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The scanning acoustic microscope is a powerful new tool for the study of the physical properties of materials
and has been successfully used for imaging interior structures and for nondestructive evaluation in materials
science and biology. Its principles of operation, resolution, penetration ability, and contrast mechanisms are
simply described in this paper. Recent progress in the application of acoustic microscopy to material
characterization in solid materials is summarized. The experimental elastic microanalysis of bulk materials is
carried out by measuringV(z), which includes examining the reflectance function of solid material, measuring
the phase velocity and attenuation of leaky surface acoustic waves at the liquid-specimen boundary, and
determining the elastic constants of the material. The layer thickness and mechanical properties of layered
solids are studied by examining the dispersion properties of surface acoustic waves. A knowledge of the
propagation properties of acoustic waves on the surface of materials is essential for understanding the contrast
mechanisms and quantitative measurements in acoustic microscopy; these propagation properties are thus also
briefly described in this paper. Finally, further developments of the scanning acoustic microscope aimed at
improving its performance for quantitative evaluation are presented. These could expand the scope of the
acoustic microscope as a diagnostic tool in many areas of science and technology.
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I. INTRODUCTION

In materials science and biology the microscope has
proven to be one of the most powerful of scientific tools. The
optical microscope and the electron microscope have given
us extraordinary insights into the world of the extra small,
and they will surely continue to enjoy widespread use in the
future. The field of microscopy as a whole has historically
developed by adding new classes of radiation. So far, we
have seen the development of the infrared microscope, scan-
ning Auger microscope, Raman microscope, scanning laser
microscope, ion microscope, x-ray microscope, tunneling
microscope, and the list seems to be growing all the time. All
of these microscopes have their special characteristics, their
particular advantages and limitations, and they should be
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viewed as a complementary collection. The scanning acous-
tic microscope~SAM! is a new member of this collection,
and it would appear to be one of the most promising mem-
bers for the study of the elastic properties of materials.
The concept of acoustic microscopy was first put forward

by Sokolov in 1949. Unlike other forms of radiation, an
acoustic wave interacts directly with the elastic properties of
the material through which it propagates. The wavelength of
sound at a high frequency can be very short, from which it
should be possible to build an acoustic microscope with a
resolution comparable to that of the optical microscope.
However, until the early 1970s this was not achieved because
techniques for producing high-frequency sound waves were
not readily available. Since the 1970s the acoustic micro-
scope has undergone many improvements. The greatest im-
provement, the scanning acoustic microscope, was devel-
oped at Stanford University under the direction of C. F.
Quate~1985!. Now, various commercial acoustic microscope
instruments are available in countries such as Japan, En-
gland, and Germany for scientific and industrial applications.
Characterization of near-surface properties of materials is

an important test of their structural integrity. Nondestructive
evaluation of these properties is usually carried out using
acoustic techniques. Surface acoustic waves~SAWs! are fre-
quently used for this purpose, because they are spatially con-
fined to the surfaces of materials and very sensitive to sur-
face inhomogeneities. Several techniques can be used to
excite focused surface acoustic waves on the surface of ma-
terials for imaging purposes; of these, scanning acoustic mi-
croscopy is unique in its image quality and resolution. Com-
pared to other techniques of microscopy, scanning acoustic
microscopy provides a combination of features that make it
valuable for a wide range of applications. It is possible to use
it to characterize the properties of materials on a microscopic
scale: subsurface image of the material structures can be ob-
tained due to the ability of ultrasonic waves to penetrate
materials that are opaque to other kinds of radiation; the
elastic constants of bulk materials, and the phase velocity
and attenuation of leaky surface acoustic waves excited on
the surface of specimens can be quantitatively examined
throughV(z) measurements; important mechanical proper-
ties like elastic constants and residual stresses, adhesion
properties, and film thickness in layered structures can also
be evaluated from dispersion properties of surface acoustic
waves examined by acoustic microscopy.
Although the technique of scanning acoustic microscopy

was introduced many years ago and a number of articles and
reviews have been published~Lemons and Quate, 1974,
1979; Quateet al., 1979; Wilson and Weglein, 1984; Briggs,
1985, 1992!, it is still not familiar to many physicists due to
the limited number of instruments worldwide. To show the
spectrum of its applications, this paper presents a brief re-
view of scanning acoustic microscopy and its applications to
material characterization. The first part of the article is de-
voted to a general description of the scanning acoustic mi-
croscope, which includes principles of operation, resolution,
penetration ability, and contrast mechanisms. The second
part is concerned with the applications of acoustic micros-
copy to material characterization in solid materials. Our em-
phasis is on quantitative evaluation. The interior imaging of a

material subsurface and applications in biology will be omit-
ted, as they can be found elsewhere~e.g., Hoppe and
Bereiter-Hahn, 1985; Miller, 1985!. In acoustic microscopy,
surface acoustic waves such as Rayleigh waves and Sezewa
waves ~generalized Lamb waves! can be excited and re-
ceived by the acoustic microscope; the interference of these
waves plays a very important role in imaging and quantita-
tive measurements made with acoustic microscopy. Knowl-
edge of surface acoustic wave propagation is not as wide-
spread among technical people as is knowledge of light wave
propagation, and as a result the contrast mechanisms of the
SAM and its applications are not widely understood. There-
fore we shall briefly describe the propagation properties of
surface acoustic waves in nonlayered and layered structures,
and then present their behaviors in acoustic microscopy. Fi-
nally, in the present paper we also indicate some limitations
of the conventional scanning acoustic microscope, which is
equipped with a spherical lens, for material characterization,
and point out development trends in lens constructions and
alternative types of scanning for the scanning acoustic mi-
croscope.

II. GENERAL DESCRIPTION OF THE SCANNING
ACOUSTIC MICROSCOPE

The development of the scanning acoustic microscope is
based on the realization that one cannot make a high-
resolution acoustic lens that can image more than one point
of an object at a time, but it is possible to make an acoustic
lens that has excellent focusing properties on its axis. In
order to build up an image, the specimen is mechanically
scanned in the common focal plane of the lens and a scanned
image can be obtained, in a manner similar to scanning elec-
tron microscopy or to domestic television. It is the use of
mechanical scanning that simplifies the lens design and op-
eration, i.e., the lens need perform well only on axis, and has
made it possible to record high-quality acoustic images with
submicrometer resolution.

A. Transmission and reflection types of scanning
acoustic microscopes

In the scanning acoustic microscope both the illumination
and the detection are performed by focusing acoustic lenses
and, since these are focused at the same point, the configu-
ration may be described as confocal. The image of material
properties can be recorded either in reflection or transmis-
sion. If the illumination and the reception of the acoustic
waves are performed by two identical lenses arranged con-
focally, the SAM is called a transmission SAM. The lens
geometry used for transmission imaging is shown schemati-
cally in Fig. 1 ~Lemons and Quate, 1979!. This geometry
consists of a symmetrical pair of lens elements connected by
a small volume of liquid. Each lens consists of a single
spherical interface between the liquid and a lens rod. The
lens element is formed by polishing a small concave spheri-
cal surface in the end of a sapphire rod. At the opposite end
of the rod a thin film piezoelectric transducer is centered on
the axis of the lens surface.
In the reflection SAM, the transmission arrangement is

conceptually folded over, so that the same lens is used for
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both transmitting and receiving the acoustic signal~see Fig.
2!. The transmission version can use a simple continuous
wave, but in the reflection mode pulsed signals should be
used in order to separate the reflected signal from the trans-
mitted signal. In the transmission mode the ultrasonic beam
passes through the object placed between the objective and
collector, and since the acoustic microscope has a sharply
defined depth of field, the image of a thin layer cut out from
the interior of a specimen may be obtained. The transmission
acoustic microscope is especially suitable for investigation of
samples with acoustic impedances and attenuation compa-
rable to those of water, i.e., for biological specimens. The
reflection mode is more promising for the investigation of
samples of high acoustic impedance and attenuation, i.e., for
solid materials. The operation of a transmission SAM re-
quires the lenses to be set up so that they are accurately
confocal, which becomes difficult with high frequencies and
shorter wavelengths. In the reflection SAM the need to adjust
the lenses to be confocal is obviated. Specimens to be im-

aged in the transmission version must be thin in order to
enable acoustic waves to propagate through specimens. For
biological specimens, this often presents few problems, but
for many solids such a thin specimen is quite difficult to
prepare. Therefore, although the first scanning acoustic mi-
croscope operated in transmission, there is an increasing shift
from transmission microscopy to reflection microscopy.
Most of the recent development and application of the SAM
has been with the reflection mode. In this paper only the
reflection scanning acoustic microscope will be described.

B. Principles of the reflection scanning acoustic
microscope

The scheme of a reflection scanning acoustic microscope
is shown in Fig. 2. The heart of it is an acoustic lens, which
is a sapphire rod cut along the crystallographicc axis of the
sapphire. In the center of one face of the rod a concave
spherical surface is ground. This surface provides the focus-
ing action and, to optimize transmission of the acoustic
waves, it is coated with a quarter-wavelength-thick matching
layer. On the other face of the rod a piezoelectric transducer
is deposited, usually a thin film of rf-sputtered ZnO. In use, a
coupling fluid ~usually water! is necessary between the lens
and the specimen. When the transducer is energized with a
short rf pulse~approximately 30 ns in duration!, plane acous-
tic waves are generated, which travel through the rod and are
focused on the axis of the lens by refraction at the spherical
interface between the lens and the liquid. The object to be
imaged is placed at the focus of this lens. The acoustic waves
are partially reflected at the interface and the echoes thus
produced traverse the system in reverse order and are con-
verted back into an electrical pulse by the transducer, which
acts in this case like a light-sensitive receptor and coherent
detector. The strength of this pulse is proportional to the
acoustic reflectivity of the object at the point being investi-
gated. By mechanically scanning the object in a raster fash-
ion, one can build up an acoustic image of the desired field
of view and display it on a TV monitor.
In optics a complex compound objective lens for micro-

scopes with high numerical aperture is needed to compensate
accurately for both geometrical and chromatic aberrations. In
acoustics this is neither possible nor necessary. The simple
acoustic lens shown in Fig. 2 has been capable of producing
perfect diffraction-limited images. The reason is as follows.
First, chromatic aberrations do not arise in the acoustic mi-
croscope because in its usual mode of operation it may be
considered essentially monochromatic. Secondly, as acoustic
imaging is always done on axis, spherical aberration is the
only possible source of aberration. In geometrical optics
spherical aberrations are calculated using third-order theory,
whose magnitude is proportional toD/n2 ~Lemons, 1975!,
whereD is the lens aperture andn is the relative refractive
index. In the optical casen;1.5 for glass, so that spherical
aberration is large and important, whereas in the acoustic
case the velocity of sound along thec axis in sapphire is
11,100 m/sec and in water it is about 1,500 m/sec. This
means that there is a very large refractive index (n57.4) for
acoustic waves striking the lens, which is much greater than
would be encountered in any comparable optical system.

FIG. 1. Lens geometry of the transmission acoustic microscope.

FIG. 2. Schematic representation of a reflection SAM.
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Further spherical aberration scales down with smaller-D
~higher-frequency! lenses. As a consequence, a single small
lens surface can provide a high-aperture acoustic lens with
aberrations considerably less than a wavelength.

C. Resolution of the acoustic microscope

Since the aberrations in the acoustic microscope are neg-
ligible, the resolution of an acoustic lens is determined al-
most solely by diffraction limitations, and is
R50.51lw /N.A ~Kino, 1987!, wherelw is the wavelength
of sound in liquid, and N.A is the numerical aperture of the
acoustic lens. For smaller~high-frequency! lenses, N.A can
be about 1, and this would give a resolution of 0.5lw . Thus
a well-designed lens can obtain a diameter of the focal spot
approaching an acoustic wavelength~about 0.4mm at 2.0
GHz in water!. The resolution of an acoustic microscope
may be tested by imaging a specimen with a fine grating
ruled on it. Figure 3 shows an acoustic image of an optical
grating with a period of 0.4mm at 2.0 GHz. In this case the
acoustic microscope can achieve a resolution comparable to
that of the optical microscope.
As the resolution is proportional to the wavelength in the

liquid lw , the way to improve the resolution is therefore to
make the wavelength smaller. The wavelength depends on
the velocity of sound in the liquid,nw , and the frequencyf
such thatlw5nw / f . That is, if the frequency could be in-
definitely increased, unlimited resolution could be achieved.
Unfortunately, the application of higher frequencies is re-
stricted due to the attenuation of the coupling medium and
the available radius of curvature of the lens. Acoustic waves
need a medium to support their propagation~in acoustics
there is no analogy to a vacuum in optics!. Between the
acoustic lens and the specimen the medium must be a liquid,
in order to permit scanning. Most liquids at or near room
temperature exhibit linear viscosity, which causes the attenu-
ation of acoustic waves propagating through them to be pro-
portional to the frequency squared. To increase the fre-
quency, it is necessary to reduce the liquid path length

between the lens and the specimen, which means that the
focal length of the lens and in turn its radius of curvature
must be small. Grinding lenses with very small radius is a
quite difficult art. Moreover, even if it is possible to grind
lens radii as small as required~about 15 microns!, for a lens
operating in a pulsed mode with higher frequencies, there are
major problems with high-speed switches to obtain suffi-
ciently narrow pulses to prevent the specimen from being
swamped by the lens echo. Usually, the highest frequency for
a microscope with water coupling at 60°C is about 2 GHz.
The attenuation of acoustic waves in water decreases with

increasing temperature. By raising the temperature of the wa-
ter it is possible to reduce the attenuation. Using this feature,
and by stretching the existing technology to its limits, the
reflection SAM has been operated in water at 3.5 GHz, with
a corresponding wavelength of 0.425mm ~Rugar, 1981!. The
utilization of the nonlinear properties of the coupling liquid
has been proposed to enhance resolution. The generation of
harmonics makes possible an improvement in the resolution
of the microscope by at least a factor of 1.4~Rugar, 1984!.
Finding a liquid that has a lower velocity, a lower absorption
coefficient, or preferably both, further improves the resolu-
tion. One possibility is to use cryogenic fluids such as super-
fluid helium. In liquid helium at 0.1 K, sound velocity is
equal to 238 m/sec, and attenuation is so small that it be-
comes negligible. In this type of cryogenic SAM, operating
with 8 GHz frequency, the resolution of micrographs ob-
tained was better than 0.025mm ~Hadimioglu and Foster,
1984!. At this level, cryogenic acoustic microscopy as a re-
search tool may offer an alternative to electron microscopy.

D. Interior imaging and penetration ability

The ability to image below the surface of solids is another
attractive property of the acoustic microscope. Many materi-
als that are opaque to light are transparent to acoustic waves.
This property of acoustic waves has long been exploited in
ultrasonic nondestructive testing. Indeed, due to this ability
acoustic microscopy provides valuable insights regarding
material structures and subsurface imaging which cannot be
obtained any other way. Figure 4 shows a typical example of
what can be achieved by employing the SAM for subsurface
imaging. It is an acoustic reflection imaging of a 5-DM Ger-
man coin at 10 MHz. The penetration ability is quite remark-
able. By appropriately choosing the focal position of the
acoustic image, it is possible to show clearly the front and
back pictures. Figure 5 shows a comparison between the op-
tical and the acoustic images of a Kelvin contact with alumi-
num top surface on silicon in semiconductor technology. In
the optical image the contact appears to be homogeneous,
whereas in the acoustic image a defect in the contact is vis-
ible. An acoustic microscope used in such studies is capable
of revealing defects beneath the surface metallization which
are hard to detect using other techniques.
The penetration ability of a SAM can be estimated as

equal to the penetration of excited surface waves, which is
about the same magnitude as the wavelength of the surface
waves. The practical penetration depth depends on the elastic
parameters of the object, the signal-to-noise ratio, and the
operating frequency of the acoustic microscope~Atalar,

FIG. 3. Resolution test of a grating of 0.4mm period imaged at 2.0
GHz, at 60°C~Leica, Wetzlar!.
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1985!. A higher acoustic mismatch between the object and
liquid will lower the penetration depth, and a higher signal-
to-noise ratio will improve it. Some changes in the param-
eters of the acoustic lens system, such as optimizing the lens
opening angle, can maximize penetration for a given mate-
rial. On the other hand, increasing the operating frequency
improves the resolution, but reduces the penetration due to
the increase in attenuation with frequency. Trade-offs be-
tween resolution and penetration depth must be made for
acoustic microscope instruments. At the moment the most
promising frequency range for subsurface imaging analysis
would appear to be 10–150 MHz, where penetration up to a
few mm is easily attained. Table I gives practical resolution
limits and penetration depths for copper and brass with a
SAM ~Block et al., 1989!.

III. CONTRAST MECHANISMS IN THE SCANNING
ACOUSTIC MICROSCOPE—THE V(z) EFFECT

The traditional microscopist is interested in resolution.
The acoustic microscopist may have that interest. However,
the significance of the scanning acoustic microscope does
not lie in its resolution alone. There is a stronger interest:
image contrast. In acoustic microscopy the near-surface of
the specimen is examined, and therefore the acoustic image
contains information about the way that acoustic waves in-
teract with the properties of the specimen. Image contrast
observed in acoustic microscopy can be related to the elastic
properties at the surface as well as below the surface of the
sample. Thus there is a special feature that is not shared with
any other kind of microscopy. That is, fringes are seen which
are an interference effect associated with waves that can be
excited in the surface of specimen. Interpretation of the con-
trast of these fringes is not a simple matter. One cannot sim-

ply say that a brighter area corresponds to a higher~or lower!
density, or to a greater~or smaller! elastic modulus. More-
over, the contrast varies very sensitively with the distance
between the lens and the surface of the specimen. This be-
havior is best visualized as aV(z) curve. TheV(z) effect is
a ‘‘source of contrast’’ and is used to record quantitative
information on the elastic properties of a specimen with mi-
croscopic precision. The understanding of theV(z) effect in
the SAM is, for a microscopist, of great significance.

A. The V(z) curve

As mentioned above, by mechanically scanning the object
plane one can obtain the scanning image of a specimen at the
surface or subsurface of an object. Rather than scan in the
plane, one keeps the lens and object at a fixed (x,y) position
and translates the lens towards the object in thez direction;
one then observes a series of oscillations in the transducer
video output as a function ofz. This dependence of the
variation of the signal output,V, on the defocusz is known
as the acoustic material signature or simplyV(z) curve. His-
torically the study of this effect was pioneered experimen-
tally by Weglein and co-workers~Weglein, 1979a! and theo-
retically by a number of authors~Atalar, 1978;
Wickramasinghe, 1979!. This effect gives the acoustic mi-
croscope an important edge over the optical microscope.
The theory ofV(z) will be considered in the next section.

Here it is first helpful to give a general structural decompo-
sition of theV(z) curve. An experimentalV(z) curve for a
quartz specimen, obtained with a commercial instrument
known as the Ernst Leitz scanning acoustic microscope
~ELSAM!,1 is shown in Fig. 6, illustrating some of the main
features ofV(z). An experimentalV(z) curve is often plot-
ted with a logarithmicV axis. This can cause the minima to
appear as very pronounced nulls. AllV(z) curves presented
in this paper are also normalized for clarity and ease of com-
parison.
First there is the strong central maximum, centered on the

focal plane (z'0), which is a characteristic of the sample-
immersion liquid interface and due to the existence of the
primary reflection. This region does not depend on the ma-
terial properties of the sample being measured. Secondly the
curve for positivez attenuates rapidly with increasing dis-
tancez because in this region the sample surface is farther
away than the focal plane, much of the acoustic energy is
reflected outside the lens, and only a less convergent beam is
received by the transducer. On the negativez side there are
strong oscillations, where a series of periodic maxima and
minima occurs, characterized by a periodDz. This region is
characteristic of the sample’s acoustic properties; the patterns
vary with the material, as do the depths of the minima and
the relative magnitudes of the maxima. As shown below,
Dz may be multivalued or may vary withz for a layered
solid. This portion contains the material-dependent informa-

1The ELSAM is a reflection-type, water scanning acoustic micro-
scope, designed forV(z) measurement with continuously tunable
operation in the frequency range 0.8–2.0 GHz. For this frequency
range, spherical acoustic lenses with a radius of curvature of 40
mm and an opening of 100° are used.

FIG. 4. An acoustic image of a 5-DM German coin at 10 MHz
~Leica, Wetzlar!.
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tion and is referred to as the acoustic material signature, from
which an important method for the nondestructive evaluation
of material properties was developed. It should be pointed
out that in this figure theV(z) curve is superimposed by a

‘‘water ripple’’ and an obvious fluctuation occurs over the
entire region of the curve. A ‘‘water ripple’’ is a short period
oscillation due to the coupling liquid, which results from
interference between internal lens reflections and the nor-
mally reflected component of the signal. By use of an appro-
priate low-pass filtering technique, the effect of ‘‘water
ripple’’ can be easily minimized.

B. Theory of V(z)

V(z) is an interference effect between surface waves,
which are excited in the specimen and often referred to as
Rayleigh waves, and specularly reflected waves. To interpret
this effect it is first necessary to say a little about Rayleigh
waves.

FIG. 5. Images of a Kelvin contact:~a! optical image;~b! acoustic image of the same sample at 1.4 GHz.

TABLE I. Practical resolution limits and penetration depth in a
SAM.

Operation frequency Resolution limit Penetration depth

20 MHz 100mm 4 mm
200 MHz 8 mm 300mm
1000 MHz 1.5mm 25mm
2000 MHz 0.7mm 10mm
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1. Rayleigh surface waves in a nonlayered solid

The propagation of acoustic waves in a solid is more com-
plicated than in a liquid. In a liquid sound travels as a lon-
gitudinal wave. In a solid propagation properties can be de-
scribed by the Christoffel equations, which show that three
kinds of elastic waves can be propagated~Auld, 1973!. One
of these corresponds to a longitudinal wave, and the other
two are degenerate shear waves with orthogonal polariza-
tions. Another kind of acoustic wave can occur on the sur-
face of a solid. This is a Rayleigh surface wave~Rayleigh,
1885!, A Rayleigh surface wave is a mode of propagation of
elastic energy along the free surface of a solid in which the
displacement amplitudes of the propagating wave decay in
an exponential fashion with depth beneath the surface, so
that essentially all of the associated energy density is con-
centrated within a distance of the order of a wavelength be-
low the free surface. The particle motion in a Rayleigh sur-
face wave is an ellipse, the principal axes of which are
parallel and perpendicular to the boundary~see Fig. 7!. Ray-
leigh waves in nonlayered solids are nondispersive, and their
velocity nR is approximately related to the shear bulk wave
velocity bsolid as ~Scrubyet al., 1987!

nR'~1.1441820.25771s10.12661s2!21bsolid, ~1!

wheres is the so-called Poisson ratio. If the solid is aniso-
tropic, say a single crystal, the Rayleigh wave still exists for
any given direction of propagation, but the detailed proper-
ties differ from the isotropic case; for example, the ellipse
traced out by the surface particle displacement need not be
normal to the surface, and the decay of amplitude with depth
can be oscillatory. Moreover, these properties, and in particu-
lar the phase velocity, depend on the direction of propagation
relative to the crystal axes. In this paper we shall consider
only the propagation properties of surface waves in isotropic
materials.

If the solid material is immersed in a liquid, a Rayleigh-
like surface wave may be generated at the liquid-solid inter-
face. The phenomenon consists of a resonant energy transfer
between the longitudinal wave in the liquid and the
Rayleigh-like wave on the liquid-solid interface. This
Rayleigh-like surface-wave excitation differs from the clas-
sical Rayleigh wave in that the energy is continuously ‘‘leak-
ing’’ away from the solid region to the liquid region. The
surface wave generated is evanescent; it will eventually leak
back into the liquid medium as a bulk wave. Moreover, the
surface waves start leaking as soon as they are generated.
Since the energy leaks into the liquid, this surface wave is
called a leaky Rayleigh wave. The leaky-Rayleigh-wave ve-
locity is slightly (;0.1%! different from that of the solution
given by Eq.~1! because of the presence of liquid~Chimenti
et al., 1982!.
When an acoustic beam is incident on the liquid-solid in-

terface at the Rayleigh angle, which is the angle that satisfies
Snell’s law,

uR5sin21~nw /nR! , ~2!

wherenw is the sound velocity in the liquid andnR is the
phase velocity of the leaky Rayleigh wave, it exhibits two
significant features: Schoch~lateral! displacement Ds
~Schoch, 1950, 1952! and associated distortion of a finite-
aperture incident beam. By ‘‘Schoch displacement’’ one
means that a beam of sound undergoes a relatively large
lateral displacement at reflection from a solid surface, if an
angle of incidence is chosen such that a Rayleigh wave is
excited in the solid medium. Such a lateral shift for an opti-
cal beam is known as the ‘‘Goos-Ha¨nchen shift’’~Goos and
Hänchen, 1947!. These effects typically lead to a bimodal
reflected acoustic field, and the reflected beam is split into
two components: a specular beam~specular reflection! and a
nonspecular beam displaced a distance laterally~nonspecular
reflection!; see Fig. 8. The leaky Rayleigh wave will radiate
leaks into the liquid and, combined with a specularly re-
flected wave, will produce a so-called ‘‘null strip.’’
The theory ofV(z) has been derived in two different

ways: those involving Fourier angular spectrum analysis
~Atalar, 1978; Wickramasinghe, 1979! and those based on a
ray optical model~Bertoni, 1984!. Both models are of impor-
tance for explaining theV(z) effect.

FIG. 6. An experimentalV(z) curve with water ripple at 1.8 GHz,
at 60°C. This was obtained with an Ernst Leitz scanning acoustic
microscope~ELSAM!.

FIG. 7. Schematic drawing of a Rayleigh wave.
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2. Ray optical model

From the analogy ofV(z) curves to effects in physical
optics, it is natural to consider theV(z) effect as a result of
acoustic ray interference. Consequently, a physical model of
theV(z) effect has been proposed, which essentially regards
V(z) as the interference between two families of acoustic
rays; see Fig. 9. One component,A, is a family of specularly
reflected acoustic rays at almost normal incidence from the
surface of the specimen. The second component,B, is a
family of laterally displaced leaky Rayleigh waves~non-
specular reflection!, symmetrical to the incident beam. These
two beams,A andB, arrive at the transducer and produce an
output signal. Then interference effects between them are
observed.
We call this kind of ray model a double-ray interference

model because two families of ray components were taken
into account. The interference of rays with differing paths
gives the periodDz of the resulting oscillations inV(z) as
follows. Compared with focusF the normal ray undergoes a
change in path length ofz ~the defocus distance! before be-
ing reflected, and a further amountz on the return journey,

i.e., a total change in path length of 2z. The ray incident at
the Rayleigh angle has its path in the liquid shortened by
z•secuR , and then excites a Rayleigh wave on the specimen
surface. This propagates along the surface, leaking a wave
back into the liquid, and the ray symmetrically placed with
respect to the incident ray travels back to the lens with its
path also shortened byz• secuR . The path length traveled by
the Rayleigh wave on the surface of the specimen is
2z•tanuR , but because of the difference in velocities this is
equivalent to an acoustic path in the liquid of
2z•tanuR•sinuR , by Snell’s law. There is also a phase
change ofp associated with the excitation and re-radiation of
the Rayleigh wave. The phase difference between the two
rays~assuming that the lens eliminates all other phase differ-
ence! is

Df5~2z22zsecuR12ztanuRsinuR!kw1p

52z@12secuR~12sin2uR!#kw1p

52kwz~12cosuR!1p , ~3!

wherekw52p/lw is the wave number of sound in the liq-
uid, andlw is the wavelength of sound in the liquid.
These two beams,A andB, arrive at the transducer and

therefore produce an output signal. Based on the interference
principle of double rays in physical optics, an interference
pattern occurs in theV(z) response of the transducer. A
phase change of 2p in the relative phase difference corre-
sponds to a dip intervalDz in theV(z) curve. Using Eq.~3!
and ignoring the constant phase termp, we get oscillations
of periodicity

Dz5
2p

2kw~12cosuR!
5

lw

2~12cosuR!
. ~4!

Equation~4! for the periodicity of the oscillations inV(z) is
of fundamental importance, and must be understood by every
acoustic microscopist.
From the user’s point of view, it is more appropriate to

rewrite Eq.~4! by use of Eq.~2! and the measurable quanti-
ties, frequencyf andDz, to yield the Rayleigh velocitynR
~Weglein, 1985!, i.e.,

nR5
nw

@12„12nw /~2 fDz!…2#1/2
. ~5!

This simple ray optics theory allows quantitative measure-
ment of the phase velocity of a leaky Rayleigh wave from
theV(z) curve, and characterization of the acoustic proper-
ties of materials.

3. Fourier optics model

The other way to interpret theV(z) effect is the Fourier
angular spectrum technique, which is based on the well-
known theory of Fourier optics and can be easily manipu-
lated mathematically. By decomposing the acoustic field dis-
tributions at the various planes in the acoustic microscope
system into angular spectrums of plane waves, it is possible
to arrive at an integral expression forV(z) ~Atalar, 1978;
Wickramasinghe, 1979!. But, this model may be derived in a
simpler form following Sheppard and Wilson~1981!. Figure
10 shows the same acoustic imaging system as shown in Fig.

FIG. 8. Reflection of finite beam from liquid-solid interface at the
Rayleigh angle.

FIG. 9. Double-ray interference model ofV(z).

870 Z. Yu and S. Boseck: Scanning acoustic microscopy

Rev. Mod. Phys., Vol. 67, No. 4, October 1995



2, and its coordinate system used for analysis of the acoustic
field distributions. A plane wave of unit amplitude is gener-
ated by the transducer, which propagates through a distance
h until it encounters the lens at the sapphire-liquid interface.
The acoustic field just on the back side of the lens, namely in
the plane I, is denoted byu1 , which may be evaluated by the
diffraction theory of the piston transducer~Appendix A!. The
illumination function at the converging spherical wave-front
surface after the plane acoustic wave traverses through the
lens is

U1~u!5u1~u!P~u!cos1/2u , ~6!

whereu is the incident angle of the acoustic wave.P(u) is
the generalized pupil function of the lens for waves traveling
in this direction, which describes the complex amplitude of
the sound wave transmitted through the lens~see, for ex-
ample, Born and Wolf, 1972; Wickramasinghe, 1979, and
Appendix A!. The cos1/2u term is introduced by considering
the acoustic imaging system as an aplanatic system for com-
pleteness~Richards and Wolf, 1959!; it cancels out later. This
expression of the illumination function was derived without
the assumption of the thin-lens model, i.e., without the
paraxial approximation, so the result is valid for any large
aperture of the lens. The acoustic wave is then reflected at
the focus by an object with a reflectance functionR(u), and
has the amplitude

U2~u!5u1~u!P~u!R~u! cos1/2 . ~7!

This reflected wave is refracted by the lens again and arrives
at the transducer; in this direction the lens pupil function is
againP(u) ~the approximation is made thatP is the same in
both directions!. The acoustic field at the transducer is then

U3~u!5P2~u!u1
2~u!R~u! . ~8!

The unnormalized signal at the transducer is obtained by
summing over the area of the transducer, with radial coordi-
nater , to give

V~0!5E
0

`

P2~u!u1
2~u!R~u!2prdr . ~9!

Substitutingf •sinu5r , f • cosu•du5dr, wheref is the fo-
cal length, this may be written

V~0!52p f E
0

um
P2~u!u1

2~u!R~u!sinucosudu , ~10!

whereum is the semiangle of the acoustic lens; outside this
given limit P2(u)u1

2(u)R(u) should vanish.
If the reflecting surface of the object is now moved to-

wards the lens by a displacement2z from the focus, the
phase of the wave incident at a given point on the surface
will advance bykw•z, and waves returning to the lens will
advance their phase by twice this, so that the normalized
signal at the transducer is now~Atalar, 1989; Yu, 1991!

V~z!5E
0

um
P2~u!u1

2~u!R~u!

3exp@2 i2kwzcosu#sinucosudu , ~11!

wherekw is the wave number of sound in the liquid andz is
the defocus.
It is easy to see that for a given lens the functionsP(u)

andu1(u) are known, and theV(z) function is completely
determined by the reflectance functionR(u). In practice, be-
causeR(u) is a complex function of the elastic properties of
the specimen under test, theV(z) function is thus function-
ally related to the elastic properties of the specimen. Any
material changes will alter theV(z) responsevia R(u)
changes. Let us therefore discuss the reflectance function in a
little more detail.
The reflectance function of materials immersed in liquid

has been studied extensively both theoretically and experi-
mentally over the last 50 years~Thomson, 1950; Haskall,
1953; Bertoni and Tamir, 1973; U¨ berall, 1973;
Brekhovskikh, 1980; Bogy and Gracewski, 1983!. The re-
flectance function for waves in a liquid incident on the sur-
face of an isotropic nonlayered solid may be derived as fol-
lows. The variables are defined with reference to Fig. 11:
nw and u are the velocity and angle of incidence of the
waves in the liquid, whose density isrw ; a, u1 andb, g1

FIG. 10. Geometry and coordinate system used for analyzing
acoustic field distributions: Plane 0, transducer plane; plane I, back
side plane of the lens; plane S, surface plane of the tested object;
planez50, focus plane;Rt , radius of the transducer;r 0 , radius of
the lens aperture;um , semiangle of the lens;h, distance between
the transducer and the lens; f, local distance of the lens;F, focused
point.

FIG. 11. The reflected and transmitted rays at a liquid-solid inter-
face.
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are the velocities and angles of refraction of the longitudinal
and shear waves in the solid, whose density isr. Snell’s law
relatesu1 andg1 to u as

sinu

nw
5
sinu1

a
5
sing1

b
. ~12!

Impedances are then defined by

Z05
rwnw
cosu

, ZL5
ra

cosu1
, ZS5

rb

cosg1
, ~13!

Ztot5ZLcos
22g11ZSsin

22g1 . ~14!

Then the reflectance function is

R~u!5~Ztot2Z0!/~Ztot1Z0! . ~15!

A typical example ofR(u) for a water-aluminum half-
space is shown in Fig. 12~a! illustrating some features of
R(u). R is a complex function, so in Fig. 12~a! the modulus
of R ~solid line! is referred to the left ordinate and the phase
of R ~dashed line! to the right ordinate. The modulus ofR is
characterized by four features:~1! the value for zero angle of
incidenceu50; ~2! the cusp nearu513.59° whereuRu first
rises to one, which corresponds to the longitudinal-wave
critical angle of aluminum;~3! the kink nearu528.52°
where the value ofuRu next rises to one, which corresponds
to the shear-wave critical angle for aluminum; and~4! the
slight dip nearu530.57° just past the kink, which corre-
sponds to the Rayleigh-wave critical angle for water-
aluminum. Note that above the shear-wave critical angle no
energy can be propagated into the solid, souRu beyond the
shear-wave critical angle must be unity. The slight dip that
occurs at the Rayleigh-wave critical angle is due to the use of
a little trick in our evaluation ofuRu, that is, we have evalu-
ated uRu along theu85u2 i0.0001, rather than along theu
real axis. By use of this trick it is possible to provide infor-
mation about the existence of the leaky Rayleigh wave from
only anuRu curve. The phase ofR, normalized by 2p in the
figure, also experiences small fluctuations around the longi-
tudinal critical angle, but its most dramatic behavior occurs
near and at the Rayleigh-wave critical angleuR530.57°, and
as can be seen the phase changes by almost 2p over a fairly
small change in the incidence angle. This phase transition
indicates the existence of nonspecular reflection.
TheV(z) curve for this example, which was based on Eq.

~11! at f51.7 GHz, is illustrated in Fig. 12~b!, from which
one can see that a series of regular periodical oscillations
occurs on the negativez side. The phase transition in the
R(u) curve shown in Fig. 12~a! is responsible for these os-
cillations in theV(z) curve. Because the dominant feature in
the V(z) curve is the behavior of the reflectance function
around the Rayleigh angle, it is essential for obtaining a good
acoustic material signature to use a lens of numerical aper-
ture large enough to include the Rayleigh angle.
In summary, the Fourier theory and the ray model offer

two different insights into imaging theory. Both enableV(z)
to be calculatedab initio. From the point of view of math-
ematical treatment, the former is a complete integral solution
of the problem, and the latter is only the discretized solution
of the same problem. The advantage of integral analysis is
that one does not need to know about Rayleigh-wave modes,

nor does one need to calculate the critical angles explicitly;
the effect of all rays incident at the critical and noncritical
angles are automatically taken into account when the entire
converging beam is analyzed by the stationary-phase method
in the integral. The discretization treatment must first deter-
mine the critical angles beforeV(z) can be calculated. This
is a difficult task, especially for layered structures, because
the guided waves in them are dispersive, so that these critical
angles are frequency dependent~see Sec. V!. However, be-
cause integral evaluations are carried out numerically, one
cannot easily see with this approach how the various geomet-
ric and acoustic parameters of the lens and object influence
V(z). On the other had, the ray optics discretization treat-
ment makes it relatively easy to see how these parameters
influenceV(z). The main advantage of the ray optics ap-

FIG. 12. ~a! R(u) vs incident angleu for water-aluminum half-
space: solid line, modulus ofR; dashed line, phase ofR normalized
by 2p; ~b! V(z) curve for the same sample.
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proach is that it can clearly provide a useful physical expla-
nation of the acoustic material signature and may be used to
develop new fields of application for theV(z) effect. Both
methods are thus of importance for interpreting the contrast
quantitatively.

IV. ELASTIC MICROANALYSIS BY V(z) MEASUREMENT

Having described the general principles of the acoustic
microscope and ofV(z) theory, we can now consider the
application of theV(z) function to characterization of solid
materials. TheV(z) effect has played a very important role
in both acoustic imaging and quantitative measurement in
the nondestructive testing of materials. As regards acoustic
imaging measurements, theV(z) curves have been effec-
tively employed, for example, in the interpretation of con-
trast in acoustic images, and in image signal-processing tech-
niques for obtaining enhanced false-color micrographs
~Hammer and Hollis, 1982!. A new field of acoustic micro-
metrology for measuring elastic properties of materials non-
destructively on a microscopic scale has grown out of the
quantitative measurements. Here we present only examples
of successful applications of quantitative measurements, that
is, of experimental elastic microanalysis by measuringV(z).

A. Examination of the reflectance function

The amplitude and phase ofV(z) can be inverted to de-
duce the full reflectance functionR(u) in amplitude and
phase~Liang, Kino, and Khuri-Yakub, 1985!. To demon-
strate this, by use of a suitable change of variables

u[kwz, t[
1

p
cosu ,

Eq. ~11! may be rewritten as

V~u!5E
1/p

cosum /p

P2~ t !u1
2~ t !R~ t !exp@2 i2put#tdt .

~16!

This can be recognized as a Fourier transform, withV(u)
and $P2(t)u1

2(t)R(t)t% as the transform pair. Of course, the
limits of the integration in Eq.~16! should be from2` to
1`, but since$P2(t)u1

2(t)R(t)t% vanishes outside the given
limits, this makes no difference. The Fourier transform may
be inverted to yield

R~ t !5
1

P2~ t !u1
2~ t !t

F21@V~u!# . ~17!

Thus, by measuringV(u) and inverse-Fourier-transforming
it, one may estimate the reflectance function. In order to
deduceR(u) from a simple inversion ofV(z), it is necessary
to measure it as a complex-valued function, i.e., with both
amplitude and phase information. This can be done by using
an accurate amplitude and phase measurement system
~Liang, Bennett,et al., 1985!. However, in most conven-
tional commercial acoustic microscopes the video signal is
measured after detection by an envelope detector, so that the
phase information is lost. In this case it is necessary to em-
ploy a phase retrieval algorithm~Fright et al., 1989! to re-
construct phase information from a modulus onlyV(z).

B. Measurement of phase velocity of surface acoustic
waves

Material characterization can be carried out by measuring
the propagation characteristics, that is, the phase velocity and
attenuation, of a leaky Rayleigh wave excited in the sample.
The periodicity and decay of oscillations inV(z) directly
relate to these properties. The phase velocity is simply deter-
mined from the intervalDz in theV(z) curve @see Eq.~5!#.
For a conventional commercial SAM, for example, the Leica
ELSAM, which employs water as a coupling material and a
semiangle of 50° at 1.3–2.0 GHz, allowing az-scan distance
of 20 mm, the measurement of the phase velocity can be
carried out effectively from about 2000 m/s up to 6000 m/s.
Other coupling liquids might make theV(z) curve measure-
ments more effective for materials with both higher and
lower velocities than water. The relative accuracy of the ve-
locity measurement can easily be about 1 percent~Yu and
Boseck, 1994!. A best measured accuracy of 0.2 percent was
reported by use of the line-focus-beam SAM~Kushibiki and
Chubachi, 1985!. In addition to measuring the velocity of
Rayleigh waves, Quate~1980! has pointed out that it should
be possible to use theV(z) response to record the longitudi-
nal velocity in an object on a microscopic scale. The basic
approach is to choose the coupling liquid so that the lens
angular aperture only includes the longitudinal critical angle.
In this case, theV(z) null spacingDz can be related to the
longitudinal velocitya in the solid @using Eq.~5! with a
replacingnR#. Moreover, in a small number of materials of
intermediate elastic stiffness~mainly polymers of relatively
high moduli such as PMMA!, lateral longitudinal waves can
take the place of Rayleigh waves. These waves, also known
as surface-skimming compressional waves, propagate paral-
lel to the liquid-solid interface when the angle of refraction is
90° ~Tamir, 1972!, so that the longitudinal critical angle re-
places the Rayleigh angle in calculating the period of the
oscillations in theV(z) curve. Then, the phase velocity of a
surface-skimming compressional wave can be determined
from V(z). In any measurement of the phase velocity, Fou-
rier analysis usually is used on theV(z) curve for analyzing
its period of oscillation in order to obtain sufficient measure-
ment accuracy.

C. Measurement of attenuation of surface
acoustic waves

The attenuation coefficient of surface acoustic waves on a
liquid-loaded specimen is characteristic of bulk elastic prop-
erties, as well as topographic variations of the surface. The
grain size, porosity, density of micro cracks, and so on, near
the surface of materials can all influence the measured val-
ues. Thus SAW attenuation is a sensitive indicator of surface
characterization.
If there is a loss in the specimen, the velocitiesa andb of

the longitudinal wave and shear wave in the specimen be-
come complex descriptionsa* and b* , and can be ex-
pressed as

a*5a/~11 iL a /2p! ,

b*5b/~11 iL b /2p! , ~18!
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whereLa andLb are the attenuation factors of the longitu-
dinal wave and shear wave in the specimen per wavelength
in decibels. The complex wave numbers are

ka*5
v

a*
5

v

a
~11 iL a /2p!5

v

a
1 i

La

la
,

kb*5
v

b
1 i

Lb

lb
, ~19!

wherev is the circular frequency, andla and lb are the
wavelengths of the longitudinal and shear waves in the speci-
men, respectively. With this complex wave-number descrip-
tion, the reflectance functionR(u) of a plane acoustic wave
at a liquid-specimen interface is again evaluated by Eq.~15!.
The V(z) curve can also be calculated by use of Eq.~11!.
Usually, attenuation reduces the amplitude of the reflectance
function close to and around the Rayleigh angle, hence re-
ducing the depth of dipsDV in theV(z) curve, but with the
interval between dips unvaried. An example of the effects of
attenuation onuR(u)u andV(z) is shown in Fig. 13, in which
the solid lines indicate the nonattenuation cases while the
dashed lines indicate the attenuation cases, respectively.
Using a SAM, one may carry out an attenuation measure-

ment in various ways, for example, fitting the parameters to
the V(z) curve ~Yamanaka, 1982! and direct measurement
with use of an annular lens~Smith and Wickramasinghe,
1982!. The parameter-fitting method uses an exact theoretical
model ofV(z) to simulate the measuredV(z) curve. SAW
attenuation is introduced into the model in order to match the
measured data more accurately by allowing the elastic con-
stants to be complex@Eqs. ~18! and ~19!#. A value for the
attenuation can then be found by forward optimization of the
measuredV(z) curve. With the annular lens method, that is,
with an absorbent or reflective aperture stop in the center of
the lens as shown in Fig. 14, the purely longitudinal specular
reflection beam~the wave pathA in Fig. 14! is not detected
by the transducer. Only the nonspecular reflection~the
longitudinal/SAW/longitudinal wave pathB! enters the lens
and gives rise to the output signal, and so theV(z) curve is
free from interference. The lens output simply records an
exponential decay of the signal. The gradient of theV(z)
curve reveals the SAW attenuation coefficient in the speci-
men.

D. Determination of elastic constants of bulk materials

Elastic constants of bulk materials~elastic stiffness con-
stantsCi j ) are basic physical parameters. Their accurate de-
termination has been required for many industrial and sci-
ence applications. For determination of elastic constants, it is
conventional to make velocity measurements of both longi-
tudinal and shear waves by various kinds of ultrasonic meth-
ods including the optical diffraction method. The ultrasonic
transducers, made of piezoelectric plates at lower frequencies
or ZnO thin films at higher frequencies, must usually be
fabricated on one end of the specimens, of which both end
surfaces are polished with parallelism. Now, because acous-
tic microscopy utilizes elastic wave illumination, the ob-
tained image relates directly to elastic properties on a mi-

croscale. Thus, using acoustic microscopy, a new method of
measuring the elastic constants of bulk solid materials has
been developed. This technique has the great advantage that
nondestructive and noncontacting measurements can be
made without fabrication of any ultrasonic transducers. The
acoustic microscope can precisely measure the velocity of
leaky SAWs propagating on the liquid-loaded specimen. The
leaky-SAW velocity is directly related to the elastic proper-
ties of the specimen, so that it is possible to determine the
elastic constants by theoretical analysis. The approach is
based on computer fitting the experimental SAW velocity
~Kushibiki et al., 1987! and/or on the inversion procedure
~Yu and Boseck, 1991!. When one seeks a least-squares fit of
the SAW velocities between the measured and the calculated

FIG. 13. ~a! uR(u)u versus incident angleu for water-aluminum
half-space: solid line, nonattenuation case; dashed line, attenuation
case; ~b! V(z) curves for the same sample: solid line, non-
attenuation case; dashed line, attenuation case.
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values, an inversion of the SAW data yields the unknown
elastic constants of the specimen.

V. MATERIAL CHARACTERIZATION OF A LAYERED
SOLID BY ACOUSTIC MICROSCOPY

Today there are many industrial products and processes
that employ structures containing a single thin layer or sev-
eral thin layers deposited on, or somehow otherwise adhering
to, a substrate. Characterizing near-surface properties of such
structures, detecting defects below the surface, determining
the layer thicknesses, and evaluating the uniformity of the
bond are important problems. The scanning acoustic micro-
scope is very suitable for subsurface imaging and nonde-
structive evaluation of these properties. Since surface waves
extend about a wavelength below the surface, even in the
reflection model it may be possible to image features that lie
below an opaque surface layer and to measure their proper-
ties quantitatively on a microscopic scale. Acoustic micros-
copy offers obvious advantages over conventional micros-
copy. The propagation properties of SAWs in layered
structure are more complicated than in nonlayered structure.
In addition to Rayleigh surface waves, other surface wave
modes, such as Love wave modes, and Sezewa wave modes
~generalized Lamb waves! can be excited in a layered solid.
All such surface waves take part in the interference phenom-
ena recorded by a SAM. To understand their dispersion prop-
erties and effect on theV(z) function, it is necessary to know
something about the propagation characteristics of surface
acoustic waves in a layered solid.

A. Dispersion of surface acoustic waves in a layered
solid

A thin layer of finite thickness deposited on an isotropic
substrate can be used to guide elastic surface waves in the
substrate. Introduction of such a layer on top of a free surface
of infinite extent provides a characteristic geometric dimen-
sion to the propagation medium, and waves may propagate
in many different independent modes, all confined to the
surface region. Some of these modes are perturbations of the
free-surface Rayleigh waves, but others are quite different in
character. All such surface waves become dispersive because

the SAW velocity is now a function of both frequency and
the layer thickness and elastic parameters. The coordinate
system for the thin-layer problem is illustrated in Fig. 15.
The layers of concern are thin, usually of a thicknessd less
than the wavelength of the surface wave being studied. The
waves of interest here will be ‘‘straight crested’’ in the sense
that there are no variations of any of the displacement com-
ponents in a direction parallel to the free surface and perpen-
dicular to the direction of propagation. Thus the disturbance
has constant phase and amplitude for each component mea-
sured along any line parallel to they axis.
For the thin-layer/substrate configuration without a liquid

contact, detailed reviews of elastic-wave propagation have
been presented by Tiersten~1969! and by Farnell and Adler
~1972!. The effect of the liquid contact has been discussed by
Chimentiet al. ~1982!. In the standard analytical approach,
waveguide modes in the layer are combined with waves of
exponentially decaying magnitude in the solid and liquid
half-space. Consider the geometry of Fig. 15. Here the dis-
placement solution in a perfectly elastic, homogeneous, non-
piezoelectric, but anisotropic medium is assumed to be a
linear combination of terms of the form~Farnell and Adler,
1972!

ui5Uiexp@2 ikl 3z#exp@ ik~ l 1x1 l 2y2nRt !# , ~20!

whereUi is the relative amplitude of the different compo-

FIG. 14. Schematic geometry of an annular lens.

FIG. 15. ~a! Coordinate system for wave propagation in thin layer,
propagation direction and sagittal plane;~b! geometry of a layered
solid in the sagittal plane.
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nents of each partial wave,k is the wave number,l 1 , l 2 , and
l 3 are the direction cosines, andnR is the SAW phase veloc-
ity. If the direction of wave propagation in the surface is
taken asx direction, thenl 151 andl 250, respectively. Such
terms must simultaneously satisfy the equation of motion
and the boundary conditions.
Substitution of Eq.~20! into the displacement equations of

motion gives the following relation betweennR , l 3 , and
Ui for each medium being considered:

F G112rnR
2 G12 G13

G12 G222rnR
2 G23

G13 G23 G332rnR
2GF U1

U2

U3
G5F 000G .

~21!

In order to have nontrivial solutions, the determinant of the
square matrix in Eq.~21! must be set equal to zero, which
produces the secular equation for each medium

uG jk2d jkrn2u50 ~ j , k51, 2, 3! . ~22!

In an isotropic solid the only nonzero terms in the
stiffness matrix areC115C225C33, C125C135C23, and
C445C555C665(C112C12)/2, with the result that the rel-
evant algebraic form of the equation of motion, i.e., Eq.~21!,
now becomes

F G112rnR
2 0 G13

0 G222rnR
2 0

G13 0 G332rnR
2GF U1

U2

U3
G5F 000G ,

~23!

wherer is the density of the medium, and

G115C111C44l 3
2 , G135~C112C44!l 3 ,

G225C44~11 l 3
2!, G335C11l 3

21C44. ~24!

The traction-free boundary condition at the free surface of
the layer and the continuity of traction and displacement at
the interface between the layer and the substrate then yield
one set of homogeneous equations for the constants appear-
ing in the wave solutions in the layer and the liquid and solid
half-space~Farnell and Adler, 1972!. In order to have non-
trivial solutions for this set of homogeneous equations, one
must ensure that the ‘‘boundary-condition determinant’’ van-
ish. This yields a dispersion relation, which relates the phase
velocity nR of the surface wave to a frequencyf , or a prod-
uct of the frequency and the thickness of the layer,f d, with
a unit of GHz•mm. For a given value off d there is an
infinite number of complex-valued solutions fornR . The so-
lutions whose real parts are not zero represent propagating
wave modes. The modes of a surface-wave solution can be
separated into two independent sets: the ‘‘Love modes’’
~Love, 1911! and the ‘‘Rayleigh-like modes.’’ Love modes
are waves possessing one displacement component, parallel
to the surface and perpendicular to the direction of propaga-
tion ~transverse displacements!. Rayleigh-like modes are
waves with sagittal-plane displacements~in the direction of
propagation and normal to the surface!. The sagittal-plane
displacements~Rayleigh-like waves! and transverse dis-
placements~Love waves! are completely uncoupled. Both

types of wave are dispersive in that the phase velocity now
depends on the frequency of excitation, and they have an
unlimited number of higher-order modes for any given com-
bination of materials.
It is possible further to characterize the propagation prop-

erties of these modes by the relative values of the shear bulk
wave velocity of the layer (b layer) and the substrate
(bsubstrate) involved. The propagation properties for
Rayleigh-like waves can be separated into three distinct cat-
egories, shown in Fig. 16, where the ordinate is the ratio of
the shear moduli and the abscissa is the ratio of the densities.
For layer-substrate combinations lying above the
b layer5A2bsubstrate line, i.e.,

b layer.A2bsubstrate,

the layer is said to ‘‘stiffen’’ the substrate because the pres-
ence of the layer increases the surface-wave velocity above
that of the Rayleigh wave in the substrate, whereas for ma-
terial combination below theb layer5bsubstrate/A2 line, i.e.,

b layer,1/A2bsubstrate,

the layer is said to ‘‘load’’ the substrate because the velocity
of the free-surface Rayleigh mode on the substrate material
is decreased by the presence of the layer.
For the stiffening case there exists only a single propagat-

ing mode, the Rayleigh-wave mode, whose phase velocity
increases monotonically with frequency. Figure 17~a! shows
an example of the dispersion curve for the stiffening case, in
which a chromium layer stiffens the copper substrate. The
dispersion curve has positive slope. At zero frequency the
phase velocity equals the Rayleigh-wave velocity in the sub-
strate, and it increases up to the shear-wave velocity of the
substrate (b'2330 m/sec! at a particular value off d as f d
increases. For a larger value than this cutoff value off d, this
mode of propagation does not exist for this layer-substrate
combination.
For the loading case, an unlimited number of Rayleigh-

like modes and Love modes can exist, depending on the
layer-substrate combinations andf d. The lowest mode of the
Rayleigh-like modes is generally considered to be a modifi-
cation of the Rayleigh surface wave in the substrate and
again is simply called the Rayleigh mode; higher modes are

FIG. 16. Sufficient conditions for stiffening and loading for isotro-
pic material combinations.
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called Sezewa modes after their discoverer Sezewa~Sezewa
and Kanai, 1935!. For the lowest mode, i.e., the Rayleigh
mode, the dispersion curve starts with a negative slope at the
Rayleigh velocity of the substrate, and as the frequency in-
creases the velocity monotonically decreases to asymptoti-
cally approach the Rayleigh velocity appropriate to a free
surface of the layer material. Sezewa modes require a mini-
mum layer thickness to propagate for a given frequency, or
conversely, for a given layer thickness there is a cutoff fre-
quency below which the mode cannot propagate unattenu-
ated. Therefore each Sezewa mode may be considered to
consist of two parts: the Sezewa mode and the pseudo-
Sezewa mode. The Sezewa mode has a low-frequency cutoff

at which the phase velocity is equal to the shear velocity of
the substrate material and has a high-frequency asymptote
equal to the layer shear velocity, in contrast to the first Ray-
leigh mode, which has an asymptote equal to the Rayleigh
velocity of the layer material. The pseudo-Sezewa mode ex-
ists at low frequencies. At zero frequency its velocity equals
the velocity of a surface-skimming longitudinal wave~Tamir,
1972! at the substrate. The velocity decreases to that of the
shear wave of the substrate material at the cutoff frequency.
The pseudo-Sezewa mode radiates acoustic energy into the
substrate. Figure 17~b! shows the dispersion curves for the
loading case, all of which have negative slope. The material
combination is a tungsten layer on a silicon substrate. The
calculation of the dispersion curves follows Tiersten~1969!
by evaluation of a fourth-order dispersion equation. This fig-
ure shows the phase velocity curves for the three Rayleigh-
like modes, namely, the lowest Rayleigh mode and the first
and second Sezewa modes. As mentioned above, asf d in-
creases, the phase velocity of the lowest Rayleigh mode de-
creases asymptotically to the Rayleigh-wave velocity of the
tungsten layer (nR'2668 m/sec!, whereas the phase velocity
curve of the Sezewa wave mode decreases asymptotically to
the shear-wave velocity of the tungsten layer (b'2880
m/sec!. The first Sezewa wave has a cutoff wave number of
f d50.394 GHz•mm, at which the phase velocity is equal to
the shear-wave velocity in the substrate silicon (b'5500
m/sec!, and the leaky pseudo-Sezewa mode and the leaky
Sezewa mode are distinguished at this cutoff point.
In Fig. 18 the dispersion curves are shown for the three

particular layer/substrate material combinations, i.e., an alu-
minum layer on a silicon substrate~dot-dashed!, a cobalt
layer on a silicon substrate~dashed line!, and a tungsten
layer on a silicon substrate~solid line!. The dispersion curves
are presented only for the lowest Rayleigh-wave modes. This
figure shows that the dispersion curves clearly depend on the
material properties of the layered structures. The dispersion

FIG. 17. Dispersion curves in layered materials:~a! chromium on
copper (b layer.bsubstrate), the layer stiffens the substrate;~b!
tungsten on silicon (b layer,bsubstrate), the layer loads the sub-
strate.

FIG. 18. Dispersion curves of the Rayleigh wave: dash-dotted line,
Al/Si; dashed line, Co/Si; solid line, W/Si.
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curve for the W/Si combination indicates a larger negative
gradient. A small variation off d causes a larger velocity
difference, whereas, the dispersion curve for the Al/Si com-
bination shows a flat characteristic in a quite large region of
f d. This indicates that a large variation in the thickness of
the Al layer causes only a slight decrease in the phase veloc-
ity of the leaky SAW. This study of the characteristics of the
dispersion curve is of great significance in analyzing the
resolution of layer-thickness measurements by a SAM.
Love modes exist only if the layer has a shear-wave ve-

locity lower than that of the substrate. The velocity of the
first of these Love modes becomes equal to the shear veloc-
ity of the substrate material when the layer thickness van-
ishes. At high frequencies, the velocity of this mode becomes
asymptotic to the shear velocity of the layer material. An
example of the first Love mode is also shown in Fig. 17~b!.
The higher Love modes all have low-frequency cutoffs when
the phase velocity becomes equal to the shear velocity of the
substrate material, and at high frequencies the phase veloci-
ties of each mode approach asymptotically the shear velocity
of the layer material.
If the shear velocity of the layer lies betweenA2 and

1/A2 times that of the substrate, the situation is more com-
plicated, and it involves the ‘‘Stoneley’’ modes for the two
materials. In this paper only the Rayleigh-like modes are of
interest.

B. Behavior of V(z) for a layered structure

When a conventional SAM equipped with a spherical lens
is used to image a layered structure, many possible surface
acoustic wave modes are excited in the specimen, because all
incidence angles are found at the object interface. In this
case, theV(z) function can also be calculated by the Fourier
optics approach, i.e., Eq.~11!. However, the physical model
of V(z) for layered structures must be further extended.

1. Multiple-ray interference model of V(z)

The double-ray model ofV(z) described above works for
smooth nonlayered isotropic solids, in which only one leaky
surface wave is excited. In a layered structure, more than one
leaky surface wave may be excited within the half aperture
of the SAM lens. All acoustic rays incident on the specimen
at the leaky-SAW critical angle may contribute toV(z) after
undergoing nonspecular reflection. The combined effect of
all these leaky wave modes determines the nature of the
acoustic material signature. From the interference point of
view, a multiple-ray interference model should be consid-
ered.
Figure 19 shows the cross-sectional geometry of an acous-

tic beam that is used to explain the multiple-ray interference
mechanism in theV(z) curve. Each leaky-SAW mode asso-
ciated with the wave propagating alongBi , i51,2 . . .n, is
excited at its critical angle by the focused acoustic waves and
propagates with its characteristic phase velocity on the
boundary. Now, we assume that the construction mechanism
for theV(z) curve is a linear system, so that we can take a
superpositional model for the total interference output as

V~z!5VL~z!1 (
k51

n

VI
k~z! , ~25!

where VL(z) is the transducer output due to the acoustic
wave propagating along pathA directly reflected from the
surface of the sample, andVI

k(z), k51,2 . . .n, are the
transducer outputs associated with waves propagating along
B1, B2 . . . , due to theleaky-SAW components propagating
on the boundary. Due to multiple-ray interference, the varia-
tion of the V(z) curve is seen to be irregular both in the
depth of the minima and in the unequal spacing between
minima. It is impossible to determine the phase velocities of
leaky SAWs straightforwardly using the simple double-ray
formula, Eq.~5!. This fact makes it difficult to use an SAM
for material characterization of a layered structure through
V(z) measurement. The conventional SAM cannot choose
and identify single leaky-SAW modes from the obtained
V(z) curve. We must carry out an analysis of the oscillation
characteristics of theV(z) curve to extract the relevant SAW
mode for material characterization. This analysis requires,
first, a detailed understanding of the propagation characteris-
tics of a leaky SAW in a layered solid, and then wave-form
analyses and parameter studies of theV(z) curve in associa-
tion with a study of the propagation characteristics of the
leaky-SAW mode.

2. Wave-form analysis of the V(z) curve

Here, we shall describe the behavior ofV(z) in layered
structures. The use of these results for understanding the ef-
fect of various leaky-SAW modes on theV(z) curve, and the
identification of these leaky-SAW modes which are most
likely to produce the oscillations of the relevantV(z) curve,
is of primary interest.
To calculateV(z) in a layered solid following the Fourier

optics approach, Eq.~11!, we must first evaluate the reflec-
tance function of the plane acoustic waves that are incident
on the layered solid. Usually, the reflectance functionR for a
layered solid immersed in liquid, for example water, can be
formally written as~Kundu et al., 1985; Yu, 1991, and Ap-
pendix B!

FIG. 19. Multiple-ray interference model ofV(z).
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R~j!5
N~j!

D~j!

5
hw~J11J222J12J21!1 irwnw

2kw
2 ~J11J232J21J13!

hw~J11J222J12J21!2 irwnw
2kw

2 ~J11J232J21J13!
,

~26!

where j5kwsinu, kw is the wave number of sound in the
liquid, u is the incidence angle,rw is the density of the
liquid, nw is the longitudinal velocity in the liquid, andJ is
the chain product of Thomson-Haskell layer matrices
~Thomson, 1950; Haskell, 1953!.
Figure 20 presents an example of a reflectance function for

a copper substrate with a silver layer. The understanding of
the excitation of leaky-SAW modes from the reflection
curves is of primary interest. Because the layer material has
a lower shear velocity than that of the substrate, this is a
single-layer ‘‘loading’’ case. For a fixed set of materials, the
reflectance functionR is a function of the incidence angle
u and f d. In Fig. 20~a!, uRu vs u curves are presented for
different values off d. The curves forf d.0 have been
shifted downward for clarity and ease of comparison. In the
top curve,d50 and the reflection function shows theuRu
curve for a water-copper half-space. As mentioned above, in
this nonlayered case there is only a single SAW mode, i.e., a
Rayleigh mode can be excited. The slight dip in the right-
hand portion of the curve at the Rayleigh-wave critical angle
indicates the excitation of this SAW mode~see Sec. III.B.3!.
As the thickness increases, the other curves in Fig. 20~a!
indicate, by additional slight dips, that several surface-wave
modes are excited depending onf d. This can be seen more
clearly in the modulus and phase curves ofR for the case
f d54.0 in Fig. 20~b!. There are three small dips in the right-
hand portion of theuRu curve, where three corresponding
phase transitions by almost 2p over a small change ofu in
the phase curve occur. These phase transitions arise from
various leaky-SAW modes excited in the layered solid.
Equation~26! for the reflectance function contains, as a

by-product, the characteristic equation for the propagation of
leaky-SAW modes along the liquid-layered solid interface.
The vanishing of the denominator inR(j), namely,
D(j)50, is the characteristic equation for such waves. That
is, the propagating SAWs correspond to polesjp of the re-
flection coefficient. Because of the presence of liquid the
pole jp becomes complex and can be expressed as

jp5Re~jp!1 i Im~jp! , ~27!

where Re and Im refer to real and imaginary parts, respec-
tively. From Eq.~27! we obtain the phase velocitynR of the
leaky SAW and the Schoch displacement parameterDs ~see
Fig. 8!

nR5w/Re~jp!, Ds52/Im~jp! , ~28!

wherev is the circular frequency.
This brings us to the features ofV(z) for a layered struc-

ture. In Fig. 21, we first present an example of aV(z) curve
for glass~solid line! and glass with a chromium layer of 0.1
mm thickness. The calculations ofV(z) curves were carried
out at f51.8 GHz. The twoV(z)s have different periodici-
ties, which results in their becoming progressively out of

phase as the defocus is increased. The difference in the spac-
ing of the dips for the two curves is related to the decrease in
the phase velocity of the Rayleigh-wave mode as the layer
appears. Marked on this figure are two points at which the
contrast is strong; however, the contrast atA will be the
reverse of that atB.
Next, we simply carry out wave-form analysis and para-

metrical studies of theV(z) curve in a layered solid in order
to see the effects of various possible leaky-SAW modes on
the V(z) curve. TheV(z) curve of a layered solid depends
on the layer thickness and the material properties of the layer
and the substrate, so the situation is quite complicated. The
material properties of a thin layer are also generally different

FIG. 20. R(u) for Ag/Cu structure immersed in water:~a! uRu vs
incident angleu for various values off d with a unit of GHz-mm;
~b! R vsu for f d54.0. Solid line, modulus ofR; dashed line, phase
of R normalized by 2p.
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from those of a bulk material. Here we take only two par-
ticular examples of wave-form analysis of theV(z) curve,
using a given layer thickness and given material properties.
Figure 22 shows theV(z) curves for a specimen of a sili-

con substrate with an aluminum layer, which indicates the
effect onV(z) of various layer thicknesses, i.e., various pos-
sible SAWs excited in the sample. The parameters of the
scanning acoustic microscope in the calculations of these
V(z) curves are: semiangle 50° and frequencyf51.8 GHz.
In this figure the solid and dashed lines show the results for

Al layers of 0.2mm and 0.4mm thickness, respectively. The
oscillations of bothV(z) curves are due to the leaky Ray-
leigh mode. Because of the flat characteristics of the disper-
sion curve for Al/Si~see Fig. 18!, it can be expected that the
oscillations of theV(z) curves in a larger region off d will
be predominantly due to the leaky-Rayleigh-wave mode. The
variation of the wave form of theseV(z) curves is not obvi-
ous as thef d increases. However, the dotted line in Fig. 22,
showing theV(z) curve for a 0.6mm thick layer, indicates
that the oscillation of theV(z) curve is due mainly to the
leaky Sezewa mode. The contribution of the leaky Rayleigh
mode causes a small fluctuation of the oscillation in theV(z)
curve.
Figure 23 shows another example of wave-form analysis

of theV(z) curve. The material combination is a silicon sub-
strate with a thin layer of cobalt. The solid line in Fig. 23
shows theV(z) curve for a specimen with a layer thickness
of 0.1 mm, the dashed line indicates theV(z) curve for a
layer thickness of 0.8mm, and the dotted line theV(z) curve
for a thickness of 2.0mm. In these regions off d there are
two possible leaky wave modes from the dispersion relation
for the Co/Si combination: the leaky Rayleigh mode and the
leaky Sezewa mode. It is clear that the oscillations of the
solid line (d50.1 mm! are due predominantly to the leaky
Rayleigh mode. ThisV(z) curve shows regular periodic os-
cillations. TheV(z) curve of the dashed line indicates that
the oscillation is caused by the leaky-Sezewa-wave mode,
because the higher wave speed of the Sezewa mode causes a
larger displacement of the oscillation than does a Rayleigh
mode. The contribution of the leaky Rayleigh mode, which
causes the small fluctuations in thisV(z) curve, is weak. The
other V(z) curve in Fig. 23~dotted line! contains two re-
gions, which represent the different responses for two leaky
modes. The shorter and the longer intervals in oscillations of
theV(z) curve correspond to the leaky-Rayleigh-wave mode
and the leaky-Sezewa-wave mode, respectively. The small

FIG. 21. Illustration of the manner in whichV(z) curves differ for
materials of differing Rayleigh velocity, and manner in which con-
trast in a SAM varies with defocus for two elastically dissimilar
materials.

FIG. 22. V(z) curves for Al/Si sample: Solid line, 0.2mm; dashed
line, 0.4mm; dotted line, is 0.6mm.

FIG. 23.V(z) curves for Co/Si sample: Solid line, 0.1mm; dashed
line, 0.8mm; dotted line, 2.0mm.
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fluctuations in the longer-interval oscillations of theV(z)
curve are caused by superposition of the leaky Rayleigh
mode, but their contribution to theV(z) curve is weak.
From these examples and the dispersion studies of the

leaky SAW we can draw several conclusions aboutV(z) be-
havior for layered structures.

~1! When a layered solid is examined by a SAM, more
than one leaky-SAW mode may be excited and propagated
within the semiangle of the acoustic lens. Such leaky-SAW
modes are excited simultaneously in the SAM and contribute
to the output responseV(z). As a consequence, the output
response of the SAM will be confused and theV(z) curve
will have a complex oscillatory variation; a simple periodic-
ity in the V(z) curve will no longer occur. This is the main
disadvantage of using a SAM for the characterization of lay-
ered structures. The complexity of theV(z) curve makes it
very difficult to extract elastic properties of the specimen
from the measuredV(z) data.

~2! Various leaky-surface-wave modes dominate the oscil-
lations of theV(z) curves for various layer thicknesses. For
a small layer thickness, the most fundamental excited leaky-
SAW mode is the leaky Rayleigh mode, and it makes the
dominant contribution to the oscillation of theV(z) curve,
whereas for large thicknesses the Sezewa mode is the rel-
evant mode.

C. Material characterization of a layered solid
by surface acoustic wave dispersion

Until now, we have described the propagation characteris-
tics of surface acoustic waves in layered solids and features
of V(z) for layered structures. That is, for a given model of
a layered structure we have found out how to evaluate its
SAW dispersion relation and to calculate itsV(z) curve. On
the other hand, one wants to develop a new approach which
can predict the structural properties of a layered solid from
the measured SAW dispersion data. Such an approach and
method should be very useful for developing the SAM as a
diagnostic tool for material characterization. Because the
SAW dispersion in a layered solid is a function of both fre-
quency and layer thickness and elastic parameters, the mate-
rial characterization of layered structures, such as the estima-
tion of layer thickness, the determination of elastic
properties, and the evaluation of cohesive properties of the
bond, should be carried out by measuring their effects on
SAW dispersion. From a theoretical point of view, the former
is referred to as ‘‘the direct problem’’~or ‘‘forward prob-
lem’’ !, whereas the latter is referred to as ‘‘the inverse prob-
lem.’’
Forward problem: model parameters→model
→prediction of dispersion relation;
Inverse problem: dispersion data→model→estimates of

model parameters.
The problem of determining the structural properties asso-

ciated with a given set of SAW dispersion data is more com-
plex. Analytical and exact solutions of this problem are un-
known in nondestructive evaluation, except for a few very
simplified examples. Based on the knowledge obtained from
extensive parametric studies of theoretical models of SAW
dispersion relations, it is possible to determine the unknown

parameters by matching with measured data on a trial and
error method~for example, the parameter-fitting procedure
by forward optimization!. Unfortunately, this procedure is
too inefficient to apply in practice. Therefore, using a sys-
tematic and automatic inversion scheme, for example, the
iterative approach, is very desirable for attaining this goal.
While the inversion problem in acoustic microscopy is a
relatively new topic, studies of similar problems in geophys-
ics date back several decades. Inversion theories and practi-
cal inversion methods have been developed by seismologists.
These techniques form a valuable reference base for the in-
version problem of SAW dispersion data in acoustic micros-
copy.

1. Layer-thickness measurement
in a single-layered structure

TheV(z) technique lends itself to the measurement of the
absolute dispersion: velocity versus product of frequency and
layer thickness~see Figs. 17 and 18!. Moreover, if the SAW
dispersion has been measured for the layered solid examined,
the layer thickness can also be found from the measured
SAW dispersion data~Weglein, 1979b!. That is, we first
theoretically calculate the dispersion relation of the relevant
SAW mode from known elastic parameters of each layer and
substrate. By measuringV(z) at a certain frequency and
finding the corresponding SAW velocity, we can deduce the
layer thickness from the theoretical dispersion relation. This
technique can be applied in practice with high accuracy and
without the need of standards. The drawback is that it is
difficult to measure the larger layer thicknesses because mul-
tiple SAWmodes are excited in a thick layered structure. The
accuracy of the layer-thickness measurement is associated
with the accuracy of the velocity measurement of the leaky
SAW and the dispersion characteristics, i.e., the gradient of
the dispersion curves, of the tested specimen. It may be ex-
pected from the dispersion curve~see Fig. 18! that a layer-
thickness measurement of materials with a larger gradient in
their dispersion curves will have higher resolution than a
measurement of materials with a lower dispersion gradient.
Furthermore, the study of the dispersion curve shows that, as
the frequency increases, the gradient of the corresponding
dispersion curve can also be increased. This implies that for
a given layered solid the resolution of a layer-thickness mea-
surement can be improved by the use of an appropriate
higher frequency. We have estimated~Yu and Boseck, 1994!
that, using the commercial Leica ELSAM system, one can
obtain layer-thickness accuracies for semiconductor technol-
ogy from 65 nm up to640 nm depending on the layer/
substrate combinations under test~the metal layers, cobalt,
tungsten, and aluminum deposited on a Si substrate!. Be-
cause of the exponential decay, a surface wave may be con-
sidered to sample the elastic properties of a layer approxi-
mately one wavelength thick. This limits the range of the
layer-thickness measurement, which must be much less than
the wavelength (d,lR) of the surface wave. The best accu-
racy in layer-thickness measurements in semiconductor tech-
nology is obtained by limiting the measurement range to less
than 1/5–1/10 the wavelength of the surface wave.
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2. Layer-thickness measurement in a two-layered structure

This technique is useful in principle for layer-thickness
measurements in a multilayered structure. However, in mul-
tilayered structures the SAW dispersion depends not only on
the combination of materials but also on the different layer-
thickness ratios, and the dispersion curves for different layer-
thickness combinations may overlap each other in the SAW
data space. Therefore it is impossible to extract more than
one unknown layer thickness from a single SAW velocity.
Figure 24 presents numerical examples of SAW dispersion
for a two-layered solid, which were calculated by use of the
traditional analytical formulation described by Farnell~see
Sec. V.A! with the effective elastic constants and the effec-

tive mass density of two layers. The effective elastic con-
stants and the effective mass density of a superlattice have
been derived in terms of the corresponding parameters of the
constituent layers~Grimsditch, 1985!. Their calculated for-
mulas can be summarized as follows. Assuming that the
thickness, the elastic constants, and the density of layer 1 are
denoted byd1 , C11

1, C12
1, C44

1, and r1 , respectively,
those of layer 2 are denoted byd2 , C11

2, C12
2, C44

2, and
r2 , respectively. The thickness fractions of the two kinds of
layers are f 15d1 /(d11d2) and f 25d2 /(d11d2), where
(d11d2) is the superlattice period. Then, the effective mass
density of the superlattice is

r̄5 f 1r11 f 2r2 . ~29!

The six independent effective elastic constants for the super-
lattice can be given as

C̄135
f 1C12

1 C11
2 1 f 2C12

2 C11
1

f 1C11
2 1 f 2C11

1 ,

C̄335@ f 1 /C11
1 1 f 2 /C11

2 #21 ,

C̄115 f 1C11
1 1 f 2C11

2 1 f 1
C12
1

C11
1 ~C̄132C12

1 !

1 f 2
C12
2

C11
2 ~C̄132C12

2 ! ,

C̄125 f 1C12
1 1 f 2C12

2 1 f 1
C12
1

C11
1 ~C̄132C12

1 !

1 f 2
C12
2

C11
2 ~C̄132C12

2 ! ,

C̄445@ f 1 /C44
1 1 f 2 /C44

2 #21 ,

C̄665 f 1C44
1 1 f 2C44

2 . ~30!

The above equations predict that the effective elastic con-
stants do not depend on the superlattice period (d11d2) but
depend on the thickness ratio of the two constituent layers.
The models used in Fig. 24 are a Co layer~layer 1! on a W

layer~layer 2! on a Si~100! half-space and a W layer on a Co
layer on a Si~100!, respectively. In Figs. 24~a! and 24~b! the
SAW curves are presented for the values of the normalized
thicknessf d2 , in which f is the frequency andd2 is the
thickness of layer 2, and the thicknessd1 of layer 1 is rep-
resented by the ratiosd1 /d2 . Here d1 /d2 take as the five
values 0.0, 0.2, 0.5, 0.8, 1.0.
It can be seen from Fig. 24 that the SAW dispersion curves

show different negative gradients, depending on the different
layer-thickness ratios for a given material combination. The
dispersion curves may also overlap in the data space. The
determination of layer thicknesses from those overlapped
SAW data is not unique. Even if the dispersion curves for the
different ratios ofd1 /d2 do not overlap each other, it is still
impossible to extract the characteristics of two unknown
layer thicknesses from only a single SAW velocity, since it is
also not unique. One must take severalV(z) measurements
at various frequencies to obtain more SAW dispersion data
instead of measuring it at only a single frequency, and then it
is necessary to use a good inversion method to predict the
layer thicknesses from the SAW dispersion data obtained. We

FIG. 24. SAW dispersion curves for two samples of a two-layered
solid. From above to below,d1 /d250.0, 0.2, 0.5, 0.8, and 1.0.~a!
SAW dispersion curves for Co/W/Si;~b! SAW dispersion curves for
W/Co/Si.
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have developed a technique for layer-thickness measurement
in thin two-layered structures~Yu and Boseck, 1995!. This
approach is based on a modified simplex method~Nedler and
Mead, 1965!. When one seeks a least-squares fit of the dis-
persion relation between the measured data and the calcu-
lated curve, an inversion of the SAW data finally yields the
unknown thicknesses of the individual layers.

3. Measurement of mechanical properties
in a layered structure

It is also possible to examine the elastic constants (C11,
C12, andC44) of the layer, or residual stresses and cohesive
properties of the bond, from the measured SAW dispersion
data in a layered solid. This approach is nondestructive and
particularly useful for the characterization of layers of as-
grown films; it cannot be replaced by any other conventional
analytical means. One either uses the inversion technique or
obtains a computer fit from the precisely measured propaga-
tion characteristics of the relevant surface-wave mode. In
order to apply this technique to the SAW dispersion data,
first, it is necessary to have an analytical relationship be-
tween the measured data and the unknown parameters of the
test specimen. Then, the SAW data must be precisely mea-
sured by theV(z) technique at a number of frequencies.
Using an iterative procedure or by computer parameter-
fitting of the dispersion relation between the measured data
and the calculated values, one can deduce the unknown elas-
tic parameters of the layer materials and/or the adhesion
properties at the interface from the measured SAW disper-
sion data ~Crean et al., 1987; Weglein, 1987; Kim and
Achenbach, 1992; Kundu, 1992; Yu and Boseck, 1992; Lee
et al., 1995!.
In the computer parameter-fitting method, one estimates

the unknown parameters by matching the measured data on a
trial and error basis. In the inversion procedure one often
uses a linearization-iteration process: starting with an initial
model, one solves the forward problem, then sets up linear
equations for the difference between observable and calcu-
lated values for the initial model, in terms of a perturbation
in model parameters; then one solves the linear equations for
the perturbation, revises the initial model, and then repeats
the whole process. Moreover, three aspects of the solution of
an inversion problem, i.e., convergence, uniqueness, and re-
liability, contribute to a successful inversion procedure.
Clearly, the inverse problem is intellectually challenging.
Looking ahead a little further, we believe the inverse prob-
lem of SAW dispersion data in acoustic microscopy will be a
good research topic for acoustic micrometrology.

VI. FURTHER DEVELOPMENTS IN SCANNING
ACOUSTIC MICROSCOPY

So far in this paper, we have described the general prin-
ciples and main features of acoustic microscopy and shown
its application to the quantitative characterization of materi-
als. However, the conventional SAM, also known as a point-
focus-beam SAM, is equipped with a spherical lens. When
one uses such a SAM to characterize anisotropic materials
and thick layered structures, severe difficulties are encoun-
tered. In anisotropic materials the surface-wave velocity de-

pends on the direction of propagation. The point-focus beam
excites leaky SAWs propagating in all directions, so that the
acoustic properties are measured as a mean value around the
beam axis. TheV(z) obtained for an anisotropic specimen
becomes

V~z!5E
0

2pE
0

um
P2~u!u1

2~u!R~u,f!

3exp~2 i2kwzcosu!sinucosududf , ~31!

wheref denotes the azimuthal angle andR(u,f) is a com-
plex reflectance function, which now is a function of the
polar and azimuthal angles. As it integrates information from
all azimuthal directions, the system cannot be used to detect
acoustic properties that reflect crystallographic anisotropies.
On the other hand, when a conventional SAM is used to
image a thick layered structure, many leaky-SAW modes
may be excited in a specimen and propagated within the
semiangle of the acoustic lens. All such modes exist simul-
taneously, and the efficiency of excitation is rather low, be-
cause an appreciable part of the input power is wasted at
angles where there is no subsurface excitation and only a
small amount of energy can convert into SAWs. The pres-
ence of all SAW modes simultaneously also makes the im-
ages difficult to interpret. Such problems restrict extensive
applications of the SAM in materials science. Further im-
provements in SAM performance are needed to overcome
these limitations. Many authors have begun to advance re-
search along these lines. As far as we can see, the problem of
further improving SAM performance for quantitative mea-
surements can be broken into two parts. First, and the most
active area, is developing new lens types and enhancing their
imaging performance. The other area is developing new
kinds of scanning and of recording acoustic signatures. To
show what has been achieved in these areas we briefly
present several successful examples.

A. Specialized lens geometries

The lens in an SAM can be considered as the acoustic
wave transformer, which transfers the bulk plane wave gen-
erated by the transducer to wave fronts in the coupling liq-
uid. The energy is converted into surface waves directly on
the surface of the specimen, and then the lens converges the
reradiated surface-wave beams back to the transducer. Its
construction and imaging properties~for example, its ability
to transform the wave fronts, sensitivity, conversion effi-
ciency, signal-to-noise ratio, and so on! should be further
improved, in order to make it either generate a desired wave
front for measurement of a property of special materials, or
choose selectively a particular SAW mode with high effi-
ciency, if it is possible to identify a leaky-SAW mode that
will optimize material characterization. All of the imaging
means and processes used in technical optics are available
for reference and can be utilized for this purpose. Today,
various acoustic lens geometries~spherical lens, line-focus-
beam lens, conical lens, annular lens, and so on! have been
applied to the SAM. All of these lenses have their special
characteristics, their advantages and disadvantages, and can
be selected for particular purposes.
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1. Line-focus-beam lens

As mentioned above, the conventional SAM is not suitable
for investigation of elastic properties of anisotropic materials
because the surface-wave velocity depends on the direction
of propagation. In order to be able to make measurements in
one direction at a time, we need to use a lens with a cylin-
drical surface instead of the spherical surface needed for
transforming the acoustic wave fronts. This type of SAM is
known as a line-focus-beam SAM~Kushibiki and Chubachi,
1985!. The principle is illustrated in Fig. 25~a!. The cylindri-
cal lens produces a so-called line-focus beam, parallel to the
axis of the cylindrical surface. Surface waves are excited in a
direction perpendicular to the line focus. This enables elastic
measurements to be made in different directions on aniso-
tropic specimens such as wafers of electronic and optoelec-
tronic materials. But because the line-focus-beam lens gen-
erates a focus along a line, it has poor spatial resolution in
that direction. Moreover, the line-focus-beam microscope
gives good azimuthal resolution, but is not suitable for im-
aging.

2. Lamb-wave lens

When a conventional SAM equipped with a spherical lens
is used to image a layered structure, almost all possible

acoustic wave modes are simultaneously excited in the speci-
men, and the efficiency of excitation is rather low. To over-
come this disadvantage, the logical questions naturally are: is
it possible to excite only one key leaky-SAW mode for ma-
terial characterization?, and is it possible to increase the ex-
citation efficiency of that excited leaky SAW? The answer is
yes. As a consequence, new lens geometries are being pro-
posed, one of which uses a conical recessed surface geom-
etry @see Fig. 25~b!# to replace the spherical cavity of the
conventional lens. In Fig. 25~b! the acoustic waves produced
by the transducer will first hit the conical refracting surface
before they reach the object surface. All the refracted rays
from the conical surface are incident on the object surface at
the same angle. If the inclination of generated conic waves is
chosen to be a critical angle for a particular mode of leaky
SAW, this new lens, called a ‘‘Lamb-wave lens’’~Atalar et
al., 1992!, excites only one of the leaky-SAW modes on the
layered solid and converts a large fraction of the incident
energy to that leaky-SAW mode with a high efficiency. Since
the leaky-surface-wave modes in the layered solid are disper-
sive, and their critical angles depend on frequency, the
Lamb-wave lens should selectively excite the leaky mode by
matching the fixed incidence angle to the corresponding
critical angle by adjusting the operating frequency. The im-
ages obtained by this lens are easy to interpret and the sub-
surface sensitivity is high.V(z) obtained with this lens is
formed by the interference of a single leaky-SAW mode, and
the specular reflection provides regular oscillations with pe-
riodic intervals. The drawbacks of this type of lens are two-
fold: identifying the order of the excited surface-wave mode
is not easy in a practical specimen, and this results in diffi-
culty in determining layer thickness from the measured SAW
dispersion data. In addition, a Lamb-wave lens does not have
as well-defined a focal plane as the spherical lenses, because
it produces a focal line in the axial direction of the lens. Its
axial resolution is equal to the thickness of the layer, since
the leaky-SAW modes exist predominantly in the layer. But
it is possible to obtain lateral resolutions better than a wave-
length with a Lamb-wave lens. The Lamb-wave lens can
complement the conventional lens in acoustic microscopy for
some applications, especially subsurface imaging in layered
structures.

B. Scanning alternatives and recorded functions

We have already shown that two kinds of spatial scanning
can be used in acoustic microscopy, namely,x- and
y-direction scanning for the purpose of imaging and
z-direction scanning forV(z) output. Other types of scan-
ning may also be used in the acoustic microscope. To show
this we can use an alternative approach to the acoustic ma-
terial signature. Referring to the theory ofV(z), we may
write the variation of the signal outputV in the SAM as a
function of different variables, such as the defocusz, the
scanning frequencyf , and the polar angleu ~the incident
angle!. We rewrite Eq.~31! as

FIG. 25. ~a! Wave fronts in a line-focus-beam microscope;~b! ge-
ometry of the Lamb-wave lens.

884 Z. Yu and S. Boseck: Scanning acoustic microscopy

Rev. Mod. Phys., Vol. 67, No. 4, October 1995



V~z, f ,u!5E
0

2p

P2~u!u1
2~u!R~u,f!

3expS 2 i4pz
f

nw
cosu D sinucosudf , ~32!

whereR(u,f) is the reflectance function of the sample~here
anisotropic properties of materials are allowed!. As a result,
we can obtain three kinds of recorded functions for describ-
ing the signal output of a SAM:V(z), V( f ), andV(u), with
the other variables as the parameters. TheV(z) function has
already been described above. Here we simply describe
briefly the functionsV( f ) andV(u).

1. V(f) function

In acoustic microscopy, using frequency scanning instead
of z-direction scanning, one may obtain aV( f ) function in
the frequency domain~Nagy and Adler, 1990!. We consider
the case of the conventional SAM and start from Eq.~32!.
Because the spherical lens excites all polar anglesu at the
object interface, we need only to considerV(z, f ) in Eq. ~32!.
From this integral we see that the defocusingz is measured
in terms of the acoustic wavelengthnw / f . Therefore it al-
ways appears as a product with frequencyf . V( f ) is a par-
ticular cross section ofV(z, f ) in Eq. ~32! at a certain defo-
cusing depth, whileV(z) is simply the cross section of
V(z, f ) at a certain frequency. The interchangeability ofz
and f in the material signature of the specimen gives us the
option of analyzing the frequency spectrum of the received
signal rather than itsz dependence. In practical operation, as
the frequency is scanned whilez is kept constant, a charac-
teristic V( f ) curve is traced. TheV( f ) characterization is
similar to theV(z) effect. For example, for a nonlayered
smooth solid theV( f ) curve exhibits more-or-less periodic-
ity. Figure 26 shows a calculatedV( f ) curve for a glass
sample atz5218.0mm.

The V( f ) approach has some advantages over theV(z)
approach. For example, scanning in the frequency domain
can be done electronically, which is much simpler, smoother,
and faster than thez-direction mechanical translation of the
whole transducer assembly, as is required for theV(z)
method. Moreover, the interpretation ofV( f ) is easier than
that ofV(z). Of course, inV( f ) operation it is necessary to
use broadband ultrasonic transducers. In addition, for a lay-
ered structure theV( f ) curves present additional difficulties
for quantitative evaluation, since strong surface-wave disper-
sion occurs in this case. Thus one must use a particular lens
construction, for example a Lamb-wave lens, to obtain a use-
ful V( f ) curve for the characterization of layered structure.
In this case theV( f ) curve results in peaks at positions cor-
responding to different leaky-SAW modes excited in the
sample.

2. V(u) function

When the polar angle is scanned, the SAM signal received
is plotted as a function of incidence angleu, and the result-
ing curve can be called aV(u) curve ~Atalar et al., 1988!.
This kind of scanning can be performed using Lamb-wave
lenses with various conical angles. TheV(u) effect can be
used to deduce the relative sensitivities of the excited leaky-
SAW modes and to find the most sensitive excitation angle
~i.e., the most sensitive surface-wave mode!. This allows us
to detect a particular defect in a layered structure.
Other scanning versions are also possible. For example, a

line-focus-beam SAM can be considered as a combination of
z-direction spatial scanning and discrete azimuthal angle
scanning (f direction!, which is sensitive to the directional
properties of anisotropic materials. Therefore, developing
new scanning versions and recorded forms should be of great
significance in enhancing the performance of the SAM.
Finally, it must be pointed out that efficient processing

techniques for the output data in a SAM are also important
for obtaining accurate quantitative evaluations. Research in
this direction is an area of great activity~Briggset al., 1988;
Kanaiet al., 1992!.

VII. SUMMARY

Nondestructive evaluation of near-surface properties of
materials is usually carried out using acoustic techniques.
Bulk acoustic waves fail in this case, due to their large re-
flection at the boundary and their very weak acoustic con-
trast, so that even very different materials are difficult to
distinguish. In contrast, surface acoustic waves have been
successfully used for near-surface evaluation of materials,
because they extend beneath the surface and are very sensi-
tive to surface inhomogeneities. Several acoustic systems
based on surface acoustic waves have been proposed for im-
aging. Scanning acoustic microscopy, among others, has
been successfully developed, and it would appear to be one
of the most promising means for the evaluation of physical
properties of materials. In many applications acoustic mi-
croscopy will be used in conjunction with conventional mi-
croscopic techniques~such as optical and electron!. There
are, however, some applications for which acoustic micros-
copy is uniquely suited. Such applications are the imaging of

FIG. 26. V( f ) curve for glass sample atz5218.0mm.
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the interior of optically opaque objects and the quantitative
evaluation of elastic properties of materials on a microscopic
scale.
In a brief review such as this paper it is impossible to

describe all details of the acoustic microscope and to cover
all the latest developments in acoustic microscopy. We have
covered areas that we think are essential for understanding
acoustic microscopy and its applications to material charac-
terization. We have first explained that in the scanning acous-
tic microscope the acoustic image of an object under test is
obtained by mechanical scanning. Because of the use of me-
chanical scanning, the acoustic lens must perform well only
on axis. It is this feature that has made it possible to record
high-quality acoustic images with submicrometer resolution.
Since the resolving power of an acoustic lens is primarily
constrained by the operating frequency, increasing the fre-
quency improves the resolution. On the other hand, the abil-
ity to image below the surface of materials, another attractive
property of acoustic microscopy, is also affected by fre-
quency. Penetration ability has been estimated to be about
the same magnitude as the wavelength of the surface acous-
tic wave excited in a specimen. Increasing the frequency
reduces the penetrating ability due to the increase in the
acoustic attenuation of samples with frequency. Therefore
resolution and penetration must be traded off.
We have further shown that the image contrast observed in

acoustic microscopy is related to elastic properties near the
surface as well as below the surface of the sample. Thus, we
have a probe that is not comparable with any other kind of
microscopy. The interpretation of the contrast is a major task
and of essential interest for an acoustic microscopist. When
the acoustic lens is focused at the surface of the specimen,
only specular reflection is generated, and the acoustic con-
trast is very weak. When, however, the lens is focused below
the surface the contrast becomes much stronger. Especially
in defocusing scanning, a series of oscillations in the trans-
ducer output is observed. This effect is known as the acoustic
material signature or, simply, theV(z) curve, and it is a
function of the defocusz. V(z) is an interference result be-
tween the nonspecularly reflected surface acoustic waves ex-
cited in the specimen and specularly reflected waves. Its
theory can be classified into two general categories: those
involving Fourier angular spectrum analysis and those based
on ray optical models. The shapes ofV(z) curves are unique
and characteristic of materials; from them one can extract
quantitative information on acoustic properties in materials
with microscopic precision. In the rapid development of
acoustic microscopy, theV(z) effect has played a very im-
portant role in both acoustic imaging and quantitative mea-
surements for the nondestructive evaluation of materials.
Knowledge of the propagation properties of surface acous-

tic waves on the surface of materials is essential for under-
standing contrast mechanisms and for quantitative applica-
tions in acoustic microscopy. Thus we have also described
the propagation characteristics of surface acoustic waves in
nonlayered smooth and layered solids, and then examined
their effect on the behavior ofV(z). A surface acoustic wave
excited in a nonlayered smooth solid is only a single, non-
dispersive mode, namely, a Rayleigh wave. When a nonlay-
ered specimen is imaged by the acoustic microscope, the

obtained image is simple, and a series of regular periodic
oscillations occurs in its output responseV(z). This kind of
image and theV(z) curve can be easily interpreted. On the
other hand, in layered structures more than one surface wave
mode, such as Rayleigh-like modes, Sezewa modes, and
Love modes, can be excited, and they are dispersive. When
this kind of specimen is examined by the acoustic micro-
scope, many surface waves make contributions to the output
response. As a consequence, theV(z) curve has a complex
variation and will no longer exhibit a simple periodicity. Ex-
tracting the elastic properties of the specimen from the mea-
suredV(z) data may become rather complicated. In order to
determine the elastic properties of a layered structure from
the relevant surface-wave mode, we must carry out wave-
form analysis of the oscillation characteristics in the obtained
V(z) curve.
Applications of acoustic microscopy are growing so fast

that it is impossible to keep up with them all. The applica-
tions presented here have given only a slight indication of
the scope of nondestructive evaluation in solid materials. The
main results can be summarized as follows: the full reflec-
tance functionR of a specimen is deduced by inverting the
measuredV(z) data; phase velocity and attenuation of sur-
face waves on the liquid-specimen boundary are determined
through theV(z) measurement; elastic constants of bulk ma-
terials are estimated by analyzing the velocities of surface
waves excited in the specimens; for layered structures, layer
thicknesses and mechanical properties can also be evaluated
by measuring the dispersion properties of surface waves,
through the use of an inversion procedure and computer
parameter-fitting techniques. The applications of acoustic mi-
croscopy to biology and the imaging of subsurface features
in materials are no doubt very important application areas,
which have not been presented here for simplicity.
Finally, we have indicated that because the conventional

acoustic microscope is equipped with a spherical lens, when
one uses such an acoustic microscope to characterize thick
layered structures and anisotropic materials, difficulties arise.
In the case of thick layered structures, the presence of many
surface-wave modes makes interpretation of the images
rather difficult. In the case of anisotropic materials, a SAM
cannot detect the acoustic properties that reflect directional
anisotropies. This paper has mentioned some successful im-
provements in the acoustic microscope, such as the design of
new lens types and development of new scanning methods,
to overcome these limitations.
It is interesting to note that, although surface waves extend

beneath the surface of materials and are sensitive to varia-
tions under the surface of the material, their penetration abil-
ity is limited by the wavelength of the surface wave. A lower
frequency of operation results in a higher penetration but
lower resolution. On the other hand, a material involving
layers supports many other waves than the Rayleigh-like
waves, such as Love waves and Stoneley waves. It is pos-
sible to excite these waves selectively from the liquid side if
the incidence angle of the bulk wave in the liquid is properly
adjusted. The resulting wave will be focused just like the
Rayleigh-like waves. Using this mechanism, it should be
possible to get much deeper penetration than is possible us-
ing Rayleigh-like waves.
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APPENDIX A: ACOUSTIC FIELD u1(u) AT THE BACK SIDE
OF THE LENS AND GENERALIZED PUPIL FUNCTION
P(u)

1. Acoustic field u1(u) at the back side of the lens

The acoustic fieldu1(u) at the back side of the acoustic
lens in a SAM~see Fig. 10! can be calculated by the diffrac-
tion theory of the piston transducer. In this appendix we shall
give its expression.
The complete description of the acoustic field produced by

an acoustic transducer is generally divided into two separate
parts. One part of the description is limited to the region in
the neighborhood of the transducer, the near-field region. The
other part of the description is limited to the far-field region,
the region beyond the near field. The usual definition of the
near-field region is that portion of the acoustic field charac-
terized by interference phenomena. This is also referred to as
the Fresnel diffraction region. In contrast to the near-field
definition, the far-field region is characterized by an
interference-free acoustic field. This is the Fraunhofer dif-
fraction region. Usually, the expression for the acoustic field
within the near field is relatively complex. For this reason,
theoretical studies have avoided the near-field region, and
one has often used the Fraunhofer far-field approximation. In
practice, however, one wants adequately to predict the per-
formance of the transducer for operation within the near
field. Here, we shall follow Zemanek’s work~1971! and get
the acoustic field of the back side of the lens by using the
near-field description.
Although both longitudinal and shear waves are generated

in the sapphire rod~see Fig. 2!, we need only consider the
effect of longitudinal waves, as the receiving transducer will
be primarily sensitive to these waves. Figure 27 shows the
coordinates of the transducer being considered. The trans-
ducer configuration is a flat circular piston. The transducer

has radiusRt and vibrates with simple harmonic motion nor-
mal to its face. The observation point will be a function ofl ,
the radial distance from the observation point to the center of
the transducer, andg, the angle between the transducer axis
and the radial vector. The field at the observation point will
be the total contribution from incremental areas of the trans-
ducer. The total acoustic field can be written as~Ocheltree
and Frizzell, 1989!

u15
irnk

2p
U0E

S

e2 ikl 82z l 8

l 8
dS

5
irnk

2p
U0E

0

RtS E
0

2pe2 ikl 82z l 8

l 8
dc D sds , ~A1!

wherer and n are density of the medium and velocity of
sound in the buffer rod, respectively;U0 is the amplitude
generated by the transducer and, in the discussion that fol-
lows, can be assumed to be 1 for simplicity;S is the total
area of the transducer;l 8 is the distance from the observation
point to the incremental area; andz is the attenuation coef-
ficient of sound in the buffer rod. In Eq.~A1! the time de-
pendencee2 ivt has been suppressed. The distancel 8 is equal
to

l 85~ l 21s222lssingcosc!1/2 . ~A2!

If l 8 is substituted into Eq.~A1!, the resulting expression is
so complicated that a closed-form analytical solution cannot
be obtained. However, in order to investigate the near-field
description, we can evaluate Eq.~A1! numerically, without
approximations, on a computer. The fieldu1 is calculated for
points located on a grid in thex2z plane at the back side of
the lens. The transducer axis corresponds to thez coordinate,
and the orthogonal axis is thex coordinate. Equation~A1! is
evaluated, ignoring the constant factor in front of the inte-
gral, as a double summation of contributions from elemental
areas of the transducer:

u1~Z,X!5U(
p51

m

(
q51

n
1

Lpq
expH 2 i2pSRt

l D 2LpqJ DSqU ,
~A3!

where the attenuationz was negligible for simplicity. Each
length variable is normalized by a factorRt

2/l and is dimen-
sionless, so from Eq.~A1! to Eq. ~A3! one has
k52p/l⇒2p/$l/(Rt

2/l)%52p(Rt /l)
2. Moreover, the ra-

dial direction of the transducer is divided inton increments,
and the azimuthal direction is divided intom parts,

n54Rt /l ,

m5np . ~A4!

By definingn andm in the above manner, one divides the
transducer into 32p(Rt /l)

2 increments. This is the mini-
mum number of increments that can be used in order to
obtain results within 0.5% of results obtained using a far
greater number of increments.
Thus in Eq.~A3! we have

FIG. 27. Coordinate system used to calculate the acoustic field of a
flat circular vibrating piston.
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DSq~ the elemental area!5sqDsDc ,

Ds5@Rt /~Rt
2/l!#/n5

1

nRt /l
,

Dc5p/m ,

sq5DsS q2
1

2D , ~A5!

and

Lpq5~L21sq
222Lsqsingcoscp!

1/2 ,

L5~Z21X2!1/2 ,

Z5
z

Rt
2/l

,

X5
x

Rt
2/l

,

g5tan21~X/Z! ,

cp5DcS p2
1

2D . ~A6!

By relating the coordinates of the observation point, which is
located on a grid in thex2z plane at the back side of the
lens, to the incidence angleu of the acoustic wave, one may
describeu1 as a function ofu, u1(u).

2. Generalized pupil function P(u)

The generalized pupil functionP(u) can be expressed by
~Wickramasinghe, 1979!

P~u!5circS rr 0D exp@ ikw~u!#
exp@2zwL~u!#

L~u!
T~u! ,

~A7!

where circ(r /r 0) is a geometrical aperture function andr 0 is
the radius of the lens aperture. The second factor represents a
phase correction term due to the spherical aberration of the
lens,w(u) being the wave-front error in wavelengths corre-
sponding to the angleu. The effects of absorption and dif-
fraction in the coupling liquid are included in the factor exp
@2zwL(u)#/L(u), whereL(u) is the distance from a strik-
ing point of the acoustic ray at the specimen surface to a
point on the lens surface corresponding tou, andzw is the
attenuation coefficient in the liquid. Finally, the factorT(u)
represents the complex amplitude transmittance function of
the antireflection layer on the lens surface, whose thickness
may vary because of the deposition procedure.
Following Lemons~1975, 1979!, we find thatw(u) is very

small, so exp@ ikw(u)# can be approximated to 1. The effect
of the factor exp@2zwL(u)#/L(u) can also be neglected be-
cause of the very small absorption and diffraction differences
for different acoustic rays in water. Therefore the pupil func-
tion P may primarily be calculated by the factorT(u) and
can be approximately expressed by

P~u!>circS rr 0DT~u! . ~A8!

APPENDIX B: FORMULATION OF REFLECTANCE
FUNCTION R(u) IN A MULTILAYERED SOLID

The reflectance functionR can be solved for by using
different methods. For a layered solid, a widely used ap-
proach to calculating these quantities is the Thompson-
Haskell method~Thomson, 1950; Haskell, 1953!. This ap-
proach is based on the use of recurrence formulas, which
connect the amplitude of waves in adjacent layers. Here we
shall follow this approach and give a general description af-
ter some reformulations~Yu, 1991!.
Consider a horizontally layered, elastic half-space as

shown in Fig. 28. Each layer is assumed to be isotropic,
homogeneous, and perfectly elastic. This structure is sub-
merged in a liquid from which a plane longitudinal acoustic
wave is incident. Let the coordinate system be chosen so that
the x coordinate is parallel to, and thez coordinate is per-
pendicular to, the layer whose origin is located at the inter-
face between the top layer and the liquid. Thekth layer is
bounded above by the planez5zk21 and below by the plane
z5zk , its thickness isdk , its density isrk , and it has
P-wave ~longitudinal, primary! andS-wave ~shear, second-
ary! velocities ofak and bk , respectively. The velocity of
the longitudinal wave in the liquid isnw , and the other cor-
responding properties in the liquid are denoted by the sub-
scriptw. A plane acoustic wave of amplitude 1 is incident on
the liquid-solid interface at an angleuw . We are interested in
computing the total reflected field in the liquid.
In each of the layers a pair ofP waves~propagating sym-

metrically above and below the horizontal plane! and a pair
of similarSwaves will appear. In the lower half-space of the
solid there will be only downward travelingP andS waves.
We now consider layerk as an example. TheP- and

S-wave potentials in thekth layer satisfy the usual wave
equations and have the representations~Brekhovskikh, 1980!

fk5@ake
2 ihak~z2zk21!1bke

ihak~z2zk21!#ei ~jx2vt ! ,

ck5@cke
2 ihbk~z2zk21!1dke

ihbk~z2zk21!#ei ~jx2vt ! ,
~B1!

FIG. 28. Geometry of a multilayered solid overcovered by a liquid.
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in which v denotes the circular frequency andj is the x
component of the wave number. It follows that

j5kwsinuw5kaksinuk5kbksingk , ~B2!

where

kw5v/nw , kak5v/ak , kbk5v/bk . ~B3!

kw is the complex wave number for theP wave in the liquid,
andkak andkbk are the complex wave numbers for theP-
andS-wave vectors making acute anglesuk andgk , respec-
tively, with the z axis. Thez components of theP- and
S-wave vectors,hak andhbk in Eq. ~B1!, are defined by

hak
2 5kak

2 2j2, hbk
2 5kbk

2 2j2 . ~B4!

In Eq. ~B1! the coefficientsak , bk , ck , dk are unknown
constants to be determined from the interface and boundary
conditions. All the waves contain one common factor
ei (jx2vt) which we shall omit for brevity.

~1! Let uk , nk , sk , tk denote the tangential and normal
components of displacement and stress vectors for thekth
layer. In a linear, homogeneous, isotropic medium, from
Brekhovskikh~1980!, uk , nk , sk , andtk are related to the
wave potentialsf andc as

H uknkJ 5F ]/]x2]/]z

]/]z1]/]xG H fk

ckJ ~B5!

and

H sk

tkJ 5F l¹212m]2/]z2 2m]2/]x]z

2m]2/]x]z m~]2/]x22]2/]z2!G H fk

ckJ ,

~B6!

wherel andm are the Lame´ constants, and the Laplacian
¹2 denotes (]2/]x21]2/]z2). The calculation results can be
written in matrix notation as

5
uk

nk

sk

tk
6 5@Q~k!#@E~z2z!#5

ck

ak

bk

dk
6 , ~B7!

wherez could be an arbitrary constant, the 434 matrix [Q]
is given as

@Q~k!#5F ihbk i j i j 2 ihbk

i j 2 ihak ihak i j

2mkhbkj mk~2j22kbk
2 ! mk~2j22kbk

2 ! 22mkhbkj

2mk~2j22kbk
2 ! 2mkhakj 22mkhakj 2mk~2j22kbk

2 !
G , ~B8!

and [E(z)] is the diagonal matrix

@E~z!#5diag~eb
2 ,ea

2 ,ea
1 ,eb

1! ~B9!

with

ea,b
6 5e6 izha,b . ~B10!

Let

$Sk%55
uk

nk

sk

tk
6 , $C~k!%55

ck

ak

bk

dk
6 . ~B11!

$S% is called the displacement stress vector, and$C% is an
unknown constant vector. Then, within thekth layer, Eq.
~B7! can be expressed in the form

$Sk~z!%5@Q~k!#@E~z2zk21!#$C~k!%, zk21,z,zk .
~B12!

~2! Now, we proceed to find an transfer matrix that relates
$S(z)% evaluated at the top of a layer to that function evalu-
ated at the bottom of the layer. We utilize the conditions of
continuity of displacement and stress components at the
layer interfacesz5zk21 , which is expressed by

$Sk~zk21!%5$Sk21~zk21!% . ~B13!

From Eq.~B12!

$Sk~zk21!%5@Q~k!#@E~zk212zk21!#$C~k!% , ~B14!

so

$Sk21~zk21!%5@Q~k!#$C~k!% . ~B15!

Since the matrix [Q(k)] is not singular, the above equation
~B15! can be solved for$C(k)%,

$C~k!%5@Q~k!#21$Sk21~zk21!% , ~B16!

which can then be substituted into Eq.~B12! to yield

$Sk~zk!%5@Q~k!#@E~zk2zk21!#@Q~k!#21$Sk21~zk21!% .
~B17!

Let

@P~k!#5@Q~k!#@E~dk!#@Q~k!#21 , ~B18!

wheredk5zk2zk21 is the thickness of thekth layer, so

$Sk~zk!%5@P~k!#$Sk21~zk21!% . ~B19!

This is the transfer relation of$S(z)% evaluated at the top of
a layer and the bottom of the layer, respectively. The [P(k)]
matrix is called the Thomson-Haskell layer matrix.

~3! Next, by successively applying the interface continuity
conditions, one can relate the displacement stress vector at
thekth layer to that at the top surface. Similarly, the displace-
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ment stress vector is related to the bottom half-space. That is,
by successively applying Eqs.~B19! and ~B13!, we get

$Sm21~zm21!%5@P~m21!#@P~m22!# . . . @P~k11!#

3@P~k!#@P~k21!# . . . @P~1!#$S~0!% .

~B20!

From Eqs.~B16! and ~B20! we can obtain

$C~m!%5@Q~m!#21$Sm21~zm21!%

5@Q~m!#21@P~m21!#

3@P~m22!# . . . @P~1!#$S~0!% , ~B21!

or

$C~m!%5@J~m,1!#$S~0!% , ~B22!

where [J] is the chain product of the layer matrices

@J~m,1!#5@Q~m!#21@P~m21!#@P~m22!# . . . @P~k

11!#@P~k!#@P~k21!# . . . @P~1!# . ~B23!

This is a most important transfer formula.
~4! Finally, we proceed to the problem of seeking the re-

flectance functionR. Since noS wave occurs in the liquid,
cw is identically zero. The wave potentials in the liquid are
given by

fw5eihwz1Re2 ihwz ,

cw50 , ~B24!

where

hw
25kw

22j2 , ~B25!

andR is the reflectance function because the amplitude of
the incident wave is assumed to equal 1.
From the boundary condition at the liquid-solid interface

we havet050 ~i.e., the normal component of the stress vec-
tor in the liquid is null!. Then by making use of Eqs.~B24!,
~B7!, ~B8!, ~B9!, and m50 in the liquid, we can derive
$S(0)% as

$S~0!%5@u0 ,n0 ,s0 ,0#T

5@u0 ,ihw~12R!,2rwnw
2kw

2 ~11R!,0#T . ~B26!

On the other hand, there will be only downward-traveling
waves in the lower half-space of the solid. The radiation
condition in the solid half-spacez.zm21 implies that

am5cm50 . ~B27!

Thus we have

$C~m!%5@0,0,bm ,dm#T . ~B28!

We substitute these relations into Eq.~B22! to give

5
0

0

bm

dm
6 5@J#5

u0

ihw~12R!

2rwnw
2kw

2 ~11R!

0 6 , ~B29!

where [J] is given in Eq.~B23!.

The above matrix equation~B29! gives four independent
linear equations for the four unknownsbm , dm , u0 , andR.
The first two equations are

J11u01J12ihw~12R!2J13rwnw
2kw

2 ~11R!50 ,

J21u01J22ihw~12R!2J23rwnw
2kw

2 ~11R!50 , ~B30!

whereJkl is the (k,l ) element of the matrix [J]. Eliminating
u0 from the above equations, one can obtain the reflectance
functionR as

R5
hw~J11J222J12J21!1 irwnw

2kw
2 ~J11J232J21J13!

hw~J11J222J12J21!2 irwnw
2kw

2 ~J11J232J21J13!
,

~B31!

or in the closed form

R5~hwJ22
111 irwv2J23

11!/~hwJ22
112 irwv2J23

11! , ~B32!

wherev5nwkw is the circular frequency and

Jkl
i j 5Ji j Jkl2Jil Jk j . ~B33!

The indicesi , j , k, l in Eq. ~B33! take on the values 1, 2, 3,
4.
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