=mc=1.3 GeV for mt=170 GeV and f=3 effective flavors.
uz3u, . . . ,uz10u are numerically irrelevant relative to uz1,2u. y15y2[0.

Scheme

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

z1 −0.521 −0.346 −0.413 −0.625 −0.415 −0.507 −0.732 −0.490 −0.617
z2 1.275 1.172 1.214 1.345 1.216 1.276 1.420 1.265 1.354
y3 0.027 0.023 0.025 0.034 0.029 0.033 0.041 0.036 0.042
y4 −0.051 −0.048 −0.049 −0.061 −0.057 −0.060 −0.070 −0.068 −0.072
y5 0.013 0.007 0.014 0.015 0.005 0.016 0.017 0.001 0.018
y6 −0.076 −0.068 −0.063 −0.096 −0.089 −0.081 −0.120 −0.118 −0.103
y7/a 0.030 −0.031 −0.031 0.039 −0.030 −0.028 0.048 −0.029 −0.026
y8/a 0.092 0.103 0.112 0.121 0.136 0.145 0.155 0.179 0.189
y9/a −1.428 −1.423 −1.423 −1.490 −1.479 −1.479 −1.559 −1.548 −1.549
y10/a 0.558 0.451 0.457 0.668 0.547 0.553 0.781 0.656 0.664

TABLE XX. DS=1 Wilson coefficients at m=2 GeV for mt=170 GeV. For m>mc the GIM mechanism
gives zi[0, i=3, . . . ,10. y15y2[0.

Scheme

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

z1 −0.413 −0.268 −0.320 −0.480 −0.310 −0.376 −0.544 −0.352 −0.432
z2 1.206 1.127 1.157 1.248 1.151 1.191 1.290 1.176 1.227
y3 0.021 0.020 0.019 0.025 0.024 0.023 0.028 0.028 0.027
y4 −0.041 −0.046 −0.040 −0.047 −0.055 −0.046 −0.053 −0.063 −0.053
y5 0.011 0.010 0.012 0.012 0.011 0.013 0.014 0.011 0.015
y6 −0.056 −0.058 −0.047 −0.068 −0.071 −0.057 −0.079 −0.086 −0.068
y7/a 0.031 −0.023 −0.020 0.037 −0.019 −0.020 0.042 −0.016 −0.019
y8/a 0.068 0.076 0.084 0.084 0.094 0.102 0.101 0.113 0.121
y9/a −1.357 −1.361 −1.357 −1.393 −1.389 −1.389 −1.430 −1.419 −1.423
y10/a 0.442 0.356 0.360 0.513 0.414 0.419 0.581 0.472 0.477
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Figs. 5 and 6, where the mt dependence of these coeffi-
cients is shown explicitly. This strong mt dependence
originates in the Z0 penguin diagrams. The mt depen-
dence of y9 and y10 can be conveniently parametrized by
a linear function to an accuracy better than 0.5%. De-
tails of this mt parametrization can be found in Table
XXI. Strictly speaking the mt dependence is a NLO ef-
fect and could in principle be neglected when working at
leading order. Here we have, however, chosen to keep
this nontrivial mt dependence in the Wilson-coefficient
functions also at LO for the sake of comparison with the
NLO results.
Finally, in Tables XVIII–XX one observes again the

usual feature of decreasing Wilson coefficients with in-
creasing scale m.

F. The DB51 effective Hamiltonian
including electroweak penguins

Finally we present the Wilson coefficient functions of
the DB=1, DC=0 Hamiltonian, including the effects of
electroweak penguin contributions (Buras et al., 1993b).

These effects play a role in certain penguin-induced
B-meson decays as discussed by Fleischer (1994a,b),
Deshpande et al. (1995), and Deshpande and He (1995).
The generalization of the DB=1, DC=0 Hamiltonian

in pure QCD (Eq. 6.32) to incorporate electroweak pen-
guin operators is straightforward. One obtains

Heff~DB51 !5
GF

&
H jc@C1~m!Q1

c~m!1C2~m!Q2
c~m!#

1ju@C1~m!Q1
u~m!1C2~m!Q2

u~m!#

2j t(
i53

10

Ci~m!Qi~m!J , (7.37)

where the operator basis now includes the electroweak
penguin operators

Q75
3
2

~ b̄d !V2A(
q
eq~ q̄q !V1A , (7.38)

Q85
3
2

~ b̄ idj!V2A(
q
eq~ q̄ jqi!V1A ,

FIG. 5. Wilson coefficients y7(mc)/a and y8(mc)/a as functions of mt for LMS
(4)

5325 MeV.

FIG. 6. Wilson coefficients y9(mc)/a and y10(mc)/a as a function of mt for LMS
(4)

5325 MeV.
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Q95
3
2

~ b̄d !V2A(
q
eq~ q̄q !V2A ,

Q105
3
2

~ b̄ idj!V2A(
q
eq~ q̄ jqi!V2A

in addition to Eq. (6.33). The Wilson coefficients at
m=mb read

CW ~mb!5U5~mb ,MW ,a!CW ~MW!, (7.39)

where U5 is the 10 310 evolution matrix of Eq. (7.22)
for f=5 flavors. The CW (MW) are given in Eqs. (7.3)–
(7.12) in the NDR scheme.

G. Numerical results for the DB51 Wilson coefficients

Table XXII lists the DB=1 Wilson coefficients for
Q 1

u ,c ,Q 2
u ,c ,Q3 ,. . . ,Q10 in the mixed case of QCD and

QED. Similar to the DS=1 case, the coefficients for the
current-current and QCD penguin operators Q1 ,. . . ,Q6
are only very weakly affected by the extension of the
operator basis to the electroweak penguin operators
Q7 ,. . . ,Q10. Therefore the discussion of C1 ,. . . ,C6 in
connection with Table XIII is also valid for the present
case. Here we therefore we restrict the discussion to the
coefficients C7 ,. . . ,C10 of the operators Q7 ,. . . ,Q10 in the
extended basis.
The coefficients C7 ,. . . ,C10 show a visible dependence

on the scheme, LMS , and LO/NLO. However, this de-
pendence is less pronounced for the coefficient C9 than
it is for C7,8,10. This is noteworthy since in B-meson de-

cays C9 usually resides in the dominant electroweak-
penguin contribution (Fleischer, 1994a,b; Deshpande
et al., 1995; Deshpande and He, 1995). In contrast to
C1 ,. . . ,C6 , the additional coefficients C7 ,. . . ,C10 show a
nonnegligible mt dependence in the range mt=(170615)
GeV. With increasing/decreasing mt there is, similar to
the DS=1 case, a relative variation of O(619%) and
O(610%) for the absolute values of C8 and C9,10, re-
spectively.
Since the coefficients C9 and C10 play an important

role in B decays, in Fig. 7 we show their mt dependence
explicitly. Again the mt dependence can be param-
etrized by a linear function to an accuracy better than
0.5%. Details of the mt parametrization are given in
Table XXIII.

VIII. THE EFFECTIVE HAMILTONIAN FOR KL→p0e1e2

The DS=1 effective Hamiltonian for KL→p0e1e2 at
scales m<mc is given by

Heff~DS51 !5
GF

&
Vus* VudF (

i51

6,7V

~zi~m!1t yi~m!!Qi~m!

1t y7A~MW!Q7A~MW!G (8.1)

with

t52
Vts*Vtd

Vus* Vud
. (8.2)

A. Operators

In Eq. (8.1) Q1,2 denote the DS=1 current-current and
Q3 ,. . . ,Q6 the QCD penguin operators of Eq. (6.3). For
scales m>mc , again, the current-current operators Q 1,2

c

of Eq. (6.4) have to be taken into account.
The new operators specific to the decay KL→p0e1e2

are

Q7V5~ s̄d !V2A~ ēe !V , (8.3)

Q7A5~ s̄d !V2A~ ēe !A . (8.4)

TABLE XXI. Coefficients in linear mt parametrization
yi/a5a1b ·(mt/170 GeV) of Wilson coefficients y9/a and y10/a
at scale m=mc for LMS

(4)
5 325 MeV.

y9/a y10/a

a b a b

LO 0.189 −1.682 −0.111 0.780
NDR 0.129 −1.611 −0.128 0.676
HV 0.129 −1.611 −0.121 0.676

TABLE XXII. DB=1 Wilson coefficients at m=m̄b(mb)=4.40 GeV for mt=170 GeV.

Scheme

LMS
(5)

5140 MeV LMS
(5)

5225 MeV LMS
(5)

5310 MeV

LO NDR HV LO NDR HV LO NDR HV

C1 −0.273 −0.165 −0.202 −0.308 −0.185 −0.228 −0.339 −0.203 −0.251
C2 1.125 1.072 1.091 1.144 1.082 1.105 1.161 1.092 1.117
C3 0.013 0.013 0.012 0.014 0.014 0.013 0.016 0.016 0.015
C4 −0.027 −0.031 −0.026 −0.030 −0.035 −0.029 −0.033 −0.039 −0.033
C5 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010
C6 −0.033 −0.036 −0.029 −0.038 −0.041 −0.033 −0.043 −0.046 −0.037
C7/a 0.042 −0.003 0.006 0.045 −0.002 0.005 0.047 −0.001 0.005
C8/a 0.041 0.047 0.052 0.048 0.054 0.060 0.054 0.061 0.067
C9/a −1.264 −1.279 −1.269 −1.280 −1.292 −1.283 −1.294 −1.303 −1.296
C10/a 0.291 0.234 0.237 0.328 0.263 0.266 0.360 0.288 0.291

1164 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



They originate through the g and Z0 penguin and box
diagrams of Fig. 2.
It is convenient to introduce the auxiliary operator

Q7V8 5~a/as!~ s̄d !V2A~ ēe !V (8.5)

and to work in the basis Q1 ,. . . ,Q6 , Q7V8 for the
renormalization-group analysis. The factor a/as in the
definition of Q7V8 implies that, in this new basis, the
anomalous-dimension matrix g will be a function of as
alone. At the end of the renormalization-group analysis,
this factor will be put back into the Wilson coefficient
C7V(m) of the operator Q7V in Eq. (8.3). There is no
need to include a similar factor in Q7A, as this operator
does not mix under renormalization with the remaining
operators. Since Q7A has no anomalous dimension its
Wilson coefficient is m independent.
In principle one can think of including the elec-

troweak four-quark penguin operators Q7 ,. . . ,Q10 of Eq.
(7.2) in Heff of Eq. (8.1). However, their Wilson coeffi-
cients and matrix elements for the decay KL→p0e1e2

are both of order O(a), which implies that these opera-
tors eventually would enter the amplitude
A(KL→p0e1e2) at O(a2). To the order considered
here this contribution is thus negligible. This should be
distinguished from the case of K→pp discussed in Sec.
VII. There, in spite of being suppressed by a/as relative
to QCD penguin operators, the electroweak penguin op-
erators have to be included in the analysis because of

the additional enhancement factor, ReA0/ReA2.22,
present in the formula for «8/« (see Sec. XIX). Such an
enhancement factor is not present in the KL→p0e1e2

case, and the electroweak penguin operators can be
safely neglected.
Through mixing under renormalization, the coeffi-

cients C3 ,. . . ,C6 at O(a) and C7V at O(a2) are affected
by the electroweak four-quark penguin operators. Since
the corresponding matrix elements are O(a) and O(1),
respectively, we again obtain a negligible O(a2) effect in
A(KL→p0e1e2). In summary, the electroweak four-
quark penguin operators Q7 ,. . . ,Q10 can safely be ne-
glected in the following discussion of Heff(DS=1) for
KL→p0e1e2.
We also neglect the ‘‘magnetic moment’’ operators.

These operators, being of dimension five, do not influ-
ence the Wilson coefficients of the operators Q1 ,. . . ,Q6 ,
Q7V, Q7A. Since their contributions to KL→p0e1e2 are
suppressed by an additional factor ms , strictly speaking
they appear at higher order in chiral perturbation
theory. On the other hand, the magnetic-moment-type
operators play a crucial role in b→sg and b→dg tran-
sitions, as discussed in Secs. IX and XXII. They also
have to be kept in the decay B→Xse

1e2.

B. Wilson coefficients

Equations (6.6)–(6.8) remain valid in the case of
KL→p0e1e2 with Uf(m1 ,m2) and M(mi) now denot-
ing 737 matrices in the Q1 ,. . . ,Q6 ,Q7V8 basis. The Wil-
son coefficients are given by seven-dimensional column
vectors zW (m) and vW (m) having components
(z1 ,. . . ,z6 ,z7V8 ) and (v1 ,. . . ,v6 ,v7V8 ), respectively. Here

v7V8 ~m!5
as~m!

a
v7V~m!, z7V8 ~m!5

as~m!

a
z7V~m!

(8.6)

are the rescaled Wilson coefficients of the auxiliary op-
erator Q7V8 used in the renormalization-group evolution.

TABLE XXIII. Coefficients in linear mt parametrization
Ci/a5a1b (mt/170 GeV) of Wilson coefficients C9/a and
C10/a at scale m=mb=4.4 GeV for LMS

(5)
5 225 MeV.

C9/a C10/a

a b a b

LO 0.152 −1.434 −0.056 0.385
NDR 0.109 −1.403 −0.065 0.328
HV 0.117 −1.403 −0.062 0.328

FIG. 7. Wilson coefficients C9/a and C10/a at m=m̄b(mb)=4.40 GeV as a function of mt for LMS
(5)

5225 MeV.
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The initial conditions C1(MW),.. . ,C6(MW), z1(MW),
z2(MW) and z1(mc),.. . ,z6(mc) for the four-quark op-
erators Q1 ,. . . ,Q6 are readily obtained from Eqs. (6.9)–
(6.14), (6.18), and (6.20).
The corresponding initial conditions for the remaining

operators Q7V8 and Q7A specific to KL→p0e1e2 are
then given in the NDR scheme by

C7V8 ~MW!5
as~MW!

2p FC0~xt!2B0~xt!

sin2uW

2D̃0~xt!24C0~xt!G (8.7)

and

C7A~MW!5y7A~MW!5
a

2p

B0~xt!2C0~xt!

sin2uW
. (8.8)

In order to find z7V8 (mc), which results from the dia-
grams of Fig. 3, we simply have to rescale the NDR
result for z7(mc) in Eq. (7.17) by a factor of −3as/a.
This yields

z7V8 ~mc!52
as~mc!

2p
Fe~mc!. (8.9)

C. Renormalization-group evolution
and anomalous-dimension matrices

In the rescaled basis Q1 ,. . . ,Q6 ,Q7V8 , the anomalous-
dimension matrix g has, per construction, a pure O(as)
expansion

g5
as

4p
g~0 !1

as
2

~4p!2
g~1 !1••• , (8.10)

where g(0) and g(1) are 737 matrices. The evolution ma-
trices Uf(m1 ,m2) in Eqs. (6.7) and (6.8) are, for the
present case, simply given by Eqs. (6.24) and (3.94)–
(3.98).
The 636 submatrix of g(0) involving the operators

Q1 ,. . . ,Q6 has already been given in Eq. (6.25). Here we
only give the remaining entries of g(0) related to the ad-
ditional presence of the operator Q7V8

g17
~0 !52

16
9
N , g27

~0 !52
16
9
,

g37
~0 !52

16
9
NS u2

d

2
2

1
N D , g47

~0 !52
16
9 S u2

d

2
2N D ,

g57
~0 !52

16
9
NS u2

d

2 D , g67
~0 !52

16
9 S u2

d

2 D ,
g77

~0 !522b052
22
3
N1

4
3
f , g7i

~0 !50 i51,.. . ,6, (8.11)

where N denotes the number of colors. These elements
have been first calculated by Gilman and Wise (1980),
except that g37

(0) and g47
(0) have been corrected by Eeg and

Picek (1988) and Flynn and Randall (1989a).
The 636 submatrix of g(1) involving the operators

Q1 ,. . . ,Q6 has already been presented as g s
(1) in Eq.

(6.26), and the seventh column of g(1) is given as follows
in the NDR scheme (Buras et al., 1994a),

g17
~1 !5

8
3

~12N2!, (8.12)

g27
~1 !5

200
81 SN2

1
N D ,

g37
~1 !5

8
3 S u2

d

2 D ~12N2!1
464
81 S 1N2N D ,

g47
~1 !5S u 280

81
1d

64
81D S 1N2N D1

8
3

~N221 !,

g57
~1 !5

8
3 S u2

d

2 D ~12N2!,

g67
~1 !5S u 440

81
2d

424
81 D SN2

1
N D ,

g77
~1 !522b152

68
3
N21

20
3
Nf14CFf ,

g7i
~1 !50, i51,.. . ,6,

where CF5(N221)/(2N). The corresponding results in
the HV scheme are given by Buras et al. (1994a).

D. Quark-threshold matching matrix

For the case of KL→p0e1e2 the matching matrix
M(m) in the basis Q1 ,. . . ,Q6 ,Q7V8 has the form

M~m !511
as~m !

4p
drs

T , (8.13)

where 1 and dr s
T are 737 matrices and m is the scale of

the quark threshold.
The 636 submatrix of M(m) involving Q1 ,. . . ,Q6 has

been given in Eq. (6.28). The remaining entries of drs
can be found from the matrix dre given in Eqs. (7.32)
and (7.34) by making a simple rescaling by −3as/a, as in
the case of z7(mc).
In summary, for the quark threshold m5mb , the ma-

trix drs is

drs51
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 2
20
9

0 0
5
27

2
5
9

5
27

2
5
9

2
20
27

0 0 0 0 0 0 2
20
9

0 0
5
27

2
5
9

5
27

2
5
9

2
20
27

0 0 0 0 0 0 0

2 . (8.14)
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For m5mc the seventh column of drs in Eq. (8.14) has
to be multiplied by −2.

E. Numerical results for the KL→p0e1e2

Wilson coefficients

In the case of KL→p0e1e2, for which g 7i
(0)5g 7i

(1)=0,
i=1, . . . ,6, in Eqs. (8.11) and (8.12), respectively, the RG
evolution of Q1 ,. . . ,Q6 is completely unaffected by the
additional presence of the operator Q7V. The
KL→p0e1e2 Wilson coefficients zi and yi , i=1, . . . ,6,
with m=1 GeV can therefore be found in Table X of Sec.
VI.
The KL→p0e1e2 Wilson coefficients for the remain-

ing operators Q7V and Q7A are given in Table XXIV.
Some insight into the analytic structure of y7V will be
gained by studying the analogous decay B→Xse

1e2 in
Sec. X and also in Sec. XXI, where the phenomenology
of KL→p0e1e2 will be presented.
In Table XXV we show the m dependence of z7V/a

and y7V/a. We find a pronounced scheme dependence
and m dependence for z7V. This signals that these depen-
dences have to be carefully addressed in the calculation
of the CP-conserving part in the KL→p0e1e2 ampli-
tude. On the other hand, the scheme and m dependences
for y7V are below O(1.5%). Similarly, z7V shows a
strong dependence on the choice of the QCD scale
LMS , while this dependence is small or absent for y7V
and y7A, respectively.
Finally, as seen from Eq. (8.9), z7V is independent of

mt . However, with increasing/decreasing mt in the range
mt=(170615) GeV, there is a relative variation of

O(63%) and O(614%) for the absolute values of y7V
and y7A, respectively. This is illustrated further in Fig. 8
and Table XXVI, where the mt dependence of these
coefficients is shown explicitly. Accidentally, for mt'175
GeV one finds uy7Vu'uy7Au. Most importantly, the im-
pact of NLO corrections is to enhance the Wilson coef-
ficient y7V by roughly 25%. As we will see in Sec. XXI,
this implies an enhancement of the direct CP violation
in KL→p0e1e2.

IX. THE EFFECTIVE HAMILTONIAN FOR B→Xsg

The effective Hamiltonian for B→Xsg at scales
m=O(mb) is given by

Heff~b→sg!

52
GF

&
Vts*VtbF(

i51

6

Ci~m!Qi~m!1C7g~m!Q7g~m!

1C8G~m!Q8G~m!G , (9.1)

where, in view of uVus* Vub /Vts*Vtbu,0.02, we have ne-
glected the term proportional to Vus* Vub .

A. Operators

The complete list of operators is given as follows

Q15~ s̄ ic j!V2A~ c̄ jbi!V2A , (9.2)

Q25~ s̄c !V2A~ c̄b !V2A ,

TABLE XXIV. KL→p0e1e2 Wilson coefficients for Q7V ,A at m=1 GeV for mt=170 GeV. The
corresponding coefficients for Q1 ,. . . ,Q6 can be found in Table X.

Scheme

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

z7V/a −0.014 −0.015 0.005 −0.024 −0.046 −0.003 −0.035 −0.084 −0.011
y7V/a 0.575 0.747 0.740 0.540 0.735 0.725 0.509 0.720 0.710
y7A/a −0.700 −0.700 −0.700 −0.700 −0.700 −0.700 −0.700 −0.700 −0.700

TABLE XXV. KL→p0e1e2 Wilson coefficients z7V/a and y7V/a for mt=170 GeV and various
values of m.

Scheme

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

m [GeV] z7V/a

0.8 −0.031 −0.029 0.004 −0.053 −0.081 −0.012 −0.077 −0.149 −0.023
1.0 −0.014 −0.015 0.005 −0.024 −0.046 −0.003 −0.035 −0.084 −0.011
1.2 −0.004 −0.009 0.002 −0.006 −0.029 0 −0.009 −0.051 −0.002
m [GeV] y7V/a

0.8 0.578 0.751 0.744 0.545 0.739 0.730 0.514 0.722 0.712
1.0 0.575 0.747 0.740 0.540 0.735 0.725 0.509 0.720 0.710
1.2 0.571 0.744 0.736 0.537 0.731 0.721 0.505 0.716 0.706
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Q35~ s̄b !V2A(
q

~ q̄q !V2A ,

Q45~ s̄ ibj!V2A(
q

~ q̄ jqi!V2A ,

Q55~ s̄b !V2A(
q

~ q̄q !V1A ,

Q65~ s̄ ibj!V2A(
q

~ q̄ jqi!V1A ,

Q7g5
e

8p2 mbs̄is
mn~11g5!biFmn ,

Q8G5
g

8p2 mbs̄is
mn~11g5!Tij

a bjGmn
a .

The current-current operators Q1,2 and the QCD pen-
guin operators Q3 ,. . . ,Q6 are already contained in the
DB=1 Hamiltonian presented in Sec. VI.F. The new op-
erators Q7g and Q8G, specific for b→sg and b→sg tran-
sitions, carry the name of magnetic penguin operators.
They originate from the mass insertion on the external
b-quark line in the QED and QCD penguin diagrams of
Fig. 4(d), respectively. In view of ms!mb we do not
include the corresponding contributions from mass in-
sertions on the external s-quark line.

B. Wilson coefficients

A very peculiar feature of the renormalization-group
analysis of the set of operators in Eq. (9.2) is that the
mixing under (infinite) renormalization between the set

FIG. 8. Wilson coefficients
uy7V/au2 and uy7A/au2 as a func-
tion of mt for LMS

(4)
5325 MeV at

scale m=1.0 GeV.

TABLE XXVI. KL→p0e1e2 Wilson coefficients y7V/a and y7A/a for m=1.0 GeV and various values
of mt .

mt [GeV]

y7V/a

y7A/a
LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV
LO NDR HV LO NDR HV LO NDR HV

150 0.546 0.719 0.711 0.512 0.706 0.697 0.481 0.692 0.681 −0.576
160 0.560 0.733 0.726 0.526 0.721 0.711 0.495 0.706 0.696 −0.637
170 0.575 0.747 0.740 0.540 0.735 0.725 0.509 0.720 0.710 −0.700
180 0.588 0.761 0.753 0.554 0.748 0.739 0.523 0.734 0.723 −0.765
190 0.601 0.774 0.766 0.567 0.761 0.752 0.536 0.747 0.736 −0.833
200 0.614 0.786 0.779 0.580 0.774 0.764 0.549 0.760 0.749 −0.902
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Q1 ,. . . ,Q6 and the operators Q7g,Q8G vanishes at the
one-loop level. Consequently, in order to calculate the
coefficients C7g(m) and C8G(m) in the leading logarith-
mic approximation, two-loop calculations of O(eg s

2) and
O(g s

3) are necessary. The corresponding NLO analysis
requires the evaluation of the mixing in question at the
three-loop level. In view of this new feature it is useful
to include additional couplings in the definition of Q7g
and Q8G as done in Eq. (9.2). In this manner the entries
in the anomalous-dimension matrix representing the
mixing between Q1 ,. . . ,Q6 and Q7g,Q8G at the two-loop
level are O(g s

2) and enter the anomalous-dimension ma-
trix g s

(0). Correspondingly, the three-loop mixing be-
tween these two sets of operators enters the matrix g s

(1).
The mixing under renormalization in the sector
Q7g,Q8G proceeds in the usual manner, and the corre-
sponding entries in g s

(0) and g s
(1) result from one-loop

and two-loop calculations, respectively.
At present, the coefficients C7g and C8G are only

known in the leading logarithmic approximation. Conse-
quently, we are in the position to give here only their
values in this approximation. The work on NLO correc-
tions to C7g and C8G is in progress, and we will summa-
rize below what is already known about these correc-
tions.
Due to the peculiar features of this decay mentioned

above, the first fully correct calculation of the leading
anomalous-dimension matrix has been obtained only in
1993 (Ciuchini, Franco, Martinelli, Reina, and Silves-
trini, 1993; Ciuchini, Franco, Reina, and Silvestrini
1994). It is instructive to clarify this right at the begin-
ning. We follow here Buras, Misiak, Münz, and Pokorski
(1994).
The point is that the mixing between the sets

Q1 ,. . . ,Q6 and Q7g, Q8G in g s
(0) resulting from two-loop

diagrams is generally regularization-scheme dependent.
This is certainly disturbing because the matrix g s

(0), be-
ing the first term in the expansion for gs , is usually
scheme independent. There is a simple way to circum-
vent this difficulty (Buras, Misiak, Münz, and Pokorski,
1994).
As noticed by Ciuchini, Franco, Martinelli, Reina, and

Silvestrini (1993) and Ciuchini, Franco, Reina, and Sil-
vestrini (1994), the regularization-scheme dependence
of g s

(0) in the case of b→sg and b→sg is signaled in the
one-loop matrix elements of Q1 ,. . . ,Q6 for on-shell pho-
tons or gluons. They vanish in any four-dimensional
regularization scheme and in the HV scheme, but some
of them are nonzero in the NDR scheme. One has

^Qi&one loop
g 5yi^Q7g& tree , i51,.. . ,6, (9.3)

and

^Qi&one loop
G 5zi^Q8G& tree , i51,.. . ,6. (9.4)

In the HV scheme all the yi’s and zi’s vanish, while in
the NDR scheme yW=(0,0,0,0,−1

3,−1) and zW=(0,0,0,0,1,0).
This regularization-scheme dependence is canceled by a
corresponding regularization-scheme dependence in
g s
(0), as first demonstrated by Ciuchini, Franco, Marti-

nelli, Reina, and Silvestrini (1993) and Ciuchini, Franco,
Reina, and Silvestrini (1994). It should be stressed that
the numbers yi and zi come from divergent, i.e., purely
short-distance, parts of the one-loop integrals. So no ref-
erence to the spectator model or to any other model for
the matrix elements is necessary here.
In view of all this it is convenient in the leading order

to introduce the so-called ‘‘effective coefficients’’ (Bu-
ras, Misiak, Münz, and Pokorski, 1994) for the operators
Q7g and Q8G, which are regularization-scheme indepen-
dent. They are given as follows:

C7g
~0 !eff~m!5C7g

~0 !~m!1(
i51

6

yiCi
~0 !~m!, (9.5)

and

C8G
~0 !eff~m!5C8G

~0 ! ~m!1(
i51

6

ziCi
~0 !~m!. (9.6)

One can then introduce a scheme-independent vector

CW ~0 !eff~m!5(C1
~0 !~m!, . . . ,C6

~0 !~m!,C7g
~0 !eff~m!,C8G

~0 !eff~m!).
(9.7)

From the renormalization-group equations (RGE) for
CW (0)(m), it is straightforward to derive the RGE for
CW (0)eff(m). It has the form

m
d

dm
Ci

~0 !eff~m!5
as

4p
g ji

~0 !effCj
~0 !eff~m!, (9.8)

where

g ji
~0 !eff55

g j7
~0 !1 (

k51

6

ykg jk
~0 !2yjg77

~0 !2zjg87
~0 ! , i57, j51,.. . ,6

g j8
~0 !1 (

k51

6

zkg jk
~0 !2zjg88

~0 ! , i58, j51,.. .6

g ji
~0 ! , otherwise.

(9.9)
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The matrix g(0)eff is a scheme-independent quantity. It
equals the matrix that one would obtain directly from
two-loop diagrams in the HV scheme. In order to sim-
plify the notation we will omit the label ‘‘eff’’ in the
expressions for the elements of this effective one-loop
anomalous-dimension matrix given below and keep it
only in the Wilson coefficients of the operators Q7g and
Q8G.
This discussion clarifies why it took so long to find the

correct leading anomalous-dimension matrix for the
b→sg decay (Ciuchini, Franco, Martinelli, Reina, and
Silvestrini, 1993; Ciuchini, Franco, Reina, and Silves-
trini, 1994). All previous calculations (Cella et al., 1990;
Grinstein et al., 1990; Adel and Yao, 1993, 1994; Misiak
1993) of the leading-order QCD corrections to b→sg
used the NDR scheme but unfortunately set zi and yi to
zero, or did not include all operators or made other mis-
takes. The discrepancy between the calculation of Grig-
janis et al. (1988) (DRED scheme) and Grinstein et al.
(1990) (NDR scheme) has been clarified by Misiak
(1994).

C. Renormalization-group evolution
and anomalous-dimension matrices

The coefficients Ci(m) in Eq. (9.1) can be calculated
by using

CW ~m!5U5~m ,MW!CW ~MW!. (9.10)

Here U5(m ,MW) is the 838 evolution matrix, which is
given in general terms in Eq. (3.93), with g being the
838 anomalous-dimension matrix. In the leading order
U5(m ,MW) is to be replaced by U 5

(0)(m ,MW) and the
initial conditions by CW (0)(MW), given by Grinstein et al.
(1990)

C2
~0 !~MW!51, (9.11)

C7g
~0 !~MW!5

3xt
322xt

2

4~xt21 !4
lnxt1

28xt
325xt

217xt
24~xt21 !3

[2
1
2
D08~xt!, (9.12)

C8G
~0 ! ~MW!5

23xt
2

4~xt21 !4
lnxt1

2xt
315xt

212xt
8~xt21 !3

[2
1
2
E08~xt! (9.13)

with all remaining coefficients being zero at m=MW . The
functions D08(xt) and E08(xt) are sometimes used in the
literature. The 636 submatrix of g s

(0) involving the op-
erators Q1 ,. . . ,Q6 is given in Eq. (6.25). Here we only
give the remaining nonvanishing entries of g s

(0) (Ciu-
chini, Franco, Martinelli, Reina, and Silvestrini, 1993;
Ciuchini, Franco, Reina, and Silvestrini, 1994).
For simplicity we define the notation g ij[(gs) ij . Then

the elements g i7
(0) with i=1, . . . ,6 are

g17
~0 !50, g27

~0 !5
104
27

CF , (9.14)

g37
~0 !52

116
27

CF , g47
~0 !5S 10427 u2

58
27

d DCF , (9.15)

g57
~0 !5

8
3
CF , g67

~0 !5S 5027 d2
112
27

u DCF . (9.16)

The elements g i8
(0) with i=1, . . . ,6 are

g18
~0 !53, g28

~0 !5
11
9
N2

29
9

1
N
, (9.17)

g38
~0 !5

22
9
N2

58
9

1
N

13f , g48
~0 !561S 119 N2

29
9

1
N D f ,
(9.18)

g58
~0 !522N1

4
N

23f , g68
~0 !5242S 169 N2

25
9

1
N D f .
(9.19)

Finally, the 232 one-loop anomalous-dimension ma-
trix in the sector Q7g,Q8G is given by (Grinstein et al.,
1990)

g77
~0 !58CF , g78

~0 !50,

g87
~0 !52

8
3
CF , g88

~0 !516CF24N . (9.20)

As we discussed above, the first correct calculation of
the two-loop mixing between Q1 ,. . . ,Q6 and Q7g,Q8G
has been presented by Ciuchini, Franco, Martinelli,
Reina, and Silvestrini (1993) and Ciuchini, Franco,
Reina, and Silvestrini (1994) and confirmed subse-
quently by Cella et al. (1994a, 1994b) and Misiak (1995).
In order to extend these calculations beyond the leading
order one would have to calculate g s

(1) [see Eq. (3.92)]
and O(as) corrections to the initial conditions in Eqs.
(9.12) and (9.13). We summarize below the present sta-
tus of this NLO calculation.
The 636 two-loop submatrix of g s

(1) involving the op-
erators Q1 ,. . . ,Q6 is given in Eq. (6.26). The two-loop
generalization of Eq. (9.20) has been calculated only last
year (Misiak and Münz, 1995). It is given for both NDR
and HV schemes as follows:

g77
~1 !5CFS 5489 N216CF2

56
9
f D ,

g78
~1 !50,

g87
~1 !5CFS 2

404
27

N1
32
3
CF1

56
27

f D ,
g88

~1 !52
458
9

2
12
N2 1

214
9

N21
56
9

f

N
2
13
9
fN . (9.21)

The generalization of Eqs. (9.14)–(9.19) to next to
leading order requires three-loop calculations, which
have not been done yet. The O(as) corrections to
C7g(MW) and C8G(MW) have been considered by Adel
and Yao (1993).
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D. Results for the Wilson coefficients

The leading-order results for the Wilson coefficients
of all operators entering the effective Hamiltonian in
Eq. (9.1) can be written in an analytic form. They are
(Buras, Misiak, Münz, and Pokorski, 1994)

Cj
~0 !~m!5(

i51

8

kjih
ai ~ j51,.. . ,6!, (9.22)

C7g
~0 !eff~m!5h16/23C7g

~0 !~MW!1
8
3

~h14/232h16/23!

3C8G
~0 ! ~MW!1C2

~0 !~MW!(
i51

8

hih
ai,

(9.23)

C8G
~0 !eff~m!5h14/23C8G

~0 ! ~MW!1C2
~0 !~MW!(

i51

8

h̄ ih
ai,

(9.24)

with

h5
as~MW!

as~m!
, (9.25)

and C 7g
(0)(MW) and C 8G

(0)(MW) given in Eqs. (9.12) and
(9.13), respectively. The numbers ai , kji , hi , and h̄ i are
given in Table XXVII.

E. Numerical analysis

The decay B→Xsg is the only decay in this review for
which the complete NLO corrections are not available.
In presenting the numerical values for the Wilson coef-
ficients a few remarks on the choice of as should there-
fore be made. In the leading order, the leading-order
expression for as should be used. The question then is
what to use for LQCD in this expression. In other decays

for which NLO corrections were available, this was not
important because LO results were secondary. We have
therefore simply inserted our standard LMS values into
the LO formula for as . This procedure gives
a s
(5)(MZ)=0.126, 0.136, and 0.144 for LMS

(5)
5 140 MeV,

225 MeV, and 310 MeV, respectively. In view of these
high values of a s

(5)(MZ) we will here proceed differ-
ently. Following Buras, Misiak, Münz, and Pokorski
(1994), we will use a s

(5)(MZ)=0.110, 0.117, and 0.124 as
in the NLO calculations, but we will evolve as(m) to
m'O(mb) using the leading-order expressions. In short,
we will use

as~m!5
as~MZ!

12b0as~MZ!/2p ln~MZ /m!
. (9.26)

This discussion shows again the importance of the com-
plete NLO calculation for this decay.
Before starting the discussion of the numerical values

for the coefficients C 7g
(0)eff and C8G

(0)eff, let us illustrate the
relative numerical importance of the three terms in Eq.
(9.23) for C 7g

(0)eff.
For instance, for mt=170 GeV, m=5 GeV, and

a s
(5)(MZ)=0.117, one obtains

C7g
~0 !eff~m!50.698C7g

~0 !~MW!10.086C8G
~0 ! ~MW!

20.156C2
~0 !~MW!

50.698~20.193!10.086~20.096!20.156

520.299. (9.27)

In the absence of QCD we would have C 7g
(0)eff(m)

=C 7g
(0)(MW) (in that case one has h=1). Therefore the

dominant term in the above expression [the one propor-
tional to C 2

(0)(MW)] is the additive QCD correction that
causes the enormous QCD enhancement of the b→sg
rate (Bertolini et al., 1987; Deshpande et al., 1987). It
originates solely from the two-loop diagrams. On the

TABLE XXVII. Numerical constants in the expansion of C j
(0)(m), C 7g

(0)(MW), and C 8G
(0)(MW).

i 1 2 3 4 5 6 7 8

ai 14
23

16
23

6
23

2
12
23

0.4086 −0.4230 −0.8994 0.1456

k1i 0 0
1
2

2
1
2

0 0 0 0

k2i 0 0
1
2

1
2

0 0 0 0

k3i 0 0 2
1
14

1
6

0.0510 −0.1403 −0.0113 0.0054

k4i 0 0 2
1
14

2
1
6

0.0984 0.1214 0.0156 0.0026

k5i 0 0 0 0 −0.0397 0.0117 −0.0025 0.0304

k6i 0 0 0 0 0.0335 0.0239 −0.0462 −0.0112

hi 2.2996 −1.0880 2
3
7

2
1
14

−0.6494 −0.0380 −0.0185 −0.0057

h̄ i 0.8623 0 0 0 −0.9135 0.0873 −0.0571 0.0209
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other hand, the multiplicative QCD correction (the fac-
tor 0.698 above) tends to suppress the rate but fails in
the competition with the additive contributions.
In the case of C8G

(0)eff a similar enhancement is ob-
served,

C8G
~0 !eff~m!50.730C8G

~0 ! ~MW!20.073C2
~0 !~MW!

50.730~20.096!20.073520.143. (9.28)

In Table XXVIII we give the values of C 7g
(0)eff and

C8G
(0)eff for different values of m and a s

(5)(MZ). To this
end Eq. (9.26) has been used. A strong m dependence of
both coefficients is observed. We will return to this de-
pendence in Sec. XXII.

X. THE EFFECTIVE HAMILTONIAN FOR B→Xse
1e2

The effective Hamiltonian for B→Xse
1e2 at scales

m=O(mb) is given by

Heff~b→se1e2!5Heff~b→sg!

2
GF

&
Vts*Vtb@C9V~m!Q9V~m!

1C10A~m!Q10A~m!# , (10.1)

where again we have neglected the term proportional to
Vus* Vub and Heff(b→sg) is given in Eq. (9.1).

A. Operators

In addition to the operators relevant for B→Xsg ,
there are two new operators

Q9V5~ s̄b !V2A~ ēe !V , Q10A5~ s̄b !V2A~ ēe !A ,
(10.2)

where V and A refer to gm and gmg5 , respectively.

They originate in the Z0 and g penguin diagrams with
the external ēe of Fig. 4(f) and the corresponding box
diagrams.

B. Wilson coefficients

The coefficient C10A(m) is given by

C10A~MW!5
a

2p
C̃10~MW!, C̃10~MW!52

Y0~xt!

sin2QW
(10.3)

with Y0(x) given in Eq. (10.8). Since Q10A does not
renormalize under QCD, its coefficient does not depend
on m'O(mb). The only renormalization-scale depen-
dence in Eq. (10.3) enters through the definition of the
top-quark mass. We will return to this issue in Sec.
XXIII.C.
The coefficient C9V(m) has been calculated with in-

creasing precision by several groups (Grinstein et al.,
1989; Grigjanis et al., 1989; Cella et al., 1991; Misiak,
1993), culminating in two complete next-to-leading-
order QCD calculations (Buras and Münz, 1995; Misiak,
1995) that agree with each other.
In order to calculate the coefficient C9V including

next-to-leading-order corrections, we have to perform,
in principle, a two-loop renormalization-group analysis
for the full set of operators contributing to Eq. (10.1).
However, Q10A is not renormalized, and the dimension-
five operators Q7g and Q8G have no impact on C9V.
Consequently, only a set of seven operators, Q1 ,. . . ,Q6
and Q9V, has to be considered. This is precisely the case
of the decay KL→p0e1e2 discussed by Buras, Lauten-
bacher, Misiak, and Münz (1994) and in Sec. VIII, ex-
cept for an appropriate change of quark flavors and that
now m'O(mb) instead of m'O(1 GeV). Since the NLO
analysis of KL→p0e1e2 has already been presented in

TABLE XXVIII. Wilson coefficients C7g
(0)eff and C8G

(0)eff for mt=170 GeV and various values of
a s
(5)(MZ) and m.

m [GeV]

a s
(5)(MZ)=0.110 a s

(5)(MZ)=0.117 a s
(5)(MZ)=0.124

C7g
(0)eff C8G

(0)eff C7g
(0)eff C8G

(0)eff C7g
(0)eff C8G

(0)eff

2.5 −0.323 −0.153 −0.334 −0.157 −0.346 −0.162
5.0 −0.291 −0.140 −0.299 −0.143 −0.307 −0.147
7.5 −0.275 −0.133 −0.281 −0.136 −0.287 −0.139
10.0 −0.263 −0.129 −0.268 −0.131 −0.274 −0.133

TABLE XXIX. Numerical constants in the expansion of P0 and PE .

i 1 2 3 4 5 6 7 8

pi 0 0 2
80
203

8
33

0.0433 0.1384 0.1648 −0.0073

ri
NDR 0 0 0.8966 −0.1960 −0.2011 0.1328 −0.0292 −0.1858
si 0 0 −0.2009 −0.3579 0.0490 −0.3616 −0.3554 0.0072
qi 0 0 0 0 0.0318 0.0918 −0.2700 0.0059
ri
HV 0 0 −0.1193 0.1003 −0.0473 0.2323 −0.0133 −0.1799

1172 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



Sec. VIII, we will only give the final result for C9V(m).
Because there is a one-step evolution from m=MW down
to m=mb without any thresholds in between, it is pos-
sible to find an analytic formula for C9V(m). Defining C̃9
by

C9V~m!5
a

2p
C̃9~m!, (10.4)

one finds (Buras and Münz, 1995) in the NDR scheme

C̃9
NDR~m!5P0

NDR1
Y0~xt!

sin2QW
24Z0~xt!1PEE0~xt!

(10.5)

with

P0
NDR5

p

as~MW! S 20.18751(
i51

8

pih
ai11D 11.2468

1(
i51

8

hai@ri
NDR1sih# , (10.6)

PE50.14051(
i51

8

qih
ai11. (10.7)

The functions Y0(x) and Z0(x) are defined by

Y0~x !5C0~x !2B0~x !, Z0~x !5C0~x !1 1
4D0~x !

(10.8)

with B0(x), C0(x), and D0(x) given in Eqs. (7.13),
(7.14), and (7.15), respectively. E0(x) is given in Eq.
(6.15). The powers ai are the same as in Table XXVII.
The coefficients pi , ri

NDR , si , and qi can be found in
Table XXIX. PE is O(10−2), and consequently the last
term in Eq. (10.5) can be neglected, although we keep it
in the numerical analysis. These results agree with Mi-
siak (1995).
In the HV scheme, only the coefficients ri are

changed. They are given on the last line of Table XXIX.
Equivalently, we can write

P0
k5P0

NDR1jk
4
9 ~3C1

~0 !1C2
~0 !2C3

~0 !23C4
~0 !! (10.9)

with

jk5 H 021
k5NDR
k5HV. (10.10)

We note that

(
i51

8

pi50.1875, (
i51

8

qi520.1405, (10.11)

(
i51

8

~ri
k1si!521.24681

4
9

~11jk!,

(
i51

8

pi~ai11 !52
16
69
. (10.12)

In this way for h=1, one finds PE=0, P 0
NDR=4/9, and

P 0
HV=0, in accordance with the initial conditions at

m=MW . Moreover, the second relation in Eq. (10.12)
assures the correct large logarithm in P 0

NDR,
i.e., 8

9 ln(MW/m).
The special feature of C9V(m) compared to the coef-

ficients of the remaining operators contributing to
B→Xse

1e2 is the large logarithm represented by 1/as
in P0 in Eq. (10.6). Consequently, the renormalization-
group improved perturbation theory for C9V has the
structure O(1/as)+O(1)+O(as)+••• , whereas the corre-
sponding series for the remaining coefficients is
O(1)+O(as)+••• . Therefore, in order to find the next-to-
leading O(1) term in the branching ratio for
B→Xse

1e2, the full two-loop renormalization-group
analysis has to be performed in order to find C9V, but
the coefficients of the remaining operators should be
taken in the leading logarithmic approximation. This is
gratifying because the coefficient of the magnetic opera-
tor Q7g is known only in the leading logarithmic ap-
proximation.

TABLE XXX. The coefficient P0 of C̃9 for various values of LMS
(5) and m.

m [GeV]

LMS
(5)

5140 MeV LMS
(5)

5225 MeV LMS
(5)

5310 MeV

LO NDR HV LO NDR HV LO NDR HV

2.5 2.053 2.928 2.797 1.933 2.846 2.759 1.835 2.775 2.727
5.0 1.852 2.625 2.404 1.788 2.591 2.395 1.736 2.562 2.388
7.5 1.675 2.391 2.127 1.632 2.373 2.127 1.597 2.358 2.128
10.0 1.526 2.204 1.912 1.494 2.194 1.917 1.469 2.185 1.921

TABLE XXXI. Wilson coefficient C̃9 for mt=170 GeV and various values of LMS
(5) and m.

m [GeV]

LMS
(5)

5140 MeV LMS
(5)

5225 MeV LMS
(5)

5310 MeV

LO NDR HV LO NDR HV LO NDR HV

2.5 2.053 4.493 4.361 1.933 4.410 4.323 1.835 4.338 4.290
5.0 1.852 4.191 3.970 1.788 4.156 3.961 1.736 4.127 3.954
7.5 1.675 3.958 3.694 1.632 3.940 3.694 1.597 3.924 3.695
10.0 1.526 3.772 3.480 1.494 3.761 3.485 1.469 3.752 3.488
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C. Numerical results

In the numerical analysis we will use the two-loop ex-
pression for as and the parameters collected in the Ap-
pendix. Our presentation follows closely the one given
by Buras and Münz (1995).
In Table XXX we show the constant P0 in Eq. (10.6)

for different m and LMS in the leading order, corre-
sponding to the first term in Eq. (10.6), and for the NDR
and HV schemes as given by Eqs. (10.6) and (10.9), re-
spectively. In Table XXXI we show the corresponding
values for C̃9(m). To this end we set mt=170 GeV.
We observe
(i) The NLO corrections to P0 enhance this constant

relative to the LO result by roughly 45% and 35% in the
NDR and HV schemes, respectively. This enhancement
is analogous to the one found in the case of
KL→p0e1e2.
(ii) In calculating P0 in the LO we have used as(m) at

one-loop level. Had we used the two-loop expression for
as(m), we would find, for m=5 GeV and LMS

(5)
5 225 MeV,

P 0
LO'1.98. Consequently, the NLO corrections would

have smaller impact. Grinstein et al. (1989), including
the next-to-leading term 4/9, would find P0 roughly 20%
smaller than the P0

NDR given in Table XXX.
(iii) It is tempting to compare P0 in Table XXX with

that found in the absence of QCD corrections. In the
limit as→0 we find P 0

NDR=8
9 ln(MW/m)+4/9 and

P 0
HV=8

9 ln(MW/m), which, for m=5 GeV, give P 0
NDR=2.91

and P 0
HV=2.46. Comparing these values with Table

XXX, we conclude that the QCD suppression of P0
present in the leading-order approximation is consider-
ably weakened in the NDR treatment of g5 after the
inclusion of NLO corrections. It is essentially removed
for m>5 GeV in the HV scheme.
(iv) The NLO corrections to C̃9 , which also include

the mt-dependent contributions, are large as seen in
Table XXXI. The results in HV and NDR schemes are
more than a factor of two larger than the leading-order
result C̃95P 0

LO, which should not include mt contribu-
tions. This demonstrates very clearly the necessity of
NLO calculations that allow a consistent inclusion of the
important mt contributions. For the same set of param-
eters, Grinstein et al. (1989) would find C̃9 to be smaller
than C̃ 9

NDR by 10–15%.
(v) The LMS dependence of C̃9 is rather weak. On the

other hand, its m dependence is sizable (;15% in the
range of m considered), although smaller than that of the
coefficients C7g and C8G given in Table XXVIII. We
also find that the mt dependence of C̃9 is rather weak.
Varying mt between 150 GeV and 190 GeV changes C̃9
by at most 10%. This weak mt dependence of C̃9 origi-
nates in the partial cancellation of mt dependences
between Y0(xt) and Z0(xt) in Eq. (10.5), as already
seen in the case of KL→p0e1e2 in Fig. 8. Finally,
the difference between C̃ 9

NDR and C̃ 9
HV is small and

amounts to roughly 5%.
(vi) The dominant mt dependence in this decay origi-

nates from the mt dependence of C̃10(MW). In fact, as

can be seen in Sec. VIII, C̃10(MW)52py7A/a , with y7a
present in KL→p0e1e2. The mt dependence of y7A is
shown in Fig. 8.

XI. EFFECTIVE HAMILTONIANS FOR RARE K
AND B DECAYS

A. Overview

In the present section we will summarize the effective
Hamiltonians valid at next to leading logarithmic accu-
racy in QCD, which describe the semileptonic, rare fla-
vor changing neutral current (FCNC) transitions
K1→p1nn̄ , (KL→m+m−)SD , KL→p0nn̄ , B→Xs ,dnn̄ ,
and B→l1l2. These decay modes all are very similar in
their structure, and it is natural to discuss them together.
On the other hand, they differ from the decays K→pp,
K→pe1e2, B→Xsg , and B→Xse

1e2 discussed in pre-
vious sections. Before giving the detailed formulas, it
will be useful to recall the most important general fea-
tures of this class of processes first. In addition, charac-
teristic differences between the specific modes will also
become apparent from the presentation.
(i) Within the standard model all the decays listed

above are loop-induced semileptonic FCNC processes
determined by Z0 penguin and box diagrams [Figs. 2(d)
and 2(e)].
In particular, a distinguishing feature of the present

class of decays is the absence of a photon penguin con-
tribution. For the decay modes with neutrinos in the fi-
nal state this is obvious, since the photon does not
couple to neutrinos. For the mesons decaying into a
charged lepton pair the photon penguin amplitude van-
ishes due to vector current conservation.
An important consequence is that the decays consid-

ered here exhibit a hard Glashow-Iliopoulos-Maiani
(GIM) suppression, quadratic in (small) internal quark
masses, which is a property of the Z0 penguin and box
graphs. By contrast, the GIM suppression resulting from
photon penguin contributions is logarithmic. Decays
where the photon penguin contributes are, for example,
KL→p0e1e2 and B→Xse

1e2. The differences in
the basic structure of these processes, resulting from the
different pattern of GIM suppression, are the reason
why we have discussed KL→p0e1e2 and B→Xse

1e2

in a separate context.
(ii) The investigation of low-energy rare-decay pro-

cesses allows one to probe, albeit indirectly, high-energy
scales of the theory. Of particular interest is the sensitiv-
ity to properties of the top quark: its mass mt and its
CKM couplings Vts and Vtd .
(iii) A particular and very important advantage of the

processes under discussion is that theoretically clean
predictions can be obtained. The reasons for this are
(a) The low-energy hadronic matrix elements re-

quired are just the matrix elements of quark currents
between hadron states, which can be extracted from the
leading (nonrare) semileptonic decays. Other long-
distance contributions are negligibly small.
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An exception is the decay KL→m+m−, which has im-
portant contributions from the two-photon intermediate
state, which are difficult to calculate reliably. However,
the short-distance part (KL→m+m−)SD alone, which we
shall discuss here, is on the same footing as the other
modes. The essential difficulty for phenomenological ap-
plications then is to separate the short-distance from the
long-distance piece in the measured rate.
(b) According to the comments just made, the pro-

cesses at hand are short-distance processes, calculable
within a perturbative framework, possibly including
renormalization-group improvement. The necessary
separation of the short-distance dynamics from the low-
energy matrix elements is achieved by means of an op-
erator product expansion. The scale ambiguities, inher-
ent to perturbative QCD, essentially constitute the only
theoretical uncertainties present in the analysis. These
uncertainties are well under control, as they may be sys-
tematically reduced through calculations beyond leading
order.
(iv) The points made above emphasize that the short-

distance-dominated loop-induced FCNC decays provide
highly promising possibilities to investigate flavor dy-
namics at the quantum level. However, the very fact that
these processes are based on higher-order electroweak
effects, which makes them interesting theoretically, im-
plies that the branching ratios will be very small and not
easy to access experimentally.
The effective Hamiltonians governing the decays

K1→p1nn̄ , (KL→m+m−)SD , KL→p0nn̄ , B→Xs ,dnn̄ ,
and B→l1l2, resulting from the Z0-penguin and box-
type contributions, can all be written down in the follow-
ing general form

Heff5
GF

&

a

2p sin2QW
@lcF~xc!1l tF~xt!#

3~ n̄n8!V2A~ r̄r !V2A , (11.1)

where n ,n8 denote down-type quarks (n ,n85d ,s ,b but
nÞn8) and r leptons, r5l ,n l (l5e ,m ,t). The li are
products of CKM elements, in the general case l i
5 Vin* Vin8 . Furthermore, xi5m i

2/MW
2 .

The functions F(xi) describe the dependence on the
internal up-type quark masses mi (and on lepton masses
if necessary) and are understood to include QCD cor-
rections. They are increasing functions of the quark
masses, a property that is particularly important for the
top contribution.
Crucial features of the structure of the Hamiltonian

are furthermore determined by the hard GIM suppres-
sion characteristic for this class of decays. First we note
that the dependence of the Hamiltonian on the internal
quarks comes in the form

(
i5u ,c ,t

l iF~xi!5lc(F~xc!2F~xu!)1l t(F~xt!2F~xu!),

(11.2)

where we have used the unitarity of the CKM matrix.
Now, hard GIM suppression means that for x!1 F be-
haves quadratically in the quark masses. In the present
case we have

F~x !;x lnx , for x!1. (11.3)

The first important consequence is that F(xu)'0 can be
neglected. The Hamiltonian acquires the form antici-
pated in Eq. (11.1). It effectively consists of a charm and
a top contribution. Therefore the relevant energy scales
are MW or mt and, at least, mc , which are large com-
pared to LQCD . This fact indicates the short-distance na-
ture of these processes.
A second consequence of Eq. (11.3) is that

F(xc)/F(xt)'O(10−3)!1. Together with the weighting
introduced by the CKM factors, this relation determines
the relative importance of the charm versus the top con-
tribution in Eq. (11.1). As seen in Table XXXII a simple
pattern emerges if one writes down the order of magni-
tude of lc and lt in terms of powers of the Wolfenstein
expansion parameter l.
For the CP-violating decay KL→p0nn̄ and the B de-

cays, the CKM factors lc and lt have the same order of
magnitude. In view of F(xc)!F(xt) the charm contribu-
tion is therefore negligible, and these decays are entirely
determined by the top sector. For K1→p1nn̄ and
(KL→m+m−)SD on the other hand, lt is suppressed com-
pared to lc by a factor of O(l4)'O(10−3), which roughly
compensates for the O(103) enhancement of F(xt) over
F(xc). Hence the top and charm contributions have the
same order of magnitude and must both be taken into
account.
In principle, as far as flavordynamics is concerned, the

top and the charm sector have the same structure. The
only difference comes from the quark masses. However,
this difference has striking implications for the detailed
formalism necessary to treat the strong interaction cor-
rections. We have mt/MW=O(1) and mc/MW!1. Corre-
spondingly, the QCD coupling as is also somewhat
smaller at mt than at mc . For the charm contribution
this implies that one can work to lowest order in the
mass ratio mc/MW . On the other hand, for the same
reason, logarithmic QCD corrections ;aslnMW/mc are
large and have to be resummed to all orders in pertur-
bation theory by renormalization-group methods. On
the contrary, no large logarithms are present in the top
sector, so that ordinary perturbation theory is appli-
cable, but all orders in mt/MW have to be taken into
account. In fact we see, from the point of view of QCD
corrections, the charm and top contributions are quite
‘‘complementary’’ to each other, representing in a sense
opposite limiting cases.

TABLE XXXII. Order of magnitude of CKM parameters rel-
evant for the various decays, expressed in powers of the
Wolfenstein parameter l=0.22. In the case of KL→p0nn̄ ,
which is CP violating, only the imaginary parts of lc ,t contrib-
ute.

K1→p1nn̄
(KL→m+m−)SD KL→p0nn̄

B→Xsnn̄
Bs→l1l2

B→Xdnn̄
Bd→l1l2

lc ;l (Imlc;l5) ;l2 ;l3

lt ;l5 (Imlt;l5) ;l2 ;l3
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We are now ready to list the explicit expressions for
the effective Hamiltonians.

B. The decay K1→p+nn̄

1. The next-to-leading-order effective Hamiltonian

The final result for the effective Hamiltonian inducing
K1→p1nn̄ can be written as

Heff5
GF

&

a

2p sin2QW
(

l5e ,m ,t
@Vcs* VcdXNL

l

1Vts*VtdX~xt!#~ s̄d !V2A~ n̄ ln l!V2A . (11.4)

The index l5e ,m,t denotes the lepton flavor. The depen-
dence on the charged lepton mass, resulting from the
box graph, is negligible for the top contribution. In the
charm sector this is the case only for the electron and
the muon, but not for the t lepton.
The function X(x), relevant for the top part, is to
O(as) and to all orders in x5m2/MW

2

X~x !5X0~x !1
as

4p
X1~x ! (11.5)

with (Inami and Lim, 1981)

X0~x !5
x

8 F2
21x

12x
1

3x26

~12x !2
lnxG (11.6)

and the QCD correction (Buchalla and Buras, 1993a)

X1~x !52
23x15x224x3

3~12x !2
1
x211x21x31x4

~12x !3
lnx

1
8x14x21x32x4

2~12x !3
ln2x2

4x2x3

~12x !2
L2~12x !

18x
]X0~x !

]x
lnxm , (11.7)

where xm5m2/MW
2 with m=O(mt) and

L2~12x !5E
1

x
dt

lnt
12t

. (11.8)

The m dependence in the last term in Eq. (11.7) cancels
to the order considered the m dependence of the leading
term X0(x(m)).
The expression corresponding to X(xt) in the charm

sector is the function XNL
l . It results from the RG

calculation in NLLA and is given by

XNL
l 5CNL24BNL

~1/2! . (11.9)

CNL and BNL
(1/2) correspond to the Z0-penguin and the

box-type contribution, respectively. One has (Buchalla
and Buras, 1994a)

CNL5
x~m !

32
Kc

24/25F S 487 K11
24
11

K22
696
77

K33D
3S 4p

as~m!
1
15212
1875

~12Kc
21! D1S 12ln

m2

m2D
3~16K128K2!2

1176244
13125

K12
2302
6875

K2

1
3529184
48125

K331KS 562484375
K12

81448
6875

K2

1
4563698
144375

K33D G , (11.10)

where

K5
as~MW!

as~m!
, Kc5

as~m!

as~m !
, (11.11)

K15K6/25, K25K212/25, K335K21/25, (11.12)

BNL
~1/2!5

x~m !

4
Kc

24/25F3~12K2!S 4p

as~m!
1
15212
1875

3~12Kc
21! D2ln

m2

m22
r lnr
12r

2
305
12

1
15212
625

K21
15581
7500

KK2G . (11.13)

Here K25K21/25, m5mc , r5m l
2/m c

2(m), and ml is the
lepton mass. We will at times omit the index l of X NL

l .
In Eqs. (11.10)–(11.13) the scale is m=O(mc). The two-
loop expression for as(m) is given in Eq. (3.19). Again,
to the considered order, the explicit ln(m2/m2) terms in
Eqs. (11.10) and (11.13) cancel the m dependence of the
leading terms.
These formulas give the complete next-to-leading-

order effective Hamiltonian for K1→p1nn̄ . The
leading-order expressions (Novikov et al., 1977; Ellis
and Hagelin, 1983; Buchalla et al., 1991; Dib et al., 1991)
are obtained by replacing X(xt)→X0(xt) and
XNL

l →XL, with XL found from Eqs. (11.10) and (11.13)
by retaining only the 1/as(m) terms. In LLA the one-
loop expression should be used for as . This amounts to
setting b1=0 in Eq. (3.19). The numerical values for XNL

for m=mc and several values of LMS
(4) and mc are given in

Table XXXIII. The m dependence will be discussed fur-

TABLE XXXIII. The functions XNL
e and XNL

t for various LMS
(4) and mc .

LMS
(4) [MeV]\mc [GeV]

XNL
e /1024 XNL

t /10−4

1.25 1.30 1.35 1.25 1.30 1.35

215 10.55 11.40 12.28 7.16 7.86 8.59
325 9.71 10.55 11.41 6.32 7.01 7.72
435 8.75 9.59 10.45 5.37 6.05 6.76
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ther in the phenomenological sections.

2. Z0-penguin and box contribution in the top sector

For completeness we also give the expressions for
the Z0-penguin function C(x) and the box function
B(x ,1/2) separately, which contribute to X(x) in Eq.
(11.5) according to

X~x !5C~x !24B~x ,1/2!. (11.14)

The functions C and B depend on the gauge of the W
boson. In ’t Hooft–Feynman gauge (j=1) they are

C~x !5C0~x !1
as

4p
C1~x !, (11.15)

where (Inami and Lim, 1981)

C0~x !5
x

8 F62x

12x
1

3x12

~12x !2
lnx G (11.16)

and (Buchalla and Buras, 1993b)

C1~x !5
29x17x214x3

3~12x !2
2
x235x223x323x4

3~12x !3
lnx

2
20x22x31x4

2~12x !3
ln2x1

4x1x3

~12x !2
L2~12x !

18x
]C0~x !

]x
lnxm . (11.17)

Similarly,

B~x ,1/2!5B0~x !1
as

4p
B1~x ,1/2! (11.18)

with the one-loop function (Inami and Lim, 1981)

B0~x !5
1
4 F x

12x
1

x

~12x !2
lnx G (11.19)

and (Buchalla and Buras, 1993a)

B1~x ,1/2!5
13x13x2

3~12x !2
2

x217x2

3~12x !3
lnx2

x13x2

~12x !3
ln2x

1
2x

~12x !2
L2~12x !18x

]B0~x !

]x
lnxm .

(11.20)

The gauge dependence of C and B is cancelled in the
combination X [Eq. (11.14)]. The second argument in
B(x ,1/2) indicates the weak isospin of the external lep-
tons (the neutrinos in this case).

3. The Z0-penguin contribution in the charm sector

In the next two paragraphs we would like to summa-
rize the essential ingredients of the RG calculation for
the charm sector leading to Eqs. (11.10) and (11.13). In
particular we present the operators involved, the initial
values for the RG evolution of the Wilson coefficients,
and the required two-loop anomalous dimensions. We
will first treat the Z0-penguin contribution [Eq. (11.10)]

and discuss the box part [Eq. (11.13)] subsequently. Fur-
ther details can be found in Buchalla and Buras (1994a).
At renormalization scales of the order O(MW), after

integrating out the W and Z bosons, the effective
Hamiltonian responsible for the Z0-penguin contribu-
tion of the charm sector is given by

Heff,c
~Z ! 5

GF

&

a

2p sin2UW
lc

p2

2MW
2

3~v1O11v2O21v3Q !, (11.21)

where the operator basis is

O152iE d4x T(~ s̄ ic j!V2A~ c̄ jdi!V2A)~x !

3(~ c̄kck!V2A~ n̄n!V2A)~0 !2$c→u%, (11.22)

O252iE d4x T(~ s̄ ic i!V2A~ c̄ jdj!V2A)~x !

3(~ c̄kck!V2A~ n̄n!V2A)~0 !2$c→u%, (11.23)

O65
1
2

~O26O1!, (11.24)

Q5
m2

g2
~ s̄d !V2A~ n̄n!V2A . (11.25)

The Wilson coefficients at m=MW are [vWT[(v1 ,v2 ,v3)]

vW ~MW!5vW ~0 !1
as~MW!

4p
vW ~1 !, (11.26)

vW ~0 !T5~1,1,0!, (11.27)

vW ~1 !T5~B1 ,B2 ,B3!, (11.28)

where in the NDR scheme (MS, anticommuting g5 in
DÞ4 dimensions)

B65611
N71
2N

, B3516 (11.29)

with N denoting the number of colors.
In the basis of operators $O1 ,O2 ,Q% the matrix of

anomalous dimensions has the form

g5S g1 0 g13

0 g2 g23

0 0 g33

D (11.30)

with the perturbative expansion

g~as!5
as

4p
g~0 !1S as

4p D 2g~1 !. (11.31)

The nonvanishing entries of the anomalous dimension
matrix are

g33
~0 !52~gm02b0!, g33

~1 !52~gm12b1!,

g6
~0 !566

N71
N

,

g6
~1 !5

N71
2N S 2216

57
N

7
19
3
N6

4
3
f D ,
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g63
~0 !568~N61 !, g63

~1 !5CF~688N248!, (11.32)

where gm0, gm1, and b0 , b1 can be found in Eqs. (3.17)
and (3.16), respectively. The expressions g(1) refer to the
NDR scheme, consistent with the scheme chosen for
vW (MW). Following the general method for the solution
of the RG equations explained in Sec. III.F.1, we can
compute the Wilson coefficients vW (m) at a scale
m=O(mc). It is convenient to work in an effective four-
flavor theory (f=4) in the full range of the RG evolution
fromMW down to m. The possible inclusion of a b-quark
threshold would change the result for XNL by not more
than 0.1% and can therefore be safely neglected.
After integrating out the charm quark at the scale

m=O(mc), the Z0-penguin part of the charm contribu-
tion to the effective Hamiltonian becomes

Heff,c
~Z ! 5

GF

&

a

2p sin2QW
lcCNL~ s̄d !V2A~ n̄n!V2A ,

(11.33)

CNL5
x~m!

32 F12 S 12ln
m2

m2D ~g13
~0 !K11g23

~0 !K2!

1
4p

as~m!
v3~m!G . (11.34)

The explicit expression for v3(m) as obtained from solv-
ing the RG equation is given by Buchalla and Buras
(1994a). Inserting this expression in Eq. (11.34), express-
ing the charm quark mass m(m) in terms of m(m) and
setting N=3, f=4, we finally end up with Eq. (11.10).

4. The box contribution in the charm sector

The RG analysis for the box contribution proceeds in
analogy to the Z0-penguin case. The box part is even
somewhat simpler. When the W boson is integrated out,
the Hamiltonian based on the box diagram is

Heff,c
~B ! 52

GF

&

a

2p sin2QW
lcS 2

p2

MW
2 D ~c1O1c2Q !,

(11.35)

O52iE d4x T(~ s̄c !V2A~ n̄l !V2A)~x !

3(~ l̄n!V2A~ c̄d !V2A)~0 !2$c→u% (11.36)

with Q already given in Eq. (11.25). The Wilson coeffi-
cients at MW in the NDR scheme are given by

cWT~MW![(c1~MW!,c2~MW!)

5~1,0 !1
as~MW!

4p
~0, B2!, B25236.

(11.37)

In the operator basis $O ,Q% the anomalous-dimension
matrix has the form

g5S 0 g12

0 g22
D . (11.38)

When expanded as

g5
as

4p
g~0 !1S as

4p D 2g~1 !, (11.39)

the nonzero elements are (NDR scheme for g(1))

g22
~0 !52~gm02b0!, g22

~1 !52~gm12b1!,

g12
~0 !5232, g12

~1 !580CF . (11.40)

Finally, after integrating out charm at m=O(mc),

Heff,c
~B ! 52

GF

&

a

2p sin2QW
lc4BNL

~1/2!

3~ s̄d !V2A~ n̄ ln l!V2A , (11.41)

BNL
~1/2!52

x~m!

64 F16S ln m2

m2 1
5
4

1
r lnr
12r D

1
4p

as~m!
c2~m!G . (11.42)

Equation (11.41) is written here for one neutrino flavor.
The index (1/2) refers to the weak isospin of the final-
state leptons. From this result Eq. (11.13) can be derived
(N=3, f=4). The explicit expression for c2(m) is given by
Buchalla and Buras (1994a).
Although Wilson coefficients and anomalous dimen-

sions depend on the renormalization scheme, the final
results in Eqs. (11.10) and (11.13) are free from this de-
pendence. The argument proceeds as in the general case
presented in Sec. III.F.3.

5. Discussion

It is instructive to consider the function X(x) in the
limiting case of small masses (x!1), where we keep only
terms linear in x and include O(as) corrections,

X~x !82
3
4
x lnx2

1
4
x1

as

4p S 22x ln2x27x lnx

2
2312p2

3
x D . (11.43)

This simple and transparent expression can be re-
garded as a common limiting case of the top and the
charm contribution: on the one hand it follows from
keeping only terms linear in x in the top function [Eq.
(11.5)], and on the other hand it can be obtained [up to
the last term in Eq. (11.43), which is O(asx) and goes
beyond the NLLA] from expanding XNL (Eq. 11.9) (for
ml=0) to first order in as .
This exercise provides one with a nice cross-check be-

tween the rather different looking functions XNL and
X(xt) of the charm and the top sector. Viewed the other
way around, Eq. (11.43) may serve to further illustrate
the complementary character of the calculations neces-
sary in each of the two sectors. X(xt) is the generaliza-
tion of Eq. (11.43) that includes all the higher-order
mass terms. XNL , on the other hand, generalizes Eq.
(11.43) to include all the leading-logarithmic,
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O(xa s
n ln n11x), as well as the next-to-leading-

logarithmic, O(xa s
nlnnx), corrections, to all orders n in

as . Of these, only the terms with n=0 and n=1 are con-
tained in Eq. (11.43). Applying this approximation to
the charm part directly, one can convince oneself that
the O(as) correction term would amount to more than
50% of the lowest order result. This observation illus-
trates very clearly the necessity to go beyond straightfor-
ward perturbation theory and to employ the RG sum-
mation technique. The importance of also going to next-
to-leading-order accuracy in the RG calculation is
suggested by the relatively large size of the O(xaslnx)
term. Note also that formally the nonlogarithmic mass
term (−x/4) in Eq. (11.43) is a next-to-leading-order ef-
fect in the framework of RG-improved perturbation
theory. The same is true for the dependence on the
charged lepton mass, which can be taken into account
consistently only in NLLA.
A crucial issue is the residual dependence of the func-

tions XNL and X(xt) on the corresponding renormaliza-
tion scales mc and mt . Since the quark current operator
in Eq. (11.1) has no anomalous dimension, its matrix
elements do not depend on the renormalization scale.
The same must then hold for the coefficient functions
XNL and X(xt). However, in practice this is only true up
to terms of the neglected order in perturbation theory.
The resulting scale ambiguities represent the theoretical
uncertainties present in the calculation of the short-
distance-dominated processes under discussion. They
can be systematically reduced by going to higher orders
in the analysis. In Table XXXIV we compare the order
of the residual scale dependence in LLA and in NLLA
for the top and the charm contribution.
For numerical investigations we shall use 1

GeV<mc<3 GeV for the renormalization scale
mc=O(mc) in the charm sector. Similarly, in the case of
the top contribution we choose mt=O(mt) in the range
100 GeV<mt<300 GeV for mt=170 GeV. Then, compar-
ing LLA and NLLA, the theoretical uncertainty due to
scale ambiguity is typically reduced from O(10%) to
O(1%) in the top sector and from more than 50% to less
than 20% in the charm sector. Here the quoted percent-
ages refer to the total variation (Xmax−Xmin)/Xcentral of
the functions X(xt) or XNL within the range of scales
considered. Phenomenological implications of this gain
in accuracy will be discussed in Sec. XXIV.

C. The decay (KL→m+m−)SD

1. The next-to-leading-order effective Hamiltonian

The analysis of (KL→m+m−)SD proceeds in essentially
the same manner as for K1→p1nn̄ . The only difference

is introduced through the reversed lepton line in the box
contribution. In particular there is no lepton mass de-
pendence, since only massless neutrinos appear as vir-
tual leptons in the box diagram.
The effective Hamiltonian in next to leading order

can be written as follows,

Heff52
GF

&

a

2p sin2QW
@Vcs* VcdYNL1Vts*VtdY~xt!#

3~ s̄d !V2A~m̄m!V2A1H.c., (11.44)

where H.c. stands for the Hermitian conjugate. The
function Y(x) is given by

Y~x !5Y0~x !1
as

4p
Y1~x !, (11.45)

where (Inami and Lim, 1981)

Y0~x !5
x

8 F42x

12x
1

3x

~12x !2
ln x G (11.46)

and (Buchalla and Buras, 1993a)

Y1~x !5
4x116x214x3

3~12x !2
2
4x210x22x32x4

~12x !3
lnx

1
2x214x21x32x4

2~12x !3
ln2x1

2x1x3

~12x !2

3L2~12x !18x
]Y0~x !

]x
lnxm . (11.47)

The RG expression YNL representing the charm contri-
bution is

YNL5CNL2BNL
~21/2! , (11.48)

where CNL is the Z0-penguin part given in Eq. (11.10)
and BNL

(1/2) is the box contribution in the charm sector,
relevant for the case of final-state leptons with weak
isospin T3=−1/2. One has (Buchalla and Buras, 1994a),

BNL
~21/2!5

x~m !

4
Kc

24/25F3~12K2!S 4p

as~m!
1
15212
1875

3~12Kc
21! D2ln

m2

m22
329
12

1
15212
625

K2

1
30581
7500

KK2G . (11.49)

Note the simple relation to BNL
(1/2) in Eq. (11.13) (for

r=0)

BNL
~21/2!2BNL

~1/2!5
x~m !

2
Kc

24/25~KK221 !. (11.50)

More details on the RG analysis in this case may be
found in Buchalla and Buras (1994a).

2. Discussion

The gauge-independent function Y can be decom-
posed into the Z0-penguin and the box contribution

TABLE XXXIV. Residual scale ambiguity in the top and
charm sector in LLA and NLLA.

Top sector [mt=O(mt)] Charm sector [mc=O(mc)]

LLA O(as) O(xc)
NLLA O(a s

2) O(asxc)
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Y~x !5C~x !2B~x ,21/2!. (11.51)

In Feynman-gauge for the W boson, C(x) is given in
Eq. (11.15). In the same gauge the box contribution is

B~x ,21/2!5B0~x !1
as

4p
B1~x ,21/2! (11.52)

with B0(x) from Eq. (11.19) and

B1~x ,21/2!5
25x29x2

3~12x !2
1
11x15x2

3~12x !3
lnx

2
x13x2

~12x !3
ln2x1

2x

~12x !2
L2~12x !

18x
]B0~x !

]x
lnxm . (11.53)

The equality B(x ,1/2)5B(x ,21/2) at the one-loop level
is a particular property of the Feynman-gauge. It is vio-
lated by O(as) corrections. There is, however, a very
simple relation between B1(x ,1/2) and B1(x ,21/2),

B1~x ,21/2!2B1~x ,1/2!516B0~x !. (11.54)

We add a few comments on the most important dif-
ferences between YNL and XNL . Expanding YNL to first
order in as , we find

YNL8
1
2
x1

as

4p
x ln2x1O~asx !. (11.55)

In contrast to XNL both the terms of O(x lnx) and of
O(asx lnx) are absent in YNL . The cancellation of the
leading O(x lnx) terms between Z0-penguin and box
contribution implies that the nonleading O(x) term
plays a much bigger role for YNL . A second conse-
quence is the increased importance of QCD effects and
the related larger sensitivity to mc , resulting in a bigger
theoretical uncertainty for YNL than was the case for
XNL . In addition, whereas X(xc) is suppressed by
;30% through QCD effects, the zeroth-order expres-
sion for Y is enhanced by as much as a factor of 2.5.
Nevertheless, QCD corrections included, XNL still ex-
ceeds YNL by a factor of 4, so that YNL is less important
for (KL→m+m−)SD than XNL is for K1→p1nn̄ . Al-
though the impact of the bigger uncertainties in YNL is
thus somewhat reduced in the complete result for
(KL→m+m−)SD , the remaining theoretical uncertainty
due to scale ambiguity is still larger than for K1→p1nn̄ .
This will be investigated numerically in Sec. XXV. The
numerical values for YNL for m=mc and several values of
LMS
(4) and mc are given in Table XXXV.

D. The decays KL→p0nn̄, B→Xs,dnn̄, and Bs,d→ l1l2

After the above discussion it is easy to write down the
effective Hamiltonians for KL→p0nn̄ , B→Xs ,dnn̄ , and
Bs ,d→l1l2. As we have seen, only the top contribution
is important in these cases, and we can write

Heff5
GF

&

a

2p sin2QW
Vtn* Vtn8X~xt!

3~ n̄n8!V2A~ n̄n!V2A1H.c. (11.56)

for the decays KL→p0nn̄ , B→Xsnn̄ , and B→Xdnn̄ ,
with (n̄n8)5( s̄d), (b̄s), and (b̄d), respectively. Simi-
larly,

Heff52
GF

&

a

2p sin2QW
Vtn* Vtn8Y~xt!

3~ n̄n8!V2A~ l̄ l !V2A1H.c. (11.57)

for Bs→l1l2 and Bd→l1l2, with (n̄n8)5(b̄s) and
(b̄d). The functions X and Y are given in Eqs. (11.5)
and (11.45).

XII. THE EFFECTIVE HAMILTONIAN FOR K0-K̄0 MIXING

A. General structure

The following section is devoted to the presentation
of the effective Hamiltonian for DS=2 transitions. This
Hamiltonian incorporates the short-distance physics
contributing to K0-K̄0 mixing and is essential for the
description of CP violation in the neutral K-meson sys-
tem.
Being a FCNC process, K0-K̄0 mixing can only occur

at the loop level within the standard model. To lowest
order it is induced through the box diagrams in Fig. 4(e).
With QCD corrections included, the effective low-
energy Hamiltonian derived from these diagrams can be
written as follows (l i 5 Vis*Vid),

Heff
DS525

GF
2

16p2 MW
2 @lc

2h1S0~xc!1l t
2h2S0~xt!

12lcl th3S0~xc ,xt!#@as~m!#22/9

3F11
as~m!

4p
J3GQ1H.c. (12.1)

This equation, together with Eqs. (12.31), (12.10), and
(12.68), for h1 , h2 , and h3 , respectively, represents the
complete next-to-leading-order short-distance Hamil-
tonian for DS=2 transitions. Equation (12.1) is valid for
scales m below the charm threshold mc=O(mc). In this
case Heff

DS52 consists of a single four-quark operator

Q5~ s̄d !V2A~ s̄d !V2A , (12.2)

which is multiplied by the corresponding coefficient
function. It is useful and customary to decompose this
function into a charm, a top, and a mixed charm-top
contribution, as displayed in Eq. (12.1). This form is ob-
tained upon eliminating lu by means of CKM matrix

TABLE XXXV. The function YNL for various LMS
(4) and mc .

LMS
(4) [MeV]\mc [GeV]

YNL/10
−4

1.25 1.30 1.35

215 3.09 3.31 3.53
325 3.27 3.50 3.73
435 3.40 3.64 3.89
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unitarity and setting xu=0. The basic electroweak loop
contributions without QCD correction are then ex-
pressed through the functions S0 , which read (Inami and
Lim, 1981)

S0~xc!8xc , (12.3)

S0~xt!5
4xt211xt

21xt
3

4~12xt!
2 2

3xt
3lnxt

2~12xt!
3 , (12.4)

S0~xc ,xt!5xcF ln xt
xc

2
3xt

4~12xt!
2

3xt
2lnxt

4~12xt!
2G . (12.5)

Here again we keep only linear terms in xc!1, but of
course all orders in xt .
Short-distance QCD effects are described through the

correction factors h1 , h2 , h3 , and the explicitly
as-dependent terms in Eq. (12.1). The discussion of
these corrections will be the subject of the following sec-
tions.
Without QCD, i.e., in the limit as→0, one has

h i[as]
−2/9→1. In general, the complete coefficient func-

tion multiplying Q in Eq. (12.1) contains the QCD ef-
fects at high energies, mW=O(MW), mt=O(mt), together
with their RG evolution down to the scale m=O(1 GeV).
A common ingredient for the three different contribu-
tions in Eq. (12.1) is the anomalous dimension of the
operator Q and the corresponding evolution of its coef-
ficient. The Fierz symmetric flavor structure of Q im-
plies that it acquires the same anomalous dimension as
the Fierz symmetric operator Q15(Q21Q1)/2 (see
Sec. V), explicitly,

g5
as

4p
g~0 !1S as

4p D 2g~1 !, (12.6)

g~0 !56
N21
N

,

(12.7)

g~1 !5
N21
2N F2211

57
N

2
19
3
N1

4
3
f G ~NDR!.

The resulting evolution of the coefficient of Q between
general scales m1 and m is then given by

CQ~m!5F11
as~m!2as~m1!

4p
JfGFas~m1!

as~m! GdfCQ~m1!,

(12.8)

where

df5
g~0 !

2b0
, Jf5

df
b0

b12
g~1 !

2b0
(12.9)

depend on the number of active flavors f . At the lower
end of the evolution f=3. The terms in Eq. (12.8) that

depend on as(m) are factored out explicitly in Eq. (12.1)
to exhibit the m dependence of the coefficient function
in the f=3 regime, which has to cancel the corresponding
m dependence of the hadronic matrix element of Q be-
tween meson states in physical applications. A similar
comment applies to the scheme dependence entering Jf
in Eq. (12.9) through the scheme dependence of g(1).
Splitting off the m dependence in Eq. (12.1) is of course
not unique. The way it is done belongs to the definition
of the hi factors. Let us finally compare the structure of
Eq. (12.1) with the effective Hamiltonians for rare de-
cays discussed in Sec. XI. Common features of both
types of processes include
(i) Both are generated to lowest order via electroweak

FCNC loop transitions involving heavy quarks.
(ii) They contain a charm and a top contribution.
(iii) The Hamiltonian consists of a single dimension-

six operator.
Aside from these similarities, however, there are also

a few important differences, which have their root in the
fact that the DS=2 box diagrams involve two distinct
quark lines, as compared to the single quark line in
semileptonic rare decays,
(i) The CKM parameter combinations li appear qua-

dratically in Eq. (12.1) instead of only linearly.
(ii) Equation (12.1) in addition receives contributions

from a mixed top-charm sector. This part turns out to
have the most involved structure of the three contribu-
tions.
(iii) The operator Q has a nonvanishing QCD anoma-

lous dimension, resulting in a nontrivial scale and
scheme dependence of the Wilson coefficient.
(iv) The hadronic matrix element of the four-quark

operator Q is a considerably more complicated object
than the quark-current matrix elements in semileptonic
rare decays.
We will now present the complete next-to-leading-

order results for h2 , h1 , and h3 in turn and discuss their
most important theoretical features. The first leading-
logarithmic-order calculations of h1 have been presented
by Vainshtein et al. (1976) and Novikov et al. (1977) and
of h2 by Vysotskij (1980). The complete leading-
logarithmic-order calculation, which also includes h3 ,
was first performed by Gilman and Wise (1983).
Leading-order calculations in the presence of a heavy
top can be found in work by Kaufman et al. (1989),
Datta et al. (1990, 1995), and Flynn (1990).

B. The top contribution—h2

The basic structure of the top-quark sector in Heff
DS52 is

easy to understand. First the top quark is integrated out,
along with theW , at a matching scale mt=O(mt), leaving
a mt-dependent coefficient normalized at mt , which mul-
tiplies the single operator Q . Subsequently, the coeffi-
cient is simply renormalized down to scales m=O(1
GeV) by means of Eq. (12.8). Including NLO correc-
tions, the resulting QCD factor h2 from Eq. (12.1) may
be written (in MS) as follows (Buras et al., 1990),
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h25@as~mc!#
6/27Fas~mb!

as~mc!
G 6/25F as~m t!

as~mb!G 6/23
3F11

as~mc!

4p
~J42J3!1

as~mb!

4p
~J52J4!

1
as~m t!

4p S S1~xt!S0~xt!
1Bt2J51

g~0 !

2
ln

m t
2

MW
2

1gm0

] lnS0~xt!
] lnxt

ln
m t
2

MW
2 D G , (12.10)

where gm056CF ,

Bt55
N21
2N

13
N221
2N

~NDR!, (12.11)

and

S1~x !5
N21
2N

S1
~8 !~x !1

N221
2N

S1
~1 !~x !, (12.12)

S1
~8 !~x !52

64268x217x2111x3

4~12x !2

1
32268x132x2228x313x4

2~12x !3
lnx

1
x2~427x17x222x3!

2~12x !4
ln2x

1
2x~427x27x21x3!

~12x !3
L2~12x !

1
16
x S p2

6
2L2~12x ! D , (12.13)

S1
~1 !~x !52

x~4239x1168x2111x3!
4~12x !3

2
3x~4224x136x217x31x4!

2~12x !4
lnx

1
3x3~1314x1x2!

2~12x !4
ln2x

2
3x3~51x !

~12x !3
L2~12x !, (12.14)

where the dilogarithm L2 is defined in Eq. (11.8).
In Eq. (12.10) we have taken into account the heavy-

quark thresholds at mb and mc in the RG evolution. As
it must be, the dependence on the threshold scales is of
the neglected order O(a s

2). In fact the threshold ambi-
guity here is also of O(a s

2) in LLA, since g(0) is flavor
independent. It turns out that this dependence is also
very weak numerically, and we therefore set mc5mc and
mb5mb . Furthermore, it is a good approximation to ne-
glect the b threshold completely using an effective four-
flavor theory from mt down to mc . This can be achieved
by simply substituting mb→m t in Eq. (12.10).
The leading-order expression for h2 is given by the

first three factors on the rhs of Eq. (12.10). The fourth

factor represents the next-to-leading-order generaliza-
tion. Let us discuss now the most interesting and impor-
tant features of the NLO result for h2 exhibited in Eq.
(12.10).
(i) h2 is proportional to the initial value of the Wilson

coefficient function at m t5MW

S~x !5S0~x !1
as

4p
@S1~x !1BtS0~x !# , (12.15)

which has to be extracted from the box graphs in Fig.
4(e) and the corresponding gluon correction diagrams
after a proper factorization of long- and short-distance
contributions.
(ii) S(x) in Eq. (12.15) is similar to the functions

X(x) and Y(x) in Secs. XI.B.1 and XI.C.1, except that
S(x) is scheme dependent due to the renormalization
that is required for the operator Q . This scheme depen-
dence enters Eq. (12.15) through the scheme-dependent
constant Bt , given in the NDR scheme in Eq. (12.11).
This scheme dependence is cancelled in the combination
Bt2J5 by the two-loop anomalous dimension contained
in J5 . Likewise, the scheme dependence of Jf cancels in
the differences (Jf2Jf21), as is evident from the discus-
sion of Sec. III.F.3.
(iii) A very important point is the dependence on the

high-energy matching scale mt . This dependence enters
the NLO as(m t) correction in Eq. (12.10) in two distinct
ways: first as a term proportional to g(0), and, secondly,
in conjunction with gm0. The first of these terms cancels,
to O(as), the mt dependence present in the leading term
[as(m t)]

6/23. The second, on the other hand, leads to an
O(as)m t dependence of h2 . This is just the dependence
needed to cancel the mt ambiguity of the leading func-
tion S0(xt(m t)) in the product h2S0(xt), such that the
physical results become independent of mt to O(as).
From these observations it is obvious that one may in-
terpret mt in the first case as the initial scale of the RG
evolution and in the second case as the scale at which
the top-quark mass is defined. These two scales need not
necessarily have the same value. The important point is
that, to leading logarithmic accuracy, the mt dependence
of both h 2

LO(m t) and S0(xt(m t)) remains uncompen-
sated, leaving a disturbingly large uncertainty in the
short-distance calculation.
(iv) It is interesting to note that, in the limit mt@MW ,

the dependence on mt enters h2 as lnm t/mt , rather than
lnm t/MW . This feature provides a formal justification for
choosing mt=O(mt) instead of mt=O(MW). An explicit
expression for the large-mt limit in the similar case of
h2B may be found in Sec. XIII.
(v) Although at NLO the product h2S0(xt) depends

only very weakly on the precise value of mt as long as it
is of O(mt), the choice m t5mt is again convenient. With
this choice h2 becomes almost independent of the top
quark mass mt . By contrast, for m t5MW , say, h2 would
decrease with rising mt in order to compensate for the
increase of S0(xt(MW)) due to the use of a, for high mt ,
‘‘unnaturally’’ low scale MW .
(vi) As mentioned above the dependence of the Wil-

son coefficient on the low-energy scale m and the re-
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maining scheme dependence (J3) has been factored out
explicitly in Eq. (12.1). Therefore the QCD correction
factor h2 is by definition scale and scheme independent
on the lower end of the RG evolution.

C. The charm contribution—h1

The calculation of h1 beyond leading logarithmic or-
der has been presented in great detail by Herrlich and
Nierste (1994) and Herrlich (1994). Our task here will
be to briefly describe the basic procedure and to sum-
marize the main results.
In principle the charm contribution is similar in struc-

ture to the top contribution. However, since the quark
mass mc!MW , the charm degrees of freedom can no
longer be integrated out simultaneously with the W bo-
son, which would introduce large logarithmic corrections
;aslnMW/mc . To resum these logarithms one first con-
structs an effective theory at a scale O(MW), where the
W boson is removed. The relevant operators are subse-
quently renormalized down to scales mc=O(mc), where
the charm quark is then integrated out. After this step
only the operator Q [Eq. (12.2)] remains, and h1 is fi-
nally obtained as discussed in Sec. XII.A.
Let us briefly outline the procedure for the case at

hand. After integrating out the W , the effective Hamil-
tonian to first order in weak interactions, which is
needed for the charm contribution, can be written as

Hc
~1 !5

GF

&
(

q ,q85u ,c
Vq8s
* Vqd~C1Q1

q8q1C2Q2
q8q!,

(12.16)

where we have introduced the familiar DS=1 four-quark
operators in the multiplicatively renormalizable basis

Q6
q8q5 1

2 @~ s̄ iqi8!V2A~ q̄ jdj!V2A

6~ s̄ iqj8!V2A~ q̄ jdi!V2A# . (12.17)

We remark that no penguin operators appear in the
present case due to GIM cancellation between charm-
quark and up-quark contributions.

DS=2 transitions occur to second order in the effec-
tive interaction [Eq. (12.16)]. The DS=2 effective Hamil-
tonian is therefore given by

Heff,c
DS5252

i

2 E d4x T(Hc
~1 !~x !Hc

~1 !~0 !). (12.18)

Inserting Eq. (12.16) into Eq. (12.18), keeping only
pieces that can contribute to the charm box diagrams
and taking the GIM constraints into account, one ob-
tains

Heff,c
DS525

GF
2

2
lc
2 (
i ,j51 ,2

CiCjOij , (12.19)

where

Oij52
i

2 E d4x T@Qi
cc~x !Qj

cc~0 !2Qi
uc~x !Qj

cu~0 !

2Qi
cu~x !Qj

uc~0 !1Qi
uu~x !Qj

uu~0 !# . (12.20)

From the derivation of Eq. (12.19) it is evident that the
Wilson coefficients of the bilocal operators Oij are sim-
ply given by the product CiCj of the coefficients pertain-
ing to the local operators Qi ,Qj . The evolution of the
Ci from MW down to mc proceeds in the standard fash-
ion and is described by equations of the type shown in
Eq. (12.8) with the appropriate anomalous dimensions
inserted. In the following we list the required ingredi-
ents. The Wilson coefficients at scale m=MW are

C6~MW!511
as~MW!

4p
B6 , (12.21)

B65611
N71
2N

~NDR!. (12.22)

The two-loop anomalous dimensions are

g65
as

4p
g6

~0 !1S as

4p D 2g6
~1 ! , (12.23)

g6
~0 !566

N71
N

,

g6
~1 !5

N71
2N F2216

57
N

7
19
3
N6

4
3
f G . ~NDR!

(12.24)

For i ,j=+,− we introduce

di
~f !5

g i
~0 !

2b0
, Ji

~f !5
di

~f !

b0
b12

g i
~1 !

2b0
(12.25)

and

dij
~f !5di

~f !1dj
~f ! , Jij

~f !5Ji
~f !1Jj

~f ! . (12.26)

The essential step consists in matching Eq. (12.19) onto
an effective theory without charm, which will contain
the single operator Q5( s̄d)V2A( s̄d)V2A . In NLO this
matching has to be performed to O(as). At a normaliza-
tion scale mc it reads explicitly, expressed in terms of
operator matrix elements (i ,j=+,−),

^Oij&5
mc

2~mc!

8p2 F t ij1
as~mc!

4p S k ijln
mc
2

mc
2 1b ijD G ^Q&,

(12.27)

t115
N13
4

, t125t2152
N21
4

, t225
N21
4

,

(12.28)

k1153~N21 !t11 , k125k2153~N11 !t12 ,

k2253~N13 !t22 . (12.29)

The bij are scheme dependent. In the NDR scheme they
are given by (Herrlich and Nierste, 1994)
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b115~12N !SN226
12N

p213
2N212N113

4N D ,
b125b215~12N !S 2N212N22

12N
p21

3N2113
4N D ,

b225~12N !SN224N12
12N

p22
3N2110N113

4N D .
(12.30)

Now, starting from Eq. (12.19), evolving Ci from MW
down to mc , integrating out charm at mc with the help of
Eq. (12.27), evolving the resulting coefficient according
to Eq. (12.8), and recalling the definition of h1 in Eq.
(12.1), one finally obtains

h15@as~mc!#
d3 (
i ,j51 ,2

S as~mb!

as~mc!
D dij~4 !S as~MW!

as~mb! D dij~5 !

3F t ij1
as~mc!

4p S k ijln
mc
2

mc
2 1t ij~Jij

~4 !2J3!1b ijD
1t ijS as~mb!

4p
~Jij

~5 !2Jij
~4 !!1

as~MW!

4p

3~Bi1Bj2Jij
~5 !! D G . (12.31)

We conclude this section with a discussion of a few im-
portant issues concerning the structure of this formula.
(i) Equation (12.31), as first obtained by Herrlich and

Nierste (1994), represents the next-to-leading-order gen-
eralization of the leading-logarithmic-order expression
for h1 given by Gilman and Wise (1983). The latter fol-
lows as a special case of Eq. (12.31) when the O(as)
correction terms are put to zero.
(ii) Equation (12.31) is independent of the renormal-

ization scheme up to terms of the neglected order
O(a s

2). We have written h1 in a form in which this
scheme independence becomes manifest. While the vari-
ous J terms, Bi , and bij in Eq. (12.31) all depend on the
renormalization scheme when considered separately, the
combinations t ij(J ij

(4)2J3)1b ij , J ij
(5)2J ij

(4), and
Bi1Bj2J ij

(5) are scheme invariant.
(iii) The product h1(mc)xc(mc) is independent of mc

to the considered order,

d

d lnmc
h1~mc!xc~mc!5O~as

2!, (12.32)

in accordance with the requirements of renormalization-
group invariance. The cancellation of the mc dependence
to O(as) is related to the presence of an explicitly
mc-dependent term at NLO in Eq. (12.31) and is guar-
anteed through the identity

k ij5t ijS gm01
g~0 !

2
2

g i
~0 !1g j

~0 !

2 D , (12.33)

which is easily verified using Eqs. (3.17), (12.7), (12.24),
(12.28), and (12.29).
(iv) Also the ambiguity in the scale mW , at whichW is

integrated out, is reduced from O(as) to O(a s
2) when

going from leading to next to leading order. As men-
tioned above the dependence on the b-threshold scale
mb is O(a s

2) in NLLA as well as in LLA. Numerically the
dependence on mb is very small. Also the variation of
the result with the high-energy matching scale mW is con-
siderably weaker than the residual dependence on mc .
Therefore we have set mb5mb and mW5MW in Eq.
(12.31). In numerical analyses we will take the dominant
mc dependence as representative for the short-distance
scale ambiguity of h1 . The generalization to the case
mWÞMW is discussed by Herrlich and Nierste (1994).
The more general case mbÞmb is trivially obtained by
substituting mb→mb in Eq. (12.31).
(v) Note that, due to the GIM structure of Oij , no

mixing under infinite renormalization occurs between
Oij and the local operator Q . This is related to the ab-
sence of the logarithm in the function S0(xc) in Eq.
(12.3).
It is instructive to compare the results obtained for h1

and h2 . Expanding Eq. (12.31) to first order in as , in this
way ‘‘switching off’’ the RG summations, we find

@as~m!#22/9S 11
as~m!

4p
J3Dh1

811
as

4p Fg~0 !

2 S ln m2

MW
2 1ln

m2

MW
2 211

2
9

p2D
1gm0S ln m2

m2 1
1
3 D G , (12.34)

where we have replaced mc→m and mc→m . In deriving
Eq. (12.34) besides (12.33) the following identities are
useful

(
i ,j51 ,2

t ij51, (
i ,j51 ,2

t ij
g i

~0 !1g j
~0 !

2
5g~0 !, (12.35)

(
i ,j51 ,2

t ij~Bi1Bj!52B1 . (12.36)

The same result [Eq. (12.34)] is obtained from h2 as well
if we set mc5mb5m t=m, mt5m in Eq. (12.10), and ex-
pand for m!MW . This exercise yields a useful cross-
check between the calculations for h1 and h2 . In addi-
tion it gives some further insight into the structure of the
QCD corrections to DS=2 box diagrams, establishing h1
and h2 as two different generalizations of the same as-
ymptotic limit [Eq. (12.34)].

D. The top-charm contribution—h3

To complete the description of the K02K̄0 effective
Hamiltonian we now turn to the mixed top-charm com-
ponent, defined by the contribution ;lcl t in Eq. (12.1),
and the associated QCD correction factor h3 . The short-
distance QCD effects have first been obtained within the
LLA by Gilman and Wise (1983). The calculation of h3
at next to leading order is due to the work of Herrlich
and Nierste (1995a, 1996) and Nierste (1995). As already
mentioned, the renormalization-group analysis neces-
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sary for h3 is more involved than in the cases of h1 and
h2 . The characteristic differences will become clear from
the following presentation.
We begin by writing down the relevant DS=1 Hamil-

tonian, obtained after integrating out W and top, which
provides the basis for the construction of the DS=2 ef-
fective Hamiltonian we want to derive. It is given by

Hct
~1 !5

GF

& S (
q ,q85u ,c

Vq8s
* Vqd (

i51,2
CiQi

q8q

2l t(
i53

6

CiQiD (12.37)

with

Q1
q8q5~ s̄ iqj8!V2A~ q̄ jdi!V2A ,

Q2
q8q5~ s̄ iqi8!V2A~ q̄ jdj!V2A (12.38)

and corresponds to the Hamiltonian [Eq. (6.5)] dis-
cussed in Sec. VI, except that we have included the
DC=1 components Q i

uc, Q i
cu, which contribute in the

analysis of h3 . In contrast to the simpler case of h1 pre-
sented in the previous section, now also the penguin op-
erators Qi , i=3,...,6 [Eq. (6.3)] have to be considered.
Being proportional to l t 5 Vts*Vtd , they will contribute
to the lcl t part of Eq. (12.1). We remark in this context
that, on the other hand, the penguin contribution to the
l t
2 sector is entirely negligible. Since only light quarks

are involved in Q3 ,. . . ,Q6 , the double penguin diagrams,
which would contribute to the l t

2 piece of the DS=2 am-
plitude, are suppressed by at least a factor of m b

2 /m t
2

compared with the dominant top-exchange effects dis-
cussed in Sec. XII.B.
At second order in Eq. (12.37) DS=2 transitions are

generated. Inserting Eq. (12.37) in an expression similar
to Eq. (12.18), eliminating lu by means of lu52lc2l t ,
and collecting the terms proportional to lcl t , we obtain
the top-charm component of the effective DS=2 Hamil-
tonian in the form

Heff,ct
DS525

GF
2

2
lcl t(

i56
F(
j51

6

CiCjQij1C7iQ7G ,
(12.39)

where

Qij52
i

2 E d4x T@2Qi
uu~x !Qj

uu~0 !2Qi
uc~x !Qj

cu~0 !

2Qi
cu~x !Qj

uc~0 !# (12.40)

for j=1,2 and

Qij52
i

2 E d4x T$@Qi
uu~x !2Qi

cc~x !#Qj~0 !

1Qj~x !@Qi
uu~0 !2Qi

cc~0 !#% (12.41)

for j=3, . . . ,6.
In defining these operators we have already omitted

bilocal products with flavor structure such as
( s̄uūd)•( s̄cc̄d), which cannot contribute to DS=2 box

diagrams. Furthermore, for the factor entering the bilo-
cal operators with index i , we have changed the basis
from Q1,2

q8q to Q6
q8q given in Eq. (12.17). In addition local

counterterms proportional to the DS=2 operator,

Q75
mc

2

g2
~ s̄d !V2A~ s̄d !V2A , (12.42)

have been added to Eq. (12.39). These are necessary
here because the bilocal operators can in general mix
into Q7 under infinite renormalization, a fact related to
the logarithm present in the leading term, −xclnxc , en-
tering S0(xc ,xt) in Eq. (12.5). This behavior is in con-
trast to the charm contribution, where the correspond-
ing function S0(xc)5xc does not contain a logarithmic
term, and consequently no local DS=2 counterterm is
necessary in Eq. (12.19). On the other hand, the situa-
tion here is analogous to the case of the charm contri-
bution to the effective Hamiltonian for K1→p1nn̄ in
Sec. XI.B, which similarly behaves as xclnxc in lowest
order and correspondingly requires a counterterm, as
displayed in Eqs. (11.21) and (11.35).
After integrating out top and W at the high-energy

matching scale mW=O(MW), the Wilson coefficients Cj ,
j=1, . . . ,6 of Eqs. (12.37) and (12.39) are given in the
NDR scheme by (see Sec. VI)

CW T~mW!5~0,1,0,0,0,0!1
as~mW!

4p S 6,22,2
2
9
,
2
3
,

2
2
9
,
2
3 D ln mW

MW
1

as~mW!

4p

3S 112 ,2
11
6
,2

1
6
Ẽ0~xt!,

1
2
Ẽ0~xt!,

2
1
6
Ẽ0~xt!,

1
2
Ẽ0~xt! D , (12.43)

and C65C26C1 . Ẽ0(xt) can be found in Eq. (6.16).
The coefficient of Q7 is obtained through matching the
DS=2 matrix element of the effective theory [Eq. (12.39)
to the corresponding full-theory matrix element, which,
in the required approximation (xc!1), is given by [com-
pare to Eq. (12.1)]

A full,ct5
GF

2

16p2 MW
2 2lcl tS0~xc ,xt!^Q&. (12.44)

At next to leading order this matching has to be done to
one loop, including finite parts. Note that here the loop
effect is due to electroweak interactions and QCD does
not contribute explicitly in this step. The matching con-
dition determines the sum C7[C711C72, which, in the
NDR scheme and with the conventional definition of
evanescent operators (Buras and Weisz, 1990) [see also
(Herrlich and Nierste, 1995a, 1996; Nierste, 1995)], is
given by
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C7~mW!5
as~mW!

4p F28 ln
mW

MW
14 lnxt2

3xt
12xt

2
3xt

2lnxt
~12xt!

2 12G (12.45)

at next to leading order. In LLA one simply would have
C7(mW)=0. The distribution of C7 among C7+ and C7− is
arbitrary and has no impact on the physics. For example,
we may choose

C715C7 , C7250. (12.46)

Having determined the initial values of the Wilson coef-
ficients

CW ~6 !T[~C6C1 ,. . . ,C6C6 ,C76! (12.47)

at a scale mW , CW (6)(mW), the next step consists in solv-
ing the RG equations to determine CW (6)(mc) at the
charm mass scale mc=O(mc). The renormalization-
group evolution of CW (6) is given by

d

d lnm
CW ~6 !~m!5gct

~6 !TCW ~6 !~m!, (12.48)

gct
~6 !5S gs1g6•1

0W T
gW 67

g77
D . (12.49)

Here gs is the standard 636 anomalous-dimension ma-
trix for the DS=1 effective Hamiltonian including QCD
penguins from Eqs. (6.23), (6.25), and (6.26) (NDR
scheme). Similarly, g6 are the anomalous dimensions of
the current-current operators. They can be obtained as
g6=gs ,116gs ,12 and are also given in Sec. V. g77 repre-
sents the anomalous dimension of Q7 [Eq. (12.42)] and
reads

g775g112gm12b~g !/g5
as

4p
g77

~0 !1S as

4p D 2g77
~1 ! .

(12.50)

For N=3 and in NDR

g77
~0 !5221

4
3
f , g77

~1 !5
175
3

1
152
9

f . (12.51)

Finally gW 67, the vector of anomalous dimensions ex-
pressing the mixing of the bilocal operators Q6i (i
=1, . . . ,6) into Q7 , is given by

gW 675
as

4p
gW 67

~0 !1S as

4p D 2gW 67
~1 ! , (12.52)

where

gW 17
~0 !T5~216,28,232,216,32,16!, (12.53)

gW 27
~0 !T5~8,0,16,0,216,0!, (12.54)

gW 17
~1 !T5S 2212,228,2424,256,

1064
3

,
832
3 D , (12.55)

gW 27
~1 !T5S 276,292,552,2184,2

1288
3

,0D . (12.56)

The scheme-dependent numbers in gW 67
(1) are given here

in the NDR scheme with the conventional treatment of

evanescent operators as described by Buras and Weisz
(1990), Herrlich and Nierste (1995a), and Nierste (1995).
In order to solve the RG equation (12.48) it is useful
(Herrlich and Nierste, 1995a, 1996; Nierste, 1995) to de-
fine the eight-dimensional vector [CT5(C1 ,. . . ,C6)]

DW T5~CW T,C71 /C1 ,C72 /C2!, (12.57)

which obeys

d

d lnm
DW 5gct

TDW , (12.58)

where

gct5S gs gW 17 gW 27

0WT g772g1 0

0WT 0 g772g2

D . (12.59)

The solution of Eq. (12.58) proceeds in the standard
fashion as described in Sec. III.F.1 and has the form

DW ~mc!5U4~mc ,mb!M~mb!U5~mb ,mW!DW ~mW!,
(12.60)

similar to Eq. (3.105). The b-quark-threshold matching
matrix M(mb) is an 838 matrix whose 636 submatrix
Mij , i ,j=1, . . . ,6 is identical to the matrixM described in
Sec. VI.D. The remaining elements areM775M88=1 and
zero otherwise. From Eq. (12.60) the Wilson coefficients
Ci(mc) are obtained as

Ci~mc!5Di~mc!, i51,.. . ,6,

C7~mc!5C1~mc!D7~mc!1C2~mc!D8~mc!. (12.61)

The final step in the calculation of h3 consists of re-
moving the charm degrees of freedom from the effective
theory. Without charm the effective short-distance
Hamiltonian corresponding to Eq. (12.39) can be written
as

Heff,ct
DS525

GF
2

2
lcl tCctQ . (12.62)

The matching condition is obtained by equating the ma-
trix elements of Eqs. (12.39) and (12.62), evaluated at a
scale mc=O(mc). At next to leading order one needs the
finite parts of the matrix elements of Qij , which can be
written in the form

^Qij~mc!&5
mc

2~mc!

8p2 rij~mc!^Q&, (12.63)

where, in the renormalization scheme described after
Eq. (12.56), the rij are given by

rij~mc!5H ~4 ln~mc /mc!21 !t ij ,
~8 ln~mc /mc!24 !t ij ,
~28 ln~mc /mc!14 !t ij ,

j51,2,
j53,4,
j55,6,

(12.64)

t615t635t655~163 !/2, (12.65)

t1j51, t2j50, j even. (12.66)

Using Eq. (12.63), the matching condition at mc between
Eqs. (12.39) and (12.62) implies
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Cct~mc!5 (
i56

(
j51

6

Ci~mc!Cj~mc!
mc

2~mc!

8p2 rij~mc!

1C7~mc!
mc

2~mc!

4pas~mc!
. (12.67)

Evolving Cct from mc to m<mc in a three-flavor theory,
using Eq. (12.8), and comparing Eqs. (12.62) and (12.1),
we obtain the final result

h35
xc~mc!

S0~xc~mc!,xt~mW!!
as~mc!

2/9

3F p

as~mc!
C7~mc!S 12

as~mc!

4p
J3D

1
1
2 (

i56
(
j51

6

Ci~mc!Cj~mc!rij~mc!G . (12.68)

One may convince oneself that h3S0(xc ,xt) is indepen-
dent of the renormalization scales, in particular of mc ,
up to terms of O(xca s

2/9as).
Furthermore, using the formulas given in this section,

it is easy to see from the explicit expression [Eq. (12.68)]
that h3a s

22/9→1 in the limit as→0, as should indeed be
the case. The next-to-leading-order formula [Eq.
(12.68)] for h3 , first calculated by Herrlich and Nierste
(1995a, 1996) and Nierste (1995), provides the generali-
zation of the leading-logarithmic-order result obtained
by Gilman and Wise (1983). It is instructive to compare
Eq. (12.68) with the leading-order approximation, which
can be written as

h3
LO5as~mc!

2/9
2pC7

LO~mc!

as~mc!lnxc
, (12.69)

using the notation of Eq. (12.68). C 7
LO denotes the coef-

ficient C7 , restricted to the leading logarithmic approxi-
mation. Equation (12.69), derived here as a special case
of Eq. (12.68), is equivalent to the result obtained by
Gilman and Wise (1983).
If penguin operators and the b-quark threshold in the

RG evolution are neglected, it is possible to write down
in closed form a relatively simple, explicit expression for
h3 . Using a four-flavor effective theory for the evolution
from the W scale down to the charm scale, we find in
this approximation

h35
xc~mc!

S0~xc~mc!,xt!
as~mc!

2/9F p

as~mc!
S 2

18
7
K11

2
12
11

K121
6
29

K221
7716
2233

K7D
3S 12

as~mc!

4p

307
162D 1S ln mc

mc
2
1
4 D

3~3K1122K121K22!1
262497
35000

K11

2
123
625

K121
1108657
1305000

K222
277133
50750

K71K

3S 2
21093
8750

K111
13331
13750

K122
10181
18125

K22

2
1731104
2512125

K7D
1S lnxt2 3xt

4~12xt!
2

3xt
2lnxt

4~12xt!
2 1

1
2 DKK7G ,

(12.70)

where

K115K12/25, K125K26/25, K225K224/25,
(12.71)

K75K1/5, K5
as~MW!

as~mc!
. (12.72)

Here we have set mW5MW . Equation (12.70) represents
the next-to-leading-order generalization of an approxi-
mate formula for the leading log h3 , also omitting gluon
penguins, that has been first given by Gilman and Wise
(1983). The analytical expression for h3 in Eq. (12.70)
provides an excellent approximation, deviating generally
by less than 1% from the full result.

E. Numerical results

1. General remarks

After presenting the theoretical aspects of the short-
distance QCD factors h1 , h2 , and h3 in the previous sec-
tions, we shall now turn to a discussion of their numeri-
cal values. However, before considering explicit
numbers, we would like to make a few general remarks.
First of all, it is important to recall that in the matrix
element ^K̄0uHeff

DS52uK0& [see Eq. (12.1)], only the com-
plete products

S0i•h i@as~m!#22/9F11
as~m!

4p
J3G^K̄0uQ~m!uK0&

[Ci~m!^K̄0uQ~m!uK0& (12.73)

are physically relevant. Here S0i denote the appropriate
quark-mass-dependent functions S0 for the three contri-
butions (i=1,2,3) in Eq. (12.1). None of the factors in Eq.
(12.73) is physically meaningful by itself. In particular,
there is some arbitrariness in splitting the product [Eq.
(12.73)] into the short-distance part and the matrix ele-
ment of Q [Eq. (12.2)] containing long-distance contri-
butions. This arbitrariness has, of course, no impact on
the physical result. However, it is essential to employ a
definition for the operator matrix element that is consis-
tent with the short-distance QCD factor used. Conven-
tionally, the matrix element ^K̄0uQuK0& is expressed in
terms of the so-called bag parameter BK(m) defined
through

^K̄0uQ~m!uK0&[
8
3
FK
2 mK

2 BK~m!, (12.74)
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where mK is the kaon mass and FK=160 MeV is the
kaon decay constant. In principle, one could just use the
scale- and scheme-dependent bag factor BK(m) along
with the coefficient functions Ci(m) as defined by Eq.
(12.73), evaluated at the same scale and in the same
renormalization scheme. However, it has become cus-
tomary to define the short-distance QCD correction fac-
tors hi by splitting off from the Wilson coefficient Ci(m)
the factor [as(m)]

22/9[11as(m)/(4p)J3], which carries
the dependence on the renormalization scheme and the
scale m. This factor is then attributed to the matrix ele-
ment of Q , formally cancelling its scale and scheme de-
pendence. Accordingly, one defines a renormalization
scale and scheme-invariant bag parameter BK [cf. Eqs.
(12.73) and (12.74)]

BK[@as~m!#22/9F11
as~m!

4p
J3GBK~m!. (12.75)

If the hi as described in this review are employed to
describe the short-distance QCD corrections, Eq.
(12.75) is the consistent definition to be used for the
kaon bag parameter.
Eventually the quantity BK(m) should be calculated

within lattice QCD. At present, the analysis of Sharpe
(1994), for example, gives a central value of
BK(2 GeV)NDR=0.616, with a still sizable uncertainty.
For a recent review see also Soni (1995). This result al-
ready incorporates the lattice-continuum theory match-
ing and refers to the usual NDR scheme. It is clear that
the NLO calculation of short-distance QCD effects is
essential for consistency with this matching and for a
proper treatment of the scheme dependence. Both re-
quire O(as) corrections, which go beyond the LLA.
To convert to the scheme-invariant parameter BK ,

one uses Eq. (12.75) with the NDR-scheme value for
J3=307/162 to obtain BK=0.84. Note that the factor in-
volving J3 , which appears at NLO, increases the rhs by
'4.5%. The leading factor a s

22/9 is about 1.31. Of
course, the fact that presently there is still a rather large
uncertainty in the calculation of the hadronic matrix el-
ement is somewhat forgiving, regarding the precise defi-
nition of BK . However, as the lattice calculations im-
prove further and the errors decrease, the issue of a
consistent definition of the hi and BK will become cru-
cial, and it is important to keep Eq. (12.75) in mind.
Let us next add a side remark concerning the separa-

tion of the full amplitude into the formally RG-invariant
factors hi and BK . This separation is essentially unique,
up to trivial constant factors, if the evolution from the
charm scale mc down to a ‘‘hadronic’’ scale m<mc is writ-
ten in the resummed form as shown in Eq. (12.8) and
one requires that all factors depending on the scale m
are absorbed into the matrix element. On the other
hand, the hadronic scale m=O(1 GeV) is not really much
different from the charm scale mc=O(mc), so that the
logarithms lnm/mc are not very large. Therefore one
could argue that it is not necessary to resum those loga-
rithms. In this case the first two factors on the rhs of Eq.
(12.8) could be expanded to first order in as and the
amplitude [Eq. (12.73)] would be

Ci~mc!S 11
as

p
ln

m

mc
D ^K̄0uQ~m!uK0&. (12.76)

From this expression it is obvious that the separation of
the physical amplitude into scheme-invariant short-
distance factors and a scheme-invariant matrix element
is in general not unique. This illustrates once more the
ambiguity existing for theoretical concepts such as op-
erator matrix elements or QCD correction factors,
which only cancels in physical quantities.
For definiteness, we will stick to the RG improved

form for the evolution between mc and m and the defi-
nitions for hi and BK that we have discussed in detail
above.

2. Results for h1 , h2 , and h3

We are now ready to quote numerical results for the
short-distance QCD corrections hi at next to leading or-
der and to compare them with the leading-order ap-
proximation. The factors h1 and h3 have been analyzed
in detail by Herrlich and Nierste (1994) and Nierste
(1995). Here we summarize briefly their main results.
Using the central parameter values mc(mc)=1.3 GeV,
LMS
(4) =0.325 GeV, mt(mt)=170 GeV, and fixing the scales

as mc=mc and mW=MW for h1 , mW=130 GeV for h3 , one
obtains at NLO

h151.38, h350.47. (12.77)

This is to be compared with the LO values correspond-
ing to the same input, h1

LO=1.12 and h3
LO=0.35. We note

that the next-to-leading-order corrections are sizable,
typically 20%–30%, but still perturbative. The numbers
above may be compared with the leading-logarithmic-
order values h1

LO=0.85 and h3
LO=0.36 that have been pre-

viously used in the literature, based on the choice
mc=1.4 GeV, LQCD=0.2 GeV, and mW5MW . The con-
siderable difference between the two LO values for h1
mainly reflects the large dependence of h1 on LQCD .
In fact, when the QCD scale is allowed to vary within

LMS
(4) =(0.32560.110) GeV, the value for h1 (NLO)

changes by ;635%. The leading-order result h1
LO ap-

pears to be slightly less sensitive to LQCD . However, in
this approximation the relation of LQCD to LMS

(4) is not
well defined, which introduces an additional source of
uncertainty when working to leading logarithmic accu-
racy.
The situation is much more favorable in the case of

h3 , where the sensitivity to LMS
(4) is quite small, ;63%.

Likewise the dependence on the charm-quark mass is
very small for both h1 and h3 . Using mc=(1.360.05)
GeV and the central value for LMS

(4) , it is about 64% for
h1 and entirely negligible for h3 .
Finally, there are the purely theoretical uncertainties

due to the renormalization scales. They are dominated
by the ambiguity related to mc . The products
S0(xc(mc))·h1(mc) and S0(xc(mc),xt)·h3(mc) are indepen-
dent of mc up to terms of the neglected order in RG-
improved perturbation theory. In the case of
S0(xc(mc))·h1(mc) [S0(xc(mc), xt)·h3 (mc)] the remaining
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sensitivity to mc typically amounts to 615% [67%] at
NLO. These scale dependences are somewhat reduced
compared to the leading-order calculation, where the
corresponding uncertainty is around 630% [610%].
To summarize, sizable uncertainties are still associ-

ated with the number for the QCD factor h1 , whose
central value is found to be h1=1.38 (Herrlich and Nier-
ste, 1994). On the other hand, the prediction for h3 ap-
pears to be quite stable and can be reliably determined
as h3=0.4760.03 (Herrlich and Nierste, 1995a, Nierste,
1995). One should emphasize, however, that these con-
clusions have their firm basis only within the framework
of a complete NLO analysis, as the one performed by
Herrlich and Nierste (1994) and Nierste (1995). Fortu-
nately the quantity h1 , for which a high precision seems
difficult to achieve, plays a less important role in the
phenomenology of indirect CP violation.
Finally, we turn to a brief discussion of h2 (Buras

et al., 1990), representing the short-distance QCD effects
of the top-quark contribution. For central parameter
values, in particular LMS

(4) =0.325 GeV and mt(mt)=170
GeV, and for m t5mt(mt) , the numerical value is

h250.574. (12.78)

Varying the QCD scale within LMS
(4) =(0.32560.110) GeV

results in a 60.5% change in h2 .
The dependence on mt(mt) is even smaller, only

60.3% for mt(mt)=(170615) GeV. It is worthwhile to
compare the NLO results with the LLA. Using the same
input as before yields a central value of h2

LO=0.612,
about 7% larger than the NLO result [Eq. (12.78)].
However, what is even more important than the differ-
ence in central values, is the quite striking reduction of
scale uncertainty when going from the LLA to the full
NLO treatment. Recall that the mt dependence in h2 has
to cancel the scale dependence of the function
S0(xt(m t)). Allowing for a typical variation of the renor-
malization scale mt=O(mt) from 100 GeV to 300 GeV
results in a sizable change in S0(xt(m t))h2

LO of 69%. In
fact, in leading order, the mt dependence of h2 even has
the wrong sign, reinforcing the scale dependence present
in S0(xt(m t)) instead of reducing it. The large sensitivity
to the unphysical parameter mt is essentially eliminated
(to 60.4%) for h2S0(xt) at NLO, a quite remarkable
improvement of the theoretical accuracy. The situation
here is similar to the case of the top-quark-dominated
rare K and B decays discussed in Secs. XI, XXIV, and
XXVI. For a further illustration of the reduction in scale
uncertainty, see the discussion of the analogous case of
h2B in Sec. XIII.B.
The dependence of h2 on the charm and bottom

threshold scales, mc=O(mc) and mb=O(mb), is also ex-
tremely weak. Taking 1 GeV<mc<3 GeV and 3
GeV<mb<9 GeV results in a variation of h2 by merely
60.26% and 60.06%, respectively.
In summary, the NLO result for h2S0(xt) is, by con-

trast to the LLA, essentially free from theoretical uncer-
tainties. Furthermore, h2 is also rather insensitive to the
input parameters LMS and mt . The top contribution
plays the dominant role for indirect CP violation in the

neutral kaon system. The considerable improvement in
the theoretical analysis of the short-distance QCD factor
h2 brought about by the next-to-leading-order calcula-
tion is therefore particularly satisfying.

XIII. THE EFFECTIVE HAMILTONIAN FOR B0-B̄0 MIXING

A. General structure

Due to the particular hierarchy of the CKM matrix
elements, only the top sector can contribute significantly
to B0-B̄0 mixing. The charm sector and the mixed top-
charm contributions are entirely negligible here, in con-
trast to the K0-K̄0 case, which considerably simplifies
the analysis.
Referring to the earlier presentation of the top sector

for DS=2 transitions in Sec. XII.B, we can immediately
write down the only effective DB=2 Hamiltonian. Per-
forming the RG evolution down to scales mb=O(mb)
and making the necessary replacements (s→b), we get,
in analogy to Eq. (12.1) (Buras et al., 1990)

Heff
DB525

GF
2

16p2 MW
2 ~Vtb* Vtd!2h2BS0~xt!

3@as~mb!#26/23F11
as~mb!

4p
J5GQ1H.c.,

(13.1)

where here

Q5~ b̄d !V2A~ b̄d !V2A (13.2)

and

h2B5@as~m t!#
6/23F11

as~m t!

4p S S1~xt!S0~xt!
1Bt2J5

1
g~0 !

2
ln

m t
2

MW
2 1gm0

] lnS0~xt!
] lnxt

ln
m t
2

MW
2 D G .

(13.3)

The definitions of the various quantities in Eq. (13.3)
can be found in Sec. XII.B. Several important aspects of
h2 in the kaon system have also been discussed in this
section. Similar comments apply to the present case of
h2B. Here we would still like to supplement this discus-
sion by writing down the formula for h2B in the limiting
case mt@MW ,

h2B5@as~m t!#
6/23H 11

as~m t!

4p Fg~0 !

2
ln

m t
2

mt
2 1gm0ln

m t
2

mt
2

1112
20
9

p21Bt2J51OSMW
2

mt
2 D G J . (13.4)

This expression clarifies the structure of the RG evolu-
tion in the limit mt@MW . It also suggests that the renor-
malization scale is most naturally taken to be mt=O(mt)
rather than mt=O(MW) both in the definition of the top-
quark mass and as the initial scale of the RG evolution.
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Equation (13.4) also holds, with obvious modifications,
for the h2 factor in the kaon system, which has been
discussed in Sec. XII.B.
We finally mention that in the literature the

mb-dependent factors in Eq. (13.1) are sometimes not
attributed to the matrix elements of Q , as implied by
Eq. (13.1), but absorbed into the definition of the QCD
correction factor

h̄2B5h2B@as~mb!#26/23F11
as~mb!

4p
J5G . (13.5)

Whichever definition is employed, it is important to re-
member this difference and to evaluate the hadronic
matrix element consistently. Note that, in contrast to
h2B, h̄2B is scale and scheme dependent.

B. Numerical results

The correction factor h2B describes the short-distance
QCD effects in the theoretical expression for B0-B̄0

mixing. Due to the arbitrariness that exists in dividing
the physical amplitude into a short-distance contribution
and a hadronic matrix element, the short-distance QCD
factor is strictly speaking an unphysical quantity and
hence definition dependent. The B factor, parametrizing
the hadronic matrix element, has to match the conven-
tion used for h2B. With the definition of h2B employed
in this article and given explicitly in the previous section,
the appropriate B factor to be used is the so-called

scheme-independent bag parameter BB as defined in
Eq. (18.18), where m=mb=O(mb). We remark that the
factor h2B is identical for Bd-B̄d and Bs-B̄s mixing. The
effects of SU(3) symmetry breaking enter only the had-
ronic matrix elements. This feature is a consequence of
the factorization of short-distance and long-distance
contributions inherent to the operator product expan-
sion. For further comments, see also the discussion of
the analogous case of short-distance QCD factors in the
neutral kaon system in Sec. XII.E.1.
In the following we summarize the main results of a

numerical analysis of h2B. The factor h2B is analogous to
h2 , which enters the top contribution to K0-K̄0 mixing,
and both quantities share many important features.
The value of h2B for LMS

(4) =0.325 GeV, mt(mt)=170
GeV, and with mt set equal to mt(mt) is, at NLO,

h2B50.551. (13.6)

This can be compared with h2B
LO 5 0.580, obtained with

the same input in the leading logarithmic approxima-
tion. In the latter case the product h2B

LO(m t) • S(xt(m t)) is,
however, affected by a residual scale ambiguity of 69%
(for 100 GeV<mt<300 GeV). This uncertainty is re-
duced to the negligible amount of 60.3% in the com-
plete NLO expression of h2B(m t)•S(xt(m t)), corre-
sponding to an increase in accuracy by a factor of 25.
The sensitivity to the unphysical scale mt in leading and
next to leading order is illustrated in Fig. 9.
In addition h2B is also very stable against changes in

FIG. 9. Scale mt dependence of h2B(m t)S0(xt(m t)) in leading order and next to leading order. The quantity h2B(m t)S0(xt(m t))
enters the theoretical expression for DmB , describing B

0-B̄0 mixing. It is independent of the precise value of the renormalization
scale mt up to terms of the neglected order in as . The remaining sensitivity represents an unavoidable theoretical uncertainty. This
ambiguity is shown here for the leading-order (dashed) and the next-to-leading-order calculation (solid).
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the input parameters. With LMS
(4) =(0.32560.110) GeV

and mt(mt)=(170615) GeV h2B varies by 61.3% and
60.3%, respectively.
It is clear from this discussion that the short-distance

QCD effects in B0-B̄0 mixing are very well under con-
trol, once NLO corrections have been properly included,
and the remaining uncertainties are extremely small.
The effective Hamiltonian given in Eq. (13.1) therefore
provides a solid foundation for the incorporation of non-
perturbative effects, to be determined from lattice gauge
theory, and for further phenomenological investigations
related to B0-B̄0 mixing phenomena.

XIV. PENGUIN BOX EXPANSION FOR FLAVOR
CHANGING NEUTRAL CURRENT PROCESSES

An important virtue of OPE and RG is that, with
mt.MW , the dependence of weak decays on the top-
quark mass is very elegantly isolated. It resides only in
the initial conditions for the Wilson coefficients at scale
m'MW , i.e., in Ci(MW). A quick look at the initial con-
ditions in the previous sections reveals the important
fact that the leading mt dependence in all decays consid-
ered is represented universally by the mt-dependent
functions that result from exact calculations of the rel-
evant penguin and box diagrams with internal top-quark
exchanges. These are the functions

S0~xt!, B0~xt!, C0~xt!, D0~xt!,

E0~xt!, D08~xt!, E08~xt!, (14.1)

for which explicit expressions are given in Eqs. (12.4),
(7.13)–(7.15), (6.15), (9.12), and (9.13), respectively. In
certain decays some of these functions do not appear
because the corresponding penguin or box diagram does
not contribute to the initial conditions. However, the
function C0(xt) resulting from the Z0 penguin diagram
enters all DF=1 decays except B→Xsg . Having a qua-
dratic dependence on mt , this function is responsible for
the dominant mt dependence of these decays. Since the
nonleading mt dependence of C0(xt) is gauge depen-
dent, C0(xt) is always accompanied by B0(xt) or D0(xt)
in such a way that this dependence cancels. For this rea-
son it is useful to replace the gauge-dependent functions
B0(xt), C0(xt), and D0(xt) by the gauge-independent
set (Buchalla et al., 1991)

X0~xt!5C0~xt!24B0~xt!,

Y0~xt!5C0~xt!2B0~xt!,

Z0~xt!5C0~xt!1
1
4
D0~xt!, (14.2)

as we have already done at various places in this review.
The inclusion of NLO QCD corrections to B0-B̄0,
K0-K̄0 mixing, and the rare K and B decays of Sec. XI
requires the calculation of QCD corrections to penguin
and box diagrams in the full theory. This results in the
functions S̃(xt)5h2S0(xt), X(xt), and Y(xt), with the
latter two given in Eqs. (11.5) and (11.45), respectively.

It turns out, however, that, if the top quark mass is
defined as mt[m̄t(mt), one has

S̃~xt!5h2S0~xt!, X~xt!5hXX0~xt!,

Y~xt!5hYY0~xt! (14.3)

with h2 , hX , and hY almost independent of mt . Numeri-
cal values of hX and hY are given in the phenomenologi-
cal sections.
With this definition of mt the basic mt-dependent

functions listed in Eqs. (14.1) and (14.2) represent the
mt dependence of weak decays at the NLO level to a
good approximation. It should be remarked that the
QCD corrections to D0 , E0 , D08 , and E08 have not been
calculated yet. They would, however, only be required
for even higher-order corrections (NNLO) in the RG-
improved perturbation theory as far as D0 and E0 are
concerned. On the other hand, in the case of D08 and
E08 , which are relevant for the b→sg decay, these cor-
rections are necessary.
An inspection of the effective Hamiltonians derived in

the previous sections shows that, for B0-B̄0 mixing,
K0-K̄0 mixing, and the rare decays of Sec. XI, the mt
dependence of the effective Hamiltonian is explicitly
given in terms of the basic functions listed above. Due to
the one-step evolution from mt to mb , we have also pre-
sented the explicit mt dependence for B→Xsg and
B→Xse

1e2 decays. On the other hand, for K→pp and
KL→p0e1e2, where the renormalization-group evolu-
tion is very complicated, the mt dependence of a given
box or penguin diagram is distributed among various
Wilson coefficient functions. In other words the mt de-
pendence acquired at scale m'O(MW) is hidden in a
complicated numerical evaluation of U(m ,MW).
For phenomenological applications it is more elegant

and more convenient to have a formalism in which the
final formulas for all amplitudes are given explicitly in
terms of the basic mt-dependent functions discussed
above.
Buchalla et al. (1991) presented an approach that ac-

complishes this task. It gives the decay amplitudes as
linear combinations of the basic, universal, process-
independent but mt-dependent functions Fr(xt) of Eq.
(14.1) with corresponding coefficients Pr characteristic
for the decay under consideration. This approach,
termed ‘‘penguin box expansion’’ (PBE), has the follow-
ing general form

A~decay!5P0~decay!1(
r
Pr~decay!Fr~xt!, (14.4)

where the sum runs over all possible functions contrib-
uting to a given amplitude. In Eq. (14.4) we have sepa-
rated a mt-independent term P0 that summarizes contri-
butions stemming from internal quarks other than the
top, in particular the charm quark.
Many examples of PBE appear in this review. Several

decays or transitions depend on only a single function
out of the complete set of Eq. (14.1). For completeness
we give here the correspondence between various pro-
cesses and the basic functions
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B0-B̄0 mixing S0~xt!

K→pnn̄ ,B→Knn̄ , X0~xt!

B→pnn̄

K→mm̄ , B→l l̄ Y0~xt!

KL→p0e1e2 Y0~xt!, Z0~xt!, E0~xt!

«8 X0~xt!, Y0~xt!, Z0~xt!, E0~xt!

B→Xsg D08~xt!, E08~xt!

B→Xse
1e2 Y0~xt!, Z0~xt!, E0~xt!,D08~xt!, E08~xt!

In Buchalla et al. (1991) an explicit transformation
from OPE to PBE has been made. This transformation
and the relation between these two expansions can be
very clearly seen on the basis of

A~P→F !5(
i ,k

^FuOk~m!uP&Ukj~m ,MW!Cj~MW!,

(14.5)

where Ukj(m ,MW) represents the renormalization-
group transformation from MW down to m. As we have
seen, OPE puts the last two factors in this formula to-
gether, in this way mixing the physics around MW with
all physical contributions down to very low energy
scales. On the other hand the PBE is realized by putting
the first two factors together and rewriting Cj(MW) in
terms of Eq. (14.1). This results in the expansion of Eq.
(14.4). Further technical details and the methods for the
evaluation of the coefficients Pr can be found in
Buchalla et al. (1991), where further virtues of PBE are
discussed.
Finally, we give approximate formulas having power-

like dependence on xt for the basic, gauge-independent
functions of PBE

S0~xt!50.784 xt
0.76, X0~xt!50.660 xt

0.575 ,

Y0~xt!50.315 xt
0.78 , Z0~xt!50.175 xt

0.93 ,

E0~xt!50.564 xt
20.51 , D08~xt!50.244 xt

0.30 ,

E08~xt!50.145 xt
0.19 . (14.6)

In the range 150 GeV<mt<200 GeV these approxima-
tions reproduce the exact expressions to an accuracy
better than 1%.

XV. HEAVY-QUARK EFFECTIVE THEORY BEYOND
LEADING LOGARITHMIC ORDER

A. General remarks

Since its advent in 1989, heavy-quark effective theory
(HQET) has developed into an elaborate and well-
established formalism, which provides a systematic
framework for the treatment of hadrons containing a
heavy quark. HQET represents a static approximation
for the heavy quark, covariantly formulated in the lan-
guage of an effective field theory. It allows one to ex-
tract the dependence of hadronic matrix elements on the
heavy-quark mass and to exploit the simplifications that
arise in QCD in the static limit.

There are several excellent reviews on this subject
(Georgi, 1991; Grinstein, 1991; Isgur and Wise, 1992;
Mannel, 1993; Neubert, 1994c) and we do not attempt
here to cover the details of this extended field. However,
we would like to emphasize the close parallels in the
general formalism employed to calculate perturbative
QCD effects for the effective weak Hamiltonians we
have been discussing in this review and in the context of
HQET. In particular we will concentrate on results that
have been obtained in HQET beyond the leading loga-
rithmic approximation in QCD perturbation theory.
Such calculations have been done mainly for bilinear
current operators involving heavy-quark fields, which
have important applications in semileptonic decays of
heavy hadrons. For the purpose of illustration we will
focus on the simplest case of heavy-light currents. Fur-
thermore, while existing reviews concentrate on semi-
leptonic decays and current operators, we will also in-
clude results obtained for nonleptonic transitions and
summarize the calculation of NLO QCD corrections to
B0-B̄0 mixing in HQET (Flynn et al., 1991; Giménez,
1993). These latter papers generalize the leading loga-
rithmic order results first obtained by Voloshin and Shif-
man (1987) and Politzer and Wise (1988a, 1988b).
Throughout this section we will restrict ourselves to

the leading order in HQET and not address the question
of 1/m corrections. For a discussion of this topic we refer
the reader to the literature, in particular the above-
mentioned review articles.

B. Basic concepts

Let us briefly recall the most important basic concepts
underlying the idea of HQET. The Lagrangian describ-
ing a quark field C with mass m and its QCD interac-
tions with gluons is given by

L5C̄iD” C2mC̄C , (15.1)

where Dm5]m2igTaA m
a is the gauge-covariant deriva-

tive. If C is a heavy quark, i.e., its mass is large com-
pared to the QCD scale, LQCD/m!1, it acts approxi-
mately like a static color source, and its QCD
interactions are simplified. A heavy quark inside a had-
ron moving with velocity v has approximately the same
velocity. Thus its momentum can be written as p5mv
1k , where k is a small residual momentum of the order
of LQCD and subject to changes of the same order
through soft QCD interactions. To implement this ap-
proximation, the quark field C is decomposed into

C~x !5e2imv•x@hv~x !1Hv~x !# (15.2)

with hv and Hv defined by

hv~x !5eimv•x
11v”
2

C~x !, (15.3)

Hv~x !5eimv•x
12v”
2

C~x !. (15.4)

To be specific we consider here the case of a hadron
containing a heavy quark, as opposed to a heavy anti-
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quark. In order to describe a heavy antiquark, the defi-
nitions given in Eqs. (15.3) and (15.4) are replaced by

hv
~2 !~x !5e2imv•x

12v”
2

C~x !, (15.5)

Hv
~2 !~x !5e2imv•x

11v”
2

C~x !. (15.6)

Consequently, for a heavy antiquark, one only needs to
substitute v→2v in the expressions given below.
In the rest frame of the heavy quark, hv and Hv cor-

respond to the upper and lower components of C, re-
spectively. In general, for m→`, hv and Hv represent
the ‘‘large’’ and ‘‘small’’ components of C. In fact, the
equations of motion of QCD imply that Hv is sup-
pressed by a factor LQCD/m in comparison to hv . The
inclusion of an explicit exponential factor exp(−imv•x)
in Eq. (15.2) ensures that the momentum associated
with the field hv is only a small residual momentum of
order LQCD .
Now an effective theory for hv is constructed by elimi-

nating the small component field Hv from explicitly ap-
pearing in the description of the heavy quark. On the
classical level this can be done by using the equations of
motion or, equivalently, by directly integrating out the
Hv degrees of freedom in the context of a path-integral
formulation (Mannel et al., 1992). The effective La-
grangian one obtains from Eq. (15.1) along these lines is
given by (D'

m5Dm2vmv•D)

Leff,tot5h̄viv•Dhv1h̄viD” '

1
iv•D12m2i«

iD” 'hv .

(15.7)

The first term in Eq. (15.7)

Leff5h̄v~ iv
m]m1gvmTaAm

a !hv (15.8)

represents the Lagrangian of HQET to lowest order in
1/m and will be sufficient for the present purposes. The
second, nonlocal contribution in Eq. (15.7) can be ex-
panded into a series of local, higher-dimension opera-
tors carrying coefficients with increasing powers of 1/m .
To first order it yields the correction due to the residual
heavy-quark kinetic energy and the chromomagnetic in-
teraction term, which couples the heavy-quark spin to
the gluon field.
From Eq. (15.8) one can obtain the Feynman rules of

HQET, the propagator of the effective field hv

i

v•k
11v”
2

(15.9)

and the h̄v-hv-gluon vertex, igvmTa. The explicit factor
(1+v” )/2 in Eq. (15.9) arises because the effective field hv
is a constrained spinor, satisfying v”hv[hv , as is obvious
from Eq. (15.3). The velocity vm is a constant in the
effective theory and plays the role of a label for the
effective field hv . In principle, a different field hv has to
be considered for every velocity v . The Lagrangian in
Eq. (15.8) exhibits the crucial features of HQET: the
quark-gluon coupling is independent of the quark’s spin

degrees of freedom, and the Lagrangian is independent
of the heavy-quark flavor, since the heavy quark mass
has been eliminated. This observation forms the basis
for the spin-flavor symmetry of HQET (Isgur and Wise,
1989, 1990), which gives rise to important simplifications
in the strong interactions of heavy quarks and allows
one to establish relations among the form factors of dif-
ferent heavy-hadron matrix elements. The heavy-quark
symmetries are broken by 1/m contributions as well as
radiative corrections.
So far the discussion has been limited to the QCD

interactions of the heavy quark. Weak interactions in-
troduce new operators into the theory, which may be
current operators, bilinear in quark fields, or four-quark
operators, which are relevant for semileptonic and non-
leptonic transitions, respectively. Such operators form
the basic ingredients to be studied in weak decay phe-
nomenology. They can as well be expanded in powers of
1/m and incorporated into the framework of HQET. For
example, a heavy-light current operator q̄GC (evaluated
at the origin, x=0) can be written, using Eq. (15.2), as

q̄GC5q̄Ghv1O~1/m ! (15.10)

to lowest order in HQET.
Up to now we have restricted the discussion to the

classical level. In addition, of course, quantum radiative
corrections have to be included. They will, for example,
modify relations such as Eq. (15.10). Technically their
effects are taken into account by performing the appro-
priate matching calculations, which relate operators in
the effective theory to the corresponding operators in
the full theory to the required order in renormalization-
group improved QCD perturbation theory. The proce-
dure is very similar to the calculation of the usual effec-
tive Hamiltonians for weak decays. The basic difference
consists in the heavy degrees of freedom that are being
integrated out in the matching process. In the general
case of effective weak Hamiltonians, the heavy field to
be removed as a dynamical variable is the W boson,
whereas it is the lower-component heavy-quark field Hv
in the case of HQET. This similarity will become obvi-
ous from the presentation below.
At this point some comment might be in order con-

cerning the relationship of the HQET formalism to the
general weak effective Hamiltonians discussed in this re-
view, in particular those relevant for b physics. The ef-
fective Hamiltonians for DB=1,2 nonleptonic transitions
are the relevant Hamiltonians for scales m=O(mb),
which are appropriate for B hadron decays, and their
Wilson coefficients incorporate the QCD short-distance
dynamics between scales of O(MW) and O(mb). As al-
ready mentioned at the end of Sec. V, it is therefore not
necessary to invoke HQET. The physics below
m=O(mb) is completely contained within the relevant
hadronic matrix elements. On the other hand, HQET
may be useful in certain cases, like B0-B̄0 mixing, to
gain additional insight into the structure of the hadronic
matrix elements for scales below mb , but still large com-
pared to LQCD . These scales are still perturbative, and
the related contributions can be extracted analytically
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within HQET. In particular, this procedure makes the
dependence of the matrix element on the heavy-quark
mass explicit, as we will see in examples below. Further-
more, this approach can be useful, e.g., in connection
with lattice calculations of hadronic matrix elements,
which are easier to perform in the static limit for b
quarks, i.e., employing HQET (Sachrajda, 1992). How-
ever, the simplifications obtained are at the expense of
the approximation due to the expansion in 1/m .
The most important application of HQET has been to

the analysis of exclusive semileptonic transitions involv-
ing heavy quarks, where this formalism allows one to
exploit the consequences of heavy-quark symmetry to
relate form factors and provides a basis for systematic
corrections to the m→` limit. This area of weak decay
phenomenology has already been reviewed in detail
(Georgi, 1991; Grinstein, 1991; Isgur and Wise, 1992;
Mannel, 1993; Neubert, 1994c) and will not be covered
in the present article.

C. Heavy-light currents

As an example of a next-to-leading-order QCD calcu-
lation within the context of HQET, we will now discuss
the case of a weak current composed of one heavy-and
one light-quark field, to leading order in the 1/m expan-
sion. For definiteness we consider the axial vector
heavy-light current, whose matrix elements determine
the decay constants of pseudoscalar mesons containing a
single heavy quark, like fB and fD .
The axial-vector current operator in the full theory is

given by

A5q̄gmg5C , (15.11)

where C is the heavy- and q the light-quark field. In
HQET this operator can be expanded in the following
way,

A5C1~m!Ã11C2~m!Ã21O~1/m !, (15.12)

where the operator basis in the effective theory is

Ã15q̄gmg5hv , Ã25q̄vmg5hv , (15.13)

with the heavy-quark effective field hv defined in Eq.
(15.3). The use of the expansion [Eq. (15.12)] is to make
the dependence of the matrix elements of A on the
heavy-quark mass m explicit. The dependence on this
mass is twofold. First, there is a power dependence that
is manifest in the heavy-quark expansion in powers of
1/m . From this series the lowest order term is shown in
Eq. (15.12). Second, there is a logarithmic dependence
on m due to QCD radiative corrections, which can be
calculated in perturbation theory. This dependence is
factorized into the coefficient functions C1 and C2 in
much the same way as the logarithmic dependence of
nonleptonic weak decay amplitudes on the W-boson
mass is factorized into the Wilson coefficients of the
usual weak Hamiltonians. Since the dynamics of HQET
is, by construction, independent of m , no further m de-
pendence is present in the matrix elements of the effec-
tive theory operators Ã1,2, except for trivial factors of m

related to the normalization of meson states. Conse-
quently the m dependence of Eq. (15.12) is determined
explicitly.
We remark that, in general, the meson states in

HQET to be used for the rhs of Eq. (15.12) differ from
the meson states in the full theory that are used to sand-
wich the operator A on the lhs. For the leading order in
1/m we are working in, this distinction is irrelevant,
however. An important point is that the operators Ã1,2
in the effective theory have anomalous dimensions, al-
though the operator A in the full theory, being an axial-
vector current operator, does not. As a consequence ma-
trix elements of Ã1,2 will depend on the renormalization
scale and scheme. This dependence is cancelled, how-
ever, through a corresponding dependence of the coef-
ficients, so that the physical matrix elements of A will be
scale and scheme independent as they must be. The ex-
istence of anomalous dimensions for the effective-theory
operators merely reflects the logarithmic dependence on
the heavy-quark mass m due to QCD effects. This de-
pendence results in logarithmic divergences in the limit
m→`, corresponding to the effective theory, which re-
quire additional infinite renormalizations not present in
full QCD. Obviously the situation is completely analo-
gous to the case of constructing effective weak Hamilto-
nians through integrating out the W boson, which we
have described in detail in Sec. III. In fact, the extraction
of the coefficient functions by factorizing long- and
short-distance contributions to quark-level amplitudes
and the renormalization-group treatment follow exactly
the same principles.
The Wilson coefficients at the high matching scale

mh=O(m), the initial condition to the RG evolution, can
be calculated in ordinary perturbation theory with the
result (NDR scheme)

C1~mh!511
as

4p S ghl
~0 !ln

mh

m
1B1D , (15.14)

C2~mh!5
as

4p
B2 , (15.15)

with

B1524CF , B2522CF , (15.16)

and g hl
(0) given in Eq. (15.18) below. CF is the QCD

color factor (N221)/(2N). We remark that the coeffi-
cient of the new operator Ã2 , generated at O(as), is fi-
nite without requiring renormalization. As a conse-
quence no explicit scale dependence appears in Eq.
(15.15), and B2 is a scheme-independent constant. For
the same reason Ã1 and Ã2 do not mix under renormal-
ization, but renormalize only multiplicatively. The
anomalous dimension of the effective heavy-quark cur-
rents is independent of the Dirac structure. It is the
same for Ã1 and Ã2 and, at two-loop order, is given by

ghl5ghl
~0 !

as

4p
1ghl

~1 !S as

4p D 2, (15.17)

where
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ghl
~0 !523CF , (15.18)

ghl
~1 !5S 2

49
6

1
2
3

p2DNCF1S 522
8
3

p2DCF
21

5
3
CFf

52
254
9

2
56
27

p21
20
9
f ~NDR!, (15.19)

and N(f ) denotes the number of colors (flavors). The
anomalous dimension g hl

(0) has been first calculated by
Voloshin and Shifman (1987) and Politzer and Wise
(1988a, 1988b). The generalization to next to leading or-
der has been performed by Ji and Musolf (1991) and
Broadhurst and Grozin (1991).
The RG equations are readily solved to obtain the

coefficients at a lower but still perturbative scale m,
where, formally, m!mh=O(m). Using the results of Sec.
III.F, we have

C1~m!5S 11
as~m!

4p
JhlD Fas~mh!

as~m! GdhlS 11
as~mh!

4p

3Fghl
~0 !ln

mh

m
1B12JhlG D , (15.20)

C2~m!5Fas~mh!

as~m! Gdhl as~mh!

4p
B2 (15.21)

with

dhl5
ghl

~0 !

2b0
, Jhl5

dhl
b0

b12
ghl

~1 !

2b0
. (15.22)

We remark that the corresponding formulae for the vec-
tor current can be simply obtained from the above ex-
pressions by letting g5→1 and changing the sign of B2 .
In addition to the case of heavy-light currents consid-

ered here, the NLO corrections have also been calcu-
lated for flavor-conserving and flavor-changing heavy-
heavy currents of the type C̄GC and C̄1GC2 ,
respectively, where C, C1,2 are heavy quark fields
(G=gm ,gmg5). In these cases the anomalous dimensions
become velocity dependent. Additional complications
arise in the analysis of flavor-changing heavy-heavy cur-
rents due to the presence of two distinct heavy-mass
scales. For a detailed presentation see Neubert (1994c)
and references cited therein.

D. The pseudoscalar decay constant in the static limit

An important application of the results summarized in
the last section is the calculation of the short-distance
QCD effects, from scales between mh=O(m) and m
=O(1 GeV), for the decay constants fP of pseudoscalar
heavy mesons. Using only the leading term in the expan-
sion [Eq. (15.12)], omitting all 1/m power corrections,
corresponds to the static limit for fP , which plays some
role in lattice studies. As already mentioned we will re-
strict ourselves to this limit. We should remark, how-
ever, that nonnegligible power corrections are known to

exist for the realistic case of B- or D-meson decay con-
stants (Sachrajda, 1992). The decay constant fP is de-
fined through

^0uAuP&52ifPmPvm , (15.23)

where the pseudoscalar meson state uP& is normalized in
the conventional way (^PuP&52EV). The matrix ele-
ments of Ã1,2 are related via heavy-quark symmetry
and are given by

^0uÃ1uP&52^0uÃ2uP&52i f̃~m!AmPvm . (15.24)

Apart from the explicit mass factor AmP, which is
merely due to the normalization of uP&, these matrix
elements are independent of the heavy-quark mass. The
‘‘reduced’’ decay constant f̃(m) is therefore m indepen-
dent. It does, however, depend on the renormalization
scale and scheme chosen. The computation of f̃(m) is a
nonperturbative problem involving strong dynamics be-
low scale m. Using Eqs. (15.12), (15.20), (15.21), (15.23),
and (15.24), we obtain

fP5
f̃~m!

AmP
S 11

as~m!

4p
JhlD Fas~mh!

as~m! GdhlS 11
as~mh!

4p

3Fghl
~0 !ln

mh

m
1B12Jhl2B2G D . (15.25)

The dependence of the coefficient function on the renor-
malization scheme through Jhl in the second factor in
Eq. (15.25) and its dependence on m cancel the corre-
sponding dependences in the hadronic quantity f̃(m) to
the considered order in as . The last factor in Eq. (15.25)
is scheme independent. Furthermore, the cancellation of
the dependence on mh to the required order can be seen
explicitly. Note also the leading scaling behavior fP
; 1/AmP, which is manifest in Eq. (15.25).
Although f̃(m) cannot be calculated without nonper-

turbative input, its independence from the heavy-quark
mass m implies that f̃ will drop out in the ratio of fB
over fD , if charm is treated as a heavy quark. One thus
obtains

fB
fD

5AmD

mB
Fas~mb!

as~mc!
GdhlS 11

as~mb!2as~mc!

4p

3~B12Jhl2B2!1
as~mb!

4p
ghl

~0 !ln
mb

mb

2
as~mc!

4p
ghl

~0 !ln
mc

mc
D . (15.26)

The QCD factor on the right-hand side of Eq. (15.26)
amounts to 1.14 for mb=4.8 GeV, mc=1.4 GeV, and
LMS 5 0.2 GeV if we set m i5mi , i5b ,c . If we allow for a
variation of the renormalization scales, 2/3<m i/mi<2,
this factor lies within a range of 1.12 to 1.16. This is to be
compared with the leading logarithmic approximation,
where the central value is 1.12 with a variation from 1.10
to 1.15. Note that, due to cancellations in the ratio
fB/fD , the scale ambiguity is not much larger in LLA
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than in NLLA. However, the next-to-leading-order
QCD effects further enhance fB/fD independently of the
renormalization scheme.

E. DB52 transitions in the static limit

In Sec. XIII we have described the effective Hamil-
tonian for B0-B̄0 mixing. The calculation of the mixing
amplitude requires the evaluation of the matrix element
^B̄0uQuB0&[^Q& of the operator

Q5~ b̄d !V2A~ b̄d !V2A (15.27)

in addition to the short-distance Wilson coefficient. Co-
efficient function and operator matrix element are to be
evaluated at a common renormalization scale, mb
=O(mb), say. In contrast to the determination of the
Wilson coefficient, the computation of the hadronic ma-
trix element involves nonperturbative long-distance con-
tributions. Ultimately this problem should be solved us-
ing lattice QCD. However, the b quark is rather heavy,
and it is therefore difficult to incorporate it as a fully
dynamical field in the context of a lattice-regularization
approach. On the other hand, QCD effects from scales
below mb=O(mb) down to ;1 GeV are still accessible to
a perturbative treatment. HQET provides the tool to
calculate these contributions. At the same time it allows
one to extract the dependence of ^B̄0uQuB0& on the bot-
tom mass mb explicitly, albeit at the price of the further
approximation introduced by the expansion in inverse
powers of mb .
In a first step the operator Q in Eq. (15.27) is ex-

pressed as a linear combination of HQET operators by
matching the full to the effective theory at a scale
mb=O(mb)

^Q~mb!&5S 11
as~mb!

4p F ~ g̃~0 !2g~0 !!ln
mb

mb
1B̃2B G D

3^Q̃~mb!&1
as~mb!

4p
B̃s^Q̃s~mb!&.

(15.28)

Here

Q̃52~ h̄d !V2A~ h̄ ~2 !d !V2A ,

Q̃s52~ h̄d !S2P~ h̄ ~2 !d !S2P , (15.29)

with (h̄d)S2P[h̄(12g5)d are the necessary operators
in HQET relevant for the case of a B0→B̄0 transition.
The field h̄ creates a heavy quark, while h̄(−) annihilates
a heavy antiquark. Since the effective-theory field h̄
(h̄(−)) cannot, unlike the full-theory field b̄ in Q , at the
same time annihilate (create) the heavy antiquark
(quark), explicit factors of two have to appear in Eq.
(15.29). Similar to the case of the heavy-light current
discussed in the previous section, a new operator Q̃s
with scalar-pseudoscalar structure is generated. Its coef-
ficient is finite, and hence no operator mixing under in-
finite renormalization occurs between Q̃ and Q̃s .
In a second step, the matrix element ^Q̃(mb)& at the

high scale mb has to be expressed through the matrix

element of Q̃ evaluated at a lower scale m;1 GeV,
which is relevant for a nonperturbative calculation, for
example, using lattice gauge theory. This relation can be
obtained through the usual renormalization-group evo-
lution and reads in NLLA

^Q̃~mb!&5Fas~mb!

as~m! G d̃S 11
as~m!2as~mb!

4p
J̃ D ^Q̃~m!&,

(15.30)

where

d̃5
g̃~0 !

2b0
, J̃5

d̃

b0
b12

g̃~1 !

2b0
, (15.31)

with the beta-function coefficients b0 and b1 given in Eq.
(3.16). The calculation of the one-loop anomalous di-
mension g̃(0) of the HQET operator Q̃ , required for the
leading logarithmic approximation to Eq. (15.30), has
been first performed by Voloshin and Shifman (1987)
and Politzer and Wise (1998a, 1988b). The computation
of the two-loop anomalous dimension g̃(1) is due to
Giménez (1993). Finally, the next-to-leading-order
matching condition [Eq. (15.28)] has been determined
by Flynn et al. (1991). In the following we summarize the
results obtained in these papers.
The scheme-dependent next-to-leading-order quanti-

ties B , B̃ , and g̃(1) refer to the NDR scheme with anti-
commuting g5 and the usual subtraction of evanescent
terms as defined by Buras and Weisz (1990). For N=3
colors we then have

g̃~0 !528, g~0 !54, (15.32)

B̃2B5214, B5
11
3
, B̃s528, (15.33)

g̃~1 !52
808
9

2
52
27

p21
64
9
f , (15.34)

where f is the number of active flavors.
At this point we would like to make the following

comments.
(i) The logarithmic term in Eq. (15.28) reflects the
O(as) scale dependence of the matrix elements of Q and
Q̃ . Accordingly, its coefficient is given by the difference
in the one-loop anomalous dimensions of these opera-
tors, g(0) and g̃(0).
(ii) The one-loop anomalous dimension of the

effective-theory operator Q̃ , g̃(0), is exactly twice
as large as the one-loop anomalous dimension of
the heavy-light current discussed in Sec. XV.C
[see Eq. (15.18)]. Therefore the scale dependence of ^Q̃&
below mb is entirely contained in the scale dependence
of the decay constant squared f̃2(m). This implies the
well-known result that in LLA the parameter BB has no
perturbative scale dependence in the static theory below
mb . As the result of Giménez (1993) for g̃(1) shows, this
somewhat accidental cancellation is not valid beyond the
one-loop level.
(iii) The matching condition of Eq. (15.28) contains a

scheme-dependent constant term in the relation be-
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tween ^Q& and ^Q̃& . We have written this coefficient in
the form B̃-B in order to make the cancellation of
scheme dependences, to be discussed below, more trans-
parent. Here B is identical to B+ introduced in Eq. (5.8)
and characterizes the scheme dependence of ^Q& (see
also Secs. XII and XIII).
(iv) The quantity g̃(1) has been originally calculated by

Giménez (1993) using dimensional reduction (DRED)
instead of NDR as the renormalization scheme. How-
ever, B̃ turns out to be the same in DRED and NDR,
implying that g̃(1) also coincides in these schemes
(Giménez, 1993).
Finally we may put together Eqs. (15.28) and (15.30),

omitting for the moment the scheme-independent, con-
stant correction due to Q̃s , to obtain

^Q~mb!&5Fas~mb!

as~m! G d̃S 11
as~mb!

4p F ~ g̃~0 !2g~0 !!ln
mb

mb

1B̃2B2 J̃ G1
as~m!

4p
J̃ D ^Q̃~m!& . (15.35)

This relation serves to express the B0-B̄0 matrix ele-
ment of the operator Q , evaluated at a scale mb=O(mb)
relevant for the effective Hamiltonian of Sec. XIII, in
terms of the static theory matrix element ^Q̃(m)& nor-
malized at a low scale m;1 GeV. The latter is more
readily accessible to a nonperturbative lattice calcula-
tion than the full-theory matrix element ^Q(mb)& . Note
that Eq. (15.35) as it stands is valid in the continuum
theory. In order to use lattice results, one still has to
perform an O(as) matching of Q̃ to its lattice counter-
part. This step, however, does not require any further
renormalization-group improvement, since by means of
Eq. (15.35) Q̃ is already normalized at the appropriate
low scale m. The continuum-lattice theory matching was
determined by Flynn et al. (1991) and is also discussed
by Giménez (1993).
Of course, the right-hand side in Eq. (15.35) gives

only the leading contribution in the 1/m expansion of
the full matrix element ^Q(mb)& (apart from Q̃s).
Going beyond this approximation would require the
consideration of several new operators, which appear at
the next order in 1/m . These contributions have been
studied by Kilian and Mannel (1993) in the leading loga-
rithmic approximation. On the other hand Eq. (15.35),
while restricted to the static limit, includes and resums
all leading and next to leading logarithmic corrections
between the scales mb=O(mb) and m;1 GeV in the re-
lation between Q and Q̃ . It is interesting to consider the
scale and scheme dependences present in Eq. (15.35).
The dependence on m in the first factor on the rhs of Eq.
(15.35) is canceled by the m dependence of ^Q̃(m)&. The
dependence on mb of this factor is canceled by the ex-
plicit ln mb term proportional to g̃(0). Hence the only
scale dependence remaining on the rhs, to the consid-
ered order O(as), is the one ;as(mb)g

(0)lnmb . This is
precisely the scale dependence of the full-theory matrix
element on the lhs, which is required to cancel the cor-
responding dependence of the Wilson coefficient. Simi-
larly, the term ;as(mb)B represents the correct scheme

dependence of ^Q(mb)&, while the scheme dependence
of as(m) J̃ cancels with the scheme dependence of
^Q̃(m)& and the difference B̃- J̃ is scheme independent by
itself. This discussion demonstrates explicitly that the
transition from full QCD to HQET can be made at an
arbitrary scale mb=O(mb), as we have already empha-
sized above.
Finally, we would like to remark that, since the loga-

rithm lnmb/m is not really very large in the present case,
one might take the attitude of neglecting higher-order
resummations of logarithmic terms altogether and re-
strict oneself to the O(as) corrections alone. Then Eq.
(15.28) would already be the final result, as it was used
by Flynn et al. (1991). This approximation is fully con-
sistent from a theoretical point of view. Yet it is useful
to have the more complete expression Eq. (15.35) at
hand. Of course, as indicated above, the finite O(as) cor-
rection due to the matrix element of Q̃s in Eq. (15.28)
must still be added to the rhs of Eq. (15.35). However, to
complete the NLO renormalization-group calculation,
also the leading logarithmic corrections related to the
operator Q̃s should then be resummed. This part of the
analysis has been performed only recently and is dis-
cussed in Ciuchini, Franco, and Giménez (1996) and
Buchalla (1996).

XVI. COMMENTS ON INPUT PARAMETERS

The phenomenology of weak decays depends sensi-
tively on a number of input parameters. We have col-
lected the numerical values of these parameters in the
Appendix. To this end we have frequently used the val-
ues quoted by the Particle Data Group (1994). The basis
for our choice of the numerical values for various non-
perturbative parameters, such as BK or FB , will be given
in the course of the presentation. In certain cases, like
the B-meson lifetimes and the size of the B d

0-B̄ d
0 mixing,

for which the experimental averages change constantly,
we have chosen values that are in the ballpark of those
presented at various conferences and workshops during
the summer of 1995. Here we would like to comment
briefly on three important parameters, uVcbu, uVub/Vcbu,
and mt . The importance of these parameters lies in the
fact that many branching ratios and also the CP viola-
tion in the standard model depend sensitively on them.

A. Cabibbo-Kobayashi-Maskawa matrix element uVcbu

During the last two years there has been considerable
progress made by experimentalists (Patterson, 1995) and
theorists in the extraction of uVcbu from the exclusive
and inclusive B decays. In these investigations the
HQET in the case of exclusive decays and the heavy
quark expansions for inclusive decays played a consider-
able role (Ball et al., 1995a; Neubert, 1994a; Shifman
et al., 1995). From these treatments, one arrives at

uVcbu50.04060.003 ⇒ A50.8260.06. (16.1)

This should be compared with an error of 60.006 for
uVcbu quoted in 1993. The corresponding reduction of
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the error in A by a factor of 2 has important conse-
quences for the phenomenology of weak decays.

B. Cabibbo-Kobayashi-Maskawa matrix element ratio
uVub/Vcbu

The accuracy of this ratio is much worse, with the
value

UVub

Vcb
U50.0860.02 (16.2)

quoted by the Particle Data Group (1994) still the ac-
cepted one. It is important to emphasize that the theo-
retical status of uVub/Vcbu is considerably less mature
than it is for uVcbu and some model dependence is un-
fortunately still present in Eq. (16.2). In the following
we shall adopt this estimate for definiteness, keeping the
associated problems in mind. There is a hope that the
error can be reduced in the future both due to progress
in lattice calculations (Simone, 1996) and the recent
CLEO measurements of the exclusive semileptonic de-
cays B→(p ,r)ln l (Thorndike, 1995). An interesting
theoretical approach, based on the construction of a
constrained dispersive model for B→p form factors, has
recently been discussed by Burdman and Kambor
(1996).

C. Top-quark mass mt

Next it is important to stress that the discovery of the
top quark (Abe et al., 1994a, 1994b, 1994c; Abachi et al.,
1995) and its mass measurement had an important im-
pact on the field of rare decays and CP violation, con-
siderably reducing one potential uncertainty. It is, how-
ever, important to keep in mind that the parameter mt
used in weak decays is not equal to the one used in the
electroweak precision studies at LEP or SLD. In the
latter investigations the so-called pole mass is used,
whereas in all the NLO calculations listed in Table I and
used in this review, mt refers to the running current top-
quark mass normalized at m=mt :m̄t(mt). One has

mt
~pole!5m̄t~mt!F11

4
3

as~mt!

p G (16.3)

so that for mt=O(170 GeV), m̄t(mt) is typically 8 GeV
smaller than mt

(Pole).
In principle any definition m̄t(m t) with mt=O(mt)

could be used. In the leading order this arbitrariness in
the choice of mt introduces a potential theoretical uncer-
tainty in those branching ratios that depend sensitively
on the top-quark mass. The inclusion of NLO correc-
tions reduces this uncertainty considerably, so that the
resulting branching ratios remain essentially indepen-
dent of the choice of mt . We have discussed this point
already in previous sections. Numerical examples will be
given in this part below. The choice m t5mt turns out to
be convenient and will be adopted in what follows.
Using the mt

(pole) quoted by CDF (Abe et al., 1994a,
1994b, 1994c) together with Eq. (16.3) we find roughly

mt[m̄t~mt!5~170615! GeV, (16.4)

which we will use in the phenomenological applications.
In principle an error of 611 GeV could be used, but we
prefer to be conservative.

XVII. INCLUSIVE B DECAYS

A. General remarks

Inclusive decays of B mesons constitute an important
testing ground for our understanding of strong-
interaction dynamics in its interplay with the weak
forces. At the same time inclusive semileptonic modes
provide useful information on uVcbu.
Due to quark-hadron duality, inclusive decays of

heavy mesons can, in general, be calculated more reli-
ably than corresponding exclusive modes. During recent
years a systematic formulation for the treatment of in-
clusive heavy-meson decays has been developed. It is
based on operator product and heavy-quark expansion,
which are applied to the B-meson inclusive width, ex-
pressed as the absorptive part of the B forward-
scattering amplitude

G~B→X !5
1

2mB
Im S iE d4x^BuTHeff

~X !~x !Heff
~X !~0 !uB& D .

(17.1)

Here Heff
(X) is the part of the complete DB=1 effective

Hamiltonian that contributes to the particular inclusive
final state X under consideration. For example, for in-
clusive semileptonic decays

Heff,DB51
~SL ! 5

GF

&
Vcb~ c̄b !V2A (

l5e ,m ,t
~ l̄n l!V2A1H.c..

(17.2)

For nonleptonic modes the relevant expression is the
DB=1 short-distance effective Hamiltonian given in Eq.
(6.32). It has been shown (Chay et al., 1990; Bigi et al.,
1992, 1993; Bjorken et al., 1992; Bigi, Blok, Shifman,
Uraltsev, and Vainshtein, 1994; Blok et al. 1994; Falk
et al., 1994; Mannel, 1994; Manohar and Wise, 1994) that
the leading term in a systematic expansion of Eq. (17.1)
in 1/mb is determined by the decay width of a free b
quark calculated in the parton picture. Furthermore, for
total integrated rates the nonperturbative corrections to
this perturbative result start at order (L/mb)

2, where L is
a hadronic scale ;1 GeV, and are quite small in the case
of B decays (Bigi et al., 1992). In the light of this formu-
lation it becomes apparent that the perturbative, par-
tonic description of heavy-hadron decay is thus pro-
moted from the status of a model calculation to the
leading contribution in a systematic expansion based on
QCD. We will still comment on the (L/mb)

2 corrections
below. In the following we will, however, concentrate on
the leading quark-level analysis of inclusive B decays.
As we shall see, the treatment of short-distance QCD
effects at the next-to-leading-order level, at least for the
dominant modes, is of crucial importance for a proper
understanding of these processes.
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The calculation of b-quark decay starts from the ef-
fective DB=1 Hamiltonian containing the relevant four-
fermion operators multiplied by Wilson coefficients. To
obtain the decay rate, the matrix elements (squared) of
these operators have to be calculated perturbatively to
the required order in as . While in LLA a zeroth-order
evaluation is sufficient; O(as) virtual gluon effects (along
with real gluon bremsstrahlung contributions for the
proper cancellation of infrared divergences in the inclu-
sive rate) have to be taken into account at NLO. In this
way the renormalization scale and scheme dependence
present in the coefficient functions is canceled to the
considered order [O(as)] in the decay rate. Thus, by con-
trast to low-energy decays, in the case of inclusive
heavy-quark decay, a physical final result can be ob-
tained within perturbation theory alone.
Our goal will be to review the present status of the

theoretical prediction for the B-meson semileptonic
branching ratio BSL . This quantity has received some
attention in recent years since theoretical calculations
(Altarelli and Petrarca, 1991; Tanimoto, 1992; Palmer
and Stech, 1993; Bigi, Blok, Shifman and Vainshtein,
1994; Falk et al., 1995) tended to yield values around
12.5–13.5%, above the experimental figure BSL
=(10.460.4)% (Particle Data Group, 1994). However,
these earlier analyses have not been complete in regard
to the inclusion of final-state mass effects and NLO
QCD corrections in the nonleptonic widths. More pre-
cisely, these calculations took into account mass effects
appropriate for the leading order in QCD along with
NLO QCD corrections obtained for massless final-state
quarks. Recently the most important of these, so far
lacking, mass effects have been properly included in the
NLO QCD calculation through the work of Bagan et al.,
(1994), Bagan, Ball, Braun, and Gosdzinsky (1995), and
Bagan, Ball, Fiol, and Gosdzinsky (1995). These O(as)
mass effects tend to decrease BSL and, according to the
analysis of these authors, essentially bring it, within
theoretical uncertainties, into agreement with the ex-
perimental number. Before further discussing these is-
sues, it is appropriate to start with a short overview sum-
marizing the possible b-quark decay modes and
classifying their relative importance.

B. b-quark decay modes

First of all, a b quark can decay semileptonically to the
final states cl n̄ l and ul n̄ l with l5e ,m ,t . In the case of
nonleptonic final states we may distinguish three classes:
decays induced through current-current operators alone
(Class I), decays induced by both current-current and
penguin operators (Class II), and pure penguin transi-
tions (Class III). The classes have the following allowed
final states:

Class I cūd , cūs , uc̄s , uc̄d

Class II cc̄s , cc̄d , uūd , uūs

Class III dd̄d , dd̄s , ss̄d , ss̄s .

Clearly there is a rich structure of possible decay
modes even at the quark level, and a complete treat-
ment would be quite complicated. However, not all of
these final states are equally important. In order to per-
form the analysis of b-quark decay, in particular in view
of the calculation of BSL , it is useful to identify the most
important channels and to introduce appropriate ap-
proximations in dealing with less prominent decays. To
organize the procedure, we make the following observa-
tions.
(i) The dominant, i.e., CKM-allowed and tree-level-

induced, decays are b→clv , b→cūd , and b→cc̄s . For
these a complete NLO calculation including final-state
mass effects is necessary.
(ii) The channels cūs , cc̄d , uc̄d , and uūs may be in-

corporated with excellent accuracy into the modes cūd ,
cc̄s , uc̄s , and uūd , respectively, by using the approxi-
mate CKM unitarity in the first two generations. The
error thus introduced through the s2d mass difference
is entirely negligible.
(iii) Penguin transitions are generally suppressed by

the smallness of their Wilson coefficient functions, which
are typically of the order of a few percent. For this rea-
son, one may neglect the pure penguin decays of class
III altogether, as their decay rates involve penguin coef-
ficients squared.
(iv) Furthermore we may neglect the penguin contri-

butions to the CKM-suppressed b→u transitions of class
II.
(v) In addition one may treat the remaining smaller

effects, namely b→u transitions and the interference of
penguins with the leading current-current contribution
in b→cc̄s , within LLA.
(vi) Finally, rare, flavor-changing neutral-current

b-decay modes are negligible in the present context as
well.
Next we will write down expressions for the relevant

decay-rate contributions we have discussed.
For the dominant modes b→cln , b→cūd , and

b→cc̄s (without penguin effects) one has at next-to-
leading order

G~b→cln!5G0P~xc ,xl,0!F11
2as~m!

3p
g~xc ,xl,0!G ,

(17.3)

G~b→cūd !5G0P~xc,0,0!H 2L1
2 1L2

2

1
as~MW!2as~m!

2p
~2L1

2 R11L2
2 R2!

1
2as~m!

3p F34 ~L12L2!2g11~xc!

1
3
4

~L11L2!2g22~xc!1
1
2

~L1
2 2L2

2 !

3S g12~xc!212 ln
m

mb
D G J , (17.4)
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G~b→cc̄s !5G0P~xc ,xc ,xs!H 2L1
2 1L2

2

1
as~MW!2as~m!

2p
~2L1

2 R11L2
2 R2!

1
2as~m!

3p F34 ~L12L2!2h11~xc!

1
3
4

~L11L2!2h22~xc!1
1
2

~L1
2 2L2

2 !

3S h12~xc!212 ln
m

mb
D G J . (17.5)

Equation (17.5) neglects small strange-quark mass ef-
fects in the NLO terms, which have been included in the
numerical analysis by Bagan, Ball, Fiol, and Gosdzinsky
(1995). In the equations above G0=G F

2m b
5 uVcbu2/(192p3),

and P(x1 ,x2 ,x3) is the leading-order phase-space factor
given, for arbitrary masses xi5mi/mb , by

P~x1 ,x2 ,x3!512E
~x21x3!2

~12x1!2 ds

s
~s2x2

22x3
2!

3~11x1
22s !w~s ,x2

2,x3
2!w~s ,x1

2,1!

(17.6)

w~a ,b ,c !5~a21b21c222ab22ac22bc !1/2. (17.7)

P is a completely symmetric function of its arguments.
Furthermore,

L65L6~m!5Fas~MW!

as~m! Gd6

(17.8)

with d+=6/23, d−=−12/23 [see Eq. (5.10)], and m=O(mb).
The scheme-independent R6 come from the NLO
renormalization-group evolution and are given by
R65B62J6 [see Eq. (5.9)]. For f=5 flavors
R+=6473/3174 and R−=−9371/1587. Note that the lead-
ing dependence of L6 on the renormalization scale m is
canceled to O(as) by the explicit m dependence in the as
correction terms. Virtual gluon and bremsstrahlung cor-
rections to the matrix elements of four-fermion opera-
tors are contained in the mass-dependent functions g ,
gij , and hij .
The function g(x1 ,x2 ,x3) is available for arbitrary x1 ,

x2 , and x3 from Hokim and Pham (1983, 1984). The spe-
cial case g(x1,0,0) has been analyzed also by Cabibbo
and Maiani (1978). Analytical expressions have been
given by Nir (1989) for g(x1,0,0) and by Bagan et al.

(1994) for g(0,x2,0). The functions g11(x), g12(x), and
g22(x) are calculated analytically by Bagan et al. (1994).
Furthermore, as discussed by Bagan et al. (1994), h11(x)
and h22(x) can be obtained from the work of Hokim
and Pham (1983, 1984). Finally, h12(x) has been deter-
mined by Bagan, Ball, Fiol, and Gosdzinsky (1995). For
the full mass dependence of these functions we refer the
reader to the cited literature. Here we quote the results
obtained in the massless limit. These have been com-
puted by Altarelli et al. (1981) and Buchalla (1993) for
gij , hij [gij(0)5hij(0)]

g11~0 !5g22~0 !5
31
4

2p2, g12~0 !5g11~0 !2
19
2
. (17.9)

Furthermore,

g~0,0,0!5
25
4

2p2. (17.10)

In Table XXXVI we have listed some typical numbers
extracted from Bagan, Ball, Braun, and Gosdzinsky
(1995) and Bagan, Ball, Fiol, and Gosdzinsky (1995),
which illustrate the impact of charm-mass effects (for
xc=0.3) in the NLO correction terms by giving the en-
hancement factor of the NLO over the LO results.
There are of course various ambiguities involved in this
comparison. The numbers in Table XXXVI are there-
fore merely intended to show the general trend. Note
the sizable enhancement through NLO mass effects in
the nonleptonic channels, in particular b→cc̄s . A large
QCD enhancement in the latter case has also been re-
ported by Voloshin (1995). In principle the validity of
the heavy-quark expansion might be questioned for
b→cc̄s , since in this case the energy release is relatively
small. On the other hand, the direct partonic NLO cal-
culation of B(b→cc̄s) is in agreement with an indirect
determination of this quantity that does not require
theoretical input for b→cc̄s . The latter determination is
possible by combining experimental information on the
semileptonic branching ratio B(B→Xen) with the NLO
calculation of G(b→cūd)/G(b→cen) and has been de-
scribed by Buchalla et al. (1995). A discussion of the im-
plications for the charm yield in B decays can also be
found in this paper.
To complete the presentation of b decay modes we

next write down expressions for the CKM-suppressed
channels b→uln , b→uc̄s , and b→uūd (without pen-
guins) as well as the contribution to the b→cc̄s rate due
to interference of the leading, current-current-type tran-
sitions with penguin operators. Restricting ourselves to
the LLA for these small contributions, we obtain

GS b→u(
l
ln D 5G0UVub

Vcb
U2(

l
P~0,xl,0!, (17.11)

G~b→uc̄s !5G0UVub

Vcb
U2P~0,xc ,xs!@2L1

2 1L2
2 # , (17.12)

G~b→uūd !5G0UVub

Vcb
U2@2L1

2 1L2
2 # , (17.13)

TABLE XXXVI. Typical values for the ratio of NLO to LO
results for dominant b-decay channels with (I) and without (II)
including finite charm-mass effects in the NLO correction
terms. The leading-order final-state mass effects (through the
function P) are taken into account in all cases.

b→cen b→ctn b→cūd b→cc̄s

I 0.85 0.88 1.06 1.32
II 0.79 0.80 1.01 1.02
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DGpenguin~b→cc̄s !

56G0P~xc ,xc ,xs!H c1Fc31 1
3
c41FS c51 1

3
c6D G

1c2F13 c31c41FS 13 c51c6D G J , (17.14)

where c1 ,. . . ,c6 are the leading-order Wilson coefficients
and

F5
6xc

2

P~xc ,xc ,xs!
E

~xc1xs!
2

~12xc!2 ds

s2
~s1xs

22xc
2!~11s2xc

2!

3w~s ,xc
2,xs

2!w~1,s ,xc
2!. (17.15)

Numerically we have, for uVub/Vcbu=0.1,

GS b→u(
l
ln D'0.024G0 , G~b→uc̄s !'0.017G0 ,

(17.16)

G~b→uūd !'0.034G0 ,

DGpenguin~b→cc̄s !'20.041G0 . (17.17)

Note that the contribution due to the interference with
penguin transitions in b→cc̄s is negative. Hence, in ad-
dition to being small, the effects in Eqs. (17.16) and
(17.17) tend to cancel each other in the total nonleptonic
width.
Finally one may also incorporate nonperturbative cor-

rections. These have been derived by Bigi et al. (1992)
and are also discussed by Bagan et al. (1994). As men-
tioned above, nonperturbative effects are suppressed by
two powers of the heavy b-quark mass and amount typi-
cally to a few percent. For details we refer the reader to
the cited articles.

C. The B-meson semileptonic branching ratio

An important application of the results described in
the previous section is the theoretical prediction for the
inclusive semileptonic branching ratio of B mesons

BSL5
G~B→Xen!

G tot~B !
. (17.18)

On the parton level, G(B→Xen).G(b→cen), and

G tot~B !. (
l5e ,m ,t

G~b→cln!1G~b→cūd !

1G~b→cc̄s !1DGpenguin~b→cc̄s !

1G~b→u !. (17.19)

Here we have applied the approximations discussed
above. G(b→u) summarizes the b→u transitions.
Based on a similar treatment of the partonic rates,

including next-to-leading-order QCD corrections for the
dominant channels and also incorporating nonperturba-
tive corrections, Bagan, Ball, Braun, and Gosdzinsky
(1995) and Bagan, Ball, Fiol, and Gosdzinsky (1995)
have carried out an analysis of BSL and estimated the

theoretical uncertainties. The mass difference mb2mc is
rather accurately constrained by charm and beauty had-
ron masses using heavy-quark effective theory. To re-
duce uncertainties from quark masses, this relationship
was employed in their prediction. They obtain (Bagan,
Ball, Fiol, and Gosdzinsky, 1995; Bagan, Ball, Braun,
and Gosdzinsky, 1996)

BSL5~12.061.4!% and BSL5~11.361.7!%,
(17.20)

using pole and MS masses, respectively. The error is
dominated in both cases by the renormalization-scale
uncertainty (mb/2,m,2mb). Note also the sizable
scheme ambiguity. Within existing uncertainties, the
theoretical prediction does not disagree significantly
with the experimental value BSL,exp=(10.460.4)% (Par-
ticle Data Group, 1994), although it seems to lie some-
what on the high side.
It is amusing to note that the naive mode-counting

estimate for BSL , neglecting QCD and final-state mass
effects completely, yields BSL=1/9=11.1% in good agree-
ment with experiment. Including the final-state masses,
still neglecting QCD, enhances this number to
BSL=15.8%. Incorporating QCD effects at the leading-
logarithmic-order increases the hadronic modes, thus
leading to a decrease in BSL , which results typically in
BSL=14.7%. A substantial further decrease is finally
brought about through the NLO QCD corrections,
which both further enhance hadronic channels, in par-
ticular b→cc̄s , and simultaneously reduce b→cen . As
pointed out by Bagan, Ball, Braun, and Gosdzinsky
(1995) and Bagan, Ball, Fiol, and Gosdzinsky (1995) and
illustrated in Table XXXVI, final-state mass effects in
the NLO correction terms play a non-negligible role for
this enhancement of hadronic decays. The nonperturba-
tive effects also lead to a slight decrease of BSL .
In short, leading final-state mass effects and QCD cor-

rections, acting in opposite directions on BSL , tend to
cancel each other, resulting in a number for BSL not too
different from the simple mode-counting guess.
We finally mention that, besides a calculation of BSL ,

the partonic treatment of heavy-meson decay has fur-
ther important applications, such as the determination
of uVcbu from inclusive semileptonic B decay, B→Xcen .
Analyses of this type have been presented by Ball and
Nierste (1994), Bigi and Uraltsev (1994), Luke and Sav-
age (1994), and Shifman et al. (1995).
Exact results beyond the presently known NLO accu-

racy seem extremely difficult to obtain, even for rela-
tively simple quantities like the semileptonic b-quark
decay rate. There exist, however, calculations in the lit-
erature devoted to the investigation of these higher-
order perturbative effects. Due to the severe technical
difficulties, those calculations require additional assump-
tions. For instance, in an interesting study Ball et al.
(1995a) have investigated the effects of the running of as
on the semileptonic b-quark decay rate to all orders in
perturbation theory. This calculation is equivalent to a
resummation of all terms of the form as(b0as)

n, which
are related to one-gluon exchange diagrams containing
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an arbitrary number n of fermion bubbles. The work of
Ball et al. (1995a) applies the renormalon techniques de-
veloped by Ball et al. (1995b) and Beneke and Braun
(1995) [see also (Beneke and Braun, 1994) and (Bigi
et al., 1994b)] and generalizes the O(b0a s

2) results com-
puted by Luke et al. (1995). The underlying idea is simi-
lar in spirit to the BLM approach (Brodsky et al., 1983).
An important application of the result is the extraction
of uVcbu (Ball et al., 1995a). The formalism has also been
used to study higher-order QCD corrections to the
t-lepton hadronic width (Ball et al., 1995b). Irrespective
of the ultimate reliability of the approximation, these
investigations are useful from a conceptual point of
view, as they help to illustrate important features of the
higher-order behavior of the perturbative expansion.
In principle the discussion we have given for b decays

may of course, with appropriate modifications, be ap-
plied to the case of charm as well. However, here the
nonperturbative corrections to the parton picture, which
scale like 1/mQ

2 with the heavy-quark mass mQ , are an
order of magnitude larger than for B mesons, and accu-
rate theoretical predictions are much more difficult to
obtain (Blok and Shifman, 1993).

XVIII. «K , B
0-B̄0 MIXING,

AND THE UNITARITY TRIANGLE

A. Basic formula for «K

The indirect CP violation in K→pp is described by
the well-known parameter «K . The general formula for
«K is given as follows:

«K5
exp~ ip/4!

&DMK

~ImM1212j ReM12!, (18.1)

where

j5
ImA0

ReA0
(18.2)

with A0[A(K→(pp)I50) and DMK the KL-KS mass
difference. The off-diagonal element M12 in the neutral
K-meson mass matrix represents the K0-K̄0 mixing. It is
given by

2mKM12* 5^K̄0uHeff~DS52 !uK0&, (18.3)

where Heff(DS=2) is the effective Hamiltonian of Eq.
(12.1). Defining the renormalization-group-invariant pa-
rameter BK by

BK5BK~m!@as
~3 !~m!#22/9 F11

as
~3 !~m!

4p
J3G , (18.4)

^K̄0u~ s̄d !V2A~ s̄d !V2AuK0&[
8
3
BK~m!FK

2 mK
2 (18.5)

and, using Eq. (12.1), we find

M125
GF

2

12p2 FK
2 BKmKMW

2 @lc*
2h1S0~xc!

1l t*
2h2S0~xt!12lc* l t*h3S0~xc ,xt!# , (18.6)

where the functions S0(xi) and S0(xi ,xj) are those of
Eqs. (12.3)–(12.5). FK is the K-meson decay constant
and mK the K-meson mass. The coefficient J3 is given in
Eq. (12.9) and the QCD factors hi have been discussed
in Sec. XII. Their numerical values are

h151.38, h250.57, and h350.47. (18.7)

The last term in Eq. (18.1) constitutes at most a 2%
correction to «K and consequently can be neglected in
view of other uncertainties, in particular those con-
nected with BK . Inserting Eq. (18.6) into Eq. (18.1), we
find

«K5C«BKIml t$Relc@h1S0~xc!2h3S0~xc ,xt!#

2Rel th2S0~xt!%exp~ ip/4!, (18.8)

where we have used the unitarity relation Imlc*5Imlt
and neglected Relt/Relc=O(l4) in evaluating
Im(lc*lt*). The numerical constant C« is given by

C«5
GF

2FK
2 mKMW

2

6&p2DMK

53.783104. (18.9)

Using the standard parametrization of Eq. (2.13) to
evaluate Imli and Reli , setting the values for s12 , s13 ,
s23 , and mt in accordance with the Appendix, and taking
a value for BK (see below), one can determine the phase
d by comparing Eq. (18.8) with the experimental value
for «K .
Once d has been determined in this manner, one can

find the corresponding point (%̄ ,h̄) by using Eqs. (2.19)
and (2.22). Actually, for a given set (s12,s13,s23,mt ,BK)
there are two solutions for d and consequently two solu-
tions for (%̄ ,h̄). In order to see this clearly it is useful to
use the Wolfenstein parametrization in which Imlt ,
Relc , and Relt are given to a very good approximation
by Eqs. (2.23)–(2.25). We then find that Eq. (18.8) and
the experimental value for «K specify a hyperbola in the
(%̄ ,h̄) plane given by

h̄$~12%̄ !A2h2S0~xt!1P0~«!%A2BK50.226, (18.10)

where

P0~«!5@h3S0~xc ,xt!2h1xc#
1
l4 . (18.11)

The hyperbola [Eq. (18.10)] intersects the circle given by
Eq. (2.32) in two points, which correspond to the two
solutions for d mentioned earlier.
The position of the hyperbola in the (%̄ ,h̄) plane de-

pends on mt , uVcbu5Al2, and BK . With decreasing mt ,
uVcbu, and BK the «K hyperbola moves away from the
origin of the (%̄ ,h̄) plane. When the hyperbola and the
circle touch each other, lower bounds consistent with
«K
exp for mt , uVcbu, uVub/Vcbu, and BK can be found. The
lower bound on mt is discussed by Buras (1993). Corre-
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sponding results for uVub/Vcbu and BK are shown in
Figs. 11 and 12, respectively. They will be discussed be-
low.
Moreover, approximate analytic expressions for these

bounds can be derived. One has

~mt!min5MWF 1
2A2 S 1

A2BKRb
21.4D G0.658, (18.12)

uVub /Vcbumin5
l

12l2/2
@A2BK~2xt

0.76A211.4!#21,

(18.13)

~BK!min5@A2Rb~2xt
0.76A211.4!#21. (18.14)

Concerning the parameter BK , the analyses of Sharpe
(1994) and Ishizuka (1993) (BK=0.8360.03) using the
lattice method and of Bijnens and Prades (1995), using a
somewhat modified form of the 1/N approach of
Bardeen et al. (1988) and Gérard (1990) give results in
the ballpark of the original 1/N result, BK=0.7060.10. In
particular the analysis of Bijnens and Prades (1995)
seems to have explained the difference between these
values for BK and the lower values obtained using the
QCD Hadronic Duality approach (Pich and de Rafael,
1985; Prades et al., 1991) (BK=0.3960.10) or using
SU(3) symmetry and PCAC (BK=1/3) (Donoghue et al.,
1982). These higher values of BK are also found in the
most recent lattice analysis (Crisafulli et al., 1996)
(BK=0.8660.15) and in the lattice calculations of Ber-
nard and Soni (1991) (BK=0.7860.11) and the JLQCD
group (BK=0.6760.07) with the quoted values obtained
on the basis of the review by Soni (1995). In the numeri-
cal analysis we will use

BK50.7560.15. (18.15)

B. Basic formula for B0-B̄0 mixing

The B0-B̄0 mixing is usually described by

xd ,s[
~DM !Bd ,s

GBd ,s

5
2uM12uBd ,s

GBd ,s

, (18.16)

where (DM)Bd ,s
is the mass difference between the mass

eigenstates in the B d
0-B̄ d

0 system and the B s
0-B̄ s

0 system,

respectively, and GBd ,s
5 1/tBd ,s

with tBd ,s
being the cor-

responding lifetimes. The off-diagonal term M12 in Eq.
(18.16) is given by

2mBuM12u5u^B̄0uHeff~DB52 !uB0&u, (18.17)

where Heff(DB=2) is the effective Hamiltonian of Eq.
(13.1). Defining the renormalization-group-invariant pa-
rameter BB by

BB5BB~m!@as
~5 !~m!#26/23 F11

as
~5 !~m!

4p
J5G , (18.18)

^B̄0u~ b̄d !V2A~ b̄d !V2AuB0&[
8
3
BB~m!FB

2mB
2 (18.19)

and using Eq. (13.1), we find

xd ,s5tBd ,s

GF
2

6p2 hBmBd ,s
~BBd ,s

FBd ,s

2 !MW
2 S0~xt!uVt~d ,s !u2

(18.20)

with the QCD factor hB discussed in Sec. XIII and given
by hB=0.55.
The measurement of B d

0-B̄ d
0 mixing allows one to de-

termine uVtdu or Rt of Eq. (2.33):

uVtdu5Al3Rt , Rt51.52
R0

AS0~xt!
, (18.21)

where

R05F 0.040uVcbu G F 200 MeV

ABBd
FBd

GF xd
0.75G 0.5F 1.6pstB G 0.5F 0.55hB

G 0.5,
(18.22)

which gives, setting hB=0.55,

uVtdu58.56•1023F 170 GeV
m̄t~mt! G 0.76F 200 MeV

ABBd
FBd

G
3F xd

0.75G 0.5F 1.6pstB G 0.5. (18.23)

There is a vast literature on the lattice calculations of
FB . The most recent results are somewhat lower than
those quoted a few years ago. Based on a review by
Sachrajda (1994), the recent extensive study by Duncan

TABLE XXXVII. Predictions for various quantities using present and future input parameter ranges
given in the Appendix. Imlt and uVtdu are given in units of 10

−4 and 10−3, respectively, d is in degrees.

No xd constraint With xd constraint

Present Future Present Future

d 37.7–160.0 57.4–144.9 37.7–140.2 58.5–93.3
Imlt 0.64–1.75 0.82–1.50 0.87–1.75 1.12–1.50
uVtdu 6.7–13.5 7.7–12.1 6.7–11.9 7.8–9.3
xs 11.1–47.0 19.6–29.6
sin(2a) −0.86–1.00 −0.323–1.00 −0.86–1.00 −0.30–0.73
sin(2b) 0.21–0.80 0.34–0.73 0.34–0.80 0.57–0.73
sing 0.34–1.00 0.58–1.00 0.61–1.00 0.85–1.00
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et al. (1995) and the analyses by Bernard et al. (1994)
and Draper and McNeile (1994), we conclude that FBd

5 (180 6 40) MeV. This together with the earlier result
of the European Collaboration (Abada et al., 1992) for
BB , gives FBd

ABBd
5 194 6 45 MeV. A reduction of the

error in this important quantity is desirable. These re-
sults for FB are compatible with the results obtained
using QCD sum rules [e.g., Bagan et al. (1992) and Neu-
bert (1992)]. An interesting upper bound FBd

, 195MeV
using QCD dispersion relations has also recently been
obtained (Boyd et al., 1995). In the numerical analysis
we will use

ABBd
FBd

5~200640! MeV. (18.24)

The accuracy of the determination of Rt can be con-
siderably improved by measuring simultaneously the
B s

0-B̄ s
0 mixing described by xs . We have

Rt5
1

ARds

Axd
xs

1
l

A12l2~122% !,

Rds5
tBd

tBs

mBd

mBs
FFBd

ABBd

FBs
ABBs

G 2. (18.25)

Note that mt and uVcbu have been eliminated in this way

and that Rds depends only on SU(3) flavor-breaking ef-
fects, which contain much smaller theoretical uncertain-
ties than the hadronic matrix elements in xd and xs sepa-
rately. Provided xd/xs has been accurately measured, a
determination of Rt within 610% should be possible.
Indeed the most recent lattice results (Baxter et al.,
1994; Duncan et al., 1995) give FBs

/FBd
5 1.22 6 0.04. A

similar resultFBs
/FBd

5 1.166 0.05 has beenobtainedus-
ing QCD sum rules (Narison, 1994). It would be useful
to know BBs

/BBd
with a similar precision. For BBs

5 BBd
we find, using the lattice result, Rds=0.6660.04.

C. sin 2b from «K and B0-B̄0 mixing

Combining Eqs. (18.10) and (18.20), one can derive an
analytic formula for sin(2b) (Buras, Lautenbacher, and
Ostermaier, 1994)

sin~2b!5
1

1.16A2h2R0
2 F 0.226A2BK

2h̄P0~«!G . (18.26)

P0(«) is weakly dependent on mt and, for 155
GeV<mt<185 GeV, one has P0(«)'0.3160.02. As
h̄<0.45 for uVub/Vcbu<0.1, the first term in parentheses
is generally a factor of 2–3 larger than the second term.

FIG. 10. Present (left) and future (right) allowed ranges for Im(lt). The ranges have been obtained by fitting «K in Eq. (18.8) to
the experimental value. Input parameter ranges are given in the Appendix. The impact of the additional constraint coming from
xd is illustrated by the dashed lines. With the xd constraint imposed the solution p/2<d<p is completely eliminated for the future
scenario.
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Since this dominant term is independent of mt , the val-
ues for sin(2b) extracted from «K and B0-B̄0 mixing
show only a weak dependence on mt , as stressed in par-
ticular by Rosner (1992).
Since A2R 0

2 is independent of uVcbu, the dominant un-
certainty in this determination of sin(2b) resides in
A2BK , in the first term in the parentheses, and in
FBd

ABBd
contained in R 0

2 .

D. Phenomenological analysis

We will now combine the analyses of «K and of
B d

0-B̄ d
0 mixing to obtain allowed ranges for several

quantities of interest. We consider two sets of input pa-
rameters, which are collected in the Appendix. The first
set represents the present situation. The second set can
be considered as a ‘‘future vision,’’ in which the errors
on various input parameters have been decreased. It is
plausible that such errors will be achieved by the end of
this decade, although one cannot guarantee that the cen-
tral values will remain. In Table XXXVII we show the
results for d, Imlt , sin2a, sin2b, sing, uVtdu, and xs . They
correspond to the two sets of parameters in question,
with and without the constraint from B d

0-B̄ d
0 mixing.

The results for Imlt and uVtdu will play an important role
in the phenomenology of rare decays and CP violation.
For completeness we also show the expectations for
sin2a, sin2b, and sing, which enter various CP asymme-
tries in B decays. As already discussed in detail by Bu-
ras, Lautenbacher, and Ostermaier (1994), sin2a cannot
be predicted accurately this way. On the other hand,
sin2b and sing are more constrained, and the resulting

ranges for these quantities indicate that large CP asym-
metries should be observed in a variety of B decays.
In Fig. 10 we show Imlt as a function of mt . In Fig. 11

the lower bound on uVub/Vcbu resulting from the «K con-
straint is shown as a function of uVcbu for various values
of BK . To this end we have set mt=185 GeV. For lower
values of mt the lower bound on uVub/Vcbu is stronger.
A similar analysis has been made by Herrlich and Nier-
ste (1995a). The latter work and the plot in Fig. 11 dem-
onstrate clearly the impact of the «K constraint on the
allowed values of uVub/Vcbu and uVcbu. Simultaneously,
small values of uVub/Vcbu and uVcbu, although still con-
sistent with tree-level decays, are not allowed by the size
of the indirect CP violation observed in K→pp. An-
other representation of this behavior is shown in Fig. 12,
where we plot the minimal value of BK consistent with
the experimental value of «K as a function of Vcb for
different uVub/Vcbu and mt<185 GeV.
Finally in Fig. 13 we show the allowed ranges in the

( r̄ ,h̄) plane obtained using the information from Vcb ,
uVub/Vcbu, «K , and B d

0-B̄ d
0 mixing. In this plot we also

show the impact of a future measurement of B s
0-B̄ s

0

mixing with xs=10, 15, 25, and 40, which, by means of
the Eq. (18.25), gives an important measurement of the
side Rt of the unitarity triangle. Whereas at present a
broad range in the ( r̄ ,h̄) plane is allowed, the situation
might change in the future, allowing only the values of
0<r̄<0.2 and 0.30<h̄<0.40. This results in smaller
ranges for various quantities of interest as explicitly seen
in Table XXXVII.
Other analyses of the unitarity triangle can be found

in works by Ali and London (1995), Ciuchini et al.

FIG. 11. uVub/Vcbumin for mt<185 GeV and various choices of BK .
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(1995), Herrlich and Nierste (1995a), and Peccei and
Wang (1995).

XIX. «8/« BEYOND LEADING LOGARITHMIC ORDER

A. Basic formulas

The direct CP violation in K→pp is described by «8.
The parameter «8 is given in terms of the amplitudes
A0[A(K→(pp)I50) and A2[A(K→(pp)I52) as fol-
lows

«852
v

&
j~12V!exp~ iF!, (19.1)

where

j5
ImA0

ReA0
, v5

ReA2

ReA0
, V5

1
v

ImA2

ImA0
, (19.2)

and F=p/2+d2−d0'p/4.
When using Eqs. (19.1) and (19.2) in phenomenologi-

cal applications, one usually takes ReA0 and v from ex-
periment, i.e.,

ReA053.3331027 GeV,

Re A251.5031028 GeV, v50.045, (19.3)

where the last relation reflects the so-called DI=1/2 rule.
The main reason for this strategy is the unpleasant fact
that nobody has suceeded in fully explaining this rule,
which to a large extent is believed to originate in the
long-distance QCD contributions. We will be more spe-
cific about this in the next section. On the other hand

the imaginary parts of the amplitudes in Eq. (19.2), be-
ing related to CP violation and the top-quark physics,
should be dominated by short-distance contributions.
Therefore ImA0 and ImA2 are usually calculated using
the effective Hamiltonian given in Eq. (7.1). Using this
Hamiltonian and the experimental values for «, ReA0 ,
and v, we can write the ratio «8/« as

«8/«5Iml t@P
~1/2!2P ~3/2!# , (19.4)

where

P ~1/2!5( Pi
~1/2!5r( yi^Qi&0~12Vh1h8!, (19.5)

P ~3/2!5( Pi
~3/2!5

r

v ( yi^Qi&2 (19.6)

with

r5
GFv

2u«uReA0
. (19.7)

Here the hadronic matrix-element shorthand notation is

^Qi&I[^~pp!IuQiuK&, (19.8)

and the sum in Eqs. (19.5) and (19.6) runs over all con-
tributing operators. This means for m>mc contributions
from operators Q 1,2

c to P(1/2) and P(3/2) have to be taken
into account. These are necessary for P(1/2) and P(3/2) to
be independent of the renormalization scale m. Next,

Vh1h85
1
v

~ImA2!IB
ImA0

(19.9)

FIG. 12. (BK)min of Eq. (18.14) for mt<185 GeV and various choices of uVub/Vcbu.
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represents the contribution stemming from isospin
breaking (IB) in the quark masses (muÞmd). For
Vh1h8 we will take

Vh1h850.2560.05, (19.10)

which is in the ballpark of the values obtained in the
1/Nc approach (Buras and Gérard, 1987) and in chiral
perturbation theory (Donoghue et al., 1986; Lusignoli,
1989). Vh1h8 is independent of mt .
The numerical values of the Wilson coefficients yi

have been already given in Sec. VII.E. We therefore
turn our attention to the hadronic matrix elements [Eq.
(19.8)], which constitute the main source of uncertainty
in the calculation of «8/«.

B. Hadronic matrix elements for K→pp

The hadronic matrix elements ^Qi&I depend generally
on the renormalization scale m and on the scheme used
to renormalize the operators Qi . These two depen-
dences are canceled by those present in the Wilson co-
efficients Ci(m) so that the resulting physical amplitudes
do not depend on m or the renormalization scheme of
the operators. Unfortunately the accuracy of the present
nonperturbative methods used to evaluate ^Qi&I , like
lattice methods or 1/Nc expansion, is not sufficient to
obtain the required m and scheme dependences of

^Qi&I . For a review of the existing methods and their
comparison, see Buras et al. (1993b) and Ciuchini et al.
(1995). In view of this situation it has been suggested
(Buras et al., 1993b) that one determines as many matrix
elements ^Qi&I as possible from the leading CP-
conserving K→pp decays for which the experimental
data are summarized in Eq. (19.3). To this end it turned
out to be very convenient to determine ^Qi&I at a scale
m=mc . Using the renormalization-group evolution, one
can then find ^Qi&I at any other scale mÞmc (Buras
et al., 1993b). Here we simply summarize the results of
this work.
We first express the matrix elements ^Qi&I in terms of

the nonperturbative parameters B i
(1/2) and B i

(3/2) for
^Qi&0 and ^Qi&2 , respectively. For m<mc we have (Bu-
ras et al., 1993b)

^Q1&052 1
9XB1

~1/2! , (19.11)

^Q2&05
5
9XB2

~1/2! , (19.12)

^Q3&05
1
3XB3

~1/2! , (19.13)

^Q4&05^Q3&01^Q2&02^Q1&0 , (19.14)

^Q5&05
1
3B5

~1/2!^Q6&0 , (19.15)

FIG. 13. Present (a) and future (b) allowed ranges for the upper corner A of the unitarity triangle using data from K0-K̄0, B0-B̄0

mixing, and tree-level B decays. Input parameter ranges are given in the Appendix. The solid lines correspond to (Rt)max from Eq.
(18.25) using Rds=0.66 and xs>10, 15, 25, and 40, respectively.
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^Q6&0524A3
2 F mK

2

ms~m!1md~m!
G 2 Fp

k
B6

~1/2! ,

(19.16)

^Q7&052F16 ^Q6&0~k11 !2
X

2 GB7
~1/2! , (19.17)

^Q8&052F12 ^Q6&0~k11 !2
X

6 GB8
~1/2! , (19.18)

^Q9&05
3
2 ^Q1&02

1
2 ^Q3&0 , (19.19)

^Q10&05^Q2&01
1
2 ^Q1&02

1
2 ^Q3&0 , (19.20)

^Q1&25^Q2&25
4&
9

XB1
~3/2! , (19.21)

^Qi&250, i53,.. . ,6, (19.22)

^Q7&252F k

6&
^Q6&01

X

A2GB7
~3/2! , (19.23)

^Q8&252F k

2&
^Q6&01

A2
6

XGB8
~3/2! , (19.24)

^Q9&25^Q10&25
3
2 ^Q1&2 , (19.25)

where

k5
Lx
2

mK
2 2mp

2 5
Fp

FK2Fp
, (19.26)

X5A3
2
Fp~mK

2 2mp
2 !, (19.27)

and

^Q6&05
^Q6&0
B6

~1/2! . (19.28)

The actual numerical values used for mK , mp , FK , and
Fp are collected in the Appendix.
In the vacuum-insertion method Bi=1 independent of

m. In QCD, however, the hadronic parameters Bi gen-
erally depend on the renormalization scale m and the
renormalization scheme considered.

C. ^Qi(m)&2 for (V2A)^ (V2A) operators

The matrix elements ^Q1&2 , ^Q2&2 , ^Q9&2 , and ^Q10&2
can be determined to a very good approximation from
ReA2 in Eq. (19.3) as functions of LMS , m, and the
renormalization scheme considered. To this end it is use-
ful to set a=0, as the O(a) effects in CP-conserving am-
plitudes, such as the contributions of electroweak pen-
guins, are very small. One then finds

^Q1~m!&25^Q2~m!&25
106 GeV2

1.77
ReA2

z1~m!

5
8.4731023 GeV3

z1~m!
, (19.29)

and, comparing with Eq. (19.21),

B1
~3/2!~m!5

0.363
z1~m!

(19.30)

with z15z11z2 . Since z+(m) depends on the scale m
and the renormalization scheme used, Eq. (19.30) gives
automatically the scheme and m dependence of B 1

(3/2)

and of the related matrix elements ^Q1&2 , ^Q2&2 , ^Q9&2 ,
and ^Q10&2 . The impact of O(a) corrections on this result
has been analyzed by Buras et al. (1993b). It amounts to
only a few percent, as expected. These corrections are
included in the numerical analysis presented in the
above reference and here as well. Using m=mc=1.3 GeV,
LMS
(4)

5 325 MeV, and z1(mc) from Table XIX, we find,
according to Eq. (19.30),

B1,NDR
~3/2! ~mc!50.453, B1,HV

~3/2! ~mc!50.472. (19.31)

The following comments should be made:
(i) B 1

(3/2)(m) decreases with increasing m.
(ii) The extracted value for B1

(3/2); is more than a fac-
tor of 2 smaller than the vacuum-insertion estimate.
(iii) It is compatible with the 1/Nc value B 1

(3/2)(1 GeV)
'0.55 (Bardeen et al., 1987a) and somewhat smaller
than the lattice result B 1

(3/2)(2 GeV)'0.6 (Ciuchini et al.,
1995).

D. ^Qi(m)&0 for (V2A)^ (V2A) operators

The determination of ^Qi(m)&0 matrix elements is
more involved because several operators may contribute
to ReA0 . The main idea of Buras et al. (1993b) is then to
set m=mc , as at this scale only Q1 and Q2 operators
contribute to ReA0 in the HV scheme. One then finds
^Q1(mc)&0 as a function of ^Q2(mc)&0

^Q1~mc!&05
106 GeV2

1.77
ReA0

z1~mc!

2
z2~mc!

z1~mc!
^Q2~mc!&0 , (19.32)

where the reference in ^Q1,2(mc)&0 to the HV scheme
has been suppressed for convenience. Using Eqs.
(19.14), (19.19), and (19.20) one is able to obtain
^Q4(mc)&0 , ^Q9(mc)&0 , and ^Q10(mc)&0 as functions of
^Q2(mc)&0 and ^Q3(mc)&0 . Because ^Q3(mc)&0 is color
suppressed, it is less essential for this analysis than
^Q2(mc)&0 . Moreover, its Wilson coefficient is small
and, similar to ^Q9(mc)&0 and ^Q10(mc)&0 , ^Q3(mc)&0
has only a small impact on «8/«. On the other hand, the
coefficient y4 is substantial, and consequently ^Q4(mc)&0
plays a considerable role in the analysis of «8/«. The ma-
trix element ^Q3(mc)&0 then has an indirect impact on
«8/« through Eq. (19.14). For numerical evaluation,
^Q3(mc)&0 of Eq. (19.13) with B 3

(1/2)=1 can be used,
keeping in mind that this may introduce a small uncer-
tainty in the final analysis. This uncertainty has been
investigated by Buras et al. (1993b).
Once the matrix elements in question have been de-

termined as functions of ^Q2(mc)&0 in the HV scheme,

1208 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



they can be found by a finite renormalization in any
other scheme (Buras et al., 1993b).
If one also makes the very plausible assumption, valid

in all known nonperturbative approaches, that
^Q2(mc)&0>^Q1(mc)&0>0, the experimental value of
ReA0 in Eq. (19.3) together with Eq. (19.32) and Table
XIX implies, for LMS

(4)
5 325 MeV,

B2,LO
~1/2! ~mc!55.761.1, B2,NDR

~1/2! ~mc!56.661.0,

B2,HV
~1/2! ~mc!56.261.0. (19.33)

The extraction of B 1
(1/2)(mc) and an analogous param-

eter B 4
(1/2)(mc) are presented in detail by Buras et al.

(1993b). B 1
(1/2)(mc) depends very sensitively on

B 2
(1/2)(mc), and its central value is as high as 15.

B 4
(1/2)(mc) is less sensitive and typically (10–15)% lower

than B 2
(1/2)(mc). In any case this analysis shows very

large departures from the results of the vacuum-
insertion method.

E. ^Qi(m)&0,2 for (V2A)^ (V1A) operators

The matrix elements of the (V2A)^ (V1A) opera-
tors Q52Q8 cannot be constrained by CP-conserving
data, and one has to rely on existing nonperturbative
methods to calculate them. Fortunately, there are some
indications that the existing nonperturbative estimates
of ^Qi(m)&0,2, i=5, . . . ,8 are more reliable than the cor-
responding calculations for (V2A)^ (V2A) operators.
First of all, the parameters B 5,6

(1/2) (Kilcup, 1991;
Sharpe, 1991) and B 7,8

(3/2) (Franco et al., 1989; Bernard
and Soni, 1991; Kilcup, 1991; Sharpe, 1991) calculated in
the lattice approach,

B5,6
~1/2!51.060.2, B7,8

~3/2!51.060.2, (19.34)

agree well with the vacuum-insertion values (Bi=1) and
in the case of B 6

(1/2) and B 8
(3/2) with the 1/Nc approach

(B 6
(1/2)5B 8

(3/2)51) (Bardeen et al., 1987b; Buras and
Gérard, 1987).
We note next that, with fixed values for B 5,6

(1/2) and
B 7,8

(3/2), the m dependence of ^Q5,6&0 and ^Q7,8&2 is gov-
erned by the m dependence of ms(m). For ^Q6&0 and
^Q8&2 this property has first been found in the 1/Nc ap-
proach (Buras and Gérard, 1987): in the large-Nc limit

the anomalous dimensions of Q6 and Q8 are simply
twice the anomalous dimension of the mass operator,
leading to ;1/m s

2(m) for the corresponding matrix ele-
ments. Another support comes from a renormalization
study by Buras et al. (1993b). In this analysis the Bi fac-
tors in Eq. (19.34) have been set to unity at m=mc . Sub-
sequently the evolution of the matrix elements in the
range 1 GeV<m<4 GeV has been calculated, showing
that, for the NDR scheme, B 5,6

(1/2) and B 7,8
(3/2) were m inde-

pendent within an accuracy of (2–3)%. The m depen-
dence in the HV scheme has been found to be stronger
but still below 10%.
Concerning B 7,8

(1/2), one can simply set B 7,8
(1/2)=1, as the

matrix elements ^Q7,8&0 play only a minor role in the «8/«
analysis.
In summary, the present treatment of ^Qi&0,2,

i=5, . . . ,8 follows the one used by Buras et al. (1993b).
We will set

B7,8
~1/2!~mc!51, B5

~1/2!~mc!5B6
~1/2!~mc!,

B7
~3/2!~mc!5B8

~3/2!~mc!, (19.35)

and we will treat B 6
(1/2)(mc) and B 8

(3/2)(mc) as free pa-
rameters in the neighborhood of the values given in Eq.
(19.34). Then the main uncertainty in the values of
^Qi&0,2, i=5, . . . ,8 results from the value of the strange-
quark mass ms(mc). The present estimates give

ms~mc!5~170620! MeV (19.36)

with the lower values coming from recent lattice calcu-
lations (Allton et al., 1994) and the higher ones from
QCD sum rules (Chetyrkin et al., 1995; Jamin and Münz,
1995).

F. The four dominant contributions to «8/«

P(1/2) and P(3/2) in Eq. (19.4) can be written as linear
combinations of two independent hadronic parameters
B 6

(1/2) and B 8
(3/2) (Buras et al., 1993b). This Bi expansion

is given by

P ~1/2!5a0
~1/2!1F 178 MeV

ms~mc!1md~mc!
G2a6~1/2!B6

~1/2! ,

(19.37)

TABLE XXXVIII. Bi expansion coefficients for P
(1/2).

LMS
(4) [MeV] mt [GeV]

LO NDR HV

a0
(1/2) a6

(1/2) a0
(1/2) a6

(1/2) a0
(1/2) a6

(1/2)

155 −2.138 5.110 −2.251 4.676 −2.215 4.159
215 170 −2.070 5.138 −2.187 4.698 −2.150 4.181

185 −1.996 5.162 −2.117 4.716 −2.081 4.200
155 −2.231 6.540 −2.414 6.255 −2.362 5.389

325 170 −2.161 6.576 −2.350 6.282 −2.298 5.416
185 −2.085 6.606 −2.281 6.306 −2.229 5.439
155 −2.288 8.171 −2.549 8.417 −2.473 6.972

435 170 −2.212 8.214 −2.482 8.451 −2.406 7.005
185 −2.130 8.251 −2.409 8.480 −2.333 7.035
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P ~3/2!5a0
~3/2!1F 178 MeV

ms~mc!1md~mc!
G2a8~3/2!B8

~3/2! .

(19.38)

Here a 0
(1/2) and a 0

(3/2) effectively summarize all
dependences other than B 6

(1/2) and B 8
(3/2) , especially

B 2
(1/2) in the case of a 0

(1/2) . Note that, in contrast to Buras
et al. (1993b), we have absorbed the dependence on
B 2

(1/2) into a 0
(1/2) and have exhibited the dependence on

ms , which was not shown explicitly there. The residual
ms dependence present in a 0

(1/2) and a 0
(3/2) is negligible.

Setting m=mc and using the strategy for hadronic matrix
elements outlined above, one finds the coefficients a i

(1/2)

and a i
(3/2) as functions of LMS , mt , and the renormal-

ization scheme considered. These dependences are given
in Tables XXXVIII and XXXIX. We should stress that
P(1/2) and P(3/2) are independent of m and the renormal-
ization scheme considered.
Inspecting Eqs. (19.37) and (19.38) and Tables

XXXVIII, XXXIX, we identify the following four con-
tributions which govern the ratio «8/« at scales
m=O(mc):
(1) The contribution of (V2A)^ (V2A) operators

to P(1/2) is dominantly represented by a 0
(1/2) . This term is

to a large extent fixed by the experimental value of A0
and consequently is only very weakly dependent on
LMS and the renormalization scheme considered. The
weak dependence on mt results from small contributions
of electroweak penguin operators. Taking LMS

(4)
5325

MeV, m=mc , and mt=170 GeV, we have a 0
(1/2)'−2.3 for

both schemes considered. We observe that the contribu-
tion of (V2A)^ (V2A) operators, in particular Q4 , to
«8/« is negative.
(2) The contribution of (V2A)^ (V1A) QCD pen-

guin operators to P(1/2) is given by the second term in
Eq. (19.37). This contribution is large and positive. The
coefficient a 6

(1/2) depends sensitively on LMS , which re-
sults from the strong dependence of y6 on the QCD
scale. The dependence on mt is very weak on the other
hand. Taking LMS

(4)
5 325 MeV, ms(mc)=170 MeV, and

mt=170 GeV and setting B 6
(1/2)=1 in the NDR and HV

schemes, we find a positive contribution to «8/« amount-
ing to 6.3 and 5.4 in the NDR and HV schemes, respec-
tively.

(3) The contribution of the (V2A)^ (V2A) elec-
troweak penguin operators Q9 and Q10 to P(3/2) is rep-
resented by a 0

(3/2) . As in the case of the first contribution,
the matrix elements contributing to a 0

(3/2) are fixed by the
CP-conserving data, this time by the amplitude A2 .
Consequently, the scheme and the LMS dependence of
a 0
(3/2) is very weak. The sizable mt dependence of a 0

(3/2)

results from the mt dependence of y91y10. a 0
(3/2) contrib-

utes positively to «8/«. For mt=170 GeV this contribution
is roughly 0.9 for both renormalization schemes in the
full range of LMS considered.
(4) The contribution of the (V2A)^ (V1A) elec-

troweak penguin operators Q7 and Q8 to P
(3/2) is repre-

sented by the second term in Eq. (19.38). This contribu-
tion depends sensitively on mt and LMS , as could be
expected on the basis of y7 and y8 . Taking again B 8

(3/2)=1
in both renormalization schemes, we find for the central
values of LMS

(4) , mt , and mc a negative contribution to
«8/« equal to −3.9 and −3.6 for the NDR and HV
schemes, respectively.
Before analyzing «8/« numerically in more detail, let

us set Imlt=1.3310−4 and B 6
(1/2)5B 8

(3/2)=1 in both
schemes. Then, for the central values of the remaining
parameters, one obtains «8/«=2.0310−4 and «8/«
=0.6310−4 for the NDR and HV schemes, respectively.
This strong scheme dependence can only be compen-
sated for by having B 6

(1/2) and B 8
(3/2) different in the two

schemes considered. As we will see below the strong
cancellations between various contributions at mt'170
GeV make the prediction for «8/« rather uncertain. One
should also stress that the formulation presented here
does not exhibit analytically the mt dependence. As the
coefficients a 0

(3/2) and a 8
(3/2) depend very sensitively on

mt , it is useful to display this dependence in an analytic
form.

G. An analytic formula for «8/«

As shown by Buras and Lautenbacher (1993) it is pos-
sible to cast the above discussion into an analytic for-
mula which exhibits the mt dependence together with
the dependence on ms , B 6

(1/2) , and B 8
(3/2) . Such an ana-

lytic formula should be useful for those phenomenolo-

TABLE XXXIX. Bi expansion coefficients for P
(3/2).

LMS
(4) [MeV] mt [GeV]

LO NDR HV

a0
(3/2) a8

(3/2) a0
(3/2) a8

(3/2) a0
(3/2) a8

(3/2)

155 −0.797 1.961 −0.819 1.887 −0.838 2.114
215 170 −0.880 2.602 −0.900 2.438 −0.919 2.666

185 −0.965 3.296 −0.983 3.036 −1.002 3.263
155 −0.788 2.645 −0.814 2.639 −0.837 2.894

325 170 −0.870 3.422 −0.895 3.305 −0.917 3.560
185 −0.956 4.264 −0.978 4.027 −1.000 4.281
155 −0.779 3.425 −0.809 3.622 −0.835 3.899

435 170 −0.861 4.360 −0.889 4.435 −0.915 4.712
185 −0.947 5.372 −0.971 5.316 −0.998 5.593
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gists and experimentalists who are not interested in get-
ting involved with the technicalities discussed in
preceding sections.
In order to find an analytic expression for «8/« that

exactly reproduces the results discussed above, one uses
the PBE presented in Sec. XIV. The resulting analytic
expression for «8/« is then given as follows,

«8/«5Iml tF~xt!, (19.39)

where

F~xt!5P01PXX0~xt!1PYY0~xt!1PZZ0~xt!

1PEE0~xt! (19.40)

with the mt-dependent functions listed in Sec. XIV. The
coefficients Pi are given in terms of B 6

(1/2)[B 6
(1/2)(mc),

B 8
(3/2)[B 8

(3/2)(mc), and ms(mc) as follows,

Pi5ri
~0 !1F 178 MeV

ms~mc!1md~mc!
G2~ri~6 !B6

~1/2!1ri
~8 !B8

~3/2!!.

(19.41)

The Pi are m and renormalization-scheme independent.
They depend, however, on LMS . In Table XL we give
the numerical values of r i

(0), r i
(6), and r i

(8) for different
values of LMS at m=mc in the NDR renormalization
scheme. Analogous results in the HV scheme are given
in Table XLI. The coefficients r i

(0), r i
(6), and r i

(8) do not
depend on ms(mc), as this dependence has been fac-
tored out. r i

(0) does, however, depend on the particular
choice for the parameter B 2

(1/2) in the parametrization of
the matrix element ^Q2&0 . The values given in the tables
correspond to the central values in Eq. (19.33). Varia-
tion of B 2

(1/2) in the full allowed range introduces an un-
certainty of at most 18% in the r i

(0) column of the tables.
Since the parameters r i

(0) give only subdominant contri-
butions to «8/«, keeping B 2

(1/2) and r i
(0) at their central

values is a very good approximation.

For different scales m the numerical values in the
tables change without modifying the values of the Pi’s,
as it should be. To this end B 6

(1/2) and B 8
(3/2) have to be

modified, as they depend, albeit weakly, on m.
Concerning the scheme dependence, we note that,

whereas r0 coefficients are scheme dependent, the coef-
ficients ri , i5X ,Y ,Z ,E do not show any scheme depen-
dence. This is related to the fact that the mt dependence
in «8/« enters first at the NLO level and consequently all
coefficients ri in front of the mt-dependent functions
must be scheme independent. That this turns out to be
the case is a nice check of our calculations.
Consequently, when changing the renormalization

scheme, one is only obliged to change B 6
(1/2) and B 8

(3/2) in
the formula for P0 in order to obtain a scheme indepen-
dence of «8/«. In calculating Pi , where iÞ0, B 6

(1/2) and
B 8

(3/2) can in fact remain unchanged because their varia-
tion in this part corresponds to higher-order contribu-
tions to «8/«, which would have to be taken into account
in the next order of perturbation theory.
For similar reasons the NLO analysis of «8/« is still

insensitive to the precise definition of mt . In view of the
fact that the NLO calculations of Imlt have been done
with mt5m̄t(mt), we will also use this definition in cal-
culating F(xt).
The inspection of Tables XL and XLI shows that the

terms involving r 0
(6) and r Z

(8) dominate the ratio «8/«. The
function Z0(xt), representing a gauge-invariant combi-
nation of Z0 and g penguins, grows rapidly with mt , and,
due to r Z

(8)<0, these contributions suppress «8/« strongly
for large mt (Flynn and Randall, 1989b; Buchalla et al.,
1990). These two dominant terms, r 0

(6) and r Z
(8), corre-

spond essentially to the second terms in Eqs. (19.37) and
(19.38), respectively. The first term in Eq. (19.37) corre-
sponds roughly to r 0

(0) given here, while the first term in
Eq. (19.38) is represented to a large extent by the posi-

TABLE XL. DS=1 PBE coefficients for various LMS in the NDR scheme.

i

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

r i
(0) r i

(6) r i
(8) r i

(0) r i
(6) r i

(8) r i
(0) r i

(6) r i
(8)

0 −2.644 4.784 0.876 −2.749 6.376 0.689 −2.845 8.547 0.436
X 0.555 0.008 0 0.521 0.012 0 0.495 0.017 0
Y 0.422 0.037 0 0.385 0.046 0 0.356 0.057 0
Z 0.074 −0.007 −4.798 0.149 −0.009 −5.789 0.237 −0.011 −7.064
E 0.209 −0.591 0.205 0.181 −0.727 0.265 0.152 −0.892 0.342

TABLE XLI. DS=1 PBE coefficients for various LMS in the HV scheme.

i

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

r i
(0) r i

(6) r i
(8) r i

(0) r i
(6) r i

(8) r i
(0) r i

(6) r i
(8)

0 −2.631 4.291 0.668 −2.735 5.548 0.457 −2.830 7.163 0.185
X 0.555 0.008 0 0.521 0.012 0 0.495 0.017 0
Y 0.422 0.037 0 0.385 0.046 0 0.356 0.057 0
Z 0.074 −0.007 −4.798 0.149 −0.009 −5.789 0.237 −0.011 −7.064
E 0.209 −0.591 0.205 0.181 −0.727 0.265 0.152 −0.892 0.342
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tive contributions of X0(xt) and Y0(xt). The last term in
Eq. (19.40), representing the residual mt dependence of
QCD penguins, plays only a minor role in the full analy-
sis of «8/«.

H. Numerical results

Let us define two effective B factors:

~Bi
~ j !~mc!!eff5F 178 MeV

m̄s~mc!1m̄d~mc!
G2Bi

~ j !~mc!. (19.42)

In Fig. 14 we show «8/« for mt=170 GeV as a function of
LMS for different choices of the effective Bi factors. We
show here only the results in the NDR scheme. As dis-
cussed above «8/« is generally lower in the HV scheme,
if the same values for B 6

(1/2) and B 8
(3/2) are used in both

schemes. In view of the fact that the differences between
NDR and HV schemes are smaller than the uncertain-
ties in B 6

(1/2) and B 8
(3/2) , we think it is sufficient to present

only the results in the NDR scheme here. The results in
the HV scheme can be found in work by Buras et al.
(1993b) and Ciuchini et al. (1995).

Figure 14 shows a strong dependence of «8/« on
LMS . However, the main uncertainty originates in the
poor knowledge of (Bi)eff . In Fig. 14(a), in which the
QCD penguin contributions dominate, «8/« can reach
values as high as 1310−3. However, in Fig. 14(c) the
electroweak penguin contributions are large enough to
essentially cancel the QCD penguin contributions com-
pletely. Consequently, in this case u«8/«u<2310−5, and the
standard model prediction of «8/« cannot be distin-
guished from a superweak theory. As shown in Fig. 15,
higher values of «8/« can be obtained for mt=155 GeV,
although still «8/«<13310−4.
For mt=185 GeV the values of «8/« are correspond-

ingly smaller, and in Fig. 14(c) small negative values are
found for «8/«. In Figs. 14–16 the dark grey regions refer
to the future ranges for Imlt . Of course one should
hope that the knowledge of (Bi)eff and of LMS

(4) will be
improved in the future so that a firmer prediction for
«8/« can be obtained.
Finally, Fig. 17 shows the interrelated influence of mt

and the two most important hadronic matrix elements
for penguin operators on the theoretical prediction of

FIG. 14. The ranges of «8/« in the NDR scheme as a function of LMS
(4) for mt=170 GeV and present (light grey) and future (dark

grey) parameter ranges given in the Appendix. The three pairs of «8/« plots correspond to hadronic parameter sets (a)
[B 6

(1/2)(mc)]eff=1.5, @B8
(3/2)(mc)#eff=1.0, (b) @B6

(1/2)(mc)#eff=1.0, [B 8
(3/2)(mc)]eff=1.0, and (c) @B6

(1/2)(mc)#eff=1.0, [B 8
(3/2)(mc)]eff

=1.5, respectively.
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«8/«. For a dominant QCD penguin matrix element
^Q6&0 , «8/« stays positive for all mt values considered.
«8/«'0 becomes possible for equally weighted matrix el-
ements ^Q6&0 and ^Q8&2 around mt=205 GeV. A domi-
nant electroweak penguin matrix element ^Q8&2 shifts
the point «8/«'0 to mt'165 GeV and even allows for a
negative «8/« for higher values of mt . The key issue to
understand this behavior of «8/« is the observation that
the Q6 contribution to «8/« is positive and only weakly
mt dependent. On the other hand the contribution com-
ing from Q8 is negative and shows a strong mt depen-
dence.
The results in Fig. 14–17 use only the «K constraint. In

order to complete the analysis we want to impose the xd
constraint and vary ms(mc), B 6

(1/2) , and B 8
(3/2) in the full

ranges given in Eqs. (19.34) and (19.36).
This gives for the ‘‘present’’ scenario

22.131024<«8/«<13.231024, (19.43)

to be compared with

21.131024<«8/«<10.431024 (19.44)

in the case of the ‘‘future’’ scenario. In both cases the xd
constraint has essentially no impact on the predicted
range for «8/«.
Finally, extending the ‘‘future’’ scenario to

ms(mc)=(170610) MeV, LMS
(4)

5(325650) MeV, and

B 6
(1/2) ,B 8

(3/2)=1.060.1 would give

0.3•1024<«8/«<5.431024, (19.45)

again with no impact from imposing the xd constraint.
Allowing an additional variation B 2,NDR

(1/2) (mc)
=6.661.0, extends the ranges of Eqs. (19.43)–(19.45)
to −2.5310−4<«8/«<13.7310−4, −1.5310−4<«8/«<10.8
310−4, and 0.1310−4<«8/«<5.8310−4, respectively.
Next let us compare our results with the results of

other analyses presented in the literature. A very de-
tailed numerical analysis of «8/« has been presented by
the Rome group (Ciuchini et al., 1995). The analysis of
the Wilson coefficients is the same as presented here.
The values for the most important Bi parameters, B 6

(1/2)

and B 8
(3/2) , are taken from lattice calculations, and con-

sequently this part of the analysis is rather similar to
ours. For the remaining matrix elements the Rome
group uses either existing lattice estimates or educated
guesses that are discussed in their paper. In spite of the
fact that the treatment of these remaining hadronic ma-
trix elements differs from the one presented here,
the final result of the Rome group, Re(«8/«)
=(3.162.5)310−4, is compatible with our results.
The difference in the range for «8/« presented here

and the Rome group is related to the different treatment
of theoretical and experimental errors. Whereas we sim-
ply scan all parameters within one standard deviation,

FIG. 15. Same as Fig. 14 but for
mt=155 GeV.
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Ciuchini et al. (1995) use Gaussian distributions in treat-
ing the experimental errors. Consequently our proce-
dure is more conservative. We agree with these authors
that values for «8/« above 1310−3, although not ex-
cluded, are very improbable. This should be contrasted
with the work of the Dortmund group (Fröhlich et al.,

1991; Heinrich et al., 1992), which finds values for «8/« in
the ballpark of (1–2)310−3. We do not know of any con-
sistent framework for hadronic matrix elements that
would give such high values within the standard model.
(Bertolini et al. 1995a, 1995b), calculate the hadronic

matrix elements relevant for «8/« within the chiral quark

FIG. 16. Same as Fig. 14 but for
mt=185 GeV.

FIG. 17. The ranges of «8/« in the NDR scheme as a function of mt for LMS
(4)

5325 MeV and present (light grey) and future (dark
grey) parameter ranges given in the Appendix. The three bands correspond to hadronic parameter sets (a) [B 6

(1/2)(mc)]eff=1.5,
[B 8

(3/2)(mc)]eff=1.0, (b) [B 6
(1/2)(mc)]eff=1.0, [B 8

(3/2)(mc)]eff=1.0, and (c) [B 6
(1/2)(mc)]eff=1.0, [B 8

(3/2)(mc)]eff=1.5, respectively.
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model. These authors find a rather large range
−50310−4<«8/«<14310−4. In particular they find, in con-
trast to Buras et al. (1993b) and Ciuchini et al. (1995),
and the present analysis, that negative values for «8/« as
large as −5310−3 are possible. This is related to the fact
that, for certain model parameters in the chiral quark
model, B 6

(1/2) and B 8
(3/2) can deviate considerably from

unity and generally B 6
(1/2)<B 8

(3/2). There remains an in-
teresting question of how well the chiral quark model
represents QCD.
It is obvious from this section that the status of had-

ronic matrix elements relevant for «8/« is very unsatis-
factory. In particular the matching between Wilson co-
efficients and hadronic matrix elements with respect to
the m dependence and the renormalization-scheme de-
pendence should be improved. Unfortunately the
progress in this direction is rather slow.
The experimental situation on Re(«8/«) is unclear at

present. While the result of the NA31 collaboration at
CERN with Re(«8/«)=(2367)310−4 (Barr et al., 1993)
clearly indicates direct CP violation, the value of E731
at Fermilab, Re(«8/«)=(7.465.9)310−4 (Gibbons et al.,
1993) is compatible with superweak theories (Wolfen-
stein, 1964) in which «8/«=0. The E731 result is in the
ballpark of the theoretical estimates. The NA31 value
appears a bit high compared to the range given in Eq.
(19.43) above.
Hopefully, in about three years the experimental situ-

ation concerning «8/« will be clarified through the im-
proved measurements by the two collaborations at the
10−4 level and by experiments at the F factory in Fras-
cati. One should also hope that the theoretical situation
of «8/« will improve by then as well.

XX. KL2KS MASS DIFFERENCE AND DI51/2 RULE

It is probably a good moment to make a few com-
ments on the KL2KS mass difference given by

DM5M~KL!2M~KS!53.51310215 GeV (20.1)

and the approximate DI=1/2 rule in K→pp decays. As
we have already mentioned in the beginning of Sec.
XIX.A, this empirical rule manifests itself in the domi-
nance of DI=1/2 over DI=3/2 decay amplitudes. It can
be expressed as

ReA0

ReA2
522.2, (20.2)

using the notation of Sec. XIX.A.

A. DM(KL2KS)

The KL2KS mass difference can be written as

DM52 ReM121~DM !LD (20.3)

with M12 given in Eq. (18.6) and (DM)LD representing
long-distance contributions, corresponding, for instance,
to the exchange of intermediate light pseudoscalar me-
sons (p0,h). The first term in Eq. (20.3), the so-called
short-distance contribution, is dominated by the first
term in Eq. (18.6), so that

~DM !SD5
GF

2

6p2 FK
2 BKmKMW

2 Flc
2h1

mc
2

MW
2 1D topG ,

(20.4)

where Dtop represents the two top-dependent terms in
Eq. (18.6). In writing Eq. (20.4) we are neglecting the
tiny imaginary part in lc5Vcs* Vcd . A very extensive nu-
merical analysis of Eq. (20.4) has been presented by
Herrlich and Nierste (1994), who calculated the NLO
corrections to h1 and also to h3 (Herrlich and Nierste,
1995a), which enters Dtop . The NLO calculation of the
short-distance contributions improves the matching to
the nonperturbative matrix element parametrized by BK
and clarifies the proper definition of BK to be used along
with the QCD factors hi . In addition the NLO study
reveals an enhancement of h1 over its LO estimate by
about 20%. Although sizable, this enhancement can still
be considered being perturbative, as required by the
consistency of the calculation. This increase in h1 , rein-
forced by updates in input parameters (LMS), brings
(DM)SD closer to the experimental value in Eq. (20.1).
With LMS

(4)
5325 MeV and mc=1.3 GeV, giving

h1
NLO=1.38, one finds that typically 70% of DM can be

described by the short-distance component. The exact
value is still somewhat uncertain because h1 is rather
sensitive to LMS . Further uncertainties are introduced
by the error in BK and the renormalization scale ambi-
guity, which is still quite pronounced even at NLO. The
result is, however, certainly more reliable than previous
LO estimates. Using the old value h1

LO=0.85, corre-

TABLE XLII. The quantities Rc and Rp contributing to ReA0/ReA2 as described in the text, calcu-
lated using the vacuum-insertion estimate for the hadronic matrix elements. The Wilson-coefficient
functions are evaluated for various LMS

(4) in the leading logarithmic approximation as well as in next to
leading order in two different schemes (NDR and HV).

Scheme

LMS
(4)

5215 MeV LMS
(4)

5325 MeV LMS
(4)

5435 MeV

LO NDR HV LO NDR HV LO NDR HV

Rc 1.8 1.4 1.6 2.0 1.6 1.8 2.4 1.8 2.2
Rp 0.1 0.3 0.1 0.2 0.5 0.2 0.3 1.0 0.4
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sponding to mc=1.4 GeV and LQCD=200 MeV,
(DM)SD/DM would be below 50%, suggesting a domi-
nance of long-distance contributions in DM . As dis-
cussed by Herrlich and Nierste (1994), such a situation
would be ‘‘unnatural,’’ since the long-distance compo-
nent is formally suppressed by LQCD

2 /m c
2. Hence the

short-distance dominance indicated by the NLO analysis
is also gratifying in this respect. The long-distance con-
tributions, to which one can attribute the remaining
;30% in DM not explained by the short-distance part,
are nicely discussed by Bijnens et al. (1991).
In summary, the observed KL2KS mass difference

can be roughly described within the standard model af-
ter the NLO corrections have been taken into account.
However, the remaining theoretical uncertainties in the
dominant part of Eq. (20.4) and the uncertainties in
(DM)LD do not allow one to use DM as a constraint on
the CKM parameters.

B. The DI51/2 rule

Using the effective Hamiltonian in Eq. (7.1) and
keeping only the dominant terms, one has

ReA0

ReA2
'
z1~m!^Q1~m!&01z2~m!^Q2~m!&01z6~m!^Q6~m!&0

z1~m!^Q1~m!&21z2~m!^Q2~m!&2
, (20.5)

where ^Qi&0,2 are defined in Eq. (19.8). The coefficients
zi(m) can be found in Table XVIII. For the hadronic
matrix elements we use Eqs. (19.11), (19.12), (19.16),
and (19.21), which have been discussed in Sec. XIX.B.
We find then, separating current-current and penguin
contributions

ReA0

ReA2
5Rc1Rp , (20.6)

Rc5
5z2~m!B2

~1/2!2z1~m!B1
~1/2!

4&z1~m!B1
~3/2!

, z15z11z2 , (20.7)

Rp5211.9
z6~m!

z1~m!

B6
~1/2!

B1
~3/2! F 178 MeV

ms~m!1md~m!G
2

. (20.8)

The factor 11.9 expresses the enhancement of the matrix
elements of the penguin operator Q6 over ^Q1,2& first
pointed out by Vainshtein et al. (1977). It is instructive
to calculate Rc and Rp using the vacuum-insertion esti-
mate, for which B 1

(1/2)5B 2
(1/2)5B 1

(3/2)5B 6
(1/2)51.

Without QCD effects one finds Rc=0.9 and Rp=0 in
complete disagreement with the data. In Table XLII we
show the values of Rc and Rp at m=1 GeV, using the
results of Table XVIII. We have set ms1md=178 MeV.
The inclusion of QCD effects enhances both Rc and

Rp (Altarelli and Maiani, 1974; Gaillard and Lee,
1974a). However, even for the highest values of LMS

(4) ,
the ratio ReA0/ReA2 is at least a factor of eight smaller
than the experimental value in Eq. (20.2). Moreover, a
considerable scheme dependence is observed. Lowering
m would improve the situation, but for m<1 GeV the
perturbative calculations of zi(m) can no longer be
trusted. Similarly, lowering ms down to 100 MeV would
increase the penguin contribution. In view of the most
recent estimates in Eq. (19.36), however, such a low
value of ms seems to be excluded. We conclude there-
fore, as already known for many years, that the vacuum-
insertion estimate fails completely in explaining the DI
=1/2 rule. As we have discussed in Sec. XIX the vacuum-

insertion estimate B 6
(1/2)=1 is supported by the 1/N

expansion approach and by lattice calculations. Conse-
quently, the only solution to the DI=1/2 rule problem
appears to be a change in the values of the remaining Bi
factors. For instance, repeating the above calculation
with B 1

(3/2)=0.48, B 2
(1/2)=5, and B 1

(1/2)=10 would give, in
the NDR scheme, Rc'20, Rp'2, and ReA0/ReA2'22,
in accordance with the experimental value.
There have been several attempts to explain the DI

=1/2 rule, which basically use the effective Hamiltonian
in Eq. (7.1) but employ different methods for the had-
ronic matrix elements. In particular we would like to
mention the 1/N approach (Bardeen et al., 1987a), the
work of Pich and de Rafael (1991) based on an effective
action for four-quark operators, the diquark approach of
Neubert and Stech (1991), QCD sum rules (Jamin and
Pich, 1994), chiral perturbation calculations (Kambor
et al., 1990, 1991), and very recently an analysis (An-
tonelli et al., 1996) in the framework of the chiral quark
model (Cohen and Manohar, 1984).
With these methods values for ReA0/ReA2 in the

range 15–20 can be obtained. It is beyond the scope of
this review to discuss the weak and strong points of each
method, although at least one of us believes that the
‘‘meson evolution’’ picture advocated by Bardeen et al.
(1987a) represents the main bulk of the physics behind
the value of 22. In view of the uncertainties present in
these approaches, we have not used them in the analysis
of «8/« but have constrained the hadronic matrix ele-
ments so that they satisfy the DI=1/2 rule exactly.

XXI. THE DECAY KL→p0e1e2

A. General remarks

Let us next move on to discuss the rare decay
KL→p0e1e2. Whereas in K→pp decays the CP-
violating contribution is only a tiny part of the full am-
plitude and the direct CP violation, as we have just seen,
is expected to be at least three orders of magnitude
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smaller than the indirect CP violation, the correspond-
ing hierarchies are very different for KL→p0e1e2. At
lowest order in electroweak interactions (one-loop pho-
ton penguin, Z0 penguin and W box diagrams) this de-
cay takes place only if CP symmetry is violated. The
CP-conserving contribution to the amplitude comes
from a two-photon exchange, which, although of higher
order in a, could in principle be sizable. Extensive stud-
ies of several groups indicate, however, that the CP-
conserving part is likely to be smaller than the CP-
violating contributions. We will be more specific about
this at the end of this section.
The CP-violating part can again be divided into a di-

rect and an indirect part. The latter is given by the
KS→p0e1e2 amplitude multiplied by the CP-violating
parameter «K . The amplitude A(KS→p0e1e2) can be
written as

A~KS→p0e1e2!5^p0e1e2uHeffuKS&, (21.1)

where Heff can be found in Eq. (8.1) with the operators
Q1 ,. . . ,Q6 defined in Eq. (6.3), the operators Q7V and
Q7A given by

Q7V5~ s̄d !V2A~ ēe !V , Q7A5~ s̄d !V2A~ ēe !A , (21.2)

and the Wilson coefficients zi and yi calculated in Sec.
VIII.
Let us next note that the coefficients of Q7V and Q7A

are O(a) but their matrix elements ^p0e1e2uQ7V ,AuKS&
are O(1). In the case of Qi (i=1, . . . ,6) the situation is
reversed: the Wilson coefficients are O(1), but the ma-
trix elements ^p0e1e2uQiuKS& are O(a). Consequently,
at O(a) all operators contribute to A(KS→p0e1e2).
However, because KS→p0e1e2 is CP conserving, the
coefficients yi multiplied by t=O(l4) can be fully ne-
glected, and the operator Q7A drops out in this approxi-
mation. Now, whereas ^p0e1e2uQ7VuKS& can be trivi-
ally calculated, this is not the case for ^p0e1e2uQiuKS&
with i=1, . . . ,6, which can only be evaluated using non-
perturbative methods. Moreover, it is clear from the
short-distance analysis of Sec. VIII that the inclusion of
Qi in the estimate of A(KS→p0e1e2) cannot be
avoided. Indeed, whereas ^p0e1e2uQ7VuKS& is indepen-
dent of m and the renormalization scheme, the coeffi-
cient z7V shows very strong scheme and m dependences.
They can only be canceled by the contributions from the
four-quark operators Qi . All this demonstrates that the
estimate of the indirect CP violation in KL→p0e1e2

cannot be done very reliably at present. Some estimates
in the framework of chiral perturbation theory will be
discussed below. On the other hand, a much better as-
sessment of the importance of indirect CP violation in
KL→p0e1e2 will become possible after a measurement
of B(KS→p0e1e2).
Fortunately the directly CP-violating contribution can

be fully calculated as a function of mt , CKM param-
eters, and the QCD coupling constant as . There are
practically no theoretical uncertainties related to had-
ronic matrix elements because ^p0u( s̄d) V2AuKL&
can be extracted using isospin symmetry from the well-

measured decay K1→p0e1n . In what follows, we will
concentrate on this contribution.

B. Analytic formula for B(KL→p0e1e2)dir

The directly CP-violating contribution is governed by
the coefficients yi , and consequently only the penguin
operators Q3 ,. . . ,Q6 , Q7V, and Q7A have to be consid-
ered. Since yi=O(as) for i=3, . . . ,6, the contribution of
QCD penguins to B(KL→p0e1e2)dir is really O(aas),
as compared to the O(a) contributions of Q7V and Q7A.
In deriving the final formula, we will therefore neglect
the contributions of the operators Q3 ,. . . ,Q6 , i.e., we
will assume that

(
i53

6

yi~m!^p0e1e2uQiuKL&

!y7V~m!^p0e1e2uQ7VuKL&. (21.3)

This assumption is supported by the corresponding rela-
tion for the quark-level matrix elements

(
i53

6

yi~m!^de1e2uQius&!y7V~m!^de1e2uQ7Vus&,

(21.4)

which can be easily verified perturbatively.
The neglect of the QCD penguin operators is compat-

ible with the scheme and m independence of the result-
ing branching ratio. Indeed y7A does not depend on m
and the renormalization scheme at all, and the corre-
sponding dependences in y7V are at the level of 61% as
discussed in Sec. VIII.E. Introducing the numerical con-
stant

ke5
1

Vus
2

t~KL!

t~K1! S a

2p D 2B~K1→p0e1n!56.331026,

(21.5)

one then finds

B~KL→p0e1e2!dir5ke~Iml t!
2~ ỹ7V

2 1 ỹ7A
2 !, (21.6)

where

TABLE XLIII. PBE coefficient P0 of y7V for various values of
LMS
(4) and m. In the absence of QCD P0=8/9 ln(MW/mc)=3.664

holds universally.

LMS
(4) [MeV] m [GeV]

P0

LO NDR HV

0.8 2.073 3.159 3.110
215 1.0 2.048 3.133 3.084

1.2 2.027 3.112 3.063
0.8 1.863 3.080 3.024

325 1.0 1.834 3.053 2.996
1.2 1.811 3.028 2.970
0.8 1.672 2.976 2.914

435 1.0 1.640 2.965 2.899
1.2 1.613 2.939 2.872
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yi5
a

2p
ỹ i . (21.7)

Next, using the method of the penguin box expansion
(Sec. XIV), we can write, similar to Eqs. (10.5) and
(10.3),

ỹ7V5P01
Y0~xt!

sin2QW
24Z0~xt!1PEE0~xt!, (21.8)

ỹ7A52
1

sin2QW
Y0~xt! (21.9)

with Y0 , Z0 , and E0 given in Eqs. (11.46), (14.2), and
(6.15). PE is O(10−2), and consequently the last term in
Eq. (21.8) can be neglected. P0 is given for different
values of m and LMS in Table XLIII. There we also show
the leading-order results and the case without QCD cor-
rections.
The analytic expressions in Eqs. (21.8) and (21.9) are

useful as they display not only the explicit mt depen-
dence, but also isolate the impact of leading- and next-
to-leading-order QCD effects. These effects modify only
the constants P0 and PE . As anticipated from the results
of Sec. VIII.E, P0 is strongly enhanced relative to the
LO result. This enhancement amounts roughly to a fac-
tor of 1.660.1. However, this enhancement is partially
due to the fact that, for LLO5LMS , the QCD coupling
constant in the leading order is 20–30% larger than its
next-to-leading-order value. Calculating P0 in LO but
with the full as of Eq. (3.19), we have found that the
enhancement then amounts to a factor of 1.3360.06. In
any case the inclusion of NLO QCD effects and a mean-

ingful use of LMS show that the next-to-leading-order
effects weaken the QCD suppression of y7V. As seen in
Table XLIII, the suppression of P0 by QCD corrections
amounts to about 15% in the complete next-to-leading-
order calculation.

C. Numerical analysis

In Fig. 8 of Sec. VIII.E we have found uy7V/au2 and
uy7A/au2 as functions of mt together with the leading-
order result for uy7V/au2 and the case without QCD cor-
rections. From there it is obvious that the dominant mt
dependence of B(KL→p0e1e2)dir originates from the
coefficient of the operator Q7A. Another noteworthy
feature was that, accidentally for mt'175 GeV, one
finds y7V'y7A.
In Fig. 18 the ratio B(KL→p0e1e2)dir/(Imlt)

2 is
shown as a function of mt . The enhancement of the di-
rectly CP-violating contribution through NLO correc-
tions relative to the LO estimate is clearly visible on this
plot. As we will see below, due to large uncertainties
present in Imlt , this enhancement cannot yet be fully
appreciated phenomenologically.
The very weak dependence on LMS should be con-

trasted with the very strong dependence found in the
case of «8/«. Therefore, provided the other two contribu-
tions to KL→p0e1e2 can be shown to be small or can
be reliably calculated one day, the measurement of
B(KL→p0e1e2) should offer a good determination of
Imlt .

FIG. 18. B(KL→p0e1e2)dir/(Imlt)
2 as a function of mt for various values of LMS

(4) at scale m=1.0 GeV.
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Next we would like to comment on the possible un-
certainties due to the definition of mt . At the level of
accuracy at which we work we cannot fully address this
question yet. In order to be able to do so, one needs to
know the perturbative QCD corrections to Y0(xt) and
Z0(xt) and, for consistency, an additional order in the
renormalization-group improved calculation of P0 .
Since the mt dependence of y7V is rather moderate, the
main concern here is the coefficient y7A, whose mt de-
pendence is fully given by Y(xt). Fortunately the QCD-
corrected function Y(xt) is known from the analysis of
KL→m+m− and can be directly used here. As we will
discuss in Sec. XXV, for mt5mt(mt) the QCD correc-
tions to Y0(xt) are around 2%. On this basis we believe
that, if mt5mt(mt) is chosen, the additional QCD cor-
rections to B(KL→p0e1e2)dir should be small.
Finally we give the predictions for the present and

future sets of input parameters as described in the Ap-
pendix. It should be emphasized that the uncertainties in
these predictions result entirely from the CKM param-
eters. This situation will improve considerably in the era
of dedicated B-physics experiments in the next decade,
which allows a precise prediction for B(KL
→p0e1e2)dir .
We find

B~KL→p0e1e2!dir

5 H ~4.2663.03!310212 no xd constraint
~4.4862.77!310212 with xd constraint,

(21.10)

B~KL→p0e1e2!dir

5 H ~3.7161.61!310212 no xd constraint
~4.3260.96!310212 with xd constraint. (21.11)

These results are compatible with those found by Buras,
Lautenbacher, Misiak, and Münz (1994), Donoghue and
Gabbiani (1995), and Köhler and Paschos (1995) with
differences originating from different choices of CKM
parameters.

D. The indirectly CP-violating and CP-conserving parts

Now we want to compare the results obtained for the
direct CP-violating part with the estimates made for the
indirect CP-violating contribution and the CP-
conserving one. The most recent discussions have been
presented by Cohen et al. (1993), Heiliger and Seghal
(1993), Donoghue and Gabbiani (1995), and Köhler and
Paschos (1995), where references to earlier papers can
be found.
The indirect CP-violating amplitude is given by the

KS→p0e1e2 amplitude multiplied by the CP param-
eter «K . Once B(KS→p0e1e2) has been accurately
measured, it will be possible to calculate this contribu-
tion precisely. Using chiral perturbation theory, it is,
however, possible to get an estimate by relating
KS→p0e1e2 to the K1→p1e1e2 transition (Ecker
et al., 1987, 1988). To this end one can write

B~KL→p0e1e2! indir5B~K1→p1e1e2!
t~KL!

t~K1!

3u«Ku2r2, (21.12)

where

r25
G~KS→p0e1e2!

G~K1→p1e1e2!
. (21.13)

FIG. 19. B(KL→p0e1e2)CP
for mt=170 GeV, LMS

(4)
5325

MeV, and Imlt=1.3310−4 as a
function of r .
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With B(K1→p1e1e2)=(2.7460.23)310−7 (Alliegro
et al., 1992) and the most recent chiral perturbation
theory estimate uru<0.5 (Ecker et al., 1988; Bruno and
Prades, 1993), one has

B~KL→p0e1e2! indir5~5.960.5!•10212r2

<1.6310212, (21.14)

i.e., a branching ratio more than a factor of 2 below the
direct CP-violating contribution. Yet, as emphasized re-
cently by Donoghue and Gabbiani (1995) and Heiliger
and Seghal (1993), the knowledge of r is very uncertain
at present. In particular, the estimate in Eq. (21.14) is
based on a relation between two nonperturbative pa-
rameters, which is rather ad hoc and certainly not a con-
sequence of chiral symmetry. As shown by Donoghue
and Gabbiani (1995), a small deviation from this relation
increases r to values above unity, so that
B(KL→p0e1e2)indir could be comparable or even
larger than B(KL→p0e1e2)dir . It appears then that this
enormous uncertainty in the indirectly CP-violating part
can only be removed by measuring the rate of
KS→p0e1e2.

It should also be stressed that in reality the CP indi-
rect amplitude may interfere with the vector part of the
CP direct amplitude. The full CP-violating amplitude
can then be written following Dib et al. (1989a, 1989b)
as follows:

B~KL→p0e1e2!CP5u2.4331026reip/4

2iAke Iml tỹ7Vu2

1ke~Iml t!
2ỹ7A

2 . (21.15)

As an example, we show in Fig. 19
B(KL→p0e1e2)CP for mt=170 GeV, LMS

(4)
5 325 MeV,

and Imlt=1.3310−4, as a function of r . We observe that,
whereas for 0<r<1 the dependence of
B(KL→p0e1e2)CP on r is moderate, it is rather strong
otherwise and already for r<−0.6 values as high as 10−11

are found.
The estimate of the CP-conserving contribution is

also difficult. We refer the reader to works by Cohen
et al. (1993), Heiliger and Seghal (1993), and Donoghue
and Gabbiani (1995), where further references to an ex-
tensive literature on this subject can be found. The mea-
surement of the branching ratio

B~KL→p0gg!5 H ~1.760.3!31026 ~Barr et al . , 1992!

~2.061.0!31026 ~Papadimitriou et al . , 1991!
(21.16)

and of the shape of the gg mass spectrum plays an important role in this estimate. The most recent analyses give

B~KL→p0e1e2!cons'H ~0.3–1.8!310212

4.0310212

~565 !310212

~Cohen et al . , 1993!

~Heiliger and Seghal, 1993!

~Donoghue and Gabbiani, 1995!,
(21.17)

i.e., not necessarily below the CP-violating contribution.
An improved estimate of this component is certainly de-
sirable. It should be noted that there is no interference
in the rate between the CP-conserving and CP-violating
contributions so that the results in Fig. 19 and Eq.
(21.17) can simply be added.

E. Outlook

The results discussed above indicate that, within the
standard model, B(KL→p0e1e2) could be as high as
1310−11. Moreover, the direct CP-violating contribution
is found to be important and could even be dominant.
Unfortunately the large uncertainties in the remaining
two contributions will probably not allow an easy iden-
tification of the direct CP violation by measuring the
branching ratio only. The future measurements of
B(KS→p0e1e2) and improvements in the estimate of
the CP-conserving part may of course change this un-
satisfactory situation. Alternatively, the measurements
of the electron-energy asymmetry (Heiliger and Seghal,
1993; Donoghue and Gabbiani, 1995) and the study of
the time evolution of K0→p0e1e2 (Littenberg, 1989b;

Donoghue and Gabbiani, 1995; Köhler and Paschos,
1995) could allow for a refined study of CP violation in
this decay.
The present experimental bounds

B~KL→p0e1e2!

< H 4.331029 ~Harris et al . , 1993!

5.531029 ~Ohl et al . , 1990!
(21.18)

are still three orders of magnitude away from the theo-
retical expectations. Yet the prospects of getting the re-
quired sensitivity of order 10−11–10−12 in five years are
encouraging (Littenberg and Valencia, 1993; Ritchie and
Wojcicki, 1993; Winstein and Wolfenstein, 1993).

XXII. THE DECAY B→Xsg

A. General remarks

The B→Xsg decay is known to be extremely sensitive
to the structure of fundamental interactions at the elec-
troweak scale. As with any FCNC process, it does not
arise at the tree level in the standard model. The one-
loop W-exchange diagrams that generate this decay at
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the lowest order in the standard model are small enough
to be comparable to possible nonstandard contributions
(charged scalar exchanges SUSY one-loop diagrams,
WR exchanges in the L-R symmetric models, etc.).
The B→Xsg decay is particularly interesting because

its rate is of order G F
2a , while most of the other FCNC

processes involving leptons or photons are of order
G F

2a2. The long-range strong interactions are expected
to play a minor role in the inclusive B→Xsg decay. This
is because the mass of the b quark is much larger than
the QCD scale L. Moreover, the only relevant interme-
diate hadronic states cXs are expected to give very
small contributions as long as we assume no interference
between short- and long-distance terms in the inclusive
rate. Therefore it has become quite common to use the
following approximate equality to estimate the B→Xsg
rate,

G~B→Xsg!

G~B→Xce n̄e!
.

G~b→sg!

G~b→ce n̄e!
[R~mt ,as ,j!, (22.1)

where the quantities on the rhs are calculated in the
spectator model corrected for short-distance QCD ef-
fects. The normalization to the semileptonic rate is usu-
ally introduced in order to cancel the uncertainties due
to the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments and factors of m b

5 in the rhs of Eq. (22.1). Addi-
tional support for the approximation given above comes
from the heavy-quark expansions. Indeed the spectator
model has been shown to correspond to the leading-
order approximation of an expansion in 1/mb . The first
corrections appear at the O(1/m b

2) level. The latter
terms have been studied by several authors (Bigi et al.,
1992, 1993, 1994a; Bjorken et al., 1992; Blok et al., 1994;
Falk et al., 1994; Mannel, 1994; Manohar and Wise,
1994) with the result that they affect B(B→Xsg) and
B(B→Xce n̄e) by only a few percent.
As indicated above, the ratio R depends only on mt

and as in the standard model. In extensions of the stan-
dard model, additional parameters are present, which
have been commonly denoted by j. The main point to
be stressed here is that R is a calculable function of its
parameters in the framework of a renormalization-
group improved perturbation theory. Consequently, the
decay in question is particularly suited for tests of the
standard model and its extensions.
One of the main difficulties in analyzing the inclusive

B→Xsg decay is calculating the short-distance QCD ef-
fects due to hard gluon exchanges between the quark
lines of the leading one-loop electroweak diagrams.
These effects are known (Bertolini et al., 1987; Desh-
pande et al., 1987; Grigjanis et al., 1988, 1992; Grinstein
et al., 1990; Misiak, 1991) to enhance the B→Xsg rate in
the standard model by a factor of 2–3, depending on the
top-quark mass. So the B→Xsg decay appears to be the
only known short-distance process in the standard
model that is dominated by two-loop contributions.
The B→Xsg decay has already been measured. In

1993 CLEO reported (Ammar et al., 1993) the following
branching ratio for the exclusive B→K*g decay,

B~B→K* g!5~4.561.560.9!31025. (22.2)

In 1994 a first measurement of the inclusive rate was
presented (Alam et al., 1995),

B~B→Xsg!5~2.3260.5760.35!31024, (22.3)

where the first error is statistical and the second is sys-
tematic.
As we will see below these experimental findings are

in the ballpark of the standard model expectations based
on the leading logarithmic approximation.
In fact a complete leading order analysis of

B(B→Xsg) in the standard model was presented al-
most a year before the CLEO result, giving (Buras, Mi-
siak, Münz, and Pokorski, 1994)

B~B→Xsg!TH5~2.860.8!31024, (22.4)

where the error is dominated by the uncertainty in the
choice of the renormalization scale mb/2,m,2mb , as
first stressed by Ali and Greub (1993). Since B→Xsg is
dominated by QCD effects, it is not surprising that this
scale uncertainty in the leading order is particularly
large. Such an uncertainty, inherent in any finite order of
perturbation theory, can be reduced by including next-
to-leading-order corrections. Unfortunately, it will take
some time before the m dependences present in B→Xsg
can be reduced in the same manner as was done for the
other decays (Buras et al., 1990; Buchalla and Buras,
1993a, 1994a; Herrlich and Nierste, 1994). As we already
stated in Sec. IX.B, a full next-to-leading-order compu-
tation of B→Xsg would require calculation of three-
loop mixings between the operators Q1 ,. . . ,Q6 and the
magnetic penguin operators Q7g,Q8G. Moreover, cer-
tain two-loop matrix elements of the relevant operators
should be calculated in the spectator model. A formal
analysis at the next-to-leading-order level (Buras, Mi-
siak, Münz, and Pokorski, 1994) is, however, very en-
couraging and shows that the m dependence can be con-
siderably reduced once all the necessary calculations
have been performed. We will return to this issue below.

B. The decay B→Xsg in the leading
logarithm approximation

The leading logarithmic calculations (Grinstein et al.,
1990), (Ali and Greub, 1993), (Misiak, 1993), (Buras,
Misiak, Münz, and Pokorski, 1994), (Cella et al., 1994a),
(Ciuchini, Franco, Reina, and Silvestrini, 1994), (Misiak,
1995) can be summarized in a compact form, as follows:

R5
G~b→sg!

G~b→ce n̄e!
5

uVts*Vtbu2

uVcbu2
6a

pf~z !
uC7g

~0 !eff~m!u2,

(22.5)

where C 7g
(0)eff(m) is the effective coefficient given in Eq.

(9.23) and Table XXVIII, z5mc/mb , and

f~z !5128z218z62z8224z4lnz (22.6)

is the phase-space factor in the semileptonic b decay.
Note that at this stage one should not include the O(as)
corrections to G(b→ce n̄), since they are part of the
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next-to-leading-order effects. For the same reason we do
not include the O(as) QCD corrections to the matrix
element of the operator Q7g (the QCD bremsstrahlung
b→sg1g and the virtual corrections to b→sg), which
are known (Ali and Greub, 1991a, 1991b; Pott, 1995)
and will be a part of a future NLO analysis.
Equation (22.5) and the expression [Eq. (9.23)] for

C 7g
(0)eff(m) summarize the complete leading logarithmic

approximation for the B→Xsg rate in the standard
model. Their important property is that they are exactly
the same in many interesting extensions of the standard
model, such as the two-Higgs-doublet model (2HDM)
(Grinstein et al., 1990; Barger et al., 1993; Hayashi et al.,
1993; Hewett, 1993; Buras, Misiak, Münz, and Pokorski,
1994) or the minimal supersymmetric standard model
(MSSM) (Bertolini et al., 1991; Barbieri and Giudice,
1993; Borzumati, 1994). The only quantities that change
are the coefficients C 2

(0)(MW), C 7g
(0)(MW), and

C 8G
(0)(MW). On the other hand, in a general

SU(2)L3SU(2)R3U(1) model additional modifications
are necessary because new operators enter (Cho and
Misiak, 1994).
A critical analysis of theoretical and experimental un-

certainties present in the prediction for B(B→Xsg)
based on the above formulae has been made (Buras,
Misiak, Münz, and Pokorski, 1994). Here we just briefly
list the main findings:
(i) First of all, Eq. (22.5) is based on the spectator

model. As we have mentioned above, the heavy-quark
expansion gives a strong support for this model in inclu-
sive B decays. One can expect the error from using the
spectator model in B→Xsg to amount to at most
610%. This number is understood to include the uncer-
tainty due to long-distance contributions. These are
dominated by intermediate cc̄ resonances coupling to
the final state photon and have been estimated to be
rather small (Deshpande et al., 1996). However, the cal-

culation of long-distance effects is notoriously difficult,
and the question of their impact on B→Xsg is not yet
completely settled at present (Soares, 1996).
(ii) The uncertainty coming from the ratio z5mc/mb

in the phase-space factor f(z) for the semileptonic decay
is estimated to be around 6%.
(iii) The error due to the ratio of the CKM param-

eters in Eq. (22.5) is small. Assuming unitarity of the
333 CKM matrix and imposing the constraints from the
CP-violating parameter «K and B0-B̄0 mixing, one finds

uVts*Vtbu2

uVcbu2
50.9560.03. (22.7)

(iv) There exists an uncertainty due to the determina-
tion of as . This uncertainty is not small because of the
importance of QCD corrections in the considered decay.
For instance, the difference between the ratios R of Eq.
(22.5) obtained with the help of aMS(MZ)50.11 and
0.13, respectively, is roughly 20%.
(v) The dominant uncertainty in Eq. (22.5) comes

from the unknown next-to-leading-order contributions.
This uncertainty is best signaled by the strong m depen-
dence of the leading-order expression [Eq. (22.5)],
which is shown by the solid line in Fig. 20, for the case
mt=170 GeV.
(vi) One can see that, when m is varied by a factor of

2 in both directions around mb.5 GeV, the ratio [Eq.
(22.5)] changes by around 625%, i.e., the ratios R ob-
tained for m=2.5 GeV and m=10 GeV differ by a factor
of 1.6 (Ali and Greub, 1993).
(vii) The dashed lines in Fig. 20 show the expected m

dependence of the ratio [Eq. (22.5)] once a complete
next-to-leading-order calculation is performed. The m
dependence is then much weaker, but, until one per-
forms the calculation explicitly, one cannot say which of
the dashed curves is the proper one. The way the dashed
lines are obtained is described by (Buras, Misiak, Münz,
and Pokorski, 1994).
(viii) Finally, there exists a 62.4% error in determin-

FIG. 20. m dependence of the theoretical prediction for the
ratio R for mt=170 GeV and LMS

(5)
5225 MeV. The solid line

corresponds to the leading-order prediction. The dashed lines
describe possible next-to-leading-order results.

FIG. 21. Predictions for B→Xsg in the SM as a function of the
top-quark mass with the theoretical uncertainties taken into
account.
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ing B(B→Xsg) from Eq. (22.1), which is due to the
error in the experimental measurement of
B(B→Xce n̄e)=(10.4360.24)% (Particle Data Group,
1994).
(ix) The uncertainty due to the value of mt is small as

is shown explicitly below.
Figure 21, based on the work of Buras, Misiak, Münz,

and Pokorski, 1994, presents the standard model predic-
tion for the inclusive B→Xsg branching ratio including
the errors listed above as a function of mt and with the
CLEO result.
We stress that the theoretical curves have been ob-

tained prior to the experimental result. Since the theo-
retical error is dominated by scale ambiguities, a com-
plete NLO analysis is very desirable.

C. Looking at B→Xsg beyond leading logarithmic order

In this section we describe briefly a complete next-to-
leading-order calculation of B→Xsg in general terms.
This section collects the most important findings of Sec.
4 of Buras, Misiak, Münz, and Pokorski (1994).
Let us first enumerate what has been already calcu-

lated in the literature and which calculations are still
required in order to complete the next-to-leading-order
calculation of B(B→Xsg).
The present status is as follows,
(i) The 636 submatrix of g(1) describing the two-

loop mixing of (Q1 ,. . . ,Q6) and the corresponding O(as)
corrections in CW (MW) have been already calculated.
They are given in Sec. VI.
(ii) The two-loop mixing in the (Q7g,Q8G) sector of

g(1) is known (Misiak and Münz, 1995) and given in Sec.
IX.C.
(iii) The O(as) corrections to the matrix element of

the operators Q7g and Q8G have been calculated (Ali
and Greub, 1991a, 1991b). They have been recently con-
firmed by Pott (1996), who also presents the results for
the matrix elements of the remaining operators.
The remaining ingredients of a next-to-leading-order

analysis of B(B→Xsg) are
(i) The three-loop mixing between the sectors

(Q1 ,. . . ,Q6) and (Q7g,Q8G), which, with our normaliza-
tions, contributes to g(1).
(ii) The O(as) corrections to C7g(MW) and C8G(MW)

in Eqs. (9.12) and (9.13). This requires evaluation of
two-loop penguin diagrams with internal-W and top-
quark masses and a proper matching with the effective
five-quark theory. An attempt to calculate the necessary
two-loop standard model diagrams has been made by
Adel and Yao (1994).
(iii) The finite parts of the effective-theory two-loop

diagrams with the insertions of the four-quark opera-
tors.
All these calculations are very involved, and the nec-

essary three-loop calculation is a truly formidable task!
Yet, as stressed by Buras, Misiak, Münz, and Pokorski
(1994), all these calculations have to be done if we want
to reduce the theoretical uncertainties in b→sg to
around 10%.

As shown in the above reference, the cancellation of
the dominant m dependence in the leading order can be
achieved by calculating the relevant two-loop matrix el-
ement of the dominant four-quark operator Q2 . This
matrix element is, however, renormalization-scheme de-
pendent and, moreover, mixing with other operators
takes place. This scheme dependence can only be can-
celed by calculating g(1) in the same renormalization
scheme. This point has been extensively discussed in this
review, and we will not repeat this discussion here. How-
ever, it is clear from these remarks that, in order to ad-
dress the m dependence and the renormalization-scheme
dependence as well as their cancellations, it is necessary
to perform a complete next-to-leading-order analysis of
CW (m) and of the corresponding matrix elements.
In this context we would like to comment on an analy-

sis of Ciuchini, Franco, Martinelli, Reina, and Silvestrini
(1994), in which the known two-loop mixing of
Q1 ,. . . ,Q6 has been added to the leading-order analysis
of B→Xsg . Strong renormalization-scheme dependence
of the resulting branching ratio has been found, giving
the branching ratio (1.760.2)310−4 and (2.360.2)310−4

at m=5 GeV for HV and NDR schemes, respectively. It
has also been observed that, whereas in the HV scheme
the m dependence has been weakened, it is still strong in
the NDR scheme. In our opinion this partial cancella-
tion of the m dependence in the HV scheme is rather
accidental and has nothing to do with the cancellation of
the m dependence discussed above. The latter requires
the evaluation of finite parts in two-loop matrix ele-
ments of the four-quark operators Q1 ,. . . ,Q6 . On the
other hand the strong scheme-dependence in the partial
NLO analysis presented by Ciuchini, Franco, Martinelli,
Reina, and Silvestrini (1994), demonstrates very clearly
the need for a full analysis. In view of this discussion we
think that the decrease of the branching ratio for
B→Xsg relative to the LO prediction of Ciuchini,
Franco, Martinelli, Reina, and Silvestrini (1994), given
by B(B→Xsg)=(1.960.260.5)310−4, is still premature
and one should wait until the full NLO analysis has been
done.
Our discussion has been restricted to B(B→Xsg).

Also the photon spectrum has been the subject of sev-
eral papers. We just refer to the most recent articles
(Bigi et al., 1994a; Neubert, 1994b; Ali and Greub, 1995;
Dikeman et al., 1996; Kapustin et al., 1995; Kapustin and
Ligeti, 1995; Pott, 1996), where further references can be
found.

XXIII. THE DECAY B→Xse
1e2

A. General remarks

The rare decay B→Xse
1e2 has been the subject of

many theoretical studies in the framework of the stan-
dard model and its extensions such as the Two-Higgs-
Doublet models and models involving supersymmetry
(Hou et al., 1987; Grinstein et al., 1989; Jaus and Wyler,
1990; Ali et al., 1991, 1995; Deshpande et al., 1993;
Greub et al., 1995). In particular the strong dependence
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of B→Xse
1e2 on mt has been stressed by Hou et al.

(1987). It is clear that, once B→Xse
1e2 has been ob-

served, it will offer a useful test of the standard model
and its extensions. To this end the relevant branching
ratio, the dilepton-invariant mass distribution, and other
distributions of interest should be calculated with suffi-
cient precision. In particular the QCD effects should be
properly taken into account.
The central element in any analysis of B→Xse

1e2 is
the effective Hamiltonian for this decay which is given in
Sec. X, where a detailed analysis of the Wilson coeffi-
cients has been presented. However, the actual calcula-
tion of B→Xse

1e2 involves not only the evaluation of
Wilson coefficients of the relevant local operators but
also the calculation of the corresponding matrix ele-
ments of these operators relevant for B→Xse

1e2. The
latter part of the analysis can be done in the spectator
model, which, as indicated by the heavy-quark expan-
sion, should offer a good approximation to QCD for B
decays. One can also include the nonperturbative
O(1/m b

2) corrections to the spectator model, which en-
hance the rate for B→Xse

1e2 by roughly 10% (Falk
et al., 1994). A realistic phenomenological analysis
should also include the long-distance contributions
which are mainly due to the J/c and c8 resonances
(Deshpande et al., 1989; Lim et al., 1989; O’Donnell and
Tung, 1991). Since in this review we are mainly inter-
ested in the next-to-leading-order short-distance QCD
effects, we will not include these complications in what
follows. This section closely follows the work of Buras
and Münz (1995), except that the numerical results in
Figs. 22–24 have been slightly changed in accordance
with the input parameters of the Appendix.
We stress again that, in a consistent NLO analysis of

the decay B→Xse
1e2, one should calculate the Wilson

coefficient of the operator Q9V5( s̄b)V2A( ēe)V includ-
ing leading-order and next-to-leading-order logarithms,
but only keep leading-order logarithms in the remaining
Wilson coefficients. Only then a scheme-independent
amplitude can be obtained. As already discussed in Sec.
X, this special treatment of Q9 is related to the fact that,
strictly speaking, in the leading logarithmic approxima-
tion only this operator contributes to B→Xse

1e2. The
contributions of the usual current-current operators,
QCD penguin operators, magnetic penguin operators,

and Q10A5( s̄b)V2A( ēe)A enter only at the NLO level,
and to be consistent only the leading contributions to
the corresponding Wilson coefficients should be in-
cluded.

B. The differential decay rate

Introducing

ŝ5
~pe11pe2!2

mb
2 , z5

mc

mb
, (23.1)

and calculating the one-loop matrix elements of Qi us-
ing the spectator model in the NDR scheme, one finds
(Buras and Münz, 1995; Misiak, 1995)

R~ ŝ ![
d/dŝG~b→se1e2!

G~b→ce n̄ !

5
a2

4p2 UVts

Vcb
U2 ~12 ŝ !2

f~z !k~z ! F ~112 ŝ !~ uC̃9
effu2

1uC̃10u2!14S11
2
ŝDuC7g

~0!effu2

112C7g
~0 !effReC̃9

eff!G , (23.2)

FIG. 22. m and mt dependence
of R( ŝ). (a) R( ŝ) for mt=170
GeV, LMS

(5)
5225 MeV, and dif-

ferents values of m. (b) R( ŝ) for
m=5 GeV, LMS

(5)
5225 MeV, and

various values of mt .

FIG. 23. Comparison of the four different contributions to
R( ŝ) according to Eq. (23.2).
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where

C̃9
eff5C̃9

NDRh̃~ ŝ !1h~z , ŝ !~3C1
~0 !1C2

~0 !13C3
~0 !1C4

~0 !

13C5
~0 !1C6

~0 !!2 1
2 h~1,ŝ !~4C3

~0 !14C4
~0 !

13C5
~0 !1C6

~0 !!2 1
2 h~0,ŝ !~C3

~0 !13C4
~0 !!

1 2
9 ~3C3

~0 !1C4
~0 !13C5

~0 !1C6
~0 !!. (23.3)

Equation (23.2) with k(z)=1 was first presented by
Grinstein et al. (1989), who, in their approximate
leading-order renormalization-group analysis, kept only
the operators Q1 ,Q2 ,Q7g,Q9V,Q10A.
The various entries in Eq. (23.2) are given as follows,

h~z , ŝ !52
8
9
ln
mb

m
2
8
9
lnz1

8
27

1
4
9
x2

2
9

~21x !u1

2xu1/25 S lnUA12x11

A12x21
U2ip D for x[4z2/ ŝ,1

2 arctan
1

Ax21
, for x[4z2/ ŝ.1,

(23.4)

h~0,ŝ !5
8
27

2
8
9
ln
mb

m
2
4
9
lnŝ1

4
9
ip , (23.5)

f~z !5128z218z62z8224z4lnz , (23.6)

k~z !512
2as~m!

3p F S p22
31
4 D ~12z !21

3
2G , (23.7)

h̃~ ŝ !511
as~m!

p
v~ ŝ !, (23.8)

with

v~ ŝ !52
2
9

p22
4
3
Li2~s !2

2
3
lns ln~12s !

2
514s

3~112s !
ln~12s !2

2s~11s !~122s !
3~12s !2~112s !

lns

1
519s26s2

6~12s !~112s !
. (23.9)

Here f(z) is the phase-space factor for b→ce n̄ and k(z)
is the corresponding single-gluon QCD correction
(Cabibbo and Maiani, 1978) in the approximation of
Kim and Martin (1989). h̃ , on the other hand, represents
single-gluon corrections to the matrix element of Q9
with ms=0 (Jezabek and Kühn, 1989; Misiak, 1995). For
consistency reasons this correction should only multiply
the leading-logarithmic-order term in C̃ 9

NDR.
In the HV scheme the one-loop matrix elements are

different, and one finds an additional explicit contribu-
tion to Eq. (23.3) given by (Buras and Münz, 1995)

2jHV4
9 ~3C1

~0 !1C2
~0 !2C3

~0 !23C4
~0 !!. (23.10)

However, C̃ 9
NDR has to be replaced by C̃ 9

HV given in Eqs.
(10.5) and (10.9), and consequently C̃ 9

eff is the same in
both schemes.
The first term in the function h(z , ŝ) in Eq. (23.4)

represents the leading m dependence in the matrix ele-
ments. It is canceled by the m dependence present in
the leading-order logarithm in C̃9 . This is precisely the
type of cancellation of the m dependence that one would
like to achieve in the case of B→Xsg . The m depen-
dence present in the coefficients of the other operators
can only be cancelled by going to still higher order in the
RG-improved perturbation theory. To this end the ma-
trix elements of four-quark operators should be evalu-
ated at two-loop level. Also, certain unknown three-loop
anomalous dimensions should be included in the evalu-
ation of C 7g

eff and C9V. Certainly this is beyond the scope
of this review, and we will only investigate the leftover m
dependence below.

C. Numerical analysis

A detailed numerical analysis of the formulas above
has been presented by Buras and Münz (1995). We give
here a brief account of this work. We first set
uVts/Vcbu=1, which, in view of Eq. (22.7), is a good ap-
proximation. We keep in mind that, for ŝ'm c

2 /m b
2 ,

ŝ'mc8
2 ;2/m b

2 , etc., the spectator model cannot be the
full story and additional long-distance contributions dis-
cussed by Deshpande et al. (1989), Lim et al. (1989), and
O’Donnell and Tung (1991) have to be taken into ac-
count in a phenomenological analysis. Similarly, we do
not include 1/m b

2 corrections calculated by Falk et al.
(1994), which typically enhance the differential rate by
about 10%.
In Fig. 22(a) we show R( ŝ) for mt=170 GeV, LMS

5 225 MeV, and different values of m. In Fig. 22(b) we
set m=5 GeV and vary mt from 150 GeV to 190 GeV.
The remaining m dependence is rather weak and

FIG. 24. R( ŝ) for mt=170 GeV, LMS
(5)

5225 MeV, and m=5
GeV.
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amounts to at most 68% in the full range of parameters
considered. The mt dependence of R( ŝ) is sizable. Vary-
ing mt between 150 GeV and 190 GeV changes R( ŝ) by
typically 60–65%, which, in this range of mt , corre-
sponds to R( ŝ);m t

2. It is easy to verify that this strong
mt dependence originates in the coefficient C̃10 given in
Eq. (10.3), as already stressed by several authors in the
past (Bertolini et al., 1987; Hou et al. 1987; Grinstein
et al., 1989; Jaus and Wyler, 1990; Ali et al., 1991, 1995;
Deshpande et al., 1993; Greub et al., 1995).
We do not show the LMS dependence, as it is very

weak. Typically, changing LMS from 140 MeV to 310
MeV decreases R( ŝ) by about 5%.
R( ŝ) is governed by three coefficients, C̃ 9

eff , C̃10 , and
C 7g

(0)eff. The importance of various contributions has
been investigated by Buras and Münz (1995). To this
end one sets LMS

5
5225 GeV, mt=170 GeV, and m=5

GeV. In Fig. 23 we show R( ŝ), keeping only C̃ 9
eff , C̃10 ,

C 7g
(0)eff, and the C 7g

(0)eff−C̃ 9
eff interference term, respec-

tively. Denoting these contributions by R9 , R10 , R7 , and
R7/9, we observe that the term R7 plays only a minor role
in R( ŝ). On the other hand, the presence of C 7g

(0)eff can-
not be ignored because the interference term R7/9 is sig-
nificant. In fact the presence of this large interference
term could be used to measure experimentally the rela-
tive sign of C 7g

(0)eff and ReC̃ 9
eff (Grinstein et al., 1989; Jaus

and Wyler, 1990; Ali et al., 1991, 1995; Greub et al.,
1995), which, as seen in Fig. 23, is negative in the stan-
dard model. However, the most important contributions
are R9 and R10 in the full range of ŝ considered. For mt
'170 GeV these two contributions are roughly of the
same size. Due to a strong mt dependence of R10 , this
contribution dominates for higher values of mt and is
less important than R9 for mt<170 GeV.
Next, in Fig. 24 we show R( ŝ) for m=5 GeV, mt=170

GeV, and LMS 5 225 MeV, compared to the case of no
QCD corrections and to the results Grinstein et al.
(1989) would obtain for our set of parameters using their
approximate leading-order formulae.
The discussion of the definition of mt used here is

identical to the one in the case of KL→p0e1e2 and will
not be repeated here. On the basis of the arguments
given there, we believe that if mt5m̄t(mt) is chosen, the
additional short-distance QCD corrections to
B(B→Xse

1e2) should be small.

XXIV. THE DECAYS K1→p+nn̄ AND KL→p0nn̄

A. General remarks on K1→p+nn̄

The rare decay K1→p1nn̄ is one of the cleanest de-
cays from a theoretical standpoint. As such it is very well
suited for the determination of CKM parameters, in par-
ticular of the element Vtd . K1→p1nn̄ is CP conserv-
ing and receives contributions from both internal top
and charm exchanges. The inclusion of next-to-leading-
order QCD corrections incorporated in the effective
Hamiltonian in Eq. (11.4) and discussed in detail in Sec.
XI.B reduces considerably the theoretical uncertainties
due to the choice of the renormalization scales present

in the leading-order expressions. We will illustrate this
below. Since the relevant hadronic matrix element of the
weak current ( s̄d)V2A can be measured in the leading
decay, K1→p0e1n , the resulting theoretical expression
for B(K1→p1nn̄) is only a function of the CKM pa-
rameters, the QCD scale LMS , and the quark masses mt
and mc . The long-distance contributions to K

1→p1nn̄
have been found to be very small—a few percent of the
charm contribution to the amplitude at most, which is
safely negligible (Hagelin and Littenberg, 1989; Rein
and Sehgal, 1989; Lu and Wise, 1994).
Conventionally, the branching fraction

B(K1→p1nn̄) is related to the experimentally well-
known quantity B(K1→p0e1n) using isospin symme-
try. Corrections to this approximation have recently
been studied by Marciano and Parsa (1995). The break-
ing of isospin is due to quark-mass effects and elec-
troweak radiative corrections. In the case of K1→p1nn̄
these effects result in a decrease of the branching ratio
by 10%. The corresponding corrections in KL→p0nn̄
lead to a 5.6% reduction of B(KL→p0nn̄). We have
checked the analysis of Marciano and Parsa (1996) and
agree with their findings. Once calculated, the inclusion
of these effects is straightforward, as they only amount
to an overall factor for the branching ratio and do not
affect the short-distance structure of K→pnn̄ . We shall
neglect the isospin-violating corrections in the following
chapters, where the focus is primarily on the short-
distance physics. The effects are, however, incorporated
in the final prediction quoted in the summary table in
Sec. XXVII.
In the following we shall concentrate on a discussion

of K1→p1nn̄ within the framework of the standard
model. The impact of various scenarios of new physics
on this decay has been considered, for instance, by Bigi
and Gabbiani (1991).

B. Master formulas for K1→p+nn̄

Using the effective Hamiltonian [Eq. (11.4)] and sum-
ming over the three neutrino flavors, one finds

B~K1→p1nn̄!5k1F S Iml t

l5 X~xt! D 21SRelc

l
P0~X !

1
Rel t

l5 X~xt! D 2G , (24.1)

k15
3a2B~K1→p0e1n!

2p2sin4QW
l854.57310211, (24.2)

TABLE XLIV. The function P0(X) for various LMS
(4) mc .

LMS
(4)

\mc

P0(X)

1.25 GeV 1.30 GeV 1.35 GeV

215 MeV 0.402 0.436 0.472
325 MeV 0.366 0.400 0.435
435 MeV 0.325 0.359 0.393
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where we have used

a5
1
129

, sin2QW50.23,

B~K1→p0e1n!54.8231022. (24.3)

Here l i 5 Vis*Vid with lc being real to a very high accu-
racy. The function X of Eq. (11.5) can also be written as

X~x !5hXX0~x !, hX50.985, (24.4)

where hX summarizes the NLO corrections discussed in
Sec. XI.B. With mt[m̄t(mt) the QCD factor hX is prac-
tically independent of mt and LMS . Next

P0~X !5
1
l4 F23 XNL

e 1
1
3
XNL

t G (24.5)

with the numerical values for XNL
l given in Table

XXXIII. The corresponding values for P0(X) as a func-
tion of LMS and mc[m̄c(mc) are collected in Table
XLIV. We remark that a negligibly small term ;(XNL

e

2 XNL
t )2 (;0.2% effect on the branching ratio) has been

discarded in Eq. (24.1).
Using the improved Wolfenstein parametrization and

the approximate Eqs. (2.23)–(2.25), we can next write

B~K1→p1nn̄!54.57310211A4X2~xt!

3
1
s

@~sh̄!21~%02%̄ !2# , (24.6)

where

s5S 1

12
l2

2
D 2

. (24.7)

The measured value of B(K1→p1nn̄) then deter-
mines an ellipse in the (%̄ ,h̄) plane centered at (%0 ,0)
with (Buras, Lautenbacher, and Ostenmaier, 1994)

%0511
P0~X !

A2X~xt!
(24.8)

and having the squared axes

%̄1
25r0

2, h̄1
25S r0s D 2, (24.9)

where

r0
25

1
A4X2~xt!

Fs•B~K1→p1nn̄!

4.57310211 G . (24.10)

The departure of %0 from unity measures the relative
importance of the internal charm contributions.
The ellipse defined by r0 , %0 , and s given above inter-

sects with the circle [Eq. (2.32)]. This allows one to de-
termine %̄ and h̄ with

%̄5
1

12s2 ~%02As2%0
21~12s2!~r0

22s2Rb
2 !!,

h̄5ARb
22%̄2, (24.11)

and consequently

Rt
2511Rb

222%̄ , (24.12)

where h̄ is assumed to be positive.
In the leading order of the Wolfenstein parametriza-

tion

s→1, h̄→h , %̄→% , (24.13)

and B(K1→p1nn̄) determines a circle in the (%,h)
plane centered at (%0 ,0) and having the radius r0 of Eq.
(24.10) with s=1. Equations (24.11) and (24.12) then
simplify to (Buchalla and Buras, 1994a)

Rt
2511Rb

21
r0
22Rb

2

%0
2%0 , %5

1
2 S %01

Rb
22r0

2

%0
D .

(24.14)

Given %̄ and h̄ one can determine Vtd :

Vtd5Al3~12%̄2ih̄ !, uVtdu5Al3Rt . (24.15)

Before proceeding to the numerical analysis a few re-
marks are in order:
(i) The determination of uVtdu and of the unitarity tri-

angle requires the knowledge of Vcb (or A) and of
uVub/Vcbu. Both values are subject to theoretical uncer-
tainties present in the existing analyses of tree-level de-
cays. Whereas the dependence on uVub/Vcbu is rather
weak, the very strong dependence of B(K1→p1nn̄) on
A or Vcb makes a precise prediction for this branching
ratio difficult at present. We will return to this below.
(ii) The dependence of B(K1→p1nn̄) on mt is also

strong. However mt should be known by the end of this
decade to within 65%, and consequently the uncer-
tainty in mt will soon be less serious for B(K

1→p1nn̄)
than the corresponding uncertainty in Vcb .
(iii) Once % and h are known precisely from CP

asymmetries in B decays, some of the uncertainties
present in Eq. (24.6) related to uVub/Vcbu (but not to
Vcb) will be removed.
(iv) A very clean determination of sin 2b without es-

sentially any dependence on mt and Vcb can be made by
combining B(K1→p1nn̄) with B(KL→p0nn̄) dis-
cussed below. We will present an analysis of this type in
Sec. XXIV.H.

C. Numerical analysis of K1→p+nn̄

1. Renormalization-scale uncertainties

We will now investigate the uncertainties in X(xt),
XNL , B(K

1→p1nn̄), uVtdu, and in the determination of
the unitarity triangle related to the choice of the renor-
malization scales mt and mc (see Sec. XI.B). To this end
we will fix the remaining parameters as follows:

mc[m̄c~mc!51.3 GeV, mt[m̄t~mt!5170 GeV,
(24.16)

Vcb50.040, uVub /Vcbu50.08. (24.17)

In the case of B(K1→p1nn̄) we need the values of
both %̄ and h̄ . Therefore in this case we will work with
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%̄50, h̄50.36, (24.18)

rather than with uVub/Vcbu. Finally, we will set
LMS
(4)

50.325 GeV and LMS
(5)

50.225 GeV for the charm
part and top part, respectively. We then vary the scales
mc and mt , entering mc(mc) and mt(m t) respectively, in
the ranges

1 GeV<mc<3 GeV, 100 GeV<m t<300 GeV.
(24.19)

In Fig. 25 we show the charm function XNL (for ml=0)
compared to the leading-logarithmic-order result XL
and the case without QCD, as functions of mc . We ob-
serve the following features
(i) The residual slope of XNL is considerably reduced

in comparison to XL , which exhibits a quite substantial
dependence on the unphysical scale mc . The variation of
X [defined as (X(1 GeV)−X(3 GeV))/X(mc)] is 24.5%
in NLLA compared to 56.6% in LLA.
(ii) The suppression of the uncorrected function

through QCD effects is somewhat less pronounced in
NLLA.
(iii) The next-to-leading-order effects amount to a

;10% correction relative to XL at m=mc . However, the
size of this correction strongly depends on m due to the
scale ambiguity of the leading-order result. This means
that the question of how large the next-to-leading-order
effects are compared to the LLA cannot be answered
uniquely. Therefore the relevant result is actually the
reduction of the m dependence in NLLA.
In Fig. 26 we show the analogous results for the top

function X(xt) as a function of mt . We observe
(i) Due to m t@mc the scale dependences in the top

function are substantially smaller than in the case of
charm. Note in particular how the still appreciable, scale
dependence of X0 gets flattened out almost perfectly
when the O(as) effects are taken into account. The total
variation of X(xt) with 100 GeV<mt<300 GeV is
around 1% in NLLA compared to 10% in LLA.
(ii) As already stated following Eq. (24.4), with the

choice m t5mt the NLO correction is very small. It is
substantially larger for mt very different from mt . Using
Eq. (24.1) and varying mc ,t in the ranges of Eq. (24.19),
we find that, for the above choice of the remaining pa-
rameters, the uncertainty in B(K1→p1nn̄)

0.76310210<B~K1→p1nn̄!<1.20310210 (24.20)

present in the leading order is reduced to

0.88310210<B~K1→p1nn̄!<1.02310210 (24.21)

including NLO corrections. Similarly, we obtain

8.2431023<uVtdu<10.9731023 LLA, (24.22)

9.2331023<uVtdu<10.1031023 NLLA, (24.23)

where we have set B(K1→p1nn̄)=1310−10. We ob-
serve that including the full next-to-leading-order cor-
rections reduces the uncertainty in the determination of
uVtdu from 614% (LLA) to 64.6% (NLLA) in the
present example. The main bulk of this theoretical error
stems from the charm sector. Indeed, keeping mc5mc

fixed and varying only mt , the uncertainties in the deter-
mination of uVtdu would shrink to 64.7% (LLA) and
60.6% (NLLA). Similar comments apply to
B(K1→p1nn̄), where, as seen in Eqs. (24.20) and
(24.21), the theoretical uncertainty due to mc ,t is reduced
from 622% (LLA) to 67% (NLLA).
Finally, in Fig. 27 we show the position of the point

(%̄ ,h̄) that determines the unitarity triangle. To this end
we have fixed all parameters as stated above except for
Rb , for which we have chosen three representative num-
bers, Rb=0.25, 0.36, and 0.47. The full and the reduced
ranges represent LLA and NLLA respectively. The im-
pact of the inclusion of NLO corrections on the accuracy
of determining the unitarity triangle is clearly visible.

2. Expectations for B(K1→p1nn̄)

The purely theoretical uncertainties discussed so far
should be distinguished from the uncertainties coming
from the input parameters such as mt , Vcb , uVub/Vcbu,
etc. As we will see, the latter uncertainties are still
rather large to date. Consequently the progress achieved
by the NLO calculations (Buchalla and Buras, 1994a)
cannot yet be fully exploited phenomenologically at
present. However, the determination of the relevant pa-
rameters should improve in the future. Once the preci-
sion in the input parameters has attained the desired
level, the gain in accuracy of the theoretical prediction
for K1→p1nn̄ in NLLA by a factor of more than 3
compared to the LLA will become very important.
Using the standard set of input parameters specified

in the Appendix and the constraints implied by the
analysis of «K and Bd-B̄d mixing as described in Sec.
XVIII, we find for the K1→p1nn̄ branching fraction
the range

0.6310210<B~K1→p1nn̄!<1.5310210. (24.24)

Equation (24.24) represents the current Standard-Model
expectation for B(K1→p1nn̄) (neglecting small
isospin-breaking corrections). To obtain this estimate we
have allowed for a variation of the parameters mt , uVcbu,
uVub/Vcbu, BK , F B

2BB , and xd within their uncertainties,
as summarized in the Appendix. The uncertainties in mc
and LMS , on the other hand, are small in comparison
and have been neglected in this context. The above
range would be reduced to

0.8310210<B~K1→p1nn̄!<1.0310210 (24.25)

if the uncertainties in the input parameters could be de-
creased as assumed by the ‘‘future’’ scenario in the Ap-
pendix.
It should be remarked that the xd constraint, exclud-

ing a part of the second quadrant for the CKM phase d,
plays an essential role in obtaining the upper bounds
given above, without essentially any effect on the lower
bounds. Without the xd constraint the upper bounds in
Eqs. (24.24) and (24.25) are relaxed to 2.3310−10 and
1.6310−10, respectively.
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D. General remarks on KL→p0un̄

The rare decay KL→p0nn̄ is even cleaner than
K1→p1nn̄ . It proceeds almost entirely through direct
CP violation (Littenberg, 1989a) and is completely

dominated by short-distance loop diagrams with top-
quark exchanges. In fact the mt dependence of
B(KL→p0nn̄) is again described by X(xt). Since the
charm contribution can be fully neglected, the theoreti-
cal uncertainties present in K1→p1nn̄ due to mc ,

FIG. 25. Charm-quark function
XNL (for ml=0), compared to
the leading-logarithmic-order
result XL and the case without
QCD, as functions of mc .

FIG. 26. Top-quark function X(xt) as a function of mt for fixed mt=170 GeV with (solid curve) and without (dashed curve) O(as)
corrections.
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mc , and LMS are absent here. For this reason KL→p0nn̄
is very well suited for the determination of CKM param-
eters, in particular the Wolfenstein parameter h.

E. Master formulas for KL→p0nn̄

Using the effective Hamiltonian [Eq. (11.56)] and
summing over three neutrino flavors, one finds

B~KL→p0nn̄!5kLS Iml t

l5 X~xt! D 2, (24.26)

kL5k1

t~KL!

t~K1!
51.91310210 (24.27)

with k+ given in Eq. (24.2). Using the Wolfenstein pa-
rametrization, we can rewrite Eq. (24.26) as

B~KL→p0nn̄!51.91310210h2A4X2~xt! (24.28)

or

B~KL→p0nn̄!53.4831025h2uVcbu4X2~xt!. (24.29)

A few remarks are in order:
(i) The determination of h using B(KL→p0nn̄) re-

quires the knowledge of Vcb and mt . The very strong
dependence on Vcb or A makes a precise prediction for
this branching ratio difficult at present.
(ii) It has been pointed out (Buras, 1994) that the

strong dependence of B(KL→p0nn̄) on Vcb , together
with the clean nature of this decay, can be used to de-

termine this element without any hadronic uncertainties.
To this end h and mt have to be known with sufficient
precision in addition to B(KL→p0nn̄). h should be
measured accurately in CP asymmetries in B decays
and the value of mt known to better than 65 GeV from
TEVATRON and future LHC experiments. Inverting
Eq. (24.29) and using a very accurate approximation for
X(xt) [valid for mt5m̄t(mt)], as given by Eqs. (24.4)
and (14.6),

X~xt!50.65xt
0.575 , (24.30)

one finds

Vcb539.331023A0.39/hF170 GeV
mt

G0.575
3FB~KL→p0nn̄!

3310211 G1/4. (24.31)

We note that the weak dependence of Vcb on
B(KL→p0nn̄) allows one to achieve a high precision
for this CKM element even when B(KL→p0nn̄) is
known with only relatively moderate accuracy, e.g., 10–
15%. Needless to say, any measurement of
B(KL→p0nn̄) is extremely challenging. A numerical
analysis of Eq. (24.31) can be found in the work of Buras
(1994).

F. Numerical analysis of KL→p0nn̄

1. Renormalization-scale uncertainties

The scale ambiguities present in the function X(xt)
have already been discussed in connection with
K1→p1nn̄ . After the inclusion of NLO corrections
they are so small that they can be neglected for all prac-
tical purposes. Effectively they could also be taken into
account by introducing an additional error Dmt<61
GeV. At the level of B(KL→p0nn̄) the ambiguity in
the choice of mt is reduced from 610% (LLA) down to
61% (NLLA), which considerably increases the predic-
tive power of the theory. Varying mt according to Eq.
(24.19) and using the input parameters of Sec. XXIV.C,
we find that the uncertainty in B(KL→p0nn̄)

2.68310211<B~KL→p0nn̄!<3.26310211 (24.32)

present in the leading order is reduced to

2.80310211<B~KL→p0nn̄!<2.88310211 (24.33)

after including NLO corrections. This means that the
theoretical uncertainty in the determination of h
amounts to only 60.7% in NLLA, which is safely negli-
gible. The reduction of the scale ambiguity for
B(KL→p0nn̄) is further illustrated in Fig. 28.

2. Expectations for B(KL→p0nn̄)

From an analysis of B(KL→p0nn̄) similar to the one
described for K1→p1nn̄ in Sec. XXIV.C.2, we obtain
the standard-model expectation

1.1310210<B~KL→p0nn̄!<5.0310211, (24.34)

FIG. 27. The theoretical uncertainties in the determination of
the unitarity triangle (UT) in the (%̄ ,h̄) plane from
B(K1→p1nn̄). With fixed input parameters the vertex of the
UT has to lie on a circle around the origin with radius Rb . A
variation of the scales mc , mt within 1 GeV<mc<3 GeV and
100 GeV<mt<300 GeV then yields the indicated ranges in
LLA (full) and NLLA (reduced). We show the cases Rb=0.25,
0.36, and 0.47.
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corresponding to present-day errors in the relevant in-
put parameters. This would change to

2.2310211<B~KL→p0nn̄!<3.6310211 (24.35)

if the parameter uncertainties would decrease as antici-
pated by the ‘‘future’’ scenario defined in the Appendix.

G. Unitarity triangle from K→pnn̄

The measurement of B(K1→p1nn̄) and
B(KL→p0nn̄) can determine the unitarity triangle
completely, provided mt and Vcb are known. Using
these two branching ratios simultaneously allows one to
eliminate uVub/Vcbu from the analysis, which removes
considerable uncertainty. Indeed it is evident from Eqs.
(24.1) and (24.26) that, given B(K1→p1nn̄) and
B(KL→p0nn̄), one can extract both Imlt , and Relt .
We get

Iml t5l5
AB2

X~xt!
, (24.36)

Rel t52l5 ~Re lc /l!P0~X !1AB12B2

X~xt!
,

where we have defined the ‘‘reduced’’ branching ratios

B15
B~K1→p1nn̄!

4.57310211 , B25
B~KL→p0nn̄!

1.91310210 . (24.37)

Using the expressions for Imlt , Relt , and Relc given in
Eqs. (2.23)–(2.25), we find

%̄511
P0~X !2As~B12B2!

A2X~xt!
, h̄5

AB2

AsA2X~xt!
(24.38)

with s defined in Eq. (24.7). An exact treatment of the
CKM matrix shows that the formulas [Eq. (24.38)] are
rather precise (Buchalla and Buras, 1994c). The error in
h̄ is below 0.1%, and %̄ may deviate from the exact ex-
pression by at most D%̄=0.02 with essentially negligible
error for 0<%̄<0.25.
As an illustrative example, let us consider the follow-

ing scenario. We assume that the branching ratios are
known to within 610%

B~K1→p1nn̄!5~1.060.1!310210,

B~KL→p0nn̄!5~2.560.25!310211. (24.39)

Next we take [mi[m̄i(mi)]

mt5~17065 ! GeV, mc5~1.3060.05! GeV,

Vcb50.04060.001, (24.40)

where the quoted errors are quite reasonable if one
keeps in mind that it will take at least ten years to
achieve the accuracy assumed in Eq. (24.39). Finally, we
use

LMS
~4 !

5~200–350! MeV, mc5~1–3 ! GeV, (24.41)

where mc is the renormalization scale present in the
analysis of the charm contribution. Its variation gives an

FIG. 28. The mt dependence of B(KL→p0nn̄)/10−11 with (solid curve) and without (dashed curve) O(as) corrections for mt=170
GeV, uVcbu=0.04, and h̄=0.36.
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indication of the theoretical uncertainty involved in the
calculation. In comparison to this error we neglect the
effect of varying mW=O(MW), the high-energy matching
scale at which the W boson is integrated out, as well as
the very small scale dependence of the top-quark contri-
bution. As reference parameters we use the central val-
ues in Eqs. (24.39) and (24.40) and LMS

(4)
5 300 MeV and

mc5mc . The results that would be obtained in such a
scenario for h̄ , uVtdu, and %̄ are collected in Table XLV.
There we have also displayed separately the associ-

ated symmetrized errors (D) coming from the uncertain-
ties in the branching ratios, mt and Vcb , mc and LMS

(4) ,
and mc , as well as the total uncertainty.
We observe that respectable determinations of h̄ and

uVtdu can be obtained. On the other hand, the determi-
nation of %̄ is rather poor. We also note that a sizable
part of the total uncertainty results in each case from the
strong dependence of both branching ratios on mt and
Vcb . There is, however, one important quantity for
which the strong dependence of B(K1→p1nn̄) and
B(KL→p0nn̄) on mt and Vcb does not matter at all.

H. sin 2b from K→pnn̄

Using Eq. (24.38), one finds (Buchalla and Buras,
1994c)

rs5rs~B1 ,B2![
12%̄

h̄
5cotb , sin2b5

2rs
11rs

2

(24.42)

with

rs~B1 ,B2!5As
As~B12B2!2P0~X !

AB2

. (24.43)

Thus, within the approximation of Eq. (24.38), sin 2b is
independent of Vcb (or A) and mt . An exact treatment
of the CKM matrix confirms this finding to a high accu-
racy. The dependence on Vcb and mt enters only at or-
der O(l2), and, as a numerical analysis shows, this de-
pendence can be fully neglected.
It should be stressed that sin 2b determined this way

depends only on two measurable branching ratios and
on the function P0(X), which is completely calculable in
perturbation theory. Consequently, this determination is
free from any hadronic uncertainties, and its accuracy
can be estimated with a high degree of confidence. To
this end we use the input given in Eqs. (24.39)–(24.41) to
find

sin2b50.6060.0660.0360.02, (24.44)

where the first error comes from B(K1→p1nn̄) and
B(KL→p0nn̄), the second from mc and LMS , and the
last one from the uncertainty due to mc . We note that
the largest partial uncertainty results from the branching
ratios themselves. It can probably be reduced with time,
as is the case with the 60.03 uncertainty related to
LMS and mc . Note that the theoretical uncertainty rep-
resented by D(mc), which ultimately limits the accuracy
of the analysis, is small. This reflects the clean nature of
the K→pnn̄ decays. However, the small uncertainty of
60.02 is only achieved by including next-to-leading-
order QCD corrections. In the leading logarithmic ap-
proximation the corresponding error would amount to
60.05, larger than the one coming from mc and LMS .
The accuracy to which sin2b can be obtained from

K→pnn̄ is, in this example, comparable to the one ex-
pected in determining sin2b from CP asymmetries in B
decays prior to LHC experiments. In this case sin2b is
determined best by measuring the time-integrated CP
violating asymmetry in B d

0→cKS , which is given by

ACP~cKS!5
*0

`@G~B→cKS!2G~B̄→cKS!#dt

*0
`@G~B2cKS!1G~B̄→cKS!#dt

52sin2b
xd

11xd
2 , (24.45)

where xd5Dm/G gives the size of B d
0-B̄ d

0 mixing. Com-
bining Eqs. (24.42) and (24.45), we obtain an interesting
connection between rare K decays and B physics

2rs~B1 ,B2!

11rs
2~B1 ,B2!

52ACP~cKS!
11xd

2

xd
, (24.46)

which must be satisfied in the standard model. We stress
that, except for P0(X) given in Table XLIV, all quanti-
ties in Eq. (24.46) can be directly measured in experi-
ment and this relationship is essentially independent of
mt and Vcb .

XXV. THE DECAYS KL→m1m2 AND K1→p1m1m2

A. General remarks on KL→m1m2

The rare decay KL→m+m− is CP conserving, and, in
addition to its short-distance part, receives important
contributions from the two-photon intermediate state,
which is difficult to calculate reliably (Geng and Ng,
1990; Bélanger and Geng, 1991; Ko, 1992).

TABLE XLV. h̄ , uVtdu, and %̄ determined from K1→p1nn̄ and KL→p0nn̄ for the scenario de-
scribed in the text and the uncertainties related to various parameters.

D(BR) D(mt ,Vcb) D(mc ,LMS
(4)) D(mc) Dtotal

h̄ 0.33 60.02 60.03 60.00 60.00 60.05
uVtdu/10

−3 9.3 60.6 60.6 60.5 60.4 62.1

%̄ 0.00 60.08 60.09 60.06 60.04 60.27
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This latter fact is rather unfortunate because the
short-distance part is, similar to K1→p1nn̄ , free of had-
ronic uncertainties and, if extracted from the data,
would give a useful determination of the Wolfenstein
parameter %. The separation of the short-distance from
the long-distance piece in the measured rate is very dif-
ficult, however.
In spite of all this we will present the analysis of the

short-distance contribution. On one hand it may turn
out to be useful one day for KL→m+m−, and additionally
it also plays an important role in a parity-violating asym-
metry, which can be measured in K+→p+m+m−. We will
discuss this latter topic later on in this section.
The analysis of (KL→m+m−)SD proceeds in essentially

the same manner as for K1→p1nn̄ . The only difference
enters through the lepton line in the box contribution.
This change introduces two new functions YNL and
Y(xt) for the charm and top contributions, respectively
(Sec. XI.C), which will be discussed in detail below.

B. Master formulas for (KL→m+m−)SD

Using the effective Hamiltonian of Eq. (11.44) and
relating ^0u( s̄d)V2AuKL& to B(K1→m1n), we find

B~KL→m1m2!SD5kmFRelc

l
P0~Y !1

Rel t

l5 Y~xt!G2,
(25.1)

km5
a2B~K1→m1n!

p2sin4QW

t~KL!

t~K1!
l851.6831029, (25.2)

where we have used

a5
1
129

, sin2QW50.23, B~K1→m1n!50.635.

(25.3)

The function Y(x) of Eq. (11.45) can also be written as

Y~x !5hYY0~x !, hY51.02660.006, (25.4)

where hY summarizes the NLO corrections discussed in
Sec. XI.C. With mt[m̄t(mt) this QCD factor depends
only very weakly on mt . The range in Eq. (25.4) corre-
sponds to 150 GeV<mt<190 GeV. The dependence on
LMS can be neglected. Next

P0~Y !5
YNL

l4 (25.5)

with YNL calculated in Sec. XI.C. Values for P0(Y) as a
function of LMS and mc[m̄c(mc) are collected in Table
XLVI.
Using the improved Wolfenstein parametrization and

the approximate formulas of Eqs. (2.23)–(2.25), we can
next write

B~KL→m1m2!SD51.6831029A4Y2~xt!
1
s

~ %̄02%̄ !2

(25.6)

with

%̄0511
P0~Y !

A2Y~xt!
, s5S 1

12
l2

2
D 2

. (25.7)

The ‘‘experimental’’ value of B(KL→m1m2)SD deter-
mines the value of %̄ given by

%̄5%̄02 r̄0 , r̄0
25

1
A4Y2~xt!

FsB~KL→m1m2!SD
1.6831029 G .

(25.8)

Similar to r0 in the case of K
1→p1nn̄ , the value of r̄0 is

fully determined by the top contribution, which has only
a very weak renormalization-scale ambiguity after the
inclusion of O(as) corrections. The main scale ambiguity
resides in %̄0 , whose departure from unity measures the
relative importance of the charm contribution.

C. Numerical analysis of (KL→m1m2)SD

1. Renormalization-scale uncertainties

We will now investigate the uncertainties in Y(xt),
YNL , B(KL→m1m2)SD , and %̄ related to the depen-
dence of these quantities on the choice of the renormal-
ization scales mt and mc . To this end we proceed as in
Sec. XXIV.C.1. We fix all the remaining parameters as
given in Eqs. (24.16) and (24.17), and we vary mc and mt
within the ranges stated in Eq. (24.19).
Figure 29 shows the charm function YNL compared to

the leading-logarithmic-order result YL and the case
without QCD as a function of mc . We note the following
points,
(i) The residual slope of YNL is considerably smaller

than in YL , although it is still sizable. The variation of Y
with m defined as [Y(1 GeV)−Y(3 GeV)]/Y(mc) is 53%
in NLLA compared to 92% in LLA.
(ii) There is a strong enhancement of Y0 through

QCD corrections, in contrast to the suppression found in
the case of X0 .
In Fig. 30 we show the analogous results for Y(xt) as

a function of mt . The observed features are similar to the
ones found in the case of X(xt):
(i) Considerable reduction of the scale uncertainties in

NLLA relative to the LLA with a tiny residual uncer-
tainty after the inclusion of NLO corrections.
(ii) Small NLO correction for the choice m t5mt as

summarized by hY in Eq. (25.4). Using Eq. (25.1) and
varying mc ,t in the ranges of Eq. (24.19), we find that, for
this choice of input parameters, the uncertainty in
B(KL→m1m2)SD

0.81631029<B~KL→m1m2!SD<1.3331029 (25.9)

present in the leading order is reduced to

1.0231029<B~KL→m1m2!SD<1.2531029 (25.10)

after including NLO corrections. Here we have assumed
%̄=0.
Similarly, we find

20.117<%̄<0.165 LLA, (25.11)
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0.011<%̄<0.134 NLLA, (25.12)

where we have set B(KL→m1m2)SD=1310−9. We ob-
serve again a considerable reduction of the theoretical
error when the NLO effects are included in the analyses.
Also, in this case the remaining ambiguity is largely
dominated by the uncertainty in the charm sector.

2. Expectations for B(KL→m1m2)SD

We finally quote the standard-model expectation for
the short-distance contribution to the KL→m+m− branch-
ing ratio. Using the analysis of «K and the constraint
implied by Bd-B̄d mixing in analogy to the case of
K1→p1nn̄ described in Sec. XXIV.C.2, we find

0.631029<B~KL→m1m2!SD<2.031029 (25.13)

and

0.931029<B~KL→m1m2!SD<1.231029 (25.14)

for present parameter uncertainties and the ‘‘future’’
scenario, respectively. The relevant sets of input param-
eters and their errors are collected in the Appendix. Re-
moving the xd constraint would increase the upper
bounds in Eqs. (25.13) and (25.14) to 3.5310−9 and
2.2310−9, respectively.

D. General remarks on K1→p+m+m−

Obviously, the short distance effective Hamiltonian of
Eq. (11.44) also gives rise to an amplitude for the tran-
sition K+→p+m+m−. This amplitude, however, is three

orders of magnitude smaller than the dominant contri-
bution to K+→p+m+m− given by the one-photon ex-
change diagram (Ecker et al., 1987) and is therefore neg-
ligible in the total decay rate. On the other hand, the
coupling to the muon pair is purely vectorlike for the
one-photon amplitude, whereas it contains an axial-
vector part in the case of the SD contribution mediated
by Z0 penguin and W box diagrams. Thus, as was
pointed out by Savage and Wise (1990) and discussed in
detail by Lu et al. (1992), the interference of the one-
photon and the SD contribution, which is odd under
parity, generates a parity-violating longitudinal muon
polarization asymmetry

DLR5
GR2GL

GR1GL
(25.15)

in the decay K+→p+m+m−. Here GR (GL) denotes the
rate of producing a right- (left-) handed m+, that is a m+

with spin along (opposite) its three-momentum direc-
tion. In this way a measurement of the asymmetry DLR
could probe the phenomenologically interesting short-
distance physics that is not visible in the total rate.
The K+→p+g* vertex is described by a form factor

f(s) (s being the invariant mass squared of the muon
pair), that determines the one-photon amplitude and
hence the total rate of K+→p+m+m−, but also enters the
asymmetry DLR . This form factor has been analyzed in
detail by Ecker et al. (1987) within the framework of
chiral perturbation theory. The imaginary part Im f(s)
turns out to be much smaller than Ref(s) and can safely
be neglected in the calculation of DLR . For this reason

FIG. 29. Charm-quark function YNL , compared to the leading-log result YL and the case without QCD, as functions of mc .
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f(s)'Ref(s), which depends on a constant not fixed by
chiral perturbation theory, may also be directly ex-
tracted from experimental data on K1→p1e1e2 (Allie-
gro et al., 1992), sensitive to uf(s)u. We follow Lu et al.
(1992) in adopting this procedure.
The dominance of Re f(s) further implies that DLR

actually measures the real part of the short-distance am-
plitude. As emphasized by Bélanger et al. (1993), DLR is
therefore closely related to the short-distance part of
KL→m+m− and could possibly yield useful information
on this contribution, which is difficult to extract from
experimental results on KL→m+m−. Like (KL→m+m−)SD ,
DLR is in particular a measure of the Wolfenstein param-
eter %.
Lu et al. (1992) have also considered potential long-

distance contributions to DLR originating from two-
photon exchange amplitudes. Unfortunately, these are
very difficult to calculate in a reliable manner. The dis-
cussion by Lu et al. (1992) indicates, however, that they
are likely to be much smaller than the short-distance
contributions considered above. We will focus here on
the short-distance part, keeping in mind the uncertainty
due to possible non-negligible long-distance corrections.
One should stress that the short-distance part by itself,

although calculable in a well-defined perturbative
framework, is not completely free from theoretical un-
certainty. The natural context to discuss this issue is a
next-to-leading-order analysis, which, for DLR , has been
presented by Buchalla and Buras (1994b), who general-
ize the previous leading logarithmic-order calculations
(Savage and Wise, 1990; Lu et al., 1992; Bélanger et al.,

1993). We will summarize the results of Buchalla and
Buras (1994b) below.
Finally we mention that other asymmetries in

K+→p+m+m−, which are odd under time reversal and are
also sensitive to short-distance contributions, have been
discussed in the literature (Savage and Wise, 1990;
Agrawal et al., 1991, 1992; Lu et al., 1992). They involve
both the m+ and m− polarizations and are considerably
more difficult to measure than DLR . Possibilities for
measuring the polarization of muons from K+→p+m+m−

in future experiments, based on studying the angular dis-
tribution of e6 from decay, are described by Kuno
(1992).

E. Master formulas for DLR

The absolute value of the asymmetry DLR can be writ-
ten as

uDLRu5ruReju. (25.16)

The factor r arises from phase-space integrations. It de-
pends only on the particle masses mK , mp , and mm , on
the form factors of the matrix element ^p+u( s̄d)V2AuK+&,
and the form factor of the K+→p+g* transition, which is
relevant for the one-photon amplitude. In addition r de-
pends on a possible cut which may be imposed on u, the
angle between the three-momenta of the m− and the
pion in the rest frame of the m+m− pair. Without any cuts
one has r=2.3 (Lu et al., 1992). If cosu is restricted to lie
in the region −0.5<cosu<1.0, this factor is increased to

FIG. 30. Top-quark function Y(xt) as a function of mt for fixed mt=170 GeV with (solid curve) and without (dashed curve) O(as)
corrections.
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r=4.1. As discussed by Lu et al. (1992), such a cut in cosu
could be useful since it enhances DLR by 80% with only
a 22% decrease in the total number of events.
Rej is a function containing the information on the

short-distance physics. It depends on CKM parameters,
the QCD scale LMS , the quark masses mt and mc , and
is given by

Rej5kFRelc

l
P0~Y !1

Rel t

l5 Y~xt!G , (25.17)

k5
l4

2p sin2QW~12l2/2!
51.6631023. (25.18)

Here l=uVusu=0.22, sin2QW=0.23, xt5m t
2/MW

2 , l i
5 Vis*Vid , and

P0~Y !5
YNL

l4 . (25.19)

The functions YNL and Y(xt) represent the charm and
the top contribution, respectively. They are accurate to
next-to-leading logarithmic order as given in Eqs.
(11.48) and (11.45) and have already been discussed in
Sec. XI.C and in the previous sections on the phenom-
enology of (KL→m+m−)SD . Numerical values for P0(Y)
can be found in Table XLVI. From Eqs. (25.16) and
(25.17) we can obtain Relt expressed as a function of
uDLRu:

Rel t52l5

uDLRu/rk2S 12
l2

2 DP0~Y !

Y~xt!
. (25.20)

Since Relt is related to the Wolfenstein parameter %̄

(see Sec. II), one may use Eq. (25.20) to extract %̄ from
a given value of uDLRu.

F. Numerical analysis of DLR

To illustrate the phenomenological implications of the
next-to-leading-order calculation, let us consider the fol-

lowing scenario. We assume a typical value for DLR , al-
lowing for an uncertainty of 610%

DLR5~6.060.6!31023. (25.21)

Here a cut on cosu, −0.5<cosu<1.0, is understood. Next
we take [mi[m̄i(mi)]

mt5~17065 ! GeV, mc5~1.3060.05! GeV,

Vcb50.04060.001, (25.22)

LMS
~4 !

5~300650! MeV. (25.23)

Table XLVII shows the central value of %̄ that is ex-
tracted from DLR in our example, together with the un-
certainties associated to the relevant input. Combined
errors due to a simultaneous variation of several param-
eters can be obtained to a good approximation by simply
adding the errors in Table XLVII.
These errors should be compared with the purely

theoretical uncertainty of the short-distance calculation,
estimated by a variation of the renormalization scales mc
and mt . Varying these scales as given in Eq. (24.19) and
keeping all other parameters at their central values, we
find

20.15<%̄<20.03 ~NLLA!, (25.24)

20.31<%̄<0.02 ~LLA!. (25.25)

We observe that at NLO the scale ambiguity is reduced
by almost a factor of 3 compared to the LLA. However,
even in the NLLA the remaining uncertainty is still siz-
able, though moderate in comparison with the errors in
Table XLVII. Note that the remaining error in Eq.
(25.24) is almost completely due to the charm sector,
since the scale uncertainty in the top contribution is
practically eliminated at NLO.
We remark that for definiteness we have incorporated

the numerically important piece xc/2 in the leading
logarithmic-order expression for the charm function Y ,
although this is strictly speaking a next-to-leading-order
term. This procedure corresponds to a central value of
%̄=−0.12 in LLA. Omitting the xc/2 term and employing
the strict leading-logarithmic-order result shifts this
value to %̄=−0.20. Within NLLA this ambiguity is
avoided in a natural way.
Finally, we give the standard-model expectation for

DLR , based on the short-distance contribution in Eq.
(25.16), for the Wolfenstein parameter % in the range
−0.25<%<0.25, Vcb=0.04060.004, and mt=(170620)
GeV. Including the uncertainties due to mc , LMS , mc ,
and mt and imposing the cut −0.5<cosu<1, we find

3.031023<uDLRu<9.631023, (25.26)

employing next-to-leading-order formulas. Anticipating
improvements in Vcb , mt , and %, we also consider a
future scenario in which %=0.0060.02, Vcb=0.04060.001,
and mt=(17065) GeV. The very precise determination
of % used here should be achieved through measuring
CP asymmetries in B decays in the LHC era (Buras,
1994). Then Eq. (25.26) reduces to

TABLE XLVI. The function P0(Y) for various LMS
(4) and mc .

LMS
(4)/mc

P0(Y)

1.25 GeV 1.30 GeV 1.35 GeV

215 MeV 0.132 0.141 0.151
325 MeV 0.140 0.149 0.159
435 MeV 0.145 0.156 0.166

TABLE XLVII. %̄ determined from DLR for the scenario de-
scribed in the text and the uncertainties related to various in-
put parameters.

D(DLR) D(mt) D(Vcb) D(mc) D(LMS)

%̄ −0.06 60.13 60.05 60.06 60.01 60.00

1236 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



4.831023<uDLRu<6.631023. (25.27)

One should mention that, although the top contribution
dominates the short-distance prediction for uDLRu, the
charm part is still important and should not be ne-
glected, as Bélanger et al. (1993) did. It is easy to con-
vince oneself that the charm sector contributes to %̄ the
sizable amount D%̄charm'0.2. Furthermore, as we have
shown above, the charm part is the dominant source of
theoretical uncertainty in the short-distance calculation
of DLR .
To summarize, we have seen that the scale ambiguity

in the perturbative short-distance contribution to DLR
can be considerably reduced by incorporating next-to-
leading-order QCD corrections. The corresponding
theoretical error in the determination of %̄ from an an-
ticipated measurement of uDLRu is then decreased by a
factor of 3, in a typical example. Unfortunately, the re-
maining scale uncertainty is quite visible even at NLO.
In addition there are further uncertainties due to various
input parameters and possibly to long-distance effects.
Together this implies that the accuracy to which %̄ can
be extracted from DLR appears to be limited and DLR
cannot fully compete with the K→pnn̄ decay modes.
Still, a measurement of DLR might give interesting con-
straints on SM parameters, %̄ in particular, and we feel it
is worthwhile to further pursue this interesting addi-
tional possibility.

XXVI. THE DECAYS B→Xnn̄ AND B→m1m2

A. General remarks

The rare decays, B→Xsnn̄ , B→Xdnn̄ and Bs→m+m−,
Bd→m+m−, are fully dominated by internal top-quark
contributions. The relevant effective Hamiltonians are
given in Eqs. (11.56) and (11.57), respectively. Only the
top functions X(xt) and Y(xt) enter these expressions,
and the uncertainties due to mc and LMS affecting
K1→p1nn̄ and KL→m+m− are absent here. Conse-
quently these two decays are theoretically very clean. In
particular the residual renormalization-scale depen-
dence of the relevant branching ratios, though sizable in
leading order, can essentially be neglected after the in-
clusion of next-to-leading-order corrections. On the
other hand a measurement of these rare B decays, in
particular of B→Xsnn̄ and B→Xdnn̄ , is experimentally
very challenging. In addition, as we will see below,
B(Bs→m1m2) and B(Bd→m1m2) are subject to the
uncertainties in the values of the B-meson decay con-
stants FBs

and FBd
, which hopefully will be removed one

day.

B. The decays B→Xsnn̄ and B→Xdnn̄

The branching fraction for B→Xsnn̄ is given by

B~B→Xsnn̄!

B~B→Xce n̄ !
5

3a2

4p2sin4QW

uVtsu2

uVcbu2
X2~xt!

f~z !

h̄

k~z !
.

(26.1)

Here f(z), z5mc/mb , is the phase-space factor for
B→Xce n̄ defined already in Eq. (22.6), and k(z) is the
corresponding QCD correction (Cabibbo and Maiani,
1978) given in Eq. (23.7). The factor h̄ represents the
QCD correction to the matrix element of the b→snn̄
transition due to virtual and bremsstrahlung contribu-
tions and is given by the well-known expression

h̄5k~0 !511
2as~mb!

3p S 254 2p2D'0.83. (26.2)

For the numerical analysis we will use LQCD
(5) =225

MeV, Eq. (24.3), uVtsu5uVcbu, mt=170 GeV,
B(B→Xce n̄)=0.104, f(z)=0.49, and k(z)=0.88, keeping
in mind the QCD uncertainties in B→Xce n̄ discussed in
Sec. XVII.
Varying mt as in Eq. (24.19) we find that the ambiguity

3.8231025<B~B→Xsnn̄!<4.6531025 (26.3)

present in the leading order is reduced to

3.9931025<B~B→Xsnn̄!<4.0931025 (26.4)

after the inclusion of QCD corrections (Buchalla and
Buras, 1993a).
It should be noted that B(B→Xsnn̄) as given in Eq.

(26.1) is, in view of uVts/Vcbu
2'0.9560.03, essentially in-

dependent of the CKM parameters and the main uncer-
tainty resides in the value of mt . Setting all parameters
as given above and in the Appendix and using Eq.
(24.30), we have

B~B→Xsnn̄!54.131025
uVtsu2

uVcbu2
F mt~mt!

170 GeVG2.30.
(26.5)

In view of a new interest in this decay (Grossman et al.,
1995) we quote the standard-model expectation for
B(B→Xsnn̄) based on the input parameters collected
in the Appendix. We find

3.131025<B~B→Xsnn̄!<4.931025 (26.6)

for the ‘‘present day’’ uncertainties in the input param-
eters and

3.631025<B~B→Xsnn̄!<4.231025 (26.7)

for the ‘‘future’’ scenario.
In the case of B→Xdnn̄ one has to replace Vts by Vtd ,

which results in a decrease of the branching ratio by
roughly an order of magnitude.

C. The decays Bs→m1m2 and Bd→m1m2

The branching ratio for Bs→l1l2 is given by Buchalla
and Buras (1993a)

B~Bs→l1l2!5t~Bs!
GF

2

p S a

4p sin2QW
D 2FBs

2 ml
2mBs

3A124ml
2/mBs

2 uVtb* Vtsu2Y2~xt!,

(26.8)
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where Bs denotes the flavor eigenstate (b̄s) and FBs
is

the corresponding decay constant (normalized as
Fp=131 MeV). Using Eqs. (24.3), (25.4), and (14.6), we
find in the case of Bs→m+m−

B~Bs→m1m2!54.1831029F t~Bs!

1.6 psGF FBs

230 MeVG 2
3F uVtsu2

0.040G
2F mt~mt!

170 GeVG 3.12, (26.9)

which approximates the next-to-leading-order result.
Taking the central values for t(Bs), FBs

, uVtsu, and mt

and varying mt as in Eq. (24.19), we find that the uncer-
tainty

3.4431029<B~Bs→m1m2!<4.5031029 (26.10)

present in the leading order is reduced to

4.0531029<B~Bs→m1m2!<4.1431029 (26.11)

when the QCD corrections are included. This feature is
once more illustrated in Fig. 31.
Finally, we quote the Standard-Model expectation for

B(Bs→m1m2) based on the input parameters collected
in the Appendix. We find

1.731029<B~Bs→m1m2!<8.431029 (26.12)

using present day uncertainties in the parameters and
FBs

5230640 MeV. With reduced errors for the input
quantities, corresponding to the second scenario as de-
fined in the Appendix, and FBs

5230610 MeV, this
range would shrink to

3.131029<B~Bs→m1m2!<5.031029. (26.13)

For the case of Bd→m+m− similar formulas hold with
obvious replacements of labels (s→d). Provided the de-
cay constants FBs

and FBd
will have been calculated re-

liably by nonperturbative methods or measured in lead-
ing leptonic decays one day, the rare processes
Bs→m+m− and Bd→m+m− should offer clean determina-
tions of uVtsu and uVtdu. The accuracy of the related
analysis will profit considerably from the reduction of
theoretical ambiguity achieved through the inclusion
of short-distance QCD effects. In particular
B(Bs→m1m2), which is expected to be O(4310−9),
should be attainable at hadronic machines such as
HERA-B, Tevatron, and LHC.

XXVII. SUMMARY

In this review we have described in detail the present
status of higher-order QCD corrections to weak decays
of hadrons. We have emphasized that during the last few
years considerable progress has been made in this field
through the calculation of the next-to-leading-order
QCD corrections to essentially all of the most interest-
ing and important processes. This effort reduced consid-
erably theoretical uncertainties, which will improve the
accuracy of the CKM parameters to be determined in
future experiments. We have illustrated this with several
examples.
In this review we have concentrated on weak decays

in the standard model. The structure of weak decays in

FIG. 31. The mt dependence of B(Bs→m+m−)[10−9] with (solid curve) and without (dashed curve) O(as) corrections for fixed
parameter values as described in the text.
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extensions of the standard model will generally have to
be modified. Although we do not expect substantial ef-
fects due to ‘‘new physics’’ in tree-level decays, the pic-
ture of loop-induced processes, such as rare and CP-
violating decays, may turn out to be different from the
one presented here. The basic structure of QCD calcu-
lations will remain valid, however. In certain extensions
of the standard model, in which no new local operators
occur, only the initial conditions to the renormalization-
group evolution will have to be modified. In more com-
plicated extensions additional operators may be present
and, in addition to the change of the initial conditions,
the evolution matrix may also have to be generalized.
In order to be able to decide whether modifications of

the standard theory are required by the data, it is essen-
tial that the theoretical calculations within the standard
model itself reach the necessary precision. As far as the
short-distance contributions are concerned, we think
that in most cases such a precision has been already
achieved.
Important exceptions are the b→sg and b→sg tran-

sitions for which the complete NLO corrections are not
yet available. On the other hand, the status of long-
distance contributions, represented by the hadronic ma-
trix elements of local operators or equivalently by vari-
ous Bi parameters, is much less satisfactory. This is in
particular the case for nonleptonic decays, where the
progress is very slow. Yet without these difficult nonper-
turbative calculations it is impossible to give reliable
theoretical predictions for nonleptonic decays even if
the Wilson coefficients of the relevant operators have
been calculated with high precision. Moreover, these co-
efficients have unphysical renormalization-scale and

renormalization-scheme dependences that can only be
canceled by the corresponding dependences in the had-
ronic matrix elements. All efforts should be made to
improve the status of nonperturbative calculations.
The next ten years should be very exciting for the field

of weak decays. The experimental efforts in several
laboratories will provide many new results for the rare
and CP-violating decays, which will offer new tests of
the standard model and possibly signal some ‘‘new phys-
ics.’’ As we have stressed in this review, the NLO calcu-
lations presented here will undoubtedly play an impor-
tant role in these investigations. Let us just imagine that
B s

0-B̄ s
0 mixing and the branching ratios for K1→p1nn̄ ,

KL→p0nn̄ , B→Xsnn̄ , and Bs→m+m− have been mea-
sured to an acceptable accuracy. Having additionally at
our disposal accurate values of uVub/Vcbu, uVcbu, mt , FB ,
BB , and BK , as well as respectable results for the angles
(a,b,g) from the CP asymmetries in B decays, we could
get a great insight into the physics of quark mixing and
CP violation. One should hope that this progress on the
experimental side will be paralleled by the progress in
calculations of hadronic matrix elements as well as by
calculations of QCD corrections in potential extensions
of the standard model.
We would like to end this review with a summary of

theoretical predictions and present experimental results
for the rare and CP violating decays discussed by us.
This summary is given in Table XLVIII.
Let us hope that the next ten years will bring a further

reduction of uncertainties in the theoretical predictions
and will provide us with accurate measurements of vari-
ous branching ratios, for which, as seen in Table
XLVIII, only upper bounds are available at present.

TABLE XLVIII. Summary of standard model (SM) theoretical predictions and experimental results for the rare and CP-violating
processes discussed in this review. The entry ‘‘input’’ indicates that the corresponding measurement is used to determine or to
constrain CKM parameters needed for the calculation of other decays. For B(KL→m1m2) the theoretical value refers only to the
short-distance contribution. In the case of B(KL→p0e1e2) the SM prediction corresponds to the contribution from direct CP
violation. The SM predictions for K1→p1nn̄ and KL→p0nn̄ include the isospin-breaking corrections considered by Marciano
and Parsa (1996).

Quantity SM prediction Experiment Exp. reference

K Decays
ueKu input (2.26660.023)310−3 (Particle Data Group, 1994)
e8/e (5.667.7)310−4 (1568)310−4 (Particle Data Group, 1994)
B(KL→p0e1e2) (4.562.8)310−12 [CPdir] <4.3310−9 (Harris et al., 1993)
B(K1→p1nn̄) (1.060.4)310−10 <2.4310−9 (Adler et al., 1996)
B(KL→p0nn̄) (2.961.9)310−11 <5.8310−5 (Weaver et al., 1994)
B(KL→m1m2) (1.360.7)310−9 [SD] (7.460.4)310−9 (Particle Data Group, 1994)
uDLR(K

1→p1m1m2) u (663)310−3 — —
B Decays

xd input 0.7560.06 (Browder and Honscheid, 1995)
B(B→Xsg) (2.860.8)310−4 (2.3260.67)310−4 (Alam et al., 1995)
B(B→Xsnn̄) (4.060.9)310−5 <7.7310−4 (ALEPH Collaboration, 1996)
B(Bs→t1t2) (1.160.7)310−6 — —
B(Bs→m1m2) (5.163.3)310−9 <8.4310−6 (Kroll et al., 1995)
B(Bs→e1e2) (1.260.8)310−13 — —
B(Bd→m1m2) ;10−10 <1.6310−6 (Kroll et al., 1995)
B(Bd→e1e2) ;10−14 <5.9310−6 (Ammar et al., 1994)
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APPENDIX: COMPILATION OF NUMERICAL
INPUT PARAMETERS

For the convenience of the reader we give a compila-
tion of input parameters that were used in the numerical
parts of this review.
Running quark masses:

m̄d~mc!58 MeV, m̄s~mc!5~170620! MeV,

m̄c~mc!51.3 GeV,

m̄b~mb!54.4 GeV, mb
~pole!54.8 GeV.

Scalar meson masses and decay constants:

mp5135 MeV, Fp5131 MeV,

mK5498 MeV, FK5160 MeV,

mBd
55.28 GeV, t~Bd!51.6310212 s,

mBs
55.38 GeV, t~Bs!51.6310212 s.

QCD and electroweak parameters:

as~MZ!50.11760.007, LMS
~5 !

5~225685! MeV,

a51/129, MW580.2 GeV,

sin2QW50.23.

CKM elements:

uVusu50.22, uVudu50.975.

K decays, K0-K̄0, and B0-B̄0 mixing:

t~KL!55.1731028 s, t~K1!51.23731028 s,

BR~K1→p0e1n!50.0482,

u«Ku5~2.26660.023!31023,

DMK53.51310215 GeV,

ReA053.3331027 GeV,

ReA251.5031028 GeV,

Vhh850.25,

h151.38, h250.57,

h350.47, hB50.55.

The values for ReA0,2 have been obtained from the Par-
ticle Data Group (PDG) using isospin analysis.
Hadronic matrix element parameters for K→pp:

B2,LO
~1/2! ~mc!55.761.1,

B2,NDR
~1/2! ~mc!56.661.0, for LMS

~4 !
5325 MeV

B2,HV
~1/2! ~mc!56.261.0,

B3
~1/2!5B5

~1/2!5B6
~1/2!5B7

~1/2!5B8
~1/2!

5B7
~3/2!5B8

~3/2!51 ~central values!.

For illustrative purposes we have sometimes used
present as well as estimated future errors for various
input parameters in our numerical calculations. In Table
XLIX below this is indicated by labels ‘‘present’’ and
‘‘future.’’
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petić, 1986, Phys. Lett. B 179, 361.
Draper, T., and C. McNeile, 1994, Nucl. Phys. B (Proc. Suppl.)
34, 453.
Dugan, M. J., and B. Grinstein, 1991, Phys. Lett. B 256, 239.
Duncan, A., E. Eichten, J. Flynn, B. Hill, G. Hockney, and H.
Thacker, 1995, Phys. Rev. D 51, 5101.
Ecker, G., A. Pich, and E. de Rafael, 1987, Nucl. Phys. B 291,
692.
Ecker, G., A. Pich, and E. de Rafael, 1988, Nucl. Phys. B 303,
665.
Eeg, J. O., and I. Picek, 1988, Phys. Lett. B 214, 651.
Ellis, J., and J. S. Hagelin, 1983, Nucl. Phys. B 217, 189.
Falk, A. F., M. Luke, and M. J. Savage, 1994, Phys. Rev. D 49,
3367.
Falk, A. F., M. Wise, and I. Dunietz, 1995, Phys. Rev. D 51,
1183.
Fleischer, R., 1994a, Z. Phys. C 62, 81.
Fleischer, R., 1994b, Phys. Lett. B 332, 419.
Floratos, E. G., D. A. Ross, and C. T. Sachrajda, 1977, Nucl.
Phys. B 129, 66.
Flynn, J. M., 1990, Mod. Phys. Lett. A 5, 877.
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