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The history of the theory of quantum nondemolition (QND) measurements from the 1920s until today
is reviewed. The definition and main principles of QND measurements are outlined. Achievements in
the experimental realization of QND measurements and several new promising schemes of QND
measurements are described. A list of the most important problems (from the authors’ point of view)
in the area of QND measurements is presented. The problem of measurement of a quantum oscillator
phase is considered. A new method of phase measurement is proposed. Examples of possible solutions
of fundamental physical problems using QND methods are given.
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I. HISTORICAL INTRODUCTION

Fragmentary notes concerning the problem of quan-
tum nondemolition (QND) measurements may be found
dating back to as early as the 1930s in the publications
by the founders of the quantum theory. For example, a
footnote in the paper by Landau and Peierls (1931) con-
tains the following statement (translated from the origi-
nal German): if there existed an interaction Hamiltonian
depending on velocity only, one would be able to mea-
sure the velocity of a free particle with the arbitrary high
precision. Further, in the same footnote, an incorrect
conclusion was given: such a Hamiltonian does not exist,
and therefore such a measurement is not possible.
In the outstanding monograph by von Neumann

(1932) published one year later, one can find an analysis
of the measurement of free mass velocity using the Dop-
pler effect. Such a meter must have a resolution differ-
ent from the coordinate meter in Heisenberg’s micro-
scope. Von Neumann did not complete this analysis. It
was made several decades later.
In the fundamental monograph by Bohm (1952), pub-

lished 20 years after von Neumann’s book, one can find
the following condition of a QND measurement: diago-
nality of the meter-object interaction Hamiltonian in the
representation of the observable to be measured. Many
years later, special analysis showed this condition to be
excessive.
The lack of interest in quantum measurements before

the 1960s could probably be explained by the fact that in
the overwhelming majority of experimental methods of
that time, physicists dealt only with serial tests (en-

semble measurements). In this type of measurement, ar-
bitrary desirable precision can be achieved by an in-
crease in the number of tests. The interest in quantum
measurements with single objects grew again with the
emergence of quantum electronics and nonlinear optics.
Simultaneously, the interest of physicists was drawn to
nonclassical states of electromagnetic (e.m.) fields—the
squeezed states [first described by Schrödinger (1927);
the term itself appeared later]. At the same time, sub-
stantial progress was being made in the development of
the mathematical apparatus of the measurement theory
(Stratonovich, 1973; Helstrom, 1976; Kholevo, 1982).
The main impetus for a detailed analysis of ultimate

sensitivity in quantum measurement with a single object
was given by the problem of detection of gravitational
waves. A burst of gravitational radiation caused by as-
trophysical catastrophe (see, e.g., Thorne, 1987) pro-
duces very weak a.c. tidal forces (acceleration gradients)
which may be detected either by the relative displace-
ment of two separated masses or by the occurrence of
a.c. strain in one spatially extended mass. Simple analy-
sis, made in 1967 (Braginsky, 1967), has shown that by
improving the isolation of such macroscopic test masses
from the heat bath (by reducing friction), one can bring
them into the domain of substantially quantum behavior,
even if the temperature T is high. In this case, the sen-
sitivity in measurement of displacement or acceleration
is limited by the (quantum) back action of the meter.
The corresponding characteristic limits of sensitivity in
coordinate measurements, as suggested by Thorne, were
named the standard quantum limits (SQL). In 1974
(Braginsky and Vorontsov, 1974), it was proposed that a
sensitivity better than SQL can be achieved if the meter
‘‘extracts’’ information only on one specially chosen ob-
servable. This article contained, however, an incorrect
example; the first correct example—in essence, a scheme
of gedanken QND experiment—was published three
years later (Braginsky, Vorontsov, and Khalili, 1977; Un-
ruh, 1978). In this example, it was proposed that the
energy in e.m. resonators be measured by registering the
ponderomotive pressure which acts on the resonator’s
walls. In this procedure the energy is not absorbed, and
it may be repeated many times in the absence of dissi-
pation. One year later, Thorne, with colleagues (1978)
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showed that there exists another type of QND meter for
an oscillator which registers one of the two quadrature
amplitudes.
Since then, more than 200 papers have been published

on the subject of QND measurement, describing differ-
ent aspects of this problem and suggesting and analyzing
different measurement schemes, for both mechanical
and e.m. systems. It has recently become evident that
the area of probable applications of QND meters is
much larger than the solution of the problem of sensi-
tivity in gravitational-wave antennas. In the 1980s, the
problem of QND measurements attracted quantum op-
ticians, and the first practical success was achieved;
QND measurements were realized experimentally, how-
ever, in the form of feasibility demonstrations.
From a theoretical point of view, as shown by special

analysis after the first publications, QND measurements
are the most fundamental type of quantum measure-
ment, free of any nonfundamental uncertainties. On the
other hand, successful development of QND methods
on the engineering level undoubtedly promises a quali-
tative improvement of sensitivity in many experiments.
As a result, intense studies in this field are now carried
out in relatively large numbers of laboratories in several
countries. The goals of this review are (1) to familiarize
the reader with the principles of QND measurements;
(2) to describe the present state of experimental pro-
grams and their prospects; (3) to outline unsolved prob-
lems in the area of QND measurements; and (4) to give
a few examples of possible solutions of fundamental
physical problems on the basis of QND methods.

II. DEFINITION AND MAIN PROPERTIES OF QUANTUM
NONDEMOLITION METHODS

This section is intended to familiarize readers with
QND measurement schemes without their needing to
refer to the original papers. Let us first consider a simple
example demonstrating the origin of the standard quan-
tum limit. Suppose that the coordinate x(t) of the mass
m of an oscillator with eigenfrequency v is continuously
monitored. The value x(t) may be expressed by two
quadrature amplitudes X1 , X2 ,

x~ t !5X1cos~vt !1X2sin~vt !, (1)

which satisfy the uncertainty relation

DX1DX2>
\

2mv
. (2)

The continuous monitoring of the coordinate with the
time-independent accuracy is evidently equivalent to the
simultaneous symmetrical measurement of quadrature
amplitudes:

DX15DX2 , (3)

where DX1 and DX2 are the measurement errors. Sub-
stituting this condition in the uncertainty relation (2), we
obtain the standard quantum limit for the coordinate of
the oscillator:

DXSQL5DX15DX25A \

2mv
. (4)

If the coordinate is continuously monitored with the ac-
curacy DXSQL , the amplitude of oscillations A will be
known with the same accuracy:

DA5DXSQL>A \

2mv
. (5)

It follows that, for the energy of oscillations

E5
mv2A2

2
1\v/25\v~N11/2! (6)

with N quanta in the mode, the standard quantum limit
is equal to

DESQL5mv2ADA5\vAN . (7)

For an electromagnetic oscillator, the analog of formula
(4) is the standard quantum limit for the electrical field
stress

ESQL5A \v

4pV
, (8)

where V is the effective volume occupied by the field.
Analogous simple analysis gives the following value for
the standard quantum limit for the coordinate of a free
mass:

DXSQL5jA\t

2m
, (9)

where t is the duration of measurement and j is the
factor of the order of unity depending on the form of the
signal. For example, for sinusoidal 2p pulse,

DXSQL5
1
2p
A\t

m
. (10)

Apparently, to overcome the standard quantum limit,
the meter must extract information only on the single
specified observable. The meter, designed in accordance
with this principle, does not disturb the value to be mea-
sured, and the others (noncommuting with it) are dis-
turbed precisely to the extent that provides satisfaction
of the uncertainty principle. This type of measurement is
called the QND measurement.
Main properties of the ideal QND measurement pre-

cisely reproduce the properties of the abstract quantum
measurement determined by von Neumann’s postulate
of reduction (1932).
If the object is initially in an arbitrary state with the

density operator r̂ and if the value q is measured, then
the QND measurement will yield one of the eigenvalues
q of the operator q̂ with probability ^qur̂uq& (where
uq& is the corresponding eigenstate). After the QND
measurement, the object will be in the state uq&. If a
quantum object is in the state with a certain defined
value of the measured observable, then the same value
will be obtained as the result of measurement. After the
measurement, the object will remain in the same state.
The measurement may be repeated many times, each
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time giving the same result. (It is assumed here that the
evolution of the measured value can be neglected: either
it is small or the measured value is an integral of motion;
see below.) That is why the ideal QND measurement is
an exact one: the meter does not add any perturbation,
and possible variance is the consequence of the a priori
uncertainty of the value to be measured.
Some quantum observables may have their own addi-

tional uncertainties which will limit the accuracy of mea-
surement, e.g., \/t for the energy or 1/N for the phase of
oscillator. The problem of existence of such limitations is
not yet solved.
The origin of the term ‘‘quantum nondemolition’’

translates from the intention to emphasize the following
basic property: if, before a measurement, an object is
not in one of the eigenstates of the measured value, the
QND measurement destroys this state but does not de-
molish it. For example, if an oscillator is initially in the
coherent quantum state, the QND measurement of en-
ergy will destroy this state and create N-state, although
this measurement does not include demolition, as in
classical photodetectors.
On the basis of the above consideration, one can for-

mulate a general necessary and sufficient condition that
the QND meter must satisfy (see Braginsky and Khalili,
1992):

@ q̂ ,Û#uc&50. (11)

Here, q̂ is the operator of the value to be measured;
uc& is the initial state of the quantum meter; and Û is the
operator of the joint evolution of the quantum meter
and the object under study. Condition (11) is usually re-
placed by the simpler sufficient (not necessary) condi-
tion

@ q̂ ,Û#50 (12)

(see details in Sec. IV).
To test implementation of conditions (11) and (12),

one has to know the operator Û , i.e., to solve the prob-
lem of evolution of the coupled system ‘‘quantum meter
+ object under study.’’ In most cases this is a rather com-
plicated problem, and therefore usually another suffi-
cient (not necessary) condition is used: the measured
value should be an integral of motion for the coupled
system. From the general form of a dynamic equation in
a Heisenberg evolution approach, it can be shown that
the latter condition is equivalent to the following equa-
tion:

i\
]q̂

]t
1@ q̂ ,Ĥ#50, (13)

where Ĥ is the Hamiltonian of the coupled system. If
the operator of the measured value does not depend
directly on time,

]q̂

]t
50, (14)

then condition (13) is reduced to the requirement that
q̂ commute with the Hamiltonian:

@ q̂ ,Ĥ#50. (15)

Apparently, this condition is more rigid than condition
(12). If it is secured, the measurement is nonperturbing
independently of the interaction time of the meter with
the object; i.e., equality (12) turns to identity indepen-
dent of the measurement time.
At about the same time that the term ‘‘QND measure-

ment’’ was introduced, another term—‘‘QND
observable’’—began to be used. The values of the opera-
tor of QND observable q̂ commute with those taken at a
different time:

@ q̂~ t !,q̂~ t8!#50, (16)

in the Heisenberg picture of evolution. This feature per-
mits continuous monitoring of such an observable with
the error less than SQL, and, as a result of this proce-
dure, it is possible to detect very weak external action on
the probe quantum object.
For simplest objects, (1) free mass and (2) oscillator,

QND observables are, correspondingly, (1) momentum
and energy, and (2) quadrature amplitude, energy, and
phase. The latter is an example of a QND observable
which is not an integral of motion

ŵ~ t !5ŵ1vt . (17)

For the observables-integrals of motion, condition
(13) can be simplified. The Hamiltonian Ĥ in most cases
can be presented in the form of a sum,

Ĥ5Ĥ01ĤM1ĤI , (18)

where Ĥ0 is the Hamiltonian of the object under study;
ĤM is the Hamiltonian of the meter; and ĤI is the inter-
action Hamiltonian. If the measured variable q is an
integral of motion for the object under study, then the
following equality is valid:

i\
]q̂

]t
1@ q̂ ,Ĥ0#50. (19)

From formula (19) and from the evident fact that

@ q̂ ,ĤM#50, (20)

we further derive that, for integrals of motion, condition
(13) is reduced to the commutation of the measured
value with the interaction Hamiltonian:

@ q̂ ,ĤI#50. (21)

As an example of QND meter, one can consider a
slightly modified scheme of the ponderomotive meter of
e.m. energy, proposed in Braginsky, Vorontsov, and Kha-
lili (1977).
Let one wall in an e.m. resonator be flexible or mov-

able (as a piston in a cylinder). By measuring the pres-
sure of an e.m. field imposed on the movable wall, one
can evidently calculate the energy. If the inertia of the
wall is large enough, then the phase of e.m. oscillations
will not influence its motion. The motion of the heavy
wall is slow compared to the frequency of electromag-
netic oscillations (i.e., it is adiabatic). It is known, on the
other hand, that the number of quanta in a resonator
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does not change during its adiabatic deformation. The
ponderomotive force acting on the resonator wall is
equal to

F5
E

d
, (22)

where E is the energy in the resonator, and d is the value
of the order of resonator dimensions, depending on the
chosen e.m. mode. Under the action of this force, the
momentum of the wall will change by the value

dp5
Et

d
, (23)

where t is the duration of measurement. It is evident,
therefore, that the better the initial momentum of the
wall is defined, the higher will be the precision of mea-
surement of the energy:

DEmeas5
d

t
Dp , (24)

where Dp is the initial uncertainty of the momentum.
On the other hand, in accordance with the uncertainty

principle, the less Dp is, the greater will be the initial
uncertainty of the wall coordinate Dx . The presence of
the uncertainty of coordinate translates into the uncer-
tainty of the resonator frequency Dv during measure-
ment time t and therefore to the random-phase shift

Dw pert5Dvt5vt
Dx

d
. (25)

From relations (24) and (25), taking into account the
inequality

DxDp>\/2, (26)

we obtain that

DEmeasDwpert>
\v

2
. (27)

It is interesting to note that the interaction Hamil-
tonian in the considered scheme is proportional to the
square of the generalized coordinate in the resonator
and not to the energy; i.e., condition (21) is not fulfilled.
However, nondiagonal matrix elements of the Hamil-
tonian (in presentation of the measured value) oscillate
with the frequency 2v . If the measurement time is large
enough,

vt@1, (28)

then their contribution to the operator of evolution is
small, and the more general condition (12) is secured.
Thus the considered measurement is actually a nonper-
turbing one. A more detailed and rigorous analysis
shows that the ultimate precision of measurement in the
considered scheme depends substantially on the a priori
information on the value of energy in the resonator. In
particular, if DEa priori.E , the minimal measurement
error is equal to

DE15\vAN
1

Avt
!DESQL , (29)

where N is the mean number of quanta. In the mean-
time, by repeating the measurement several times with
the increasing precision of a priori information, one can
obtain in the ultimate limit the following precision of
measurement:

DEQND5
\

t
!DE1 . (30)

Derivation of formulas (29) and (30), as well as a
more detailed analysis of different aspects of QND mea-
surement theory, can be found in the monograph by
Braginsky and Khalili (1992).

III. STATE OF THE ART IN QUANTUM NONDEMOLITION
MEASUREMENTS

Before reviewing the realized QND measurement
schemes, it is worth touching briefly on one rather im-
portant condition of their feasibility: the degree of isola-
tion of the specified quantum object from the heat bath.
The criterion of sufficient isolation can be easily ob-
tained by comparing the random change of the chosen
variable under the action of the heat bath (during cho-
sen averaging time t!t* , t* is the relaxation time) with
the a priori defined accuracy of measurement. For ex-
ample, if one has to achieve a resolution slightly better
than SQL for a free mass or oscillator in a heat bath
with high temperature T , then the following inequalities
must be fulfilled:

2kTt2

t*
<\ , (31)

or

2kTt

Q
<\ , (32)

where k is the Boltzmann’s constant, and Q is the qual-
ity factor of the oscillator (Braginsky, 1967).
It is obvious that inequalities (31) and (32) are, in fact,

the conditions of quantum behavior of the chosen ob-
jects. If, further, one has to measure, for example, the
energy of the oscillator with the accuracy of one quan-
tum, then the condition will be more rigid:

kTt~2N11 !

Q
<\ , (33)

where N is the initial (premeasurement) number of
quanta in the oscillator.
It is worth noting that the above conditions have long

been familiar to physicists involved in the development
of gravitational-wave antennas. [Condition (32) was ob-
tained as early as 1967.] Relatively recently, they were
derived anew on the basis of a rigorous analysis of the
decoherence process of a quantum object in a heat bath
(see Caldeira and Leggett, 1983; Zurek, Habib, and Paz,
1993; Zurek, 1993, and references therein).
When the value of T is small enough so that

kT!\v for an oscillator or kT!\/t for a free mass,
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conditions (31)–(33) must be replaced by a single, more
general relation:

DQND.DSQLA t

t*
, (34)

where DQND is the measurement error of the chosen
QND observable; DSQL is the corresponding standard
quantum limit for this observable; and t* is the relax-
ation time of the object. As the above consideration
shows, values t* and Q determine the possibility of re-
alization of QND measurement and the value of mea-
surement error. The history of experimental physics
demonstrates the following clear-cut trend: experimen-
talists invent new technologies or modify old ones to
increase the values t* and Q , and then it translates in
the improvement of resolution in experiments. For ex-
ample, 20 years ago the finesse of the best optical mir-
rors was at the level of F.103; recently, Kimble and his
colleagues demonstrated F.23106 (Rempe, Thomp-
son, and Kimble, 1992). (The quality factor of optical
resonator Q52FL/l , where L is the mirror separation
and l is the wavelength.) If mirrors with such a finesse
are used in Fabry-Pérot resonators of the advanced ver-
sions of laser gravitational antennas (projects LIGO-
VIRGO-GEO; see, for example, Abramovichi et al.,
1992), then their quality factor will exceed Q.1016, and
the relaxation time t*.10 s. Relatively recently, in the
optical range of frequencies, the so-called whispering-
gallery microresonators were demonstrated, possessing
a quality factor up to Q.33109 in combination with a
very small volume of e.m. field localization (Braginsky,
Gorodetsky, and Ilchenko, 1989, 1993; Collot et al.,
1993), attractive from the point of view of cavity QED
experiments and QND measurements (see below). In
the microwave band, the quality factors in excess of
Q>109 were demonstrated in dielectric resonators of
single-crystal sapphire at T.4 K (Braginsky, Ilchenko,
and Bagdasarov, 1987; Luiten, Mann, and Blair, 1993). It
is important to mention that with a further reduction of
impurity concentration in sapphire, one can expect to
reach Qe.1015 at 4 K in resonators of this type—the
level defined by weak low-temperature lattice absorp-
tion, which corresponds to relaxation time te*.104 s.
In the low-frequency mechanical domain, pendulum

suspension of high-purity fused silica with tm* >4.43107

s at T5300 K has been demonstrated (Braginsky, Mitro-
fanov, and Okhrimenko, 1993). With this value of tm* ,
condition (31) is fulfilled for t<531024 s. The experi-
mental know-how in the development of these suspen-
sions, and the established empirical rules, allow one to
expect the achievement of tm* .1012–1013 s (Braginsky,
Mitrofanov, and Vyatchanin, 1994).
It is important to emphasize that the demonstrated

values of Q and t* to date, and the projected improve-
ment expectations, are based on concrete dissipation
mechanisms for any given particular case. These con-
crete mechanisms may, in principle, be either strongly
suppressed or removed completely. At present, only a
single, fundamental (principally nonremovable) limit for

dissipation has been found (Braginsky and Khalili,
1991), which is associated with zero-point fluctuations.
This limit is many orders of magnitude smaller than the
most optimistic projections for existent systems. There-
fore there exists a substantial potential reserve to in-
crease the values of Q and t* , and its practical imple-
mentation depends only on the ingenuity and devotion
of experimentalists.
Let us now consider the achievements in concrete

schemes of QND measurements obtained during recent
years.
After a gedanken experiment scheme based on the

ponderomotive effect (Braginsky, Vorontsov, and Kha-
lili, 1977; Sec. II), a more realistic QND energy measure-
ment procedure was proposed on the basis of cubic non-
linearity x(3) (Braginsky and Vyatchanin, 1981). In the
simplest variant of this scheme, two e.m. resonators have
an overlapping volume filled with a nonlinear dielectric.
In the presence of energy E1 in the first resonator (signal
mode), the phase of oscillations w2 in the second reso-
nator (probe mode) during the time t will be shifted by
the value

dw2.
12p2x~3 !E1v2t

V
, (35)

where V is of the order of the resonator volume, and
v2 is the frequency of the second resonator. It is evident
that high sensitivity of measurement can be obtained
only under condition t!Q1 /v1 (Q1 is the quality factor
of the first resonator with frequency v1). Therefore pa-
rameter x(3)Q/V is crucial in this scheme. This rule is
general for all schemes of QND energy measurements:
one has to combine high reactive nonlinearity with a low
level of dissipation.
It is evident that this principle of QND energy mea-

surement can also be used for measurement of the en-
ergy of e.m. wave packets in a nonlinear waveguide. If
two wave packets are propagating in the waveguide—
the signal one with mean frequency v1 and the probe
one with frequency v2—and if during time t these pack-
ets overlap, then, because of the nonlinearity x(3) of the
waveguide dielectric, the phase shift of the probe packet
will be proportional to the energy in the signal wave
E1 , interaction time t , and to the value of x(3). In this
case, too, the low dissipation requirement is tough: it is
necessary that act/n!1 (where a is the attenuation in
the waveguide, and c/n is the speed of e.m. wave propa-
gation). The x(3) employing scheme was realized by sev-
eral groups. First, Levenson and his colleagues (1986)
reported that, according to their measurements in com-
mercially available silica fibers at 2 K, nonlinearity and
the level of fluctuations do not prevent realization of
QND measurements with the error DE1 smaller than
\v1AN (see also Imoto et al., 1985). Later, by measuring
the interaction of two solitons in a silica waveguide (at
T5300 K), Friberg, Machida, and Yamamoto (1992) re-
ported that they managed to obtain a resolution better
than SQL for QND registration of spectral components
of energy fluctuations (each soliton in this experiment
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contained N.108 photons, with 108 solitons per sec-
ond). In 1992 Grangier and his colleagues reported that
they managed to cross the level of SQL in QND energy
measurement using resonant optical nonlinearity in so-
dium vapor, in dispersive limit. [More detailed descrip-
tions of these experiments, besides the original papers,
can be found in the review articles (Roch et al., 1992).]
So far, the best resolution in the described types of ex-
periments, to the authors’ knowledge, has been obtained
by Kimble and his colleagues (Pereira, Ou, and Kimble,
1994) and by Poizat and Grangier (1993).
It is worth mentioning another type of QND measure-

ment of quadrature amplitude, proposed by Shelby and
his colleagues (1987). Later, LaPorta and his colleagues
(1989) reported on the first experimental demonstration
of this type of measurement.
Almost all experimental achievements in the field of

QND measurements of optical field can be attributed to
the ‘‘linear’’ area, according to Grangier’s classification
(Roch et al., 1992), when the amplitude of oscillations of
the signal wave is much larger than the quantum uncer-
tainties of its quadrature amplitudes. In this field, mea-
surement of the number of quanta is fully equivalent to
the measurement of quadrature amplitude synchronous
to the mean value of coordinate, with the error

DX15
DN

AN
XSQL , (36)

where XSQL is the measurement error corresponding to
SQL. The presently achieved values of the measurement
error lie in the range DN,AN , DX,XSQL , but
DN@1.
All experiments realized so far can be considered only

as demonstrations. In other words, realized schemes of
QND measurements are only ‘‘toys’’ in the hands of ex-
perimentalists, and not instruments that can be used for
the solution of concrete experimental problems.

IV. PROSPECTS AND UNSOLVED PROBLEMS OF
QUANTUM NONDEMOLITION MEASUREMENTS

The achieved level of sensitivity in the above-
described experiments prompted the invention of sev-
eral new schemes promising a substantial further im-
provement of resolution.
The principle of the QND measurement scheme em-

ploying deflection of atomic or molecular beams can be
explained by the following simple example (Braginsky
and Vyatchanin, 1988). If an electron moves during a
certain time in the nonhomogeneous evanescent field of
a dielectric waveguide with removed cladding, parallel
to the waveguide axis, it will be subject to a repulsive
force perpendicular to the axis and proportional to the
square of electrical field stress E :

F'.
e2E2

2mve
2D

, (37)

where e and m are electron charge and mass; D is a
characteristic value describing the scale of the evanes-

cent field; and ve is the frequency of electron oscilla-
tions in the field of the e.m. wave. This latter value can
be much smaller than the actual frequency of the wave,
if the velocity of the electron is close to the velocity of
the wave. Calculations have shown (Vyatchanin, 1990)
that only a few electrons suffice for the detection of a
monophotonic state (a single well-localized photon in
the waveguide) by detecting transverse momentum
F't on the background of diffractional uncertainty
\/2D . The necessity of using a specially profiled wave-
guide with close phase and group velocities is a disad-
vantage of this scheme.
The logical continuation of this scheme was the pro-

posal to use a quadratic deflection of atoms in a nonho-
mogeneous electromagnetic field of a resonator (Her-
kommer et al., 1992; Averbukh et al., 1994). For
example, the idea of using the evanescent field of optical
whispering-gallery microresonators looks very attractive
(see Sec. III). A single photon in a mode of such a reso-
nator will cause a substantial deflection of atomic beam
because of ponderomotive atom-field interaction, if the
frequency of atomic transition is close to the resonator
mode frequency. (The sign of the deflection angle will
depend on the sign of detuning.) Independent calcula-
tions performed by three research groups (Collot et al.,
1993; Matsko et al., 1994) have shown that this scheme
allows one to obtain the following resolution in energy
measurement:

DE.0.1\voptic . (38)

The above-described deflection schemes of QND en-
ergy measurement refer to the optical range of frequen-
cies. The analogous principle can be used in the micro-
wave band, with the addition of another effect predicted
and discovered more than 40 years ago by Kopfermann
and his colleagues (Friedburg 1951). This effect—
selective deflection of atoms or molecules in different
quantum states by static inhomogeneous electrical or
magnetic field—was successfully used by Townes, Basov,
Prokhorov, and Ramsey during the creation of ammonia
and hydrogen masers. The scheme of QND measure-
ment of the energy of a single photon using Kopfer-
mann’s effect consists of three stages: (a) an atom (or
molecule), with a transition frequency close to that of
the resonator mode, passes through part of the resona-
tor volume during one half-period of Rabi frequency
and absorbs one field photon from the resonator; (b)
after that, the atom (molecule) passes the area of non-
homogeneous electrical or magnetic field, where it ob-
tains a transverse momentum depending on its quantum
state; (c) finally, during the pass through another part of
the resonator volume, again equal to one half-period of
Rabi frequency, the atom (molecule) ‘‘gives back’’ the
photon to the resonator mode. It is obvious that the
acquired transverse momentum leads to a deflection of
the particle and can be registered as the readout of mea-
surement. Calculations have shown that with Rydberg
atoms as probe particles, this method can be used for
QND detection of single microwave photons in sapphire
disk resonators. Since the transit time through all three
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stages is approximately 231025 s, the relaxation time of
sapphire resonators te*.331023 s (corresponding to
the quality factor 109) gives enough room for repetitive
measurements (Braginsky and Khalili, 1994).
It is worth noting that this type of measurement satis-

fies neither the simple condition of QND (21) nor the
more general condition (12), for the complete set of
quantum states of an e.m. field. However, it satisfies con-
dition (12) for the subset consisting of ground and one-
photon states. Therefore it can be regarded as QND de-
tection of single photons.
A similar principle of QND measurement of the en-

ergy of microwave quanta in a cavity was proposed by
Haroche and his colleagues (Brune et al., 1990). The ba-
sic difference in their elegant scheme is the employment
of the quadratic Stark effect instead of Kopfermann’s
and a Ramsey-separated oscillatory fields technique in-
stead of a deflection of atoms. Preliminary testing of this
scheme allowed them to register the Stark shifts of
Rydberg-atom energy levels by zero-point oscillations in
a mode of microwave cavity with high accuracy (Brune
et al., 1994). Historically, the first achievement in this
area was the experiment by Walther and his colleagues
(see the review article by Walther, 1992), where by they
demonstrated that during nonlinear interaction of a soli-
tary Rydberg atom with a high-Q superconducting cav-
ity (the transit time of an atom in the cavity is of the
order of one period of single-photon Rabi frequency),
the values of nonlinearity and quality factor are suffi-
cient for the realization of QND energy measurement
with a small number of microwave photons.
The above-described schemes of QND energy mea-

surement in optical and microwave bands present, in the
opinion of the authors of this review, a variety of pro-
posed (to the present moment) realistic methods, ca-
pable of becoming new instruments in experimental
physics. Outlined is a certain sequence of stages (steps)
characterizing the level of achievements in this field: (1)
presently realized demonstration-type experiments with
the resolution DE<\veAN , with N@1; (2) the above-
described new schemes, which promise resolution
DE<\ve ; (3) apparently the last stage in the develop-
ment of QND energy measurement, which would allow
DE!\ve down to DE.\/t .
Let us note that the principal possibility of having the

measurement error smaller than \/t has for a long time
been a subject of discussion. Vorontsov (1981) proposed
a scheme of gedanken experiment on the measurement
of energy in an e.m. resonator, which was free of above
the limitation. It is required, however, in this scheme,
that meter provide perturbation of phase

Dwpert>
\v

2DE
>vt ; (39)

i.e., the uncertainty of the frequency during measure-
ment should exceed the unperturbed value of the fre-
quency before the measurement

Dvpert5
Dw

t
>v , (40)

and so it is not clear whether such a procedure can be
realized experimentally.
In experiments with mechanical objects, the number

of achievements concerning QND measurements is
much smaller. Although the scheme of measurement of
quadrature amplitude was analyzed in detail relatively
long ago (see, for example, Braginsky, Vorontsov, and
Thorne, 1980), it is not yet realized. Cinquegrana et al.
(1993) report, however, on the results of the develop-
ment and testing of a gravitational bar-antenna with a
QND meter of quadrature amplitude. As for another
QND observable—the energy of a mechanical
oscillator—no experimental scheme has been proposed
so far.
The proposed schemes for the measurement of speed,

which is a QND observable for a free mass (Braginsky
and Khalili, 1988, 1990), in the authors’ opinion, present
only ideas of gedanken experiments but no basis for ex-
perimentally realizable techniques. A basic idea of these
schemes is that a flux of e.m. energy prepared in a spe-
cial noncoherent state, upon reflection from a free mass,
may bring out little information on its coordinate and
much more information about its speed.
A special problem in QND measurements is that of

the measurement of the phase of oscillator (or e.m. reso-
nator) if the latter is in the phase-squeezed state. This
problem is considered in detail in Sec. V of this review.
To conclude this section, let us touch on several un-
solved problems in the theory of QND measurements,
including the definition of terms.
(1) In recent years, active discussion has revolved

around this question which has methodological and fun-
damental importance: where, under the conditions of fi-
nite measurement accuracy, finite perturbation of the
variable to be measured, and finite dissipation, lies the
border between QND and non-QND measurements?
For energy measurements, at least for the case N@1, a
clear classification was proposed by Grangier and his
colleagues (1992) and by Imoto and his colleagues
(1989). In general, however, the problem is not yet
solved. It can be shown, for example, that the statistics
of the results of QND energy measurements in an oscil-
lator with dissipation, under the condition DN!1, is
rather nontrivial and drastically different from what can
be obtained from simple semiclassical consideration.
In the authors’ opinion, a logical approach should be

based on the following simple criterion: the measure-
ment is approximately nonperturbative as long as it pro-
vides (possibly, being repeated several times) both a
measurement error and the perturbation of the mea-
sured value smaller than SQL.
(2) Application of QND methods will undoubtedly

improve the sensitivity of laser gravitational-wave an-
tennas. Potential improvement of sensitivity here is
based on the substantial reserve, because with achiev-
able quality of optical mirrors t/t*.1024 in large-scale
laser antennas. It is not yet clear, however, what should
be the quantum state of e.m. field in the antenna, how it
should be prepared, and what will be the registration
procedure. It is obvious that there exists a much wider
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spectrum of possibilities of solving this problem besides
the ‘‘one-dimensional’’ set of ‘‘phase-squeezed–
amplitude-squeezed’’ states.
(3) There exists a fundamental problem, not con-

nected directly to the theory of QND measurements but
playing the key role for their experimental realization: is
there an intrinsic correlation between dissipation and
nonlinearity in different physical systems? [A particular
example of such an interrelation is given by fundamental
losses in high-quality dielectric crystals (see Gurevich,
1981).] Almost 20 years ago, one of the authors (VBB)
addressed this question to Richard Feynman. His an-
swer was negative, although he had no rigorous proof.
This proof has not yet been discovered.
(4) Most of the existing procedures of QND measure-

ments, both practically realized and discussed in the lit-
erature, belong only to a certain subclass of the full set
of all QND measurements. Indeed, fulfillment of the
necessary and sufficient condition (11) can be obtained
either by following the traditional criterion (12) or by
choosing the initial state of the meter in such a way so
that it will be an eigenstate of the operator @ q̂ ,Û# .
A second way is totally nonelaborated, despite the

fact that it contains some interesting possibilities. For
example, there is no principal restriction for the exist-
ence of a measurement scheme allowing nonperturba-
tive measurement of different noncommuting observ-
ables by varying only the initial state of quantum meter,
without changing its physical structure and the character
of its interaction with the quantum object.

V. QUANTUM PHASE MEASUREMENT

The theory of the oscillator phase has for a long time
been, and partially still remains, an uncompleted part of
quantum mechanics. The reason for this lies in the ab-
sence of a ‘‘good’’ phase operator defined on the entire
space of oscillator states. An analysis of the mathemati-
cal aspects of this problem can be found in the paper by
Carruthers and Nieto (1968). In recent years, consider-
able progress has been achieved in this field. The results
of the latest studies on the subject may be found in the
collection of articles edited by Schleich and Barnett
(1993), and in the article by Kulaga and Khalili (1993).
The unsolved state of the quantum phase problem is

also illustrated by the fact that, until now, no procedure
has been proposed for ‘‘true phase’’ QND measurement,
which would reduce the wave function of an oscillator
into the state with a given phase without extracting any
information about energy.
Present methods of phase measurement are based on

the following simple principle. If the mean amplitude of
oscillator A is much larger than the uncertainties of its
quadrature amplitudes,

DX1,2!A , (41)

then the measurement of phase is reduced to the mea-
surement of quadrature amplitude X2 (shifted by p/2
with respect to the oscillations of the mean coordinate):

w5X2 /A . (42)

One can easily show that the measurement of X2 with
an accuracy at the level of SQL corresponds to the mea-
surement of phase with the accuracy 1/2AN , where N is
the mean number of quanta. Further increasing the ac-
curacy of the X2 measurement, one can improve the
accuracy of the phase measurement, but only up to the
limit providing the fulfillment of condition

~DX1! pert5
\

2mv~DX2!meas
!A , (43)

which translates from relation (41). It follows from in-
equality (43) that, in the considered method, always

Dw@1/N . (44)

A substantial increase in the accuracy of phase mea-
surement and realization of QND phase measurement
promises a qualitative breakthrough in different areas of
physics, e.g., in ultrahigh resolution spectroscopy and,
possibly, in laser gravitational-wave antennas. At the
same time, to the authors’ knowledge, only a few publi-
cations in recent years were devoted to the elaboration
of new, at least gedanken, phase measurement proce-
dures fundamentally different from the above-described
algorithm. Among these few articles is the work by Noh,
Fougers, and Mandel (1993) proposing a method of de-
structive measurement in a traveling wave (not in a reso-
nator), which allows one to extract, under some limita-
tions, the values of the sine and cosine operators for the
phase of the wave (see also Yuen et al., 1980). In Bra-
ginsky and Khalili (1993), it is shown that a special se-
quence of coordinate measurements, with certain a pri-
ori information on the initial state of the oscillator, may
allow one to closely approach in phase measurement the
accuracy of Dw.1/N .
Given below is a semiqualitative description of the

principle of a new scheme of measurement, which prob-
ably allows one to come close to solving the problem of
direct measurement of a quantum oscillator phase. Let
us assume that a mechanical oscillator is initially in a
coherent state with amplitude A and, correspondingly,
with uncertainties

DXSQL5A \

2mvm
(45)

for coordinate and

Dw SQL5
DXSQL

A
5

1

2AN
(46)

for phase. Let us also assume that we have at our dis-
posal a coordinate meter with a very strong nonlinear
response, detecting the position of mass m only if its
center-of-mass coordinate x(t) falls into the interval

2jDXSQL<X~ t !<jDXSQL , (47)

where j!1. Outside this interval, the response of the
meter is zero. It is evident that during the time interval
equal to one half-period of oscillations after switching
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on such a null detector, the experimenter will observe a
single response pulse with duration

Dt5
jDXSQL

vmA
!
2pDwSQL

vm
, (48)

and the mass of the oscillator, as a result of measure-
ment, will acquire a momentum with uncertainty

DP5
\

2jDXSQL
. (49)

This uncertainty of momentum will increase the uncer-
tainty of the amplitude of oscillations up to the value

DApert.
DXSQL

j
, (50)

and the oscillator will transit to the state with squeezed
phase:

Dw.jDwSQL (51)

with simultaneous fulfillment of the relation

Dwmvm
2 ADApert5DwDEpert>

\v

2
. (52)

Apparently, after approximately one half-period, the re-
sponse pulse will be repeated. It is obvious that such a
measurement can be repeated many times, if only
j>1AN . Therefore the null detector reduces the phase
measurement to the registration, with high accuracy, of
the time moment when the center of mass passes the
origin of coordinate axis (equilibrium point of the oscil-
lator).
The above-described procedure is not ‘‘purely’’ a

gedanken experiment. The reader may imagine a mass
m51029 g put into a potential well, providing vm5103

s21. Such an oscillator has DXSQL.2310211 cm. If we
then assume that this mass is a small mirror forming a
Fabry-Pérot resonator together with another (immobile)
mirror, then such a resonator will be transparent for the
flux of photons of specially chosen stabilized wavelength
l only in small interval of moving mirror positions:

DX5
l~12R !

p
510212 cm3S l

631025 cm
D

3S 12R

531028D . (53)

Therefore, placing the immobile mirror at a distance
equal to the integer number of half-wavelengths of the
pump oscillator from the equilibrium point of mobile
mass with the accuracy DX510212 cm, one obtains the
squeezing factor j5531022 for the phase of the me-
chanical oscillator, if the mirror quality parameter can
be improved until (12R)5531028 (20 times better
than in the best existing mirrors).
In the authors’ view, the principle of the null detector

can be realized with microwave e.m. resonators (see de-
tails in Braginsky, Khalili, and Kulaga, 1995). The au-

thors, however, have not succeeded in finding a realistic
scheme of null detector for optical e.m. resonators.

VI. CONCLUSION

A realization of QND measurement techniques allow-
ing multiple repetitions and having resolution much bet-
ter than SQL will certainly mark a milestone in the art
of experiment. An even more significant accomplish-
ment would be the successful solution of a fundamental
problem (or problems) with the help of QND methods.
In our opinion, there is a variety of problems that can be
solved only by using qualitatively new methods of quan-
tum measurements. Let us consider two examples.
(a) In the first generation of laser interferometric

gravitational-wave antennas, the projected sensitivity in
units of the variation of the metric has to be
h.4310221 (Abramovichi et al., 1992). This value is ap-
proximately one and a half orders of magnitude larger
than SQL. In the second (or third) generation, the re-
solvable value of h should be close to or smaller than
SQL. One can expect that the achievement of this level
of sensitivity will allow one to resolve the wave-form
features of the bursts of gravitational waves from black-
hole coalescence events. This, in turn, may facilitate the
test of general relativity in the ultrarelativistic limit,
when the ratio of gravitational potential over c2 is close
to unity.
First attempts to propose QND-type measurement

procedures in laser gravitational antennas have already
been made (Braginsky and Khalili, 1990; Jackel and
Reynaud, 1990; Vyatchanin et al., 1994; the schemes pro-
posed in the last two papers can be considered examples
of QND measurement of the spectral component of a
coordinate). In the authors’ opinion, the schemes pre-
sented, however, should be considered as gedanken ex-
periments and not as ready variants of engineering solu-
tions.
(b) More than 30 years ago, J.A.Wheeler mentioned

possible topological multiple connectivity of space, i.e.,
the existence of two or more independent shortest inter-
vals between two points. In describing this property of
space, the term ‘‘wormholes’’ is usually used (see, for
example, Misner, Thorne, and Wheeler, 1973). About 30
years later, Hawking (1988) proposed the hypothesis
that these wormholes were formed by Planck-scale fluc-
tuations: virtually existing micro black holes could serve
as fluctuating bridges connecting this universe with oth-
ers. The basic property of a black hole—to absorb infor-
mation and therefore to act as classical observer—in this
model should lead to the phenomenon of decoherence
of all possible micro- and macro-objects. A number of
papers devoted to the evaluation of decoherence time
(Coleman, 1988; Lavrelaschvili et al., 1988; Ellis et al.,
1989; Jackel and Reynaud, 1994) demonstrate a surpris-
ing variety of predictions (by many orders of magni-
tude). This ambiguity is in essence a reflection of the fact
that, for now, no satisfactory theory for the quantization
of a gravitational field has been proposed. On the other
hand, observation of this new, possibly existing phenom-
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enon is a challenge for experimentalists. One of the pos-
sible schemes of the experiment is obvious: one has to
isolate a single object from the heat bath in the best
possible way, and then, using the QND technique, to
monitor the evolution of a specified QND observable
(for example, speed of free mass). If, during the experi-
ment, the recorded variation of the observable exceeds
the expected value predicted by the residual effect of the
heat bath and nonideality of the QND meter, then the
experimentalist will have to conclude on the presence of
the effect and appearance of ‘‘a new essence.’’
These two examples should not be regarded as the

only two possible areas of fundamental application of
QND measurement techniques. The principles underly-
ing QND techniques may be useful for the creation of
new generations of communication devices (Caves and
Drummond, 1994) and for the development of a quan-
tum computer.
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