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We review the present status of QCD corrections to weak decays beyond the leading-logarithmic
approximation, including particle-antiparticle mixing and rare and CP-violating decays. After
presenting the basic formalism for these calculations we discuss in detail the effective Hamiltonians of
all decays for which the next-to-leading-order corrections are known. Subsequently, we present the
phenomenological implications of these calculations. The values of various parameters are updated, in
particular the mass of the newly discovered top quark. One of the central issues in this review are the
theoretical uncertainties related to renormalization-scale ambiguities, which are substantially reduced
by including next-to-leading-order corrections. The impact of this theoretical improvement on the
determination of the Cabibbo-Kobayashi-Maskawa matrix is then illustrated. [S0034-6861(96)00304-2]
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In our present day understanding, weak interactions
show the most complicated and diversified pattern of all
the fundamental forces of nature. The standard model of
strong and electroweak interactions is capable of suc-
cessfully describing a large amount of experimental in-
formation quantitatively and even more information
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qualitatively. However, there are many unanswered
questions that still remain, and many of them, such as
electroweak symmetry breaking and the origin of ferm-
ion masses and quark mixing, are closely related to weak
interactions. In addition, the discrete space-time symme-
tries C, P, and T (charge, parity, and time) are re-
spected by the strong and electromagnetic interactions,
but not by the weak interaction. For these reasons, much
effort has been spent on developing a theoretical under-
standing of the weak interaction. An excellent labora-
tory for this enterprise is provided by the very rich phe-
nomenology of weak meson decays.

In this article, we review the subject of next-to-
leading-order QCD corrections to weak meson decays.
The careful investigation of these decays is mandatory
for further testing of the standard model. Of particular
importance is the determination of all Cabbibo-
Kobayashi-Maskawa. (CKM) parameters to an accuracy
that will test the consistency of the standard model, in-
cluding the unitarity of the CKM matrix and its compat-
ibility with the quark masses. Many interesting issues
within this context remain unresolved, for example, di-
rect CP violation in nonleptonic K decays, CP violation
patterns in the B system, and the rare K and B decays
that are sensitive to the effects of virtual heavy particles,
such as the top quark. As experiments achieve better
resolution and discover more rare decay channels, the
corresponding theory has to become more precise as
well, so that the new experimental results can be effi-
ciently used to obtain improved determinations of the
parameters in the standard model and consequently to
allow improved predictions for future experiments.

Since hadrons are involved in all the decays we are
interested in here, QCD effects are unavoidable and
must be quantitatively understood. To accomplish this
task one employs two tools of quantum field theory, the
operator product expansion (OPE) (Wilson and Zim-
mermann, 1972) and the renormalization group (Stueck-
elberg and Petermann, 1953; Gell-Mann and Low, 1954;
Ovsyannikov, 1956; Callan Jr., 1970; Symanzik, 1970;
’t Hooft, 1973; Weinberg, 1973). In the OPE, an ampli-
tude A for a process such as a weak decay may be rep-
resented as (Witten, 1977)

A=(He)=2 Cil i, My)(Qi(p)- (1.1)
Here Q, are local operators and C; are the Wilson coef-
ficients. Both the C; and Q; depend on the QCD renor-
malization scale u, and C; depends on the mass of the W
boson and the masses of other heavy particles such as
the top quark as well. One can view the expression of
2,;C;0Q; more intuitively as an effective Hamiltonian for
the process considered, with Q; the effective vertices
and C, the corresponding coupling constants.

The essential point about the OPE is that it separates
the full problem into two distinct parts, the long-distance
contributions contained in the operator matrix elements
and the short-distance physics described by the Wilson
coefficients. The renormalization scale u separating the
two regimes is typically chosen to be of the order of 1
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GeV for kaon decays and a few GeV for the decays of D
and B mesons. The physical amplitude A, however, can-
not depend on w. The p dependence of the Wilson co-
efficients has to cancel the u dependence present in
(Q;(w)). In other words it is a matter of choice what
exactly belongs to the matrix elements and what to the
coefficient functions. This cancellation of u dependence
generally involves several terms in the expansion in Eq.
(1.1).

The long-distance part in Eq. (1.1) deals with low-
energy strong interactions and therefore poses a very
difficult problem. Many approaches, like lattice gauge
theory, 1/N expansion, QCD and hadronic sum rules, or
chiral perturbation theory, have been used in the past to
obtain qualitative insight and some quantitative esti-
mates of relevant hadronic matrix elements. In addition
heavy-quark effective theory and heavy-quark expan-
sions have been widely used for B decays. Despite these
efforts the problem is not yet solved satisfactorily.

In general in weak decays of mesons the hadronic ma-
trix elements constitute the most important source of
theoretical uncertainty. There are, however, a few spe-
cial examples of semileptonic rare decays (K,
K, —7m'vv, B— X,vv), where matrix elements needed
can be extracted from well-measured leading decays,
calculated perturbatively, or, as in the case of B,— uu,
expressed fully in terms of meson decay constants. Thus
the problem of long-distance QCD can almost be com-
pletely avoided. This makes these decay modes very at-
tractive from a theoretical point of view, although, due
to very small branching ratios, they are quite difficult to
access experimentally.

In contrast to the long-distance contributions the
short-distance QCD interaction can be analyzed system-
atically using well-established field-theoretical methods.
Due to the asymptotic freedom of QCD the strong-
interaction effects at short distances are calculable in
perturbation theory in the strong coupling a,(u). In fact
a,(u) is small enough in the full range of relevant short-
distance scales of O(My,) down to O(1 GeV) to serve as
a reasonable expansion parameter. However, the pres-
ence of large logarithms In(My/w) multiplying o,(u),
where u=0O(1 GeV), in the calculation of the coefficients
Ci(u,M ) spoils the validity of the usual perturbation
series. This is a characteristic feature of renormalizable
quantum field theories when vastly different scales are
present. It is therefore necessary to perform a
renormalization-group analysis that allows an efficient
summation of logarithmic terms to all orders in pertur-
bation theory. In this way the usual perturbation theory
is replaced by a renormalized-group improved perturba-
tion theory in which the leading order corresponds to
summing the leading logarithmic terms ~[a,In(M /u)]".
Then at next to leading order (NLO), all terms of the
form ~a [ In(My,/1)]" are summed in addition, and so
on.

The evaluation of the short-distance coefficients in the
renormalized-group improved perturbation theory is
only a part of the entire problem, but one should stress
that it is still indispensible to analyze this part systemati-
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TABLE 1. Processes for which NLO QCD corrections have been calculated.

Decay

Reference

AF=1 decays

Current-current operators
QCD penguin operators

Electroweak penguin operators

Magnetic penguin operators
B(B—Xev)

Inclusive AS=1

(Altarelli et al., 1981), (Buras and Weisz, 1990)
(Buras et al., 1993), (Buras et al., 1993a),
(Ciuchini, Franco, Martinelli, and Reina, 1994)
(Buras et al., 1993), (Buras et al., 1993a),
(Ciuchini, Franco, Martinelli, and Reina, 1994)
(Misiak and Miinz, 1995)

(Altarelli et al., 1981), (Buchalla, 1993),

(Bagan et al., 1994), (Bagan, Ball, Fiol, and
Gosdzinsky, 1995),

(Jamin and Pich, 1994)

Particle-antiparticle mixing

Ui
™,NB
7

(Herrlich and Nierste, 1994)
(Buras et al., 1990)
(Herrlich and Nierste, 1995a)

Rare K- and B-meson decays

K% —7%p, B—IT1", Bo> X, vv
Kt—atvo, K;—utu”
K'—m"pp

KL—>7TOE+€_
B—X,eT e

(Buchalla and Buras, 1993a)

(Buchalla and Buras, 1994a)

(Buchalla and Buras, 1994b)

(Buras, Lautenbacher, Misiak, and Miinz, 1994)
(Misiak, 1995), (Buras and Miinz, 1995)

cally; the effective Hamiltonians resulting from the
short-distance analysis provide the necessary basis for
any further computation of weak-decay amplitudes. The
long-distance matrix elements can be treated separately
and will hopefully be known with desired accuracy one
day.

It is worth noting that the short-distance QCD contri-
butions by themselves already have an important impact
on weak-decay processes. In nonleptonic K decays, for
example, they help to explain the famous A7/=1/2 rule,
and they generate penguin operators that are relevant
for &'/e. They suppress the semileptonic branching ratio
in heavy-quark decays and produce a significant en-
hancement of the weak radiative process B— Xv.

Starting with the pioneering work of Galliard and Lee
(1974a) and Altarelli and Maiani (1974), who calculated
the first leading-logarithmic-order QCD effects in weak
decays, considerable efforts have been devoted to the
calculation of short-distance QCD corrections to weak-
meson decay processes. The analysis has been extended
to a large variety of particular modes. Of special interest
are processes sensitive to the virtual contribution of
heavy quarks, like the top quark. A classic example of
this type is the work of Galliard and Lee (1974b), which
analyzed K°-K° mixing and estimated the charm quark
mass prior to its discovery, based on the dependence of
the AS=2 transition on virtual charm. This calculation is
the prototype for present-day analyses of virtual-top
contributions in B°- B® mixing, rare decays, and CP vio-
lation, which are similar in spirit.
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Until 1989 most calculations were done in the leading-
logarithmic approximation (Vainshtein et al., 1977; Gil-
man and Wise, 1979, 1980; Guberina and Peccei, 1980),
with the exception of Altarelli ef al. (1981), where the
first NLO calculation in the theory of weak decays was
presented. Currently, effective Hamiltonians are avail-
able to NLO for the most important and interesting
cases, as is given in Table I, due to a series of publica-
tions beginning with the work of Burns and Weisz
(1990).

Aside from general increases in accuracy inherent
with going to the next higher order in a perturbation
series expansion, there are several important reasons for
performing these very involved and complicated calcu-
lations of next to leading order:

(i) The NLO approximation tests the validity of the
perturbation theory. In leading order, the ultimate result
is O(1), whereas, at NLO, one first obtains an O(«)
correction relative to the leading order, and one can
check whether it is small enough to justify the perturba-
tive approach.

(ii) The QCD has a scale parameter Ay, but it can-
not be interpreted meaningfully in weak decays without
going to NLO.

(ili) Due to renormalization-group invariance, the
physical amplitudes of decays do not depend on the ex-
act scales at which quark masses are defined. However,
by truncating a perturbation series, renormalization-
group invariance is broken, resulting in scale-dependent
ambiguities in the final answer. These can be reduced
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considerably by going to NLO.

(iv) The Wilson coefficients are renormalization-
scheme-dependent quantities. The scheme dependence
is first “felt” at NLO, whereas the leading order is com-
pletely insensitive to this important feature. In particu-
lar, this issue is essential for a proper matching of the
short-distance contributions to the long-distance matrix
elements as obtained from lattice calculations.

(v) Certain decays, e.g, K;,—me’e” and
B—X,e"e™, are only sensitive to the top-quark mass at
the next to leading order.

This review article can conceptually be divided into
three parts, “‘basic concepts,” “‘technical calculations,”
and ‘““phenomenological applications.” This division is
given in the hope of making the review as readable as
possible for a wide audience of physicists.

The first part, Secs. II and III, introduces basic con-
cepts that are utilized in the remainder of the review.
Section II describes important aspects of the standard
model as they relate to weak decays. In particular, the
CKM matrix is shown in two common parametrizations,
and the unitarity triangle is described. Section III out-
lines the basic formalism for the calculation of QCD
effects in weak decays. Beginning with the idea of effec-
tive field theories, we introduce the techniques of the
operator product expansion (OPE) and renormalization
group (RG). The Wilson coefficients C; are computed
for local operators Q; in the leading-logarithmic and
next-to-leading-logarithmic approximations. In order to
calculate C;, one must evaluate one-loop and two-loop
anomalous dimensions of (;, and, more generally,
anomalous-dimension matrices that describe mixing of
Q; under renormalization. General formulas are ob-
tained for C; and the anomalous dimensions of Q;. Sec-
tion IIL.F contains the ‘“‘master equations” for C;, in-
cluding next-to-leading-order corrections. In particular,
the u and renormalization-scheme dependences are dis-
cussed, and we show how they are cancelled by those
present in the hadronic matrix elements.

The second part, comprised of Secs. IV-XV, is a com-
pendium of effective Hamiltonians for weak decays for
which next-to-leading-order corrections have been cal-
culated (see Table I). We also include the b—svy and
b—sg transitions, which, while not known to NLO, de-
serve special attention. Initial conditions, C;(My,), are
given, as are a list of all one- and two-loop anomalous-
dimension matrices, and tables of C; as functions of
Asis, m,, and the renormalization schemes considered.
Asgs is the QCD scale, and m, the mass of the top quark.
Using the results and general procedure of Sec. III, we
examine similarities and differences between the differ-
ent decays. In addition, Sec. XIV describes the penguin
box expansion, a version of OPE well suited to study the
top-quark mass dependence of weak decays, and Sec.
XV introduces heavy-quark effective theory, showing
the applications of this formalism to short-distance QCD
corrections. Section XV also includes a summary of
some important NLO results obtained in heavy-quark
effective theory.
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TABLE II. Electroweak charges O, Y, and the third compo-
nent of the weak isospin T for quarks and leptons in the stan-
dard model.

vy, er eR ur dp ug dg
0] 0 -1 -1 2/3 -1/3 2/3 -1/3
T3 12 -1/2 0 172 -1/2 0 0
Y -1 -1 -2 1/3 1/3 4/3 -2/3

The final part of this review (Secs. XVI-XXVI) pre-
sents the phenomenological perspective of weak decays
and can be followed without a deep reading of the sec-
ond part, although Sec. IV is a good reference to under-
stand the general ideas. In Sec. XVI, comments are
made about input parameters, Sec. XVII is an overview
of the leading inclusive B-meson decays, and Sec. XVIII
investigates the unitarity triangle as well as other impor-
tant quantities that will be applied in the remaining sec-
tions. Sections XIX-XXVI analyze particular decays,
their uncertainties with and without NLO corrections,
and their significance to the standard model and its pa-
rameters.

Il. STANDARD ELECTROWEAK MODEL
A. Particles and interactions

Throughout this review we will work in the context of
the three-generation model of quarks and leptons, which
is based on the gauge group SU(3)®SU(2),®U(1)y
spontaneously broken down to SU(3)®U(1),. Here Y
and Q denote the weak-hypercharge and the electric-
charge generators, respectively. SU(3) represents the
symmetry of QCD, which will be discussed in more de-
tail in the following section. Here we review certain fea-
tures of the electroweak part of the standard model that
will be important for the present considerations.

The left-handed leptons and quarks are put in SU(2),
doublets

29, L), 1),

), 8
L’ S/L, b/L

with the corresponding right-handed fields transforming
as singlets under SU(2); . The primes are discussed be-
low. The relevant electroweak charges Q, Y, and the
third component of the weak isospin 7’5 are collected in
Table II.

The electroweak interactions of quarks and leptons
are mediated by the massive weak gauge bosons W and
Z" and by the photon A. These interactions are summa-
rized by the Lagrangian

Lin=Lcct Lne,s

where

(2.1)

u

d' 22)

(2.3)



1130

_82 v+ -w-
ECC—E(J/LW +J W) 24)
describes the charged current interactions and
Lne=elm AR — 52 0 7u 2.5)
NC™ ™0 u 2cos@y, " H

the neutral current interactions. Here e is the QED cou-
pling constant, g, is the SU(2); coupling constant, and
Oy is the Weinberg angle. The currents are given as
follows

Jp=(ad" )y g+ (& )y g+t (b )y_a+(Pee)y 4

(V) at (VT4 (2.6)
Ier= ; Oyt 2.7)
in:}f‘, fyu(vy—apys)f, with (2.8)
v=T{-2Qpsin’Oy, a;=T%, (2.9)

and Oy and T4 denote the charge and the third compo-
nent of the weak isospin of the left-handed fermion f; .
(V—A) refers to y,(1-vs).

In the discussion of weak decays an important role is
played by the Fermi constant

Gr_ &
va  8My,’

which has the value

(2.10)

C12€13
i8
85126237 €C12523513€
is
§12823 7 €12€23513€

b

where &is the phase necessary for CP violation. ¢;; and
s;; can all be chosen to be positive, and d may vary in the
range 0<6<2w. However, the measurements of CP vio-
lation in K decays force & to be in the range 0<d<.
The extensive phenomenology of the last few years

has shown that s,3 and s,; are small numbers, O(107)
and O(107%), respectively. Consequently, to an excellent
accuracy, c13~c,3~1 and the four independent param-
eters are

512=|Vus|’ s13=|Vub|’ 523=|Vcb|7 0, (214)
with the phase §extracted from CP-violating transitions
or loop processes sensitive to |V,,|. The latter fact is
based on the observation that, for 0<§<m, there is a
one-to-one correspondence between & and |V,,| given
by

|V ,4|=a*+b>—2ab cosé,

a= | Vcdvcb|7
b:|Vuqub|' (215)
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Gr=1.16639x10"° GeV ™2 (2.11)

Other values of the relevant parameters will be collected
in the Appendix.

The interactions between the gauge bosons are stan-
dard and can be found in any textbook on gauge theo-
ries.

The primes in Eq. (2.2) indicate that the weak eigen-
states (d’,s',b') are not equal to the corresponding
mass eigenstates (d,s,b) but rather are linear combina-
tions of the latter. This is expressed through the relation

d/ Vud Vus Vub d
s’ = Vcd Vcs Vcb s, (212)
b Vi Vi Vil \ P

where the unitary matrix connecting these two sets of
states is the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix. Many parametrizations of this matrix have been
proposed in the literature. In this review we will use two
parametrizations: the standard parametrization recom-
mended by the Particle Data Group and the Wolfen-
stein parametrization.

B. Standard parametrization

Let us introduce the notation c;j=cos6; and s;;=sin6;
with i and j being quark generation labels (i,j=1,2,3).
The standard parametrization is then given as follows
(Particle Data Group, 1994)

—is
S12€13 S13€
is
C12€237 512523513€ §23€13 |, (2.13)
is
—823C127 812€23513€ C€23C13

C. Wolfenstein parametrization beyond leading order

We will also use the Wolfenstein parametrization
(Wolfenstein, 1983). It is an approximate parametriza-
tion of the CKM matrix in which each element is ex-
panded as a power series in the small parameter
A=|V,]=0.22.

1-= N AN(e—in)
= A2
v -\ 1—— AN?
2
AN (1—o—in) —AN? 1
+O\Y), (2.16)

where the four independent parameters are
N, A, 0, 7. (2.17)

The Wolfenstein parametrization has several nice fea-
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tures. It offers a very transparent geometrical represen-
tation of the structure of the CKM matrix and allows
one to derive several analytic results to be discussed be-
low. This turns out to be very useful in the phenomenol-
ogy of rare decays and of CP violation.

When using the Wolfenstein parametrization one
should remember that it is an approximation and that in
certain situations neglecting O(\*) terms may give
wrong results. How does one find O(\*) and higher or-
der terms? Since Eq. (2.16) is only an approximation,
the exact definition of \ is not unique by terms of the
neglected order O(\*). This is the reason why different
O(\*) terms can be found in the literature. They simply
correspond to different definitions of the expansion pa-
rameter A. Obviously the physics does not depend on
this choice. Here it suffices to find an expansion in A that
allows for simple relations between the parameters in
Eqgs. (2.14) and (2.17). This will also restore the unitarity
of the CKM matrix, which in the Wolfenstein parametri-
zation as given in Eq. (2.16) is not satisfied exactly.

To this end we go back to Eq. (2.13) and impose the
relations (Buras, Lautenbacher, and Ostermaier, 1994)

s;3=AN2, spze P=AN}o—ip) (2.18)

to all orders in \. In view of the comments made above
this can certainly be done. It follows that

S12=A,

(2.19)

We observe that Egs. (2.18) and (2.19) simply represent
the change of variables from Egs. (2.14) to (2.17). Mak-
ing this change of variables in the standard parametriza-
tion (2.13), we find that the CKM matrix as a function of
(N\,A ,p,7) satisfies unitarity exactly. We also note that, in
view of ¢3=1-O(\%), the relations between s; and |V,
in Eq. (2.14) are satisfied to high accuracy. The relations
in Eq. (2.19) have been first used in Schmidtler and
Schubert (1992). However, the improved treatment of
the unitarity triangle presented below goes beyond the
analysis of these authors.

The procedure outlined above automatically gives the
corrections to the Wolfenstein parametrization in Eq.
(2.16). Indeed expressing Eq. (2.13) in terms of Wolfen-
stein parameters using Eq. (2.18) and then expanding in
powers of A, we recover the matrix in Eq. (2.16) and in
addition find explicit corrections of O(\*) and higher-
order terms. V,;, remains unchanged. The corrections to
V,s and V., appear only at O(\) and O(\®), respec-
tively. For many practical purposes the corrections to
the real parts can also be neglected. The essential cor-
rections to the imaginary parts are

AV, =—iA’Ny, AV,=—iAN*7. (2.20)

These two corrections have to be taken into account in
the discussion of CP violation. On the other hand the
imaginary part of V,, which in our expansion in \ ap-
pears only at O(\°), can be fully neglected.

In order to improve the accuracy of the unitarity tri-
angle discussed below we will also include the O(\%) cor-
rection to V,;, which gives
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Vi=AN(1-0—i7)
with

) A2 A2
Q=e(1—7), 77=77(1—7).

In order to derive analytic results we need accurate ex-

plicit expressions for \;=V,; V7, , where i=c,t. We have

(2.21)

(2.22)

ImA,= —Im\ = 2A%\>, (2.23)
)\2
Re\ = —)\(1— 7), (2.24)
)\2
Rek,z—(l—T)Az)\S(l—é). (2.25)

To an accuracy of 0.2% expressions (2.23) and (2.24)
represent the exact formulas obtained using Eq. (2.13).
Equation (2.25) deviates by at most 2% from the exact
formula in the full range of parameters considered. In
order to keep the analytic expressions in the phenom-
enological applications in a transparent form we have
dropped a small O(\") term in deriving Eq. (2.25). After
inserting Egs. (2.23)—(2.25) in exact formulas for quan-
tities of interest, further expansion in \ should not be
made.

D. Unitarity triangle beyond leading order

The unitarity of the CKM matrix provides us with sev-
eral relations, of which

VudVir T VeadVip+ViaVip=0 (2.26)

is the most useful one. In the complex plane Eq. (2.26)
can be represented as a triangle, the so-called “‘unitarity-
triangle”” (UT). Phenomenologically this triangle is very
interesting, as it simultaneously involves the elements
V> Vep,and V,,, the values of which are currently in
dispute.

In the usual analyses of the unitarity triangle only
terms O(\%) are kept in Eq. (2.26) (Dib et al., 1990; Bu-
ras and Harlander, 1992; Harris and Rosner, 1992; Nir,
1992; Schmidtler and Schubert, 1992; Ali and London,
1995). It is, however, straightforward to include the
next-to-leading-O(\°) terms (Buras, Lautenbacher, and
Ostermaier, 1994). We note first that

VVE=—AN+00). (2.27)

Thus, to an excellent accuracy, V .,V», is real with
|V.aV*| = AN3. Keeping O(\) corrections and rescaling
all terms in Eq. (2.26) by A\?, we find

1 -1 -
mvzthZb:Q—f_ln’ szdvszl_(Q‘*‘”])
(2.28)
with ¢ and 7 defined in Eq. (2.22). Thus we can repre-
sent Eq. (2.26) as the unitarity triangle in the complex

(o,7m) plane. This is shown in Fig. 1. The length of the
side CB that lies on the real axis is unity when Eq. (2.26)
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C=(0,0) B=(1,0)

FIG. 1. Unitarity triangle in the complex (©,7) plane.

is rescaled by V_.,VX, . We observe that, beyond the
leading order in A, the point A does not correspond to
(0,m) but to (0,7). Clearly, within 3% accuracy, 0=0
and 7=n. Yet in the distant future the accuracy of ex-
perimental results and theoretical calculations may im-
prove considerably, so that the more accurate formula-
tion given here will be appropriate.

Using simple trigonometry one can calculate sin(2¢,),

¢=a,B,7, in terms of (©0,7) with the result

29(7°+0°—¢e)

Sin2a= ——— — —, (2.29)
(e*+(1-e)*+7°]
29(1—-p

sin2 B= 77(_—9)_, (2.30)
(1-0)+7
207 2

Sin2 y= — en en (2.31)

or+ 7 Sttt

The lengths CA and BA in the rescaled triangle of Fig.
1, to be denoted by R, and R, , respectively, are given by

|VudVZb| ) -2 )\2 1 Vub
Rb=W_VQ tr=\lm g v, (2.32)
cdV cb
[ViaVisl = 1|V,
R=——"1-=\J(1-0)*+7*=—|—4. 2.33
! |Vch:b ( e 7 A Vcb ( )

The expressions for R, and R,, given here in terms of

(0,7m), are excellent approximations. Clearly R, and R,
can also be determined by measuring two of the angles

&
_sin(ﬂ) 3 sin(a+ y) B sin(8)

b7sin(a)  sin(e)  sin(y+p)’ (2.34)
_sin(y) sin(a+p)  sin(y)
"sin(a)  sin(a)  sin(y+pB)° (2.35)

lll. BASIC FORMALISM
A. Renormalization of QCD

As already emphasized in the Introduction, the effects
of QCD play an important role in the phenomenology of
weak decays of hadrons. In fact, in the theoretical analy-
sis of these decays, the investigation of QCD corrections
is the most difficult and involved part. In the present
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subsection we shall briefly recall basic features of pertur-
bative QCD and its renormalization and concentrate on
those aspects that will be needed for the present review.
We also take the opportunity to introduce for later ref-
erence expressions for the running coupling constant,
the running mass, and the corresponding
renormalization-group functions.
The Lagrangian density for QCD is

1
Locp=~7 (9,A5=,A3) (HA = J"A")

1
2, =/
Y (HAL +q(ib—my)q+x™* "9, x"

— 8 b5, 40— ,A7) AbrACY
2 w v M

2
_ % frbefede At AL A A + g G TSy gAY

+gf (XX AL (3.1)
Here ¢=(q1,9,,q3) is the color triplet of quark flavor
q=u,d,s,c,b,t. g is the QCD coupling, A‘; the gluon
field, y the ghost field, and ¢ the gauge parameter. 77,
1€ (a,b,c=1,...8) are the generators and structure
constants of SU(3), respectively. From this Lagrangian
one may read off the Feynman rules for QCD, e.g.,
igT{;y*, for the quark-gluon vertex.

In order to deal with divergences that appear in quan-
tum (loop) corrections to Green functions, the theory
has to be regularized to have an explicit parametrization
of the singularities and subsequently renormalized to
render the Green functions finite. For these purposes we
will employ

(i) Dimensional regularization (DR) by continuation
to D=4-2¢ space-time dimensions (Ashmore, 1972; Bol-
lini and Giambiagi, 1972a, 1972b; Cicuta and Montaldi,
1972; ’t Hooft and Veltman, 1972a).

(ii) Subtraction of divergences in the minimal subtrac-
tion scheme MS ('t Hooft, 1973) or the modified mini-
mal subtraction scheme (MS) (Bardeen et al., 1978).

To eliminate the divergences one has to renormalize
the fields and parameters in the Lagrangian, in general
through

6.=ZVAY. q0=Zq. Xxi=Z3x"
g(]:Zgglu‘S’ 502235’ m():me' (32)

The subscript “0” indicates unrenormalized quantities.
The factors Z are the renormalization constants. The
scale u has been introduced to make g dimensionless in
D=4-2¢ dimensions. Since we will not consider Green
functions with external ghosts, we will not need the
ghost-field renormalization. We also do not need the
gauge-parameter renormalization if we are dealing
with gauge-independent quantities, as, e.g., Wilson-
coefficient functions.

A straightforward way to implement renormalization
is provided by the counterterm method. Thereby the pa-
rameters and fields in the original Lagrangian, which are
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to be considered as unrenormalized (bare) quantities,
are re-expressed through renormalized ones by means of
Eq. (3.2) from the very beginning. For instance, the
quark kinetic term becomes

Lr=qoidqo—myqoqo=qibqg—mqq+(Z,—1)qidq
—(ZyZm—1)miq. (33)

The advantage is that only renormalized quantities are
present in the Lagrangian. The counterterms, ~(Z-1),
which also appear, can be formally treated as interaction
terms that contribute to Green functions calculated in
perturbation theory. The Feynman rule for the counter-
terms in Eq. (3.3), for example, reads (p is the quark
momentum)

i(Z,~1)p—i(ZyZp—1)m. (3.4)

The constants Z; are then determined such that they
cancel the divergences in the Green functions according
to the chosen renormalization scheme. In an analogous
way all renormalization constants can be fixed by con-
sidering the appropriate Green functions.

Of central importance for the study of perturbative-
QCD effects are the renormalization-group equations,
which govern the dependence of renormalized param-
eters and Green functions on the renormalization scale
m. These differential equations are easily derived from
Eq. (3.2) by using the fact that bare quantities are u
independent. In this way one finds that the renormalized
coupling g(u) obeys (Gross, 1976)

g(n)=p(e.g(w)), (3.5)

d Inp
where

B 1 dz,
Ble,g)=—eg—g Z—g

=—eg+pB(g), (3.6)

dnu

which defines the B function. Equation (3.5) is valid in
arbitrary dimensions. In four dimensions S3(e,g) reduces
to B(g). Similarly, the anomalous dimension of the mass
Y » defined through

dm(p)

m=—7m(g)m(,u), (3.7)
is given by
1 dz,
Ym(8)= Z ding (3.8)

In the MS (MS) scheme, where only the pole terms in
€ are present in the renormalization constants Z;, these
can be expanded as

|
Zi:1+2 % Zix(8)-
=1 e

(3.9)
Using Egs. (3.5) and (3.6) one finds
1 dz,; aZ;
A2 1(8) (3.10)

Z dlnp 8 T ag%
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which allows a direct calculation of the renormalization-
group functions from the 1/e-pole part of the renormal-
ization constants. Along these lines one obtains at the
two-loop level, which is required for next-to-leading-
order calculations,

g’ g
B(g)=—Po 1672 B (1671-2)2' (3.11)
In terms of
2
asEg—ﬂ_ (3.12)
we have
dag 5 a? 5 o’ .

Similarly, the two-loop expression for the quark-mass
anomalous dimension can be written as

ay a,\?
Ym( @)= Ymo 7+ Ym| 7] - (3.14)
We also give the 1/e-pole part Z,; of the quark-field
renormalization constant Z; to O(a?), which we will
need later on,

o 03 2
Z,1=a; ﬁ‘”&(ﬁ) . (3.15)
The coefficients in Egs. (3.13)—(3.15) are
1IN=-2f 34 10
=3 BlZ?NZ_?Nf_ZCFf’
CF=N2 ! (3.16)
2N '

97 10
Ymo=6Cr, ¥mi=Cp 3CF+?N_?]C , (3.17)

3 17 1

al——Cp, a2—cF(Z CF_IN‘FE ), (318)
where N is the number of colors and f the number of
quark flavors. The coefficients are given in the MS
(MS) scheme. However, By, B, Ym0, and a; are scheme
independent. The expressions for a; and a, in Eq. (3.18)
are valid in Feynman gauge, &=1.

At  two-loop order the solution of the
renormalization-group equation (3.13) for a,(u) can al-
ways be written in the form

. B1 In In(u2/A?)
B2 In(u?/A?) |

with A the QCD scale. Equation (3.19) gives the running
coupling constant at NLO. «(w) vanishes as u/A—o
due to asymptotic freedom. We remark that, in accor-
dance with the two-loop accuracy, Eq. (3.19) is valid up
to terms of the order O(1/In*(u*/A?)). For the purpose of
counting orders in 1/In(u*/A?), the double-logarithmic
expression In In(u?/A%) may formally be viewed as a con-
stant. Note that an additional term ~1/In*(u*/A?), which

o
as(M):—m—ﬂoln(M AT (3.19)
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is of the same order as the next-to-leading-order correc-
tion in Eq. (3.19), can always be absorbed into a multi-
plicative redefinition of A. Hence the choice of the form
of Eq. (3.19) is possible without restriction, but one
should keep in mind that the definition of A is related to
this particular choice. The introduction of the MS
scheme and the corresponding definition of Az and its
relation to Ay is discussed in Section III.F.4.

Finally we write down the two-loop expression for the
running quark mass in the MS (MS) scheme, which re-
sults from integrating Eq. (3.7):

a,(pm) } Ym0/2Bo

m(u)=m(m) w.(m)

Ym1 Bl')’mO
+(2ﬁo 28 )

(3.20)

as(/*‘*) - as(m)
XT}

B. Operator product expansion in weak decays—
preliminaries

Weak decays of hadrons are mediated through the
weak interactions of their quark constituents. These
hadrons also have strong interactions that have a typical
hadronic energy scale of the order of 1 GeV. Our goal is
therefore to derive an effective low-energy theory de-
scribing the weak interactions of quarks. The formal
framework to achieve this is provided by the operator
product expansion (OPE) (Wilson and Zimmermann,
1972). In order to introduce the main ideas behind it, let
us consider the simple example of the quark-level tran-
sition c—sud, which is relevant for Cabibbo-allowed
decays of D mesons. Disregarding QCD effects for the
moment, the tree-level W-exchange amplitude for
c—sud is simply given by

2

A=i CEyry Y (5¢)y_4liid)

V2 cs "V ud k2_MW§ V-A V-A
k2
My,

(3.21)

where (V —A) refers to the Lorentz structure y,(1-ys).

Since k, the momentum transfer through the W
propagator, is very small compared to the W mass My,
terms of the order O(k*/M3%,) can safely be neglected,
and the full amplitude A can be approximated by the
first term on the rhs of Eq. (3.21). Now this term may
obviously also be obtained from an effective Hamil-
tonian defined by

_ Gy (5)y_a(i@d)y_,+O
‘/2 cs? ud V—-A V-A

G
o= VEVaaSe)v-alid)y -+
where the ellipsis denotes operators of higher dimen-
sions, typically involving derivative terms, which can in
principle be chosen so as to reproduce terms of higher
order in k*/M?3%, of the full amplitude given by Eq.
(3.21). This exercise already provides us with a simple

(3.22)
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example of an OPE. The product of two charged-current
operators is expanded into a series of local operators
whose contributions are weighted by effective coupling
constants, the Wilson coefficients.

A more formal basis for this procedure may be given
by considering the generating functional for Green func-
tions in the path-integral formalism. The part of the gen-
erating functional relevant for the present discussion is,
up to an overall normalizing factor, given by

lf d4x ‘CW>’

where Ly, is the Lagrangian density containing the ki-
netic terms of the W boson field and its interaction with
charged currents,

(3.23)

ZWNJ [dWTF][dW ™ ]exp

1
Lw==5 (3, W) =0, W) ("W =" W H)

2 + — g2 + — —
FMYWLW T (W W),
(3.24)

J;:Vpnp_yu(l_YS)n, p:(u’c>t)

n=(d,s.b), J,=0J,)" (3.25)

Since we are not interested in Green functions with ex-
ternal W lines, we have not introduced external source
terms for the W fields. In the present argument we will
furthermore choose the unitary gauge for the W field for
definiteness, although physical results do not depend on
this choice.

Introducing the operator

K, (x,9)= 8% (x =) gl P+My)—3,0,], (326)

we may, after discarding a total derivative in the W ki-
netic term, rewrite Eq. (3.23) as

Zy~ [ awaw-

X exp

i f d*x d'y W ()K= (x,3)W, ()

82 -
ti=— | dx T WD W 3.27
2V2 " " (3:27)
The inverse of K,,, denoted by A,,, and defined
through
f d'y K, (x,y)A™y,2)=g)hé(x—2z)  (3.28)
is just the W propagator in the unitary gauge,
A —f ak A, (k)e k=) 3.29
,uv(x’y)_ (2_77)4' ,U,V( )6 > ( . )
-1 k,k,
A/w(k):m g/w_M_%V . (330)
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Performing the Gaussian functional integration over
W= (x) in Eq. (3.27) explicitly, we simplify this expres-
sion to
e
—iJ ng;(x)A“”(x,y)J:(y)d“x d4y}.
(3.31)

This result implies a nonlocal action functional for the
quarks

Zy~exp

Sni= j d4x£km

8

where the first piece represents the quark kinetic terms
and the second their charged current interactions.

We can now formally expand this second, nonlocal
term in powers of 1/M 3}, to yield a series of local inter-
action operators of dimensions that increase with the
order in 1/M%,. To lowest order

dix d*y J,(x)A*(x,y)],; (y), (3.32)

%

AR (x )= S 6 (- y), (3.33)
My
and the second term in Eq. (3.32) becomes
2
. f d*x J-(x)J T H(x) (3.34)
SM3, » ’ ‘

corresponding to the usual effective charged-current in-
teraction Lagrangian

Gr _
Lingetr=——=J .7 "*(x)

V2

_ Gr V* v -~ ~,

- E pn p/n’(np)V—A(p n )V—A’
which contains, among other terms, the leading contri-
bution to Eq. (3.22).

The simple considerations we have presented so far
already illustrate several of the basic aspects of the gen-
eral approach.

(i) Formally, the procedure to approximate the inter-
action term in Eq. (3.32) by Eq. (3.34) is an example of
a short-distance OPE. The product of the local opera-
tors J ,(x) and J;(y), to be taken at short distances,
due to the convolution with the massive, short-range W
propagator A*”(x,y) [see Eq. (3.33)], is expanded into a
series of composite local operators, of which the leading
term is given by (3.34).

(ii) The dominant contributions in the short-distance
expansion come from the operators of lowest dimension.
In our case these are four-fermion operators of dimen-
sion six, whereas operators of higher dimensions can
usually be neglected in weak decays.

(iii) Note that, as far as the charged-current weak in-
teraction is concerned, no approximation is involved in
the nonlocal interaction term in Eq. (3.32), except that
we do not consider higher-order weak corrections or

(3.35)
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processes with external W-boson states. Correspond-
ingly, the OPE series into which the nonlocal interaction
is expanded is equivalent to the original theory when
considered to all orders in 1/M%,. In other words, the
full series will reproduce the complete Green functions
for the charged-current weak interactions of quarks. The
truncation of the operator series then yields a systematic
approximation scheme for low-energy processes, ne-
glecting contributions suppressed by powers of k%/M %,.
In this way one is able to construct low-energy effective
theories for weak decays.

(iv) In going from the full to the effective theory the
W boson is removed as an explicit, dynamical degree of
freedom. This step is often refered to as ‘“integrating
out” the W boson, a terminology which is very obvious
in the path-integral language discussed above. Alterna-
tively, one could use the canonical-operator formalism,
where the W field, instead of being integrated out, gets
“contracted out” through the application of Wick’s
theorem.

(v) The effective local four-fermion interaction terms
are a modern version of the classic Fermi theory of weak
interactions.

(vi) An intuitive interpretation of the OPE formalism
discussed so far is that, from the point of view of low-
energy dynamics, the effects of a short-range exchange
force mediated by a heavy boson approximately corre-
sponds to a point interaction.

(vii) The presentation we have given illustrates fur-
thermore that the approach of evaluating the relevant
Green functions (or amplitudes) directly in order to con-
struct the OPE, as in Eq. (3.21), actually gives the same
result as the more formal technique employing path in-
tegrals. While the latter can give some useful insight into
the general aspects of the method, the former is more
convenient for practical calculations, and we will make
use of it throughout the following discussion.

(viii) Up to now we have not talked about the strong
interactions among quarks, which of course have to be
taken into account. They are described by QCD and can
at short distances be calculated in perturbation theory,
due to the property of asymptotic freedom of QCD. The
corresponding gluon-exchange contributions constitute
quantum corrections to the simplified picture sketched
above, which can in this sense be viewed as a classical
approximation. We will describe the incorporation of
QCD corrections and related additional features they
imply for the OPE in the following section.

C. OPE and short-distance QCD effects

We will now take up the discussion of QCD quantum
corrections at short distances to the OPE for weak de-
cays. A crucial point for this enterprise is the property of
asymptotic freedom of QCD. This allows one to treat
the short-distance corrections, that is the contribution of
hard gluons at energies of the order O(My) down to
hadronic scales =1 GeV, in perturbation theory. In the
following, we will always restrict ourselves to the leading
dimension-six operators in the OPE and omit the negli-
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gible contributions of higher-dimensional operators.
Staying with the example of c—sud transitions, recall
that the amplitude without QCD was

. UF - _
Ag=—1i— V:svud(sici)va(ujdj)VfA’ (3.36)

v
where the summation over repeated color indices is un-
derstood. This result leads directly to the effective
Hamiltonian of Eq. (3.22), where the color indices have
been suppressed. If we now include QCD effects, the
effective Hamiltonian, constructed to reproduce the
low-energy approximation of the exact theory, is gener-
alized to

Heff:% ViVua(C101+C,0,), (3.37)
where

O1=(sic)y-aujdi)y-a, (3.38)

Or=(sic)v-a(ujdj)y—4. (3:39)

The essential features of this Hamiltonian are

(i) In addition to the original operator Q, (with index
2 for historical reasons) a new operator Q; with the
same flavor form but different color structure is gener-
ated. This is because a gluon linking the two color-
singlet weak-current lines can “mix’’ the color indices
due to the following relation for the color charges T

1

1
= 5zk51+2

2N

(ii) The Wilson coefficients C; and C,, the coupling
constants for the interaction terms Q; and Q,, become
calculable nontrivial functions of «;, My, and the
renormalization scale u. If QCD is neglected, they have
the trivial form C;=0 and C,=1, and Eq. (3.37) reduces
to Eq. (3.22).

In order to obtain the final result for the Hamiltonian
of Eq. (3.37), we have to calculate the coefficients Cj ;.
These are determined by the requirement that the am-
plitude A in the full theory be reproduced by the corre-
sponding amplitude in the effective theory [Eq. (3.37)],
thus

G
A== VEV(CHQ)+CAQa)). (34D)
If we calculate the amplitude A and, to the same order
in «;, the matrix elements of operators (Q),(Q,), we
can obtain C; and C, via Eq. (3.41). This procedure is
called matching the full theory onto the effective theory
[Eq. (3.37)].

Here we use the term “amplitude” in the meaning of
“amputated Green function.” Correspondingly, opera-
tor matrix elements are—within this perturbative
context—amputated Green functions with operator in-
sertion. In a diagrammatic language these amputated
Green functions are given by Feynman graphs, but with-
out gluonic self-energy corrections in external legs, like,
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FIG. 2. One-loop current-current (a)—(c), penguin (d), and box
(e) diagrams in the full theory. For pure QCD corrections as
considered in this section and, e.g., in Sec. VI, the y and z0
contributions in diagram (d) and diagram (e) are absent. Pos-
sible left-right or up-down reflected diagrams are not shown.

e.g., in Figs. 2 and 3, for the full and effective theory,
respectively. In the present example penguin diagrams
do not contribute due to the flavor structure of the
c—sud transition.

Evaluating the current-current diagrams of Figs. 2(a)—
2(c), we find, for the full amplitude A to O(«),

. Grp Ay qu
A=—i S VY | 142Ce 5o =58,
3 ag M3 a, M?
+ann—w;$2—3ﬁln_—pu£51} (3.42)

Here we have introduced the spinor amplitudes

X3
T

(d.1) (d.2)

FIG. 3. One-loop current-current (a)—(c) and penguin (d) dia-
grams contributing to the leading order anomalous dimensions
and matching conditions in the effective theory. The 4-vertex
“®®” denotes the insertion of a 4-fermion operator Q;. For
pure QCD corrections as considered in this section and, e.g., in
Sec. VI, the contributions from vy in diagrams (d.1) and (d.2)
are absent. Again, possible left-right or up-down reflected dia-
grams are not shown.
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S1=(si¢)y-alujdi)y-a, (3.43)

Sy=(sic)y-aludj)y-a, (3.44)
which are just the tree-level matrix elements of O and
0,. We have employed the Feynman gauge (&=1) and
taken all external quark lines massless and carrying off-
shell momentum p. Furthermore we have kept only
logarithmic corrections ~a,-log and discarded constant
contributions of order O(«;), which corresponds to the
leading logarithmic approximation. The necessary
renormalization of the quark fields in the MS scheme is
already incorporated into Eq. (3.42). It has removed a
1/e singularity in the first term of Eq. (3.42), which
therefore carries an explicit x4 dependence.

Under the same conditions, the unrenormalized
current-current matrix elements of the operators QO and
0, are found to be, from Figs. 3(a)-3(c),

1 2
(0= 1+2c,c4 ~+In “—p”sl
3 a (1 u?
+N4—<;+ln_—pz)51
2
a; 0
—3E —+In ?)Sz, (345)
1 2
()= 1+2C; 1= |~ +In ’LpQ”Sz
3 o, (1 ol u? <
*Nan st S
a, (1 w?
_35 g‘l‘ln? Sl- (346)

Again, the divergences in the first terms are eliminated
through field renormalization. However, in contrast to
the full amplitude, the resulting expressions are still di-
vergent. Therefore an additional multiplicative renor-
malization, refered to as operator renormalization, is
necessary:

(0) —
0"=2,0;.

Since Egs. (3.45) and (3.46) each involve both S, and S,
the renormalization constant is in this case a 2X2 matrix
Z. The relation between the unrenormalized ((Q;)®)
and the renormalized ({Q;)) amputated Green func-
tions is then

<Qi>(0):Zq_22ij<Qj>'
From Egs. (3.45), (3.46), and (3.15) in the MS scheme

(3.47)

(3.48)

3IN -3
Z=1+

3 N (3.49)

ins (
It follows that the renormalized matrix elements (Q;)

are given by
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a; u’
<Q]>: 1+2CFEIH__1)2 S]
3 a w a w
+Nﬂln (?)S1—3ﬂln (72‘ S5,
(3.50)
(1420, 2 Vs e 2 9 (2 )
(Q2)=|1+2CF )8ty gy In | 22
2
i
—34—1 ( - )Sl (3.51)

Inserting (Q;) into Eq. (3.41) and comparing with Eq.
(3.42), we derive
2 3 2

a M a M
C1=—3ﬁlnﬂ—g/, Cr=1+ 5 7= In M—XV (3.52)
We digress to add a comment on the renormalization of
the interaction terms in the effective theory. The com-
monly used convention is to introduce, via Eq. (3.48),
the renormalization constants Z;;, defined to absorb the
divergences of the operator matrix elements. It is, how-
ever, instructive to view this renormalization in a slightly
different, but of course equivalent, way, corresponding
to the standard counterterm method in perturbative
renormalization. Consider, as usual, the Hamiltonian of
the effective theory as the starting point, with fields and
coupling constants as bare quantities that are renormal-

ized according to (g=s,c,u,d)
q"=2"q, (3.53)
(3.54)

Then the Hamiltonian (Eq. 3.37) is essentially [omitting
the factor (G /V2)VEV 4]

C"0i(q'"=2:7;C,0=C,0,+(Z.Z

(0)—
C=Z5C;.

—0;)C;0;,

(3.55)
that is, it can be written in terms of renormalized cou-
plings and fields (C;Q;) plus counterterms. The argu-
ment ¢© in the first term in Eq. (3.55) indicates that the
interaction term Q, is composed of bare fields. Calculat-
ing the amplitude with the Hamiltonian (Eq. 3.55),
which includes the counterterms, we get the finite renor-
malized result

Z.75CA0)"=C(Q). (3.56)
Hence [compare to Eq. (3.48)]
c_—7—1
Zy=Z; . (3.57)

In short, it is sometimes useful to keep in mind that one
can think of the ‘“‘operator renormalization,” which
sounds like a new concept, in terms of the completely
equivalent, but customary, renormalization of the cou-
pling constants C;, as in any field theory.

Now that we have presented in quite some detail the
derivation of the Wilson coefficients in Eq. (3.52), we
shall discuss and interpret the most important aspects of
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the short-distance expansion for weak decays, which can
be studied very transparently on the explicit example we
have given.

(i) First of all we offer a further remark about the
phenomenon of operator mixing that we encountered in
our example. This occurs because gluonic corrections to
the matrix element of the original operator O, are not
just proportional to Q, itself, but involve the additional
structure Q; (and vice versa). Therefore, besides a O,
counterterm, a counterterm ~Q is needed to renormal-
ize this matrix element—the operators in question are
said to mix under renormalization. This, however, is just
an algebraic generalization of the usual concepts. In-
deed, if we introduce a different operator basis
0.=(0,=0)/2 (with coefficients C.=C,*=C,), the
renormalization becomes diagonal, and matrix elements
of O, and Q_ are renormalized multiplicatively. In this
new basis the OPE is given by

G
A=A HA = =i S VEV(C{Q)+C(Q-)),

(3.58)
where [S.=(S,%£5)7/2],

@ 2
1+2CFﬁln'u—2 S.

G
Ac=—i —V* V.
V2

3\ a, (M
+ N+3 yp n _—pz S+, (3.59)
and
2
(1120, Zm s
<Qi> F47T 2 +
3 oa) @2 3.60
+ N+ E n __]72 + ( . )
3 a, M%;V
C.=1+ N+3 7 IHF. (3.61)

(ii) In the calculation of the amplitude A in Eq. (3.42)
and of the matrix elements in Egs. (3.45) and (3.46), the
off-shell momentum p of the external quark legs repre-
sents an infrared regulator. The logarithmic infrared di-
vergence of the gluon correction diagrams [Figs. 2(a)-
2(c) and 3(a)-3(c)] as p>—0 is evident from Egs. (3.42),
(3.45), and (3.46). A similar observation can be made for
the My dependence of the full amplitude A. We see
that Eq. (3.42) is logarithmically divergent in the limit
M y—. This behavior is reflected in the ultraviolet di-
vergences (persisting after field renormalization) of the
matrix elements [Egs. (3.45), (3.46)] in the effective
theory, whose local interaction terms correspond to the
weak interactions in the infinite My, limit since they are
just the leading contribution of the 1/M, operator prod-
uct expansion. This also implies that the characteristic
logarithmic functional dependence of the leading O(«,)
corrections is closely related to the divergence structure
of the effective theory, that is, to the renormalization
constants Z;; .
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(iii) The most important feature of the OPE is that it
provides a factorization of short-distance (Wilson coef-
ficients) and long-distance (operator matrix elements)
contributions. This is clearly exhibited in our example.
The dependence of the amplitude [Eq. (3.42)] on p?,
representing the long-distance structure of A, is fully
contained in the matrix elements of the local operators
Q; [Egs. (3.50), (3.51)], whereas the Wilson coefficients
C; in Eq. (3.52) are free from this dependence. Essen-
tially, this factorization has the form [see Egs. (3.59)-
(3.61)]

M?>
1+a,G In —?)
2’

M2
14+a,G In _—pW2> =

2

x| 1+a,G In _“—p2> (3.62)

that is, amplitude=coefficient functionXoperator matrix
element. Thus the logarithm on the lhs is split according
to
My My w
In—%=In—F+In —.
-p

(3.63)

Since the logarithmic behavior results from the integra-
tion over some virtual loop momentum, we may,
roughly speaking, rewrite this as

2 k2 | 2 k2 _2 k2

-p W p

(3.64)

which illustrates that the coefficient contains the contri-
butions from large virtual momenta of the loop correc-
tion from scales u~1 GeV to My, whereas the low-
energy contributions are separated into the matrix
elements.

Of course, the latter cannot be calculated in perturba-
tion theory for transitions between physical meson
states. The point is that we have calculated the OPE for
unphysical off-shell quark external states only to extract
the Wilson coefficients, which we need to construct the
effective Hamiltonian of Eq. (3.37). For this purpose the
fact that we have considered an unphysical amplitude is
irrelevant, since the coefficient functions do not depend
on the external states, but rather represent the short-
distance structure of the theory. Once we have extracted
the coefficients and written down the effective Hamil-
tonian, the latter can be used, at least in principle, to
evaluate the physically interesting decay amplitudes by
means of some nonperturbative approach.

(iv) In interpreting the role of the scale u, we may
distinguish two different aspects. From the point of view
of the effective theory, u is just a renormalization scale
introduced in the process of renormalizing the effective
local interaction terms by the dimensional method. On
the other hand, from the point of view of the full theory,
M acts as the scale at which the full contribution is sepa-
rated into a low-energy and a high-energy part, as is
evident from the above discussion. For this reason u is
sometimes also called the factorization scale.
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(v) In our case the infrared structure of the amplitude
is characterized by the off-shell momentum p. In general
one could work with any other arbitrary momentum
configuration, on-shell or off-shell, with or without ex-
ternal quark mass, and with infrared divergences regu-
lated by off-shell momenta, quark masses, a fictitious
gluon mass, or by dimensional regularization. In the case
of off-shell momenta the amplitude is furthermore de-
pendent on the gauge parameter of the gluon field. All
these things belong to the infrared or long-distance
structure of the amplitude. Therefore the dependence
on these choices is the same for the full amplitude and
for the operator matrix elements and drops out in the
coefficient functions. To check that this is really the case
for a particular choice is of crucial importance for prac-
tical calculations. On the other hand, one may use this
freedom and choose the treatment of external lines ac-
cording to convenience or taste. However, sometimes it
may seem preferable to keep a slightly more inconve-
nient dependence on external masses and/or gluon
gauge in order to have a useful check that this depen-
dence does indeed cancel out for the Wilson coefficients
one is calculating.

D. The renormalization group
1. Basic concepts

So far we have computed the Wilson coefficient func-
tions [Eq. (3.61)] in ordinary perturbation theory. This,
however, is not sufficient for the problem at hand. The
appropriate scale at which to normalize the hadronic
matrix elements of local operators is a low-energy
scale—low compared to the weak scale My—of a few
GeV typically. In our example of charm decay
u=0(m,). For such a low scale u, the logarithm
In(M %/u?) multiplying «,(x) in Eq. (3.61) becomes
large. Although «,(u) by itself is a valid expansion pa-
rameter down to scales of O(1 GeV), this is no longer
true for the combination ay(u)In(M %/u?). In fact, for
our example [Eq. (3.61)] the first-order correction term,
for u=1 GeV, amounts to 65-130%, even though
a,/47m~4%. The reason for this breakdown of the naive
perturbative expansion lies ultimately in the appearance
of largely disparate scales My, and u in the problem at
hand.

This situation can be considerably improved by em-
ploying the method of the renormalization group (RG).
The renormalization group is the group of transforma-
tions between different choices of the renormalization
scale u. The renormalization-group equations describe
the change of renormalized quantities, Green functions,
and parameters, with w in a differential form. As we
shall illustrate below, solving these differential equations
allows one in the leading logarithmic approximation
(LLA), to sum up the terms [a,In(My/u)]" to all orders
n (n=0, ...,°) in perturbation theory. This leads to the
RG-improved perturbation theory. Going one step fur-
ther in this modified expansion, to the next-to-leading-
order logarithmic approximation (NLLA), the summa-
tion is extended to all terms «,[a,In(M /w)]", and so on.
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In this context it is useful to consider o, In(My,/w) with a
large logarithm In(My/w) as a quantity of O(1)
My
a,ln 7=O(1), w<My. (3.65)
Therefore the series of powers of a,In(M,/u) cannot be
truncated. Summed to all orders, it yields again a contri-
bution of O(1). Correspondingly, the next-to-leading-
order logarithms o [a,In(My/u)]" represent an O(e)
perturbative correction to the leading term.

The renormalization-group equation for the Wilson
coefficient functions follows from the fact that the un-
renormalized Wilson coefficients C (0)—Z C c’
=(C,,C,), are u independent. Defining the matrix of
anomalous dimensions y by

y=z—1dﬁmz (3.66)
and recalling that Z!’=Z"! ~we obtain the
renormalization-group equation

d - -
T Cm =7 (@) Cl). (3.67)

The solution of Eq. (3.67) may formally be written in
terms of a w evolution matrix U as

C(p)= U, My)C(My). (3.68)
From Eqgs. (3.49) and (3.66) we have to first order in «

0)_ Y —6/N 6 3.60
7(“5)_477_7 471_ 6 —6/N )’ (3.69)
or, in the diagonal basis,
N=1
— (0) 0)— 4+
'}’+(C1’S) 7T yi ’ Y+ 6 N N (370)

Note that, if we neglect QCD loop corrections com-
pletely, the couplings C are independent of u. The non-
trivial x4 dependence of C expressed in Eq. (3.67) is a
genuine quantum effect. It implies an anomalous scaling
behavior for the dimensionless coefficients, i.e., one that
is different from the classical theory. For this reason the
factor vy is called an anomalous (scale) dimension [com-
pare Eq. (3.67) with (d/d Inp)u"=nu" for an
n-dimensional u-dependent term w]. Using Eq. (3.13)
the RG equation (3.67) is easily solved with the result

s( W)
v(,“)
At ascale uy =My no large logarithms are present, and
C (M) can therefore be calculated in ordinary pertur-

bation theory. From Eq. (3.61) we have, to the order
needed for the LLA,

C.(My)=1. (3.72)

Equations (3.71) and (3.72) give the final result for the
coefficients in the LLA of the RG-improved perturba-
tion theory.

7+ /2ﬁ0

C.(My).

Co(p)= (3.71)
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At this point one should emphasize that the choice of
the high-energy matching scale wy=My, is of course
not unique. The only requirement is that the choice of
mw must not introduce large logarithms, In(M y/wy), in
order not to spoil the applicability of the usual pertur-
bation theory. Therefore uy should be of O(My,). The
logarithmic correction in Eq. (3.61) is then O(«,) and is
neglected in LLA. Then, still, C.(uy)=1 and

(0)
as( M W) Ve 12B0

7(:0)/230

a(Mw) [1+0(a,)].

ag(pm)

A change of uy around the value of My, causes an am-
biguity of O(«) in the coefficient. This ambiguity repre-
sents a theoretical uncertainty in the determination of
C.(w). In order to reduce it, it is necessary to go beyond
the leading order. At NLO the scale ambiguity is then
reduced from O(a;) to O(a?). We will come back to this
point below. Presently, we will set uy =My, but it is
important to keep the related uncertainty in mind. Tak-
ing into account the leading-order solution of the RG
equation (3.13) for the coupling, which can be expressed
in the form

(3.73)

as(p)

= T B G A T T G
we may rewrite Eq. (3.71) as
1 yf)/ZBo
Ca(p)= (3.75)

1+ Bol ay(p)Am]In( M,/ u?)

Equation (3.75) contains the logarithmic corrections
~aIn(M3,/u?) to all orders in a,. This shows very
clearly that the leading-logarithmic-order corrections
have been summed up to all orders in perturbation
theory by solving the RG equation. In particular, if we
again expand Eq. (3.75) in powers of «,, keeping the
first term only, we recover Eq. (3.61). This observation
demonstrates that the RG method allows one to obtain
solutions that go beyond the conventional perturbation
theory.

Before concluding this subsection, we would like to
introduce two more generalizations of the approach de-
veloped so far, which will appear in the general discus-
sion below.

2. Threshold effects in LLA

First we may generalize the renormalization-group
evolution from My, down to w~m, to include the
threshold effect of heavy quarks like b or ¢ as follows

Cp)= U9, 1) U5 (o) Cpayy),  (3.76)

which is valid for the LLA. In our example of the
c—sud transition, the top quark gives no contribution
at all. Being heavier (but comparable) in mass than the
W, it is simply removed from the theory along with the
W boson. In a first step the coefficients at the initial
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scale uy~ My, are evolved down to u,=~m, in an effec-
tive theory with five quark flavors (f=5). Then, again in
the spirit of the effective field-theory technique, for
scales below w,, , the bottom quark is also removed as an
explicit degree of freedom from the effective theory,
yielding a new effective theory with only four “active”
quark flavors left. The matching corrections between
both theories can be calculated in ordinary perturbation
theory at the scale w,;, since, due to u,~m,, no large
logarithms can occur in this procedure. For the same
reason matching corrections of O(«,) can be neglected
in LLA, and the coefficients at u; , C(u;), simply serve
as the initial values for the RG evolution in the four-
quark theory down to u~m_. In addition, continuity of
the running coupling across the threshold g, is imposed
by the requirement

ay p=a(pp A=y o5y , AP, (3.77)

which defines different QCD scales AY) for each effec-
tive theory.

Neglecting the b threshold, as we did before [Eq.
(3.68)], one may merely perform the full evolution from
Mw to w in an effective four-flavor theory. It turns out
that in some cases the difference of these two ap-
proaches is negligible.

We would like to add a comment on this effective-
field-theory technique. At first sight the idea to “remove
by hand” heavy degrees of freedom may look somewhat
artificial. However, it appears quite natural when not
viewed from the evolution from high towards low ener-
gies but vice versa (which actually corresponds to the
historical way). Suppose only the “light” quarks u, d, s,
and ¢ were known. Then, in the attempt to formulate a
theory of their weak interactions, one would be led to a
generalized Fermi theory with four quark coupling con-
stants to be determined somehow. Of course, we are in
the lucky position to know the underlying theory in the
form of the standard model. Therefore we can actually
derive the coupling constants of the low-energy effective
theory from “first principles.” This is exactly what is
achieved technically by going through a series of effec-
tive theories, removing heavy degrees of freedom suc-
cessively by means of a step-by-step procedure.

3. Penguin operators

A second, very important issue is the generation of
QCD penguin operators (Vainshtein et al., 1977). Con-
sider, for example, the local operator
(siut;)v-a(ud;)y_ 4, which is directly induced by
W-boson exchange. In this case, additional QCD correc-
tion diagrams, the penguin diagrams, Figs. 3(d.1) and
3(d.2), with a gluon, contribute, and as a consequence
six operators are involved in the mixing under renormal-
ization instead of two. These are

0= (S_iuj)v—A(ﬁjdi)v—A >
Or=(Siu)y-a(uidj)y 4,

0;3= (§idi)V—AEq(éjqj)V—A )
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04= (gidj)VfAEq(éjqi)VfA )
0Os= (gidi)vaEq(é/CIj)V+A >

Q(’:(Eidj)V—AEq(éjqi)V-%—A- (3.78)

The sum over g runs over all quark flavors that exist in
the effective theory in question. The operators Q; and
0O, are just the ones we have encountered in Sec. III.C,
but with the ¢ quark replaced by u. This modified flavor
structure gives rise to the gluon penguin-type diagrams
shown in Fig. 3(d). Since the gluon coupling is of course
flavor conserving, it is clear that penguins cannot be gen-
erated from the operator (sc)y_,(ud)y_,. The pen-
guin graphs induce the new local interaction vertices
0s3,...,0¢, which have the same quantum numbers.
Their structure is easily understood. The flavor content
is determined by the (sd) _, current in the upper part
and by a X,(gq)y vector current due to the gluon cou-
pling in the lower part. For convenience this vector
structure is decomposed into a (V—A) and a (V+A)
part. For each of these, two different color forms arise
due to the color structure of the exchanged gluon [see
Eq. (3.40)]. Together this yields the four operators
0s3,...,0¢. For all operators Q,...,Q¢ all possible QCD
corrections (that is all amputated Green functions with
insertion of Q;) of the current-current [Figs. 3(a)-3(c)]
as well as of the penguin type [Figs. 3(d.1) and 3(d.2)]
have to be evaluated. In this process no new operators
are generated, so that Q,...,Q4 form a complete set.
They “‘close under renormalization.” In analogy to the
case of Sec. III.C the divergent parts of these Green
functions determine, after field renormalization, the op-
erator renormalization constants, which in the present
case form a 6X6 matrix. The calculation of the corre-
sponding anomalous-dimension matrix and the
renormalization-group analysis then proceeds in the
usual way. We will see that the inclusion of higher-order
electroweak interactions requires the introduction of
still more operators.

E. Summary of basic formalism

We think that, after this rather detailed discussion of
the methods required for the short-distance calculations
in weak decays, it is useful to give a concise summary of
the material covered so far. At the same time this may
serve as an outline of the necessary procedure for prac-
tical calculations. Furthermore, it will also provide a
starting point for the extension of the formalism from
the LLA considered until now to the NLLA to be pre-
sented in the next subsection.

Ultimately our goal is the evaluation of weak-decay
amplitudes involving hadrons in the framework of a low-
energy effective theory of the form

e = 2V e O (1)) E )
eff, V3 CKM M M)

The procedure for this calculation can be divided into
the following three steps.
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Step 1: Perturbation Theory. Calculation of Wilson co-
efficients C(uy) at wy=~ My to the desired order in a; .
Since logarithms of the form In(uy/Myy,) are not large,
this can be performed in ordinary perturbation theory. It
amounts to matching the full theory onto a five-quark
effective theory.

Step 2: RG-Improved Perturbation Theory. (i) Calcu-
lation of the anomalous dimensions of the operators. (ii)
Solution of the renormalization-group equation for
C(w). (iii) Evolution of the coefficients from wy down
to the appropriate low-energy scale u

Cp)=U(po i) C ().

Step 3: Nonperturbative Regime. Calculation of had-
ronic matrix elements (Q (w)), normalized at the appro-
priate low-energy scale u, by means of some nonpertur-
bative method.

Important issues in this procedure are

(i) The OPE achieves a factorization of short- and
long-distance contributions. Correspondingly, in order
to disentangle the short-distance from the long-distance
part and to extract C(uy) in actual calculations, a
proper matching of the full onto the effective theory has
to be performed. Similar comments apply to the match-
ing of an effective theory with f quark flavors to a theory
with (f-1) flavors during the RG evolution to lower
scales. Furthermore, factorization implies that the u de-
pendence and also the dependence on the renormaliza-
tion scheme, which appears beyond the leading order,
cancel between C; and (Q;). Since the top quark is in-
tegrated out along with the W, the coefficients C(uy) in
general also contain the full dependence on the top-
quark mass m,.

(ii) A summation of large logarithms by means of the
RG method is necessary. More specifically, in the nth
order of RG-improved perturbation theory the terms of
the form

MW)"
n 1 A

are summed to all orders in k (k=0,1,2,...). This ap-
proach is justified as long as «,(u) is small enough,
which requires that u not be too low, typically not less
than 1 GeV.

F. Wilson coefficients beyond leading order

1. The renormalization-group formalism

We are now going to extend the renormalization-
group formalism for the coefficient functions to the
next-to-leading-order level. Then we shall discuss impor-
tant aspects of the resulting formulas, in particular the
scale and scheme dependences and their cancellation.

As an example, we consider the calculation for the
AS=1 effective Hamiltonian for nonleptonic decays,
which, without QCD effects and for low energy, is given
by
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., Gp _ _
HaE = — VEVaGu)y_a(idd)y— 4.

- (3.79)

At higher energies of course the charm, bottom, and top
quark also have to be taken into account. The Feynman
diagrams contributing to O(«,) corrections to this
Hamiltonian are shown in Figs. 2 and 3. Including
current-current as well as penguin-type corrections, the
relevant operator basis consists of the six operators in
Eq. (3.78).

On the one hand, this particular case is very important
by itself, since it provides the theoretical basis for a large
variety of different decay modes. On the other hand, we
keep the discussion fairly general to exhibit all the im-
portant features of a typical case. In addition, the central
formulas of this subsection will be used at several places
later on, although at times they will be extended or
modified to match the specific cases in question. In Secs.
IV-XV of this report we will give a more detailed dis-
cussion of the Hamiltonians relevant for various decays.
Here, we will concentrate on the presentation of the
OPE and renormalization-group formalism.

The effective Hamiltonian for nonleptonic decays
may be written in general as

G Gr - >
He=— 2 CilwQiw=—- 0w C(w),  (380)
where the index i runs over all contributing operators, in
our example, Q1,...,Q¢ of Eq. (3.78). It is straightfor-
ward to apply H to D- and B-meson decays as well by
changing the quark flavors appropriately. For the time
being we omit CKM parameters, which can be rein-
serted later on. u is some low-energy scale of O(1 GeV),
O(m,), and O(m,) for K-, D-, and B-meson decays,
respectively. The argument w of the operators Q;(u)
means that their matrix elements are to be normalized at
scale u.

The Wilson coefficient functions are given by

Cw)= U, ow) Cl ). (3.81)

The coefficients at the scale uy=0O(My) can be evalu-
ated in perturbation theory. The evolution matrix U
then includes the RG-improved perturbative contribu-
tions from the scale uy down to w.

In the first step we determine C(uy,) from a compari-
son of the amputated Green function with appropriate
external lines in the full theory with the corresponding
amplitude in the effective theory. At NLO we have to
calculate to O(«,), including nonlogarithmic, constant
terms. The full amplitude from the current-current and
penguin-type diagrams in Fig. 2 is finite after field renor-
malization and can be written as

420 gr| G, BB 2a)
Va 4ar
Here S denotes the tree-level matrix elements of the

operators Q. In the effective theory Eq. (3.80) the
current-current and penguin corrections of Fig. 3 have to

(3.82)
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be calculated for all the operators Q,. In this case, be-
sides the field renormalization, a renormalization of op-
erators is necessary

ZX0)"=2(0), (3.83)

where the matrix Z absorbs those divergences of the
Green functions with operator Q insertion that are not
removed by the field renormalization. The renormalized
matrix elements of the operators can then, to O(«;), be
written as

(Q(Mw)>=(1+ asi':W) r)§, (3.84)

and the amplitude in the effective theory to the same
order becomes

Gl auw) ) -
Aeff—z S (1"‘? r C(,LLw) (385)
Equating Egs. (3.82) and (3.85) we obtain

- - oy - >

Cluw)=A0+ QLWW) (A TZO). (3.86)

In general AD in Eq. (3.82) involves logarithms
In(M3,/—p?), where p denotes some global external
momentum for the amplitudes in Fig. 2. On the other
hand, the matrix r in Eq. (3.84), characterizing the ra-
diative corrections to (Q(uy)), includes In(-p*/u ).
As we have seen in Sec. III.C, these logarithms combine
to In(M %/u?,) in the Wilson coefficient of Eq. (3.86).
For puyw=My this logarithm vanishes altogether. For
ww=O(My) the expression In(M3,/u%) is a “small
logarithm,” and the correction ~a,In(M %,/ 1%/, which
could be neglected in LLA, has to be kept in the pertur-
bative calculation at NLO together with constant pieces
of order O(«).

In the second step, the renormalization-group equa-
tion for C

d - -
ding C(p)=y"(g)C(w) (3.87)

has to be solved with the boundary condition Eq. (3.86).
The solution is written with the help of the U matrix as
in Eq. (3.81), where U(u,uy) obeys the same equation
as C(u) in Eq. (3.87). The general solution is easily writ-
ten down iteratively

_ gy (gy)
U(“””)‘”L(m 81 Blgy)

8(n) 81 ?’T(gl) YT(gz)
d d
+fg(m) gljg(m) &2 B(g1) B(g2)
: (3.88)

which, using dg/d Inu=8(g), is readily seen to solve the
renormalization-group equation

d
d Inp

R

U(pu,m)=v"(g)U(u,m). (3.89)
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The series in Eq. (3.88) can be more compactly ex-
pressed by introducing the notion of g ordering
g(w) yi(g")
U(p,m)=T,,ex f dg' ———,
(M ) gXP g(m) & ﬁ(g )
where in the case g(u)>g(m) the g-ordering operator
T, is defined through

(3.90)

Tf(g1) f(gn)—E O(g;,~ 8,

X0O(8:,—8i,) O —8i)
Xfgi) - fg;) (3.91)

and brings about an ordering of the factors f(g;) such
that the coupling constants increase from right to left.
The sum in Eq. (3.91) runs over all permutations
{itseensint of {1,2,...,n}. The T, ordering is necessary
since, in general, the anomalous-dimension matrices at
different couplings do not commute beyond the leading
order, i'e" [Y(gl)’Y(gZ)] #0.

At next to leading order we have to keep the first two
terms in the perturbative expansions for B(g) [see Eq.

(3.11)] and ¥(g),
2
477')

To this order the evolution matrix U(u,m) is given by
Buras et al. (1992)

Y=y <t D

o (3.92)

ay(pm) a,(m)

U(p,m)=| 1+
(3.93)

U is the evolution matrix in LLA and the matrix J
expresses the next-to-leading order corrections to this
evolution. We have

5008,
U(O)(,u,m)=V( a(m) ) v, (3.94)
as(p) b
where V diagonalizes HOT,
=V 1507y, (3.95)

and 7(0) is the vector containing the diagonal elements
of the diagonal matrix ys)o) If we define

G=V"1,DTy (3.96)
and a matrix H whose elements are

H=5,v" f—lg]z #&ﬁm (3.97)
the matrix J is given by

J=VHV L (3.98)

The fact that Eq. (3.93) is indeed a solution of the RG
equation (3.89) to the order considered is straightfor-
wardly verified by differentiation with respect to Inpu.
Combining the initial values of Eq. (3.86) with the evo-
lution matrix of Eq. (3.93), we obtain
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as(ﬂ)
4

é(m=(1+ J)U“”(;L,MW)

b S(ILLW)
x(A<°>+—47T [AD—(rT+1)AO]).

(3.99)

Using Eq. (3.99) we can calculate, for example, the co-
efficients at a scale u=u,=0(m,) in an effective five-
flavor theory, f=5. If we have to evolve the coefficients
to still lower values, we would like to formulate a new
effective theory for u<u;, , where now the b quark is also
removed as an explicit degree of freedom. To calculate
the coefficients in this new four-flavor theory at the scale
My, we have to determine the matching corrections at
this scale.

We follow the same principles as in the case of inte-
grating out the W boson and require

(Qm)TClm)=(Qp1(m)TCpy(m)  (3.100)

in the general case of a change from an f-flavor to an
(f-1)-flavor theory at a scale m. The “full amplitude” on
the lhs, which is now in an f-flavor effective theory, is
expanded into matrix elements of the new (f—1)-flavor
theory, multiplied by new Wilson coefficients C -1
From Eq. (3.84), determining the matrix elements of op-
erators to O(«y), one finds

<éf<m>>=(1 4( " 5r)<Qf W(m)), (3101
where
Sr=rf)— =1, (3.102)

In Eq. (3.102) we have made explicit the dependence of
the matrix r on the number of quark flavors, which en-
ters in our example via the penguin contributions. From
Egs. (3.100) and (3.101) we find

Cy_y(m)=M(m)C[m) (3.103)
with
s(m)
M(m)=1+a4:1 o (3.104)

The general renormalization-group matrix U in Eq.
(3.93), now evaluated for (f—1) flavors, can be used to
evolve C;_4(m) to lower values of the renormalization
scale. It is clear that no large logarithms can appear in
Eq. (3.104) and that therefore the matching corrections,
expressed in the matrix M(m), can be computed in
usual perturbation theory. We note that this type of
matching correction enters in a nontrivial way for the
first time at the NLO level. In the LLA M=1, and one
can simply omit the b flavor components in the penguin
operators when crossing the b threshold.

We also remark that the correction matrix M intro-
duces a small discontinuity of the coefficients, regarded
as functions of u, at the matching scale m. This is, how-
ever, not surprising. In any case the C(w) are not physi-
cal quantities and their discontinuity precisely cancels
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the effect of removing the heavy-quark flavor from the
operators, which evidently is a ‘“‘discontinuous” step.
Hence physical amplitudes are not affected and indeed
the behavior of C at the matching scale ensures that the
same physical result will be obtained whether we choose
to calculate in the f-flavor or in the (f-1)-flavor theory
for scales near the matching scale m.

To conclude, we shall write down what the typical fi-
nal result for the coefficient functions at u~1 GeV, ap-
propriate for K decays, looks like if we combine all the
contributions discussed above. Then we can write

Cp)=Us (o) M () U p s pip) M( i)

X Us( o) C (), (3.105)

where Uy is the evolution matrix for f active flavors. In
the following discussion we will not always include the
flavor thresholds when writing the expression for the
RG evolution. It is clear that they can be added in a
straightforward fashion.

2. The calculation of the anomalous dimensions

The matrix of anomalous dimensions is the most im-
portant ingredient for the renormalization-group calcu-
lation of the Wilson coefficient functions. In the follow-
ing we will summarize the essential steps of its
calculation.

Recall that the evaluation of the amputated Green
functions with insertion of the operators Q gives the
relation

(0)V=Z_27(0)=ZcK0), (3.106)

where (é)“”,(Q) denote the unrenormalized and
renormalized Green functions, respectively. Z, is the
quark-field renormalization constant, and Z is the renor-
malization constant matrix of the operators Q. The
anomalous dimensions are given by

—7-1
vg)=Z"" 5 g (3.107)
In the MS (or MS) scheme the renormalization con-
stants are chosen to absorb the pure pole divergences
1/eX (D=4-2¢), but no finite parts. Z can then be ex-

panded in inverse powers of ¢ as follows

o1
Z=1+, = Zi(8)- (3.108)
k=1
Using the expression for the B function Eq. (3.6) valid

for arbitrary &, we derive the useful formula (Floratos
etal., 1977)

9Z1(8) 0Z1(ay)
=—292 =— et id
y(g)=—2g e 2a; P (3.109)
Similar to Eq. (3.108), we expand
o1
Zq:1+k§=:1 = Zy4(8): (3.110)
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©

1
ZGF=1+kZ1 = Zari(8)- (3.111)
From the calculation of the unrenormalized Green func-
tions Eq. (3.106) we immediately obtain Z5p. Then
what we need to compute y(g) is Z;(g) Eq. (3.109).
From Egs. (3.106), (3.108), (3.110), and (3.111) we find

Zl=2Zq’1+ZGF’1. (3112)

At NLO we have, from the 1/¢ poles of the unrenormal-
ized Green functions,

aS 2

4o

The corresponding expression for the well-known factor
Z,1 has been quoted in Eq. (3.15). Using Egs. (3.15),
(3 109) (3.112), and (3.113), we finally obtain for the
one- and two-loop anomalous-dimension matrices Y
and /" in Eq. (3.92),

75]0)— —2[2a,6;;+(b1);ls

(3.113)

aS
ZGr1=by E”Lbz

(3.114)
Y)=—4[2a,8,+(by)]. (3.115)

Equations (3.114) and (3.115) may be used as recipes to
immediately extract the anomalous dimensions from the
divergent parts of the unrenormalized Green functions.

3. Renormalization-scheme dependence

A further issue, which becomes important at next to
leading order, is the dependence of unphysical quanti-
ties, like the Wilson coefficients and the anomalous di-
mensions, on the choice of the renormalization scheme.
This scheme dependence arises because the renormal-
ization prescription involves an arbitrariness in the finite
parts to be subtracted together with the ultraviolet sin-
gularities. Two different schemes are then related by a
finite renormalization. Considering the quantities that
we encountered in Sec. IIL.F.1, the following are inde-
pendent of the renormalization scheme

Bo. B, ¥, AO, AD Ty (0)TC,
(3.116)

whereas
r, YV, I, C, (0) (3.117)

are scheme dependent.

In the framework of dimensional regularization, one
example of how such a scheme dependence can occur is
the treatment of y; in D dimensions. Possible choices
are the ‘“naive dimensional regularization” (NDR)
scheme with 7y taken to be anticommuting or the
’t Hooft-Veltman (HV) scheme ('t Hooft and Veltman,
1972b; Breitenlohner and Maison, 1977) with nonanti-
commuting 5. Another example is the use of operators
in a color singlet or nonsinglet form, such as

Qr=(su;)y—alu;d
sz(gidj)va(ﬁju

Jv-a Or

Dv-as (3.118)
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where i,j are color indices. In D=4 dimensions these
operators are equivalent since they are related by a Fi-
erz transformation. In the NDR scheme, however, these
two choices yield different results for r, 'V, and J and
thus constitute two different schemes that are related by
a nontrivial finite renormalization. On the other hand,
both choices give the same r, y(l), and J if the HV
scheme is employed.

Let us now discuss the question of renormalization-
scheme dependences in explicit terms in order to obtain
an overview on how the scheme dependences arise, how
various quantities transform under a change of the
renormalization scheme, and how the cancellation of
scheme dependences is guaranteed for physically rel-
evant quantities.

First of all, it is clear that the product

(O(w)"C(w), (3.119)

representing the full amplitude, is independent of the
renormalization scheme chosen. This is simply due to
the fact that it is precisely the factorization of the ampli-
tude into Wilson coefficients and matrix elements of op-
erators by means of the operator product expansion that
introduces the scheme dependence of C and (Q). In
other words, the scheme dependence of C and (Q)
represents the arbitrariness one has in splitting the full
amplitude into coefficients and matrix elements, and the
scheme independence of the combined product Eq.
(3.119) is manifest in the construction of the operator
product expansion.

More explicitly, these quantities are in different
schemes (primed and unprimed), related by

(0)'=

where s is a constant matrix. Equation (3.120) repre-
sents a finite renormalization of C and (Q). From Equa-
tion (3.84) we immediately obtain

1+ 5610y Cr=l1-Zg7|¢ 3.120
47TS <Q> - 47TS 5 ( )

r'=r+s. (3.121)

Furthermore, from

() C()=(O () U(p,My)C(My) (3.122)

we have

) ag(p)
U'(u,My)={1~- n ST)U(M,MW)
v
aY(MW) T
x| 1+ T st (3123)
A comparison with Eq. (3.93) yields
J'=J—sT. (3.124)

The renormalization-constant matrix in the primed
scheme Z' follows from Egs. (3.120) and (3.106)

z'zz(l—ﬁs). (3.125)

dar

Recalling the definition of the matrix of anomalous di-
mensions, Egs. (3.107) and (3.92), we derive
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(0)r (0)

YO =0 =W (5 4 O]+28,s.  (3.126)

With these general formulas at hand it is straightforward
to clarify the cancellation of scheme dependences in all
particular cases. Alternatively, they may be used to
transform scheme-dependent quantities from one
scheme to another, if desired, or to check the compat-
ibility of results obtained in different schemes.

In particular, from Egs. (3.121) and (3.124) we imme-
diately verify the scheme independence of the matrix
rT+J. This means that, in the expression for C in Eq.
(3.99), the factor on the right-hand side of U”, related
to the “upper end” of the evolution, is independent of
the renormalization scheme, as it must be. The same is
true for U”). On the other hand, C still depends on the
renormalization scheme through the matrix J to the left
of UY). As is evident from Eq. (3.120), this dependence
is compensated for by the corresponding scheme depen-
dence of the matrix elements of operators, so that a
physically meaningful result for the decay amplitudes is
obtained. To ensure a proper cancellation of the scheme
dependence, the matrix elements have to be evaluated
in the same scheme (renormalization, s, form of opera-
tors) as the coefficient functions, which is a nontrivial
task for the necessary nonperturbative computations. In
other words, beyond the leading order the matching be-
tween short- and long-distance contributions has to be
performed properly not only with respect to the scale w,
but also with respect to the renormalization scheme em-
ployed.

4. Discussion

We will now specialize the presentation of the general
formalism to the case of a single operator (that is with-
out mixing). This situation is, e.g., relevant for the op-
erators O, and Q_ with four different quark flavors,
which we encountered in Sec. III.C. The resulting sim-
plifications are useful in order to display some more de-
tails of the structure of the calculation and to discuss the
most salient features of the NLO analysis in a transpar-
ent way.

In the case where only one single operator contrib-
utes, the amplitude in the full theory (dynamical W bo-
son) may be written as [see Eq. (3.82)]

G a O ME
A=72F 1+ si’:TW) —YTIH_—pr-I-A(l) S,

(3.127)

where we have made the logarithmic dependence on the
W mass explicit. In the effective theory the amplitude
reads



1146 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

Gr
Aett="r Cluw)(Q(uw))

G :
- C(w)(ﬁ%’?)

V2
20

X +r

2

In ——+yg—Indnr S. (3.128)
Mw

The divergent pole term 1/e has been subtracted mini-
mally. A comparison of Egs. (3.127) and (3.128) yields
the Wilson coefficient

(0)
Cluw) =1+ 20 |2
2
x| In — + yp—Indar | + B, (3.129)
Mw
where
B=AM -}, (3.130)

In the leading logarithmic approximation we had simply
C(pw)=1. By contrast, at NLO the O(e«,) correction
also has to be taken into account. This correction term
exhibits the following new features

(i) The expression yz—Indar, which is characteristic to
dimensional regularization, appears and is proportional
to Y.

(i) A constant term B is present, which depends on
the factorization scheme chosen.

(iii) An explicit logarithmic dependence on the match-
ing scale uy shows up.

We discuss these points one by one.

First, the term vyg—Indr is characteristic for the MS
scheme. It can be eliminated by going from the MS to
the MS scheme. This issue is well known in the litera-
ture. However, we find it useful to briefly repeat the
definition of the MS scheme in the present context, since
this is an important point for NLO analyses.

Consider the RG solution for the coefficient

Orp

o a’s(:“) a’s(:U“W) 7 0
W aw
(0)
o H%iﬁ;w) _72

2
In —2W+ ve—Ind
Kw

X

+B—]“. (3.131)

This represents the solution for the MS scheme. There-
fore in Eq. (3.131) a; = a; 5. The redefinition of a; s
through

a‘m) (3.132)

oy Ms= as,M_S( 1+ Bo(yg—1Indm) .

is a finite renormalization of the coupling, which defines
the MS scheme. Since
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[atg s ew)]?" 2P0
. (0)
=[a, 5s(puw)]” o
(0) .
Y as,MS(,U«W)
X| 14+ 5 (yp—Inda) =520 ) (3.133)

we see that this transformation eliminates, to the order
considered, the yz—Indm term in Eq. (3.131). At the
lower end of the evolution the same redefinition yields a
factor

(0)

A MS
1= 5~ (yp~Indm) 2.5 1)

4a

which removes the corresponding factor from the matrix
element [see Eq. (3.128)]

" ()
(O(w))ms=| 1+ -5 (vg—Ind ) a"l‘\f—i’u

(3.134)

X(Q(1))¥s - (3.135)

At the next-to-leading-logarithmic-order level we are
working at, the transformation [Eq. (3.132)] is equiva-
lent to a redefinition of the scale A according to

Ajg=4me "EAYs, (3.136)

as one can verify with the help of Eq. (3.19). In practice,
one can just drop the (yg-In4m) terms in Eq. (3.131).
Then «(n) and A correspond to the MS scheme.
Throughout the present report it is always understood

that the transformation to MS has been performed.
Then

g
a () | a(pw)|” 0
Clu)=| 1+ = J) "
2
aﬁ'
|14 Blew) —y—ln—2W+B—JD.
4 2 M

(3.137)

Second, from the issue of the MS-MS transformation
or, more generally, an arbitrary redefinition of a, (or A),
one should distinguish the renormalization-scheme de-
pendence due to the ambiguity in the renormalization of
the operator. This ambiguity is called “factorization
scheme dependence,” and is the scheme dependence we
have discussed in Sec. IIL.LF.3. A change in the factoriza-
tion scheme transforms ))(1), B, and J as

yV'=yM 1285, B'=B—s, J'=J-s, (3.138)

where s is a constant number. This follows from the for-
mulae in Sec. III.LF.3 and the definition of B in Eq.
(3.130). Note that, in the case of a single operator, the
relation between ) and J simplifies to

1 (B

J=— 2L Lo <1>)_
230(307 4

Obviously the scheme dependence cancels in the differ-
ence B—J in Eq. (3.137).
Third, due to the explicit uy dependence in the O(«y)

(3.139)
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correction term, the coefficient function is, to the order
considered, independent of the precise value of the
matching scale uy , as it must be. Indeed

_ 2
d gy (M =0(@), (3.140)
since
_d aS(IL'LW)2 3
Doy, W ==2B0 — - —+0(a)).  (3.141)

In the same way one can also convince oneself that
the coefficient function is independent of the heavy-
quark threshold scales, up to terms of the neglected or-
der. Of course the dependence on the low energy scale
remains and has to be matched with the corresponding
dependence of the operator matrix element. All the
points we have mentioned here also apply in an analo-
gous manner to the case with operator mixing, only the
algebra is slightly more complicated. We would like to
stress once again that it is only at the NLO level that
these features enter the analysis in a nontrivial way, as
should be evident from the presentation we have given
above.

5. Evanescent operators

Finally, we would like to mention the so called eva-
nescent operators. These are operators which exist in
D #4 dimensions but vanish in D=4. It has been stressed
by Buras and Weisz (1990) that a correct calculation of
two-loop anomalous dimensions requires a proper treat-
ment of these operators. This discussion has been ex-
tended by Dugan and Grinstein (1991) and further gen-
eralized by Herrlich and Nierste (1995b). In view of the
rather technical nature of this aspect, we refer the inter-
ested reader to the papers referenced above.

IV. GUIDE TO EFFECTIVE HAMILTONIANS

In order to facilitate the presentation of effective
Hamiltonians in weak decays we give a complete com-
pilation of the relevant operators below. Divided into six
classes, these operators play a dominant role in the phe-
nomenology of weak decays. The six classes are given as
follows

Current-Current Operators [Fig. 4(a)].

Q1:(5iuj)va(b-¢jdi)va’ Or=(su)y_a(ud)y_4.-

4.1)
QCD Penguin Operators [Fig. 4(D)].
Q3=<§d>H§ (@@)v-a,
Qu=(idy)v-n2 (G)v-1- (4.2)
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u s
w
d u
d s
w
'u,c,t u,c,t
V,Z

q q

© (d)

FIG. 4. Typical diagrams in the full theory from which the
operators in Eqgs. (4.1)—(4.10) originate. The cross in diagram
(d) means a mass insertion. It indicates that magnetic penguins
originate from the mass term on the external line in the usual
QCD or QED penguin diagrams.

Q5=<s‘d>H§ (Gq)vsa>

Q6=(s1d,->v_A§ (Gig)v+a- (4.3)

Electroweak Penguin Operators [Fig. 4(c)].

3
Q7=5 Gd)v-a2 ey(d9)v+as

3 _
Q8=z(sidj)V—A§ eq(qui)V+Aa (4.4)

3
Qs=35 (d)v-a2 ey(d9)v-4.

3 _
Q10=§ (Sidj)v—A; e(qiqi)v-a- (4.5)

Magnetic Penguin Operators [Fig. 4(d)].

e _
Q77:W ’/nb‘s‘io-”gv(1 + 75)biFMV ’

g =y 14 a a
Osc=g 2 mpsio” (1+y5)T5b,G,,, . (4.6)
AS=2 and AB=2 Operators [Fig. 4(e)].
Q(AS=2)=(sd)y-a(sd)y-4,

Q(AB=2)=(bd)y_4(bd)y_4. (4.7)
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TABLE III. Compilation of various processes, equation number of the corresponding effective Hamiltonians, and contributing

operators.

Process Cf. Equation Contributing operators

AF=1, F=B,C,S current-current (5.4)-(5.6) 0,0,

AF=1 pure QCD (6.1),(6.32) 01,....0¢

AF=1 QCD and electroweak (7.1),(7.37) 01,.-,01

K —mlete” (8.1) Q1,.-,06,07v,074

B_)Xj’y (91) le"'9Q67Q7va8G
B—Xe'te” (10.1) 01,.,06,97,,0586:Q9v,Q 104

K*'—atvo, (K, —u*n)sp, K — v,

B—X, vo, B—I"1" (11.57)
K°-K° mixing (12.1)
B°-B° mixing (13.1)

(11.4),(11.44),(11.56)

Q(vv),Q(pp)

Q(AS=2)
Q(AB=2)

Semileptonic Operators [Fig. 4(f)].
OQrv=(sd)y-alee)y, Qra=(sd)y-alee)y, (4.8)

Q‘)V:(b_S)V—A(ée)Va Q]OA:(b_S)V—A(e_e)A >
4.9)

Q(vv)=(sd)y_s(vv)y_4,
O(pup)=6d)y_s(mp)y—a, (4~1O)

where indices in color-singlet currents have been sup-
pressed for simplicity. Here V= A refers to the Lorentz
structure 7y, (1% ys).

For illustrative purposes, typical diagrams in the full
theory from which the operators of Egs. (4.1)-(4.10)
originate are shown in Fig. 4.

The operators listed above will enter this review in a
systematic fashion. We begin in Sec. V with the presen-
tation of the effective Hamiltonians involving the
current-current operators Q; and Q, only. These effec-
tive Hamiltonians are given in Egs. (5.4), (5.5), and (5.6)
for AB=1, AC=1, and AS=1 nonleptonic decays, respec-
tively.

In Sec. VI we will generalize the Hamiltonians (5.4)
and (5.6) to include the QCD penguin operators
05;-0Q¢. The corresponding expressions are given in
Egs. (6.32) and (6.1), respectively. This generalization
does not affect the Wilson coefficients of O, and Q,.

Next in Sec. VII the AS=1 and AB=1 Hamiltonians of
Sec. VI will be generalized to include the electroweak
penguin operators Q;— Q1,. These generalized Hamilto-
nians are given in Eqs. (7.1) and (7.37) for AS=1 and
A B=1 nonleptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion
of QED effects. Consequently, the coefficients of the
operators Q;— Qg given in this section will differ slightly
from the ones presented in the previous sections.

In Sec. VIII the effective Hamiltonian for
K, — 7% e will be presented. It is given in Eq. (8.1).
This Hamiltonian can be considered as a generalization
of the AS=1 Hamiltonian [Eq. (6.1)] presented in Sec.
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VI to include the semileptonic operators Oy, and Q4.
This generalization does not modify the numerical val-
ues of the AS=1 coefficients C; (i=1,...,6) given in Sec.
VL

In Sec. IX we will discuss the effective Hamiltonian
for B—X,vy, written down in Eq. (9.1). This Hamil-
tonian can be considered as a generalization of the
A B=1 Hamiltonian [Eq. (6.32)] to include the magnetic
penguin operators (7, and Qgg. This generalization
does not modify the numerical values of the AB=1 co-
efficients C; (i=1,...,6) from Sec. VL.

In Sec. X we present the effective Hamiltonian for
B—X,e"e™, given in Eq. (10.1), which can be consid-
ered as the generalization of the B— X,y Hamiltonian
to include the semileptonic operators Qg and Qqp4-
The coefficients C; (i=1,...,6,7y,8G) given in Sec. IX
are not affected by this generalization.

In Sec. XI the effective Hamiltonians for K™ — 7" v,
K, —uw, K —7"vv, B=X, vv, and B—1"1" will
be discussed and are given in Egs. (11.4), (11.44),
(11.56), and (11.57) respectively. Each of these Hamilto-
nians involves only a single operator, Q(vv) or Q(up)
for K" > 7" vp, K; —7vp, and K; —u*u”, with analo-
gous operators for B— X ,vv and B—I"1".

Finally, Secs. XII and XIII present the effective
Hamiltonians for AS=2 and AB=2 transitions, respec-
tively. These Hamiltonians involve the operators Q(AS
=2) and Q(AB=2) and can be found in Egs. (12.1) and
(13.1).

In Table III we give the list of effective Hamiltonians
to be presented below, the equations in which they can
be found, and the list of operators entering different
Hamiltonians.

V. THE EFFECTIVE AF=1 HAMILTONIAN:
CURRENT-CURRENT OPERATORS

A. Operators

We begin this compendium by presenting the parts of
effective Hamiltonians involving the current-current op-
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TABLE IV. The coefficient C;(u«) for B decays.
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6)_
AL =140 MeV

AGL=225 MeV

ALI=310 MeV

w [GeV] LO NDR HV LO NDR HV LO NDR HV

4.0 -0274 -0.175 -0211 -0.310 -0.197 -0.239 -0341 -0.216 -0.264
5.0 -0.244 -0.151 -0.184 -0.274 -0.169 -0.208 -0.300 -0.185 -0.228
6.0 -0221 -0.133 -0.164 0248 -0.148 -0.184 -0.269 -0.161 —-0.201
7.0 -0203 -0.118 -0.148 -0.226 -0.132 -0.166 -0.246 -0.143 -0.181
8.0 -0.188 -0.106 -0.135 -0.209 -0.118 -0.151 -0.226 -0.128 -0.164

erators only. These operators generally will be denoted
by O, and Q,, although their flavor structure depends
on the decay considered. To be specific we will consider

01=(bic))v-alit;d;)y-a,

QZZ(BiCi)VfA(ﬁjdj)VfA» (5.1
O1=(sicj)y-aujdi)y-a,
Or=(si¢)yv-alujd))y-a, (52)
0= (§iuj)VfA(1’_‘jdi)VfA >
Or=(siu)y-a(uidj)y— 4, (53)

for AB=1, AC=1, and AS=1 decays, respectively. Then
the corresponding effective Hamiltonians are given by

G
H(AB=1)= 7; V5Vl C1(1) Q1+ Ca(1) 5],

ful to present the results for C, , separately, as they can
be used in a large class of decays.

When analyzing O, and Q, in isolation, it is useful to
work with the operators Q. and their coefficients z .
defined by

0.=3(0,+0), (5.7)

Q. and Q_ do not mix under renormalization, and the
expression for z .(u) is very simple.

zi=C2iC1.

B. Wilson coefficients and
renormalization-group evolution

The initial conditions for z. at u=My, are obtained
using the matching procedure between the full [Figs.
2(a)-2(c)] and effective [Figs. 3(a)-3(c)] theory summa-
rized in Sec. III.F.1. Given the initial conditions for z..

w=0(m,), (5.4) at scale u=My,,
My)
Gr reMyy=1+ M) 58
He AC=1)= “Z VAV, [Ci{m) Q1+ Ca(w) 021, =(Mw) i P G8)
and using the NLO RG evolution formula [Eq. (3.99)]
n=0(m.), (55)  for the case without mixing, one finds for the Wilson
G coefficients of Q. at some scale u
F
He(AS=1)= = VIVl C1 (1) Q1+ Colw) 03], ] 1 ) as<MW>r+
- 4 || ay(p)
pn=0(1 GeV). (5.6)
. . . . as(MW)
As we will see in subsequent sections, these Hamilto- X1+ —aa (B+—J+) (5.9)
nians have to be generalized to also include penguin op-
erators. This, however, will not change the Wilson coef- with
ficients Ci(u) and C,(u), except for small O(a) d (1) (0)
corrections in a complete analysis that also includes Jo=— = y_i, . :y_t’ (5.10)
electroweak penguin operators. For this reason it is use- - Bo 2Bo - 2B
TABLE V. The coefficient C,(u) for B decays.
AL2=140 MeV AGl=225 MeV ALI=310 MeV
n [GeV] LO NDR HV LO NDR HV LO NDR HV
4.0 1.121 1.074 1.092 1.141 1.086 1.107 1.158 1.096 1.120
5.0 1.105 1.062 1.078 1.121 1.072 1.090 1.135 1.080 1.101
6.0 1.093 1.054 1.069 1.107 1.062 1.079 1.118 1.068 1.087
7.0 1.084 1.047 1.061 1.096 1.054 1.069 1.106 1.059 1.077
8.0 1.077 1.042 1.055 1.087 1.047 1.062 1.096 1.052 1.069
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TABLE VI. The coefficient C;(u) for K decays and D decays.

AR =215 MeV

@) _
AR =325 MeV

AR =435 MeV

w [GeV] LO NDR HV LO NDR HV LO NDR HV

1.00 -0.602 -0410 -0.491 -0.742 -0510 -0.631 -0.899 -0.632 -0.825
1.25 -0.529 -0356 -0424 -0.636 -0.430 -0.523 -0.747 -0512 -0.642
1.50 -0478 -0319 -0379 0565 -0.378 -0457 -0.653 -0.439 -0.543
1.75 -0439 -0291 -0346 -0.514 -0.340 0410 -0.587 -0.390 -0.478
2.00 -0.409 -0269 -0320 -0475 -0311 -0375 -0.537 -0.353 -0.431

where the coefficients B, and B; of the QCD g function
are given by Eq. (3.16). Furthermore, the LO and NLO
expansmn coefficients for the anomalous dimensions .
of Q. in Eq. (5.10) and the coefficients B in Eq. (5.8)
are given by

Oz tL (5.11)
Y= =N '

0 N71 RN 15
Ve =N N3 N3 -2B0k«|, (5.12)

B _Nil +11 5.13
i_W[— + K] (5.13)

with N being the number of colors. Here we have intro-
duced the parameter k., which conveniently distin-
guishes between various renormalization schemes:

0, NDR,
¥4, HV.

Thus, using N=3 in the following, /. in Eq. (5.10) can
also be written as

Ki= (5.14)

351 y(f)
J+=(<)nDprT wa K+:(J¢)NDRi§ Kk« . (5.15)
Setting y(il), B ., and B, to zero, one arrives at the lead-
ing logarithmic approximation (Altarelli and Maiani,
1974; Gaillard and Lee, 1974a).

The NLO calculations in the NDR and HV schemes
have been presented by Buras and Weisz (1990). In writ-
ing Eq (5.12) we have incorporated the —2751) correc-
tion in the HV scheme resulting from the nonvanishing
two-loop anomalous dimension of the weak current,

0, NDR,

YH={ N*—1 (5.16)

HV.

2B07

The NLO corrections ¥\ in the dimensional-reduction
scheme (DRED) have been first considered by Altarelli
et al. (1981) and later confirmed by Buras and Weisz
(1990). Here one has «.=+6-N. This value for . in
DRED also incorporates a finite renormalization of «
in order to work in all schemes with the usual MS cou-
pling.

As already discussed in Sec. IIL.F.3, the expression
(B.+—J.) is scheme independent. The scheme depen-
dence of the Wilson coefficients z.(u) then originates
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entirely from the scheme dependence of J.. at the lower
end of the evolution, which can be seen explicitly in Eq.
(5.15).

In order to exhibit the u dependence on the same
footing as the scheme dependence, it is useful to rewrite
Eq. (5.9) in the case of B decays as follows,

‘< )) - (M )]
2w =|1+ 00 () Z(—mm
as(MW)
X 1+T(B+—J+)} (5.17)
with

. . YW u?
4 =(J+ *— k++ —In| — Nl
J,(lu“) (J,)NDR 12 K+ 2 n<m12)) B (5 8)

summarizing both the renormalization-scheme depen-
dence and the u dependence. Note that in the first pa-
rentheses in Eq. (5.17) we have set a,(up)=a,(m),
since the difference in the scales in this correction is still
of higher order. We also note that a change of the renor-
malization scheme can be compensated for by a change
in u. From Eq. (5.18) we find generally

(i)
IE) s (5.19)

where i denotes a given scheme. From Eq. (5.14) we
then have

,U«zt = MNDReXP<

1

Muv= MNDRCXP< 3 (5.20)

Evidently the change in u relating HV and NDR! is the
same for z, and z_ and consequently for C;(w).

This discussion shows that a meaningful analysis of
the u dependence of C;(x) can only be made simulta-
neously with the analysis of the scheme dependence.

The coefficients C;(«) for B decays can now be calcu-
lated using

Z4(m)—z-(p)

() +zo
Colm)= . , Z4(m)t+z (,u)‘

Ch(p)= 2
(5.21)

IThe relation uprpp=unpreXp[(2+1)/4] between NDR and
DRED is more involved. In any case uyy and pbgrgep are
larger than unpr -
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TABLE VII. The coefficient C,(u) for K decays and D decays.

AR =215 MeV

AR =325 MeV

@) _
AR =435 MeV

w [GeV] LO NDR HV LO NDR HV LO NDR HV
1.00 1.323 1.208 1.259 1.422 1.275 1.358 1.539 1.363 1.506
1.25 1.274 1.174 1.216 1.346 1.221 1.282 1.426 1.277 1.367
1.50 1.241 1.152 1.187 1.298 1.188 1.237 1.358 1.228 1.296
1.75 1.216 1.136 1.167 1.264 1.165 1.207 1.313 1.196 1.252
2.00 1.198 1.123 1.152 1.239 1.148 1.185 1.279 1.174 1.221

To this end we set f=5 in the formulas above and use the
two-loop «a,(w) of Eq. (3.19) with AEA%. The actual
numerical values used for «,(M,), or equivalently
A%, are collected in the Appendix together with other
numerical input parameters.

In the case of D decays and K decays the relevant
scales are u=0O(m.) and u=0(1 GeV), respectively. In
order to calculate C;(n) for these cases one has to
evolve these coefficients first from u=0(m,) down to
u=0(m,) in an effective theory with f=4. Matching
a®(my)=a®(m,), we find, to a very good approxi-
mation, A% = (325+110) MeV. Unfortunately, the ne-
cessity to evolve C;(u) from u=My down to pu=m, in
two different effective theories (f=5 and f=4) and even-
tually, in the case of K decays with f=3 for u<m ., makes
the formulas for C;(«) in D decays and K decays rather
complicated. They can be found in the work of Buras
et al. (1993b). Fortunately all these complications can be
avoided by a simple trick that reproduces these results
to better than 1.5%. In order to find C;(u) for 1 GeV
=u<2 GeV one can simply use the master formulas
given above with A% replaced by A% and an “‘effec-
tive”” number of active flavors f=4.15. This can be veri-
fied by comparing the results presented here with those
in Tables X and XII, where no ‘““tricks” have been used.
The nice feature of this method is that the u and
renormalization-scheme dependences of C;(u) can still
be studied in simple terms.

The numerical coefficients C;(x) for B decays are
shown in Tables IV and V for different u and A%. In
addition to the results for the NDR and HV renormal-
ization schemes we show the LO values.”> The corre-
sponding results for K decays and D decays are given in
Tables VI and VII.

’The results for the DRED scheme can be found in the work
of Buras, (1995).

From Tables IV-IX we observe the following.

(i) The scheme dependence of the Wilson coefficients
is sizable. This is in particular the case of C; which van-
ishes in the absence of QCD corrections.

(ii) The differences between LO and NLO results in
the case of C; are large, which shows the importance of
next-to-leading-order corrections. In fact, in the NDR
scheme, the corrections may be as large as 70%. This
comparison of LO and NLO coefficients can, however,
be questioned because, for the chosen values of Ay,
one has a{"(M,)=0.135+0.009 as compared to
a,(M;)=0.117x0.007 (Bethke, 1994; Webber, 1994).
Consequently, the difference in LO and NLO results for
C; originates partly in the change in the value of the
QCD coupling.

(iii) In view of the latter fact it is also instructive to
show the LO results in which the next-to-leading-order
expression for «, is used. We give some examples in
Tables VIII and IX. Now the differences between LO
and NLO results is considerably smaller, although still as
large as 30-40% in the case of C; in the NDR scheme.

(iv) In any case the inclusion of NLO corrections in
NDR and HV schemes weakens the impact of QCD on
the Wilson coefficients of current-current operators. It
is, however, important to keep in mind that such a be-
havior is specific to the scheme chosen and will in gen-
eral be different in other schemes, which reflects the un-
physical nature of the Wilson coefficient functions.

Our discussion has not invoked HQET (cf. Sec. XV).
It is sometimes stated in the literature that at u=m,, in
the case of B decays, one must switch to HQET. In this
case for u<m, the anomalous dimensions . differ from
those given above. We should, however, stress that
switching to HQET can be done at any u<m,, , provided
the logarithms In(m,/u) in (Q;) do not become too
large. Similar comments apply to D decays with respect
to u=m,. Of course the coefficients C; calculated in
HQET for u<m, are different from the coefficients pre-

TABLE VIIL C}° and C%° for B decays with «, in NLO.

ALI=140 MeV AGE=225 MeV AGE=310 MeV
w [GeV] (& (&) G ¢ G
4.0 ~0.244 1.105 -0.274 1121 -0.301 1135
5.0 -0.217 1.091 -0.243 1.105 -0.265 1.116
6.0 -0.197 1.082 -0.220 1.093 ~0.239 1102
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TABLE IX. C}° and C}° for K and D decays with a; in NLO.

AR =215 MeV

AR =325 MeV AR =435 MeV

w [GeV] Ci &) Ci &) Cy G,

1.0 -0.524 1.271 -0.664 1.366 -0.851 1.502
1.5 -0.413 1.201 -0.493 1.250 -0.579 1.307
2.0 -0.354 1.165 -0.412 1.200 -0.469 1.235

sented here. However, the corresponding matrix ele-
ments (Q;) in HQET are also different so that the physi-
cal amplitudes remain unchanged.

VI. THE EFFECTIVE AF=1 HAMILTONIAN:
INCLUSION OF QCD PENGUIN OPERATORS

In Sec. V we have restricted ourselves to current-
current operators when considering QCD corrections to
the effective AF=1 (F=B,C,S) Hamiltonian for weak
decays.

As already mentioned in Sec. III.D.3, e.g., for the
AS=1 case, the special flavor structure of
0,=(su)y_4(ud)y_4 allows not only for QCD correc-
tions of the current-current type as in Figs. 3(a)-3(c),
from which the second current-current operator Q; is
created. For a complete treatment of QCD corrections,
all possible ways of attaching a gluon to the initial weak
AF=1 transition operator O, have to be taken into ac-
count. Therefore attaching gluons to Q, in the form of
Figs. 3(d.1) and 3(d.2) generates a completely new set of
four-quark operators, the so-called QCD penguin opera-
tors, usually denoted as Qj,...,Q¢.° This procedure is
often referred to as inserting Q, into type-1 and type-2
penguin diagrams.

The AS=1 effective Hamiltonian for K— 7 at scales
pu<m, then reads

Gr 6
He(AS=1)=— Vi V02 [2p)+7y(w)]0Q;
V2 i=1
6.1)
with
. stvtd
V:SVud.

(6.2)

T=

The set of four-quark operators é(,u) and Wilson coef-
ficients z(u) and y(u) will be discussed one by one in
the subsections below.

3Obviously, whether or not it is possible to form a closed
fermion loop as in a type-1 insertion or to connect the two
currents to yield a continuous fermion line as required for a
type-2 insertion depends strongly on the flavor structure of the
operator considered. For example, for O, only the type-2 pen-
guin diagram contributes. This feature can be exploited to ob-
tain NLO anomalous-dimension matrices in the NDR scheme
without the necessity of calculating closed fermion loops with
vs (Buras et al., 1993; Buras et al., 1993a).

Rev. Mod. Phys., Vol. 68, No. 4, October 1996

A. Operators

The basis of four-quark operators for the AS=1 effec-
tive Hamiltonian in Eq. (6.1) is given in explicit form by

Q1:(§iuj)va(lz/'di)va > (6.3)

Or,=(su)y_a(ud)y_4,

Q3:(S_d)v—A; (G v-a»
Q4:(§idj)V7A§ (éiji)va,
Q5=(§d)v—A§q: (G v+as

QGZ(S_idj)v—A% (qi9)v+a-

As already mentioned, this basis closes under QCD
renormalization.

For pu<m, the sums over active quark flavors in Eq.
(6.3) run over, u, d, and s. However, when m,>u>m,
is considered, g = ¢ also has to be included. Moreover, in
this case two additional current-current operators have
to be taken into account:

QSZ(EC)V—A(C_d)V—A’
(6.4)

Qi:(gicj)V—A(c_jdi)V—A >
and the effective Hamiltonian takes the form

2
“_T),»:El 2,(w)(Q;— Q%)

H (AS:1)=% A%
eff’ V3 us? ud

. (6.5)

6
+ TZZI vi(n)Q;

B. Wilson coefficients

For the Wilson coefficients y;(u) and z;(u) in Eq.
(6.1) one has

yilpw)=vi(pw)—z,(u). (6.6)

The coefficients z; and v; are the components of the
six-dimensional column vectors v(u) and z(u). Their
RG evolution is given by

J(M) = U3(M>mc)M(mc) U4(mc ’mb)M(mb)

X Us(my ,My)C(My), (6.7)
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Here U/(m,,m,) denotes the full NLO evolution matrix
for f active flavors. M(m;) is the matching matrix at
quark threshold m; given in Eq. (3.104). These two ma-
trices will be discussed in more detail in Secs. VI.C and
VLD, respectively. _

The initial values C(M ) necessary for the RG evo-
lution of v (w) in Eq. (6.7) can be found according to the
procedure of matching the effective (Fig. 3) onto the full
theory (Fig. 2) as summarized in Sec. IIL.F. For the
NDR scheme one obtains (Buras et al., 1992)

11 a,(My)
Ci(Mw)=~ a4—7TW, (6.9)
11 (M
Co(Mw)=1-—+ %, (6.10)
(My) -
C3(My)=— %WW) Eo(x,), (6.11)
(My) -
Co(My) = %WW) Eo(x,), (6.12)
(My) -
Cs(Mwy)=— % E(x,), (6.13)
(My) -
Co(My)= % Eo(x,), (6.14)
where
_ x(18—11x—x?)
EO(X)— - g Inx + W
x2(15—16x +4x?)
61 —x)° Inx, (6.15)
~ 2
Eo(x)=Eo(x,)— 3> (6.16)
with
m;
x’:M_Z_W' (6.17)

Here E,(x) results from the evaluation of the gluon
penguin diagrams. The initial values C(Myy) in the HV
scheme can be found in the work of Buras ef al. (1992).
In order to calculate the initial conditions z(m,) for
z;(n) in Eq. (6.8), one has to consider the difference
04— 05 of Q,-type current-current operators, as can be
seen explicitly in Eq. (6.5). Due to the Glashow-
Iliopoulos-Maiani (GIM) mechanism the coefficients
z;(w) of penguin operators Q;, i#1,2 are zero in five-
and four-flavor theories. The evolution for scales u>m,
then involves only the current-current operators
Q%—Qj%, i=12, with initial conditions at scale u=My,

21(My)=Ci(My), z2(My)=Cy(My).  (6.18)

Q1,=0;; and Q7 , do not mix with each other under
renormalization. We then find
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(Zl(m"))—U( )M (m,) Us(my, ,Myy)
z2(m,)| = 4\Mm.,mp mp)Usimy ,Mwy
21 (My)
X(Zz(MW) , (6.19)

where this time the evolution matrices U, s contain only
the 2X2 anomalous-dimension submatrices describing
the mixing between current-current operators. The
matching matrix M (m,) is then the corresponding 2X2
submatrix of the full 6X6 matrix in Eq. (6.27). For the
particular case of Eq. (6.19) it simplifies to a unit matrix.
When the charm quark is integrated out, the operators
Q1 , disappear from the effective Hamiltonian, and the
coefficients z;(w), i #1,2, for penguin operators become
nonzero. In order to calculate z,;(m ) for penguin opera-
tors, a proper matching between effective four- and
three-quark theories, that is between Egs. (6.5) and
(6.1), has to be made. For the three-quark theory one
obtains, in the NDR scheme (Buras et al., 1993b),

z1(m,)
ZZ(mc)
—a,/(24m) Fy(m,)
a;/(8m)Fy(m.) |’
—ay /(2477)Fs(mc)
a,/(8m)Fy(m.)

Z(mo)= (6.20)

where
(6.21)

In the HV scheme z,, are modified, and one has
F,(m_.)=0 or z;(m,)=0 for i #1,2.

Fs(mc) == %‘ZZ(mc)-

C. Renormalization-group evolution
and anomalous-dimension matrices

The general RG evolution matrix U(m,,m,) from
scale m, down to m<m, in pure QCD is

AT

B’
with y,(g?) being the full 6X6 QCD anomalous-
dimension matrix for Q1,...,Qg.

For the case at hand it can be expanded in terms of «
as follows:

g(my)
U(my,my)=T,exp
g(mz)

(6.22)

2

o o
NI () I S DI
¥s(&%) a7 Y amr s .

(6.23)
Explicit expressions for y{?) and (! will be given be-
low.

From Eq. (6.23) the general QCD evolution matrix
U(m,,m,) of Eq. (6.22) can be written as in Eq. (3.93)
(Buras et al., 1992),

slm
U(ml,m2)= 1+—ai771)])U(0)(m1,m2)
as(mZ)
x| 1- =7 J), (6.24)
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where U (0)(m 1,M,) denotes the evolution matrix in the
leading logarithmic approximation and J summarizes
the NLO correction to this evolution. Therefore the full
matrix U(m,,m,) sums logarithms (a,)" and a,(at)"
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U (m,,m,) and J are given in Eqs. (3.94)—(3.98).
The LO anomalous-dimension matrix 7y’ of Eq.

(6.23) has the explicit form (Altarelli and Maiani, 1974;

Gaillard and Lee, 1974a; Vainshtein et al., 1977; Gilman

with  t=In(m3/m?).  Explicit expressions for  and Wise, 1979; Guberina and Peccei, 1980)
|
-6
— 6 0 0 0 0
N
6 -6 -2 2 =2 2
‘N 3N 3 3N 3
-22 22 —4 4
0o 0 —= = _ -
©0)_ 3N 3 3N 3 695
Ys T o o0 ¢ 2 =6 2f -2f 2f (625)
3N N '3 3N 3
0 0 0 0 2 -6
N
-2 2 —2f —6(—1+N? 2
o o T2 2 Z2f S6(-1+NY) 2f
3N 3 3N 3

The NLO anomalous-dimension matrix y{") of Eq. (6.23) in the NDR scheme reads (Buras et al., 1992; Ciuchini,

Franco, Martinelli, and Reina, 1994)

21 2f 7+2f 79

2 9 23 9

7 2f 21 2f 202

2v3 T2 243
5911 71
0 _on Ty
" 48 9
7s,NDR|N:3: 379 56f
0 AR

18 " 243

—-61

0 0 —6

9

—682 f

0 0 7

243

In Egs. (6.25) and (6.26) f denotes the number of active
quark flavors at a certain scale u. The corresponding
results for y{!) in the HV scheme can either be obtained
by direct calculation or by using Eq. (3.126). They can
be found in Buras ef al. (1992), Ciuchini, Franco, Marti-
nelli, and Reina, 1994, where also the N dependence of
vy is given.

D. Quark-threshold matching matrix

As discussed in Sec. IILF.1, in general a matching ma-
trix M(m) has to be included in the RG evolution at
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7 65 7

~3 ) 3

1354 1192 904

B EYEY BT

5983 f 2384 71f 1808 f

T2 '3 ~ 23 9 81 3

91 808f 130 502 f 14 646f (6.26)
"6 8 9 w3 s

106f 225 1676f 1343 1348f

8 2t e s

NLO when going from a f-flavor effective theory to a
(f-1)-flavor effective theory at quark threshold u=m
(Buras et al., 1992, 1993Db).

For the AS=1 decay K—mm in pure QCD, one has
(Buras et al., 1992)

as(m) T
yp org .

At the quark thresholds m=m, and m=m_, the matrix
or, is

orl'=—3P(0,0,0,1,0,1)

M(m)=1+

(6.27)

(6.28)
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TABLE X. AS=1 Wilson coefficients at u=1 GeV for m,=170 GeV, y;=y,=0.

A =215 MeV

AR =325 MeV

AR =435 MeV

Scheme LO NDR HV LO NDR HV LO NDR HV
Zq -0.602 -0.407 -0.491 -0.743 -0.506 -0.636 -0.901 -0.622 —-0.836
) 1.323 1.204 1.260 1.423 1.270 1.362 1.541 1.352 1.515
Z3 0.003 0.007 0.004 0.004 0.013 0.007 0.006 0.022 0.015
24 -0.008 -0.022 -0.010 -0.012 -0.034 -0.016 -0.016 -0.058 -0.029
Zs 0.003 0.006 0.003 0.004 0.007 0.004 0.005 0.009 0.005
Z6 -0.009 -0.021 -0.009 -0.013 -0.034 -0.014 -0.018 -0.058 -0.025
y3 0.029 0.023 0.026 0.036 0.031 0.036 0.045 0.040 0.048
Va4 -0.051 -0.046 -0.048 -0.060 -0.056 -0.059 -0.069 -0.066 —0.072
Vs 0.012 0.004 0.013 0.013  -0.001 0.016 0.014  -0.013 0.020
Ve -0.084 -0.076 -0.070 -0.111 -0.109 -0.096 -0.145 -0.166 —-0.136
with This procedure, adopted in this review and by Buras
PT=(00.—11,-11). (6.29) et al. (1993b), effectively corresponds to a finite renor-

E. Numerical results for the K— @@ Wilson coefficients
in pure QCD

Tables X-XII give the AS=1 Wilson coefficients for
04,...,0¢ in pure QCD. We observe a visible scheme
dependence for all NLO Wilson coefficients. Notably we
find |y¢ to be smaller in the HV than in the NDR
scheme. In addition, all coefficients, especially z; and
¥3,-.-,¥6, Show a strong dependence on Ayg.

Next, at NLO the absolute values for z;, and y; are
suppressed relative to their LO results, except for ys in
HV and y,c in NDR for u>m,. The latter behavior is
related to the effect of the matching matrix M (m,) ab-
sent for u>m,. For y;,...,ys there is no visible m, de-
pendence in the range m,=(170=15) GeV. For |y¢| there
is a relative variation of O(*1.5%) for in/decreasing m, .

Finally, a comment on the Wilson coefficients in the
HV scheme as presented here is appropriate. As we
have mentioned in Sec. V.B, the two-loop anomalous
dimension of the weak current in the HV scheme does
not vanish. This peculiar feature of the HV scheme is
also felt in ygl). The diagonal terms in 7§1) acquire ad-
ditional universal large O(N?) terms (44/3)N?, which are
absent in the NDR scheme. These artificial terms can be
removed by working with y{" =2y instead of (V.

malization of operators that changes the coefficient of
a,/47in CRY (M) from —13/2 to —7/6. The Rome group
(Ciuchini, Franco, Martinelli, and Reina, 1994) has cho-
sen not to make this additional finite renormalization,
and consequently their coefficients in the HV scheme
differ from the HV coefficients presented here by a uni-
versal factor. They can be found by using

ay(un)
4

Clearly this difference is compensated for by the corre-
sponding difference in the hadronic matrix elements of
the operators Q;.

CHV

Rome(lu‘) =1- 4CF CHV(/.L) (630)

F. The AB=1 effective Hamiltonian in pure QCD

An important application of the formalism developed
in the previous subsections is for the case of B-meson
decays. The LO calculation can be found, e.g., in the
works of Ponce (1981) and Grinstein (1989), where the
importance of NLO calculations has already been
pointed out. This section can be viewed as the generali-
zation of Grinstein’s analysis beyond the LO approxima-
tion. We will focus on the AB=1, AC=0 part of the ef-
fective Hamiltonian, which is of particular interest for
the study of CP violation in decays to CP selfconjugate

TABLE XI. AS=1 Wilson coefficients at u=m =1.3 GeV for m,=170 GeV and f=3 effective flavors.
|z3],...,]z6| are numerically irrelevant relative to |z;,|. y;=y,=0.

A=325 MeV

4
A3 =435 MeV

Scheme LO NDR HV LO NDR HV LO NDR HV

Z1 -0.518 0344 -0.411 -0.621 -0412 -0.504 -0.727 -0.487 -0.614
Zy 1.266 1.166 1.207 1.336 1.208 1.269 1.411 1.258 1.346
y3 0.026 0.021 0.024 0.032 0.027 0.031 0.039 0.035 0.040
Vi -0.050 -0.046 -0.048 -0.059 -0.056 -0.058 -0.068 -0.067 -0.070
Vs 0.013 0.007 0.013 0.015 0.005 0.016 0.016 0.001 0.018
Y6 -0.075 -0.067 -0.062 -0.095 -0.088 -0.079 -0.118 -0.116 -0.102
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TABLE XII. AS=1 Wilson coefficients at u=2 GeV for m,=170 GeV. For u>m, the GIM mechanism

gives z;=0, i=3,...,6. y;=y,=0.

AQ =215 MeV

AR =325 MeV

4
AG) =435 MeV

Scheme LO NDR HV LO NDR HV LO NDR HV

Z1 -0411 -0266 -0.318 -0477 -0309 -0374 -0.541 -0.350 -0.430
) 1.199 1.121 1.151 1.240 1.145 1.185 1.282 1.170 1.220
V3 0.019 0.019 0.018 0.023 0.023 0.022 0.027 0.027 0.026
Va -0.040 -0.046 -0.039 -0.046 -0.054 -0.045 -0.052 -0.062 -0.052
Vs 0.011 0.010 0.011 0.012 0.010 0.013 0.013 0.010 0.015
Y6 -0.055 -0.057 -0.047 -0.067 -0.070 -0.056 -0.078 -0.085 -0.067

final states. The part of the Hamiltonian inducing A B=1,
AC==1 transitions involves no penguin operators and
has already been discussed in Sec. V.

At tree-level the effective Hamiltonian of interest
here is simply given by

Hex(AB=1)

2 > Vbqu(bCI)V A(qq ) v-a-
\fq UC g'=d.s

(6.31)

The cases ¢'=d and q'=s can be treated separately
and have the same Wilson coefficients C;(u). Therefore
we will restrict the discussion to ¢’ =d in the following.

Using unitarity of the CKM matrix, &, + &.+ £,=0 with
&=V7,Via, and the fact that O 7, and Q{, have the
same initial conditions at u=My,, one obtains for the
effective AB=1 Hamiltonian at scales u=0(m,),

G
He(AB=1)= 72}7 {&[Q(M)Q?(MH Co(m)05(w)]
+E[C1(w) O () + Cou) Q5 ()]

(6.32)

6
—&2, Cilw O
Here
Q1=(big)v-a(@;di)y-a,
04=(bq)y-a(gd)y_4,

Q3:(b_d)v—A§ (@) v-a,

Q4:(l;idj)V7A§q: (q_jQi)Van
Q5=(5d)v—A§ (G@)veas

QGZ(I;idj)Vng (CIjC]i)VJrA, (6.33)
where the summation runs over g =u,d,s,c,b.
The corresponding AB=1 Wilson coefficients at scale

u=0(m,) are simply given by a truncated version of Eq.
67),

é(mb):US(mbaMW)é(MW)- (6.34)

Here Us is the 6X6 RG evolution matrix of Eq. (6.24)
for f=5 active flavors. The initial conditions C(My,) are
identical to those of Eqgs. (6.9)—(6.14) for the AS=1 case.

G. Numerical results for the AB=1 Wilson coefficients
in pure QCD

Table XIII lists the AB=1 Wilson coefficients for

1,0%5°0;3,...,0¢ in pure QCD. Cy, C4, and Cy
show a (’)(20%) scheme dependence, while this depen-
dence is much weaker for the rest of the coefficients.

Similar to the AS=1 case, the numerical values for
AB=1 Wilson coefficients are sensitive to the value of
Ass used to determine «, for the RG evolution. The
sensitivity is less pronounced than in the AS=1 case due
to the higher value u=m,(m;) of the renormalization
scale, and one finds no visible m, dependence in the
range m,=(170=15) GeV.

TABLE XIII. AB=1 Wilson coefficients at u=m;,(m;)=4.40 GeV for m =170 GeV.

5
ALI=140 MeV

AGI=225 MeV

ALI=310 MeV

Scheme LO NDR HV LO NDR HV LO NDR HV

Cq -0272 -0.164 -0.201 -0.307 -0.184 -0227 0337 -0.202 -0.250
C, 1.120 1.068 1.087 1.139 1.078 1.101 1.155 1.087 1.113
C; 0.012 0.012 0.011 0.013 0.013 0.012 0.015 0.015 0.014
Cy -0.026  -0.031 -0.026 -0.030 -0.035 -0.029 -0.032 -0.038 -0.032
Cs 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010
Cs -0.033 -0.035 -0.029 -0.038 -0.041 -0.033 -0.042 -0.046 -0.036
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VIl. THE EFFECTIVE AF=1 HAMILTONIAN: INCLUSION
OF ELECTROWEAK PENGUIN OPERATORS

In a similar fashion to the creation of the penguin
operators Qs,...,Q4 through QCD corrections, the in-
clusion of electroweak corrections, shown in Figs. 2(d)
and 2(e), generates a set of new operators, the so-called
electroweak penguin operators. For the AS=1 decay
K—arar they are usually denoted by Q+,...,0 -

This means that, although now we will have to deal
with more technically involved issues like an extended
operator basis or the possibility of mixed QCD-QED
contributions, the underlying principles in performing
the RG evolution will closely resemble those used in
Sec. VI for pure QCD. Obviously, the fundamental step
has already been made when going from current-current
operators in Sec. V to the inclusion of QCD penguins in
Sec. VI. Hence in this section we will, wherever possible,
only point out the differences between the pure 6X6
QCD and the combined 10X10 QCD-QED case.

The full AS=1 effective Hamiltonian for K—mm at
scales u<m, is, including QCD and QED corrections,*

G 10
Ho(AS=1)= — V* V0>, [2ip)+ 7y ()]0« ),
\/2 i=1
(7.1)

withr= VAV, /(V¥V.0).

A. Operators

The basis of four-quark operators for the AS=1 effec-
tive Hamiltonian in Eq. (7.1) is given by Q1,...,Q¢ of
Eq. (6.3) and the electroweak penguin operators

3

Q7=3 Gd)v-a 2 e(Gq)v+a
3 . _

QSZE (Sidj)V—Ag e(qiq)v+as
3 . _

Qs=3 (d)y-a2 ey(d@9)v-1.

3 _
Q10:§ (Sidj)V—Ag e(qiq)v-a- (7.2)

Here, e, denotes the quark electric charge, which re-
flects the electroweak origin of Q,...,0, The basis
04,...,0 closes under QCD and QED renormaliza-
tion. Finally, for m,>u>m,, the operators Q { and Q%
of Eq. (6.4) have to be included again in a similar way to
the case of pure QCD.

“In principle, operators Q= (gs/16772)mss_a'#,,T“G A1
—vs5)d and Q,= (eed/16772)mss_0'#,,F’”(1 —vs)d should also
be considered for K—am. However, as shown by Bertolini
et al. (1995a), their numerical contribution is negligible. There-
fore Q; and Q, will not be included here for K— .
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B. Wilson coefficients

As far as formulas for Wilson coefficients are con-
cerned, the generalization of Sec. VI.B to the present
case is to a large extent straightforward.

First, due to the extended operator basis, v(u) and
Z(w) in Egs. (6.7) and (6.8) are now ten-dimensional
column vectors. Furthermore, the substitution

Udmy,my)—Udmy,m;,a)

has to be made in the RG evolution equations (6.7),
(6.8), and (6.19). Here Ug(m,,m,,a) denotes the full
10X10 QCD-QED RG evolution matrix for f active fla-
vors. Ug(my,m;,a) will still be discussed in more detail
in Sec. VII.C. .

The extended initial values C(My), including O(«)
corrections and additional entries for Q,,...,0 1, can be
obtained from the usual matching procedure between
Figs. 2 and 3. They read, in the NDR scheme (Buras
et al., 1993b),

11 ay(My)
CitMy)=5 20, (7.3)
11 a(My) 35
Cz(MW)_l—gaé‘—ﬂ_W—ﬁﬁ, (7.4)
(M) 1
C(My) =~ a247rw Eo(x) 6C:T sin0
X[2By(x,)+ Co(x,)], (7-5)
(My) -
CalMy)= %WW) Eo(x,), (7.6)
(My) -
Cs(My)=— - §4 z Ey(x,), (7.7)
(M
Comi =" ), (7.8)
Co(My)= £ [4Cy(x)+ Dy(x)], (7.9)
Co(My)= | 4Colx) +Do(x)
1
+ m [10By(x;)—4Cy(x)]|, (7.11)
Cio(My)=0, (7.12)
where
1] x x Inx
Bo(x)= 1t (x—1)2}’ (7.13)
X |x—6 3x+2
Co(x)= = + 1) lnx}, (7.14)
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et —19x°+25x7
o(¥)= =g It e 1ys
x2(5x*—2x—6) | 715
Ba-nF " (7.15)

~ 4
Dy(x,)=Dy(x,)— § (7.16)

Ey(x,) and x, have already been defined in Egs. (6.16)
and (6.17), respectively. Here Bg(x) results from
the evaluation of the box diagrams, Cy(x) from the Z°
penguin, D((x) from the photon penguin, and E,(x)
in Ey(x,) from the gluon penguin diagrams. Oy, is the
Weinberg angle. The initial values C(My) in the HV
scheme are given by Buras ef al. (1993b).

Finally, the generalization of Eq. (6.20) to the
01,...,04 basis is (Buras et al., 1993b)

z1(m,)
Zo(m,)
—a /(247T)Fs(mc)
a,/(8m)Fy(m,)
g /(247T)Fs(mc)
ay/(8m)Fy(m.) |’
al(6m)F,(m,)
0
al(6m)F (m,)
0

with F(m,) given by Eq. (6.21) and

Z(m)= (7.17)

4
Fe(mc):_§[321(m0)+22(mc)]- (718)
In the HV scheme, in addition to z, , differing from their
NDR values, one has F,(m_.)=F,(m,)=0, and, conse-
quently, z;(m.)=0 for i#1,2.

C. Renormalization-group evolution
and anomalous-dimension matrices

Besides an extended operator basis the main differ-
ence between the pure QCD case of Sec. VI and the
present case consists of the additional presence of QED
contributions to the RG evolution. This will make the
actual formulas for the RG evolution matrices more in-
volved. However, the underlying concepts developed in
Secs. V and VI remain the same.

Similar to Eq. (6.22) for pure QCD, the general RG
evolution matrix U(m,,m,,a) from scale m, down to
m,<m, can be written formally as’

g(my)
U(my,m,,a)=Tgexp f dg
g(my)

, 7Y(g"%a)

B (7.19)

SWe neglect the running of the electromagnetic coupling a,
which is a very good approximation (Buchalla et al., 1990).
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with y(g%a) being now the full 10X10 anomalous-
dimension matrix including QCD and QED contribu-
tions. B(g) is defined in Eq. (3.6).

For the case at hand y(g2,) can be expanded in the
following way

(&%) =782+ —T(g%) +- - 7.20
Y(gha) =)+ ;- T(g") ; (7.20)
with the pure a, expansion of vy,(g?) given in Eq. (6.23).
The term present due to QED corrections has the ex-
pansion
2=, 0 %)
(g =ye '+ - Yee' T (7.21)
Using Egs. (7.20) and (7.21), we may decompose the
general RG evolution matrix U(m,m,,a) of Eq. (7.19)

as follows,

o
U(ml ’m2aa):U(ml 7m2)+_R(m1’m2)' (722)

4
Here U(m,,m,) represents the pure QCD evolution al-
ready encountered in Sec. VI but now generalized to an
extended operator basis. R(m,m,) describes the addi-
tional evolution in the presence of the electromagnetic
interaction. U(m,m,) sums the logarithms («,¢)" and
ay(a,t)" with t=In(m3/m?), whereas R(m,,m,) sums
the logarithms ¢( )" and (at)".

The formula for U(m,m,) has already been given in
Eq. (6.24). The leading-order formula for R(m,m,) is
given by Buchalla ef al. (1990) except that a different
overall normalization (a relative factor of —4 in R) has
been used there. Here we give the general expression
for R(m,m,) (Buras et al., 1993b),

R( ) fg(ml) , Ulmy,m")TT(g")U(m' ,m;)
mq,my)= -
! 2 g(my) B(g )

2

=" V( K9 (my,m;)
0

3
1
+E;l Kfl)(ml 9m2))v1’ (723)

with g'=g(m’).
The matrix kernels in Eq. (7.23) are defined by

(0) aj
_ ij ag(my)\“ 1
(K(O)(ml,mz))ij_ai_aj_l (as(ml)) a,(my)
_ as(m2))ai 1 }
(as(n’u) ay(my)]’ (729

(Kgl)(ﬂh ,mz))i;'

M) (as(m))“f (as(ma)“f} .
— , LF]
_J ai—a; ay(my) ay(m;) (7.25)
M(_n(axmz))“fl amy) '
i\ ag(my) amy)’ )
K (my my)=— ay(my) KO (my ,my)H, (7.26)
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TABLE XIV. Rows 7-10 of the LO anomalous dimension matrix (%)

(ij) 1 2 3 4 5 6 7 8 9 10
7 0 0 0 0 0 0 6 -6 0 0
N
8 o0 o ~2w—dR) 2u-di2) -2u-dR2) 2u-dR2)  -6(-1+N*) 4
3N 3 3N 3 N
9o 0 0o 2 22 2 N 0 6 %
3N 3 3N 3 N
3N 3 3N 3 N
K (my,my)=ay,(m)HK O (m; ,my) (7.27) The 6X6 submatrices for Q(1 06 of the full LO and
) are identical to

with
MO=y-1yOTy,

mr_ Pt :81
se B
The matrix H is defined in Eq. (3.97) and 8,,B; are de-
fined in Eq. (3.16).

After this formal description we now give explicit ex-
pressions for the 10X10 LO and NLO anomalous-
dimension matrices 7(0) (0), (1) , and yg) The values
quoted for the NLO matrices are in the NDR scheme
(Buras et al., 1993; Buras et al., 1993a; Ciuchini, Franco,
Martinelli, and Reina, 1994). The corresponding results
for ¥ and y{!) in the HV scheme can either be ob-
tained by direct calculation or by using the QCD/QED
version of Eq. (3.126) given in Buras et al. (1993a). They
can be found in Buras et al. (1993), Buras et al. (1993a),
Ciuchini et al. (1993a), and Ciuchini et al. (1994a).

MV=y~! OTL[OT J1|V.  (7.28)

NLO 10X10 QCD matrices vy, and ys
the corresponding 6X6 matrices already given in Egs.
(6.25) and (6.26), respectively. Q1,...,Q4 do not mix to
07,...,0;o under QCD, hence

[Y9%=[%"1,=0, i=1,..6, j=7...,10. (7.29)

The remaining entries for rows 7-10 in y(o) (Bijnens and
Wise, 1984) and 3! (Buras eral, 1993; Ciuchini,
Franco, Martinelli, and Reina, 1994) are given in Tables
X1V and XV, respectively. There u and d(f=u+d) de-
note the number of active up- and down-type quark fla-
VOrs.

The full 10x10 matrices y(» (Lusignoli, 1989) and

Vs i) (Buras et al., 1993a; Ciuchini, Franco, Martinelli,
and Reina, 1994) can be found in Tables XVI and XVII,
respectively.

TABLE XV. Rows 7-10 of the NLO anomalous dimension matrix 7§1) for N=3 and NDR.

(i) 1 2 3 4 5
; 0 0 —61(u—df2) 1(u—df) 83(u—df2)
9 3 9
o 0 0 —682(u—d2) 106(u —d/2) 704(u—d2)
23 81 243
9 0 0 202 Tu—dR) 1354 (u—d2) 1192 Ti(u—d/2)
mT T o ] 3 243 9
79 106(u—df2) 7 826(u—dR) 65 S02(u—df2)
10 0 0 9 7. 65 _
9 243 3 81 9 243
(i) 6 7 8 9 10
5 —lw-dp) T 2f ooy 2 0 0
3 379 3
g T6u—dp) 05 PN 0 0
81 2 R
g 04 (u—dp2) 0 0 _ A 2f 7.2
81 3 279 7 t3
10 7, 046u—dP) 0 0 7. o2 o2f
3 81 23 279
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TABLE XVI. The LO anomalous dimension matrix y{%.

Gj) 1 2 3 4 5 6 7 3 9 0
1 8 0 0 0 0 0 16N 0 16N 0
3 27 -7
3 27 >
1 1 —drR 1 —dn
3 0 o o0 o o o _X 16Nw-d2) 8 16Nu—-d2)
27 27 27 27
4 0 o o0 o o o _ION 16-d2) . —16N 16-d2) 8
27 27 27 27 3
s 0 o0 o0 o o o S MNwmdmoo, IONwodR) o,
3 27 27
- - 0
6 0 0 0 0 0 0 16(u—d/2) 8 16(u—d12)
27 3 77
+ +
7 0 o o o & o 4 lNwtrdd 16N (u+d/4) o
3 3 27 27
+
8 0 0 0 o o ¢ 16(u+d/4) 4 16(u+d/4) .
3 27 3 27
4 1 +d/4 28 1 +d/4
o o0 o -+ o o o B8 INwtds 28 16Nutdd)
3 27 27 27 27
+ +
0w o0 o o -% o 8N 16(utdid) BN 16utdd) 4
3 27 27 27 27 3

D. Quark-threshold matching matrix

Extending the matching matrix M (m) of Eq. (6.27) to
the simultaneous presence of QCD and QED correc-
tions yields

o alm) ey
M(m)=1+ pp= 5”s+ﬁ5”e~ (7.30)
At scale u=m,, the matrices ér, and dr, are
5
or! =1g P(0.0.0,-2,0,-2,0.1.0.1), (7.31)
r 10 -
ory =57 P(0.062.62,-3,-1,-3.-1), (7.32)
and, at u=m,.,
5
orl=— 9 P(0,0,0,1,0,1,0,1,0,1), (7.33)
r 40 .
or,=— 31 P(0,0,3,1,3,1,3,1,3,1) (7.34)
with Eq. (6.29) generalized to
PT=(0,0,—%,1,—%,1,0,0,0,0), (7.35)
P"=(0,0,0,0,0,0,1,0,1,0). (7.36)

E. Numerical results for the K — @ Wilson coefficients

Tables XVIII-XX give the AS=1 Wilson coefficients
for Q4,...,01, in the mixed case of QCD and QED. The
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coefficients for the current-current and QCD penguin
operators Q1,...,Q¢ are only very weakly affected by
the extension of the operator basis to the electroweak
penguin operators Q5,...,0,. Therefore the discussion
for Q4,...,0¢ given in connection with Tables X—XII for
the case of pure QCD basically still holds and will not be
repeated here. For the remaining coefficients,
07,...,01p, one finds a moderate scheme dependence
for y;, yg, and y o, but a O(9%) one for yg. The notable
feature of |y¢ being larger in NDR than in HV still
holds, but it is now confronted with an exactly opposite
dependence for the other important AS=1 Wilson coef-
ficient, yg, which is enhanced over its LO value. The
particular dependence of y, and yg with respect to
scheme, LO/NLO, and m, (see below) should be kept in
mind for the later discussion of &'/ in Sec. XIX.

We also note that, in the range of m, considered here,
vy is very small, yo is essentially unaffected by NLO
QCD corrections, and y, is suppressed for u = m,. It
should also be stressed that |yo| and |y,o| are substan-
tially larger than |yg|, although, as we will see in the
analysis of /e, the operator Qg is more important than
Qg and Q,, for this ratio. One infers from Tables
XVIII-XX that also in the mixed QCD/QED case, the
Wilson coefficients show a strong dependence on Ayg.

In contrast to the coefficients yj,...,ys for QCD pen-
guins, y7,...,y o for the electroweak penguins show a siz-
able m, dependence in the range m,=(170=15) GeV.
With increasing/decreasing m, there is a relative varia-
tion of O(£19%) and O(=10%) for the absolute values
of yg and yg 0, respectively. This is illustrated further in
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(i) 1 2 3 4 5
1 194 2 88 88 88
9 3 T 243 81 T 243
5 25 49 556 556 556
3 9 729 243 729
3 0 0 1690 136(u—d/2) 1690 136(u—d/f2) 232 136(u—d/2)
729 243 3+ 81 729 243
641 388u 32d 655 388u 32d 88 388u 32d
4 0 0 _ ol e _ea °° s
243 729 729 81 ' 243 243 243 729 ' 729
5 0 0 —136(u—d/2) 136(u—d/2) - 136(u—d/2)
243 81 243
—748u  212d 748u  212d 748u  212d
6 0 0 4 _ _ n
729 729 243 243 729 729
. 0 0 —136(u+d/4) 136(u+d/4) 116 136(u+d/4)
243 81 9 243
g 0 0 —748u_ 106d 748u .\ 106d . 748u 106d
729 729 243 243 729 729
9 0 0 7012 136(u+d/4) 764 . 136(u+d/4) 116 136(u+d/4)
729 243 243 81 729 243
1333 388u 16d 107 388 16d 44 388u 16d
10 0 0 1999 _tha 2 i M _ o4
243 729 729 81 ' 243 ' 243 243 729 729
(i.j) 6 7 8 9 10
1 88 152 40 136 56
81 27 9 27 9
5 556 484 124 3148 172
243 729 27 729 27
3 232 . 136(u—d/2) 3136 . 104(u—d/2) 64 . 88(u—d/f2) 20272 . 184(u—dN2) 112 N 8(u—d/)
243 81 729 27 27 9 729 27 27 9
4 88 ) 388y 32d 152 .\ 3140u . 656d 40 100u 16d 170 N 908u . 1232d 14 . 148u  80d
81 243 243 27 " 729 729 9 27 27 27 729 T 729 327 27
5 o 136(u—d/2) 232 . 104(u—d/2) 40 . 88(u—d/f2) 184(u—d/2) 8(u—dn)
81 9 27 3 9 27 9
6 . 748u  212d 5212u . 4832d 182 . 188u  160d —2260u . 2816d —140u . 64d
243 243 729 729 9 27 27 729 729 27 27
. 20 . 136(u+d/4) 134 . 104(u + d/4) 38 . 88(u+d/4) 184(u+d/4) S(u+d/4)
3 81 9 27 3 9 27 9
g 91 . 748u N 106d 5212u  2416d 154 . 188u . 80d —2260u  1408d —140u  32d
9 " 243 ' 243 729 729 9 27 27 729 729 27 27
9 116 ) 136(u+d/4) 1568 ) 104(u+ d/4) 32 . 88(u+d/4) 5578 s 184(u+d/4) 38 ) S(u+d/4)
243 81 729 27 27 9 729 27 27 9
10 44 388y 16d 76 3140u 328d 20 100u 8d 140 908u 616d 28 148  40d
—t —t —_——t — —+ - ——t—t =
81 243 ' 243 27 729 729 9 27 27 27 729 729 9 27 27
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TABLE XVIII. AS=1 Wilson coefficients at u=1 GeV for m,=170 GeV. y;=y,=0.

AL =215 MeV

A =325 MeV

AG)=435 MeV

Scheme LO NDR HV LO NDR HV LO NDR HV

Z1 -0.607 -0.409 -0494 -0.748 -0.509 -0.640 -0.907 -0.625 -0.841
) 1.333 1.212 1.267 1.433 1.278 1.371 1.552 1.361 1.525
z3 0.003 0.008 0.004 0.004 0.013 0.007 0.006 0.023 0.015
24 -0.008 -0.022 -0.010 -0.012 -0.035 -0.017 -0.017 -0.058 -0.029
Zs 0.003 0.006 0.003 0.004 0.008 0.004 0.005 0.009 0.005
Z6 -0.009 -0.022 -0.009 -0.013 -0.035 -0.014 -0.018 -0.059 -0.025
zZ7la 0.004 0.003  -0.003 0.008 0.011  -0.002 0.011 0.021  -0.001
zgla 0 0.008 0.006 0.001 0.014 0.010 0.001 0.027 0.017
2yla 0.005 0.007 0 0.008 0.018 0.005 0.012 0.034 0.011
21l 0 -0.005 -0.006 -0.001 -0.008 -0.010 -0.001 -0.014 -0.017
V3 0.030 0.025 0.028 0.038 0.032 0.037 0.047 0.042 0.050
V4 -0.052 -0.048 -0.050 -0.061 -0.058 -0.061 -0.071 -0.068 -0.074
Vs 0.012 0.005 0.013 0.013  -0.001 0.016 0.014  -0.013 0.021
Ve -0.08s -0.078 -0.071 -0.113 -0.111 -0.097 -0.148 -0.169 -0.139
yila 0.027 -0.033 -0.032 0.036 -0.032 -0.030 0.043 -0.031 -0.027
ygla 0.114 0.121 0.133 0.158 0.173 0.188 0.216 0.254 0.275
yola -1491 -1479 -1480 -158 -1576 -1.577 -1.700 -1.718 -1.722
Yoo 0.650 0.540 0.547 0.800 0.690 0.699 0.968 0.892 0.906

TABLE XIX. AS=1 Wilson coefficients at u=m  =1.3 GeV for m,=170 GeV and f=3 effective flavors.
|z3l,....|z 10| are numerically irrelevant relative to |z ,|. y;=y,=0.

AR =215 MeV

AR =325 MeV

4
A =435 MeV

Scheme LO NDR HV LO NDR HV LO NDR HV

21 -0.521 0346 -0413 -0.625 -0415 -0.507 -0.732 -0.490 -0.617
23 1.275 1.172 1.214 1.345 1.216 1.276 1.420 1.265 1.354
V3 0.027 0.023 0.025 0.034 0.029 0.033 0.041 0.036 0.042
V4 -0.051 -0.048 -0.049 -0.061 -0.057 -0.060 -0.070 -0.068 -0.072
Vs 0.013 0.007 0.014 0.015 0.005 0.016 0.017 0.001 0.018
Ve -0.076  -0.068 -0.063 -0.096 -0.089 -0.081 -0.120 -0.118 —0.103
yila 0.030 -0.031 -0.031 0.039  -0.030 —-0.028 0.048 —-0.029 -0.026
yela 0.092 0.103 0.112 0.121 0.136 0.145 0.155 0.179 0.189
yola -1.428 -1.423 -1423 -1.490 -1479 -1479 -1.559 -1.548 -1.549
Yida 0.558 0.451 0.457 0.668 0.547 0.553 0.781 0.656 0.664

TABLE XX. AS=1 Wilson coefficients at u=2 GeV for m,=170 GeV. For u>m . the GIM mechanism
gives z,;=0, i=3,...,10. y;=y,=0.

AR =215 MeV

AR =325 MeV

@) _
AR =435 MeV

Scheme LO NDR HV LO NDR HV LO NDR HV

Zq -0413 -0.268 -0.320 -0480 -0310 -0376 -0.544 0352 —-0.432
) 1.206 1.127 1.157 1.248 1.151 1.191 1.290 1.176 1.227
V3 0.021 0.020 0.019 0.025 0.024 0.023 0.028 0.028 0.027
Y4 -0.041 -0.046 -0.040 -0.047 -0.055 -0.046 -0.053 —-0.063 —0.053
Vs 0.011 0.010 0.012 0.012 0.011 0.013 0.014 0.011 0.015
V6 -0.056 -0.058 -0.047 -0.068 -0.071 -0.057 -0.079 -0.086 —0.068
yqla 0.031 -0.023 -0.020 0.037 -0.019 -0.020 0.042 -0.016 —-0.019
ygla 0.068 0.076 0.084 0.084 0.094 0.102 0.101 0.113 0.121
yola -1357 -1361 -1357 -1393 -1.389 -1389 -1.430 -1.419 -1.423
Yila 0.442 0.356 0.360 0.513 0.414 0.419 0.581 0.472 0.477
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FIG. 5. Wilson coefficients y;(m.)/a and yg(m )/« as functions of m, for A%=325 MeV.

Figs. 5 and 6, where the m, dependence of these coeffi-
cients is shown explicitly. This strong m, dependence
originates in the Z° penguin diagrams. The m, depen-
dence of yq and y o can be conveniently parametrized by
a linear function to an accuracy better than 0.5%. De-
tails of this m, parametrization can be found in Table
XXI. Strictly speaking the m, dependence is a NLO ef-
fect and could in principle be neglected when working at
leading order. Here we have, however, chosen to keep
this nontrivial m, dependence in the Wilson-coefficient
functions also at LO for the sake of comparison with the
NLO results.

Finally, in Tables XVIII-XX one observes again the
usual feature of decreasing Wilson coefficients with in-
creasing scale wu.

F. The AB=1 effective Hamiltonian
including electroweak penguins

Finally we present the Wilson coefficient functions of
the AB=1, AC=0 Hamiltonian, including the effects of
electroweak penguin contributions (Buras et al., 1993b).

These effects play a role in certain penguin-induced
B-meson decays as discussed by Fleischer (1994a,b),
Deshpande et al. (1995), and Deshpande and He (1995).

The generalization of the AB=1, AC=0 Hamiltonian
in pure QCD (Eq. 6.32) to incorporate electroweak pen-
guin operators is straightforward. One obtains

G
Hex(AB=1)= 7; ELC1(m) Q1 (1) + Co() Q5()]

+E[C1 () QY () + Co ) Q%(1)]
10
—gti; c,-w)Q,-(m], (7.37)

where the operator basis now includes the electroweak
penguin operators

3 - i
Qr=3 (bd)v-a2 €y(G@)v+a- (7.38)

3 _
Qszz (bldj)V—Ag e(qi9)v+as

1.7

1.6

1.3

1.2

1 n 1 | n 1 n 1 | i L 1

T 0.9

0,4
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1 .
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FIG. 6. Wilson coefficients yg(m.)/a and yo(m.)/a as a function of m, for A%:SZS MeV.
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TABLE XXI. Coefficients in linear m, parametrization
yila=a+b-(m,/170 GeV) of Wilson coefficients yo/a and yo/a
at scale u=m, for A% = 325MeV.

Yol yile
a b a b
LO 0.189 -1.682 -0.111 0.780
NDR 0.129 -1.611 -0.128 0.676
HV 0.129 -1.611 -0.121 0.676

3 -
Qo=3 (bd)y-s 2 €4(Gq)v-a

3 - _
Qlozi (bidj)vag eq(qui)VfA

in addition to Eq. (6.33). The Wilson coefficients at
pu=m, read

C(my)=Us(my, My ,a)C(My), (7.39)

where Us is the 10 X10 evolution matrix of Eq. (7.22)
for f=5 flavors. The C(My) are given in Egs. (7.3)-
(7.12) in the NDR scheme.

G. Numerical results for the AB =1 Wilson coefficients

Table XXII lists the AB=1 Wilson coefficients for

1,05°,03,...,00 in the mixed case of QCD and
QED. Similar to the AS=1 case, the coefficients for the
current-current and QCD penguin operators Q1,...,05
are only very weakly affected by the extension of the
operator basis to the electroweak penguin operators
07,...,01p. Therefore the discussion of Cy,...,Cq in
connection with Table XIII is also valid for the present
case. Here we therefore we restrict the discussion to the
coefficients C5,...,C, of the operators Q,...,0Qy in the
extended basis.

The coefficients C4,...,C;, show a visible dependence
on the scheme, Ajr, and LO/NLO. However, this de-
pendence is less pronounced for the coefficient Cq than
it is for C;¢10. This is noteworthy since in B-meson de-

Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

cays Cy usually resides in the dominant electroweak-
penguin contribution (Fleischer, 1994a,b; Deshpande
et al., 1995; Deshpande and He, 1995). In contrast to
Cy,...,Cg, the additional coefficients C5,...,Cqq show a
nonnegligible m, dependence in the range m,=(170x15)
GeV. With increasing/decreasing m, there is, similar to
the AS=1 case, a relative variation of O(+19%) and
O(*10%) for the absolute values of Cg and Cg, re-
spectively.

Since the coefficients Cy and C,, play an important
role in B decays, in Fig. 7 we show their m, dependence
explicitly. Again the m, dependence can be param-
etrized by a linear function to an accuracy better than
0.5%. Details of the m, parametrization are given in
Table XXIII.

VIIl. THE EFFECTIVE HAMILTONIAN FOR K, —n’e'e”

The AS=1 effective Hamiltonian for K; —me*e™ at
scales u<m, is given by
6,7V

Gr
Hep(AS=1)=— V:svud[ 2 (A T yi(u)Qip)
V2 i=1

+7Y7u(My)Q74(My) (8.1)
with
V;; th
T=— ViV, (8.2)

A. Operators

In Eq. (8.1) Q, denote the AS=1 current-current and
Q3,...,06 the QCD penguin operators of Eq. (6.3). For
scales u>m ., again, the current-current operators Q1 ,
of Eq. (6.4) have to be taken into account.

The new operators specific to the decay K; —
are

Qrv=(sd)y_4(ee)y,
O74a=(sd)y_a(ee)y.

Vete

(8.3)
(8.4)

TABLE XXII. AB=1 Wilson coefficients at u=n,(m,)=4.40 GeV for m,=170 GeV.

ALI=140 MeV

6)_
AL)=225 MeV

AGL=310 MeV

Scheme LO NDR HV LO NDR HV LO NDR HV

Cy -0273 -0.165 -0202 -0308 -0.18 -0.228 -0339 -0.203 -0.251
C, 1.125 1.072 1.091 1.144 1.082 1.105 1.161 1.092 1.117
C; 0.013 0.013 0.012 0.014 0.014 0.013 0.016 0.016 0.015
C, -0.027 -0.031 -0.026 -0.030 -0.035 -0.029 -0.033 -0.039 -0.033
Cs 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010
Cs -0.033 -0.036 -0.029 -0.038 -0.041 -0.033 -0.043 -0.046 -0.037
Cila 0.042  -0.003 0.006 0.045  -0.002 0.005 0.047  -0.001 0.005
Cgla 0.041 0.047 0.052 0.048 0.054 0.060 0.054 0.061 0.067
Cola -1.264 -1279 -1269 -1280 -1.292 -1283 -1294 -1303 -1.296
Ca 0.291 0.234 0.237 0.328 0.263 0.266 0.360 0.288 0.291
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FIG. 7. Wilson coefficients Co/a and Cg/a at u=m,(m;)=4.40 GeV as a function of m, for A%=225 MeV.

They originate through the y and Z° penguin and box
diagrams of Fig. 2.
It is convenient to introduce the auxiliary operator

Q§V=(a/as)(§d)V,A(e_e)v (8.5)

and to work in the basis Qi,...,Q¢, Q4 for the
renormalization-group analysis. The factor &/, in the
definition of Q7, implies that, in this new basis, the
anomalous-dimension matrix y will be a function of «;
alone. At the end of the renormalization-group analysis,
this factor will be put back into the Wilson coefficient
C,y(u) of the operator Q5 in Eq. (8.3). There is no
need to include a similar factor in Q,,4, as this operator
does not mix under renormalization with the remaining
operators. Since ;4 has no anomalous dimension its
Wilson coefficient is x independent.

In principle one can think of including the elec-
troweak four-quark penguin operators Q-,...,Q, of Eq.
(7.2) in H. of Eq. (8.1). However, their Wilson coeffi-
cients and matrix elements for the decay K; — e e
are both of order O(«), which implies that these opera-
tors eventually would enter the amplitude
A(K,—m'ee™) at O(c?). To the order considered
here this contribution is thus negligible. This should be
distinguished from the case of K—m discussed in Sec.
VIIL. There, in spite of being suppressed by a/a; relative
to QCD penguin operators, the electroweak penguin op-
erators have to be included in the analysis because of

TABLE XXIII. Coefficients in linear m, parametrization
Ci/la=a+b (m/170 GeV) of Wilson coefficients Co/a and
Cp/a at scale u=m,=4.4 GeV for AG} = 225 MeV.

Cg/a Cl()/a
a b a b
LO 0.152 -1.434 —-0.056 0.385
NDR 0.109 -1.403 —-0.065 0.328
HV 0.117 -1.403 -0.062 0.328
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the additional enhancement factor, ReAjReA,=22,
present in the formula for &'/e (see Sec. XIX). Such an
enhancement factor is not present in the K; —7le*e”
case, and the electroweak penguin operators can be
safely neglected.

Through mixing under renormalization, the coeffi-
cients Cs,...,Cs at O(a) and C;y, at O(d?) are affected
by the electroweak four-quark penguin operators. Since
the corresponding matrix elements are O(«) and O(1),
respectivelgf, we again obtain a negligible O(&?) effect in
A(K,—7"e"e”). In summary, the electroweak four-
quark penguin operators Q-,...,04, can safely be ne-
glected in the following discussion of H.;(AS=1) for
K;—mlete.

We also neglect the ‘“magnetic moment” operators.
These operators, being of dimension five, do not influ-
ence the Wilson coefficients of the operators Q,...,0g,
Q-5y, Q4. Since their contributions to K; — 7’ e~ are
suppressed by an additional factor m, strictly speaking
they appear at higher order in chiral perturbation
theory. On the other hand, the magnetic-moment-type
operators play a crucial role in b—s+y and b—dy tran-
sitions, as discussed in Secs. IX and XXII. They also
have to be kept in the decay B— X e e ™.

B. Wilson coefficients

Equations (6.6)—(6.8) remain valid in the case of
K, —m%"e” with U{m,,m,) and M(m,) now denot-
ing 7X7 matrices in the Q1,...,Q¢,07 basis. The Wil-
son coefficients are given by seven-dimensional column
vectors z(u) and ov(w) having components
(z1,---»26,27y) and (vy,...,v6,07y), respectively. Here

ag(u)

k) 2p(p)=——

U;v(l-’v)vaﬂ/(M)v z7v(p)
(8.6)

are the rescaled Wilson coefficients of the auxiliary op-

erator Q7 used in the renormalization-group evolution.
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The initial conditions C{(My),...,Cs(My), z,(My),
z,(My) and z,(m,),...,z¢(m,) for the four-quark op-
erators Q1,...,Q, are readily obtained from Egs. (6.9)-
(6.14), (6.18), and (6.20).

The corresponding initial conditions for the remaining
operators Q4 and Q,, specific to K; — mlete” are

then given in the NDR scheme by

, s(My) | Co(x,)—By(x,)
Cry(My)= “ 27TW 0 sin2¢9W0
~Dy(x,)—=4Cy(x,) (8.7)
and
By(x;) = Co(x,)
C7A(MW)ZY7A(Mw):%% (8.8)

In order to find z7y(m,), which results from the dia-
grams of Fig. 3, we simply have to rescale the NDR
result for z,(m,) in Eq. (7.17) by a factor of -3¢,/
This yields

a,(m.)

ZéV(mc): - 2

F(m,). (8.9)

C. Renormalization-group evolution
and anomalous-dimension matrices

In the rescaled basis Q1,...,Q¢,07y, the anomalous-
dimension matrix vy has, per construction, a pure O(e)
expansion

2

0 S 1
( )+W7( ). ,

aS

V=17 (8.10)
where y'¥ and /! are 7X7 matrices. The evolution ma-
trices Uy(m,,m,) in Egs. (6.7) and (6.8) are, for the
present case, simply given by Egs. (6.24) and (3.94)-
(3.98).

The 6X6 submatrix of ¥ involving the operators
Q1,...,0¢ has already been given in Eq. (6.25). Here we
only give the remaining entries of %) related to the ad-

ditional presence of the operator Q7

16 16

W= N A=
16 d 1 16 d

75%)__?N(”_5_N)’ 7507)“9(“7”)’
16 d 16 d

=g M3 7(6%)“7(“—5’

(0) 22 (0)
777__2,30—_ N+x f v =0 i=1...6, (8.11)

where N denotes the number of colors. These elements
have been first calculated by Gilman and Wise (1980),
except that ¥{9 and y{) have been corrected by Eeg and
Picek (1988) and Flynn and Randall (1989a).

The 6X6 submatrix of YV involving the operators
Q4,...,0¢ has already been presented as 7§1) in Eq.
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(6.26), and the seventh column of Y is given as follows
in the NDR scheme (Buras et al., 1994a),

8

" =3 (1=N?), (8.12)
200 1

W= (N,

T DA PV Y B

At T v

w280 641 8

Ya7 81 g N g( )s

8 d
=3 (u—z)a—Nz),

(1) 440—dﬁ N—l
Yo7 81 81 N

" 68 , 20
’)/77__2B]___N +_Nf+4Cpf

Y=0, i=1,..6,

where C=(N?—1)/(2N). The corresponding results in
the HV scheme are given by Buras et al. (1994a).

D. Quark-threshold matching matrix

For the case of K, —m'e*e” the matching matrix
M(m) in the basis Q1,...,Q4,07, has the form

ay(m)
4

M(m)=1+ orl, (8.13)
where 1 and 6r [ are 7X7 matrices and m is the scale of
the quark threshold.

The 6X6 submatrix of M(m) involving Q,...,Q¢ has
been given in Eq. (6.28). The remaining entries of &r,
can be found from the matrix §r, given in Egs. (7.32)
and (7.34) by making a simple rescaling by —3«,/«, as in
the case of z;(m,).

In summary, for the quark threshold m =m,, , the ma-

trix Or; is

000 0 0 0 0
0

20

000 0 0 0 -=
9

0o S 55 5

Sry= 27 9 27 9 27|, (314)

20

000 0 0 0 -—=
9

5 55 5 2
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TABLE XXIV. K; — % e~ Wilson coefficients for O7v.4 at u=1 GeV for m,;=170 GeV. The
corresponding coefficients for Q1,...,0¢ can be found in Table X.

AQ =215 MeV

AR =325 MeV

4
AG) =435 MeV

Scheme LO NDR HV LO NDR HV LO NDR HV

Z7yla -0.014  -0.015 0.005 -0.024 -0.046 -0.003 -0.035 -0.084 -0.011
yovla 0.575 0.747 0.740 0.540 0.735 0.725 0.509 0.720 0.710
Yyala -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700  -0.700

For m=m, the seventh column of ér, in Eq. (8.14) has
to be multiplied by 2.

E. Numerical results for the K, —n’e e~
Wilson coefficients

In the case of K; — e " e, for which 7%)): 7%):0,
i=1,....,6,in Eqgs. (8.11) and (8.12), respectively, the RG
evolution of Qy,...,0¢ is completely unaffected by the
additional presence of the operator Q;y. The
K;—me*e” Wilson coefficients z; and y,, i=1,... 6,
with u=1 GeV can therefore be found in Table X of Sec.
VL

The K; —7’¢"e~ Wilson coefficients for the remain-
ing operators O,y and Q54 are given in Table XXIV.
Some insight into the analytic structure of y, will be
gained by studying the analogous decay B— X,e"e™ in
Sec. X and also in Sec. XXI, where the phenomenology
of K; — 7" e will be presented.

In Table XXV we show the u dependence of 7/«
and y;,/a. We find a pronounced scheme dependence
and u dependence for z;y,. This signals that these depen-
dences have to be carefully addressed in the calculation
of the CP-conserving part in the K; —m’ee™ ampli-
tude. On the other hand, the scheme and p dependences
for y;y are below O(1.5%). Similarly, z;, shows a
strong dependence on the choice of the QCD scale
Asrs, while this dependence is small or absent for y;y,
and y, 4, respectively.

Finally, as seen from Eq. (8.9), z;y is independent of
m,. However, with increasing/decreasing m, in the range
m,=(170x15) GeV, there is a relative variation of

O(%£3%) and O(+14%) for the absolute values of y;y
and y, 4, respectively. This is illustrated further in Fig. 8
and Table XXVI, where the m, dependence of these
coefficients is shown explicitly. Accidentally, for m,~175
GeV one finds |y;y|~|y74|. Most importantly, the im-
pact of NLO corrections is to enhance the Wilson coef-
ficient y;y, by roughly 25%. As we will see in Sec. XXI,
this implies an enhancement of the direct CP violation
in K, »ml"e".

IX. THE EFFECTIVE HAMILTONIAN FOR B— X vy

The effective Hamiltonian for B— X,y at scales
u=0(m,) is given by

Heg(b—s7y)

——QV*V %C +C
==, VeVl & () Qi(p)+Cr () Q7. (1)

+Csa(u)Qsa(m) |, (9.1)

where, in view of |V} V,,/ViV,,|<0.02, we have ne-
glected the term proportional to V3.V, .

A. Operators
The complete list of operators is given as follows
QlZ(S_iCj)V—A(C_jbi)v—A > 9.2)

Qr=(sc)y_alchb)y_4,

TABLE XXV. K; —7’"e™ Wilson coefficients z,y/a and y,/a for m,=170 GeV and various

values of u.

A3=215 MeV A3 =325 MeV A3=435 MeV
Scheme LO NDR HV LO NDR HV LO NDR  HV
© [GeV] z7yla
0.8 -0.031 0029 0004 -0.053 -0.081 -0.012 -0077 -0.149 -0.023
1.0 -0.014 -0.015 0005 -0.024 -0.046 -0.003 -0.035 -0.084 -0.011
12 -0.004 0009 0002 -0.006 -0.029 0 -0.009 -0.051  -0.002
n [GeV] yovia
0.8 0578 0751 0744 0545 0739 0730 0514 0722 0712
1.0 0575 0747 0740 0540 0735 0725 0509 0720 0710
12 0571 0744 0736 0537 0731 0721 0505 0716  0.706
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Q5:(§b)V—A§ (@@ v+a,
Qéz(gibj)vazq: (Ciqu‘)v+A,

€ _
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Qsc=gz mpsio""(1+ ¥s) Tib; G4, -

The current-current operators Q,, and the QCD pen-
guin operators Qj,...,0Q¢ are already contained in the
A B=1 Hamiltonian presented in Sec. VL.F. The new op-
erators 07, and Qgg, specific for b—sy and b—sg tran-
sitions, carry the name of magnetic penguin operators.
They originate from the mass insertion on the external
b-quark line in the QED and QCD penguin diagrams of
Fig. 4(d), respectively. In view of m <m;, we do not
include the corresponding contributions from mass in-
sertions on the external s-quark line.

B. Wilson coefficients

A very peculiar feature of the renormalization-group
analysis of the set of operators in Eq. (9.2) is that the
mixing under (infinite) renormalization between the set

TABLE XXVI. K; —7’e*e” Wilson coefficients y;y/a and y 4/a for u=1.0 GeV and various values

of m,.
yavla
AJ =215 MeV AJ=325 MeV A =435 MeV

m[GeV] LO NDR HV LO NDR HV LO NDR HV yjla
150 0546 0719 0711 0512 0706 0697 0481 0692 0681 -0.576
160 0560 0733 0726 0526 0721 0711 0495 0706 0.696 -0.637
170 0575 0747 0740 0540 0735 0725 0509 0720 0710  -0.700
180 0588 0761 0753 0554 0748 0739 0523 0734 0723 -0.765
190 0601 0774 0766 0567 0761 0752 0536 0747 0736 -0.833
200 0614 078 0779 0580 0774 0764 0549 0760 0749  -0.902
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Q1,...,0¢ and the operators Q5,,03; vanishes at the
one-loop level. Consequently, in order to calculate the
coefficients C7,(u) and Cgg(u) in the leading logarith-
mic approximation, two-loop calculations of O(eg?) and
O(g?) are necessary. The corresponding NLO analysis
requires the evaluation of the mixing in question at the
three-loop level. In view of this new feature it is useful
to include additional couplings in the definition of Q5,
and Qg as done in Eq. (9.2). In this manner the entries
in the anomalous-dimension matrix representing the
mixing between Q1,...,0¢ and Q7,,03 at the two-loop
level are O(g?) and enter the anomalous-dimension ma-
trix y{"). Correspondingly, the three-loop mixing be-
tween these two sets of operators enters the matrix 751).
The mixing under renormalization in the sector
07,,03¢ proceeds in the usual manner, and the corre-
sponding entries in y{”) and (! result from one-loop
and two-loop calculations, respectively.

At present, the coefficients C;, and Cgg; are only
known in the leading logarithmic approximation. Conse-
quently, we are in the position to give here only their
values in this approximation. The work on NLO correc-
tions to C7, and Cg is in progress, and we will summa-
rize below what is already known about these correc-
tions.

Due to the peculiar features of this decay mentioned
above, the first fully correct calculation of the leading
anomalous-dimension matrix has been obtained only in
1993 (Ciuchini, Franco, Martinelli, Reina, and Silves-
trini, 1993; Ciuchini, Franco, Reina, and Silvestrini
1994). It is instructive to clarify this right at the begin-
ning. We follow here Buras, Misiak, Munz, and Pokorski
(1994).

The point is that the mixing between the sets
0i,...,0¢ and Q7,, Qg in {9 resulting from two-loop
diagrams is generally regularization-scheme dependent.
This is certainly disturbing because the matrix y§,°>, be-
ing the first term in the expansion for 7,, is usually
scheme independent. There is a simple way to circum-
vent this difficulty (Buras, Misiak, Miunz, and Pokorski,
1994).

As noticed by Ciuchini, Franco, Martinelli, Reina, and
Silvestrini (1993) and Ciuchini, Franco, Reina, and Sil-
vestrini (1994), the regularization-scheme dependence
of yﬁo) in the case of b—s+y and b—sg is signaled in the
one-loop matrix elements of Q1 ,...,Q¢ for on-shell pho-
tons or gluons. They vanish in any four-dimensional
regularization scheme and in the HV scheme, but some

(Qi)gne loop:yi<Q7y>treea i=1,...6, (93)

and

(Qi)gne loop:Zi<Q8G>treea i=1,...,6. (94)

In the HV scheme all the y,’s and z,’s vanish, while in
the NDR scheme y=(0,0,0,0,-%,—1) and z=(0,0,0,0,1,0).
This regularization-scheme dependence is canceled by a
corresponding regularization-scheme dependence in
v as first demonstrated by Ciuchini, Franco, Marti-
nelli, Reina, and Silvestrini (1993) and Ciuchini, Franco,
Reina, and Silvestrini (1994). It should be stressed that
the numbers y; and z; come from divergent, i.e., purely
short-distance, parts of the one-loop integrals. So no ref-
erence to the spectator model or to any other model for
the matrix elements is necessary here.

In view of all this it is convenient in the leading order
to introduce the so-called “effective coefficients” (Bu-
ras, Misiak, Munz, and Pokorski, 1994) for the operators
07, and Qg, which are regularization-scheme indepen-
dent. They are given as follows:

6

CH ) =C) )+ 2 yi €l (), 95)
and
6
CL6™ ()= Cig(m)+ 2, 2,67 (), (9.6)

One can then introduce a scheme-independent vector

c<0>eff(u):(cﬁ(’)(m,...,ch’w),c;?effw,cg%e“(m(). )
9.7

From the renormalization-group equations (RGE) for
CO(pw), it is straightforward to derive the RGE for
CO%M(y). Tt has the form

d a
w m CZ(O)eff(M): E ,y]('?)effC](O)eff(M)’ (98)

of them are nonzero in the NDR scheme. One has where

|
6

0 0 0 0 . .

7;'7)+k§l YeYR =y v =7, j=1....6
(0)eff_ 6
Yji - 0 0 0 . . (99)
! 7,(3)+](21 zky}k)—zjyég), i=8, j=1,...6

7](?) , otherwise.
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The matrix ¥y is a scheme-independent quantity. It
equals the matrix that one would obtain directly from
two-loop diagrams in the HV scheme. In order to sim-
plify the notation we will omit the label ‘“‘eff” in the
expressions for the elements of this effective one-loop
anomalous-dimension matrix given below and keep it
only in the Wilson coefficients of the operators 0, and
Osc-

This discussion clarifies why it took so long to find the
correct leading anomalous-dimension matrix for the
b—svy decay (Ciuchini, Franco, Martinelli, Reina, and
Silvestrini, 1993; Ciuchini, Franco, Reina, and Silves-
trini, 1994). All previous calculations (Cella et al., 1990;
Grinstein et al., 1990; Adel and Yao, 1993, 1994; Misiak
1993) of the leading-order QCD corrections to b—svy
used the NDR scheme but unfortunately set z; and y; to
zero, or did not include all operators or made other mis-
takes. The discrepancy between the calculation of Grig-
janis et al. (1988) (DRED scheme) and Grinstein et al.
(1990) (NDR scheme) has been clarified by Misiak
(1994).

C. Renormalization-group evolution
and anomalous-dimension matrices

The coefficients C;(x) in Eq. (9.1) can be calculated
by using

C(1)=Us( . My) C(My). (9.10)

Here Us(u,Myy,) is the 8X8 evolution matrix, which is
given in general terms in Eq. (3.93), with y being the
8X8 anomalous-dimension matrix. In the leading order
Us(u,My) is to be re g)laced by U (u,My,) and the
initial conditions by C! (M w), given by Grinstein et al.

(1990)
CY(My)=1, (9.11)

O 11 3x;—2x? —8x7—5x2+7x,

M) = g — M T o 1)

=—5 Do(x) (912)

O = —3x? | —x}+5x742x,

8G( W)_4(xt_1)4 et R

1 !

==75 Eq(x) (9.13)

with all remaining coefficients being zero at u=My, . The
functions D((x,) and E(x,) are sometlmes used in the
literature. The 6X6 submatrix of ys 1nvolv1ng the op-
erators Q1,...,Qg is given in Eq. (6.25). Here we only
give the remaining nonvanishing entries of 75,0) (Ciu-
chini, Franco, Martinelli, Reina, and Silvestrini, 1993;
Ciuchini, Franco, Reina, and Silvestrini, 1994).

For s1mphclty we define the notation y;;=(y,);;. Then
the elements 7 ) with i=1,....6 are
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104
) 116 0)_ 104 58
V=T 57 Cr, vy= 57 u—ﬁd Cr, (9.15)
8 50 112
Y =3 Cr. 7&2)=(ﬁ d= > u|Cp. (9.16)
The elements y(o) with i=1,...,6 are
11 29 1
}/(%)_ 3, )/(zg)zg N— ? N, (9.17)
O)_22N 58 1 3 O0_¢ 11N 291
758 g N—g N3 rw=6+ B
(9.18)
4 16 251
W =—2N+ =3, 72?;)——4—<3N—3N)
(9.19)

Finally, the 2X2 one-loop anomalous-dimension ma-
trix in the sector Q5,,0Q5 is given by (Grinstein et al.,
1990)

7%7)_ 8Cp, 7(7%)_0

8
W'=—3Cr. ¥&'=16C;—4N. (9.20)

As we discussed above, the first correct calculation of
the two-loop mixing between Q;,...,Q¢ and 07,,05¢
has been presented by Ciuchini, Franco, Martinelli,
Reina, and Silvestrini (1993) and Ciuchini, Franco,
Reina, and Silvestrini (1994) and confirmed subse-
quently by Cella et al. (1994a, 1994b) and Misiak (1995).
In order to extend these calculations beyond the leading
order one would have to calculate y{" [see Eq. (3.92)]
and O(«a,) corrections to the initial conditions in Egs.
(9.12) and (9.13). We summarize below the present sta-
tus of this NLO calculation.

The 6X6 two-loop submatrix of y{!) involving the op-
erators Q1,...,Q¢ is given in Eq. (6.26). The two-loop
generalization of Eq. (9.20) has been calculated only last
year (Misiak and Miungz, 1995). It is given for both NDR
and HV schemes as follows:

0 . (548 56
Y17 =Cpl o N=16Cp— o f |,
9 9
Vi =0,
0 404 32 56
Y57 =Cr _7N+ Cpt 27f
) _ 458 12+214 2+56 f 13 N 91
Vs 9 N2 9 9 N f ( )

The generalization of Egs. (9.14)—(9.19) to next to
leading order requires three-loop calculations, which
have not been done yet. The O(a,) corrections to
C7,(My) and Cg;(My) have been considered by Adel
and Yao (1993).
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TABLE XXVII. Numerical constants in the expansion of C,(O) (w), C%Q/) (My), and C{2(My).

i 1 2 3 4 5 6 7 8
a; 14 16 6 12 0.4086 —-0.4230 —-0.8994 0.1456
23 23 23 23
1 1
0 0 ~ - 0 0 0 0
klz 2 7
1 1
0 0 — — 0 0 0 0
k21 2 2
ks, 0 0 - 11—4 % 0.0510 —-0.1403 -0.0113 0.0054
kg 0 0 —11—4 — é 0.0984 0.1214 0.0156 0.0026
ks; 0 0 -0.0397 0.0117 —-0.0025 0.0304
ke; 0 0 0 0 0.0335 0.0239 —-0.0462 -0.0112
h; 2.2996 —-1.0880 — ; - 11—4 —0.6494 —-0.0380 —0.0185 —-0.0057
I, 0.8623 0 0 0 -0.9135 0.0873 -0.0571 0.0209

D. Results for the Wilson coefficients

The leading-order results for the Wilson coefficients
of all operators entering the effective Hamiltonian in
Eq. (9.1) can be written in an analytic form. They are
(Buras, Misiak, Munz, and Pokorski, 1994)

8
C(m)=2 ki (j=1,...6), (922)
8
Cg(;)eff(/.l,)z 7]16/23C(O)(MW)+ ( 14/23 _ 16/23)
8
<°><MW)+c<°>(MW)E hin,
(9.23)

8
Cgﬂ();eff(lu): 7714/23C§§()C}(MW)+C(20)(MW)21 ],;i”ai,
T 024
with
ay(My)
a(p)

and C%)(MW) and C {Q(My,) given in Egs. (9.12) and
(9.13), respectively. The numbers a;, k;;, h;, and h; are
given in Table XXVII.

n= (9.25)

ji

E. Numerical analysis

The decay B— X, is the only decay in this review for
which the complete NLO corrections are not available.
In presenting the numerical values for the Wilson coef-
ficients a few remarks on the choice of ¢, should there-
fore be made. In the leading order, the leading-order
expression for «, should be used. The question then is
what to use for Agcp in this expression. In other decays
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for which NLO corrections were available, this was not
important because LO results were secondary. We have
therefore simply inserted our standard Ay values into
the LO formula for «,. This procedure gives
a (M 4)=0.126, 0.136, and 0.144 for AL = 140 MeV,
225 MeV, and 310 MeV, respectively. In view of these
high values of a{(M,) we will here proceed differ-
ently. Following Buras, Misiak, Munz, and Pokorski
(1994), we will use a (M ,)=0.110, 0.117, and 0.124 as
in the NLO calculations, but we will evolve a,(w) to
u~0O(m,) using the leading-order expressions. In short,
we will use

a,(Mz)
1= Boa,(Mz)2m In(M 5 /p)

This discussion shows again the importance of the com-
plete NLO calculation for this decay.

Before starting the discussion of the numerical values
for the coefficients C %Mf and C{ let us illustrate the
relative numerical importance of the three terms in Eq.
(9.23) for C)<M.

For instance, for m,=170 GeV, u=5 GeV, and
a (M ,)=0.117, one obtains

COM( 1) =0.698C)(M ) +0.086CEA( M y)

a,(p)= (9.26)

—0.156C (M)
=0.698(—0.193) + 0.086( — 0.096) — 0.156
=—0.299. (9.27)

In the absence of QCD we would have C%O)cff(,u)
=C $°>(M w) (1n that case one has 77—1) Therefore the
domlnant term in the above expression [the one propor-
tional to C (M y,)] is the additive QCD correction that
causes the enormous QCD enhancement of the b—svy
rate (Bertolini ef al., 1987; Deshpande et al., 1987). It
originates solely from the two-loop diagrams. On the
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TABLE XXVIII. Wilson coefficients cg"fff and Cg%)eff for m,=170 GeV and various values of

a® (M) and p.

a® (M ,)=0.110

a®(M,)=0.117

a® (M )=0.124

“ [GGV] Cg(]y)eff ng eff Cg/(‘)y)eff Cg(g eff Cg(]y)eff Cé()cg eff
2.5 -0.323 -0.153 -0.334 -0.157 —-0.346 -0.162

5.0 -0.291 -0.140 -0.299 -0.143 -0.307 -0.147

7.5 -0.275 -0.133 -0.281 -0.136 -0.287 -0.139

10.0 —-0.263 -0.129 -0.268 -0.131 -0.274 -0.133

other hand, the multiplicative QCD correction (the fac-
tor 0.698 above) tends to suppress the rate but fails in
the competition with the additive contributions.

In the case of nge“ a similar enhancement is ob-
served,

COM(1)=0.730C (M ) —0.073C (M yy)
=0.730( —0.096) —0.073=—0.143.  (9.28)

In Table XXVIII we give the values of Cgoy)eff and
Cg%eff for different values of w and a(®(M,). To this
end Eq. (9.26) has been used. A strong u dependence of
both coefficients is observed. We will return to this de-
pendence in Sec. XXII.

X. THE EFFECTIVE HAMILTONIAN FOR B—X e e~

The effective Hamiltonian for B— X,e"e™ at scales
u=0(m,) is given by

He(b—se e )=Hey(b—s7y)

e Te
WL wl Cop(p) Qoy( )
+ Cioa(p) Qioa(p)], (10.1)

where again we have neglected the term proportional to
ViV and He(b—sy) is given in Eq. (9.1).

us
A. Operators
In addition to the operators relevant for B— X,

there are two new operators

Qoy=(sD)y_4lee)y, Qioa=(sb)y_4(ee)a,
(10.2)

where V and A refer to y, and y,ys, respectively.

They originate in the Z° and y penguin diagrams with
the external ee of Fig. 4(f) and the corresponding box
diagrams.

B. Wilson coefficients

The coefficient Cyy4(w) is given by
Yo(x,)
sin’@

(10.3)
with Yy(x) given in Eq. (10.8). Since Qo4 does not
renormalize under QCD, its coefficient does not depend
on u~QO(m,). The only renormalization-scale depen-
dence in Eq. (10.3) enters through the definition of the
top-quark mass. We will return to this issue in Sec.
XXIII.C.

The coefficient Cqy () has been calculated with in-
creasing precision by several groups (Grinstein et al.,
1989; Grigjanis et al., 1989; Cella et al., 1991; Misiak,
1993), culminating in two complete next-to-leading-
order QCD calculations (Buras and Munz, 1995; Misiak,
1995) that agree with each other.

In order to calculate the coefficient Cgy including
next-to-leading-order corrections, we have to perform,
in principle, a two-loop renormalization-group analysis
for the full set of operators contributing to Eq. (10.1).
However, Oy, is not renormalized, and the dimension-
five operators Q;, and Qg have no impact on Cyy.
Consequently, only a set of seven operators, Q,...,QOg
and Qgy, has to be considered. This is precisely the case
of the decay K; — e *e™ discussed by Buras, Lauten-
bacher, Misiak, and Munz (1994) and in Sec. VIII, ex-
cept for an appropriate change of quark flavors and that
now u~QO(m,) instead of u~O(1 GeV). Since the NLO
analysis of K; — 7 ¢ e ™ has already been presented in

a - -
C10A(MW):ﬁC10(MW), Cio(My)=—

TABLE XXIX. Numerical constants in the expansion of Py and Pf.

i 1 2 3 4 5 6 7 8

Di 0 0 - ﬁ E 0.0433 0.1384 0.1648 —-0.0073
203 33

rNPR 0 0 0.8966 —-0.1960 -0.2011 0.1328 —-0.0292 -0.1858

S; 0 0 -0.2009 -0.3579 0.0490 -0.3616 —-0.3554 0.0072

q; 0 0 0 0 0.0318 0.0918 -0.2700 0.0059

riv 0 0 -0.1193 0.1003 —-0.0473 0.2323 —-0.0133 —-0.1799
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TABLE XXX. The coefficient P, of C o for various values of A% and u.

AGL=140 MeV

AGL=225 MeV

5
AGL=310 MeV

n [GeV] LO NDR HV LO NDR HV LO NDR HV
2.5 2.053 2.928 2,797 1.933 2.846 2.759 1.835 2.775 2.727
5.0 1.852 2.625 2.404 1.788 2.591 2.395 1.736 2.562 2.388
7.5 1.675 2.391 2127 1.632 2.373 2.127 1.597 2.358 2.128
10.0 1.526 2.204 1.912 1.494 2.194 1.917 1.469 2.185 1.921

Sec. VIII, we will only give the final result for Cgy(u).
Because there is a one-step evolution from u=M;, down
to u=m, without any thresholds in between, it is pos-
sible to find an analytic formula for Cyy,(w). Defining Cy
by

Covl)= 5 Colp), (10.4)

one finds (Buras and Miunz, 1995) in the NDR scheme
Yolx,)
sin’@

CgNDR(M)ZPONDR+ —4Zy(x)+PrEy(x,)
(10.5)
with
8

PyPR= —0.1875+ >, pin“i*! | +1.2468
i=1

as(MW)
8

+El nilr} PR+ 5],
P

8
Pr=0.1405+ >, q;7%"".
i=1

(10.6)

(10.7)

The functions Y(x) and Z,(x) are defined by

Yo(x)=Co(x)=By(x), Zy(x)=Co(x)+5Dg(x)
(10.8)

with By(x), Cy(x), and Dy(x) given in Egs. (7.13),
(7.14), and (7.15), respectively. Eq(x) is given in Eq.
(6.15). The powers a; are the same as in Table XXVII.
The coefficients p;, r"°R, s;, and ¢, can be found in
Table XXIX. Py is O(1072), and consequently the last
term in Eq. (10.5) can be neglected, although we keep it
in the numerical analysis. These results agree with Mi-
siak (1995).

In the HV scheme, only the coefficients r; are
changed. They are given on the last line of Table XXIX.
Equivalently, we can write

PE=PNPR4 & +(3C0+ V- c©—-3C)  (10.9)
with
3 0 k=NDR
£ - L renv (10.10)
We note that
g 8
> pi=01875, 3 q;=—0.1405, (10.11)
i=1 i=1
8 4
2 (rff—}-si): —1.2468+ § (1 +§k)v
=1
8
16
> pilai+1)=——. (1012)
=1 69

In this way for #=1, one finds P =0, PONDR=4/9, and
P{V=0, in accordance with the initial conditions at
pu=My,. Moreover, the second relation in Eq. (10.12)
assures the correct large logarithm in P)PR
ie., $In(My/w).

The special feature of Cgy(n) compared to the coef-
ficients of the remaining operators contributing to
B—X,e e is the large logarithm represented by 1/a
in Py in Eq. (10.6). Consequently, the renormalization-
group improved perturbation theory for C,yy has the
structure O(1/a,)+O(1)+O(a,)++-+, whereas the corre-
sponding series for the remaining coefficients is
O(1)+O(ay)+:-- . Therefore, in order to find the next-to-
leading O(1) term in the branching ratio for
B—X,e"e™, the full two-loop renormalization-group
analysis has to be performed in order to find Cgy, but
the coefficients of the remaining operators should be
taken in the leading logarithmic approximation. This is
gratifying because the coefficient of the magnetic opera-
tor O, is known only in the leading logarithmic ap-
proximation.

>

TABLE XXXI. Wilson coefficient C o for m,=170 GeV and various values of A% and u.

5
AL)=140 MeV

AL)=225 MeV

ALI=310 MeV

m [GeV] LO NDR HV LO NDR HV LO NDR HV

2.5 2.053 4.493 4.361 1.933 4.410 4.323 1.835 4.338 4.290
5.0 1.852 4.191 3.970 1.788 4.156 3.961 1.736 4.127 3.954
7.5 1.675 3.958 3.694 1.632 3.940 3.694 1.597 3.924 3.695
10.0 1.526 3.772 3.480 1.494 3.761 3.485 1.469 3.752 3.488
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C. Numerical results

In the numerical analysis we will use the two-loop ex-
pression for «, and the parameters collected in the Ap-
pendix. Our presentation follows closely the one given
by Buras and Munz (1995).

In Table XXX we show the constant P, in Eq. (10.6)
for different x and Ayx in the leading order, corre-
sponding to the first term in Eq. (10.6), and for the NDR
and HV schemes as given by Egs. (10.6) and (10.9), re-
spectively. In Table XXXI we show the corresponding
values for Cy(u). To this end we set m,=170 GeV.

We observe

(i) The NLO corrections to P, enhance this constant
relative to the LO result by roughly 45% and 35% in the
NDR and HV schemes, respectively. This enhancement
is analogous to the one found in the case of
K, —mlete .

(ii) In calculating P in the LO we have used o, (u) at
one-loop level. Had we used the two-loop expression for
a,(w), we would find, for u=5 GeV and A} = 225 MeV,
P§9~1.98. Consequently, the NLO corrections would
have smaller impact. Grinstein et al. (1989), including
the next-to-leading term 4/9, would find P, roughly 20%
smaller than the PND R given in Table XXX.

(iii) It is tempting to compare P in Table XXX with
that found in the absence of QCD corrections. In the
limit a,—0 we find PYPR=SIn(M/u)+4/9 and

pivV=8 ln(M wlw), which, for u=5 GeV, give PYPR=2.91
and P{'V=2.46. Comparing these values with Table
XXX, we conclude that the QCD suppression of P,
present in the leading-order approximation is consider-
ably weakened in the NDR treatment of s after the
inclusion of NLO corrections. It is essentially removed
for u>5 GeV in the HV scheme.

(iv) The NLO corrections to Co, which also include
the m,-dependent contributions, are large as seen in
Table XXXI The results in HV and NDR schemes are
more than a factor of two larger than the leading-order
result Cy=P5°, which should not include m, contribu-
tions. This demonstrates very clearly the necessity of
NLO calculations that allow a consistent inclusion of the
important m, contributions. For the same set of param-
eters, Grlnsteln et al. (1989) would find C, to be smaller
than CNDR by 10-15%.

(v) The Ay dependence of C, is rather weak. On the
other hand, its u dependence is sizable (~15% in the
range of u considered), although smaller than that of the
coefficients C5, and Cgg given in Table XXVIIL. We
also find that the m, dependence of Cy is rather weak.
Varying m, between 150 GeV and 190 GeV changes Cy
by at most 10%. This weak m, dependence of Cy origi-
nates in the partial cancellation of m, dependences
between Y(x,) and Zy(x,) in Eq. (10.5), as already
seen in the case of K;—me’e” in Flg 8. Finally,
the difference between C)PR and C sV is small and
amounts to roughly 5%.

(vi) The dominant m, dependence in this decay origi-
nates from the m, dependence of C;o(My). In fact, as
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can be seen in Sec. VIIL, C,o(My) =27y, 4/, with y,
present in K; — 7’ e . The m, dependence of y,, is
shown in Fig. 8.

XI. EFFECTIVE HAMILTONIANS FOR RARE K
AND B DECAYS

A. Overview

In the present section we will summarize the effective
Hamiltonians valid at next to leading logarithmic accu-
racy in QCD, which describe the semileptonic, rare fla-
vor changing neutral current (FCNC) transitions
K '—at vy, (K;—»u'uw)sp, K;p—mvo, B—X; 4vv,
and B—1"1". These decay modes all are very similar in
their structure, and it is natural to discuss them together.
On the other hand, they differ from the decays K—
K—mete ,B—X,y,and B—X,e e discussed in pre-
vious sections. Before giving the detailed formulas, it
will be useful to recall the most important general fea-
tures of this class of processes first. In addition, charac-
teristic differences between the specific modes will also
become apparent from the presentation.

(i) Within the standard model all the decays listed
above are loop-induced semileptonic FCNC processes
determined by Z° penguin and box diagrams [Figs. 2(d)
and 2(e)].

In particular, a distinguishing feature of the present
class of decays is the absence of a photon penguin con-
tribution. For the decay modes with neutrinos in the fi-
nal state this is obvious, since the photon does not
couple to neutrinos. For the mesons decaying into a
charged lepton pair the photon penguin amplitude van-
ishes due to vector current conservation.

An important consequence is that the decays consid-
ered here exhibit a hard Glashow-Iliopoulos-Maiani
(GIM) suppression, quadratic in (small) internal quark
masses, which is a property of the Z° penguin and box
graphs. By contrast, the GIM suppression resulting from
photon penguin contributions is logarithmic. Decays
where the photon penguin contributes are, for example,
K,—me*e” and B—X,e"e . The differences in
the basic structure of these processes, resulting from the
different pattern of GIM suppression, are the reason
why we have discussed K; —me*e” and B—X,ete”
in a separate context.

(ii) The investigation of low-energy rare-decay pro-
cesses allows one to probe, albeit indirectly, high-energy
scales of the theory. Of particular interest is the sensitiv-
ity to properties of the top quark: its mass m, and its
CKM couplings V,, and V.

(iii) A particular and very important advantage of the
processes under discussion is that theoretically clean
predictions can be obtained. The reasons for this are

(a) The low-energy hadronic matrix elements re-
quired are just the matrix elements of quark currents
between hadron states, which can be extracted from the
leading (nonrare) semileptonic decays. Other long-
distance contributions are negligibly small.
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An exception is the decay K; —u*"u”, which has im-
portant contributions from the two-photon intermediate
state, which are difficult to calculate reliably. However,
the short-distance part (K; —u*u )gp alone, which we
shall discuss here, is on the same footing as the other
modes. The essential difficulty for phenomenological ap-
plications then is to separate the short-distance from the
long-distance piece in the measured rate.

(b) According to the comments just made, the pro-
cesses at hand are short-distance processes, calculable
within a perturbative framework, possibly including
renormalization-group improvement. The necessary
separation of the short-distance dynamics from the low-
energy matrix elements is achieved by means of an op-
erator product expansion. The scale ambiguities, inher-
ent to perturbative QCD, essentially constitute the only
theoretical uncertainties present in the analysis. These
uncertainties are well under control, as they may be sys-
tematically reduced through calculations beyond leading
order.

(iv) The points made above emphasize that the short-
distance-dominated loop-induced FCNC decays provide
highly promising possibilities to investigate flavor dy-
namics at the quantum level. However, the very fact that
these processes are based on higher-order electroweak
effects, which makes them interesting theoretically, im-
plies that the branching ratios will be very small and not
easy to access experimentally.

The effective Hamiltonians governing the decays
Kt'—a vy, (Kp—p'w)sp, K —m'vv, B—X, v,
and B—I"[", resulting from the Z’-penguin and box-
type contributions, can all be written down in the follow-
ing general form

GF (04
Heff_z T sin’0, [NF(xo)+NF(x,)]

X(nn")y_a(rr)y_a, (11.1)

where n,n’ denote down-type quarks (n,n’'=d,s,b but
n#n') and r leptons, r=1,v; (I=e,u,7). The \; are
products of CKM elements, in the general case \;
= V¥V, . Furthermore, x,=m /M 3,.

The functions F(x;) describe the dependence on the
internal up-type quark masses m; (and on lepton masses
if necessary) and are understood to include QCD cor-
rections. They are increasing functions of the quark
masses, a property that is particularly important for the
top contribution.

Crucial features of the structure of the Hamiltonian
are furthermore determined by the hard GIM suppres-
sion characteristic for this class of decays. First we note
that the dependence of the Hamiltonian on the internal
quarks comes in the form

2 NFO)=NF(x) = Fx,)) M (F(x) = F(x,),
; 11.2)

where we have used the unitarity of the CKM matrix.
Now, hard GIM suppression means that for x<1 F be-
haves quadratically in the quark masses. In the present
case we have
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TABLE XXXII. Order of magnitude of CKM parameters rel-
evant for the various decays, expressed in powers of the
Wolfenstein parameter A=0.22. In the case of K;—7vv,
which is CP violating, only the imaginary parts of A, , contrib-
ute.

K —atvy B—X,vv B—X,vv
(K;—utw)sp Kp—7°vip B,—IT1" By—I%I"
Ae ~\ (TmA,~\%) ~\? ~\3
N ~N’ (Imx,~\%) ~\? ~\3
F(x)~x Inx, for x<1. (11.3)

The first important consequence is that F(x,)~0 can be
neglected. The Hamiltonian acquires the form antici-
pated in Eq. (11.1). It effectively consists of a charm and
a top contribution. Therefore the relevant energy scales
are My or m, and, at least, m_., which are large com-
pared to Agcp . This fact indicates the short-distance na-
ture of these processes.

A second consequence of Eq. (11.3) is that
F(x.)/F(x,)~O(107)<1. Together with the weighting
introduced by the CKM factors, this relation determines
the relative importance of the charm versus the top con-
tribution in Eq. (11.1). As seen in Table XXXII a simple
pattern emerges if one writes down the order of magni-
tude of A, and A, in terms of powers of the Wolfenstein
expansion parameter .

For the CP-violating decay K; — w v and the B de-
cays, the CKM factors A\, and A\, have the same order of
magnitude. In view of F(x_.)<F(x,) the charm contribu-
tion is therefore negligible, and these decays are entirely
determined by the top sector. For K™ — =7 vy and
(K, —p ' u)gp on the other hand, \, is suppressed com-
pared to N, by a factor of O(A*)~O(107%), which roughly
compensates for the O(10°) enhancement of F(x,) over
F(x,). Hence the top and charm contributions have the
same order of magnitude and must both be taken into
account.

In principle, as far as flavordynamics is concerned, the
top and the charm sector have the same structure. The
only difference comes from the quark masses. However,
this difference has striking implications for the detailed
formalism necessary to treat the strong interaction cor-
rections. We have m,/My=0O(1) and m /M ,<1. Corre-
spondingly, the QCD coupling «, is also somewhat
smaller at m, than at m,. For the charm contribution
this implies that one can work to lowest order in the
mass ratio m./My,. On the other hand, for the same
reason, logarithmic QCD corrections ~a,InM y/m,. are
large and have to be resummed to all orders in pertur-
bation theory by renormalization-group methods. On
the contrary, no large logarithms are present in the top
sector, so that ordinary perturbation theory is appli-
cable, but all orders in m,/My, have to be taken into
account. In fact we see, from the point of view of QCD
corrections, the charm and top contributions are quite
“complementary” to each other, representing in a sense
opposite limiting cases.
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TABLE XXXIII. The functions Xy, and X{ for various A( s and m,

X¢ 04 X% /107
A [MeV]vn, [GeV] 1.25 1.30 1.35 1.25 1.30 1.35
215 10.55 11.40 1228 7.16 7.86 8.59
325 9.71 10.55 11.41 6.32 7.01 772
435 8.75 9.59 10.45 5.37 6.05 6.76

We are now ready to list the explicit expressions for
the effective Hamiltonians.

B. The decay K" —#w*vv

1. The next-to-leading-order effective Hamiltonian

The final result for the effective Hamiltonian inducing
K*— 7" v can be written as

GF a
— ViV
V3 2 sin’@y 1:62,,” Ve

ViaX(x)1(sd)y_a(viv)y—a. (11.4)

The index [=e,u,7 denotes the lepton flavor. The depen-
dence on the charged lepton mass, resulting from the
box graph, is negligible for the top contribution. In the
charm sector this is the case only for the electron and
the muon, but not for the 7 lepton.

The function X(x), relevant for the top part, is to
O(a,) and to all orders in x=m?*/M %

_ !
Hegr= cdXNL

+ V5

X(x)=Xo(x)+ f—; X, (x) (11.5)
with (Inami and Lim, 1981)
Xy S| o2 30 (11.6)
8 TS

and the QCD correction (Buchalla and Buras, 1993a)

23x+5x%2—4x3 x—11x%>+x3+x*

Xl(x):_ 3(1_x)2 (1_)()3 Inx
8x+4x2+x3—x41 ) 4x—x3 (1
20w Mg T
&Xo(x)
+8x p Inx, , (11.7)
where XM:MZ/MW with u=0(m,) and
x  Int
L,(1-x)= dt — (11.8)

-t

The u dependence in the last term in Eq. (11.7) cancels
to the order considered the u dependence of the leading
term Xo(x(u)).

The expression corresponding to X (x,) in the charm
sector is the function X%;. It results from the RG
calculation in NLLA and is given by

Xa=Cn—4B\r. (11.9)
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Cn. and B{/?) correspond to the Z’-penguin and the
box-type contribution, respectively. One has (Buchalla
and Buras, 1994a)

_x(m) 2425 48 24 6
Oz KT 7 Kot Ko 2
4 15212 1K | u?
Mo T 1875 ¢ D+ 1y
6K 8K 1176244 « 2302 X
X(16K =8K )~ 7775~ K~ g5 K-
. 3529184 X 56248 X 81448 «
48125 3 4375 ©F 6875 T~
4563698 « 10
* Taaz7s Ko (11.10)
where
S M s
_osMw) e (11.11)
a,(um) a,(m)
K+:K6/25, K_ :K—12/25’ K33:K_1/25, (1112)
x(m) 4w 15212
(1/2)_ 24/25
Lk | u?> rlnr 305
A T T v
. 15212 ot 15581 KK 13
625 %' 7500 2 (11.13)

Here K,=K "* m=m_, r=m?}/m?%(u), and m, is the
lepton mass. We will at times omit the index / of X .
In Egs. (11.10)—(11.13) the scale is u=0O(m_). The two-
loop expression for «,(w) is given in Eq. (3.19). Again,
to the considered order, the explicit In(u*/m?) terms in
Egs. (11.10) and (11.13) cancel the u dependence of the
leading terms.

These formulas give the complete next-to-leading-
order effective Hamiltonian for K*—x*vv. The
leading-order expressions (Novikov et al, 1977; Ellis
and Hagelin, 1983; Buchalla et al., 1991; Dib et al., 1991)
are obtained by replacing X(x,)—Xy(x,) and
X4 — X, with X; found from Egs. (11.10) and (11.13)
by retaining only the 1/a,(w) terms. In LLA the one-
loop expression should be used for «,. This amounts to
setting £;=0 in Eq. (3.19). The numerical values for Xy,
for u=m, and several values of Ag/[s and m, are given in
Table XXXIII. The w dependence will be dlscussed fur-
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ther in the phenomenological sections.

Z%-penguin and box contribution in the top sector

For completeness we also give the expressions for
the Z%penguin function C(x) and the box function
B(x,1/2) separately, which contribute to X(x) in Eq.
(11.5) according to

X(x)=C(x)—4B(x,112). (11.14)

The functions C and B depend on the gauge of the W
boson. In ’t Hooft-Feynman gauge (é=1) they are

C(x)= Co(x)+ Ci(x), (11.15)
where (Inami and Lim, 1981)
c X 6 x 3x+2 i 1116
O(x)_ 8 (1 X)2 nx ( . )
and (Buchalla and Buras, 1993b)
Coixre 29x+7x%+4x> x—35x2—3x>—3x* |
1) ="y 3(1-x)° e
20x2—x3+x* dx+x3

m—ln X+WL2(1 x)

dCo(x) i

+8 nx,.
. ox ®

(11.17)
Similarly,
B(x,1/2)=By(x)+

B(x,1/2) (11.18)

with the one-loop function (Inami and Lim, 1981)

By(x)= 41_1 - + ﬁz Inx (11.19)
and (Buchalla and Buras, 1993a)
B (x.1/2)= 13x+3x22_ x—17x23 fny— x+3x23 I’
’ 3(1-x)° 3(1—x) (1-x)
dBy(x)
+mL2(1—x)+8x o Inx , .
(11.20)

The gauge dependence of C and B is cancelled in the
combination X [Eq. (11.14)]. The second argument in
B(x,1/2) indicates the weak isospin of the external lep-
tons (the neutrinos in this case).

3. The Z°%penguin contribution in the charm sector

In the next two paragraphs we would like to summa-
rize the essential ingredients of the RG calculation for
the charm sector leading to Eqgs. (11.10) and (11.13). In
particular we present the operators involved, the initial
values for the RG evolution of the Wilson coefficients,
and the required two-loop anomalous dimensions. We
will first treat the Z’-penguin contribution [Eq. (11.10)]
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and discuss the box part [Eq. (11.13)] subsequently. Fur-
ther details can be found in Buchalla and Buras (1994a).

At renormalization scales of the order O(My), after
integrating out the W and Z bosons the effective
Hamiltonian responsible for the Z‘-penguin contribu-
tion of the charm sector is given by

G a w?
Hthf)L:_F -2 c 2
© V2 2w sin“Oy C 2My,
X(vyO,+v_0_+v30), (11.21)
where the operator basis is
Olz_if d*x T((Sic;)v—alCid)y—4)(x)
X (Exer)y-a(in)y-_ )0 —fe—u},  (11.22)
Ozz_ij d*x T((S_‘ici)va(éjdj)VfA)(x)
X((cxer)y-a(vv)y-)0)—{c—u},  (11.23)
1
0:=5(0,£0)), (11.24)
m? _
0= g—z (sd)y-a(vv)y_4. (11.25)
The Wilson coefficients at u=M y are [v' = (v, ,v_,v3)]
. . a,(My) .
=50 257 W2 (1)
v(My)=v'""+ . U5 (11.26)
0 OT=(1,1,0), (11.27)
J(I)T:(B+ ’B— 3B3)’ (1128)

where in the NDR scheme (M_S, anticommuting s in
D #4 dimensions)

B —+11N11 B;=16
=gy Bss

with N denoting the number of colors.
In the basis of operators {O, ,0_,Q} the matrix of
anomalous dimensions has the form

(11.29)

Y+ 0 vi3
y=| 0 vy_ y_3 (11.30)
0 0 V33
with the perturbative expansion
Y= Pl s :77) . (11.31)

The nonvanishing entries of the anomalous dimension
matrix are

Y3 =2(Ymo— Bo)s ¥ =2(¥m1—B1),

N¥1
(0)_+ -
Vi 6 N
o _NF1 21+57 LR
Y= TN *NTI NS
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y=+8(N=1), yH=Cp(=88N—-48), (11.32)

where ¥,,0, Vin1> and By, B; can be found in Egs. (3.17)
and (3.16), respectively. The expressions Y1) refer to the
NDR scheme, consistent with the scheme chosen for
v(My). Following the general method for the solution
of the RG equations explained in Sec. IIL.F.1, we can
compute the Wilson coefficients v(u) at a scale
u=0(m,). It is convenient to work in an effective four-
flavor theory (f=4) in the full range of the RG evolution
from My, down to u. The possible inclusion of a b-quark
threshold would change the result for X,; by not more
than 0.1% and can therefore be safely neglected.

After integrating out the charm quark at the scale
u=0(m,), the Z’-penguin part of the charm contribu-
tion to the effective Hamiltonian becomes

Gr a - -
M= ‘/z)\cCNL(Sd)va(VV)va,
(11.33)
CNL=)%B(1—1 :7)(7+3K++7 K_)
4
ot | (11.34)

The explicit expression for v4(u) as obtained from solv-
ing the RG equation is given by Buchalla and Buras
(1994a). Inserting this expression in Eq. (11.34), express-
ing the charm quark mass m(u) in terms of m(m) and
setting N=3, f=4, we finally end up with Eq. (11.10).

4. The box contribution in the charm sector

The RG analysis for the box contribution proceeds in
analogy to the Z"-penguin case. The box part is even
somewhat simpler. When the W boson is integrated out,
the Hamiltonian based on the box diagram is

B) _ Gr o 71'2 o
Hettc T 2w snl0y, A e (c10+c,0),
(11.35)
0=—if d*x T((5¢)y—4(vl)y_4)(x)
X ((Iv)y_a(cd)y—4)(0)—{c—u} (11.36)

with Q already given in Eq. (11.25). The Wilson coeffi-
cients at My, in the NDR scheme are given by

cTI(My)=(ci(My),co(My))

s( W)

=(1,0)0+ ——— (0, B,), B,=-—36.

(11.37)

In the operator basis {O,Q} the anomalous-dimension
matrix has the form

( 0 712)
Y= .
0 ¥»
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(11.38)

When expanded as
aS

2
aS
= +| —= (1)
Yo ax? 477) v
the nonzero elements are (NDR scheme for y(l))

2(Ym1—B1),

(11.39)

1
Y9 =2(Ymo—Bo)s Vs =

W)=-32, {)=80C. (11.40)
Finally, after integrating out charm at u=0(m,),
G
(B) JF 1/2)
Heitc 2 27 sin’Oy, 4By
X(sd)y-a(viv)yv-a, (11.41)
x(u) ,u2 5 rlor
(12)_ _ _
B\t o1 16 ln it
+ 2w (11.42)
——c . .
ag(pm) 20

Equation (11.41) is written here for one neutrino flavor.
The index (1/2) refers to the weak isospin of the final-
state leptons. From this result Eq. (11.13) can be derived
(N=3, f=4). The explicit expression for c,(u) is given by
Buchalla and Buras (1994a).

Although Wilson coefficients and anomalous dimen-
sions depend on the renormalization scheme, the final
results in Egs. (11.10) and (11.13) are free from this de-
pendence. The argument proceeds as in the general case
presented in Sec. IIL.F.3.

5. Discussion

It is instructive to consider the function X(x) in the
limiting case of small masses (x<€1), where we keep only
terms linear in x and include O(«;) corrections,

3 1 a,
X(x)i—zx lnx—zx-I—E (—Zx In’x—7x Inx

234272
- (11.43)

3

This simple and transparent expression can be re-
garded as a common limiting case of the top and the
charm contribution: on the one hand it follows from
keeping only terms linear in x in the top function [Eq.
(11.5)], and on the other hand it can be obtained [up to
the last term in Eq. (11.43), which is O(«a,x) and goes
beyond the NLLA] from expanding Xy (Eq. 11.9) (for
m,;=0) to first order in «.

This exercise provides one with a nice cross-check be-
tween the rather different looking functions X; and
X(x,) of the charm and the top sector. Viewed the other
way around, Eq. (11.43) may serve to further illustrate
the complementary character of the calculations neces-
sary in each of the two sectors. X(x,) is the generaliza-
tion of Eq. (11.43) that includes all the higher-order
mass terms. Xy, on the other hand, generalizes Eq.
(11.43) to include all the leading-logarithmic,
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TABLE XXXIV. Residual scale ambiguity in the top and
charm sector in LLA and NLLA.

Top sector [w,=O(m,)] Charm sector [u.=0(m,)]

O(xc)
O(ayx.)

LLA O(ay)
NLLA O(a?)

O(xa"In""'x), as well as the next-to-leading-
logarithmic, O(xa§In"x), corrections, to all orders n in
a; . Of these, only the terms with n=0 and n=1 are con-
tained in Eq. (11.43). Applying this approximation to
the charm part directly, one can convince oneself that
the O(«y) correction term would amount to more than
50% of the lowest order result. This observation illus-
trates very clearly the necessity to go beyond straightfor-
ward perturbation theory and to employ the RG sum-
mation technique. The importance of also going to next-
to-leading-order accuracy in the RG calculation is
suggested by the relatively large size of the O(x «,Inx)
term. Note also that formally the nonlogarithmic mass
term (—x/4) in Eq. (11.43) is a next-to-leading-order ef-
fect in the framework of RG-improved perturbation
theory. The same is true for the dependence on the
charged lepton mass, which can be taken into account
consistently only in NLLA.

A crucial issue is the residual dependence of the func-
tions Xy and X(x,) on the corresponding renormaliza-
tion scales u, and u,. Since the quark current operator
in Eq. (11.1) has no anomalous dimension, its matrix
elements do not depend on the renormalization scale.
The same must then hold for the coefficient functions
Xy and X (x,). However, in practice this is only true up
to terms of the neglected order in perturbation theory.
The resulting scale ambiguities represent the theoretical
uncertainties present in the calculation of the short-
distance-dominated processes under discussion. They
can be systematically reduced by going to higher orders
in the analysis. In Table XXXIV we compare the order
of the residual scale dependence in LLA and in NLLA
for the top and the charm contribution.

For numerical investigations we shall use 1
GeV=y,<3 GeV for the renormalization scale
u.=0(m,) in the charm sector. Similarly, in the case of
the top contribution we choose u,=0(m,) in the range
100 GeV=p,=<300 GeV for m,=170 GeV. Then, compar-
ing LLA and NLLA, the theoretical uncertainty due to
scale ambiguity is typically reduced from O(10%) to
O(1%) in the top sector and from more than 50% to less
than 20% in the charm sector. Here the quoted percent-
ages refer to the total variation (X =X min)/X central Of
the functions X(x,) or Xy within the range of scales
considered. Phenomenological implications of this gain
in accuracy will be discussed in Sec. XXIV.

C. The decay (K, —p*u1)sp
1. The next-to-leading-order effective Hamiltonian
The analysis of (K; —u"u )sp proceeds in essentially

the same manner as for K™ — 7" vv. The only difference
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is introduced through the reversed lepton line in the box
contribution. In particular there is no lepton mass de-
pendence, since only massless neutrinos appear as vir-
tual leptons in the box diagram.

The effective Hamiltonian in next to leading order
can be written as follows,

Gr

Hen=— V3 2 sin’@y,

[VEVeaY Nt ViViaY(x,)]

><(§d)V_A(,LZ,u.)V_A+H.C., (1144)

where H.c. stands for the Hermitian conjugate. The
function Y(x) is given by

Y(x)=Yo(x)+ 3= Vi(x), (11.45)
where (Inami and Lim, 1981)
Yo(x)= = 41+i21nx (11.46)
8|1-x (1—x)
and (Buchalla and Buras, 1993a)
Y.(x)= 4x+16x7+4x° 4x—10x>—x>—x* Inx
3(1—x)? (1—-x)°
2x —14x%+x3—x* 2x+x3
2(1—x)° In“x + m
xLﬂl—x)+8andx)mx. (11.47)
ax #

The RG expression Yy representing the charm contri-
bution is

Yne=Cne— 35\111/2)» (11.48)

where Cyy is the Z%-penguin part given in Eq. (11.10)
and B{[? is the box contribution in the charm sector,
relevant for the case of final-state leptons with weak
isospin 7T3=—1/2. One has (Buchalla and Buras, 1994a),

, x(m) 47 15212
B&LUZ) K24/25{3(1 K2)< ( )_|_ 575
. u? 329 15212
X(l—KC ) —hlm2 E'F 635 K2
30581

Note the simple relation to B{/* in Eq. (11.13) (for
r=0)

B{»— B = (2 )K24’25(KK -1). (11.50)

More details on the RG analysis in this case may be
found in Buchalla and Buras (1994a).

2. Discussion

The gauge-independent function Y can be decom-
posed into the Z’-penguin and the box contribution
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TABLE XXXV. The function Yy for various A% and m, .

Y /107
A [MeV]vn, [GeV] 1.25 1.30 135
215 3.09 331 353
325 327 3.50 373
435 3.40 3.64 3.89

Y(x)=C(x)—B(x,—12). (11.51)

In Feynman-gauge for the W boson, C(x) is given in
Eq. (11.15). In the same gauge the box contribution is

B(x,—1/2)=Bo(x)+f—‘Bl(x,—1/2) (11.52)

with By(x) from Eq. (11.19) and

25x—9x% 1lx+5x?

A0 —x)? T 31— ™

B(x,—1/2)=

x+3x? 2x
ﬁ;h‘l x+ﬁL2(1 x)

0B O(X) 1

oy Iy,
The equality B(x,1/2)=B(x,—1/2) at the one-loop level
is a particular property of the Feynman-gauge. It is vio-

lated by O(«,) corrections. There is, however, a very
simple relation between B;(x,1/2) and B(x,—1/2),

Bi(x,—1/2)—B,(x,1/2)=16B(x). (11.54)

We add a few comments on the most important dif-
ferences between Yy and Xy . Expanding Yy to first
order in «,, we find

+8x (11.53)

1 a,
Yyo==x+— x In®x+O(a,x).

Xt (11.55)

In contrast to Xy both the terms of O(x Inx) and of
O(a,x Inx) are absent in Yy . The cancellation of the
leading O(x Inx) terms between Z’-penguin and box
contribution implies that the nonleading O(x) term
plays a much bigger role for Yy;. A second conse-
quence is the increased importance of QCD effects and
the related larger sensitivity to u,, resulting in a bigger
theoretical uncertainty for Yy than was the case for
Xy - In addition, whereas X(x,) is suppressed by
~30% through QCD effects, the zeroth-order expres-
sion for Y is enhanced by as much as a factor of 2.5.
Nevertheless, QCD corrections included, Xy still ex-
ceeds Y, by a factor of 4, so that Yy is less important
for (K, »u*'u)sp than Xy is for K™ —a vv. Al-
though the impact of the bigger uncertainties in Y is
thus somewhat reduced in the complete result for
(K;—wp'u)sp, the remaining theoretical uncertainty
due to scale ambiguity is still larger than for K™ — 7" vv.
This will be investigated numerically in Sec. XXV. The
numerical values for Yy for u=m . and several values of

A(4) and m, are given in Table XXXV.
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Weak decays beyond leading logarithms

D. The decays K, —a°vv, B—X; qvv, and Bg g—1"1~

After the above discussion it is easy to write down the
effective Hamiltonians for K; — 7’v, B—X; 4 vv, and
B d—>l [”. As we have seen, only the top contribution
is 1mportant in these cases, and we can write

Gr

Heff:z 27 sin’@

V;kn Vm’X(xt)

X(n_n')v A(l_/V)V A+HC (11 56)

for the decays KL—>7T vy, B—X,vv, and B— X, vv,
with (nn')=(sd), (bs), and (bd) respectively. Simi-
larly,

Hygm—CE % ey y
= 2 sin2@yy Y (x,)
x(an")y_ (1) _ 4+H.c. (11.57)
for B,—I1"1" and B,—I["1", with (an')=(bs) and

(bd). The functions X and Y are given in Egs. (11.5)
and (11.45).

XIl. THE EFFECTIVE HAMILTONIAN FOR K°-K° MIXING
A. General structure

The following section is devoted to the presentation
of the effective Hamiltonian for AS=2 transitions. This
Hamiltonian incorporates the short-distance physics
contributing to K°-K° mixing and is essential for the
description of CP violation in the neutral K-meson sys-
tem.

Being a FCNC process, K- K" mixing can only occur
at the loop level within the standard model. To lowest
order it is induced through the box diagrams in Fig. 4(e).
With QCD corrections included, the effective low-
energy Hamiltonian derived from these diagrams can be
written as follows (\; = VEV;,),

2

Gy
Hap o= “1om 2MW[7\ mSo(xe) + N7 1mSo(x,)

+2)\c)\t773S0(xc vxt)][as(ﬂ)]72/9

a,(u)
4

This equation, together with Egs. (12.31), (12.10), and
(12.68), for 7, 7, and 75, respectively, represents the
complete next-to-leading-order short-distance Hamil-
tonian for AS=2 transitions. Equation (12.1) is valid for
scales K below the charm threshold w.=O(m.). In this
case Ho3 > consists of a single four-quark operator

O=(sd)y_s(sd)y_4, (12.2)

which is multiplied by the corresponding coefficient
function. It is useful and customary to decompose this
function into a charm, a top, and a mixed charm-top
contribution, as displayed in Eq. (12.1). This form is ob-
tained upon eliminating A, by means of CKM matrix

X| 1+

J;|0+H.e. (12.1)
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unitarity and setting x,=0. The basic electroweak loop
contributions without QCD correction are then ex-
pressed through the functions S, which read (Inami and
Lim, 1981)

O(X ) Xes (123)

4x,—11x?+x}  3x’Inx, 24

SO(xt)_ 4(1_xt)2 2(1_xt)3’ ( . )
2

S I 7 3x, 3x;Inx, 125

0(xc’xt)_xc nx_c 4(1_)‘1) 4(1_)6[)2 . ( . )

Here again we keep only linear terms in x.<<1, but of
course all orders in x,.

Short-distance QCD effects are described through the
correction factors 7, 7, 73, and the explicitly
a,-dependent terms in Eq. (12.1). The discussion of
these corrections will be the subject of the following sec-
tions.

Without QCD, ie., in the limit a,—0, one has
n[a,] ?°—1. In general, the complete coefficient func-
tion multiplying Q in Eq. (12.1) contains the QCD ef-
fects at high energies, uy=0(My), u,=0(m,), together
with their RG evolution down to the scale u=0(1 GeV).
A common ingredient for the three different contribu-
tions in Eq. (12.1) is the anomalous dimension of the
operator Q and the corresponding evolution of its coef-
ficient. The Fierz symmetric flavor structure of Q im-
plies that it acquires the same anomalous dimension as
the Fierz symmetric operator Q,=(0,+0;)/2 (see
Sec. V), explicitly,

2
o o

—_5 (0 - (1)

Y=g (47)7 , (12.6)
N_

0) g —

yW=6 N
(12.7)

N T D2 (or

Y TN N 3 371 )-

The resulting evolution of the coefficient of O between
general scales u; and u is then given by

s( )_ s( ) ( )
CQ(M)={1+(1 ot a(‘:)} Colm),
(12.8)
where
PO dy e
df=2—180, Jf ,3 Bl—m (129)

depend on the number of active flavors f. At the lower
end of the evolution f=3. The terms in Eq. (12.8) that
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depend on «,(u) are factored out explicitly in Eq. (12.1)
to exhibit the u dependence of the coefficient function
in the f=3 regime, which has to cancel the corresponding
wm dependence of the hadronic matrix element of Q be-
tween meson states in physical applications. A similar
comment applies to the scheme dependence entering J,
in Eq. (12.9) through the scheme dependence of ))(1)
Splitting off the u dependence in Eq. (12.1) is of course
not unique. The way it is done belongs to the definition
of the #; factors. Let us finally compare the structure of
Eq. (12.1) with the effective Hamiltonians for rare de-
cays discussed in Sec. XI. Common features of both
types of processes include

(i) Both are generated to lowest order via electroweak
FCNC loop transitions involving heavy quarks.

(ii) They contain a charm and a top contribution.

(iii) The Hamiltonian consists of a single dimension-
six operator.

Aside from these similarities, however, there are also
a few important differences, which have their root in the
fact that the AS=2 box diagrams involve two distinct
quark lines, as compared to the single quark line in
semileptonic rare decays,

(i) The CKM parameter combinations \; appear qua-
dratically in Eq. (12.1) instead of only linearly.

(ii) Equation (12.1) in addition receives contributions
from a mixed top-charm sector. This part turns out to
have the most involved structure of the three contribu-
tions.

(iii) The operator Q has a nonvanishing QCD anoma-
lous dimension, resulting in a nontrivial scale and
scheme dependence of the Wilson coefficient.

(iv) The hadronic matrix element of the four-quark
operator Q is a considerably more complicated object
than the quark-current matrix elements in semileptonic
rare decays.

We will now present the complete next-to-leading-
order results for 7,, 7, and 73 in turn and discuss their
most important theoretical features. The first leading-
logarithmic-order calculations of 7, have been presented
by Vainshtein et al. (1976) and Novikov et al. (1977) and
of 7, by Vysotskij (1980). The complete leading-
logarithmic-order calculation, which also includes #;,
was first performed by Gilman and Wise (1983).
Leading-order calculations in the presence of a heavy
top can be found in work by Kaufman et al. (1989),
Datta et al. (1990, 1995), and Flynn (1990).

B. The top contribution—1,

The basic structure of the top-quark sector in H33 2 is
easy to understand. First the top quark is integrated out,
along with the W, at a matching scale u,=O(m,), leaving
a m,~-dependent coefficient normalized at y,, which mul-
tiplies the single operator Q. Subsequently, the coeffi-
cient is simply renormalized down to scales u=0O(1
GeV) by means of Eq. (12.8). Including NLO correc-
tions, the resulting QCD factor 7, from Eq. (12.1) may
be written (in MS) as follows (Buras et al., 1990),
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o (m ) 6/25 o (/'Lt) 6/23
_ 6/27 5
72 [as(mc)] Y(m ):| as(mb):|
s( m.) v( b)
X1+ ———(Jy=T3)+ (Js—J4)
ay() [ Si(x) yO ]
dr |\ Sy(xy BT
g InSo(x,)
+ ————In— .
Y0 5 o, nM%v (12.10)
where v,,0=6CF,
_ 2 _
and
(8) N2 -1 (1)
(x)——S (x)+ REIN (12.12)
) 64— 68x —17x*+11x°
1 (x)=- 4(1—x)2
32— 68x +32x2—28x> +3x* |
2(1—-x)° e
x2(4—Tx+7x*—2x3)
2(1—x)° nx
2x(4—7x—7x2+x3)L 1
(1_X)3 2( —X)
o 12.13
~ g L1=0) ], (12.13)
. x(4 =39 +168x%+11x3)
S(l )(x)z— 3
4(1-x)
3x(4—24x+36x%+7x3+x%)
- 4 ln.x
2(1—x)
3x3(13+4x +x2) |
200-x)F *
3x3(5+x)
RTETLE L,(1—x), (12.14)

where the dilogarithm L, is defined in Eq. (11.8).

In Eq. (12.10) we have taken into account the heavy-
quark thresholds at m;, and m, in the RG evolution. As
it must be, the dependence on the threshold scales is of
the neglected order O(a?). In fact the threshold ambi-
guity here is also of O(a?) in LLA, since ¥ is flavor
independent. It turns out that this dependence is also
very weak numerically, and we therefore set u,=m . and
mp=my . Furthermore, it is a good approximation to ne-
glect the b threshold completely using an effective four-
flavor theory from w, down to m,. . This can be achieved
by simply substituting m,— u, in Eq. (12.10).

The leading-order expression for 7, is given by the
first three factors on the rhs of Eq. (12.10). The fourth
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factor represents the next-to-leading-order generaliza-
tion. Let us discuss now the most interesting and impor-
tant features of the NLO result for 7, exhibited in Eq.
(12.10).

(i) 7, is proportional to the initial value of the Wilson

coefficient function at u,=My,
a
S(0)=80(0)+ 7= [$100)+ B,S(x)], (12.15)
which has to be extracted from the box graphs in Fig.
4(e) and the corresponding gluon correction diagrams
after a proper factorization of long- and short-distance
contributions.

(i) S(x) in Eq. (12.15) is similar to the functions
X(x) and Y(x) in Secs. XI.B.1 and XI.C.1, except that
S(x) is scheme dependent due to the renormalization
that is required for the operator Q. This scheme depen-
dence enters Eq. (12.15) through the scheme-dependent
constant B,, given in the NDR scheme in Eq. (12.11).
This scheme dependence is cancelled in the combination
B,—J5 by the two-loop anomalous dimension contained
in J5. Likewise, the scheme dependence of J; cancels in
the differences (J;—J¢_), as is evident from the discus-
sion of Sec. II1.F.3.

(iii) A very important point is the dependence on the
high-energy matching scale w,. This dependence enters
the NLO «,(u,) correction in Eq. (12.10) in two distinct
ways: first as a term proportional to Y, and, secondly,
in conjunction with v,,,. The first of these terms cancels,
to O(«y), the w, dependence present in the leading term
[a,(u,)]%%. The second, on the other hand, leads to an
O(a,) u; dependence of 7. This is just the dependence
needed to cancel the u, ambiguity of the leading func-
tion Sy(x,(u,)) in the product 7,5,(x,), such that the
physical results become independent of u, to O(«;).
From these observations it is obvious that one may in-
terpret u, in the first case as the initial scale of the RG
evolution and in the second case as the scale at which
the top-quark mass is defined. These two scales need not
necessarily have the same value. The important point is
that, to leading logarithmic accuracy, the w, dependence
of both 75%(w,) and Sy(x,(u,)) remains uncompen-
sated, leaving a disturbingly large uncertainty in the
short-distance calculation.

(iv) It is interesting to note that, in the limit m,> My,
the dependence on u, enters 7, as Inu,/m,, rather than
Inw,/ My, . This feature provides a formal justification for
choosing u,=0(m,) instead of u,=O(My). An explicit
expression for the large-m, limit in the similar case of
1,5 may be found in Sec. XIII.

(v) Although at NLO the product 7,S,(x,) depends
only very weakly on the precise value of y, as long as it
is of O(m,), the choice w,=m, is again convenient. With
this choice 7, becomes almost independent of the top
quark mass m,. By contrast, for u,= My, say, 7, would
decrease with rising m, in order to compensate for the
increase of Sy(x,(My)) due to the use of a, for high m,,
“unnaturally” low scale My, .

(vi) As mentioned above the dependence of the Wil-
son coefficient on the low-energy scale u and the re-
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maining scheme dependence (/3) has been factored out
explicitly in Eq. (12.1). Therefore the QCD correction
factor , is by definition scale and scheme independent
on the lower end of the RG evolution.

C. The charm contribution—1,

The calculation of 7, beyond leading logarithmic or-
der has been presented in great detail by Herrlich and
Nierste (1994) and Herrlich (1994). Our task here will
be to briefly describe the basic procedure and to sum-
marize the main results.

In principle the charm contribution is similar in struc-
ture to the top contribution. However, since the quark
mass m <My, the charm degrees of freedom can no
longer be integrated out simultaneously with the W bo-
son, which would introduce large logarithmic corrections
~a,InMy/m, . To resum these logarithms one first con-
structs an effective theory at a scale O(M ), where the
W boson is removed. The relevant operators are subse-
quently renormalized down to scales u.=O(m,), where
the charm quark is then integrated out. After this step
only the operator Q [Eq. (12.2)] remains, and 7, is fi-
nally obtained as discussed in Sec. XIL.A.

Let us briefly outline the procedure for the case at
hand. After integrating out the W, the effective Hamil-
tonian to first order in weak interactions, which is
needed for the charm contribution, can be written as

G
S 3 VLVl 011+ C01),

HH_ZF
C V2 g
(12.16)
where we have introduced the familiar AS=1 four-quark
operators in the multiplicatively renormalizable basis

0L 1=1[(5q)v-a(q;d})v-a

*(85:9])v-a(q;d) v al- (12.17)
We remark that no penguin operators appear in the
present case due to GIM cancellation between charm-
quark and up-quark contributions.

AS=2 transitions occur to second order in the effec-
tive interaction [Eq. (12.16)]. The AS=2 effective Hamil-
tonian is therefore given by

i
=5 [ @t T e, 0219)

Inserting Eq. (12.16) into Eq. (12.18), keeping only
pieces that can contribute to the charm box diagrams
and taking the GIM constraints into account, one ob-
tains

2

Hit =5 A 2 CiGO (12.19)
L=+,

ij»
where
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0= | d 0110} ()~ 0K 0 (0)

—05"(X) Q) (0)+ 01" (x) 0" (0)].

From the derivation of Eq. (12.19) it is evident that the
Wilson coefficients of the bilocal operators O;; are sim-
ply given by the product C;C; of the coefficients pertain-
ing to the local operators Q;,Q;. The evolution of the
C,; from My, down to u, proceeds in the standard fash-
ion and is described by equations of the type shown in
Eq. (12.8) with the appropriate anomalous dimensions
inserted. In the following we list the required ingredi-
ents. The Wilson coefficients at scale u=My, are

(12.20)

as(MW)
+ =l+——B. .
C.(My)=1 ype B., (12.21)
B —+11N11 NDR 12.22
=2l =5 ). (12.22)
The two-loop anomalous dimensions are
2
0) L | 2| 1)
Y= 4 Y+ ( ypel IR (12.23)
o NTL
a_ N*1 +57_19 N+ NDR
Yi_ZN —N+3 —3f( )
(12.24)
For i,j=+,— we introduce
() (1)
yl d yl
dy)= JH=—_ 12.25
260" AT (1229)
and
df'=a+al’, J=17+71). (12.26)

The essential step consists in matching Eq. (12.19) onto
an effective theory without charm, which will contain
the single operator Q=(sd)y_4(5d)y_,4. In NLO this
matching has to be performed to O(«,). At a normaliza-
tion scale u, it reads explicitly, expressed in terms of
operator matrix elements (i,j=+,—),

2
me(pe) as( ) e
(0i)= g Tt g ln—z+/31] (Q),
(12.27)
N+3 N—-1 N—-1
T++:T, T+—_T—+__Ta 7'——277
(12.28)
Kt =3(N=1)7yy, ki =k =3(N+1)7,_,
k__=3(N+3)7__ (12.29)

The g;; are scheme dependent. In the NDR scheme they
are given by (Herrlich and Nierste, 1994)
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_q N*-6 3—N2+2N+13
Bir=(1=N) N T T aN )

B (1N —~N242N-2 5 3N2+13
B+—_B—+_( ) 12N T + 4N 5
N N’~4N+2  3N°+10N+13
p-—=( NN 7 4N :

(12.30)

Now, starting from Eq. (12.19), evolving C; from My,
down to u,., integrating out charm at u, with the help of
Eq. (12.27), evolving the resulting coefficient according
to Eq. (12.8), and recalling the definition of 7, in Eq.
(12.1), one finally obtains

(5)
djj

m=la(p)lB X

Lj=+,— as(mb)

( ax(mb)
ag(pe)

(4)
4 (axMW)

ag(pc)

X 4

Tij

2
Me 4
Kijln 2t T = T3) + By
Cc

a(m a(M
5( b) (Jgf)—J(‘”)—i— 3( W)

+T“ S,
dar Y 4

)

><(B,.+B,—J§f>)) } (12.31)
We conclude this section with a discussion of a few im-
portant issues concerning the structure of this formula.

(i) Equation (12.31), as first obtained by Herrlich and
Nierste (1994), represents the next-to-leading-order gen-
eralization of the leading-logarithmic-order expression
for 7, given by Gilman and Wise (1983). The latter fol-
lows as a special case of Eq. (12.31) when the O(«,)
correction terms are put to zero.

(ii)) Equation (12.31) is independent of the renormal-
ization scheme up to terms of the neglected order
O(a?). We have written 7, in a form in which this
scheme independence becomes manifest. While the vari-
ous J terms, B;, and g; in Eq. (12.31) all depend on the
renormalization scheme when considered separately, the
combinations 7-,»]»(],(]4)—]3) +Bij s ]Ef)—Jl(]f‘), and
B;+B;j—J ) are scheme invariant.

(iii) The product 7 (m.)x.(u.) is independent of u,
to the considered order,

T, T (Hx(p) =O(a), (12.32)
in accordance with the requirements of renormalization-
group invariance. The cancellation of the u,. dependence
to O(a,) is related to the presence of an explicitly
pme-dependent term at NLO in Eq. (12.31) and is guar-
anteed through the identity

(0) (04 ,(0)
Y Yi Y
Kij=Tij| Ymo+ —5—— T] ) (12.33)
which is easily verified using Eqgs. (3.17), (12.7), (12.24),
(12.28), and (12.29).
(iv) Also the ambiguity in the scale wy, , at which W is
integrated out, is reduced from O(a;) to O(a?) when
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going from leading to next to leading order. As men-
tioned above the dependence on the b-threshold scale
uy, is O(a?) in NLLA as well as in LLA. Numerically the
dependence on g, is very small. Also the variation of
the result with the high-energy matching scale uyy is con-
siderably weaker than the residual dependence on pu, .
Therefore we have set u,=m, and uy=My in Eq.
(12.31). In numerical analyses we will take the dominant
. dependence as representative for the short-distance
scale ambiguity of 7;. The generalization to the case
mw#* My, is discussed by Herrlich and Nierste (1994).
The more general case u,#m,, is trivially obtained by
substituting m,— u, in Eq. (12.31).

(v) Note that, due to the GIM structure of O;;, no
mixing under infinite renormalization occurs between
O;; and the local operator Q. This is related to the ab-
sence of the logarithm in the function Sy(x.) in Eq.
(12.3).

It is instructive to compare the results obtained for
and 7. Expanding Eq. (12.31) to first order in «, in this
way ‘“‘switching off”’ the RG summations, we find

_ a(p)
[a(p)] | 1+ jhr 13)771
(0) 2 2
_Loag |y © m 5
=1+-—1— — + —— 1+ =
2
+’ym0 In W‘Fg , (1234)

where we have replaced w,—u and m —m. In deriving
Eq. (12.34) besides (12.33) the following identities are
useful

’}/4
i,j;,f 7y =1, E mij 2

(0) (0)
i/ YO, (12.35)

2 Tl](Bl+B]):2B+

=+ ,-

(12.36)

The same result [Eq. (12.34)] is obtained from 7, as well
if we set m.=m,=u,=u, m,=m in Eq. (12.10), and ex-
pand for m<My,. This exercise yields a useful cross-
check between the calculations for #, and #,. In addi-
tion it gives some further insight into the structure of the
QCD corrections to AS=2 box diagrams, establishing 7,
and 7, as two different generalizations of the same as-
ymptotic limit [Eq. (12.34)].

D. The top-charm contribution—»;3

To complete the description of the K’— K effective
Hamiltonian we now turn to the mixed top-charm com-
ponent, defined by the contribution ~A \, in Eq. (12.1),
and the associated QCD correction factor #;. The short-
distance QCD effects have first been obtained within the
LLA by Gilman and Wise (1983). The calculation of 7;
at next to leading order is due to the work of Herrlich
and Nierste (1995a, 1996) and Nierste (1995). As already
mentioned, the renormalization-group analysis neces-
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sary for 7 is more involved than in the cases of 7, and
7,. The characteristic differences will become clear from
the following presentation.

We begin by writing down the relevant AS=1 Hamil-
tonian, obtained after integrating out W and top, which
provides the basis for the construction of the AS=2 ef-
fective Hamiltonian we want to derive. It is given by

Gr ,
HY =— ViV C;071
“ ‘/? (‘17q2=u,c s qdi§’2 Ql
6
-\, C,0; (12.37)
i=3
with
01" 1=(5:9))y-a(@d)v-s,
Qg’q:(giqi')v—A(éjdj)v—A (12.38)

and corresponds to the Hamiltonian [Eq. (6.5)] dis-
cussed in Sec. VI, except that we have included the
AC=1 components Q ¢, Q¢“, which contribute in the
analysis of 7;. In contrast to the simpler case of 7, pre-
sented in the previous section, now also the penguin op-
erators Q;, i=3,....6 [Eq. (6.3)] have to be considered.
Being proportional to N, = V5V ,,, they will contribute
to the A\, part of Eq. (12.1). We remark in this context
that, on the other hand, the penguin contribution to the
A2 sector is entirely negligible. Since only light quarks
are involved in Q3,...,0Qg, the double penguin diagrams,
which would contribute to the A7 piece of the AS=2 am-
plitude, are suppressed by at least a factor of m 2/m?
compared with the dominant top-exchange effects dis-
cussed in Sec. XIL.B.

At second order in Eq. (12.37) AS=2 transitions are
generated. Inserting Eq. (12.37) in an expression similar
to Eq. (12.18), eliminating A, by means of \,=—\_,—\,,
and collecting the terms proportional to A.\,, we obtain
the top-charm component of the effective AS=2 Hamil-
tonian in the form

_, Gi °
HeAfog,c_-zzz_z )\c)\pz [21 CiC;0;+C7,07|,
i=* | j=
(12.39)
where

0=-7 f d*x T[201"(x)QL"(0)~ Q1(x) 05" (0)

~05"(x)Q(0)]
for j=1,2 and

(12.40)

0y=-5 [ ' Tior - 05 10,0)

+0;(0)[Qi"(0)—~ 07 (0)]}
for j=3,...,6.
In defining these operators we have already omitted

bilocal products with flavor structure such as
(suud)-(sccd), which cannot contribute to AS=2 box

(12.41)
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diagrams. Furthermore, for the factor entering the bilo-
cal operators with index i, we have changed the basis
from Q‘{”zq to Q‘ir" given in Eq. (12.17). In addition local
counterterms proportional to the AS=2 operator,

2

m, _ ~
Q7:§2‘ (sd)y_a(sd)y_4, (12.42)

have been added to Eq. (12.39). These are necessary
here because the bilocal operators can in general mix
into Q- under infinite renormalization, a fact related to
the logarithm present in the leading term, —x_ Inx., en-
tering Sy(x,,x,) in Eq. (12.5). This behavior is in con-
trast to the charm contribution, where the correspond-
ing function Sy(x,.)=x, does not contain a logarithmic
term, and consequently no local AS=2 counterterm is
necessary in Eq. (12.19). On the other hand, the situa-
tion here is analogous to the case of the charm contri-
bution to the effective Hamiltonian for K™ — 7 ¥ v in
Sec. XI.B, which similarly behaves as x Inx, in lowest
order and correspondingly requires a counterterm, as
displayed in Eqgs. (11.21) and (11.35).

After integrating out top and W at the high-energy
matching scale uy=0O(My,), the Wilson coefficients C;,
j=1,...,6 of Egs. (12.37) and (12.39) are given in the
NDR scheme by (see Sec. VI)

CT(uw)=(0,1,0,0,0,0)+
2 2 |
9’3

11 11 1 - 1 .
3766 Eo(x,), 5 Eo(x,),

nﬂ aS(ILLW)
MW 47T

X

1 . 1 -
_E EO(xt)’ EEO(xt))7 (1243)

and C.=C,=C,. Eyp(x,) can be found in Eq. (6.16).
The coefficient of O, is obtained through matching the
AS=2 matrix element of the effective theory [Eq. (12.39)
to the corresponding full-theory matrix element, which,
in the required approximation (x.<1), is given by [com-
pare to Eq. (12.1)]

2
F

Anier=Tg7 My2NNSo(xe.x,)(Q). (12.44)

At next to leading order this matching has to be done to
one loop, including finite parts. Note that here the loop
effect is due to electroweak interactions and QCD does
not contribute explicitly in this step. The matching con-
dition determines the sum C,=C,, + C,_, which, in the
NDR scheme and with the conventional definition of
evanescent operators (Buras and Weisz, 1990) [see also
(Herrlich and Nierste, 1995a, 1996; Nierste, 1995)], is
given by
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ay(pw) M 3x
Colpw)=—4 —SInM—W+4lnxt—ﬁ
t
3x’Inyx, 124
—(1_x[)2+ (12.45)

at next to leading order. In LLA one simply would have
C(uw)=0. The distribution of C; among C,, and C;_is
arbitrary and has no impact on the physics. For example,
we may choose

C7+: C7, C7,:O. (1246)

Having determined the initial values of the Wilson coef-
ficients

CHT=(C.Cy,....C2Cq,Crs) (12.47)

at a scale uy, CC)(uy ), the next step_consists in solv-
ing the RG equations to determine C*)(u.) at the
charm mass scale _u.=O(m.). The renormalization-
group evolution of C*) is given by

AEN ) = AT (=)
Ystye-l  yig
(=) _ . *
'ycl 0 T ')’77 . (1249)

Here v, is the standard 6X6 anomalous-dimension ma-
trix for the AS=1 effective Hamiltonian including QCD
penguins from Egs. (6.23), (6.25), and (6.26) (NDR
scheme). Similarly, y. are the anomalous dimensions of
the current-current operators. They can be obtained as
Y+=Ys11¥ ¥s12 and are also given in Sec. V. y;; repre-
sents the anomalous dimension of Q5 [Eq. (12.42)] and
reads

2y 2= 2 0 2]
Y717= Y+ Ym 88 . Y77 4o Y7 -
(12.50)
For N=3 and in NDR
) 4 n 175 152
Vi = -2+ gf, 0%z =T+ Tf (1251)

Finally ., the vector of anomalous dimensions ex-
pressing the mixing of the bilocal operators Q.; (i
=1,...,6) into Q5, is given by

2

o o

LI () ST Bl B¢ 8]

Y+7 477 Y+7+(477 Y+7> (1252’)
where

Y 0OT=(-16,—8,—32,—16,32,16), (12.53)

797=(8,0,16,0,—16,0), (12.54)

7 1064 832

Yo' =| —212,-28,-424,-56, ——, —|, (12.55)

7 1288

Y=276,-92.552,~184,— ——0|. (12.56)

The scheme-dependent numbers in ¥} are given here
in the NDR scheme with the conventional treatment of
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evanescent operators as described by Buras and Weisz
(1990), Herrlich and Nierste (1995a), and Nierste (1995).
In order to solve the RG equation (12.48) it is useful
(Herrlich and Nierste, 1995a, 1996; Nierste, 1995) to de-
fine the eight-dimensional vector [CT=(C/,...,C¢)]

DT=(CT,C,,/C,,C,_IC_), (12.57)
which obeys
da - .-
TTg D7D, (12.58)
where
Vs V47 V-7
VYer= 0" ym— v+ 0 (12.59)
07 0 Y~ V-

The solution of Eq. (12.58) proceeds in the standard
fashion as described in Sec. III.F.1 and has the form

D(pre)=Us( e itp) M () Us( gy o) D (i),
(12.60)

similar to Eq. (3.105). The b-quark-threshold matching
matrix M(u,) is an 8X8 matrix whose 6X6 submatrix
M;;,i,j=1,...,6isidentical to the matrix M described in
Sec. VI.D. The remaining elements are M,;=Mg=1 and
zero otherwise. From Eq. (12.60) the Wilson coefficients
C;(u,) are obtained as

Ciu)=Di(p.), i=1,..6,

C7(IL'LC)=C+(MC)D7(IL'LC)+C—(MC)DS(MC)‘ (1261)

The final step in the calculation of #; consists of re-
moving the charm degrees of freedom from the effective
theory. Without charm the effective short-distance
Hamiltonian corresponding to Eq. (12.39) can be written
as

2

G
H?f?,;tz =5 ANC,0.

> (12.62)

The matching condition is obtained by equating the ma-
trix elements of Egs. (12.39) and (12.62), evaluated at a
scale u,.=0(m,). At next to leading order one needs the
finite parts of the matrix elements of Q;;, which can be
written in the form

me(pe)
(Qij(pe)) = —g 7 rij{e)(Q), (12.63)
where, in the renormalization scheme described after

Eq. (12.56), the r;; are given by

(41In(p./m)—1)7;, j=12,
riflpme) =y 8In(puc/m) =4y, j=34, (12.64)
(=8In(u./mc)+4)7;, j=50,

T+ = T23= To5=(1£3)/2, (12.65)
=1, 7_;=0, j even. (12.66)

Using Eq. (12.63), the matching condition at u, between
Egs. (12.39) and (12.62) implies
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6
2(1ee)
ct(:u'c “ 2 C; (MC)C (/uc) _MZ_ rl](lu‘c)
mi( )
+Cr ) m&)- (12.67)

Evolving C,, from u, to u<u, in a three-flavor theory,
using Eq. (12.8), and comparing Egs. (12.62) and (12.1),
we obtain the final result

_ xe(pe) 59
73 Sy we) () )
a aS(Iu’L‘)
X as(lu'c) C7(MC) - 4 J3>

1 6
t3 2 2 CldCparu | (1268)
One may convince oneself that 7;5)(x,,x,) is indepen-
dent of the renormalization scales, in particular of u,.,
up to terms of (D(xCaZ/9 )

Furthermore, using the formulas given in this section,
it is easy to see from the explicit expression [Eq. (12.68)]
that 73a; ?°—1 in the limit a,—0, as should indeed be
the case. The next-to-leading-order formula [Eq.
(12.68)] for 7, first calculated by Herrlich and Nierste
(1995a, 1996) and Nierste (1995), provides the generali-
zation of the leading-logarithmic-order result obtained
by Gilman and Wise (1983). It is instructive to compare
Eq. (12.68) with the leading-order approximation, which
can be written as

—7CH ()
ay(pe)nx,

using the notation of Eq. (12.68). C5© denotes the coef-
ficient C5, restricted to the leading logarithmic approxi-
mation. Equation (12.69), derived here as a special case
of Eq. (12.68), is equivalent to the result obtained by
Gilman and Wise (1983).

If penguin operators and the b-quark threshold in the
RG evolution are neglected, it is possible to write down
in closed form a relatively simple, explicit expression for
73. Using a four-flavor effective theory for the evolution
from the W scale down to the charm scale, we find in
this approximation

LO

N = as(lu“c)z/g

, (12.69)

ay(pe)?”

Xc(pe) ™ 18
3=

So(x(10).x,) a(pny |~ 7 Ker

12K +6 +7716K
1 " 29 2233

(o) 307 .1
x(l_““” +(1n“___)
m. 4

47 162
262497 K
35000 *F

277133
50750

X(3K,,—2K, +K__)+

123 1108657

~ 625 K+~ 1305000 K-~ K7+K
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21093 Koo+ 13331 % 10181 K
8750 "t 13750 YT 18125 T
1731104
2512125
| 3x; 3x%Inx, 1 KK
IR TS P TE I i) R |
(12.70)
where
K++:K12/25 K+7:K*6/25 K,,:K724/25
(12.71)
a,(M
K=K, K:O‘[((—MW)). (12.72)

Here we have set uy= My, . Equation (12.70) represents
the next-to-leading-order generalization of an approxi-
mate formula for the leading log #;, also omitting gluon
penguins, that has been first given by Gilman and Wise
(1983). The analytical expression for z; in Eq. (12.70)
provides an excellent approximation, deviating generally
by less than 1% from the full result.

E. Numerical results

1. General remarks

After presenting the theoretical aspects of the short-
distance QCD factors 7, 7,, and 7; in the previous sec-
tions, we shall now turn to a discussion of their numeri-
cal values. However, before considering explicit
numbers, we would like to make a few general remarks.
First of all, it is important to recall that in the matrix
element (K°|H53 "% K?) [see Eq. (12.1)], only the com-
plete products

17214+ 2 S(“) 13}<K°|Q )| K°)

Soi- mil ()

EC:’(M)<KO|Q(M)|KO> (12.73)

are physically relevant. Here S; denote the appropriate
quark-mass-dependent functions S for the three contri-
butions (i=1,2,3) in Eq. (12.1). None of the factors in Eq.
(12.73) is physically meaningful by itself. In particular,
there is some arbitrariness in splitting the product [Eq.
(12.73)] into the short-distance part and the matrix ele-
ment of O [Eq. (12.2)] containing long-distance contri-
butions. This arbitrariness has, of course, no impact on
the physical result. However, it is essential to employ a
definition for the operator matrix element that is consis-
tent with the short-distance QCD factor used. Conven-
tionally, the matrix element (K°|Q|K") is expressed in
terms of the so-called bag parameter Bg(u) defined
through

8
(K°lo( M)|K°>=—FKmKBK(M) (12.74)



1188 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

where my is the kaon mass and Fg=160 MeV is the
kaon decay constant. In principle, one could just use the
scale- and scheme-dependent bag factor Bg(u) along
with the coefficient functions C;(u) as defined by Eq.
(12.73), evaluated at the same scale and in the same
renormalization scheme. However, it has become cus-
tomary to define the short-distance QCD correction fac-
tors 7; by splitting off from the Wilson coefficient C;(w)
the factor [, ()] ?°[1+ a,(n)/(47)J;], which carries
the dependence on the renormalization scheme and the
scale u. This factor is then attributed to the matrix ele-
ment of @, formally cancelling its scale and scheme de-
pendence. Accordingly, one defines a renormalization
scale and scheme-invariant bag parameter B [cf. Egs.
(12.73) and (12.74)]

ay(u)
4

If the 7, as described in this review are employed to
describe the short-distance QCD corrections, Eq.
(12.75) is the consistent definition to be used for the
kaon bag parameter.

Eventually the quantity B g(u) should be calculated
within lattice QCD. At present, the analysis of Sharpe
(1994), for example, gives a central value of
Bx(2 GeV)ypr=0.616, with a still sizable uncertainty.
For a recent review see also Soni (1995). This result al-
ready incorporates the lattice-continuum theory match-
ing and refers to the usual NDR scheme. It is clear that
the NLO calculation of short-distance QCD effects is
essential for consistency with this matching and for a
proper treatment of the scheme dependence. Both re-
quire O(a;) corrections, which go beyond the LLA.

To convert to the scheme-invariant parameter B,
one uses Eq. (12.75) with the NDR-scheme value for
J5=307/162 to obtain B =0.84. Note that the factor in-
volving J;, which appears at NLO, increases the rhs by
~4.5%. The leading factor a; >’ is about 1.31. Of
course, the fact that presently there is still a rather large
uncertainty in the calculation of the hadronic matrix el-
ement is somewhat forgiving, regarding the precise defi-
nition of Byx. However, as the lattice calculations im-
prove further and the errors decrease, the issue of a
consistent definition of the #; and By will become cru-
cial, and it is important to keep Eq. (12.75) in mind.

Let us next add a side remark concerning the separa-
tion of the full amplitude into the formally RG-invariant
factors 7, and B . This separation is essentially unique,
up to trivial constant factors, if the evolution from the
charm scale u, down to a “hadronic” scale pu<pu, is writ-
ten in the resummed form as shown in Eq. (12.8) and
one requires that all factors depending on the scale u
are absorbed into the matrix element. On the other
hand, the hadronic scale u=0(1 GeV) is not really much
different from the charm scale w.=O(m.), so that the
logarithms Inu/u, are not very large. Therefore one
could argue that it is not necessary to resum those loga-
rithms. In this case the first two factors on the rhs of Eq.
(12.8) could be expanded to first order in «; and the
amplitude [Eq. (12.73)] would be

1+

By=[a,(pn)]*" J3|Bg(p). (12.75)
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Cilpe) (12.76)

1+ %)(k()lQ(le“)-

From this expression it is obvious that the separation of
the physical amplitude into scheme-invariant short-
distance factors and a scheme-invariant matrix element
is in general not unique. This illustrates once more the
ambiguity existing for theoretical concepts such as op-
erator matrix elements or QCD correction factors,
which only cancels in physical quantities.

For definiteness, we will stick to the RG improved
form for the evolution between w,. and p and the defi-
nitions for 7z; and By that we have discussed in detail
above.

2. Results for 7y, 7, and 73

We are now ready to quote numerical results for the
short-distance QCD corrections 7, at next to leading or-
der and to compare them with the leading-order ap-
proximation. The factors 7, and 73 have been analyzed
in detail by Herrlich and Nierste (1994) and Nierste
(1995). Here we summarize briefly their main results.
Using the central parameter values m.(m.)=1.3 GeV,
A%=0.325 GeV, m,(m,)=170 GeV, and fixing the scales
as w.=m, and uy=My for n;, uy=130 GeV for 7;, one
obtains at NLO

m=138, ;=047 (12.77)

This is to be compared with the LO values correspond-
ing to the same input, 7-°=1.12 and 75°=0.35. We note
that the next-to-leading-order corrections are sizable,
typically 20%-30%, but still perturbative. The numbers
above may be compared with the leading-logarithmic-
order values 7-°=0.85 and 75°=0.36 that have been pre-
viously used in the literature, based on the choice
m.=1.4 GeV, Agcp=0.2 GeV, and wy =My, . The con-
siderable difference between the two LO values for 7,
mainly reflects the large dependence of 7, on Agcp.

In fact, when the QCD scale is allowed to vary within
AD=(0.325+0.110) GeV, the value for 7 (NLO)
changes by ~*35%. The leading-order result 7}° ap-
pears to be slightly less sensitive to Aqgcp. However, in
this approximation the relation of Agcp to A% is not
well defined, which introduces an additional source of
uncertainty when working to leading logarithmic accu-
racy.

The situation is much more favorable in the case of
13, where the sensitivity to A% is quite small, ~*3%.
Likewise the dependence on the charm-quark mass is
very small for both 7 and #;. Using m.=(1.3%=0.05)
GeV and the central value for A%, it is about =4% for
7, and entirely negligible for 7;.

Finally, there are the purely theoretical uncertainties
due to the renormalization scales. They are dominated
by the ambiguity related to w.. The products
So(xc(ﬂc))'m(:“«c) and SO(xc(Mc)’xt)'n3(Mc) are indepen-
dent of u, up to terms of the neglected order in RG-
improved perturbation theory. In the case of

So(xc(/‘«c))'ﬂl(ﬂ«c) [SO(xc(IU/c)? xt)'ﬂ?) (Iu'c)] the remaining
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sensitivity to u, typically amounts to *15% [=7%] at
NLO. These scale dependences are somewhat reduced
compared to the leading-order calculation, where the
corresponding uncertainty is around =30% [*+10%].

To summarize, sizable uncertainties are still associ-
ated with the number for the QCD factor #;, whose
central value is found to be 7,=1.38 (Herrlich and Nier-
ste, 1994). On the other hand, the prediction for 7; ap-
pears to be quite stable and can be reliably determined
as 173=0.47+0.03 (Herrlich and Nierste, 1995a, Nierste,
1995). One should emphasize, however, that these con-
clusions have their firm basis only within the framework
of a complete NLO analysis, as the one performed by
Herrlich and Nierste (1994) and Nierste (1995). Fortu-
nately the quantity 7, for which a high precision seems
difficult to achieve, plays a less important role in the
phenomenology of indirect CP violation.

Finally, we turn to a brief discussion of 7, (Buras
et al., 1990), representing the short-distance QCD effects
of the top-quark contribution. For central parameter
values, in particular Al(\j‘[)S:OGZS GeV and m,(m,)=170
GeV, and for u,=m,(m,), the numerical value is

7,=0.574. (12.78)

Varying the QCD scale within A%z(0.325i0.110) GeV
results in a £0.5% change in 7,.

The dependence on mi,(m,) is even smaller, only
+0.3% for m,(m,)=(170=15) GeV. It is worthwhile to
compare the NLO results with the LLA. Using the same
input as before yields a central value of 75°=0.612,
about 7% larger than the NLO result [Eq. (12.78)].
However, what is even more important than the differ-
ence in central values, is the quite striking reduction of
scale uncertainty when going from the LLA to the full
NLO treatment. Recall that the i, dependence in 7, has
to cancel the scale dependence of the function
So(x,(1,)). Allowing for a typical variation of the renor-
malization scale u,=0(m,) from 100 GeV to 300 GeV
results in a sizable change in S(x,(x,))75° of £9%. In
fact, in leading order, the u, dependence of 7, even has
the wrong sign, reinforcing the scale dependence present
in So(x,(u,)) instead of reducing it. The large sensitivity
to the unphysical parameter y, is essentially eliminated
(to £0.4%) for 7,5,(x,) at NLO, a quite remarkable
improvement of the theoretical accuracy. The situation
here is similar to the case of the top-quark-dominated
rare K and B decays discussed in Secs. XI, XXIV, and
XXVI. For a further illustration of the reduction in scale
uncertainty, see the discussion of the analogous case of
1,5 in Sec. XIILB.

The dependence of 7, on the charm and bottom
threshold scales, w,.=O(m,) and u,=0(m,), is also ex-
tremely weak. Taking 1 GeV=pyu,<3 GeV and 3
GeV=p,=<9 GeV results in a variation of 7, by merely
+0.26% and *0.06%, respectively.

In summary, the NLO result for #,5(x,) is, by con-
trast to the LLA, essentially free from theoretical uncer-
tainties. Furthermore, 7, is also rather insensitive to the
input parameters Ayg and m,. The top contribution
plays the dominant role for indirect CP violation in the
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neutral kaon system. The considerable improvement in
the theoretical analysis of the short-distance QCD factor
7, brought about by the next-to-leading-order calcula-
tion is therefore particularly satisfying.

Xlll. THE EFFECTIVE HAMILTONIAN FOR B°-B° MIXING
A. General structure

Due to the particular hierarchy of the CKM matrix
elements, only the top sector can contribute significantly
to B’-B" mixing. The charm sector and the mixed top-
charm contributions are entirely negligible here, in con-
trast to the K°-K° case, which considerably simplifies
the analysis.

Referring to the earlier presentation of the top sector
for AS=2 transitions in Sec. XII.B, we can immediately
write down the only effective AB=2 Hamiltonian. Per-
forming the RG evolution down to scales w,=0(m,)
and making the necessary replacements (s—b), we get,
in analogy to Eq. (12.1) (Buras et al., 1990)

_, Gi
H?flfg72:EZ My(VE V) mpSo(x,)

Klay(up)] ] 1+ S0 5 o e,
4
(13.1)
where here
0=(bd)y_s(bd)y_, (132)
and
_ 6/23 as(lu‘t) Sl(xt) _
man=Lan(u)1™| 1+ =5 | S5 + B s
(0) 2 2
Y My d InSy(x,) My
T T oy, g )
(13.3)

The definitions of the various quantities in Eq. (13.3)
can be found in Sec. XII.B. Several important aspects of
7, in the kaon system have also been discussed in this
section. Similar comments apply to the present case of
m,5- Here we would still like to supplement this discus-
sion by writing down the formula for 7,5 in the limiting
case m>My,

2 2
P P,
5 M7 ot~

2 m: " m

t
2
2
mt
This expression clarifies the structure of the RG evolu-
tion in the limit m > My, . It also suggests that the renor-
malization scale is most naturally taken to be u,=0(m,)

rather than u,=O(M,) both in the definition of the top-
quark mass and as the initial scale of the RG evolution.

(1)
7723:[%(#[)]6/23[ 1+ %

20
1= 7+ B~ J5+0

]. (13.4)
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FIG. 9. Scale u, dependence of 7,5(u,)So(x,(x,)) in leading order and next to leading order. The quantity 7,5(u,)So(x,(1,))
enters the theoretical expression for Am g, describing B%-B° mixing. It is independent of the precise value of the renormalization
scale u, up to terms of the neglected order in « . The remaining sensitivity represents an unavoidable theoretical uncertainty. This
ambiguity is shown here for the leading-order (dashed) and the next-to-leading-order calculation (solid).

Equation (13.4) also holds, with obvious modifications,
for the 7, factor in the kaon system, which has been
discussed in Sec. XII.B.

We finally mention that in the literature the
mp-dependent factors in Eq. (13.1) are sometimes not
attributed to the matrix elements of Q, as implied by
Eq. (13.1), but absorbed into the definition of the QCD
correction factor

]—6/23 1+

_ a’s(/-l/b)
7= Ml as(p) e

J5] (13.5)

Whichever definition is employed, it is important to re-
member this difference and to evaluate the hadronic
matrix element consistently. Note that, in contrast to
1B, Mop 1s scale and scheme dependent.

B. Numerical results

The correction factor 7, describes the short-distance
QCD effects in the theoretical expression for B°-B°
mixing. Due to the arbitrariness that exists in dividing
the physical amplitude into a short-distance contribution
and a hadronic matrix element, the short-distance QCD
factor is strictly speaking an unphysical quantity and
hence definition dependent. The B factor, parametrizing
the hadronic matrix element, has to match the conven-
tion used for 7,5. With the definition of 7,5 employed
in this article and given explicitly in the previous section,
the appropriate B factor to be used is the so-called
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scheme-independent bag parameter By as defined in
Eq. (18.18), where u=u,=0(m,). We remark that the
factor 7,3 is identical for B;-B,; and B- B, mixing. The
effects of SU(3) symmetry breaking enter only the had-
ronic matrix elements. This feature is a consequence of
the factorization of short-distance and long-distance
contributions inherent to the operator product expan-
sion. For further comments, see also the discussion of
the analogous case of short-distance QCD factors in the
neutral kaon system in Sec. XILE.1.

In the following we summarize the main results of a
numerical analysis of 7, 5. The factor 7,3 is analogous to
7,, which enters the top contribution to K°-K° mixing,
and both quantities share many important features.

The value of 7,5 for ALL=0.325 GeV, m,(m,)=170
GeV, and with u, set equal to m,(m,) is, at NLO,

5= 0.551. (13.6)

This can be compared with 755 = 0.580, obtained with
the same input in the leading logarithmic approxima-
tion. In the latter case the product 755 (u,) - S(x,(x,)) is,
however, affected by a residual scale ambiguity of =9%
(for 100 GeV=py,<300 GeV). This uncertainty is re-
duced to the negligible amount of =0.3% in the com-
plete NLO expression of 7,5(u,)-S(x,(u,)), corre-
sponding to an increase in accuracy by a factor of 25.
The sensitivity to the unphysical scale y, in leading and
next to leading order is illustrated in Fig. 9.

In addition 7,5 is also very stable against changes in
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the input parameters. With A%z(O.SZSiO.llO) GeV
and m,(m,)=(170x15) GeV 1, varies by *1.3% and
+0.3%, respectively.

It is clear from this discussion that the short-distance
QCD effects in B°-B" mixing are very well under con-
trol, once NLO corrections have been properly included,
and the remaining uncertainties are extremely small.
The effective Hamiltonian given in Eq. (13.1) therefore
provides a solid foundation for the incorporation of non-
perturbative effects, to be determined from lattice gauge
theory, and for further phenomenological investigations
related to B°-B° mixing phenomena.

XIV. PENGUIN BOX EXPANSION FOR FLAVOR
CHANGING NEUTRAL CURRENT PROCESSES

An important virtue of OPE and RG is that, with
m,;>My,, the dependence of weak decays on the top-
quark mass is very elegantly isolated. It resides only in
the initial conditions for the Wilson coefficients at scale
u~My , ie., in C;(My). A quick look at the initial con-
ditions in the previous sections reveals the important
fact that the leading m, dependence in all decays consid-
ered is represented universally by the m,dependent
functions that result from exact calculations of the rel-
evant penguin and box diagrams with internal top-quark
exchanges. These are the functions

So(x), Bolx), Colx,), Dolx,),

Ey(x,), D(’J(xt)a E(,J(xt)s (14-1)

for which explicit expressions are given in Egs. (12.4),
(7.13)—(7.15), (6.15), (9.12), and (9.13), respectively. In
certain decays some of these functions do not appear
because the corresponding penguin or box diagram does
not contribute to the initial conditions. However, the
function Cy(x,) resulting from the Z° penguin diagram
enters all AF=1 decays except B— X,vy. Having a qua-
dratic dependence on mi,, this function is responsible for
the dominant m,; dependence of these decays. Since the
nonleading m, dependence of Cy(x,) is gauge depen-
dent, Cy(x,) is always accompanied by B(x,) or D(x,)
in such a way that this dependence cancels. For this rea-
son it is useful to replace the gauge-dependent functions
By(x,), Cy(x,), and Dy(x,) by the gauge-independent
set (Buchalla et al., 1991)

Xo(x,)=Co(x,)—4B(x,),
Yo(x,)=Co(x,)—By(x,),

1
Zy(x)=Cplx,)+ 4 Do(x,), (14.2)
as we have already done at various places in this review.
The inclusion of NLO QCD corrections to B°-B°,
K°-K" mixing, and the rare K and B decays of Sec. XI
requires the calculation of QCD corrections to penguin
and box diagrams in the full theory. This results in the
functions S(x,)=7,5¢(x,), X(x,), and Y(x,), with the
latter two given in Egs. (11.5) and (11.45), respectively.
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It turns out, however, that, if the top quark mass is
defined as m,=m,(m,), one has

SCx)=mSo(x), X(x,)=nxXo(x,),
Y(x,)=nyYo(x,) (14.3)

with 7, 7y, and 7y almost independent of m,. Numeri-
cal values of 7y and 7y are given in the phenomenologi-
cal sections.

With this definition of m, the basic m,-dependent
functions listed in Egs. (14.1) and (14.2) represent the
m, dependence of weak decays at the NLO level to a
good approximation. It should be remarked that the
QCD corrections to D, E, D, and E; have not been
calculated yet. They would, however, only be required
for even higher-order corrections (NNLO) in the RG-
improved perturbation theory as far as D and E, are
concerned. On the other hand, in the case of D(’) and
E, which are relevant for the b—svy decay, these cor-
rections are necessary.

An inspection of the effective Hamiltonians derived in
the previous sections shows that, for B°-B" mixing,
K°-K° mixing, and the rare decays of Sec. XI, the m,
dependence of the effective Hamiltonian is explicitly
given in terms of the basic functions listed above. Due to
the one-step evolution from u, to u;, , we have also pre-
sented the explicit m, dependence for B— X,y and
B—X,e"e” decays. On the other hand, for K—mm and
K;—me"e”, where the renormalization-group evolu-
tion is very complicated, the m, dependence of a given
box or penguin diagram is distributed among various
Wilson coefficient functions. In other words the m, de-
pendence acquired at scale u~O(My) is hidden in a
complicated numerical evaluation of U(u,My).

For phenomenological applications it is more elegant
and more convenient to have a formalism in which the
final formulas for all amplitudes are given explicitly in
terms of the basic m,-dependent functions discussed
above.

Buchalla et al. (1991) presented an approach that ac-
complishes this task. It gives the decay amplitudes as
linear combinations of the basic, universal, process-
independent but m,-dependent functions F,(x,) of Eq.
(14.1) with corresponding coefficients P, characteristic
for the decay under consideration. This approach,
termed ‘‘penguin box expansion” (PBE), has the follow-
ing general form

A(decay)=P,(decay)+ >, P,(decay)F,(x,), (14.4)

where the sum runs over all possible functions contrib-
uting to a given amplitude. In Eq. (14.4) we have sepa-
rated a m,-independent term P that summarizes contri-
butions stemming from internal quarks other than the
top, in particular the charm quark.

Many examples of PBE appear in this review. Several
decays or transitions depend on only a single function
out of the complete set of Eq. (14.1). For completeness
we give here the correspondence between various pro-
cesses and the basic functions
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BY-B° mixing So(x)

K—mvv,B—Kvv, Xy(x,)

B—mvv

K—up, B—ll Yo(x,)

K —mlee” Yo(x), Zo(x)), Eo(x,)

&' Xo(xp), Yo(x), Zo(x)), Eo(x,)
B—Xy D(x), Eg(x,)

B—X,ete” Yo(x,), Zo(x,), Eo(x,),Do(x,), Ep(x,)

In Buchalla et al. (1991) an explicit transformation
from OPE to PBE has been made. This transformation
and the relation between these two expansions can be
very clearly seen on the basis of

A(PHF>=§ (FIO ()| PYU (1, M) C( M),
’ (14.5)

where Uy;(u,My) represents the renormalization-
group transformation from My, down to u. As we have
seen, OPE puts the last two factors in this formula to-
gether, in this way mixing the physics around My, with
all physical contributions down to very low energy
scales. On the other hand the PBE is realized by putting
the first two factors together and rewriting C;(My) in
terms of Eq. (14.1). This results in the expansion of Eq.
(14.4). Further technical details and the methods for the
evaluation of the coefficients P, can be found in
Buchalla et al. (1991), where further virtues of PBE are
discussed.

Finally, we give approximate formulas having power-
like dependence on x, for the basic, gauge-independent
functions of PBE

So(x)=0.784 x77°, Xy(x)=0.660 x{°7,
YO(XI):O.?)ls x?-78’ ZO(xz):0~175 X?'()S,
Eo(x,)=0.564 x, %' D{(x,)=0.244 x"%
E{(x,)=0.145 x)"°. (14.6)

In the range 150 GeV=m,<200 GeV these approxima-
tions reproduce the exact expressions to an accuracy
better than 1%.

XV. HEAVY-QUARK EFFECTIVE THEORY BEYOND
LEADING LOGARITHMIC ORDER

A. General remarks

Since its advent in 1989, heavy-quark effective theory
(HQET) has developed into an elaborate and well-
established formalism, which provides a systematic
framework for the treatment of hadrons containing a
heavy quark. HQET represents a static approximation
for the heavy quark, covariantly formulated in the lan-
guage of an effective field theory. It allows one to ex-
tract the dependence of hadronic matrix elements on the
heavy-quark mass and to exploit the simplifications that
arise in QCD in the static limit.
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There are several excellent reviews on this subject
(Georgi, 1991; Grinstein, 1991; Isgur and Wise, 1992;
Mannel, 1993; Neubert, 1994c) and we do not attempt
here to cover the details of this extended field. However,
we would like to emphasize the close parallels in the
general formalism employed to calculate perturbative
QCD effects for the effective weak Hamiltonians we
have been discussing in this review and in the context of
HQET. In particular we will concentrate on results that
have been obtained in HQET beyond the leading loga-
rithmic approximation in QCD perturbation theory.
Such calculations have been done mainly for bilinear
current operators involving heavy-quark fields, which
have important applications in semileptonic decays of
heavy hadrons. For the purpose of illustration we will
focus on the simplest case of heavy-light currents. Fur-
thermore, while existing reviews concentrate on semi-
leptonic decays and current operators, we will also in-
clude results obtained for nonleptonic transitions and
summarize the calculation of NLO QCD corrections to
B-B” mixing in HQET (Flynn et al., 1991; Giménez,
1993). These latter papers generalize the leading loga-
rithmic order results first obtained by Voloshin and Shif-
man (1987) and Politzer and Wise (1988a, 1988b).

Throughout this section we will restrict ourselves to
the leading order in HQET and not address the question
of 1/m corrections. For a discussion of this topic we refer
the reader to the literature, in particular the above-
mentioned review articles.

B. Basic concepts

Let us briefly recall the most important basic concepts
underlying the idea of HQET. The Lagrangian describ-
ing a quark field ¥ with mass m and its QCD interac-
tions with gluons is given by

L=ViDV—mPV¥, (15.1)

where D, =d,—igT?A¢, is the gauge-covariant deriva-
tive. If ¥ is a heavy quark, i.e., its mass is large com-
pared to the QCD scale, Agcp/m <1, it acts approxi-
mately like a static color source, and its QCD
interactions are simplified. A heavy quark inside a had-
ron moving with velocity v has approximately the same
velocity. Thus its momentum can be written as p=muv
+ k, where k is a small residual momentum of the order
of Agcp and subject to changes of the same order
through soft QCD interactions. To implement this ap-
proximation, the quark field ¥ is decomposed into

W(x)=e "Ry (x)+ H,(x)] (15.2)
with 4, and H, defined by
1+
hy(x)=e™ T ——W(x), (15.3)
H,(x)=em ™ % W (x). (15.4)

To be specific we consider here the case of a hadron
containing a heavy quark, as opposed to a heavy anti-
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quark. In order to describe a heavy antiquark, the defi-
nitions given in Egs. (15.3) and (15.4) are replaced by

- 19

h 7 (x)=eimvx —— V), (15.5)
~ 1+

H{(x)=e imos —— V). (15.6)

Consequently, for a heavy antiquark, one only needs to
substitute v— —v in the expressions given below.

In the rest frame of the heavy quark, #, and H, cor-
respond to the upper and lower components of ¥, re-
spectively. In general, for m—o, h, and H, represent
the “large” and ‘“‘small”’ components of W. In fact, the
equations of motion of QCD imply that H, is sup-
pressed by a factor Agcp/m in comparison to k. The
inclusion of an explicit exponential factor exp(—imuv - x)
in Eq. (15.2) ensures that the momentum associated
with the field £, is only a small residual momentum of
order Agcp-

Now an effective theory for 4, is constructed by elimi-
nating the small component field H, from explicitly ap-
pearing in the description of the heavy quark. On the
classical level this can be done by using the equations of
motion or, equivalently, by directly integrating out the
H, degrees of freedom in the context of a path-integral
formulation (Mannel et al, 1992). The effective La-
grangian one obtains from Eq. (15.1) along these lines is
given by (D =D"*—v*v-D)

- - 1
Lettior=hyiv-Dh,+h,iD v Di2m—is ib h,.
15.7)
The first term in Eq. (15.7)
Leg=h,(iv*d,+gv*TA%)h, (15.8)

represents the Lagrangian of HQET to lowest order in
1/m and will be sufficient for the present purposes. The
second, nonlocal contribution in Eq. (15.7) can be ex-
panded into a series of local, higher-dimension opera-
tors carrying coefficients with increasing powers of 1/m.
To first order it yields the correction due to the residual
heavy-quark kinetic energy and the chromomagnetic in-
teraction term, which couples the heavy-quark spin to
the gluon field.

From Eq. (15.8) one can obtain the Feynman rules of
HQET, the propagator of the effective field 4,

i 1+4¢
v-k 2

and the &,-h,-gluon vertex, igv*T*. The explicit factor
(1+9)/2 in Eq. (15.9) arises because the effective field #,
is a constrained spinor, satisfying ¥/ ,=h,, as is obvious
from Eq. (15.3). The velocity v, is a constant in the
effective theory and plays the role of a label for the
effective field /. In principle, a different field /, has to
be considered for every velocity v. The Lagrangian in
Eq. (15.8) exhibits the crucial features of HQET: the
quark-gluon coupling is independent of the quark’s spin

(15.9)
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degrees of freedom, and the Lagrangian is independent
of the heavy-quark flavor, since the heavy quark mass
has been eliminated. This observation forms the basis
for the spin-flavor symmetry of HQET (Isgur and Wise,
1989, 1990), which gives rise to important simplifications
in the strong interactions of heavy quarks and allows
one to establish relations among the form factors of dif-
ferent heavy-hadron matrix elements. The heavy-quark
symmetries are broken by 1/m contributions as well as
radiative corrections.

So far the discussion has been limited to the QCD
interactions of the heavy quark. Weak interactions in-
troduce new operators into the theory, which may be
current operators, bilinear in quark fields, or four-quark
operators, which are relevant for semileptonic and non-
leptonic transitions, respectively. Such operators form
the basic ingredients to be studied in weak decay phe-
nomenology. They can as well be expanded in powers of
1/m and incorporated into the framework of HQET. For
example, a heavy-light current operator gI'V (evaluated
at the origin, x=0) can be written, using Eq. (15.2), as

GT¥=GTh,+O(1/m) (15.10)

to lowest order in HQET.

Up to now we have restricted the discussion to the
classical level. In addition, of course, quantum radiative
corrections have to be included. They will, for example,
modify relations such as Eq. (15.10). Technically their
effects are taken into account by performing the appro-
priate matching calculations, which relate operators in
the effective theory to the corresponding operators in
the full theory to the required order in renormalization-
group improved QCD perturbation theory. The proce-
dure is very similar to the calculation of the usual effec-
tive Hamiltonians for weak decays. The basic difference
consists in the heavy degrees of freedom that are being
integrated out in the matching process. In the general
case of effective weak Hamiltonians, the heavy field to
be removed as a dynamical variable is the W boson,
whereas it is the lower-component heavy-quark field H,
in the case of HQET. This similarity will become obvi-
ous from the presentation below.

At this point some comment might be in order con-
cerning the relationship of the HQET formalism to the
general weak effective Hamiltonians discussed in this re-
view, in particular those relevant for b physics. The ef-
fective Hamiltonians for A B=1,2 nonleptonic transitions
are the relevant Hamiltonians for scales wu=0(m}),
which are appropriate for B hadron decays, and their
Wilson coefficients incorporate the QCD short-distance
dynamics between scales of O(My,) and O(m,). As al-
ready mentioned at the end of Sec. V, it is therefore not
necessary to invoke HQET. The physics below
u=0(m,) is completely contained within the relevant
hadronic matrix elements. On the other hand, HQET
may be useful in certain cases, like B-B° mixing, to
gain additional insight into the structure of the hadronic
matrix elements for scales below m, , but still large com-
pared to Agcp. These scales are still perturbative, and
the related contributions can be extracted analytically
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within HQET. In particular, this procedure makes the
dependence of the matrix element on the heavy-quark
mass explicit, as we will see in examples below. Further-
more, this approach can be useful, e.g., in connection
with lattice calculations of hadronic matrix elements,
which are easier to perform in the static limit for b
quarks, i.e., employing HQET (Sachrajda, 1992). How-
ever, the simplifications obtained are at the expense of
the approximation due to the expansion in 1/m.

The most important application of HQET has been to
the analysis of exclusive semileptonic transitions involv-
ing heavy quarks, where this formalism allows one to
exploit the consequences of heavy-quark symmetry to
relate form factors and provides a basis for systematic
corrections to the m—o limit. This area of weak decay
phenomenology has already been reviewed in detail
(Georgi, 1991; Grinstein, 1991; Isgur and Wise, 1992;
Mannel, 1993; Neubert, 1994c) and will not be covered
in the present article.

C. Heavy-light currents

As an example of a next-to-leading-order QCD calcu-
lation within the context of HQET, we will now discuss
the case of a weak current composed of one heavy-and
one light-quark field, to leading order in the 1/m expan-
sion. For definiteness we consider the axial vector
heavy-light current, whose matrix elements determine
the decay constants of pseudoscalar mesons containing a
single heavy quark, like fz and fp, .

The axial-vector current operator in the full theory is
given by

where W is the heavy- and g the light-quark field. In
HQET this operator can be expanded in the following
way,

A=C(w)A+Co(p)Ay+0O(Um), (15.12)

where the operator basis in the effective theory is

AF@?’M)’SI%, A2=civ,n/5hv, (15.13)

with the heavy-quark effective field #, defined in Eq.
(15.3). The use of the expansion [Eq. (15.12)] is to make
the dependence of the matrix elements of A on the
heavy-quark mass m explicit. The dependence on this
mass is twofold. First, there is a power dependence that
is manifest in the heavy-quark expansion in powers of
1/m. From this series the lowest order term is shown in
Eq. (15.12). Second, there is a logarithmic dependence
on m due to QCD radiative corrections, which can be
calculated in perturbation theory. This dependence is
factorized into the coefficient functions C; and C, in
much the same way as the logarithmic dependence of
nonleptonic weak decay amplitudes on the W-boson
mass is factorized into the Wilson coefficients of the
usual weak Hamiltonians. Since the dynamics of HQET
is, by construction, independent of m, no further m de-
pendence is present in_the matrix elements of the effec-
tive theory operators A ,, except for trivial factors of m
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related to the normalization of meson states. Conse-
quently the m dependence of Eq. (15.12) is determined
explicitly.

We remark that, in general, the meson states in
HQET to be used for the rhs of Eq. (15.12) differ from
the meson states in the full theory that are used to sand-
wich the operator A on the lhs. For the leading order in
1/m we are working in, this distinction is irrelevant,
however. An important point is that the operators A,
in the effective theory have anomalous dimensions, al-
though the operator A in the full theory, being an axial-
vector current operator, does not. As a consequence ma-
trix elements of A, will depend on the renormalization
scale and scheme. This dependence is cancelled, how-
ever, through a corresponding dependence of the coef-
ficients, so that the physical matrix elements of A will be
scale and scheme independent as they must be. The ex-
istence of anomalous dimensions for the effective-theory
operators merely reflects the logarithmic dependence on
the heavy-quark mass m due to QCD effects. This de-
pendence results in logarithmic divergences in the limit
m—», corresponding to the effective theory, which re-
quire additional infinite renormalizations not present in
full QCD. Obviously the situation is completely analo-
gous to the case of constructing effective weak Hamilto-
nians through integrating out the W boson, which we
have described in detail in Sec. III. In fact, the extraction
of the coefficient functions by factorizing long- and
short-distance contributions to quark-level amplitudes
and the renormalization-group treatment follow exactly
the same principles.

The Wilson coefficients at the high matching scale
mp=0O(m), the initial condition to the RG evolution, can
be calculated in ordinary perturbation theory with the
result (NDR scheme)

Cilpn) =1+ f—; ( ¥Oln %JFB1 , (15.14)
aS
Colpn)= 4 B, (15.15)
with
B,=—4Cp, By=—2Cy, (15.16)

and y$) given in Eq. (15.18) below. Cp is the QCD
color factor (N*—1)/(2N). We remark that the coeffi-
cient of the new operator A,, generated at O(«), is fi-
nite without requiring renormalization. As a conse-
quence no explicit scale dependence appears in Eq.
(15.15), and B, is a scheme-independent constant. For
the same reason A; and A, do not mix under renormal-
ization, but renormalize only multiplicatively. The
anomalous dimension of the effective heavy-quark cur-
rents is independent of the Dirac structure. It is the
same for A; and A, and, at two-loop order, is given by

2
a a
= o ) 1517

where
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Y =—3Cp, (15.18)
49 2 5 8 5
7’211):(—Z+§772)NCF+ E—ng)C%+§CFf
254 56 , 20
=-5—5 m+5/ (NDR), (15.19)

and N(f ) denotes the number of colors (flavors). The
anomalous dimension yﬁﬁ) has been first calculated by
Voloshin and Shifman (1987) and Politzer and Wise
(1988a, 1988b). The generalization to next to leading or-
der has been performed by Ji and Musolf (1991) and
Broadhurst and Grozin (1991).

The RG equations are readily solved to obtain the
coefficients at a lower but still perturbative scale u,
where, formally, u<u,=0O(m). Using the results of Sec.
IIL.LF, we have

Cm={1+ a;(:) th) ocz;((/;h))r“<1+ asi/;h)
x y;;pln%wl—Jh,D, (15.20)
Colp)= C;js((’;h)) " asj’; 2 (1521)
with
dM:;(L[:l;, Jh,:% ,81—;%];. (15.22)

We remark that the corresponding formulae for the vec-
tor current can be simply obtained from the above ex-
pressions by letting ys—1 and changing the sign of B,.

In addition to the case of heavy-light currents consid-
ered here, the NLO corrections have also been calcu-
lated for flavor-conserving and flavor-changing heavy-
heavy currents of the type WI'V and W ,I'V,,
respectively, where W, W, are heavy quark fields
(I'=v,,7,7s)- In these cases the anomalous dimensions
become velocity dependent. Additional complications
arise in the analysis of flavor-changing heavy-heavy cur-
rents due to the presence of two distinct heavy-mass
scales. For a detailed presentation see Neubert (1994c)
and references cited therein.

D. The pseudoscalar decay constant in the static limit

An important application of the results summarized in
the last section is the calculation of the short-distance
QCD effects, from scales between w,=0O(m) and u
=0(1 GeV), for the decay constants fp of pseudoscalar
heavy mesons. Using only the leading term in the expan-
sion [Eq. (15.12)], omitting all 1/m power corrections,
corresponds to the static limit for fp, which plays some
role in lattice studies. As already mentioned we will re-
strict ourselves to this limit. We should remark, how-
ever, that nonnegligible power corrections are known to
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exist for the realistic case of B- or D-meson decay con-
stants (Sachrajda, 1992). The decay constant fp is de-
fined through

(0lA|P)=—ifpmpv,, (15.23)

where the pseudoscalar meson state | P) is normalized in
the conventional way ({P|P)=2EV). The matrix ele-

ments of A;, are related via heavy-quark symmetry
and are given by

(0]A4|Py=—(0|A,|P)=—if(u)Nmpv,, .

Apart from the explicit mass factor \mp, which is
merely due to the normalization of |P), these matrix
elements are independent of the heavy-quark mass. The
“reduced” decay constant f(u) is therefore m indepen-
dent. It does, however, depend on the renormalization
scale and scheme chosen. The computation of f(u) is a
nonperturbative problem involving strong dynamics be-
low scale w. Using Egs. (15.12), (15.20), (15.21), (15.23),
and (15.24), we obtain

(15.24)

flw) a,(u) a(pu) | ag(pp)
f”‘Jm—P(” 7y ’“) am} (” 7P

The dependence of the coefficient function on the renor-
malization scheme through J,; in the second factor in
Eq. (15.25) and its dependence on u cancel the corre-
sponding dependences in the hadronic quantity f(w) to
the considered order in «,. The last factor in Eq. (15.25)
is scheme independent. Furthermore, the cancellation of
the dependence on w;, to the required order can be seen
explicitly. Note also the leading scaling behavior fp
~ 1/\Jm p, which is manifest in Eq. (15.25).

Although f(w) cannot be calculated without nonper-
turbative input, its independence from the heavy-quark
mass m implies that f will drop out in the ratio of fj
over fp, if charm is treated as a heavy quark. One thus
obtains

X(B1=Jp—By)+

as(/J*b) i as(/u'b)_as(ﬂc)
aswc)} (” e

as(/“’b) (0) Mp
In —
4 Y0 ny

p= (15.26)
The QCD factor on the right-hand side of Eq. (15.26)
amounts to 1.14 for m,=4.8 GeV, m.=1.4 GeV, and
Ass = 0.2 GeVif we set u;=m;,i=Db,c.If we allow for a
variation of the renormalization scales, 2/3<u;/m <2,
this factor lies within a range of 1.12 to 1.16. This is to be
compared with the leading logarithmic approximation,
where the central value is 1.12 with a variation from 1.10
to 1.15. Note that, due to cancellations in the ratio
fB/fp, the scale ambiguity is not much larger in LLA

c

ag(pe) M
- —— »%In —C)
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than in NLLA. However, the next-to-leading-order
QCD effects further enhance f/f, independently of the
renormalization scheme.

E. AB=2 transitions in the static limit

In Sec. XIII we have described the effective Hamil-

tonian for B’-B® mixing. The calculation of the mixing

&)htude requires the evaluation of the matrix element
B°|Q|B%=(Q) of the operator

Q=(bd)y_a(bd)y_4 (15.27)

in addition to the short-distance Wilson coefficient. Co-
efficient function and operator matrix element are to be
evaluated at a common renormalization scale, u,
=0(m,), say. In contrast to the determination of the
Wilson coefficient, the computation of the hadronic ma-
trix element involves nonperturbative long-distance con-
tributions. Ultimately this problem should be solved us-
ing lattice QCD. However, the b quark is rather heavy,
and it is therefore difficult to incorporate it as a fully
dynamical field in the context of a lattice-regularization
approach. On the other hand, QCD effects from scales
below u,=0(m,) down to ~1 GeV are still accessible to
a perturbative treatment. HQET provides the tool to
calculate these contributions. At the same time it allows
one to extract the dependence of (B°|Q|B") on the bot-
tom mass m, explicitly, albeit at the price of the further
approximation introduced by the expansion in inverse
powers of m, .

In a first step the operator Q in Eq. (15.27) is ex-
pressed as a linear combination of HQET operators by
matching the full to the effective theory at a scale

Hp=0(m)

<Q(Mb)>:(1+%’:b) [(5/(0)—y(0))1n ":LTZJrB—BD

() + 25 B (6 ().
(15.28)
Here
0=2(hd)y_,(h"d)y_,,
Q,=2(hd)s_p(h' d)s_p, (15.29)

with (hd)g_p=h(1—ys)d are the necessary operators
in HQET relevant for the case of a B°— B transition.
The field 4 creates a heavy quark, while 2 annihilates
a_heavy antiquark. Since the effective- theory field
(h)) cannot, unlike the full-theory field b in Q, at the
same time annihilate (create) the heavy antiquark
(quark), explicit factors of two have to appear in Eq.
(15.29). Similar to the case of the heavy-light current
discussed in the previous section, a new operator QO
with scalar-pseudoscalar structure is generated. Its coef-
ficient is finite, and hence no operator mixing under in-
finite renormalization occurs between O and QS

In a second step, the matrix element (Q(u,)) at the
high scale u, has to be expressed through the matrix
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element of O evaluated at a lower scale u~1 GeV,
which is relevant for a nonperturbative calculation, for
example, using lattice gauge theory. This relation can be
obtained through the usual renormalization-group evo-
lution and reads in NLLA

i
<Q<ub>>=[cﬁf(’;b))} (H“S( e J)<Q< .
‘ (15.30)
where
- O ~_g 7
d=5g I=5 Pi=ag (15.31)

with the beta-function coefficients 8, and 8, given in Eq.
(3.16). The calculation of the one-loop anomalous di-
mension % of the HQET operator Q, required for the
leading logarithmic approximation to Eq. (15.30), has
been first performed by Voloshin and Shifman (1987)
and Politzer and Wise (1998a, 1988b). The computa'uon
of the two-loop anomalous dimension ! is due to
Giménez (1993). Finally, the next-to-leading-order
matching condition [Eq. (15.28)] has been determined
by Flynn et al. (1991). In the following we summarize the
results obtained in these papers.

The scheme- degendent next-to-leading-order quanti-
ties B, B, and y refer to the NDR scheme with anti-
commuting s and the usual subtraction of evanescent
terms as defined by Buras and Weisz (1990). For N=3
colors we then have

FO=_g 0=y (15.32)
B-B=-14, B=—, B,=-8, (15.33)
808 52 64
SO " 24
53T tg (15.34)

where f is the number of active flavors.

At this point we would like to make the following
comments.

(i) The logarithmic term in Eq. (15.28) reflects the
O(ey) scale dependence of the matrix elements of Q and
Q. Accordingly, its coefficient is given by the difference
in the one-loop anomalous dimensions of these opera-
tors, 'y(o) and y©.

(i) The one-loop anomalous dimension of the
effective-theory operator Q, ¥, is exactly twice
as large as the one-loop anomalous dimension of
the heavy-light current discussed in Sec. XV.C

[see Eq. (15.18)]. Therefore the scale dependence of (Q)
below w, is entirely contained in the scale dependence
of the decay constant squared f (w). This implies the
well-known result that in LLA the parameter Bz has no
perturbative scale dependence in the static theory below
Wy - As the result of Giménez (1993) for 7 shows, this
somewhat accidental cancellation is not valid beyond the
one-loop level.

(iii) The matching condition of Eq. (15.28) contains a
scheme-dependent constant term in the relation be-
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tween (Q) and (Q). We have written this coefficient in
the form B-B in order to make the cancellation of
scheme dependences, to be discussed below, more trans-
parent. Here B is identical to B, introduced in Eq. (5.8)
and characterizes the scheme dependence of (Q) (see
also Secs. XII and XIII).

(iv) The quantity % has been originally calculated by
Giménez (1993) using dimensional reduction (DRED)
instead of NDR as the renormalization scheme. How-
ever, B turns out to be the same in DRED and NDR,
implying that % also coincides in these schemes
(Giménez, 1993).

Finally we may put together Egs. (15.28) and (15.30),
omitting for the moment the scheme-independent, con-
stant correction due to Q,, to obtain

_ag(pmp) U awy) [ Mp
<Q(Mb)>_ as(M) (1 4 [(7(0)_7(0))111”1_[)
+B-B—J|+ “2(7’:) i)(Q(M». (15.35)

This relation serves to express the B°-B° matrix ele-
ment of the operator Q, evaluated at a scale w,=0(m,)
relevant for the effective Hamiltonian of Sec. XIII, in
terms of the static theory matrix element (Q(u)) nor-
malized at a low scale u~1 GeV. The latter is more
readily accessible to a nonperturbative lattice calcula-
tion than the full-theory matrix element (Q(u,)). Note
that Eq. (15.35) as it stands is valid in the continuum
theory. In order to use lattice results, one still has to
perform an O(«,) matching of Q to its lattice counter-
part. This step, however, does not require any further
renormalization-group improvement, since by means of
Eq. (15.35) Q is already normalized at the appropriate
low scale w. The continuum-lattice theory matching was
determined by Flynn ef al. (1991) and is also discussed
by Giménez (1993).

Of course, the right-hand side in Eq. (15.35) gives
only the leading contribution in the 1/m expansion of
the full matrix element (Q(u,)) (apart from Q).
Going beyond this approximation would require the
consideration of several new operators, which appear at
the next order in 1/m. These contributions have been
studied by Kilian and Mannel (1993) in the leading loga-
rithmic approximation. On the other hand Eq. (15.35),
while restricted to the static limit, includes and resums
all leading and next to leading logarithmic corrections
between the scales u,=0(m;) and u~1 GeV in the re-
lation between Q and Q. It is interesting to consider the
scale and scheme dependences present in Eq. (15.35).
The dependence on w in the first factor on the rhs of Eq.
(15.35) is canceled by the u dependence of (Q(u)). The
dependence on w,; of this factor is canceled by the ex-
plicit In u, term proportional to 7. Hence the only
scale dependence remaining on the rhs, to the consid-
ered order O(a), is the one ~a,(u,) Y Ing, . This is
precisely the scale dependence of the full-theory matrix
element on the lhs, which is required to cancel the cor-
responding dependence of the Wilson coefficient. Simi-
larly, the term ~a,( ;) B represents the correct scheme
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dependence of (Q(u,)), while the scheme dependence
of a,(u)J cancels with the scheme dependence of
(Q(u)) and the difference B-J is scheme independent by
itself. This discussion demonstrates explicitly that the
transition from full QCD to HQET can be made at an
arbitrary scale u,=0(m}), as we have already empha-
sized above.

Finally, we would like to remark that, since the loga-
rithm Inu,/w is not really very large in the present case,
one might take the attitude of neglecting higher-order
resummations of logarithmic terms altogether and re-
strict oneself to the O(«y) corrections alone. Then Eq.
(15.28) would already be the final result, as it was used
by Flynn et al. (1991). This approximation is fully con-
sistent from a theoretical point of view. Yet it is useful
to have the more complete expression Eq. (15.35) at
hand. Of course, as indicated above, the finite O(«) cor-
rection due to the matrix element of Q, in Eq. (15.28)
must still be added to the rhs of Eq. (15.35). However, to
complete the NLO renormalization-group calculation,
also the leading logarithmic corrections related to the
operator Q, should then be resummed. This part of the
analysis has been performed only recently and is dis-
cussed in Ciuchini, Franco, and Giménez (1996) and
Buchalla (1996).

XVl. COMMENTS ON INPUT PARAMETERS

The phenomenology of weak decays depends sensi-
tively on a number of input parameters. We have col-
lected the numerical values of these parameters in the
Appendix. To this end we have frequently used the val-
ues quoted by the Particle Data Group (1994). The basis
for our choice of the numerical values for various non-
perturbative parameters, such as B g or Fp, will be given
in the course of the presentation. In certain cases, like
the B-meson lifetimes and the size of the B %- B Y mixing,
for which the experimental averages change constantly,
we have chosen values that are in the ballpark of those
presented at various conferences and workshops during
the summer of 1995. Here we would like to comment
briefly on three important parameters, |V |, |Vp/Vepls
and m,. The importance of these parameters lies in the
fact that many branching ratios and also the CP viola-
tion in the standard model depend sensitively on them.

A. Cabibbo-Kobayashi-Maskawa matrix element |V|

During the last two years there has been considerable
progress made by experimentalists (Patterson, 1995) and
theorists in the extraction of |V,,| from the exclusive
and inclusive B decays. In these investigations the
HQET in the case of exclusive decays and the heavy
quark expansions for inclusive decays played a consider-
able role (Ball et al., 1995a; Neubert, 1994a; Shifman
et al., 1995). From these treatments, one arrives at

V.| =0.040+0.003 = A=0.82+0.06. (16.1)

This should be compared with an error of =0.006 for
|V.»] quoted in 1993. The corresponding reduction of
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the error in A by a factor of 2 has important conse-
quences for the phenomenology of weak decays.

B. Cabibbo-Kobayashi-Maskawa matrix element ratio
IVub/Vep|

The accuracy of this ratio is much worse, with the
value

Vu b

Vcb

quoted by the Particle Data Group (1994) still the ac-
cepted one. It is important to emphasize that the theo-
retical status of |V,,/V.,| is considerably less mature
than it is for |V, and some model dependence is un-
fortunately still present in Eq. (16.2). In the following
we shall adopt this estimate for definiteness, keeping the
associated problems in mind. There is a hope that the
error can be reduced in the future both due to progress
in lattice calculations (Simone, 1996) and the recent
CLEO measurements of the exclusive semileptonic de-
cays B—(m,p)lv, (Thorndike, 1995). An interesting
theoretical approach, based on the construction of a
constrained dispersive model for B—ar form factors, has
recently been discussed by Burdman and Kambor
(1996).

=0.08+0.02 (16.2)

C. Top-quark mass m;

Next it is important to stress that the discovery of the
top quark (Abe et al., 1994a, 1994b, 1994c; Abachi et al.,
1995) and its mass measurement had an important im-
pact on the field of rare decays and CP violation, con-
siderably reducing one potential uncertainty. It is, how-
ever, important to keep in mind that the parameter m,
used in weak decays is not equal to the one used in the
electroweak precision studies at LEP or SLD. In the
latter investigations the so-called pole mass is used,
whereas in all the NLO calculations listed in Table I and
used in this review, m, refers to the running current top-
quark mass normalized at u=m,:m(m,). One has

4 a,(m,)
3 0w

so that for m,=0O(170 GeV), m,(m,) is typically 8 GeV
smaller than m 1),

In principle any definition m,(u,) with wu=0(m,)
could be used. In the leading order this arbitrariness in
the choice of , introduces a potential theoretical uncer-
tainty in those branching ratios that depend sensitively
on the top-quark mass. The inclusion of NLO correc-
tions reduces this uncertainty considerably, so that the
resulting branching ratios remain essentially indepen-
dent of the choice of u,. We have discussed this point
already in previous sections. Numerical examples will be
given in this part below. The choice u,=m, turns out to
be convenient and will be adopted in what follows.

Using the m(P°®) quoted by CDF (Abe et al., 1994a,
1994b, 1994c) together with Eq. (16.3) we find roughly

1+

mP =, (m,) (16.3)
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m,=m,(m,)=(170+15) GeV, (16.4)

which we will use in the phenomenological applications.
In principle an error of =11 GeV could be used, but we
prefer to be conservative.

XVII. INCLUSIVE B DECAYS
A. General remarks

Inclusive decays of B mesons constitute an important
testing ground for our understanding of strong-
interaction dynamics in its interplay with the weak
forces. At the same time inclusive semileptonic modes
provide useful information on |V ,|.

Due to quark-hadron duality, inclusive decays of
heavy mesons can, in general, be calculated more reli-
ably than corresponding exclusive modes. During recent
years a systematic formulation for the treatment of in-
clusive heavy-meson decays has been developed. It is
based on operator product and heavy-quark expansion,
which are applied to the B-meson inclusive width, ex-
pressed as the absorptive part of the B forward-
scattering amplitude

1
F(B—>X)=mlm (zf d*x(B|THP (x)H P (0)|B) |.
(17.1)

Here H'Y is the part of the complete AB=1 effective
Hamiltonian that contributes to the particular inclusive
final state X under consideration. For example, for in-
clusive semileptonic decays

(Z_V[) V—A +H.c..

(17.2)

For nonleptonic modes the relevant expression is the
A B=1 short-distance effective Hamiltonian given in Eq.
(6.32). It has been shown (Chay et al., 1990; Bigi et al.,
1992, 1993; Bjorken et al, 1992; Bigi, Blok, Shifman,
Uraltsev, and Vainshtein, 1994; Blok et al. 1994; Falk
et al., 1994; Mannel, 1994; Manohar and Wise, 1994) that
the leading term in a systematic expansion of Eq. (17.1)
in 1/m, is determined by the decay width of a free b
quark calculated in the parton picture. Furthermore, for
total integrated rates the nonperturbative corrections to
this perturbative result start at order (A/m,,)%, where A is
a hadronic scale ~1 GeV, and are quite small in the case
of B decays (Bigi et al., 1992). In the light of this formu-
lation it becomes apparent that the perturbative, par-
tonic description of heavy-hadron decay is thus pro-
moted from the status of a model calculation to the
leading contribution in a systematic expansion based on
QCD. We will still comment on the (A/m,)* corrections
below. In the following we will, however, concentrate on
the leading quark-level analysis of inclusive B decays.
As we shall see, the treatment of short-distance QCD
effects at the next-to-leading-order level, at least for the
dominant modes, is of crucial importance for a proper
understanding of these processes.

Gr )
Hgf{‘A)le :E Vep(Eb)y 4 >

=e,u,T
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The calculation of b-quark decay starts from the ef-
fective AB=1 Hamiltonian containing the relevant four-
fermion operators multiplied by Wilson coefficients. To
obtain the decay rate, the matrix elements (squared) of
these operators have to be calculated perturbatively to
the required order in «,. While in LLA a zeroth-order
evaluation is sufficient; O(«;) virtual gluon effects (along
with real gluon bremsstrahlung contributions for the
proper cancellation of infrared divergences in the inclu-
sive rate) have to be taken into account at NLO. In this
way the renormalization scale and scheme dependence
present in the coefficient functions is canceled to the
considered order [O(«,)] in the decay rate. Thus, by con-
trast to low-energy decays, in the case of inclusive
heavy-quark decay, a physical final result can be ob-
tained within perturbation theory alone.

Our goal will be to review the present status of the
theoretical prediction for the B-meson semileptonic
branching ratio Bg; . This quantity has received some
attention in recent years since theoretical calculations
(Altarelli and Petrarca, 1991; Tanimoto, 1992; Palmer
and Stech, 1993; Bigi, Blok, Shifman and Vainshtein,
1994; Falk et al., 1995) tended to yield values around
12.5-13.5%, above the experimental figure By
=(10.4+0.4)% (Particle Data Group, 1994). However,
these earlier analyses have not been complete in regard
to the inclusion of final-state mass effects and NLO
QCD corrections in the nonleptonic widths. More pre-
cisely, these calculations took into account mass effects
appropriate for the leading order in QCD along with
NLO QCD corrections obtained for massless final-state
quarks. Recently the most important of these, so far
lacking, mass effects have been properly included in the
NLO QCD calculation through the work of Bagan et al.,
(1994), Bagan, Ball, Braun, and Gosdzinsky (1995), and
Bagan, Ball, Fiol, and Gosdzinsky (1995). These O(«,)
mass effects tend to decrease Bg; and, according to the
analysis of these authors, essentially bring it, within
theoretical uncertainties, into agreement with the ex-
perimental number. Before further discussing these is-
sues, it is appropriate to start with a short overview sum-
marizing the possible b-quark decay modes and
classifying their relative importance.

B. b-quark decay modes

First of all, a b quark can decay semileptonically to the
final states c/v; and ulv, with /[=e,u,7. In the case of
nonleptonic final states we may distinguish three classes:
decays induced through current-current operators alone
(Class I), decays induced by both current-current and
penguin operators (Class II), and pure penguin transi-
tions (Class III). The classes have the following allowed
final states:

Class 1
Class 1I

cud, cus, ucs, ucd
ccs, ccd, uud, uus

Class Il ddd, dds, ssd, sss.
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Clearly there is a rich structure of possible decay
modes even at the quark level, and a complete treat-
ment would be quite complicated. However, not all of
these final states are equally important. In order to per-
form the analysis of b-quark decay, in particular in view
of the calculation of Bg; , it is useful to identify the most
important channels and to introduce appropriate ap-
proximations in dealing with less prominent decays. To
organize the procedure, we make the following observa-
tions.

(i) The dominant, i.e., CKM-allowed and tree-level-
induced, decays are b—clv, b—cud, and b—ccs. For
these a complete NLO calculation including final-state
mass effects is necessary.

(ii) The channels cus, ccd, ucd, and uus may be in-
corporated with excellent accuracy into the modes cud,
ccs, ucs, and uud, respectively, by using the approxi-
mate CKM unitarity in the first two generations. The
error thus introduced through the s —d mass difference
is entirely negligible.

(ili) Penguin transitions are generally suppressed by
the smallness of their Wilson coefficient functions, which
are typically of the order of a few percent. For this rea-
son, one may neglect the pure penguin decays of class
IIT altogether, as their decay rates involve penguin coef-
ficients squared.

(iv) Furthermore we may neglect the penguin contri-
butions to the CKM-suppressed b — u transitions of class
IL

(v) In addition one may treat the remaining smaller
effects, namely b —u transitions and the interference of
penguins with the leading current-current contribution
in b—ccs, within LLA.

(vi) Finally, rare, flavor-changing neutral-current
b-decay modes are negligible in the present context as
well.

Next we will write down expressions for the relevant
decay-rate contributions we have discussed.

For the dominant modes b—clv, b—cud, and
b—ccs (without penguin effects) one has at next-to-
leading order

2ag(p)
3 g(xcrxho)}’

(17.3)

T(b—clv)=T\P(x,,x;,0)| 1+

F(b—>cﬁd)=F0P(xc,O,O)[2L2++L2
M —

+as( w) — ay(u)
2w

Day(u) [3
ol L—<L+—L>2gn<x6)

(2L R, +L>R.)

3 2 1 2 2
+ 5 (Lot L ) en(x)+5 (L3 —L2)

X (17.4)

gu(x.)—121n m%)”
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TABLE XXXVI. Typical values for the ratio of NLO to LO
results for dominant b-decay channels with (I) and without (II)
including finite charm-mass effects in the NLO correction
terms. The leading-order final-state mass effects (through the
function P) are taken into account in all cases.

b—cev b—cTv b—cud b—ccs
1 0.85 0.88 1.06 1.32
1I 0.79 0.80 1.01 1.02

F(bHcEs)=F0P(xC,xc,xs)[ZL%F-FLZ_
(My)—a,
+a5( w) — a(u)
2

Day(p) [3
s [Z (Lo=L)hyy(x)

(2L2R,+L>R.)

3 1 5 )
+ 5 L+ L )h(x) 5 (L= L2)

X

M
his(x.)—121n m_b) . (17.5)

Equation (17.5) neglects small strange-quark mass ef-
fects in the NLO terms, which have been included in the
numerical analysis by Bagan, Ball, Fiol, and Gosdzinsky
(1995). In the equations above T'y=G 2m 3|V, |[/(1927°),
and P(xq,x,,x3) is the leading-order phase-space factor
given, for arbitrary masses x;=m;/m, , by

1-x)2 ds
P(xl,X2>x3):12f( ) —(s—x%—x%)

(xp+x3)2 8
X (1 +x%—s)w(s,x%,x%)w(s,x%,l)
(17.6)
w(a,b,c)=(a’>+b*+c*—2ab—2ac—2bc)'?. (17.7)

P is a completely symmetric function of its arguments.
Furthermore,

as(MW) Iz

as(ﬂ)

with d,=6/23, d_=-12/23 [see Eq. (5.10)], and u=O(m,).
The scheme-independent R. come from the NLO
renormalization-group evolution and are given by
R.=B.—-J. [see Eq. (59)]. For f=5 flavors
R ,=6473/3174 and R_=-9371/1587. Note that the lead-
ing dependence of L. on the renormalization scale w is
canceled to O(«y) by the explicit u dependence in the «
correction terms. Virtual gluon and bremsstrahlung cor-
rections to the matrix elements of four-fermion opera-
tors are contained in the mass-dependent functions g,
gij»and hj;.

The function g(x,,x,,x3) is available for arbitrary x,
X,, and x; from Hokim and Pham (1983, 1984). The spe-
cial case g(x;,0,0) has been analyzed also by Cabibbo
and Maiani (1978). Analytical expressions have been
given by Nir (1989) for g(x,0,0) and by Bagan et al

L.=L.(p)= (17.8)
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(1994) for g(0,x,,0). The functions g;;(x), g(x), and
gxn(x) are calculated analytically by Bagan et al. (1994).
Furthermore, as discussed by Bagan et al. (1994), h1(x)
and /4, (x) can be obtained from the work of Hokim
and Pham (1983, 1984). Finally, /,(x) has been deter-
mined by Bagan, Ball, Fiol, and Gosdzinsky (1995). For
the full mass dependence of these functions we refer the
reader to the cited literature. Here we quote the results
obtained in the massless limit. These have been com-
puted by Altarelli et al. (1981) and Buchalla (1993) for

8ij>» hi/’ [gij(o) :hi/'(o)]

31, 19
gn(o):gm(o):I_W , 812(0)=g11(0)_7- (17.9)
Furthermore,

25
8(0.0.0)= 5= . (17.10)

In Table XXXVI we have listed some typical numbers
extracted from Bagan, Ball, Braun, and Gosdzinsky
(1995) and Bagan, Ball, Fiol, and Gosdzinsky (1995),
which illustrate the impact of charm-mass effects (for
x,.=0.3) in the NLO correction terms by giving the en-
hancement factor of the NLO over the LO results.
There are of course various ambiguities involved in this
comparison. The numbers in Table XXXVI are there-
fore merely intended to show the general trend. Note
the sizable enhancement through NLO mass effects in
the nonleptonic channels, in particular b—ccs. A large
QCD enhancement in the latter case has also been re-
ported by Voloshin (1995). In principle the validity of
the heavy-quark expansion might be questioned for
b—ccs, since in this case the energy release is relatively
small. On the other hand, the direct partonic NLO cal-
culation of B(b—ccs) is in agreement with an indirect
determination of this quantity that does not require
theoretical input for b—ccs. The latter determination is
possible by combining experimental information on the
semileptonic branching ratio B(B— Xev) with the NLO
calculation of I'(b—cud)/I'(b—cev) and has been de-
scribed by Buchalla et al. (1995). A discussion of the im-
plications for the charm yield in B decays can also be
found in this paper.

To complete the presentation of b decay modes we
next write down expressions for the CKM-suppressed
channels b—ulv, b—ucs, and b—uud (without pen-
guins) as well as the contribution to the b—ccs rate due
to interference of the leading, current-current-type tran-
sitions with penguin operators. Restricting ourselves to
the LLA for these small contributions, we obtain

2
r<b—>u21 lv) =T, Vb

v 2 P0x.0),

]

(17.11)

- Vub 2 2 2
I'(b—ucs)=T % P(Ox,.,x)[2L5+ L], (17.12)
ch
2
- Vub 2 2
[(b—uid)=To|;~ [2L7+L7], (17.13)
cb
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Al_‘penguin( b—ccs)
1
=6I‘0P(xc,xc,xs)[cl c3+§c4+F c5+§c6”
1 1
+C2 §C3+C4+F §C5+C6 (1714)

where cq,...,c¢ are the leading-order Wilson coefficients
and
F= f(l w0 S rx2mxd) (1 45—
(s+x2—x s—X;
P(xc s s) +xg )2 S

Xw(s,xc,xf)w(l,s,xg). (17.15)

Numerically we have, for |V ,,/V,|=0.1,

F(ZHME lv)%0.0241“0, ['(b—ués)~0.017T,
l (17.16)

I'(b—uiid)~0.034T,

—0.041T,. (17.17)

Note that the contribution due to the interference with
penguin transitions in b—ccs is negative. Hence, in ad-
dition to being small, the effects in Egs. (17.16) and
(17.17) tend to cancel each other in the total nonleptonic
width.

Finally one may also incorporate nonperturbative cor-
rections. These have been derived by Bigi ef al. (1992)
and are also discussed by Bagan et al. (1994). As men-
tioned above, nonperturbative effects are suppressed by
two powers of the heavy b-quark mass and amount typi-
cally to a few percent. For details we refer the reader to
the cited articles.

AI‘penguin( b—ccs)~

C. The B-meson semileptonic branching ratio

An important application of the results described in
the previous section is the theoretical prediction for the
inclusive semileptonic branching ratio of B mesons

B _F(BHXEV)
SEUTw(B)
On the parton level, I'(B— Xev)=I'(b—cev), and

Fo(B)= 2

I=e,pu,7

(17.18)

I'(b—clv)+T'(b—cud)

+T(b—ccs)+ AT penguin(b—ccs)

+I(b—u). (17.19)

Here we have applied the approximations discussed
above. I'(hb—u) summarizes the b—u transitions.
Based on a similar treatment of the partonic rates,
including next-to-leading-order QCD corrections for the
dominant channels and also incorporating nonperturba-
tive corrections, Bagan, Ball, Braun, and Gosdzinsky
(1995) and Bagan, Ball, Fiol, and Gosdzinsky (1995)
have carried out an analysis of Bg; and estimated the
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theoretical uncertainties. The mass difference m,—m, is
rather accurately constrained by charm and beauty had-
ron masses using heavy-quark effective theory. To re-
duce uncertainties from quark masses, this relationship
was employed in their prediction. They obtain (Bagan,
Ball, Fiol, and Gosdzinsky, 1995; Bagan, Ball, Braun,
and Gosdzinsky, 1996)

By =(12.0=1.4)% (11.3%1.7)%,

(17.20)

using pole and MS masses, respectively. The error is
dominated in both cases by the renormalization-scale
uncertainty (mp/2<u<2m,). Note also the sizable
scheme ambiguity. Within existing uncertainties, the
theoretical prediction does not disagree significantly
with the experimental value By ,=(10.420.4)% (Par-
ticle Data Group, 1994), although it seems to lie some-
what on the high side.

It is amusing to note that the naive mode-counting
estimate for By , neglecting QCD and final-state mass
effects completely, yields Bg; =1/9=11.1% in good agree-
ment with experiment. Including the final-state masses,
still neglecting QCD, enhances this number to
B =15.8%. Incorporating QCD effects at the leading-
logarithmic-order increases the hadronic modes, thus
leading to a decrease in Bgp , which results typically in
B4 =14.7%. A substantial further decrease is finally
brought about through the NLO QCD corrections,
which both further enhance hadronic channels, in par-
ticular b—ccs, and simultaneously reduce b—cev. As
pointed out by Bagan, Ball, Braun, and Gosdzinsky
(1995) and Bagan, Ball, Fiol, and Gosdzinsky (1995) and
illustrated in Table XXXVI, final-state mass effects in
the NLO correction terms play a non-negligible role for
this enhancement of hadronic decays. The nonperturba-
tive effects also lead to a slight decrease of Bg; .

In short, leading final-state mass effects and QCD cor-
rections, acting in opposite directions on By , tend to
cancel each other, resulting in a number for Bg; not too
different from the simple mode-counting guess.

We finally mention that, besides a calculation of Bg; ,
the partonic treatment of heavy-meson decay has fur-
ther important applications, such as the determination
of |V,,| from inclusive semileptonic B decay, B— X ev.
Analyses of this type have been presented by Ball and
Nierste (1994), Bigi and Uraltsev (1994), Luke and Sav-
age (1994), and Shifman et al. (1995).

Exact results beyond the presently known NLO accu-
racy seem extremely difficult to obtain, even for rela-
tively simple quantities like the semileptonic b-quark
decay rate. There exist, however, calculations in the lit-
erature devoted to the investigation of these higher-
order perturbative effects. Due to the severe technical
difficulties, those calculations require additional assump-
tions. For instance, in an interesting study Ball et al
(1995a) have investigated the effects of the running of «;
on the semileptonic b-quark decay rate to all orders in
perturbation theory. This calculation is equivalent to a
resummation of all terms of the form «,(Byea,)", which
are related to one-gluon exchange diagrams containing

and Bg =
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an arbitrary number n of fermion bubbles. The work of
Ball et al. (1995a) applies the renormalon techniques de-
veloped by Ball ef al. (1995b) and Beneke and Braun
(1995) [see also (Beneke and Braun, 1994) and (Bigi
et al., 1994b)] and generalizes the O(Bya?) results com-
puted by Luke et al. (1995). The underlying idea is simi-
lar in spirit to the BLM approach (Brodsky et al., 1983).
An important application of the result is the extraction
of | V| (Ball et al., 1995a). The formalism has also been
used to study higher-order QCD corrections to the
7lepton hadronic width (Ball et al., 1995b). Irrespective
of the ultimate reliability of the approximation, these
investigations are useful from a conceptual point of
view, as they help to illustrate important features of the
higher-order behavior of the perturbative expansion.

In principle the discussion we have given for b decays
may of course, with appropriate modifications, be ap-
plied to the case of charm as well. However, here the
nonperturbative corrections to the parton picture, which
scale like 1/m2Q with the heavy-quark mass m, are an
order of magnitude larger than for B mesons, and accu-
rate theoretical predictions are much more difficult to
obtain (Blok and Shifman, 1993).

XVIII. &, B°-B® MIXING,
AND THE UNITARITY TRIANGLE

A. Basic formula for g

The indirect CP violation in K—mr is described by
the well-known parameter g . The general formula for
g 1s given as follows:

8K:M (ImM ,+2& ReM y,), (18.1)
V2AM g
where
ImA,
= ReA. (18.2)

with Ay=A(K—(7m);—¢) and AMy the K;-K mass
difference. The off-diagonal element M, in the neutral
K-meson mass matrix represents the K- K” mixing. It is
given by

2mgM}y=(K | He(AS=2)|K"), (183)

where H.;(AS=2) is the effective Hamiltonian of Eq.
(12.1). Defining the renormalization-group-invariant pa-
rameter By by

o ()

1+ g

Bx=By(w)[aP ()]

14, (18.4)

_ . 8
(KO|(Sd)y—a(5d)y - 4|K)= 3 BK(M)Fémé (18.5)
and, using Eq. (12.1), we find
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2
M=t g M2 IN*29,80(x,)
2= 2 'k kMgMy[N 71So(x,

NS 2 S0(x ) F2NENT 73So(xe,x)],  (18.6)

where the functions Sy(x;) and Sy(x;,x;) are those of
Egs. (12.3)-(12.5). Fg is the K-meson decay constant
and m g the K-meson mass. The coefficient /5 is given in
Eq. (12.9) and the QCD factors #; have been discussed
in Sec. XII. Their numerical values are

m=138, 5,=0.57, and 7;=047. (18.7)

The last term in Eq. (18.1) constitutes at most a 2%
correction to g and consequently can be neglected in
view of other uncertainties, in particular those con-
nected with By . Inserting Eq. (18.6) into Eq. (18.1), we
find

ex=C BxIm\{Re\ [ 7:So(x.)— 73S0(xc.x,)]

—ReN,7,80(x)exp(im/4), (18.8)

where we have used the unitarity relation Im\Y =Im\,
and neglected Re\/Re\,=O(\*) in evaluating
Im(\¥\}). The numerical constant C, is given by
2 2 2
CS=M=3.78X 10*.
6V2m*AM
Using the standard parametrization of Eq. (2.13) to
evaluate Im\; and Re),;, setting the values for s, 543,
5,3, and m, in accordance with the Appendix, and taking
a value for B (see below), one can determine the phase
6 by comparing Eq. (18.8) with the experimental value
for g .

Once 6 has been determined in this manner, one can
find the corresponding point (@,7) by using Egs. (2.19)
and (2.22). Actually, for a given set (515,513,523,7,,Bk)
there are two solutions for 6 and consequently two solu-

tions for (9,7). In order to see this clearly it is useful to
use the Wolfenstein parametrization in which ImA,,
Re)., and Re), are given to a very good approximation
by Egs. (2.23)—(2.25). We then find that Eq. (18.8) and
the experimental value for g specify a hyperbola in the

(0,7) plane given by
M (1—@)A?9,So(x,) +Py(e)}A*Bx=0.226, (18.10)

where

(18.9)

1
Po(e)=[m3S0(xc.x) = mxc] 37 (18.11)
The hyperbola [Eq. (18.10)] intersects the circle given by
Eq. (2.32) in two points, which correspond to the two
solutions for § mentioned earlier.

The position of the hyperbola in the (©,7) plane de-
pends on m,, |V ,|=A\N?, and By . With decreasing m, ,
|V.s|, and By the gx hyperbola moves away from the
origin of the (@,7) plane. When the hyperbola and the
circle touch each other, lower bounds consistent with
exP for m,, |V.pl, [Vup/Vesl, and Bk can be found. The
lower bound on m1, is discussed by Buras (1993). Corre-
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TABLE XXXVII. Predictions for various quantities using present and future input parameter ranges
given in the Appendix. Im\, and |V ,,| are given in units of 10~ and 1073, respectively, &is in degrees.

No x, constraint

With x, constraint

Present Future Present Future
o 37.7-160.0 57.4-144.9 37.7-140.2 58.5-93.3
ImA\, 0.64-1.75 0.82-1.50 0.87-1.75 1.12-1.50
V.l 6.7-13.5 7.7-12.1 6.7-11.9 78-93
X, 11.1-47.0 19.6-29.6
sin(2a) —-0.86-1.00 —-0.323-1.00 —-0.86-1.00 -0.30-0.73
sin(2) 0.21-0.80 0.34-0.73 0.34-0.80 0.57-0.73
siny 0.34-1.00 0.58-1.00 0.61-1.00 0.85-1.00
sponding results for |V,,/V | and By are shown in  respectively, and I’ B, = lUrp, with 75 being the cor-

Figs. 11 and 12, respectively. They will be discussed be-
low.

Moreover, approximate analytic expressions for these
bounds can be derived. One has

1
2A? (AZBKR,,

(mt)min:MW

0.658
1.4” . (18.12)

A
VoV eolmin= 73275 [A*Bi(2x] A% +1.4)] 7,
(18.13)
(B)min=[A%R,(2x%A%+1.4)]7 1. 18.14
t

Concerning the parameter B, the analyses of Sharpe
(1994) and Ishizuka (1993) (Bx=0.83%+0.03) using the
lattice method and of Bijnens and Prades (1995), using a
somewhat modified form of the 1/N approach of
Bardeen et al. (1988) and Gérard (1990) give results in
the ballpark of the original 1/N result, B =0.70%=0.10. In
particular the analysis of Bijnens and Prades (1995)
seems to have explained the difference between these
values for B and the lower values obtained using the
QCD Hadronic Duality approach (Pich and de Rafael,
1985; Prades etal, 1991) (Bg=0.39+0.10) or using
SU(3) symmetry and PCAC (B g=1/3) (Donoghue et al.,
1982). These higher values of By are also found in the
most recent lattice analysis (Crisafulli et al, 1996)
(Bx=0.86=0.15) and in the lattice calculations of Ber-
nard and Soni (1991) (B=0.78=0.11) and the JLQCD
group (B g=0.67x0.07) with the quoted values obtained
on the basis of the review by Soni (1995). In the numeri-
cal analysis we will use

Bx=0.75%0.15. (18.15)
B. Basic formula for B°-B° mixing
The B°-B° mixing is usually described by
(AM)g,  2|Mypls,
= o : (18.16)

Xd’s— - )
FBd,s FBd,s

where (AM) g, is the mass difference between the mass

s

eigenstates in the B 9-BY system and the B 0.BY system,
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responding lifetimes. The off-diagonal term M, in Eq.
(18.16) is given by
2m | M| =|(B°|Her(AB=2)| BY)|, (18.17)

where H.;(AB=2) is the effective Hamiltonian of Eq.
(13.1). Defining the renormalization-group-invariant pa-
rameter B by

(5)
ag (w)
B=Bp(w)[aP(n)] 9% |1+ ‘4: JS}, (18.18)
RO (7 : 08 22
(B°[(bd)y-a(bd)y-4|B >E§ Bp(p)Fpmy (18.19)
and using Eq. (13.1), we find
GE

X4s=TB, 62 ﬂBde’s(BBdﬁsF%-}d’S)M%VSO(xt)|Vt(d,s)|2

(18.20)
with the QCD factor 7 discussed in Sec. XIII and given
by 75=0.55.

The measurement of B -B Y mixing allows one to de-
termine |V 4| or R, of Eq. (2.33):

Ry
V.a=ANR,, R,=152 , 18.21
| td| t t m ( )
where
| 0:040][200 MeV][ x, “T16ps]™l0.55]"
0 [V el \/BBdFBd 0.75 7B | 7B ’
(18.22)
which gives, setting 75=0.55,
Vi =856.10-3 170 GeV|""[ 200 MeV]
td =0. . =
mt(mt) \/BBdFBd_
0.5 0.5
X4 1.6ps
x[ﬁ] - (18.23)

There is a vast literature on the lattice calculations of
Fg. The most recent results are somewhat lower than
those quoted a few years ago. Based on a review by
Sachrajda (1994), the recent extensive study by Duncan



1204

Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

20 T T T T T T T T T T T T
» n/2<d<n n/2<d<m
?'_1 15 I T
o
< |
E 1ot .
0.5 ; f } | i t } ! I
- 0<d<n/2 0<6<m/2
FT15 ¢ + -
o
<
Eor —+ -
o 5 I " L n 1 1 1 I. n i n
150 160 170 180 150 160 170 180 190
m, [GeV] m, [GeV]

FIG. 10. Present (left) and future (right) allowed ranges for Im()\,). The ranges have been obtained by fitting e in Eq. (18.8) to
the experimental value. Input parameter ranges are given in the Appendix. The impact of the additional constraint coming from
x4 is illustrated by the dashed lines. With the x, constraint imposed the solution 7/2<d<mr is completely eliminated for the future

scenario.

et al. (1995) and the analyses by Bernard et al. (1994)
and Draper and McNeile (1994), we conclude that Fjp
= (180 = 40) MeV. This together with the earlier result
of the European Collaboration (Abada et al., 1992) for
Bp, gives Fp,\Bp,= 194 * 45 MeV. A reduction of the
error in this important quantity is desirable. These re-
sults for Fp are compatible with the results obtained
using QCD sum rules [e.g., Bagan et al. (1992) and Neu-
bert (1992)]. An interesting upper bound Fp < 195 MeV
using QCD dispersion relations has also recently been
obtained (Boyd et al., 1995). In the numerical analysis
we will use

VB F,=(200:40) MeV.

The accuracy of the determination of R, can be con-
siderably improved by measuring simultaneously the
BY-B? mixing described by x,. We have

1 x,1
TN 20),

VR 4 Xs
TBd de FBd\ BBd
FB;‘/BBS

Note that m, and |V ,| have been eliminated in this way

(18.24)

R,=

2
. (18.25)

ds—

TBs mBS

Rev. Mod. Phys., Vol. 68, No. 4, October 1996

and that R ;, depends only on SU(3) flavor-breaking ef-
fects, which contain much smaller theoretical uncertain-
ties than the hadronic matrix elements in x ; and x sepa-
rately. Provided x,/x, has been accurately measured, a
determination of R, within +10% should be possible.
Indeed the most recent lattice results (Baxter et al.,
1994; Duncan et al., 1995) give Fp /Fp = 122+ 0.04. A

similar result Fg, /FBd = 1.16 = 0.05 has been obtained us-

ing QCD sum rules (Narison, 1994). It would be useful
to know B /Bp, with a similar precision. For B B,

= By, we find, using the lattice result, R ;,=0.66+0.04.

C. sin 2 from g, and B°-B° mixing

Combining Egs. (18.10) and (18.20), one can derive an
analytic formula for sin(28) (Buras, Lautenbacher, and
Ostermaier, 1994)

" 1 0.226 - 1826
Sln( ﬁ)_ 116A27]2R% AZBK 7 0(8) . ( . )
Py(e) is weakly dependent on m, and, for 155

GeV=m,<185 GeV, one has Py(e)~0.31x0.02. As
7<0.45 for |V ,,/V | <0.1, the first term in parentheses
is generally a factor of 2-3 larger than the second term.
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FIG. 11. |V 3/ V | min for m,<185 GeV and various choices of By .

Since this dominant term is independent of m,, the val-
ues for sin(2B) extracted from sx and B°-B° mixing
show only a weak dependence on m,, as stressed in par-
ticular by Rosner (1992).

Since A2R 3 is independent of |V |, the dominant un-
certainty in this determination of sin(28) resides in
A’B x, in the first term in the parentheses, and in

Fp \Bs, contained in R.

D. Phenomenological analysis

We will now combine the analyses of ex and of
BY-BY mixing to obtain allowed ranges for several
quantities of interest. We consider two sets of input pa-
rameters, which are collected in the Appendix. The first
set represents the present situation. The second set can
be considered as a ‘“future vision,” in which the errors
on various input parameters have been decreased. It is
plausible that such errors will be achieved by the end of
this decade, although one cannot guarantee that the cen-
tral values will remain. In Table XXXVII we show the
results for & Im)\,, sin2e, sin2g, siny, |V,,|, and x, . They
correspond to the two sets of parameters in question,
with and without the constraint from BY-BY mixing.
The results for Im\, and |V,,| will play an important role
in the phenomenology of rare decays and CP violation.
For completeness we also show the expectations for
sin2e, sin23, and siny, which enter various CP asymme-
tries in B decays. As already discussed in detail by Bu-
ras, Lautenbacher, and Ostermaier (1994), sin2a cannot
be predicted accurately this way. On the other hand,
sin2f3 and siny are more constrained, and the resulting
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ranges for these quantities indicate that large CP asym-
metries should be observed in a variety of B decays.

In Fig. 10 we show ImA\, as a function of m, . In Fig. 11
the lower bound on |V ,,/V ;| resulting from the g con-
straint is shown as a function of |V ,| for various values
of B . To this end we have set m,=185 GeV. For lower
values of m, the lower bound on |V ,,/V,,]| is stronger.
A similar analysis has been made by Herrlich and Nier-
ste (1995a). The latter work and the plot in Fig. 11 dem-
onstrate clearly the impact of the e constraint on the
allowed values of |V ,,/V,,| and |V,,|. Simultaneously,
small values of |V,,/V.,| and |V ], although still con-
sistent with tree-level decays, are not allowed by the size
of the indirect CP violation observed in K—mm. An-
other representation of this behavior is shown in Fig. 12,
where we plot the minimal value of By consistent with
the experimental value of egx as a function of V, for
different |V ,;,/V ;| and m,<185 GeV.

Finally in Fig. 13 we show the allowed ranges in the
(p,m) plane obtained using the information from V,,,
|Vus/Vesls €x» and BY-B Y mixing. In this plot we also
show the impact of a future measurement of B%-B?
mixing with x,=10, 15, 25, and 40, which, by means of
the Eq. (18.25), gives an important measurement of the
side R, of the unitarity triangle. Whereas at present a
broad range in the (p, ) plane is allowed, the situation
might change in the future, allowing only the values of
0=<p=<0.2 and 0.30=%=<0.40. This results in smaller
ranges for various quantities of interest as explicitly seen
in Table XXXVIIL

Other analyses of the unitarity triangle can be found
in works by Ali and London (1995), Ciuchini et al
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FIG. 12. (Bg)min of Eq. (18.14) for m,<185 GeV and various choices of |V ;,/V |-

(1995), Herrlich and Nierste (1995a), and Peccei and
Wang (1995).

XIX. €'/ BEYOND LEADING LOGARITHMIC ORDER
A. Basic formulas

The direct CP violation in K— i is described by &'.
The parameter &' is given in terms of the amplitudes
AOEA(K—)(WW)IZ()) and AzEA(K—)(W’ﬂ')Izz) as fOl-
lows

s'=—‘%§(1—ﬂ)exp(i¢)), (19.1)
where
ImA, ReA, 1 TmA,
“Red,” ““Red, VY oma, 192

and ®=7/2+68,— 5~ nl4.

When using Egs. (19.1) and (19.2) in phenomenologi-
cal applications, one usually takes ReA and o from ex-
periment, i.e.,

ReA;=3.33x10"7 GeV,
Re A,=1.50x10"8 GeV, w=0.045, (19.3)

where the last relation reflects the so-called A7=1/2 rule.
The main reason for this strategy is the unpleasant fact
that nobody has suceeded in fully explaining this rule,
which to a large extent is believed to originate in the
long-distance QCD contributions. We will be more spe-
cific about this in the next section. On the other hand
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the imaginary parts of the amplitudes in Eq. (19.2), be-
ing related to CP violation and the top-quark physics,
should be dominated by short-distance contributions.
Therefore ImA, and ImA, are usually calculated using
the effective Hamiltonian given in Eq. (7.1). Using this
Hamiltonian and the experimental values for &, ReA,
and w, we can write the ratio &'/e as

e'/e=Tm\, [ P12 — p32)7], (19.4)
where
PUD=% pUR=;> YQido(1=Qyiyr),  (195)
r
P(3/2):2 PE3/2>:Z 2 y{0:) (19.6)
with
__Gro 19.7
" 2le[ReA,” (157

Here the hadronic matrix-element shorthand notation is

(Q)=((mm)|Q,|K), (19.8)

and the sum in Egs. (19.5) and (19.6) runs over all con-
tributing operators. This means for u>m . contributions
from operators Q¢ , to P12 and P©? have to be taken
into account. These are necessary for P12 and PG to
be independent of the renormalization scale u. Next,

:l (ImA;) g

o ImA, (19.9)

n+an’
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represents the contribution stemming from isospin
breaking (IB) in the quark masses (m,#m,). For

Q4 we will take

Q. ,=025%0.05, (19.10)

which is in the ballpark of the values obtained in the
1/N. approach (Buras and Gérard, 1987) and in chiral
perturbation theory (Donoghue et al., 1986; Lusignoli,
1989). Q. , is independent of m,.

The numerical values of the Wilson coefficients y;
have been already given in Sec. VILE. We therefore
turn our attention to the hadronic matrix elements [Eq.
(19.8)], which constitute the main source of uncertainty
in the calculation of &'/e.

B. Hadronic matrix elements for K—aar

The hadronic matrix elements (Q;); depend generally
on the renormalization scale u and on the scheme used
to renormalize the operators Q;. These two depen-
dences are canceled by those present in the Wilson co-
efficients C;(u) so that the resulting physical amplitudes
do not depend on w or the renormalization scheme of
the operators. Unfortunately the accuracy of the present
nonperturbative methods used to evaluate (Q;);, like
lattice methods or 1/N, expansion, is not sufficient to
obtain the required p and scheme dependences of
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(Q;);- For a review of the existing methods and their
comparison, see Buras et al. (1993b) and Ciuchini et al.
(1995). In view of this situation it has been suggested
(Buras et al., 1993b) that one determines as many matrix
elements (Q;); as possible from the leading CP-
conserving K—mm decays for which the experimental
data are summarized in Eq. (19.3). To this end it turned
out to be very convenient to determine (Q;); at a scale
p=m . Using the renormalization-group evolution, one
can then find (Q;); at any other scale u#m, (Buras
et al., 1993b). Here we simply summarize the results of
this work.

We first express the matrix elements (Q;); in terms of
the nonperturbative parameters BS”Z) and B§3/2) for
(Q;)o and {Q;),, respectively. For u<m, we have (Bu-
ras et al., 1993b)

(Q1)o=—5XB{", (19.11)
(Q2)0=5XBY", (19.12)
(Q3)0=5XBS" (19.13)
(Q4)0=(Q3)0+(Q2)0—(C1)o; (19.14)
(0s)0=34B{"(Q¢)0, (19.15)

0.8 | (a)

=
04 T

0.8 - (b)
06

0.4 -

o'o n 1 Il 1 ’\ L

-1.0 -0.8 -0.6 -0.4 -0.2

L " i "
O£) 0.2 0.4 0.6 0.8 1.0
p

FIG. 13. Present (a) and future (b) allowed ranges for the upper corner A of the unitarity triangle using data from K 0.K° BY-B°
mixing, and tree-level B decays. Input parameter ranges are given in the Appendix. The solid lines correspond to (R;),.x from Eq.

(18.25) using R ;,=0.66 and x,=10, 15, 25, and 40, respectively.
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3 m% 2 F. (112)

@004 [ ]| £
(19.16)

<Q7>0:_[ (Qe)o(k+1)— }B(m (19.17)

<Q8>0:_[ (Qe)o(r+1)— }B(m (19.18)

<Q9>0:%<Q1>0_%<Q3>07 (19.19)

(Q1000=(02)0+1({Q 1)~ 5(O3)0, (19.20)

4v2 (312)

<Q1>2:<Q2>2:TX31 ; (19.21)

(Qi),=0, i=3,..6, (19.22)

(0=~ |~ (@ + | BE?) (1923)

6v2 NC
_ &
(Og)2=— E<Q6>O+?X B§3/2>, (19.24)
<Q9>2:<Q10>2:%<Q1>2, (19.25)
where

A Fw

il (19.26)

X= \[ F (mg—m2), (19.27)

and
(Qs)o= <Q<fﬁ° (19.28)

The actual numerical values used for mg, m ., Fg, and
F are collected in the Appendix.

In the vacuum-insertion method B;=1 independent of
p. In QCD, however, the hadronic parameters B; gen-
erally depend on the renormalization scale u and the
renormalization scheme considered.

C. (Qj(w)), for (V-A)®(V—A) operators

The matrix elements (Q1),, (Q3), (Qo)2, and (Q1g),
can be determined to a very good approximation from

ReA, in Eq. (19.3) as functions of Ayg, m, and the
renormalization scheme considered. To this end it is use-
ful to set a=0, as the O(«a) effects in CP-conserving am-
plitudes, such as the contributions of electroweak pen-
guins, are very small. One then finds

- _106 GeV? ReA,
<Q1(M)>2_<Q2(ﬂ)>2_ 1.77 Z+(M)

8.47x107% GeV?
a 24 ()
and, comparing with Eq. (19.21),

: (19.29)
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0.363
B ()= 19.30
with z,=2z,+2z,. Since z,(u) depends on the scale u

and the renormalization scheme used, Eq. (19.30) gives
automatically the scheme and u dependence of B2
and of the related matrix elements (Q1),, {Q2)2, {(Qg)s,
and (Q1),- The impact of O(«) corrections on this result
has been analyzed by Buras et al. (1993b). It amounts to
only a few percent, as expected. These corrections are
included in the numerical analysis presented in the
above reference and here as well. Using u=m =13 GeV,
A% = 325 MeV, and z . (m,) from Table XIX, we find,
according to Eq. (19.30),

B2 r(m)=0453, BOR(m)=0472.  (1931)

The following comments should be made:

(i) B2 (w) decreases with increasing .

(ii) The extracted value for B{*'?); is more than a fac-
tor of 2 smaller than the Vacuum—insertion estimate.

(iii) It is compatible with the 1/N, value B{*?(1 GeV)
~0.55 (Bardeen et al., 1987a) and somewhat smaller
than the lattice result B (22 GeV)~0.6 (Ciuchini ef al.,
1995).

D. (Qj(u)) for (V—A)®(V—A) operators

The determination of (Q;(u)), matrix elements is
more involved because several operators may contribute
to ReA . The main idea of Buras et al. (1993b) is then to
set u=m,, as at this scale only Q; and Q, operators
contribute to ReA in the HV scheme. One then finds

(Q1(m.)) as a function of (Q,(m.)),

10° GeV? ReA,
<Q1(mc)>0_ 1.77 Z1(mc)

Zz(
21 (m

(QZ( c))()»

where the reference in (Q;,(m,)), to the HV scheme
has been suppressed for convenience. Using Egs.
(19.14), (19.19), and (19.20) one is able to obtain
<Q4(mc)>0’ <Q9(mc)>0’ and <Q10(mc)>0 as functions of

(Qa(m,))o and (Q3(m.))y. Because (Q3(m.)) is color
suppressed, it is less essential for this analysis than

(Q,(m.))y. Moreover, its Wilson coefficient is small
and, similar to (Qy(m.))o and (Q1o(m.))o, (Q3(m.))o
has only a small impact on &'/e. On the other hand, the
coefficient y, is substantial, and consequently (Q ,(m.) )
plays a considerable role in the analysis of &'/e. The ma-
trix element (Q5(m,)), then has an indirect impact on
¢'le through Eq. (19.14). For numerical evaluation,
(Q3(mc)>0 of Eq. (19.13) with B{"?=1 can be used,
keeping in mind that this may introduce a small uncer-
tainty in the final analysis. This uncertainty has been
investigated by Buras ef al. (1993b).

Once the matrix elements in question have been de-
termined as functions of (Q,(m_)), in the HV scheme,

(19.32)
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TABLE XXXVIII. B, expansion coefficients for P2,

NDR HV
A % [MeV] m, [GeV] af? all? af? al? al? a{?)
155 -2.138 5.110 -2.251 4.676 -2.215 4.159
215 170 -2.070 5.138 -2.187 4.698 -2.150 4.181
185 -1.996 5.162 -2.117 4.716 -2.081 4.200
155 -2.231 6.540 -2.414 6.255 -2.362 5.389
325 170 -2.161 6.576 -2.350 6.282 -2.298 5.416
185 -2.085 6.606 -2.281 6.306 -2.229 5.439
155 -2.288 8.171 -2.549 8.417 -2.473 6.972
435 170 -2.212 8.214 -2.482 8.451 -2.406 7.005
185 -2.130 8.251 -2.409 8.480 -2.333 7.035

they can be found by a finite renormalization in any
other scheme (Buras et al., 1993b).

If one also makes the very plausible assumption, valid
in all known nonperturbative approaches, that
(Q_(m,))o=(0,(m,))y=0, the experimental value of
ReA in Eq. (19.3) together with Eq. (19.32) and Table
XIX implies, for Al(\;‘l—g = 325 MeV,

BY2(m)=57%1.1, BYr(m.)=6.6+1.0,

BY{R/(m,)=62*1.0. (19.33)

The extraction of B {"?)(m_) and an analogous param-
eter B{?)(m,) are presented in detail by Buras ef al.
(1993b). B{Y?(m,) depends very sensitively on
BYY2)(m,), and its central value is as high as 15.
B{Y 2)(mcg is less sensitive and typically (10-15)% lower
than B$?)(m,). In any case this analysis shows very
large departures from the results of the vacuum-
insertion method.

E. (Qj(u))o 2 for (V—A)®(V+A) operators

The matrix elements of the (V—-A)®(V+A) opera-
tors Qs— Qg cannot be constrained by CP-conserving
data, and one has to rely on existing nonperturbative
methods to calculate them. Fortunately, there are some
indications that the existing nonperturbative estimates
of (Q;(u))y2, i=5,...,8 are more reliable than the cor-
responding calculations for (V—A)® g V —A) operators.

First of all, the parameters ngz) (Kilcup, 1991;
Sharpe, 1991) and B %2) (Franco et al., 1989; Bernard
and Soni, 1991; Kilcup, 1991; Sharpe, 1991) calculated in
the lattice approach,

B{?=10+02, BYP=1.0%02, (19.34)

agree well with the vacuum-insertion values (B;=1) and
in the case of B{"» and B{? with the 1/N, approach
(B{M")=B{'?=1) (Bardeen et al., 1987b; Buras and
Gérard, 1987).

We note next that, with fixed values for Bg%z) and
B %2), the u dependence of (Qsg) and (Q7g), is gov-
erned by the w dependence of m (u). For (Qg), and
(Qg), this property has first been found in the 1/N, ap-
proach (Buras and Gérard, 1987): in the large-N, limit
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the anomalous dimensions of Q¢ and Qg are simply
twice the anomalous dimension of the mass operator,
leading to ~1/m 2(w) for the corresponding matrix ele-
ments. Another support comes from a renormalization
study by Buras et al. (1993b). In this analysis the B; fac-
tors in Eq. (19.34) have been set to unity at u=m_. Sub-
sequently the evolution of the matrix elements in the
range 1 GeV=u=<4 GeV has been calculated, showing
that, for the NDR scheme, Bgféz) and B%Z) were u inde-
pendent within an accuracy of (2-3)%. The w depen-
dence in the HV scheme has been found to be stronger
but still below 10%.

Concerning B%z), one can simply set B%z):l, as the
matrix elements (Q-g), play only a minor role in the &'/e
analysis.

In summary, the present treatment of (Q;)(,,
i=5,....,8 follows the one used by Buras ef al. (1993b).
We will set

B (my=1, B (m,)=B{"?(m,),
B (m.) =B (m,), (19.35)

and we will treat B {!?(m,) and B {?(m,) as free pa-
rameters in the neighborhood of the values given in Eq.
(19.34). Then the main uncertainty in the values of
(Q)o2> i=5, ... .8 results from the value of the strange-
quark mass m(m_.). The present estimates give

my(m,)=(170=20) MeV (19.36)

with the lower values coming from recent lattice calcu-
lations (Allton et al.,, 1994) and the higher ones from
QCD sum rules (Chetyrkin et al., 1995; Jamin and Munz,
1995).

F. The four dominant contributions to £'/¢

P and PG in Eq. (19.4) can be written as linear
combinations of two independent hadronic parameters
B{" and B{? (Buras et al., 1993b). This B; expansion
is given by

178 MeV 2

P(I/Z)Za(1/2)+
0 ms(mc)+md(mc)

a(61/2)B(61/2) ,

(19.37)
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TABLE XXXIX. B; expansion coefficients for PG/,
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NDR HV

AY) [MeV] m, [GeV] af? a@? af? a? af? a?

155 -0.797 1.961 -0.819 1.887 —0.838 2114

215 170 —-0.880 2.602 -0.900 2.438 -0.919 2.666

185 —-0.965 3.296 -0.983 3.036 -1.002 3.263

155 —-0.788 2.645 -0.814 2.639 —-0.837 2.894

325 170 —-0.870 3.422 —0.895 3.305 -0.917 3.560

185 —-0.956 4.264 —-0.978 4.027 —-1.000 4.281

155 -0.779 3.425 —-0.809 3.622 —0.835 3.899

435 170 -0.861 4.360 —-0.889 4.435 -0.915 4712

185 —-0.947 5.372 -0.971 5.316 —-0.998 5.593
3y (31) 178 MeV 2 (32) n(32) (3) The contribution of the (V-A)®(V—-A) elec-
P =ay" + m(m.)+m (m,) ag" " Bg" . troweak penguin operators Qg and Q, to PG s rep-
e A e (19.38) resented by a§’?. As in the case of the first contribution,
’ the matrix elements contributing to a63/2) are fixed by the

(112) d a®?  effectivel : 1 . rbuting . y

Here ag and a4 ciiectvely summarize a CP-conserving data, this time by the amplitude A,.

dependences other than B{"» and B{'?, especially

B in the case of a{"”. Note that, in contrast to Buras
et al. (1993b), we have absorbed the dependence on
B%l/z) into agl/z) and have exhibited the dependence on
m,, which was not shown explicitly there. The residual
m, dependence present in a§’2) and a53/2) is negligible.
Setting u=m . and using the strategy for hadronic matrix
elements outlined above, one finds the coefficients a (/%)
and a ,(3/ 2) as functions of Ass, m,, and the renormal-
ization scheme considered. These dependences are given
in Tables XXXVIII and XXXIX. We should stress that
P12 and P®? are independent of w and the renormal-
ization scheme considered.

Inspecting Egs. (19.37) and (19.38) and Tables
XXXVIII, XXXIX, we identify the following four con-
tributions which govern the ratio &'/e at scales
M:O(mc):

(1) The contribution of (V—A)®(V—A) operators
to P12 is dominantly represented by agm). This term is
to a large extent fixed by the experimental value of A
and consequently is only very weakly dependent on
Ay and the renormalization scheme considered. The
weak dependence on m, results from small contributions
of electroweak penguin operators. Taking A%ZZ%ZS
MeV, u=m,, and m,=170 GeV, we have a{'?~-2.3 for
both schemes considered. We observe that the contribu-
tion of (V—A)®(V —A) operators, in particular Q, to
&'le is negative.

(2) The contribution of (V—A)®(V+A) QCD pen-
guin operators to P2 g given by the second term in
Eq. (19.37). This contribution is large and positive. The
coefficient a§"? depends sensitively on Ay, which re-
sults from the strong dependence of ys on the QCD
scale. The dependence on m;, is very weak on the other
hand. Taking A\ = 325 MeV, m(m,)=170 MeV, and
m,=170 GeV and setting B{’?=1 in the NDR and HV
schemes, we find a positive contribution to &'/e amount-
ing to 6.3 and 5.4 in the NDR and HV schemes, respec-
tively.
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Consequently, the scheme and the Aypg dependence of
a&yz) is very weak. The sizable m,; dependence of a83/2)
results from the m, dependence of yy+ y . ag3/2> contrib-
utes positively to €'/e. For m,=170 GeV this contribution
is roughly 0.9 for both renormalization schemes in the
full range of Ay considered.

(4) The contribution of the (V—-A)®(V+A) elec-
troweak penguin operators O, and Qg to PG s repre-
sented by the second term in Eq. (19.38). This contribu-
tion depends sensitively on m, and Ayz, as could be
expected on the basis of y, and yg. Taking again B§?=1
in both renormalization schemes, we find for the central
values of A%, m,, and m_. a negative contribution to
¢'le equal to -3.9 and -3.6 for the NDR and HV
schemes, respectively.

Before analyzing &'/e numerically in more detail, let
us set Im\,=13x10"* and B{"?=B{'?=1 in both
schemes. Then, for the central values of the remaining
parameters, one obtains &'/s=2.0X10"* and &'/e
=0.6x10~* for the NDR and HV schemes, respectively.
This strong scheme de})endence can only be compen-
sated for by having B{! 2 and B§3/2) different in the two
schemes considered. As we will see below the strong
cancellations between various contributions at m,~170
GeV make the prediction for &'/e rather uncertain. One
should also stress that the formulation presented here
does not exhibit analytically the m, dependence. As the
coefficients a§’? and a{® depend very sensitively on
m,, it is useful to display this dependence in an analytic
form.

G. An analytic formula for £'/¢

As shown by Buras and Lautenbacher (1993) it is pos-
sible to cast the above discussion into an analytic for-
mula which exhibits the m, dependence together with
the dependence on m,, Bgl/z), and B§3’2>. Such an ana-
lytic formula should be useful for those phenomenolo-
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TABLE XL. AS=1 PBE coefficients for various Ayz in the NDR scheme.

AR =215 MeV

AR =325 MeV

AR =435 MeV

i PO 0 e o 6 )
0 -2.644 4.784 0.876 -2.749 6.376 0.689 -2.845 8.547 0.436
X 0.555 0.008 0 0.521 0.012 0 0.495 0.017 0

Y 0.422 0.037 0 0.385 0.046 0 0.356 0.057 0

Z 0.074 -0.007 -4.798 0.149 —-0.009 -5.789 0.237 -0.011 -7.064
E 0.209 -0.591 0.205 0.181 -0.727 0.265 0.152 -0.892 0.342

gists and experimentalists who are not interested in get-
ting involved with the technicalities discussed in
preceding sections.

In order to find an analytic expression for &'/e that
exactly reproduces the results discussed above, one uses
the PBE presented in Sec. XIV. The resulting analytic
expression for &'/e is then given as follows,

g'/le=Tm\,F(x,), (19.39)
where
F(x,)=Py+PyXo(x,)+PyYo(x,)+P,Zyx,)
+PpEy(x,) (19.40)

with the m,-dependent functions listed in Sec. XIV. The
coefficients P; are given in terms of B (=B {1 (m ),
B@P=B ) (m,), and m,(m,) as follows,

178 MeV 2
ms(mc) +md(mc)

Pi=r(-0)+

L

(I’gﬁ)B(ﬁl/z) + rl('8)B(83/2))-
(19.41)

The P; are p and renormalization-scheme independent.
They depend, however, on Ayg. In Table XL we give
the numerical values of r (%, er@ , and r® for different
values of Agjg at pu=m, in the NDR renormalization
scheme. Analogous results in the HV scheme are given
in Table XLI. The coefficients r {?, 7% and r(® do not
depend on mg(m,), as this dependence has been fac-
tored out. r,(O) does, however, depend on the particular
choice for the parameter B§”2> in the parametrization of
the matrix element (Q,),. The values given in the tables
correspond to the central values in Eq. (19.33). Varia-
tion of B§"? in the full allowed range introduces an un-
certainty of at most 18% in the r ,(0) column of the tables.
Since the parameters r{*) give only subdominant contri-
butions to ¢'/e, keeping BS? and r(? at their central
values is a very good approximation.

For different scales u the numerical values in the
tables change without modifying the values of the P;’s,
as it should be. To this end B{"? and B{' have to be
modified, as they depend, albeit weakly, on wu.

Concerning the scheme dependence, we note that,
whereas r( coefficients are scheme dependent, the coef-
ficients r;, i=X,Y,Z,E do not show any scheme depen-
dence. This is related to the fact that the m, dependence
in €'/e enters first at the NLO level and consequently all
coefficients r; in front of the m;-dependent functions
must be scheme independent. That this turns out to be
the case is a nice check of our calculations.

Consequently, when changing the renormalization
scheme, one is only obliged to change Bg“2> and B§3/2) in
the formula for P, in order to obtain a scheme indepen-
dence of &'/e. In calculating P;, where i#0, B{"? and
B can in fact remain unchanged because their varia-
tion in this part corresponds to higher-order contribu-
tions to &'/e, which would have to be taken into account
in the next order of perturbation theory.

For similar reasons the NLO analysis of &'/e is still
insensitive to the precise definition of m,. In view of the
fact that the NLO calculations of Im\, have been done
with m,=m,(m,), we will also use this definition in cal-
culating F(x,).

The inspection of Tables XL and XLI shows that the
terms involving ¥’ and r ) dominate the ratio &'/e. The
function Z,(x,), representing a gauge-invariant combi-
nation of Z" and y penguins, grows rapidly with »z, , and,
due to r $)<0, these contributions suppress &'/ strongly
for large m, (Flynn and Randall, 1989b; Buchalla et al.,
1990). These two dominant terms, rgé) and rgg), corre-
spond essentially to the second terms in Egs. (19.37) and
(19.38), respectively. The first term in Eq. (19.37) corre-
sponds roughly to rBO) given here, while the first term in
Eq. (19.38) is represented to a large extent by the posi-

TABLE XLI. AS=1 PBE coefficients for various Ay in the HV scheme.

AJ =215 MeV

AG=325 MeV

AJ=435 MeV

i ri0 r® r® ri0 r® r® r0 r(® r®
0 -2.631 4.291 0.668 -2.735 5.548 0.457 —-2.830 7.163 0.185
X 0.555 0.008 0 0.521 0.012 0 0.495 0.017 0

Y 0.422 0.037 0 0.385 0.046 0 0.356 0.057 0

VA 0.074 -0.007 —4.798 0.149 -0.009 -5.789 0.237 -0.011 —7.064
E 0.209 -0.591 0.205 0.181 -0.727 0.265 0.152 -0.892 0.342
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FIG. 14. The ranges of &'/e in the NDR scheme as a function of A% for m;=170 GeV and present (light grey) and future (dark
grey) parameter ranges given in the Appendix. The three pairs of &'/e plots correspond to hadronic parameter sets (a)
(B2 (mo)leq=15, [BF'™ (m)ex=1.0, (0) [B{'? (m)eq=1.0, [BE'? (m)]er=1.0 and () [BE (m)Ler=1.0, [BE> (me) e

=1.5, respectively.

tive contributions of X,(x,) and Y (x,). The last term in
Eq. (19.40), representing the residual m, dependence of
QCD penguins, plays only a minor role in the full analy-
sis of &'/e.

H. Numerical results

Let us define two effective B factors:
178 MeV 2B o)
’/;ls(mc)+njltl(mc) i (mC)

(Bz('j)(mc))eff: (1942)
In Fig. 14 we show &'/e for m,=170 GeV as a function of
Ay for different choices of the effective B; factors. We
show here only the results in the NDR scheme. As dis-
cussed above €'/e is generally lower in the HV scheme,
if the same values for B{"? and B{'? are used in both
schemes. In view of the fact that the differences between
NDR and HV schemes are smaller than the uncertain-
ties in B{"? and B$'?, we think it is sufficient to present
only the results in the NDR scheme here. The results in
the HV scheme can be found in work by Buras et al.
(1993b) and Ciuchini et al. (1995).
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Figure 14 shows a strong dependence of &'/e on
Ass. However, the main uncertainty originates in the
poor knowledge of (B;).. In Fig. 14(a), in which the
QCD penguin contributions dominate, '/e can reach
values as high as 1x107°. However, in Fig. 14(c) the
electroweak penguin contributions are large enough to
essentially cancel the QCD penguin contributions com-
pletely. Consequently, in this case |¢'/e|<2X107, and the
standard model prediction of &'/e cannot be distin-
guished from a superweak theory. As shown in Fig. 15,
higher values of &'/e can be obtained for m,=155 GeV,
although still &'/e<13x107,

For m,=185 GeV the values of &'/e are correspond-
ingly smaller, and in Fig. 14(c) small negative values are
found for &'/e. In Figs. 14-16 the dark grey regions refer
to the future ranges for Im\,. Of course one should
hope that the knowledge of (B;).; and of A% will be
improved in the future so that a firmer prediction for
€'/e can be obtained.

Finally, Fig. 17 shows the interrelated influence of m,
and the two most important hadronic matrix elements
for penguin operators on the theoretical prediction of
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g'le. For a dominant QCD penguin matrix element
(Qeo, €'/e stays positive for all m, values considered.
&'/e~0 becomes possible for equally weighted matrix el-
ements (Qg)y and (Qg), around m,=205 GeV. A domi-
nant electroweak penguin matrix element (Qyg), shifts
the point &'/e~0 to m,~165 GeV and even allows for a
negative &'/e for higher values of m,. The key issue to
understand this behavior of &'/e is the observation that
the Qg contribution to &'/e is positive and only weakly
m, dependent. On the other hand the contribution com-
ing from Qg is negative and shows a strong m, depen-
dence.

The results in Fig. 14-17 use only the & constraint. In
order to complete the analysis we want to impose the x,
constraint and vary m(m,), B{'?, and B{'? in the full
ranges given in Egs. (19.34) and (19.36).

This gives for the “present’ scenario

—2.1Xx10"*<g'/e<132X1074, (19.43)
to be compared with
—1.1x107*<g'/e<10.4x107* (19.44)

in the case of the “future” scenario. In both cases the x
constraint has essentially no impact on the predicted
range for &'/e.

Finally, extending the “‘future” scenario to

my(m.)=(170=10) MeV, Ad=(325+50) MeV, and
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350 400 450

B g“2> ,B{"=1.0+0.1 would give
03-107*<g'/e<54X107%, (19.45)

again with no impact from imposing the x,; constraint.

Allowing an additional variation BS@r(m.)
=6.6%1.0, extends the ranges of Eqgs. (19.43)-(19.45)
to -2.5%107*<e'/e<13.7x107*, -1.5x10"*<e'/e<10.8
X107, and 0.1x107*<g'/s<5.8X107*, respectively.

Next let us compare our results with the results of
other analyses presented in the literature. A very de-
tailed numerical analysis of &'/e has been presented by
the Rome group (Ciuchini et al., 1995). The analysis of
the Wilson coefficients is the same as presented here.
The values for the most important B; parameters, Bém)
and Bgm), are taken from lattice calculations, and con-
sequently this part of the analysis is rather similar to
ours. For the remaining matrix elements the Rome
group uses either existing lattice estimates or educated
guesses that are discussed in their paper. In spite of the
fact that the treatment of these remaining hadronic ma-
trix elements differs from the one presented here,
the final result of the Rome group, Re(g'/e)
=(3.1+2.5)x107, is compatible with our results.

The difference in the range for &'/e presented here
and the Rome group is related to the different treatment
of theoretical and experimental errors. Whereas we sim-
ply scan all parameters within one standard deviation,
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Ciuchini et al. (1995) use Gaussian distributions in treat-
ing the experimental errors. Consequently our proce-
dure is more conservative. We agree with these authors
that values for &'/e above 1x107, although not ex-
cluded, are very improbable. This should be contrasted
with the work of the Dortmund group (Frohlich et al.,

1991; Heinrich et al., 1992), which finds values for &'/¢ in
the ballpark of (1-2)x107>. We do not know of any con-
sistent framework for hadronic matrix elements that
would give such high values within the standard model.

(Bertolini et al. 1995a, 1995b), calculate the hadronic
matrix elements relevant for &'/e within the chiral quark
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n/2<d<T

[0t 3/3

1

1

-5 .
130

140

150

160

170

180

190

m, [GeV]

200

1
140

L
150

160

170

180

[
190

L
200

-5
210

m, [GeV]

FIG. 17. The ranges of &'/ in the NDR scheme as a function of m, for A%:325 MeV and present (light grey) and future (dark
grey) parameter ranges given in the Appendix. The three bands correspond to hadronic parameter sets (a) [B§!/?)(m,)]ex=1.5,
[BE? (m)]e=10. (b) [BED (mo)]e=L.0, [BE (m)]e=1.0, and (¢) [BE'?(m)]er=L.0, [BE'? (m)]e=1.5, respectively.
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TABLE XLII. The quantities R, and R/, contributing to ReA/ReA; as described in the text, calcu-
lated using the vacuum-insertion estimate for the hadronic matrix elements. The Wilson-coefficient

functions are evaluated for various Al(v[S in the leading logarithmic approximation as well as in next to
leading order in two different schemes (NDR and HV).

AR =215 MeV AJ =325 MeV AJ=435 MeV
Scheme LO NDR HYV LO NDR HV LO NDR HV
R, 1.8 1.4 1.6 2.0 1.6 18 2.4 1.8 22
R 0.1 0.3 0.1 0.2 05 0.2 03 1.0 0.4

model. These authors find a rather large range
—50X107*<g'/e<14x107*. In particular they find, in con-
trast to Buras ef al. (1993b) and Ciuchini et al. (1995),
and the present analysis, that negative values for &'/e as
large as —5X107° are possible. This is related to the fact
that, for certain model parameters in the chiral quark
model, Bgm) and B§3/2) can deviate con51derably from
unity and generally B {'?’<B §3/2) There remains an in-
teresting question of how well the chiral quark model
represents QCD.

It is obvious from this section that the status of had-
ronic matrix elements relevant for &'/e is very unsatis-
factory. In particular the matching between Wilson co-
efficients and hadronic matrix elements with respect to
the u dependence and the renormalization-scheme de-
pendence should be improved. Unfortunately the
progress in this direction is rather slow.

The experimental situation on Re(e'/e) is unclear at
present. While the result of the NA31 collaboration at
CERN with Re(e'/e)=(23+7)x107* (Barr et al., 1993)
clearly indicates direct CP violation, the value of E731
at Fermilab, Re(s'/e)=(7.4+5.9)x10™* (Gibbons et al.,
1993) is compatible with superweak theories (Wolfen-
stein, 1964) in which &'/e=0. The E731 result is in the
ballpark of the theoretical estimates. The NA31 value
appears a bit high compared to the range given in Eq.
(19.43) above.

Hopefully, in about three years the experimental situ-
ation concerning &'/e will be clarified through the im-
proved measurements by the two collaborations at the
107* level and by experiments at the & factory in Fras-
cati. One should also hope that the theoretical situation
of &'/e will improve by then as well.

XX. K, —Ks MASS DIFFERENCE AND A/=1/2 RULE

It is probably a good moment to make a few com-
ments on the K; — K¢ mass difference given by

AM=M(K;)—M(Kg)=351x10"" GeV  (20.1)

and the approximate A/=1/2 rule in K—mm decays. As
we have already mentioned in the beginning of Sec.
XIX.A, this empirical rule manifests itself in the domi-
nance of A/=1/2 over AI=3/2 decay amplitudes. It can
be expressed as
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(20.2)

using the notation of Sec. XIX.A.

A. AM(K,—Ks)

The KL_

with M, given in Eq. (18.6) and (AM),, representing

long-distance contributions, corresponding, for instance,

to the exchange of intermediate light pseudoscalar me-

sons (7°,7). The first term in Eq. (20.3), the so-called

short-distance contribution, is dominated by the first

term in Eq. (18.6), so that
2

FKBKmKMW

K¢ mass difference can be written as

"2
(AM)gp=

)\ ch 7,27 MW+Atop (’20 4)

where A, represents the two top-dependent terms in
Eq. (18.6). In writing Eq. (20.4) we are neglecting the
tiny imaginary partin A\.=V3V.,. A very extensive nu-
merical analysis of Eq. (20.4) has been presented by
Herrlich and Nierste (1994), who calculated the NLO
corrections to 7, and also to 7; (Herrlich and Nierste,
1995a), which enters A,,. The NLO calculation of the
short-distance contributions improves the matching to
the nonperturbative matrix element parametrized by B g
and clarifies the proper definition of B g to be used along
with the QCD factors 7,. In addition the NLO study
reveals an enhancement of 7, over its LO estimate by
about 20%. Although sizable, this enhancement can still
be considered being perturbative, as required by the
consistency of the calculation. This increase in 7, rein-
forced by updates in input parameters (Ayg), brings
(AM)gp closer to the experimental value in Eq. (20.1).
With AR=325 MeV and m,=13 GeV, giving

7VO=1. 38 one finds that typlcally 70% of AM can be
descrlbed by the short-distance component. The exact
value is still somewhat uncertain because 7, is rather
sensitive to Ayg. Further uncertainties are introduced
by the error in By and the renormalization scale ambi-
guity, which is still quite pronounced even at NLO. The
result is, however, certainly more reliable than previous
LO estimates. Using the old value #1°=0.85, corre-
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sponding to m.=14 GeV and Apcp=200 MeV,
(AM)sp/AM would be below 50%, suggesting a domi-
nance of long-distance contributions in AM. As dis-
cussed by Herrlich and Nierste (1994), such a situation
would be “unnatural,” since the long-distance compo-
nent is formally suppressed by AéCD/mE. Hence the
short-distance dominance indicated by the NLO analysis
is also gratifying in this respect. The long-distance con-
tributions, to which one can attribute the remaining
~30% in AM not explained by the short-distance part,
are nicely discussed by Bijnens et al. (1991).

In summary, the observed K; — Ky mass difference

ReA, _ Z1(){(Q1(m))o+ z2(){Q2()) o+ z6(){ Q)0

can be roughly described within the standard model af-
ter the NLO corrections have been taken into account.
However, the remaining theoretical uncertainties in the
dominant part of Eq. (20.4) and the uncertainties in
(AM){p do not allow one to use AM as a constraint on
the CKM parameters.

B. The AI=1/2 rule

Using the effective Hamiltonian in Eq. (7.1) and
keeping only the dominant terms, one has

ReA, 21 () Q1(1))2+ 22(w)(Q2(1))>

where (Q,), are defined in Eq. (19.8). The coefficients
z;(;) can be found in Table XVIII. For the hadronic
matrix elements we use Eqs. (19.11), (19.12), (19.16),
and (19.21), which have been discussed in Sec. XIX.B.
We find then, separating current-current and penguin
contributions

Redo R 4R 206
ReAz_ c po ( . )
Szp(w)BYP =z, (w) By Y pis 207)
c 4\/22+(M)B(13/2) s + 1 2 .
z6( 1) ng[ 178 MeV  |?
R,=—119 ) 20.8
? z4(p) BY? [my(p) +my(p) (208)

The factor 11.9 expresses the enhancement of the matrix
elements of the penguin operator Q4 over (Q;,) first
pointed out by Vainshtein ef al. (1977). It is instructive
to calculate R, and R, using the vacuum-insertion esti-
mate, for which B{/?)=B{/)=B %3/2)=Bg”2)=1.
Without QCD effects one finds R.=0.9 and R,=0 in
complete disagreement with the data. In Table XLII we
show the values of R, and R, at u=1 GeV, using the
results of Table XVIII. We have set m +m ;=178 MeV.

The inclusion of QCD effects enhances both R, and
R, (Altarelli and Maiani, 1974; Gaillard and Lee,
1974a). However, even for the highest values of A%,
the ratio ReA /ReA, is at least a factor of eight smaller
than the experimental value in Eq. (20.2). Moreover, a
considerable scheme dependence is observed. Lowering
p would improve the situation, but for u<l GeV the
perturbative calculations of z;(x) can no longer be
trusted. Similarly, lowering m, down to 100 MeV would
increase the penguin contribution. In view of the most
recent estimates in Eq. (19.36), however, such a low
value of m, seems to be excluded. We conclude there-
fore, as already known for many years, that the vacuum-
insertion estimate fails completely in explaining the A/
=1/2 rule. As we have discussed in Sec. XIX the vacuum-
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, (20.5)

insertion estimate Bgl/z):l is supported by the 1/N
expansion approach and by lattice calculations. Conse-
quently, the only solution to the A/=1/2 rule problem
appears to be a change in the values of the remaining B;
factors. For instance, repeating the above calculation
with B{*¥=0.48, B{"=5, and B{"?=10 would give, in
the NDR scheme, R .~20, R,~2, and ReA /ReA,~22,
in accordance with the experimental value.

There have been several attempts to explain the Af
=1/2 rule, which basically use the effective Hamiltonian
in Eq. (7.1) but employ different methods for the had-
ronic matrix elements. In particular we would like to
mention the 1/N approach (Bardeen et al., 1987a), the
work of Pich and de Rafael (1991) based on an effective
action for four-quark operators, the diquark approach of
Neubert and Stech (1991), QCD sum rules (Jamin and
Pich, 1994), chiral perturbation calculations (Kambor
et al., 1990, 1991), and very recently an analysis (An-
tonelli et al., 1996) in the framework of the chiral quark
model (Cohen and Manohar, 1984).

With these methods values for ReAy/ReA, in the
range 15-20 can be obtained. It is beyond the scope of
this review to discuss the weak and strong points of each
method, although at least one of us believes that the
“meson evolution” picture advocated by Bardeen et al.
(1987a) represents the main bulk of the physics behind
the value of 22. In view of the uncertainties present in
these approaches, we have not used them in the analysis
of &'/e but have constrained the hadronic matrix ele-
ments so that they satisfy the A/=1/2 rule exactly.

XXI. THE DECAY K, —=’e*e"”
A. General remarks

Let us next move on to discuss the rare decay
K, —m’"e”. Whereas in K—mm decays the CP-
violating contribution is only a tiny part of the full am-
plitude and the direct CP violation, as we have just seen,

is expected to be at least three orders of magnitude
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smaller than the indirect CP violation, the correspond-
ing hierarchies are very different for K; —7’e e ™. At
lowest order in electroweak interactions (one-loop pho-
ton penguin, Z° penguin and W box diagrams) this de-
cay takes place only if CP symmetry is violated. The
CP-conserving contribution to the amplitude comes
from a two-photon exchange, which, although of higher
order in «, could in principle be sizable. Extensive stud-
ies of several groups indicate, however, that the CP-
conserving part is likely to be smaller than the CP-
violating contributions. We will be more specific about
this at the end of this section.

The CP-violating part can again be divided into a di-
rect and an indirect part. The latter is given by the
K¢— ' e amplitude multiplied by the CP-violating
parameter gx. The amplitude A(Kg— 7 e e ™) can be
written as

A(Kg—mete ) =(me e |Hy| Ks), (21.1)

where H; can be found in Eq. (8.1) with the operators
Q1,...,04 defined in Eq. (6.3), the operators Q4 and
Q74 given by

Orv=(sd)y_4(ee)y, Qra=(sd)y_a(ee)y, (21.2)

and the Wilson coefficients z; and y; calculated in Sec.
VIIL

Let us next note that the coefficients of O,y and Q4
are O(a) but their matrix elements (7’e e~ |Q7y 4| K)
are O(1). In the case of Q; (i=1,...,6) the situation is
reversed: the Wilson coefficients are O(1), but the ma-
trix elements (7'e e | Q;|K) are O(a). Consequently,
at O(a) all operators contribute to A(Kg—mle™e™).
However, because K ¢— 7’e e is CP conserving, the
coefficients y; multiplied by =O(\*) can be fully ne-
glected, and the operator Q-4 drops out in this approxi-
mation. Now, whereas (7’ e |Q,y|Ks) can be trivi-
ally calculated, this is not the case for (7'e*e”|Q,|K)
with i=1,...,6, which can only be evaluated using non-
perturbative methods. Moreover, it is clear from the
short-distance analysis of Sec. VIII that the inclusion of
Q; in the estimate of A(K¢—me*e™) cannot be
avoided. Indeed, whereas (7’e e ™| Q| K) is indepen-
dent of u and the renormalization scheme, the coeffi-
cient 77y, shows very strong scheme and u dependences.
They can only be canceled by the contributions from the
four-quark operators Q;. All this demonstrates that the
estimate of the indirect CP violation in K; —7e*e”
cannot be done very reliably at present. Some estimates
in the framework of chiral perturbation theory will be
discussed below. On the other hand, a much better as-
sessment of the importance of indirect CP violation in
K;—m'e*e” will become possible after a measurement
of B(Kg—mleTe™).

Fortunately the directly C P-violating contribution can
be fully calculated as a function of m,, CKM param-
eters, and the QCD coupling constant «,. There are
practically no theoretical uncertainties related to had-
ronic matrix elements because (7°|(5d)y,_4|K.)
can be extracted using isospin symmetry from the well-
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TABLE XLIII. PBE coefficient P of y;y for various values of
A% and u. In the absence of QCD Py=8/9 In(M y,/m.)=3.664
holds universally.

Py
A [MeV] w [GeV] LO NDR HV
0.8 2.073 3.159 3.110
215 1.0 2048 3133 3.084
12 2.027 3.112 3.063
0.8 1.863 3.080 3.024
325 1.0 1.834  3.053 2.996
12 1.811 3.028 2970
0.8 1672 2976 2914
435 1.0 1.640  2.965 2.899
12 1.613 2939 2872

measured decay K™ — 7’¢ ™ v. In what follows, we will

concentrate on this contribution.

B. Analytic formula for B(K; — 7°e e )4,

The directly CP-violating contribution is governed by
the coefficients y;, and consequently only the penguin
operators Qs,...,0Q4, OQ7y, and Q54 have to be consid-
ered. Since y;=O(«,) for i=3,....,6, the contribution of
QCD penguins to B(K; —m'ee )y, is really O(aq,),
as compared to the O(«) contributions of Q- and Q- 4.
In deriving the final formula, we will therefore neglect
the contributions of the operators Qs,...,0g¢, i.e., we
will assume that

6
23 yilu){me e | QK )

<ysv(u){mle e |Q7v|K). (21.3)

This assumption is supported by the corresponding rela-
tion for the quark-level matrix elements
6

i; yi(u)(de e |Qils)y<y;v(p){dete”|Qqyls),
(21.4)

which can be easily verified perturbatively.

The neglect of the QCD penguin operators is compat-
ible with the scheme and u independence of the result-
ing branching ratio. Indeed y,, does not depend on u
and the renormalization scheme at all, and the corre-
sponding dependences in y,y are at the level of £1% as
discussed in Sec. VIILE. Introducing the numerical con-
stant

1 nKy) [ @ ’ + 0,+ -6
Ke_V_ftsm o B(KT—7’e"v)=6.3X107°,
(21.5)

one then finds
B(K;— 7 " e ™) gy= K (ImM\ )2 (33, +34), (21.6)

where



1218 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

45 T T T T T T T T 1
——- Ays=215 MeV
40 - —— Ay=325 MeV . ]
____________ — e
Ays=435 MeV o
§35+ B
2 no QCD
N/\
=
£ 30 | -
Z
%
‘o
o+® 25 - b
=4
T
-
¥ 20 | .
o
a
15 | 8
10 " Il L n 1 t 1 1 n 1 L 1 n
130 140 150 160 170 180 190 200 210
m, [GeV]

FIG. 18. B(K;— e " e ™) 4/(Im\,)? as a function of m, for various values of A% at scale u=1.0 GeV.

a ~
Yi=5 Vi (21.7)
Next, using the method of the penguin box expansion
(Sec. XIV), we can write, similar to Egs. (10.5) and
(10.3),

i=Pot U )t PRENx),  (218)
Yiv=>r9 sin2®w ol Xy ELo(Xs), .
. 1

V14 T Gney, Yo(x,) (21.9)

with Y, Z,, and E given in Egs. (11.46), (14.2), and
(6.15). P is O(107%), and consequently the last term in
Eq. (21.8) can be neglected. P, is given for different
values of u and Ay in Table XLIII. There we also show
the leading-order results and the case without QCD cor-
rections.

The analytic expressions in Egs. (21.8) and (21.9) are
useful as they display not only the explicit m, depen-
dence, but also isolate the impact of leading- and next-
to-leading-order QCD effects. These effects modify only
the constants Py and P . As anticipated from the results
of Sec. VIILE, P, is strongly enhanced relative to the
LO result. This enhancement amounts roughly to a fac-
tor of 1.6x£0.1. However, this enhancement is partially
due to the fact that, for A= Ayz, the QCD coupling
constant in the leading order is 20-30% larger than its
next-to-leading-order value. Calculating P, in LO but
with the full &, of Eq. (3.19), we have found that the
enhancement then amounts to a factor of 1.33+0.06. In
any case the inclusion of NLO QCD effects and a mean-
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ingful use of Agg show that the next-to-leading-order
effects weaken the QCD suppression of y;y. As seen in
Table XLIII, the suppression of Py, by QCD corrections
amounts to about 15% in the complete next-to-leading-
order calculation.

C. Numerical analysis

In Fig. 8 of Sec. VIILE we have found |y;,/al* and
lys4/af* as functions of m, together with the leading-
order result for |y,y/a?> and the case without QCD cor-
rections. From there it is obvious that the dominant m,
dependence of B(K;—m’e"e ™)y, originates from the
coefficient of the operator ;4. Another noteworthy
feature was that, accidentally for m,~175 GeV, one
finds y;y~y74.

In Fig. 18 the ratio B(K;—m e"e )y /(Im),)* is
shown as a function of m,. The enhancement of the di-
rectly CP-violating contribution through NLO correc-
tions relative to the LO estimate is clearly visible on this
plot. As we will see below, due to large uncertainties
present in Im)\,, this enhancement cannot yet be fully
appreciated phenomenologically.

The very weak dependence on Aypg should be con-
trasted with the very strong dependence found in the
case of ¢'/e. Therefore, provided the other two contribu-
tions to K; —m’e*e” can be shown to be small or can
be reliably calculated one day, the measurement of
B(K;—m e"e™) should offer a good determination of
Im),.
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Next we would like to comment on the possible un-
certainties due to the definition of m,. At the level of
accuracy at which we work we cannot fully address this
question yet. In order to be able to do so, one needs to
know the perturbative QCD corrections to Y(x,) and
Zo(x,) and, for consistency, an additional order in the
renormalization-group improved calculation of P,.
Since the m, dependence of y, is rather moderate, the
main concern here is the coefficient y,,, whose m, de-
pendence is fully given by Y(x,). Fortunately the QCD-
corrected function Y(x,) is known from the analysis of
K;—u ' and can be directly used here. As we will
discuss in Sec. XXV, for m,=m,(m,) the QCD correc-
tions to Y(x,) are around 2%. On this basis we believe
that, if m,=m,(m,) is chosen, the additional QCD cor-
rections to B(K; —m’e*e™) 4, should be small.

Finally we give the predictions for the present and
future sets of input parameters as described in the Ap-
pendix. It should be emphasized that the uncertainties in
these predictions result entirely from the CKM param-
eters. This situation will improve considerably in the era
of dedicated B-physics experiments in the next decade,

which allows a precise prediction for B(K;
0+ —
— T e é )dir'
We find
B(K;,—me"e”) gy
B (426+3.03)x10"? no x, constraint
~ | (4.48+2.77)x107 12 with x, constraint,
(21.10)
B(K;,—me"e) gy
B (3.71+1.61) X102 no x, constraint 2111
~1(4.32+0.96)x 10712 with x, constraint. (2L.11)
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These results are compatible with those found by Buras,
Lautenbacher, Misiak, and Munz (1994), Donoghue and
Gabbiani (1995), and Kohler and Paschos (1995) with
differences originating from different choices of CKM
parameters.

D. The indirectly CP-violating and CP-conserving parts

Now we want to compare the results obtained for the
direct CP-violating part with the estimates made for the
indirect CP-violating contribution and the CP-
conserving one. The most recent discussions have been
presented by Cohen et al. (1993), Heiliger and Seghal
(1993), Donoghue and Gabbiani (1995), and Kohler and
Paschos (1995), where references to earlier papers can
be found.

The indirect CP-violating amplitude is given by the
K¢—me*e” amplitude multiplied by the CP param-
eter sx. Once B(Kg—m’e"e”) has been accurately
measured, it will be possible to calculate this contribu-
tion precisely. Using chiral perturbation theory, it is,
however, possible to get an estimate by relating
Kg—m’"e” to the K" —m"e*e™ transition (Ecker
et al., 1987, 1988). To this end one can write

_ _. 7(Kp)
B(K;—me"e )ynar=B(K"—m"ee )T(K+)
X e x|?r?, (21.12)
where
I'(K¢—mlete”
o Ks ) (21.13)

T(K —mete )

7 7

- n
W o
T T T

BR(K_— °e"e")sp [1077]
3

FIG. 19. B(K;—7%%e¢ )cp
for m=170 GeV, AR=325
MeV, and ImA,=1.3X107" as a
function of r.
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With B(K"—ztete )=(2.74+0.23)x10"" (Alliegro
etal., 1992) and the most recent chiral perturbation
theory estimate |r|<0.5 (Ecker et al., 1988; Bruno and
Prades, 1993), one has

B(K;—mete )ipgir=(5.9+0.5)-10" %2
<1.6X10712, (21.14)

i.e., a branching ratio more than a factor of 2 below the
direct C P-violating contribution. Yet, as emphasized re-
cently by Donoghue and Gabbiani (1995) and Heiliger
and Seghal (1993), the knowledge of r is very uncertain
at present. In particular, the estimate in Eq. (21.14) is
based on a relation between two nonperturbative pa-
rameters, which is rather ad hoc and certainly not a con-
sequence of chiral symmetry. As shown by Donoghue
and Gabbiani (1995), a small deviation from this relation
increases r to values above unity, so that
B(K;—m e e );,qr could be comparable or even
larger than B(K; — me*e ™)y, . It appears then that this
enormous uncertainty in the indirectly C P-violating part
can only be removed by measuring the rate of
K¢—mlete.

(1.7+0.3)x10°6

0 _
BK =T yY)=1(2.0+1.0)x10"°

It should also be stressed that in reality the CP indi-
rect amplitude may interfere with the vector part of the
CP direct amplitude. The full CP-violating amplitude
can then be written following Dib ef al. (1989a, 1989b)
as follows:

B(K;—mete ) cp=]2.43X10"Orei™*

—ik, Im\,y,y|?
+ K, (Im\,)253 ,. (21.15)

As an example, we show in Fig. 19
B(K,—mlete™) cp for m=170 GeV, A3 = 325 MeV,
and Im)\,:1.3><10’4, as a function of r. We observe that,
whereas for O=sr=<l1 the dependence of
B(K;—m'e"e™)cp on r is moderate, it is rather stron
otherwise and already for r<—0.6 values as high as 10~
are found.

The estimate of the CP-conserving contribution is
also difficult. We refer the reader to works by Cohen
et al. (1993), Heiliger and Seghal (1993), and Donoghue
and Gabbiani (1995), where further references to an ex-
tensive literature on this subject can be found. The mea-
surement of the branching ratio

(Barr et al., 1992)
(Papadimitriou et al., 1991)

(21.16)

and of the shape of the yy mass spectrum plays an important role in this estimate. The most recent analyses give

(0.3-1.8)x 10~ 12
B(K;—mle e ) ons~1 40X 10712
(5+5)x10" 12

i.e., not necessarily below the C P-violating contribution.
An improved estimate of this component is certainly de-
sirable. It should be noted that there is no interference
in the rate between the C P-conserving and C P-violating
contributions so that the results in Fig. 19 and Eq.
(21.17) can simply be added.

E. Outlook

The results discussed above indicate that, within the
standard model, B(K; —m"¢"e ) could be as high as
1x107M. Moreover, the direct C P-violating contribution
is found to be important and could even be dominant.
Unfortunately the large uncertainties in the remaining
two contributions will probably not allow an easy iden-
tification of the direct CP violation by measuring the
branching ratio only. The future measurements of
B(Ks—m'e*e”) and improvements in the estimate of
the CP-conserving part may of course change this un-
satisfactory situation. Alternatively, the measurements
of the electron-energy asymmetry (Heiliger and Seghal,
1993; Donoghue and Gabbiani, 1995) and the study of
the time evolution of K’— 7% e~ (Littenberg, 1989b;
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(Cohen et al., 1993)
(Heiliger and Seghal, 1993)
(Donoghue and Gabbiani, 1995),

(21.17)

Donoghue and Gabbiani, 1995; Kohler and Paschos,
1995) could allow for a refined study of CP violation in
this decay.

The present experimental bounds

B(K,—mlete™)

43%x107°

(Harris et al., 1993)
< _
55%x107°

(Onl et al., 1990)

are still three orders of magnitude away from the theo-
retical expectations. Yet the prospects of getting the re-
quired sensitivity of order 107'-107"? in five years are
encouraging (Littenberg and Valencia, 1993; Ritchie and
Woijcicki, 1993; Winstein and Wolfenstein, 1993).

(21.18)

XXIl. THE DECAY B—X vy
A. General remarks

The B— X,y decay is known to be extremely sensitive
to the structure of fundamental interactions at the elec-
troweak scale. As with any FCNC process, it does not
arise at the tree level in the standard model. The one-
loop W-exchange diagrams that generate this decay at
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the lowest order in the standard model are small enough
to be comparable to possible nonstandard contributions
(charged scalar exchanges SUSY one-loop diagrams,
W exchanges in the L-R symmetric models, etc.).

The B— X,y decay is particularly interesting because
its rate is of order G %a, while most of the other FCNC
processes involving leptons or photons are of order
G 2d%. The long-range strong interactions are expected
to play a minor role in the inclusive B— Xy decay. This
is because the mass of the b quark is much larger than
the QCD scale A. Moreover, the only relevant interme-
diate hadronic states X, are expected to give very
small contributions as long as we assume no interference
between short- and long-distance terms in the inclusive
rate. Therefore it has become quite common to use the
following approximate equality to estimate the B— X,y
rate,

'(B—X;y) L(b—svy)
T(B—X,ev,) T(b—cep,)

where the quantities on the rhs are calculated in the
spectator model corrected for short-distance QCD ef-
fects. The normalization to the semileptonic rate is usu-
ally introduced in order to cancel the uncertainties due
to the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments and factors of m 3 in the rhs of Eq. (22.1). Addi-
tional support for the approximation given above comes
from the heavy-quark expansions. Indeed the spectator
model has been shown to correspond to the leading-
order approximation of an expansion in 1/m, . The first
corrections appear at the O(1/m2) level. The latter
terms have been studied by several authors (Bigi et al.,
1992, 1993, 1994a; Bjorken et al., 1992; Blok et al., 1994;
Falk et al., 1994; Mannel, 1994; Manohar and Wise,
1994) with the result that they affect B(B— X,y) and
B(B—X_.ev,) by only a few percent.

As indicated above, the ratio R depends only on m,
and ¢ in the standard model. In extensions of the stan-
dard model, additional parameters are present, which
have been commonly denoted by & The main point to
be stressed here is that R is a calculable function of its
parameters in the framework of a renormalization-
group improved perturbation theory. Consequently, the
decay in question is particularly suited for tests of the
standard model and its extensions.

One of the main difficulties in analyzing the inclusive
B— X,y decay is calculating the short-distance QCD ef-
fects due to hard gluon exchanges between the quark
lines of the leading one-loop electroweak diagrams.
These effects are known (Bertolini et al, 1987; Desh-
pande et al., 1987; Grigjanis et al., 1988, 1992; Grinstein
et al., 1990; Misiak, 1991) to enhance the B— Xy rate in
the standard model by a factor of 2-3, depending on the
top-quark mass. So the B— X,y decay appears to be the
only known short-distance process in the standard
model that is dominated by two-loop contributions.

The B— Xy decay has already been measured. In
1993 CLEO reported (Ammar et al., 1993) the following
branching ratio for the exclusive B— K* y decay,

=R(m;,a,,8), (22.1)
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B(B—K*y)=(45+1.5+0.9)x10"7. (22.2)

In 1994 a first measurement of the inclusive rate was
presented (Alam et al., 1995),

B(B—X,y)=(2.32+0.57=0.35)x 104, (22.3)

where the first error is statistical and the second is sys-
tematic.

As we will see below these experimental findings are
in the ballpark of the standard model expectations based
on the leading logarithmic approximation.

In fact a complete leading order analysis of
B(B—X,vy) in the standard model was presented al-
most a year before the CLEO result, giving (Buras, Mi-
siak, Munz, and Pokorski, 1994)

B(B—X,v)75=(2.8%0.8) X104, (22.4)

where the error is dominated by the uncertainty in the
choice of the renormalization scale m,2<u<<2m, , as
first stressed by Ali and Greub (1993). Since B— X,y is
dominated by QCD effects, it is not surprising that this
scale uncertainty in the leading order is particularly
large. Such an uncertainty, inherent in any finite order of
perturbation theory, can be reduced by including next-
to-leading-order corrections. Unfortunately, it will take
some time before the u dependences present in B— X,y
can be reduced in the same manner as was done for the
other decays (Buras et al,, 1990; Buchalla and Buras,
1993a, 1994a; Herrlich and Nierste, 1994). As we already
stated in Sec. IX.B, a full next-to-leading-order compu-
tation of B— X,y would require calculation of three-
loop mixings between the operators Q1,...,Q¢ and the
magnetic penguin operators Q7,,03s. Moreover, cer-
tain two-loop matrix elements of the relevant operators
should be calculated in the spectator model. A formal
analysis at the next-to-leading-order level (Buras, Mi-
siak, Miinz, and Pokorski, 1994) is, however, very en-
couraging and shows that the u dependence can be con-
siderably reduced once all the necessary calculations
have been performed. We will return to this issue below.

B. The decay B— X,y in the leading
logarithm approximation

The leading logarithmic calculations (Grinstein et al.,
1990), (Ali and Greub, 1993), (Misiak, 1993), (Buras,
Misiak, Miinz, and Pokorski, 1994), (Cella et al., 1994a),
(Ciuchini, Franco, Reina, and Silvestrini, 1994), (Misiak,
1995) can be summarized in a compact form, as follows:

_ D(b—sy) |VEVW[ 6a
- D(b—cev,) Vol wf(z)

|CH )%,
(22.5)
where C Soy)eff(,u) is the effective coefficient given in Eq.
(9.23) and Table XXVIII, z=m/m, , and
f(z)=1-8z2+87z°—78—24z%nz (22.6)

is the phase-space factor in the semileptonic b decay.
Note that at this stage one should not include the O(«)
corrections to I'(b—cewv), since they are part of the
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FIG. 20. u dependence of the theoretical prediction for the
ratio R for m,=170 GeV and A%=225 MeV. The solid line
corresponds to the leading-order prediction. The dashed lines
describe possible next-to-leading-order results.

next-to-leading-order effects. For the same reason we do
not include the O(q;) QCD corrections to the matrix
element of the operator 07, (the QCD bremsstrahlung
b—svy+g and the virtual corrections to b—sy), which
are known (Ali and Greub, 1991a, 1991b; Pott, 1995)
and will be a part of a future NLO analysis.

qul_lation (22.5) and the expression [Eq. (9.23)] for
C 9036 '(u) summarize the complete leading logarithmic
approximation for the B— X,y rate in the standard
model. Their important property is that they are exactly
the same in many interesting extensions of the standard
model, such as the two-Higgs-doublet model (2HDM)
(Grinstein et al., 1990; Barger et al., 1993; Hayashi et al.,
1993; Hewett, 1993; Buras, Misiak, Munz, and Pokorski,
1994) or the minimal supersymmetric standard model
(MSSM) (Bertolini et al., 1991; Barbieri and Giudice,
1993; Borzumati, 1994). The only quantities that change
are the coefficients C$(My), C g%)(M w), and
C{2(My). On the other hand, in a general
SU(2);, XSU(2)gXU(1) model additional modifications
are necessary because new operators enter (Cho and
Misiak, 1994).

A critical analysis of theoretical and experimental un-
certainties present in the prediction for B(B—X,y)
based on the above formulae has been made (Buras,
Misiak, Munz, and Pokorski, 1994). Here we just briefly
list the main findings:

(i) First of all, Eq. (22.5) is based on the spectator
model. As we have mentioned above, the heavy-quark
expansion gives a strong support for this model in inclu-
sive B decays. One can expect the error from using the
spectator model in B— X,y to amount to at most
+10%. This number is understood to include the uncer-
tainty due to long-distance contributions. These are
dominated by intermediate c¢¢ resonances coupling to
the final state photon and have been estimated to be
rather small (Deshpande ef al., 1996). However, the cal-

Rev. Mod. Phys., Vol. 68, No. 4, October 1996

1 1 Il 1 1 1 I
140 150 160 170 180 190 200
m, [GeV]

FIG. 21. Predictions for B— X vy in the SM as a function of the
top-quark mass with the theoretical uncertainties taken into
account.

culation of long-distance effects is notoriously difficult,
and the question of their impact on B— Xy is not yet
completely settled at present (Soares, 1996).

(i1) The uncertainty coming from the ratio z=m./m,
in the phase-space factor f(z) for the semileptonic decay
is estimated to be around 6%.

(iii) The error due to the ratio of the CKM param-
eters in Eq. (22.5) is small. Assuming unitarity of the
33 CKM matrix and imposing the constraints from the
CP-violating parameter £ and B’-B" mixing, one finds

ViVil?
|Vcb|2

(iv) There exists an uncertainty due to the determina-
tion of «,. This uncertainty is not small because of the
importance of QCD corrections in the considered decay.
For instance, the difference between the ratios R of Eq.
(22.5) obtained with the help of apg(M,)=0.11 and
0.13, respectively, is roughly 20%.

(v) The dominant uncertainty in Eq. (22.5) comes
from the unknown next-to-leading-order contributions.
This uncertainty is best signaled by the strong u depen-
dence of the leading-order expression [Eq. (22.5)],
which is shown by the solid line in Fig. 20, for the case
m =170 GeV.

(vi) One can see that, when u is varied by a factor of
2 in both directions around m,=5 GeV, the ratio [Eq.
(22.5)] changes by around *25%, i.e., the ratios R ob-
tained for u=2.5 GeV and u=10 GeV differ by a factor
of 1.6 (Ali and Greub, 1993).

(vii) The dashed lines in Fig. 20 show the expected u
dependence of the ratio [Eq. (22.5)] once a complete
next-to-leading-order calculation is performed. The u
dependence is then much weaker, but, until one per-
forms the calculation explicitly, one cannot say which of
the dashed curves is the proper one. The way the dashed
lines are obtained is described by (Buras, Misiak, Munz,
and Pokorski, 1994).

(viii) Finally, there exists a £2.4% error in determin-

=0.95%=0.03. (22.7)



Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms 1223

ing B(B—X,y) from Eq. (22.1), which is due to the
error in the experimental measurement of
B(B—X_,ev,)=(10.43%20.24)% (Particle Data Group,
1994).

(ix) The uncertainty due to the value of m, is small as
is shown explicitly below.

Figure 21, based on the work of Buras, Misiak, Miinz,
and Pokorski, 1994, presents the standard model predic-
tion for the inclusive B— Xy branching ratio including
the errors listed above as a function of m, and with the
CLEO result.

We stress that the theoretical curves have been ob-
tained prior to the experimental result. Since the theo-
retical error is dominated by scale ambiguities, a com-
plete NLO analysis is very desirable.

C. Looking at B— Xy beyond leading logarithmic order

In this section we describe briefly a complete next-to-
leading-order calculation of B— Xy in general terms.
This section collects the most important findings of Sec.
4 of Buras, Misiak, Miunz, and Pokorski (1994).

Let us first enumerate what has been already calcu-
lated in the literature and which calculations are still
required in order to complete the next-to-leading-order
calculation of B(B—X,v).

The present status is as follows,

(i) The 6x6 submatrix of ! describing the two-
loop mixing of (Q;,...,Q¢) and the corresponding O(«)
corrections in C(My) have been already calculated.
They are given in Sec. VI.

(i) The two-loop mixing in the (Q7,,Q05s) sector of
¥V is known (Misiak and Miinz, 1995) and given in Sec.
IX.C.

(iii) The O(«a,) corrections to the matrix element of
the operators 07, and Qg have been calculated (Ali
and Greub, 1991a, 1991b). They have been recently con-
firmed by Pott (1996), who also presents the results for
the matrix elements of the remaining operators.

The remaining ingredients of a next-to-leading-order
analysis of B(B—X,vy) are

(i) The three-loop mixing between the sectors
(Q1,---,0Q¢) and (Q7,,05), which, with our normaliza-
tions, contributes to .

(i) The O(a) corrections to C;,(My) and Cg(My)
in Egs. (9.12) and (9.13). This requires evaluation of
two-loop penguin diagrams with internal-W and top-
quark masses and a proper matching with the effective
five-quark theory. An attempt to calculate the necessary
two-loop standard model diagrams has been made by
Adel and Yao (1994).

(iii) The finite parts of the effective-theory two-loop
diagrams with the insertions of the four-quark opera-
tors.

All these calculations are very involved, and the nec-
essary three-loop calculation is a truly formidable task!
Yet, as stressed by Buras, Misiak, Miunz, and Pokorski
(1994), all these calculations have to be done if we want
to reduce the theoretical uncertainties in b—s7y to
around 10%.
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As shown in the above reference, the cancellation of
the dominant x dependence in the leading order can be
achieved by calculating the relevant two-loop matrix el-
ement of the dominant four-quark operator Q,. This
matrix element is, however, renormalization-scheme de-
pendent and, moreover, mixing with other operators
takes place. This scheme dependence can only be can-
celed by calculating YV in the same renormalization
scheme. This point has been extensively discussed in this
review, and we will not repeat this discussion here. How-
ever, it is clear from these remarks that, in order to ad-
dress the u dependence and the renormalization-scheme
dependence as well as their cancellations, it is necessary
to perform a complete next-to-leading-order analysis of
C(w) and of the corresponding matrix elements.

In this context we would like to comment on an analy-
sis of Ciuchini, Franco, Martinelli, Reina, and Silvestrini
(1994), in which the known two-loop mixing of
Q4,...,0¢ has been added to the leading-order analysis
of B— Xv. Strong renormalization-scheme dependence
of the resulting branching ratio has been found, giving
the branching ratio (1.7+0.2)x107* and (2.3+0.2)x107*
at u=5 GeV for HV and NDR schemes, respectively. It
has also been observed that, whereas in the HV scheme
the u dependence has been weakened, it is still strong in
the NDR scheme. In our opinion this partial cancella-
tion of the u dependence in the HV scheme is rather
accidental and has nothing to do with the cancellation of
the u dependence discussed above. The latter requires
the evaluation of finite parts in two-loop matrix ele-
ments of the four-quark operators Q,...,0¢. On the
other hand the strong scheme-dependence in the partial
NLO analysis presented by Ciuchini, Franco, Martinelli,
Reina, and Silvestrini (1994), demonstrates very clearly
the need for a full analysis. In view of this discussion we
think that the decrease of the branching ratio for
B— X,y relative to the LO prediction of Ciuchini,
Franco, Martinelli, Reina, and Silvestrini (1994), given
by B(B—X,y)=(1.9+0.2+0.5)x107%, is still premature
and one should wait until the full NLO analysis has been
done.

Our discussion has been restricted to B(B—X,v).
Also the photon spectrum has been the subject of sev-
eral papers. We just refer to the most recent articles
(Bigi et al., 1994a; Neubert, 1994b; Ali and Greub, 1995;
Dikeman et al., 1996; Kapustin et al., 1995; Kapustin and
Ligeti, 1995; Pott, 1996), where further references can be
found.

XXIll. THE DECAY B—X.e"e”
A. General remarks

The rare decay B— X,e"e” has been the subject of
many theoretical studies in the framework of the stan-
dard model and its extensions such as the Two-Higgs-
Doublet models and models involving supersymmetry
(Hou et al., 1987; Grinstein et al., 1989; Jaus and Wyler,
1990; Ali etal, 1991, 1995; Deshpande et al., 1993;
Greub et al., 1995). In particular the strong dependence
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of B—X,e"e” on m, has been stressed by Hou et al.
(1987). It is clear that, once B— X e*e™ has been ob-
served, it will offer a useful test of the standard model
and its extensions. To this end the relevant branching
ratio, the dilepton-invariant mass distribution, and other
distributions of interest should be calculated with suffi-
cient precision. In particular the QCD effects should be
properly taken into account.

The central element in any analysis of B— X e e is
the effective Hamiltonian for this decay which is given in
Sec. X, where a detailed analysis of the Wilson coeffi-
cients has been presented. However, the actual calcula-
tion of B—X,e"e” involves not only the evaluation of
Wilson coefficients of the relevant local operators but
also the calculation of the corresponding matrix ele-
ments of these operators relevant for B— X,e*e ™. The
latter part of the analysis can be done in the spectator
model, which, as indicated by the heavy-quark expan-
sion, should offer a good approximation to QCD for B
decays. One can also include the nonperturbative
O(1/m3) corrections to the spectator model, which en-
hance the rate for B— X,ee” by roughly 10% (Falk
etal., 1994). A realistic phenomenological analysis
should also include the long-distance contributions
which are mainly due to the J/¢ and ¢’ resonances
(Deshpande et al., 1989; Lim et al., 1989; O’Donnell and
Tung, 1991). Since in this review we are mainly inter-
ested in the next-to-leading-order short-distance QCD
effects, we will not include these complications in what
follows. This section closely follows the work of Buras
and Munz (1995), except that the numerical results in
Figs. 22-24 have been slightly changed in accordance
with the input parameters of the Appendix.

We stress again that, in a consistent NLO analysis of
the decay B— X,e" e, one should calculate the Wilson
coefficient of the operator Qg =(sb)y_4(ee)y includ-
ing leading-order and next-to-leading-order logarithms,
but only keep leading-order logarithms in the remaining
Wilson coefficients. Only then a scheme-independent
amplitude can be obtained. As already discussed in Sec.
X, this special treatment of Qy is related to the fact that,
strictly speaking, in the leading logarithmic approxima-
tion only this operator contributes to B— X e e ™. The
contributions of the usual current-current operators,
QCD penguin operators, magnetic penguin operators,
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and Qo4 =(sb)y_4(ee) 4 enter only at the NLO level,
and to be consistent only the leading contributions to

the corresponding Wilson coefficients should be in-
cluded.

B. The differential decay rate

Introducing
+p,-)? m

o Pty e (23.1)
mb ny

and calculating the one-loop matrix elements of Q; us-
ing the spectator model in the NDR scheme, one finds
(Buras and Miunz, 1995; Misiak, 1995)

.. dldsT(b—se"e™)
)= I'(b—ceb)
Vts 2 (1_§)2

Vel f(z2)x(z)
2

1+=
S

a2

=i (1+28)(| C5"?

+[C o) +4

|C(707)eff| 2

(232)

+ 12cg°;effReégff)} ,

R() [107]

01 02 03 04 05 06 07 08 09
8

FIG. 23. Comparison of the four different contributions to

R(5) according to Eq. (23.2).
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where
CS=CYPR7(8)+ h(z,5)(3CV+CP+3CP+
+3CO+CO) - 1h(1,5)(4CP+4C
3h(05)(CE+3CLY)
+23CV+CcPV+3CcP+ ). (23.3)

Equation (23.2) with «(z)=1 was first presented by
Grinstein et al. (1989), who, in their approximate
leading-order renormalization-group analysis, kept only

the operators Q] aQ27Q7'y’Q9V7Q10A'
The various entries in Eq. (23.2) are given as follows,

+3C0+ ) -

hzg=— o™ 8y 8t 2o
(Z,S)—_§ 1’17—5 nz ﬁ §x—§( +X)|
\/1 x+1
( —iﬂ') for x=4z2%/5<1
_x|1/2 1 x=
2 arct ! f 47%15>1
arctan ———, 1I0r Xx=477/S§ 5
Vx—1
(23.4)
h(0 ot 41 Ty 23.5
(0,8)= 77 9 §ns+§z77 (23.5)
f(z)=1-8z*+8z°~z%~24z"Inz, (23.6)
zas(ﬂ“) ) 31 5 3
K(Z)—l_ 3 [(77 _Z (1_Z) +§, (237)
n(s)=1+ S(M) w(s), (23.8)
with
§)= 2 4L' 21 In(1
w(s)= 9™ "3 i)(s) gns n(l-—s)

S5+4s n(1 2s(1+s)(1—2s)

3072y M) T A T ™
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5+9s—6s2

=5y (1+2s)° 239)

Here f(z) is the phase-space factor for b—cev and «(z)
is the corresponding single-gluon QCD correction
(Cabibbo and Maiani, 1978) in the approximation of
Kim and Martin (1989). 7, on the other hand, represents
single-gluon corrections to the matrix element of Qg
with m =0 (Jezabek and Kuhn, 1989; Misiak, 1995). For
consistency reasons this correction should only multiply
the leading-logarithmic-order term in C YPR

In the HV scheme the one-loop matrix elements are
different, and one finds an additional explicit contribu-
tion to Eq. (23.3) given by (Buras and Munz, 1995)

— ViV + V-V -3¢). (23.10)

However, C YPR has to be replaced by C IV given in Eqs
(10.5) and (10 9), and consequently C&% is the same in
both schemes.

The first term in the function 4(z,§) in Eq. (23.4)
represents the leading u dependence in the matrix ele-
ments. It is canceled by the u dependence present in
the leading-order logarithm in Cy. This is precisely the
type of cancellation of the u dependence that one would
like to achieve in the case of B— X,y. The u depen-
dence present in the coefficients of the other operators
can only be cancelled by going to still higher order in the
RG-improved perturbation theory. To this end the ma-
trix elements of four-quark operators should be evalu-
ated at two-loop level. Also, certain unknown three-loop
anomalous dimensions should be included in the evalu-
ation of C$If y and Cgy. Certainly this is beyond the scope
of this rev1ew and we will only investigate the leftover u
dependence below.

C. Numerical analysis

A detailed numerical analysis of the formulas above
has been presented by Buras and Munz (1995). We give
here a brief account of this work. We first set
|V,s/V.p|=1, which, in view of Eq. (22.7), is a good ap-
prox1mat10n We keep in mind that, for s~ m¢/m b
S~m l/I,,Z/m 5, etc., the spectator model cannot be the
full story and additional long-distance contributions dis-
cussed by Deshpande et al. (1989), Lim et al. (1989), and
O’Donnell and Tung (1991) have to be taken into ac-
count in a phenomenological analysis. Similarly, we do
not include 1/m 7 corrections calculated by Falk et al.
(1994), which typically enhance the differential rate by
about 10%.

In Fig. 22(a) we show R(s) for m,=170 GeV, Ayg
= 225 MeV, and different values of u. In Fig. 22(b) we
set u=5 GeV and vary m, from 150 GeV to 190 GeV.
The remaining u dependence is rather weak and
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amounts to at most £8% in the full range of parameters
considered. The m, dependence of R(S) is sizable. Vary-
ing m, between 150 GeV and 190 GeV changes R(S) by
typically 60-65%, Wthh in this range of m,, corre-
sponds to R(§)~m 2. It is easy to verify that this strong
m, dependence orlglnates in the coefficient C 10 given in
Eq. (10.3), as already stressed by several authors in the
past (Bertolini et al., 1987; Hou et al. 1987; Grinstein
et al., 1989; Jaus and Wyler, 1990; Ali et al., 1991, 1995;
Deshpande et al., 1993; Greub et al., 1995).

We do not show the Aypg dependence, as it is very
weak. Typically, changing Aypg from 140 MeV to 310
MeV decreases R($) by about 5%.

R(S) is governed by three coefficients, C§", Cy, and
C gogeff. The importance of various contributions has
been 1nvestigated by Buras and Miunz (1995). To this
end one sets AMS 225 GeV, m=170 GeV, and u=5
GeV. In Fig. 23 we show R(s), keeping only cst, Cy.

g‘”eff, and the C SO)eff C$™ interference term, respec-
tlvely Denoting these contrlbutlons by Ry, Ry, R7, and
R7/9, we observe that the term R, plays only a minor role
in R(§). On the other hand, the presence of C s‘J)eff
not be ignored because the interference term R7/9 is 51g-
nificant. In fact the presence of this large interference
term could be used to measure experimentally the rela-
tive sign of C so)eff and ReC§" (Grinstein er al., 1989; Jaus
and Wyler, 1990 Ali et al 1991, 1995; Greub et al.,
1995), which, as seen in Fig. 23, is negative in the stan-
dard model. However, the most important contributions
are Ry and R in the full range of § considered. For m,
~170 GeV these two contributions are roughly of the
same size. Due to a strong m, dependence of R, this
contribution dominates for higher values of m, and is
less important than R for n,<170 GeV.

Next, in Fig. 24 we show R(s) for u=5 GeV, m,=170
GeV, and Ay = 225 MeV, compared to the case of no
QCD corrections and to the results Grinstein et al.
(1989) would obtain for our set of parameters using their
approximate leading-order formulae.

The discussion of the definition of mé used here is
identical to the one in the case of K; — e e~ and will
not be repeated here. On the basis of the arguments
given there, we believe that if m,=m,(m,) is chosen, the
additional  short-distance =~ QCD  corrections to
B(B—X,e"e™) should be small.

XXIV. THE DECAYS K™ — &*vv AND K, — v
A. General remarks on Kt — #*wp

The rare decay K*— 7" vv is one of the cleanest de-
cays from a theoretical standpoint. As such it is very well
suited for the determination of CKM parameters, in par-
ticular of the element V,;. K™ —a vy is CP conserv-
ing and receives contributions from both internal top
and charm exchanges. The inclusion of next-to-leading-
order QCD corrections incorporated in the effective
Hamiltonian in Eq. (11.4) and discussed in detail in Sec.
XI.B reduces considerably the theoretical uncertainties
due to the choice of the renormalization scales present
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TABLE XLIV. The function Py(X) for various AMS m,

Py(X)
A%\mc 1.25 GeV 1.30 GeV 1.35 GeV
215 MeV 0.402 0.436 0.472
325 MeV 0.366 0.400 0.435
435 MeV 0.325 0.359 0.393

in the leading-order expressions. We will illustrate this
below. Since the relevant hadronic matrix element of the
weak current (sd)y_ 4 can be measured in the leading
decay, K*— 7’ " v, the resulting theoretical expression
for B(K*—m"vv) is only a function of the CKM pa-
rameters, the QCD scale Az, and the quark masses m,
and m, . The long-distance contributions to K*— " vv
have been found to be very small—a few percent of the
charm contribution to the amplitude at most, which is
safely negligible (Hagelin and Littenberg, 1989; Rein
and Sehgal, 1989; Lu and Wise, 1994).

Conventionally, the branching fraction
B(K"—m"vv) is related to the experimentally well-
known quantity B(K*— 7% " v) using isospin symme-
try. Corrections to this approximation have recently
been studied by Marciano and Parsa (1995). The break-
ing of isospin is due to quark-mass effects and elec-
troweak radiative corrections. In the case of K*— 7 vv
these effects result in a decrease of the branching ratio
by 10%. The corresponding corrections in K; —mvv
lead to a 5.6% reduction of B(K,—w’vv). We have
checked the analysis of Marciano and Parsa (1996) and
agree with their findings. Once calculated, the inclusion
of these effects is straightforward, as they only amount
to an overall factor for the branching ratio and do not
affect the short-distance structure of K— mwvv. We shall
neglect the isospin-violating corrections in the following
chapters, where the focus is primarily on the short-
distance physics. The effects are, however, incorporated
in the final prediction quoted in the summary table in
Sec. XXVIL

In the following we shall concentrate on a discussion
of K*— " vy within the framework of the standard
model. The impact of various scenarios of new physics
on this decay has been considered, for instance, by Bigi
and Gabbiani (1991).

B. Master formulas for K™ — @*vw

Using the effective Hamiltonian [Eq. (11.4)] and sum-
ming over the three neutrino flavors, one finds

. Im)\, 2 [Re,
B(K*'—atvn)=«k, TX(XI) + Py(X)
Re\, 2

+ o5 X)) |, (24.1)
3CBET oY) L ot (42
e 27%sin*@ —alx . (242)
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where we have used

1

129’

sin’@® y,=0.23,

B(K*—mletv)=4.82x10"2% (24.3)

Here \; = VXV, with A, being real to a very high accu-
racy. The function X of Eq. (11.5) can also be written as

X(x)=nxXo(x), nx=0.985, (24.4)

where 7y summarizes the NLO corrections discussed in
Sec. XI.B. With m,=m,(m,) the QCD factor 7y is prac-
tically independent of m, and Ajr. Next

1 (2
Po(X)=37|3 7VL+§X§L (24.5)

with the numerical values for X4, given in Table
XXXIII. The corresponding values for Py(X) as a func-
tion of Ay and m.=m.(m_.) are collected in Table
XLIV. We remark that a negligibly small term ~ (X%
— X%)? (~0.2% effect on the branching ratio) has been
discarded in Eq. (24.1).

Using the improved Wolfenstein parametrization and
the approximate Egs. (2.23)—(2.25), we can next write

B(K"—aTvp)=457x10"1A%X?(x,)

1 _ _
X— [(en)?*+(o—0)%], (24.6)
where
1 2
=7

The measured value of B(K"— " vv) then deter-

mines an ellipse in the (©@,%) plane centered at (g,,0)
with (Buras, Lautenbacher, and Ostenmaier, 1994)

e o48)

Qo AZX(X[) .
and having the squared axes

o [10)?

@1=ro, M=\, (24.9)
where

2 1 o-B(Kt—7m"vp) 2410

0T A%X2(x,) | 457x10 1 (24.10)

The departure of 9, from unity measures the relative
importance of the internal charm contributions.

The ellipse defined by r(, @y, and o given above inter-
sects with the circle [Eq. (2.32)]. This allows one to de-

termine ¢ and % with
- 1

0= 152 (@o=Vo’eo+(1-0*)(rg= o Ry)),

=R} - &%

(24.11)
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and consequently

R’=1+R;-20, (24.12)

where 7 is assumed to be positive.
In the leading order of the Wolfenstein parametriza-
tion

—n 0—0, (24.13)

and B(K'—m"vv) determines a circle in the (g,7)
plane centered at (9,,0) and having the radius r, of Eq.
(24.10) with o=1. Equations (24.11) and (24.12) then
simplify to (Buchalla and Buras, 1994a)

o—1,

2_p2 2_ 2
ro—R 1 Ry—r
RI=1+R}+ =——=0), 0= |@o+——
2 Qo
(24.14)
Given ¢ and 7 one can determine V,;:
Va=AN(1—-0—in), |V, =ANR,. (24.15)

Before proceeding to the numerical analysis a few re-
marks are in order:

(i) The determination of |V ;| and of the unitarity tri-
angle requires the knowledge of V., (or A) and of
|V sV esl. Both values are subject to theoretical uncer-
tainties present in the existing analyses of tree-level de-
cays. Whereas the dependence on |V ,,/V,,| is rather
weak, the very strong dependence of B(K ™ — 7" vv) on
A or V,_, makes a precise prediction for this branching
ratio difficult at present. We will return to this below.

(ii) The dependence of B(K"™— 7" vv) on m, is also
strong. However m, should be known by the end of this
decade to within £5%, and consequently the uncer-
tainty in 7, will soon be less serious for B(K™— 7" vp)
than the corresponding uncertainty in V.

(iii) Once @ and 7 are known precisely from CP
asymmetries in B decays, some of the uncertainties
present in Eq. (24.6) related to |V ,,/V .| (but not to
V) will be removed.

(iv) A very clean determination of sin 28 without es-
sentially any dependence on m, and V., can be made by
combining B(K*—m"vv) with B(K,—m vv) dis-
cussed below. We will present an analysis of this type in
Sec. XXIV.H.

C. Numerical analysis of K™ — w*vp

1. Renormalization-scale uncertainties

We will now investigate the uncertainties in X(x,),
XnL, B(KT—a*vv),|V,,|, and in the determination of
the unitarity triangle related to the choice of the renor-
malization scales u, and w, (see Sec. XI.B). To this end
we will fix the remaining parameters as follows:

m=m.m.)=13 GeV, m=m,(m;)=170 GeV,
(24.16)

V,,=0.040, |V,,/V,,|=0.08. (24.17)

In the case of B(K™— 7" vv) we need the values of
both ¢ and 7. Therefore in this case we will work with
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e=0, (24.18)
rather than with |V,,/V,.,|. Finally, we will set
Ad=0325 GeV and A{}=0.225 GeV for the charm
part and top part, respectively. We then vary the scales

e and u,, entering m (u,.) and m,(u,) respectively, in
the ranges

1 GeV=spu,<3 GeV,

7=0.36,

100 GeV=,<300 GeV.
(24.19)

In Fig. 25 we show the charm function Xy, (for m,=0)
compared to the leading-logarithmic-order result X,
and the case without QCD, as functions of u,. We ob-
serve the following features

(i) The residual slope of Xy is considerably reduced
in comparison to X; , which exhibits a quite substantial
dependence on the unphysical scale w,. The variation of
X [defined as (X(1 GeV)-X(3 GeV))/ X (m,)] is 24.5%
in NLLA compared to 56.6% in LLA.

(ii)) The suppression of the uncorrected function
through QCD effects is somewhat less pronounced in
NLLA.

(iii) The next-to-leading-order effects amount to a
~10% correction relative to X; at u=m_.. However, the
size of this correction strongly depends on u due to the
scale ambiguity of the leading-order result. This means
that the question of how large the next-to-leading-order
effects are compared to the LLA cannot be answered
uniquely. Therefore the relevant result is actually the
reduction of the u dependence in NLLA.

In Fig. 26 we show the analogous results for the top
function X (x,) as a function of w,. We observe

(i) Due to u,>pu,. the scale dependences in the top
function are substantially smaller than in the case of
charm. Note in particular how the still appreciable, scale
dependence of X, gets flattened out almost perfectly
when the O(«,) effects are taken into account. The total
variation of X(x,) with 100 GeV=pu,<300 GeV is
around 1% in NLLA compared to 10% in LLA.

(ii) As already stated following Eq. (24.4), with the
choice w,=m, the NLO correction is very small. It is
substantially larger for w, very different from m,. Using
Eq. (24.1) and varying u, , in the ranges of Eq. (24.19),
we find that, for the above choice of the remaining pa-
rameters, the uncertainty in B(K*— 7" vv)

0.76X 10" < B(K* -7 vp)<1.20xX1071 (24.20)
present in the leading order is reduced to
0.88X 10" V< B(K* =7t vp)<1.02x10710 (24.21)

including NLO corrections. Similarly, we obtain
8.24x107°<|V,,|<10.97x1073 LLA, (24.22)

9.23%1073<|V,,|<10.10x10"> NLLA, (24.23)

where we have set B(K"— 7" v)=1x10"1". We ob-
serve that including the full next-to-leading-order cor-
rections reduces the uncertainty in the determination of
|V, from =14% (LLA) to =4.6% (NLLA) in the
present example. The main bulk of this theoretical error
stems from the charm sector. Indeed, keeping u.=m,
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fixed and varying only u,, the uncertainties in the deter-
mination of |V,,| would shrink to *=4.7% (LLA) and
+0.6% (NLLA). Similar comments apply to
B(K*™—m"vv), where, as seen in Egs. (24.20) and
(24.21), the theoretical uncertainty due to u,. , is reduced
from *£22% (LLA) to 7% (NLLA).

Finally, in Fig. 27 we show the position of the point
(o,7) that determines the unitarity triangle. To this end
we have fixed all parameters as stated above except for
R, , for which we have chosen three representative num-
bers, R,=0.25, 0.36, and 0.47. The full and the reduced
ranges represent LLA and NLLA respectively. The im-
pact of the inclusion of NLO corrections on the accuracy
of determining the unitarity triangle is clearly visible.

2. Expectations for B(K*— 7" vv)

The purely theoretical uncertainties discussed so far
should be distinguished from the uncertainties coming
from the input parameters such as m,, V., |V,p/Vepls
etc. As we will see, the latter uncertainties are still
rather large to date. Consequently the progress achieved
by the NLO calculations (Buchalla and Buras, 1994a)
cannot yet be fully exploited phenomenologically at
present. However, the determination of the relevant pa-
rameters should improve in the future. Once the preci-
sion in the input parameters has attained the desired
level, the gain in accuracy of the theoretical prediction
for K*— @ vv in NLLA by a factor of more than 3
compared to the LLA will become very important.

Using the standard set of input parameters specified
in the Appendix and the constraints implied by the
analysis of ex and B,;-B,; mixing as described in Sec.
XVIII, we find for the K™ — 7" vy branching fraction
the range

0.6X107"'<B(K*— 7 vp)<1.5x10710,  (24.24)

Equation (24.24) represents the current Standard-Model
expectation for B(K'—m vv) (neglecting small
isospin-breaking corrections). To obtain this estimate we
have allowed for a variation of the parameters m,, |V |,
|Vus/Ves|» B » F5B g, and x, within their uncertainties,
as summarized in the Appendix. The uncertainties in m,
and Ay, on the other hand, are small in comparison
and have been neglected in this context. The above
range would be reduced to

0.8X10 '<B(K*" =7 vp)<1.0x10710  (24.25)

if the uncertainties in the input parameters could be de-
creased as assumed by the “future” scenario in the Ap-
pendix.

It should be remarked that the x,; constraint, exclud-
ing a part of the second quadrant for the CKM phase 6,
plays an essential role in obtaining the upper bounds
given above, without essentially any effect on the lower
bounds. Without the x; constraint the upper bounds in
Eqs. (24.24) and (24.25) are relaxed to 2.3x1071* and
1.6x1071°, respectively.
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D. General remarks on K; — 0

The rare decay K, —w’vv is even cleaner than
K" —a"vv. It proceeds almost entirely through direct
CP violation (Littenberg, 1989a) and is completely

25 30

dominated by short-distance loop diagrams with top-
quark exchanges. In fact the m, dependence of
B(K;—mvv) is again described by X(x,). Since the
charm contribution can be fully neglected, the theoreti-
cal uncertainties present in K™—a vy due to m,,
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FIG. 26. Top-quark function X (x,) as a function of u, for fixed m,=170 GeV with (solid curve) and without (dashed curve) O(«)

corrections.
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FIG. 27. The theoretical uncertainties in the determination of
the unitarity triangle (UT) in the (@,7) plane from
B(K"— 7" vp). With fixed input parameters the vertex of the
UT has to lie on a circle around the origin with radius R, . A
variation of the scales w., u, within 1 GeV=y,.<3 GeV and
100 GeV=y,<300 GeV then yields the indicated ranges in
LLA (full) and NLLA (reduced). We show the cases R;=0.25,
0.36, and 0.47.

., and A are absent here. For this reason K; — 7 vv
is very well suited for the determination of CKM param-
eters, in particular the Wolfenstein parameter 7.

E. Master formulas for K, — #%vv

Using the effective Hamiltonian [Eq. (11.56)] and
summing over three neutrino flavors, one finds

0 - Im\, 2
B(K;—mvv)=k| TX(xt) , (24.26)
(K
KL= K+ TETiizwlxlow (24.27)

with «, given in Eq. (24.2). Using the Wolfenstein pa-
rametrization, we can rewrite Eq. (24.26) as

B(K;—m vp)=191x10""292AX?(x,) (24.28)

or
B(K;—mvp)=3.48X1072 9|V, |*X?(x,). (24.29)

A few remarks are in order:

(i) The determination of % using B(K; —mvv) re-
quires the knowledge of V., and m,. The very strong
dependence on V, or A makes a precise prediction for
this branching ratio difficult at present.

(ii) It has been pointed out (Buras, 1994) that the
strong dependence of B(K,—='vv) on V,,, together
with the clean nature of this decay, can be used to de-
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termine this element without any hadronic uncertainties.
To this end 7 and m, have to be known with sufficient
precision in addition to B(K;—#’vv). % should be
measured accurately in CP asymmetries in B decays
and the value of m, known to better than =5 GeV from
TEVATRON and future LHC experiments. Inverting
Eq. (24.29) and using a very accurate approximation for
X(x,) [valid for m,=m,(m,)], as given by Egs. (24.4)
and (14.6),

X(x,)=0.65x"", (24.30)
one finds
170 GeV]*7»
V,.»=39.3x10"30.39/ ”[T
t
B(K;—m vv)|"*

We note that the weak dependence of V., on
B(K;—m"vv) allows one to achieve a high precision
for this CKM element even when B(K,;—w’vb) is
known with only relatively moderate accuracy, e.g., 10—
15%. Needless to say, any measurement of
B(K;—m"vv) is extremely challenging. A numerical
analysis of Eq. (24.31) can be found in the work of Buras
(1994).

F. Numerical analysis of K, — #%vv

1. Renormalization-scale uncertainties

The scale ambiguities present in the function X(x,)
have already been discussed in connection with
K*— @ vv. After the inclusion of NLO corrections
they are so small that they can be neglected for all prac-
tical purposes. Effectively they could also be taken into
account by introducing an additional error Am,<z*1
GeV. At the level of B(K; —n’vv) the ambiguity in
the choice of y, is reduced from *10% (LLA) down to
*1% (NLLA), which considerably increases the predic-
tive power of the theory. Varying u, according to Eq.
(24.19) and using the input parameters of Sec. XXIV.C,
we find that the uncertainty in B(K; — 7 vv)

2.68x10" "< B(K; —7'vp)<326x10711  (24.32)
present in the leading order is reduced to
2.80x10 "< B(K, —n'vv)<2.88x107 1  (24.33)

after including NLO corrections. This means that the
theoretical uncertainty in the determination of 7%
amounts to only +0.7% in NLLA, which is safely negli-
gible. The reduction of the scale ambiguity for
B(K;— m"vv) is further illustrated in Fig. 28.

2. Expectations for B(K; — 7°vv)

From an analysis of B(K; — m vv) similar to the one
described for K*— 7" v1 in Sec. XXIV.C.2, we obtain
the standard-model expectation

1.1x10" < B(K; — 7 vp)<5.0x10" 1, (24.34)
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GeV, |V.,|=0.04, and 7=0.36.

corresponding to present-day errors in the relevant in-
put parameters. This would change to

22x107"<sB(K; —»7'vp)<3.6x10" (24.35)

if the parameter uncertainties would decrease as antici-
pated by the “future’ scenario defined in the Appendix.

G. Unitarity triangle from K—mvy

The measurement of B(K —# vr) and
B(K;—mvv) can determine the unitarity triangle
completely, provided m, and V_, are known. Using
these two branching ratios simultaneously allows one to
eliminate |V ,,/V,,| from the analysis, which removes
considerable uncertainty. Indeed it is evident from Eqgs.
(24.1) and (24.26) that, given B(K™—#"vv) and
B(K,—mvv), one can extract both Im)\,, and Re),.
We get

VB,

=5

Imh,=\ X(x,)’ (24.36)

5 (Re )\C/)\)Po(X)+ \ BI_B2

ReN,=—A ,

X(x,)

where we have defined the “reduced” branching ratios
B _B(K+—>7T+V17) _B(KL—WTOVI_!) 437
=asxao Tt B ek @437

Using the expressions for Im\;, Re\;, and Re), given in
Egs. (2.23)—(2.25), we find
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Py X)—+o(B1—B,)

AZX(xt) ’

B,
7oA’ X (x,)
(24.38)

with o defined in Eq. (24.7). An exact treatment of the
CKM matrix shows that the formulas [Eq. (24.38)] are
rather precise (Buchalla and Buras, 1994c). The error in

0=1+

7 is below 0.1%, and ¢ may deviate from the exact ex-
pression by at most Ap=0.02 with essentially negligible

error for 0<p=<0.25.

As an illustrative example, let us consider the follow-
ing scenario. We assume that the branching ratios are
known to within =10%

B(K*—#tvp)=(1.0=0.1)x10" 1,
B(K; -7 vp)=(2.5+025)x10" 1. (24.39)
Next we take [m,;=m;(m;)]

m,=(170+£5) GeV, m,=(130+0.05) GeV,
(24.40)

where the quoted errors are quite reasonable if one
keeps in mind that it will take at least ten years to
achieve the accuracy assumed in Eq. (24.39). Finally, we
use

AB=(200-350) MeV, pu,=(1-3) GeV, (24.41)

V.= 0.040%0.001,

where u,. is the renormalization scale present in the
analysis of the charm contribution. Its variation gives an
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TABLE XLV. 7, |V,,|, and ¢ determined from K*— 7" v¥ and K; —#’vp for the scenario de-
scribed in the text and the uncertainties related to various parameters.

A(BR) A(mt s Vcb) A(mc ,A%) A(:u'c) Atotal
7 0.33 +0.02 +0.03 +0.00 +0.00 +0.05
|V, 411073 9.3 +0.6 +0.6 +0.5 +0.4 2.1
o 0.00 +0.08 +0.09 +0.06 +0.04 +0.27

indication of the theoretical uncertainty involved in the
calculation. In comparison to this error we neglect the
effect of varying uy=0O(My), the high-energy matching
scale at which the W boson is integrated out, as well as
the very small scale dependence of the top-quark contri-
bution. As reference parameters we use the central val-
ues in Egs. (24.39) and (24.40) and A% = 300 MeV and
m.=m,. The results that would be obtained in such a

scenario for 7, |V,,|, and ¢ are collected in Table XLV.
There we have also displayed separately the associ-
ated symmetrized errors (A) coming from the uncertain-
ties in the branching ratios, m, and V., m, and A%,
and u., as well as the total uncertainty.
We observe that respectable determinations of # and
|V .4l can be obtained. On the other hand, the determi-

nation of @ is rather poor. We also note that a sizable
part of the total uncertainty results in each case from the
strong dependence of both branching ratios on m; and
V., . There is, however, one important quantity for
which the strong dependence of B(K™— 7" vv) and
B(K;—m"vv) on m, and V, does not matter at all.

H. sin 28 from K— 7vv

Using Eq. (24.38), one finds (Buchalla and Buras,
1994c¢)

l_é . 2rs
e SIHZBZW

(24.42)

ry=ryBq,By)= =cotB,

with

Vo(B1—B;,)— Py(X)
VB, '

Thus, within the approximation of Eq. (24.38), sin 28 is
independent of V, (or A) and m,. An exact treatment
of the CKM matrix confirms this finding to a high accu-
racy. The dependence on V., and m, enters only at or-
der O(\?), and, as a numerical analysis shows, this de-
pendence can be fully neglected.

It should be stressed that sin 23 determined this way
depends only on two measurable branching ratios and
on the function P,(X), which is completely calculable in
perturbation theory. Consequently, this determination is
free from any hadronic uncertainties, and its accuracy
can be estimated with a high degree of confidence. To
this end we use the input given in Egs. (24.39)-(24.41) to
find

r{(By,By)=\o (24.43)
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sin2 8=0.60=0.06%0.03+0.02, (24.44)

where the first error comes from B(K"— 7" vv) and
B(K;—mvv), the second from m, and Ay, and the
last one from the uncertainty due to w.. We note that
the largest partial uncertainty results from the branching
ratios themselves. It can probably be reduced with time,
as is the case with the *=0.03 uncertainty related to
Axs and m. . Note that the theoretical uncertainty rep-
resented by A(u,), which ultimately limits the accuracy
of the analysis, is small. This reflects the clean nature of
the K— mvv decays. However, the small uncertainty of
+0.02 is only achieved by including next-to-leading-
order QCD corrections. In the leading logarithmic ap-
proximation the corresponding error would amount to
+0.05, larger than the one coming from m, and Ayg.
The accuracy to which sin2 can be obtained from
K— mvv is, in this example, comparable to the one ex-
pected in determining sin28 from CP asymmetries in B
decays prior to LHC experiments. In this case sin2f is
determined best by measuring the time-integrated CP
violating asymmetry in B 9— /K ¢, which is given by

JSIT(B—yKg)—T(B—yKs)]dt

A K¢)= _
PR e T B 4K )1 T (B yK o)1t
— _sin2g —4 24.45
= —sm ﬁ +x[21’ ( . )

where x,=Am/T gives the size of B%-B Y mixing. Com-
bining Egs. (24.42) and (24.45), we obtain an interesting
connection between rare K decays and B physics

2ry(B1,B;) 1+x(21

ST Y AH(yK
1+/2(B,.B,) cp(UKy) X

(24.46)

which must be satisfied in the standard model. We stress
that, except for Py(X) given in Table XLIV, all quanti-
ties in Eq. (24.46) can be directly measured in experi-
ment and this relationship is essentially independent of
m,and V.

XXV. THE DECAYS K, —u '~ ANDK ' —m u"u~
A. General remarks on K; —»u u~

The rare decay K; —u*u” is CP conserving, and, in
addition to its short-distance part, receives important
contributions from the two-photon intermediate state,
which is difficult to calculate reliably (Geng and Ng,
1990; Bélanger and Geng, 1991; Ko, 1992).
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This latter fact is rather unfortunate because the
short-distance part is, similar to K" — 7" vv, free of had-
ronic uncertainties and, if extracted from the data,
would give a useful determination of the Wolfenstein
parameter ¢. The separation of the short-distance from
the long-distance piece in the measured rate is very dif-
ficult, however.

In spite of all this we will present the analysis of the
short-distance contribution. On one hand it may turn
out to be useful one day for K; —u*u~, and additionally
it also plays an important role in a parity-violating asym-
metry, which can be measured in K*—#"u u™. We will
discuss this latter topic later on in this section.

The analysis of (K; —u"u )sp proceeds in essentially
the same manner as for K™ — 7" vv. The only difference
enters through the lepton line in the box contribution.
This change introduces two new functions Yy, and
Y(x,) for the charm and top contributions, respectively
(Sec. XI.C), which will be discussed in detail below.

B. Master formulas for (K; —u*u)sp

Using the effective Hamiltonian of Eq. (11.44) and
relating (0|(5d)V_4|K,) to B(K"—u"v), we find

. Re\, Re), :
B(Kp—p" p# )sp= Kyl —— Po(Y)+ 5= Y(x)|
(25.1)
a?*B(Kt—utv) 7(K;)
e k) N LeX107, (252)
where we have used
1 .
a= 155 sin®@ =023, B(K"—pup*v)=0.635.

(25.3)

The function Y(x) of Eq. (11.45) can also be written as

Y(x)=nyYo(x), ny=1.026=0.006, (25.4)
where 7, summarizes the NLO corrections discussed in
Sec. XI.C. With m,=m,(m,) this QCD factor depends
only very weakly on m,. The range in Eq. (25.4) corre-

sponds to 150 GeV=m,<190 GeV. The dependence on
Ass can be neglected. Next

YNL

Po(Y)=~7 (25.5)

with Yy calculated in Sec. XI.C. Values for Py(Y) as a
function of Ayg and m . =m (m,) are collected in Table
XLVL

Using the improved Wolfenstein parametrization and
the approximate formulas of Egs. (2.23)—-(2.25), we can
next write

1 _ _
B(K;—u" u )sp=1.68X10""A*Y*(x,) p (p—0)
(25.6)
with
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1 2
o= —=| - (25.7)

=7

The “experimental” value of B(K,—u"u")gp deter-
mines the value of ¢ given by

> 14 Py(Y)
Qo= AZY(XI)’

S - o 1 oB(K;—u" 1 )sp
€=, T0T 43y 1.68x10°°

(25.8)

Similar to r, in the case of K™ — o " vv, the value of r is
fully determined by the top contribution, which has only
a very weak renormalization-scale ambiguity after the
inclusion of O(«) corrections. The main scale ambiguity

resides in @, whose departure from unity measures the
relative importance of the charm contribution.

C. Numerical analysis of (K, —u*u )sp

1. Renormalization-scale uncertainties

We will now investigate the uncertainties in Y(x,),
Yai, B(K;,—utu )sp, and @ related to the depen-
dence of these quantities on the choice of the renormal-
ization scales u, and u,.. To this end we proceed as in
Sec. XXIV.C.1. We fix all the remaining parameters as
given in Eqgs. (24.16) and (24.17), and we vary u, and g,
within the ranges stated in Eq. (24.19).

Figure 29 shows the charm function Yy; compared to
the leading-logarithmic-order result Y; and the case
without QCD as a function of .. We note the following
points,

(i) The residual slope of Yy, is considerably smaller
than in Y , although it is still sizable. The variation of Y
with u defined as [Y(1 GeV)-Y (3 GeV)]/Y(m,) is 53%
in NLLA compared to 92% in LLA.

(ii) There is a strong enhancement of Y| through
QCD corrections, in contrast to the suppression found in
the case of X.

In Fig. 30 we show the analogous results for Y(x,) as
a function of u,. The observed features are similar to the
ones found in the case of X (x,):

(i) Considerable reduction of the scale uncertainties in
NLLA relative to the LLA with a tiny residual uncer-
tainty after the inclusion of NLO corrections.

(i1) Small NLO correction for the choice w,=m, as
summarized by 7y in Eq. (25.4). Using Eq. (25.1) and
varying u. , in the ranges of Eq. (24.19), we find that, for
this choice of input parameters, the uncertainty in

B(K,—u" 1 )sp
0.816X107°<B(K;—u" pn )gp=<1.33X10"" (25.9)
present in the leading order is reduced to
1.02X107°<B(K;—u" pu )gp=1.25x10"7 (25.10)
after including NLO corrections. Here we have assumed
0=0.
Similarly, we find

—0.117<0<0.165 LLA, (25.11)
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FIG. 29. Charm-quark function Yy , compared to the leading-log result Y; and the case without QCD, as functions of u, .

0.011<$=<0.134 NLLA, (25.12)

where we have set B(K; —u" u )sp=1x10"". We ob-
serve again a considerable reduction of the theoretical
error when the NLO effects are included in the analyses.
Also, in this case the remaining ambiguity is largely
dominated by the uncertainty in the charm sector.

2. Expectations for B(K;—u" 1 )sp

We finally quote the standard-model expectation for
the short-distance contribution to the K; —u* ™ branch-
ing ratio. Using the analysis of g and the constraint
implied by B,-B, mixing in analogy to the case of
K*— 7" vy described in Sec. XXIV.C.2, we find

0.6X107°<B(K;—u" u )gp=<2.0x10"°  (25.13)

and

09X107°<B(K;—p pn )gp=<12Xx10"7  (25.14)

for present parameter uncertainties and the “future”
scenario, respectively. The relevant sets of input param-
eters and their errors are collected in the Appendix. Re-
moving the x,; constraint would increase the upper
bounds in Egs. (25.13) and (25.14) to 3.5x10™ and
2.2X107, respectively.

D. General remarks on K" —a*utu”
Obviously, the short distance effective Hamiltonian of

Eq. (11.44) also gives rise to an amplitude for the tran-
sition K*—#*u*u”. This amplitude, however, is three
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orders of magnitude smaller than the dominant contri-
bution to K*—# u*u~ given by the one-photon ex-
change diagram (Ecker et al., 1987) and is therefore neg-
ligible in the total decay rate. On the other hand, the
coupling to the muon pair is purely vectorlike for the
one-photon amplitude, whereas it contains an axial-
vector part in the case of the SD contribution mediated
by Z° penguin and W box diagrams. Thus, as was
pointed out by Savage and Wise (1990) and discussed in
detail by Lu er al. (1992), the interference of the one-
photon and the SD contribution, which is odd under
parity, generates a parity-violating longitudinal muon
polarization asymmetry

Fr—T'y
Ig+I'p

in the decay K*—#"u*u". Here T'y (I';) denotes the
rate of producing a right- (left-) handed w*, that is a u*
with spin along (opposite) its three-momentum direc-
tion. In this way a measurement of the asymmetry A;
could probe the phenomenologically interesting short-
distance physics that is not visible in the total rate.

The K*—#"y* vertex is described by a form factor
f(s) (s being the invariant mass squared of the muon
pair), that determines the one-photon amplitude and
hence the total rate of K*—a"u"u ", but also enters the
asymmetry A; p. This form factor has been analyzed in
detail by Ecker et al. (1987) within the framework of
chiral perturbation theory. The imaginary part Im f(s)
turns out to be much smaller than Ref(s) and can safely
be neglected in the calculation of A; . For this reason
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f(s)~Ref(s), which depends on a constant not fixed by
chiral perturbation theory, may also be directly ex-
tracted from experimental data on K™ — 7 e e (Allie-
gro et al., 1992), sensitive to |f(s)|. We follow Lu er al.
(1992) in adopting this procedure.

The dominance of Re f(s) further implies that A;
actually measures the real part of the short-distance am-
plitude. As emphasized by Bélanger et al. (1993), A; p is
therefore closely related to the short-distance part of
K;—u ' and could possibly yield useful information
on this contribution, which is difficult to extract from
experimental results on K ; —u* ™. Like (K, —u" uw)sp,
A; g is in particular a measure of the Wolfenstein param-
eter Q.

Lu et al. (1992) have also considered potential long-
distance contributions to A;p originating from two-
photon exchange amplitudes. Unfortunately, these are
very difficult to calculate in a reliable manner. The dis-
cussion by Lu et al. (1992) indicates, however, that they
are likely to be much smaller than the short-distance
contributions considered above. We will focus here on
the short-distance part, keeping in mind the uncertainty
due to possible non-negligible long-distance corrections.

One should stress that the short-distance part by itself,
although calculable in a well-defined perturbative
framework, is not completely free from theoretical un-
certainty. The natural context to discuss this issue is a
next-to-leading-order analysis, which, for A; ;, has been
presented by Buchalla and Buras (1994b), who general-
ize the previous leading logarithmic-order calculations
(Savage and Wise, 1990; Lu et al., 1992; Bélanger et al.,

1993). We will summarize the results of Buchalla and
Buras (1994b) below.

Finally we mention that other asymmetries in
K*—# u*u”, which are odd under time reversal and are
also sensitive to short-distance contributions, have been
discussed in the literature (Savage and Wise, 1990;
Agrawal et al., 1991, 1992; Lu et al., 1992). They involve
both the u" and u~ polarizations and are considerably
more difficult to measure than A; . Possibilities for
measuring the polarization of muons from K*—z " u”
in future experiments, based on studying the angular dis-
tribution of e* from decay, are described by Kuno
(1992).

E. Master formulas for A, 5

The absolute value of the asymmetry A; p can be writ-
ten as

The factor r arises from phase-space integrations. It de-
pends only on the particle masses m g, m ., and m,, on
the form factors of the matrix element (7*|(sd)y_ 4| K™),
and the form factor of the K*—#"y* transition, which is
relevant for the one-photon amplitude. In addition r de-
pends on a possible cut which may be imposed on 6, the
angle between the three-momenta of the u~ and the
pion in the rest frame of the w*u™ pair. Without any cuts
one has r=2.3 (Lu et al., 1992). If cos@ is restricted to lie
in the region —0.5=<cos#=<1.0, this factor is increased to

T T T
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~
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~
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£ S ]
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\\\
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FIG. 30. Top-quark function Y(x,) as a function of u, for fixed m,=170 GeV with (solid curve) and without (dashed curve) O(«y)

corrections.
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TABLE XLVI. The function Py(Y) for various A% and m, .

Py(Y)
A%/mc 1.25 GeV 1.30 GeV 1.35 GeV
215 MeV 0.132 0.141 0.151
325 MeV 0.140 0.149 0.159
435 MeV 0.145 0.156 0.166

r=4.1. As discussed by Lu et al. (1992), such a cut in cosé
could be useful since it enhances A; p by 80% with only
a 22% decrease in the total number of events.

Reé is a function containing the information on the
short-distance physics. It depends on CKM parameters,
the QCD scale Ay, the quark masses m; and m ., and
is given by

ReA. Re\,
Reé=«k N Py(Y)+ T Y(x,) ]|, (2517)
)\4
=1.66X103. (25.18)

K 2w sin@ (1 —N212)

Here M\=|V,|=0.22, sin’@y=0.23, x,=m?/IM3%, X\;
=ViV,s,and

Yo
Py(Y)=~7-

(25.19)
The functions Yy and Y(x,) represent the charm and
the top contribution, respectively. They are accurate to
next-to-leading logarithmic order as given in Egs.
(11.48) and (11.45) and have already been discussed in
Sec. XI.C and in the previous sections on the phenom-
enology of (K; —u"u)sp. Numerical values for Py(Y)
can be found in Table XLVI. From Egs. (25.16) and
(25.17) we can obtain Re\, expressed as a function of
|ALgl:
A2

|ALR|/7'K—<1— T)PO(Y)

— 5
Re\, A Yx)

(25.20)

Since Re), is related to the Wolfenstein parameter @

(see Sec. 1), one may use Eq. (25.20) to extract ¢ from
a given value of |A; g|.

F. Numerical analysis of A, 5

To illustrate the phenomenological implications of the
next-to-leading-order calculation, let us consider the fol-

TABLE XLVIIL ¢ determined from A i for the scenario de-
scribed in the text and the uncertainties related to various in-
put parameters.

A(Arg)
+0.13

A(m)  A(Vep)  A(me)  A(Aws)

+0.00

0 -0.06 +0.05 *0.06 =*0.01
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lowing scenario. We assume a typical value for A; , al-
lowing for an uncertainty of =10%

A, z=(6.0=0.6)x1073. (25.21)

Here a cut on cosé, —0.5<cos6<1.0, is understood. Next
we take [m;=m;(m;)]

m,=(170+5) GeV, m,=(1.30=0.05) GeV,
V5 =0.040+0.001, (25.22)

AGL=(300+50) MeV. (25.23)
Table XLVII shows the central value of ¢ that is ex-
tracted from A; g in our example, together with the un-
certainties associated to the relevant input. Combined
errors due to a simultaneous variation of several param-
eters can be obtained to a good approximation by simply
adding the errors in Table XLVII.

These errors should be compared with the purely
theoretical uncertainty of the short-distance calculation,
estimated by a variation of the renormalization scales u,.
and u,. Varying these scales as given in Eq. (24.19) and
keeping all other parameters at their central values, we
find

—0.15<6<-0.03 (NLLA), (25.24)

—0.31<4<0.02 (LLA). (25.25)

We observe that at NLO the scale ambiguity is reduced
by almost a factor of 3 compared to the LLA. However,
even in the NLLA the remaining uncertainty is still siz-
able, though moderate in comparison with the errors in
Table XLVII. Note that the remaining error in Eq.
(25.24) is almost completely due to the charm sector,
since the scale uncertainty in the top contribution is
practically eliminated at NLO.

We remark that for definiteness we have incorporated
the numerically important piece x.2 in the leading
logarithmic-order expression for the charm function Y,
although this is strictly speaking a next-to-leading-order
term. This procedure corresponds to a central value of

0=-0.12 in LLA. Omitting the x /2 term and employing
the strict leading-logarithmic-order result shifts this

value to ©@=-0.20. Within NLLA this ambiguity is
avoided in a natural way.

Finally, we give the standard-model expectation for
A; g, based on the short-distance contribution in Eq.
(25.16), for the Wolfenstein parameter ¢ in the range
-0.25=<0=<0.25, V_,=0.040+0.004, and m,=(170%20)
GeV. Including the uncertainties due to m,., Ayw, K>
and w, and imposing the cut —0.5<cos#=<1, we find

3.0X1073<|A £|<9.6Xx1073, (25.26)

employing next-to-leading-order formulas. Anticipating
improvements in V., m,, and @, we also consider a
future scenario in which 0=0.00+0.02, V' .,=0.040%0.001,
and m,=(170%=5) GeV. The very precise determination
of ¢ used here should be achieved through measuring
CP asymmetries in B decays in the LHC era (Buras,
1994). Then Eq. (25.26) reduces to
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4.8X1073<|A z|<6.6Xx1073. (25.27)

One should mention that, although the top contribution
dominates the short-distance prediction for |A; g|, the
charm part is still important and should not be ne-
glected, as Bélanger ef al. (1993) did. It is easy to con-

vince oneself that the charm sector contributes to @ the

sizable amount AQ 4,,,~0.2. Furthermore, as we have
shown above, the charm part is the dominant source of
theoretical uncertainty in the short-distance calculation
of Ajgr.

To summarize, we have seen that the scale ambiguity
in the perturbative short-distance contribution to A; z
can be considerably reduced by incorporating next-to-
leading-order QCD corrections. The corresponding

theoretical error in the determination of ¢ from an an-
ticipated measurement of |A; g| is then decreased by a
factor of 3, in a typical example. Unfortunately, the re-
maining scale uncertainty is quite visible even at NLO.
In addition there are further uncertainties due to various
input parameters and possibly to long-distance effects.

Together this implies that the accuracy to which @ can
be extracted from A; p appears to be limited and A;p
cannot fully compete with the K— vy decay modes.
Still, a measurement of A; , might give interesting con-

straints on SM parameters, @ in particular, and we feel it
is worthwhile to further pursue this interesting addi-
tional possibility.

XXVI. THE DECAYS B—Xvv ANDB—pu* u~
A. General remarks

The rare decays, B— X, ,vv, B— X, vv and B,—u"u",
B, —u*u, are fully dominated by internal top-quark
contributions. The relevant effective Hamiltonians are
given in Egs. (11.56) and (11.57), respectively. Only the
top functions X (x,) and Y(x,) enter these expressions,
and the uncertainties due to m, and Ayg affecting
K*—7m vy and K, —u'u are absent here. Conse-
quently these two decays are theoretically very clean. In
particular the residual renormalization-scale depen-
dence of the relevant branching ratios, though sizable in
leading order, can essentially be neglected after the in-
clusion of next-to-leading-order corrections. On the
other hand a measurement of these rare B decays, in
particular of B— X,vv and B— X vv, is experimentally
very challenging. In addition, as we will see below,
B(B,—u*u") and B(B,—u*u") are subject to the
uncertainties in the values of the B-meson decay con-
stants Fp and Fp , which hopefully will be removed one

day.
B. The decays B— X, vv and B— X vv

The branching fraction for B— X vv is given by
B(B—X,wv)  3d° Vil*> X*(x) 7
B(B—X_.ev) 4msin*@y [V, ,12 f(z) «(z)

2
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Here f(z), z=m/m,, is the phase-space factor for
B— X_ ev defined already in Eq. (22.6), and «(z) is the
corresponding QCD correction (Cabibbo and Maiani,
1978) given in Eq. (23.7). The factor 7 represents the
QCD correction to the matrix element of the b—svv
transition due to virtual and bremsstrahlung contribu-
tions and is given by the well-known expression

Qay(my) 25
M <__ WZ) ~0.83.
37

4
For the numerical analysis we will use Ag)CD:225
MeV, Eq. (243), |V,l=I|Veyl, m=170 GeV,
B(B— X, ev)=0.104, f(z)=0.49, and «(z)=0.88, keeping
in mind the QCD uncertainties in B— X .ev discussed in
Sec. XVIL
Varying u, as in Eq. (24.19) we find that the ambiguity

7=K(0)=1+ (26.2)

3.82X107°<B(B— X,vv)<4.65x107° (26.3)
present in the leading order is reduced to
3.99x107°<B(B— X,vv)<4.09x107° (26.4)

after the inclusion of QCD corrections (Buchalla and
Buras, 1993a).

It should be noted that BgB — X,vv) as given in Eq.
(26.1) is, in view of |V,/V .,|"~0.95£0.03, essentially in-
dependent of the CKM parameters and the main uncer-
tainty resides in the value of m;,. Setting all parameters
as given above and in the Appendix and using Eq.
(24.30), we have
2.30
B(B—X,vv)=41x10"°

|Vts|2 m,(m,)
|[V.|? 170 GeV

(26.5)

In view of a new interest in this decay (Grossman et al.,
1995) we quote the standard-model expectation for
B(B— X vv) based on the input parameters collected
in the Appendix. We find

31X10°<B(B—X,vv)<4.9x107° (26.6)

for the “present day” uncertainties in the input param-
eters and

3.6X10°<B(B—X,vv)<42X107°

for the “future” scenario.

In the case of B— X, vv one has to replace V,, by V,,,
which results in a decrease of the branching ratio by
roughly an order of magnitude.

(26.7)

C. The decays Bi—u"u~ and By—u*u”

The branching ratio for B;— "/~ is given by Buchalla
and Buras (1993a)
2

BMmp

2
B(B,—I"1")=1(B,) - (477 SnZ0,,

X \L=dmilmg [V V> Y (x),

(26.8)
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FIG. 31. The u, dependence of B(B,—u'u )[10™] with (solid curve) and without (dashed curve) O(a;) corrections for fixed

parameter values as described in the text.

where B, denotes the flavor eigenstate (bs) and F B, is

the corresponding decay constant (normalized as
F_=131 MeV). Using Eqgs. (24.3), (25.4), and (14.6), we
find in the case of B,—u'u”

2

7(By) H Fp,

B(BS—>,uf,u,)=4.18><109[

1.6 ps|[230 MeV
2 3.12
|st|2 m(m;)
><{0.040 70 Gev| ° (%69

which approximates the next-to-leading-order result.
Taking the central values for 7(By), Fp , V.|, and m,

and varying w, as in Eq. (24.19), we find that the uncer-
tainty

3.44X10"°<B(B,—utpu )<4.50x107°  (26.10)
present in the leading order is reduced to
405107 °<B(B,—u"pn7)<4.14x107°  (26.11)

when the QCD corrections are included. This feature is
once more illustrated in Fig. 31.

Finally, we quote the Standard-Model expectation for
B(B,—u" ") based on the input parameters collected

in the Appendix. We find
1.7X107°<B(B,—p " u")<84x107° (26.12)

using present day uncertainties in the parameters and
Fp =230+40 MeV. With reduced errors for the input

quantities, corresponding to the second scenario as de-
fined in the Appendix, and Fp =230+10 MeV, this

range would shrink to
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31x107°<B(B,—ut pn )<50%x10"°. (26.13)

For the case of B,—u*u” similar formulas hold with
obvious replacements of labels (s—d). Provided the de-
cay constants F B, and F B, will have been calculated re-

liably by nonperturbative methods or measured in lead-
ing leptonic decays one day, the rare processes
B,—u*u” and B,—p'u” should offer clean determina-
tions of |V, and |V,,;|. The accuracy of the related
analysis will profit considerably from the reduction of
theoretical ambiguity achieved through the inclusion
of short-distance QCD effects. In particular
B(B,—u*u”), which is expected to be O(4x107%),
should be attainable at hadronic machines such as
HERA-B, Tevatron, and LHC.

XXVIl. SUMMARY

In this review we have described in detail the present
status of higher-order QCD corrections to weak decays
of hadrons. We have emphasized that during the last few
years considerable progress has been made in this field
through the calculation of the next-to-leading-order
QCD corrections to essentially all of the most interest-
ing and important processes. This effort reduced consid-
erably theoretical uncertainties, which will improve the
accuracy of the CKM parameters to be determined in
future experiments. We have illustrated this with several
examples.

In this review we have concentrated on weak decays
in the standard model. The structure of weak decays in
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TABLE XLVIIIL. Summary of standard model (SM) theoretical predictions and experimental results for the rare and C P-violating
processes discussed in this review. The entry “input” indicates that the corresponding measurement is used to determine or to
constrain CKM parameters needed for the calculation of other decays. For B(K; — u™ u™) the theoretical value refers only to the

short-distance contribution. In the case of B(K; — 7"

violation. The SM predictions for K* —#* vy and K; — 7
and Parsa (1996).

0

e*e™) the SM prediction corresponds to the contribution from direct CP
vv include the isospin-breaking corrections considered by Marciano

Quantity SM prediction Experiment Exp. reference
K Decays

lex] input (2.266+0.023)x1072 (Particle Data Group, 1994)

€le (5.6+7.7)x107 (15+8)x10~* (Particle Data Group, 1994)

B(K;—7%%e™) (4.5+2.8)x107 2 [CP 4] <43x107° (Harris et al., 1993)
B(Kt—=mtvb) (1.0+0.4)x10710 <2.4x107 (Adler et al., 1996)
B(K,—"vb) (2.9+1.9)x107!! <5.8%107° (Weaver et al., 1994)
B(K,—u"u") (1.3+0.7)x107° [SD] (7.4+0.4)x107° (Particle Data Group, 1994)
ALR(K " =7 w7 (6+3)x107° — —

B Decays
X4 input 0.75%+0.06 (Browder and Honscheid, 1995)
B(B—X,y) (2.8+0.8)x10™* (2.32+0.67)x107* (Alam et al., 1995)
B(B—X,vv) (4.0£0.9)x107 <7.7x1074 (ALEPH Collaboration, 1996)
B(By—7"77) (1.1+0.7)x107° — —
B(By—u u”) (5.1+3.3)x10”° <8.4x107° (Kroll et al., 1995)
B(B,—e'te™) (1.2+0.8)x10713 — —
B(B,—ptp’) ~10710 <1.6x107° (Kroll et al., 1995)
B(By—ete™) ~1071 <5.9%1076 (Ammar et al., 1994)

extensions of the standard model will generally have to
be modified. Although we do not expect substantial ef-
fects due to ““new physics” in tree-level decays, the pic-
ture of loop-induced processes, such as rare and CP-
violating decays, may turn out to be different from the
one presented here. The basic structure of QCD calcu-
lations will remain valid, however. In certain extensions
of the standard model, in which no new local operators
occur, only the initial conditions to the renormalization-
group evolution will have to be modified. In more com-
plicated extensions additional operators may be present
and, in addition to the change of the initial conditions,
the evolution matrix may also have to be generalized.

In order to be able to decide whether modifications of
the standard theory are required by the data, it is essen-
tial that the theoretical calculations within the standard
model itself reach the necessary precision. As far as the
short-distance contributions are concerned, we think
that in most cases such a precision has been already
achieved.

Important exceptions are the b—svy and b—sg tran-
sitions for which the complete NLO corrections are not
yet available. On the other hand, the status of long-
distance contributions, represented by the hadronic ma-
trix elements of local operators or equivalently by vari-
ous B; parameters, is much less satisfactory. This is in
particular the case for nonleptonic decays, where the
progress is very slow. Yet without these difficult nonper-
turbative calculations it is impossible to give reliable
theoretical predictions for nonleptonic decays even if
the Wilson coefficients of the relevant operators have
been calculated with high precision. Moreover, these co-
efficients have unphysical renormalization-scale and
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renormalization-scheme dependences that can only be
canceled by the corresponding dependences in the had-
ronic matrix elements. All efforts should be made to
improve the status of nonperturbative calculations.

The next ten years should be very exciting for the field
of weak decays. The experimental efforts in several
laboratories will provide many new results for the rare
and CP-violating decays, which will offer new tests of
the standard model and possibly signal some ‘‘new phys-
ics.” As we have stressed in this review, the NLO calcu-
lations presented here will undoubtedly play an impor-
tant role in these investigations. Let us just imagine that
B-B? mixing and the branching ratios for K*— 7" v,
K, —7'vp, B—X,vp, and B,—u'u” have been mea-
sured to an acceptable accuracy. Having additionally at
our disposal accurate values of |V ,,,/V |, |[Vepl, m,, Fg,
By, and B, as well as respectable results for the angles
(a,B,y) from the CP asymmetries in B decays, we could
get a great insight into the physics of quark mixing and
CP violation. One should hope that this progress on the
experimental side will be paralleled by the progress in
calculations of hadronic matrix elements as well as by
calculations of QCD corrections in potential extensions
of the standard model.

We would like to end this review with a summary of
theoretical predictions and present experimental results
for the rare and CP violating decays discussed by us.
This summary is given in Table XLVIIL

Let us hope that the next ten years will bring a further
reduction of uncertainties in the theoretical predictions
and will provide us with accurate measurements of vari-
ous branching ratios, for which, as seen in Table
XLVIII, only upper bounds are available at present.
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TABLE XLIX. Input parameters with present and “‘future”
errors.

Quantity Central Present Future
|Vl 0.040 +0.003 +0.001
[V Vel 0.08 +0.02 +0.01
By 0.75 +0.15 +0.05
VB F, 200 MeV +40 MeV +10 MeV
Xy 0.75 +0.06 +0.03
m, 170 GeV *15 GeV *5 GeV
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APPENDIX: COMPILATION OF NUMERICAL
INPUT PARAMETERS

For the convenience of the reader we give a compila-
tion of input parameters that were used in the numerical
parts of this review.

Running quark masses:

8 MeV, my(m,)=
m.(m.)=13 GeV,

mg(m.)= (170£20) MeV,
my(mp)=44 GeV, mPl9=48 GeV.
Scalar meson masses and decay constants:
m,=135 MeV, F_=131 MeV,
mg=498 MeV, Fg=160 MeV,
mp =528 GeV, 7(B;)=16x10"" s
mp =538 GeV, 7(B;)=1.6X 10712 s
QCD and electroweak parameters:
ay(Mz)=0.117%=0.007, A%= (225£85) MeV,

a=1/129, My=802 GeV,
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sin’@y,=0.23.
CKM elements:
|V.s|=022, |V,4l=0975.
K decays, K°-K°, and B°-B° mixing:
(K )=517x10"8 s, 7(K")=1.237x10"% s
BR(K"— e 1v)=0.0482,
le x| =(2.266%0.023) X 1073,
AM=3.51x10"" GeV,
ReA,=3.33x10"7 GeV,
ReA,=1.50x10"% GeV,

Q 7’ = 025,
m= 138, = 057,
173=0.47, n5p=0.55.

The values for ReA, have been obtained from the Par-
ticle Data Group (PDG) using isospin analysis.
Hadronic matrix element parameters for K— mm:

B (m,)=57+1.1,
(2]1/\%DR(mC) 6.6+1.0, for A%=325 MeV

BY{R(m,)=62%1.0,
B(31/2)=B(1/2)=B(1/2)=B(71/2)=B§1/2)

B (32) _

B(3/2 1 (central values).

For illustrative purposes we have sometimes used
present as well as estimated future errors for various
input parameters in our numerical calculations. In Table
XLIX below this is indicated by labels “present” and
“future.”

REFERENCES

Abachi, S., et al., 1995, Phys. Rev. Lett. 74, 2632.

Abada, A., et al., 1992, Nucl. Phys. B 376, 172.

Abe, F., et al., 1994a, Phys. Rev. D 50, 2966.

Abe, F., et al., 1994b, Phys. Rev. Lett 73, 225.

Abe, F., et al., 1994c, Phys. Rev. D 51, 4623.

Adel, K., and Y. P. Yao, 1993, Mod. Phys. Lett. A 8, 1679.

Adel, K., and Y. P. Yao, 1994, Phys. Rev. D 49, 4945.

Adler, S., et al., 1996, Phys. Rev. Lett. 76, 1421.

Agrawal, P.,J. Ng, G. Bélanger, and C. Geng, 1991, Phys. Rev.
Lett. 67, 537.

Agrawal, P.,J. Ng, G. Bélanger, and C. Geng, 1992, Phys. Rev.
D 45, 2383.

ALEPH Collaboration, 1996, Contribution to the Interna-
tional Conference on High Energy Physics, Warsaw, Poland.

Alam, M. S., et al., 1995, Phys. Rev. Lett. 74, 2885.

Ali, A., G. F. Giudice, and T. Mannel, 1995, Z. Phys. C 67, 417.

Ali, A., and C. Greub, 1991a, Z. Phys. C 49, 431.

Ali, A., and C. Greub, 1991b, Phys. Lett. B 259, 182.

Ali, A., and C. Greub, 1993, Z. Phys. C 60, 433.

Ali, A., and C. Greub, 1995, Phys. Lett. B 361, 146.



Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms 1241

Ali, A., and D. London, 1995, Z. Phys. C 65, 431.

Ali, A., T. Mannel, and T. Morozumi, 1991, Phys. Lett. B 273,
505.

Alliegro, C., et al., 1992, Phys. Rev. Lett. 68, 278.

Allton, C. R., M. Ciuchini, M. Crisafulli, V. Lubicz, and G.
Martinelli, 1994, Nucl. Phys. B 431, 667.

Altarelli, G., G. Curci, G. Martinelli, and S. Petrarca, 1981,
Nucl. Phys. B 187, 461.

Altarelli, G. and L. Maiani, 1974, Phys. Lett. B 52, 351.

Altarelli, G., and S. Petrarca, 1991, Phys. Lett. B 261, 303.

Ammar, R., et al., 1993, Phys. Rev. Lett. 71, 674.

Ammar, R., et al., 1994, Phys. Rev. D 49, 5701.

Antonelli, V., S. Bertolini, M. Fabrichesi, and E. I. Lashin,
1996, Nucl. Phys. B 469, 181.

Ashmore, J. F., 1972, Lett. Nuovo Cimento 4, 289.

Bagan, E., P. Ball, V. Braun, and H. G. Dosch, 1992, Phys.
Lett. B 278, 457.

Bagan, E., P. Ball, V. Braun, and P. Gosdzinsky, 1994, Nucl.
Phys. B 432, 3.

Bagan, E., P. Ball, V. Braun, and P. Gosdzinsky, 1995, Phys.
Lett. B 342, 362.

Bagan, E., P. Ball, V. Braun, and P. Gosdzinsky, 1996, Phys.
Lett. B 374, 363(E).

Bagan, E., P. Ball, B. Fiol, and P. Gosdzinsky, 1995, Phys. Lett.
B 351, 546.

Ball, P., M. Beneke, and V. M. Braun, 1995a, Phys. Rev. D 52,
3929.

Ball, P., M. Beneke, and V. M. Braun, 1995b, Nucl. Phys. B
452, 563.

Ball, P, and U. Nierste, 1994, Phys. Rev. D 50, 5841.

Barbieri, R., and G. F. Giudice, 1993, Phys. Lett. B 309, 86.

Bardeen, W. A., A. J. Buras, D. W. Duke, and T. Muta, 1978,
Phys. Rev. D 18, 3998.

Bardeen, W. A., A. J. Buras, and J.-M. Gérard, 1987a, Phys.
Lett. B 192, 138.

Bardeen, W. A., A. J. Buras, and J.-M. Gérard, 1987b, Nucl.
Phys. B 293, 787.

Bardeen, W. A., A. J. Buras, and J.-M. Gérard, 1988, Phys.
Lett. B 211, 343.

Barger, V., M. S. Berger, and R. J. N. Phillips, 1993, Phys. Rev.
Lett. 70, 1368.

Barr, G. D, et al., 1992, Phys. Lett. B 284, 440.

Barr, G. D, et al., 1993, Phys. Lett. B 317, 233.

Baxter, R. M., et al., 1994, Phys. Rev. D 49, 1594.

Bélanger, G., and C. Q. Geng, 1991, Phys. Rev. D 43, 140.

Bélanger, G., C. Q. Geng, and P. Turcotte, 1993, Nucl. Phys. B
390, 253.

Beneke, M., and V. Braun, 1994, Nucl. Phys. B 426, 301.

Beneke, M., and V. Braun, 1995, Phys. Lett. B 348, 513.

Bernard, C., J. Labrenz, and A. Soni, 1994, Phys. Rev. D 49,
2536.

Bernard, C., and A. Soni, 1991, Nucl. Phys. (Proc. Suppl.) 9,
155.

Bertolini, S., F. Borzumati, and A. Masiero, 1987, Phys. Rev.
Lett. 59, 180.

Bertolini, S., F. Borzumati, A. Masiero, and G. Ridolfi, 1991,
Nucl. Phys. B 353, 591.

Bertolini, S., J. O. Eeg, and M. Fabbrichesi, 1995a, Nucl. Phys.
B 449, 197.

Bertolini, S., J. O. Eeg, and M. Fabbrichesi, 1995b, “A new
estimate of &'/e,” SISSA preprint, SISSA 103/95/EP.

Bethke, S., 1994, talk presented at the QCD ’94 Conference,
Montpellier, France.

Rev. Mod. Phys., Vol. 68, No. 4, October 1996

Bigi, 1. 1., B. Blok, M. Shifman, N. G. Uraltsev, and A. L.
Vainshtein, 1994, in B-Decays (2nd Edition), edited by S. L.
Stone (World Scientific, Singapore), (1994), p. 132; (1992), p.
610.

Bigi, I. 1., B. Blok, M. Shifman, and A. Vainshtein, 1994, Phys.
Lett. B 323, 408.

Bigi, L. I, et al., 1993, Phys. Rev. Lett. 71, 496.

Bigi, I. I., and F. Gabbiani, 1991, Nucl. Phys. B 367, 3.

Bigi, I. I., M. Shifman, N. G. Uraltsev, and A. I. Vainshtein,
1994a, Int. J. Mod. Phys. A 9, 2467.

Bigi, I. I., M. Shifman, N. G. Uraltsev, and A. I. Vainshtein,
1994b, Phys. Rev. D 50, 2234.

Bigi, I. I, and N. G. Uraltsev, 1994, Z. Phys. C 62, 623.

Bigi, I. I, N. G. Uraltsev, and A. I. Vainshtein, 1992, Phys.
Lett. B 293, 430; 1993, 297, 477(E).

Bijnens, J., J.-M. Gérard, and G. Klein, 1991, Phys. Lett. B 257,
191.

Bijnens, J., and J. Prades, 1995, Nucl. Phys. B 444, 523.

Bijnens, J., and M. B. Wise, 1984, Phys. Lett. B 137, 245.

Bjorken, J. D., I. Dunietz, and J. Taron, 1992, Nucl. Phys. B
371, 111.

Blok, B., L. Koyrakh, M. Shifman, and A. I. Vainshtein, 1994,
Phys. Rev. D 49, 3356.

Blok, B., and M. Shifman, 1993, “Lifetimes of charmed had-
rons revisited. Facts and fancy,” hep-ph/9311331.

Bollini, C. G., and J. J. Giambiagi, 1972a, Phys. Lett. B 40, 566.

Bollini, C. G., and J. J. Giambiagi, 1972b, Nuovo Cimento B
12, 20.

Borzumati, F. M., 1994, Z. Phys. C 63, 291.

Boyd, C. G., B. Grinstein, and R. Lebed, 1995, Phys. Rev. Lett.
74, 4603.

Breitenlohner, P., and D. Maison, 1977, Commun. Math. Phys.
52, 11, 39, 55.

Broadhurst, D. J., and A. Grozin, 1991, Phys. Lett. B 267, 105.

Brodsky, S. J., G. P. Lepage, and P. B. Mackenzie, 1983, Phys.
Rev. D 28, 228.

Browder, T. E., and K. Honscheid, 1995, Prog. Part. Nucl.
Phys. 35, 81.

Bruno, C., and J. Prades, 1993, Z. Phys. C 57, 585.

Buchalla, G., 1993, Nucl. Phys. B 391, 501.

Buchalla, G., 1996, “Renormalization of AB=2 transitions in
the static limit beyond leading logarithms,” hep-ph/9608232.

Buchalla, G., and A. J. Buras, 1993a, Nucl. Phys. B 400, 225.

Buchalla, G., and A. J. Buras, 1993b, Nucl. Phys. B 398, 285.

Buchalla, G., and A. J. Buras, 1994a, Nucl. Phys. B 412, 106.

Buchalla, G., and A. J. Buras, 1994b, Phys. Lett. B 336, 263.

Buchalla, G., and A. J. Buras, 1994c, Phys. Lett. B 333, 221.

Buchalla, G., A. J. Buras, and M. K. Harlander, 1990, Nucl.
Phys. B 337, 313.

Buchalla, G., A. J. Buras, and M. K. Harlander, 1991, Nucl.
Phys. B 349, 1.

Buchalla, G., I. Dunietz, and H. Yamamoto, 1995, Phys. Lett.
B 364, 188.

Buras, A. J., 1980, Rev. Mod. Phys. 52, 199.

Buras, A. J., 1993, Phys. Lett. B 317, 449.

Buras, A. J., 1994, Phys. Lett. B 333, 476.

Buras, A. J., 1995, Nucl. Phys. B 434, 606.

Buras, A. J., and J.-M. Gérard, 1987, Phys. Lett. B 192, 156.

Buras, A. J., and M. K. Harlander, 1992, in Heavy Flavours,
edited by A. J. Buras and M. Lindner (World Scientific, Sin-
gapore), p. 58.

Buras, A. J., Jamin, and M. E. Lautenbacher, 1993a, Nucl.
Phys. B 400, 75.



1242 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

Buras, A. J., M. Jamin, and M. E. Lautenbacher, 1993b, Nucl.
Phys. B 408, 209.

Buras, A. J., M. Jamin, M. E. Lautenbacher, and P. H. Weisz,
1992, Nucl. Phys. B 370, 69; 375, 501(A).

Buras, A. J., M. Jamin, M. E. Lautenbacher, and P. H. Weisz,
1993, Nucl. Phys. B 400, 37.

Buras, A. J., M. Jamin, and P. H. Weisz, 1990, Nucl. Phys. B
347, 491.

Buras. A. J., and M. E. Lautenbacher, 1993, Phys. Lett. B 318,
212.

Buras, A. J., M. E. Lautenbacher, M. Misiak, and M. Munz,
1994, Nucl. Phys. B 423, 349.

Buras, A. J., M. E. Lautenbacher, and G. Ostermaier, 1994,
Phys. Rev. D 50, 3433.

Buras, A. J., M. Misiak, M. Munz, and S. Pokorski, 1994, Nucl.
Phys. B 424, 374.

Buras, A. J., and M. Munz, 1995, Phys. Rev. D 52, 186.

Buras, A. J., and P. H. Weisz, 1990, Nucl. Phys. B 333, 66.

Burdman, G., and J. Kambor, 1996, “Dispersive approach to
semi-leptonic form factors in heavy-to-light meson decays,”
FERMILAB preprint FERMILAB-PUB-96-033-T, hep-ph/
9602353.

Cabibbo, N., and L. Maiani, 1978, Phys. Lett. B 79, 109.

Callan Jr, C. G., 1970, Phys. Rev. D 2, 1541.

Cella, G., G. Curci, G. Ricciardi, and A. Viceré, 1990, Phys.
Lett. B 248, 181.

Cella, G., G. Curci, G. Ricciardi, and A. Viceré, 1994a, Phys.
Lett. B 325, 227.

Cella, G., G. Curci, G. Ricciardi, and A. Viceré, 1994b, Nucl.
Phys. B 431, 417.

Cella, G., G. Ricciardi, and A. Viceré, 1991, Phys. Lett. B 258,
212.

Chay, J., H. Georgi, and B. Grinstein, 1990, Phys. Lett. B 247,
399.

Chetyrkin, K. G., C. A. Dominguez, D. Pirjol, and K.
Schilcher, 1995, Phys. Rev. D 51, 5090.

Cho, P., and M. Misiak, 1994, Phys. Rev. D 49, 5894.

Cicuta, G. M., and E. Montaldi, 1972, Lett. Nuovo Cimento 4,
329.

Ciuchini, M., E. Franco, and V. Giménez, 1996, ‘“Next-to-
leading order renormalization of the AB=2 operators in the
static theory,” hep-ph/9608204.

Ciuchini, M., E. Franco, G. Martinelli, and L. Reina, 1993a,
Phys. Lett. B 301, 263.

Ciuchini, M., E. Franco, G. Martinelli, and L. Reina, 1994a,
Nucl. Phys. B 415, 403.

Ciuchini, M., E. Franco, G. Martinelli, L. Reina, and L. Silves-
trini, 1993b, Phys. Lett. B 316, 127.

Ciuchini, M., E. Franco, G. Martinelli, L. Reina, and L. Silves-
trini, 1994b, Phys. Lett. B 334, 137.

Ciuchini, M., E. Franco, G. Martinelli, L. Reina, and L. Silves-
trini, 1995, Z. Phys. C 68, 239.

Ciuchini, M., E. Franco, L. Reina, and L. Silvestrini, 1994,
Nucl. Phys. B 421, 41.

Cohen, A. G., G. Ecker, and A. Pich, 1993, Phys. Lett. B 304,
347.

Cohen, A. G., and A. Manohar, 1984, Phys. Lett. B 143, 481.

Crisafulli, M., et al., 1996, Phys. Lett. B 369, 225.

Datta, A., J. Frohlich, and E. A. Paschos, 1990, Z. Phys. C 46,
63.

Datta, A., E. A. Paschos, J.-M. Schwarz, and M. N. S. Roy,
1995, “QCD corrections for the K°-K° and B°-B° system,”
hep-ph/9509420, University of Dortmund preprint, DO-TH
95/12.

Rev. Mod. Phys., Vol. 68, No. 4, October 1996

Deshpande, N. G., and X.-G. He, 1995, Phys. Rev. Lett. 74, 26;
74, 4099 (E).

Deshpande, N. G., X.-G. He, and J. Trampeti¢, 1995, Phys.
Lett. B 345, 547.

Deshpande, N. G., X.-G. He, and J. Trampeti¢, 1996, Phys.
Lett. B 367, 362.

Deshpande, N. G., P. Lo, J. Trampeti¢c, G. Eilam, and P.
Singer, 1987, Phys. Rev. Lett. 59, 183.

Desphpande, N. G., K. Panose, and J. Trampetic¢, 1993, Phys.
Lett. B 308, 322.

Deshpande, N. G., J. Trampeti¢, and K. Panose, 1989, Phys.
Rev. D 39, 1461.

Dib, C. O, I. Dunietz, and F. J. Gilman, 1989a, Phys. Lett. B
218, 487.

Dib, C. O, I. Dunietz, and F. J. Gilman, 1989b, Phys. Rev. D
39, 2639.

Dib, C. O, I. Dunietz, and F. J. Gilman, 1991, Mod. Phys. Lett.
A 6, 3573.

Dib, C. O., I. Dunietz, F. J. Gilman, and Y. Nir, 1990, Phys.
Rev. D 41, 1522.

Dikeman, R. D., M. Shifman, and N. G. Uraltsev, 1996, Int. J.
Mod. Phys. A 11, 571.

Donoghue, J. F., and F. Gabbiani, 1995, Phys. Rev. D 51, 2187.

Donoghue, J. F., E. Golowich, and B. R. Holstein, 1982, Phys.
Lett. B 119, 412.

Donoghue, J. F., E. Golowich, B. R. Holstein, and J. Tram-
petic, 1986, Phys. Lett. B 179, 361.

Draper, T., and C. McNeile, 1994, Nucl. Phys. B (Proc. Suppl.)
34, 453.

Dugan, M. J., and B. Grinstein, 1991, Phys. Lett. B 256, 239.

Duncan, A., E. Eichten, J. Flynn, B. Hill, G. Hockney, and H.
Thacker, 1995, Phys. Rev. D 51, 5101.

Ecker, G., A. Pich, and E. de Rafael, 1987, Nucl. Phys. B 291,
692.

Ecker, G., A. Pich, and E. de Rafael, 1988, Nucl. Phys. B 303,
665.

Eeg, J. O., and 1. Picek, 1988, Phys. Lett. B 214, 651.

Ellis, J., and J. S. Hagelin, 1983, Nucl. Phys. B 217, 189.

Falk, A. F., M. Luke, and M. J. Savage, 1994, Phys. Rev. D 49,
3367.

Falk, A. F., M. Wise, and 1. Dunietz, 1995, Phys. Rev. D 51,
1183.

Fleischer, R., 1994a, Z. Phys. C 62, 81.

Fleischer, R., 1994b, Phys. Lett. B 332, 419.

Floratos, E. G., D. A. Ross, and C. T. Sachrajda, 1977, Nucl.
Phys. B 129, 66.

Flynn, J. M., 1990, Mod. Phys. Lett. A 5, 877.

Flynn, J. M., O. Hernndez, and B. Hill, 1991, Phys. Rev. D 43,
3709.

Flynn, J. M., and L. Randall, 1989a, Nucl. Phys. B 326, 31.

Flynn, J. M., and L. Randall, 1989b, Phys. Lett. B 224, 221; 235,
412(E).

Franco, E., L. Maiani, G. Martinelli, and A. Morelli, 1989,
Nucl. Phys. B 317, 63.

Frohlich, J., J. Heinrich, E. A. Paschos, and J.-M. Schwarz,
1991, “An improved estimate of direct CP violation,” Uni-
versity of Dortmund preprint, DO-TH 02/91.

Galillard, M. K., and B. W. Lee, 1974a, Phys. Rev. Lett. 33, 108.

Galillard, M. K., and B. W. Lee, 1974b, Phys. Rev. D 10, 897.

Gell-Mann, M., and F. E. Low, 1954, Phys. Rev. 95, 1300.

Geng, C. Q., and J. N. Ng, 1990, Phys. Rev. D 41, 2351.

Georgi, H., 1991, in Proceedings of TASI-91, edited by R. K.
Ellis et al. (World Scientific, Singapore), p. 589.



Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms 1243

Gérard, J.-M., 1990, Acta Phys. Pol. B 21, 257.

Gibbons, L. K., et al., 1993, Phys. Rev. Lett. 70, 1203.

Gilman, F. J., and M. B. Wise, 1979, Phys. Rev. D 20, 2392.

Gilman, F. J., and M. B. Wise, 1980, Phys. Rev. D 21, 3150.

Gilman, F. J., and M. B. Wise, 1983, Phys. Rev. D 27, 1128.

Giménez, V., 1993, Nucl. Phys. B 401, 116.

Greub, C., A. loannissian, and D. Wyler, 1995, Phys. Lett. B
346, 149.

Grigjanis, R., P. J. O’Donnell, M. Sutherland, and H. Navelet,
1988, Phys. Lett. B 213, 355.

Grigjanis, R., P. J. O’Donnell, M. Sutherland, and H. Navelet,
1989, Phys. Lett. B 223, 239.

Grigjanis, R., P. J. O’Donnell, M. Sutherland, and H. Navelet,
1992, Phys. Lett. B 286, 413(E).

Grinstein, B., 1989, Phys. Lett. B 229, 280.

Grinstein, B., 1991, in High Energy Phenomenology, edited by
R. Huerta and M. A. Péres (World Scientific, Singapore), p.
161.

Grinstein, B., M. J. Savage, and M. B. Wise, 1989, Nucl. Phys.
B 319, 271.

Grinstein, B., R. Springer, and M. B. Wise, 1990, Nucl. Phys. B
339, 269.

Gross, D., 1976, in Methods In Field Theory (Les Houches
1975, Proceedings), edited by R. Balian and J. Zinn-Justin
(North-Holland, Amsterdam), p. 141.

Grossman, Y., Z. Ligeti, and E. Nardi, 1996, Nucl. Phys. B 465,
369; Erratum: hep-ph/9510378.

Guberina, B., and R. D. Peccei, 1980, Nucl. Phys. B 163, 289.

Hagelin, J. S., and L. S. Littenberg, 1989, Prog. Nucl. Phys. 23,
1.

Harris, D. A., et al., 1993, Phys. Rev. Lett. 71, 3918.

Harris, G. R., and J. L. Rosner, 1992, Phys. Rev. D 45, 946.

Hayashi, T., M. Matsuda, and M. Tanimoto, 1993, Prog. Theor.
Phys. 89, 1047.

Heiliger, P., and L. Sehgal, 1993, Phys. Rev. D 47, 4920.

Heinrich, J., E. A. Paschos, J.-M. Schwarz, and Y. L. Wu, 1992,
Phys. Lett. B 279, 140.

Herrlich, S., 1994, Ph.D. thesis, Munich Technical University.

Herrlich, S., and U. Nierste, 1994; Nucl. Phys. B 419, 292.

Herrlich, S., and U. Nierste, 1995a, Phys. Rev. D 52, 6505.

Herrlich, S., and U. Nierste, 1995b, Nucl. Phys. B 455, 39.

Herrlich, S., and U. Nierste, 1996, “The Complete |[AS| = 2
Hamiltonian in the next-to-leading order,” TUM-T31-86/96,
hep-ph/9604330.

Hewett, J. L., 1993, Phys. Rev. Lett. 70, 1045.

Hokim, Q., and X. Pham, 1983, Phys. Lett. B 122, 297.

Hokim, Q., and X. Pham, 1984, Ann. Phys. (N.Y.) 155, 202.

Hou, W. S, R. I. Willey, and A. Soni, 1987, Phys. Rev. Lett. 58,
1608.

Inami, T., and C. S. Lim, 1981, Prog. Theor. Phys. 65, 297.

Isgur, N., and M. Wise, 1989, Phys. Lett. B 232, 113.

Isgur, N., and M. Wise, 1990, Phys. Lett. B 237, 527.

Isgur, N., and M. Wise, 1992, in Heavy Flavours, edited by A.
J. Buras and M. Lindner (World Scientific, Singapore), p. 234.

Ishizuka, N., 1993, Phys. Rev. Lett. 71, 24.

Jamin, M., and M. Miinz, 1995, Z. Phys. C 66, 633.

Jamin, M., and A. Pich, 1994, Nucl. Phys. B 425, 15.

Jaus, W., and D. Wyler, 1990, Phys. Rev. D 41, 3405.

Jezabek, M., and J. H. Kuhn, 1989, Nucl. Phys. B 320, 20.

Ji, X., and M. Musolf, 1991, Phys. Lett. B 257, 4009.

Kambor, J., J. Missimer, and D. Wyler, 1990, Nucl. Phys. B
346, 17.

Rev. Mod. Phys., Vol. 68, No. 4, October 1996

Kambor, J., J. Missimer, and D. Wyler, 1991, Phys. Lett. B 261,
496.

Kapustin, A., and Z. Ligeti, 1995, Phys. Lett. B 355, 318.

Kapustin, A., Z. Ligeti, and H. D. Politzer, 1995, Phys. Lett. B
357, 653.

Kaufman, W. A., H. Steger, and Y. P. Yao, 1989, Mod. Phys.
Lett. A 3, 1479.

Kilcup, G. W., 1991, Nucl. Phys. B (Proc. Suppl.) 20, 417.

Kilian, W., and T. Mannel, 1993, Phys. Lett. B 301, 382.

Kim, C. S., and A. D. Martin, 1989, Phys. Lett. B 225, 186.

Ko, P., 1992, Phys. Rev. D 45, 174.

Kohler, G. O., and E. A. Paschos, 1995, Phys. Rev. D 52, 175.

Kroll, J., et al., 1995, ““Search for the decay BO—>,u+,u_,” Fer-
milab preprint, FERMILAB-CONF-95/229-E.

Kuno, Y., 1992, in Proceedings of the 10th International Sym-
posium on High Energy Spin Physics, Nagoya, Japan, p 769;
KEK-preprint 92-190.

Lim, C. S., T. Morozumi, and A. I. Sanda, 1989, Phys. Lett. B
218, 343.

Littenberg, L. S., 1989a, Phys. Rev. D 39, 3322.

Littenberg, L. S., 1989b, in Proceedings of the Workshop on
CP Violation at a Kaon Factory, edited by J. N. Ng (pub-
lisher, city), p. 19.

Littenberg, L. S., and G. Valencia, 1993, Annu. Rev. Nucl.
Part. Sci. 43, 729.

Lu, M., and M. B. Wise, 1994, Phys. Lett. B 324, 461.

Lu, M., M. B. Wise, and M. J. Savage, 1992, Phys. Rev. D 46,
5026.

Luke, M., and M. J. Savage, 1994, Phys. Lett. B 321, 88.

Luke, M., M. J. Savage, and M. B. Wise, 1995, Phys. Lett. B
343, 329.

Lusignoli, M., 1989, Nucl. Phys. B 325, 33.

Mannel, T., 1993, in QCD—20 Years Later, edited by P. M.
Zerwas and H. A. Kastrup (World Scientific, Singapore), p.
634.

Mannel, T., 1994, Nucl. Phys. B 413, 396.

Mannel, T., W. Roberts, and Z. Ryzak, 1992, Nucl. Phys. B
368, 204.

Manohar, A. V., and M. B. Wise, 1994, Phys. Rev. D 49, 1310.

Marciano, W., and Z. Parsa, 1996, Phys. Rev. D 53, R1.

Misiak, M., 1991, Phys. Lett. B 269, 161.

Misiak, M., 1993, Nucl. Phys. B 393, 23.

Misiak, M., 1994, Phys. Lett. B 321, 113.

Misiak, M., 1995, Nucl. Phys. B 439, 461(E).

Misiak, M., and M. Miinz, 1995, Phys. Lett. B 344, 308.

Narison, S., 1994, Phys. Lett. B 322, 247.

Neubert, M., 1992, Phys. Rev. D 45, 2451.

Neubert, M., 1994a, Phys. Lett. B 338, 84.

Neubert, M., 1994b, Phys. Rev. D 49, 4623.

Neubert, M., 1994c, Phys. Rep. 245, 259.

Neubert, M., and B. Stech, 1991, Phys. Rev. D 44, 775.

Nierste, U., 1995, Ph.D. Thesis (Munich Technical University);
hep-ph/9510323.

Nir, Y., 1989, Phys. Lett. B 221, 184.

Nir, Y., 1992, in Proceedings of the the 20th Annual SLAC
Summer Institute on Particle Physics, Stanford, California,
1992, p. 81.

Novikov, V. A., A. 1. Vainshtein, V. I. Zakharov, and M. A.
Shifman, 1977, Phys. Rev. D 16, 223.

O’Donnell, P. J., and H. K. K. Tung, 1991, Phys. Rev. D 43,
R2067.

Ohl, K. E., et al., 1990, Phys. Rev. Lett. 64, 2755.

Ovsyannikov, L. V., 1956, Dokl. Acad. Nauk SSSR 109, 1112.



1244 Buchalla, Buras, and Lautenbacher: Weak decays beyond leading logarithms

Palmer, W. F., and B. Stech, 1993, Phys. Rev. D 48, 4174.

Papadimitriou, V., et al., 1991, Phys. Rev. D 44, 573.

Particle Data Group, 1994, Phys. Rev. D 50.

Patterson, J. R., 1995, in Proceedings of the XXVII Interna-
tional Conference on High Energy Physics, Glasgow, 1994,
edited by P. J. Bussey and I. G. Knowles (IOP Publications
Ltd., Bristol), p. 149.

Peccei, R. D., and K. Wang, 1995, Phys. Lett. B 349, 220.

Pich, A., and E. de Rafael, 1985, Phys. Lett. B 158, 477.

Pich, A., and E. de Rafael, 1991, Nucl. Phys. B 358, 311.

Politzer, H. D., and M. B. Wise, 1988a, Phys. Lett. B 206, 681.

Politzer, H. D., and M. B. Wise, 1988b, Phys. Lett. B 208, 504.

Ponce, W. A., 1981, Phys. Rev. D 23, 1134.

Pott, N., 1996, Phys. Rev. D 54, 938.

Prades, J., C. Dominguez, J. Penarrocha, A. Pich, and E. de
Rafael, 1991, Z. Phys. C 51, 287.

Rein, D., and L. M. Sehgal, 1989, Phys. Rev. D 39, 3325.

Ritchie, J. L., and S. G. Wojcicki, 1993, Rev. Mod. Phys. 65,
1149.

Rosner, J. L., 1992, in B-Decays, edited by S. L. Stone (World
Scientific, Singapore).

Sachrajda, C. T., 1992, in Heavy Flavours, edited by A. J. Bu-
ras and M. Lindner (World Scientific, Singapore), p. 415.

Sachrajda, C. T., 1994, in B-Decays (2nd Edition), edited by S.
L. Stone (World Scientific, Singapore), p. 602.

Savage, M. J., and M. Wise, 1990, Phys. Lett. B 250, 151.

Schmidtler, M., and K. R. Schubert, 1992, Z. Phys. C 53, 347.

Sharpe, S. R., 1991, Nucl. Phys. B (Proc. Suppl.) 20, 429.

Sharpe, S. R., 1994, Nucl. Phys. B (Proc. Suppl.) 34, 403.

Shifman, M., N. G. Uraltsev, and A. I. Vainshtein, 1995, Phys.
Rev. D 51, 2217.

Simone, J. N., 1996, Nucl. Phys. B (Proc. Suppl.) 47, 17.

Rev. Mod. Phys., Vol. 68, No. 4, October 1996

Soares, J. M., 1996, Phys. Rev. D 53, 241.

Soni, A., 1995, “Weak matrix elements on the lattice-circa
1995,” preprint, hep-lat 9510036.

Stueckelberg, E. C. G., and A. Petermann, 1953, Helv. Phys.
Acta 26, 499.

Symanzik, K., 1970, Commun. Math. Phys. 18, 227.

’t Hooft, G., 1973, Nucl. Phys. B 61, 455.

’t Hooft, G., and M. Veltman, 1972a, Nucl. Phys. B 50, 318.

’t Hooft, G., and M. Veltman, 1972b, Nucl. Phys. B 44, 189.

Tanimoto, M., 1992, Phys. Lett. B 274, 463.

Thorndike, E., 1995, talk presented at the EPS-HEP Confer-
ence, Brussels, Belgium, 1995.

Vainshtein, A. 1., V. I. Zakharov, V. A. Novikov, and M. A.
Shifman, 1976, Sov. J. Nucl. Phys. 23, 540.

Vainshtein, A. 1., V. 1. Zakharov, and M. A. Shifman, 1977,
Joint Euro. Jorus Publ. JET P 45, 670.

Voloshin, M. B., 1995, Phys. Rev. D 51, 3948.

Voloshin, M. B., and M. Shifman, 1987, Sov. J. Nucl. Phys. 45,
292.

Vysotskij, M. 1., 1980, Sov. J. Nucl. Phys. 31, 797.

Weaver, M., et al., 1994, Phys. Rev. Lett. 72, 3758.

Webber, B. R., 1994, talk presented at the International Con-
ference on High Energy Physics, Glasgow, Scotland.

Weinberg, S., 1973, Phys. Rev. D 8, 3497.

Wilson, K. G., and W. Zimmermann, 1972, Commun. Math.
Phys. 24, 87.

Winstein, B., and L. Wolfenstein, 1993, Rev. Mod. Phys. 65,
1113.

Witten, E., 1977, Nucl. Phys. B 122, 109.

Wolfenstein, L., 1964, Phys. Rev. Lett. 13, 562.

Wolfenstein, L., 1983, Phys. Rev. Lett. 51, 1841.



