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The scanning acoustic microscope is a powerful new tool for the study of the physical properties of materials
and has been successfully used for imaging interior structures and for nondestructive evaluation in materials
science and biology. Its principles of operation, resolution, penetration ability, and contrast mechanisms are
simply described in this paper. Recent progress in the application of acoustic microscopy to material
characterization in solid materials is summarized. The experimental elastic microanalysis of bulk materials is
carried out by measuring(z), which includes examining the reflectance function of solid material, measuring

the phase velocity and attenuation of leaky surface acoustic waves at the liquid-specimen boundary, and
determining the elastic constants of the material. The layer thickness and mechanical properties of layered
solids are studied by examining the dispersion properties of surface acoustic waves. A knowledge of the
propagation properties of acoustic waves on the surface of materials is essential for understanding the contrast
mechanisms and quantitative measurements in acoustic microscopy; these propagation properties are thus also
briefly described in this paper. Finally, further developments of the scanning acoustic microscope aimed at
improving its performance for quantitative evaluation are presented. These could expand the scope of the
acoustic microscope as a diagnostic tool in many areas of science and technology.
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In materials science and biology the microscope has

873 " proven to be one of the most powerful of scientific tools. The
874 optical microscope and the electron microscope have given
us extraordinary insights into the world of the extra small,

875 and they will surely continue to enjoy widespread use in the
future. The field of microscopy as a whole has historically
875 . -
878 developed by adding new classes of radiation. So far, we
have seen the development of the infrared microscope, scan-
g7g hing Auger microscope, Raman microscope, scanning laser

microscope, ion microscope, X-ray microscope, tunneling
gg1 Microscope, and the list seems to be growing all the time. All
of these microscopes have their special characteristics, their

881
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particular advantages and limitations, and they should be
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864 Z. Yu and S. Boseck: Scanning acoustic microscopy

viewed as a complementary collection. The scanning acousnaterial subsurface and applications in biology will be omit-
tic microscope(SAM) is a new member of this collection, ted, as they can be found elsewhe®g., Hoppe and
and it would appear to be one of the most promising memBereiter-Hahn, 1985; Miller, 1985In acoustic microscopy,
bers for the study of the elastic properties of materials. ~ surface acoustic waves such as Rayleigh waves and Sezewa
The concept of acoustic microscopy was first put forwardwaves (generalized Lamb wavgscan be excited and re-
by Sokolov in 1949. Unlike other forms of radiation, an ceived by the acoustic microscope; the interference of these
acoustic wave interacts directly with the elastic properties ofvaves plays a very important role in imaging and quantita-
the material through which it propagates. The wavelength ofive measurements made with acoustic microscopy. Knowl-
sound at a high frequency can be very short, from which i€d9€ of surface acoustic wave propagation is not as wide-
should be possible to build an acoustic microscope with a?pread among technical people as is knowledge Of.“ght wave
resolution comparable to that of the optical microscope.pmpagat'on’ and as a result the contrast mechanisms of the

However, until the early 1970s this was not achieved becaus AM and its appl|cat|ons are not widely understood. There
i ; . ore we shall briefly describe the propagation properties of
techniques for producing high-frequency sound waves were ' .
) ) . . .~ surface acoustic waves in nonlayered and layered structures,

not readily available. Since the 1970s the acoustic micro-

h d . ts. Th tast ~and then present their behaviors in acoustic microscopy. Fi-
SCOpe has undergone many improvements. The greates 'rHéIIy, in the present paper we also indicate some limitations

provement, the scanning acoustic microscope, was devel ihe conventional scanning acoustic microscope, which is
oped at Stanford University under the direction of C. F.qquipped with a spherical lens, for material characterization,
Quate(1985. Now, various commercial acoustic miCroscope ang point out development trends in lens constructions and

instruments are available in countries such as Japan, ERjiernative types of scanning for the scanning acoustic mi-
gland, and Germany for scientific and industrial appllcatlonscroscope'

Characterization of near-surface properties of materials is
an important test of their structural integrity. Nondestructive
evaluation of these properties is usually carried out USi”éinggEE;Ab%i‘sgsnégEgN OF THE SCANNING
acoustic techniques. Surface acoustic wa\8SN9 are fre-

quently used for this purpose, because they are spatially con- 1o geyelopment of the scanning acoustic microscope is
fined to the surfaces of materials and very sensitive t0 SUlg caq on the realization that one cannot make a high-

face inhomogeneities. Several techniques can be used [@q|ytion acoustic lens that can image more than one point
excite focused surface acoustic waves on the surface of M3t an object at a time, but it is possible to make an acoustic

terials for imaging purposes; of these, scanning acoustic Mg that has excellent focusing properties on its axis. In

croscopy is unique in its image quality and resolution. Com-yder to build up an image, the specimen is mechanically
pared to other techniques of microscopy,

: : i scanning acoustiG.nned in the common focal plane of the lens and a scanned
microscopy provides a combination of features that make ifjaqe can be obtained, in a manner similar to scanning elec-

valuable for a wide range of applications. It is possible to usg,, microscopy or to domestic television. It is the use of

it to characterize the properties of mat_erials on a MiCroscopi,achanical scanning that simplifies the lens design and op-
scale: subsurface image of the material structures can be 0R:ation ie. the lens need perform well only on axis, and has

tained due to the ability of ultrasonic waves to penetralg,,qe it possible to record high-quality acoustic images with
materials that are opaque to other kinds of radiation; the,ymicrometer resolution.

elastic constants of bulk materials, and the phase velocity
and attenuation of leaky surface acoustic waves excited oA, Transmission and reflection types of scanning
the surface of specimens can be quantitatively examinedcoustic microscopes
throughV(z) measurements; important mechanical proper-
ties like elastic constants and residual stresses, adhesionin the scanning acoustic microscope both the illumination
properties, and film thickness in layered structures can alsand the detection are performed by focusing acoustic lenses
be evaluated from dispersion properties of surface acoustiand, since these are focused at the same point, the configu-
waves examined by acoustic microscopy. ration may be described as confocal. The image of material
Although the technique of scanning acoustic microscopyproperties can be recorded either in reflection or transmis-
was introduced many years ago and a number of articles arglon. If the illumination and the reception of the acoustic
reviews have been publishedlemons and Quate, 1974, waves are performed by two identical lenses arranged con-
1979; Quateet al,, 1979; Wilson and Weglein, 1984; Briggs, focally, the SAM is called a transmission SAM. The lens
1985, 1992, it is still not familiar to many physicists due to geometry used for transmission imaging is shown schemati-
the limited number of instruments worldwide. To show thecally in Fig. 1 (Lemons and Quate, 19¥.9This geometry
spectrum of its applications, this paper presents a brief reconsists of a symmetrical pair of lens elements connected by
view of scanning acoustic microscopy and its applications ta small volume of liquid. Each lens consists of a single
material characterization. The first part of the article is despherical interface between the liquid and a lens rod. The
voted to a general description of the scanning acoustic milens element is formed by polishing a small concave spheri-
croscope, which includes principles of operation, resolutiongal surface in the end of a sapphire rod. At the opposite end
penetration ability, and contrast mechanisms. The secondf the rod a thin film piezoelectric transducer is centered on
part is concerned with the applications of acoustic microsthe axis of the lens surface.
copy to material characterization in solid materials. Our em- In the reflection SAM, the transmission arrangement is
phasis is on quantitative evaluation. The interior imaging of aconceptually folded over, so that the same lens is used for
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Piezoclectric aged in the transmission version must be thin in order to
transducer enable acoustic waves to propagate through specimens. For
Sc‘g:::u'.‘: of e 200 lzzlb;t:’c‘xm biological specimens, this often presents few problems, but
radiation . for many solids such a thin specimen is quite difficult to
“~._  Sapphire block prepare. Therefore, although the first scanning acoustic mi-
A U croscope operated in transmission, there is an increasing shift
Support from transmission microscopy to reflection microscopy.
nogs Most of the recent development and application of the SAM
/i has been with the reflection mode. In this paper only the
% reflection scanning acoustic microscope will be described.
Water ~ . : B. Principles of the reflection scanning acoustic
microscope
Sapphire block
The scheme of a reflection scanning acoustic microscope
.____J is shown in Fig. 2. The heart of it is an acoustic lens, which
/ is a sapphire rod cut along the crystallographiaxis of the
Transducer sapphire. In the center of one face of the rod a concave

o o spherical surface is ground. This surface provides the focus-
FIG. 1. Lens geometry of the transmission acoustic microscope. ing action and, to optimize transmission of the acoustic
waves, it is coated with a quarter-wavelength-thick matching

both transmitting and receiving the acoustic sigsale Fig. layer. On the other face of the rod a piezoelectric transducer
2). The transmission version can use a simple continuouis deposited, usually a thin film of rf-sputtered ZnO. In use, a
wave, but in the reflection mode pulsed signals should b&oupling fluid (usually watey is necessary between the lens
used in order to separate the reflected signal from the tran@nd the specimen. When the transducer is energized with a
mitted signal. In the transmission mode the ultrasonic bearghort rf pulselapproximately 30 ns in duratignplane acous-
passes through the object placed between the objective aii§ waves are generated, which travel through the rod and are
collector, and since the acoustic microscope has a sharpfcused on the axis of the lens by refraction at the spherical
defined depth of field, the image of a thin layer cut out frominterface between the lens and the liquid. The object to be
the interior of a specimen may be obtained. The transmissiofinaged is placed at the focus of this lens. The acoustic waves
acoustic microscope is especially suitable for investigation ofire partially reflected at the interface and the echoes thus
samples with acoustic impedances and attenuation comp&roduced traverse the system in reverse order and are con-
rable to those of water, i.e., for biological specimens. Theverted back into an electrical pulse by the transducer, which
reflection mode is more promising for the investigation ofacts in this case like a light-sensitive receptor and coherent
samples of high acoustic impedance and attenuation, i.e., fétetector. The strength of this pulse is proportional to the
solid materials. The operation of a transmission SAM re-acoustic reflectivity of the object at the point being investi-
quires the lenses to be set up so that they are accurate@ated. By mechanically scanning the object in a raster fash-
confocal, which becomes difficult with high frequencies andion, one can build up an acoustic image of the desired field
shorter wavelengths. In the reflection SAM the need to adjus®f view and display it on a TV monitor.

the lenses to be confocal is obviated. Specimens to be im- In optics a complex compound objective lens for micro-
scopes with high numerical aperture is needed to compensate

accurately for both geometrical and chromatic aberrations. In
To AMP acoustics this is neither possible nor necessary. The simple
and CRT acoustic lens shown in Fig. 2 has been capable of producing
perfect diffraction-limited images. The reason is as follows.
First, chromatic aberrations do not arise in the acoustic mi-
croscope because in its usual mode of operation it may be
considered essentially monochromatic. Secondly, as acoustic
imaging is always done on axis, spherical aberration is the
only possible source of aberration. In geometrical optics
spherical aberrations are calculated using third-order theory,
whose magnitude is proportional ®/n? (Lemons, 1975
whereD is the lens aperture andis the relative refractive
index. In the optical casa~1.5 for glass, so that spherical

L aberration is large and important, whereas in the acoustic
Reflecting object case the velocity of sound along tleeaxis in sapphire is
v7 é mechanically scanned 11,100 m/sec and in water it is about 1,500 m/sec. This
z means that there is a very large refractive index {7.4) for
acoustic waves striking the lens, which is much greater than
FIG. 2. Schematic representation of a reflection SAM. would be encountered in any comparable optical system.
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focal length of the lens and in turn its radius of curvature
must be small. Grinding lenses with very small radius is a
quite difficult art. Moreover, even if it is possible to grind
H‘ \ lens radii as small as requirédbout 15 microny for a lens
operating in a pulsed mode with higher frequencies, there are

'4 J between the lens and the specimen, which means that the
|

M ' . major problems with high-speed switches to obtain suffi-
H ciently narrow pulses to prevent the specimen from being
‘ swamped by the lens echo. Usually, the highest frequency for
! ﬂ ' a microscope with water coupling at 60°C is about 2 GHz.
w The attenuation of acoustic waves in water decreases with
{
increasing temperature. By raising the temperature of the wa-
i r"} ter it is possible to reduce the attenuation. Using this feature,
! ! and by stretching the existing technology to its limits, the
H
' h I m utilization of the nonlinear properties of the coupling liquid
has been proposed to enhance resolution. The generation of
FIG. 3. Resolution test of a grating of Ou4n period imaged at 2.0 harmonics makes possible an improvement in the resolution
GHz, at 60°C(Leica, Wetzlay. of the microscope by at least a factor of 1Rugar, 1984
Finding a liquid that has a lower velocity, a lower absorption

coefficient, or preferably both, further improves the resolu-
Hon. One possibility is to use cryogenic fluids such as super-

a corresponding wavelength of 0.42%n (Rugar, 1981 The

m “n“ reflection SAM has been operated in water at 3.5 GHz, with

Further spherical aberration scales down with smdder-
(higher-frequencylenses. As a consequence, a single smal
lens surface can provide a high-aperture acoustic lens wit
aberrations considerably less than a wavelength.

uid helium. In liquid helium at 0.1 K, sound velocity is
equal to 238 m/sec, and attenuation is so small that it be-
comes negligible. In this type of cryogenic SAM, operating
with 8 GHz frequency, the resolution of micrographs ob-
C. Resolution of the acoustic microscope tained was better than 0.025m (Hadimioglu and Foster,
1984). At this level, cryogenic acoustic microscopy as a re-

_ Since the aberrations in the acoustic microscope are Negaarch tool may offer an alternative to electron microscopy.
ligible, the resolution of an acoustic lens is determined al-

most solely by diffraction limitations, and is
R=0.51\,,/N.A (Kino, 1987, where\,, is the wavelength D. Interior imaging and penetration ability
of sound in liquid, and N.A is the numerical aperture of the
acoustic lens. For smalléhigh-frequency lenses, N.A can The ability to image below the surface of solids is another
be about 1, and this would give a resolution of 8,5. Thus  attractive property of the acoustic microscope. Many materi-
a well-designed lens can obtain a diameter of the focal spails that are opaque to light are transparent to acoustic waves.
approaching an acoustic wavelenddbout 0.4um at 2.0  This property of acoustic waves has long been exploited in
GHz in watej. The resolution of an acoustic microscope ultrasonic nondestructive testing. Indeed, due to this ability
may be tested by imaging a specimen with a fine gratingacoustic microscopy provides valuable insights regarding
ruled on it. Figure 3 shows an acoustic image of an opticamaterial structures and subsurface imaging which cannot be
grating with a period of 0.4:m at 2.0 GHz. In this case the obtained any other way. Figure 4 shows a typical example of
acoustic microscope can achieve a resolution comparable tghat can be achieved by employing the SAM for subsurface
that of the optical microscope. imaging. It is an acoustic reflection imaging of a 5-DM Ger-
As the resolution is proportional to the wavelength in theman coin at 10 MHz. The penetration ability is quite remark-
liquid \,,, the way to improve the resolution is therefore to able. By appropriately choosing the focal position of the
make the wavelength smaller. The wavelength depends oacoustic image, it is possible to show clearly the front and
the velocity of sound in the liquidy,,, and the frequency  back pictures. Figure 5 shows a comparison between the op-
such that\,= v, /f. That is, if the frequency could be in- tical and the acoustic images of a Kelvin contact with alumi-
definitely increased, unlimited resolution could be achievednum top surface on silicon in semiconductor technology. In
Unfortunately, the application of higher frequencies is re-the optical image the contact appears to be homogeneous,
stricted due to the attenuation of the coupling medium andvhereas in the acoustic image a defect in the contact is vis-
the available radius of curvature of the lens. Acoustic wavesble. An acoustic microscope used in such studies is capable
need a medium to support their propagati@m acoustics of revealing defects beneath the surface metallization which
there is no analogy to a vacuum in opjic8etween the are hard to detect using other techniques.
acoustic lens and the specimen the medium must be a liquid, The penetration ability of a SAM can be estimated as
in order to permit scanning. Most liquids at or near roomequal to the penetration of excited surface waves, which is
temperature exhibit linear viscosity, which causes the attenuabout the same magnitude as the wavelength of the surface
ation of acoustic waves propagating through them to be prowaves. The practical penetration depth depends on the elastic
portional to the frequency squared. To increase the freparameters of the object, the signal-to-noise ratio, and the
guency, it is necessary to reduce the liquid path lengtloperating frequency of the acoustic microscoffgalar,
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ply say that a brighter area corresponds to a higbelowen
density, or to a greatgior smallej elastic modulus. More-
over, the contrast varies very sensitively with the distance
between the lens and the surface of the specimen. This be-
havior is best visualized as\4z) curve. TheV(z) effect is

a “source of contrast” and is used to record quantitative
information on the elastic properties of a specimen with mi-
croscopic precision. The understanding of Yhg) effect in

the SAM is, for a microscopist, of great significance.

A. The V(z) curve

As mentioned above, by mechanically scanning the object
plane one can obtain the scanning image of a specimen at the
surface or subsurface of an object. Rather than scan in the
plane, one keeps the lens and object at a fixeg)(position
and translates the lens towards the object inzfiérection;
one then observes a series of oscillations in the transducer
video output as a function of. This dependence of the
variation of the signal outpul/, on the defocug is known
as the acoustic material signature or simgliz) curve. His-
torically the study of this effect was pioneered experimen-
tally by Weglein and co-worker8Veglein, 1979aand theo-

FIG. 4. An acoustic image of a 5-DM German coin at 10 MHz retically by a number of authors(Atalar, 1978;
(Leica, Wetzlay. Wickramasinghe, 1979 This effect gives the acoustic mi-
croscope an important edge over the optical microscope.

1985. A higher acoustic mismatch between the object and The theory ofV(z) will be considered in the next section.
liquid will lower the penetration depth, and a higher signal-Here it is first helpful to give a general structural decompo-
to-noise ratio will improve it. Some changes in the param-sition of theV/(z) curve. An experimentaV/(z) curve for a
eters of the acoustic lens system, such as optimizing the lef§lartz specimen, obtained with a commercial instrument
Opening ang|e, can maximize penetra’[ion for a given mateknown as the Ernst Leitz Scanning acoustic microscope
rial. On the other hand, increasing the operating frequenc{ELSAM)," is shown in Fig. 6, illustrating some of the main
improves the resolution, but reduces the penetration due tgatures ofV(z). An experimentalV(z) curve is often plot-
the increase in attenuation with frequency. Trade-offs beted with a logarithmicv axis. This can cause the minima to
tween resolution and penetration depth must be made fatPpear as very pronounced nulls. M{z) curves presented
acoustic microscope instruments. At the moment the modf this paper are also normalized for clarity and ease of com-
promising frequency range for subsurface imaging analysi§arison.

would appear to be 10-150 MHz, where penetration up to a First there is the Strong central maximum, centered on the
few mm is easily attained. Table | gives practical resolutionfocal plane g~0), which is a characteristic of the sample-

limits and penetration depths for copper and brass with émmersion liquid interface and due to the existence of the
SAM (Block et al, 1989. primary reflection. This region does not depend on the ma-

terial properties of the sample being measured. Secondly the
curve for positivez attenuates rapidly with increasing dis-
Ill. CONTRAST MECHANISMS IN THE SCANNING tancez because in this region the sample surface is farther
ACOUSTIC MICROSCOPE—THE V(z) EFFECT away than the focal plane, much of the acoustic energy is
. _ L ) . reflected outside the lens, and only a less convergent beam is
The traditional microscopist is interested in resolution. oseived by the transducer. On the negativeide there are
The acoustic microscopist may have that interest. Howevegong oscillations, where a series of periodic maxima and

the significance of the scanning acoustic microscope dog§,inima occurs, characterized by a peridd. This region is

not lie in its resolution alone. There is a stronger interestyparacteristic of the sample’s acoustic properties: the patterns

image contrast. In acoustic microscopy the near-surface Qiary with the material, as do the depths of the minima and
the specimen is examined, and therefore the acoustic imagga’ reative magnitudes of the maxima. As shown below,
contains_ information apout the way that acoustic waves iny ,, may be multivalued or may vary wita for a layered
teract with the properties of the specimen. Image contraslyjiq This portion contains the material-dependent informa-
observed in acoustic microscopy can be related to the elastic

properties at the surface as well as below the surface of the———

sample. Th,us there. is a special feaiure _that is not shared \,NithThe ELSAM is a reflection-type, water scanning acoustic micro-
any other kind of microscopy. That is, fringes are seen whichycope designed fov(z) measurement with continuously tunable
are an interference effeCt associated With waves that can %eration in the frequency range 0.8—2.0 GHz. For this frequency
excited in the surface of specimen. Interpretation of the conrange, spherical acoustic lenses with a radius of curvature of 40
trast of these fringes is not a simple matter. One cannot simum and an opening of 100° are used.
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'U.U
—

FIG. 5. Images of a Kelvin contacta) optical image;(b) acoustic image of the same sample at 1.4 GHz.

tion and is referred to as the acoustic material signature, frorfwater ripple” and an obvious fluctuation occurs over the
which an important method for the nondestructive evaluatiorentire region of the curve. A “water ripple” is a short period
of material properties was developed. It should be pointed@scillation due to the coupling liquid, which results from

out that in this figure th&/(z) curve is superimposed by a interference between internal lens reflections and the nor-
mally reflected component of the signal. By use of an appro-

priate low-pass filtering technique, the effect of “water
ripple” can be easily minimized.

TABLE |. Practical resolution limits and penetration depth in a

SAM.
B. Theory of V

Operation frequency Resolution limit Penetration depth i (@)
20 MHz 100 um 4 mm V(z) is an interference effect between surface waves,
200 MHz 8 um 300 um which are excited in the specimen and often referred to as
1000 MHz 1.5 um 25 um Rayleigh waves, and specularly reflected waves. To interpret
2000 MHz 0.7 um 10 um this effect it is first necessary to say a little about Rayleigh

a ~ waves.
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1, v T T v Wavelength
1 B X
§ 0.8 9 Solid
.
. 0.6 4
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Z 0.4 .
z
o2 T FIG. 7. Schematic drawing of a Rayleigh wave.
%% i o " . s If the solid material is immersed in a liquid, a Rayleigh-

like surface wave may be generated at the liquid-solid inter-
face. The phenomenon consists of a resonant energy transfer

FIG. 6. An experimentaV/(z) curve with water ripple at 1.8 GHz, Petween the longitudinal wave in the liquid and the
at 60°C. This was obtained with an Ermst Leitz scanning acousti®kayleigh-like wave on the liquid-solid interface. This
microscope(ELSAM). Rayleigh-like surface-wave excitation differs from the clas-
sical Rayleigh wave in that the energy is continuously “leak-
ing” away from the solid region to the liquid region. The
surface wave generated is evanescent; it will eventually leak
The propagation of acoustic waves in a solid is more comback into the liquid medium as a bulk wave. Moreover, the
plicated than in a liquid. In a liquid sound travels as a lon-surface waves start leaking as soon as they are generated.
gitudinal wave. In a solid propagation properties can be deSince the energy leaks into the liquid, this surface wave is
scribed by the Christoffel equations, which show that threecalled a leaky Rayleigh wave. The leaky-Rayleigh-wave ve-
kinds of elastic waves can be propagatédld, 1973. One locity is slightly (~0.1%) different from that of the solution
of these corresponds to a longitudinal wave, and the othegiven by Eq.(1) because of the presence of ligidhimenti
two are degenerate shear waves with orthogonal polarizaet al,, 1982.
tions. Another kind of acoustic wave can occur on the sur- When an acoustic beam is incident on the liquid-solid in-
face of a solid. This is a Rayleigh surface wa\Rayleigh, terface at the Rayleigh angle, which is the angle that satisfies
1885, A Rayleigh surface wave is a mode of propagation ofSnell’s law,
elastic energy along the free surface of a solid in which the O =sin™ (v /v @)
displacement amplitudes of the propagating wave decay in R wiER
an exponential fashion with depth beneath the surface, sehere,, is the sound velocity in the liquid andy is the
that essentially all of the associated energy density is corphase velocity of the leaky Rayleigh wave, it exhibits two
centrated within a distance of the order of a wavelength besignificant features: Schochlatera) displacement Ag
low the free surface. The particle motion in a Rayleigh sur<(Schoch, 1950, 1952and associated distortion of a finite-
face wave is an ellipse, the principal axes of which areaperture incident beam. By “Schoch displacement” one
parallel and perpendicular to the boundésge Fig. 7. Ray- means that a beam of sound undergoes a relatively large
leigh waves in nonlayered solids are nondispersive, and thelateral displacement at reflection from a solid surface, if an
velocity v is approximately related to the shear bulk waveangle of incidence is chosen such that a Rayleigh wave is
velocity Bgyiq @s (Scrubyet al., 1987 excited in the solid medium. Such a lateral shift for an opti-
_ o1 cal beam is known as the “Goos-Hehen shift” (Goos and
vr~(1.14418-0.25771+0.12661) ~Bsoiia, @ Hanchen, 194Y. These effects typically lead to a bimodal
where o is the so-called Poisson ratio. If the solid is aniso-reflected acoustic field, and the reflected beam is split into
tropic, say a single crystal, the Rayleigh wave still exists fortwo components: a specular be@specular reflectionand a
any given direction of propagation, but the detailed propernonspecular beam displaced a distance late(atiyspecular
ties differ from the isotropic case; for example, the ellipsereflectior); see Fig. 8. The leaky Rayleigh wave will radiate
traced out by the surface particle displacement need not Heaks into the liquid and, combined with a specularly re-
normal to the surface, and the decay of amplitude with deptiflected wave, will produce a so-called “null strip.”
can be oscillatory. Moreover, these properties, and in particu- The theory ofV(z) has been derived in two different
lar the phase velocity, depend on the direction of propagatiomways: those involving Fourier angular spectrum analysis
relative to the crystal axes. In this paper we shall considetAtalar, 1978; Wickramasinghe, 1978nd those based on a
only the propagation properties of surface waves in isotropicay optical mode(Bertoni, 1984. Both models are of impor-
materials. tance for explaining th&/(z) effect.

Defocus z [pm]

1. Rayleigh surface waves in a nonlayered solid
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i.e., a total change in path length of.2The ray incident at
the Rayleigh angle has its path in the liquid shortened by
Z-sedlr, and then excites a Rayleigh wave on the specimen
surface. This propagates along the surface, leaking a wave
back into the liquid, and the ray symmetrically placed with
respect to the incident ray travels back to the lens with its
path also shortened iy sed. The path length traveled by
the Rayleigh wave on the surface of the specimen is
2z-tanfr, but because of the difference in velocities this is
equivalent to an acoustic path in the liquid of
x 2z-tanfg-sinfr, by Snell’s law. There is also a phase
change ofr associated with the excitation and re-radiation of
Solid the Rayleigh wave. The phase difference between the two
Null zone rays(assuming that the lens eliminates all other phase differ-
z ence is

FIG. 8. Reflection of finite beam from liquid-solid interface at the A ®=(2Z—2zseWr+ 2ztandgsindg)ky,+ 7
Rayleigh angle. =27[1—sedr(1—sirtog) ky+ 7

=2k, z(1—coshr) + 7 , ©)

. . wherek,,=2x/\,, is the wave number of sound in the lig-
From the analogy o¥(z) curves to effects in physical yid, and\,, is the wavelength of sound in the liquid.

optics, it is natural to consider thé(z) effect as a result of These two beamsA and B, arrive at the transducer and
acoustic ray interference. Consequent!y, a physu;al model gherefore produce an output signal. Based on the interference
theV(2) effect has been proposed, which essentially regardgrinciple of double rays in physical optics, an interference
V(2) as the interference between two families of acoustigyattern occurs in the/(z) response of the transducer. A
rays; see Fig. 9. One componeAt, is a family of specularly  phase change of 2 in the relative phase difference corre-
reflected acoustic rays at almost normal incidence from th%ponds to a dip intervalz in the V(z) curve. Using Eq(3)

surface of the specimen. The second componBitis &  and ignoring the constant phase termwe get oscillations
family of laterally displaced leaky Rayleigh wavéson-  of periodicity

specular reflection symmetrical to the incident beam. These

2. Ray optical model

two beamsA andB, arrive at the transducer and produce an _ 2m _ M (@)
output signal. Then interference effects between them are 2k,(1—codr) 2(1—codR)
observed.

Equation(4) for the periodicity of the oscillations iN(z) is
of fundamental importance, and must be understood by every
coustic microscopist.

From the user’s point of view, it is more appropriate to
rewrite Eq.(4) by use of Eq(2) and the measurable quanti-
ties, frequencyf and Az, to yield the Rayleigh velocityg
(Weglein, 1985, i.e.,

We call this kind of ray model a double-ray interference
model because two families of ray components were take
into account. The interference of rays with differing paths
gives the periodAz of the resulting oscillations iV(z) as
follows. Compared with focuE the normal ray undergoes a
change in path length of (the defocus distangdoefore be-
ing reflected, and a further amounton the return journey,

Pw 5
RT1I—(1— v, /(2fAZ))7 2" ®
Electrical signal L . o
in out This simple ray optics theory allows quantitative measure-
——{_Switch }——n Specularly ment of the phase velocity of a I'eaky Rayleigh wave from
Transducer .~ 7reflected rays the V(z) curve, and characterization of the acoustic proper-
= ="/ ties of materials.
| Nonspecular
71 reflection 3. Fourier optics model

. The other way to interpret the(z) effect is the Fourier

AW angular spectrum technique, which is based on the well-
known theory of Fourier optics and can be easily manipu-
lated mathematically. By decomposing the acoustic field dis-

x tributions at the various planes in the acoustic microscope

system into angular spectrums of plane waves, it is possible

Smooth/;olid to_arrive at an integral expre_ssion fot(z) (Atalar,_1978;

z Wickramasinghe, 1979But, this model may be derived in a

simpler form following Sheppard and Wilsqh981). Figure
FIG. 9. Double-ray interference model ¥{z). 10 shows the same acoustic imaging system as shown in Fig.
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Tta?sducer Reflected wave
0 \ velocity, v,,
N
h 6 |0
- Lens ol
e ¥ [+ -
N 7\-ﬁj Liquid
/ density, p,,
Specimen Solid _
S Om / density, p - Longitudinal
I / 0, wave velocity,
(Z-O) L 7 X __,///
5 "
Shear wave
velocity, p

z
FIG. 11. The reflected and transmitted rays at a liquid-solid inter-

FIG. 10. Geometry and coordinate system used for analyzindace.

acoustic field distributions: Plane 0, transducer plane; plane |, back

side plane of the lens; plane S, surface plane of the tested object; ®

planez=0, focus planeR;, radius of the transducer;, radius of V(0)= J P2( 0)u§( O)R(0)27rdr . 9
the lens apertured,,, semiangle of the lendj, distance between 0

the transducer and the lens; f, local distance of the IBnsocused  Sypstitutingf - sind=r, f- cosd-dd=dr, wheref is the fo-

point. cal length, this may be written

2, and its coordinate system used for analysis of the acoustic
field distributions. A plane wave of unit amplitude is gener-
ated by the transducer, which propagates through a distance ] ) ) . ]
h until it encounters the lens at the sapphire-liquid interfaceWhere 6, is the semiangle of the acoustic lens; outside this
The acoustic field just on the back side of the lens, namely igiven limit P2()uf(6)R(6) should vanish.

the plane |, is denoted hy; , which may be evaluated by the  If the reflecting surface of the object is now moved to-
diffraction theory of the piston transducgppendix A). The  wards the lens by a displacementz from the focus, the
illumination function at the converging spherical wave-front phase of the wave incident at a given point on the surface
surface after the plane acoustic wave traverses through theill advance byk,,-z, and waves returning to the lens will
lens is advance their phase by twice this, so that the normalized
signal at the transducer is notalar, 1989; Yu, 1991

V(0)=2f J:mpz( 9)u2(O)R(H)sindcoshdd ,  (10)

U1(6)=u,(0)P(6)cos’g , (6)
where 6 is the incident angle of the acoustic wa(.6) is V(z)= fﬁmpz( 9)UZ(9)R(6)
the generalized pupil function of the lens for waves traveling 0

in this direction, which describes the complex amplitude of : .

the sound wave transmitted through the léese, for ex- x exfl —i2kyzcod]singcospde (11

ample, Born and Wolf, 1972; Wickramasinghe, 1979, andwherek,, is the wave number of sound in the liquid ands

Appendix A). The cod?9 term is introduced by considering the defocus.

the acoustic imaging system as an aplanatic system for com- It is easy to see that for a given lens the functié®{(®)

pletenesgRichards and Wolf, 1959it cancels out later. This andu,(6) are known, and th&/(z) function is completely

expression of the illumination function was derived without determined by the reflectance functiB@#6). In practice, be-

the assumption of the thin-lens model, i.e., without thecauseR(#) is a complex function of the elastic properties of

paraxial approximation, so the result is valid for any largethe specimen under test, tMfz) function is thus function-

aperture of the lens. The acoustic wave is then reflected atly related to the elastic properties of the specimen. Any

the focus by an object with a reflectance funct®{®), and  material changes will alter th&/(z) responsevia R(#6)

has the amplitude changes. Let us therefore discuss the reflectance function in a
_ 2 little more detalil.

Ua(6)=u1(6)P(O)R(H) cos™. @ The reflectance function of materials immersed in liquid
This reflected wave is refracted by the lens again and arrivelsas been studied extensively both theoretically and experi-
at the transducer; in this direction the lens pupil function ismentally over the last 50 yeaf¥homson, 1950; Haskall,
againP(#) (the approximation is made thBtis the same in 1953; Bertoni and Tamir, 1973; Hheérall, 1973;
both directiong The acoustic field at the transducer is then Brekhovskikh, 1980; Bogy and Gracewski, 1983he re-

2 2 flectance function for waves in a liquid incident on the sur-

U3(6) =P(0)ui(6)R(6) - ®) face of an isotropic nonlayered solid may be derived as fol-
The unnormalized signal at the transducer is obtained bjows. The variables are defined with reference to Fig. 11:
summing over the area of the transducer, with radial coordiv,, and 6 are the velocity and angle of incidence of the
nater, to give waves in the liquid, whose density jg,; «, 6, and 3, v,
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are the velocities and angles of refraction of the longitudinal .
and shear waves in the solid, whose density.iSnell’'s law
relatesd, and vy, to # as

.2 T T y T T T

sind  sinf; siny;

T 5 (12
Impedances are then defined by [
Y
_ PwPw _ pa _ pB >
°“cog’ L cos,’ S cosy’ (13 ‘é
Zi=Z2,c0$2y, +ZsSir2y, . (149 S

Then the reflectance function is
R( 0)= (Ztot_ ZO)/(Ztot+ Zo) . (15)

A typical example ofR(6#) for a water-aluminum half-
space is shown in Fig. 18 illustrating some features of
R(#). R is a complex function, so in Fig. 1@ the modulus 0 ; y L L L
of R (solid ling) is referred to the left ordinate and the phase )
of R (dashed lingto the right ordinate. The modulus Bfis Incident angle (deg)
characterized by four featured) the value for zero angle of ‘s
incidenced=0; (2) the cusp nea®=13.59° whergR| first
rises to one, which corresponds to the longitudinal-wave :
critical angle of aluminum;(3) the kink near§=28.52°
where the value ofR| next rises to one, which corresponds
to the shear-wave critical angle for aluminum; a@j the
slight dip near§=30.57° just past the kink, which corre-
sponds to the Rayleigh-wave critical angle for water- = -o.s
aluminum. Note that above the shear-wave critical angle no
energy can be propagated into the solid,|Rp beyond the
shear-wave critical angle must be unity. The slight dip that s
occurs at the Rayleigh-wave critical angle is due to the use ofZ
a little trick in our evaluation ofR|, that is, we have evalu- -2
ated|R| along the#’ = #—i0.0001, rather than along th#
real axis. By use of this trick it is possible to provide infor- -2.5
mation about the existence of the leaky Rayleigh wave from
only an|R| curve. The phase &®, normalized by 2r in the

T T T T T

o

W(z)

-1

ormalized

-3

figure, also experiences small fluctuations around the longi- _, . i . . . .
tudinal critical angle, but its most dramatic behavior occurs -20 e "0 -s ° s 10
near and at the Rayleigh-wave critical angle=30.57°, and z [pm]

as can be seen the phase changes by almosiv2r a fairly
small change in the incidence angle. This phase transitioRIG. 12. (a) R(6) vs incident angled for water-aluminum half-
indicates the existence of nonspecular reflection. space: solid line, modulus &; dashed line, phase & normalized

The V(z) curve for this example, which was based on Eq.by 2=; (b) V(z) curve for the same sample.
(11) at f=1.7 GHz, is illustrated in Fig. 1®), from which
one can see that a series of regular periodical oscillationsor does one need to calculate the critical angles explicitly;
occurs on the negative side. The phase transition in the the effect of all rays incident at the critical and noncritical
R(6) curve shown in Fig. 1@) is responsible for these os- angles are automatically taken into account when the entire
cillations in theV(z) curve. Because the dominant feature in converging beam is analyzed by the stationary-phase method
the V(2) curve is the behavior of the reflectance functionin the integral. The discretization treatment must first deter-
around the Rayleigh angle, it is essential for obtaining a goodnine the critical angles beford(z) can be calculated. This
acoustic material signature to use a lens of numerical apers a difficult task, especially for layered structures, because
ture large enough to include the Rayleigh angle. the guided waves in them are dispersive, so that these critical

In summary, the Fourier theory and the ray model offerangles are frequency dependésgee Sec. ¥ However, be-
two different insights into imaging theory. Both enaMéz) cause integral evaluations are carried out numerically, one
to be calculatedb initio. From the point of view of math- cannot easily see with this approach how the various geomet-
ematical treatment, the former is a complete integral solutiomic and acoustic parameters of the lens and object influence
of the problem, and the latter is only the discretized solutiorv/(z). On the other had, the ray optics discretization treat-
of the same problem. The advantage of integral analysis iment makes it relatively easy to see how these parameters
that one does not need to know about Rayleigh-wave mode@mfluenceV(z). The main advantage of the ray optics ap-
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proach is that it can clearly provide a useful physical explaB. Measurement of phase velocity of surface acoustic
nation of the acoustic material signature and may be used t@aves
develop new fields of application for thé(z) effect. Both

methods are thus of importance for interpreting the contrast Material characterization can be carried out by measuring
quantitatively. the propagation characteristics, that is, the phase velocity and

attenuation, of a leaky Rayleigh wave excited in the sample.
The periodicity and decay of oscillations WM(z) directly
relate to these properties. The phase velocity is simply deter-

Having described the general principles of the acousiqty 2" TN T8 TFEEE R A EIECE
microscope and o¥(z) theory, we can now consider the ' p'e,

application of theV(z) function to characterization of solid ELSAM, which employs water as a coupling material and a

materials. TheV/(z) effect has played a very important role semiangle of 50° at 1.3-2.0 GHz, allowing:scan distance

in both acoustic imaging and quantitative measurement i ;rfig é“gllj’t tehf?ecr:}s:fu;s)rgegggjttggoghr{;?: uveltzcgzo%arr:] /ge
the nondestructive testing of materials. As regards acousti Y P '

maging meastrements, the(z) curves have been effec- I8 RN LS TN PR KD € SRREESIE.
tively employed, for example, in the interpretation of con- 9

trast in acoustic images, and in image signal-processing teclhggter \r;e;zggﬁasnfzz? gzl?]teé'a;?e gzliglfusclcu;ar?;gggg ve:
niques for obtaining enhanced false-color micrograph y y P

(Hammer and Hollis, 1982 A new field of acoustic micro- oseck, 1991 A best measured accuracy of 0.2 percent was

: - - . ted by use of the line-focus-beam SAKushibiki and
metrology for measuring elastic properties of materials nontEPortea ! - : .
destructively on a microscopic scale has grown out of th%hUbaCh" 198p In addition to measuring the velocity of

{

IV. ELASTIC MICROANALYSIS BY V(z) MEASUREMENT

guantitative measurements. Here we present only exampl ayleigh waves, Quatd 980 has pointed out that it should

of successful applications of quantitative measurements, th p possible to use thé(z) response to record the longitudi-

. . S ; : nal velocity in an object on a microscopic scale. The basic
is, of experimental elastic microanalysis by measuki(g). approach is to choose the coupling liquid so that the lens

A. Examination of the reflectance function angular aperture only includes the longitudinal critical angle.
In this case, th&/(z) null spacingAz can be related to the
The amplitude and phase d(z) can be inverted to de- longitudinal velocity « in the solid[using Eq.(5) with «
duce the full reflectance functioR(6) in amplitude and replacingvg]. Moreover, in a small number of materials of
phase(Liang, Kino, and Khuri-Yakub, 1985 To demon- intermediate elastic stiffnegsnainly polymers of relatively
strate this, by use of a suitable change of variables high moduli such as PMMA lateral longitudinal waves can
take the place of Rayleigh waves. These waves, also known
as surface-skimming compressional waves, propagate paral-
lel to the liquid-solid interface when the angle of refraction is
90° (Tamir, 1972, so that the longitudinal critical angle re-
places the Rayleigh angle in calculating the period of the
cosh /sz DU2(DR(t _i2amutlidt oscillations in theV(z) curve. Then, the phase velocity of a
(Dur(DR(Dexy —iZmutjtdt . surface-skimming compressional wave can be determined
(16)  from V(2). In any measurement of the phase velocity, Fou-
rier analysis usually is used on tM¢z) curve for analyzing
its period of oscillation in order to obtain sufficient measure-
ment accuracy.

1
u=k,z, = ;cosﬂ ,
Eqg. (1) may be rewritten as

V(u)=

m
1/m

This can be recognized as a Fourier transform, Wwith)
and{P?(t)u3(t)R(t)t} as the transform pair. Of course, the
limits of the integration in Eq(16) should be from—c to
+o0, but since{ P?(t)uf(t)R(t)t} vanishes outside the given
limits, this makes no difference. The Fourier transform mays  pmeasurement of attenuation of surface

be inverted to yield acoustic waves
R(t)= WF*[V(U)] . (17) The attenuation coefficient of surface acoustic waves on a
1 liquid-loaded specimen is characteristic of bulk elastic prop-

Thus, by measuringy/(u) and inverse-Fourier-transforming  erties, as well as topographic variations of the surface. The
it, one may estimate the reflectance function. In order tdrain size, porosity, density of micro cracks, and so on, near
deduceR(6) from a simple inversion o¥/(z), it is necessary the surface of materials can all influence the measured val-
to measure it as a complex-valued function, i.e., with bothues. Thus SAW attenuation is a sensitive indicator of surface
amplitude and phase information. This can be done by usingharacterization. _ N

an accurate amplitude and phase measurement systemlf there is a loss in the specimen, the velocitieand g of
(Liang, Bennett,et al, 1985. However, in most conven- the longitudinal wave and shear wave in the specimen be-
tional commercial acoustic microscopes the video signal isome complex descriptiona* and 8*, and can be ex-
measured after detection by an envelope detector, so that tiessed as

phase information is lost. In this case it is necessary to em- —al(1+iL,27) |

ploy a phase retrieval algorithitiFright et al,, 1989 to re-

construct phase information from a modulus oWlfz). B*=pl(1+iLgl2m) , (18
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1.2 T T T

whereL , andL 4 are the attenuation factors of the longitu- ()
dinal wave and shear wave in the specimen per wavelength
in decibels. The complex wave numbers are

0w o ) o L,
kKf=—=—(1+iL,/2m)=—+i—,
a @ a

a
Ao o.

® L
Ki=—+i—2, 19
=TI, (19

where w is the circular frequency, andl, and A4 are the
wavelengths of the longitudinal and shear waves in the speci-
men, respectively. With this complex wave-number descrip-
tion, the reflectance functioR(6) of a plane acoustic wave

at a liquid-specimen interface is again evaluated by(Eg).

The V(z) curve can also be calculated by use of ELf).
Usually, attenuation reduces the amplitude of the reflectance

Modulus of R

function close to and around the Rayleigh angle, hence re- 0 . . . . . . .
ducing the depth of dipAV in the V(z) curve, but with the ° e w0 ¢80 b oo
interval between dips unvaried. An example of the effects of Incident angle (deg)

attenuation ofR(#)| andV(z) is shown in Fig. 13, in which
the solid lines indicate the nonattenuation cases while the
dashed lines indicate the attenuation cases, respectively.
Using a SAM, one may carry out an attenuation measure-
ment in various ways, for example, fitting the parameters to
the V(z) curve (Yamanaka, 1982and direct measurement
with use of an annular lenéSmith and Wickramasinghe,
1982. The parameter-fitting method uses an exact theoretical
model of V(z) to simulate the measuréd(z) curve. SAW
attenuation is introduced into the model in order to match the
measured data more accurately by allowing the elastic con-
stants to be complekEgs. (18) and (19)]. A value for the
attenuation can then be found by forward optimization of the
measured/(z) curve. With the annular lens method, that is,
with an absorbent or reflective aperture stop in the center of
the lens as shown in Fig. 14, the purely longitudinal specular
reflection beanithe wave pattA in Fig. 14) is not detected
by the transducer. Only the nonspecular reflectigne
longitudinal/SAW/longitudinal wave patB) enters the lens 2 o v " o s 10
and gives rise to the output signal, and so ‘&) curve is
free from interference. The lens output simply records an
exponential decay of the signal. The gradient of W)

curve reveals the SAW attenuation coefficient in the specif!C: 13. (@ IR(6)| versus incident angle for water-aluminum
men. half-space: solid line, nonattenuation case; dashed line, attenuation

case; (b) V(z) curves for the same sample: solid line, non-
attenuation case; dashed line, attenuation case.

1.6 T T T T T

Normalized W(z)

-
-

z [pm]

D. Determination of elastic constants of bulk materials

. . . croscale. Thus, using acoustic microscopy, a new method of

Elastic constants of bulk materialslastic stiffness con-  measuring the elastic constants of bulk solid materials has
stantsC;;) are basic physical parameters. Their accurate depeen developed. This technique has the great advantage that
termination has been required for many industrial and sCinondestructive and noncontacting measurements can be
ence applications. For determination of elastic constants, it ifnade without fabrication of any ultrasonic transducers. The
conventional to make velocity measurements of both longiacoustic microscope can precisely measure the velocity of
tudinal and shear waves by various kinds of ultrasonic methleaky SAWs propagating on the liquid-loaded specimen. The
ods including the optical diffraction method. The ultrasonicleaky-SAW velocity is directly related to the elastic proper-
transducers, made of piezoelectric plates at lower frequenciaies of the specimen, so that it is possible to determine the
or ZnO thin films at higher frequencies, must usually beelastic constants by theoretical analysis. The approach is
fabricated on one end of the specimens, of which both enttased on computer fitting the experimental SAW velocity
surfaces are polished with parallelism. Now, because acougKushibiki et al, 1987 and/or on the inversion procedure
tic microscopy utilizes elastic wave illumination, the ob- (Yu and Boseck, 1991When one seeks a least-squares fit of
tained image relates directly to elastic properties on a mithe SAW velocities between the measured and the calculated
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Input W(z) (a) z

" Absorbent
stop
k .7 ( Propagation
Liquid :
e —
FIG. 14. Schematic geometry of an annular lens. (b) f

values, an inversion of the SAW data yields the unknown
elastic constants of the specimen.

(z=0)

V. MATERIAL CHARACTERIZATION OF A LAYERED
SOLID BY ACOUSTIC MICROSCOPY

Today there are many industrial products and processes Substrate

that employ structures containing a single thin layer or sev-
eral thin layers deposited on, or somehow otherwise adhering
to, a substrate. Characterizing near-surface properties of such
structures, detecting defects below the surface, determining A

the layer thicknesses, and evaluating the uniformity of the

bond are important problems. The scanning acoustic microF|G. 15. (a) Coordinate system for wave propagation in thin layer,
scope is very suitable for subsurface imaging and nondepropagation direction and sagittal plarie) geometry of a layered
structive evaluation of these properties. Since surface waveslid in the sagittal plane.

extend about a wavelength below the surface, even in the

reflection model it may be possible to image features that lie loGity i ¢ . f both f
below an opaque surface layer and to measure their propei?€ SAW velocity is now a function of both frequency and

ties quantitatively on a microscopic scale. Acoustic micros-h€ layer thickness and elastic parameters. The coordinate
copy offers obvious advantages over conventional microsSYStém for the thin-layer problem is illustrated in Fig. 15.
copy. The propagation properties of SAWs in IayeredThe layers of concern are thin, usually of a t.hlckndd.ess
structure are more complicated than in nonlayered structurdan the wavelength of the surface wave being studied. The
In addition to Rayleigh surface waves, other surface wavdvaves of interest here will be “straight crested” in the sense
modes. such as Love wave modes. and Sezewa wave mo t there are no variations of any of the displacement com-
(generalized Lamb wavesan be excited in a layered solid. POnents in a direction parallel to the free surface and perpen-
All such surface waves take part in the interference pheno dicular to the direction of propggatlon. Thus the disturbance
ena recorded by a SAM. To understand their dispersion pro 1as constant pha;e and amplitude fo.r each component mea-
erties and effect on thé(z) function, it is necessary to know Sured along any line parallel to tiyeaxis.

something about the propagation characteristics of surface For the thir_1—|ayer/ s_ubstrate conf_iguration without a liquid
acoustic waves in a layered solid. contact, detailed reviews of elastic-wave propagation have

been presented by Tierstéh969 and by Farnell and Adler

A. Dispersion of surface acoustic waves in a layered (1972 The effect of the ||QU|d contact has been discussed by

solid Chimentiet al. (1982. In the standard analytical approach,

waveguide modes in the layer are combined with waves of

A thin layer of finite thickness deposited on an isotropicexponentially decaying magnitude in the solid and liquid

substrate can be used to guide elastic surface waves in thlf-space. Consider the geometry of Fig. 15. Here the dis-

substrate. Introduction of such a layer on top of a free surfacplacement solution in a perfectly elastic, homogeneous, non-

of infinite extent provides a characteristic geometric dimen-iezoelectric, but anisotropic medium is assumed to be a

sion to the propagation medium, and waves may propagatinear combination of terms of the forifFarnell and Adler,

in many different independent modes, all confined to thel972

surface region. Some of these modes are perturbations of the _ . .

free-surface Rayleigh waves, but others are quite differentin =~ i~ Uiexd —iklsz]exdik(lix+lzy =vet) ], (20)

character. All such surface waves become dispersive becausdere U; is the relative amplitude of the different compo-
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nents of each partial wavk,is the wave numbet,, I,, and

| ; are the direction cosines, ang is the SAW phase veloc-
ity. If the direction of wave propagation in the surface is
taken as< direction, therl ;=1 andl,=0, respectively. Such

terms must simultaneously satisfy the equation of motion

and the boundary conditions.

Substitution of Eq(20) into the displacement equations of
motion gives the following relation betweerg, I3, and
U; for each medium being considered:

Fn‘P”é Iy I3 U, 0

I'ip Fzz_Png Ios Uz 0

I3 P 1ﬂ33_PV§e Us 0
(21
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In order to have nontrivial solutions, the determinant of theFIG. 16. Sufficient conditions for stiffening and loading for isotro-

square matrix in Eq(21) must be set equal to zero, which
produces the secular equation for each medium

ITj—dpr?=0 (j, k=1, 2, 3. (22

In an isotropic solid the only nonzero terms in the
stiffness matrix areC;;=C,,=Cj33, C1,=C;3=C,3, and
C44: C55: CGGZ(Cll_ 012)/2, W|th the reSUlt that the rel'
evant algebraic form of the equation of motion, i.e., E1),
now becomes

Fll‘P”é 0 I3 U, 0
0 Tp—pr 0 U, 0
Ty 0 Tapd||Us| |0O]
(23)
wherep is the density of the medium, and
I';;=Cy;+Cud3, T'13=(Cy—Culs,
=Cyy1+13), T33=Cypl5+Cas. (24

pic material combinations.

types of wave are dispersive in that the phase velocity now
depends on the frequency of excitation, and they have an
unlimited number of higher-order modes for any given com-

bination of materials.

It is possible further to characterize the propagation prop-
erties of these modes by the relative values of the shear bulk
wave velocity of the layer g,ye) and the substrate
(Bsubstrata  involved. The propagation properties for
Rayleigh-like waves can be separated into three distinct cat-
egories, shown in Fig. 16, where the ordinate is the ratio of
the shear moduli and the abscissa is the ratio of the densities.
For layer-substrate combinations lying above the

,Blayer: \/Elgsubstrate”nea i.e.,
IBIayer> \/Eﬂsubstrate-

the layer is said to “stiffen” the substrate because the pres-
ence of the layer increases the surface-wave velocity above
that of the Rayleigh wave in the substrate, whereas for ma-

The traction-free boundary condition at the free surface oterial combination below th@),y = Bsubstratd V2 line, i.e.,

the layer and the continuity of traction and displacement at 2
the interface between the layer and the substrate then yield Prayer<1/V2Bsubsurate

one set of homogeneous equations for the constants appedne layer is said to “load” the substrate because the velocity
ing in the wave solutions in the layer and the liquid and solidof the free-surface Rayleigh mode on the substrate material
half-space(Farnell and Adler, 1972 In order to have non- is decreased by the presence of the layer.

trivial solutions for this set of homogeneous equations, one For the stiffening case there exists only a single propagat-
must ensure that the “boundary-condition determinant” van-ing mode, the Rayleigh-wave mode, whose phase velocity

ish. This yields a dispersion relation, which relates the phasacreases monotonically with frequency. Figurga shows

velocity v of the surface wave to a frequen€yor a prod-
uct of the frequency and the thickness of the laydr, with

a unit of GHz um. For a given value offd there is an
infinite number of complex-valued solutions feg. The so-

an example of the dispersion curve for the stiffening case, in
which a chromium layer stiffens the copper substrate. The
dispersion curve has positive slope. At zero frequency the
phase velocity equals the Rayleigh-wave velocity in the sub-

lutions whose real parts are not zero represent propagatirgjrate, and it increases up to the shear-wave velocity of the
wave modes. The modes of a surface-wave solution can bmiubstrate §~2330 m/segat a particular value ofd asfd

separated into two independent sets: the “Love modes
(Love, 1912 and the “Rayleigh-like modes.” Love modes

Increases. For a larger value than this cutoff valuédfthis

mode of propagation does not exist for this layer-substrate

are waves possessing one displacement component, paraltelmbination.
to the surface and perpendicular to the direction of propaga- For the loading case, an unlimited number of Rayleigh-

tion (transverse displacemeptsRayleigh-like modes are
waves with sagittal-plane displacemefits the direction of

propagation and normal to the surfac&he sagittal-plane
displacements(Rayleigh-like waveps and transverse dis-
placements(Love wave$ are completely uncoupled. Both
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like modes and Love modes can exist, depending on the
layer-substrate combinations afdl. The lowest mode of the

Rayleigh-like modes is generally considered to be a modifi-
cation of the Rayleigh surface wave in the substrate and
again is simply called the Rayleigh mode; higher modes are
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BDDO—‘ 1

i Pseudo - Sezewa mode . L .

! w at which the phase velocity is equal to the shear velocity of
= o0k i the substrate material and has a high-frequency asymptote
§ equal to the layer shear velocity, in contrast to the first Ray-
g - - !
& \ leigh mode, which has an asymptote equal to the Rayleigh
2 T \ Cut- off point Substrate shear velocity| velocity of the layer material. The pseudo-Sezewa mode ex-
3 * ists at low frequencies. At zero frequency its velocity equals
° . the velocity of a surface-skimming longitudinal waii@amir
¥ so00 Yy g longituainal )

-\ Second Sezewa mode 1972 at the substrate. The velocity decreases to that of the

g i First Sezewa mode | shear wave of the substrate material at the cutoff frequency.
Love mode The pseudo-Sezewa mode radiates acoustic energy into the

substrate. Figure 1) shows the dispersion curves for the

3060 . loading case, all of which have negative slope. The material
Rayleigh mode combination is a tungsten layer on a silicon substrate. The

2000 A ) ) . ) ) , calculation of the dispersion curves follows Tiers{@®69

° o5 1 15z zs 3 3.5 4 by evaluation of a fourth-order dispersion equation. This fig-
Normalized thickness fd [GHz - pm] ure shows the phase velocity curves for the three Rayleigh-

like modes, namely, the lowest Rayleigh mode and the first
) ) ) ) ) and second Sezewa modes. As mentioned abovéd as-
FIG. 17. Dispersion curves in layered r_natena(@: chromium on creases, the phase velocity of the lowest Rayleigh mode de-
flj)r?gpset;n(nge;if;;beat*) '<t/|;e 'ayes Sttr']f;eT; et:‘elozggsttgég&b_ creases asymptotically to the Rayleigh-wave velocity of the
strate layer ™ Psubstratg Y tungsten layer ¢z~ 2668 m/sef; whereas the phase velocity
' curve of the Sezewa wave mode decreases asymptotically to
the shear-wave velocity of the tungsten laygs~(2880
called Sezewa modes after their discoverer Sez8eaewa m/seg. The first Sezewa wave has a cutoff wave number of
and Kanai, 193p For the lowest mode, i.e., the Rayleigh fd=0.394 GHz um, at which the phase velocity is equal to
mode, the dispersion curve starts with a negative slope at thbe shear-wave velocity in the substrate silicgB=~(5500
Rayleigh velocity of the substrate, and as the frequency inm/seg, and the leaky pseudo-Sezewa mode and the leaky
creases the velocity monotonically decreases to asymptotBezewa mode are distinguished at this cutoff point.
cally approach the Rayleigh velocity appropriate to a free In Fig. 18 the dispersion curves are shown for the three
surface of the layer material. Sezewa modes require a minparticular layer/substrate material combinations, i.e., an alu-
mum layer thickness to propagate for a given frequency, ominum layer on a silicon substraiglot-dashej] a cobalt
conversely, for a given layer thickness there is a cutoff fredayer on a silicon substratédashed ling and a tungsten
quency below which the mode cannot propagate unattendayer on a silicon substratsolid line). The dispersion curves
ated. Therefore each Sezewa mode may be considered &we presented only for the lowest Rayleigh-wave modes. This
consist of two parts: the Sezewa mode and the pseuddigure shows that the dispersion curves clearly depend on the
Sezewa mode. The Sezewa mode has a low-frequency cutaffaterial properties of the layered structures. The dispersion
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curve for the W/Si combination indicates a larger negative Acoustic lens
gradient. A small variation ofd causes a larger velocity
difference, whereas, the dispersion curve for the Al/Si com- Bl B2.. A ..B2 Bl

bination shows a flat characteristic in a quite large region of
fd. This indicates that a large variation in the thickness of
the Al layer causes only a slight decrease in the phase veloc-
ity of the leaky SAW. This study of the characteristics of the L.
dispersion curve is of great significance in analyzing the Liquid _
resolution of layer-thickness measurements by a SAM.

Love modes exist only if the layer has a shear-wave ve-
locity lower than that of the substrate. The velocity of the
first of these Love modes becomes equal to the shear veloc-
ity of the substrate material when the layer thickness van-
ishes. At high frequencies, the velocity of this mode becomes "
asymptotic to the shear velocity of the layer material. An Layered/solid
example of the first Love mode is also shown in Fig(d.7
The higher Love modes all have low-frequency cutoffs when
the phase velocity becomes equal to the shear velocity of thlgle. 19. Multiple-ray interference model f(z).
substrate material, and at high frequencies the phase veloci-
ties of each mode approach asymptotically the shear velocity
of the layer material. .

If the shear velocity of the layer lies betweef® and V(Z):VL(Z)JFkZl Vi(2), (25
1/4/2 times that of the substrate, the situation is more com- ) _
plicated, and it involves the “Stoneley” modes for the two Where V,(z) is the transducer output due to the acoustic

materials. In this paper only the Rayleigh-like modes are ofvave propagating along pawz directly reflected from the
interest. surface of the sample, and(z), k=1,2...n, are the
transducer outputs associated with waves propagating along
B1, B2..., due to thdeaky-SAW components propagating
on the boundary. Due to multiple-ray interference, the varia-
tion of the V(z) curve is seen to be irregular both in the
When a conventional SAM equipped with a spherical Iensdefp.th of the. minima and in the .unequal spacing b.e_tween
inima. It is impossible to determine the phase velocities of

is used to image a layered structure, many possible surfa . . .
acoustic wave modes are excited in the specimen, because Ky SAWSs stra|ghtforwardly using the simple double-ray
ormula, Eq.(5). This fact makes it difficult to use an SAM

incidence angles are found at the object interface. In thi . N
case, the/(z) function can also be calculated by the Fourier or material characterization of allayered structure through
optics approach, i.e., Eq11). However, the physical model V(2) measurement. The conventional SAM cannot chpose
of V(z) for layered structures must be further extended. and identify single leaky-SAW modes f_rom the ob_tam_ed
V(2z) curve. We must carry out an analysis of the oscillation
characteristics of th¥(z) curve to extract the relevant SAW
1. Multiple-ray interference model of V(z) mode for material characterization. This analysis requires,
) first, a detailed understanding of the propagation characteris-
The double-ray model d¥(z) described above works for s of a leaky SAW in a layered solid, and then wave-form
smooth nonlayered isotropic solids, in which only one leakyanalyses and parameter studies ofge) curve in associa-

surface wave is excited. In a layered structure, more than ongon with a study of the propagation characteristics of the
leaky surface wave may be excited within the half aperturgeaky-saw mode.

of the SAM lens. All acoustic rays incident on the specimen
at the leaky-SAW critical angle may contribute\¥g¢z) after
undergoing nonspecular reflection. The combined effect o
all these leaky wave modes determines the nature of the Here, we shall describe the behavior \bfz) in layered
acoustic material signature. From the interference point o$tructures. The use of these results for understanding the ef-
view, a multiple-ray interference model should be consid-fect of various leaky-SAW modes on tM§z) curve, and the
ered. identification of these leaky-SAW modes which are most
Figure 19 shows the cross-sectional geometry of an acousikely to produce the oscillations of the relevanfz) curve,
tic beam that is used to explain the multiple-ray interferences of primary interest.
mechanism in th&/(z) curve. Each leaky-SAW mode asso- To calculateV(z) in a layered solid following the Fourier
ciated with the wave propagating aloBg, i=1,2...n, is  optics approach, Eq11), we must first evaluate the reflec-
excited at its critical angle by the focused acoustic waves anthnce function of the plane acoustic waves that are incident
propagates with its characteristic phase velocity on then the layered solid. Usually, the reflectance functiofor a
boundary. Now, we assume that the construction mechanistayered solid immersed in liquid, for example water, can be
for the V(z) curve is a linear system, so that we can take d@ormally written as(Kundu et al, 1985; Yu, 1991, and Ap-
superpositional model for the total interference output as pendix B

z

n

B. Behavior of V(z) for a layered structure

?. Wave-form analysis of the V(z) curve
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where ¢=k,,sind, k,, is the wave number of sound in the
liquid, @ is the incidence anglep,, is the density of the
liquid, v, is the longitudinal velocity in the liquid, andl is
the chain product of Thomson-Haskell layer matrices
(Thomson, 1950; Haskell, 1953
Figure 20 presents an example of a reflectance function for
a copper substrate with a silver layer. The understanding of
the excitation of leaky-SAW modes from the reflection
curves is of primary interest. Because the layer material has
a lower shear velocity than that of the substrate, this is a
single-layer “loading” case. For a fixed set of materials, the ) 20 2 o0 o 200
reflectance functiorR is a function of the incidence angle .
¢ and fd. In Fig. 20a), |R| vs # curves are presented for Incident angle (deg)
different values offd. The curves forfd>0 have been
shifted downward for clarity and ease of comparison. In the
top curve,d=0 and the reflection function shows thig|
curve for a water-copper half-space. As mentioned above, in
this nonlayered case there is only a single SAW mode, i.e., a
Rayleigh mode can be excited. The slight dip in the right-
hand portion of the curve at the Rayleigh-wave critical angle a
indicates the excitation of this SAW modsee Sec. III.B.B
As the thickness increases, the other curves in Figa)20
indicate, by additional slight dips, that several surface-wave
modes are excited depending bd. This can be seen more
clearly in the modulus and phase curveskofor the case
fd=4.0 in Fig. 2@b). There are three small dips in the right- o4 i}
hand portion of thgR| curve, where three corresponding
phase transitions by almostr2over a small change df in
the phase curve occur. These phase transitions arise from
various leaky-SAW modes excited in the layered solid.
Equation(26) for the reflectance function contains, as a ) . . LNy N Y ,
by-product, the characteristic equation for the propagation of % 1 20 a0 s so s 70 0 o0
leaky-SAW modes along the liquid-layered solid interface.
The vanishing of the denominator ifR(&), namely,
D(£)=0, is the characteristic equation for such waves. That ) _
is, the propagating SAWs correspond to pofgsof the re- FIG 20. R(6) for Ag/C_:u structure |mmer_sed in yvate(ta) IR| vs
flection coefficient. Because of the presence of liquid thdncident angled for various values ofd with a unit of GHzum;
pole ¢, becomes complex and can be expressed as (b) Rvs 6 for fd=4.0. Solid line, modulus oR; dashed line, phase

of R normalized by 2r.
gp:Re(gp)-HIm(gp) ) 27

where Re and Im refer to real and imaginary parts, respeghase as the defocus is increased. The difference in the spac-
tively. From Eq.(27) we obtain the phase velocityg of the  ing of the dips for the two curves is related to the decrease in
leaky SAW and the Schoch displacement paramatefsee the phase velocity of the Rayleigh-wave mode as the layer
Fig. 8 appears. Marked on this figure are two points at which the
R=WIRE(£,),  Ag=2/Im(£y) , 28) (r:g\?é:zztolfsts;rtogg, however, the contrastAatwill be the
wherew is the circular frequency. Next, we simply carry out wave-form analysis and para-
This brings us to the features ¥f(z) for a layered struc- metrical studies of th&(z) curve in a layered solid in order

ture. In Fig. 21, we first present an example of @) curve  to see the effects of various possible leaky-SAW modes on
for glass(solid line) and glass with a chromium layer of 0.1 the V(z) curve. TheV(z) curve of a layered solid depends
um thickness. The calculations ®f(z) curves were carried on the layer thickness and the material properties of the layer
out atf=1.8 GHz. The twoV(z)s have different periodici- and the substrate, so the situation is quite complicated. The
ties, which results in their becoming progressively out ofmaterial properties of a thin layer are also generally different

-y oy 6.0
L] ’ 1 1] [
* [}
!
!

Modulus of R

0.

Modulus of R

o.2f .

Incident angle (deg)
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FIG. 21. lllustration of the manner in whict(z) curves differ for
materials of differing Rayleigh velocity, and manner in which con-
trast in a SAM varies with defocus for two elastically dissimilar
materials.

FIG. 23.V(2) curves for Co/Si sample: Solid line, Oudm; dashed
line, 0.8 um; dotted line, 2.Qum.

Al layers of 0.2um and 0.4um thickness, respectively. The
. oscillations of bothV(z) curves are due to the leaky Ray-
from those of a bulk matenial. Here we take only two Ioar'Ieigh mode. Because of the flat characteristics of the disper-
tlcglar ex?‘mp'es of wgve-form analy5|s of tNQz) CUVE, " sion curve for Al/Si(see Fig. 18 it can be expected that the
using a given layer thickness and given mat_erlal Properties,gcijiations of theV(z) curves in a larger region dfd will

Figure 22 shoyvs th¥/(2) curves for a specimen c_>f a sili- be predominantly due to the leaky-Rayleigh-wave mode. The
con substrate with an aluminum layer, which indicates th‘?/ariation of the wave form of theé(z) curves is not obvi-
effect onV(z) of yario.us layer thicknesses, i.e., various POS-5us as theéfd increases. However, the dotted line in Fig. 22,
sible .SAWS excf[ed n the sample. The parameters of th howing theV(z) curve for a 0.6um thick layer, indicates
scanning acoustic microscope in the calculations of thes at the oscillation of the/(z) curve is due mainly to the
V(z).cu.rves are. sermangle o0° anql frequereyl.8 GHz. leaky Sezewa mode. The contribution of the leaky Rayleigh
In this figure the solid and dashed lines show the results fof, | ja causes a small fluctuation of the oscillation in\tie)
curve.

Figure 23 shows another example of wave-form analysis
of theV(z) curve. The material combination is a silicon sub-
strate with a thin layer of cobalt. The solid line in Fig. 23
shows theV(z) curve for a specimen with a layer thickness
of 0.1 um, the dashed line indicates th&z) curve for a
layer thickness of 0.8&m, and the dotted line th¢(z) curve
for a thickness of 2.Qum. In these regions ofd there are
two possible leaky wave modes from the dispersion relation
for the Co/Si combination: the leaky Rayleigh mode and the
leaky Sezewa mode. It is clear that the oscillations of the
solid line (d=0.1 wm) are due predominantly to the leaky
Rayleigh mode. Thi&/(z) curve shows regular periodic 0s-
cillations. TheV(z) curve of the dashed line indicates that
the oscillation is caused by the leaky-Sezewa-wave mode,
because the higher wave speed of the Sezewa mode causes a
larger displacement of the oscillation than does a Rayleigh
mode. The contribution of the leaky Rayleigh mode, which
. . . ) ‘ . causes the small fluctuations in tN$z) curve, is weak. The

&5 oz -20 -8 -10 -5 ° 5 other V(z) curve in Fig. 23(dotted ling contains two re-
z [pm] gions, which represent the different responses for two leaky
modes. The shorter and the longer intervals in oscillations of
FIG. 22.V(z) curves for Al/Si sample: Solid line, 0,2m; dashed theV(z) curve correspond to the leaky-Rayleigh-wave mode
line, 0.4 um; dotted line, is 0.Gum. and the leaky-Sezewa-wave mode, respectively. The small

o
o

o
[}

Normalized V{(z)
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fluctuations in the longer-interval oscillations of th&z) parameters by matching with measured data on a trial and

curve are caused by superposition of the leaky Rayleiglerror method(for example, the parameter-fitting procedure

mode, but their contribution to thé(z) curve is weak. by forward optimization Unfortunately, this procedure is
From these examples and the dispersion studies of thmo inefficient to apply in practice. Therefore, using a sys-

leaky SAW we can draw several conclusions abé(#) be- tematic and automatic inversion scheme, for example, the

havior for layered structures. iterative approach, is very desirable for attaining this goal.
(1) When a layered solid is examined by a SAM, moreWhile the inversion problem in acoustic microscopy is a

than one leaky-SAW mode may be excited and propagatecklatively new topic, studies of similar problems in geophys-

within the semiangle of the acoustic lens. Such leaky-SAWcs date back several decades. Inversion theories and practi-

modes are excited simultaneously in the SAM and contributeal inversion methods have been developed by seismologists.

to the output respons€(z). As a consequence, the output These techniques form a valuable reference base for the in-

response of the SAM will be confused and t€z) curve  version problem of SAW dispersion data in acoustic micros-

will have a complex oscillatory variation; a simple periodic- copy.

ity in the V(z) curve will no longer occur. This is the main

disadvantage of using a SAM for the characterization of lay-

ered structures. The complexity of tvéz) curve makes it

very difficult to extract elastic properties of the specimeny, [ ayer-thickness measurement

from the measure¥(z) data. in a single-layered structure

(2) Various leaky-surface-wave modes dominate the oscil- ] )
lations of theV/(z) curves for various layer thicknesses. For _1heV(2) technique lends itself to the measurement of the

a small layer thickness, the most fundamental excited leaky2Pslute dispersion: velocity versus product of frequency and
SAW mode is the leaky Rayleigh mode, and it makes thdavyer thicknesgsee Figs. 17 and 18Moreover, if the SAW
dominant contribution to the oscillation of thé(z) curve dispersion has been measured for the layered solid examined,

whereas for large thicknesses the Sezewa mode is the rdft€ layer thickness can also be found from the measured
SAW dispersion datgWeglein, 1979h That is, we first

evant mode. ; : i .
theoretically calculate the dispersion relation of the relevant
SAW mode from known elastic parameters of each layer and
C. Material characterization of a layered solid substrate. By measuring(z) at a certain frequency and
by surface acoustic wave dispersion finding the corresponding SAW velocity, we can deduce the

layer thickness from the theoretical dispersion relation. This
Until now, we have described the propagation characteristechnique can be applied in practice with high accuracy and
tics of surface acoustic waves in layered solids and featuresithout the need of standards. The drawback is that it is
of V(z) for layered structures. That is, for a given model of difficult to measure the larger layer thicknesses because mul-
a layered structure we have found out how to evaluate itsiple SAW modes are excited in a thick layered structure. The
SAW dispersion relation and to calculate t§z) curve. On  accuracy of the layer-thickness measurement is associated
the other hand, one wants to develop a new approach whiclith the accuracy of the velocity measurement of the leaky
can predict the structural properties of a layered solid fronSAW and the dispersion characteristics, i.e., the gradient of
the measured SAW dispersion data. Such an approach atide dispersion curves, of the tested specimen. It may be ex-
method should be very useful for developing the SAM as gected from the dispersion curgsee Fig. 18that a layer-
diagnostic tool for material characterization. Because théhickness measurement of materials with a larger gradient in
SAW dispersion in a layered solid is a function of both fre-their dispersion curves will have higher resolution than a
guency and layer thickness and elastic parameters, the mat@easurement of materials with a lower dispersion gradient.
rial characterization of layered structures, such as the estim#&urthermore, the study of the dispersion curve shows that, as
tion of layer thickness, the determination of elasticthe frequency increases, the gradient of the corresponding
properties, and the evaluation of cohesive properties of thdispersion curve can also be increased. This implies that for
bond, should be carried out by measuring their effects om given layered solid the resolution of a layer-thickness mea-
SAW dispersion. From a theoretical point of view, the formersurement can be improved by the use of an appropriate
is referred to as “the direct problem(or “forward prob-  higher frequency. We have estimate@ and Boseck, 1994
lem”), whereas the latter is referred to as “the inverse prob+that, using the commercial Leica ELSAM system, one can

lem.” obtain layer-thickness accuracies for semiconductor technol-
Forward problem: model parametersmodel  ogy from =5 nm up to+=40 nm depending on the layer/

— prediction of dispersion relatign substrate combinations under té8te metal layers, cobalt,
Inverse problem: dispersion datamodel-estimates of tungsten, and aluminum deposited on a Si substr&e-

model parameters cause of the exponential decay, a surface wave may be con-

The problem of determining the structural properties assosidered to sample the elastic properties of a layer approxi-
ciated with a given set of SAW dispersion data is more comimately one wavelength thick. This limits the range of the
plex. Analytical and exact solutions of this problem are un-layer-thickness measurement, which must be much less than
known in nondestructive evaluation, except for a few verythe wavelengthd<Ag) of the surface wave. The best accu-
simplified examples. Based on the knowledge obtained fromacy in layer-thickness measurements in semiconductor tech-
extensive parametric studies of theoretical models of SAWhology is obtained by limiting the measurement range to less
dispersion relations, it is possible to determine the unknowrthan 1/5—-1/10 the wavelength of the surface wave.
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5600 . . . . . tive mass density of two layers. The effective elastic con-
stants and the effective mass density of a superlattice have
(a) been derived in terms of the corresponding parameters of the
constituent layergGrimsditch, 1985 Their calculated for-
B ] mulas can be summarized as follows. Assuming that the
) thickness, the elastic constants, and the density of layer 1 are
) denoted byd;, C;; %, Cipl, Cyuul, andp,, respectively,
o\ | those of layer 2 are denoted by, Cq; 2, C1,2, C44 2, and

LW p2, respectively. The thickness fractions of the two kinds of
NN layers aref,=d,/(d;+d,) and f,=d,/(d;+d,), where

N (d;+d,) is the superlattice period. Then, the effective mass
3500 N : density of the superlattice is

Phase velocity [m/sec]

NN p=Ff1p1+fap,. (29)
R The six independent effective elastic constants for the super-

N s,
3000} \?\ ‘ R

W lattice can be given as
B 1 2 2 A1
2 —  F1CCL+1CCh

13— 2 1 ’
250 L L . : L f,.Cs,+f,C
o 100 200 300 400 500 600 1117 721

Normalized thickness f-d, [GHz - nm] Cag=[f1/CIy+o/CT] Y,
_ Ci, —
% ' ' ' ' " Cyy=f1CL,+f,CH+ flc_l(C13_ Cio)
\ ) 1
ct, ~
+fZC_2(ClB_Ci2) )
11

45001

1

_ C12 _
<:12=1‘1c}2+f2c§2+f1—cl (C13—C1,)
4000 11
2

C12 ~
+f257(C1a=Ch)
11

Cu=[f1/Ch+1,/C207 L,

3600

Phase velocity [m/sec]

Ces=f1CL,+,C2,. (30)

The above equations predict that the effective elastic con-
stants do not depend on the superlattice perabd-d,) but
, ) , ) . depend on the thickness ratio of the two constituent layers.
100 200 300 400 s00 600 The models used in Fig. 24 are a Co laglayer 1) on a W
o . : . layer (layer 2 on a S{100) half-space and a W layer on a Co
Normalized thickness fd [GHz - nm] layer on a Si100), respectively. In Figs. 24) and 24b) the
] ] SAW curves are presented for the values of the normalized
FI?& zlf" SAV\t’) d'SperSt;OI” \fq;”‘/’gs f%ré""g zag‘g'eg gf até”‘;':oaag’eredthicknessfdz, in which f is the frequency and, is the
solid. From above to belovd, /d,=0.0, 0.2, 0.5, 0.8, and 1. thickness of layer 2, and the thickness of layer 1 is rep-
\?Vi\évojjésipersmn curves for Co/W/Si) SAW dispersion curves for resented by the ratiog, /d,. Hered, /d, take as the five
' values 0.0, 0.2, 0.5, 0.8, 1.0.
It can be seen from Fig. 24 that the SAW dispersion curves
show different negative gradients, depending on the different
This technique is useful in principle for layer-thickness layer-thickness ratios for a given material combination. The
measurements in a multilayered structure. However, in muldispersion curves may also overlap in the data space. The
tilayered structures the SAW dispersion depends not only odetermination of layer thicknesses from those overlapped
the combination of materials but also on the different layer-SAW data is not unique. Even if the dispersion curves for the
thickness ratios, and the dispersion curves for different layerdifferent ratios ofd, /d, do not overlap each other, it is still
thickness combinations may overlap each other in the SAVimpossible to extract the characteristics of two unknown
data space. Therefore it is impossible to extract more thatayer thicknesses from only a single SAW velocity, since it is
one unknown layer thickness from a single SAW velocity.also not unique. One must take sevev@k) measurements
Figure 24 presents numerical examples of SAW dispersiomat various frequencies to obtain more SAW dispersion data
for a two-layered solid, which were calculated by use of theinstead of measuring it at only a single frequency, and then it
traditional analytical formulation described by Farnedee is necessary to use a good inversion method to predict the
Sec. V.A with the effective elastic constants and the effec-layer thicknesses from the SAW dispersion data obtained. We

30001

2500
[}

2. Layer-thickness measurement in a two-layered structure
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have developed a technique for layer-thickness measuremepg¢nds on the direction of propagation. The point-focus beam
in thin two-layered structureéu and Boseck, 1995 This  excites leaky SAWSs propagating in all directions, so that the
approach is based on a modified simplex metfidedler and  acoustic properties are measured as a mean value around the
Mead, 1963 When one seeks a least-squares fit of the disheam axis. The/(z) obtained for an anisotropic specimen
persion relation between the measured data and the calcecomes
lated curve, an inversion of the SAW data finally yields the
unknown thicknesses of the individual layers. V(2)= jzwfampz(a)uz( O)R(6,b)

o Jo ! ’

3. Measurement of mechanical properties

in a layered structure X exp(—i2k,zcosd)sindcospd od ¢ , (31

It is also possible to examine the elastic constafg,(  Where¢ denotes the azimuthal angle aR{, ¢) is a com-

Cy,, andC,y) of the layer, or residual stresses and cohesivdlex reflecta_nce function, whic_h_now is a _function_ of the

properties of the bond, from the measured SAW dispersiorﬁ’()'ar and azimuthal angles. As it integrates information from

data in a |ayered So|id_ Th|s approach is nondestructive ana” aZimuthal dil’eCtiOI’lS, the SyStem cannot be Used to detect
particularly useful for the characterization of layers of as-acoustic properties that reflect crystallographic anisotropies.
grown films; it cannot be replaced by any other conventiona@n the other hand, when a conventional SAM is used to
analytical means. One either uses the inversion technique démage a thick layered structure, many leaky-SAW modes
obtains a computer fit from the precisely measured propaganay be excited in a specimen and propagated within the
tion characteristics of the relevant surface-wave mode. Isemiangle of the acoustic lens. All such modes exist simul-
order to apply this technique to the SAW dispersion datataneously, and the efficiency of excitation is rather low, be-

first, it is necessary to have an analytical relationship because an appreciable part of the input power is wasted at
tween the measured data and the unknown parameters of thigles where there is no subsurface excitation and only a
test specimen. Then, the SAW data must be precisely me&mall amount of energy can convert into SAWs. The pres-
sured by theV(z) technique at a number of frequencies. ence of all SAW modes simultaneously also makes the im-
Using an iterative procedure or by computer parameterages difficult to interpret. Such problems restrict extensive
fitting of the dispersion relation between the measured datépplications of the SAM in materials science. Further im-

and the calculated values, one can deduce the unknown el fovements in SAM performance are needed to overcome

tic par?met?rtsh of ttheflayefr matt(;rials and/ ord tgivsd(?_esio ese limitations. Many authors have begun to advance re-
properties al the interiace from the measure . ISP€3earch along these lines. As far as we can see, the problem of
sion data(Crean etal, 1987, Weglein, 1987; Kim and further improving SAM performance for quantitative mea-

Achenbach, 1992; Kundu, 1992; Yu and Boseck, 1992; Lee P g brok per qu d th
etal, 1995 Surements can be broken into two parts. First, and the most

In the computer parameter-fitting method, one estimategcuve area, is developing new lens types and enhancing their

; imaging performance. The other area is developing new
the unknown parameters by matching the measured data ona . . o
Inds of scanning and of recording acoustic signatures. To

trial and error basis. In the inversion procedure one ofter ; : :
uses a linearization-iteration process: starting with an initia how what has been achieved in these areas we briefly
) resent several successful examples.

model, one solves the forward problem, then sets up linea?
equations for the difference between observable and calcyy gpecialized lens geometries

lated values for the initial model, in terms of a perturbation

in model parameters; then one solves the linear equations for The lens in an SAM can be considered as the acoustic
the perturbation, revises the initial model, and then repeatgave transformer, which transfers the bulk plane wave gen-
the whole process. Moreover, three aspects of the solution @frated by the transducer to wave fronts in the coupling lig-
an inversion problem, i.e., convergence, uniqueness, and rgid. The energy is converted into surface waves directly on
liability, contribute to a successful inversion procedure.the surface of the specimen, and then the lens converges the
Clearly, the inverse problem is intellectually challenging.reradiated surface-wave beams back to the transducer. Its
Looking ahead a little further, we believe the inverse prOb-Construction and |mag|ng propertie‘gr examp|e’ its ab|||ty

lem of SAW dispersion data in acoustic microscopy will be ato transform the wave fronts, sensitivity, conversion effi-

good research topic for acoustic micrometrology. ciency, signal-to-noise ratio, and so)oshould be further
improved, in order to make it either generate a desired wave

VI. FURTHER DEVELOPMENTS IN SCANNING front for measurement of a property of special materials, or

ACOUSTIC MICROSCOPY choose selectively a particular SAW mode with high effi-

ciency, if it is possible to identify a leaky-SAW mode that

So far in this paper, we have described the general prinwill optimize material characterization. All of the imaging
ciples and main features of acoustic microscopy and showmeans and processes used in technical optics are available
its application to the quantitative characterization of materifor reference and can be utilized for this purpose. Today,
als. However, the conventional SAM, also known as a pointvarious acoustic lens geometriéspherical lens, line-focus-
focus-beam SAM, is equipped with a spherical lens. Wherbeam lens, conical lens, annular lens, and sphave been
one uses such a SAM to characterize anisotropic materia@pplied to the SAM. All of these lenses have their special
and thick layered structures, severe difficulties are encourcharacteristics, their advantages and disadvantages, and can
tered. In anisotropic materials the surface-wave velocity debe selected for particular purposes.
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@ Transducer acoustic wave modes are simultaneously excited in the speci-
i men, and the efficiency of excitation is rather low. To over-
come this disadvantage, the logical questions naturally are: is
Plane acoustic it possible to excite only one key leaky-SAW mode for ma-
surface ~_ i 7 wave fronts terial characterization?, and is it possible to increase the ex-
™ : citation efficiency of that excited leaky SAW? The answer is
yes. As a consequence, new lens geometries are being pro-
Focused acoustic posed, one of which uses a conical recessed surface geom-
etry [see Fig. 2fb)] to replace the spherical cavity of the
conventional lens. In Fig. Zb) the acoustic waves produced
by the transducer will first hit the conical refracting surface
before they reach the object surface. All the refracted rays
from the conical surface are incident on the object surface at
. the same angle. If the inclination of generated conic waves is
Specimen chosen to be a critical angle for a particular mode of leaky
SAW, this new lens, called a “Lamb-wave lengAtalar et
(b) Transducer al., 1992, excites only one of the leaky-SAW modes on the
/ layered solid and converts a large fraction of the incident
i energy to that leaky-SAW mode with a high efficiency. Since
the leaky-surface-wave modes in the layered solid are disper-
sive, and their critical angles depend on frequency, the
Conical lens Lamb-wave lens should selectively excite the leaky mode by
| surface matching the fixed incidence angle to the corresponding
critical angle by adjusting the operating frequency. The im-
ages obtained by this lens are easy to interpret and the sub-
surface sensitivity is highV(z) obtained with this lens is
formed by the interference of a single leaky-SAW mode, and
Focal line the specular reflection provides regular oscillations with pe-
riodic intervals. The drawbacks of this type of lens are two-
fold: identifying the order of the excited surface-wave mode
is not easy in a practical specimen, and this results in diffi-
culty in determining layer thickness from the measured SAW
dispersion data. In addition, a Lamb-wave lens does not have
as well-defined a focal plane as the spherical lenses, because
1. Line-focus-beam lens it produces a focal line in the axial direction of the lens. Its

As mentioned above, the conventional SAM is not suitable?Xia! resolution is equal to the thickness of the layer, since
for investigation of elastic properties of anisotropic materialsthe leaky-SAW modes exist predominantly in the layer. But
because the surface-wave Ve|ocity depends on the d|rect|dh|3 pOSSible to obtain lateral resolutions better than a wave-
of propagation. In order to be able to make measurements ii¢ngth with a Lamb-wave lens. The Lamb-wave lens can
one direction at a time, we need to use a lens with a cylincomplement the conventional lens in acoustic microscopy for
drical surface instead of the spherical surface needed fagome applications, especially subsurface imaging in layered
transforming the acoustic wave fronts. This type of SAM isstructures.
known as a line-focus-beam SANKushibiki and Chubachi,

1985. The principle is illustrated in Fig. 28). The cylindri-

cal lens produces a so-called line-focus beam, parallel to the

axis of the cylindrical surface. Surface waves are excited in a

direction perpendicular to the line focus. This enables elasti®- Scanning alternatives and recorded functions
measurements to be made in different directions on aniso- _ ) )
tropic specimens such as wafers of electronic and optoelec- e have already shown that two kinds of spatial scanning
tronic materials. But because the line-focus-beam lens gerfan be used in acoustic microscopy, namelky, and
erates a focus along a line, it has poor spatial resolution iiy-direction scanning for the purpose of imaging and
that direction. Moreover, the line-focus-beam microscopez-direction scanning fol(z) output. Other types of scan-
gives good azimuthal resolution, but is not suitable for im-ning may also be used in the acoustic microscope. To show
aging. this we can use an alternative approach to the acoustic ma-
terial signature. Referring to the theory ¥{(z), we may
write the variation of the signal outpi in the SAM as a
function of different variables, such as the defoajsthe

When a conventional SAM equipped with a spherical lensscanning frequency, and the polar angl®@ (the incident
is used to image a layered structure, almost all possiblangle. We rewrite Eq.(31) as

e

FIG. 25. (a) Wave fronts in a line-focus-beam microscofe) ge-
ometry of the Lamb-wave lens.

2. Lamb-wave lens
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1.1 v v T v v T T T The V(f) approach has some advantages over\(e)
approach. For example, scanning in the frequency domain
1 ] can be done electronically, which is much simpler, smoother,
and faster than the-direction mechanical translation of the
°-or ] whole transducer assembly, as is required for tHe)

method. Moreover, the interpretation ¥@{f) is easier than
that of V(z). Of course, invV(f) operation it is necessary to
use broadband ultrasonic transducers. In addition, for a lay-
ered structure th®/(f) curves present additional difficulties
for quantitative evaluation, since strong surface-wave disper-
sion occurs in this case. Thus one must use a particular lens
construction, for example a Lamb-wave lens, to obtain a use-
ful V(f) curve for the characterization of layered structure.
In this case thé&/(f) curve results in peaks at positions cor-
responding to different leaky-SAW modes excited in the

Normalized V (f)

0.3 ] sample.
0‘0 4 o‘s n‘a i 1.2 1.4 1’5 1.8 2I 2.2 2. V(@) function
Frequency f [GHz] When the polar angle is scanned, the SAM signal received

is plotted as a function of incidence angle and the result-
ing curve can be called ¥(6) curve (Atalar et al,, 1988.
This kind of scanning can be performed using Lamb-wave
lenses with various conical angles. TWé0) effect can be
2 _, ) used to deduce the relative sensitivities of the excited leaky-
V(zf,0)= fo Pe(0)ui(9)R(0,¢) SAW modes and to find the most sensitive excitation angle
(i.e., the most sensitive surface-wave mpdehis allows us
. f . to detect a particular defect in a layered structure.
><exp( _'47721,_0039)5'”90039d¢ , (32 Other scanning versions are also possible. For example, a
) v i line-focus-beam SAM can be considered as a combination of
whereR(6, ¢) is the reflectance function of the samphere  _gjrection spatial scanning and discrete azimuthal angle
anisotropic properties of materials are allowedls a result, scanning ¢ direction, which is sensitive to the directional
we can qbtaln three kinds of recorded functions for d.escr'bproperties of anisotropic materials. Therefore, developing
ing the signal output of a SAMY(2), V(f), andV(6), with ey scanning versions and recorded forms should be of great
the other variables as the parameters. V(g fu_nctlon has _significance in enhancing the performance of the SAM.
already been described above. Here we simply describe Finglly, it must be pointed out that efficient processing
briefly the functionsv(f) andV(6). techniques for the output data in a SAM are also important
for obtaining accurate quantitative evaluations. Research in
_ this direction is an area of great activifigriggs et al.,, 1988;
1. V() function Kanaiet al, 1992.
In acoustic microscopy, using frequency scanning instead
of z-direction scanning, one may obtainvgf) function in  vIl. SUMMARY
the frequency domaifNagy and Adler, 1990 We consider
the case of the conventional SAM and start from Ep). Nondestructive evaluation of near-surface properties of
Because the spherical lens excites all polar angled the  materials is usually carried out using acoustic techniques.
object interface, we need only to considéiz,f) in Eq.(32). Bulk acoustic waves fail in this case, due to their large re-
From this integral we see that the defocusinig measured flection at the boundary and their very weak acoustic con-
in terms of the acoustic wavelengik,/f. Therefore it al- trast, so that even very different materials are difficult to
ways appears as a product with frequericy/(f) is a par-  distinguish. In contrast, surface acoustic waves have been
ticular cross section 0¥ (z,f) in Eqg. (32) at a certain defo- successfully used for near-surface evaluation of materials,
cusing depth, whileV(z) is simply the cross section of because they extend beneath the surface and are very sensi-
V(z,f) at a certain frequency. The interchangeabilityzof tive to surface inhomogeneities. Several acoustic systems
andf in the material signature of the specimen gives us théased on surface acoustic waves have been proposed for im-
option of analyzing the frequency spectrum of the receivedaging. Scanning acoustic microscopy, among others, has
signal rather than itz dependence. In practical operation, asbeen successfully developed, and it would appear to be one
the frequency is scanned whikeis kept constant, a charac- of the most promising means for the evaluation of physical
teristic V(f) curve is traced. Th&/(f) characterization is properties of materials. In many applications acoustic mi-
similar to theV(z) effect. For example, for a nonlayered croscopy will be used in conjunction with conventional mi-
smooth solid theV/(f) curve exhibits more-or-less periodic- croscopic techniqueésuch as optical and electrpriThere
ity. Figure 26 shows a calculated(f) curve for a glass are, however, some applications for which acoustic micros-
sample az=—18.0 um. copy is uniguely suited. Such applications are the imaging of

FIG. 26. V(f) curve for glass sample at=—18.0 um.
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the interior of optically opaque objects and the quantitativeobtained image is simple, and a series of regular periodic
evaluation of elastic properties of materials on a microscopioscillations occurs in its output respongéz). This kind of
scale. image and th&/(z) curve can be easily interpreted. On the
In a brief review such as this paper it is impossible toother hand, in layered structures more than one surface wave
describe all details of the acoustic microscope and to covemode, such as Rayleigh-like modes, Sezewa modes, and
all the latest developments in acoustic microscopy. We haveove modes, can be excited, and they are dispersive. When
covered areas that we think are essential for understandirthis kind of specimen is examined by the acoustic micro-
acoustic microscopy and its applications to material characscope, many surface waves make contributions to the output
terization. We have first explained that in the scanning acousresponse. As a consequence, YH&) curve has a complex
tic microscope the acoustic image of an object under test igariation and will no longer exhibit a simple periodicity. Ex-
obtained by mechanical scanning. Because of the use of mé&acting the elastic properties of the specimen from the mea-
chanical scanning, the acoustic lens must perform well onlysuredV(z) data may become rather complicated. In order to
on axis. It is this feature that has made it possible to recordletermine the elastic properties of a layered structure from
high-quality acoustic images with submicrometer resolutionthe relevant surface-wave mode, we must carry out wave-
Since the resolving power of an acoustic lens is primarilyform analysis of the oscillation characteristics in the obtained
constrained by the operating frequency, increasing the frev(z) curve.
guency improves the resolution. On the other hand, the abil- Applications of acoustic microscopy are growing so fast
ity to image below the surface of materials, another attractivehat it is impossible to keep up with them all. The applica-
property of acoustic microscopy, is also affected by fre-tions presented here have given only a slight indication of
guency. Penetration ability has been estimated to be abotiie scope of nondestructive evaluation in solid materials. The
the same magnitude as the wavelength of the surface acousain results can be summarized as follows: the full reflec-
tic wave excited in a specimen. Increasing the frequencyance functionrR of a specimen is deduced by inverting the
reduces the penetrating ability due to the increase in theneasuredv/(z) data; phase velocity and attenuation of sur-
acoustic attenuation of samples with frequency. Thereforéace waves on the liquid-specimen boundary are determined
resolution and penetration must be traded off. through theV(z) measurement; elastic constants of bulk ma-
We have further shown that the image contrast observed iterials are estimated by analyzing the velocities of surface
acoustic microscopy is related to elastic properties near theaves excited in the specimens; for layered structures, layer
surface as well as below the surface of the sample. Thus, wihicknesses and mechanical properties can also be evaluated
have a probe that is not comparable with any other kind oby measuring the dispersion properties of surface waves,
microscopy. The interpretation of the contrast is a major taskhrough the use of an inversion procedure and computer
and of essential interest for an acoustic microscopist. Wheparameter-fitting techniques. The applications of acoustic mi-
the acoustic lens is focused at the surface of the specimenroscopy to biology and the imaging of subsurface features
only specular reflection is generated, and the acoustic corin materials are no doubt very important application areas,
trast is very weak. When, however, the lens is focused belowvhich have not been presented here for simplicity.
the surface the contrast becomes much stronger. Especially Finally, we have indicated that because the conventional
in defocusing scanning, a series of oscillations in the transacoustic microscope is equipped with a spherical lens, when
ducer output is observed. This effect is known as the acoustione uses such an acoustic microscope to characterize thick
material signature or, simply, th€(z) curve, and it is a layered structures and anisotropic materials, difficulties arise.
function of the defocug. V(z) is an interference result be- In the case of thick layered structures, the presence of many
tween the nonspecularly reflected surface acoustic waves egurface-wave modes makes interpretation of the images
cited in the specimen and specularly reflected waves. Itgather difficult. In the case of anisotropic materials, a SAM
theory can be classified into two general categories: thoseannot detect the acoustic properties that reflect directional
involving Fourier angular spectrum analysis and those baseanisotropies. This paper has mentioned some successful im-
on ray optical models. The shapes\fz) curves are unique provements in the acoustic microscope, such as the design of
and characteristic of materials; from them one can extrachew lens types and development of new scanning methods,
guantitative information on acoustic properties in materialgo overcome these limitations.
with microscopic precision. In the rapid development of Itis interesting to note that, although surface waves extend
acoustic microscopy, the(z) effect has played a very im- beneath the surface of materials and are sensitive to varia-
portant role in both acoustic imaging and quantitative meations under the surface of the material, their penetration abil-
surements for the nondestructive evaluation of materials. ity is limited by the wavelength of the surface wave. A lower
Knowledge of the propagation properties of surface acousfrequency of operation results in a higher penetration but
tic waves on the surface of materials is essential for undetower resolution. On the other hand, a material involving
standing contrast mechanisms and for quantitative applicdayers supports many other waves than the Rayleigh-like
tions in acoustic microscopy. Thus we have also describedaves, such as Love waves and Stoneley waves. It is pos-
the propagation characteristics of surface acoustic waves igible to excite these waves selectively from the liquid side if
nonlayered smooth and layered solids, and then examinetie incidence angle of the bulk wave in the liquid is properly
their effect on the behavior &f(z). A surface acoustic wave adjusted. The resulting wave will be focused just like the
excited in a nonlayered smooth solid is only a single, nonRayleigh-like waves. Using this mechanism, it should be
dispersive mode, namely, a Rayleigh wave. When a nonlaypossible to get much deeper penetration than is possible us-
ered specimen is imaged by the acoustic microscope, thieg Rayleigh-like waves.
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y has radiusk; and vibrates with simple harmonic motion nor-
mal to its face. The observation point will be a function of
the radial distance from the observation point to the center of
the transducer, angl, the angle between the transducer axis
and the radial vector. The field at the observation point will
be the total contribution from incremental areas of the trans-
ducer. The total acoustic field can be written(&cheltree
and Frizzell, 1989

i ovk e—ikl’—(l'
PYR J
S

U= 27 ° I’ ds
| ipvk (R [eme iK'=
x - ’2)77 U0f0t<fo ———dy|ods,  (AD)

FIG. 27. Coordinate system used to calculate the acoustic field of a

flat circular vibrating piston. wherep and v are density of the medium and velocity of

sound in the buffer rod, respectivelid, is the amplitude
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APPENDIX A: ACOUSTIC FIELD u,(¢) AT THE BACK SIDE

OF THE LENS AND GENERALIZED PUPIL FUNCTION I"=(1?+ %2l osin ycosp) 2 . (A2)

P(6)

If 1" is substituted into Eq(Al), the resulting expression is
so complicated that a closed-form analytical solution cannot
be obtained. However, in order to investigate the near-field

The acoustic fieldi;(#) at the back side of the acoustic description, we can evaluate E@1) numerically, without
lens in a SAM(see Fig. 1Dcan be calculated by the diffrac- @PProximations, on a computer. The fieldis calculated for
tion theory of the piston transducer. In this appendix we shalPoints located on a grid in the—z plane at the back side of
give its expression. the lens. The transduc.er.ams corresponds t(zttr@ordlnafce,

The complete description of the acoustic field produced byand the orthogonal axis is thecoordinate. EquatiofAl) is
an acoustic transducer is generally divided into two separat@valuated, ignoring the constant factor in front of the inte-
parts. One part of the description is limited to the region ingral, as a double summation of contributions from elemental
the neighborhood of the transducer, the near-field region. Th@réas of the transducer:
other part of the description is limited to the far-field region, mon B2
the region beyond the near field. The usual definition of the _ . t
near-field region is that portion of the acoustic field charac- ~ Y1(%%)= p; q§=:l L_plep{ _'ZW(T) LPQ]ASQ
terized by interference phenomena. This is also referred to as (A3)
the Fresnel diffraction region. In contrast to the near-field
definition, the far-field region is characterized by anwhere the attenuatiodi was negligible for simplicity. Each
interference-free acoustic field. This is the Fraunhofer difdength variable is normalized by a factﬁf/)\ and is dimen-
fraction region. Usually, the expression for the acoustic fielcsionless, so from Eqg.(Al) to Eqg. (A3) one has
within the near field is relatively complex. For this reason,k=2x/\=27/{\/(R¥/\)}=2m(R,/\)?. Moreover, the ra-
theoretical studies have avoided the near-field region, andial direction of the transducer is divided intoincrements,
one has often used the Fraunhofer far-field approximation. land the azimuthal direction is divided into parts,
practice, however, one wants adequately to predict the per-
formance of the transducer for operation within the near n=4R;/\ ,
field. Here, we shall follow Zemanek’s wold971) and get
the acoustic field of the back side of the lens by using the m=n= . (A4)
near-field description.

Although both longitudinal and shear waves are generateBy definingn and m in the above manner, one divides the
in the sapphire rodsee Fig. 2 we need only consider the transducer into 32(R,/\)? increments. This is the mini-
effect of longitudinal waves, as the receiving transducer willmum number of increments that can be used in order to
be primarily sensitive to these waves. Figure 27 shows thebtain results within 0.5% of results obtained using a far
coordinates of the transducer being considered. The trangreater number of increments.
ducer configuration is a flat circular piston. The transducer Thus in Eq.(A3) we have

1. Acoustic field u4(6) at the back side of the lens
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ASy(the elemental arep=ojAcAy,
Ao=[R/(RZ/\)]/n= ! Liquid
o=[R/(R{/N)]/In= NR/X ’ iquid.__ \. \1\6 /
= z
Ay=m/m, 0 7 1 / *
1 2 l\
‘Tq:AU(q—E) : (AS5) ?
2 /
and z’;’ k ‘\.f/

— (L2402~ ; 12 \ ..
Lpg=(L°+og—2Logsinycosp,) =<, o Multilayer
L=(Z2+X2)12 Zm -

ya Solid halfspace
Z=——,
RZ/\
e X
ORI\ z
y=tan Y(X/Z) , FIG. 28. Geometry of a multilayered solid overcovered by a liquid.
l,bp=Al//( p— E) . (AB) APPENDIX B: FORMULATION OF REFLECTANCE
2 FUNCTION R(6) IN A MULTILAYERED SOLID

By relating the coordinates of the observation point, which is
located on a grid in th&—z plane at the back side of the
lens, to the incidence angkeof the acoustic wave, one may
describeu; as a function of9, u,(6).

The reflectance functio®® can be solved for by using
different methods. For a layered solid, a widely used ap-
proach to calculating these quantities is the Thompson-
Haskell method(Thomson, 1950; Haskell, 1953This ap-
proach is based on the use of recurrence formulas, which
2. Generalized pupil function P(6) connect the amplitude of waves in adjacent layers. Here we

shall follow this approach and give a general description af-

The generalized pupil functioR(#6) can be expressed by ter some reformulationgYu, 1997).

(Wickramasinghe, 1979 Consider a horizontally layered, elastic half-space as
, extl —,L(0)] shown in Fig. 28. Each layer is assumed to be isotropic,
p(g):circ(_) expikw( ) ——=——=T(#) , homogeneous, and perfectly elastic. This structure is sub-

Mo L(O) merged in a liquid from which a plane longitudinal acoustic

(A7) wave is incident. Let the coordinate system be chosen so that

where circ¢/r,) is a geometrical aperture function arglis ~ the x coordinate is parallel to, and trecoordinate is per-
the radius of the lens aperture. The second factor representgndicular to, the layer whose origin is located at the inter-
phase correction term due to the spherical aberration of thi&ce between the top layer and the liquid. Tk layer is
lens,w(#) being the wave-front error in wavelengths corre- bounded above by the plaze-z,_, and below by the plane
sponding to the anglé. The effects of absorption and dif- Z=2, its thickness isdy, its density isp,, and it has
fraction in the coupling liquid are included in the factor exp P-wave (longitudinal, primary and S-wave (shear, second-
[—ZuL(6)1/L(6), whereL(#6) is the distance from a strik- ary) velocities of ¢ and By, respectively. The velocity of
ing point of the acoustic ray at the specimen surface to 4he longitudinal wave in the liquid is,,, and the other cor-
point on the lens surface correspondingftoand/,, is the  responding properties in the liquid are denoted by the sub-
attenuation coefficient in the liquid. Finally, the facfbfg)  Scriptw. A plane acoustic wave of amplitude 1 is incident on
represents the complex amplitude transmittance function dhe liquid-solid interface at an anglg, . We are interested in
the antireflection layer on the lens surface, whose thicknesgomputing the total reflected field in the liquid.
may vary because of the deposition procedure. In each of the layers a pair & waves(propagating sym-
Following Lemong1975, 1979, we find thatw(6) is very ~ metrically above and below the horizontal plaed a pair
small, so expikw(6)] can be approximated to 1. The effect of similar Swaves will appear. In the lower half-space of the
of the factor exp— ¢,,L(6)]/L(6) can also be neglected be- solid there will be only downward traveling andS waves.
cause of the very small absorption and diffraction differences We now consider layek as an example. Th&- and
for different acoustic rays in water. Therefore the pupil func-S-wave potentials in thek, layer satisfy the usual wave
tion P may primarily be calculated by the factd(6) and €equations and have the representati@rekhovskikh, 198p
can be approximately expressed by b=[age ez 241 4 b gl Tak(Z- 2 D]l (Ex-ot) |

T(6) (A8) =L cpe ez 21 4 dy el ek Z B 1) gl (el
' (B1)

P(0)Ecirc(L
o
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in which o denotes the circular frequency aidis the x
component of the wave number. It follows that

£=KkySindy,= K Sind=Kgisinyy , (B2
where
kW:a)/VW, kak=w/ak, kﬁk: w/Bk. (83)

k,, is the complex wave number for tliewave in the liquid,
andk, andkg, are the complex wave numbers for tRe
and S-wave vectors making acute anglésand vy, , respec-
tively, with the z axis. Thez components of thé?- and
S-wave vectorsy,, and ng, in Eq. (B1), are defined by

Tox=Ka— & mp=Ka— & (B4)
In Eq. (B1) the coefficientsay, by, ¢, d, are unknown

constants to be determined from the interface and boundary

conditions. All the waves contain one common factor
e' (&=« which we shall omit for brevity.

(1) Let uy, vy, ok, 7« denote the tangential and normal
components of displacement and stress vectors foikhe

889

Uy Alax—aloz| [ Py
v =| dloz+alax || (BS)
and
ok ANV2+2ud%07° 2ud%lIxdz b
(| 2umd*oxoz (3P ax?—a*az%) |\ [
(B6)

where\ and u are the Lameconstants, and the Laplacian
V2 denotes §%/ x>+ 3%/ 9z%). The calculation results can be
written in matrix notation as

Uy Ck
Vg ax
o ( “[QUVIIE(Z=DI b, [ - (B7)
Tk d

layer. In a linear, homogeneous, isotropic medium, from

Brekhovskikh(1980, u,, v., oy, and r, are related to the
wave potentialsp and ¢ as

where{ could be an arbitrary constant, thex4 matrix [Q]
is given as

[ 78k ¥3 ¥ —i 7Bk
If —i 7 ak [ 7 ak If
[Q(k)]= 2 pkmpié p(2E-K5) w28 -K5) —2mmpé | (B8)
—u(28-K5)  2mnad —2mmad —m(282-K5)
|
and [E(2)] is the diagonal matrix From Eq.(B12)
[E(z)]=diag e, .e, .e, .ep) (B9) {Su(zk- 1)} =[QKI[E(zx-1—2z-1) {C(K)} ,  (B14)
with so
€, p=e s (B10) {Sc-1(ze-D}=[QUK H{C(K)} . (B15)
Let Since the matrix Q(k)] is not singular, the above equation
Uy Cr (B15) can be solved fofC(k)},
vk ay {C)}=[Q(K) ] H{S-1(zc1)} , (B16)
{Sd=1 o, {CK}I=1 b, (B11)  which can then be substituted into E&12) to yield
Tk d

{S} is called the displacement stress vector, 464 is an
unknown constant vector. Then, within the, layer, Eq.
(B7) can be expressed in the form

{S(2}=[QKI[E(z~2z- 1) {C(K)},

Zk,1< z<< Zy .
B12)

(2) Now, we proceed to find an transfer matrix that relate
{S(z)} evaluated at the top of a layer to that function evalu

ated at the bottom of the layer. We utilize the conditions of

continuity of displacement and stress components at th

{Sd(z)} =[QVIE(zc—zc- D ILQ(K) ™ H{Se-1(zk-1)} -
(B17)

Let
[P(K)]=[Q(KI[E(d)I[Q(K)I*, (B18)

whered,=z,—z,_, is the thickness of th&,, layer, so

{Sdzd}=[P(K) {Sc-1(zk-1)} - (B19)

SThis is the transfer relation dfS(z)} evaluated at the top of

a layer and the bottom of the layer, respectively. TREK)]

repatrix is called the Thomson-Haskell layer matrix.

(3) Next, by successively applying the interface continuity
conditions, one can relate the displacement stress vector at
thek,, layer to that at the top surface. Similarly, the displace-

layer interfacez=1z,_,, which is expressed by

{Sdz- D} ={Sc-1(zc-1)} - (B13
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ment stress vector is related to the bottom half-space. That is, The above matrix equatiofB29) gives four independent

by successively applying Eq&B19) and(B13), we get
{Sn-1(zm-D}=[P(M=D)J[P(M=2)] .. .[P(k+1)]
X[P(KI[P(k=1)]...[P(1){S(0)} .

(B20)
From Egs.(B16) and(B20) we can obtain
{Cm)}=[Q(M)] {Sn-1(zm-1)}
=[Q(m)] "' [P(m—1)]
X[P(m=2)]...[P(1)){S(0)}, (B21)
or
{C(m)}=[I(m1){S(0)} , (B22)

where ] is the chain product of the layer matrices
[I3(m,1)]=[Q(M)] [P(m—1)][P(m=2)]...[P(k
+DPKIP(k=1)]...[P(1)]. (B23
This is a most important transfer formula.

linear equations for the four unknowhs,, d,,, Uy, andR.
The first two equations are

J11Uo+ J1d (1= R) — 1y v2KG(1+R) =0 ,
JoUg+ Jodd 7y (1—R) _J23pwV5vk3v(1+ R)=0, (B30

wherely, is the k,l) element of the matrixJ]. Eliminating
ug from the above equations, one can obtain the reflectance
functionR as

31920~ 12020 +i pu ki (311325~ J21010)
Nw(J11d22— J12021) —i PwVevk\%v(Jllst_ Jodig)

(B32)
or in the closed form
R=(7a333+ 1 pw@?339)/ (155~ ipw®Jz3) . (B32)
wherew= v,k,, is the circular frequency and
I=3i3a—Judy; - (B33

The indiceq, j, k, | in Eq. (B33) take on the values 1, 2, 3,
4.

(4) Finally, we proceed to the problem of seeking the re-

flectance functiorR. Since noS wave occurs in the liquid,

i Is identically zero. The wave potentials in the liquid are

given by

by=€ " +Re M

Py=0, (B24)
where

ne=K5— &, (B25)

andR is the reflectance function because the amplitude of

the incident wave is assumed to equal 1.

From the boundary condition at the liquid-solid interface
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