
Multichannel Rydberg spectroscopy of complex atoms

Mireille Aymar
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Multichannel atomic spectra frequently exhibit such extraordinary visual complexity that they appear
at first glance to be uninterpretable. The present review discusses how to unravel such spectra through
the use of theoretical multichannel spectroscopy to extract the key dynamical implications. Moreover,
this class of techniques permits a quantitative prediction or reproduction of experimental spectra for
some of the more challenging atomic systems under investigation. It is shown that multichannel
spectroscopy marries the techniques of multichannel quantum-defect theory to the eigenchannel
R-matrix method (or related methods). It has long been appreciated that multichannel
quantum-defect theory can successfully use a collision-theory framework to interpret enormously
complicated Rydberg spectra. However, the capabilities of multichannel quantum-defect theory have
increased dramatically during the past decade, through the development of nearly ab initio methods
for the calculation of the short-range scattering parameters that control the interactions of closed and
open channels. In this review, emphasis is given to the alkaline-earth atoms, for which many different
observables have been successfully compared with experiment over broad ranges of energy and
resolution. Applications of the method to describe the photoionization spectra of more complex
open-shell atoms are also discussed. [S0034-6861(96)00504-1]
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I. INTRODUCTION

The sharpest signature of any microscopic quantum-
mechanical system is its pattern of resonances. This pre-
dominant importance of resonances provides a thread
that unifies much of physics from the birth of quantum
mechanics all the way to the present. Some of the early
studies of resonances were conducted in the field of
nuclear physics, where the first questions were fairly
simple: Why are there resonances in the first place?
What shapes can be expected in spectra exhibiting reso-
nances? What information do those shapes convey
about the internal dynamics of the system? The answers
to these questions emerged from the work of Bohr
(1936), Breit and Wigner (1936), Breit (1959), and oth-
ers.
This review concentrates on showing how resonant

spectra of many-electron atoms provide a highly de-
tailed window on the complicated, nonseparable mo-
tions of atomic electrons. Capabilities of current theory
have grown so rapidly in the past decade that tremen-
dously complicated experimental spectra can now be ac-
curately described quantitatively from first principles, or
for heavy atoms from nearly first principles. Despite our
focus on atomic spectra, many of the concepts have po-
tentially wider applicability to other fields in physics and
chemistry. Immediate examples include low-energy (up
to a few MeV) nuclear scattering and photofragmenta-
tion processes, molecular photoionization and photodis-
sociation, low-energy collisions (up to a few eV) be-
tween an atom or molecule and an electron or another
atom, or any resonant reactive scattering process such as
AB1C→A1BC , to name only a few.
Whereas the earliest studies treated resonances phe-

nomenologically on a state-by-state basis, the emphasis
here will be on viewing a family of resonances with
simular character, along with an adjoining fragmentation
continuum, as consisting of one channel. This view of
the resonance physics thus links immediately to a
scattering-theory point of view, as the indices labeling

channels are the same indices occurring in the scattering
matrix. For instance, the set of all s states (with l50) of
atomic hydrogen, from the 1s state up to the ionization
threshold (e50), and including the continuum at e.0,
constitutes a single channel. In most complex atoms,
several interacting channels are present simultaneously,
and their spectra are correspondingly multichannel in
character. In fact, the only real difference between the
channel description of resonances and the ‘‘conven-
tional’’ form of scattering theory is the use of matrices
(such as the collision or scattering matrix S) with indices
referring to closed channels (in which fragmentation all
the way to asymptopia is energetically forbidden). This
closed-channel description of resonances will be re-
ferred to in the following as the multichannel spectros-
copy viewpoint. Elsewhere it has been called the
quantum-defect theory viewpoint, reflecting the fact that
the formulation of Seaton (1966, 1983) is the context in
which closed channels arise most naturally and persis-
tently. However, similar ideas originated in Wigner’s
nuclear studies (Wigner, 1946a, 1946b) long before
quantum-defect theory was formulated [as stressed by
Lane (1986)]. For this reason, and also because the term
‘‘quantum defect’’ masks the generality of this physical
description to contexts far wider than atomic Rydberg
spectra, we prefer the more descriptive term, multichan-
nel spectroscopy.
The quantum-defect theory description of atomic

Rydberg-state resonances arose from the work of Ham
(1955) and Seaton (1955, 1966, 1983). Fano (1970) con-
tributed the important and general concept of frame
transformation. This dramatically broadened the scope
of quantum-defect methods, as is manifested by applica-
tions ranging from the work of Jungen and co-workers
(Jungen and Dill, 1980; Raoult and Jungen, 1981; Jun-
gen, 1984) on molecular Rydberg spectra to that of Wa-
tanabe and Komine (1991) and of O’Mahony and Mota-
Furtado (1991) on the amazing Rydberg spectra of
atomic hydrogen in a magnetic field.
One of the goals of this review is to convey the unify-

ing interpretive power of multichannel spectroscopic
theory. The success of this theory is twofold. First, mul-
tichannel spectroscopy offers a powerful practical ap-
proach to the calculation of real spectra having extreme
complexity. In this respect there are effectively no com-
peting theoretical methods at present that rival the
power of quantum-defect ideas, at least in the realm of
autoionizing atomic spectra. Second, multichannel spec-
troscopy provides a complete way of visualizing the
qualitative physics involved, and in particular a way of
interpreting dense and seemingly irregular resonant
spectra, allowing simple conclusions to be drawn about
the underlying dynamics of the system.

A. Origins in nuclear physics

In the historical development of nuclear physics, the
first step toward understanding resonant spectra was the
development of semiempirical formulas, such as the for-
mula of Breit and Wigner (1936), which described a
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Lorentzian-shaped enhancement of the cross section for
any reactive process in the vicinity of the resonance.
These were initially based on physically plausible as-
sumptions, such as Bohr’s concept (Bohr, 1936) of the
compound nucleus, in which a reactive process had two
independent stages: formation of a compound (i.e., reso-
nant) system, followed by its fragmentation into reaction
products. This phenomenological approach successfully
accounted for the existence of resonances and for their
symmetrically-peaked profiles. Even earlier, Fano
(1935) had shown, in the seemingly different physical
context of atomic autoionization, how a discrete state
interacting with a continuum produced a resonance pro-
file that could exhibit a dip or an asymmetrical shape.
Fano (1961) reformulated the approach much later to
give a sharper derivation of these asymmetrical profiles
arising from any type of discrete-continuum interaction.
Equivalent formulations of discrete-continuum interac-
tions carried out in different fields include the so-called
‘‘Anderson model’’ in condensed-matter physics [see,
for example, Sec. 4.2 of Mahan (1981)] and the ‘‘unified
theory of nuclear reactions’’ of Feshbach (1958). A sim-
plification of this type of phenomenological theory, and
ultimately a key limitation, was its assumption of a
single isolated resonance state (or, at any rate, a finite
number of such states) whose interactions with fragmen-
tation continua had to be characterized on a state-by-
state basis.
Wigner (1946a, 1946b), Wigner and Eisenbud (1947),

and Teichmann and Wigner (1952) created the first sys-
tematic formulation capable of treating general resonant
processes in reactive systems. Their work has generally
gone under the name of R-matrix theory, as it focuses
on the formal properties of the logarithmic derivative
matrix (or R matrix) characterizing a complicated many-
particle, multichannel system within some finite radius
r0. The indices of the R matrix label the different pos-
sible modes of breakup of the system, which we shall call
the fragmentation channels throughout this review.
These channel indices are the same ones that label the
more familiar scattering matrix S . Although the scatter-
ing matrix is generally referred to as the ‘‘Heisenberg
matrix S’’ (Heisenberg, 1943), it had been introduced
earlier by Wheeler (1937), who called it the matrix c .
The main result of Wigner’s R-matrix formulation was
his demonstration that the Hermitian matrix R(E),
which is simply related to the matrix Sand is a meromor-
phic (i.e., analytic except near simple poles) function of
the energy E . Moreover, its poles on the real energy axis
can (often) be associated with resonance energies El ,
i.e.,

Rij5(
l

g ilg jl

El2E
. (1.1)

(The actual correspondence between poles El and reso-
nance states of the compound system confined to short
range r,r0 involves a few additional subtleties.) In this
picture, each term in the summation of Eq. (1.1) was
identified as a separate resonance, with the factors in the
numerator g il being related to the partial decay widths

of resonance l into channel i . This equation also shows
how, in the immediate vicinity of any given resonance, a
single term dominates the summation, whereby the R
matrix becomes approximately separable and so has unit
rank, as does the S matrix.
Equation (1.1) has been used widely in nuclear phys-

ics, and to some degree in high-energy physics, to ac-
count semiempirically for resonance features in a variety
of measurements. The typical calculation attempts to fit
an experimental spectrum by varying the parameters
El and g il in a least-squares sense to optimize agree-
ment between calculation and experiment. This semi-
empirical fitting procedure is what most nuclear physi-
cists today associate with the term ‘‘R-matrix theory,’’
even though R-matrix theory has come to mean some-
thing rather different in atomic and molecular physics,
namely, the explicit numerical calculation of the R ma-
trix. In the semiempirical approach, the R matrix is re-
garded as containing all the relevant information about
the reaction zone within r,r0, where all inelasticities
occur. This reaction zone is thus regarded as a ‘‘black
box’’ and most of the physics within it is neither under-
stood in detail nor is plausibly calculable.
The absence of a detailed microscopic formulation

that could predict the R matrix from first principles was
not regarded as a problem in nuclear physics for many
years. The attitude in the community was reflected in a
quote from the influential textbook of Blatt and
Weisskopf (1952): ‘‘We do not really need to know all
the details of the motion within the compound nucleus
in order to obtain all relevant information about nuclear
reactions. A complete description of the internal motion
within the compound nucleus is neither necessary nor
desirable.’’ In the present review, we emphasize that
such a complete description is necessary if the goal is to
perform spectroscopically useful calculations of complex
spectra. We show below that in many cases it does not
require laborious calculations. Moreover, the complete
description is desirable in the sense that one thereby
attains far greater confidence in the underlying theory
and also great predictive power.
A few attempts were made, mainly in the 1960s, to

determine the R matrix by explicit calculation, notably
by Lane and Thomas (1958), by Lane and Robson (1966,
1969) and Chatwin (1970), and in effect by Brueckner
(1955), among others. After a specific model of the
nucleon-nucleon interaction potential was adopted,
these methods gave R matrices to varying degrees of
accuracy and showed that, at least in principle, one can
calculate the detailed microscopic properties without be-
ing restricted by the difficulty and nonuniqueness of fit-
ting the R matrix to reproduce experimental spectra.
Such explicit calculations were not pursued very widely
in nuclear physics, however. The poor theoretical under-
standing of the nucleon-nucleon interaction made it dif-
ficult to interpret discrepancies between theory and ex-
periment as being attributable to an unconverged or
otherwise inaccurate method for solving the many-
particle Schrödinger equation for Rij , or to an inad-
equate description of the nucleon-nucleon interaction.
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As a result, the nuclear applications of Wigner’s
R-matrix formulation never progressed very far beyond
its widespread use in the semiempirical analysis of ex-
perimental spectra (see, for example, Mo and Hornyak,
1969). Other aspects of the semiempirical work that
were unsatisfactory to some included the fact that the
fitted parameters El and g il depend on the reaction-
zone radius r0, and on the number of terms retained in
the summation in Eq. (1.1). This dependence of the R
matrix on the radius r0 has been argued (see, for ex-
ample, Feshbach, 1958) to be a somewhat unphysical
aspect of R-matrix theory, and is in contrast to the
physical scattering matrix S , which is independent of
any such radius. In fact, most of the competing formula-
tions for calculating scattering or photoabsorption pro-
cesses have a similar boundary either explicitly or im-
plicitly present. For example, the complex Kohn (1948)
variational principle, which has gained in popularity
(McCurdy et al . , 1987; Miller, 1988; Robicheaux, 1989)
does not seem at first glance to specify any boundary
radius. But a truncated basis set is always used to ex-
pand the L2 or short-range part of the variational solu-
tion. Consequently, a Kohn calculation will always have
an ‘‘outermost’’ basis function that defines an effective
radius, although it is a softer boundary radius than is
used in R-matrix calculations. Similar remarks apply to
other methods used currently, such as the Schwinger
(1947) variational principle (for references see Watson,
1988).

B. Developments in atomic physics

The first atomic calculations of multichannel spectra,
aside from early configuration-interaction studies, were
conducted in the early 1960s within a framework called
the close-coupling method (Burke and Smith, 1962).
This method expands the full energy eigenfunctions
CE of an N-electron atomic complex in terms of ‘‘chan-
nel functions’’ F i that obey the time-independent Schrö-
dinger equation for the (N21)-electron system. The
F i are multiplied by unknown solutions Fi(r) for the
‘‘outermost’’ electron and are then fully antisymme-
trized with respect to all electrons. The channel func-
tions F i normally include spin and angular dependences
of the outermost electron also, so that they form a com-
plete orthonormal set in all degrees of freedom except
the radial coordinate r . These close-coupling-type solu-
tions are usually written as

CE5A(
i

1
r

F i~v!Fi~r !, (1.2)

in which the symbol A indicates the antisymmetrization
operation. Projection onto each of the channel functions
results in an infinite set of coupled integrodifferential
equations for the Fi(r). This set is in principle continu-
ously infinite, but is normally truncated to a finite num-
ber of equations on physical grounds and solved numeri-
cally. Burke and McVicar (1965) used this procedure to
calculate doubly excited resonance states of helium that

had been observed by Madden and Codling (1965) in
early synchrotron radiation experiments.
These early close-coupling calculations enjoyed re-

markable success. When the number of truncated chan-
nels is kept small, the calculations are reasonably fast,
but they rapidly become laborious as the number of
channels increases. A disadvantage arose, however,
upon direct integration of the close-coupling equations
on an energy grid sufficiently fine to reproduce narrow
autoionizing states. This stemmed from the fact that the
entire integration had to be repeated over and over, vir-
tually from the beginning, at every energy for which the
solutions were desired. To treat the extremely narrow
resonances that are commonly seen in multichannel
spectra, it was highly desirable to overcome this road-
block.
Two independent theoretical developments greatly

enhanced the power of these calculations. First, Seaton
formulated the multichannel quantum-defect theory
(Seaton, 1955, 1966, 1983). This formulation, to be dis-
cussed at length in Sec. II, describes much of the com-
plicated energy dependences of multichannel spectra
analytically. In this paper, the abbreviation MQDT will
be used for this theory. After implementation of multi-
channel quantum-defect theory in the context of atomic
close-coupling calculations, the equations could then be
solved on a very coarse energy mesh. The strongly
energy-dependent spectra emerged in a subsequent
rapid MQDT calculation (involving the solution of a
modest-sized system of linear algebraic equations).
The second key development that led to an extremely

efficient method of solving the close-coupling-type equa-
tions was Burke’s implementation of the Wigner-
Eisenbud R-matrix approach (Burke and Robb, 1975;
Burke and Berrington, 1993). Here the basic idea was
that the energies El and the partial decay width factors
g il of Eq. (1.1) could be obtained after a single diago-
nalization of the full Hamiltonian H inside the box
r,r0. Once the eigenvectors and eigenvalues of H were
known, Eq. (1.1) allowed a nearly instantaneous calcu-
lation of the R matrix at all energies for which the basis
set converged adequately. Calculations based on this ab
initio technique reproduced measured multichannel
photoabsorption spectra for a number of atoms, includ-
ing closed-shell species such as argon (Burke and Tay-
lor, 1975), and open-shell atoms such as aluminum
(Tayal and Burke, 1987). These studies made little or no
use of multichannel quantum-defect techniques, opting
instead to solve the long-range close-coupling equations
by direct numerical integration.
Fano’s (1970) paper on molecular hydrogen sparked a

period of extraordinary progress in the interpretation of
atomic and molecular spectra. It combined multichannel
quantum-defect theory with the novel concept of a
frame transformation to extract a detailed description of
H2 rotational-channel interactions. Subsequent studies
by Jungen, Dill, and others extended these capabilities
to include vibrational-channel interactions in diatomic
molecules (Jungen and Dill, 1980; Jungen, 1984; Greene
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and Jungen, 1985; Gauyacq, 1987), and in triatomics
(Child and Jungen, 1990; Stephens and Greene, 1995).
This body of work was able to account for a number of
examples of rich molecular spectra with unprecedented
quantitative accuracy. Some types of electronic-channel
interactions in diatomics were also treated successfully
in this approach (Ross and Jungen, 1994).
Fano’s concept of a frame transformation was soon

adapted to the spectra of atoms (Lu, 1971; Lee and Lu,
1973; Fano, 1975) and of negative ions (Rau and Fano,
1971; Lee, 1975). The emphasis of these studies was the
semiempirical interpretation of experimentally observed
spectra. A manageable set of energy-independent pa-
rameters was adjusted to reproduce observations. These
fits proved to have much more physical content than
mere ‘‘curve-fitting’’: the same parameters were used to
generate predictions of completely new observables
(Dill, 1973; Lee, 1974b) that had not been fitted initially,
and were subsequently verified by experiments. Many
more examples (Aymar, 1984a) of the predictive power
of multichannel quantum-defect analysis, both with and
without frame-transformation techniques, established it
as a crucial tool for understanding multichannel Ryd-
berg spectra.
While the examples just discussed demonstrated the

potential power of techniques based on multichannel
quantum-defect theory, multichannel effective-range
theory, and their generalizations, some limitations of
this semiempirical analysis became increasingly appar-
ent. When the number of channels exceeded a number
in the range 5–10, the number of fitted parameters be-
came so large that the fits become nonunique and unsat-
isfactory. As increasingly complex systems were sub-
jected to experimental study, it became imperative to
develop ways to calculate the smooth, short-range pa-
rameters of multichannel spectroscopy directly, i.e.,
without relying on semiempirical fits. Fano and Lee
(1973) took one of the first steps in that direction when
they proposed the eigenchannel R-matrix method, which
Lee (1974a) used to calculate argon MQDT parameters
near the ionization threshold. The relativistic random-
phase approximation was extremely successful in deter-
mining MQDT scattering parameters and numerous as-
sociated photoabsorption observables for every rare-gas
atom (Johnson et al., 1980; Lee and Johnson, 1980).
The extensive development of nearly ab initio multi-

channel spectroscopy in the last decade has largely by-
passed the difficulties of semiempirical quantum-defect
treatments alluded to above. This enhancement of theo-
retical capabilities was driven largely by a reformulation
of the eigenchannel R-matrix treatment into a nonitera-
tive form (Greene, 1983; Le Rouzo and Raseev, 1984),
which dramatically improved on the iterative version
proposed and implemented by Fano and Lee (1973).
Another key contribution to the improved ability of
theory to describe complicated spectra to near-
experimental precision has been the use of model poten-
tials that approximately describe screening and polariza-
tion effects of the inner closed electron shells. For
instance, to describe Ca spectra, one first finds a model

one-electron Hamiltonian h that represents the Ca1 en-
ergy spectrum to reasonable precision. Next, one ‘‘ham-
mers’’ the two-electron problem variationally within the
finite radius max$r1 ,r2%<r0, typically using the model
Hamiltonian for the valence-electron pair:
H5h11h211/r12 . The resulting variational solutions
are now matched to a channel expansion in terms of
linear Coulomb functions (or whatever are the relevant
long-range solutions) at the surface of this reaction vol-
ume. The matching coefficients then determine the
short-range scattering parameters, which can in turn be
used to calculate experimental observables on an arbi-
trarily fine energy mesh with great efficiency. Moreover,
the parameters can then be used to classify and interpret
the spectra, which can be surprisingly complicated even
for ‘‘simple’’ atoms such as He .
The basic procedure just outlined has been applied

extensively to many systems, especially in the alkaline-
earth atoms where a vast amount of data exists. The
precision of the resulting calculations has been surpris-
ingly good. Many experiments that had remained ‘‘unin-
terpreted’’ are now completely understood, thanks to
these methods. Nearly ab initio calculations have pre-
dicted a number of new, highly detailed spectra, achiev-
ing agreement in most cases to near-spectroscopic accu-
racy. In several cases, calculations based on this
theoretical scheme have improved significantly over the
accuracy of earlier experimental work. A number of ex-
amples are described in Sec. IV below. These methods
have also been extended to treat the spectra of open-
shell atoms, including some transition metals which ex-
hibit impressive complexity. Recent applications to
open-shell atomic systems are discussed in Sec. V.
Another area of current interest is the development of

techniques for the analysis of complex spectra in the
time domain rather than the energy domain. A time-
domain spectrum is simply the Fourier transform of the
corresponding energy-domain spectrum. While this re-
view will consider energy spectra almost exclusively,
some interpretive aspects are useful to consider from the
temporal point of view. Time analysis can be performed
using an outgrowth of Wigner’s (1955) identification of

t l~E !52\
dd l~E !

dE
(1.3)

as the time delay in scattering associated with the
partial-wave scattering phase shift d l(E) at energy E .
This concept of the time delay was generalized to mul-
tichannel scattering theory by Smith (1960). Section II
below presents some additional generalizations that are
useful in the multichannel quantum-defect approach,
some of which have not been previously published.
These further generalizations relate to the interpretive
value of Smith’s delay-time matrix in the presence of
weakly closed channels (i.e., bound-state channels).

C. Other related reviews

A number of other published reviews and mono-
graphs touch on subjects relevant to this paper. Discus-
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sions of multichannel quantum defect-theory can be
found in the books by Gallagher (1994), by Fano and
Rau (1986), and by Friedrich (1990). Gallagher (1994)
also discussed experimental aspects of importance for
measurements of multichannel spectra. A collection of
original articles on the formulation and application of
R-matrix methods in atomic physics was published by
Burke and Berrington (1993). In a review with a much
more general flavor, Gerjuoy et al. (1983) showed how
to develop new variational principles for a broad range
of applications. Buckman and Clark (1994) reviewed ex-
perimental and theoretical work on negative ions, em-
phasizing collision processes. Gauyacq (1987) adopted
techniques similar to those used in Sec. II of this paper,
in a pedagogical treatment of several different processes
that involve negative ions. Semiempirical applications of
multichannel quantum-defect theory to the analysis of
experimental atomic Rydberg spectra were reviewed by
Aymar (1984a). Greene and Jungen (1985) and Jungen
(1988) have reviewed molecular applications of
quantum-defect techniques. Molecular studies require
the introduction of some key additional concepts in or-
der to deal with the rotational and vibrational degrees of
freedom.
(Our convention in denoting matrices is to underline

them. We denote the transpose matrix by the superscript
t , and the Hermitian conjugate matrix by a dagger (†);
for spectroscopic notations, we use superscripts e and o
to denote even and odd parity states.)

II. OVERVIEW OF THE IDEAS AND EQUATIONS OF
MULTICHANNEL SPECTROSCOPY

The basic ideas of quantum-defect theory have re-
mained mysterious to many, partly because its starting
point already differs from the more widely familiar
independent-electron approach to atomic structure. The
philosophy of the Hartree-Fock method—and its im-
provements multiconfiguration Hartree-Fock or
configuration-interaction methods—begin by assuming
that all atomic electrons move independently in a mutu-
ally screened central potential. This approximation is
made throughout all of configuration space. When the
atomic wave function can be accurately represented by
one or at most a handful of configurations, as is fre-
quently true for low-lying states, this independent-
electron scheme describes the dynamics efficiently. Its
utility decreases for highly perturbed or correlated states
that require extensive configuration mixing, especially
when continuum configurations play a crucial role.
Multichannel spectroscopy adopts a philosophy closer

to that of the nuclear R-matrix theory of Wigner
(Wigner, 1946a, 1946b). Specifically, an independent-
electron-type approximation is adopted only in an
‘‘outer region’’ r.r0, where, aside from perturbative
electrostatic multipole interactions, it is virtually exact.
In this large-r region, a matrix equivalent to the scatter-
ing matrix S , generalized to incorporate energetically
closed channels, characterizes the solutions ‘‘exactly.’’
As shown below in Sec. II.D, the large-r solutions can

be also characterized by a reaction matrix K connected
to the matrix S . Quantum-defect theory (Seaton, 1983)
for a long-range Coulomb potential, effective-range
theory (Fermi, 1934; Fermi and Marshall, 1947; Bethe,
1949; Blatt and Jackson, 1949; Delves, 1958; Ross and
Shaw, 1961; Rau and Fano, 1971; Lee 1975) for long-
range purely centrifugal potentials, and their variants
predict the energy dependence of these matrices S and
K , permitting analytic continuation of the key scattering
information above or below fragmentation thresholds
and giving the shape of complex spectra in analytical or
semianalytical form. What quantum-defect theory can-
not provide, by itself, are the actual values of scattering
parameters such as S or K for any specific atom, sym-
metry and energy range.
In simple cases having a relatively small number of

channels, one can hope to adjust the scattering param-
eters semiempirically until an experimental spectrum is
reproduced. Most of the early applications of multichan-
nel quantum-defect theory used this semiempirical ap-
proach. Even though the fitting procedure falls short of
being a comprehensive atomic theory, it is useful for
organizing extremely complicated spectra in terms of
relatively few parameters. It also has nontrivial predic-
tive power. Thus, for example, Dill (1973) and Lee
(1974b) used parameters fitted to the bound energy lev-
els and oscillator strengths of atomic xenon to predict
the angular distribution and spin polarization of photo-
electrons. Indeed, the first applications of effective-
range theory showed similar predictive power in relating
a low-energy scattering phase shift to the energy of a
bound state lying just below a fragmentation threshold.
For systems having a large number of channels, more

than about five, normally there is not sufficient experi-
mental information to permit an unambiguous determi-
nation of the scattering parameters by using the semi-
empirical fitting procedure. In the presence of
electronically excited perturbing energy levels, like the
doubly excited states common in the alkaline-earth at-
oms, the unknown energy dependence of the scattering
parameters also complicates the fitting; the resulting
nonuniqueness of the fits has plagued some studies.
More recently, it has become possible to calculate the
scattering parameters in an ab initio or nearly ab
initio calculation. Such calculations have most fre-
quently been performed using R-matrix methods (Fano
and Lee, 1973; Lee 1974a; Burke and Robb, 1975;
O’Mahony and Greene, 1985; Hamacher and Hinze,
1989, 1991; Greene and Aymar, 1991), but they have
also been carried out using the relativistic random-phase
approximation (Johnson et al., 1980), hyperspherical co-
ordinate methods (Greene 1981; Watanabe, 1982, 1986;
Fano, 1983; Tang et al., 1992), and the Schwinger varia-
tional principle (Goforth et al., 1987; Goforth and Wat-
son, 1992). These techniques for calculating multichan-
nel scattering parameters and spectra have improved
dramatically in recent years, both in their accuracy and
in their efficiency.
Below in Sec. II.A we attempt to remove some of the

mystery surrounding these methods by presenting the
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basic qualitative ideas of multichannel spectroscopy.
While it is developed in a somewhat heuristic fashion,
this section does give a useful way of thinking about
multichannel spectra. Most of the qualitative phenom-
enology present in multichannel Rydberg spectra can, in
principle, be deduced from these pictures. Moreover, we
regard this development as fundamental in the sense
that it requires hardly any approximations, in contrast to
widely applied independent-electron models. The quan-
titative formulation of these ideas awaits Sec. II.B. be-
low, which will begin to give the flavor of their nontrivial
power and utility.

A. Visualizing atomic photoabsorption

Imagine that an atomic system swallows an incident
photon of frequency v and in the process an atomic
electron gains kinetic energy \v . This language already
relies on an independent-electron viewpoint, which is
frequently inappropriate since a single electron in a
many-electron atom does not have ‘‘its own energy.’’
More precisely, only the total energy E of the atom has
a definite value in the stationary final state reached by
photoabsorption, since the electrons are continually ex-
changing energy with each other via their Coulombic
interaction 1/r12 . Similarly, the electrons frequently ex-
change spin and orbital angular momentum with each
other, while the total squared spin SW 2 and orbital mo-
mentum LW 2 have conserved eigenvalues (neglecting
fine-structure effects). The possibility for exchange of
energy and angular momentum between electrons di-
minishes as the outermost electron moves outward to a
distance r , owing to the decay of the inner electron’s
wave function and to the falloff of 1/r12 . Eventually a
radius r0 is reached, such that beyond r.r0 the prob-
ability of any such exchange process diminishes to a neg-
ligible value. For all practical purposes the outermost
electron is now distinguishable from the electrons of the
residual ion that are confined to the region r,r0.

1. Single-channel processes

Figure 1(a) gives a picture of the photoabsorption
process reaching a singly excited Rydberg state of a two-
electron atom. The inner electron is confined to r1,r0,
in a stationary state of energy E1, by the steeper (un-
screened) attraction to the nucleus. When electron 2
moves beyond this radius r0, its own energy e is con-
served at the value e5E2E1, determined by the atomic
final-state energy E . Classically, the outermost electron
is reflected from the outer turning point if e,0, while it
escapes uninhibited to infinity if e.0. The former pro-
cess is called photoabsorption to a discrete state, while
the latter is called direct or nonresonant photoioniza-
tion. Quantum mechanics modifies this statement in the
usual way. Specifically, in the case where the outermost
electron is reflected classically (at e,0) only a discrete
set of energies is allowed. These are energies for which
the Schrödinger wave function decays exponentially at
r2→` , and they are known to obey a Rydberg formula

Enl5E12
Ry

~n2m l!
2 . (2.1)

Here Ry is the Rydberg constant and the positive inte-
ger n is the principal quantum number. The parameter
m l is a dimensionless quantity, roughly constant in en-
ergy but dependent on the atomic-state quantum num-
bers such as l . Historically m l has been called the quan-
tum defect. Section II.B describes the origin of this
energy expression and the reinterpretation of pm l as a
scattering phase shift.

2. Two-channel processes

A less trivial situation is depicted in Fig. 1(b), where
now the inner electron e1

2 can be in one of two different
states, with energies E1 or E2. This two-channel proto-

FIG. 1. Coulombic potentials (V) and total energies (E) for
an electron outside an ionic core (shaded zone): (a) single-
channel photoabsorption process with total energy E corre-
sponding to a situation in which the electron is bound with
respect to the ionization limit E1; (b) two-channel photoion-
ization process for final energy E between the first and second
ionization limits E1 and E2. The radial position of the electron
is denoted by r , in atomic units.
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type atom begins to show the main features characteris-
tic of more complex atoms. Again, the radius r0 marks a
boundary beyond which the exchange of energy and an-
gular momentum can be neglected. Below the first ion-
ization threshold E1, all energy eigenstates are discrete
bound levels. Except for the ground state, each normally
has a small natural linewidth due to spontaneous emis-
sion that we ignore for the purpose of this review.
Between the first and second thresholds E1,E,E2,

all energies are allowed eigenvalues of the Hamiltonian,
but the continuum is ‘‘lumpy’’ in that the density of
states is enhanced at a sequence of autoionizing Fesh-
bach resonances converging to the upper threshold. The
resonance energies approximately obey a Rydberg for-
mula

EnLS
res 5E22

Ry

~n2mLS!2
, (2.2)

where mLS is nearly energy independent. The widths of
these resonances decay with principal quantum number
roughly as n23, which can be represented by incorporat-
ing a nearly constant imaginary part into the quantum
defect mLS (Seaton, 1969). We show below how this
imaginary part of m can be extracted in terms of basic
scattering information, mainly the scattering probability
uS21u2 for the outer electron to induce a transition be-
tween inner-electron states E2 and E1 in a single colli-
sion.
Above the upper threshold, E.E2, the continuum

becomes smooth and is no longer lumpy since there are
no more Feshbach resonances. Because two continuum
channels are open, however, two physically distinguish-
able final states are reached. These simply add incoher-
ently to the total photoionization cross section, but the
relative strength of their contributions can in principle
be sorted out experimentally. This could be accom-
plished, for instance, by measuring the state of the ionic
residue following the photoionization, or by resolving
the detected photoelectron energy in a spectrometer.
The branching ratio of cross sections s2 /s1 into these
two alternative channels is generally a smooth, nearly
flat function of energy. Observation of a sharp departure
from near constancy of s2 /s1 implies the presence of a
shape resonance or else perhaps the presence of a third
channel contributing a Feshbach resonance. (Long-
range field effects can cause s2 /s1 to vary even in the
absence of resonances, when the long-range potential is
non-Coulombic.)
In the discrete energy range below the first threshold,

E,E1, another common phenomenon occurs. The lev-
els belonging to the two different channels can interfere
and mutually perturb each other. A simple way to see
whether a particular bound level lies within this ‘‘per-
turbed’’ energy regime is to extrapolate the sequence of
autoionizing Feshbach resonances down from the region
E1,E,E2 into the range E,E1. The ‘‘influence’’ of
each perturber extends over an energy range roughly
equal to the width it would have were it an autoionizing
state, namely

GnLS
res '

4RyIm~mLS!

@n2Re~mLS!#3
. (2.3)

While the energy spectrum remains discrete for E,E1,
all levels E that fall within the range EnLS

res 6 1
2GnLS

res will
be perturbed. The perturbation causes the photoabsorp-
tion intensity to depart from the usual n23 Rydberg scal-
ing law and it induces a shift in the energy of levels lying
within this width. The energy perturbation takes a very
well-defined form: the quantum defects of all bound lev-
els, referred to the lower threshold, rise by one unit
across the perturber’s width.

3. Properties in the time domain

Viewed in real time, for instance when a subpicosec-
ond laser pulse excites the atom, there are three charac-
teristic time scales in the internal dynamics of a two-
channel atom. Two of these are the Rydberg orbital
periods t152p(2e1 /Ry)

23/2 in channel 1 and
t252p(2e2 /Ry)

23/2 in channel 2. Notice that a great
disparity in these periods arises at an energy just below
the threshold E1, where t1@t2. The third relevant time
scale is the average time required for a Rydberg electron
in channel 2 to scatter into channel 1. This is essentially
the autoionization lifetime t125uS12u22t2. Time-
dependent wave-packet calculations show that when a
fast laser pulse coherently excites several autoionizing
states just below the threshold E2, the ejected electrons
do not emerge in a smooth exponentially decaying curve
such as exp(2t/t12). Instead, a sequence of autoionizing
electron pulses is seen, with the temporal separation be-
tween electron pulses equal to the Rydberg orbital pe-
riod t2 and their relative heights governed by the antici-
pated exponential decay factor. This reflects a key
property of multichannel Rydberg states, always to be
kept in mind: energy exchange between the Rydberg
electron and other electrons is possible only once per
orbital period when the Rydberg electron enters the re-
action zone r,r0. Another point to bear in mind is that
the reaction zone does not have a sharply defined radius
r0. Rather, it should be thought of as being smeared out
to some extent, even though some methods (such as
R-matrix method) choose a specific value.

B. Single-channel properties

Theoretical techniques commonly denoted as
‘‘quantum-defect theories’’ stress particularly the fact
that Feshbach-type resonances represent excitations of
closed channels. Other names for this general class of
techniques include multichannel effective-range theory
(Ross and Shaw, 1961; Lee, 1975), and the specific for-
mulation of R-matrix theory developed by Teichmann
and Wigner (1952) to include closed channels. We de-
velop below the quantitative formulation that corre-
sponds to the viewpoint described in the previous sub-
section. We begin by treating motion in a single channel
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and then describe, in the following sections, the consid-
erations appropriate to an arbitrary number of interact-
ing channels.
When a system is confined to a single relevant chan-

nel, this implies the existence of just one possible two-
body breakup mode. Beyond some distance r0 we sup-
pose that the system has a well-defined effective local
potential energy v(r) in the fragmentation coordinate
r . Here we deal explicitly only with a long-range Cou-
lomb potential, as the generalization to other potentials
is fairly straightforward and has been described else-
where. The effective potential for a Rydberg electron in
any channel depends on its orbital quantum number l .
In atomic units,

v~r !5
l~ l11 !

2r2
2
1
r
. (2.4)

In the region of configuration space r.r0 where this
potential energy adequately describes that of the atomic
electron, the atomic wave function, rescaled by r , can
always be written as a linear combination of two linearly
independent solutions (f ,g) of the second-order radial
Schrödinger equation 2 1

2u9(r)1v(r)u(r)5eu(r). Con-
siderable flexibility exists in choosing (f ,g), but follow-
ing Seaton (1966, 1983), some simplicity and conve-
nience are gained by choosing them such that

~1 ! f→0 as r→0;

~2 ! f→~2/pk !1/2sinS kr1
1
k
lnr1h D as r→`

for e[ 1
2k

2.0, which includes the logarithmic phase ac-
cumulation appropriate for an attractive Coulomb field
of unit charge, and a long-range phase shift h that is
given explicitly for the Coulomb field in Eq. (2.39) be-
low.

~3 ! g→2~2/pk !1/2cosS kr1
1
k
lnr1h D as

r→` for e[ 1
2 k

2.0.

(4) (f ,g) for e,0 join smoothly onto the positive en-
ergy solutions obeying conditions (1)–(3).
Briefly, (1) is desirable so that a state with very high

orbital angular momentum l in any atom will reduce to
one solution fel alone without requiring any superposi-
tion with gel . Condition (2) ensures that f is energy nor-
malized, i.e., ^feufe8&5d(e2e8). Condition (3) guaran-
tees that (f ,g) are always linearly independent to the
maximum extent. Finally, condition (4) ensures that any
rapid energy variations in the calculated scattering pa-
rameters reflect dynamics of the atom rather than the
arbitrary choice made for the reference functions. We
stress that these criteria are only adopted to obtain
maximum simplicity in the eventual formulas to be de-
rived below. There is nothing magical or mysterious
about these stipulations, as in fact any two linearly inde-
pendent solutions of the radial long-range equation
would serve as well as (f ,g). In fact it is sometimes use-
ful to discuss another pair of outgoing/incoming radial

waves f6[(2g6if)/A2, where i5A21. (Avoid
throughout this section, the confusion between i5A21
and the channel index i .)
The analytical properties of the solutions (f ,g) are

detailed completely by Seaton (1983) [who calls them
(s ,2c)] and by Greene et al. (1979, 1982), although the
derivations involve somewhat laborious properties of
the confluent hypergeometric equation. The main results
needed below follow far more simply from approximate
WKB (see, for example Messiah, 1958) solutions of the
radial Coulombic Schrödinger equation, along the lines
sketched by Greene et al. (1982). In particular, in the
classically allowed range with positive kinetic energy, we
have

fel~r !5S 2
pk~r ! D 1/2sinS Eark~r8!dr81

1
4

p D , (2.5a)

gel~r !52S 2
pk~r ! D 1/2cosS Eark~r8!dr81

1
4

p D . (2.5b)

Here the Langer (1937) corrected local wave vector is

k~r !5S 2e2
~ l1 1

2 !2

r2
1
2
r
D 1/2, (2.6)

and a is the inner classical turning point, i.e., the zero of
k(r) that lies closest to the nucleus. For positive ener-
gies, the above expressions for (f ,g) are valid all the
way to r→` . At e,0, however, the standard WKB con-
nection formulas must be applied to give the corre-
sponding solutions beyond the outermost turning point,
r@b . After setting k[(22e)1/251/n , where n is the ef-
fective quantum number, the asymptotic forms of these
solutions can be written as

fel~r !→~pk!21/2~sinbD21r2nekr2cosbDrne2kr!,
(2.7a)

gel~r !→2~pk!21/2~cosbD21r2nekr1sinbDrne2kr!,
(2.7b)

where b and D are constants depending on e and l . In
the WKB approximation, for a Coulomb potential of
unit charge, they can be evaluated explicitly and are
given by Greene et al. (1982). Of greatest interest for
our purposes is the phase parameter

b5
1
2

p1E
a

b
k~r !dr5p~n2l !. (2.8)

This phase (divided by p) measures the number of de
Broglie half wavelengths in the radial solution between
r50 and r5` .
The asymptotic expressions (2.7) derived from a

WKB approach are, remarkably enough, identical to the
form of Seaton’s (1966, 1983) exact nonrelativistic solu-
tions. Moreover, the WKB approximation to b in Eq.
(2.8) coincides precisely with the full quantum solution.
Only the parameter D in Eq. (2.7) is changed. Milne’s
(1930) phase-amplitude method provides a different ex-
act quantum treatment, which can be viewed (Greene
et al., 1982) as an alternative to Seaton’s (1983) deriva-
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tions based on complicated special-function properties.
The Milne approach readily shows how a phase param-
eter such as b and an amplitude such as D arise for
solutions of the time-independent Schrödinger equation
with any one-dimensional potential. This general point
of view permits us to generalize Seaton’s basic approach
to any long-range reference field. A detailed description
of these generalizations would take us far afield from the
aims of this review, but an interested reader can find
discussions in the existing literature (Greene et al., 1979,
1982; Mies and Julienne, 1984; Fano and Rau, 1986).
For many purposes, the interaction between an elec-

tron and a closed-shell atom or ion can be described by
a local, central potential V(r). Such a model-potential
description has considerable utility and some limitations,
both of which are discussed below in Sec. III. Consider
the problem of finding energy levels of an electron with
partial wave l moving in this potential field. The exact
radial solution, rescaled by r in order to eliminate the
first derivative term in the usual way, obeys

2
1
2
F9~r !1S l~ l11 !

2r2
1V~r ! DF~r !5eF~r !. (2.9)

To within an arbitrary proportionality constant, the so-
lution at any chosen energy e is uniquely specified by
regularity at the origin r50, although numerical meth-
ods may be required to solve Eq. (2.9) for F(r). This
differential equation coincides with the equation deter-
mining (f ,g), because the effective potential in Eq. (2.4)
was understood to coincide with the true atomic effec-
tive potential in Eq. (2.9), at sufficiently large distances
r.r0. This, combined with the fact that a second-order
differential equation has just two linearly independent
solutions, ensures that for r.r0 the atomic solution
F(r) is a linear combination of (f ,g) with constant co-
efficients. Characterizing the two coefficients by an am-
plitude Nl and a phase pm l , we have

Fel~r !5Nl@fel~r !cospm l2gel~r !sinpm l# , r.r0 .
(2.10)

If F(r) has been determined by numerically integrating
Eq. (2.9) from r50 to r5r0 or beyond, the phase shift
pm l can be calculated from a ratio of radial Wronskians:

tanpm l5
fF82f8F

gF82g8FU
r>r0

. (2.11)

The real constants Nl and m l depend on energy, but for
the most part this dependence is very smooth. Boundary
conditions at r→` still remain to be applied. At any
negative energy e,0, insertion of the asymptotic forms
(2.7) into Eq. (2.10) shows that the solutions Fel(r) di-
verge exponentially at r→` ,

Fel~r !→Nl~pk!21/2@sin~b1pm l!D
21r2nekr

2cos~b1pm l!Drne2kr# . (2.12)

Accordingly, the bound-state quantization condition,
needed to kill the exponential growth at infinity, reads
simply

sin~b1pm l!50, (2.13)

or n2l1m l5nr , an integer. Defining the principal
quantum number n[nr1l , the allowed energy values fit
the empirical formula proposed by Rydberg (1889), in
atomic units (a.u.),

enl52
1

2~n2m l!
2 . (2.14)

The term ‘‘quantum defect’’ for m l stems from the view
that m l measures how ‘‘defective’’ an alkali atom is com-
pared to the ‘‘perfect’’ atom (from the perspective of the
‘‘old’’ quantum theory) hydrogen, whose quantum de-
fects all vanish. A single key result initiated the so-called
‘‘quantum-defect theory’’ of Ham (1955), Seaton (1955,
1958, 1966, 1983), and their successors: the smooth man-
ner in which below-threshold bound-state quantum de-
fects evolve with increasing energy into above-threshold
scattering phase shifts d l5pm l . Seaton (1958) further
showed that m l suffers from a mild nonanalyticity right
at the ionization threshold e50, but this singularity is so
weak that it is inconsequential for an attractive Cou-
lomb potential. Some further remarks on a few difficult
properties of Coulomb functions are deferred to Sec.
II.D below.
For other long-range potentials, such as the purely

centrifugal potential or the repulsive Coulomb potential
so important in nuclear physics, the energy-normalized
solutions (f ,g) become highly energy dependent at
small distances. This strong energy dependence can be
factored out analytically by expressing (f ,g) in terms of
two new solutions (f0,g0) that are (entire) analytic func-
tions of the energy at any finite radius. It is convenient
(and permissible) to choose f0(r) to be proportional to
the regular solution f(r), but g0(r) need not be propor-
tional to g(r) in general. This point has been discussed
elsewhere (Greene et al., 1979, 1982; Seaton, 1983; Fano
and Rau, 1986). In case the analytic solutions are
needed, the transformation between (f0,g0) and (f ,g)
requires two r-independent parameters A and G that are
functions of e and l :

fel~r !5Ael
1/2fel

0 ~r !, (2.15a)

gel~r !5Ael
21/2@gel

0 ~r !1Gelfel
0 ~r !# . (2.15b)

Rau (1988) has derived many revealing interrelation-
ships between all of these parameters at positive and
negative energies.
ASIDE: For the special problem of a purely centrifu-

gal long-range potential, these solutions are given
in terms of spherical Bessel functions:
fel(r)5(2k/p)1/2rj l(kr), gel(r)5(2k/p)1/2rnl(kr). The
transformation (2.15) to analytic solutions (f0,g0) in-
volves coefficients Ael5k2l11 and Gel50 in this simple
case. In examples such as this, for which (f ,g) depend
strongly on the energy at small distances, the phase shift
pm l

0 of F(r) relative to (f0,g0) is a smooth, analytic
function of energy across the relevant fragmentation
threshold. Thus, taking l50 as a specific example, one
sees at once that the tangent of the analytic phase shift
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tanpm l
05S f l0F82f l

08F

gl
0F82gl

08F
D U

r>r0

(2.16)

determines the energy of a high-lying s-wave bound
state at e,0. The analog to the Rydberg formula, appli-
cable for zero long-range potential and l50, is readily
derived to be tanpm l50

0 1k2150, or

e52 1
2 k252 1

2 cot
2pm l50

0 , (2.17)

provided tanpm l50
0 is negative and ‘‘large’’ in absolute

value. The physical phase shift d l50 entering the scatter-
ing matrix Sl5exp(2idl) in this s-wave example becomes

d l505pm l505arctan~ktanpm l50
0 !, (2.18a)

and

Sl505
11iktanpm l50

0

12iktanpm l50
0 . (2.18b)

Equations (2.16)–(2.18) constitute the basic formulas of
single-channel effective-range theory, which relates
bound-state properties to low-energy scattering proper-
ties. The connection can be made complete by identify-
ing the zero energy value of tanpm l50

0 as the usual ‘‘scat-
tering length,’’ while its energy derivative is related to
the ‘‘effective range.’’ In this sense, the generalized form
of quantum-defect theory encompasses both single-
channel and multichannel effective-range theories as
special cases (Blatt and Jackson, 1949; Ross and Shaw,
1961).

C. Nonseparable quantum mechanics in several
dimensions

An enormous class of physical problems of current
interest requires the solution of a nonseparable, time-
independent Schrödinger equation in more than one di-
mension. No single theoretical approach is known that
can solve all such problems. In fact for many systems,
such as the double continuum states of two electrons
interacting with each other and with another charged
particle, only relatively crude approximations are pres-
ently available. Moreover, even these crude solutions
typically apply over small ranges of energy, angular mo-
mentum, and other quantum numbers.
Dramatic progress has been achieved in recent years

in developing powerful techniques capable of handling
physical systems of unprecedented complexity, provided
their fragmentation involves no more than one coordi-
nate at a time. A famous problem of this category, which
has only been solved quite recently (Iu et al . , 1991;
O’Mahony and Mota-Furtado, 1991; Watanabe and
Komine, 1991), is the near-threshold photoionization
spectrum of hydrogen or of an alkali atom in an uniform
magnetic field. In that three-dimensional problem, the
fragmentation coordinate is uzu, the projection of the
electron-nucleus separation rW onto the magnetic field di-
rection BW 5Bẑ . Motion in the two remaining coordi-
nates (r ,f) or (x ,y) is bounded at any finite energy,

and is therefore quantized. (Here we suppose that the
usual choice of vector potential has been made, AW

5 1
2BW 3rW .) Also in the atomic two-electron problem, at

energies below the threshold for double escape, a single
fragmentation coordinate can be identified, either the
distance r2 of the outermost electron from the nucleus
or the hyperspherical radius R5Ar121r2

2 (Fano, 1983).
Another example that, in contrast, seems to involve
more than one coordinate is Jungen’s (1984) description
of competing ionization and dissociation channels in
H2; because only one of these processes occurs in any
given asymptotic fragmentation channel, this last prob-
lem fits into the same category as well.

1. Characterizing the solutions

We restrict our attention now to solving the
stationary-state Schrödinger equation for such systems
where one fragmentation coordinate, to be written as
r , is assumed to be identifiable. As Fano (1981) has
stressed, a generalized hyperspherical radius or moment
of inertia coordinate can serve quite generally in this
capacity. Other choices may be more computationally
convenient depending on the problem at hand and on
the solution method adopted. The main point we need
for now is that the d-dimensional configuration space
can be separated into mutually orthogonal coordinates:
one fragmentation coordinate r and d21 ‘‘surface’’ co-
ordinates v . The coordinates v are interpreted to in-
clude the spin degrees of freedom as well as true spatial
coordinates.
Because the multidimensional Schrödinger equation is

homogeneous, with up to second-order derivatives,
knowledge of a particular rescaled solution $rcb(r ,v)%
and its radial derivative ]$rcb(r ,v)%/]r uniquely deter-
mines cb(r ,v) at all large distances r>r0. The subscript
b distinguishes different linearly-independent solutions
that are degenerate in energy, angular momentum, par-
ity (denoted by p), and any other ‘‘exact’’ quantum
numbers. [Note that, throughout this section, the index
b should not be confused with the quantum-defect-
theory phase parameter of Eq. (2.8).] In fact it would be
inconvenient to tabulate the wave function and normal
derivative at the continuously infinite set of points v
representing this surface. Fortunately, such a table is not
really needed anyway for the following reason: a dis-
crete set of functions F i(v) can always be found that
spans the fixed r surface. These functions might be, as
described in this section, a set of r-independent eigen-
states [frequently appropriate at r→` as in the close-
coupling representation (Burke and Smith, 1962)], or a
set of ‘‘adiabatic’’ eigenfunctions of the fixed-r Hamil-
tonian (Born and Oppenheimer, 1927).
In any case, the surface Fourier decompositions of

$rcb(r ,v)% and ]$rcb(r ,v)%/]r in terms of this basis
can for practical purposes be truncated to a finite num-
ber N at any chosen energy, on physical grounds. In the
special case that F i(v) are independent of r , we can
write the decompositions as
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cb~r ,v!5(
i

1
r
F i~v!Fib~r !, (2.19a)

]@rcb~r ,v!#

]r
5(

i
F i~v!F8ib~r !. (2.19b)

Knowledge of Fib(r) and Fib8 (r) in Eqs. (2.19), along
with the Schrödinger equation itself, provides enough
information to uniquely determine cb at all distances
larger than r0. We focus on this large-r region because
that is where the scattering information will eventually
be extracted.
Quite generally, if the Fourier decompositions (2.19)

of the Schrödinger solutions regular at r→0 involve N
terms or channels i , one expects to find also N linearly-
independent solutions, b51, . . . ,N . Thus we can speak
of Fib(r) as representing an (N3N) solution matrix.
This is a square matrix prior to imposing boundary con-
ditions at r→` , each column of which represents a sepa-
rate independent solution as indicated by Eq. (2.19).
The ith row gives the projection of the ith surface har-
monic or channel function F i(v) onto each independent
solution. The phases of Fib and F i can be chosen such
that Fib(r) is a real matrix for almost all problems in
atomic and molecular physics.
Any linear combination of the degenerate Schrö-

dinger eigenfunctions cb is also a valid eigenfunction.
This implies that considerable nonuniqueness exists in
the choice of the Fib(r). Stated in mathematical terms,
any constant nonsingular (N3N) linear transformation
matrix Xbg can be used to transform Fib(r) into an
equally acceptable set of solutions—for example,

cg5(
b

cbXbg5(
i

1
r

F i~v!Mig~r !, (2.20a)

where

Mig~r !5(
b

Fib~r !Xbg . (2.20b)

Prior to imposing physical boundary conditions at
r→` , nothing in the mathematics or physics ‘‘prefers’’
one set of independent solutions $cb% over another set
$cg%. However one can identify a ‘‘minimal’’ amount of
information regarding the solution at smaller distances
r,r0 that provides enough information to determine the
scattering matrix. This follows upon recognizing that the
matrix

R[F~r !@F8~r !#215M~r !@M8~r !#21 (2.21)

is invariant under transformations such as X . Following
Wigner (1946b), we call this fundamental invariant
quantity the matrix R . It is real and symmetric, and will
be seen below to determine the scattering matrix S and
its close relative, the reaction matrix K .

2. Modified form of the close-coupling method without
exchange

For readers not already familiar with multichannel,
multidimensional problems in quantum mechanics, the

preceding discussion may seem somewhat nebulous. In
order to make it more concrete, we turn to a specific
example—the atomic close-coupling equations for a dis-
tant electron in the field of a residual ion or neutral
atom with a single valence electron. To simplify our no-
tation somewhat, the distant electron is assumed to
move in a region having no overlap with the residual
electrons. This permits us to neglect all exchange effects.
We further neglect fine-structure effects; this permits us
to write the exact solutions in LS coupling, omitting ref-
erence to the spin degrees of freedom for the sake of
brevity. For this example a convenient choice for the
fragmentation coordinate r is the distance between the
outermost electron and the nucleus. Accordingly, the set
of coordinates v orthogonal to r consists of all spatial
coordinates of the inner residue, and the angular coor-
dinates r̂[(u ,f) of the distant electron. The surface
harmonics or channel functions F i(v) are eigenfunc-
tions of the inner-electron Hamiltonian h1, the inner-
electron squared orbital angular momentum operator
lW1
2, the distant electron squared orbital momentum lW2

2,
the squared total orbital angular momentum LW 2, and the
z component Lz . The detailed eigenvalue equations
read

h1F i~v!5EiF i~v!, (2.22a)

lW1
2F i~v!5l1i~ l1i11 !F i~v!, (2.22b)

lW2
2F i~v!5l2i~ l2i11 !F i~v!, (2.22c)

LW 2F i~v!5L~L11 !F i~v!, (2.22d)

LzF i~v!5MF i~v!. (2.22e)

Aside from possible degeneracies of these eigenvalues
and routine phase ambiguities, these equations uniquely
determine the channel functions. The total Hamiltonian
(that includes electrostatic interactions only) is

H5h12
1
2
1
r

]2

]r2
r1

lW2
2

2r2
2
Znet

r

1 (
k51

`

r2k21r1
kPk~ r̂1• r̂ !. (2.23)

The term Pk() represents a Legendre polynomial and
Znet is the asymptotic (screened) net charge of the resi-
due that is seen by the distant electron.
At this point we depart in a crucial way from the usual

formulations of the close-coupling method (Burke and
Smith, 1962). Our motivation for this departure follows
from Fig. 2, which depicts the radial portion of configu-
ration space for the two electrons.
Because we consider energies below the ‘‘Wannier’’

(1953) threshold for double escape, one can identify a
radius r0 such that the wave function c50 when
r1.r0 and r2.r0 simultaneously. More accurately, of
course, the true wave function decays exponentially in
that region, but the exponential falloff is sufficiently
rapid that neglect of c altogether in region IV can be
made arbitrarily precise by increasing the value of r0. In
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this spirit, we seek to construct solutions in regions II
and III alone, subject to the (nonstandard) boundary
condition that c50 at the boundary of each region with
region IV. To be specific, we treat region II only, where
r2.r1, and require that c50 for r15r0. In region II the
fragmentation coordinate r coincides with r2. With this
boundary condition, the energy spectrum of the inner
electron in Eq. (2.22a) is entirely discrete. The close-
coupling expansion (2.19) is likewise discrete, whereas in
the conventional close-coupling method the summation
( i in Eq. (2.19) implies an integral over the inner-
electron continuum energy eigenstates. Without this in-
tegral the F i(v) do not form a complete set. In conven-
tional calculations this continuum integral is usually
ignored or else it is approximated by a discrete summa-
tion using so-called ‘‘pseudostates’’ (Burke, Gallaher,
and Geltman, 1969). The critical role of continuum con-
tributions can be seen from the fact that the continuum
contributes roughly half of the hydrogen atom ground-
state polarizability in a second-order perturbation
theory calculation. In fact, this correct description of the
polarizability was the initial motivation for the introduc-
tion of discrete pseudostates (Burke, Gallaher, and
Geltman, 1969) that approximately describe the effect of
the neglected continuum. Another recent study (Bray
and Stelbovics, 1993) has developed a systematic way to
incorporate continuum coupling effects by using Stur-
mian functions to represent the inner-electron wave
function. This method appears to offer similar advan-
tages to the present systematic scheme for generating a
complete set of discrete solutions that can represent the
inner-electron degrees of freedom.
A physically relevant point to keep in mind is the fact

that the boundary condition c50 at r15r0 causes the
inner electron’s radial orbitals to differ from the usual
orbitals calculated over 0,r,` . This difference might
appear to be undesirable at first glance. The entire treat-
ment for the present example, however, is only intended

for an electron interacting with a residual fragment state
confined within r,r0. The modified boundary condition
consequently introduces no further errors. More to the
point, though, the convergence of the expansion (2.19)
improves dramatically as a result of confining the inner-
electron eigenstates to a ‘‘box’’ of radius r0. There is
consequently no mathematical or physical need for ad-
ditional pseudostates of any type.
Insertion of Eq. (2.19) into the time-independent

Schrödinger equation at energy E , followed by projec-
tion onto ^F ju, leads to the following infinite but discrete
set of coupled differential equations,

Fib9 ~r !12(
j

@e id ij2Vij~r !#Fjb~r !50. (2.24)

Here e i[E2Ei is the asymptotic electron kinetic en-
ergy in the ith channel. The potential matrix Vij(r) in-
cludes a diagonal centrifugal term in addition to an elec-
trostatic coupling matrix element:

Vij~r !5S l i~ l i11 !

2r2
2
Znet

r D d ij

1 (
k51

`

r2k21^F iur1kPk~ r̂1• r̂ !uF j&. (2.25)

In matrix notation, Eq. (2.24) becomes more succinct,

F9~r !12@e2V~r !#F~r !50. (2.26)

Upon truncating the infinite set of second-order coupled
differential equations (2.24) to a finite number N , one
can find, in general, 2N linearly independent solutions
at each energy E . After boundary conditions at the ori-
gin are imposed, Fib(0)50, N solutions remain math-
ematically acceptable prior to enforcing boundary con-
ditions at asymptotic distances.
We present a few more detailed aspects of the trun-

cated system of N close-coupling equations [(2.24),
(2.26)]. The first important property is constancy of the
‘‘Wronskian matrix’’ of two different solution matrices
F and M , provided that each of them obeys Eq. (2.26).
The Wronskian is defined for this system to be

W~M ,F ![MtF82M8tF . (2.27)

By matrix-multiplying Mt to Eq. (2.26) from the left,
and subtracting its analog with M and F interchanged,
one finds that the Wronskian of any two solution matri-
ces is a constant. This statement is independent of
boundary conditions and reflects mainly the absence of
first-derivative terms in Eq. (2.26) and the symmetry of
the potential matrix V . A second useful property of so-
lutions of Eq. (2.26) is the simple first-order differential
equation obeyed by their matrix R . This can be obtained
by differentiating the definition (2.21) and then using
Eq. (2.26) to eliminate the second-derivative matrix that
occurs. The resulting equation reads

FIG. 2. Radial configuration space for two electrons with re-
gions I, II, III, and IV marked.
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R8~r !5112R~e2V !R , (2.28)

where 1 is the (N3N) identity matrix. (Note that the
identity matrix is denoted by 1 through this review.)
This differential equation could be solved numerically,
for instance, to calculate long-range multipole correc-
tions to the matrix R . Ideas along the lines of the first-
order nonlinear differential equation were pursued in
the context of single-channel and multichannel problems
by Calogero (1967).
For a variety of reasons, including the fact that R(r)

typically has numerous poles, direct solution of Eq.
(2.28) is not the most efficient way to solve for the ma-
trix R . One further useful property emerges from an
inspection of Eq. (2.28), namely the fact that symmetry
of the matrix R at one value of r immediately guaran-
tees symmetry at all r values. In most problems the ma-
trix R(r) is diagonal in some region of space, often at
small distances, which is enough to prove that it will
remain real and symmetric at all radii.

D. Long-range treatment using multichannel quantum-
defect theory

For the purposes of this section, we suppose that the
R matrix has been calculated for an atomic system
within the small-r region in which all electrons overlap
each other and exchange could be important. For an
atom with two valence electrons, this corresponds to re-
gion I in Fig 2. Section III below discusses efficient
methods for accomplishing this small-r part of the calcu-
lation in practice. Our goal now is to discuss the motion
of a single electron when it emerges from this small-r
region (or R-matrix ‘‘box’’). For a two-electron atom,
this amounts to solving the Schrödinger equation in re-
gions II or III in Fig. 2. One possible approach is to
simply adopt the close-coupling equations without ex-
change in those regions, as presented in Eq. (2.26). Sev-
eral algorithms and computer programs have been pub-
lished to accomplish this numerically. This direct
numerical solution of the long-range coupled equations
can be rather time consuming. However, recent rapid
developments in computational power and in computa-
tional algorithms have improved the power of this nu-
merical approach for dealing with the outer-field calcu-
lation.
Another approach has received widespread use owing

to its great efficiency. Seaton’s multichannel quantum-
defect theory can be used to solve the long-range part of
the problem in closed analytical form, at the price of
making an approximation to the close-coupling equa-
tions at large distances. In its simplest form, which coin-
cides with Seaton’s initial formulation, this approxima-
tion neglects all anisotropic multipole contributions
(k.0) to the interaction between an outermost electron
and the inner residue. This means neglecting the entire
(k51

` in the potential matrix [Eq. (2.25)] that enters the
long-range close-coupling equations (2.26). In some
problems, where this approximation seems dubious, one
can increase somewhat the size of the box radius r0,

since we assume that all multipole interactions are cor-
rectly treated within. In any case, this approximation im-
plies that the channels are completely decoupled beyond
r5r0. In physical terms, this amounts to neglect the scat-
tering of an electron from one channel into another
whenever it moves in the outer region.
Mathematically, the absence of off-diagonal coupling

matrix elements in the outer region (in this approxima-
tion) implies that a simple attractive Coulomb plus cen-
trifugal potential applies within every channel individu-
ally, at all radii r.r0. This diagonal potential in each
channel coincides with the form of Eq. (2.4), if we take
Znet51, as would be appropriate for describing states of
a neutral atom or molecule. The generalization of these
results to arbitrarily ionized (nonrelativistic) species is
straightforward. We start from the assumed known val-
ues of the wave function and derivative at r5r0, or more
conveniently their projections on the ith channel func-
tion:

Fib~r0!5^^F iu~rcb!&&, (2.29a)

Fib8 ~r0!5 K K F iU ]~rcb!

]r L L . (2.29b)

Here the double bracket notation is used to denote an
integral over only the surface of the reaction volume,
while single brackets will imply the usual integral over
all space.
These surface properties of the previously calculated

inner-region solutions serve as boundary conditions that
uniquely determine the (N3N) solution matrix Fib(r)
in the outer region, in conjunction with Eq. (2.26). Spe-
cifically, in view of the relevance of Eq. (2.4) as the po-
tential within each channel, the ith channel component
of the bth independent solution is a linear combination
of regular and irregular Coulomb functions
f i(r)[fe il i

(r) and gi(r)[ge il i
(r). This follows because

Fib(r) obeys the same differential equation as (f i ,gi),
whereby

Fib~r !5f i~r !Iib2gi~r !Jib , (2.30)

and the matrices I and J are independent of r . They can
be calculated by taking the Wronskian of both sides of
Eq. (2.30) with respect to f i and then with respect to
gi , which gives explicitly

Iib5W~gi ,Fib!/W~gi ,f i!, (2.31a)

Jib5W~f i ,Fib!/W~gi ,f i!. (2.31b)

Since these Wronskians are independent of r , they can
be evaluated at any r>r0. They are usually calculated
right at the boundary r5r0, however, where a varia-
tional or other type of calculation has provided Fib and
its derivative with respect to r .
So far very little has been specified about the particu-

lar choice of independent solutions represented by cb
and the corresponding radial-channel components
Fib(r) beyond the boundary r0. Normally, these calcu-
lated independent solutions do not yet obey physically
relevant boundary conditions. Alternative sets of lin-
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early independent solutions, corresponding to alterna-
tive boundary conditions at r→` , can be used to de-
scribe the stationary states at a definite energy E . The
asymptotic solutions for r>r0 are characterized by ei-
ther the reaction matrix K or the scattering matrix S
referring to open and closed channels. First, we intro-
duce the solutions characterized by the reaction matrix
K , which is simply connected to the matrix R . Then,
below in Secs. II.D.1 and II.D.2, the basic derivations of
multichannel quantum-defect theory are presented in
terms of the scattering matrix S .
A first standard set of linearly independent solutions

that satisfy standing-wave boundary conditions is given
by a linear transformation of the solutions F :

M~r !5F~r !~I !21, (2.32)

where the ith channel component of this i8th indepen-
dent solution is

Mii8~r !5f i~r !d ii82gi~r !Kii8. (2.33)

The asymptotic solutions Mii8(r) are characterized by
an (N3N) matrix K[J(I)21 which is real and symmet-
ric. Because this matrix K usually includes closed-
channel indices (i.e., for channels that are energetically
forbidden as r→`), its energy dependence is normally
quite smooth and this matrix can frequently be assumed
to be energy independent over limited energy intervals
such as across an ionization threshold. We refer to K as
the ‘‘smooth short-range reaction matrix,’’ and we call
the particular set of independent solutions (2.33) the
‘‘short-range reaction-matrix solutions.’’ When an at-
tractive Coulomb potential describes the long-range mo-
tion in every channel, K coincides with the matrix R of
Seaton (1983). Recalling expressions (2.31) and (2.21),
the K and R matrices at r5r0 are related by

K5~f2f8R !~g2g8R !21. (2.34)

The radial functions f , g , f8, g8 here are the Coulomb
functions and derivatives appropriate to each channel,
evaluated at r5r0 for the appropriate orbital angular
momentum l i and channel energy e i , and arranged into
diagonal matrices.
Practical quantum-defect calculations are frequently

conducted using K rather than S , as this permits the
entire calculation of total cross sections to be carried out
using real arithmetic. Another real representation is the

eigenchannel version of multichannel quantum-defect
theory introduced by Fano (1970), which utilizes the
eigenvalues tanpma and eigenvectors Uia of the matrix
k ,

Kij5(
a

UiatanpmaUaj
† . (2.35)

The independent eigenchannel solutions have the fol-
lowing form outside the reaction volume:

Ca5A(
i

1
r

F i~v!Uia@f i~r !cospma2gi~r !sinpma# ,

(2.36)

which corresponds to the multichannel generalization of
Eq. (2.10). In Eq. (2.36), A is the antisymmetrization
operator. The eigenchannel wave functions Ca ,
a51, . . . ,N , have a common phase shift pma in each of
the fragmentation channels i . The eigenchannel MQDT
formulation has been widely used for studying atomic
and molecular spectra. The techniques for obtaining
physical solutions that remain well behaved at r→` and
for calculating the observables, discussed in numerous
papers (Fano, 1970; Lu, 1971; Lee and Lu, 1973; Fano
and Rau, 1986), will not be detailed in this review; some
relevant points will be discussed later in Secs. II.E and
II.F. In particular, it will be shown that a great deal of
semiempirical MQDT analyses are based on the eigen-
channel formulation of multichannel quantum-defect
theory.

1. Multichannel quantum-defect theory derivations for
resonant continua

To describe a photoabsorption (or scattering) experi-
ment, carried out with sufficiently high energy resolution
that it effectively probes stationary states at a definite
energy E , incoming-wave (or outgoing-wave) boundary
conditions must be imposed. To find the linear combina-
tions of the arbitrary Schrödinger solutions cb that obey
these boundary conditions, it is convenient to rewrite
the radial solutions (f i ,gi), defined above in Sec. II.B, in
terms of outgoing/incoming waves f i

6

H 2if
g J 5

1

A2 ~2f16f2!. (2.37)

(In this section, take care not to confuse i5A21 and the
channel index i .) The solutions f6 are convenient, with
simple asymptotic forms:

f6~r !→H ~pk !21/2r6i/ke6ikr6ih, e5k2/2>0;

~2pk!21/2e6ib~D21r2nekr7iDrne2kr!, e52k2/2,0,
(2.38)
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where the long-range phase shift for a long-range attrac-
tive Coulomb potential of unit charge is known analyti-
cally:

h5
1
k
ln~2k !1argGS l112

i

k D2
1
2
lp . (2.39)

The solutions f6(r) defined here are identical to the
w6(r) functions of Seaton (1983). In contrast, they are
proportional, at e.0 only, to those with the same nota-
tion in Greene et al . (1982) and in Greene et al . (1979).
The particular independent solutions beyond r5r0 now
have the form

Fib~r !5
1

iA2
f i

1~r !~Iib1iJib!2
1

iA2
f i

2~r !~Iib2iJib!.

(2.40)

In this form it is evident that there exists a linear trans-
formation that will transform the solutions cb into new
solutions, each of which has an outgoing-wave compo-
nent in a single channel only. We now apply from the
right side of Eq. (2.30) the inverse of the matrix I1iJ ,
giving a new set of linearly independent solutions:

M~r !5F~r !~I1iJ !21. (2.41)

One obtains for the ith channel component of the
i8th independent solution

Mii8~r !5
1

iA2
f i

1~r !d ii82
1

iA2
f i

2~r !Sii8
† . (2.42)

The asymptotic solutions Mii8(r) are characterized by
an (N3N) matrix S†[(I2iJ)(I1iJ)21. In the special
case that all channels are open, S† coincides, aside from
phase factors, with the Hermitian conjugate of the usual
scattering matrix. (The phase factors will be given be-
low.) It is the Hermitian conjugate S† that appears
rather than S itself, because these incoming-wave states
are the time-reversed versions of the outgoing-wave
states that are used to describe particle-scattering ex-
periments (Breit and Bethe, 1954). This scattering ma-
trix S is related to the short-range reaction matrix K
through the relation

S5
11iK

12iK
. (2.43)

In fact, the omission of some phase factors, coupled with
the fact that S usually includes closed-channel indices,
leads to important differences between S and the usual
‘‘physical scattering matrix’’ that we denote by Sphys

throughout this paper. Like the smooth, short-range re-
action matrix, this matrix S , referred to as the ‘‘smooth,
short-range scattering matrix,’’ has a weak energy de-
pendence. When an attractive Coulomb potential de-
scribes the long-range motion in every channel, S coin-
cides with the matrix x of Seaton (1983). The solutions
of Eq. (2.42) are not acceptable if one or more channels
is closed, because the radial wave functions Mii8(r) di-
verge exponentially at r→` for all closed-channel com-
ponents i .

It may be helpful to describe qualitatively the mean-
ing of the solutions constructed in Eq. (2.42). Imagine
forming a wave packet by performing an energy integral
over exp(2iEt) multiplying the i8th independent solu-
tion of Eq. (2.42) with an additional energy envelope
reflecting the bandwidth of the exciting laser. (This
would be the state excited if the dipole matrix element
reaches only this particular solution from the ground
state. We should point out that this is not normally the
case, as more frequently all or most of the solutions i8
will be excited coherently, with relative amplitudes
given by a dipole matrix element di8.) The resulting
wave packet describes a gedanken experiment in which
photoabsorption occurs at time t'0, exciting a Rydberg
wave packet that will be found moving outward at posi-
tive times, in channel i8 only. While this outgoing wave
packet would look more or less sensible in the classically
allowed region, it would eventually acquire unphysical
behavior in any channels that are closed, owing to the
divergence of the large-r stationary-state solutions. In
particular, the packet would not be reflected backward
from the outermost classical turning point, as one ex-
pects.
To find solutions with the correct physical behavior,

we must impose boundary conditions at large r . Most
importantly, we need to superpose the stationary solu-
tions given by Eq. (2.42) to determine linear combina-
tions that, for closed channels, decay exponentially in
the asymptotic region. This can be accomplished rather
simply by using a compact partitioned matrix notation
borrowed from Seaton (1983). The notation was devel-
oped earlier in the nuclear-physics resonance studies of
Teichmann and Wigner (1952) and of Breit (1959), and
the idea is simple. At any energy E , we collect all of the
open channels (for which E>Ei) and label the entire set
by a subscript o . We call the number of open channels
No . Similarly, we collect all closed channels (E,Ei)
into a set labeled c , and label their number Nc . Since
the total number of long-range channels is assumed to
remain a fixed number N over an appreciable energy
range, we have No1Nc5N . Next, we arrange the
(N3N) outer-region solution matrix M(r) into open
and closed partitions accordingly:

SMoo Moc

Mco Mcc D 5
1

iA2
f1~r !

2
1

iA2
f2~r !S S†oo S†oc

S†co S†cc D . (2.44)

In Eq. (2.44), f6(r) indicate diagonal matrices contain-
ing the radial solutions appropriate to each channel
along the diagonal, whose asymptotic forms were given
in Eq. (2.38).
In this partitioned matrix notation, we can simply con-

struct the solutions needed. Because there are only No
open channels at this energy, we anticipate only No lin-
early independent ‘‘physical’’ incoming-wave solutions.
Each of these is a different linear combination of the
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solutions M(r). We represent the transformation taking
us from the N ‘‘smooth short-range’’ S-matrix solutions
M(r) to the No ‘‘physical’’ incoming-wave solutions by
M(2)(r)5M B . The transformation matrix is an
(N3No) constant matrix that will itself be partitioned

B[S Bo

Bc D . (2.45)

Combining these quantities gives the open- and
closed-channel components:

SMoo
2

Mco
2 D 5

1

iA2 S fo
1Bo2fo

2~Soo
† Bo1Soc

† Bc!

2fc
2Sco

† Bo1~fc
12fc

2Scc
† !BcD .

(2.46)

Using now the asymptotic forms of f6(r) from Eq.
(2.38), we find that the large-r wave function compo-
nents in the closed channels approach

Mco
~2 !~r !→~••• !ekre2ib@2S co

† Bo2~Scc
† 2e2ib!Bc# .

(2.47)

Exponential growth in the closed channels must be
eliminated by choosing the closed part Bc of the coeffi-
cient matrix to be

Bc52~Scc
† 2e2ib!21Sco

† Bo . (2.48)

If we choose the open-channel subspace coefficients to
be a diagonal matrix of long-range phase parameters
Bo5exp(2ih), the physical states obeying the incoming-
wave boundary condition are obtained; these have the
following asymptotic form in the open channels [i.e.,
Moo

(2)(r)]:

Mii8
~2 !

~r !→i21~2pki!
21/2~eikird ii82e2ikirSii8

†phys
!.
(2.49)

The Hermitian conjugate of the (No3No) physical scat-
tering matrix introduced here is

S†phys5e2ih@Soo
† 2Soc

† ~Scc
† 2e2ib!21Sco

† #e2ih. (2.50)

The general expression for the closed-channel compo-
nents in the physical solution follows from Eq. (2.48),
for r.r0,

Mco
~2 !~r !5

i

A2
@2fc

2Sco
† e2ih2~fc

12fc
2Scc

† !~Scc
†

2e2ib!21Sco
† e2ih# . (2.51)

A somewhat more useful expression follows after intro-
ducing a solution W(r ,n ,l) proportional to the Whit-
taker Coulomb function (Whittaker and Watson, 1927)
that decays exponentially as r→` for all negative ener-
gies. This solution will be written in each channel as

W~r ,n i ,l i!5
i

A2
e2ib if12

i

A2
eib if2. (2.52)

More precisely, our solution W(r ,n ,l) is given by

W~r ,n ,l !5n3/2@n2G~n1l11 !G~n2l !#21/2

3Wn ,l11/2S 2rn D , (2.53)

where Wn ,l11/2 is the Whittaker function, G denotes a
gamma function, and the multiplicative factor in front is
a constant.W(r ,n ,l) has an ‘‘energy-normalized’’ ampli-
tude (2/pk(r))1/2 in the classically allowed region, like
the solutions in Eq. (2.5), but it decays properly asymp-
totically. For non-Coulombic long-range fields, Eq.
(2.52) remains a valid generalization of the Whittaker-
type function. Whereas both fc

6 diverge exponentially at
infinity in Eq. (2.51), the divergence is cancelled in
M(2)(r) owing to the choice of coefficients [Eq. (2.48)].
However, this is not so apparent from inspecting Eq.
(2.51). We cancel the exponentially growing terms ana-
lytically, giving the long-range closed-channel compo-
nent wave functions in a form involving W(r ,n ,l) that
now explicitly gives the coefficient Zco in front of the
exponential decay,

Mco
~2 !5W Zco , (2.54a)

where the closed-channel coefficients are given by

Zco5eib~Scc
† 2e2ib!21Sco

† e2ih. (2.54b)

Next, Eqs. (2.49) and (2.54) can be combined to give the
i8th energy-normalized physical incoming-wave state:

c i8
~2 !

5A (
iPo

1
r

F i~v!i21~2pki!
21/2~eikird ii8

2e2ikirSii8
† phys

!

1(
iPc

1
r

F i~v!Wi~r ,n i ,l i!Zii8. (2.55)

The i8th such stationary state has outgoing waves as-
ymptotically only in channel i8 and can be used to de-
scribe a photoionization experiment that detects elec-
trons emerging in channel i8. We denote by db the
reduced dipole matrix elements connecting a specific ini-
tial state c0 of total angular momentum J0 to the real
states cb in Eq. (2.19) having total angular momentum
quantum number J , i.e.,

db5^cbuur ~1 !uuc0&. (2.56)

Viewing the db as a column vector of N real numbers,
the linear transformation (2.41) determines a smooth set
of N dipole matrix elements

di8
S

5(
b

~I1iJ ! i8b
21†db . (2.57)

This column vector of amplitudes can be partitioned in
the usual way into open- and closed-channel contribu-

tions dS[(
dc
S

do
S

).

Next, Eqs. (2.45) and (2.48) can be combined to give
reduced dipole matrix elements connecting the initial
state c0 to the No physical incoming-wave states. These
matrix elements generally exhibit very rapid energy de-
pendences reflecting closed-channel resonances and are
given by
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d ~2 !5do
Se2ih2dc

S~Scc
† 2e2ib!21Sco

† e2ih. (2.58)

The resonances occur when the closed-channel subma-
trix Scc

† 2e2ib is nearly singular; at these energies, the
resonant dipole amplitudes can grow orders of magni-
tude larger than the background or nonresonant ampli-
tudes.
Equation (2.58) gives the dipole amplitudes required

by most standard formulations of total and partial
photofragmentation cross sections, photofragment angu-
lar distributions, spin polarization, alignment, orienta-
tion, or various quantities that can be measured by co-
incidence experiments. For the moment, we give only
the formulas for total and partial photoionization cross
sections, in the simplest case in which the magnetic sub-
states of the initial state c0 are randomly populated. The
partial photoionization cross section into channel i , in
a.u., is

s i5
4p2va

3~2J011 !
udi

~2 !u2, (2.59)

where a is the fine-structure constant and v the photon
energy. The total photoionization cross section is the
sum over all partial cross sections (a sum over total
final-state angular momenta J is also implied):

s tot5
4p2va

3~2J011 !
d ~2 !†d ~2 !. (2.60)

Calculations of other observables, such as scattering
cross sections, are equally straightforward using the
physical scattering matrix Sphys in Eq. (2.50).
The formalism developed in this section is based on

channel expansions in terms of the energy-normalized
Coulomb functions f and g . This formalism is not the
most convenient for studying the systems in which the
long-range potential experienced by the escaping elec-
tron is non-Coulombic. The (f0, g0) pair describing a
long-range polarization potential is better adapted to the
study of negative ions (Kim and Greene, 1989; Greene,
1990a) because this base pair and the resulting phase
shifts m0 are analytic functions of the energy and exhibit
no singularities at the photodetachment threshold (Wa-
tanabe and Greene, 1980). In a single-channel problem
the quantum defect m0 of negative-ion bound states can
be expressed easily in terms of the parameters A, b , and
G [Eqs. (2.8) and (2.15)] that characterize the long-range
polarization potential (Greene, 1980; Watanabe and
Greene, 1980; Kim and Greene, 1989). Matching the
R-matrix eigenstates and their derivatives to a channel
expansion with f0 and g0 Coulomb functions gives a
short-range reaction matrix K0. This changes the equa-
tions of multichannel quantum-defect theory in a man-
ner described by Greene (1990a).
For photoelectron energy e less than −1/2l2, the

energy-normalized Coulomb functions (fel , gel) become
complex and therefore inconvenient. We will show later
in Secs. III and IV that some studies of doubly excited
states of alkaline-earth atoms were performed using
short-range reaction matrices K0 instead of short-range
reaction matrices K . Multichannel quantum-defect

theory calculations can be carried out using R matrices
that have a fixed number of fragmentation channels at
all energies considered, even when, for some channels,
e<2 1

2 l
2.

2. Bound-state properties

The formulas that were developed above to eliminate
exponential growth in closed channels are not immedi-
ately applicable to bound states because there is no
open-channel subspace. When all channels are closed,
the energy-level spectrum becomes entirely discrete,
whereas it is continuous if at least one channel is open.
The first thing of interest in the discrete energy range is
simply the position of the bound levels. For a single-
channel problem the quantization of bound states was
accomplished by Eqs. (2.13) and (2.14) above. The more
general multichannel version can be derived by follow-
ing similar logic.
We start from the radial solution matrix Mii8(r) out-

side the reaction volume, as expressed in Eq. (2.42) in
terms of the smooth, short-range scattering matrix Sii8.
Since all channels i are now closed, f i

6(r) diverge at
r→` , according to Eq. (2.38). We attempt to construct a
linear combination Mii8

(n)(r)5( i8Mii8(r)Bi8
(n) of the solu-

tions (2.42), chosen to cancel this exponential diver-
gence. The desired superposition follows from inspec-
tion of Eq. (2.47), recalling that Bo is now absent. The
resulting MQDT form of the bound-state quantization
condition reads

~Scc
† 2e2ib!B ~n !50. (2.61)

This system of linear equations has at least one non-
trivial solution if and only if

detuScc
† 2e2ibu50. (2.62)

The energies En at which Eq. (2.62) has a solution are
the bound-state energies of the system. Determination
of the En normally requires a numerical search for roots.
In this search the fastest energy dependence is normally
confined to the quantity e2ib. The scattering parameters
Scc
† normally vary quite slowly with energy, and can fre-

quently be regarded as constants over small spectral
ranges. The column vector of superposition coefficients
B(n) is well defined only at the bound energy levels and
is undefined at other energies. [It is sometimes useful to
establish continuity of the eigenvectors of Eq. (2.62)
even at nonbound energies, especially when trying to
classify complex spectra. One useful method is to diag-
onalize the matrix on the left-hand side at any E , giving
Nc eigenvalues and eigenvectors as continuous functions
of energy. The bound-state search then amounts to find-
ing energies at which at least one eigenvalue vanishes.]
The bound-state eigenvector is needed to calculate other
observable properties of the bound state at energy En ,
such as the probabilities of photon emission or absorp-
tion. As in Eq. (2.54a), the exponentially decaying func-
tion can be expressed in terms of the W(r ,n ,l) function
of Eq. (2.53),
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C~n !5(
i

1
r

F i~v!Wi~r ,n i ,l i!Zi
~n ! , (2.63)

where the closed-channel coefficient is

Zi
~n !5eib iBi

~n ! . (2.64)

Normalization of the coefficients B(n) remains unspeci-
fied, of course, by the homogeneous system (2.61). The
normalization integral can be evaluated analytically us-
ing a flux conservation argument, along the lines
sketched by Seaton (1983), Lee and Lu (1973), and
Greene et al . (1979). The expression given in Eq. (6.49)
of Seaton (1983) involves the energy derivative of the
short-range reaction matrix K . While the expression is
formally correct, it is numerically inconvenient in some
cases owing to the occurrence of poles of K(E) on the
real energy axis. In the eigenchannel formalism of mul-
tichannel quantum-defect theory, this difficulty is
avoided by using an alternative normalization expres-
sion that involves energy derivatives of the eigenquan-
tum defects ma and eigenvectors Uia of the K matrix
(Lee and Lu, 1973). While this avoids differentiation of
divergent quantities, another drawback of the resulting
expression is that derivatives of an eigenvector matrix
such as Uia also require great care in practice owing to
sharply avoided crossings between the ma .
We give instead an alternative normalization condi-

tion based on the short-range scattering matrix states,
which has been derived by similar techniques. The re-
sulting normalization integral can be cast into a form
suitable for rapid and accurate numerical evaluation:

E ucu2dV5~2p!21B ~n !†S 2db

dE
1ie22ib

dS†

dE DB ~n !

51. (2.65)

Normalization of the bound-state eigenvector is com-
pleted by enforcing this requirement on the B(n) calcu-
lated in the course of solving Eq. (2.61). In this form of
the normalization constant, only smooth quantities that
are free from poles on the real energy axis are differen-
tiated. Oscillator strengths for electric dipole transitions
from a lower level to a bound final state normalized
according to Eq. (2.65) can be calculated using the same
superposition coefficients B(n) and dipole matrix ele-
ments dS of Eq. (2.57). If the lower level has angular
momentum J0 and has an isotropic distribution of mag-
netic substates, this oscillator strength is given by

fn5
2v

3~2J011 !(i uBidi
Su2. (2.66)

Some insight into the qualitative meaning of the nor-
malization condition (2.65) is gained by recasting it and
Eq. (2.61) into another form. Note first that the bound-
state condition and also most of the quantum-defect ex-
pressions of the preceding subsection involve the matrix
difference Scc

† 2e2ib. Here (e2ib) ii8[Sii8
LR can be re-

garded as a ‘‘long-range scattering matrix,’’ giving the
amplitude that an electron fired outward from the origin

into a particular channel i8 will be reflected back toward
small distances in channel i . In the strict ‘‘quantum-
defect approximation’’ that ignores channel coupling in
the outer region, this long-range scattering matrix is di-
agonal. This diagonality expresses the fact, for instance,
that a Rydberg electron with a definite orbital angular
momentum l does not scatter into a different orbital mo-
mentum l8 in the course of its usual motion in the purely
Coulombic outer field. Processes that change the Ryd-
berg electron orbital momentum are embodied of course
in the short-range scattering matrix S . But an aniso-
tropic long-range field, such as an external electric or
magnetic field, produces a long-range field scattering
matrix SLR that is nondiagonal in a spherical represen-
tation.
Condition (2.61) can be rewritten in another form

which shows how an equilibrium must be established
between short- and long-range scattering, in order to
form a standing wave at a bound state:

~Scc
† 2SLR!B ~n !50. (2.67)

This expression, with a few manipulations, gives a more
general form for the normalization condition as well:

~2p!21B ~n !†S iSLRdSLR†dE
1iS

dS†

dE DB ~n !51. (2.68)

In this form the normalization integral involves two ma-
trices that are in some sense average values of Smith’s
‘‘quantum time operator’’ id/dE , with the ‘‘average’’
being taken over the long-range and short-range scatter-
ings, respectively. These quantities are closely related
conceptually to the time-delay matrix (Wigner, 1955;
Smith, 1960). We will denote the Hermitian time-delay
matrix by Qphys. This superscript is adopted in the same
spirit as the notation in Eq. (2.50), because Qphys is de-
fined in terms of the physical scattering matrix,

Qphys5iSphys
dSphys†

dE
. (2.69)

Note in particular that Qphys has indices relating to open
channels only, whereas the matrices in the normalization
expression (2.68) have only closed channel indices. Nev-
ertheless, they have the same structure, so we identify
the first matrix in the parentheses of Eq. (2.68) as the
‘‘long-range time-delay matrix’’ QLR and the second as
the ‘‘short-range time-delay matrix’’ Q .
Having established the connection between the nor-

malization constant or ‘‘density of states,’’ and the long-
and short-range time-delay matrices, we can give a more
detailed interpretation of the structure of Eqs. (2.65)
and (2.68). In particular, the long-range contribution to
the density of states in Eq. (2.68) is given analytically for
an attractive Coulomb field by p21(db/dE) ii85d ii8n i

3.
For any high Rydberg state this contribution is huge and
it normally dominates strongly over the short-range
time-delay contribution. It is also worth considering the
expression (2.50) for the physical scattering matrix,
where the fastest energy dependence (except possibly
for threshold effects or shape resonances) comes from
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the closed-channel phase parameter b . For this reason
we anticipate that the strongest energy dependences of
the scattering matrix, for systems of the kind treated in
this review, tend to come from the closed channels that
have been ‘‘eliminated’’ in the quantum-defect sense.
Deflection into such channels introduces appreciable
time delays in the emergence of a scattered wave packet,
when viewed in the time domain. When viewed instead
in the energy domain for stationary scattering states,
such effects appear in the corresponding density of
states or time-delay matrix Q(E). Accordingly, we in-
terpret qualitatively the long-range part of the normal-
ization integral (i.e., p21uBiu2db i /dE) as mainly reflect-
ing the portion of the density residing within the ith
closed channel. On the other hand, the short-range part
(2p)21B†Q B in Eq. (2.68) reflects density in other
channels whose indices are not included in the Nc ex-
plicit closed channels treated in the short-range scatter-
ing matrix, but whose effects have been included in the
course of solving the time-independent Schrödinger
equation.

3. Resonance analysis

The poles of the matrix S occur at the complex ener-
gies for which Eq. (2.62) is satisfied. Several theoretical
methods have been proposed for determining the reso-
nance positions and widths in the complex energy plane
from the poles of the complex matrix S (see, for ex-
ample, Siegert, 1939; Humblet and Rosenfeld, 1961;
Noble et al . , 1993).
The fact that Scc

† 2e2ib becomes singular at bound lev-
els can help us to understand the origin of autoionizing
resonances in scattering amplitudes [Eq. (2.51)] or in
dipole photoabsorption amplitudes [Eq. (2.58)]. In both
of these expressions, such a singularity clearly causes the
matrix inverse to become very large. At first glance, this
divergence of the matrix inverse might seem to lead to
infinite cross sections. But unitarity of the smooth, short-
range S matrix ensures that the singularity remains finite
at real energies, provided there is no closed-channel sub-
space that is totally decoupled from the continuum. (If
such a subspace is identifiable, its bound spectra can be
treated separately as in the previous subsection.) The
following discussion is adapted to resonances with non-
zero decay widths.
Near resonance energies, the closed part of the physi-

cal incoming-wave state of Eq. (2.55) has a significant
amplitude at finite distance. Equation (2.55) shows that
the wave-function components in closed channels take
the form of a quasistable standing-wave pattern near
these resonant energies, whose amplitude grows to a
maximum as the energy reaches the resonance center.
Following Lecomte (1987), the density of states can be
expressed in terms of the closed-channel coefficients
Zco of Eq. (2.54b) as:

ds5Tr ~Zoc
† Zco!. (2.70a)

The partial density of states in a particular closed chan-
nel i is given by

dsi5(
i8

Zii8
2 , (2.70b)

where the summation runs over the No linearly indepen-
dent solutions [Eq. (2.55)].
Equations (2.70a) and (2.70b) can be adapted, as de-

scribed by Luc-Koenig, Lecomte, and Aymar (1994), to
multichannel-quantum-defect-theory calculations using
the short-range reaction matrix K0 instead of K . Reso-
nance analysis in neutral atoms is performed (Luc-
Koenig, Aymar, and Lecomte, 1994; Luc-Koenig,
Lecomte, and Aymar, 1994), by defining ‘‘analytic’’ par-
tial densities of states in closed channels i by

dsi
05(

i8
~Zii8

0
!2, (2.71)

where now the closed-channel component in the physi-
cal incoming-wave state [Eq. (2.55)] is expressed as
( iPcr

21F i(v)W(n i ,l i ,r)(A) i21/2Zii8
0 . The introduction

of the parameter Ai
21/2 [Eq. (2.15a)] eliminates the di-

vergences occurring when the effective number n i in the
closed channel i has an integer value less than or equal
to l i .
Another tool for analyzing resonance properties was

provided by Smith’s (1960) physical time-delay matrix
Qphys of Eq. (2.69). In fact, Smith’s symbol Q reflects the
analogy he had in mind with resonating cavities that can
trap an electromagnetic or sound wave for thousands or
even millions of internal wave ‘‘bounces.’’ One key
property of an ‘‘isolated’’ resonance is its decay width.
We consider now states whose width is dominated by
autoionization, although other decay mechanisms such
as light emission or predissociation can be incorporated
when appropriate. The derivation of Eq. (2.69) for the
physical time-delay matrix is rather complicated as pre-
sented by Smith (1960), as it involves determining the
ratio of the density of particles within a finite volume to
the flux of particles in and out of that volume in differ-
ent channels. The derivation of Eq. (2.68), on the other
hand, shows how a quantity having the structure of the
time-delay matrix [Eq. (2.69)] arises naturally in a calcu-
lation of the normalization constant, or density of states
contributed by different channels. As Smith (1960) pro-
posed, this physical time-delay matrix can be used to
interpret resonances as follows. At any isolated reso-
nance in scattering or photoabsorption, a single eigen-
value qa of Q

phys is found to be far larger than all other
eigenvalues, and is seen to trace out an approximate
Lorentzian as a function energy (Burke, Cooper, and
Ormonde, 1969). If we denote the corresponding domi-
nant eigenvector as Cia , then the relative probabilities
for decay of the resonance into the different possible
open channels i are given by uCiau2. Moreover, the total
decay width of the resonance (full width at half maxi-
mum) is given by G54/max $Tr(Qphys)%'4/qa . In more
complex situations involving overlapping resonances,
the number of eigenvalues qa of Qphys having a non-
negligible value amounts to the number of closed chan-
nels Nc (Nc,No) that have been eliminated when con-
structing S† phys in Eq. (2.50). The density of states can
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be analyzed from the evolution of $ Tr (Qphys)% with the
energy E , though, the branching ratios for autoioniza-
tion can no longer be simply related to the eigenvectors
of the time-delay matrix. As was shown by Dalitz and
Moorhouse (1970), this quantity can be expressed in
terms of the energy derivatives of the eigenphase shifts
tr of the physical scattering matrix (Greene and Jungen,
1985),

ds85Tr ~Qphys!52(
rPo

dtr

dE
. (2.72)

As was shown by Lecomte (1993) and Lecomte et al .
(1994), the densities of states defined by Eqs. (2.70) and
(2.72) are identical when the short-range S matrix is en-
ergy independent. This case corresponds to the short-
range time-delay contribution being negligible com-
pared to the long-range contribution. This approach
permits calculation of the total decay width when only
the widths and positions are of interest, and not the
eigenvectors of Qphys. This type of analysis of the time-
delay eigenvectors and eigenvalues can be very helpful
for interpretation of resonance properties, and in par-
ticular for isolating final-state resonance effects from the
means of exciting them.
For more complicated situations, as illustrated later in

Sec. IV, the characteristics and the identifications of the
resonances can be obtained from the total and partial
densities of states using Eqs. (2.70)–(2.72).
Another area of current interest in this field is the

development of methods for resonance analysis in the
time domain rather than in the energy domain. The
time-domain spectrum can be calculated directly using
semiclassical approximations to quantum mechanics.
General ideas along these lines have been developed
extensively by Gutzwiller (1967), and applied with suc-
cess to problems in atomic and molecular physics by Du
and Delos (1988a, 1988b), and numerous other groups.
These techniques often end up calculating a semiclassi-
cal approximation to the ‘‘density of states,’’ and can be
viewed accordingly as approximations to the trace of the
time-delay matrix Qphys. These methods are particularly
useful in the short-time limit, where peaks in the ‘‘time
domain’’ can be associated with the periods of closed,
unstable classical trajectories. ‘‘Short-time’’ features in a
complex spectrum can be regarded equivalently as the
main features that show up in an experiment that does
not have particularly high-energy resolution. The analy-
sis of such short-time phenomena is often the simplest in
this picture, as surprising subtlety can be extracted from
the study of spectral features in the time domain.
Resonance analysis can also be performed using an

alternative MQDT parametrization of the resonances,
based on the commonly called phase-shifted MQDT
method. This approach was introduced by Giusti-Suzor
and Fano (1984) and Cooke and Cromer (1985) and
then worked out in a more rigorous form by Lecomte
(1987).
The development of this method has been motivated

by an increasing number of experimental data on au-

toionizing resonances of alkaline earths obtained, during
the last two decades, using the experimental isolated-
core excitation method (Cooke et al . , 1978). Several il-
lustrations will be given later in Sec. IV. We briefly
sketch the basic ideas of the Lecomte’s formulation. The
phase-shifted multichannel quantum-defect theory re-
duces the general problem of Nc closed channels inter-
acting with No open channels to a simpler problem in-
volving closed channels only, the presence of the open
channels being taken into account implicitly. From the
short-range reaction matrix K one introduces a complex
matrix kcc restricted to the closed channels,

kcc5Kcc2Kco~ i1oo1Koo!21Koc . (2.73)

This amounts to imposing Siegert-type boundary condi-
tions with only outgoing waves in all open channels. As
explained by Fano and Rau (1986) and illustrated later
in Sec. IV, the real part of k can be used to calculate the
positions of the resonances and to identify them by using
MQDT bound-state techniques.
The phase-shifted multichannel quantum-

defect theory is based on a phase normalization of
the Coulomb functions that consists of replacing the
standard pair (f ,g) by a phase-shifted pair
(fcospm̃2gsinpm̃, gcospm̃1fsinpm̃) followed by obtain-
ing a set of phase-shifted quantum defects m̃ i and a
transformed reaction matrix kcc8 whose elements can be
written in the form

k ij8 5rij1iRW i .RW j , (2.74)

with rii=0. As detailed by Lecomte (1987), the nondi-
agonal real rij elements describe the direct coupling be-
tween the closed channels and can be diagonalized
within a set of ‘‘degenerate’’ channels converging to the
same threshold. The Nc vectors RW i involved in the
imaginary part of the k8 matrix describe the coupling
between the Nc closed channels and Nc effective con-
tinua. When the resonances pertaining to the ith chan-
nel are well separated from the others, m̃ i and uRW iu2 char-
acterize the positions and scaled autoionizing widths g i
of the resonances in channel i . One has, in a.u.

g i5G i~n i!
352uRW iu2/p , (2.75)

where G i is the full width at half maximum for autoion-
ization and n i is the effective quantum number in chan-
nel i . The explicit construction of the effective continua
in terms of the jj-coupled open fragmentation channels
permits the branching ratios for autoionization toward
each open channel to be calculated for each closed chan-
nel. In addition, the calculation of the photoionization
spectra requires dipole matrix elements connecting the
initial level to the closed channels component and to the
effective continua, as well as one additional dipole ele-
ment corresponding to the excitation of the No2Nc
noninteracting continua.

E. Frame transformations

The key quantity characterizing the scattering and
photoabsorption spectra of a multichannel system is the
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smooth, short-range scattering matrix S (or the equiva-
lent reaction matrix K), and a set of smooth dipole tran-
sition amplitudes d . The short-range scattering matrix
S reflects a great deal of the system’s dynamics; in fact
Heisenberg (1943) regarded the physical scattering op-
erator Sphys as even more fundamental than the Hamil-
tonian itself. It is certainly true that essentially any in-
teraction appearing in the Hamiltonian will be reflected
at some level in the scattering matrix. For instance, the
effect of a sufficiently small term in the Hamiltonian can
be described by first-order perturbation theory, in which
the matrix element of a perturbation V is proportional
to a corresponding element of the reaction matrix (Rod-
berg and Thaler, 1967):

Kij'2p K 1r F if iuVu
1
r

F jf jL 1O~V2!. (2.76)

Consequently, much quantum-mechanical intuition,
which is initially sharpened for most students in the con-
text of energy-level calculations, can be directly carried
over and used to develop intuition about multichannel
scattering processes and spectra. For example, if the
dominant interactions present in the Hamiltonian are
diagonal in a particular angular momentum coupling
scheme, we expect the scattering matrix to be block di-
agonal in that same coupling scheme. The physical con-
sequences of this viewpoint were first used profitably by
Fano (1970) in the context of H2 photoabsorption.
Fano, Jungen, and their co-workers have been instru-
mental in developing and extending this picture to sys-
tematically describe a broad range of problems in
atomic and molecular physics. (See, for example, Jungen
and Dill, 1980; Raoult and Jungen, 1981; Greene and
Jungen, 1985; Fano and Rau, 1986)
The basic idea of the recoupling frame transformation

can be conveyed by developing a specific example. Con-
sider the photoabsorption spectrum of a light atom. Be-
cause spin-orbit and other fine-structure perturbations
are particularly weak in light atoms, most of the impor-
tant physics is determined by the electrostatic interac-
tion. Exchange is important, because Pauli antisymme-
trization affects each symmetry differently. To the
extent that electrostatic interaction and Pauli exchange
effects dominate, the energy eigenstates can be charac-
terized by L and S , the total orbital and spin angular
momenta respectively, of all atomic electrons, since LW 2

and SW 2 both commute with the electrostatic Hamil-
tonian.
One might be tempted under these circumstances to

complete the entire photoabsorption calculation assum-
ing validity of LS coupling throughout. However, the
basic logic developed by Lu (1971), and more systemati-
cally by Lee and Lu (1973), shows how frame transfor-
mation methods describe a large class of fine-structure
effects. These effects are surprisingly important and
nonperturbative in certain regions of the spectrum, even
in light atoms. For definiteness, consider photoioniza-
tion of the 1Se ground state of a two-electron atom such
as beryllium, in an energy range that extends to final

states close to the Be1(2p) ionization threshold. In a
standard LS-coupling approximation, an electric dipole
photon excites only 1Po final states. Focusing just on the
ionization channels attached to the 2p ionic state, two
relevant channels are specifically excited, namely
2pns 1Po and 2pnd 1Po. Because the 2p ionic state
would (artificially) have no spin-orbit splitting in a strict
LS-coupled nonrelativistic calculation, the escaping s-
or d-wave electron will move outward toward the detec-
tor at infinity if the final-state energy E lies above the
2p threshold E2p . If the energy lies below, E,E2p , a
pattern of 2pns 1Po and 2pnd 1Po Rydberg levels will
be formed just below the 2p threshold.
Now consider the physics of photoelectron escape

from the real ionic 2p levels, which have a fine-structure
splitting, E2p3/2

5E2p1/2
16.6 cm21. This splitting is tiny

on the scale of the strongest interactions present in the
atomic Be Hamiltonian. For reference, the exchange
splitting between the 1Po and 3Po 2s2p levels is more
than 21 000 cm21. While the fine-structure splitting thus
seems to be negligible in comparison, at final-state ener-
gies close to the Be1(2p) thresholds it can have a non-
perturbative effect on the asymptotic wave functions.
With the atom at a final-state energy E , the electron
escapes from these two possible ionic energy levels
E2p1/2,3/2

. Owing to energy conservation, the escaping
electron energy is asymptotically different depending on
the residual ionic energy,

e2p1/25E2E2p1/2
, e2p3/25E2E2p3/2

. (2.77)

The effect of these different energies of photoelectron
escape in the two different channels can be summarized
succinctly in terms of the de Broglie phase difference
between the corresponding wave functions. A WKB
analysis, which neglects the short-range phase contribu-
tions from electron correlations, gives for this phase dif-
ference as a function of r :

Df5E rSA2e3/21
2
r8

2A2e1/21
2
r8D dr8

'
A2
3
r3/2DE . (2.78)

(For the purposes of this qualitative analysis, we ignore
the Langer-corrected centrifugal term and the small dif-
ference between the classical turning points at small dis-
tances.) Figure 3 shows how this small energy difference
affects the corresponding radial (l50) wave functions at
a final-state energy in between the 2p1/2 and 2p3/2
threshold, such as e2p3/252e2p1/2. The key thing to note
here is the way the wave-function components attached
to the different fine-structure thresholds remain locked
tightly in phase up to a radius rcrit of about 1000 a.u. But
beyond that radius, the two orbitals lose their phase co-
herence and at larger distances they act like indepen-
dent channels. Any property relating to electron motion
at distances larger than 10 3 atomic units for this energy
range of atomic Be can be expected to show nonpertur-
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bative effects of the spin-orbit interaction. One such
property is the spectroscopy of high-lying 2pns Rydberg
levels just below the 2p ionic threshold. Distances of this
magnitude translate into principal quantum numbers in
the range of ncrit'A1000'30. This critical value of n
marks a transition region beyond which spin-orbit inter-
action is especially strong. An energy argument confirms
this: the difference between the 2pns 1Po and 3Po en-
ergy levels should be approximately (Dm)n23 a.u. Here,
Dm is the difference between singlet and triplet quantum
defects for this series, and its magnitude is expected to
be less than 1. Simple arithmetic shows that n'30 like-
wise marks the transition region in energy, where the
exchange interaction becomes smaller than the ionic
fine-structure splitting of 6.6 cm21.
The observed capability (Fig. 3) of radial fine-

structure components to remain phase locked at small
distances provides the key toward a formulation of these
nonperturbative spin-orbit effects. The first key is to rec-
ognize that LS-coupled asymptotic channels are funda-
mentally incapable of describing the fine-structure-
dependent phase evolution depicted in Fig. 3. In
particular, the asymptotic phase depends on Jc , the total
angular-momentum quantum number of the ionic resi-
due, with values 1

2 and
3
2 in this example. Because JW c

2

commutes with neither LW 2 nor SW 2, LS-coupled channels
can never suffice in the region r.rcrit . The asymptotic
channel indices i must therefore include Jc . Other than
this absolute requirement, considerable flexibility re-
mains in the choice of the other channel quantum num-
bers. For different systems, or for different observables,
different asymptotic coupling schemes may be advanta-
geous, although they will all produce the same spectra in
the frame-transformation method. Examples of typical
coupling schemes include Jcj-coupled channels (usually
abbreviated as jj-coupled) ui&5unc(sclc)Jc(sl)jJM&,
JcK-coupled channels ui&5unc@(sclc)Jcl#KsJM& (de-
noted as pair coupling, jK or jl coupling) and
JcJcs-coupled channels ui&5unc@(sclc)Jcs#JcslJM&. For

these three cases, a standard angular-momentum recou-
pling, diagonal in the total J and M , relates the asymp-
totic channels to the LS-coupled channel functions
u ī&5unc(scs)S(lcl)LJM&.
The recoupling formulas needed can be found in

Sobel’man (1972) or other standard references such as
Zare (1988). In the case of Jcj coupling, the real or-
thogonal transformation matrix Xiī involves the recou-
pling matrix element ^(sclc)Jc(sl)ju(scs)S(lcl)L&(J). (A
Kronecker delta function is implied in all channel quan-
tum numbers other than Jcj ,SL .) In problems in which
the dominant interactions are the ionic fine-structure
and multipole effects on the distant electron, the
i[JcK coupling scheme leads to short-range scattering
matrices S that are more nearly diagonal. In this
scheme the recoupling matrix Xiī is
^@(sclc)Jcl#Ksu(scs)S(lcl)L&(J). An analogous formula
is readily derived for the JcJcs coupling scheme, which is
advantageous, for instance, in calculation of photoelec-
tron angular distributions because both JW c

2 and JW cs
2 com-

mute with the observed ejection angle. We repeat, how-
ever, that the use of all three of these coupling schemes
leads to identical results in a description of fine-structure
effects by frame-transformation techniques. In fact, the
true wave function is not assumed to be a single term in
LS coupling, jj coupling, nor in any other coupling
scheme. Rather, a linear combination of the different
channels is ultimately selected in the course of solving
the quantum-defect equations at each energy. To con-
nect to a more familiar point of view, the MQDT de-
scription of spin-orbit effects using a recoupling frame
transformation gives results similar to an intermediate-
coupling calculation in traditional spectroscopy, for lev-
els lying far below all ionization thresholds. However
the MQDT version automatically includes continuum
and high-Rydberg interactions that are difficult to de-
scribe in traditional intermediate-coupling calculations.
Importantly, and perhaps surprisingly, the dynamics are
correctly described even when fine-structure effects are
ignored completely when calculating the short-range
scattering matrix SLS , which is block diagonal in LS
coupling.
The complete frame-transformation procedure re-

quires one additional key point. In fact, the recoupling
of the short-range matrix SLS just described,

Sjj5X SLSX
†, (2.79a)

and of the associated dipole matrix elements on the left-
hand side of Eq. (2.57),

djj5X dLS , (2.79b)

by themselves have no effect whatsoever on the calcu-
lated spectra. This can be seen by inspecting Eqs. (2.58)
and (2.59), as the unitary transformation drops out of
the total cross section. Importantly, in the spirit of Fig. 3,
it is crucial to use the experimental Jc-dependent ioniza-
tion thresholds when calculating the long-range diagonal
phase matrix e2ib needed to evaluate the MQDT formu-
las (2.50) and (2.58). A further note of clarification con-
cerns the dipole matrix elements dLS in Eq. (2.79b):

FIG. 3. Spin-orbit frame-transformation example with wave
functions in two fine-structure-split Coulombic channels.
Radial s orbitals of Be calculated at an energy equidistant
from the 2p1/2 and 2p3/2 thresholds, i.e., for e2p1/2.0 and
e2p3/2,0 such that e2p3/252e2p1/2.
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these are understood to be coupled reduced dipole ma-
trix elements determined from an LS-coupled calcula-
tion, i.e., dLS[^(SL)Juud(1)uu(S0L0)J0& .
On top of the changed values of e2ib i, in different

closed fine-structure channels, an equally important as-
pect is the fact that use of experimental thresholds af-
fects the partitioning between open and closed channels
at any chosen energy E . That is, before inclusion of fine-
structure effects, the channels attached to the 2p thresh-
old are either all open or all closed. Once the splitting
into 2p1/2 and 2p3/2 thresholds is built into the calcula-
tion by using their experimental energies, a new regime
arises at energies between the two thresholds where the
2p3/2nl channels are closed while the 2p1/2el channels
are open. In this energy range, a completely new physi-
cal process occurs that cannot be described in pure LS
coupling, namely autoionization by a spin flip. Although
it occurs in only a tiny energy range for this Be example,
it can happen over larger energy ranges in other sys-
tems. In such energy regimes the physics is affected
qualitatively and nonperturbatively by the inner-
electron spin-orbit interaction.
These effects are illustrated in Fig. 4, which depicts

the photoionization cross section of Be at final-state en-
ergies just below the 2p1/2 threshold. Neglecting all fine-
structure effects throughout the calculation leads to the
qualitatively incorrect spectrum shown in Fig. 4(a). Fig-
ure 4(b) shows how LS-coupled scattering and dipole

matrices, combined with a recoupling jj-LS frame trans-
formation and the use of experimental ionic 2p thresh-
olds in the MQDT calculation, predict a rich multichan-
nel spectrum. This particular system has not been
studied experimentally at such high resolution, but such
recoupling frame transformations are usually quite accu-
rate, as will be seen in the comparisons of Sec. IV.
To interpret the dynamics involved in spectra like that

in Fig. 4(b), we return to a heuristic time-dependent
viewpoint. A light pulse incident on the 1Se ground state
at time t'0 excites an outgoing wave front of purely
1Po character at small distances. The outgoing
2pns 1Po wave front is sheared into its two fine-
structure components that accumulate radial phase at
slightly different rates. If, in fact, the final-state energy
reaches the small range between the fine-structure
thresholds, eventually the portion of the packet in the
closed 2p3/2ns channel will be reflected back toward the
nucleus, whereas the portion in the open 2p1/2es channel
can continue outward to infinity uninhibited. This differ-
ential reflection, i.e., that occurring only for one fine-
structure component Jc5

3
2, couples the other LS sym-

metries into the photoabsorption process even though
they are not connected to the ground state by an electric
dipole matrix element. For this reason, the spectra in
this energy range are sensitive also to the 3Po symmetry
scattering matrix, as the wave front returning to the
nucleus will have components in all relevant LS symme-
tries. In the case of the 2pnd channels, not only 1,3Po

symmetries are coupled, but also the 3Do symmetry,
whose Rydberg levels converging to the 2p threshold
would have been true bound levels for our gedanken Be
atom without spin-orbit interactions. The frame trans-
formation couples the 2pnd 3Do levels to the L51o

channels in the real atom, thereby permitting these
states to autoionize.
Note also that when the energy is above all thresholds

relevant in the problem—just above Be1(2p3/2) in our
example—the frame transformation has no effect on the
total cross section, since there are no longer any b i oc-
curring in which to use the experimental thresholds. Our
time-dependent argument shows why this is reasonable,
namely because when all channels are open, no differ-
ential reflection is expected to occur semiclassically, and
the wave fronts in the fine-structure channels can pro-
ceed outward indefinitely to infinity. In this energy range
where all channels are open, the total photoionization
cross section coincides with that which would be ob-
tained in a purely LS-coupled calculation. [This is not
generally true for long-range fields other than the attrac-
tive Coulomb field, owing to the energy-dependent pa-
rameters A and G discussed in the context of Eq. (2.15).]
Finally, the dynamics of recoupling frame transforma-
tions have been discussed elsewhere by Watanabe et al.
(1984), who point out that a fairly well-defined radius
can be identified where the shearing of the 1Po wave
function into its fine-structure components occurs. This
is the radius at which a Landau-Zener-type transition

FIG. 4. Be photoionization spectrum near the 2pj thresholds:
(a) all fine-structure effects are neglected in the eigenchannel
R-matrix and MQDT calculations performed in LS coupling;
(b) results obtained with scattering and dipole matrices deter-
mined by LS-coupled R-matrix calculations combined with a
recoupling jj-LS frame transformation and the use of experi-
mental ionization 2pj thresholds in the MQDT calculations.
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occurs, and it is roughly where the exponentially-
decaying exchange energy is equal to the spin-orbit in-
teraction energy.
The preceding considerations demonstrate that effects

of the spin-orbit interaction on a highly excited Rydberg
or continuum electron are felt primarily at large dis-
tances. This may seem surprising initially, since one nor-
mally thinks of the spin-orbit interaction as a short-
range interaction, owing to the r23 dependence of the
spin-orbit term in the Hamiltonian, which is strongest
near the nucleus. This apparent contradiction clarifies
the origin of spin-orbit effects on atomic Rydberg elec-
trons. They are mostly caused by the dephasing of dif-
ferent spin-orbit radial components as an indirect conse-
quence of energy conservation, reflecting the spin-orbit
splitting of the residual ionic core. In fact, the direct
effect of the Rydberg electron’s spin-orbit term in the
Hamiltonian can usually be neglected. Examples in Sec.
IV will probe the accuracy and limitations of this view-
point.

F. Semiempirical analysis of multichannel spectra

The semiempirical approach of multichannel
quantum-defect theory, in which short-range scattering
parameters are adjusted to reproduce a particular set of
experimental data, has enjoyed remarkable success in
interpreting complex multichannel spectra. A great deal
of empirical analyses were carried out using the eigen-
channel MQDT formalism introduced by Fano and co-
workers (Fano, 1970; Lu and Fano, 1970; Lu, 1971; Lee
and Lu, 1973). The physical solutions and observables
were calculated in terms of the ma and Uia smooth scat-
tering parameters obtained by diagonalizing the short-
range reaction matrix of Eq. (2.35), and of the short-
range dipole matrix elements Da . Compared to the
previous semiempirical analyses based on the Seaton’s
formalism, two aspects of the eigenchannel MQDT for-
malism greatly enhanced the power of such analyses.
First, Fano and Lu (Fano, 1970; Lu and Fano, 1970; Lu,
1971) introduced a graphical method, based on the use
of the so-called Lu-Fano plots, which has proved ex-
tremely useful in analyzing multichannel spectra. The
second key development resulted from the introduction
of the frame transformation between the short-range
eigenchannels a and the long-range fragmentation chan-
nels i (Fano, 1970).
Earlier semiempirical studies dealt with channel inter-

action between Rydberg series converging to two differ-
ent ionization limits. The first calculation (Fano, 1970)
concerned the channel interaction between the J51
odd-parity 1snp Rydberg series of H2 converging to the
N150 and N152 rotational levels of H2

1 , which were
observed in the photoabsorption spectrum of H2. Then
diverse experimental data (energy positions and oscilla-
tor strengths in the discrete and autoionizing regions)
observed in the photoabsorption spectra of Xe (Lu,
1971) and Ar (Lee and Lu, 1973) were interpreted in a
compact form using the same procedure. The method
was then applied to the photoabsorption spectra of

carbon-group elements Si, Ge, Sn, and Pb (Brown et al.,
1977a, 1977b, 1977c; Ginter and Ginter, 1986; Ginter
et al., 1986). Simultaneously, in connection with the de-
velopmen t of laser spectroscopy, the method was ex-
tended to handle more complex spectra involving inter-
acting Rydberg series converging to more than two
ionization limits and numerous perturbed Rydberg se-
ries of alkaline earths were successfully interpreted
(Armstrong et al . , 1977; Esherick, 1977; Lu, 1977; Ay-
mar et al . , 1978; Armstrong et al . , 1979; and references
in Aymar, 1984a). Since then, the analysis of atomic and
molecular spectra has increasingly utilized this empirical
approach but it is out of the scope of this review to
quote all the corresponding studies.
Because the semiempirical fitting procedure based on

the eigenchannel formalism of multichannel quantum-
defect theory is described in detail in the above-
mentioned papers, we will sketch only the main points
and begin by illustrating a Lu-Fano plot in a simple two-
channel system. Figure 5 deals with the perturbation of
the Sr 5snp 1P Rydberg series by the 4d5p 1P doubly
excited level, the lowest member of the 4dnp 1P series
converging to the upper 4d ionization limit. All 1Po

bound levels are represented in a compact form by plot-
ting them in the plane -n5s (mod 1) against n4d . The
effective quantum numbers n5s , and n4d relative to the
spin-orbit-averaged 4s and 4d limits are connected
through the relation

E5I5s2
Ry

n5s
2 5I4d2

Ry

n4d
2 , (2.80)

where Ry is the mass-corrected Rydberg constant. (Note
that E , I5s , and I4d , expressed in cm

21, are relative to
the 5s2 ground state.) All experimental points (full
points) except that corresponding to the lowest 5s5p

FIG. 5. Lu-Fano plot of the odd-parity 1P1
o bound levels of Sr,

comparing experimental values—depicted by solid points—
with the Lu-Fano plot of Eq. (2.81b), calculated using the
eigenquantum defects m1, m2 and the mixing angle u fitted to
the experimental data by Armstrong et al . (1979). The theo-
retical energy levels are obtained at the intersections of the
Lu-Fano plot and of the curve (dashed line) -n5s (mod 1)
= f(n4d) defined by Eq. (2.80). The Sr 5snp 1P1 Rydberg se-
ries is perturbed by the 4d5p 1P1 doubly excited level.
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level lie on the Lu-Fano plot (full line). Theoretically,
this curve represents the solution of Eq. (2.62), which, in
terms of eigenchannel short-range scattering param-
eters, is

detuUiasinp~n i1ma!u50. (2.81a)

For a two-channel problem, Eq. (2.81a) gives

detS cosu sinp~n11m1! sinu sinp~n11m2!

2sinu sinp~n21m1! cosu sinp~n21m2!
D 50,

(2.81b)

where m1 and m2 are the two quantum-defect param-
eters and the angle u characterizes the (2 3 2) orthogo-
nal Uia matrix.
The theoretical curve can be plotted continuously

even though the true spectrum is discrete. Therefore,
this approach determines the quantum defect even at
energies at which there is no level because Eq. (2.80) is
disregarded. The Lu-Fano plot depends only on the dy-
namical smooth scattering parameters, which are nearly
independent of the energy. Thus the Lu-Fano plot can
be viewed as a way to highlight the short-range dynam-
ics common to all the levels. The theoretical energy lev-
els are obtained at the intersections of the Lu-Fano plot
-n5s (mod 1)= f1(n4d) defined by Eq. (2.81b) and of the
curve (dashed line) -n5s (mod 1)= f2(n4d) defined by Eq.
(2.80), where -n5s and n4d depend parametrical on the
energy. The Lu-Fano plot of Fig. 5 was calculated using
the eigenquantum defects m150.892, m250.491 and the
mixing angle u50.196p fitted to the experimental data
by Armstrong et al . (1979). The deviation between
theory and experiment occurring for the 5s5p level re-
sults from the fact that Armstrong et al . (1979) intro-
duced only a linear energy dependence for the ma

whereas, as documented in Sec. IV, a more complicated
energy dependence exists. It should be noted here that
the Lu-Fano plot of Fig. 5 can be extended above the
5s threshold provided the effective quantum number
n5s is replaced by d5s /p where d5s represents the phase
shift in the 5sep open channel.
From a practical point of view, for a two-limit prob-

lem, the intersections of the diagonal straight line
n5s5n4d with the Lu-Fano curve directly give the values
of the two ma parameters. Moreover the slope of the
Lu-Fano curve at each of these intersections is related to
the angle u (Fano, 1970). The gap between the two
branches gives a visual estimation of the channel inter-
action strength. For an almost unperturbed 5snl Ryd-
berg series characterized by an almost constant quantum
defect m , one should expect a sharp rise of -n5s (mod 1)
near the perturbing level in order to keep m5n2n5s
constant. The marked departure from a step function
visible in Fig. 5 reflects a strong channel interaction. A
quantitative measure of the channel coupling is given
(Greene, 1981) by the S-matrix element

uS12u25sin22u sin2pDm , (2.82)

which gives the probability that the Rydberg electron
will scatter from one channel to the other when it col-
lides with the ionic core. The fitted values
Dm5um12m2u50.401 and u50.196p are not too far
from the values Dm50.5 and u5p/4, which correspond
to the strongest possible channel interaction.
Lu-Fano plots drawn through experimental points

help the experimentalists in spectral analysis of per-
turbed series. It is possible to detect channel interactions
and to estimate their strength without any calculation.
However, more quantitative information on the identifi-
cation of interacting levels and on the strengths of chan-
nel interactions requires the determination of the
smooth scattering parameters. The fitting procedure
consists of adjusting the parameters so that the theoreti-
cal and experimental energies agree. The determination
of the channel coefficients Zi

(n) of Eq. (2.64), which
measure the fractional admixture of each fragmentation
channel i into a particular level n allows one to label the
levels. In the Sr case discussed above, the empirical
MQDT treatment has confirmed the suggestion of Gar-
ton and Codling (1968) concerning the identification of
the 4d5p 1P perturber: this level must be identified with
the 5s8p 1P level listed by Moore (1949).
For systems in which spin-orbit effects cannot be ne-

glected (rare gases, heavy alkaline earths), the fragmen-
tation channels should be described in jj or jK coupling.
The number N of interacting channels corresponding to
given J and parity can be large. The number of scatter-
ing parameters becomes important, the unitary Uia ma-
trix depending on N(N21)/2 independent parameters.
The use of the jj-LS frame transformation helps to
greatly reduce the number of adjustable parameters.
The semiempirical analyses of the Ar absorption spec-
trum (Lee and Lu, 1973) and of heavy alkaline earths
(Aymar et al . , 1978; Armstrong et al . , 1979 Aymar and
Robaux, 1979) introduced a set of LS-coupled channels
ā and factorized the Uia matrix, so that
Uia5(āXiāV āa . The Xiā matrix corresponding to the
geometric jj-LS transformation accounts for most of the
angular recoupling effects. Assuming that the short-
range Hamiltonian is almost diagonal in LS coupling,
the V āa matrix elements are fitted to the experimental
data by minimizing the departure of the V āa matrix
from the unit matrix. From a practical point of view, the
V āa matrix elements are often expressed in terms of
generalized Euler angles, each of them describing a ro-
tation between two particular channels (Lee and Lu,
1973). The empirical analysis of the odd-parity J51
spectrum of Ar (Lee and Lu, 1973) showed that the jj-
LS frame transformation accounts for much of the chan-
nel interaction. This was confirmed by the ab initio cal-
culation performed by Lee (1974a) using the iterative
eigenchannel R-matrix variational approach, the empiri-
cal and ab initio scattering parameters being in good
agreement.
The graphical method of Lu-Fano is most useful for

two-limit systems with a small difference between the
two ionization limits. In such a case, the Rydberg series
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converging to the lower limit I1 is periodically perturbed
by members of the series converging to the higher limit
I2. The clear pattern of periodicity not only in n1, but
also in n2, can be easily visualized when data are plotted
with respect to n2 (mod 1) instead of n2 itself. When the
energy dependence of the short-range scattering param-
eters is negligible, all data drawn inside a -n1 (mod 1)
against n2 (mod 1) unit square come to lie on a single
curve. This curve represents in a compact form all the
perturbations arising from the interaction between the
channels (see, for example, Lee and Lu, 1973, and Fano
and Rau, 1986).
Such a situation occurs for Rydberg series converging

to the doublet levels of a spin-orbit split core: Rydberg
series of rare gases converging to the p5 2P3/2,1/2 thresh-
olds (Lu, 1971; Lee and Lu, 1973); series of the carbon-
group elements converging to the s2p 2P1/2,3/2 thresholds
(Brown et al . , 1975, 1977a, 1977b, 1977c; Ginter and
Ginter, 1986; Ginter et al . , 1986); autoionizing Rydberg
series of Ba converging to the 5d3/2,5/2 or 6p1/2,3/2 thresh-
olds (Aymar et al . , 1983; Gounand et al . , 1983). Note
that the autoionizing series can be treated as bound se-
ries providing the autoionizing widths are small, the
treatment being, of course, restricted to the positions of
resonances. The advantages related to the periodicity of
perturbing levels and to the use of the jj-LS frame
transformation were fully exploited in all these studies.
Now we turn again to the analyses of the perturba-

tions of bound Rydberg series m0snl of alkaline-earth
atoms by doubly excited levels, which are the lowest
members of the Rydberg series converging to the
(m021)d or/and m0p thresholds (m054, 5, 6 for Ca, Sr,
and Ba, respectively). The semiempirical approach has
helped greatly in analyzing much energy data obtained
by laser spectroscopy measurements, allowing one to
identify the newly observed levels and to analyze quan-
titatively the channel interactions. Moreover, various
observables other than energy (lifetimes, gJ Landé fac-
tors, isotope shifts, hyperfine-structure measurements)
provided by high-resolution laser spectroscopy were also
interpreted semiempirically (see Aymar, 1984a, 1984b).
In spite of its clear success, the semiempirical method
encountered several difficulties:
(1) At the low end of each Rydberg series, the smooth

scattering parameters acquire a strong energy depen-
dence. The lowest levels of each m0snl series cannot be
correctly described empirically, even when a linear de-
pendence is invoked for some parameters (see the
5s5p level on Fig. 5). More critical is the fact that it then
becomes difficult and even sometimes impossible to
identify unambiguously the low-lying perturbers by tak-
ing into account their Rydberg periodicity. The main dif-
ficulties arising for the (m021)d2 and m0p

2 isolated
perturbers of even-parity series will be further addressed
in Sec. IV.
(2) For systems involving a large number of interact-

ing Rydberg series, assumptions have to be made to re-
duce the number of free parameters. They mainly con-
cern the construction of the Uia matrix. As already
mentioned, this matrix is generally constructed by as-

suming that the a channels are nearly LS coupled. As-
sumptions on the strength of channel interactions permit
one to reduce the number of free parameters introduced
in the fitting procedure by fixing the values of some
angles generating the V āa matrix at zero. In particular,
the interactions between some perturbing channels are
neglected.
(3) The main difficulties arise from the fact that the

energy values do not contain sufficient information to
determine the complete Uia matrix. More precisely,
when more than one channel converges onto a given
threshold, energies permit one to determine only some
combinations of Uia elements that are invariant under
orthogonal transformation of these channels (Lu, 1971;
Aymar, 1984a, 1984b). Experiments that distinguish be-
tween these channels are necessary to get the full ma-
trix. Aymar (1984a, 1984b) discussed how gJ Landé fac-
tors and mainly hyperfine-structure data have been used
to extend the Ba multichannel-quantum-defect-theory
models deduced from energy data. In this way, the
singlet-triplet mixing between 6snl 1L and 3L Rydberg
levels have been correctly described (Aymar, 1984a,
1984b; Post et al . , 1986). In Sec. IV we will discuss the
validity of the assumptions made in the semiempirical
MQDT method and show that the difficulties arising in
this approach are bypassed by calculating the scattering
parameters with the R-matrix method.
In addition to the early studies of the photoabsorption

spectra of rare gases between the 2P3/2 and
2P1/2 thresh-

olds (Lu, 1971; Lee and Lu, 1973), a few semiempirical
MQDT simulations of autoionizing resonances were
performed with the eigenchannel MQDT formalism
(see, for example, Aymar et al . , 1982; Gounand et al . ,
1983). However, during the last two decades, experi-
mental data on autoionizing resonances of alkaline
earths have been obtained mainly by using the experi-
mental isolated-core excitation method and the semi-
empirical MQDT simulations of the corresponding data
were primarily performed using the phase-shifted
MQDT approach of Cooke and Cromer (1985). The al-
ternative MQDT parameters, quantum defects m̃ i and
matrix elements k ij8 of Eq. (2.74) referring to the frag-
mentation channels can be more easily extracted from
the observation than short-range eigenchannel MQDT
parameters. Indeed, as is stated in Sec. II.D.3, for an
isolated autoionizing Rydberg series, the positions of the
resonances are characterized by the quantum defects
m̃ i and the scaled autoionizing widths are related to the
k ij8 matrix elements. An impressive number of experi-
mental data on autoionizing Rydberg series were fitted
using this approach (see, for example, Xu et al . , 1986;
Abutaleb, de Graff, Ubachs, and Hogervorst, 1991;
Hieronymus et al., 1990; Jones et al., 1991b; de Graaff
et al., 1992, and references therein). However, most of
the MQDT models adjusted to a particular set of mea-
surements introduced numerous assumptions in order to
reduce the number of free parameters. A limited num-
ber of closed channels was accounted for and generally
each closed channel was assumed to be coupled to only
one effective continuum. Moreover, the fragmentation
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channels were assumed to be purely jj- or jK-coupled
and the energy dependence of the MQDT parameters
was frequently neglected. These models permit a good
simulation of the observations but have little or no pre-
dictive power.

III. EIGENCHANNEL R-MATRIX APPROACH

The preceding section showed how it is useful to char-
acterize complicated spectra in terms of the smooth
short-range scattering parameters of multichannel
quantum-defect theory. While these have been obtained
semiempirically by simply fitting to experimental spectra
in a number of problems, the full power of this theoreti-
cal formulation emerged after when it became possible
to extract these scattering parameters from ab initio or
nearly ab initio calculations. In principle, a host of dif-
ferent theoretical approaches can be used to calculate
the scattering matrix S and relevant dipole matrix dS. In
the multichannel spectroscopy viewpoint, the main idea
is to solve the time-independent Schrödinger equation at
a chosen energy subject to scattering-type boundary
conditions at large distances, which must be applied in
all open and closed channels. Such calculations have
been performed to treat argon photoabsorption by Lee
(1974a), using an iterative form of the eigenchannel
R-matrix approach developed by Fano and Lee (1973).
Accurate MQDT parameters were subsequently calcu-
lated by Johnson et al. (1980), near the lowest ionization
threshold(s) for all of the rare-gas atoms using the rela-
tivistic random-phase approximation, with the interest-
ing difference that a relativistic version of multichannel
quantum-defect theory (Zilitis, 1977; Johnson and
Cheng, 1979; Johnson and Lin, 1979; Lee and Johnson,
1980; Chang, 1993; Goldberg and Pratt, 1987) was
adopted in place of the nonrelativistic approach dis-
cussed in Sec. II. These calculations successfully ac-
counted for numerous photoionization experiments in
the rare-gas atoms, including integrated total and partial
cross sections in addition to the angular distribution and
spin polarization of the photoelectrons. Fink and
Johnson (1990) used a time-dependent Dirac-Fock ap-
proach that is closely related to the relativistic random-
phase approximation to predict Lu-Fano plots for the
rare-gas atoms with J50,2 close to the lowest threshold.
The nonrelativistic random-phase approximation could
similarly be applied to calculate the MQDT scattering
parameters and photoabsorption amplitudes including
closed as well as open channels, but apparently no non-
relativistic random-phase approximation calculations
have yet been carried out in this manner.
While these and other methods such as the hyper-

spherical close-coupling approach (Greene, 1981; Wa-
tanabe, 1982, 1986; Tang et al . , 1992) and the Schwinger
variational principle (Goforth et al . , 1987; Goforth and
Watson, 1992) are capable of solving the Schrödinger
equation and extracting the desired MQDT parameters,
noniterative R-matrix methods appear to be among the
most efficient. The majority of the nearly ab initio calcu-
lations of quantum-defect parameters have utilized a

noniterative reformulation (Greene, 1983; Le Rouzo
and Raseev, 1984) of the Fano-Lee eigenchannel
R-matrix method (Fano and Lee, 1973; Lee, 1974a; Ra-
seev and Le Rouzo, 1983). Because it has been used so
extensively and successfully in recent years for such cal-
culations, this particular (noniterative eigenchannel) for-
mulation of the R-matrix approach will be the focus of
our discussion in this section. [It should be noted that,
like the Wigner-Eisenbud form of the R-matrix method,
the eigenchannel R-matrix method was first introduced
in nuclear physics to study resonance reactions (Danos
and Greiner, 1966; Mahaux and Weidenmüller, 1968).]
On the other hand, we stress that many other methods
are available and have comparable strengths. A notable
example is the Wigner-Eisenbud (Wigner and Eisenbud,
1947) form of the R-matrix method, which has many of
the same advantages as the eigenchannel variant, pro-
vided a Buttle correction (Buttle, 1967) is introduced to
offset its poor convergence properties. This method has
been extensively used by the Belfast group (Burke and
Robb, 1975; Berrington et al . , 1978); for references the
readers are referred to the recent compilation of Burke
and Berrington (1993). Moreover, a modified form of
the Wigner-Eisenbud R-matrix theory (Wigner and
Eisenbud, 1947) that has been used by Schneider (1975,
1995) appears to be formally equivalent (Robicheaux,
1991; Schneider, 1995) to the noniterative eigenchannel
R-matrix method if the same variational basis sets are
used in the two approaches.

A. General procedure

The eigenchannel R-matrix method is a variational
approach that determines a set of eigenstates of the
Schrödinger equation within a finite reaction volume V
in configuration space. The reaction volume is a sphere
of radius r0, chosen such as ri<r0, ri being the distance
between the ith electron and the nucleus (see Sec. II and
Fig. 2). The fragmentation coordinate r , introduced in
Sec. II, is the radial coordinate of the outermost elec-
tron. In a multichannel problem, the boundary condi-
tions on solutions at a finite boundary, on the surface
S enclosing the reaction volume, are not uniquely speci-
fied. The word eigenchannel, which characterizes this
method, refers to the fact that it calculates a particular
set of linearly independent solutions that are the eigen-
states of the R matrix at the energy E specified before-
hand. This implies that each such eigenstate, for ex-
ample, the bth solution (rCb) has a normal logarithmic
derivative

2bb5
]ln~rCb!

]r
(3.1)

that is constant at every point on the surface S .
The variational principle for the eigenvalues bb can

be derived easily, starting from the exact expression for
the Schrödinger energy eigenvalue that is calculated in
terms of exact eigensolutions within the reaction volume
only:
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E5

E
V

C!~2 1
2 ¹2C1UC!dV

E
V

C!CdV
. (3.2)

Here, the integrals extend only over the reaction volume
V . The 2 1

2¹
2 kinetic-energy operator is a shorthand no-

tation for 2 1
2¹

252 1
2( i¹ i

2 , where the sum runs over all
electrons. The potential-energy operator U is assumed
to be Hermitian.
Application of Green’s theorem to the kinetic-energy

operator integral transcribes Eq. (3.2) into

E5

E
V

@ 1
2 ¹W C!

•¹W C1C!UC#dV2 1
2 E

S
C!~]C/]n !dS

E
V

C!CdV
,

(3.3)

in which an additional integral over the reaction surface
S now appears. Using Eq. (3.1), the expression (3.3) can
be written, at a given energy E , as an equation for
b(E):

b52

E
V

C!~E2Ĥ !CdV

E
V

C!d~r2r0!CdV
, (3.4)

where Ĥ denotes the Hamiltonian within the sphere,
made Hermitian by addition of the Bloch operator
(Bloch, 1957)

Ĥ5H1
1
2r

d~r2r0!
]

]r
r . (3.5)

Strictly speaking, in Eq. (3.4) we have derived thus far
only an identity obeyed by any exact Schrödinger eigen-
state whose logarithmic derivative is constant across the
reaction surface. However, by taking the first-order
variation of this expression with respect to small devia-
tions of C from an exact solution, one can demonstrate
that this is a variational principle for b(E), the negative
of the logarithmic derivative. This variational principle
is typically used in practical calculations as follows. The
trial functions C are expanded in terms of a set of n
arbitrary (but preferably physically motivated) basis
functions yk

C5 (
k51,n

ykCk , (3.6)

where the superposition coefficients Ck are determined
by the variational principle (3.4). Since the Hamiltonian
is normally real, C , Ck , and yk will be assumed to be
real without loss of generality.
In the Wigner-Eisenbud formulation (Burke and

Robb, 1975; Burke and Taylor, 1975; Burke and Ber-
rington, 1993), the procedure for calculating an R matrix
starts from the variational expression (3.2) and deter-
mines a complete set of eigenvalues El and eigenfunc-
tions Cl for any fixed value of the boundary parameter

b by solving the system of equations ]E/]Ck50. In con-
trast, the eigenchannel R-matrix approach (Greene,
1983, 1985, 1988; Hamacher and Hinze, 1989) uses the
variational expression (3.4) to determine a complete set
of eigenvalues bb and eigenfunctions Cb for any fixed
value of the energy E . No constraint needs to be im-
posed on the basis functions yk ; in particular they need
not be orthogonal and also they need not have any
specified (common) logarithmic derivative on the reac-
tion surface. The extremum condition ]b/]Ck50 leads
to a generalized eigenvalue problem for b in the vector
space of the coefficients Ck , namely

GCW 5LCW b . (3.7)

The matrix G is expressed as

Gkl52E
V
yk~E2H !yldV2E

S

1
r
yk

]~ryl!

]r
dS . (3.8)

The matrix G can be expressed in terms of a volume
overlap matrix O and of a Bloch-operator matrix L in
addition to the Hamiltonian,

Gkl52~EOkl2Hkl2Lkl!. (3.9)

The matrix L consists of a simple surface overlap inte-
gral

Lkl5E
S
ykyldS . (3.10)

Eigenvectors CW b and CW b8 corresponding to distinct ei-
genvalues bb and bb8 are orthogonal over the reaction
surface

CW b
t LCW b85Nb

2dbb8, (3.11)

where Nb is a normalization factor. On physical
grounds, the number of eigensolutions should equal the
total number N of open or ‘‘weakly closed’’ channels,
namely the number of channels having non-negligible
amplitude on S . The remaining channels that have neg-
ligible amplitude on S but may contribute appreciably
to the dynamics inside the reaction volume are referred
to as ‘‘strongly closed’’ channels.
If the (n3n) matrix L is nonsingular there are n in-

dependent solutions of Eq. (3.7). In practice, however,
the number of independent solutions is far smaller than
the total number of variational basis functions included
in Eq. (3.6), because L is singular. Le Rouzo and Raseev
(1984) showed that the number of nontrivial eigensolu-
tions of Eq. (3.7) equals the rank of the matrix L .
We can clarify the concept of a channel function in-

troduced in Sec. II.C.1 in this mathematical description
by introducing a set of N real orthonormal surface har-
monics F i(v) which span the surface S :

E
S

1

r0
2 F i~v!F j~v!dS5d ij , (3.12)

where v is the set of coordinates orthogonal to r (see
Sec. II.C.1). In other words, N , the number of channels
in which an electron can escape from V , corresponds to
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the smallest number of surface harmonics needed to ad-
equately represent the n basis functions on S . Each of
the basis functions yk can be expanded on S as a linear
combination of the F i , according to

yk5 (
i51,N

1
r0

F i~v!uki~r0!. (3.13)

The matrix elements of L are then simply

Lkl5 (
i51,N

uki~r0!uil
t ~r0!. (3.14)

It is now possible to complete the eigenchannel deri-
vation of the R matrix itself (Greene, 1983, 1988). Re-
calling Eqs. (2.21) and (2.29), the R-matrix eigenvectors
are the projections of the (rCb) eigensolution

Cb5 (
k51,n

ykCkb (3.15)

onto the ith surface harmonic

Zib5E
S
F i~v!~rCb!dv/Nb5 (

k51,N
uki~r0!Ckb /Nb .

(3.16a)

When Nb is chosen such that (rCb)/Nb is normalized
over the reaction surface, the eigenvector matrix Z is
orthogonal. The projection of the radial derivative of
(rCb) onto the ith surface harmonic is simply

Zib8 52bbZib . (3.16b)

[Note that the Zib correspond to the Fib(r0) defined in
Eq. (2.19)]. The R matrix in the chosen representation
of surface harmonics is now given by

Rij52(
b

Zibbb
21Zjb , (3.17)

which is automatically symmetric.
Using Eqs. (3.7), (3.16), and (3.17), the matrix R ma-

trix can be written in matrix form as

R52utG21u . (3.18)

This form of the matrix R is identical to that previously
given by Nesbet (1980) and by Robicheaux (1991).
Robicheaux (1991) has shown how Eq. (3.17) can be

expressed in the Wigner-Eisenbud form for R(E), in-
volving a sum of poles. He introduced a Hermitian ma-
trix H̄ which is the sum of the Hamiltonian H and
Bloch-operator L matrices. [Schneider (1995) has pre-
sented an alternative derivation that starts from the
time-independent Schrödinger equation, after which the
Bloch operator is added and subtracted.] This matrix
H̄ can be diagonalized by an energy-independent trans-
formation matrix W :

(
l
H̄klWll5(

l
OklWllEl , (3.19)

where Wll is normalized by the condition
(k ,lOklWklWll85dll8. [Note that the orthogonal trans-
formation matrices W introduced in this section should

not be confused with the decreasing Coulomb function
of Eq. (2.52).] The R matrix determined by the varia-
tional principle (3.7) and by Eq. (3.18) is now given by
the Wigner-Eisenbud-type form of Eq. (1.1):

Rij5
1
2(l

YilYjl

E2El
, (3.20)

where

Yil5(
k
ukiWkl . (3.21)

The El are the variational energy eigenvalues, while
Yil is the surface projection of the lth eigenstate onto
the ith surface harmonic. (Note that the factor before
the summation differs depending on the authors; the fac-
tors 6 1, 6 1/2, and 61/r0 are encountered in the litera-
ture.) Robicheaux’s derivation explicitly connects the
eigenchannel and Wigner-Eisenbud R matrix methods,
showing how the well-known Wigner-Eisenbud form of
the R matrix remains generally valid, even when the
basis functions do not have a common logarithmic de-
rivative on the surface. This fact has been recognized by
some authors (see, for example, Nesbet, 1980;
Schneider, 1975, 1995) but it has been rarely utilized in
practical calculations. The flexibility of using basis func-
tions with different surface logarithmic derivatives
speeds up convergence of the calculation (with respect
to basis set size) significantly. It is critically important to
include an energy-dependent Buttle correction (Buttle,
1967) to the R matrix to obtain accurate results using
the original Wigner-Eisenbud-type basis set with a com-
mon surface logarithmic derivative. On the other hand,
calculations that use a basis set with a range of logarith-
mic derivatives exhibit sufficiently rapid convergence
such that no Buttle correction is needed.

B. Specialization to two-electron systems. R-matrix
calculations in LS coupling

Neglecting the spin-orbit terms within the reaction
volume, a model Hamiltonian can be used to effectively
describe the two outermost (valence) electrons of an
alkaline-earth atom A. These two valence electrons
move primarily outside of the closed shell A11, with a
total Hamiltonian

H52 1
2 ¹1

22 1
2 ¹2

21V~r1!1V~r2!1
1
r12

. (3.22)

The interaction of each valence electron with the
nucleus and inner-shell A11 core electrons is described
by an effective potential V(r).

1. Relationship between V(r) and the energy levels of A1

In the first eigenchannel R-matrix calculations carried
out for Be and Mg (O’Mahony and Greene, 1985;
O’Mahony, 1985; O’Mahony and Watanabe, 1985), an
ab initio l-independent Hartree-Slater potential vHS(r)
was used as the model potential V(r). The Hartree-
Slater potential is a relatively crude type of

1044 M. Aymar, C. H. Greene, and E. Luc-Koenig: Multichannel Rydberg spectroscopy . . .

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



independent-electron model which is adequate for many
purposes in light atoms, but for the heavier alkaline-
earth atoms more sophistication is needed. In fact, the
d orbitals of Ca, Sr, and Ba, as well as the f orbitals of
Ba, depend sensitively on the accuracy of the potential.
The potential used in Ca by Greene and Kim (1987) and
by Kim and Greene (1987, 1988) included, in addition to
a l-dependent Hartree-Slater screening potential
v l
HS(r), an additional polarization potential:

Vl~r !5v l
HS~r !2

acp

2r4
$12exp@2~r/rc

l !6#%. (3.23)

The core polarization acp and the cutoff radius rc
l were

adjusted so that the eigenvalues enl of the one-electron
radial equation

S 2
1
2
d2

dr2
1
l~ l11 !

2r2
1Vl~r !2enlDunl50 (3.24)

coincided with the experimental (spin-orbit averaged)
energies of Ca1. Optimal values of the parameters can
be found in the paper of Kim and Greene (1988).
More recently, a number of calculations have been

carried out using a more convenient analytical model
potential that depends on a few parameters that must be
determined empirically. Simple l-independent potentials
of the form

V~r !52
1
r

$21~Z22 !exp~2a1r !1a2rexp~2a3r !%

(3.25)

were used in the lighter alkaline earths, where Z is the
nuclear charge and the three empirical parameters a i
were fitted to known energy levels of the alkali-like ion.
The parameters values optimized for the alkaline-earth
ions from Be1 to Sr1 are given in Table I(a). Accurate
two-electron spectra have been obtained, even in an
atom as heavy as Sr (Aymar, 1987; Aymar et al . , 1987;
Aymar and Lecomte, 1989), using such an
l-independent potential. More sophisticated
l-dependent potentials including a polarization term

Vl~r !52
1
r

$21~Z22 !exp~2a1
l r !1a2

l rexp~2a3
l r !%

2
acp

2r4
$12exp@2~r/rc

l !6#% (3.26)

are needed to describe Ba1 and Ra1 adequately (Ay-
mar, 1990; Greene and Aymar, 1991). Here, acp is the
experimental dipole polarizability of the doubly charged
positive ion (Fajans and Joos, 1924; Tessman et al . ,
1953; Dalgarno, 1962; Johnson et al . , 1983). The empiri-
cal parameters a i

l and rc
l were adjusted until the result-

TABLE I. Semiempirical parameters describing the model potential experienced by the outermost
(valence) electron in alkaline-earth atoms.

(a) Potential of Eq. (3.25)

a1 a2 a3

Be1 6.9010 8.9581 5.0798
Mg1 4.2499 11.0223 2.9417
Ca1 3.9557 12.8420 2.0039
Sr1 3.5515 6.0373 1.4389

l (b) Potential of Eq. (3.26)

a1 a2 a3 rc
0 4.0616 13.4912 2.1539 1.5736

Ca1 1 5.3368 26.2477 2.8233 1.0290
acp=3.5 2 5.5262 29.2059 2.9216 1.1717

>3 5.0687 24.3421 6.2170 0.4072

0 3.4187 4.7332 1.5915 1.7965
Sr1 1 3.3235 2.2539 1.5712 1.3960
acp=7.5 2 3.2533 3.2330 1.5996 1.6820

> 3 5.3540 7.9517 5.6624 1.0057

0 3.0751 2.6107 1.2026 2.6004
Ba1 1 3.2304 2.9561 1.1923 2.0497
acp=11.4 2 3.2961 3.0248 1.2943 1.8946

> 3 3.6237 6.7416 2.0379 1.0473

0 3.7702 4.9928 1.5179 1.3691
Ra1 1 3.9430 5.0552 3.6770 1.0924
acp=18 2 3.7008 4.7748 1.4956 2.2784

> 3 3.8125 5.0332 2.1016 1.2707
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ing Schrödinger energy eigenvalues obtained from the
potential agree with the experimental energies of the
alkaline-earth ion. The values of the parameters ob-
tained for Ca1, Sr1, Ba1, and Ra1, are given in Table
I(b).
The extensive eigenchannel R-matrix calculations car-

ried out in recent years using model potentials have
shown one major result: accurate two-electron spectra
are obtained provided the potential V(r) gives accurate
energies for the one-electron ionic system. This can be
understood from the fact that the phase of the valence
electron orbital as the electron emerges from the ionic
core is virtually guaranteed to be correct if the model-
potential energy levels agree with the experimental ionic
levels. The detailed interactions of the two electrons
outside this core depend sensitively on these phases, i.e.,
on the one-electron quantum defects of each emerging
electron. The majority of recent calculations of compli-
cated alkaline-earth atom spectra have used semiempir-
ical model potentials such as those given by Eq. (3.26)
and Table I(b). They have been successful mainly be-
cause they give a good description of the ionic (alkali-
like) valence energy spectra.

2. Design of the basis set

The basis set used in the variational calculations con-
sists of LS-coupled independent-particle numerical ba-
sis functions. An antisymmetric two-electron basis func-
tion, LS coupled to form a state of definite S , L , and
parity, is expressed in terms of numerical one-electron
orbitals unl(r) and Fnl(r) by

yn1l1n2l2~r
W
1 ,rW2!5

1

A2r1r2
@un1l1~r1!Fn2l2

~r2!

3Yl1l2LM
~V1 ,V2!

1~21 ! l11l22L1SFn2l2
~r1!un1l1~r2!

3Yl2l1LM
~V1 ,V2!# . (3.27)

An alternative form for Eq. (3.27) connects more natu-
rally with the quantum-defect description of the outer
region [Eq. (2.19a)],

yin25221/2@F i~r1 ,V1 ,V2!Fn2l2
~r2!/r2

1~21 !SF i~r2 ,V2 ,V1!Fn2l2
~r1!/r1# , (3.28)

where the channel index stands for i[$n1l1l2% and
where

F i~r1 ,V1 ,V2!5
un1l1~r1!

r1
Yl1l2LM

~V1 ,V2!. (3.29)

The channels functions F i are the functions for the ionic
states including the angular wave functions of both elec-
trons. (Note that, in the following, the open and weakly
closed channels, with specific values of n1, l1, and l2, will
often be designated by n1l1nl2, the notation n1l1el2 be-
ing used for open channels to emphasize that the chan-
nel is open.)

In some early R-matrix calculations performed for Be,
Mg (O’Mahony, 1985; O’Mahony and Greene, 1985;
O’Mahony and Watanabe, 1985), and Sr (Aymar, 1987;
Aymar et al . , 1987) two different kinds of orbitals were
introduced. The un1l1 orbitals in the channel functions
[Eq. (3.29)] obey Eq. (3.24) using the potential V(r)
that describes the A11-e interaction. However, the Fnl
orbitals were chosen to correspond instead to ‘‘polar-
ized’’ orbitals. These were still determined by solving
Eq. (3.24) except with a different potential more appro-
priate to the A1-e interaction.
The use of different types of orbitals complicates the

calculations without providing any significant accelera-
tion of the convergence. After this was recognized, the
more recent two-electron R-matrix calculations have
used orbitals generated from the A11-e potential
V(r), which amounts to setting Fnl[unl in Eq. (3.27).
With this choice, the two-electron basis functions in Eq.
(3.27) are eigenfunctions of the independent-electron
Hamiltonian H05H21/r12 . [Note that with this choice
the factor 1/A2 in Eq. (3.27) should be replaced by
1/A2(11dn1n2d l1l2).] Because the ionic basis set is
simple, convenient, and effective for two-electron sys-
tems, we consider only this type in the following. In Sec.
III.D below we will show that for atoms with many
open-shell electrons, this choice is highly inferior to
the use of Löwdin’s ‘‘natural orbitals’’ (Löwdin, 1955;
Löwdin and Schull, 1956) or multiconfiguration Hartree-
Fock-type (Froese-Fischer, 1977) orbitals (Robicheaux
and Greene, 1992, 1993a, 1993b, 1993c; Chen and Ro-
bicheaux, 1994; Miecznik et al . , 1995; Miecznik and
Greene, 1996).
In practice, a first set of orthogonal ‘‘closed-type’’ or-

bitals denoted unl
c is obtained by solving Eq. (3.24) nu-

merically subject to the boundary condition that each
orbital vanishes on the boundary r5r0. Figure 6 shows a
set of closed-type l50 orbitals obtained for Ba with r0 =
20 a.u. This first set is complemented by a second set of
‘‘open-type’’ orbitals (unl

o ) by integrating Eq. (3.24) at
several energies that differ from the enl

c eigenvalues ob-
tained in calculating the closed-type orbitals. These or-
bitals have a nonzero amplitude at r5r0, and are neither
orthogonal to one another nor to the unl

c orbitals in gen-
eral. Two such s-wave open-type orbitals are shown in
Fig. 6.
As presently implemented, the R-matrix approach

treats the escape of (at most) one electron from the re-
action volume. This is enforced by using only closed-
type orbitals for the channel functions F i [Eq. (3.29)].
The minimum possible value that can be used for the
box size r0 is therefore governed by the requirement
that the most diffuse A1 n1l1 ionic states relevant to the
energy range under consideration must fit within the re-
action volume.
The two-electron basis functions yk retained in the

R-matrix calculation are grouped into closed-type and
open-type sets. Each ‘‘closed-type’’ basis function yk

c

consists of two closed-type orbitals and thus vanishes
everywhere on the reaction surface S . Therefore, all the
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coefficients uki(r0) associated with the yk
c functions van-

ish in the expansion (3.13). Each ‘‘open-type’’ basis
function yk

o has a nonzero amplitude on S and is built
from one open-type orbital un2l2

o , for the outer electron

and one closed-type orbital un1l1
c for the inner electron.

For a given channel i5$n1l1l2%, the coefficients uki(r0)
associated with yk

o functions in Eq. (3.13) reduce to
un2l2
o (r0). A set of closed-type functions alone forms an

orthonormal set of eigenfunctions that spans the reac-
tion volume. This set would be efficient only to describe
a solution of the Schrödinger equation which vanishes
on S . The open-type basis functions yk

o are needed to
allow the outermost electron to reach the surface S and
to escape beyond it in an excited bound or continuum
state. The use of yk

o basis functions adds flexibility to the
basis, although the number of such basis functions
should be kept small (typically 1–3 per channel) to avoid
numerical difficulties associated with linear dependence
of the full basis set. The nonorthogonality of the full
basis set causes no particular difficulties for two-electron
systems. For atoms having more than two electrons in
open shells, however, the calculation of matrix elements
becomes tremendously complicated if the orbitals are
not orthogonal, and consequently the open-type orbitals
are orthogonalized to the closed-type orbitals.
No completely general algorithm for choosing the

two-electron configurations has been identified, i.e., to
select the basis functions to include in the variational
calculation. The optimum basis set depends on details of
the system being studied, such as the number of open

and weakly closed channels relevant to the energy
range, the size of the reaction volume, the degree of
convergence desired, and the available computer
memory. If any particular channel is to be treated as
open or weakly closed in the MQDT calculation, both
open-type and closed-type basis functions must be in-
cluded for that channel. Trials with one to three open-
type basis functions per channel have found very little
sensitivity to their number. Experimentation has shown
that, in heavy alkaline earths, a surprisingly large num-
ber of strongly closed channels (or equivalently, a large
set of closed-type basis functions) is required to describe
various electron correlation, relaxation, and polarization
effects (Bartschat and Greene, 1993). In particular, the
inner electron can ‘‘relax’’ or become polarized in re-
sponse to the electric field of the outermost electron.
This is the dominant contribution to core relaxation in
the present model since the A11 core is treated as fro-
zen. Polarization effects are neglected when an electron
roams beyond the reaction volume V . The closed-type
basis set should be sufficiently flexible to permit a de-
scription of polarization effects within V .
The choice of the basis set and of the reaction volume

size, in calculations for two-electron atoms, will be docu-
mented further in Sec. III.G below.

C. Inclusion of nonperturbative spin-orbit effects:
Two-electron R-matrix calculations in j j coupling

Because the eigenchannel R-matrix calculations in jj
coupling proceed along the same lines as the R-matrix
calculations in LS coupling, only the differences are out-
lined here. The model Hamiltonian used in R-matrix
calculations carried out in jj coupling includes explicitly
the spin-orbit terms, which are ignored in the Hamil-
tonian of Eq. (3.22),

H52
1
2

¹1
22

1
2

¹2
21V~r1!1V~r2!1Vso

s1l1j1~r1!

1Vso
s2l2j2~r2!1

1
r12

. (3.30)

The spin-orbit interaction between each valence elec-
tron and the screened nucleus can be approximated by a
potential having the form

Vso
slj~r !5

a2

2
sW• lW

1
r

dV

dr S 12
a2

2
V~r ! D 22

, (3.31)

in which a is the fine-structure constant in a.u. The last
factor in Eq. (3.31) is suggested by the Dirac equation
(see Condon and Shortley, 1935). While it is not needed
in perturbative spin-orbit calculations, this factor is in-
cluded, as in some previous studies, in order to ensure
that solutions of the radial Schrödinger equation are
well defined near the origin, r→0. Without this factor,
the r23 behavior of the spin-orbit potential near the ori-
gin leads to an ill-defined mathematical behavior of the
radial wave functions.
The variational basis set consists of antisymmetrized

two-electron functions whose angular momenta are jj

FIG. 6. Radial one-electron ns orbitals of Ba1 used in the
eigenchannel R-matrix calculations for Ba carried out with a
reaction volume of radius r0 = 20 a.u: (a) closed-type orbitals;
(b) open-type orbitals.

1047M. Aymar, C. H. Greene, and E. Luc-Koenig: Multichannel Rydberg spectroscopy . . .

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



coupled to form a state of definite total angular momen-
tum J and parity,

yk~rW1 ,rW2!5
1

r1r2A2~11dn1n2d l1l2d j1j2!

3(un1l1j1~r1!un2l2j2~r2!

3$@xs1
~1 !Yl1

~1 !# j1@xs2
~2 !Yl2

~2 !# j2%JM

2~21 ! j11j22Jun2l2j2~r1!un1l1j1~r2!

3$@xs2
~1 !Yl2

~1 !# j2@xs1
~2 !Yl1

~2 !# j1%JM),

(3.32)

where the basis-vector label k is a shorthand notation
for the quantum numbers n1l1j1n2l2j2. In Eq. (3.32), the
electron spinors xs and spherical harmonics Yl are stan-
dard. The j-dependent one-electron radial function unlj
obeys the radial Schrödinger equation

S 2
1
2
d2

dr2
1
l~ l11 !

2r2
1V~r !1Vso

slj~r !2enljDunlj50.

(3.33)

All the jj-coupled eigenchannel R-matrix calculations
performed in heavy alkaline-earth atoms use for the
electron-core effective potential the empirical
l-dependent model potential Vl of Eq. (3.26), also uti-
lized in recent LS-coupled R-matrix calculations. In-
deed, the semiempirical parameters listed in Table I(b)
were adjusted to obtain optimum agreement between
the eigenvalues enlj of Eq. (3.33) and the experimental
j-dependent energies of the alkaline-earth ions. Of
course, if the spin-orbit term is neglected in the one-
electron radial Schrödinger equation, one obtains enl en-
ergies that agree well with the spin-orbit-averaged ener-
gies of alkaline-earth ions.
Some calculations (Lecomte et al . , 1994, Luc-Koenig

et al . , 1995) were performed by adding to the two-
electron Hamiltonian H of Eq. (3.30) a dielectronic po-
larization correction (Chisholm and Öpik, 1964;
Hameed, 1972) to the 1/r12 interaction. Following Victor
and Laughlin (1972), the dielectronic polarization term
between the l1l2 and l18l28 basis functions was taken to be

Vpol
~2 !~rW1 ,rW2!52

acp

r1
2r2

2 P1~ r̂1• r̂2!@w~rc
l1 ,r1!

3w~rc
l18 ,r1!w~rc

l2 ,r2!w~rc
l28 ,r2!#

1/4,

(3.34)

where the cutoff function is w(rc
l ,r)512exp@2(r/rc

l)6#.
In Eq. (3.34), P1 is a Legendre polynomial and acp the
dipole polarizability of the core. The l-dependent cutoff
radii are given in Table I(b).

D. Specialization to open-shell atoms. R-matrix
calculations in LS coupling

The LS-coupled eigenchannel R-matrix approach has
been used to calculate photoionization cross sections

and bound-states properties of some open p-shell atoms
and of two open d-shell atoms, scandium and titanium.
Calculations in open p-shell atoms dealt with Al
(O’Mahony, 1985; Miecznik et al . , 1995), with halogens
(Robicheaux and Greene, 1992, 1993a), with atoms in
the carbon group (Robicheaux and Greene, 1993b), and
in the oxygen group (Chen and Robicheaux, 1994). All
of these atoms have a ground configuration of the type
m0s

2m0p
q, with m053 and q51 for Al. For the second-

row elements (m052), one has q52 for C, q54 for O,
and q55 for F. Scandium, the simplest transition-metal
atom, with ground-state configuration 3d4s2, has been
chosen to see whether the eigenchannel R-matrix
method can reproduce the extremely complicated spec-
tra of open d-shell atoms (Armstrong and Robicheaux,
1993; Robicheaux and Greene, 1993c, 1993d). The accu-
rate results obtained in Sc have encouraged Miecznik
and Greene (1996) to undertake eigenchannel
R-matrix calculations in titanium, with ground state
3d24s2.

1. Hamiltonian

Most of the eigenchannel R-matrix calculations in
open-shell atoms were carried out with a Hamiltonian
H that does not refer to the full atomic system. As in the
alkaline-earth atoms, they utilized a model Hamiltonian
of the valence electrons only, and approximated the ef-
fects of the closed-shell inner electrons and of the
nucleus on the valence electrons through an effective
potential V(r). Neglecting the spin-orbit terms within
the reaction volume, the valence-electron Hamiltonian,
in a.u., is

H5(
i

$2 1
2 ¹ i

21V~ri!%1(
i ,j
i,j

1/rij . (3.35)

In Eq. (3.35), the sums over indices i and j run over the
Nv valence electrons outside the rare-gas-like inert core.
One has Nv=3 for Al and Sc, Nv=4 for the carbon-group
atoms and for Ti, Nv=6 for the oxygen-group atoms, and
Nv=7 for the halogens.
The first eigenchannel R-matrix study carried out in

an atom with more than two valence electrons con-
cerned Al (O’Mahony, 1985). As in the previous
R-matrix calculation carried out in Be and Mg
(O’Mahony and Greene, 1985), the interaction of each
valence electron with the closed-shell core was described
by an ab initio l-independent Hartree-Slater potential.
The second calculation dealt with Si (Greene and Kim,
1988). A Hartree-Slater potential with an empirical po-
larization potential was used to describe the Si 41-e in-
teraction.
The techniques used in the recent calculations have

been improved compared to those employed in Al
(O’Mahony, 1985) and Si (Greene and Kim, 1988). A
number of calculations (Robicheaux and Greene, 1992,
1993a, 1993b, 1993c, 1993d; Armstrong and Robicheaux,
1993; Miecznik et al . , 1995) have been carried out using
more sophisticated analytical one-electron model poten-
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tial including an l-dependent screened Coulomb poten-
tial and a polarization potential,

Vl52
1
r
$Nv1~Z2Nv!exp~2a1

l r !1a2
l rexp~2a3

l r !%

1Vpol
~1 !~r !, (3.36)

where the polarization potential has the form

Vpol
~1 !~r !5

acp

2r4
$12exp@2~r/rc!

3#%2. (3.37)

In Eq. (3.37), theoretical values were used for the dipole
polarizability acp (Johnson et al . , 1983). The parameters
a i
l and rc were fitted to optimize agreement between the

calculated energy levels of Hv and the experimental en-
ergy levels of the (Nv21)+ ion. Complete lists of the
parameters for the semiempirical potentials optimized in
the open-shell atoms that were studied, as well as the
references on the experimental levels included in the
fits, can be found in the relevant papers (Robicheaux
and Greene, 1992, 1993b, 1993c; Miecznik et al . , 1995).
The one-electron Hamiltonian has the form:

Hv52 1
2 ¹21Vl~r !. (3.38)

In addition, the dielectronic polarization interaction has
been systematically introduced in the model Hamil-
tonian used in the recent eigenchannel R-matrix calcu-
lations of open-shell atoms. This consists in replacing the
Hamiltonian of Eq. (3.35) by

H5(
i

$2 1
2 ¹ i

21Vl~ri!%1(
i ,j
i,j

~1/rij1Vpol
~2 !~rW i ,rW j!!,

(3.39)

with

Vpol
~2 !~rW i ,rW j!522P1~ r̂ i . r̂ j!@Vpol

~1 !~ri!Vpol
~1 !~rj!#

1/2. (3.40)

Formally, Eq. (3.40) is identical to Eq. (3.34) given in
Sec. III.C above. Note that the dielectronic polarization
interaction has not been systematically included in the
calculations in alkaline earths. However, its effect has
been analyzed in some particular cases (Lecomte et
al . , 1994; Luc-Koenig et al . , 1995). As described below
in Sec. IV, the dielectronic polarization interaction sig-
nificantly influences the Ba 5d5g autoionization widths
(Luc-Koenig et al . , 1995). In contrast, the influence of
this interaction on the dynamics of open-shell atoms has
not been studied in detail.
The calculations in open-shell atoms conducted with a

parametrized model potential emphasize the need for
accurate energy-level data for alkali-like ions. Some cal-
culations for the heavier halogens Br and I and the
heavier C-group atoms Ge and Sn have suffered from
the limited amount of ionic-level information that was
available. Errors could be introduced in the calculation
through the parameters of the model potential. To by-
pass these difficulties, another approach was used re-
cently by Chen and Robicheaux (1994) to study the

oxygen-group atoms with the eigenchannel R-matrix ap-
proach. The Hamiltonian chosen by Chen and Ro-
bicheaux (1994) refers to the full atomic system. How-
ever it still contains the one- and two-electron
polarization terms. One has

H5(
i

S 2 1
2 ¹ i

22
Z

ri
1Vpol

~1 !~ri! D1(
i ,j
i,j

~1/rij

1Vpol
~2 !~rW i ,rW j!!. (3.41)

In Eq. (3.41), the sums over indices i and j run over all
electrons; Vpol

(1)(ri) and Vpol
(2)(rW i ,rW j) have the form given

in Eqs. (3.37) and (3.40), respectively. Theoretical values
(Johnson et al . , 1983) were used for the dipole polariz-
ability acp and the cutoff radius rc was determined by
evaluating the expectation value ^nlurunl& for orbitals of
the outermost closed shell. Comparison of eigenchannel
R-matrix calculations carried out in S with the Hamil-
tonian of Eq. (3.41) referring to all 16 electrons and with
a model potential and 6 electrons (Chen and Ro-
bicheaux, 1994) will be discussed later in Sec. V.
A full-electron description has been used also recently

by Miecznik and Greene (1996) in titanium (22 elec-
trons) for calculating photoabsorption and photoioniza-
tion from excited states. However, in those calculations,
the one- and two-electron polarization terms were not
included.

2. Constructing basis functions

One major complication occurs in R-matrix calcula-
tions of open-shell atoms compared to those in two-
valence-electron systems. This complication is related to
the construction of basis functions used for the initial-
and final-state atomic wave functions. A key require-
ment of any R-matrix calculation is an accurate descrip-
tion of the target-state wave functions, which corre-
spond to the possible wave functions of the positive ion
in the studied energy range. For two-electron systems,
when a semiempirical model is used to describe the in-
teraction of each valence electron with the closed-shell
core, this aspect of the computation is easy since the
target functions are simply orbitals of the one-electron
ionic potential. More effort goes into determining mul-
tielectron target functions, which magnifies the amount
of work needed to describe the full atomic dynamics.
Configuration interaction is generally included in the
target functions. It is very important in choosing target
basis functions to try to work with the minimum number
necessary to achieve convergence for the atomic dynam-
ics because each target basis function translates to ; 10
atomic functions. Different approaches have been used
in open-shell atoms to describe ionic states.
First, consider the calculations that included a model

potential to account for the effects of closed shells. In
order to reduce the number of multielectron basis func-
tions needed for convergence, the many-electron func-
tions are not expanded in terms of the orbitals that are
eigenstates of Hv [Eq. (3.38)] but in terms of orbitals
that cause the core states to converge. Indeed, a more
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compact description of target states could be obtained
using ‘‘natural orbitals’’ (Löwdin, 1955; Löwdin and
Shull, 1956; Froese Fischer, 1991). The natural orbitals
can be obtained by diagonalizing a large configuration-
interaction matrix constructed from orbital solutions of
Hv for the target states of interest, and superposing the
orbitals. Natural orbitals can also be chosen to minimize
the total energies of selected target states. The n̄l natu-
ral orbitals are associated with the lowest n values oc-
curring for s , p , d , f , . . . symmetries. Different tech-
niques were sometimes used for a given atom to
determine the n̄l natural orbitals associated with differ-
ent l values (see, for example, Robicheaux and Greene,
1992). Natural orbitals can be more diffuse or more con-
tracted than spectroscopic orbitals.
Because of the limited number of orbital solutions of

Eq. (3.38) introduced in determining the natural orbit-
als, excited natural orbitals can have spurious nodes
close to r0. In order to eliminate this unphysical behav-
ior, an l-dependent potential V̄l that has these orbitals
as eigenstates is optimized. Different forms were used
for the potential V̄l . The potential used by Robicheaux
and Greene (1992) has the same form as Vl [Eq. (3.36)]
with Nv replaced by 2 and a i

l replaced by ā i
l , whereas

the potential used in Sc and Al (Robicheaux and
Greene, 1993c; Miecznik et al . , 1995) has the form

V̄l~r !5Vl~r !1
12exp~2ā1

l r !

r
1

ā2
l $12exp@2ā3

l r#%

r2
.

(3.42)

Lists of the parameters ā i
l optimized in each open-shell

system that was studied can be found in the correspond-
ing papers (Robicheaux and Greene, 1992, 1993b, 1993c;
Miecznik et al . , 1995). This potential is next used to
generate s , p , d , f , . . . orbitals with higher quantum
numbers.
Although the procedure used to generate natural or-

bitals, that we have just described, proved to be highly
successful in previous applications (Robicheaux and
Greene, 1992, 1993a, 1993b, 1993c, 1993d; Armstrong
and Robicheaux, 1993; Miecznik et al . , 1995), it is not
free of difficulties. As emphasized by Miecznik and
Greene (1996), the form of natural orbitals (and thus the
rate of convergence of configuration-interaction target
states) depends strongly on the number of orbital solu-
tions of Hv , as well as on the type and number of target
configurations used to obtain the natural orbitals.
A different approach to describe the target states,

based on the Hartree-Fock approximation, was used by
Chen and Robicheaux (1994) in their full-electron calcu-
lation in oxygen-group atoms and by Miecznik and
Greene (1996) in titanium. Indeed, while using orbital
solutions of Eq. (3.38), it is necessary to include a large
configuration-interaction basis, with singly excited, dou-
bly excited, and triply excited configurations to get mod-
est degree of convergence, whereas a fully variational
(Hartree-Fock) calculation takes better care of such ex-
citations, effectively minimizing the number of excita-
tions to singly and doubly excited states. Radial orbitals

needed to calculate short-range interaction parameters
were obtained in the Hartree-Fock or multiconfigura-
tion Hartree-Fock approximation (Froese Fischer, 1977,
1991). The natural orbitals incorporate screening and
correlations associated with the ionic system. More pre-
cisely, in the oxygen-group atoms, Chen and Ro-
bicheaux (1994) performed first a Hartree-Fock calcula-
tion to obtain one-electron orbitals of the configuration-
averaged ion. Next, a multiconfiguration Hartree-Fock
calculation was performed to get the lowest d and f or-
bitals to describe correlation in the valence shell. A simi-
lar step procedure was used in Ti by Miecznik and
Greene (1996). First the inner-electron orbitals as well
as the valence 3d and 4s orbitals of Ti1 were optimized
on the 3d24s configuration, after which 4p was opti-
mized on 3d24p . Next, a multiconfiguration Hartree-
Fock calculation of the 3d3 2Ge term was performed to
generate 4d , 5s , 5p , and 4f correlations orbitals.
Once target orbitals are obtained, higher-n orbitals

needed to represent the outgoing electron are gener-
ated. In oxygen-group atoms (Chen and Robicheaux,
1994) and in Ti (Miecznik and Greene, 1996), higher-n
orbitals were obtained by constructing a local screened
potential Vscr(r) using the Hartree-Fock wave functions
of both the inner shells and the valence s and p orbitals.
The explicit form of Vscr(r) is

Vscr~r !52
Z

r
1(

i
wiE

0

` 1
r.

Pi
2~r8!dr8, (3.43)

where r. is the larger of r and r8, wi is the number of
electrons in subshell i described by the radial function
Pi, and the summation runs over all subshells of the ion
ground state. High-n orbitals are orthogonalized to the
low-n input orbitals.
As for two-valence-electron systems, open-type orbit-

als (which have nonzero value on the R-matrix surface)
and closed-type orbitals (which are zero on the bound-
ary) are computed. Closed-type orbitals are automati-
cally orthogonal. These orbitals are next used to con-
struct open-type functions (where only one of the
electron orbitals of the many-electron basis functions is
of open type) and closed-type functions (where all orbit-
als are of closed type).
The basis functions used for a given open-shell atom

to describe the initial-state and the different final-state
LS symmetries incorporate configuration interaction in
both the (Ne-1) electron ionic states and the full Ne
wave functions. (The notation Ne is used for the total
number of electrons in order to avoid confusion with the
number of open and weakly closed fragmentation chan-
nels, referred to as N throughout this paper.) Basis func-
tions of close-coupling type are constructed by attaching
an l wave of appropriate symmetry onto each compo-
nent of the target states. Part of these functions de-
scribes relaxation of the orbitals due to the addition of
the extra electron. As in two-valence electron systems,
the open or weakly closed channels are described by
closed-type and open-type functions. Multielectron ma-
trix elements are considerably easier to evaluate when
all orbitals are orthogonal to each other. Moreover, nu-
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merical difficulties could occur in Gram-Schmidt or-
thogonalization of two orbitals with each other and with
the closed-type orbitals. Thus, only one open-type or-
bital, orthogonalized to the closed-type orbitals, is used
for each l value.
Correlation-type basis functions related to the close-

coupling-type basis as well as various other correlation-
type functions are also included. Such functions are
needed, in particular, to represent the dipole polariza-
tion of the ionic states. For example, for the open
p-shell atoms, correlation functions of the type m0p

q12

were introduced for describing the m0s
2m0p

q ground
states (with q<4) and correlation functions of the type
m0sm0p

q11 for the final-state symmetries. No general
rule has been identified to choose the correlation-type
functions in open-shell systems. Some calculations in
open p-shell atoms included only a restricted number of
correlation-type functions. So, for example, as stated by
Robicheaux and Greene (1992), these functions seem to
play a smaller role in the halogen dynamics than they do
in the dynamics of the alkaline earths, where a large
number of strongly closed channels were found neces-
sary to obtain converged results. In contrast, as shown
later in Sec. V, it was found to be important for the
convergence of Sc quantum defects (Robicheaux and
Greene, 1993c) that numerous correlation-type func-
tions and strongly closed channels be included. As in
alkaline earths, all basis functions used to describe the
correlation-type basis functions, as well as the initial
states, are of closed-type.
A final remark concerns the choice of ionic orbitals to

describe basis functions. These basis functions do not
necessarily give the best convergence for the initial state;
however, they tend to give better agreement between
the length and velocity gauge cross sections than basis
functions that are chosen to give the best convergence
for the initial level.
The choice of the basis functions adapted to study

each type of open-shell atoms that was investigated us-
ing the eigenchannel R-matrix approach will be further
documented in Sec. V.

E. Streamlined solution of the generalized eigensystem

As discussed in the previous sections, eigenchannel
R-matrix calculations may involve large sets of n two- or
many-electron basis functions. For such large basis sets,
the numerical solution of the generalized eigensystem
[Eq. (3.7)] at many energies can become very time con-
suming. One way to bypass this difficulty and improve
the efficiency of repeated R-matrix calculations at many
different energies is to use Robicheaux’s Wigner-
Eisenbud-type (Robicheaux, 1991) reformulation of the
eigenchannel R-matrix method, which was discussed
above. For instance, this formulation was used by Chen
and Robicheaux (1994) to study chalcogens. This ap-
proach lacks the flexibility to change the number of
weakly closed channels as the energy is varied. Specifi-
cally, if one decides to add one more weakly closed
channel when the energy increases above a certain

value, it becomes necessary to enlarge the matrix
H̄5H1L to include the relevant open-type basis func-
tions, and then rediagonalize H̄ . For all energies having
this fixed number (N) of open and weakly closed chan-
nels, the R matrix is then given analytically by Eq. (3.20)
without requiring the numerical solution of another
large matrix equation.
An alternative ‘‘streamlined’’ reformulation (Greene

and Kim, 1988) casts the generalized eigenvalue equa-
tion of the eigenchannel R-matrix method into a form
that can be rapidly solved at many energies, and which
retains the flexibility to change the number of open or
weakly closed channels as often as desired, without re-
quiring the solution of a new large (n3n) matrix equa-
tion each time. The streamlined formulation relies on
the fact that the size of the open-type basis set (typically
of order N to 3N) is always much smaller than the
closed-type basis set. For a calculation involving N open
and weakly closed channels, the number N of nontrivial
solutions of the generalized eigensystem [Eq. (3.7)] is
smaller than n by typically one or two orders of magni-
tude.
The streamlined reformulation partitions the basis

functions yk into no open-type (o) and nc closed-type
(c) subsets, depending on whether each basis function is
nonzero on S or zero on S , respectively. With this par-
titioning, the matrices G and L in Eqs. (3.9) and (3.10)
have the structure:

G5S Gcc Gco

Goc Goo
D (3.44)

and

L5S 0 0

0 Loo
D . (3.45)

This partitioning allows us to write Eq. (3.7) as two
coupled matrix equations,

GccCW c1GcoCW o50, (3.46a)

and

GocCW c1GooCW o5LooCW ob . (3.46b)

Using Eq. (3.46a) to eliminate CW c from Eq. (3.46b), the
equation determining the eigenvalue b is now of much
smaller dimension no3no ,

VCW o5LooCW ob , (3.47)

where

V5Goo2Goc~Gcc!
21Gco . (3.48)

The closed components CW c of the eigenvector are de-
duced from the open components CW o by

CW c52~Gcc!
21GcoCW o . (3.49)

Here we have used the fact that the Bloch matrix Lcc
vanishes, and have assumed that the closed-closed por-
tion of the overlap matrix O , namely Occ , is the unit
matrix. (This can be accomplished, even for a nonor-
thogonal basis set, by orthogonalization of the closed-
type basis functions.) The matrix Loo reduces to N sepa-
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rable blocks of nonzero elements, each of these blocks
being of rank 1. This guarantees that the number of
eigensolutions of Eq. (3.47) is N .
Inversion of the matrix Gcc at many energies E is ef-

ficiently accomplished by first transforming the closed
portion of the basis set into the energy-independent rep-
resentation in which Hcc is diagonal, with eigenvalues
El and orthonormal eigenvectors Xkl . The matrix V is
then explicitly

Vkk852~EOoo
kk82Hoo

kk82Loo
kk8!22(

l

3
~EOoc8

kl
2Hoc8

kl
2Loc8

kl
!~EOc8o

lk82Hc8o
lk82Lc8o

lk8!

E2El
.

(3.50)

In Eq. (3.50), the notation c8 implies that the closed
portion of the two-electron basis set is now in the trans-

formed representation, i.e., Ooc8
kl

5(k8Ooc
kk8Xk8l ,

Oc8o
lk

5(k8Oc8o
k8kXk8l , with the same transformation be-

ing applied also to the matrices H and L . The semiana-
lytic energy dependence of all matrices in Eq. (3.50),
combined with the much smaller number of open-type
basis functions than closed-type functions, now improves
the speed of solving Eq. (3.47) on a fine energy mesh
dramatically compared to the original Eq. (3.7).
To summarize, the eigenchannel R-matrix computa-

tional scheme in two-electron atoms consists of the fol-
lowing steps: (1) Choice of the reaction-volume size and
of the fragmentation channels. (2) Choice of the two-
electron basis set. (3) Numerical calculation of the one-
electron orbitals. (4) Calculation of the matrix elements
of O , H , L , and L . (5) Diagonalization of the Hamil-
tonian Hcc . (6) Solution of the streamlined form of the
generalized eigensystem (3.47) on a chosen energy
mesh.
The eigenchannel R-matrix computation scheme in

open-shell atoms proceeds along the same lines as that
in two-electron atoms. However, major complications
occur, mainly in steps (2)–(4). As was emphasized in
Sec. D above, most difficulties occur in the construction
of basis functions used for the initial- and final-state
atomic wave functions. Effort goes into determining
multielectron target functions and one-electron natural
orbitals. The second major complication in R-matrix cal-
culations of open-shell atoms compared to those in two-
valence-electron systems concerns the computation of
matrix elements. For two-electron atoms when the two-
electron basis functions are chosen to be eigenfunctions
of the independent-particle Hamiltonian H05H
21/r12 , the evaluation of matrix elements is especially
straightforward and standard. The calculation of multi-
electron matrix elements is much more complicated and
an efficient computer code has been developed to evalu-
ate the angular parts of multielectron one- and two-
particle operators (Robicheaux and Greene, 1992).
The evaluation of the 1/rij matrix elements and the

diagonalization of the Hamiltonian Hcc are the most

time consuming parts of the computation. However,
these need to be done only once, after which the energy-
dependent R matrix is determined semianalytically at all
energies: this is the major advantage of both the eigen-
channel and Wigner-Eisenbud formulations of
R-matrix theory. A second advantage of the R-matrix
method is the faster convergence achieved by limiting
the variational calculation to as small a portion of con-
figuration space as is possible.

F. Short-range reaction matrix K and parameters of
multichannel quantum-defect theory

After the N eigenvalues bb and corresponding N
linearly-independent eigenvectors Ckb have been ob-
tained by solving Eqs. (3.47) and (3.49) at a given energy
E , the solutions are matched to a linear combination of
Coulomb functions in each open or weakly closed chan-
nel. Recalling Sec. II, we see that two alternative short-
range reaction matrices can be determined. Matching to
energy-normalized Coulomb functions (fe2l2

, ge2l2
) gives

the short-range reaction matrix K(E) [Eq. (2.34)] or the
equivalent smooth, short-range scattering matrix S(E).
Matching the R-matrix eigenstates to analytic Coulomb
functions (fe2l2

0 , ge2l2
0 ) gives a K0 short-range reaction

matrix. We restrict the following discussion to the K ma-
trix, keeping in mind that the K0 short-range reaction
matrix can also be used to solve the equations of multi-
channel quantum-defect theory.
Because the boundary conditions at infinity, which

quantize the Rydberg energies in the closed channels,
have not yet been applied, the short-range scattering
matrix S(E), or the equivalent eigenchannel MQDT pa-
rameters ma and Uia [Eq. (2.35)], vary relatively
smoothly as functions of the energy E . The full energy
dependence of S(E) is obtained by solving the general-
ized eigensystem of Eq. (3.47) on as fine an energy mesh
as desired. When the spectrum is desired on an ex-
tremely dense energy mesh, for instance in an energy
range that includes very high-lying Rydberg levels, it is
more efficient to first solve Eq. (3.47) on a relatively
coarse grid of selected energies. Interpolation of these
smooth matrices then permits the equations of multi-
channel quantum-defect theory [Eqs. (2.44)–(2.46)] to
be solved on an arbitrarily fine energy mesh to predict
the relevant observables.
Calculation of the photoionization cross section from

a low-lying level requires the additional determination
of dipole matrix elements. The wave function of the ini-
tial state that will be exposed to incident radiation can
be obtained by diagonalization of the Hamiltonian ma-
trix constructed using closed-type two-electron basis
functions only, provided the box is large enough to en-
close its full probability density. The dipole matrix ele-
ments dS [Eq. (2.57)] that connect the initial and final
states can then be evaluated by restricting the integra-
tion volume to the interior of the R-matrix box. Like-
wise, the short-range matrix S , the short-range dipole
matrix elements dS vary smoothly as functions of the
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energy. Photoionization of an excited state, especially of
a Rydberg state [as in isolated-core excitation experi-
ments (Cooke et al . , 1978)], requires the inclusion of
longer-range contributions to the dipole matrix ele-
ments. In many cases this can be performed analytically,
as is discussed in Sec. IV below.
As illustrated later in Secs. IV and V, in energy do-

mains involving sharp resonances, reliable comparison
between theory and experiment should use a theoretical
spectrum convolved with the experimental linewidth. To
obtain a convolved cross section that can be compared
to experiment, the cross section needs to be calculated
on an extremely fine mesh before numerically convolv-
ing it. This is a wasteful procedure since the short-range
MQDT parameters do not vary much with energy. Ro-
bicheaux (1993) developed a procedure to obtain a con-
volved total cross section directly from the smooth scat-
tering parameters that avoids explicitly performing
numerical convolution. The approximate formula de-
rived for photoabsorption by neutral species is accurate
to the extent that the short-range scattering parameters
do not vary over the convolution width. This precon-
volved technique was used in some recent works (Chen
and Robicheaux, 1994; Miecznik and Greene, 1996).
Figure 7 illustrates the energy dependence of the

MQDT parameters and the implication of this depen-
dence on the final results. Figure 7 compares the eigen-
quantum defects ma and photoabsorption spectra of Ba
obtained from R-matrix calculations using r0515 a.u. or
20 a.u. Figures 7(a) and 7(b) display the ma obtained for
the 1Po symmetry as functions of the energy relative to
the double-ionization limit, for a wide energy range
from below the 6s threshold to above the 6p thresholds.
The ma vary smoothly with the energy whatever the
value of r0, but comparison of curve (a) obtained with
r0515 a.u. with curve (b) corresponding to r0520 a.u.
shows that the energy dependence of the ma increases
with r0. Such r0 dependence of the ma was encountered
in all cases we considered, but disappeared in the final
results. Photoionization cross sections for the photoab-
sorption spectrum between the 5d5/2 and 6p1/2 thresh-
olds calculated, in the velocity form, by combining
LS-coupled R-matrix calculations done for the 1Po,
3Po, and 3Do symmetries with the jj-LS frame transfor-
mation are displayed in Fig. 7(c). The differences be-
tween the full line (r0515 a.u.) and the dashed line
(r0520 a.u.) are not significant, being of the same order
of magnitude as the differences between length and ve-
locity results for a given r0. Note that the calculations
were performed with small two-electron basis sets, re-
sulting in poor convergence of the variational calcula-
tion.
In the nearly ab initio theoretical multichannel spec-

troscopy, three different kinds of MQDT calculations
have been carried out using the dynamical quantities S
and dS obtained by eigenchannel R-matrix calculations.

1. R-matrix calculations in LS coupling

Calculations in LS coupling (denoted as LS calcula-
tions) neglect spin-orbit effects everywhere. These cal-

culations start from the LS-coupled matrices SLS and
dLS
S derived from the nonrelativistic Hamiltonian [Eq.

(3.22)]. The MQDT fragmentation channels for this type
of calculation are the LS-coupled channels i5$n1l1l2%
introduced in Sec. III.B.2 above. We will see in Sec. IV
that the nonrelativistic LS method is adequate for de-
scribing low-resolution photoabsorption spectra that are
incapable of resolving fine-structure splittings.

2. R-matrix calculations in LS coupling combined with the
jj-LS frame transformation

Calculations start from the nonrelativistic
LS-coupled quantities, but then apply the jj-LS frame
transformation (see Sec. II.E) and perform the MQDT

FIG. 7. Comparison of eigenquantum defects ma and photo-
absorption spectra obtained in Ba with LS-coupled eigenchan-
nel R-matrix calculations performed using different reaction-
volume sizes and combined with the jj-LS frame
transformation: (a) eigenquantum defects ma for the

1P1
o sym-

metry obtained with r0 = 15 a.u.; (b) eigenquantum defects
ma for the 1P1

o symmetry obtained with r0 = 20 a.u.; (c) pho-
toabsorption spectrum between the 5d5/2 and 6p1/2 ionization
limits calculated using r0 = 15 a.u. (solid line) and r0 = 20 a.u.
(dashed line). The vertical bars in (a) and (b) correspond to
the 6s , 5d , and 6p ionization limits. The energies are referred
to the double-ionization limit.

1053M. Aymar, C. H. Greene, and E. Luc-Koenig: Multichannel Rydberg spectroscopy . . .

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



calculation using experimental fine-structure ionization
thresholds. These calculations are denoted as jj-LS (or
frame-transformation) calculations. The MQDT frag-
mentations channels for this type of calculation are the
jj-coupled channels i5$n1l1j1l2j2% introduced in Sec.
III.C above.
The approximations embodied in the jj-LS frame

transformation are accurate as long as K(E) does not
vary appreciably over an energy range comparable to
the fine-structure splitting of the A1 core levels. As is
visible on Fig. 7, at the low-energy end in each channel
the MQDT parameters acquire a strong energy depen-
dence. The use of experimental thresholds in strongly
closed channels can adversely affect the MQDT calcula-
tion of observables, sometimes causing spurious reso-
nances to appear or physical resonances to disappear.
These instabilities are due to the exponential growth of
Coulomb functions associated with the strongly closed
channels. The use of the frame transformation in this
energy range requires extra caution. It was found to be
crucial that spin-orbit-averaged theoretical energies be
introduced instead of experimental ones for the thresh-
old energies associated with the strongly closed channels
treated as weakly closed and also, as documented in
Secs. IV and V, with some particular weakly closed
channels supporting an isolated level at the low end of
the channel. To minimize these difficulties it is also ad-
visable to include only the weakly closed channels in-
volved in the energy range under consideration. As
shown later in Secs. IV and V, the jj-LS method can
quantitatively describe a class of nonperturbative spin-
orbit effects even in some atoms as heavy as barium or
as complicated as scandium and titanium.

3. R-matrix calculations in jj coupling

We denote as jj calculations any jj-coupled R-matrix
calculations based on the Hamiltonian that includes
spin-orbit interactions both inside and outside the
R-matrix box. At the present time, calculations using the
jj-coupled eigenchannel R-matrix approach deal only
with two-electron systems, and the discussion below
concerns only alkaline earths.
The jj method is needed when the ionic fine-structure

splittings become as large as 1 eV or more. The jj
method is also recommended for calculations requiring a
large reaction volume. Indeed, the energy dependence
of MQDT parameters rapidly increases with r0, and re-
sults obtained using the jj-LS method can drastically
depend on the choice of either the experimental or the
theoretical ionization thresholds for the closed channels.
Even using the jj method, some results, such as those

obtained for 6d2 and 7p2 levels of Ba (Lecomte et al . ,
1994), depend slightly on the choice of the threshold
energies although the experimental threshold energies
used in the MQDT calculations are very close to the
theoretical energies introduced in the matching proce-
dure. An adaptation of the streamlined eigenchannel
method recently developed to circumvent these difficul-
ties occurring at the bottom end of Rydberg series,

where MQDT parameters acquire the strongest energy
dependence, is presented in Sec. III.H below.
Finally, it is worth comparing the approximations

used in eigenchannel R-matrix calculations to take into
account relativistic effects to those used in Wigner-
Eisenbud-type R-matrix calculations. To our knowl-
edge, in the Wigner-Eisenbud R-matrix formalism, the
frame-transformation treatment has been used for
studying electron-atom scattering processes only. So, for
instance, starting from LS-coupled reaction matrices ob-
tained by LS-coupled R-matrix calculations, Saraph
(1978) used the jj-LS frame transformation for comput-
ing collision strengths for transitions between fine-
structure levels. Another way to include relativistic
terms is to reduce the fully relativistic Dirac plus Breit
equations to the Breit-Pauli form (Condon and Shortley,
1935) and to retain either all terms of the Breit-Pauli
Hamiltonian or only the one-particle operators. This ap-
proach was developed by Scott and Burke (1980) and
was first applied to the calculation of collision strengths
in Be-like Fe XXIII. As further documented in Secs. IV
and V, the same approach has also been employed by
Bartschat and co-workers to investigate Sr, Ba, Zn, and
Hg photoionization (Bartschat and Scott, 1985a, 1985b;
Bartschat et al . , 1986, 1991; Bartschat, 1987; Mende et
al . , 1995). The approximations embodied in the calcula-
tions that include only the one-particle terms of the
Breit-Pauli Hamiltonian are comparable to those in-
volved in the jj-coupled eigenchannel R-matrix calcula-
tions. To go beyond the approximations underlying the
jj-coupled eigenchannel R-matrix method or the Breit-
Pauli R-matrix method of Scott and Burke (1980),
R-matrix calculations should be based on the Dirac
Hamiltonian as was performed early by Chang (1975,
1977). This point will be further documented in Sec. VI.

G. Reaction volume size, basis functions, and
fragmentation channels

This section focuses on practical considerations on the
eigenchannel R-matrix technologies. Most of the calcu-
lations carried out using the eigenchannel R-matrix ap-
proach have dealt with alkaline earths. Moreover, the
techniques used in open-shell atoms are dependent on
the atom being studied. Accordingly, the following sec-
tion is restricted to two-electron systems.
Prior to each eigenchannel R-matrix calculation, it is

necessary to decide which channels should be treated as
open, weakly closed, or strongly closed in the studied
energy range. This choice is important in order to select
the reaction-volume boundary r0 and the two-electron
functions to include in the variational calculation. How-
ever, the choice is not unique, as will be stressed later.
First, we document the choice of the reaction volume

size. As a first criterion, the reaction volume V should
be large enough to include the charge distributions of
the ionic states A1 n1l1 involved in the open or weakly
closed fragmentation channels. The majority of the
R-matrix calculations performed in recent years have
dealt with energies lower than the lowest A1 m0p
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threshold (m0= 2, 3, 4, 5, 6 for Be, Mg, Ca, Sr, Ba, and
Ra, respectively) and n1l1n2l2 states corresponding to
an orbital momentum l2 for the outer electron such as
l2<4. Calculations in the lighter elements Be and Mg
have typically used r0;9–12 a.u. Those for the heavier
elements Ca to Ra have used r0;15–22 a.u. owing to the
smaller binding energies of the ion (Greene and Aymar,
1991). A calculation of the Ca photoabsorption spec-
trum from the 4p threshold up to nearly the 6s thresh-
old (Kim and Greene, 1988) and recent calculations of
several autoionizing Rydberg series of Ba below the
7p threshold (Luc-Koenig and Aymar, 1992; Aymar et
al . , 1994; Luc-Koenig, Aymar, and Lecomte, 1994; Luc-
Koenig, Lecomte, and Aymar, 1994; Aymar and Luc-
Koenig, 1995; Luc-Koenig et al . , 1995; van Leeuwen et
al . , 1995, 1996) use larger r0 values in the range of 30–50
a.u. The largest box sizes used in calculations of this type
are around r0;100–120 a.u.; they were used in the in-
vestigations of Ba near the 8s threshold, of Sr near the
6f , 6g , 6h thresholds (Wood and Greene, 1994) and also
in the study of H2 and Li2 up to the n56 thresholds
(Pan et al., 1994).
It is worth noting that the size of the reaction volume

does not depend solely on the extent of the ionic levels
that must be enclosed in the reaction volume. It is also
governed by the value of the orbital momentum l2 cor-
responding to the Rydberg or continuum electron. For
calculations that neglect multipole interactions beyond
the reaction volume V , a larger box size r0 helps to de-
scribe these interactions accurately within V . These mul-
tipole effects play an especially important role in deter-
mining the small quantum defects for large l2 values.
Thus, for example, g-wave quantum defects are better
described in Mg using r0520 a.u. than using 12 a.u.
(Lindsay, Dai, et al . , 1992). In Sr also, a better descrip-
tion of the 4dng levels was found using r0535 a.u. in-
stead of r0520 a.u. (Goutis et al . , 1992). Recently, from
the observation of 7sni Rydberg series of Ba (Camus,
Mahon, and Pruvost, 1993), it has been shown that a
very good description of the measured quantum defects
for 7sni Rydberg series is attained using r0;50–60 a.u.,
while poor results are obtained using r0530 a.u. (Aymar
et al . , 1994). The highest partial waves included in such
calculations are up to l2;10 in the Ba calculation of
Wood and Greene (1994). These authors performed
R-matrix calculations in jK coupling with an R-matrix
box of 100 a.u.
Recently, Wood and Greene (1994) extended the

eigenchannel R-matrix approach to include effects of
long-range multipole interactions beyond the R-matrix
reaction volume. More precisely, the Cb eigensolutions
and their derivatives have been propagated from r0 to a
larger radius r08 by solving the close-coupling equations
without exchange for r>r0. Higher l2 values can be
studied without increasing the size of the reaction vol-
ume. l2 values up to l2512 have been investigated in Sr,
by propagating the solutions from r05100 a.u. up to
r08;250 a.u. Similarly, Pan et al . (1994) successfully ana-
lyzed highly doubly excited states converging onto the
nearly degenerate thresholds n56 in H2 and Li2.

Our aim now is to give details on the choice of the
variational basis sets and to show that this choice is de-
termined by the accuracy desired in the description of
the physical observables. We concentrate on two simple
examples.
The first example concerns an investigation of the Ca

1Po spectrum, which was studied by Greene and Kim
(1987) over a range of energy from far below the 4s
ionization threshold up to the 4p threshold. An accurate
description of the bound spectrum and of the photoab-
sorption spectrum was obtained using small-scale
LS-coupled R-matrix calculations. The five open or
weakly closed channels relevant to the autoionizing en-
ergy range below the 4p threshold were: 4snp , 3dnp ,
3dnf , 4pns , and 4pnd . The calculation used an
R-matrix boundary of r0518 a.u., which easily encloses
the charge distribution of the Ca1 4p state within the
reaction volume. Table II lists the closed-type basis set,
which consists of 88 n1l1n2l2 functions. This set was
complemented by 15 open-type basis functions associ-
ated with the open or weakly closed channels, which
results in a total of 103 two-electron basis functions. For
each open or weakly closed channel, three open-type
basis functions were included and another five or six
closed-type basis functions. A total of 28 closed-type ba-
sis functions were used for these MQDT fragmentation
channels, while another 60 closed-type functions were
used to describe the strongly closed channels converging
onto the Ca1 ns , np , nd , and nf thresholds lying higher
than the Ca1 4p threshold. At energies below the 4s
threshold, the 3dnf , 4pns , and 4pnd channels are
strongly closed, meaning that the energy is still below
the first states in those channels. Accordingly, the
R-matrix basis set used in this energy range did not con-
tain any open-type functions for these channels. How-
ever, the same set of closed-type basis functions was
used, which results in 94 two-electron basis functions.
The size of the basis set to be used strongly depends

on the degree of convergence desired. Tests showed that
the qualitative shape of the photoabsorption spectrum
of Ca between the 4s and 3d thresholds could be ob-
tained using only thirteen (three in the open channel
and two in the weakly closed channels) basis functions
(instead of 103) and r0512 a.u. (instead of 18 a.u.).
However, the quality of the variational wave functions,
as judged by the agreement between length and velocity
results, is greatly improved by including a large set of
strongly closed channels. Unfortunately, there is no gen-
eral criterion for choosing the basis set before doing a
calculation, whereas, after having done a calculation
with a large basis, it is possible to eliminate basis func-

TABLE II. Closed-type basis set of nlml8 functions used for
the 1Po symmetry of Ca.

nsmp 4<n<8 4<m<9 +9s4p

npmd 4<n<8 3<m<8 +9p3d

ndmf 3>n<7 4<m<8 +3d9f
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tions yk whose contributions are clearly negligible from
inspection of the eigenvectors Ckb corresponding to the
different eigenvalues bb in Eq. (3.7) or Eqs. (3.47) and
(3.49).
The second example corresponds to the even-parity

J=0 spectra of Sr and Ba investigated below the m0p
threshold. LS-coupled R-matrix calculations were com-
bined with the jj-LS frame transformation (Sec. II.E).
The Sr R-matrix calculations (Kompitsas et al . , 1991)
for the 1Se and 3Pe symmetries used a box size of
r0520 a.u. The 1Se calculation included three open or
weakly closed channels: m0sns , (m021)dnd , and
m0pnp . Table III lists the configurations included in the
closed-type basis set. It consists of 237 n1l1n2l2 configu-
rations with l2<6. The additional 15 open-type basis
functions associated with the open and weakly closed
channels give a total of 246 two-electron basis functions.
Among them, only 33 are associated with the open or
weakly closed channels (eight closed-type functions and
three open-type functions per channel).
To achieve convergence for the energy of the strongly

correlated Ca 4p2 1S0 (Aymar and Telmini, 1991; Assi-
mopoulos et al . , 1994), Sr 5p2 1S0 (Kompitsas et al . ,
1991), and Ba 6p2 1S0 levels (Greene and Theodosiou,
1990; Greene and Aymar, 1991; Wood et al . , 1993), it
was found essential to include a large number of closed-
type n1l1n2l2 functions involving large orbital momenta
l1 ,l2>3. This large number of functions represents high
doubly-excited-type configurations that would fre-
quently be neglected (Bartschat and Greene, 1993) but
play an unexpectedly large role for these resonances un-
usually sensitive to the chosen model.
More generally, the LS-coupled R-matrix calculations

performed at relatively low energies below the m0p
threshold typically use 100 to 400 basis functions to de-
scribe two to five open and weakly closed fragmentation
channels. When the R matrix is set up in jj coupling, the
number of basis functions is larger, typically by about a
factor of three (or four), accounting for the three (or
four) different LS symmetries generally involved in a
single J symmetry. The most recent calculations per-
formed in jj coupling at higher energies (Aymar et al.,
1994; Luc-Koenig, Aymar, and Lecomte, 1994; Luc-
Koenig, Lecomte, and Aymar, 1994; Aymar and Luc-
Koenig, 1995; Luc-Koenig et al . , 1995; van Leeuwen et
al . , 1995, 1996) involve 30 to 50 fragmentation channels
which are described by 1000 to 2500 basis functions.
Some convergence-test calculations involve up to 5000
basis functions. The convergence of the variational cal-
culation with respect to the basis-set size is dramatically

slowed down if a value of r0 is used that is larger than
necessary. Indeed, the number of basis functions prob-
ably increases in proportion to r0

2. As a rule of thumb, it
is our experience that for r0< 15 a.u., good convergence
is achieved using only six closed-type basis functions per
channel. This number should be increased to eight for
r0; 20 a.u. and to 15–18 for r0 ; 50 a.u.
The choice of open channels to be included in the

calculation is easy because, for given symmetry and en-
ergy range, there exists a finite set of open channels.
R-matrix calculations of autoionizing levels located be-
low the A1 (m011)p threshold explicitly introduced all
relevant open channels. In contrast, the number of
closed channels is infinite. The choice of which weakly
closed and strongly closed channels to include in the
R-matrix calculation is not unique. In particular, it de-
pends on which short-range reaction matrix K(E) or
K0(E) is used in the MQDT calculations. R-matrix cal-
culations performed to determine a K(E) matrix should
treat the channel i5$n1l1l2% as strongly closed when the
photoelectron energy is smaller than 21/2l2

2. This re-
striction can be bypassed by using a K0 matrix. How-
ever, as shown below, the use of a K0 matrix complicates
the calculations.
Although no fully general rule has been found to

choose the channels to be treated as weakly closed or
strongly closed, from our experimentation we recom-
mend:
(1) The use of matrices K rather than matrices K0.

For a given energy range, the matrix K refers to frag-
mentation channels i in which the photoelectron energy
is larger than 21/2l2

2. This leads to treatment of a spe-
cific channel i5$n1l1l2% as strongly closed when the
photoelectron energy is smaller than 21/2l2

2. Thus,
MQDT calculations over a large energy range require
the determination of several K matrices involving differ-
ent sets of fragmentation channels. It is also crucial to
introduce a large number of strongly closed channels to
get converged results. MQDT calculations with a fixed
number of fragmentations channels could be conducted
over a large energy range with a single K0 matrix that is
able to treat all fragmentation channels throughout the
energy range independently of how the photoelectron
energy compares to 21/2l2

2. Such treatment does not af-
fect the results, but it complicates the calculations by
increasing the number of fragmentation channels. Fur-
thermore, in the low-energy range this causes avoided
crossings and strong energy dependences of the ma and
also near degeneracies among some of the ma .
(2) Inclusion of all weakly closed channels relevant to

the studied energy range and symmetry. Failure to in-
clude all weakly closed channels can distort the final re-
sults, especially when the neglected channels interact
strongly with weakly closed channels included in the cal-
culation. This can induce rapid increase by one unit of
some eigenquantum defects ma , in particular when the
lowest resonances in the weakly closed channel treated
as strongly closed lie in the studied energy range. This
may also cause adverse effects on the results. In particu-
lar, the resonances in the omitted channels will lie much
too high in energy unless these resonances fit inside the

TABLE III. Closed-type basis set of nlml functions used for
the 1Se symmetry in Sr and Ba.

For 0<l<5 nl<n<nl17 nl11<m<nl17
For l56 nl<n<nl15 nl11<m<nl15

With l50,1 ns5np5m0

l52 nd5m021
l>3 nl5l11
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R-matrix reaction volume (Kim and Greene, 1988;
Lecomte et al., 1994, 1995). However, our experience
has shown that treating weakly closed channels that do
not interact significantly with the channels under study
as strongly closed makes no differences in many cases.
Closed channels n1l1l2 with relatively high l2 values can
often be treated as strongly closed. For example, results
on 4fnf levels obtained by treating the 4fnh channels as
strongly closed (Luc-Koenig, Aymar, and Lecomte,
1994) agree perfectly with those obtained by treating the
4fnh channels as weakly closed (van Leeuwen et al . ,
1995).
(3) Caution when using a large reaction volume. Dif-

ficulties related to the exponential growth of closed-
channel Coulomb solutions (for which asymptotic
boundary conditions have been postponed) are ampli-
fied. Moreover, it was found that when the lowest reso-
nances belonging to a weakly closed channel fit inside
the R-matrix box then this channel becomes uncoupled
from the others and its eigenquantum defect ma de-
creases rapidly with energy (Kim and Greene, 1988;
Lecomte et al . , 1995). An adaptation of the eigenchan-
nel method developed recently to circumvent the diffi-
culties occurring at the bottom end of Rydberg series,
where MQDT parameters acquire the strongest energy
dependence, is presented in Sec. III.H below.

H. Alternative streamlined solutions of the generalized
eigensystem

An adaptation of the streamlined eigenchannel
method was recently developed to circumvent the diffi-
culties encountered in describing doubly excited states
of alkaline earths that are located at the bottom end of
Rydberg series. The method developed for studying
6d2 and 7p2 autoionizing levels of Ba (Lecomte et al . ,
1994) reduces to identifying some levels enclosed in the
reaction volume with bound states and treating their in-
teractions with the open continua. The method is close
in spirit to the Fano’s (1961) configuration-interaction
method, which dealt with the same situation.
First, consider the treatment of the 6d2 levels, which

are located above the 6s , 5d , and 6p thresholds, and
which do not interact with Rydberg series converging to
thresholds higher than 6p . Instead of viewing the 6d2

levels as the lowest members of Rydberg series converg-
ing to 6dj thresholds and treating their interaction with
the open channels using standard MQDT techniques, a
reaction volume (r0;40–50 a.u.) is chosen to be large
enough to enclose the 6d2 levels. The 6dnd channels
are treated as strongly closed channels in the energy
range enclosing the 6d2 resonances. The eigenchannel
R-matrix method is employed to construct a matrix R
restricted to open channels from which a scattering ma-
trix S referring to open channels only is deduced [Eqs.
(2.34) and (2.43)].
As in the standard streamlined eigenchannel

R-matrix method, the two-electron basis functions are
partitioned into two distinct sets. However, in contrast
with this former approach (Sec. III.E), the partition does

not depend on the type (open or closed) of the basis
functions but on the nature of the channels they de-
scribe:
(i) Open channels: each of the N0 open channels con-

verging to the 6s , 5d , or 6p ionization limits is described
not only by some open-type functions but also by several
closed-type functions. The corresponding set of two-
electron functions is denoted $ō%.
(ii) Strongly closed channels: a great number of basis

functions describes strongly closed channels converging
onto thresholds located higher than the 6p threshold;
among them there are the 6dnd channels. The corre-
sponding basis functions, constructed from closed-type
functions only, form the set denoted $ c̄%.
Two key points follow from the new partition:
(1) As in the streamlined eigenchannel R-matrix

method, the eigensystem [Eq. (3.7)] is transformed by
partitioning the matrices G , L , and O into submatrices
referring to the subsets $ō% and $ c̄% and then trans-
formed again into a representation in which the closed
portion of the Hamiltonian Hc̄c̄ is diagonalized using an
orthogonal eigenvector matrix W . Among the eigen-
states of Hc̄c̄ , those corresponding to the lowest eigen-
values can be identified with physical low-lying doubly
excited states such as 6d2, 7p2, 7s5g , . . . enclosed
within the reaction volume. Corresponding states (de-
noted as Fr) are grouped in a first set denoted $r%. A
second set $p% groups the remaining eigenstates, which
cannot be identified with physical states; these eigen-
states describe polarization effects. The division of the
set $ c̄% into the sets $r% and $p%, which depends on the
studied energy range, is somewhat arbitrary, but the fi-
nal results are completely independent of this division.
With this new partition, some submatrices that do not

have zero values in the standard streamlined eigenchan-
nel R-matrix formulation now vanish. More precisely,
one has

Lōc̄50, Oōc̄50, and Oc̄ō50. (3.51a)

Moreover, Goc [Eqs. (3.9) and (3.51a)] reduces to

G ō c̄522Hōc̄ . (3.51b)

As detailed by Lecomte et al . (1994), the generalized
eigensystem can be transformed into the form

G8xW ō[@G ōō8 2G ōr8
1
2 ~E2Er!

21Grō8 #xW ō5L ōōxW ōb ,
(3.52a)

xW r52 1
2 ~E2Er!

21Grō8 xW ō , (3.52b)

where the matrix xW r represents the amplitudes of the
function Fr , associated with the eigenvalues Er , in the
No eigensolutions Cb . In Eq. (3.52a), the matrix

G ōō8 5G ōō2G ō c̄Wc̄p
1
2 ~E2Ep!21Wpc̄

t G c̄ ō (3.53a)

includes the contribution of the eigenstates of Hc̄c̄ de-
scribing polarization effects. The matrix

G ōr8 5G ō c̄Wc̄r (3.53b)
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couples the physical eigenstates Fr to the set $ō% de-
scribing the open channels.
(2) A second key point of the new partition and of the

subsequent transformation of Eq. (3.7) into Eq. (3.52) is
that, from Eqs. (3.9) and (3.51b), the matrix Grō8 is such
that each of its elements is proportional to the matrix
element of 1/r12 between a particular state Fr and a par-
ticular function of the set $ō% that describes continua.
As detailed by Lecomte et al . (1994), the new parti-

tion permits an easy identification of doubly excited
states within the R-matrix box. Moreover, the construc-
tion of the matrix R associated with the solutions of the
eigensystem [Eq. (3.52)] gives a scattering matrix S in a
form well suited to resonance analysis. This matrix is
expressed as the sum of a nonresonant part (S(0)) and a
resonant part as

Sij5Sij
~0 !22ip (

aa8P$r%

Tia
t SE2Er2Drr1

i

2
grrD

aa8

21

Ta8j .

(3.54)

The background matrix S(0) varies very slowly with en-
ergy. This matrix describes the continua when the dou-
bly excited levels Fr and the open channels are not
coupled, i.e., when Grō8 50; this matrix was obtained
from a separate R-matrix calculation involving a basis
excluding the doubly excited levels contained in the set
$r%. In the resonant part, Drr and grr are shift and width
matrices, respectively, and the matrix T represents the
1/r12 interaction between the doubly excited states Fr
(set $r%) included in the R-matrix box and the nonreso-
nant continua.
We consider now the treatment of 7p2 levels or

higher-lying nl2 levels, such as 4f2 levels, that are mixed
with neighboring levels pertaining to Rydberg series
converging to high-lying thresholds. The approach de-
veloped to treat the 6d2 levels, where no weakly closed
channel are introduced, is no longer valid to describe
these levels. An extension of the approach discussed
above allows the mixing between the 7p2 or 4f2 levels
and the Rydberg series to be accounted for (Lecomte
et al . , 1994, 1995). The 6d2, 7p2, and 4f2 levels are still
assumed to be contained and identified within the reac-
tion volume, i.e., the channels converging to the 6d ,
7p , and 4f thresholds are still treated as strongly closed
channels. However, some channels treated as strongly
closed in the previous formulation are now treated as
weakly closed in order to describe Rydberg levels that
are not included in the reaction volume. The R-matrix
calculation gives a short-range scattering matrix refer-
ring to open and closed channels. The resonances corre-
spond either to the doubly excited states Fr enclosed
within the reaction volume or to levels pertaining to the
weakly closed channels. The two types of resonances can
be analyzed simultaneously, as described by Lecomte
et al . (1995).

IV. ALKALINE-EARTH ATOMS

This section describes the multichannel spectroscopy
of a variety of different atoms and different symmetries.

Our efforts concentrate on the alkaline-earth atoms
ranging from beryllium to radium, i.e., on two-electron
atoms for which the long-range potential experienced by
a single escaping electron is Coulombic. Another class of
two-electron systems will not be treated in detail but
only succinctly mentioned in this review. It concerns
two-electron systems for which the long-range electron-
core potential differs from a pure attractive Coulomb
field. This second class includes atomic helium, the hy-
drogen negative ion, and the alkali negative ions.
Our goals for this section are:
(1) To show, with examples, how complex spectra

provide us with a window into the nature of channel
interactions. Theoretical multichannel spectroscopy pro-
vides a powerful way of analyzing the global aspects of
the short-range dynamics that are common to the entire
energy-level and autoionizing pattern of a spectrum. We
also develop practical graphical techniques for opening
this dynamical window.
(2) To develop in detail one particularly powerful ap-

proach to the calculation of complex spectra. This ap-
proach marries the techniques of multichannel spectros-
copy (or multichannel quantum-defect theory) to the
eigenchannel R-matrix method. We refer to this general
computational scheme as nearly ab initio multichannel
spectroscopy; its strength is the capability to calculate
the short-range scattering parameters relating to both
open and closed channels. Practical considerations of
the method will be stressed and its current limitations
will be described.
(3) To develop a catalog of the types of spectra that

can be observed. The catalog not only illustrates the
great diversity of photoabsorption spectra, it also veri-
fies the general applicability of the nearly ab initio ap-
proach to calculate many different observables over
broad energy ranges. Section A deals with bound spec-
tra. Sections B and C show how to extract information
on the autoionizing resonances without reference to the
excitation process. Section B is devoted to the energy-
level structure of autoionizing spectra, and Sec. C con-
cerns the autoionization widths and branching ratios.
Sections D and E deal with two kinds of photoionization
spectra corresponding to different excitation schemes
starting from either a low-lying or a Rydberg level. Ac-
curate results can be obtained, not only for the most
common observables such as energy-level positions and
total photoionization cross sections, but also for observ-
ables more sensitive to channel interactions and spin-
orbit effects. Special attention will be given to aniso-
tropic observables such as the photoelectron angular
distributions.
(4) To demonstrate how multichannel spectroscopy

permits the extraction of regularities and differences
among the channel interactions for different atoms and
symmetries. These are harder to extract from raw spec-
tra for two reasons: (i) multichannel resonant spectra
are so complicated in general that it is hard to extract
anything simple from the spectrum of one atom to com-
pare with that of another atom; (ii) complex spectra de-
pend on other details, such as the ionic threshold ener-
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gies, which can greatly modify one atom’s spectral
appearance from that of a comparable atom even if the
channel-interaction parameters are identical.
(5) To assess the validity of assumptions made in

semiempirical quantum-defect studies that fit MQDT
parameters to reproduce experimental data. Results ob-
tained by combining the R-matrix and MQDT methods
are compared to those provided by semiempirical and
other ab initio approaches. These comparisons show
that the calculation of short-range scattering parameters
by the eigenchannel R-matrix method greatly enhances
the predictive power of multichannel spectroscopy. At
the same time, we show that many semiempirical studies
carried out prior to these nearly ab initio studies were
able to unravel the spectra successfully.
Some readers may prefer to skim this section to get a

flavor for the different types of spectra that are possible
for multichannel systems. Most of the individual subsec-
tions in the following are self-contained to encourage
this approach. At the same time, we have attempted to
cover a substantial fraction of the work in this area in
recent years, to permit use of this section as an encyclo-
pedia of alkaline-earth spectra.

A. Discrete spectra

Figure 8 compares schematic energy diagrams of all of
the alkaline-earth atoms. Over the energy range consid-
ered here, the electrons in the closed shells of the doubly
charged ionic core cannot be excited. We treat only two-
electron excitations in the range extending from the
ground state, denoted as m0s

2 (Be, m0 =2, Mg, m0 =3;
Ca, m0 =4; Sr, m0 =5; Ba, m0 =6, Ra, m0 =7), to the
double ionization limit A11. The positions of the lowest

ionization limits and their fine-structure splittings are in-
dicated on Fig. 8 for each atom.
The energy-level structure of the alkaline-earth atoms

differs qualitatively from the spectrum of a one-electron
atom or ion, with the alkaline earths exhibiting far
greater complexity. In particular, Rydberg states of the
outer valence electron attached to different states of the
inner valence electron can perturb each other strongly,
especially when states of the same symmetry become
nearly degenerate in energy. The resulting channel in-
teractions produce great visual complexity in the valence
photoabsorption spectrum, even though only two elec-
trons participate. A major difference between the
‘‘lighter’’ alkaline-earth atoms Be and Mg and the
‘‘heavier’’ alkaline earths Ca, Sr, Ba, and Ra is that the
first excited state of Be1 and Mg1 is the m0p state,
whereas it is the (m021)d state for the heavier alkaline-
earth ions. The lightest alkaline-earth atoms Be and Mg
have comparatively few doubly excited perturbing levels
in the bound-state spectrum below the first ionization
threshold, whereas the perturbations are numerous in
Ca, Sr, Ba, and Ra, even at such low energies. Accord-
ingly, the following discussion of the bound Rydberg se-
ries perturbations focuses on the heavier alkaline-earth
atoms.
Eigenchannel R-matrix calculations have been carried

out both in LS and jj coupling schemes to analyze the
perturbations of bound Rydberg series m0snl by low-
lying doubly excited levels located below the first m0s
ionization limit. Not surprisingly, these perturbations
strongly affect the energy-level structure and other ob-
servables that are even more sensitive to channel mix-
ing. Effects of perturbations on energy spectra and on
other observables will be discussed in succession.

1. Energy spectra

Figure 9 compares the Lu-Fano plots of the odd-
parity J51 bound levels for all of the ‘‘heavier’’
alkaline-earth atoms: Ca, Sr, Ba, and Ra. On each Fig.
9(a) to 9(d), the solid curve shows the quantum defects
calculated using the eigenchannel R-matrix method,
while the points give the quantum defects of the experi-
mental levels (Moore, 1949, 1952, 1958; Tomkins and
Ercoli, 1967; Armstrong et al . , 1979, 1980). As ex-
plained in Sec. II.F, the theoretical quantum defects are
shown as continuous curves, whereas the quantum de-
fect of each experimental level is a discrete point. The
continuity of the resulting plot improves our ability to
visualize the full energy dependence of the quantum de-
fects. The perturbation of the m0snp

1P Rydberg series
of Ca @Fig. 9(a)] or Sr @Fig. 9(b)] by the
(m021)dm0p

1P doubly excited state was well de-
scribed by a two-channel R-matrix calculation in LS
coupling (Greene and Kim, 1987; Aymar et al . , 1987).
Compared to Ca and Sr, the J51o spectrum of Ba
@Fig. 9(c)] displays much greater complexity. In Ba, it is
no longer possible to neglect spin-orbit effects; these
have been accounted for approximately in the calcula-
tion through the jj-LS frame transformation. A quanti-
tative description of the J51o bound spectrum of Ba

FIG. 8. Schematic energy diagram of the alkaline-earth atoms
Be to Ra, displaying the lowest ionization limits with their
fine-structure splittings (in cm21) and the double-ionization
limits. For each atom, the energy is relative to the m0s

2 ground
state.
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was achieved (Aymar, 1990) in an LS-coupled
R-matrix calculation for the 1Po, 3Po, and 3Do symme-
tries. The treatment included three channels (6snp ,
5dnp , and 5dnf) for the 1P and 3P symmetries and two

channels (5dnp and 5dnf) for the 3D symmetry. The
LS-coupled reaction matrices were recoupled into a
single jj-coupled matrix of dimension 8 for J51. This
problem involves three ionization limits (6s , 5d3/2 ,

FIG. 9. Lu-Fano plots of the odd-parity J51 bound levels of Ca to Ra, comparing experimental values, depicted by solid points,
with eigenchannel R-matrix calculations (solid curves and open squares). (a),(b) Results on the m0snp

1P Rydberg series of (a)
Ca and (b) Sr perturbed by the (m021)dm0p

1P level were obtained in LS coupling; the dashed curve for Ca is the empirical
MQDT fit of Armstrong et al . (1979). (c) The LS-coupled R-matrix result for Ba combined with the jj-LS frame transformation;
the levels (1) to (8) correspond to 5dnp perturbers of the 6snp 1P1 and

3P1 Rydberg series, the 5d6p
1P1 being labeled by (3)

and the 5d7p 1P1 by (6); the 5d8p
1P1 level is diluted into high-lying 6snp 1P1 levels; the three 5d4f levels cause the rapid

increases of the quantum defects for 3.75<n5d5/2<4. (d) The jj-coupled R-matrix result for Ra for the 7snp 1P1 and
3P1 Rydberg

series perturbed by the 6d7p J51 levels [for assignment of the levels (1) to (7) see Greene and Aymar (1991)]. (From Aymar
et al . , 1987; Greene and Kim, 1987; Aymar, 1990, and Greene and Aymar, 1991).
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5d5/2). For this reason Fig. 9(c) is the projection of a
three-dimensional Lu-Fano plot onto the two-
dimensional plane of -n6s (mod 1) versus n5d5/2. A char-
acteristic feature of the energy diagram of Fig. 8 is the
smaller gap between the 6s and 5d thresholds in Ba
compared to the corresponding gaps between the m0s
and (m021)d thresholds in Ca, Sr, and even Ra. For
this reason, in Ba, a large number (twelve) of doubly
excited levels, which are the lower members of the
5dnp (6<n<8) and 5dnf (n54) Rydberg series, per-
turb the 6snp 1P1 and

3P1 Rydberg series. Figure 9(d)
shows that the Ra Lu-Fano plot, obtained using a 13-
channel jj-coupled R-matrix calculation (Greene and
Aymar, 1991) looks simpler than the Ba plot. In fact,
only the three Ra 6d7p J51 doubly excited levels are
located below the 7s limit and thus perturb the 7snp
1P1 and

3P1 Rydberg series. The comparison of calcu-
lated (open squares) and observed (solid points) levels is
satisfying for the lower- and higher-lying 7snp 1P1 lev-
els, whereas some discrepancies occur in the intermedi-
ate energy range. In particular, the theoretical level la-
beled by T cannot be associated with any experimental
level. It remains unclear whether these discrepancies are
due to some inaccuracy of the calculation, or to an ex-
perimental error or misclassification. As expected,
poorer agreement is obtained between theory and ex-
periment for the higher-lying 7snp 1P1 levels using
LS-coupled eigenchannel R-matrix calculations com-
bined with the jj-LS frame transformation (see Greene
and Aymar, 1991).
Perturbations of the m0snp J51 series have been

analyzed previously for every alkaline-earth atom from
Ca to Ra using empirical MQDT models fitted to experi-
ment (Armstrong et al . , 1979, 1980). The dashed curve
for Ca @Fig. 9(a)] is the MQDT least-squares fit of Arm-
strong et al . (1979). The nearly ab initio R-matrix cal-
culations improve upon the description of the low-lying
levels achieved in those empirical studies. This improve-
ment derives from the correct description of the energy
dependence of the short-range scattering parameters; in
most semiempirical fits an oversimplified energy depen-
dence has been assumed, in order to minimize the num-
ber of fitted parameters.
The Ca and Sr Lu-Fano plots are remarkably similar

to each other, while Ba and Ra differ. Most of the dif-
ferences between the lightest and heaviest atoms derive
from two effects: from the different number of doubly
excited levels located below the first ionization limit and
from spin-orbit effects. The short-range scattering pa-
rameters exhibit strong similarities among all atoms
from Ca to Ra. Below the m0s threshold, the J51o

spectra are dominated by the mixing between the
m0snp

1P and (m021)dnp 1P channels, which is re-
flected by the large curvature of the Lu-Fano plots of Ca
@Fig. 9(a)] and Sr @Fig. 9(b)]. Similar curvature is appar-
ent for Ba @Fig. 9(c)] around n5d3/2;2.5 (5d6p 1P per-
turber) and n5d3/2 ;3.5 (5d7p 1P perturber), and for Ra
@Fig. 9(d)] around n6d3/2;2.7 (6d7p 1P perturber).
These similarities are even more evident in Fig. 10,

where the eigenquantum defects ma [Figs. 10(a), 10(c),
10(e), and 10(g)] and mixing angles u [Figs. 10(b), 10(d),
10(f), and 10(h)] from R-matrix calculations (Aymar et
al . , 1987; Greene and Kim, 1987; Aymar, 1990; Greene
and Aymar, 1991) are displayed for the m0snp

1P and
(m021)dnp 1P channels of Ca to Ra versus the energy.
The Ca and Sr results were obtained from a two-channel
treatment, whereas those for Ba and Ra were derived
from calculations involving a larger number of channels.
The dashed curves in Figs. 10(e) and 10(f) for Ba show
the empirical smooth scattering parameters fitted by
Armstrong et al . (1979). The assumption that these pa-
rameters have a linear energy dependence, frequently
made in empirical studies, is seen to be quantitatively
valid only over a restricted energy range near the thresh-
old; far below the m0s threshold, the energy dependence
becomes much more complicated (see also Fig. 7). Be-
cause R-matrix calculations carried out in the different
atoms use different r0 values and different numbers of
interacting channels, a detailed comparison between the
different curves (a), (c), (e), and (g) displaying the en-
ergy dependence of m1 and m2 is not very meaningful.
However, let us note that the values of Dm5m12m2
(mod 1) near the lowest threshold are comparable for
each element: 0.36 (Ca), 0.36 (Sr), 0.25 (Ba), 0.33 (Ra).
Even more striking similarities are evident for the

two-channel mixing angle u @Figs. 10(b), 10(d), 10(f),
10(h)]. For all elements, u evolves from zero at low en-
ergy to a maximum ;0.20p around the m0s threshold
where the two channels are strongly mixed. Recalling
Sec. II.F, note that the strongest possible mixing corre-
sponds to u5p/4 and Dm= 0.5. This near invariance of
the strength of channel mixing was previously discussed
by Armstrong et al . (1979, 1980) and by Wynne and
Armstrong (1979). These authors showed that all 1Po

bound-state data for Ca, Sr, and Ba can be compactly
represented by using the two common parameters
u50.19p and Dm50.40 and a third parameter
m̄5m12Dm/2 that is different for each atom. These em-
pirical values obtained with a two-channel treatment
agree well with the R-matrix predictions, although more
poorly for Ba and Ra. These discrepancies for the heavi-
est alkaline-earth atoms primarily reflect the fact that
more than two channels are actually involved in the dy-
namics.
One additional paper should be mentioned here.

Armstrong et al . (1981) carried out ab initio calcula-
tions of short-range scattering parameters in alkaline
earths using a local-density approximation for the ex-
change correlation potential. Their calculated two-
channel interaction parameters for the 1Po series agree
with the fitted parameters for Ca and Ba, while for Sr
the agreement is poorer. That study also showed how
the channel-interaction angle u varies with energy.
We turn now to the even-parity J50 spectra of Ca, Sr,

and Ba. Calculated Lu-Fano plots displayed in Fig. 11
are compared with experimental levels (Moore, 1949,
1952, 1958; Armstrong et al . , 1977; Esherick, 1977; Ay-
mar et al . , 1978; Sugar and Corliss, 1985). For Ca @Fig.
11(a)] and Sr [Fig. 11(b)], the curves (solid lines) were
obtained with LS-coupled eigenchannel R-matrix calcu-
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lations combined with the jj-LS frame transformation.
Ca results are from Aymar and Telmini (1991); Sr re-
sults are derived from those of Aymar et al . (1987) and
of Kompitsas et al . (1991). These R-matrix calculations
involve the following five LS-coupled channels:
@m0sns , m0pnp , and (m021)dnd 1S], @m0pnp and
(m021)dnd 3P]. The Ba Lu-Fano plot @Fig. 11(c)] was
obtained from a five-channel jj-coupled eigenchannel
R-matrix calculation (Greene and Aymar, 1991). The
Lu-Fano plots of Ca @Fig. 11(a)] and Sr @Fig. 11(b)] ex-
tend across the first ionization limit, while the Ba plot
@Fig. 11(c)] is restricted to the bound spectrum. The
plots of Fig. 11 are projections of four-dimensional sur-
faces onto the -nm0s

(mod 1) versus n(m021)d3/2
plane.

The Ca and Sr Lu-Fano plots above the ionization limit
display the physical ‘‘collision’’ eigenphase shifts ob-
tained by diagonalization of the physical scattering ma-
trix [Eq. (2.50)]. Each sharp rise of the phase shift is
associated with an autoionizing resonance. The size of
each avoided crossing between the branches of the Lu-
Fano plots in Fig. 11 can be interpreted as reflecting the
channel-interaction strength between either the m0pnp
(1S0,

3P0) channels or else the (m021)dnd
(1S0,

3P0) channels and the m0sns
1S0 Rydberg series

(or m0ses
1S0 continuum). The J50e spectra of Ca [Fig.

11(a)] and Sr [Fig. 11(b)], which are immediately seen to
be similar, are strongly dominated by the mixing be-
tween singlet channels. In fact, in Ca the interaction be-
tween the singlet and triplet channels is almost negli-

gible in the energy range of Fig. 11(a), which means that
it is adequate to neglect their coupling altogether. This
approximation is no longer valid for Ca at higher ener-
gies very close to the 3dj spin-orbit-split thresholds, as
will be documented in Sec. IV.B. Figure 11(b) shows
that neglect of singlet-triplet mixing for this symmetry in
Sr is only valid below the 5s threshold.
For the 3P0 symmetry of Ca and Sr, two perturbers

m0p
2 (labeled by A) and (m021)d2 (labeled by B) are

located below the m0s threshold. Concerning the 1S0
symmetry of Ca and Sr, R-matrix calculations have
shown that the levels referred to as P0 and P08 involve
comparable admixtures of the (m021)d2 and m0p

2 1S
configurations. Multiconfiguration Hartree-Fock calcu-
lations also demonstrated that the P0 level is a strong
mixture of those configurations (Froese Fischer and
Hansen, 1981, 1985; Vaeck et al . , 1988). Recently Brage
and Froese Fischer (1994a) have applied a nonvaria-
tional Spline-Galerkin method to reinvestigate a large
number of 4snl Rydberg series of Ca. They used atomic
wave functions in a close-coupling form, including pseu-
dostates. Radial functions for the channel functions and
for the pseudostates were taken from Ca1 Hartree-Fock
calculations, while a B-spline expansion was used to rep-
resent the radial functions of the outer electrons. Core-
polarization effects were also incorporated. A very accu-
rate description of 4sns 1S0 Rydberg levels up to
n523 was achieved. They also found nearly equal
weights for the 3dnd and 4pnp 1S0 channels in the P0

FIG. 10. Eigenquantum defects
ma and mixing angle u for the
m0snp

1P (1) and
(m021)dnp 1P (2) channels of
Ca to Ra below the m0s ioniza-
tion limit, as functions of the
energy E referred to the
double-ionization limit. The
curves (full lines) are derived
from LS-coupled eigenchannel
R-matrix calculations. The
dashed lines for Ba correspond
to the empirical MQDT fit of
Armstrong et al . (1979). (From
Aymar et al . , 1987; Greene and
Kim, 1987; Aymar, 1990, and
Greene and Aymar, 1991).
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level. For levels such as these, which exhibit such strong
electron correlations, classifications based on
independent-electron quantum numbers should not be
taken too seriously. With this qualification in mind, the
trends of the (m021)dnd autoionizing series for Ca and
Sr investigated with the R-matrix method (see Sec. IV.B
below) suggest that the labels given in the earlier litera-
ture (Moore, 1949, 1952) should be reversed. This leads
to the identification of P0 as the (m021)d2 level and
P08 as the m0p

2 level. As discussed below in Sec. IV.B,
the upper level P08 shows up as an autoionization fea-
ture, which was observed in the J50e autoionizing spec-
tra of Ca (Bolovinos et al . , 1992) and Sr (Kompitsas
et al . , 1991). In both Ca and Sr, the position and width
of that m0p

2 1S0 (P08) resonance agree well with
R-matrix results (Aymar and Telmini, 1991; Kompitsas
et al . , 1991). Below the m0s threshold, the calculations
accurately reproduce the perturbations of the m0sns

1S0 Rydberg series by the P0 doubly excited state. A
similar description of the 4sns 1S0 perturbed Rydberg
series of Ca was obtained by Osani et al . (1991), using a
Wigner-Eisenbud-type formulation of the R-matrix
method.
Figure 11(c) shows that more J50e doubly excited

states appear below the first ionization limit in Ba
(namely six) than in either Ca and Sr (three), much like
the situation discussed for the J51o spectrum. In addi-
tion to the 5d2 3P0, 5d

2 1S0, and 6p2 3P0 doubly ex-
cited levels, homologous to the three perturbers appear-
ing in Ca and Sr, there are three other 5dnd doubly
excited levels. The 5d2 1S0 level (labeled by 2) lies be-
low the 6s threshold, while other R-matrix calculations
show that the 6p2 1S0 level of Ba is a broad autoionizing
resonance, although we postpone discussion of this
point. The admixture of the (m021)d2 and m0p

2 1S0
configurations were found to be much smaller than in Ca

FIG. 11. Lu-Fano plots of the even-parity J50 levels of Ca to Ba comparing experimental values depicted by solid points with
eigenchannel R-matrix calculations (solid curves). (a),(b) For (a) Ca and (b) Sr the plots were obtained with LS-coupled eigen-
channel R-matrix calculations combined with the jj-LS frame transformation. Below the first limit, (a) and (b) illustrate the
perturbation of the m0sns

1S0 Rydberg series by doubly excited levels: (A) m0p
2 3P0, (B) (m021)d2 3P0, with P0 and P08

corresponding to admixtures of the (m021)d2 and m0p
2 1S configurations. Above the first limit located at n3d3/252.83 in Ca and

n4d3/252.74 in Sr, (a) and (b) display the eigenphase shifts, the vertical arrows, at the top of the figures, indicating the positions of
autoionizing resonances. (c) The Ba result obtained with jj-coupled eigenchannel R-matrix calculation displays the perturbation of
the 6sns 1S0 Rydberg series by doubly excited levels: (1) 5d

2 3P , (2) 5d2 1S , (3) 6p2 3P , (4) 5d6d 3P , (5) 5d6d 1S , (6) 5d7d
3P . [The Ca figure is from Aymar and Telmini (1991) and the Ba figure from Greene and Aymar (1991).]
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and Sr; so, for instance, the weight of 5dnd channels for
the 5d2 1S0 is ;75%. Except in the lowest energy range,
the R-matrix calculation correctly reproduces the per-
turbation of the 6sns 1S0 Rydberg series by doubly ex-
cited levels.
Figure 12 displays Lu-Fano plots of the even-parity

J52 bound levels of Ca, Sr, and Ba. On each Fig. 12(a)–
12(c), the quantum defects of experimental levels
(Moore, 1949, 1952, 1958; Armstrong et al . , 1977; Esh-
erick, 1977; Aymar et al . , 1978; Sugar and Corliss, 1985)
are depicted by points, which can be compared with
quantum defects calculated in eigenchannel R-matrix
calculations (solid curves). Results from LS-coupled
R-matrix calculations for the 1De levels of Ca (Aymar
and Telmini, 1991) and of Sr (Aymar et al . , 1987) are
displayed in Figs. 12(a) and 12(b). The calculations in-
cluded four interacting MQDT channels: m0snd ,
(m021)dnd , (m021)dns , and m0pnp . The low-lying
P2 state perturbs the m0snd

1D series, while the sharp
rises of the quantum defects near the ionization limit
reflect perturbations by the (m021)d(m011)s and P28
doubly excited states, where m0 5 3, 4, and 5 for Ca, Sr,
and Ba, respectively. As for the J50e case, similar re-
sults were obtained by Osani et al . (1991). These results
also agree with multiconfiguration Hartree-Fock predic-
tions (Froese Fischer and Hansen, 1981, 1985; Vaeck
et al . , 1988) and with the recent Spline-Galerkin calcu-
lation of Brage and Froese Fischer (1994a, 1994b). The
P2 and P28 levels involve a strong admixture of the
(m021)d2 and m0p

2 1D configurations. Also, following
the case for J50e, the labels previously given in the lit-
erature (Moore, 1949, 1952) should be reversed. Specifi-
cally we recommend identifying P2 as the (m021)d2

level and P28 as the m0p
2 level. In both Ca and Sr, the

(m021)d(m011)s perturber is spread out over many
m0snd Rydberg levels. In Sr, the resonance associated
with the 5p2 level was observed (Esherick, 1977) just
above the threshold. In Ca, the 4p2 (P28) level is pre-
dicted (Aymar and Telmini, 1991) to be centered almost
exactly on the 4s ionization limit. The character of this
perturber is so diluted among the high 4snd Rydberg
levels that it does not make sense to identify any indi-
vidual quantum state as this P28 level.
The barium J52e states display greater complexity.

Figure 12(c) shows the perturbations of the 6snd 1D2
and 3D2 Rydberg series by 16 doubly excited levels as-
sociated with the 5dns , 5dnd , and 6p2 configurations.
These theoretical results were based on an 11-channel
jj-coupled R-matrix calculation (Greene and Aymar,
1991) that included the channels 6s1/2nd3/2 , 6s1/2nd5/2 ,
5d3/2ns1/2 , 5d3/2nd3/2 , 5d3/2nd5/2 , 5d5/2ns1/2 ,
5d5/2nd3/2 , 5d5/2nd5/2 , 6p1/2np3/2 , 6p3/2np1/2 , and
6p3/2np3/2 . Except for some discrepancies, theory is in
clear agreement with the experimental quantum defects,
accounting for the great complexity of the Ba spectral
pattern. In contrast with Ca and Sr, the Ba 5d2 (labeled
by 1) and 6p2 1D2 (labeled by 2) levels are both bound
and, as in the 1D2 case, only weakly admixed together.

Returning to the J50e,2e spectra, the jj-coupled
R-matrix results for Ba presented in Figs. 11 and 12
have been compared (Greene and Aymar, 1991) with
LS-coupled R-matrix calculations followed by a jj-LS

FIG. 12. Lu-Fano plots of the even-parity 1D bound levels of
Ca and Sr and J52e bound levels of Ba comparing experimen-
tal values, depicted by solid points, with eigenchannel
R-matrix calculations (solid curves). (a),(b) LS-coupled
R-matrix results for (a) Ca and (b) Sr display the perturbation
of the m0snd

1D series by the P2 and P28 levels which corre-
spond to admixture of the (m021)d2 and m0p

2 1D configu-
rations and by the (m021)d(m011)s 1D level. (c) The
jj-coupled R-matrix result for the 6snd 1D2 and

3D2 Rydberg
series of Ba perturbed by 5dnl and 6p2 J52 levels; in particu-
lar: (1) 5d2 1D2, (2) 6p

2 1D2, and (3) 5d7d 1D2. [The Ca
figure is from Aymar and Telmini (1991) and the Ba figure
from Greene and Aymar (1991).]
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frame transformation. As explained above in Sec. II.F,
use of the frame transformation near the bottom end of
a Rydberg series requires some caution. Because the
J50e,2e spectra involve the low-lying 6p2 levels, the K
matrices deduced from LS-coupled R-matrix calcula-
tions were used to conduct separate MQDT test calcu-
lations, using either experimental j-dependent 6p1/2,3/2
threshold energies or theoretical spin-orbit-averaged
6p threshold energies. The jj-LS calculation required
the use of theoretical threshold energy in order to give a
correct description of the whole J52e spectrum, in con-
trast with the J50e, whose spectrum is much less sensi-
tive to the threshold energies utilized. This extreme sen-
sitivity to threshold energies is an undesirable
consequence of carrying out a frame transformation us-
ing quantum defects that vary rapidly with energy;
it reflects a limitation of current implementations of
the frame-transformation calculations. For both the
J50e and J52e cases, neglect of the Ba1 6p ionic-core
fine structure adversely affects the accuracy of the
frame-transformation calculation compared to the
jj-calculation, but only for the 6p2 levels.
Empirical MQDT analyses of the J50e,2e spectra

were previously carried out in Ca (Armstrong et al . ,
1977; Wynne and Armstrong, 1979), Sr (Esherick, 1977;
Wynne and Armstrong, 1979), and Ba (Aymar et al . ,
1978; Aymar and Robaux, 1979) with the purpose of
interpreting newly observed data. There, the experimen-
tal levels were exactly on the fitted Lu-Fano curves,
whereas some deviations are visible on Figs. 11 and 12.
However, there are two improvements of these
R-matrix studies over the empirical fits. First, the lowest
levels, lying in the energy range in which smooth scat-
tering parameters acquire a strong energy dependence,
are for the most part correctly described, whereas em-
pirical studies generally disregarded them. The second,
more striking, improvement concerns the assignment of
levels. As previously pointed out by Wynne and Arm-
strong (1979) and by Froese Fischer and Hansen (1981),
the empirical MQDT method developed to take into ac-
count the effects of periodic perturbation fails to iden-
tify isolated perturbers such as the P0 and P2 levels oc-
curring in Ca and Sr. Previous empirical MQDT fits of
the J50e,2e spectra of Ca and Sr (Armstrong et al . ,
1977; Esherick, 1977; Wynne and Armstrong, 1979)
made some hypotheses for the perturber identifications
and entirely neglected the m0p

2-(m021)d2 interaction.
The R-matrix approach bypasses these difficulties en-
countered in Ca and Sr. A detailed comparison between
R-matrix and fitted short-range scattering parameters
obtained in Ca was given by Aymar and Telmini (1991).
The J52e Ba spectrum is better suited to empirical

MQDT studies than are Ca and Sr because each 5dnl
series supports several bound levels, while the 6p2 per-
turbers are still considered as ‘‘isolated’’ perturbers. The
identifications deduced from MQDT fits (Aymar et
al . , 1978; Aymar and Robaux, 1979) were completely
confirmed for the J50e spectrum, while the 6p2 per-

turbers and some neighboring levels were misclassified
in the J52e case. Greene and Aymar (1991) discussed
these misclassifications.
Spectral regularities along the 1S0

e and 1D2
e series of

Ca, Sr, and Ba were also previously analyzed by Wynne
and Armstrong (1979). In contrast with the 1P1

o case,
neither for the 1D2

e , nor for the 1S0
e spectra was it pos-

sible to fit the level positions for all atoms using a com-
mon set of short-range scattering parameters. In particu-
lar, the parameters fitted to Ca and Sr completely failed
to reproduce the Ba data. R-matrix calculations confirm
these conclusions obtained empirically. All even-parity
spectra are dominated by a strong mixing between the
singlet m0pnp and (m021)dnd channels, but the evo-
lution of this mixing with energy is different for each
atom. The differences in the dynamics of electron corre-
lations in odd- and even-parity bound singlet spectra is
probably related to the presence, in the latter spectra, of
the strongly correlated singlet m0p

2 and (m021)d2 lev-
els involving two electrons in the same orbit.

2. Observables other than energies

A good description of an energy spectrum is certainly
necessary, but not sufficient, to confirm that channel in-
teractions have been treated accurately. Other observ-
ables test the accuracy of the wave functions more sen-
sitively.
The hyperfine structure of perturbed Rydberg levels,

for instance, is quite sensitive to state mixing (for refer-
ences see Aymar, 1984a, 1984b). Hyperfine structure ob-
served in high-lying 6snd 1,3D2 Rydberg levels of Ba,
perturbed by the 5d7d 1D2 level [labeled by 3 in Fig.
12(c)] has been analyzed in terms of Rydberg singlet-
triplet mixing. Just below the 6s threshold, the zero-
order wave function (associated with the Hamiltonian
without hyperfine effects) of each J52e level can be
written to a good approximation as

C~n !5anu6snd 1D2&1bnu6snd 3D2&1gnu5d7d 1D2&,
(4.1)

where the an , bn , and gn expansion coefficients can be
related to the closed-channel coefficients Zi

(n) [see Eq.
(2.64)] in the wave function of each level n . (Note that
bn in this context should not be confused with the angu-
lar distribution asymmetry parameter, nor with the
closed-channel quantum-defect-theory phase parameter
of Sec. II.)
As explained by Eliel and Hogervorst (1983),

Rinneberg and Neukammer (1982, 1983), and by Aymar
(1984a, 1984b), the hyperfine energies can be calculated
as a function of the an , bn , and gn mixing coefficients.
Using the gn coefficients inferred from semiempirical
MQDT analysis of energy levels or from measurements
of lifetime, isotope shifts and Landé factors, Eliel and
Hogervorst (1983) and Rinneberg and Neukammer
(1982, 1983) extracted the an and bn coefficients by fit-
ting the calculated energies to their experimental results.
Figure 13 presents the evolution of the coefficient bn as
a function of the principal quantum number n , for levels
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identified as singlets (i.e., those levels with an
2>bn

2). The
dot and plus symbols marked are derived from hyperfine
structure measurements of Eliel and Hogervorst (1983),
and from those of Rinneberg and Neukammer (1982,
1983), respectively. The dashed and solid curves depict
bn values obtained with 11-channel LS- and jj-coupled
R-matrix calculations (Greene and Aymar, 1991). (Note
that the jj-coupled R-matrix calculation corresponds to
the calculation giving the Lu-Fano plot of Fig. 12(c).)
The theoretical positions of the 5d7d 1D2 level (circled
open circle) are somewhat higher than the experimental
position, which causes both theoretical curves to be
shifted slightly toward high-n values. However, it is clear
that the experimental behavior is better reproduced by
the jj-coupled R-matrix results than by the jj-LS and
frame-transformation calculation.
An interesting and little-probed energy regime occurs

for the very high-lying m0snl Rydberg levels of odd
alkaline-earth isotopes, when the hyperfine splitting of
the inner m0s electron becomes comparable to the en-
ergy separation ('1/n3 a.u.) between adjacent Rydberg
levels. In this energy range, the spectrum is truly multi-
channel in character, and the hyperfine interaction af-
fects the Rydberg-electron motion nonperturbatively.
Even though the nature of the threshold splitting is dif-
ferent from the fine-structure-split thresholds discussed
in Sec. II.E, the MQDT description can be immediately
generalized to treat this case. This extension of the
frame-transformation method to treat hyperfine struc-
ture has been carried out by Sun, Lu, and co-workers
(Sun and Lu, 1988; Sun, 1989; Sun et al . , 1989). The Sr

5sns and 5snd hyperfine structures observed by
Beigang et al . (1983) and by Beigang (1985) for states
with n@ 100 have been successfully analyzed with the
help of semiempirical MQDT models based on this hy-
perfine frame-transformation method (Sun and Lu,
1988; Sun et al . , 1989).
We return now to the J51o spectrum of Ba, in the

energy range close to the lowest ionization threshold
where the 5d8p 1P1 doubly excited level is diluted into
high-lying 6snp Rydberg levels @n5d3/2>4.1 on Fig.
9(c)]. In this range, the oscillator strengths [Eq. (2.66)]
observed for the 6s2 1S0 → 6snp 1P1 transitions (Par-
kinson et al . , 1976; Connerade et al . , 1988) deviate dra-
matically from the simple n6s

23 law expected for an un-
perturbed series. The modulation of log10(n6s

3 f) near the
5d8p 1P1 perturber arises from the redistribution of the
perturbing level’s intensity among the high-lying 6snp
1P1 levels as well as into the adjacent continuum, with a
maximum close to the 6s threshold. Figure 14 compares
the experimental data (crosses) obtained by Connerade
et al . (1988) with results (dots) obtained by combining
LS-coupled R-matrix calculations with the jj-LS frame
transformation (Aymar, 1990). Theory reproduces the
intensity minimum near n;24,25 as well as the oscillator
strengths of high-lying levels, but it overestimates the
oscillator strengths for the lowest levels considered here.
The modulation of Rydberg-level oscillator strengths
near an isolated perturber is reasonably well described
by the standard Fano line-shape formula (Fano, 1961),
even though this formula was derived for one discrete

FIG. 13. Rydberg singlet-triplet mixing coefficients b [Eq.
(4.1)] for the high-lying 6snd 1D2 levels of Ba as functions of
the principal quantum n in the energy range perturbed by the
5d7d 1D2 level. The jj-LS (dashed line) and jj (full line)
results are compared with values deduced from hyperfine-
structure measurements: d Eliel and Hogervorst (1983), +
Rinneberg and Neukammer (1982, 1983). For the 5d7d 1D2
level, the mixing coefficient (circled +) obtained by Rinneberg
and Neukammer (1982, 1983) is compared with the theoretical
predictions, depicted by concentric open circles. (From Greene
and Aymar, 1991.)

FIG. 14. Oscillator strengths of the 6s2 1S0 → 6snp 1P1 tran-
sitions of Ba. The log10(n6s

3 f) values are plotted as functions of
the effective quantum number n6s relative to the 6s ionization
limit. The experimental results (+) of Connerade et al . (1988)
are compared with the velocity results (d) obtained by com-
bining LS-coupled R-matrix calculations with the jj-LS frame
transformation. The 6snp 1P1 levels are labeled by their prin-
cipal quantum number n . (From Aymar, 1990.)
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state interacting with a continuum, because the Rydberg
levels are so closely spaced that they resemble a con-
tinuum (Connerade, 1992).
A combined theoretical and experimental investiga-

tion of several oscillator strengths connecting discrete
levels of Sr was carried out by Werij et al. (1992). This
project showed that a reliable description of many tran-
sitions can be achieved using LS-coupled eigenchannel
R-matrix and quantum-defect calculations. Not surpris-
ingly, theory describes the stronger transitions more ef-
fectively than the weaker ones, since the weak transi-
tions tend to have competing contributions of opposite
sign in the configuration-interaction expansion. In the
independent-electron model, no single electron transi-
tion from the ground state can give an absorption oscil-
lator strength larger than 1. For the main resonance
transition of Sr, namely 5s2 1S→5s5p 1Po, the absorp-
tion oscillator strength is approximately f'1.9, which
implies that both valence electrons participate strongly
in the transition. For most of the singlet transitions, the
calculated oscillator strengths (Werij et al., 1992) agree
reasonably well with multiconfiguration Hartree-Fock
calculations of Vaeck et al. (1988). No similarly exhaus-
tive multiconfiguration Hartree-Fock study is available
for the triplet manifold for comparison with the
R-matrix values.

B. Energy positions of autoionizing levels

It can be difficult to fully interpret a spectrum of au-
toionizing states from study of the experimental or theo-
retical photoionization cross section alone. Complexities
associated with autoionizing levels can remain hidden,
and frequently even the resonance positions cannot be
extracted. Moreover, interferences between the discrete
and continuum excitation amplitudes often result in
asymmetric Beutler-Fano profiles (Fano, 1961), which
further complicates the pattern of autoionization and its
relation to the true ‘‘resonance energies.’’ In some cases,
resonances fail to appear in a particular cross section
because they have vanishing transition strengths. An-
other difficulty that plagues the analysis of complex mul-
tichannel systems is the overlapping nature of the reso-
nance pattern. It is crucial for theoretical multichannel
spectroscopy to develop the ability to extract resonance
positions, widths, and classifications that are indepen-
dent of the excitation process.
In Sec. II.F, it was mentioned that a Lu-Fano plot can

be extended into the energy range above an ionization
threshold to gain useful information about autoionizing
resonances; examples of this are shown in the right-hand
portions of Figs. 11(a) and 11(b). Each rise of one phase
shift d5pm by one cycle implies the existence of one
resonant state. As usual, the magnitude of the gap at an
avoided crossing indicates the strength of interactions
between closed and open channels, which determines
the resonance widths. However, the quantitative deter-
mination of the positions and widths of autoionizing
resonances from such a plot is possible only in relatively

simple cases involving a small number of channels (see,
for example, Giusti-Suzor and Fano, 1984).
For more complicated situations involving several in-

teracting open and closed channels (see Sec. II.D.3), the
resonance energies and classifications can be obtained
by using MQDT techniques for treating bound-state
spectra, starting from an effective reaction matrix Keff
whose open-channel components have been ‘‘elimi-
nated’’ in some manner. For example, this matrix may
correspond to the real part of the k-matrix introduced in
Eq. (2.73). In this way resonances have been analyzed in
Ca, Sr, and Ba (Kompitsas et al . , 1990, 1991; Aymar and
Telmini, 1991; Gounand et al . , 1991; Luc-Koenig and
Aymar, 1991, 1992; Goutis et al . , 1992; Assimopoulos
et al . , 1994; Aymar et al . , 1994; Luc-Koenig, Aymar,
and Lecomte, 1994; Luc-Koenig, Bolovinos, et al . , 1994;
Luc-Koenig, Lecomte, and Aymar, 1994). The effective
reaction matrix Keff restricted to the subspace of closed
channels immediately permits a determination of the
resonance positions and of the corresponding channel
decompositions Zi

(n) [see Eq. (2.64)]. These coefficients
determine the dominant closed channel i to which a
resonance belongs. The interactions among closed chan-
nels can also be analyzed graphically using Lu-Fano
plots. This entire procedure based on the construction of
an effective reaction matrix is (generally) adequate to
locate the position of a resonance with an error compa-
rable to its autoionization width. Another method for
extracting resonance properties based on the time-delay
(or density-of-states) matrix gives in addition the auto-
ionization widths; this method will be described in Sec.
IV.C below.
The procedure of the preceding paragraph has been

applied to interpret autoionizing Rydberg series of Ca,
Sr, and Ba converging to the ionic fine-structure levels
(m021)d3/2 and (m021)d5/2 . The analysis provides in-
formation about the perturbers of these series that cor-
respond to the lower-lying members of Rydberg series
converging to the m0p1/2,3/2 thresholds. For illustration,
we concentrate on the even-parity autoionizing J50e

levels.
Figure 15 displays Ca Lu-Fano plots obtained with

two effective matrices Keff deduced from two separate
LS-coupled eigenchannel R-matrix calculations carried
out for the 1Se and 3Pe symmetries (Aymar and
Telmini, 1991). The reaction matrix K

3P has no con-
tinuum channel in this energy range; it can thus be used
directly to analyze the resonances since when the 1Se-
3Pe mixing is disregarded, all states are bound. For the
1Se symmetry, a closed-channel matrix K eff

1S was first de-
duced from the complete reaction matrix K

1Sconnecting
the open channel 4ses and the two closed channels
3dnd and 4pnp . The predicted resonance energies are
plotted in the -n3d (mod 1) versus n4p plane, the effec-
tive quantum numbers n3d and n4p having been calcu-
lated using spin-orbit-averaged ionization limits. The
4pnp perturbers of the 3dnd Rydberg series are easy to
identify. Each perturbing level causes a sharp rise of
-n3d for the relevant branch of the Lu-Fano curve. The
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discussion of Fig. 11(a) in Sec. IV.A.1 considered the
classification of the P08 state, which is a strong admixture
of the 3d2 and 4p2 singlet configurations but is some-
what better identified as the 4p2 1S state. This identifi-
cation follows in part from the fact that P08 lies on a
nearly vertical branch of the 1S Lu-Fano plot. The rapid
increase of -n3d along the 3P branch, just below the
3d threshold at n4p;3, reflects a perturbation of the
3dnd 3P series by a 4p5p state that is centered almost
right on the 3d threshold. The character of this 4p5p
3P perturber is entirely diluted among the high-lying
members of the 3dnd 3P series. A similar procedure
has been used to identify the J52e 4pnp levels that
perturb the 3dnd and 3dns series.
Initial survey calculations in LS coupling were fol-

lowed by more complete jj-LS frame-transformation
treatments of the J50e,2e spectra that incorporated
fine-structure effects (Aymar and Telmini, 1991). When
fine structure is included, the energies of the 4pnp per-
turbers remain close to the predictions of the
LS-coupled calculations. Close to the 3d3/2 threshold,
however, the high-lying 3dns ,nd levels are strongly af-
fected, especially the 3dnd J50 levels. Recently,
R-matrix predictions for the Ca J50e,2e spectra have
been confirmed by the experiment of Bolovinos et al .
(1992). These authors reported the first observation of
the broad 4p2 1S0 (P08) autoionizing resonance, whose
width is around 80 cm21. Figure 16 shows that the Lu-
Fano plot of experimental (open squares) low-lying
3dnd J50 levels and of the 4p2 1S0 level (labeled by
A) agrees with the R-matrix predictions (solid line and
points) of Aymar and Telmini (1991). The energy levels

are now plotted in the -n3d3/2(mod 1) versus n3d5/2 plane
which makes 4pnp perturbers more difficult to discern.
This shows the interest of carrying out preliminary cal-
culations in LS coupling. The MQDT treatment in-
volves four closed fragmentation channels: 3d3/2nd3/2 ,
3d5/2nd5/2 , 4p1/2np1/2 , and 4p3/2np3/2 . Neither Fig. 16
nor the complete Lu-Fano plot of J50e levels of Ca
located between the 4s and 3d3/2 limits (2<n3d5/2<42),
show the nearly horizontal line that typically represents
an ‘‘unperturbed’’ 3d3/2nd3/2 Rydberg series. In fact, the
periodicity in n3d5/2, expected for the two-channel prob-
lem involving the two 3dnd series, is absent over the
whole energy range. The periodicity is destroyed by the
4p2 1S0 (P08) perturber and by the 4p5p

3P0 level close
to the 3d3/2 threshold @see Fig. 16]. Accordingly, most of
the predicted energy levels cannot be clearly attributed
either to 3d3/2nd3/2 or to 3d5/2nd5/2 series. Moreover, in
Ca various even-parity 3dnl levels with 0<J<3, which
have been recorded using a two-step laser experiment,
were successfully accounted by jj-coupled eigenchannel
R-matrix calculations (Assimopoulos et al . , 1994; Luc-
Koenig, Bolovinos, et al . , 1994).
The valence-electron spectrum of atomic strontium

appears in most regions to be very similar to the calcium
spectrum. Figure 17 displays a case in which some dif-
ferences can be seen, namely for the even-parity J50
autoionizing levels of Sr located below the 4d3/2 thresh-
old, i.e., in the energy range analogous to that consid-
ered for Ca in Fig. 16. For Sr, in contrast with Ca, the
experiment and the R-matrix calculations were con-
ducted hand in hand (Kompitsas et al., 1991). MQDT
analysis of an effective closed-channel reaction matrix
Keff helped greatly to interpret and identify the autoion-
izing resonances recorded in the even-parity spectra of
Sr, for J50e (Kompitsas et al . , 1991) and also for
J51e and J52e (Goutis et al . , 1992). The experimental
J50e data in Fig. 17 (solid points) again agree with the

FIG. 15. Lu-Fano plot of the energy positions of even-parity
autoionizing levels of Ca between the 4s and 3d ionization
limits. The solid lines and points were obtained from two sepa-
rate LS-coupled eigenchannel R-matrix calculations carried
out for the 1Se and 3Pe symmetries. The quantities n3d and
n4p are the effective quantum numbers relative to the spin-
orbit-averaged Ca1 3d and 4p ionization limits. The 3dnd
1S Rydberg series is perturbed by the P08 level, which corre-
sponds to an admixture of the 4p2 and 3d2 1S configurations.
The rapid increase of 2n3d near n4p;3 reflects the perturba-
tion of the 3dnd 3P Rydberg series by the 4p5p 3P level,
which is diluted among high-lying 3dnd 3P Rydberg levels.
(From Aymar and Telmini, 1991.)

FIG. 16. Lu-Fano plot of the energy positions of even-parity
J50 autoionizing levels of Ca between the 4s and 3d3/2 ion-
ization limits. The experimental data of Bolovinos et al .
(1992) (open squares) are compared with the results of Aymar
and Telmini (1991) (solid points and curves) obtained with
LS-coupled eigenchannel R-matrix calculations combined
with the jj-LS frame transformation. The open square labeled
A depicts the 4p2 1S0 perturber of the 3d3/2nd3/2 and
3d5/2nd5/2 series.
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LS-coupled R-matrix calculations used in conjunction
with the jj-LS frame transformation (Kompitsas et al.,
1991). In the energy range close to the 4d3/2 threshold
(n4d5/2>10), the autoionizing structures correspond to a
4d3/2nd3/2 Rydberg series perturbed periodically by the
4d5/2nd5/2 levels. A two-channel (4d3/2nd3/2 ,
4d5/2nd5/2) MQDT model that would be appropriate for
a description of the high-lying J50e levels obviously
fails to reproduce the data observed in the lower energy
range. At lower energies, members of the 4dnd series
are affected by the presence of the 5p2 1S0 and 5p6p
3P0 perturbing levels, marked respectively as (A) and
(B) in Fig. 17. The former level, denoted P08 in Sec.
III.A.1, corresponds to a broad autoionizing profile
(with a width of 230 cm21) that was observed experi-
mentally using two-photon laser excitation from the
5s2 ground state (Kompitsas et al . , 1991). The latter
3P0 level has not yet been observed. However, its effect
on the positions of neighboring 4dnd J50 levels is quite
visible in Fig. 17. This level also affects the oscillator
strengths of the 4d5p 1P1 → 4dnd J50 transitions.
The perturbations of 4dnl autoionizing Rydberg series
by several 5p6p levels show still greater complexity for
the J51e and J52e symmetries and also display good
agreement between theory and experiment (Goutis et
al . , 1992).
Figures 16 and 17 contrast the behavior of the

(m021)dnd J50e series for Ca and Sr. For both atoms,
these series are affected by the m0p

2 1S0 perturber lo-
cated among low-lying (m021)dnd levels. The
(m021)dnd series of Ca and Sr are also affected by the
m0p(m011)p 3P0 perturber. The evident differences
between Ca (Fig. 16) and Sr (Fig. 17) result from the fact
the 4p5p 3P0 level of Ca is diluted into 3dnd high-lying
Rydberg levels, whereas the 5p6p 3P0 perturber is well
localized in Sr. The low-lying Ba 5dnd J50 levels inter-

act with the 6p2 1S0 perturber (Aymar et al . , 1982; Ay-
mar et al . , 1983; Greene and Aymar, 1991), whereas the
Ba 6p7p 3P0 level is located above the 5d threshold
(Camus et al . , 1983). Because of the differences in the
location of the m0p

2 1S0 and m0p(m011)p 3P0 levels,
channel mixing near the (m021)d3/2 threshold differs
considerably in Ca, Sr, and Ba.
Strong mixing, similar to that observed in the Ca

J50e spectrum, has been found in the 4fnf series of Ba.
The strongly coupled Rydberg series are the 4f5/2nf7/2
and 4f7/2nf5/5 with J54, 5, or 6, which converge to two
different fine-structure levels (Luc-Koenig and Aymar,
1992; Luc-Koenig, Aymar, and Lecomte, 1994). Figure
18 displays the Lu-Fano plot of energy positions for the
high-lying 4fnf J56 autoionizing levels of Ba. The
frame-transformation result (solid curves and points) of
Luc-Koenig and Aymar (1992) is compared to the ex-
perimental data (open squares) of de Graaff et al.
(1992). This experiment probed the 4fnf series using a
two-step laser-excitation scheme starting from the 5d2

metastable levels and using the 5dnf autoionizing reso-
nances as intermediate levels. The theoretical energies
in Fig. 18 agree well with the experimental data. For
each level, the theoretical energy lies within the width of
the recorded resonance.
To reproduce the energy positions of high-lying 4fnf

J56 levels, R-matrix calculations were conducted for
the 1Ie symmetry and for the 3Le symmetries with
L55, 6, and 7. The frame transformation gave a
jj-coupled reaction matrix describing the coupling of 33
channels converging to the 6s , 5dj , 6pj , 7s , 6dj , and
4f j thresholds. From this full reaction matrix, a smaller
effective reaction matrix Keff was formed involving only
the three 4fnf closed channels. This permitted a simpli-
fied analysis of the 4fnf J56 levels located between the
6d5/2 and 4f5/2 limits.
The slant lines on Fig. 18 correspond to the series

4f5/2nf7/2 and 4f7/2nf5/2 , which interact strongly, whereas
the vertical lines are associated with the nearly unper-

FIG. 17. Lu-Fano plot of the energy positions of the J50
even-parity autoionizing levels of Sr between the 5s and
4d3/2 ionization limits. The experimental data (solid points) are
compared with the results (solid curves) obtained with
LS-coupled eigenchannel R-matrix calculations combined
with the jj-LS frame transformation. The open squares corre-
spond to unobserved levels. Concerning the perturbers of the
4d3/2nd3/2 and 4d5/2nd5/2 Rydberg series, the point A depicts
the experimental data for the 5p2 1S0 level and B the predic-
tion for the 5p6p 3P0 level. (From Kompitsas et al . , 1991.)

FIG. 18. Lu-Fano plot of the energy positions of the 4fnf
J=6 autoionizing levels of Ba, comparing the experimental
data (open squares) of de Graaff et al . (1992) with
LS-coupled R-matrix calculations combined with the jj-LS
frame transformation (solid curves and points). (From Luc-
Koenig and Aymar, 1992.)
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turbed 4f7/2nf7/2 series. The behavior of the strongly
mixed 4f5/2nf7/2 and 4f7/2nf5/2 J56 series can be ana-
lyzed using a two-channel model involving the eigen-
channels 4fnf 1I and 3I . The rotation angle that char-
acterizes the orthogonal Uia matrix in this two-channel
model is approximately equal to u12;p/4 and the slant
branches of the Lu-Fano plot reflect the fact that the
difference uDmu5um12m2u of the eigenquantum defects
amounts to 0.5, i.e., has the maximum value. This makes
it impossible to classify the levels as belonging to any
one series. Moreover, the channel mixing is highly en-
ergy dependent, with significant changes in mixing coef-
ficients frequently found even in two successive levels.
In the higher-energy range close to the 4f5/2 threshold,
the 4f7/2nf5/2 J56 levels are completely diluted among
the 4f5/2nf7/2 states. Similarly strong mixing was found
between the 4f5/2nf7/2 and 4f7/2nf5/2 J54 or J55 series;
this was again related to a difference between the eigen-
quantum defects for the two channels 4fnf 1,3LJ5L close
to 0.5 (Luc-Koenig, Aymar, and Lecomte, 1994). For
each final-state symmetry in the range J=4–6, the large
value of uDmu arises from the exchange electrostatic in-
teraction and is typical of the nln8l channel mixing.
Strong mixing between the Ca 3dnd 1LJ5L and
3LJ5L J53 channels was also observed and exhibited in
the corresponding Lu-Fano plot (Luc-Koenig, Bolovi-
nos, et al., 1994).
In contrast, for the Ca J50e symmetry (Fig. 16),

where the coupling of 3dnd is also maximum, it is the
3dnd-4pnp mixing that indirectly (but strongly) couples
the eigenchannels 3dnd 1S and 3P , even though they
are not directly coupled by the electrostatic interaction.
In this case, the channel mixing angle is also u12;p/4,
but uDmu amounts to only 0.21. This translates [Eq.
(2.82)] into a 40% probability that the Rydberg electron
will scatter from one fine-structure channel to another
when it collides with the Ca1 3d ionic core.
Returning to the 4fnf levels of Ba, we note that the

resonance energy positions calculated by Luc-Koenig
and Aymar (1992) agreed well with experimental data of
de Graaff et al . (1992). This agreement provided some
of the first evidence that the R-matrix and MQDT tech-
niques are capable of handling excited autoionizing lev-
els of Ba lying above the 6p threshold. As discussed
below in Sec. IV.D.2, another calculation in a similar
energy range had been carried out previously by Kim
and Greene (1988) concerning the Ca photoabsorption
spectrum up to the 6s threshold, but no experimental
data are yet available to check those Ca predictions. The
good agreement between theory and experiment for the
energy positions of the Ba 4fnf levels with J56, J54,
and J55 is somewhat surprising for such a complex
case. As in some of the lower-energy spectra already
discussed, the spectrum is dominated by strong electron
correlations and strong spin-orbit effects; this higher-
energy range involves a much larger number of interact-
ing channels; in addition the centrifugal barrier, sensi-
tively controls the nature of the Ba f orbitals.
More recently, eigenchannel R-matrix studies were

performed on several autoionizing Rydberg series of Ba

in the energy range between the 6p and 7p thresholds
(Aymar et al . , 1994; Lecomte et al . , 1994, 1995; Luc-
Koenig, Aymar, and Lecomte, 1994; Luc-Koenig,
Lecomte, and Aymar, 1994; van Leeuwen et al . , 1995,
1996). These studies were motivated primarily by recent
experiments, and will be discussed later in Secs. IV.C,
IV.D, and IV.E. Nevertheless, we point out here that
the construction of an effective reaction matrix Keff has
greatly helped in analyzing the perturbations of the
6dng J56 series by several 4fnf and 4fnh levels (Ay-
mar et al . , 1994). This analysis also helped to identify
the 14 doubly excited levels that cause localized pertur-
bations of the 7sng 1,3G4 Rydberg series (Luc-Koenig,
Lecomte, and Aymar, 1994).
We conclude from the two preceding sections on

energy-level positions that Lu-Fano plots permit a uni-
fied and intuitive picture of the channel-mixing patterns.
They convey the interaction strength in a simple manner
that brings out aspects of the short-range dynamics com-
mon to the global level pattern of an atom. The
R-matrix method in turn can be used to predict channel-
mixing parameters, giving reliable energies and classifi-
cations even for very complicated perturbed Rydberg
series. In addition, the R-matrix method bypasses diffi-
culties encountered in empirical MQDT analyses of
spectra such as the large number of undetermined
channel-interaction parameters and the strong energy
dependence of the smooth scattering parameters that is
frequently caused by isolated perturbers. Furthermore,
by constructing an effective reaction matrix restricted to
closed channels, one can extend MQDT bound-state
techniques to the energy range of autoionizing levels.
We caution, however, against using single-channel quan-
tum defects for the classification of such perturbed spec-
tra, as is frequently done. This procedure can result in
qualitatively incorrect classifications.
Other familiar methods have been widely used to cal-

culate singly excited and low-lying doubly excited levels
for all of the alkaline-earth atoms. These include the
multiconfiguration Hartree-Fock studies of singlet
bound spectra of Ca and Sr (Froese Fischer and Hansen,
1981, 1985; Vaeck et al . , 1988), the Spline-Galerkin cal-
culations of Brage and Froese Fischer (1994a, 1994b)
and the Wigner-Eisenbud-type R-matrix calculations of
Osani et al . (1989a, 1989b, 1991) in Be, Mg, and Ca. The
multiconfiguration Dirac-Fock method was employed to
calculate energy levels of Ba (Rose et al . , 1978; Ko-
tochigova and Tupizin, 1987). In contrast to these ab
initio calculations just mentioned, numerous calcula-
tions have used model potentials to describe the interac-
tion between core and valence electrons. Energy levels
of Be and Mg were calculated using a frozen-core ap-
proximation in connection with the close-coupling
method (Norcross and Seaton, 1976; Mendoza, 1981), or
with configuration-interaction techniques (Laughlin and
Victor, 1973). Ba was investigated using a model-
potential approach including relativistic effects (Hafner
and Schwartz, 1978). The calculations just discussed
were restricted to low-lying levels. The resulting energy
values have usually agreed poorly with experiment, es-
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pecially in Ba. A configuration-interaction procedure
developed by Chang (1986), which included higher Ry-
dberg states, has been applied to calculate the positions
and widths of 3pns ,nd 1Po autoionizing states of Mg.
However, the applicability of this approach to the highly
perturbed and overlapping Rydberg series of the heavier
alkaline earths remains to be demonstrated. To date,
Chang’s method has never been used to treat systems
having more than one open channel per symmetry.
Calculations of the energy positions of higher-lying

doubly excited levels of alkaline earths are relatively
scarce. Three configuration-interaction calculations
(Kim and Greene, 1988; Aymar, 1989; Morita and Su-
zuki, 1990) should be mentioned. These calculations,
conducted in LS coupling, used a model-potential de-
scription of the core-valence interaction. The first study
determined the n1sn1p

1P Wannier ridge states (Wan-
nier, 1953) of Ca up to the 11s11p state (Kim and
Greene, 1988). Energy positions of high-lying n1sn1p
1P states were obtained by diagonalization of the two-
electron Hamiltonian using a set of closed-type two-
electron functions that vanish at the boundary r0= 120
a.u. The two-electron basis functions were of the same
type as those used in streamlined eigenchannel
R-matrix calculations to construct the Hamiltonian Hcc
introduced in Sec. III.E. The use of a finite range basis
helped to describe the mixing of ridge states with Ryd-
berg states and continua. The n1sn1p states were iden-
tified in the eigenvalue spectrum by inspecting the
eigenvectors. The same procedure was used (Aymar,
1989) to calculate the n1s

2 1S Wannier ridge states of
alkaline-earth atoms from Be through Ba. For each ele-
ment, the energy positions of the n1s

2 1S states were
predicted up to the (m016)s2 state. A slightly smaller
boundary radius r05 100 a.u. was used, the sphere of
radius r0 being found to be large enough to enclose the
charge distribution of the A1 (m017)s ionic state what-
ever the element A. Finally, Morita and Suzuki (1990)
performed a large-scale configuration-interaction calcu-
lation of doubly excited n1sn2s

1S states of Ca to inter-
pret their laser spectroscopy observations. This work de-
parts from those performed by Kim and Greene (1988)
or Aymar (1989) in that Morita and Suzuki (1990) used
two-electron basis functions which have zero amplitude
at r→` rather than at finite r0. The diagonalization of
the two-electron Hamiltonian yielded the energy posi-
tions of n1sn2s

1S doubly excited states with
6<n1<10 and n1<n2<20. The theoretical energies
agreed well with observed energies, deviations between
theory and experiment being generally smaller than
231024 a.u. Among all the observed states, only two
states were tentatively ascribed to states having n1 =
n2, with n1= 9 and 10, respectively. The energy positions
for the n1s

2 states agreed well with those predicted by
Aymar (1989).
The results obtained by Kim and Greene (1988), Ay-

mar (1989), and Morita and Suzuki (1990) for the Wan-
nier ridge states were analyzed in terms of two-electron
Rydberg formulas. By viewing the pair of electrons as a
single entity attached to the grand-parent ion, different

formulas have been proposed to describe the (core)
n1l1n1l2 states as members of a two-electron Rydberg
series converging to the double-ionization limit (see
Read, 1990, and references therein). The total energy of
these states was expressed in terms of a screening pa-
rameter and of a quantum-defect parameter. The two-
electron Rydberg formula proposed by Read (1977) is

E52
~Z2s8!2

~n12dn1l11m8!2
, (4.2)

where Z is the charge of the core (here Z52), dn1l1 is
the quantum defect of the ionic series (core) n1l1, s8 is
a screening constant, and the effective quantum defect
m8 is a correction to dn1l1 accounting for the change of
the penetration of the n1l1 electron into the core caused
by the presence of the added n1l2 electron. An equiva-
lent formula was derived by Rau (1983, 1984):

E52
4~Z21/42s!2

~n113/22m!2
. (4.3)

Algebraically, the expressions (4.2) and (4.3) are essen-
tially the same with parameters linearly related as fol-
lows:

s5s8/21Z/221/4 (4.4)

and

m53/21dn1l12m8. (4.5)

Note that the m8 parameter of Eq. (4.2) is expected to
be nearly core independent in contrast to the m param-
eter involved in Eq. (4.3), which concerns the pair of
electrons.
The applicability of the Rydberg formula to n1l1n1l2

states of alkaline earths was tested by Kim and Greene
(1988), Aymar (1989), and Morita and Suzuki (1990)
by plotting the predicted energy levels on an effective
quantum-number scale, i.e., n5(22E)21/2, as func-
tions of n1 or nn1l1* 5n12dn1l1. This plot should be a

straight line with slope @A2(Z2s8)#21 or
@2A2(Z21/42s)#21. The energy levels calculated for
1S (Aymar, 1989; Morita and Suzuki, 1990) and 1P
(Kim and Greene, 1988) Wannier states showed the ex-
pected linear dependence, demonstrating that these lev-
els obey the two-electron Rydberg formula of Eqs. (4.2)
or (4.3). An interesting result is that the slope obtained
for 1S Wannier states was almost the same for each el-
ement Be to Ba, showing only a slight increase of 3%
when going from Be to Ba. Moreover, the slope for Ba is
only 5% larger than that obtained for 1S states of He
(Rau, 1984).
The study of 1S Wannier states allowed an interpre-

tation of Ba and Ca experiments involving the high-lying
doubly excited states n1l1n2l2 (l1 and l2 < 2) with large
n1 values and n2.n1, i.e., on doubly excited states
called ‘‘double-Rydberg’’ or ‘‘planetary’’ states (see
Bloomfield et al . , 1984; Morita and Suzuki, 1990, and
references therein). The observed levels were inter-
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preted as members of Rydberg series converging to
ionic A1 n1l1 states. These series are characterized by
quantum defects d̄n1l1 , that are almost constant when
n2@n1. Moreover, the quantum defects increase linearly
with n1 with a slope of about 0.30–0.35 for all partial
waves (l1l2) up through d waves. The independent-
particle model predicts a linear dependence on n1, but
with a much smaller slope, in the range 0.20–0.25 (Ay-
mar, 1989; Morita and Suzuki, 1990). Starting from the
energy values calculated for the n1s

2 1S states it was
possible to reproduce accurately the experimental re-
sults obtained for the quantum defects d̄n1s of the
n1sn2s

1S series of Ba (Bloomfield et al . , 1984) and Ca
(Morita and Suzuki, 1990). Viewing the n1s

2 state, as the
lowest member of the one-electron Rydberg series
n1sn2s

1S converging to the A1 n1s state, and neglect-
ing the variation of d̄n1s with n2, a linear relationship

between d̄n1s and nn1s
* (or equivalently n1) was found

(Aymar, 1989; Morita and Suzuki, 1990). The slope of
the linear dependence, depending on the screening pa-
rameter s8, was about 0.31–0.35. The n1 dependence of
d̄n1s was in much better agreement with experimental
data than the independent-particle model prediction.
This suggests that the correlation effects and the polar-
ization distortion of the inner orbital induced by the
presence of the outer electron are (not surprisingly) im-
portant for highly excited n1sn2s states, even those with
n2@n1.
The two-electron Rydberg formulas of Eqs. (4.2) and

(4.3) are known to successfully account for the position
of Wannier states of He and H2. It is also worth noting
that generalized two-electron formulas capable of pre-
dicting the positions of the other dominant 1P1

o reso-
nances (n2>n1) of He and H2 were obtained by com-
bining the two-electron formula of Eq. (4.2) with the
one-electron Rydberg formula (Sadeghpour and
Greene, 1990; Domke et al . , 1991; Sadeghpour, 1991).
These generalized two-electron energy formulas ac-
count, to a good approximation, for the observed energy
positions of the dominant n2

(K5n122,T51)n1
1 1P1

o

resonances (in Lin’s notation, 1986) of He and H2, with
n2>n1. At higher energies, however, different series be-
gin to overlap, generating a rich spectrum dominated by
multichannel perturbers. For 1Po symmetry, this new
regime occurs above the n1'5 threshold in He and
above the n1'8 threshold in H2.

C. Autoionization widths and branching ratios

A wealth of data on doubly excited levels of alkaline
earths has been obtained using multiphoton or multistep
laser experiments. The excitation processes involved in
these experiments are often so complicated that it is dif-
ficult to compute reliable theoretical photoionization
spectra comparable with the observed spectra. In par-
ticular, as will be documented in Sec. IV.E below, nu-
merous spectra have been investigated using multistep
laser experiments based on the so-called isolated-core

excitation technique (Cooke et al ., 1978). The theoreti-
cal description of the observed spectra depends on the
correct description of final-state channel mixing and of
the state from which the doubly excited levels are ex-
cited in the final step. The ability of theoretical multi-
channel spectroscopy to extract information (such as en-
ergy positions, widths, and classifications of autoionizing
resonances) that is independent of the excitation process
is particularly helpful in unraveling complex autoioniz-
ing spectra. The preceding section (Sec. IV.B) illustrated
how the energy positions and identifications of the reso-
nances can be obtained using the theoretical multichan-
nel spectroscopy. The present section uses examples to
document the development in Sec. II.D.3. Specifically,
quantitative information on the widths and decay prop-
erties of autoionizing resonances emerges from a study
of the density-of-states or time-delay matrices.
Our first example interprets the ‘‘anomalous’’ auto-

ionization widths of states in the 7sng 1G4 Rydberg
series of Ba that were observed by Wang and Cooke
(1993) using the isolated-core excitation method. The
experiment found that the autoionization widths remain
approximately constant instead of decreasing as n7s

23 . In
addition, for n>15, the quantum defects increase regu-
larly. These anomalies reflect the perturbation of the se-
ries by localized perturbers. The even-parity J54 levels
located between 77 500 cm21 (bottom end of the 7sng
series, i.e., for n7s5l54) and the 7s threshold were
studied using the jj-coupled eigenchannel R-matrix
method (Luc-Koenig, Lecomte, and Aymar, 1994). The
MQDT treatment used a short-range reaction matrix
K0 (see Sec. II.D.3). The energy positions, identifica-
tions, and autoionization widths of J54e levels were de-
termined by analyzing the energy dependence of the
analytic partial density of states introduced in Eq. (2.71).
Fourteen doubly excited levels, low members of Ryd-
berg series converging to the 6d and 4f thresholds, were
predicted to lie in the studied energy range and to cause
localized perturbations of the 7sng 1G4 and

3G4 Ryd-
berg series. In addition, the 7sng series were affected by
some 4fnp and 7pnf doubly excited levels that were
diluted into several high-lying 7sng Rydberg levels. The
calculated energy positions and widths of 7sng 1G4 Ry-
dberg levels agreed with the experimental data (Wang
and Cooke, 1993). The anomalous behavior of the
7sng 1G4 series for n>15 (almost constant width and
gradual increase of the quantum defect) reflects the per-
turbation by the 4f8p J54 levels and, in lesser extent,
by the 7p5f J54 levels. Those resonances were pre-
dicted to be very broad and to lie around the 7s thresh-
old. The 7sng 3G4 series was predicted to be perturbed
by the 4f5f 3G4 level, which induces a narrowing of the
7sng 3G4 widths around n517.
Figure 19 shows how the characteristics of the reso-

nances emerge from analysis of the energy dependence
of the densities of states in closed channels. The three
curves of Fig. 19 are associated with the 7sng , 4fnf , and
6dnd closed channels in the energy range corresponding
to the low-energy end of the 7sng series. Each
dsn1l1l2

o (E) curve was obtained by summing the analytic
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partial densities of states [Eq. (2.71)] corresponding to
jj-coupled fragmentation channels i5$n1 ,l1 ,j1 ,l2 ,j2%
with the same quantum numbers n1 ,l1 ,l2. The
ds7sg

0 (E) curve exhibits the 7sng J54 resonances for
5<n<9. The extremely broad width for the 7s5g 1G4
level at 79 100 cm21 is ascribed to the strong coupling
with the broad 4f7p (or 7p4f) 1G4 resonance. The
7s5g 3G4 resonance appears at 79 450 cm21. The ir-
regular evolution along the series of the fine-structure
splitting between both 7sng 1,3G4 levels derives from
the perturbation of the series by numerous doubly ex-
cited levels. Three 4f2 resonances (numbers 2, 5, and 6)
show up in the curve ds4ff

0 (E) and the three peaks (1, 3,
and 4) occurring in the ds6dd

0 (E) profile are associated
with 6d7d resonances.
It was shown, in Sec. IV.B above, that the eigenchan-

nel R-matrix calculations of high-lying 4fnf levels
(n>8) with J=4–6 reproduce well the measurements of
de Graaff et al . (1992). The calculations have been ex-
tended to the unobserved low-lying levels of the 4fnf
series down to the 4f2 and 4f5f levels. Indeed, because
of the strong mixing between the 4f5/2nf7/2 and
4f7/2nf5/2 Rydberg series, the quantum defect (mod 1) of
high-lying 4fnf levels is strongly dependent on the lev-
els. The unambiguous determination of the n value of
4fnf levels observed by de Graaff et al . (1992) requires
that the series be followed down to their bottom end.
The energy positions, identifications, and widths of 4f2

and 4fnf levels (up to n58) were obtained, as for
7sng Rydberg levels, by analyzing the energy depen-
dence of the total and partial analytical densities of
states (Luc-Koenig, Aymar, and Lecomte, 1994). Eigen-
channel R-matrix calculations were carried out using ei-
ther the LS-coupled approach combined with the jj-
LS frame transformation or the jj-coupled method. The
4f2 levels were found to be well separated from the
other resonances. In contrast, many 4fnf levels
(5<n<8) were embedded into high-lying members of
7snl (l54,6) and 6dnl (l52,4,6) Rydberg series. Be-

cause of their coupling with Rydberg series, those 4fnf
levels give rise to very intricated structures correspond-
ing to complex resonance patterns (Giusti-Suzor and
Lefebvre-Brion, 1984) with an apparent width related to
the spectral range over which the Rydberg series is per-
turbed by the 4fnf interloper. A good recipe for deter-
mining the unperturbed width or apparent width of dou-
bly excited levels embedded into Rydberg series is to
treat the corresponding Rydberg series as open channels
in the MQDT calculation and to analyze the energy de-
pendence of the density of states associated with the
doubly excited levels. Artificially opening a closed chan-
nel in the MQDT calculation removes all the perturbers
associated with that channel. This procedure was used to
predict the energy positions and apparent autoionization
widths of 4fnf levels with J=4–6 and 5<n<8 and thus
to determine the n values of high-lying 4fnf levels.
Recalling Sec. II.D.3, Smith’s (1960) time-delay ma-

trix [Eq. (2.69)] can be used to analyze resonances. The
decay properties of some autodetaching Feshbach reso-
nances of H2 were obtained by Sadeghpour et al .
(1992) with an eigenchannel R-matrix calculation of the
partial photodetachment cross sections, followed by an
analysis of the eigenvectors of the time-delay matrix.
The same procedure has also been used by Sadeghpour
and Cavagnero (1993) to study the formation and decay
of one prominent autoionizing resonance of He whose
decay mode violates radial-correlation propensity rule
satisfied by all other autoionizing resonances observed
in He (for references, see Domke et al . , 1991).
The positions, autoionization widths, branching ratios,

and identifications of the resonances can also be pre-
dicted using the alternative eigenchannel R-matrix ap-
proach described in Sec. III.H (Lecomte et al . , 1994).
This method is adapted to the analysis of the lowest
levels of Rydberg series described by doubly excited
wave functions Fr completely included within the
R-matrix reaction volume; moreover, the doubly excited
levels are assumed not to interact with other Rydberg
series. Lecomte et al . (1994) introduced a density-of-
states matrix

Qp52pxr
†xr , (4.6)

expressed in terms of the matrix xr of Eq. (3.52b) whose
element xai gives the amplitude of the doubly excited
state Fa in the ith eigensolution of the transformed
eigensystem [Eq. (3.52a)] satisfying the outgoing-wave
normalization condition.
The resonant structures showing up in the autoioniz-

ing spectra can be analyzed from the energy dependence
of Tr(Qp), which defines a density of states ds(E). This
total density of states can be decomposed in partial den-
sities of states

dsa~E !52p(
i
xaixai* , (4.7)

related to a single doubly excited states Fa .
Lecomte et al . (1994) have shown that, under the as-

sumption of negligible energy dependence of the non-

FIG. 19. Densities of states (in a.u.) for the even-parity J54
states of Ba as functions of the energy relative to the Ba
ground state: full line, ds7sg

0 density of states exhibiting 7sng
resonances with 5<n<9; dashed line, ds4ff

0 density of states
showing the 4f2 3H4 (2), 1G4 (5), and 3F4 (6) resonances;
dotted line, ds6dd

0 density of states showing the 6d7d 3G4 (1),
3F4 (3), and

1G4 (4) resonances. (From Luc-Koenig, Lecomte,
and Aymar, 1994.)
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resonant scattering matrix S(0), and thus of the coupling
matrix T [Eq. (3.54)], the density-of-states matrix Qp is
identical to the time-delay matrix Qphys of Smith (1960)
defined by Eq. (2.69). (Let us emphasize that, inasmuch
as the R-matrix calculation is restricted to open chan-
nels, the time-delay matrix Qphys is identical to the short-
range time-delay matrix Q .) This allows one to ascribe
unambiguously each resonance appearing in the evolu-
tion of Tr(Qp) with energy to a particular doubly ex-
cited state Fa , and thus to identify every resonance.
The 6d2 J=0–4 resonances of Ba, located above the

6p threshold, were analyzed in this way, choosing a
R-matrix reaction volume (r0= 40 a.u.) large enough to
contain the 6d2 levels. The doubly excited levels within
the R-matrix box were identified as eigenstates of the
closed part Hcc of the two-electron Hamiltonian (see
Secs. III.E and III.H). Calculations were carried out in
LS and jj couplings. For a given symmetry, the R matrix
was restricted to open channels converging onto the
6s , 5d , and 6p thresholds. Figure 20 displays
jj-coupled results for the 6d2 3F4 and

1G4 resonances,
which interact with 18 continua. Figure 20(a) shows the
energy dependence of the trace of the time-delay matrix
Q and of its eigenvalues q . Among the 18 eigenvalues,
only two have non-negligible value. The two peaks vis-
ible on the full line near 72 200 cm21 and 73 300 cm21

are associated with the 6d2 3F4 and 1G4 resonances,

which are well isolated from the other resonances. Their
separation in energy being larger than their widths, they
can be viewed as ‘‘quasi-isolated’’ resonances. The ener-
gies of the resonances correspond to the maxima of the
Tr(Q) profile and the widths can be deduced from the
full widths at half maximum of this profile.
Figure 20(b) shows the results obtained with the den-

sity matrix Qp of Eq. (4.6). More precisely, it displays
the energy dependence of the partial density of states
dsa(E) defined in Eq. (4.7) for each individual 3F4
(dashed curve) and 1G4 (dotted curve) levels denoted 1
and 2, respectively. Although the dotted curve corre-
sponding to the 1G4 peak has a maximum also at the
position of the prominent 3F4 resonance, this secondary
peak has a very small amplitude; this shows that the two
resonances are almost uncoupled. The full curve corre-
sponds to the sum ds1(E)1ds2(E) of the individual
contributions of these two 6d2 J54 levels to the trace of
the matrix Qp defined by Eq. (4.6). The curve associated
with the full line of Fig. 20(b) differs only slightly from
the curve of Fig. 20(a) corresponding to the trace of the
matrix Q . Part of the differences results from the ap-
proximations (energy independence of the nonresonant
continua and of the matrix T) underlying the identity
Q5Qp. However, the differences primarily derive from
the fact that the contributions to Qp due to doubly ex-
cited states other than the 6d2 levels are neglected. The
largest difference (;20%) occurring at the 1G4 reso-
nance peak was related to the neglect of the 7p4f 1G4
level whose resonance is extremely diffuse and contrib-
utes to the time-delay matrix in a very wide energy
range (see Luc-Koenig, Lecomte, and Aymar, 1994).
One major advantage of the resonance analysis in

terms of the partial densities of states rather than with
the time-delay matrix is the possibility of obtaining
quantitative information on each individual resonance
(including their identification) involved in complex
structures corresponding to overlapping resonances. Fig-
ure 21 shows a complicated situation involving the two
overlapping 6d2 3P0 and

1S0 resonances and the close-
lying 7s8s 1S0 doubly excited level. Figure 21(a) shows
the energy profiles of the trace and eigenvalues of the
Q matrix calculated for J50e. In the higher-energy
range, only one eigenvalue has a nonzero value, indicat-
ing that the 7s8s 1S0 level corresponds to an isolated
resonance. In contrast, in the lower energy range, two
eigenvalues have non-negligible values and their profiles
do not correspond to Lorentzian profiles, which means
that the 6d2 1S0 and 3P0 resonances are interacting.
The positions and widths of each individual resonance
cannot be extracted from such curves. These character-
istics can be obtained by analyzing the energy depen-
dence of the partial density of states [Eq. (4.7)] for each
resonance. The jj-coupled results obtained for the 6d2
3P0 (dashed curve) and 1S0 (dotted curve) resonances
are shown on Fig. 21(b). The total density of state (full
line) obtained by adding the contributions of each level
is identical to that obtained from the time-delay matrix
Q , which means that the nonresonant continua and the
matrix T are energy independent [Eq. (3.54)]. In con-

FIG. 20. The Ba 6d2 3F4 and 1G4 resonances: (a) sum of
eigenvalues q of the time-delay matrix Q identical to TrQ (full
line) and individual eigenvalues q (18 other lines)—note that
the curves associated with 16 eigenvalues are almost superim-
posed with the horizontal axis q50; (b) trace of the density
matrix Qp [Eq. (4.6)] (full line) and partial densities of states
calculated with Eq. (4.7) for the 3F4 (dashed line) and 1G4
(dotted line) level. Energies are relative to the Ba ground
state. (From Lecomte et al . , 1994.)
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trast, differences between the curves associated with the
individual contributions [Fig. 21(b)] and the energy pro-
files of the eigenvalues of the matrix Q [Fig. 21(a)] are
more marked than for the J54 case.
The probabilities for each 6d2 resonant state to decay

into the different available continua, i.e., the autoioniz-
ation branching ratios, were predicted by an
LS-coupled R-matrix calculation of the eigenvector of
Q associated with its largest eigenvalue (see Sec. II.D.3).
This procedure, valid only for isolated resonances, could
be applied because for each LS symmetry there is only
one 6d2 resonance. Branching ratios calculated in this
way are expected to be valid for all isolated and quasi-
isolated 6d2 resonances, which are well described in
LS coupling.
The eigenchannel R-matrix calculations of the 6d2

(Lecomte et al . , 1994), 5d5g (Luc-Koenig et al . , 1995),
and 4f7h (van Leeuwen et al . , 1995) levels as well as
those of 6dng ,ni (Aymar et al . , 1994), 7sng (Luc-
Koenig, Lecomte, and Aymar, 1994), 4fnf (Luc-Koenig,
Aymar, and Lecomte, 1994), and 4fng (van Leeuwen
et al . , 1996) Rydberg series accounted for all the rel-
evant continua n1l1j1el2j2 (l2<8) built on Ba1 6s , 5d ,
6p , . . . . The continua to which each level or series pref-
erentially decays were identified using three different
procedures centered around three different calculated
quantities: the partial photoionization cross sections, the

eigenvectors of the time-delay matrix, or phase-shifted
MQDT parameters. The branching ratios were found to
depend strongly on the specific level or series studied.
There is no general rule that dictates which multipole
term will predominate in autoionization caused by the
Coulomb interaction. In many cases, resonances au-
toionize with large probability into channels associated
with the lowest (6s and 5d) thresholds; this result is at
variance with the statement (often found in the litera-
ture) that resonances autoionize preferentially into
channels attached to the energetically closest ion core.
R-matrix calculations that omit some channels built on
low-lying thresholds must be viewed with caution, as
they can give unreliable resonance widths and profiles.
Relatively few calculations of autoionization widths in

the alkaline earths exist using theoretical approaches
other than the eigenchannel R-matrix method. One is
the configuration-interaction calculation of the positions
and widths of 3pns ,nd 1P resonances of Mg (Chang,
1986). Bhalla et al . (1990) and Hahn and Nasser (1993)
calculated the positions and widths of several doubly ex-
cited states of Ba using the multiconfiguration Hartree-
Fock method. Theoretical quantum defects and widths
calculated for n1sn2s

1S and n1sn2d
1D Rydberg levels

converging to high-lying Ba1 n1s (n1;7–10) levels
were compared with the experimental data obtained for
these series by Bloomfield et al . (1984). The n1 depen-
dence of quantum defects calculated by Bhalla et al .
(1990) agrees excellently with experimental results; the
calculated widths, however, disagree strongly with the
measured widths. The agreement between the results of
Hahn and Nasser (1993) and the experiment is rather
poor for both positions and widths.
Autoionizing widths for some doubly excited levels of

Ba with a large orbital momentum l2 for the outer elec-
tron were calculated by Jones and Gallagher (1988),
Poirier (1988, 1994), and Wang et al . (1991) assuming a
single-configuration model for describing the doubly ex-
cited levels. Those authors used a Ba1 orbital for the
inner electron. Hydrogenic wave functions were used by
Jones and Gallagher (1988) and Poirier (1988; 1994) for
the outer electron, while Wang et al . (1991) used for the
f wave involved in 6pnf levels wave functions that were
calculated in the field of the Ba11 core screened by the
inner electron. These calculations reproduce the experi-
mental data well for 6pnf levels (Wang et al . , 1991) and
6pnl2 levels with l2>4 (Jones and Gallagher, 1988).
Calculations show that the dominant decay path for
6pnl2 levels with l2>4 corresponds to dipole-allowed
autoionization and accurately reproduce the observed
rapid decrease of autoionization rates with l2 for these
levels.
The narrow autoionization widths of various Ba

5d5g levels located below the 5d3/2 threshold were mea-
sured accurately by van Leeuwen et al . (1994). Figure
22 shows an example of the 5d5/25g@K# levels, where the
single-configuration model fails to reproduce the experi-
mental widths. These jK-coupled levels, with nonover-
lapping valence electrons, decay through the quadrupole
interaction into the 6sel continua. The single-

FIG. 21. The Ba 6d2 J50 and 7s8s 1S0 resonances: (a) sum of
eigenvalues q of the time-delay matrix Q identical to TrQ (full
line) and individual trace (full line) and individual eigenvalues
q (5 other lines)—note that the curves associated with three
eigenvalues are almost superimposed with the horizontal axis
q50; (b) trace of the density matrix Qp [Eq. (4.6)] (full line)
and partial densities of states calculated with Eq. (4.7) for the
6d2 3P0 (dashed line) and 1S0 (dotted line) levels. Energies
are relative to the Ba ground state. (From Lecomte et al . ,
1994.)
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configuration model gives autoionization widths system-
atically larger than the experimental data (full squares in
Fig. 22). A detailed investigation of the 5d5g autoioniz-
ation mechanisms was performed using the jj-coupled
eigenchannel R-matrix approach (Luc-Koenig et al . ,
1995). The autoionization widths were derived from the
linewidths of the resonant peaks occurring in the calcu-
lated cross section and density-of-states profiles and
from phase-shifted MQDT parameters. Widths calcu-
lated using those two different procedures agree. Two
polarization effects were found to significantly influence
the autoionization dynamics of the 5d5g states. The first
effect was the direct polarization of the inner valence
electron by the outer valence electron. This is a dipolar
coupling between the 5dng and the 6pnl channels and,
to a lesser extent, between the 5dng channels and the
4fnl channels, followed by autoionization through the
6pnl and 4fnl channels. This effect was accounted for in
the calculations by including a large number of strongly
closed channels (the same type included routinely in
eigenchannel R-matrix calculations). This direct polar-
ization effect significantly narrowed the 5d5g levels with
K>7/2, their widths becoming 1.5 to 3 times smaller
than the experimental values (full triangles in Fig. 22).
The second significant effect that played a critical role in
the 5d5g autoionization process arose from the interac-

tion of each valence electron with the electric dipole
moment induced in the Ba11 core by the other valence
electron. This dielectronic polarization correction [Eq.
(3.34)] had the same angular dependence as the dipolar
interaction but had an opposite effect; this correction
partly canceled the polarization of the inner electron di-
rectly produced by the outer electron. The widths calcu-
lated with both polarization effects included (full circles
in Fig. 22) agreed well with the experiment. This study
was the first one to show that the dielectronic polariza-
tion correction can have a significant influence on the
autoionization widths of neutral atoms. Its crucial role in
negative ions was previously demonstrated by Thumm
and Norcross (1991, 1992) who investigated the Cs2

negative ion using a fully relativistic Wigner-Eisenbud-
type R-matrix calculation.

D. Photoionization from ground and low-lying states

1. Ground-state photoionization in lighter alkaline earths Be
and Mg

Various theoretical approaches have been widely used
to investigate ground-state photoionization of Be and
Mg including double electron excitations. Among them,
there are the configuration-interaction technique (Bates
and Altick, 1973), the close-coupling method (Dubau
and Wells, 1973; Mendoza and Zeippen, 1987), the mul-
ticonfiguration Tamm-Dancoff approximation (Radejo-
vic and Johnson, 1985), the complex-basis-function tech-
nique (Rescigno, 1985), the L2 technique (Moccia and
Spizzo, 1989; Chang and Tang, 1992), the multiconfigu-
ration Hartree-Fock method (Froese Fischer and Saha,
1987), many-body perturbation theory (Altun, 1989), the
random-phase approximation (Chi et al . , 1991; Chi and
Huang, 1994), the hyperspherical close-coupling method
(Greene, 1981; Zhou and Lin, 1995), the Wigner-
Eisenbud-type R-matrix method (Tully et al . , 1990),
and the eigenchannel R-matrix method (O’Mahony and
Greene, 1985). This last study was the first to demon-
strate the ability of the eigenchannel R-matrix method
to handle doubly excited levels of alkaline earths.
It is beyond the scope of this review to compare the

results obtained with all these different methods. We
compare only some unpublished eigenchannel
R-matrix results with certain recent predictions and
available experimental data. O’Mahony and Greene
(1985) carried out an LS-coupled three-channel treat-
ment (m0snp , m0pns , and m0pnd) of the

1Po spectra
of Be and Mg below the m0p threshold. Because these
early calculations used small sets of two-electron func-
tions and a relatively crude unoptimized Hartree-Slater
potential, we performed new LS-coupled eigenchannel
R-matrix calculations of the photoabsorption spectra of
Be and Mg improving both aspects. The differences be-
tween old and new results concern mainly the absolute
values of cross sections, but not the shapes and positions
of m0pns and m0pnd

1P resonances. The new Be ve-
locity result @Fig. 23(a)] is to be compared with recent
theoretical predictions of Chi et al . (1991) @Fig. 23(b)].
These authors used the multiconfiguration relativistic

FIG. 22. Autoionization widths of 5d5/25g levels of Ba. The
widths calculated by Luc-Koenig et al . (1995) using different
approximations (G th) are compared with the experimental val-
ues (Gexp) of van Leeuwen et al . (1994): full squares, single-
configuration model; full triangles, jj-coupled eigenchannel
R-matrix calculation accounting for the direct polarization of
the inner electron by the outer electron; full circles,
jj-coupled eigenchannel R-matrix calculation accounting for
the direct polarization of the inner electron by the outer elec-
tron and for the dielectronic polarization term of Eq. (3.34).
The ratios G th /Gexpt obtained for the jK-coupled 5d5/25g@K#
levels are plotted as functions of K . The l value of the 6sel
continuum toward which each 5d5/25g@K# level autoionizes is
indicated below the K values.
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random-phase approximation theory (MCRRPA),
which is a generalization of the relativistic random-
phase approximation including a multiconfiguration
wave function for the ground state. Both R-matrix and
MCRRPA calculations give a similar description of the
broad 2pns 1Po series, and of the narrow 2pnd 1Po

series, which appear owing to the 2p2-2s2 mixing in the
ground-state wave function. The positions of resonances
as well as the cross sections at the 2pns peaks, agree
well. Slight differences are visible in the wavelength
range of the 2p3d and 2p4s resonances, where the
R-matrix calculation predicts a stronger interaction be-
tween the 2pns and 2pnd channels than the MCRRPA
calculation. However, the one available experiment is
not precise enough to determine which calculation is
better (Mehlman-Ballofet and Esteva, 1969).
Figure 24 compares the new R-matrix result for the

Mg photoabsorption spectrum @Fig. 24(a)] with previous
theoretical and experimental results @Fig. 24(b)]. Only
velocity results are shown on @Fig. 24(a)], as the length
and velocity results for the cross section agree to within
better than 2%. In Fig. 24(b), the solid line corresponds
to the prediction of Altun (1989), who used the many-
body perturbation theory; the dot-dashed and dashed
curves show the experimental results of Ditchburn and
Marr (1953) and of Preses et al . (1984), respectively.
The relative measurements of Preses et al . (1984) were
normalized to the many-body perturbation theory re-
sults at the first resonance 3p4s 1P . Like the homolo-
gous Be resonances, the Mg 3pns resonances are broad
and the 3pnd narrow. The energy range (7.6–10.6 eV)
close to the 3s ionization threshold is very difficult to
calculate accurately owing to the appearance of a Coo-
per minimum in the 3s→ep transition. In Be, this Coo-
per minimum had occurred in the discrete spectrum.
Various theories (Altun, 1989; Chang and Tang, 1992;

Chi and Huang, 1994) predicted quite different cross
section values at the threshold and for the lowest 3p4s
resonance. The experimental threshold value of 2.39 6
0.72 Mb (Yih et al . , 1989) agrees with this new
R-matrix result of 2.5 Mb and with the calculation of
Chang and Tang (1992), who obtained ; 2.4 Mb. These
authors employed a simple configuration-interaction ap-
proach using a finite L2-basis set constructed using
B-splines and frozen-core Hartree-Fock orbitals.
A key result of the eigenchannel R-matrix and

hyperspherical-coordinate studies of O’Mahony and
Greene (1985) and of Greene (1981) is that near the
m0s threshold the wave functions of Be and Mg states
are analogous to the wave functions describing the
2snp62pns states of He and H2 (Cooper et al . , 1963).
They demonstrated that the m0pns

1P autoionizing
resonances of Be and Mg could be described by wave
functions that admix the m0sep open channel and the

FIG. 23. Photoabsorption spectrum of Be below the 2p
threshold as a function of the photon wavelength. (a) The
LS-coupled eigenchannel R-matrix result; (b) the MCRRPA
prediction of Chi et al . (1991). [Figure 23(b) is from Chi et
al . (1991), courtesy of K. T. Cheng.]

FIG. 24. Photoabsorption spectrum of Mg below the 3p
threshold. (a) The LS-coupled eigenchannel R-matrix result;
(b) the many-body perturbation theory prediction of Altun
(1989) (full line), with experimental results of Ditchburn and
Marr (1953) (dot-dashed line) and of Preses et al . (1984)
(dashed line). The zero of the cross section near 9.0 eV arises
from a Cooper minimum in the 3s→3p transition. [Figure
24(b) is from Altun (1989), courtesy of Z. Altun.]
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m0pns closed channel with equal amplitude. This ‘‘eq-
uipartition’’ of the wave function into the so-called plus
and minus eigenmodes is reflected by the large width of
m0pns

1P resonances of Be and Mg, visible in Figs. 23
and 24. In fact, these resonances are so broad that these
doubly excited states decay after only half of a ‘‘Bohr-
type orbit’’ is completed. This equipartition, and the
strong similarities between the 1Po spectra of Be and
Mg, are reflected in the short-range scattering param-
eters obtained in a two-channel treatment of the
m0snp and m0pns channels. As visible on Figs. 1 and 6
of O’Mahony and Greene (1985), in Be and Mg the mix-
ing angle goes to zero at an energy far below the m0s
threshold and increases to approximately p/4 at higher
energies where the two m0snp and m0pns channels are
essentially equally mixed. The variation of the mixing
angle between the m0snp and m0pns channels as func-
tion of the energy for Be and Mg shows striking similar-
ity with the variation of the mixing angle between the
m0snp and (m021)dnp 1P channels of Ca, Sr, Ba, and
Ra below the m0s threshold displayed in Fig. 10. There
also, the mixing is reminiscent of the so-called plus and
minus states of H2 and He, in that the two correspond-
ing 1P eigenmodes of heavy alkaline earths Ca to Ra
apparently have similarly strong coupling implied by the
structure (mo21)dnp6mosnp .

2. Ground-state photoionization in heavier alkaline earths
Ca to Ra

The heavier alkaline-earth atoms have been experi-
mentally investigated far more extensively than have Be
and Mg. A wealth of experimental data on the
m0s

2→J51o photoionization spectra of Ca, Sr, and Ba
in the region below the m0p threshold has been re-
ported during the last three decades. Earlier spectra
were obtained in photoabsorption using light from con-
ventional sources or synchrotron radiation (Garton and
Codling, 1960, 1968; Garton and Tomkins, 1969b; Brown
et al., 1973, 1983; Hudson et al . , 1969, 1970; Garton
et al.., 1974; Brown and Ginter, 1978, 1980; Connerade
et al., 1980). Spectral structures were detected with pho-
tographic plates or photoelectric detectors. Recently the
quality of the spectra has improved, especially in the
spectral resolution, through the use of improved detec-
tion techniques (Griesmann et al., 1988, 1992, 1994;
Griesmann, 1990; Abutaleb, de Graaff, Ubachs, Hoger-
vorst, and Aymar, 1991; Connerade and Farooqi, 1991;
Farooqi et al . , 1991, 1992). Many eigenchannel
R-matrix calculations have treated photoabsorption
spectra of the heavy alkaline-earth atoms below the
mop threshold. Earlier calculations carried out for the
1Po spectra of Ca (Greene and Kim, 1987) and Sr (Ay-
mar, 1987) treated these atoms in LS coupling and in-
cluded five LS-coupled fragmentation channels:
m0snp , (m021)dnp , (m021)dnf , m0pns , and
m0pnd . Then, more elaborated calculations including
spin-orbit effects, either with the jj-LS frame transfor-
mation or directly in the variational calculation were
performed for Ca (Kim and Greene, 1987; Ueda et al.,

1990; Farooqi et al . , 1991), Sr (Aymar et al . , 1987;
Greene and Aymar, 1991; Farooqi et al . , 1992), Ba (Ay-
mar, 1990; Abutaleb, de Graaff, Ubachs, Hogervorst,
and Aymar, 1991; Greene and Aymar, 1991) and Ra
(Greene and Aymar, 1991). When combined with the
frame transformation, the LS-coupled R-matrix calcula-
tions determine three LS-coupled reaction matrices
K

1P, K
3Pand K

3Dof dimension 5, 5, and 3, respectively.
Channels involved for the 1Po and 3Po are the same
and for the 3Do symmetry the LS-coupled channels are:
(m021)dnp , (m021)dnf , and m0pnd . The K

LS matri-
ces are recoupled into a single jj-coupled reaction ma-
trix using the jj-LS frame transformation. The MQDT
calculations performed with the jj-coupled reaction ma-
trix obtained from R-matrix calculations in either LS or
jj coupling include 13 jj-coupled fragmentation chan-
nels: m0snp1/2 , m0snp3/2 , (m021)d3/2np1/2 ,
(m021)d3/2np3/2 , (m021)d3/2nf5/2 , (m021)d5/2np3/2 ,
(m021)d5/2nf5/2 , (m021)d5/2nf7/2 , m0p1/2ns1/2 ,
m0p1/2nd3/2 , m0p3/2ns1/2 , m0p3/2nd3/2 , and
m0p3/2nd5/2 .
A few theoretical studies of the photoabsorption spec-

tra of Ca, Sr, or Ba were previously carried out using
many-body perturbation theory (Altun et al . , 1983; Frye
and Kelly, 1987) or the Wigner-Eisenbud-type
R-matrix formulation (Scott et al . , 1983; Bartschat et
al . , 1986). Here, we compare some eigenchannel
R-matrix results with some of those previous calcula-
tions, but we focus mainly on the the comparison with
experimental spectra. Most of the theoretical spectra
presented in this paper correspond to total photoioniza-
tion cross sections versus the photon energy or wave-
length, without any convolution over the finite experi-
mental resolution. Consequently, no meaningful
comparison can be made between experiment and
theory for the intensity of narrow peaks.
Figure 25 compares the theoretical spectrum obtained

between the 4s and 3d thresholds of Ca using the
jj-coupled R-matrix method with the experiment of Fa-
rooqi et al . (1991). The theoretical curve in Fig. 25(a) is
the geometric mean of the length and velocity curves.
The experimental spectrum @Fig. 25(b)] was obtained
using a tunable coherent vacuum-ultraviolet four-wave
mixing source and a thermoionic diode detection. Abso-
lute cross sections were obtained by calibrating data
with previous absolute measurements (Parkinson et
al . , 1976; McIlrath and Sandeman, 1972). The absorp-
tion lines were assigned to 3dnp and 3dnf resonances,
members of six series converging to the 3d3/2,5/2 thresh-
olds, and perturbed by the 4p5s 1,3P1 resonances
(Brown et al . , 1973). The broadest resonances corre-
spond to the 3dnp 1P1 levels strongly coupled to the
4ses 1P1 continuum. The strong mixing between the
mosnp and (mo21)dnp 1P channels which dominates
the bound spectra of all the heavy alkaline-earth atoms
(see Sec. IV.A.1) manifests itself also above the mos
threshold. Overall, the agreement between theory and
experiment is remarkably good. The eigenchannel
R-matrix calculation closely reproduces the irregular
variation of the widths and intensities along the 3dnp
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1P1 series. Some of the corresponding resonances are
marked in Fig. 25(b) by their n values. The 3d6p 1P1
resonance at l;177 nm is anomalously narrow and in-
tense compared to the highest members of the series.
The width irregularity was attributed to the influence of
the 4p5s 1P1 perturber located in between the 3dnp
1P1 resonances with n56 and 7 (Greene and Kim, 1987;
Farooqi et al . , 1991; Connerade, 1992). More precisely,
destructive interference results from cancellation be-
tween the two alternative autoionization paths
3dnp→4sep and 3dnp→4pns→4sep (Greene and
Kim, 1987). Figure 25(a) includes weak features due to
the spin-orbit interaction, though the earliest eigenchan-
nel R-matrix calculation of Greene and Kim (1987)
showed that an LS-coupled R-matrix treatment gives a
good description of the 1P resonances.
Two previous calculations were conducted in Ca in

the same energy range, one using the many-body pertur-
bation theory (Altun et al . , 1983) and one using the
Wigner-Eisenbud-type R-matrix formulation (Scott et
al . , 1983). Both calculations, which treated Ca in LS
coupling and thus dealt with the 1P resonances only,
showed distinctly poorer agreement between theory and
experiment for the 1P resonances. The departure of the
R-matrix results of Scott et al. (1983) from experiment
may derive from their use of an ab initio all-electron
description of the Ca11-e interaction as opposed to the
semiempirical potential used in the eigenchannel
R-matrix studies (Greene and Kim, 1987; Farooqi et
al . , 1991).
Many-body perturbation theory was also used by Frye

and Kelly (1987) to calculate the photoabsorption of Sr
in the analogous energy range, i.e., below the 4d thresh-
old. As in Ca, spin-orbit effects were neglected and the

description of the 4dnp and 4dnf 1P resonances is, not
surprisingly, poorer than that obtained with eigenchan-
nel R-matrix calculations where fine-structure effects
are included with the jj-LS frame transformation (Ay-
mar, 1987).
Figure 26 compares the photoabsorption spectrum of

Ca and Sr between the (m021)d5/2 and m0p3/2 thresh-
olds. For Ca, the measurements of Griesmann et al.
(1988) in Fig. 26(a), are compared with the frame-
transformation results of Kim and Greene (1987), shown
in Fig. 26(b). For Sr, the measurement of Griesmann
(1990) [Fig. 26(c)] is compared with the jj-coupled
eigenchannel R-matrix results of Greene and Aymar
(1991) [Fig. 26(d)]. Measurements of Griesmann et al .
(1988, 1994) and of Griesmann (1990) were obtained us-
ing synchrotron radiation and a linear thermoionic diode
detector. In Ca @Fig. 26(a)], as for Fig. 25, absolute cali-
bration was achieved using previous absolute measure-
ments. In Sr, the experimental data have been normal-
ized to achieve agreement with the R-matrix result at
the 4d6p 1P1 resonance which dominates the photoion-
ization spectrum between the 5s and 4d3/2 thresholds
(see Greene and Aymar, 1991).
In both Ca and Sr, the calculations reproduce the

shapes of the observed m0pns and m0pnd J51 reso-
nances. In Ca, agreement between experiment and
eigenchannel calculations remains superior to that of
calculations performed by Scott et al . (1983) or by Al-
tun et al . (1983).
Concerning the measured cross sections, calibrated

as described above, the Ca 4pns peaks are slightly
too weak compared to R-matrix results, while the Sr
5pns resonances are too intense. Recently, Griesmann
et al. (1994) have calibrated their data (Griesmann,

FIG. 25. Photoabsorption spectrum of Ca be-
tween the 4s and 3d3/2 thresholds. (a) The
jj-coupled R-matrix result; (b) the experi-
mental result (wavelength resolution ;0.02
nm). Some 3dnp 1P1 resonances are labeled
by their n values. (From Farooqi et al . , 1991.)
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1990) with the cross section determined by Alexa et
al . (1983) at the 5s threshold. In the energy range be-
tween the 4d5/2 and 5p3/2 thresholds, the magnitude of
these normalized cross sections agree well with the
R-matrix cross sections. However, the experimental
cross section of the very strong 4d6p 1P1 resonance is
smaller than the R-matrix result. Therefore, the normal-
ization of the data of Griesmann et al . (1988, 1994) in
Ca and Sr is somewhat questionable and further abso-
lute measurements are desirable. If the experimental

normalization is in fact correct, this discrepancy may
suggest that the energy dependence of calculated dipole
matrix element needs to be described more accurately in
sensitive cases such as these.
In both Ca and Sr, the m0pnd resonances are very

broad owing to their strong coupling with the
(m021)def continua and are hardly recognizable as in-
dividual structures, whereas the members of the
m0pns series can be clearly identified. Correlation ef-
fects are very similar in Ca and Sr and major differences
between Ca and Sr primarily reflect the increasing role
of the spin-orbit interaction in Sr. Indeed, an
LS-coupled R-matrix calculation correctly describes the
main features of the Ca photoabsorption spectrum
(Greene and Kim, 1987), but not of Sr. Due to the weak-
ness of the spin-orbit interaction in Ca, the relative am-
plitude of the two m0pns peaks corresponding to the
same n value differs strongly in Ca [Figs. 26(a) and
26(b)]. That is, the Ca 3P1 resonances to the left of the
intense peaks in Fig. 26(a) are very weak. The stronger
spin-orbit interaction in Sr [Figs. 26(c) and 26(d)] causes
the corresponding resonances to have roughly the same
intensity.
Figure 27 compares the high-resolution experimental

Ba result of Brown and Ginter (1978), just below the
6p1/2 threshold, shown in Fig. 27(a), with the eigenchan-
nel R-matrix results (Greene and Aymar, 1991). Figure
27(b) shows the spectrum obtained with R-matrix calcu-
lations in LS coupling combined with the jj-LS frame
transformation. Figure 27(c) displays the jj-coupled

FIG. 26. Photoabsorption spectra of Ca and Sr between the
(m021)d5/2 and m0p3/2 thresholds. (a) Ca measurement of
Griesmann et al. (1988) (wavelength resolution ; 0.05 nm);
(b) Ca frame-transformation result of Kim and Greene (1987).
(c) Sr measurement of Griesmann (1990) (wavelength resolu-
tion ; 0.05 nm); (d) Sr jj-coupled eigenchannel R-matrix re-
sult of Greene and Aymar (1991). [Figures for Ca are from
Griesmann et al . (1988) and those for Sr are from Greene and
Aymar (1991).]

FIG. 27. Photoabsorption spectrum of Ba in the energy range
from 60 000 cm21 up to the 6p1/2 threshold: (a) relative mea-
surement of Brown and Ginter (1978) (energy uncertainty ;
0.11 cm21) that was normalized to give the overall best agree-
ment with the R-matrix results; (b) jj-LS velocity (full line)
and length results (dashed line); (c) jj velocity (full line) and
length results (dashed line). The vertical bars in (b) and (c)
indicate the position of the observed absorption peaks and
minima. (From Greene and Aymar, 1991.)
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R-matrix result. The results obtained by both eigenchan-
nel R-matrix approaches are almost identical and they
reproduce the experimental spectrum accurately. In par-
ticular, the periodic enhancement of the cross sections
due to low-lying 6p3/2nl levels mixed with 6p1/2n8l Ry-
dberg levels is well described. Figures 27(b) and 27(c)
display both velocity and length results (shown as solid
and dashed lines) which are very close, giving some con-
fidence in the convergence of the variational calcula-
tions.
One important point is that, even in Ba, R-matrix cal-

culations including the spin-orbit terms within the reac-
tion volume and those including these terms perturba-
tively through the jj-LS frame transformation give
almost identical results. This is true in the energy range
close to the 6p threshold but also in the whole energy
range from the 6s threshold up to the 6p3/2 threshold
(see Greene and Aymar, 1991). Thus, although no de-
tailed comparison between photoabsorption spectra cal-
culated with either the fully jj-coupled R-matrix method
or using the jj-LS frame transformation was done for
Ca and Sr, the conclusions obtained in Ba are expected
to hold for the lightest elements Ca and Sr.
R-matrix calculations were also carried out in the

heaviest alkaline-earth atom Ra (Greene and Aymar,
1991). Because no experimental spectrum is available in
the autoionizing energy range of Ra we do not repro-
duce here the predicted photoionization spectra. We
only briefly summarize the conclusions obtained previ-
ously. As in Ba, spectra predicted with LS-coupled
R-matrix calculations combined with the jj-LS frame
transformation were compared to those obtained with
the jj-coupled R-matrix method. In Ra, not surprisingly,
significant differences between the autoionizing pattern
predicted by the two approaches occur. The differences
are much more marked in the low-energy range between
the 7s and 6d3/2 thresholds than in the higher-energy
range between the 6d5/2 and 7p3/2 thresholds.
Figure 28 compares the photoabsorption spectra for

all the heavier alkaline earths from Ca to Ra between
the m0p1/2 and m0p3/2 thresholds. Results in Ca (Kim
and Greene, 1987) @Fig. 28(a)], Sr (Aymar, 1987) @Fig.
28(b)], and Ba (Aymar, 1990) @Fig. 28(c)] were obtained
with LS-coupled R-matrix calculations combined with
the jj-LS frame transformation, while those for Ra
(Greene and Aymar, 1991) @Fig. 28(d)] were obtained
with the jj-coupled R-matrix method. In Ca [Fig.
28(a)], the theoretical result (thin line) is compared with
the experimental result of Brown and Ginter (1980)
(thick line). The quasiperiodic autoionizing structures
formed by asymmetrical absorption profiles are very
similar in all alkaline-earth atoms from Ca to Ra. This
great similarity throughout the heaviest alkaline-earth
atoms reflects the systematic near invariance of the elec-
tronic channel mixings. Here, the strongest channel mix-
ing corresponds to the mopnd-(mo21)def mixing for
1P1 channels.
The absolute squares of the off-diagonal elements

uSiju2 of the short-range scattering matrix defined by Eq.
(2.43) provide an index of the mixing between channels

i and j . Selected uSiju2 elements obtained for Ca 1Po

(Greene and Kim, 1987) with LS-coupled eigenchannel
R-matrix calculations are shown in Fig. 29 as functions

FIG. 28. Photoabsorption spectra of Ca to Ra between the
m0p1/2 and m0p3/2 thresholds as functions of the energy rela-
tive to the m0p1/2 threshold. Results in Ca (a), Sr (b), and Ba
(c) were obtained with LS-coupled R-matrix calculations com-
bined with the jj-LS frame transformation, while those in Ra
(d) correspond to the jj-coupled R-matrix result. In Ca, the
theoretical result (thin line) is compared with the experimental
result of Brown and Ginter (1980) (thick line). (From Aymar,
1987, 1990; Kim and Greene, 1987; and Greene and Aymar,
1991.)
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of the photoelectron energy between the 4s and 4p
thresholds. The very large widths of 4pnd 1P levels,
visible in Figs. 26 and 28(a), reflect the extremely strong
mixing between the 4pnd and 3dnf channels. Such a
m0pnd-(m021)dnf channel mixing is shared by all the
heavier alkaline earths, as visible on Fig. 28. Kim and
Greene (1988) showed that this exceptionally strong
channel mixing continues to dominate the photoabsorp-
tion spectrum of Ca at higher energies. The marginally
weaker, but nevertheless strong 3dnp-4snp mixing gen-

erates the broad autoionization widths of 3dnp 1P reso-
nances of Ca for n Þ 6 (see Fig. 25). In this case also, the
pair of channels 3dnp-4snp remains strongly coupled at
high energy. The (m021)dnp-m0snp mixing is weaker
in Sr, Ba, and Ra than it is in Ca, at least below the
m0p threshold, but it is still far from negligible.
A final example of photoabsorption spectra in the al-

kaline earths considers the energy range well above the
m0p threshold, where almost no experimental data are
available to date. Figure 30 shows the Ca photoabsorp-
tion spectra predicted by Kim and Greene (1988) from
the 4p threshold up to nearly the 6s threshold. Calcula-
tions were carried out with the LS-coupled eigenchan-
nel R-matrix method. On Figs. 30(a) and 30(c), the up-
per curve is the velocity result and the lower one the
length result. This study was the first one performed
with the eigenchannel R-matrix method at an energy
higher than the m0p threshold. For this reason this study
shed new light on fundamental aspects of R-matrix and
MQDT technologies. The investigated energy range in-
cluded the 5s , 4d , 5p , 4f , and 5d thresholds; the num-
ber of open and weakly closed channels (up to sixteen)
included in the calculation depended on the energy
range under study. The reaction volume radius was 31
a.u. The resonances pertaining to the 5snp , 4dnp ,
4dnf , 5pns , 5pnd , 4fnd , 4fng , and 6snp series, as well
as the lowest resonances associated with the 5dnp and
5dnf series, were identified. The 5s5p and 6s6p 1P au-
toionizing states, which involve two electrons with the
same degree of excitation, are the analog of the so-
called plus states that dominate the photoabsorption

FIG. 29. Short-range scattering matrix elements for the 1Po

symmetry of Ca. Absolute squares of selected matrix elements
obtained with LS-coupled eigenchannel R-matrix calculation
are shown as functions of the photoelectron energy between
the 4s and 4p thresholds. (From Greene and Kim, 1987.)

FIG. 30. Photoabsorption spec-
tra of Ca predicted below the
6s ionization limit with
LS-coupled eigenchannel
R-matrix calculations: (a) en-
ergy for E between 20.32 a.u.
and 20.22 a.u.; (b) for E be-
tween 20.22 a.u. and 20.17
a.u.; (c) for E between 20.17
a.u. and 20.12 a.u.. The upper
curve is the velocity result and
the lower one the length result.
Energies in a.u. are referred to
the double-ionization limit.
(From Kim and Greene, 1988.)
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spectrum of He (Cooper et al . , 1963). In contrast [Figs.
30(a) or 30(c)], the 5s5p and 6s6p resonances are sur-
prisingly weak.
For ground-state photoionization, only total cross sec-

tions were measured experimentally. However, some
other observables more sensitive to channel mixing and
spin-orbit effects were predicted using the eigenchannel
R-matrix method. In particular, Kim and Greene (1987)
calculated for ground-state photoionization of Ca, in ad-
dition to the total cross section, the partial cross sec-
tions, the angular distributions of emitted electrons, and
the alignment of the Ca1 fragments. The energy range
considered in that work was from the 4s threshold up to
the 4p3/2 threshold. Not surprisingly, the weak spin-orbit
interaction, accounted for through the jj-LS frame
transformation, was seen to affect the photoelectron
asymmetry parameters and the alignment parameters
much more strongly than the total cross section.

3. Photoionization from low-lying excited states

The earliest experimental investigations on autoioniz-
ing states of alkaline-earth atoms mainly dealt with the
odd-parity J51 levels, which can be observed in absorp-
tion from the ground state. Now, owing to the develop-
ment of laser spectroscopy, a wealth of data has been
obtained for odd- and even-parity autoionizing levels
with various J values. This section concerns photoioniza-
tion from low-lying excited levels only. Photoionization
spectra investigated using multistep laser experiments
based on the the so-called isolated-core excitation (ICE)
technique (Cooke et al . , 1978) will be treated in Sec.
IV.E. As explained in Sec. III.F , the procedure used to
calculate photoionization spectra from low-lying states is
identical to the procedure employed for calculating pho-
toabsorption spectra. Photoionization cross sections are
calculated using short-range dipole matrix elements,
which only include contributions within the reaction vol-
ume. This volume must be chosen to be large enough to
enclose the full initial-state wave function. The use of
too large a boundary radius r0 complicates the
R-matrix calculation of final-state channel mixing. Cal-
culations of photoionization spectra from low-lying
states of alkaline earths performed to date have been
restricted to r0<50. a.u. They dealt with various photo-
ionization spectra from excited states of Ca (Aymar and
Telmini, 1991; Assimopoulos et al . , 1994; Luc-Koenig,
Bolovinos, et al., 1994), Sr (Kompitsas et al . , 1990, 1991;
Goutis et al . , 1992), and Ba ( Greene and Theodosiou,
1990; Gounand et al . , 1991; Luc-Koenig and Aymar,
1991; Armstrong, Wood, and Greene, 1993; Bartschat
and Greene, 1993; Telmini et al., 1993; Wood et al., 1993;
Carré et al., 1994; Aymar and Luc-Koenig, 1995;
Lecomte et al., 1995; Luc-Koenig et al., 1995; Lagadec
et al., 1996). For illustration, we concentrate on photo-
ionization from low-lying excited states of Ba. Results
on total photoionization cross sections and on other ob-
servables will be discussed.

a. Total photoionization cross sections

Figure 31 deals with the 6pnp and 6pnf J51 levels of
Ba, below the 6p1/2 threshold. The excitation spectrum
recorded by de Graaff et al . (1990) from the 5d6p
3P0 excited state @Fig. 31(a)] is compared with the theo-
retical spectrum @Fig. 31(b)] obtained with the frame-
transformation treatment (Luc-Koenig and Aymar,
1991). The calculated spectrum reproduces the energy
positions, widths, and shapes of the observed autoioniz-
ing resonances. The very narrow resonances correspond-
ing to the Rydberg series 6p1/2np1/2 and 6p1/2np3/2 and
to the 6p3/211p1/2 and 6p3/211p3/2 J51 levels are super-
imposed on broad structures, the 6p3/2nf J51 reso-
nances with n57 and 8. The calculation reproduces ac-
curately the large differences between the widths of
6pnp and 6pnf resonances. The extremely large widths
of 6p3/2nf J51 levels reflect the very strong coupling of
6pnf channels with 5deg continua. All Ba 6pnf states
have similar anomalously large autoionization rates,
with decay times of approximately half of the Bohr orbit
period.

FIG. 31. Photoionization spectra for the 6pnp , nf J51 levels
of Ba below the 6p1/2 threshold: (a) experimental spectrum
recorded by de Graaff et al . (1990) from the 5d6p 3P0 excited
state; (b), (c) theoretical spectra obtained with LS-coupled
eigenchannel R-matrix calculations and the jj-LS frame trans-
formation corresponding to the 5d6p 3P0 and 6s6p

3P0 initial
states, respectively. The vertical bars in (b) and (c) indicate the
positions of the 6pnp J51 resonances calculated from an ef-
fective short-range reaction matrix referring to the 6pnp
closed channels (see Sec. IV.B). Energies are relative to the Ba
ground state. (From Luc-Koenig and Aymar, 1991.)
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The autoionizing pattern depends on the initial state
from which the resonances are excited. Figure 31(c) dis-
plays the calculated excitation spectrum of 6pnp ,nf
J51 levels from the 6s6p 3P0 initial level. The calcu-
lated cross sections differ greatly for the two initial
states. The 6pnf resonances have vanishing cross sec-
tions in excitation from the 6s6p 3P0 initial level. In-
deed, the direct 6s6p→6pnf excitation is not allowed,
in contrast to the 5d6p→6pnf excitation.
Similar dependence of the profiles of autoionizing

lines on the choice of intermediate states used in the
excitation process has been observed by Keller et al .
(1991). Several 5dnd autoionizing resonances of Ba
were observed in a multiphoton resonant ionization ex-
periment involving either the 6snp 1P1 or the 5dnp
1P1 level as intermediate level. The shape of the ob-
served 5dnd resonances was seen to drastically change
with the intermediate state from which they were ex-
cited.
A major test case for theoretical and experimental

methods has proven to be the photoionization of the
excited Ba 6s6p 1P1 level. A large number of experi-
mental ( Burkhardt et al . , 1988; Kallenbach et al . , 1988;
He et al . , 1991, 1995; Keller et al . , 1991; Willke and
Kock, 1991, 1993; Lange, Eichmann, and Sandner, 1991)
and theoretical (Bartschat and McLaughlin, 1990;
Greene and Theodosiou, 1990; Bartschat et al . , 1991;
Greene and Aymar, 1991; Bartschat and Greene, 1993;
Wood et al . , 1993) papers have been devoted to this
excited-state photoionization process.
Figure 32 compares the jj-coupled eigenchannel

R-matrix results of Wood et al . (1993) (lower curves)
with the experiment of Lange, Eichmann, and Sandner
(1991) (upper curves) in the wavelength region between
417 nm (6s threshold) and 355 nm. Only relative photo-
ionization cross sections were measured and in Fig. 32,
the experimental cross sections were normalized by op-
timizing the agreement between theory and experiment
in the region of the broad resonances near 372 nm. In
addition, the theoretical spectra have been convolved
with the experimental resolution of 0.2 cm21. Two
pulsed lasers were used in the experiment. The first laser
was used to excite the 6s6p 1P1 level and the second
laser photoionized this level. Both lasers were linearly
polarized with the polarization vectors being either par-
allel [Fig. 32(a)] or perpendicular [Fig. 32(b)]. In the
parallel case, the allowed final states were Jf50,2,
MJf

50, while in the perpendicular case they were
Jf51,2, uMJf

u51. Breakdown of these selection rules
can lead in excited-state photoionization spectra to un-
expected resonances that do not belong to the final-state
symmetries selected by a given experiment. A central
point of the treatment of Wood et al . (1993) was the
inclusion of hyperfine effects in the odd isotopes of neu-
tral barium to explain the presence of unexpected fea-
tures in the photoionization spectra recorded by Lange,
Eichmann, and Sandner (1991). Wood et al . (1993) have
shown that the resonances marked by the arrows in Figs.
32(a) and 32(b) are only present in the calculations

when hyperfine effects are taken into account. ‘‘Elec-
tronically forbidden’’ resonances with Jf51 arise in Fig.
32(a), while those with Jf50 arise in Fig. 32(b). As
shown by Wood et al . (1993), the cross section for
photoionization of a Je51 state from a J050 ground
state in which both exciting and photoionizing lasers are
linearly polarized has the general form

s~J0→Je→Jf!5s~ iso!~1→0 !@112gav
~2 !P2~cosu!#

1s~ iso!~1→1 !@12gav
~2 !P2~cosu!#

1s~ iso!~1→2 !@11 1
5 gav

~2 !P2~cosu!# .
(4.8)

In Eq. (4.8), the factor gav
(2) represents averages over

FIG. 32. Photoionization cross section of Ba 6s6p 1P1 laser-
excited level as a function of wavelength of the photoionizing
laser: (a) for parallel polarization of the two lasers and (b) for
perpendicular polarization of the two lasers. The baseline of
the normalized experimental cross section (upper curves) has
been set to 500 Mb. Experimental resonances, which are over-
lapped with theory, are labeled with horizontal bars. The
jj-coupled R-matrix cross sections include the effect of hyper-
fine depolarization of the 6s6p 1P1 level. Numbers in paren-
theses are peak intensities of theoretical cross sections. The
resonances marked with the arrows are forbidden by electronic
selection rules and are only present in the calculation when
hyperfine effects are taken into account. (From Wood et al .
1993.)
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time and over the relative isotopic abundances of natu-
ral Ba of an expression for the time dependence of the
effects of the quadrupolar hyperfine interaction on the
Je excited state. It is a reasonable approximation to as-
sume that complete depolarization of the excited state
occurs for the Ba isotope with I53/2; in this limit one
has gav

(2)50.864. In Eq. (4.8), u is the angle between the
linear polarization vectors and P2 is a Legendre polyno-
mial. The ‘‘isotropic’’ cross section s(iso)(Je→Jf) is the
total photoionization cross section for the transition
Je→Jf that would be calculated if the excited levels were
randomly oriented, i.e., with equal population in all
magnetic sublevels MJe

. The calculation successfully re-
produces the experimental data, including the forbidden
resonances. The positions and widths of the resonances
are generally very well reproduced, while some persis-
tent discrepancies in the peak intensities and the reso-
nance line shapes are still not resolved. As described
elsewhere (Aymar et al . , 1982, 1983; Camus et al . , 1983;
Greene and Aymar, 1991) the resonances are ascribed
to 5dns , nd levels and to the 6p2 1S0 level which forms
with neighboring 5dnd J50 levels a complex resonance
near 372 nm. The eigenchannel R-matrix calculations
(Greene and Theodosiou, 1990; Greene and Aymar,
1991; Wood et al . , 1993) confirmed the identifications
deduced from empirical multichannel quantum-defect
theory, in particular that of the 6p2 1S0 (Aymar et al . ,
1982), which has been the subject of some controversy.
Note finally that the isotropic eigenchannel R-matrix
cross section @s(iso)(1→0)1s(iso)(1→1)1s(iso)(1 →2)]
at the 6s threshold (417 mm) agrees reasonably well with
the absolute measurements of He et al . (1991) and of
Willke and Kock (1993).
Apparent effects of the hyperfine interaction on

excited-state photoionization cross sections were also
found by Armstrong, Wood, and Greene (1993). Those
authors studied photoionization of the 5d6p 3D1 level
both experimentally and theoretically. There also, ex-
perimental spectra were compared with jj-coupled
eigenchannel R-matrix calculations and incorporation of
hyperfine effects was found to be necessary for a com-
plete description of the measured cross sections. The im-
portance of hyperfine interaction in resonant three-
photon ionization of Ba via excited levels was also
appreciated by Mullins, Chien, Hunter III, Keller, and
Berry (1985) and by Hunter et al . (1986); hyperfine-
interaction effects were incorporated in the theoretical
description in these papers.
Isotropic photoionization cross sections of the Ba

6s6p 1P1 level were also calculated using the Wigner-
Eisenbud-type R-matrix formulation (Bartschat and
McLaughlin, 1990; Bartschat et al . , 1991). One-electron
spin-orbit, mass-correction, and Darwin terms of the
Breit-Pauli Hamiltonian were included in the variational
calculation. The calculation of Bartschat and co-workers
showed distinctly poorer agreement with the experimen-
tal spectra (He et al . , 1991, 1995; Lange, Eichmann, and
Sandner, 1991; Willke and Kock, 1991, 1993) than the
eigenchannel R-matrix results. The most striking dis-

crepancy concerned the 6p2 1S0 resonance, which failed
to appear in the spectrum calculated by Bartschat et
al . (1991). This discrepancy between the eigenchannel
and Wigner-Eisenbud-type R-matrix calculations was
resolved by Bartschat and Greene (1993), who per-
formed a set of test calculations with both R-matrix ap-
proaches. To make the comparison meaningful, all test
calculations used the same empirical core potential of
Eq. (3.26) and incorporated relativistic effects through
the spin-orbit interaction operator only. These calcula-
tions showed that the photoionization cross section near
the 6p2 1S0 resonance cannot be obtained by a standard
close-coupling expansion involving only physical bound
states; instead, the correct description of short-range
correlation effects and of the relaxation of the 6p orbital
requires the inclusion of doubly excited configurations
of the continuum-continuum type. It should be noted
that the eigenchannel R-matrix calculations routinely in-
clude doubly excited configurations confined within the
R-matrix box and among them those of continuum-
continuum type. In other words, short-range correlation
and polarization effects are accounted for by using
strongly closed channels described by two-electron basis
functions constructed from closed-type orbitals. Conver-
gence of the 6p2 1S0 resonance using a purely ionic ba-
sis set in the eigenchannel R-matrix calculation requires
324 closed-type basis functions. One reason for this sur-
prisingly slow convergence for the Ba 6p2 1S0 reso-
nance, and also for the 7p2 1S0 (Lecomte et al . , 1994),
Ca 4p2 1S0 (Aymar and Telmini, 1991; Assimopoulos
et al . , 1994), and Sr 5p2 1S0 (Kompitsas et al . , 1991)
resonances is that these levels exhibit strong angular
electron correlations. More precisely, all these levels
were found to correspond to a strong admixture of the
m08p

2 and (m0821)d2 1S0 configurations (m085m0 or
m011). Similarly strong electron correlations were
found for the analogous 1D2 resonances and for higher-
lying n1sn1s

1S Wannier ridge states of alkaline earths
(Aymar, 1989).
The work of Bartschat and Greene (1993) also indi-

cated the need for caution regarding the apparent con-
vergence of the close-coupling results in calculations
performed with a limited number of short-range corre-
lation functions. Recently, Mende et al . (1995) encoun-
tered the same difficulties in describing with Wigner-
Eisenbud-type R-matrix calculation the Sr 5p2 1D2
resonance observed in the photoionization cross section
of the Sr 5s5p 1P1

o excited level. To achieve reasonable
agreement between theory and experiment, they simu-
lated in a semiempirical way the short-range correlation
and relaxation effects that are not fully described by the
standard close-coupling expansion.
Various photoionization spectra from low-lying ex-

cited levels of Ba calculated with the eigenchannel
R-matrix approach in either LS coupling (plus frame
transformation) or jj coupling have been compared (see,
for example, Greene and Aymar, 1991; Telmini et al . ,
1993). Spectra are generally very similar except in some
cases in which the low-lying level is not well described in
LS coupling. Rather different results were found for the
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excitation spectra of 6p1/2nf J51–3 series of Ba excited
from the 5d6p 3F2 level in the energy range where the
6p3/28f J=1–3 levels are located. These levels were not
excited in the experimental spectrum recorded by Ab-
utaleb, de Graaff, Ubachs, and Hogervorst (1991), nor
in the theoretical spectrum calculated in jj coupling,
while they are visible in the spectrum obtained in LS
coupling (see Fig. 7 of Telmini et al . , 1993). Recall that
the frame-transformation treatment incorporates fine-
structure effects in the final states only but assumes that
the initial level is well described in LS coupling. The
5d6p 3F2 level (LS weight of ;80%) corresponds to
the pure jj-coupled 5d3/26p1/2 J52 level (97%). This ex-
plains why the LS calculations poorly describe photo-
ionization from this level. Ground states of alkaline
earths as well as the Ba 5d6p 3P0 level involved in the
photoionization process considered in Fig. 31 are well
described in LS coupling. However, this is not the case
for various excited states of Sr and mainly of Ba. Thus, a
prerequisite of any calculation of photoionization spec-
trum in LS coupling (and frame transformation) must
be to check whether the initial state is correctly de-
scribed in that coupling. This reflects a limitation of the
frame-transformation calculations.

b. Partial photoionization cross sections and photoelectron
angular distributions

Even-parity doubly excited levels of Ba have recently
been investigated in a two-step laser experiment that
covered a large energy range from the 6p3/2 threshold to
(nearly) the 7s threshold. Excitation of the Ba ground
state via 5d7p 3P1 and

3D1 levels produced photoelec-
trons that were analyzed in two groups of energy-
resolved continua 6s , 5d3/2,5/2el (‘‘fast’’ electrons) and
6p1/2,3/2el (‘‘slow’’ electrons). Laser beams were polar-
ized and several combinations of the laser polarizations
were used. The experimental partial cross sections were
compared with results obtained with the alternative
eigenchannel R-matrix formulation (Lecomte et al.,
1994) described in Sec. III.H. The R-matrix calculations
were carried out in jj coupling using an R-matrix box of
radius r0=50 a.u. Both experiment and calculations were
carried out in this study (Lecomte et al . , 1995). Figure
33 compares the experimental and theoretical partial
photoionization cross sections in the 71 400–72 400
cm21 energy range. The electron yields were recorded
via the 5d7p 3D1 level, with both lasers having the same
circular (s1) polarization. Only J52 final states were
populated. All 17 J52 open channels were included in
the R-matrix calculation; no additional closed channels
were introduced, except within the reaction volume
through ‘‘closed-type’’ basis functions. The resonances
resulted from the coupling between the open channels
and the 6d2 doubly excited states that fit completely
within the reaction volume. The positions and widths of
6d2 states were predicted by Lecomte et al . (1994). Ex-
perimental and theoretical spectra were in good agree-
ment. Only the calculated and measured ‘‘fast’’ electron
yields [Fig. 33, curves (a)] were adjusted, showing that

the branching ratio of the experimental partial cross sec-
tions was reproduced by the calculation. The peak in
Fig. 33 [curves (a) and (b)] is ascribed to the 6d2 3F2
state; the 6d2 3P2 state, predicted to lie in the same
energy range, is more weakly excited (the corresponding
dipole moments are in a ratio of ; 3). The higher-lying
4f7p 3F2 state at 78 760 cm21 was found to have a
strong influence on the profiles. This is evident in the
theoretical slow electron yield [Fig. 33, curves (b)],
where the energy position and profile (long-dashed
curve) are strongly modified when the direct excitation
of the 4fnp channel is disregarded (dot-dashed curve).
The 4f7p 3F2 resonance, strongly excited from the in-
termediate level, has a very large autoionization width
(G= 1600 cm21). Its coupling with the continua is large
enough to induce a strong mixing with the 6d2 3F2 state.
The energy difference between the maxima of both ex-
perimental cross sections was found to result from inter-
ference effects between the direct excitation of the 6d2
3F2 state and the indirect excitation via the 4f7p 3F2
state. The fact that the calculated spectrum [Fig. 33,
curves (b)] was more asymmetric than the experimental
spectrum may indicate that the calculation overesti-
mated the excitation of the 4f7p 3F2 state. The eigen-
channel R-matrix calculations were also able to success-
fully account for observations in the higher-energy range
from 76 000 to 84 000 cm21 (Lecomte et al . , 1995).
There, resonances correspond either to doubly excited
states, such as the 7p2 3P2 level, enclosed within the
reaction volume, or to Rydberg states such as 7snd ,
which are associated with closed channels. The proce-
dures developed by Lecomte et al . (1994) were ex-
tended to handle such situations involving doubly ex-
cited levels confined within the reaction volume that
interact with levels pertaining to Rydberg series. Special

FIG. 33. Measured and calculated partial photoionization
cross sections of the Ba 5d7p 3D1 state as functions of the
energy relative to the Ba ground state: (a) in unresolved 6s ,
5d3/2,5/2el continua and (b) in unresolved 6p1/2,3/2el continua.
The experimental spectra (full curves) are compared with the
calculated spectra (long-dashed curves). Cross sections calcu-
lated by disregarding the excitation of the 4f7p 3F2 state are
also shown (dot-dashed curves). Only the calculated and mea-
sured partial cross sections corresponding to electrons ejected
into the 6s , 5d3/2,5/2el continua (a) were adjusted. (From
Lecomte et al . , 1995).
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attention has been given to the identification of each
individual resonance in complex autoionizing structures.
All resonances were found to exhibit strong electron
correlations.
We mention here some experiments on angular distri-

butions of photoelectrons obtained by resonance-
enhanced multiphoton ionization through excited levels
of alkaline earths. A review of experimental and theo-
retical studies carried out up to 1987 was given by Smith
and Leuchs (1987). Resonant multiphoton ionization via
various intermediate levels of Ca, Sr, and Ba has been
used to study configuration mixing in these intermediate
levels (Matthias et al., 1983; Leuchs and Smith, 1985;
Mullins, Chien, Hunter III, Jordan, and Berry, 1985;
Mullins, Chien, Hunter III, Keller, and Berry, 1985;
Mullins, Hunter III, Keller, and Berry, 1985; Hunter III
et al., 1986; Keller et al., 1991). The angular distributions
of photoelectrons ejected into channels attached to dif-
ferent ion cores were measured.
The photoelectron angular distributions observed by

Mullins and co-workers and by Hunter III et al . (1986)
were fitted to an appropriate parametric expression ac-
counting for hyperfine interaction occurring from the co-
herent excitation of hyperfine states. These hyperfine ef-
fects are strong in some cases (Mullins, Chien, Hunter
III, Keller, and Berry, 1985; Hunter III et al., 1986).
Data obtained by Matthias et al . (1983) and Leuchs

and Smith (1985) via 6snd 1,3D2 and 6sns
1S0 Rydberg

levels, respectively, which interact with certain 5d7d
doubly excited states, have been successfully interpreted
by parametrizing the angular distributions in terms of
ionization amplitudes and closed-channel coefficients
previously obtained with semiempirical MQDT models.
From the data they obtained in Ba via low-lying levels,
Hunter III et al . (1986) suggested that semiempirical
MQDT analysis of the J52e and J50e bound spectra
(Aymar et al., 1978; Aymar and Robaux, 1979) misla-
beled some levels. Recent R-matrix calculations
(Greene and Aymar, 1991) confirm the original labels
given in Moore’s table (1958) to J52e levels, and thus
do not support the reassignment obtained by semiempir-
ical multichannel quantum-defect theory. In contrast,
R-matrix calculations support the 6s8s 1S0 label (Ay-
mar et al., 1978) given to the level at 34 731 cm21 (6p2
1S0 in Moore’s table), in contradiction with the sugges-
tion of Hunter III et al . (1986). As was detailed in the
previous subsection, several experimental and theoreti-
cal studies have demonstrated that the 6p2 1S0 level
corresponds to a broad autoionizing resonance around
44 800 cm21.
The various experiments quoted just above deal with

ionization into a structureless continuum, i.e., with final-
state energies far from any autoionization resonance. In
contrast, the two-photon experiment of Keller et al .
(1991), via the 5d6p or 6s6p 1P1 level, measured the
angular distributions of photoelectrons across 5dnd au-
toionizing resonances. Like the profiles of the autoion-
izing resonances, the angular distributions were found to
drastically change with the intermediate level used in
the excitation process.

We discuss below, in Sec. IV.E, several experiments in
alkaline earths in which the angular distributions of pho-
toelectrons were measured using multistep laser excita-
tion based on the isolated-core excitation scheme; in the
last step, the autoionizing levels were excited from a Ry-
dberg level. Several experiments were performed over a
large energy range across autoionizing resonances. In
contrast, angular distributions of photoelectrons ob-
tained by multistep ionization through low-lying excited
levels were measured at fixed energy or over a restricted
energy range.
An indirect determination of the angular distributions

of photoelectrons ejected from Ba 6pns , nd J51 au-
toionizing levels into 6sep and 5d3/2,5/2ep , f continua
was recently reported by Lagadec et al . (1996). Mea-
surements covered a 1000 cm21 energy range. Autoion-
izing levels were populated from the Ba ground state
using the three-step laser excitation scheme 6s2

→6s6p1P1→6p2 3P0→6pns , ndJ51. Linearly polar-
ized laser beams were used. The variation of the asym-
metry parameters characterizing the differential partial
cross sections corresponding to electrons ejected into
continua attached to the 6s or 5d3/2,5/2 ion cores were
determined by measuring, for different combinations of
the orientations of the laser polarization vectors, the dif-
ferential partial cross sections for a fixed solid angle of
photoelectron ejection. The experimental measurements
were successfully accounted for by eigenchannel
jj-coupled R-matrix calculations (Lagadec et al., 1996).

E. Photoionization from Rydberg states

An impressive number of experimental investigations
on autoionizing states of the alkaline earths Mg to Ba
has been carried out using multistep laser experiments
based on the isolated-core excitation (ICE) experimen-
tal technique. Earlier investigations focused first on Sr
(Cooke et al . , 1978; Xu et al., 1986, 1987; Zhu et al.,
1987) and Ba (Gounand et al., 1983; Bloomfield et al. ,
1984; Tran et al., 1984; Kachru et al., 1985; Bente and
Hogervorst, 1990; Hieronymus et al., 1990; Jones et al.,
1991a, 1991b; Lange, Aymar, et al., 1991; de Graaff
et al., 1992, and references therein), then on Ca (Lange
et al., 1989; Morita and Suzuki, 1990), and more recently
on Mg (Dai et al., 1990; Schinn et al., 1991; Lindsay, Cai,
et al., 1992; Lindsay, Dai, et al., 1992). Finally, notice
that an increasing number of laser experiments being
performed in the alkaline earths now focus on doubly
excited states with both electrons in a highly excited or-
bit, or on states with high angular momentum l2 for the
outer electron, or on states having both qualities (Camus
et al., 1989, 1992; Eichmann et al., 1989, 1992; Jones and
Gallagher, 1990; Roussel et al., 1990; Jones et al., 1991a;
Camus, Cohen, et al., 1993; Camus, Mahon, and Pruvost,
1993; Wang and Cooke, 1993; van Leeuwen et al., 1995,
1996; Seng et al., 1995, and references therein). For
more details, the reader is referred to the book that Gal-
lagher (1994) wrote recently on Rydberg atoms.
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At the present time, the eigenchannel R-matrix tech-
nologies have not been extended to handle very high-
lying levels. The highest levels at which experimental
data have been compared with R-matrix calculations are
located near the 6f threshold of Sr, the 8s threshold of
Ba (Wood and Greene, 1994), and the n56 thresholds
in H2 and Li2 (Pan et al . , 1994).
In the ICE experiments performed on autoionizing

states, multistep laser excitation reaches a particular
bound (or long-lived autoionizing) Rydberg level. Then,
starting from this Rydberg level, autoionizing reso-
nances are reached by ‘‘isolated-core excitation’’ of the
inner valence electron, the Rydberg electron being kept
outside as a spectator. In the ICE approximation, the
dipole operator acts only on the core electron because
the outer electron spends too little time near the nucleus
to absorb a visible or ultraviolet photon. In such an ex-
citation process, only particular autoionizing levels are
excited and the direct continuum excitation is usually
negligible. Experiments using one- and two-photon ex-
citation of the core electron were performed but we will
consider mainly processes involving one-photon transi-
tions, which can be compared with eigenchannel
R-matrix results more easily.
When the outer electron is at distances larger than

r0, the wave function of the Rydberg initial level to be
photoionized can be written as

c05rCF0~v!W~n0 ,l0 ,r !n0
23/2 , (4.9)

where F0(v) is the initial-state channel function, n0 is
the effective quantum number, and l0 the orbital mo-
mentum of the outer electron. In Eq. (4.9), W(n0 ,l0 ,r)
is the energy-normalized Coulomb function—
introduced in Eq. (2.53)—that decays exponentially at
infinity. Such an approximation for the initial wave func-
tion neglects exchange and all correlation effects for the
initial state. The initial state is generally assumed to be
described in a particular LS , jj , or jK coupling scheme.
Calculation of photoionization cross sections [Eqs.
(2.59) and (2.60)] requires the determination of dipole
matrix elements d(2) [Eq. (2.58)] connecting the initial-
state wave function [Eq. (4.9)] to the N0 energy-
normalized physical solutions C i8

(2) defined in Eq. (2.55),
which obey incoming-wave boundary conditions (N0 is
the number of open channels).
Because the isolated-core approximation relies on

negligible continuum excitation one has

di8
~2 !

5^c0uDuC i8&5(
iPc

diZii8, (4.10)

with the component di of the dipole matrix element as-
sociated with the closed channel i , characterized by the
effective quantum number n i and the orbital momentum
l i for the outer electron, given by

di5n0
23/2^F0uDuF i&^W0~n0 ,l0 ,r !uWi~n i ,l i ,r !& iPc .

(4.11)

In Eq. (4.11) the one-photon transition moment implic-
itly contains all the angular coefficients related to the

decoupling of the individual angular momenta and spins
from the total angular momentum, as well as those re-
lated to the initial-state coupling. It also incorporates
angular factors related to the polarizations of the lasers
involved in the multistep laser excitation process.
As shown by Bhatti et al . (1981), for Coulomb func-

tions normalized per unit energy range, the overlap in-
tegral can be approximately expressed as

^W0~n0 ,l0 ,r !uWi~n i ,l i ,r !&

52
sinp~n i2n0!

p~n i
22n0

2!
n0
2n i

2d~ l0 ,l i!. (4.12)

The Kronecker delta function defines a subset i0 of
closed channels with l i5l0 that are directly accessible in
the isolated-core excitation.
Experimental ICE results have been obtained not

only for excitation spectra and for the positions and
widths of levels, but also for the branching ratios and
angular distributions of the ejected electrons. These lat-
ter observables are known to be highly sensitive to in-
terseries interactions and to provide a much more strin-
gent test of theory.

1. Excitation spectra

In both ordinary photoabsorption spectra and ICE
spectra, a large part of the energy dependence of the
photoionization cross sections is contained in the
Zii8(E) closed-channel coefficients [Eq. (2.54b)] in-
volved in the closed part of the physical solutions of Eq.
(2.55). However, there are two main differences be-
tween the ICE spectra and ordinary photoabsorption
spectra. First, in the ICE spectra, only certain closed
channels are excited and thus these spectra, do not dis-
play Beutler-Fano (Fano, 1961) profiles such as those
occurring in the photoabsorption spectra, where struc-
tures are complicated by interferences between the
discrete-channel and continuum-channel excitation. The
second difference comes from the fact that a large part
of the energy dependence of the ICE profiles is con-
tained in the overlap integral of Eq. (4.12). The squared
overlap integral is maximum for n i5n0, is zero for n i =
n01p , where p is a nonzero integer, and has subsidiary
maxima for n i =n01p11/2.
The marked differences between isolated-core excita-

tion and ground-state photoionization spectra are illus-
trated in Fig. 34. Figures 34(a) and 34(b) show part of
the photoabsorption spectrum of Sr, where the 5pns ,
5pnd J51 autoionizing levels are excited from the 5s2

ground state. Figures 34(c) to 34(f) display ICE spectra
where, in the final transition, the 5pns J51 levels are
excited from a particular 5sns 1S0 Rydberg level. The
energy range involved in either Figs. 34(c) and 34(d) or
Figs. 34(e) and 34(f) corresponds to a small part of the
energy range covered by Figs. 34(a) and 34(b), around
the 5p3/214s peak, denoted (*) in Fig. 34(b). Theoretical
spectra @Figs. 34(b), 34(c), or 34(e)] obtained with
LS-coupled R-matrix calculations combined with the
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jj-LS frame transformation are compared with corre-
sponding experimental spectra @Figs. 34(a), 34(d), or
34(f)].
As we have already described various photoabsorp-

tion spectra in detail, we comment only briefly on Figs.
34(a) and 34(b). The photoabsorption spectrum calcu-
lated by Aymar (1987) @Fig. 34(b)] reproduces ex-
tremely complex structures occurring in the the spec-
trum recorded by Brown et al . (1983) @Fig. 34(a)]. The
sharp structures correspond to the 5p1/2ns and
5p3/2n8s resonances. The 5pnd resonances are too
broad to be identifiable.
Using the experimental ICE technique, Xu et al .

(1986) and Zhu et al . (1987) reported a complete set of

measurements for the 5p1/2ns and 5p3/2ns J51 autoion-
izing levels of Sr. These levels were investigated using
three-step laser excitation via the 5s5p 1P1 and 5sns
1S0 Rydberg levels with n>10. Experimental data on
isolated or structured resonances concern the excitation
spectra as well as the energy and angular distributions of
ejected electrons. The isolated resonances have approxi-
mately Lorentzian profiles because of the negligible con-
tinuum excitation. We consider here only the excitation
spectra of the more complex structured resonances
whose features reflect the interactions between the
5p1/2ns ,nd and 5p3/2ns ,nd series. Two different types of
spectrum reflecting the interseries interactions are

FIG. 34. Photoionization spectra for the odd-parity 5pns , nd J51 levels of Sr near the 5p1/2 threshold. Photoabsorption spectra
from the 5s2 ground state [(a) and (b)] are compared with isolated-core excitation spectra from 5sns 1S0 Rydberg states [(c to f)].
Experimental data are compared with results obtained with LS-coupled R-matrix calculations combined with the jj-LS frame
transformation. (a) The photoabsorption spectrum recorded by Brown et al . (1983); (b) the R-matrix result; the vertical bars
indicate the position of the observed absorption peaks and minima and the 5p3/214s level is denoted by an asterisk (*). The
experimental ICE 5s14s → 5p3/214s spectrum recorded by Xu et al . (1986) in the vicinity of the 5s→5p3/2 ionic transition (d) is
compared with the R-matrix result (c). The shake-up satellite spectrum of the ICE 5s20s → 5p1/220s transition recorded by Xu
et al . (1986) far from the 5s→5p1/2 ionic transition (f) is compared with the R-matrix result (e). The dashed curves in (d) and (f)
are the MQDT empirical fits of Xu et al . (1986). [Figures 34(a) and 34(b) are from Aymar (1987) while Figs. 34(c) to 34(f) are
from Aymar and Lecomte (1989).]
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shown in Figs. 34(c) and 34(d) and in Figs. 34(e) and
34(f).
We first comment on Figs. 34(c) and 34(d), which

compare theoretical and experimental results for the
5s14s → 5p3/214s spectrum. Figure 34(d) shows the
spectrum recorded by Xu et al . (1986), who obtained
their results by tuning the wavelength of the last step
excitation laser in the vicinity of the 5s→5p3/2 ionic line.
The frame-transformation result @Fig. 34(c)] obtained
by Aymar and Lecomte (1989) closely reproduced the
recorded spectrum, in particular the central features in-
volving three strongly interacting levels 5p3/214s ,
5p1/228s , and 5p1/227d . The shape of the spectrum is
controlled mainly by the energy variation of the
Zii8(E) coefficients, because the spectrum is within the
central lobe of the overlap integral. The spectrum exhib-
its complex structures associated with the mixing of the
5p3/214s level and the nearby 5p1/2ns and 5p1/2nd levels.
Although only one di0 dipole matrix element associated
with the 5p3/2ns channel has a non-negligible amplitude,
the 5p1/2ns and 5p1/2nd resonances appear in the spec-
trum because of their coupling with the 5p3/214s level.
The positions and shapes of the 5p1/2ns and 5p1/2nd
resonances agree with the results of the experiment,
while the relative magnitudes of these secondary peaks
are slightly underestimated by the calculation. The
R-matrix calculation reproduces the experimental ob-
servations, as did the MQDT simulation performed by
Xu et al . (1986) using a simplified semiempirical six-
channel MQDT model based on the phase-shifted
MQDT formalism developed by Cooke and Cromer
(1985) @dashed curve on Fig. 34(d)]. The broad
5p1/2nd resonances are described distinctly better by the
R-matrix calculation.
Figures 34(e) and 34(f) correspond to another kind of

ICE spectrum in which the autoionizing levels were ex-
cited by tuning the wavelength of the excitation laser far
from any ionic transition. More precisely, the spectrum
of Fig. 34(f), recorded by Xu et al . (1986) from the
5s20s 1S 0 level, was obtained by scanning the wave-
length of the third laser to the blue side of the
5s→5p1/2 ionic transition. This shake-up spectrum of
the 5s20s→5p1/220s transition compares well with the
frame transformation R-matrix results of Aymar and
Lecomte (1989) @Fig. 34(e)]. The precise form of the
satellite peaks depends now on the Zii8(E) coefficients,
on both di0 dipole moments associated with the
5p1/2ns and 5p3/2ns channels, and on the variation of the
overlap integral. The minima between each 5p1/2ns
peak correspond to the zeros of the overlap integral,
while the maxima correspond approximately to those of
the Zii8(E) coefficients. The strong asymmetry of the
peaks results from the distortion due to the overlap in-
tegral, whose zeros are very close to the maxima of the
Zii8(E) coefficients. The irregular behavior near
n=27–30 reflects the presence of the 5p3/214s perturber.
The calculated cross section perfectly reproduces all the
subtle features occurring in the recorded spectrum. The
quality of the R-matrix calculation is comparable to that

of the MQDT simulation performed by Xu et al. (1986)
@dashed curve on Fig. 34(f)]. One last remark concerns
the features on the left side of the ns peaks (particularly
visible near E=69 383 cm21), which cannot be repro-
duced by the calculation since, as explained by Xu et
al . (1986), they are due to the impurity of the initial
5s20s level, which contains a small amount of nearby
5snd levels.
Complex structures, such as those visible in Figs. 34(c)

and 34(d), have been observed in several ICE spectra of
Sr (Xu et al . , 1987) and Ba (see, for example, Gounand
et al . , 1983, Bente and Hogervorst, 1990, and Hierony-
mus et al . , 1990). They correspond to m0p3/2n8l states
degenerate with m0p1/2nl levels having large n values.
Shake-up or shake-down spectra of a given transition,
such those shown on Figs. 34(e) and 34(f), were also
frequently recorded in Ba. A common procedure used in
the ICE experimental method is to saturate the central
peak using high laser power in order to observe many
satellite peaks. In this way, it is possible to obtain the
positions and widths of doubly excited states that, for
experimental reasons, cannot be easily excited directly
(see, for example, Tran et al . , 1984, and Bente and Hog-
ervorst, 1990).
The excitation spectra discussed above dealt with low-

lying autoionizing levels located around the m0pj
thresholds. They involve n1l1n2l2 doubly excited states
with a small value of the orbital momentum l2 (l2<2) of
the outer electron. Approximating the initial and final
wave functions as products of one-electron wave func-
tions that span different regions of space neglects over-
lap and exchange between the two valence electrons.
For low-l2 levels, the nonoverlapping property occurs
only when n2@n1, and thus the wave-function exten-
sions of the Rydberg initial levels are too large to be
contained within a reaction volume of moderate size,
and the explicit calculation of the dipole matrix ele-
ments becomes inefficient. In this regime, the ICE ap-
proximation determines the dipole matrix elements far
more efficiently. Eigenchannel R-matrix calculations
that used the ICE approximation were carried out by
Aymar and Lecomte (1989), Lange, Aymar, et al .
(1991), Dai et al . (1990), and by Schinn et al . (1991);
these were used to interpret experimental ICE spectra.
Some spectra have been measured that deal with

higher-lying autoionizing levels with larger values of the
orbital momentum l2. One example can be found in the
excitation spectra of the Ba 4f5g J53 levels from
5d5g J52 levels observed by Jones et al . (1991a) in a
three-step laser experiment based on an isolated-core
excitation scheme. All three lasers were circularly polar-
ized in the same sense, ensuring that the final states were
4f5g levels with J53 only. The 4f5g levels are of par-
ticular interest because the orbital momentum of each
electron is equal to its maximum allowable value in this
energy range: l1=n121, l2=n221. The classical orbits of
the two electrons would therefore be circular in the ab-
sence of interactions; in this sense, the observation of
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Jones et al . (1991a) was the first one involving autoion-
izing levels for which both electrons are ‘‘in circular or-
bits.’’
Photoionization cross sections from the jK-coupled

5d5/25g@5/2# and 5d3/25g@5/2# J52 levels were calcu-
lated using the jj-coupled eigenchannel R-matrix
method (Aymar and Luc-Koenig, 1995). For the first
time, excitation spectra calculated using the ICE ap-
proximation were successfully reproduced by a separate
calculation of dipole matrix elements restricted to the
interior of the R-matrix reaction volume; in this case its
radius was r0=50 a.u. The theoretical excitation spectra
agreed with the 5dj5g@5/2# J52 →4f j85g J53 spectra
observed by Jones et al . (1991a). The ICE approxima-
tion was found to adequately describe the excitation of
the 4f5g levels. The validity of the ICE approximation
relies mainly on the absence of spatial overlap between
the inner- and outer-electron orbitals. The nonoverlap-
ping property occurring for the 4f5g levels, which in-
volve two electrons having almost the same degree of
excitation, is peculiar to the double-circular states. An-
other key result of the theoretical study of the double-
circular 4f5g J53 levels (Aymar and Luc-Koenig, 1995)
is the large influence of electron correlations on the
properties of these levels. Despite the negligible spatial
overlap between the wave functions of the two valence
electrons, correlation effects have been shown to affect
the widths and excitation cross sections of the 4f5g lev-
els very strongly. The low autoionization rates observed
for the 4f5g levels cannot be reproduced by neglecting
the mixing of 4f5g levels with several Rydberg series,
most importantly the 6dnh series. The excitation spec-
trum from the 5d5/25g [5/2] level exhibits, in addition to
the peaks associated with the four 4f5g J53 levels,
structures that were assigned to 6d8h levels. These lev-
els are not directly excited in the ICE process but ap-
pear in the excitation spectrum owing to their mixing
with the 4f5g levels.
More recently, experimental excitation spectra of

higher-lying 4fng J=1–3 levels of Ba, recorded in a
three-step ICE experiment, were successfully accounted
for by eigenchannel R-matrix calculations (van Leeuwen
et al . , 1996).
Another example, depicted in Fig. 35, deals with the

4f5/27h J8=4–6 levels of Ba that lie in the energy range
between the 6d3/2 and 6d5/2 thresholds. These levels
were excited from the jK-coupled 5d3/27h@11/2# J=5
level in a resonant two-step ICE experiment with pulsed
lasers of van Leeuwen et al. (1995). The excitation spec-
trum of Fig. 35(a) was recorded by detecting
Ba11 ions produced by photoionization of the Ba1

6d3/2 ion. The experimental spectrum was compared
with the partial photoionization cross sections of the
5d3/27h@11/2# J=5 →4f5/27h J8 processes (summed over
J8=4, 5, and 6) corresponding to electron ejection into
the 6d3/2el8 continua only [Fig. 35(b)]. The theoretical
spectrum in Fig. 35(b) obtained with jj-coupled
R-matrix calculations has been convolved with an in-
strumental linewidth of 0.2 cm21 (van Leeuwen et al . ,
1995).

The 4f5/27h levels interact with 6d5/2ni levels and
cause a complex interference pattern. All resonances fall
within the central lobe of the overlap integral of Eq.
(4.12), which peaks at the position of the 5d3/2→4f5/2
ionic transition [see Fig. 35(a)]. The 4f5/27h J8=4–6
states correspond to the broad central features in Figs.
35(a) and 35(b). The narrow resonances were identified
as members of 6d5/2ni Rydberg series converging to the
6d5/2 ionization limit. These resonances, which are not
directly accessible in the ICE process, appear because of
their mixing with the 4f7h levels. The 6d5/2ni levels on
the low-energy side of the broad 4f5/27h J8=4–6 reso-
nances are characterized by negative values of the line-
shape parameter q (Fano, 1961) and those on the right
side by positive values of q . The widths of 6d5/2ni levels
were found to vary strongly with n . The 6d5/223i level,
located below the 6d3/2 ionization limit, as well as the
6d5/224i level, are extremely narrow. The predicted
widths for these levels are respectively 0.08 and 0.15
cm21, which are below the instrumental linewidth of 0.2
cm21. This spectrum is complex, as it includes final
states with three different values of J8, each of which
requires the correct description of interactions among a
large number of channels (up to 47). In view of this
complexity, the agreement between the experimental
and theoretical spectra in Fig. 35 is excellent. The
R-matrix approach successfully reproduces the compli-
cated interference pattern involving q reversal and line-
narrowing effects in the 6d5/2ni series interacting with
the 4f5/27h levels.
It was found that the final-state angular momentum

J855 dominates in the complex interference pattern.
Above the Ba1 6d3/2 threshold, the J855 spectrum in-
volves 20 closed channels interacting with 24 open chan-
nels. Examination of the phase-shifted MQDT param-
eters deduced from R-matrix calculations (see Sec.
II.D.3) have shown that, to a good approximation, the
44-channel J855 problem can be reduced to a three-
channel problem. In fact, the 4f5/27h@11/2# level is
mainly coupled to the 6d5/2ni@11/2# Rydberg series and
both the 4f7h level and the 6dni Rydberg levels decay
mainly into the same 6d3/2ei@11/2# continuum. A three-
channel MQDT treatment of the J855 spectrum has
been performed (van Leeuwen et al . , 1995) using a set
of five phase-shifted MQDT parameters, whose values
were fixed at the values obtained from the complete
treatment. The three-channel MQDT model clearly
showed that the interfence pattern does not result from
interferences in the excitation process but from interfer-
ences in the spectral density of autoionizing states. The
dramatic changes of the widths and the q reversal along
the 6d5/2ni autoionizing Rydberg series result from in-
terference between direct autoionization and indirect
autoionization via the 4f5/27h broad interloper of the
Rydberg series.
Eigenchannel R-matrix calculations were conducted

by Wood and Greene (1994) in Ba and Sr, in an energy
range higher than the m0p threshold, which was probed
by the experiments of Camus, Cohen, et al . (1993) and
of Eichmann et al . (1992). We discuss here the results
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obtained in Ba near the 8s threshold. Asymmetric
8snl levels were excited from 6snl levels that were
populated by a Stark-switching technique (Cooke et
al . , 1978). Photoionization cross sections have been
measured using a two-photon isolated-core excitation
(Camus, Cohen, et al . , 1993). Figure 36 compares the
relative experimental and theoretical photoionization
cross sections for the 6snl initial state with n514 and
l56 over an energy range of ; 300 cm21, i.e., from
n8s516 to n8s512. Eigenchannel R-matrix calculations
were performed in jK coupling with a reaction volume
radius of 100 a.u. Calculations included open channels
converging to the 7s , 6dj , 4f j , and 7pj thresholds only
and closed channels converging to the 5f j , 8s , 7dj ,
8pj , and 5gj thresholds. Because the experimental ICE
process corresponds to the absorption of two photons, it

is no longer possible to express easily the transition am-
plitudes in terms of the analytical form [Eq. (4.12)] of
the overlap integral of the outer-electron wave func-
tions. Thus, Wood and Greene (1994) calculated ap-
proximate two-photon transition amplitudes. The reso-
nances in Fig. 36 are due to the 5f5/2nl levels (5f5/2
threshold at -0.01061 a.u.) overlapping with the 5f7/2nl8
levels (5f7/2 threshold at -0.0105 a.u.). Given the ex-
treme complexity of the experiment, the calculation ac-
counts for the measurement of Camus, Cohen, et al.
(1993) reasonably well, except for the intensities of the
5f jnl8 resonances. A possible explanation for the dis-
crepancy concerning the intensities of the 5f jnl8 reso-
nances is that the approximations underlying the calcu-
lation of the dipole 2moments were overly simplified. A
second possible reason for the discrepancy is the pres-

FIG. 35. Isolated-core excitation spectra 5d3/27h@11/2# J55 → 4f5/27h J85426 of Ba as functions of the energy relative to the
Ba ground state: (a) experimental spectrum: the Ba11 signal is divided by the Ba1 signal; the narrow resonances were identified
as 6d5/2ni levels. The 6d5/227i J8=4 level at 88 037 cm

21 is denoted by an asterisk (*). (b) Theoretical spectrum calculated with the
jj-coupled eigenchannel R-matrix method. (From van Leeuwen et al . , 1995.)

1092 M. Aymar, C. H. Greene, and E. Luc-Koenig: Multichannel Rydberg spectroscopy . . .

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



ence of perturbers in the energy range of Fig. 36. Wood
and Greene (1994) found that 5gjnd and 7djng perturb-
ers lie in the that energy range. Moreover, they found
that the 7djnl9 channels play a crucial role in determin-
ing the intensities of the 5f jnl8 resonances. A slight er-
ror in the position of the 7djnl9 perturbers could be
responsible for the too large intensities of the calculated
5f jnl8 resonances.
The intensities of 5f jnl8 resonances are surprisingly

large in view of the fact that the direct mixing of 8snl
channels with the 5f jnl8 channels requires a change of
three units of angular momentum. Wood and Greene
(1994) analyzed the mechanism responsible for the in-
teraction between the 8snl56 and the 5f jnl8 channels
by calculating the short-range scattering matrix elements
uSiju2 connecting the 8snl56 channel to the 5f jnl8 chan-
nels. The largest coupling was found for the 5f7/2nl857
channel. However, this scattering probability is dramati-
cally reduced when the 7djnl9 channels are considered
as open in the MQDT treatment, i.e. when all perturbers
associated with these channels are removed (see Sec.
IV.C). This provides strong evidence that the interaction
between 8snl56 and the 5f jnl8 channels is being medi-
ated through an interaction with the 7djnl9 channels.
Camus, Cohen et al . (1993) speculated that the inter-

action between the 8snl and the 5f jnl8 channels could
be due to a direct octopole coupling. This suggestion
was not supported by the calculations of Wood and
Greene (1994), who repeated both calculations of the
short-range scattering matrix elements by omitting all
multipoles higher than k52 in the expansion of the
1/r12 interaction. The calculations gave results very close
to those obtained from the calculations including all
multipoles.

2. Branching ratios and angular distributions of electrons
ejected from autoionizing levels

Several experimental investigations on angular distri-
butions of electrons ejected from odd-parity doubly ex-

cited states m0pns J51 have been carried out in Mg
(Lindsay, Cai, et al . , 1992), Ca (Lange et al . , 1989), Sr
(Zhu et al . , 1987), and Ba (Hieronymus et al . , 1990;
Lange, Aymar, et al . , 1991, and references therein). In
addition, angular distributions of electrons ejected from
the more complex 3pnd states of Mg have been also
measured (Lindsay, Cai, et al . , 1992). In all these stud-
ies, the autoionizing Rydberg states were reached using
three-step laser excitations via the m0sm0p

1P1 and a
Rydberg level m0sns

1S0 or m0snd
1D2. The three la-

sers were linearly polarized in the same direction.
We first address the simplest case in which the third

laser excites the m0pns J51 states from a spherically
symmetric m0sns

1S0 bound Rydberg state. The differ-
ential cross section for photoionization to a given ionic
state i can be expressed (Yang, 1948) as

ds i

dV
~u!5

s i

4p
@11b iP2~cosu!# , (4.13)

where s i is the partial cross section in channel i inte-
grated over V, u the angle between the third laser polar-
ization and the momentum of the electron ejected in the
solid angle dV , and P2(cosu) is the second-order Leg-
endre polynomial. The asymmetry parameter b i charac-
terizes the angular distribution of electrons ejected in
channel i . In Mg, electrons are ejected into continua
built on the 3s core while in Ca, Sr, and Ba, the elec-
trons can be ejected into continua built on cores m0s ,
(m021)d3/2 , (m021)d5/2 , and even m0p1/2 for levels
located above the m0p1/2 limit. The measured observ-
ables that were compared to calculations include the b i
parameters, and in Ca, Sr, and Ba the branching ratios
ri5s i /(s i that determine the relative probabilities of
autoionization to the various ionic-core states.
The general angular properties of photoelectron an-

gular distributions have been worked out by Dill and
Fano (1972), by Fano and Dill (1972), and by Dill (1973)
using the concept of angular momentum transfer. The
angular distribution of the ejected electrons is expressed
as a sum of incoherent contributions corresponding to
different magnitudes of the angular momentum j t trans-
ferred between the unobserved photofragments

jW t5 jW i1sW2JW 0 , (4.14)

where jW i is the total angular momentum of the residual
ion core, JW 0 the total orbital momentum of initial state,
and sW the spin of the ejected electron. There are parity-
favored and parity-unfavored transfers. The differential
partial cross section [Eq. (4.13)], or equivalently the b i
parameters, can be expressed in terms of reduced dipole
matrix elements djisJ5^J0uuDuu@(j is)j is ,l#J2&, where the
minus sign indicates that the final state is normalized
according to the incoming-wave boundary condition [see
Eq. (2.55)]. The final total angular momentum is
JW5 jW is1 lW and lW is the orbital momentum of the ejected
electron. As was mentioned in Sec. II.E, matrix ele-
ments are easier to evaluate in j ij is coupling (denoted by
JcJcs in Sec. II.E) than in jj coupling, and the short-

FIG. 36. Relative photoionization cross sections for the two-
photon excitation spectrum of Ba from the 6snl initial state
with n514 and l56 as functions of the energy relative to the
double-ionization limit. The experimental spectrum (top) re-
corded by Camus, Cohen, et al . (1993) is compared with the
jK-coupled eigenchannel R-matrix result of Wood and Greene
(1994) shown as a mirror image (bottom). The position of the
Ba1 ionic line is indicated for reference. (From Wood and
Greene, 1994.)
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range reaction matrices KJ in the j ij is coupling can be
obtained from the LS- or jj-coupled matrices K through
simple angular recoupling transformation.
Details on the computation of the b i parameters are

given elsewhere (Zhu et al . , 1987; Aymar and Lecomte,
1989; Hieronymus et al . , 1990; Lindsay, Cai, et al . ,
1992; Lindsay, Dai, et al., 1992) and are not reported
here. We restrict our present comments to the bs param-
eter corresponding to autoionization into a m0s core in
photoionization from a m0sns

1S0 level. There, the an-
gular momentum transfer is simply the total spin of the
valence electron pair which is either 0 (parity favored)
or 1 (parity unfavored), the final state being identical to
a m0sep

1P1 or
3P1 state. The bs parameter may have a

value between -1 and 2. Deviation of bs from 2 can re-
flect the strength of the parity-unfavored term, which
originates in the spin-orbit interaction or final-state cor-
relation effects.
Some results on the energy dependence of the asym-

metry and branching-ratio parameters have been ob-
tained in the heavier alkaline earths. Figure 37 compares
the experimental energy dependence of cross sections,
asymmetry parameters and branching ratios obtained in
Ca and Ba with the eigenchannel R-matrix results. Data
on the 4p3/214s level of Ca @Figs. 37(a)–37(d)] were ob-
tained by Lange et al . (1989) starting from the 4s14s
1S0 Rydberg level and scanning the third laser in the
vicinity of the 4s→4p3/2 ionic resonance line. Data on
the 6p3/220s state of Ba @Figs. 37(e)–37(k)] were ob-
tained by Lange, Aymar, et al . (1991) in a similar way.
The Ca 4p3/214s level is located below the 4p1/2 thresh-
old. It is almost degenerate with the 4p1/216s—denoted
as s3 on the top of Fig. 37(a). The positions of the neigh-
boring 4p1/214d and 4p1/215d are denoted by d2 and
d3, respectively. In contrast, the Ba 6p3/220s level is
above the 6p1/2 threshold. Ba data are plotted as func-
tions of the effective quantum number n6p3/2 associated
with the 6p3/2 limit. The Ba 6p3/220s level
(n6p3/2;15.7) lies in between the 6p3/218d and 6p3/219d
levels, which are around n6p3/2;15.3 and n6p3/2;16.3, re-
spectively. The branching-ratio and asymmetry param-
eters corresponding to decay into A1 m0s are denoted
rs and bs ; those corresponding to decay into the unre-
solved A1 (m021)d3/2 and (m021)d5/2 , rd and bd . In
Ba, autoionization into the 6p1/2 core is characterized by
rp and bp . On each figure, 37(a)–37(k), the experimen-
tal data (dots) are compared with the results obtained
with the LS-coupled eigenchannel R matrix combined
with the jj-LS frame transformation (full lines). In Ca,
theoretical values were computed using the short-range
reaction matrix K determined by Kim and Greene
(1987). In Ba, experiment and calculations were con-
ducted simultaneously (Lange, Aymar, et al . , 1991).
The positions, widths, and shapes of the resonances in
Ca @Fig. 37(a)] and Ba @Fig. 37(e)] are nicely repro-
duced by the calculations (note that the heights of ex-
perimental resonance profiles are the only adjustable pa-
rameters in the comparison between theory and
experiment). The Ca 4p3/214s profile is slightly asym-

metric because this level interacts with nearby
4p1/2ns ,nd levels. The Ba 6p3/220s level has an approxi-
mately Lorentzian line profile, as is typical for the iso-
lated resonances observed using the ICE experimental
method. The calculations also closely reproduce the en-
ergy variations of the various branching-ratio param-
eters @Figs. 37(b) and 37(i)–37(k)], in particular the lo-
calized variations on either side of the Ba 6p3/220s
resonance, which occur in the vicinity of the neighboring
6p3/2nd (n518,19) levels. In Ba and mainly in Ca, a
large fraction of autoionizing electrons populate the
(m021)d3/2,5/2 ionic levels. In Ca, this results in a popu-
lation inversion of the Ca+ ion produced by photoioniza-
tion.
We turn now to the angular distribution parameters

@Figs. 37(c), 37(d), and 37(f)–37(h)]. In Ba, the calcula-
tion perfectly reproduces the plateau value of bs;1.8
around the 6p3/220s resonance where departure from
bs52 is due mainly to spin-orbit effects. Marked dips
occur in the bs spectra of Ba (on either side of the reso-
nance) and Ca (at the resonance center). These dips lo-
cated at the positions of the Ba 6p3/2nd (n518,19) per-
turbers and of the Ca 4p1/216s perturber reflect final-
state channel mixing. These dips are not perfectly
described by the theory. The general structure of the
pronounced energy variation of bd in Ba is well de-
scribed by theory, but poorer agreement between theory
and experiment is obtained for bd in Ca and for bp in
Ba.
Finally, it is interesting to note that the electron

branching ratios and angular distributions of various
6p1/2ns and 6p3/2ns levels of Ba investigated by Lange,
Aymar, et al . (1991) were also calculated using the K
matrix obtained with the jj-coupled R-matrix method.
Although results are not always completely identical to
those provided by the LS-coupled R-matrix method
(and frame transformation), the overall agreement with
experiment of Lange, Aymar, et al . (1991) is of the
same quality.
A second example deals with 6pns J51 levels of Ba

located just below the 6p1/2 threshold in the energy
range in which the 6p3/212s level is degenerate with
high-lying 6p1/2ns ,nd levels with n>22. These levels
were investigated by Hieronymus et al . (1990), starting
from the 6s12s 1S0 level and inducing the core transi-
tion 6s→6p3/2 . Data concern the ion yields as well as
the electron branching ratios and angular distributions
as functions of the energy of the laser driving the core
transition. Experimental data on electron angular distri-
butions are compared with R-matrix results in Fig. 38.
Experimental and theoretical asymmetry parameters are
plotted as functions of the effective quantum number
n6p1/2 associated with the 6p1/2 limit. The broad (G;85
cm21) 6p3/212s resonance is centered at ;62 150
cm21, i.e., at n6p1/2;27.5. Figures 38(a), 38(c), and 38(e)
show the experimental results that were analyzed by Hi-
eronymus et al . (1990) using semiempirical MQDT
models, whose results are shown on Figs. 38(b), 38(d),
and 38(f). Three different seven-channel MQDT models
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FIG. 37. Electron branching ratios and angular distributions of Ca 4pns and Ba 6pns autoionizing Rydberg states. The experi-
mental data (solid points) for the 4p3/214s J51 resonance of Ca [(a) to (d)] excited from the 4s14s 1S0 Rydberg level and for the
6p3/220s J51 resonance of Ba [(e) to (k)] excited from the 6s20s 1S0 Rydberg level are compared with results (solid lines)
obtained with LS-coupled R-matrix calculations combined with the jj-LS frame transformation. Data in Ca are plotted as
functions of the energy relative to the Ca ground state and those for Ba as functions of the effective quantum number n6p3/2
associated with the 6p3/2 limit. The Ca 4p3/214s J51 level located below the 4p3/2 threshold can autoionize to the m0sel and
(m021)del continua (denoted s and d, respectively), whereas in Ba the 6p3/220s J51 level autoionizes in addition to the
m0p1/2el continua (denoted p). The curves show: (a) and (e), resonance profiles; (b) and (i)–(k), branching ratios; (c), (d) and
(f)–(h), asymmetry parameters b . [Ca figures are from Lange et al . (1989), courtesy of W. Sandner and Ba figures are from Lange,
Aymar, et al. (1991).]
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(one for each final ionic state) were adjusted by Hiero-
nymus et al . (1990) on the ion-yield and asymmetry pa-
rameters. Figures 38(g)–38(i) show the eigenchannel
R-matrix results.
We first comment briefly on the experimental results

analyzed in greater detail by Hieronymus et al . (1990).
The variations of the asymmetry parameters bs , bd3/2

,
and bd5/2

associated with the 6s , 5d3/2 , and 5d5/2 final
ionic states show pronounced modulations, almost peri-
odic in n6p1/2, the effective quantum number associated
with the 6p1/2 limit. As explained by Hieronymus et
al . (1990), the positions of the resonances are strongly
correlated with the positions of the 6p1/2ns ,nd Rydberg
levels, which are not excited directly but only through
their coupling with the 6p3/212s resonance. However the
data are not strictly periodic in n6p1/2, changes in the

various shapes occurring with increasing energy. These
changes, particularly visible in Fig. 38(e), are due to the
6p3/210d (at n6p1/2;18) and 6p3/211d (above the 6p1/2
limit) levels located on both sides of the 6p3/212s reso-
nance.
We turn now to the description of eigenchannel

R-matrix results obtained from two different short-
range reaction matrices of dimension 13. The first one,
obtained by combining LS-coupled R-matrix calcula-
tions with the jj-LS frame transformation, is the one
that successfully reproduced the photoabsorption spec-
trum (Aymar, 1990) and the ICE data of Lange, Aymar,
et al . (1991). The second matrix K was obtained with
the jj-coupled R-matrix method. Both K matrices give
almost identical results for bs and bd3/2

and, for the sake
of clarity, only LS results are shown in Figs. 38(g) and

FIG. 38. Angular distributions of Ba 6p1/2ns , nd J=1 levels degenerate with the 6p3/212s level and excited from the 6s12s 1S0
level by driving the 6s→6p3/2 core transition. Data are plotted as functions of the effective quantum number n6p1/2 associated with
the 6p1/2 limit. Experimental results of Hieronymus et al . (1990) for the asymmetry parameters bs , bd3/2

, and bd5/2
, associated with

the final 6s , 5d3/2, and 5d5/2 ionic states are shown (a), (c), and (e), respectively. The curves (b), (d), and (f) show the results of
the MQDT simulations carried out by the same authors. At the right, (g)–(j) show the R-matrix results: (g) LS result for bs ; (h)
jj-LS result for bd3/2

; (i) jj-LS result for bd5/2
; (j) jj result for bd5/2

. [Figs. 38(a) to 38(f) are from Hieronymus et al . (1990),
courtesy of H. Hieronymus.]
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38(h). In contrast, significant differences exist for bd5/2
between the frame-transformation and jj results shown
on Figs. 38(i) and 38(j), respectively. The calculations
correctly give the periodic modulations as well as the
changes with increasing energy observed experimentally
for the asymmetry parameters bs and bd3/2

. Comparison
of Figs. 38(i) and 38(j) with Fig. 38(e) clearly shows that
the marked decrease of the resonance amplitudes ob-
served for bd5/2

is better reproduced by the fully
jj-coupled R-matrix calculation. In addition, the bd5/2
spectrum is described slightly better by this R-matrix
calculation than by the MQDT simulation of Hierony-
mus et al . (1990), whereas the fitted and calculated re-
sults are very close for bs and bd3/2

.
Although not shown here, the R-matrix calculations

also trace out the modulations observed in the branch-
ing ratios rs , rd3/2 and rd5/2; here no significant differ-
ences between the LS results (and frame transforma-
tion) and the jj results are found. The detailed shapes of
the resonances showing up in the total ion yield are also
very well reproduced by the two different R-matrix cal-
culations, while some discrepancies exist for the relative
heights of the successive peaks. Interestingly, this shows
that resonance profiles (usually considered to be less
sensitive to channel mixing than angular distributions)
can in some cases give a more sensitive test of theory.
This conclusion was also reached by Lange, Aymar, et
al . (1991).
In Mg, the angular distributions of ejected electrons

from autoionizing 3pns J51 levels of Mg were mea-
sured by Lindsay, Cai, et al . (1992) as functions of the
energy of the third laser, which drives the isolated-core
excitation 3sns→3pns . The experimental bs spectrum
(full line) obtained for the 3s14s→3p14s excitation is
compared with the R-matrix calculation (dotted line) in
Fig. 39. The spectrum covers an energy range of ; 800
cm21 centered on the Mg1 ion transitions 3s→3p1/2
and 3s→3p3/2 marked by vertical bars at the top of the
figure. The calculations were carried out using a seven-
channel reaction matrix determined by Greene (1990b)
with LS-coupled R-matrix calculations combined with
the jj-LS frame transformation. The LS-coupled chan-
nels were: (3snp , 3pns , 3pnd) 1P1, (3snp , 3pns ,
3pnd) 3P1, and 3pnd 3D1. The same K-matrix was
also successfully employed to reproduce the line shapes
of 3pnd J51 autoionizing levels (Schinn et al . , 1991).
Figure 39 shows how the calculations reproduce the ex-
perimental data almost perfectly. The only discrepancies
that cannot be accounted for by experimental errors oc-
cur very close to the Mg1 resonance lines.
Examination of Fig. 39 reveals that b;2, except for

dips, with minima up to b;21. A broad dip appears
between the ionic lines and narrower dips are located at
the positions of the 3p1/2,3/2ns ,nd autoionizing levels.
The b;2 value corresponds to the excitation of a pure
3pns 1P1 channel, which corresponds to a coherent su-
perposition of 3p1/2ns and 3p3/2ns channels, followed by
direct scattering into the 3sep 1P1 continuum. The
b52 value is observed far from the Mg1 resonance

lines and away from the 3pns ,nd resonances. Indeed,
far from the Mg1 lines, both 3p1/2ns and 3p3/2ns chan-
nels are excited and starting from a 3sns 1S0 level it is
reasonable, in Mg where spin-orbit effects are very
weak, to assume that a 3pns 1P1 level is populated and
decays immediately. Departures from b;2 occur at the
positions of the 3pns ,nd resonances that are not excited
directly. Similar dips are exhibited by the the bm0s

spec-
tra in Ca and Ba (see Figs. 37 and 38), but the dips are
deeper in Mg than in Ca and Ba. Departures from
b;2 between the ionic lines are caused by large differ-
ences between the 3p1/2ns and 3p3/2ns excitation ampli-
tudes in that energy range.
A far more complicated type of angular distributions

arises when electrons are ejected from the autoionizing
3p12d J51 and J53 levels of Mg, which is the situation
treated in Fig. 40. These levels were reached using a
three-step excitation scheme via the 3s12d 1D2 level
(Lindsay, Dai, et al . , 1992). The three lasers were lin-
early polarized in the same direction, which ensured that
only J51 and J53 levels were excited, and which also
preserved cylindrical symmetry of the resulting angular
distribution. The differential photoionization cross sec-
tion for electrons ejected from an aligned 3snd 1D2 Ry-
dberg level has the form:

ds

dV
~u!5

s

4p
@11bP2~cosu!1gP4~cosu!

1eP6~cosu!# , (4.15)

where s is the total cross section integrated over the
solid angle V , u the angle between the third laser polar-
ization and the direction of the ejected electron, and

FIG. 39. Angular distributions of ejected electrons from the
autoionizing 3p14s J51 state of Mg. The experimental results
for the asymmetry parameter b for the transition 3s14s →
3p14s (full line), as functions of the photon energy, are com-
pared with results (dotted line) obtained with LS-coupled
R-matrix calculations combined with the jj-LS frame transfor-
mation. The vertical bars at the top indicate the positions of
the 3s → 3p1/2 and 3s → 3p3/2 ionic transitions. (From Lind-
say, Cai, et al . , 1992, courtesy of T. F. Gallagher.)
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Pk(cosu) is the kth Legendre polynomial. The three an-
gular parameters b , g , and e as functions of the energy
constitute the experimental data that were measured
and compared to R-matrix calculations. The experimen-
tal b , g , and e parameters obtained over a range of 400
cm21 centered on the peaks of the 3s12d→3p12d tran-
sition correspond to the jagged solid line, and the theo-
retical results obtained with two different calculations
are shown as smooth solid and dotted lines, respectively.
Two different R-matrix determinations of the

LS-coupled reaction matrices KJ51 and KJ53 were car-
ried out by Greene (1990b). The first set, successfully
used to interpret the excitation spectra of 3pnd J51
and J53 states of Mg (Dai et al . , 1990; Schinn et al . ,
1991) was obtained using a reaction volume of radius
r0512 a.u. The 3png J53 channels were ignored and
only five LS-coupled channels were introduced: (3snf ,
3pnd) 1F3, (3snf , 3pnd)

3F3, and 3pnd 3D3. Corre-
sponding results are shown on Fig. 40 as dotted lines.
The second treatment, whose results are marked by
solid lines, used a larger radius r0520 a.u. and included
in addition the 3png 1F3,

3F3, and
3G3 channels. Both

calculations included fine-structure effects through the
jj-LS frame transformation. Figure 40 shows that the
angular distribution parameter spectra are complex and
vary irregularly with energy. They appear drastically dif-
ferent from the b spectra for the 3pns states (Fig. 39).
This is not surprising because the 3pnd states are more
complex and two angular momenta J51 and J53 are
excited. In contrast with the situation for the 3pns b
parameter, there is no obvious correlation between the
fluctuations of the b , g , and e parameters and the posi-

tions of the 3pns ,nd J51 and J53 resonances. The
results obtained with the two different calculations are
almost the same and, in light of the experimental uncer-
tainties, it is clear that theory agrees well with the ex-
periment. Among the matrix elements involved in the
calculation of the b and g parameters, those corre-
sponding to pure J51 and J53 terms can be distin-
guished from those associated with mixed-J terms. It
was found that the structures of the b and g spectra
were essentially formed by the mixed-J terms and also
that the 3pnd resonances autoionized preferentially into
the 3sef continua, favoring the ejection of the photo-
electrons along the polarization axis.
We conclude from this section on observables re-

corded with the ICE experimental method that the
eigenchannel R-matrix method, when combined with
multichannel quantum-defect theory, provides a power-
ful tool for theoretical multichannel spectroscopy. This
method can describe many subtle features of the excita-
tion spectra, branching ratios and angular distributions
of the emitted electrons. In all the cases studied, agree-
ment ranging from excellent to satisfactory was achieved
between high-precision experiments and theory. To our
knowledge, no other theoretical method has been used
to calculate such observables in alkaline earths to date.
Of course, various sets of short-range scattering param-
eters were fitted to agree with particular sets of experi-
mental data, in semiempirical MQDT analyses. For ex-
ample, Hieronymus et al . (1990) fitted six different
models to the data they obtained for 6pns J51 levels of
Ba, below or above the 6p1/2 ionization limit. However,
as Aymar and Lecomte (1989) analyzed in detail for a
specific example in Sr, the fitted parameters differ con-
siderably from those calculated with the eigenchannel
R-matrix method. This implies that in some complicated
multichannel systems such semiempirical fits do not rep-
resent the short-range interactions alone, but rather rep-
resent an aggregate influence of all forces that are not
considered explicitly.

V. OPEN-SHELL ATOMS

The eigenchannel R-matrix approach in combination
with multichannel quantum-defect theory has been suc-
cessfully applied to the calculation of photoionization
and bound-state properties of several open p-subshell
atoms and of two open d-subshell atoms, scandium and
titanium. The first eigenchannel R-matrix study carried
out in an atom with more than two valence electrons
concerned Al, which has three electrons in the n=3 shell
(O’Mahony, 1985), followed by Si, which has four va-
lence electrons in the same shell (Greene and Kim,
1988). This calculation was the first application of the
streamlined eigenchannel R-matrix approach to de-
scribe atomic systems with more than two valence elec-
trons. The efficiency of the streamlined eigenchannel
R-matrix approach (Greene and Kim, 1988) led to the
adoption of this reformulation in almost all subsequent
eigenchannel R-matrix calculations. Calculations have
since been carried out for the halogen atoms (F to I)

FIG. 40. Angular distributions of electrons ejected from the
autoionizing 3p12d J51 and J53 levels of Mg. The three
experimental angular parameters b , g , and e , as functions of
the photon energy (jagged lines), are compared with two
R-matrix calculations (full and dotted lines)—see the text. The
horizontal lines indicate the zeros, sJ is the relative photoion-
ization cross section (in arbitrary units) contributed by the
J51 (solid line) and J53 (dot-dashed curve) final states. The
top of the figure shows the effective quantum number scales
relative to the 3p1/2 and 3p3/2 thresholds in unit steps. (From
Lindsay, Dai, et al . , 1992, courtesy of T. F. Gallagher.)
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(Robicheaux and Greene, 1992, 1993a), for the carbon-
group atoms (C to Sn) (Robicheaux and Greene,
1993b), and more recently for the oxygen-group atoms
(O to Te) (Chen and Robicheaux, 1994). Another theo-
retical study of this type by Miecznik et al . (1995)
treated Al ground-state photoionization. These series of
calculations were motivated largely by a desire to ex-
tract similarities and contrasts in the Rydberg-channel
dynamics of chemically similar elements, and by a desire
to isolate and categorize the most important physical
effects. They also test the accuracy of the theoretical
description of complex atoms that can be achieved
through small-scale calculations.
The exploration of channel-interaction dynamics in

complex open-shell atoms (Armstrong and Robicheaux,
1993; Robicheaux and Greene, 1993c, 1993d) began in
earnest with calculations for scandium, the simplest
transition-metal atom. A second complex atom with an
open d subshell was studied subsequently, in calcula-
tions performed for titanium (Miecznik and Greene,
1996). Results for atoms with an open p subshell and for
atoms with an open d subshell are summarized below.

A. Atoms with an open p subshell

1. Aluminum

We begin by describing a calculation carried out by
O’Mahony (1985) in Al. The even-parity 2D symmetry
of Al involves the 3s2nd Rydberg series perturbed by
the 3s3p2 configuration, as was discerned from an early
semiempirical MQDT analysis carried out by Lin (1974).
O’Mahony’s calculation provided a better understanding
of the strong 3s2nd–3s3p2 interaction. This mixing
serves as a prototype for the 3s23pqnd-3s3pq12 inter-
action, which is known to dominate the valence electron
dynamics of third-row metalloide atoms and ions. This
mixing was analyzed in parallel with the 3snd-3p2 mix-
ing in Mg 1De. The 3s2nd-3s3p2 channel mixing in Al
2De and the 3snd23p2 channel mixing in Mg 1De near
the lowest threshold were found to be very strong. In
this regard, these systems are similar to the m0snp-
m0pns

1Po mixing in Be and Mg, and to the m0snp-
(m021)dnp 1Po mixing in the heavier alkaline earths
(see Sec. IV).
The early eigenchannel R-matrix calculation in Al

(O’Mahony, 1985) was conducted in LS coupling. More-
over, it used a relatively crude unoptimized Hartree-
Slater potential. In contrast, the most recent calculation
of the photoionization spectrum of Al (Miecznik et
al . , 1995) used the improved eigenchannel R-matrix
techniques developed for open-shell atoms (see Sec.
III.D). Moreover fine-structure effects were included
through the jj-LS frame transformation. One major mo-
tivation of this study was to analyze the influence
of spin-orbit effects on the photoionization spectrum
of the 3s23p 2Po ground state below the 3s3p 1Po

ionization threshold. There are ten channels
and three LS symmetries that can be excited by one
photon from the ground state: [(3s2 1Se)ns 2Se],

[(3s2 1Se)nd 2De], [(3s3p 3,1Po)np 2Se, 2Pe, 2De],
[(3s3p 3,1Po)nf 2De]. In LS coupling, the channels cor-
responding to different LS symmetries do not interact,
since all non-Coulombic interactions, including fine-
structure effects, are omitted from the Hamiltonian. The
decay of (3s3p 3,1Po)np 2Pe resonances is forbidden
below the 3Po threshold within this LS-coupling ap-
proximation. The spin-orbit interaction couples the
channels mentioned above to each other and to a large
number of other channels associated with five additional
LS symmetries: 4Se, 4Pe, 4De, and 2,4Fe. Eigenchannel
R-matrix calculations were carried out using a box of 15
a.u. Configuration-interaction wave functions were de-
termined for the three target states of Al1, namely
3s2 1Se, 3s3p 3Po, and 3s3p 1Po. Basis functions used
to describe all eight final LS symmetries were con-
structed by attaching s , p , d , f , and g orbitals to the
components of the expansion of the ionic states. Addi-
tional correlation-type functions such as, for instance,
3s3p2 were also included. Length and velocity photo-
ionization cross sections from the 3s23p 2P1/2,3/2

o ground
state were calculated by assuming a statistical mixture of
the two initial J=1/2 and J=3/2 levels. Length and veloc-
ity results agreed to 1% accuracy typically, except at
energies where they were small. Theoretical results were
compared with the experimental measurements of Roig
(1975) and with the Wigner-Eisenbud-type R-matrix cal-
culation of Tayal and Burke (1987), which was con-
ducted in LS coupling.
The cross section at the 3s2 threshold has an unusu-

ally large value that derives from the presence of the
3s3p2 2De level, which is diluted into the 3s2nd 2De

bound states and the 3s2ed 2De continuum (Lin, 1974;
O’Mahony, 1985; Komninos et al . , 1995). The calcu-
lated threshold value of 61 Mb agreed well with the ex-
perimental value of 65 67 Mb (Roig, 1975) while Tayal
and Burke (1987) found a slightly smaller value of 55
Mb. Aside from spin-orbit effects, the photoionization
cross section below the 3s3p 3P2

o threshold agreed with
the spectrum calculated by Tayal and Burke (1987). The
lowest autoionizing resonance is the 3s3p2 2Se level.
The next broad resonances are members of the
(3s3p 3Po)np 2De series, upon which sharp peaks are
superimposed. These narrow peaks were ascribed to the
LS-allowed (3s3p 3Po)np 2Se and (3s3p 3Po)nf 2De

series and to the LS-forbidden (3s3p 3Po)np 2Pe and
(3s3p 3Po)np 4De series, which appear in the spectrum
owing to their fine-structure-induced mixing with chan-
nels of the 2De symmetry. Due to the occurrence of
numerous sharp and overlapping resonances that con-
verge to the closely spaced 3s3p 3PJ

o thresholds, the
spectrum including spin-orbit effects takes on a compli-
cated appearance. Conspicuous spin-orbit effects
arise just below the 3s3p 3P2

o threshold, including dra-
matic examples of enhancement or reduction of the
resonance widths. For instance, the widths of the
high-n LS-forbidden (3s3p 3Po)np 4D3/2,5/2

e and
(3s3p 3Po)np 2P1/2,3/2

e resonances are larger or of the
same order of magnitude as the widths of the
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LS-allowed (3s3p 3Po)np 2Se resonances. Indeed,
since the widths for the 2De series are about 10 3 times
larger than for 2Se, a very small admixture of 2De char-
acter may cause the LS-forbidden states to autoionize
faster than the 2Se states. Due to the n-dependence of
the mixing between the (3s3p 3Po)np 2P3/2

e and
(3s3p 3Po)np 2D3/2

e series, the widths exhibit an irregu-
lar evolution as a function of energy along various
LS-forbidden series. The quantum defects of several
Rydberg levels were found to agree with the available
experimental data (Roig, 1975). In addition, Miecznik
et al . (1995) analyzed the transition from LS to jj cou-
pling for high-lying Rydberg levels below the 3s3p 3P
in the context of statistical distributions. While the spec-
trum exhibits a type of ‘‘chaotic’’ behavior according to
these distributions, striking regularity remains in the
pattern of energy levels and widths. One specific effect
that is noteworthy is the periodic occurrence of very
long-lived resonances.
Despite the strong influence of spin-orbit effects on

the photoionization spectrum below and among the
spin-orbit-split 3s3p 3P0,1,2

o thresholds, these effects re-
main almost negligible between the 3s3p 3P2

o and
3s3p 1P1

o thresholds since the 1P1
o threshold has no

such splitting.

2. Halogens

Photoionization cross sections of the m0s
2m0p

5 2Po

ground state have been calculated in F (m0=2), Cl
(m0=3), Br (m0=4), and I (m0=5) near the m0s

2m0p
4

thresholds (Robicheaux and Greene, 1992), and in Cl
and Br near the higher-lying m0sm0p

5 thresholds (Ro-
bicheaux and Greene, 1993a). In the series of R-matrix
calculations conducted for F through I, a reaction vol-
ume of radius r05 9 a.u. was used. The same choice of
basis functions was adopted for the different atoms, al-
though the radial orbitals differed from one atom to an-
other. The basis function sets were chosen to obtain con-
verged results for I, which made necessary the inclusion
of basis functions unnecessary for lighter halogens. The
m0s

2m0p
5 2Po ground state was described with ;300

basis functions. The target states in order of increasing
energy were the m0s

2m0p
4 3Pe, 1De, and 1Se ionic

states. When combined with the jj-LS frame transfor-
mation, there were seven different final LS symmetries
(2Se, 2,4Pe, 2,4De, 2,4Fe) and 15 final-state channels that
entered the R-matrix calculations. These channels were
constructed by attaching s and d waves to the three
configuration-interaction target states. The basis set de-
pended on the LS symmetry and the largest basis set
size was ;700 for the 2De symmetry. The jj-LS frame
transformation in its simplest and most common form
couples only closed channels converging to the same
2Sc11Lc threshold. (The index c refers to the ionic core.)
For all atoms, except those with a single electron or hole
in the target valence shell, the spin-orbit interaction not
only splits the target states having the same Lc ,Sc but
different Jc , but also couples the states with the same
Jc but different Lc ,Sc . In the halogens the m0s

2m0p
4

3P0
e state mixes with the m0s

2m0p
4 1S0

e state, and the
m0s

2m0p
4 3P2

e state mixes with the m0s
2m0p

4 1D2
e

state. These mixings were accounted for by an
intermediate-coupling frame transformation obtained
empirically from the experimental ionization energies. It
is worth noting that some states would not autoionize
without this frame transformation. Note that this
intermediate-coupling frame transformation has not
been utilized in eigenchannel R-matrix calculations car-
ried out for other open-shell atoms.
Figure 41 shows the photoionization cross sections for

Cl, Br, and I between the 3Pe and 1De thresholds. The
most striking feature of this figure is the remarkable
similarity between Cl @Figs. 41(a), 41(b)], Br @Figs.
41(c), 41(d)], and I @Figs. 41(e), 41(f)]. The broad reso-
nances are superposition of two broad autoionizing se-
ries, (1De)nd 2Pe and (1De)nd 2De, while the sharp
resonances are (1De)ns 2De and (1De)nd 2Se. Interest-
ingly, (1De)nd 2Se resonances would not be able to au-
toionize in this theoretical description, except through
the operation of the intermediate-coupling frame trans-
formation. The photoionization cross section for F in the
same energy range (not shown here) strongly differs
from those displayed in Fig. 41 for the heavier halogens.
In F, the (1De)nd resonances are sharper due to the
lack of overlap between a d electron and the inner
m0p electron. Figure 41 shows that the calculated photo-
ionization spectra reproduce most features in the experi-
mental data (Berkowitz et al . , 1981; Ruščić and
Berkowitz, 1983; Ruščić et al . , 1984b). The agreement
was found to be the best in Cl. For Br, the broad
(1De)nd 2Pe and (1De)nd 2De resonances were shifted
slightly too high in energy, the error in the calculated
quantum defects amounting to ;0.05. Similarly good
agreement between theoretical and experimental (Ruš-
čić et al . , 1984a) spectra was observed for F, although
an error of ;0.01 in the quantum defect of the
(1De)3s 2Se level caused a reversal in the order of the
lowest autoionizing lines compared to the experiment.
For the photoionization spectra between the 1De and
1Se thresholds, experimental data exist only for Cl and I
(Ruščić and Berkowitz, 1983; Berkowitz et al . , 1981).
Good agreement between theory and experiment was
found for Cl. The poorer agreement observed for I
probably stems from the fact that the much larger spin-
orbit splittings in I are too strong to be fully accounted
for by frame-transformation procedures.
The photoionization cross sections of some halogen

atoms have been calculated using different theoretical
approaches. Each halogen atom from F through I was
studied by Manson et al . (1979) using both the Hartree-
Fock and the central-potential-model approximations.
Cl was investigated by Starace and Armstrong (1976)
using the random-phase approximation with exchange,
by Fielder and Armstrong (1983) using the multiconfigu-
ration Hartree-Fock method, by Shahabi et al . (1984)
with an open-shell transition matrix method, by Lam-
oureux and Combet Farnoux (1979) with the Wigner-
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Eisenbud-type R-matrix method, and by Brown et al .
(1980) using many-body perturbation theory. All these
calculations were performed in strict LS coupling. Reso-
nance structures were calculated only in the last two
studies mentioned. In addition, I photoionization was
calculated by Combet Farnoux and Ben Amar (1986)
using a K-matrix method. The resonance structures ob-
tained by Robicheaux and Greene (1992) compared well
with those predicted by Brown et al . (1980), whereas
only a moderate agreement with the predictions of
Combet Farnoux and Ben Amar (1986) was found. An-
other point of comparison of the eigenchannel
R-matrix results of Robicheaux and Greene (1992) with
previous calculations is the magnitude of the total cross
section at the 1Se threshold. In Cl, the theoretical value
of 3862 Mb is smaller than the experimental value of
43.663.5 Mb obtained by Samson et al . (1986). The
threshold cross sections predicted for Cl by other meth-
ods range from 25 Mb to 60 Mb. Values obtained by the
eigenchannel R-matrix calculations are smaller than the
values obtained by Manson et al . (1979) except for F,
where they agree. The threshold value of the I cross
section obtained by Robicheaux and Greene (1992) was
smaller than the value predicted by Combet Farnoux
and Ben Amar (1986).
Robicheaux and Greene (1992) further analyzed the

similarities among the halogens by comparing the short-
range scattering parameters obtained for every halogen
atom as functions of energy. The striking similarity be-
tween the heavier halogens that is apparent in Fig. 41, as
well as the major differences from F, emerge clearly
from this comparison. Moreover, this analysis of channel
mixing helps to explain why all the ns resonances are
narrow, while the nd resonances are very broad in all
halogen atoms except F.
A second eigenchannel R-matrix study for the halo-

gens determined partial and differential photoionization
cross sections of Cl and Br near the higher-lying
m0sm0p

5 3,1Po thresholds (Robicheaux and Greene,
1993a). The eigenchannel R-matrix calculations were
similar to those performed to calculate photoionization
cross sections at lower energy. However, the
(m0sm0p

5 3Po,1Po)np channels were added in order
to describe the m0sm0p

5np autoionizing resonances.
Observables calculated included partial photoionization
cross sections and asymmetry parameters characterizing
the energy and angular distributions of photoelectrons
ejected, leaving the ionic core in the states m0s

2m0p
4

3Pe, 1Se, and 1De. Results calculated for Cl below the
3s3p5 3Po threshold compared well with the experimen-
tal data obtained by van der Meulen, Krause, et al .
(1992). The agreement deteriorated at energies near the
1Po threshold. Most features in the Br experimental
partial cross sections below the 4s4p5 3Po threshold
(van der Meulen, Krause, and Lange, 1992) were also
reproduced by the R-matrix calculation. The calcula-
tions accounted for singly excited state resonances only,
but omitted doubly excited states such as the Cl
3s23p33d4p level. This omission appears to be respon-

FIG. 41. Photoionization of the m0s
2m0p

5 2P3/2
o ground state

of halogens Cl to I between the m0s
2m0p

4 3P and 1D thresh-
olds. The calculated length (solid line) and velocity (dotted
line) cross sections [(a), (c), and (e)] have been convolved with
the experimental resolution of 0.28 Å. The theoretical results
in Cl (a), Br (c), and I (e) are compared with the photoabsorp-
tion spectra (b), (d), and (f) recorded by Ruščić et al . (1983),
Ruščić et al . (1984b), and Berkowitz et al . (1981), respec-
tively. (From Robicheaux and Greene, 1992).
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sible for most of the discrepancies between the calcula-
tions and the experimental data.
Robicheaux and Greene (1993a) compared the values

they obtained in Cl for partial cross sections and asym-
metry parameters at a fixed energy far from resonances
to the values derived by Shahabi et al . (1984) with an
open-shell transition matrix method that neglected the
resonance structures. Both sets of partial cross sections
values agreed well with the experimental data of van der
Meulen, Krause, et al. (1992), while Robicheaux and
Greene’s asymmetry parameters agreed better with the
experimental results than did the values obtained by
Shahabi et al. (1984). Robicheaux and Greene (1993a)
also compared the resonance structures they obtained in
Cl with those predicted by Brown et al . (1980) using
many-body perturbation theory. Because these latter au-
thors carried out their calculations in LS coupling, the
comparison dealt only with LS results. Both sets of
theoretical results agreed well below the 3Po threshold,
while differences appeared near the 1Po threshold.

3. Carbon-group atoms

The carbon-group atoms are characterized by a
m0s

2m0p
2 3Pe ground state with m0=2 for C, m0=3 for

Si, m0=4 for Ge, and m0=5 for Sn. The first application
of the streamlined eigenchannel R-matrix approach
(Greene and Kim, 1988) dealt with the J=0 even-parity
bound spectrum of Si, which involves the two
3s23p1/2np1/2 and 3s23p3/2np3/2 Rydberg series. It was
found that LS-coupled R-matrix calculations combined
with the jj-LS frame transformation accounted well for
the experimental energy positions (Martin and Zalubas,
1983).
A series of small-scale calculations carried out by Ro-

bicheaux and Greene (1993b) in the carbon group con-
sidered the odd-parity bound Rydberg spectra with
J=0–3 and the photoabsorption spectra. These
LS-coupled eigenchannel R-matrix calculations fol-
lowed by the frame transformation were focused on the
region below and between the m0s

2m0p
2P1/2

o and
2P3/2

o thresholds. The R-matrix volume radius was
r0515 a.u. As for the halogens, the basis-function sets
used to describe initial and final states were the same for
the different atoms; the ground state, the final states,
and the m0s

2m0p
2Po target state were all computed

using configuration interaction. The m0s
2m0p

2 3Pe

ground state was described by ;150 basis functions.
Study of the odd-parity spectra with J=0–3 required the
R-matrix calculations to be performed for six different
LS symmetries: 1,3Po, 1,3Do, 1,3Fo. The largest basis-set
size was ;275 for 1,3Po symmetries. Basis functions for
the final-state symmetries were constructed by attaching
a s or d wave to the odd-parity m0s

2m0p
2P

configuration-interaction target state. In addition to
these close-coupling-type variational basis functions,
correlation-type basis functions were introduced as well.
Basis functions associated with strongly closed channels
were constructed by attaching a p or f wave to the
configuration-interaction even-parity target states

m0sm0p
2, m0s

2m0d , and m0s
2(m011)s . These latter

channels are relevant to the study of the odd-parity
spectra with J=0–3 because the (m0s

2m0p
2Po)ns and

(m0s
2m0p

2Po)nd Rydberg series converging to the
two ionic thresholds m0s

2m0p
2PJc

o (Jc=1/2 and 3/2) are

perturbed by m0sm0p
3 states.

Oscillator strengths for transitions from the
m0s

2m0p
2 3P0

e ground state to odd-parity bound levels
with J=1 were calculated for all elements. For C, where
previous experimental and theoretical values were avail-
able for some lines (Nussbaumer and Storey, 1984;
Goldbach and Nollez, 1987; Goldbach et al . , 1989),
theoretical results compared well with the data. Ro-
bicheaux and Greene (1993b) compared the photoab-
sorption spectra between the m0s

2m0p
2PJc

o thresholds
for the different atoms (see their Fig. 8). The cross sec-
tions exhibited one (m0s

2m0p
2P3/2

o )ns autoionizing
Rydberg series and two (m0s

2m0p
2P3/2

o )nd autoioniz-
ing series converging to the 2P3/2

o threshold. The
s-wave resonances were sharper than the d-wave reso-
nances except in C, where all resonances had small
widths because, as in F, the d waves did not interact
strongly with the core. The Sn and Ge autoionization
spectra resembled each other while the Si and mainly
the C, the spectra looked very different. The only ex-
perimental spectrum available for comparison was a
densitometer trace constructed by Brown et al . (1977a)
for Ge. The agreement between experiment and theory
was very good for the positions of the resonances but
somewhat poorer for the line shapes.
We consider now the results obtained for the energy-

level positions of odd-parity bound Rydberg levels with
J=0–3. Extensive experiments conducted on the carbon-
group atoms were interpreted using approximate Lu-
Fano plots drawn through experimental quantum de-
fects, or through the use of semiempirical MQDT fits
(Brown et al . , 1975; Feldman et al . , 1976; Brown et
al . , 1977a, 1977b; Ginter et al . , 1986; Ginter and Ginter,
1986). The theoretical energy values provided by eigen-
channel R-matrix calculations were compared with ex-
perimental data using Lu-Fano plots. Very good agree-
ment was found for all symmetries in C and Si and in the
J=0 symmetry of Ge and Sn. For J51–3, the agreement
between the experimental and theoretical results is
poorer for Ge and Sn than was obtained for the lighter
atoms. The main reason for the discrepancies is the
strong energy dependence of several short-range scatter-
ing parameters due to the presence of the m0sm0p

3

states. In Ge and Sn, these states cause rapid energy
dependence of the quantum defects in 1,3Po and 1,3Do

symmetries, with the strongest effects occurring near
threshold in the 3Do symmetry. This large energy de-
pendence makes the application of the jj-LS frame
transformation somewhat problematic. Indeed, depend-
ing upon whether the scattering parameters were re-
ferred to theoretical or experimental thresholds, notice-
ably different results were found. Importantly, the
m0sm0p

3 states cause an energy dependence of the scat-
tering parameters in all atoms. However, the carbon pa-
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rameters are energy dependent only at low energy, while
in Si, Ge, and Sn, the energy dependence is strong over
a much larger range. Carbon and silicon have much
smaller spin-orbit splittings than heavier carbon-group
elements, whereby the jj-LS frame-transformation ap-
proximation remains valid in C and Si.
Note finally that the calculation of Robicheaux and

Greene (1993b) provided the first nearly ab initio de-
scription of these spectra for the carbon-group atoms.
The calculations described the energy dependence of dy-
namical scattering parameters better than semiempirical
fits (Brown et al . , 1977a, 1977b; Ginter et al . , 1986;
Ginter and Ginter, 1986). Indeed, the parameters intro-
duced in the fits were, in most cases, assumed to be en-
ergy independent.

4. Chalcogens

Chen and Robicheaux (1994) calculated the photoion-
ization cross sections of the m0s

2m0p
4 3P2

e ground
states of O (m052), S (m053), Se (m054), and Te
(m055) using LS-coupled eigenchannel R-matrix cal-
culations combined with the jj-LS frame transforma-
tion. As was described in Sec. III.D, calculations were
carried out with the Hamiltonian referring to the full
atom [Eq. (3.41)]. The dipole polarizability of the core
was accounted for in the Se and Te calculations only.
The calculations were conducted using the Wigner-
Eisenbud-type reformulation of the eigenchannel ap-
proach (Schneider, 1975; Robicheaux, 1991). Calcula-
tions were restricted to photoionization of the outermost
m0p subshell, the relevant target states in LS coupling
being m0s

2mop
3 4So, 2Do, and 2Po, in order of increas-

ing energy. In LS coupling, there are nine channels and
three LS symmetries that can be excited by one photon
from the ground state: [(4So)ns 3So, nd 3Do],
[(2Do)nd 3So, nd 3Po, ns , nd 3Do], [(2Po)ns ,
nd 3Po, nd 3Do]. When spin-orbit effects are neglected,
channels corresponding to different LS symmetries do
not interact; in particular the (2Do)nd 3Po states are
not coupled to any continuum, which means that the
decay of (2Do)nd 3Po resonances is forbidden in LS
coupling below the 2Do threshold. The spin-orbit inter-
action can couple the channels mentioned above to each
other and to a large number of other channels such as
the (4So)ns 5So, nd 5Do, and similar channels associ-
ated with 2Do and 2Po thresholds. Effects of the spin-
orbit interaction were incorporated approximately,
through the jj-LS frame transformation. A reaction vol-
ume of radius of 11 a.u. was used for O and one of 13 a.u
for the heavier chalcogens. The rare-gas-core electrons
were frozen and no correlation or excitation of the
inner-core electrons was included. Configuration-
interaction wave functions for the target states were
determined variationally as a superposition of only
five configurations: m0s

2m0p
3, m0s

2m0pm0d
2,

m0s
2m0p

24f , m0sm0p
3m0d , and m0p

5. For a given con-
figuration, all possible intermediate angular couplings
were introduced into the many-electron basis set. The
same list of configurations was used for the different

atoms. The differences between the atoms were the ra-
dial orbitals of all electronic states involved.
Photoionization cross sections were calculated at

final-state energies between the 4So and 2Do thresholds
and between the 2Do and 2Po thresholds. Theoretical
cross sections were convolved with the experimental
width using a preconvolution technique (Robicheaux,
1993). Chen and Robicheaux (1994) focused on the
heavier chalcogens S, Se, and Te, which have been stud-
ied far less than oxygen (for references see Seaton,
1987b). The spectrum of O differs from the spectra of
the other chalcogens since it consists of sharp reso-
nances only. As in C (Robicheaux and Greene, 1993b)
and F (Robicheaux and Greene, 1992) in the second
row, the absence of broad features in O is a consequence
of the small overlap between the 2p and nd orbitals. We
restrict our discussion to the heavier chalcogens, where
correlations are stronger than in O.
The calculated photoionization cross section of S be-

low the 2Do threshold reproduced the experimental
spectrum of Gibson et al . (1986a). The positions and
widths of the resonances pertaining to the four series
attached to the 2Do threshold were well described. In
particular, as observed, the LS forbidden (2Do)nd
3Po appeared as very intense and narrow resonances.
However, the calculation did not reproduce the relative
intensities of those resonances perfectly. There are three
(2Po)3d 3Do, 3Po and (2Po)5s 3Po perturbers attached
to the 2Po threshold which fall below the 2Do threshold;
the description of those perturbing resonances was
slightly poorer. Indeed, the error in energy of the per-
turber is DE (a.u.)5dm/n3, which can be large when the
effective quantum number n in the perturbing channel is
small. The intensities and shapes of nearby resonances
are very sensitive to the exact position of the perturbers.
The resonances associated with the cross section be-
tween the 2Do and 2Po thresholds are dominated by the
(2Po)nd 3Do and 3Po resonances, which are broad and
overlapping. Agreement with experiment (Gibson et
al . , 1986a) was quite satisfactory.
Photoionization cross sections of S have been calcu-

lated using different theoretical approaches (Mendoza
and Zeippen, 1988; Tayal, 1988; Altun, 1992, and refer-
ences therein). Tayal (1988) used the Wigner-Eisenbud-
type R-matrix approach, Mendoza and Zeippen (1988)
adopted the close-coupling approximation, while Altun
(1992) implemented many-body perturbation theory.
Because all of those calculations were performed in a
strict LS-coupling approximation, they failed to show
the LS-forbidden (2Po)nd 3Po resonances below the
2Do threshold. Chen and Robicheaux (1994) compared
their positions and classifications, for states in the au-
toionizing series converging to the 2Do and 2Po thresh-
olds, to those of Gibson et al . (1986a) and of other cal-
culations. Below the 2Do threshold, the calculations of
Tayal (1988) and Altun (1992) gave global agreement
with the experiment, but the errors in the quantum de-
fects of some autoionizing levels were larger ( up to 0.2)
than those calculated with the eigenchannel R-matrix
method (error within 0.02 for most resonances). The
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eigenchannel R-matrix calculations also resolved a con-
troversy existing in the literature on the assignment of
the (2Do)nd 3So and (2Do)ns 3Do resonances; the ex-
perimental classifications of those series should be inter-
changed. All previous calculations gave good agreement
with experiment in the energy range between the 2Do

and 2Po thresholds.
The origin of spectral features in S was analyzed in

some detail by Chen and Robicheaux (1994). The origin
of the broad and sharp features of the S spectrum as well
as the differences of the quantum defects of the
(2Do)nd 3So, (2Po)nd 3Po, and 3Do series could be
understood through an examination of the matrix ele-
ments that couple those channels. Chen and Robicheaux
(1994) also studied the convergence of the wave-
function expansion, and have shown the importance of
polarization-type basis functions for the description of
atomic dynamics. Moreover, they compared the results
of their full electron (16) calculation with those they ob-
tained using a model potential to account for the effects
of closed shells and six valence electrons. Both calcula-
tions were conducted with the same configuration list.
For all levels, the quantum defects of both calculations
were found to differ by less than 0.01; negligible differ-
ences were also found for dipole moments. This showed
that the Ne-like core could be well approximated with a
local potential.
Figure 42 compares the photoionization cross sections

of S and Se calculated in LS coupling. This figure clearly
shows the similarities between the two atoms; it is obvi-
ous that the two atoms have nearly identical electro-
static interactions between the valence and Rydberg
electrons. Figure 43 shows Se cross section calculated
using the jj-LS frame transformation to incorporate
fine-structure effects. The calculated results gave global,
but not detailed, agreement with the experiment of Gib-
son et al . (1986b). As in S, most of the discrepancies are
near the perturbers at ; 1120 Å attached to the 2Po

threshold. In this energy range there are two peaks as-
signed by the experiment as 4s4p4(4P5/2

e )4p states.

Chen and Robicheaux (1994) found that the 4s4p5

states should not be assigned to any of the experimental
resonances. They ascribed the perturbers to the
(2Po)4d and (2Po)6s 3Po states, which are analogous to
the perturbers of the (2Do)ns ,nd series of S.
The quality of the Te calculation of Chen and Ro-

bicheaux (1994) has noticeably deteriorated, compared
to Se. This might indicate some limitation of the frame-
transformation treatment for including spin-orbit ef-
fects. Another possibility is that wave function exhibits
poorer convergence. Although the resonances are more
strongly mixed in Te than in Se, Chen and Robicheaux
(1994) managed to identify some of them. As in the case
of the Se 4s4p5 levels, they concluded that the 5s5p5

classification given in the experiment (Berkowitz et
al . , 1981) to some of the peaks is inappropriate. No
other theoretical calculation is available for comparison
in either Se or Te.

B. Open d-subshell atoms

1. Scandium

An extensive study of the Sc atom was performed by
Robicheaux and Greene (1993c, 1993d) and Armstrong
and Robicheaux (1993) using the LS-coupled eigen-
channel R-matrix method combined with the jj-LS
frame transformation. The main purpose of these inves-
tigations was to test whether the eigenchannel
R-matrix method could reproduce the extremely com-
plicated spectra of a transition-metal atom. The good
agreement between theory and experiment obtained for
photoionization spectra from the Sc ground state
3d4s2 2D3/2,5/2

e and from the Sc 3d3 2D3/2
e excited state

demonstrated, for the first time, that the eigenchannel
R-matrix techniques could achieve the accuracy needed
to describe the complex spectra of Sc. The studies per-

FIG. 42. Photoabsorption cross sections of S (lower) and Se
(upper + 1500 Mb) between the m0s

2m0p
3 4So and 2Do

thresholds. LS results are drawn vs a dimensionless quantity
35(v2E4S)/(E2D2E4S). (From Chen and Robicheaux,
1994).

FIG. 43. The photoabsorption cross section of Se obtained by
combining LS-coupled R-matrix calculations with the jj-LS
frame transformation (lower curve) is compared with the ex-
perimental result (in arbitrary units) of Gibson et al . (1986b).
The zero of the experimental curve corresponds to the hori-
zontal line. The vertical scale of the theoretical curve has been
adjusted to reproduce the experimental mean background.
(From Chen and Robicheaux, 1994, courtesy of F. Ro-
bicheaux.)
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formed in Sc did not aim solely at the calculation of
accurate spectra. They also probed the reasons for the
success of the calculations, as well as the limitations, and
they explored the underlying atomic dynamics of Sc.
The theoretical description of Sc is complicated by the

large number of closely spaced thresholds. The first
fourteen states of Sc1 have even parity, with the con-
figurations 3d4s , 3d2, and 4s2. The first thirteen thresh-
olds (3d4s 3D1

e , 3d4s 3D2
e , 3d4s 3D3

e , 3d4s 1D2
e ,

3d2 3F2
e , 3d2 3F3

e , 3d2 3F4
e , 3d2 1D2

e , 4s2 1S0
e , 3d2

3P0
e , 3d2 3P1

e , 3d2 3P2
e , 3d2 1G4

e , in order of increas-
ing energy) have a spread of only 14 000 cm21, while the
3d2 1S0

e threshold is at 25 955 cm21 above the 3d4s
3D1

e ionic ground state. The small spread of even-parity
thresholds is partly due to the near degeneracy of the
4s and 3d orbitals. The Rydberg series attached to the
closely spaced thresholds interact with each other, pro-
ducing complicated spectra. Almost every Rydberg se-
ries is perturbed and the calculated short-range scatter-
ing parameters need to be very accurate to place the
perturbers in the correct position. As was emphasized
above, the theoretical spectrum may bear no resem-
blance to the experimental spectrum if a perturber has
even a small error in its quantum defect.
The eigenchannel R-matrix techniques used for the Sc

calculations are similar to those employed for the open
p-subshell systems. However, the complexity of Sc com-
pared to open p-subshell atoms led Robicheaux and
Greene (1993c) to carefully analyze the factors that af-
fect the convergence of the calculation. Here we de-
scribe the most vital features of the method developed
for Sc. The R-matrix volume radius was r0=21 a.u. As in
the open p-subshell atoms, the parameters a l

i and rc in-
troduced in the one-electron Hamiltonian Hv of Eq.
(3.38) were fitted to optimize agreement between the
calculated energy levels of Hv and the experimental lev-
els of Sc11. However, in Sc, a large weight was put in
the optimization on fitting the spin-orbit splitting of the
Sc11 3d levels, which ensured a better shape of the
Sc11 nd orbitals.
As in previous work, the calculation began by the

choice and construction of the target wave functions.
Convergence tests showed that the lower odd-parity
ionic states (from 26 000 cm21 to 39 000 cm21 above the
Sc1 ground state) play a large role in Sc dynamics. In-
deed, perturbers such as 3d4p5s and 4s4p4d fall in the
energy range close to the higher even-parity thresholds;
it is crucial to obtain a reasonably good description of
these perturbers in order to obtain quantum defects that
are reasonably well converged. Moreover, the introduc-
tion of these odd-parity target states was found to be
crucial in order to describe the polarizabilities of the
low-lying even-parity states of Sc1.
The variational basis functions were constructed with

natural orbitals, as in the calculations for p-subshell at-
oms. In Sc, the natural orbitals were chosen to give the
best overall convergence for the lowest even- and odd-
parity ionic target states. The initial states, the final
states, and the target states were computed using

configuration-interaction methods. The basis functions
used to construct the even-parity 3d4s2 2D3/2,5/2

e and
3d3 2D3/2

e initial states were obtained by attaching
s-wave, d-wave, and g-wave orbitals to the even-parity
target states and p-wave and f-wave orbitals onto the
odd-parity target states. A large number of LS- and
jj-coupled channels entered the calculations of photo-
ionization cross sections from the ground-state fine-
structure levels 3d4s2 2D3/2,5/2

e . Construction of the
jj-coupled short-range reaction matrices for final Jf val-
ues ranging from Jf=1/2 to Jf=7/2 required LS-coupled
eigenchannel R-matrix calculations to be carried out for
eleven LS symmetries: 2,4So, 2,4Po, 2,4Do, 2,4Fo, 2,4Go,
and 4Ho. For a given final LS symmetry, between two
and thirteen channels entered the calculation. For a
given Jf , anywhere from 23 to 43 channels entered the
calculation in the jj-coupled representation. Open and
weakly closed channels were constructed by attaching
p-wave and f-wave orbitals onto the even-parity target
states. In addition to these channels, a large number of
strongly closed channels were included in the calcula-
tions. They were constructed by attaching s-wave,
d-wave, and g-wave orbitals to the odd-parity target
states.
Two papers (Robicheaux and Greene, 1993c, 1993d)

treated the photoabsorption spectrum out of the
ground-state fine-structure levels 3d4s2 2DJg

e

(Jg=3/2,5/2). This spectrum was studied experimentally
by Garton et al . (1973). Robicheaux and Greene
(1993c) calculated length and velocity cross sections for
the six different 2DJg

e →Jf transitions: 3/2→1/2,
3/2→3/2, 3/2→5/2, 5/2→3/2, 5/2→5/2, and 5/2→7/2.
Very good agreement was found between length and
velocity results. Calculations covered the wavelength
range from the lowest 3d4s 3D1

e threshold up to 3d2
1G4

e threshold. The spectrophotographic plates of Gar-
ton et al . (1973) were compared with theoretical calcu-
lations performed for a statistical mixture of Jg=3/2 and
Jg=5/2 ground-state fine-structure levels; this reflected
the level of thermal excitation of the Sc vapor in the
experiment.
Robicheaux and Greene (1993c) constructed simu-

lated ‘‘theoretical plates’’ by translating photoabsorp-
tion intensity into a grayscale image. To mimic satura-
tion effects, cross sections less than 3 Mb were displayed
as white, while cross sections greater than 18 Mb were
shown as black. All major experimental features were
reproduced by the calculation. The numerous perturbing
states complicated the appearance of the spectrum. Ad-
ditional absorption lines associated with the substantial
population in both of the ground-state fine-structure lev-
els added further complexity as well.
Global aspects of the Sc dynamics were analyzed by

Robicheaux and Greene (1993c), who studied the scat-
tering probability matrix Sij that characterizes the mix-
ing strengths of different channels. The photoionization
propensities provided additional insight: The photoab-
sorption spectrum was expected to display pairs of au-
toionizing lines with the ground-state splitting. For ex-
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ample a 2Do state should appear in both 2D5/2
e →

2D3/2
o and 2D5/2

e → 2D5/2
o . Although the lines tend to ap-

pear in both Jf symmetries that are possible, usually one
line has much more oscillator strength. By analyzing the
angular part of the reduced dipole matrix elements, Ro-
bicheaux and Greene (1993c) showed that the favored
transitions were simply those for which DJ5DL . This
means, for example, that the cross section for 2D5/2

e →
2D3/2

o is fourteen times smaller than the 2D5/2
e → 2D5/2

o

cross section.
The exploration of the dynamics of Sc on a large scale

permitted a qualitative understanding of what deter-
mines the positions and shapes of various autoionizing
lines and the origin of several marked features of the Sc
spectrum. Robicheaux and Greene (1993c) successfully
labeled the more prominent Rydberg series for excita-
tion from the 3d4s2 2D3/2

e ground state. However, a bet-
ter understanding of Sc (and a more complete classifica-
tion of the autoionizing lines) can be obtained only by
studying the details on a fine scale. Robicheaux and
Greene (1993d) classified the lines measured by Garton
et al . (1973) and compared the calculated lines with
theoretical spectra. The classification was performed in
two steps. First, the experimental and theoretical lines
were paired visually to give the best agreement between
theoretical and experimental quantum defects and oscil-
lator strengths. Then the classification was performed
with the procedure described in Sec. IV.B, i.e., by throw-
ing away all the open channels in the MQDT calculation
that converts the problem to a search for bound levels.
A crucial aspect of the classification was the derivation
of an estimation of the level of acceptable error in the
positions of the perturbers. Another key aspect was as-
certaining from the scattering probability matrix how
strongly a perturber interacted with various Rydberg se-
ries. The theoretical classification agreed for the most
part with the experimental classification, but there were
some discrepancies. While several lines could not be
classified, owing to uncertainties in the calculation, Ro-
bicheaux and Greene (1993d) were able to complete the
classification of numerous ‘‘partially classified’’ lines of
Garton et al . (1973) and to classify most of their lines
that had remained totally unclassified. All the lines
could be classified in either the LS or jj coupling and
the classification was presented in the coupling scheme
for which the state was the purest.
The comparison of theoretical and experimental lines

permitted an evaluation of the accuracy of the calcula-
tion. At energies far from perturbers, the errors in quan-
tum defects were less than 0.03, the (typically smaller)
quantum defects for the nf series being more accurate
than those for the np series. Indeed, the f-wave channels
hardly interact with other channels because the f-wave
electrons do not penetrate into the complicated core re-
gion of Sc, while the p-wave channels display stronger
interactions. The oscillator strengths are highly suscep-
tible to cancellation effects and are expected to be less
accurate than the quantum defects. In the vicinity of
perturbing states, the quantum-defect errors are larger
due to the relatively large errors in the positions of the

low-n perturbers. The high accuracy achieved for the
short-range scattering parameters was crucial for the
classification. It probably would not have been possible
to classify most of the lines if the calculated quantum-
defect errors had been greater than ;0.06.
The fact that, in the experiment of Garton et al .

(1973), the two lowest bound levels 3d4s2 2D3/2
e and

3d4s2 2D5/2
e were simultaneously photoionized intro-

duced difficulty in the identification of all the experi-
mental lines. To overcome this difficulty, and to test fur-
ther the eigenchannel R-matrix method developed for
Sc ground-state photoionization, a new measurement of
the relative photoionization cross section for the excited
Sc 3d3 2D3/2

e level was carried out by Armstrong and
Robicheaux (1993). An initial state having the same
Sg , Lg , and parity as the ground state was used in order
to probe the same final states as those observed by Gar-
ton et al . (1973). The relative measurement of photo-
ionization cross section was performed by resonant two-
step excitation via the 4s24p 2P1/2

o and subsequent
photoionization of the 3d3 2D3/2

e level. The photoioniza-
tion cross section was measured over the energy range
from the Sc1 3d4s 3D1

e lowest threshold to just above
the 3d2 3F4

e threshold. The experimental spectrum was
compared with a photoionization spectrum calculated
using the same reaction matrices with Jf51/2–5/2 as
those used to describe final states excited from the
ground state. The only difference between these two cal-
culations concerned the description of the initial state
and thus the values of dipole matrix elements and tran-
sition frequencies. Figure 44 compares the unconvolved
theoretical cross section and the measured Sc1 ion sig-
nal in the wavelength range from the 3d4s 3D1

e thresh-
old at 600.8 nm up to 540 nm, i.e., below the 3d4s
1D2

e ionization threshold at 521.2 nm. Most of the
prominent sharp lines were ascribed by Armstrong and
Robicheaux (1993) to (3d4s 1D2

e)nf 2P1/2 , (3d4s
1D2

e)nf 2D3/2 , and (3d4s
1D2

e)nf 2F5/2 Rydberg levels.
In addition, in this wavelength range are the lowest
members of the (3d2 3FJc

e )nf Jf Rydberg series corre-
sponding to n=5 (588–585 nm) and to n=6 (545–542

FIG. 44. Photoionization cross section of the Sc 3d3 2D3/2
e ex-

cited level as a function of the wavelength of the photoionizing
laser. The wavelength range goes from the Sc1 3d4s 3D1

e

threshold at 600.8 nm to 540 nm, below the 3d4s 1D2
e thresh-

old at 521.2 nm. The length theoretical cross section (uncon-
volved) is compared with the experimental ion signal, shown as
a mirror image. (From Armstrong and Robicheaux, 1993,
courtesy of F. Robicheaux.)
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nm), as well as the (3d2 3Pe)5p 4Po and (3d2 3F2
e)7p

perturbing states near 582 nm. These perturbers are
broader than the (3d4s 1D2

e)nf resonances. The mea-
sured and calculated cross sections agreed quite well
overall. It should be noted that the theoretical cross sec-
tion was obtained from short-range scattering param-
eters and dipole matrix elements that were calculated
before the experiment was completed. The most marked
disagreement in resonance location between experiment
and theory visible on Fig. 44 appears near l= 573.6 nm.
However, the corresponding (3d4s 1D2

e)8f 2F5/2
o level

has an error in its quantum defect of only ;0.01–0.02,
relative to the experiment.
Similar good agreement was found at shorter wave-

lengths for the series converging to the 3d4s 1D2
e

threshold. Above the 3d4s 1D2
e threshold, the positions

of the resonances that belong to the various (3d2
3FJc

e )nf Jf interacting Rydberg series were also in very
good agreement. The most pronounced disagreement
was found for the (3d2 1D2

e)4f broad perturber, which
corresponds to a low-n level, whose position is very sen-
sitive to the accuracy of the calculation. In Fig. 44 the
calculated spectrum was unconvolved. In a wavelength
range involving high-n resonances, a better comparison
between theory and experiment was achieved by convo-
lution of the theoretical spectrum with the laser line
width. Figure 45 shows a small portion of the cross sec-
tion where the spectrum has been convolved with a
Gaussian line profile of 0.4 cm21. This figure displays
the interacting Rydberg series attached to the three
3d2 3Fe thresholds. The (3F2

e)nf (n;44 near the middle
of the figure) series is perturbed by the (3F3

e) nf states
with n=27 to 30 and by the (3F4

e) nf states with n=21
and 22. The positions and shapes of the peaks are accu-
rately reproduced by the calculation.

Armstrong and Robicheaux (1993) also compared the
photoionization cross sections from the 3d4s2 2D3/2

e

ground level and from the 3d3 2D3/2
e excited level in the

range from the lowest 3d4s 3D1
e threshold to just above

the 3d2 3Fe thresholds. The photoionization cross sec-
tion differs greatly for the two initial states. In particu-
lar, the cross section from the 3d3 2D3/2

e state is domi-
nated by f-wave resonances; this is expected owing to
dominance of the one-electron dipole matrix element
for the 3d→nf excitation over the 3d→np and
4s→np excitations. Consequently, the cross section
from the 3d3 2D3/2

e level consists of mostly symmetric
sharp lines except for some of the broad perturbers,
while the cross section from the ground state displays
many asymmetric Beutler-Fano profiles (Fano, 1961).

2. Titanium

The progress achieved by eigenchannel R-matrix cal-
culations for Sc (Armstrong and Robicheaux, 1993; Ro-
bicheaux and Greene, 1993c, 1993d) led Miecznik and
Greene (1996) to tackle the theoretical description of
titanium, the second transition-metal atom, whose
ground state is 3d24s2 3F2

e . Photoabsorption and photo-
ionization spectra were calculated from the four excited
levels 3d2(3Fe)4s4p(3Po) 3D2

o , 3d2(3Fe)4s4p(3Po)
3G3,4

o , and 3d3(4Fe)4p 5F5
o , whose cross sections were

measured (Page and Gudeman, 1990; Sohl et al . , 1990).
(Below, those initial levels will be referred to as the
3d24s4p 3D2

o , 3d24s4p 3G3,4
o , and 3d34p 5F5

o levels.)
The theoretical description of Ti, like Sc, is complicated
by the large number of closely-spaced ionic target states.
These cause irregularities in the pattern of interacting
Rydberg series that converge to those target states as
the principal quantum number increases. The first 15
LS-coupled states of Ti1 have even parity and lie within
25 000 cm21 above the Ti1 ground state. All these
states correspond to different LS terms of either the
3d24s , 3d3, or 3d4s2 configuration. Fine-structure ef-
fects were incorporated through the jj-LS frame trans-
formation and the use of experimental (fine-structure-
split) ionization thresholds. When fine-structure effects
were taken into account, there were 34 even-parity ion-
ization thresholds associated with the 14 LS-coupled
target states relevant to the study, i.e., more than twice
as many as in Sc1. The lowest odd-parity 3d24p thresh-
olds lie above 25 000 cm21. Additional complications
result from the presence of four electrons in the nearly
degenerate 3d and 4s subshells. One major motivation
of the Ti project was to investigate whether the eigen-
channel R-matrix could overcome those additional diffi-
culties and achieve an accuracy comparable to that
found for Sc. Comparisons of the theoretical cross sec-
tions with the spectra measured by Sohl et al . (1990)
and by Page and Gudeman (1990) were used to test the
accuracy of the calculations. As discussed above in Sec.
III.D, Miecznik and Greene (1996) adopted an all-
electron (21) Hamiltonian to describe Ti1, in order to
account for the crucial complications of the Ti atom.
They also developed a new method to generate radial

FIG. 45. Photoionization cross section of the Sc 3d3 2D3/2
e ex-

cited level as a function of the wavelength of the photoionizing
laser. The figure covers a small wavelength range below the
Sc1 3d2 3F2

e threshold at 466.2 nm, where the Rydberg series
attached to the 3d2 3F2

e , 3F3
e , and 3F4

e thresholds are interact-
ing. The length theoretical cross section convolved with a
Gaussian function of 0.4 cm21 full width at half maximum is
compared with the experimental ion signal, shown as a mirror
image. (From Armstrong and Robicheaux, 1993, courtesy of F.
Robicheaux.)
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orbitals that incorporated the mutual screening and cor-
relation of all electrons in the targets. In contrast with
most of the earlier eigenchannel R-matrix calculations,
radial orbitals were obtained in a multiconfiguration
Hartree-Fock approximation (Froese Fischer, 1977) that
directly generated natural orbitals for the target states.
Eigenchannel R-matrix calculations were performed

in LS coupling using a box of radius r0516 a.u., which
was large enough to enclose the charge distribution of
the four odd-parity initial levels. Calculations were car-
ried out for even-parity final states from -500 cm21 to
8000 cm21 relative to the first ionization threshold
3d24s 4F3/2

e . The four LS-coupled thresholds lying in
this energy range are: 3d24s 4Fe, 3d3 4Fe, 3d24s 2Fe,
and 3d24s 2De, in order of increasing energy. As for all
open-shell atoms, the calculation began with the con-
struction of target-state wave functions. As in Sc, the
lower odd-parity ionic states were found to play a large
role in Ti dynamics, primarily through their influence on
the polarizabilities of low-lying even-parity levels of
Ti1. Target states were constructed from multiconfigu-
ration Hartree-Fock orbitals that gave the fastest con-
vergence for all even-parity Ti1 states below 25 000
cm21 and for some lowest-lying 3d24p odd-parity Ti1

states. The even- and odd-parity target states, the odd-
parity initial states, and the even-parity final states were
computed using configuration interaction. The
3d24s(2Fe)4p and the 3d24s(4Fe)4p configurations
were found to contribute strongly to the wave functions
of the 3d24s4p 3Do and 3d24s4p 3Go initial states. On
the other hand, the 3d24s4p components were negli-
gible in the 3d34p 5F5

o initial state.
Construction of the jj-coupled short-range reaction

matrices for final Jf values ranging from Jf=1 to Jf=6
required LS-coupled eigenchannel R-matrix calcula-
tions to be carried out for 19 LS symmetries. Open and
weakly closed channels for final even-parity symmetries
were constructed by attaching s-wave and d-wave orbit-
als to the even-parity configuration-interaction target
states. Besides these channels, a large number of
strongly-closed channels were included in the calcula-
tions. They were constructed by attaching p-wave and
f-wave orbitals onto the odd-parity configuration-
interaction target states. Additional four-electron corre-
lation functions were also included in the final-state
wave-function expansions.
The photoabsorption and photoionization cross sec-

tions from the 3d24s4p 3D2
o , 3d24s4p 3G3

o , and
3d24s4p 3G4

o levels were compared with the experi-
ment of Sohl et al . (1990). This experiment probed the
energies both above and below the first ionization
threshold 3d24s 4F3/2

e because of the presence of a weak
external field that lowered the ionization barrier. The
final states were in the energy range of the fine-
structure-split 3d24s 4Fj

e and 3d3 4Fj
e thresholds.

Highly-excited Rydberg levels with principal quantum
numbers n> 19 converging onto the 3d24s 4Fj

e thresh-
olds were recorded. Figure 46 compares the calculated
spectrum for photoabsorption from the initial 3d24s4p

3G4
o state with the experimental spectrum recorded by

of Sohl et al . (1990). The theoretical cross section was
preconvolved (Robicheaux, 1993) with the experimental
resolution of 0.6 cm21. Figure 46 deals with the energy
range just below the 3d24s 4F7/2

e threshold, where the
dominant Rydberg series are the (3d24s 4F7/2

e )nd and
(3d24s 4F9/2

e )nd series. Good agreement between
theory and experiment is apparent over the whole en-
ergy range. The differences between the measured and
calculated quantum defects of the dominant (3d24s
4F7/2

e )nd resonances are about 0.03. The theoretical
cross section in Fig. 46 is a 15-channel calculation that
includes closed channels converging to the 3d24s 4FJc

e ,

3d3 4FJe
e , and 3d24s 2FJc

e thresholds. This cross section

was compared with that obtained in a six-channel calcu-
lation that included only channels associated with the
3d24s 4FJc

e targets. The widths, line-shape parameters

q (Fano, 1961) and strengths of the resonances were
very different in the two calculations. Indeed, Miecznik
and Greene (1996) found that a broad perturber at
;55 259 cm21, ascribed to the (3d24s2Fe)6d 1H5

e level,
strongly modified the resonances over a very wide en-
ergy range, including the range displayed in Fig. 46.
Miecznik and Greene (1996) also compared the calcu-

lated photoionization cross section of the 3d34p 5F5
o

level with the experimental data of Page and Gudeman
(1990), at energies below the 3d3 4F9/2

e threshold. The

FIG. 46. Photoionization cross section of the Ti 3d24s4p
3G4

o excited level as a function of the energy relative to the Ti
ground level 3d24s2 3F2

e . The experimental measurement of
Sohl et al . (1990) (upper curve) is compared with the jj-LS
result, shown as a mirror image; the theoretical cross section
has been convolved with the experimental resolution of 0.6
cm21. The two theoretical lines are length and velocity results.
(From Miecznik and Greene, 1996).
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calculation reproduced the positions of the major ex-
perimental peaks, the (3d3 4F9/2

e )nd resonances, but the
agreement was poorer for intensities and widths.
The experimental excited-level cross sections of Sohl

et al . (1990) and Page and Gudeman (1990) covered
energies only slightly (1215 cm21) above the Ti1

ground state. Miecznik and Greene (1996) predicted
photoionization cross sections of the same excited levels
at higher energies up to 8000 cm21 above that lowest
ionization threshold. This calculation extended nearly
up to the energy of the fourth LS-coupled 3d24s 2De

threshold at 8505 cm21. The dominant Rydberg series
occurring in photoionization spectra of the four different
initial levels were classified by Miecznik and Greene
(1996). The similarities and differences among the spec-
tra from different initial levels were interpreted using
simple arguments based on the selection rules for the
dipole operator and on the configuration-interaction ex-
pansions of the initial states. The photoionization cross
sections of the 3d24s4p 3D2

o and 3d24s4p 3G3,4
o excited

levels are dominated by the (3d24s 4Fe)nl and
(3d24s 2Fe)nl resonances. The (3d3 4Fe)nl resonances,
which are very weakly excited from the 3d24s4p 3D2

o

and 3d24s4p 3G3,4
o excited levels, dominate the photo-

ionization cross sections of the 3d34p 5F5
o level. The

cross sections of the 3d24s4p 3D2
o and 3d24s4p 3G3,4

o

excited levels exhibit similar features at most final-state
energies. This results from the fact that all those initial
states have the common configuration
3d2(3F)4s4p(3P) and differ only in the LS-term value.
Moreover, the comparable strength of the (3d24s
4Fe)nd resonances and the (3d24s 2Fe)nd resonances
could be understood as resulting from the near equality
of contributions from the (3d24s 4Fe)4p and (3d24s
2Fe)4p components in the initial-state configuration-
interaction expansions. Miecznik and Greene (1996)
found that below the fourth threshold, the autoionizing
resonances converging to the four LS-coupled lowest-
lying thresholds were not the only ones present. Other
low-lying members (n<6) of resonant Rydberg series
attached to higher-lying thresholds were intense and had
large widths. Additional short-range 3d24p2 perturbers
also arose. A major resonance peak in the cross section
from the 3d34p 5F5

o level, for instance, was ascribed to
the 3d2(3Pe)4p2(3Pe) 5De level. The presence of all
those perturbers complicates the spectra tremendously
at higher-energies, causing extremely complex interfer-
ence patterns. Miecznik and Greene (1996) estimated
the error in quantum defects for Rydberg levels to be at
most 0.03, which translates as an error of ;100–200
cm21 for the low-n perturbers. Nevertheless, additional
experimental tests of the predictions remain desirable.
The Sc and Ti results are prototype demonstrations

that show the capabilities of LS-coupled eigenchannel
R-matrix calculations combined with frame-
transformation methods and multichannel quantum-
defect theory. The fact that the complicated electron dy-
namics of Sc and Ti could be unraveled bodes well for
future efforts in the other transition-metal elements,

which are still more complicated. It is important to
maintain or improve the level of accuracy, i.e., to limit
the error in quantum defects to ; 0.03. Otherwise it will
be difficult to obtain a sensible theoretical description
for open-shell atoms with more d electrons. This will
pose a difficult challenge for future calculations.

C. Concluding remarks

Theoretical multichannel spectroscopy can describe
the complicated dynamics of open p-subshell atoms with
Z < 53 near the lower ionizations thresholds. Calcula-
tions have traced out systematic trends in the Rydberg
dynamics of chemically similar elements. The approach
was also successful in unraveling the extremely compli-
cated dynamics of the simplest transition metals Sc and
Ti. The jj-LS frame-transformation treatment has been
surprisingly successful at the description of a class of
spin-orbit effects that are important at energies near
fine-structure-split thresholds. In short, these results
show that the eigenchannel R-matrix method can be
used to obtain reliable photoionization spectra and clas-
sifications of the resonances even for extremely compli-
cated spectra such as those of Sc and Ti. Despite its
notable successes, the frame-transformation treatment
does have some limitations, however. Examples visible
from the calculations in open p-subshell atoms include
the bound-level spectra of Ge and Sn (see Sec. V.A.3).
The study of the halogen atoms showed the need for an
intermediate-coupling frame transformation when the
target states do not have definite values of the total or-
bital L and spin S angular momenta (see Sec. V.A.2). In
addition, once the spin-orbit splittings of core levels ex-
ceed about 1 eV, as in the iodine calculations, a more
satisfactory description of spin-orbit effects begins to be-
come imperative. A ubiquitous phenomenon, which
plagues theoretical multichannel spectroscopy of open-
shell atoms and limits its ultimate capability to describe
highly complex spectra, is the presence of numerous
low-n perturbers located near the bottom end of Ryd-
berg series converging to higher thresholds. An accurate
description of these perturbing levels is needed because
even a small error in quantum defect can eliminate all
resemblance between the theoretical spectrum and ex-
periment. As in alkaline earths, one way to improve
upon the jj-LS frame-transformation approximation,
and to achieve a better description of low-n perturbers,
is to include the spin-orbit interaction within the reac-
tion volume and to perform the variational calculations
in jj coupling. The LS-coupled eigenchannel R-matrix
calculations carried out for open-shell atoms were rela-
tively modest and were carried out on desktop worksta-
tions. Calculations in jj coupling would probably be
more appropriate for a high-speed supercomputer, espe-
cially for a transition-metal or lanthanide atom.
A number of calculations for open-shell atoms have

been conducted with other theoretical approaches. The
most widely used has been the Wigner-Eisenbud-type
R-matrix approach that was developed by the Belfast
group (Burke and Robb, 1975). For references, the
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reader is referred to the comprehensive R-matrix com-
pilation volume that was written recently by Burke and
Berrington (1993). Most of the calculations have so far
treated atoms and ions with atomic number below 20. In
particular, we cite the extensive calculations of accurate
radiation absorption and emission properties carried out
in the framework of the worldwide ‘‘Opacity Project’’ of
Seaton and co-workers (Seaton, 1987a; Berrington et
al . , 1987, and subsequent papers referred to as ‘‘atomic
data for opacity calculations’’). In that framework, the
R-matrix method provided the energies and wave func-
tions of bound states, oscillator strengths, photoioniza-
tion cross sections, and parameters for line broadening
by electron impact. Calculations were obtained on a
large scale for neutral atoms as heavy as neon, and for
their isoelectronic sequences. Calculations for ions of
cosmically abundant elements containing more than 10
electrons are planned. Some have already been carried
out, such as the investigation by Le Dourneuf et al .
(1993) of Fe1 photoionization. Theoretical calculations
of the ‘‘Opacity Project’’ are being used to obtain im-
proved values for the opacity of stellar envelopes; these
should be of interest across a range of problems in phys-
ics and astronomy (Zeippen, 1995).
Apparently, the number of theoretical photoioniza-

tion calculations performed for the open d-subshell ele-
ments has been relatively small. In addition to the cal-
culation of Fe+ photoionization (Le Dourneuf et al . ,
1993), electron impact ionization of Cr and electron im-
pact excitation of Fe+ have been investigated by Reid
et al. (1992) and Pradhan and Berrington (1993), respec-
tively. Moreover, photoionization of Zn and Hg were
studied by Bartschat and co-workers (Bartschat and
Scott, 1985a, 1985b; Bartschat, 1987). In these last two
calculations mentioned, the 3d subshell in Zn or the
5d subshell in Hg is closed for the ground state only, but
not in some target states included in the calculations.
The large number of channels has limited most

Wigner-Eisenbud-type R-matrix calculations to a strictly
nonrelativistic approximation, i.e., neglecting all fine-
structure effects. However, Scott and Burke (1980) de-
veloped a Breit-Pauli R-matrix formulation and applied
it to the study of electron impact excitation of Fe+

(Pradhan and Berrington, 1993). Photoionization of Zn
and Hg was also investigated with this approach (Bar-
tschat and Scott, 1985a, 1985b; Bartschat, 1987).

VI. CONCLUSIONS AND PERSPECTIVES

Theory has developed a new capability in recent
years: the capability to calculate and interpret atomic
spectra of unprecedented complexity. The set of tech-
niques used is termed multichannel spectroscopy. The
term is intended to convey the notion that many of the
tools of multichannel collision theory, such as the scat-
tering matrix, remain applicable even in the presence of
closed channels, provided the tools are suitably general-
ized.
Some of these tools were initially introduced from a

phenomenological or semiempirical viewpoint, but

theory has progressed to the point that key quantities
such as R matrix or the S matrix can now be calculated
from first principles. One technique that is particularly
well suited to carry out such nearly ab initio calculations
is the R-matrix method; it has been discussed at length
in this review. While our examples have been drawn pri-
marily from the eigenchannel version of R-matrix
theory, this is a ‘‘detail’’ that remains largely a matter of
preference. Indeed, the most important details are not
whether the eigenchannel or Wigner-Eisenbud variants
of R-matrix theory are used; these two variants have in
fact been shown to be exactly equivalent if identical ba-
sis sets are used in both calculations. Other theoretical
methods, such as the Schwinger variational principle
(Schwinger, 1947) or the complex Kohn variational prin-
ciple (Kohn, 1948) can also describe complicated spec-
tra, in principle. Applications of these methods to mul-
tichannel Rydberg spectra can be expected to be
relatively inefficient, however, if they are not extended
to take advantage of scattering theory ideas in closed
Rydberg channels; this is a huge simplification exploited
by multichannel quantum-defect theory. Aside from the
flexibility of the theoretical formulation adopted, the
most important detail that controls the likely success of
any given calculation is the choice of the type (and num-
ber) of variational basis functions, and on the actual
physics included in the real or model Hamiltonian of the
system.
Multichannel spectroscopy is a theoretical description

that not only determines complex spectra, but which
also obtains the amplitudes and phases for ejection of an
electron (or other particle) into the various accessible
channels that are open or weakly closed. The informa-
tion contained in this set of intermediate quantities,
namely the smooth short-range scattering parameters S
and d used by multichannel quantum-defect theory, con-
siderably enhances the predictive power of multichannel
spectroscopy. Knowledge of the ‘‘short-range’’ scatter-
ing matrix implies a far more detailed understanding of
the final-state dynamics than can be extracted from a
single total or partial cross section spectrum.
Inclusion of the relativistic spin-orbit interaction at

different levels of approximation enhances the capabil-
ity of multichannel spectroscopy to describe high-lying
Rydberg levels near fine-structure-split ionization
thresholds. Impressive agreement between theory and
experiment has been obtained for extremely compli-
cated spectra, including the perturbed pattern of
alkaline-earth atom autoionizing states at high energies
within 0.02 a.u of the double-escape threshold. Even the
complex autoionizing spectra of some transition-metal
elements have been calculated to spectroscopically use-
ful accuracy. In Sc and Ti, for instance, errors in the
calculated scattering parameters were found to be small
at energies far from perturbers: errors in the calculated
quantum defects were typically less than ; 0.03. Near a
perturber, however, quantum-defect errors can be larger
because the low value of the perturber principal quan-
tum number n magnifies the error in the perturber bind-
ing energy according to DE'Dm/n3. This problem ap-
pears to be ubiquitous in the heavy open-shell atoms,
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because the large density of ionization thresholds gener-
ates many perturbing levels in any given energy range.
Accurate results have been obtained for other observ-

ables besides energy-level positions and total photoion-
ization cross sections. These include anisotropic observ-
ables more sensitive to electron correlations and spin-
orbit effects, such as the angular distributions of
electrons ejected from alkaline-earth atom autoionizing
levels. Multichannel spectroscopy has capabilities that
extend beyond the accurate reproduction of experimen-
tal spectra. It also permits classification of observed
resonance structures and a detailed analysis of the
mechanisms (such as the dominant channel couplings
and autoionization pathways) that govern the Rydberg-
electron dynamics. It also provides a powerful way to
elucidate global trends and systematics in the electron
correlations and channel interactions. Despite the inher-
ent complexity of multichannel spectra, the underlying
short-range dynamics of these spectra often exhibit re-
markable simplicity, and are usually controlled by a
small number of physical parameters. This review high-
lights the extent to which spectral regularities and
channel-interaction invariances are revealed despite the
seemingly intractable complexity of the cross sections.
Numerous spectral regularities occur along the series of
alkaline-earth atoms and along the series of chemically
similar open p-shell atoms. Likewise, the complicated
electron dynamics in scandium and titanium present vis-
ible similarities.
The numerous examples in this review have concen-

trated on the alkaline earths and on some open-shell
atoms. These examples share one thing in common: an
attractive Coulombic long-range potential is experi-
enced in each channel by the lone escaping electron.
The examples have also dealt with field-free photoion-
ization spectra excited by one photon from the ground
state or an excited state. To convey a glimpse of the
generality of these methods, we turn now to a few appli-
cations of theoretical multichannel spectroscopy to a
broader class of systems and processes. Some results ob-
tained by other powerful approaches will also be men-
tioned. Possible extensions that are suggested by the
success of some of these calculations are commented
upon. We also draw attention to limitations of these
methods.
We begin with systems for which the long-range

electron-core interaction differs from an attractive Cou-
lombic (plus centrifugal) potential; this category in-
cludes He, H2, and other negative ions. In H2, an es-
caping electron experiences a 1/r2 dipole potential at
large r . This unusual dipolar character results from the
permanent electric dipole moment that is established in
the excited hydrogen fragment H(n) by the electric field
of the outer electron. This dipole moment is essentially
‘‘permanent’’ in this context rather than ‘‘induced,’’ ow-
ing to the approximate degeneracy of the excited H(n)
thresholds. Moreover, the effective dipole interaction is
attractive in some channels, which generates an infinite
number of levels converging to the corresponding
threshold. In other channels the dipole moment repels

the outermost electron. In He, the long-range potential
in each channel has a combined Coulomb and dipole
character. For negative ions other than H2, the escaping
electron usually experiences a long-range polarization
potential whose asymptotic form is -a/2r4, with a the
atomic polarizability when the core is isotropic. For an-
isotropic core states a channel-dependent polarizability
emerges that depends on both the scalar and tensor po-
larizabilities of the corresponding atomic states. Multi-
channel spectroscopy accounts for long-range multipole
interactions beyond the reaction volume in H2, He, and
negative ions, either through the use of quantum-defect
theory, generalized to account for the relevant long-
range potential (Greene et al . , 1979, 1982; Watanabe
and Greene, 1980), or else by direct integration of the
close-coupling equations without exchange (Pan et al.,
1994).
The first eigenchannel R-matrix calculation for nega-

tive ions was carried out for the alkaline-earth negative
ions (Kim and Greene, 1989). Three-electron
LS-coupled eigenchannel R-matrix calculations were
combined with a generalized one-channel quantum-
defect treatment of long-range motion in a dipole polar-
ization potential. The calculation of Kim and Greene
(1989) concurred with the earlier prediction by Froese
Fischer et al. (1987) that Ca2 has a stable negative-ion
state 4s24p ; both of these early calculations overesti-
mated the Ca electron affinity by about a factor of 2,
judging from recent experiments (see, for example,
Walter and Peterson, 1992). It is not surprising that
theory struggles to predict the Ca electron affinity accu-
rately, since it is so small ('20 meV). The most success-
ful theoretical calculation to date of the Ca2 binding
energy is the semiempirical model-potential calculation
of van der Hart et al. (1993), who include the dielec-
tronic polarization term. After adjusting the ‘‘cutoff’’ ra-
dius to obtain an accurate ground-state energy of neu-
tral calcium, van der Hart et al. (1993) then used the
resulting dielectronic term in their calculation of Ca2 to
obtain a binding energy that agreed well with experi-
ment. Kim and Greene (1989) also predicted that the
heavier alkaline-earth atoms Sr, Ba, and Ra would have
stable negative ions, of similar mos

2m0p
2P designation,

whereas the corresponding Be2 and Mg2 states are un-
stable shape resonances. New experimental results for
Ba2 show that most calculations overestimated the
strength of binding by about a factor of 2 (Petrunin
et al., 1995).
This class of theoretical techniques was also extended

to treat the photodetachment spectra of the alkali nega-
tive ions. Nonrelativistic close-coupling calculations by
Moores and Norcross (1972, 1974) derived realistic re-
sults for photodetachment of Li2 and Na2 up to the
energy of the first excited alkali energy level m0p . For
the heavier alkali negative ions, the experiments of
Lineberger and co-workers (Patterson et al., 1974; Slater
et al., 1978) showed prominent effects associated with
the alkali m0p fine-structure splitting, indicating the
need for inclusion of spin-orbit effects into the theory.
Lee (1975) developed a multichannel effective-range
theory treatment that included fine-structure effects

1111M. Aymar, C. H. Greene, and E. Luc-Koenig: Multichannel Rydberg spectroscopy . . .

Rev. Mod. Phys., Vol. 68, No. 4, October 1996



through a frame transformation, along the lines of the
earlier study of S2 photodetachment by Rau and Fano
(1971). Lee’s semiempirical fit was able to reproduce the
measured (Patterson et al., 1974) Cs2 photodetachment
cross sections, and was influential because it was able to
fit cross sections for other alkali negative ions. More-
over, the resulting fitted parameters permitted predic-
tion of other quantities, such as partial detachment cross
sections, which were confirmed by subsequent measure-
ments. The formulation of Lee (1975) neglected the
long-range potentials entirely. Taylor and Norcross
(1986) calculated the smooth, short-range reaction ma-
trix K0 that Lee (1975) had assumed to be energy inde-
pendent across the 550 cm21 fine-structure splitting of
Cs(6p), and discovered that K0 actually varied quite
rapidly with energy. They showed, however, that the en-
ergy variation could be expressed as an energy-
dependent long-range phase shift in each channel, which
did not affect the total or partial cross sections. Wa-
tanabe and Greene (1980) used generalized quantum-
defect theory to demonstrate that the strong energy de-
pendence of K0 is caused by the huge polarizability
(a;10 3 a.u.) of the m0p excited state. Moreover, a dif-
ferent reaction matrix Kpol

0 could be defined that was
nearly energy independent and better suited to the ap-
plication of a fine-structure frame transformation.
Greene (1990a) combined a jj-coupled eigenchannel

R-matrix calculation with the generalized MQDT treat-
ment of electron escape in a polarization potential in the
first nearly ab initio calculation able to reproduce the
observed photodetachment spectra of the heavy alkali-
metal negative ions. Resonant photodetachment spectra
of Cs2, Rb2, and Fr2 were calculated near the lowest
m0s and m0p thresholds, which are quite similar in all of
these heavy alkali-metal negative ions. The calculation
also predicted the existence of three Cs2 6s6p 3PJ

0

states that are barely bound, in addition to the 6s2

ground state, in agreement with an earlier tentative con-
clusion reached by Froese Fischer and Chen (1989). A
subsequent theoretical treatment of Cs2 bound states
carried out by Thumm and Norcross (1991, 1992) dis-
puted the stability of these Cs2 6s6p 3PJ

0 levels.
Thumm and Norcross calculated e-Cs scattering cross
sections using a relativistic Wigner-Eisenbud-type
R-matrix calculation based on the Dirac Hamiltonian,
also using a model potential. Electron affinities of the
Cs2 6s2 1S0

e , 6s6p 3PJ
o , and 6p2 3PJ

e levels were cal-
culated in two different ways: with and without the di-
electronic term that represents an additional electron-
core-electron interaction [Eqs. (3.34) and (3.40)].
Calculations carried out without the dielectronic term
agreed with those of Greene (1990a), who omitted it
from the model Hamiltonian. When the dielectronic
term was included, however, the negative-ion spectrum
was found to change dramatically: the 6s6p 3PJ

o levels
were shifted into the continuum, where they appeared as
narrow shape resonances instead of as bound levels.
These states are exceedingly close to threshold, so the
question of whether they are bound states or resonances
will probably not be resolved until they are investigated

experimentally. For the present, though, the best calcu-
lation performed thus far is probably that of Thumm
and Norcross (1991, 1992).
Sadeghpour and Cavagnero (1993) investigated the

photoabsorption spectrum of He below the n=3 thresh-
old with the LS-coupled eigenchannel R-matrix ap-
proach; the motion beyond the reaction volume utilized
generalized quantum-defect theory (Greene et al . ,
1982) for long-range potentials of Coulomb-plus-dipole
form. Sadeghpour et al . (1992) combined an
LS-coupled eigenchannel R-matrix calculation with a
quantum-defect description of electron motion in a di-
pole field to predict the photodetachment spectrum of
H2, including resonant structures up to the n54 hydro-
genic threshold. Higher-lying doubly excited states of
H2 up to the n56 threshold were calculated by Pan et
al . (1994), who adopted an LS-coupled eigenchannel
R-matrix calculation. The reaction volume in this study
extended out to r05110 a.u., but long-range coupling
caused by the large core multipole moments required
direct solution of the close-coupling equations in the
outer region, instead of the economical (but approxi-
mate) quantum-defect method. This calculation ac-
counted well for the experimental results of Harris et
al . (1990). High-lying doubly excited states of Li2 were
treated using the same procedures and found to be re-
markably similar to the H2 resonance pattern, although
some conspicuous differences were apparent.
This review has not explicitly discussed electron-ion

and electron-atom scattering processes, although they
have been studied extensively in Wigner-Eisenbud-type
R-matrix calculations. Burke and Berrington (1993)
published a survey of calculations carried out with the
Belfast R-matrix packages. Relatively few calculations
have been carried out using the eigenchannel R-matrix
approach. One eigenchannel study was that of Pan
(1991a, 1991b), who calculated electron collisions with
Be1, Mg1, and Ca1 ions at low energies. Pan devel-
oped a systematic and comprehensive analysis of the
prominent and complicated series of double excitation
of the collision complex. Pan’s calculations also resolved
a long-standing discrepancy between theory and experi-
ment in the near-threshold excitation of the Be1 reso-
nance transition by electron impact.
More recently, Robicheaux et al . (1994) studied the

controversial problem of e-H2 inelastic scattering above
the triple-electron escape threshold. The main purpose
of this investigation was to see whether H22 resonances
(if they exist) could influence the scattering process. Ex-
periment (Walton et al., 1970, 1971; Peart and Dolder,
1973) and theory (Taylor and Thomas, 1972) had long
ago presented evidence in support of this claim. To deal
with this problem, it was necessary to extend the eigen-
channel R-matrix method to describe approximately the
effects of multiple-electron escape. The R-matrix calcu-
lation, conducted in parallel with a configuration-
interaction study of the dependence of the 2s22p 2P
resonance on the nuclear charge Z , led to a prediction
that the previously observed (and calculated) H22 reso-
nances could not exist. This prediction has since been
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confirmed by a new experiment of Andersen et al.
(1995), who observed no evidence for resonances in
electron-scattering from the deuterium negative ion.
(D2 is expected to behave the same as H2 in such elec-
tron scattering experiments.)
Following the lead of Robicheaux et al . (1994) in ex-

tending R-matrix methods to handle the double con-
tinuum H+e1e , Meyer and Greene (1994) calculated
double photoionization of He by one-photon absorption
in the energy range from the He11 double-escape
threshold up to photon energies near 200 eV. The stan-
dard LS-coupled eigenchannel R-matrix method, ap-
plied previously to single photoionization only, was
adapted to describe a class of two-electron escape pro-
cesses. Although the boundary conditions imposed in
the calculation appeared not to allow the possibility of
direct electron escape into the double continuum, a re-
alistic description of the He double-photoionization
cross section, and of the ratio of double- and single-
photoionization cross sections of He was obtained. The
central idea was to distinguish among the closed-type
orbitals used to represent the inner electron He1 in a
close-coupling expansion: those that had negative ener-
gies (relative to the double-escape threshold) were inter-
preted differently from those having positive energies.
The He1 eigenfunctions that had positive energies were
viewed as representing a discretized continuum state of
He, whereby all flux escaping in channels associated
with a positive-energy inner electron was interpreted as
contributing to double photoionization. All flux escaping
in channels with a negative-energy inner electron was
similarly associated with single photoionization. Pseu-
doresonances appeared in the double-photoionization
cross section, owing to the artificial discretization of the
He1 continua. These artifacts of the finite-volume cal-
culation were eliminated from the final spectrum by us-
ing two averaging techniques: (i) the weakly closed
channels were treated as though they were open when
the MQDT equations were solved to determine the
photoionization cross section; (ii) the spectrum was cal-
culated for a number of different values of the
R-matrix box size r0, and these results were averaged to
determine the final spectrum that was compared with
experiment. The basic ideas have been improved in a
subsequent study by Meyer et al. (1995), through the in-
troduction of a frame-transformation-type projection of
the ‘‘box eigenstates’’ of the residual ion onto the true
continuum states of the ion. Other methods have been
proposed through the years to describe two-electron es-
cape. One of these, the R-matrix theory for two active
electrons proposed by Burke et al . (1987), might be able
to describe two-electron continua and high-lying doubly
excited states. An important step in its development was
the Le Dourneuf et al . (1990) implementation of a two-
dimensional R-matrix propagation procedure for an
s-wave model (Temkin, 1962; Poet, 1978) of e-H scatter-
ing. Two formulations that have shown great promise
are the convergent close-coupling approach of Bray and
Stelbovics (1992, 1995) and the hyperspherical close-
coupling approach developed by Kato and Watanabe

(1995). Further theoretical effort is still needed, how-
ever, to overcome limitations of all these methods and
to develop an efficient R-matrix method or other ap-
proach that can handle two escaping electrons.
Another source of extremely rich spectra that have

been successfully described using theoretical multichan-
nel spectroscopy is the system of a one- or two-electron
atom in an external magnetic or electric field. The hy-
drogen atom in a magnetic field has attracted much at-
tention. This and related systems have served as proto-
types for the study of ‘‘quantum chaos,’’ i.e., the study of
nonseparable quantum systems whose classical dynamics
are chaotic. Nonseparability of the Schrödinger equation
for hydrogen in a magnetic field becomes paramount
near the zero-field ionization threshold. For states in
that energy range, the cylindrically symmetric diamag-
netic term (associated with the Lorentz force) achieves a
strength comparable with the spherically symmetric
Coulomb potential. In this situation, neither perturba-
tive nor adiabatic treatments (Starace and Webster,
1979; Wang and Greene, 1989) can describe the ex-
tremely complicated diamagnetic spectra. However, the
adiabatic treatment in cylindric coordinates by Wang
and Greene (1989) correctly described some qualitative
features of the quasi-Landau resonance spectra, such as
the 3

2vc spacing of resonances observed by Garton and
Tomkins (1969a) and the existence of ‘‘one-
dimensional’’ Rydberg states (Iu et al., 1989) converging
to the vc-spaced Landau ionization thresholds. Any
convincing theoretical treatment must account for the
strong interactions between these Rydberg series. As
shown by Wintgen and Friedrich (1986, 1987) and by
Wang and Greene (1991a), the quasi-Landau ‘‘reso-
nances’’ can be viewed as broad perturbers embedded
among densely packed high-Rydberg states that belong
to series converging to lower-lying Landau thresholds;
these quasi-Landau resonances interact with high-
Rydberg states to form complex resonances. Moreover,
destructive interferences occur periodically, resulting in
the occurrence of resonances whose width nearly van-
ishes. Hydrogen photoionization in an astrophysical
strong magnetic field was described by Greene (1983)
and by Wang and Greene (1991b) using an eigenchannel
R-matrix calculation augmented by a multichannel
quantum-defect description of the asymptotic wave
functions in cylindrical coordinates. The latter of these
papers used a mixed-symmetry basis set that included
spherical basis functions that could describe the impor-
tant departures from cylindrical symmetry close to the
nucleus. The R-matrix calculations carried out within a
cylindrical R-matrix box determined the smooth short-
range reaction matrix and dipole matrix elements that
were then used to calculate the photoionization cross
section on a fine energy mesh.
Wang and Greene (1991b) calculated photoionization

spectra for superstrong magnetic fields B>103 T. The
calculation of MQDT parameters, needed to account for
spectroscopic observations in magnetic fields relevant to
terrestrial experiments (B;6 T), is far more difficult
because of the large number of interacting channels and
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the large volume over which the Hamiltonian is non-
separable, a cylinder of radius '10 3 a.u. and length
'10 4 a.u., for B=6 T. A variety of different methods
have been developed to calculate the diamagnetic Ry-
berg spectra of atoms in a magnetic field of laboratory
strength. Among them, the methods developed by
Delande et al . (1991), O’Mahony and Mota-Furtado
(1991), Watanabe and Komine (1991) or Halley et al.
(1992, 1993), were used to interpret recent observations.
Two of these calculations (O’Mahony and Mota-
Furtado, 1991; Watanabe and Komine, 1991) deter-
mined a smooth short-range reaction matrix that charac-
terizes the solutions in the cylindrical asymptotic region.
This information was then used to calculate the photo-
ionization cross section. Both of these approaches intro-
duced a small spherical inner region where the Rydberg
electron motion could be described by field-free MQDT
parameters; they both solved the Schrödinger equation
over a large region in spherical coordinates, and then
made a spherical-to-cylindrical two-dimensional frame
transformation at large distances. O’Mahony and Mota-
Furtado (1991) connected the outer asymptotic region to
the inner region using an R-matrix propagation scheme.
Watanabe and Komine (1991) implemented the
diabatic-by-sector method of Launay and Le Dourneuf
(1982) to construct channel functions that were treated
diabatically within each radial sector. Both methods
achieved impressive agreement with the high-resolution
spectra of Li in a magnetic field of 6 T (Iu et al . , 1989,
1991). Delande et al . (1991) calculated the photoioniza-
tion cross section of hydrogen in a magnetic field by
replacing r̄→ r̄e iu, p̄→p̄e2iu in the Hamiltonian and di-
agonalizing once and for all the complex rotated Hamil-
tonian H(u) built on a large basis of roughly 105 Stur-
mian functions. Finally, Halley et al . (1992, 1993)
combined the complex-coordinate method with a vari-
ant of the R-matrix method (Schneider, 1981) to inter-
pret the high-resolution diamagnetic spectra of Li (Iu
et al . , 1989, 1991) and of the heavier alkaline earths Sr
and Ba (Lu et al . , 1978). This combination of the
R-matrix and complex-coordinate methods was also suc-
cessfully applied to interpret high-resolution diamag-
netic spectra of He (Delande et al . , 1994) and Stark and
diamagnetic spectra of Na (Seipp and Taylor, 1994).
Furthermore, it remains the only method presently
available to treat atoms in much more complex situa-
tions, such as in crossed electric and magnetic fields,
where the asymptotic solution is not accurately known.
The complex-coordinate method (Ho, 1983) is emerg-

ing as one of the simpler alternatives that currently exist
for calculations of the total photoabsorption spectrum,
or of resonance positions and total decay widths. If a
convenient basis set can be found for a problem with
relatively few degrees of freedom, such as the Sturmian
basis set for hydrogen in a magnetic field, it is relatively
straightforward to form an enormous Hamiltonian ma-
trix and solve for many of its eigenvalues and eigenvec-
tors. Moreover, if the matrix turns out to be sparse, as is
again true of the Sturmian basis set for hydrogen dia-
magnetism, the Lanczos algorithm (see Ericsson and

Ruhe, 1980, and references therein) or its competitors
can efficiently solve the eigenvalue problem even when
the basis-set size grows to enormous dimensions. The
main limitations of this method are: (i) It has been used
almost exclusively for the calculation of total photoab-
sorption cross sections (see, for example, Berzinsh et al.,
1995). A limited number of attempts have been made to
extract other observables, such as partial cross sections
(Han and Reinhardt, 1995), but the ability of this
method to compete with the techniques of multichannel
spectroscopy for calculations of partial cross sections,
angular distributions, and other observables has not yet
been demonstrated. (ii) It is difficult to interpret the dy-
namics of the resulting wave functions, as the complex
rotation of the coordinates modifies the continuum solu-
tions in a nontrivial manner. It is possible that, as expe-
rience with this theoretical tool grows, the interpretive
capabilities of this approach will improve. (iii) A final
disadvantage of the complex coordinate method and its
relatives is that they do not produce intermediate quan-
tities, such as the smooth short-range scattering matrix
of multichannel spectroscopy. As this review has shown,
these tools can be decisive in the interpretation of the
spectrum; they can readily predict any observables that
it is possible to measure, and they can be utilized to
predict the outcome of entirely new experiments, such
as one with a new external field applied. The examples
in the following paragraph describe this last capability.
Nevertheless, when one is interested in a calculation of
the total photoabsorption spectrum, say for comparison
with an experimental measurement, the complex-
coordinate approach is certainly one to consider, owing
to its ease of implementation.
The problem of a nonrelativistic hydrogen atom in a

static electric field can be solved exactly (Luc-Koenig
and Bachelier, 1980a, 1980b) because the time-
independent Schrödinger equation separates in para-
bolic coordinates. However, the Hamiltonian becomes
nonseparable for a more complex atom in an electric
field, since the potential of an electron departs from a
pure Coulomb field within the core of a nonhydrogenic
atom. The Stark spectra of autoionizing levels of nonhy-
drogenic atoms exhibit tremendous complexity and can
be viewed as multichannel spectra (Harmin, 1984;
Sakimoto, 1986). Extensive measurements and calcula-
tions of Ba autoionizing Stark spectra around the 5dj
ionization thresholds were reported recently (Arm-
strong et al . , 1993; Armstrong and Greene, 1994). The
spectra were recorded by photoionization of the laser-
excited Ba 5d6p 3D1 level in the presence of an electric
field. The theoretical description combined information
from jj-coupled eigenchannel R-matrix calculations,
performed for zero external field, with a Harmin-Fano-
type field-dependent frame transformation (Harmin,
1984, and references therein). The calculations success-
fully reproduced the complex resonance patterns ob-
served over broad spectral regions that included as
many as six interacting Stark manifolds attached to the
two different 5d3/2 and 5d5/2 ionization thresholds. The
average widths of autoionizing Stark states were found
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to scale approximately as n24, n being the relevant ef-
fective quantum number. However, large departures
from this scaling law were observed for individual reso-
nances, which could be important for the theoretical de-
scription of other processes in an electric field, such as
dielectronic recombination (Jacobs and Davis, 1979; Na-
har and Pradhan, 1992).
The statistics of resonance distributions in multichan-

nel atomic and molecular spectra has been a subject of
increasing interest in connection with ‘‘quantum chaos’’
studies. Statistical analyses of quantum-mechanical spec-
tra have attempted to ascertain the extent to which the
resonance positions and widths follow the predictions of
random-matrix theory. Specifically, the statistical distri-
butions of energy-level spacings (nearest-neighbor spac-
ings) have been compared with the Wigner distribution,
which applies when strong level repulsion results in few
closely spaced levels. The resonance width distributions
were compared with the Porter-Thomas distribution,
whose form implies that small widths are by far the most
probable (for references see Brody et al . , 1981, and De-
lande and Buchleitner, 1994). While portions of field-
free autoionizing spectra were found to exhibit the
Wigner and Porter-Thomas distributions of positions
and widths (see, for example, Connerade et al . , 1990,
and Miecznik et al . , 1995) there remain at the same
time striking regularities and Rydberg periodicities in
the pattern of resonance energies and decay widths. This
work suggests that caution should be exercised before
automatically interpreting ‘‘classical chaos’’ as reflecting
‘‘quantal irregularity.’’ Similar results were found for
diamagnetic spectra: in the regions in which the classical
dynamics is chaotic, the statistical properties of quantum
spectra are accurately described by random-matrix
theory (Grémaud et al . , 1993; Delande and Buchleitner,
1994); again, however, regular Rydberg progressions
have been locally observed (Iu et al . , 1989, 1991) or
predicted (Wang and Greene, 1991a, 1991b). In multi-
channel spectra, the distribution of nearest-neighbor
spacings evolves from the Poisson to the Wigner distri-
bution as the channel coupling increases (Draeger and
Friedrich, 1991). Moreover, extremely narrow reso-
nances typical of the Porter-Thomas distribution appear
periodically in the vicinity of each broad interloper of
Rydberg series, owing to destructive interferences be-
tween autoionization pathways associated with different
closed channels (Wintgen and Friedrich, 1986, 1987;
Wang and Greene, 1991a, 1991b). This implies that com-
plex spectra (which may or may not reflect classical
chaos) need not be totally irregular, random, and unpre-
dictable, but can possess similar statistical properties. In
fact, as discussed recently (Ivanov et al . , 1995; Zakrze-
wski et al . , 1995) for two-electron atoms and hydrogen
in a magnetic field with classical chaotic dynamics, even
close to an ionization threshold, there remain regions in
the classical phase space where an approximate adia-
batic separation of the motion along two coordinates
exists that can induce deviations from random-matrix
theory.

This review has primarily treated photoionization
spectra associated with single-photon absorption from
the ground state or from a laser-prepared excited state.
One striking difference between the one-photon and
multiphoton cross sections is the greater prominence of
resonances in the latter process. In multiphoton ioniza-
tion cross sections, Rydberg series of resonances can
arise at each intermediate or final step of the process.
Interest in the description of multiphoton processes in
multielectron atoms continues to grow. Most theories
have dealt with nonresonant processes and have calcu-
lated multiphoton ionization cross sections using pertur-
bation theory at the lowest order. Fink and Zoller
(1989) proposed a multichannel quantum-defect param-
etrization of perturbative two-photon ionization cross
sections, in the presence of intermediate- and final-state
resonances, suitable for use with ab initio calculations.
Retaining the ideas of Fink and Zoller (1989), Ro-
bicheaux and Gao (1991, 1993) developed an efficient
method for calculating perturbative two-photon ioniza-
tion cross sections based on variations of the eigenchan-
nel R-matrix method and multichannel quantum-defect
theory. The method was applied to two-photon ioniza-
tion of the Mg and Ca ground states. A relativistic time-
dependent Dirac-Fock approach combined with multi-
channel quantum-defect theory was used by Fink and
Johnson (1990) to calculate two-photon ionization cross
sections of the rare gases. One of the first results ob-
tained by the Belfast group with the Wigner-Eisenbud
form of the R-matrix method concerned its applicability
to the calculation of the infinite summations over inter-
mediate states involved in dynamical dipole polarizabi-
ties (Allison et al . , 1972). Later, Shorer (1980) and then
Smith et al . (1992) extended the codes of the Belfast
group to the calculation of two-photon excitation and
ionization. Applications to Ne, Be, and C atoms were
presented. A configuration-interaction formulation, suit-
ably extended to incorporate field-induced effects, was
used by Lambropoulos et al . (1988) to interpet experi-
mental observations on multiphoton ionization in Sr.
Configuration-interaction approaches using L2 basis sets
were used to calculate multiphoton ionization (detach-
ment) cross sections in H2, He, Be, and Mg (Moccia
and Spizzo, 1989; Chang and Tang, 1992; Sánchez et
al . , 1995, and references therein). The study of atomic
systems interacting with intense laser fields has attracted
considerable interest in recent years. Among the non-
perturbative methods developed to treat multiphoton
processes accounting for strong-field effects, the
R-matrix-Floquet theory developed by Burke and co-
workers (Burke et al . , 1991; Dörr et al . , 1992, 1993)
looks very promising.
Photoionization spectra investigated with the eigen-

channel R-matrix approach have been restricted to
treatments of valence-shell photoionization. However,
the subject of atomic inner-shell photoionization contin-
ues to be of great interest to both experimenters and
theorists. For instance, inner-shell photoabsorption
spectra of alkaline-earth elements exhibit various
anomalies that reveal strong correlation and spin-orbit
effects (Connerade et al . , 1990; Connerade and Sarpal,
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1992). The great majority of eigenchannel R-matrix
photoionization calculations used a frozen-core model
potential to account for the effects of the closed shells.
Theoretical investigation of inner-shell photoionization
in alkaline-earth atoms would require an ab initio de-
scription of all electrons, as was used in eigenchannel
R-matrix calculations of the chalcogen (Chen and Ro-
bicheaux, 1994) and Al (Miecznik et al . , 1995) outer-
shell photoionization cross sections. Many successful cal-
culations of photoionization spectra involving inner-
shell excitation have been carried out using powerful
methods such as the relativistic random-phase approxi-
mation, many-body perturbation theory, or the Wigner-
Eisenbud-type R-matrix approach (for references see
Starace, 1982; Kelly, 1987, and Burke and Berrington,
1993).
We address now the description of relativistic effects.

As shown in Secs. IV and V, the jj-LS frame-
transformation treatment was found to be very success-
ful in describing numerous nonperturbative spin-orbit
effects in some atoms as heavy as barium or as compli-
cated as titanium. Despite the clear success of the ap-
proximate frame-transformation treatment, examples
were found for two-electron systems in which the
jj-coupled eigenchannel R-matrix calculations (which
include explicit spin-orbit terms in the Hamiltonian)
gave improved agreement with measurements. Al-
though among the relativistic effects only the spin-orbit
terms are included explicitly, we believe that numerous
other relativistic effects, such as the mass-velocity and
Darwin terms, are implicitly taken into account (at least
approximately) through the use of a semiempirical one-
electron model potential (Greene, 1990a; Greene and
Aymar, 1991). The jj-coupled eigenchannel R-matrix
approach has not yet been extended to treat open-shell
atoms, though we anticipate that it should give improved
results, for instance in heavy open p-shell atoms. The
possibly surprising success of this non-Dirac description
of relativistic valence-electron dynamics probably stems
from the fact that photoabsorption (or photodetach-
ment) mainly probes the details of the wave functions
beyond ; 1 a.u. from the nucleus. Poorer theoretical
results are anticipated for short-range observables such
as hyperfine splittings. A more correct, but also much
more complex, way to treat relativistic effects is to use
the Dirac Hamiltonian. A relativistic version of the
eigenchannel R-matrix method based on the Dirac
Hamiltonian was formulated by Hamacher and Hinze
(1991), but no application was reported. Wigner-
Eisenbud-type R-matrix approaches based on the Dirac
Hamiltonian have been developed by Chang (1975,
1977), Norrington and Grant (1981), and by Thumm and
Norcross (1991, 1992). To our knowledge, these meth-
ods have been applied only to electron-scattering calcu-
lations. A relativistic R-matrix treatment would be use-
ful in its own right, and to check the validity of the
predictions obtained for Fr2 (Greene, 1990a) and Ra
(Greene and Aymar, 1991). This would also be a natural
tool for investigations of photoionization and electron-
scattering processes involving multicharged positive

ions. In this review, we have considered electric dipole
transitions only; the study of magnetic and higher-order
electric dipole transitions in heavy multicharged positive
ions could also be profitably studied using a relativistic
R-matrix description.
Despite the great amount of progress in multichannel-

spectroscopy theory, improvements are still desirable in
a number of directions: (i) To reach higher energies very
close to thresholds for escape of two or more electrons,
for instance, one must adopt a very large reaction vol-
ume. The convergence of calculations deteriorates rap-
idly as the size of the reaction volume grows, which ren-
ders intractable the type of basis-set-based variational
calculations emphasized in this review. New concepts
will be required to handle that regime, such as the prom-
ising hyperspherical close-coupling method (Tang et al.,
1992), which has obtained accurate results for helium.
(ii) Titanium is the most complicated atomic system that
has been studied using the eigenchannel R-matrix ap-
proach. More complicated spectra, such as those involv-
ing an open 4f (lanthanides), 5f (actinides), or 4d sub-
shell, present a serious challenge for theory. The
description of these elements remains a difficult under-
taking for the future. (iii) The use of these techniques to
treat molecular species, i.e., combining ab initio
R-matrix calculations with multichannel quantum-defect
theory, have been rare (Stephens and McKoy, 1992;
Greene and Yoo, 1995) and still require substantial im-
provement in order to develop a scheme for calculations
that is spectroscopically accurate. (iv) The development
of improved methods for interpretation and visualiza-
tion of the quantum dynamics of multichannel spectra
remains a key task as well. Tremendous insight has been
gained in some classes of few-body systems through the
use of adiabatic hyperspherical methods (Fano and Rau,
1986; Lin, 1995) yet their extension to each new type of
quantum-mechanical system still requires great effort.
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