Cyclotron absorption and emission in mode conversion layers—a new
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When the analysis of absorption with mode conversion effects included began to mature in recent years, the
study of the corresponding effects on emission began and has led to some surprising results. The classical
expressions for cyclotron or synchrotron emission from a harmonic resonance were originally derived from
models that did not include mode conversion or its attendant reflection, and classical expressions for the
optical depth and opacity were obtained. When mode conversion was included, the principal surprise was that
the transmission coefficient, which was understood as being due to absorption, is totally independent of
absorption and due exclusively to tunneling. The other surprise from the mode conversion analysis is that the
observed emission arises from two distinct sources, one direct and one from an indirect Bernstein wave source
which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that
mode conversion cancels out for the electron case, but not for ions. The only corrections to electron cyclotron
emission are then due to reflection effects, and these have been shown to be small for many laboratory
plasmas, leading to the validation of the classical formula for these cases, but via an entirely new paradigm
in its interpretation. This review includes a summary of the absorption process for both electron and ion
cyclotron harmonics, and reviews carefully the emission physics, including both potential error estimates and
a discussion of the emission source distribution in space.
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. INTRODUCTION

A. Background and overview

The advent of mode conversion theory dawned when it
was understood that cold plasma resonances are resolved by
warm plasma effects when collisions are weak, and that
when the resonance is approached in space due to an inho-
mogeneity, there is invariably some linear coupling between
a cold plasma wave and a warm plasma wave. The original

6analysis (Stix, 1965 demonstrated that approaching the

lower hybrid resonance in a finite-temperature plasma leads
not to a pole, but to a region in the plasma where all of the
incident wave energy is converted to a fundamentally differ-
ent warm electrostatic wave. If there is absorption involved
in such an isolated resonance, it is associated with the even-
tual fate of the converted wave, and almost never occurs near
the conversion layer.

The connection between cyclotron harmonic resonances
and mode conversion has long been establisti&dkhin,
1969; Ngan and Swanson, 1977; Antonsen and Manheimer,
1978, and the role of absorption in the mode conversion
process has been discussed by mg@wanson, 1980; Cole-
stock and Kashuba, 1983; Swanson, 1985eview of ion
cyclotron cases Kay et al,, 1988; Lashmore-Daviest al.,
1988; Ye and Kaufman, 1988; Choet al., 1990; but the
effects of mode conversion on emission have only relatively
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838 D. G. Swanson: Cyclotron absorption and emission

recently been addresséBwanson and Cho, 1989; Cho and B. The fundamentals of mode conversion theory
Swanson, 1990a, 1990b; Swanson and Shvets, )199#2 . )
principal focus of this review is to pull together some of the 1he fundamental goal of mode conversion theory is an

new results on emission as influenced by mode conversiogxact full-wave analysis of spatially resolved resonances. In

and since the absorption process is crucial to emission, th%ec' l. B, the domain of mode conversion theory is described

work on absorption will also be reviewed briefly. The impor- with minimal algebra to clarify the nature of the problems,

tance of electron cyclotron emissi¢ECE) as a plasma di- the kinds of methods used, and the kinds of results obtain-
agnostic has influenced the various contributions in this areée}ble'
so that most of the analysis relates to emission and absorp-
tion near the second and third harmonics of the electron cy-
clotron frequency, although corresponding work at ion cyclo-l'
tron harmonic resonances will be included. It is not the A full-wave analysis means that a complete exact solution
purpose of this paper to review all of mode conversionof a wave equation is solved as opposed to an approximate
theory, since some resonances, such as the lower hybrid asdlution by eikonal methods. This does not mean that asymp-
upper hybrid resonances, are virtually free of absorption, antbtic forms are not used in the solutions, which are eikonal
hence of emission. Absorption and emission at the two-iorforms, but that theoupling coefficients betwedhe asymp-
hybrid resonance could have been included, since the theoigtically propagating wave branches are foumithout any

is very similar; but although this absorption process is im-€ikonal approximationsSome of these coefficients are deter-
portant, the emission process seems not to be of great intefined exactly, and some are evaluated numerically, but no
est. This narrows the scope of the model equations to thapproximations need be made. The term “exact” means that
class of tunneling equations, where there is propagation ofince the wave equation is determined, no further approxima-
both sides of the resonance or mode conversion layer iions are made. There are always some approximations in

which there is finite transmission, reflection, and conversiorestablishing the appropriate wave equation. Certain of the
to Bernstein modes. results are virtually independent of the approximations made

As will be discussed in detail in the following sections, in establishing the wave equation, such as the independence
absorption has no direct effect on the transmissibrough ~ Of the transmission coefficient from absorption, since it de-
one of these mode conversion layers; so all of the absorptioRends only on the analytic nature of the plasma dispersion
and emission will be tied to the reflection and conversionfunction. This is worth noting, since this result is probably
processes, which are thenly components affected by ab- the most surprising one of all from mode conversion theory,
sorption. This flies in the face of conventional wisdom whichsince it is contrary to conventional wisdom which has tradi-
has long estimated opacity and optical depth from a transtionally attributed finite transmission through a resonance
mission coefficient calculated from integrating the imaginarylayer to absorption, whereas these effects are not directly
part of the wave vector, which has beassumedo be due to  related. Other scattering coefficients do depend on the ap-
absorption, across the layer. One of the remarkable results foximations made in establishing the wave equation, but
the more nearly exact treatment which includes mode conweakly.
version effects is the exact agreement in one case with the
traditional expressions for opacity, although for subtle rea-
sons._Another_case includes effect_s of reflection; so reflectpal Plasma resonances in space
coefficients will be carefully examined so that accurate esti-
mates of these effects may be obtained. In many cases, theseThe domain of mode conversion theory is restricted to
effects are small, so that classical expressions are often refplasma resonances that are approached in space due to a
able; but the change in paradigm, or way of understandingveak inhomogeneity in the plasma parameters, typically ei-
the processes involved, is a major shift which includes aher the density or the magnetic field, and are resolved by the
mandatory change in the language used to describe opacigoupling to a different mode or wave type rather than being
or at least a redefinition of what one means by the wordstesolved solely by absorption processes. The typical cases
While the classical theory for electron cyclotron harmonicare isolated resonances, back-to-back resonance-cutoff pairs,
emission is largely validated except for our understanding obr a cutoff-resonance-cutoff triplet, provided that these are
the physics involved, the ion cyclotron harmonic resonancencountered sufficiently closely in space that each individual
emission is substantially different, and the classical opacitfeature has some influence on the other. Extensions include
formula may fail badly except in the extreme case of verycases in which a warm wave may change from a forward
strong absorptioitdue to relatively largéx,). There do exist, wave to a backward wave, which is effectively a mode con-
however, cases of practical importance where electron cyclosersion, and behaves like an isolated resonance. That such
tron emission differs substantially from classical theory; soresonances lead to mode conversion is evident from the
that deviations due to mode conversion theory are not merelyMode Conversion Theorén{see Swanson, 1989, pp. 242,
academic. It is also found that there is a systematic shif243): “In an inhomogeneous plasma, linear mode conversion
between the peaks of the emission source distribution funds always involved to some extent in resolving every plasma
tion and the absorption distribution function, as well as aresonance.” The proof begins with a generalized dispersion
narrowing of the source relative to the sink, due to moderelationD(k,x) =0, where the plasma parametédensity or
conversion. This modifies our understanding of where thanagnetic field are(slowly) spatially varying. Expanding this
radiation source is located. dispersion relation about some particular, one may write

Full-wave theory
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JD 1 9°D nances enter the dispersion relation through finite Larmor
D(k,x)=Dlke(x), ]+ — Ak (K=K} + 5 = > (k—ke)? orbit effects, characterized by,;=3k’p__. The Bessel
ke function expansions ir\.; are normally truncated at the

+(k—ke)® . (1) lowest order which includes the particular harmonic reso-

Choosing to expand about the point where the group venance, since\ <1, but some integro-differential equation

locity vanishes, or where ;= dew/ak=(9D/k)/(9D/dw) m‘?rtﬂ‘)ds mf‘ke no S“C(;‘_ OO, arice in mod
= 0, one finds that the first-order term vanishes. Neglectin € most common diSpersion reiations that arise in mode

the higher-order terms, the result may be approximated byOnVversion problems afat least asymptoticaljyof the form
the expression k*+ (apx+b,)k?+agx+by=0 , (4)

D(k,x)=P(x) +Q(x)(k—k:)*=0, (2 witha, # 0. For the isolated resonance case such as the lower

so that, defining a shiftekl,=k—k., this may be written as hybrid resonances,=0, whilea,/a, <0 for the case with a
5 back-to-back resonance-cutoff pair. This latter result is ap-
ks=—P(X)/Q(x) . (3 parent by dropping th&* term (throwing away the warm
2_ - -

Clearly, P(xo) =0 is a cutoff, andd(xg) =0 is a resonance. Wave, so thatk®=—ag/a,>0 as|x| -, which is the cold
However, any time the highest-order term in an expansiorﬁ"asma dispersion relation away from the resonance. At least
such as in Eq(2) vanishes, one must go at least to thext ~ ONe of theb,, must be nonzero, but either one can be made to
higher orderin order to adequately describe the dispersionv@nish by a simple translation of the origin. By changing to
characteristics; and from E@l), this next term is of order dimensionless variables, the two cases may be pstan-
k3 (which vanishes whenever the dispersion relation is eveffard form so that the isolated resonance case in standard
in k, since the first-order term was chosen to vahish  '0rM 1S
k?. These higher-order terms are relatedother waveand k*—\2zI2+B=0, (5)
indicate mode conversion between at least two types of 2 .
waves. The proviso in the theorem, “to some extent,” noteswhere)\ (notthe same .as&i aboye and} are real d|mgn-
that if there is some absorptio@(x) may never truly van- sionless constants armis proportional tox. A plot of this

- . - 2 - -
ish, and in such a case it must be determined whether th%'stpsrs'f(g relation fig >_?hmay be four:jq In Ftlg.dG OJ fmy
fourth- (or higherj order term exceeds the minimum of the extbook(Swanson, 1989 The corresponding standard form

quadratic term(mode conversion domingnbr vice versa for the resonance-cutoff pair is
(absorption dominat k*—N\2zI2+\%z+y=0 , (6)

where y and\? are real constants. Effects of localized ab-
sorption may be included by lettirep anda, be replaced by
The wave equation to be analyzed is typically obtained bycomplex functions ok whose asymptotic limit is a real con-
converting a dispersion relatigfor a homogeneous plasina stant. The transmission coefficient obtained from the eikonal
into a differential equation by lettingk—d/dx. A more  method use&(z) from this equation and finds the amplitude
nearly precise method is to include the weak inhomogeneitjransmission coefficient to b=e™” where is thetunnel-
from the beginning and reduce the Vlasov-Maxwell equadng factor given by
tions to a single wave equation. The resulting wave equation
is typically an ordinary differential equation, as the resonant ”:j Im[k(z)]dz . (7)
surface is locally plane and the variation normal to the plane
is one dimensional. Some implementations use a partial dif- Depending on the value of, there are two distinct forms
ferential equation to include variations over the entire crosshat the dispersion relation can take. For 3>0, which is
section with boundary conditions and antennas. In this reeharacteristic of the ion cyclotron harmonics, a plot of Eq.
view, the analysis is restricted to cyclotron harmonic reso{6) is given in Fig. 1. The three propagating branches are
nances with slow variations in the magnetic field only, rep-labeled such that Branch 1 represents the fast wave on the
resented byB(x) =By(1+x/L) andB-VB=0, andL is the high-magnetic-field side; Branch 2 represents the fast wave
scale length for the magnetic-field variatiobh R, for a  on the low-magnetic-field side; and Branch 3 is the Bernstein
tokamal. The model equations and analysis are almost idenmode. Since the plot is &, each branch permits both in-
tical to those of the two-ion hybrid resonance, but that case isoming and outgoing waves, with the arrows indicating in-
not considered here. coming waves. The complex region in the center is the tun-
Dispersion relations, typically represented BYw,k)=0  neling region where&k has an imaginary part due solely to
in a homogeneous plasma, are here represented hynneling.
D[k(x)]=0, since at the resonance surfatat x=0), For the electron case,#1y<0, and the coupling is dis-
®w=Nw¢, and the dispersion is due to the variatiorkiix) tinctly different, as may be seen in Fig. 2. Again the propa-
aboutx=0 through w.=w(1+x/L). In addition to the gating branches are labeled, but here Branches 1 and 2 rep-
cold plasma terms, which for the cases considered here deesent the X-mode on the high- and low-field sides,
scribe either the fast Alfwe wave or theX-mode, there is respectively. The branches are labeled so that, in either case,
typically a warm plasma term. For the harmonic resonanceBranch 1 represents @elatively) fast wave which encoun-
considered here, the warm plasma term is a Bernstein wavers the resonance before the cutoff, while Branch 2 encoun-
and fundamental to the analysis, since the harmonic resders the cutoff before the resonance. Branch 3 is always a

3. Dispersion relations
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FIG. 3. Form of dispersion relation withy=—-2 and
N2z=2(1+€'% for 0<Re(\?z)<4. Rek? is solid; ImK?) is
dashed for the slow wave and dotted for the fast wave.

FIG. 1. Dispersion relation for tunneling equation for=2 with
1+y>0. Solid lines are the Réf), and ImK?) is dotted. real at each end and passes through the coupling point will
do, since the integral is path independent.

Bernstein mode. For this case is real for all realz, and _
tunneling is not immediately apparent. At first glance, it4- Wave equations

would appear that a wave incident along Branch 1 would The wave equation is usually obtained from the appropri-
simply convert to Branch 3, while a wave incident along ate dispersion relation by lettirig— d/dx, or in the dimen-
Branch 2 would simply reflect. This would imply no trans- sjonless formjk— d/dz. There is ambiguity in this recipe,
mission at all, since transmission relates Branches 1 and gnce, in the dispersion relation, thézk? term in Eq.(6)
(fast wave on one side to a fast wave on the other)side co1d also be written ak?\2z or ka2zk, all of which are
There is transmission, but the coupling poifitghere the  eqyivalent untilk becomes an operator. The proper recipe
discriminant of Eq(6) vanishe$in this case occur for com- -5, only be deduced by going back to the Viasov-Maxwell
plex z, such that\?z. =2+ir with r=2\]1+9|, and the equations and never using the Fourier transform in the first
integration path in E¢(7) must be deformed to pass through place. Fortunately, the differences do not turn out to be large,
these points to couple the fast waves on the two sides. Agg the simplest recipe will be used. In this case, ).
example of this coupling is illustrated in Fig. 3, where, with hecomes théunneling equation

y=—2, r=2, and the discriminant vanishes at i s 2e ) _

N2z=2(1=*i) wherek?=2+i. The integration path in the fPHNZP+ (N 2+ ) =0, ®
figure is a semicircle in the complex plane, such that wheref(z) is proportional to the wave electric field, typi-
\?z=2(1+e'’) and O< =<, as illustrated, om=<6<2m  cally they component. This equation admits an exact solu-
for waves traveling in the opposite direction. It is apparenttion in terms of an integral via the Laplace integral method,
from the figure that Branch 1 is now connected to Branch Zhamely,
and thatk? is complex between?z=0 and\?z=4, so that

Eq. (7) yields a nonzero result. Any path in thglane that is f(z):j exp{(z— 1 tafu  1+7y

F tam+W+vu du, (9

where each of the four independent solutions is represented
by one of the four independent contourg,, k=1,2,3,4, in

the complexu plane. Each contour must terminate at one of
the points, u,=(n+1/2)w, approached at angles
0,=2#/3, so the integrand always vanishes at the end
points. The scattering coefficients are obtained from the as-

K? Branch 3

Branch 1
- Branch 2 ymptotic forms of these exact solutions; and without absorp-
tion, these coefficients are exact. The asymptotic properties
z of the propagating solutions are determined from saddle

points of the integrand, which are always determined from
the original dispersion relation, regardless of whether the
wave equation is obtained from the simplest recipe or from
one of the more nearly exact methods.

For higher harmonics, the resonant term enters the disper-
sion relation through a higher-order term in the finite Larmor
FIG. 2. Dispersion relation for tunneling equation for=2 with radius expansion, so the dispersion relation is higher order in
1+ y<0. k?. The wave equation is correspondingly of higher order,
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but exact solutions of similar type may be found for anytion and conversion does not vanish, however, so that

order (Gambier and Schmitt, 1983; Gambier and Swansong¢onservation of energy is still guaranteed.

1985. The solution of Eq(11) is accomplished by first convert-
ing it to an integral equation, treating the right-hand side as a
source/sink function, and finding the Green'’s function for the

5. Localized absorption left-hand side. The advantage of this method over direct nu-

When localized absorption is included, the wave equatioferical integration is that the scattering parameters may then

can no longer be solved exactly in terms of integrals; bu

several exact results have been found by separating the loci{" Pe evaluated analytically and some numerically. The in-

and asymptotic features of the dispersion relation. To illusegral associated with the reflection coefficient on Branch 2

trate how this separation is accomplished, a representati\}’eq"’ly be converted m'go a Power Series which admits higher
case is considered in which,x, n=0,2, is replaced by accuracy than numerical integration methods.

ax/F(x), andF(x)—1 as|x|— but is an analytic func-

tion everywhere. For a nonrelativistic cade= —{Z({),

e expressed in terms of explicit integrals, some of which

where( is proportional tax (andz). The appropriate disper- l. ELECTRON AND ION CYCLOTRON
sion relation may then be written as HARMONIC RESONANCES
4 Nz+y ks Nz+y ~0 (10 In this section, the fundamental wave equations from the
F(z2) Y F(z2) ' dispersion-relation method are listed, and then the corre-

sponding wave equations from the direct solution of the
Vlasov-Maxwell equations are given. This will include
rhigher-order harmonics and even cases in which there are
five propagating branches due to the coupling ofXhmode

and O-mode with finitek,. The corresponding scattering
parameters are given analytically when absorption is ne-
glected. The effects of absorption are treated in Sec. lIl.

The eikonal method would solve this biquadratic dz)
and find » from Eq. (7).

In the separation scheme, no such approximations al
made; but the terms involving E/are moved to the other
side, and corresponding terms wih=1 are added to both
sides. After lettingk—d/dz, one is led to the wave equation

PUHN2ZY" + (N2Z+ y) = (N2z+ y)[1-LIF)("+ ¥) . _ _ _ _ _
(11 A. Tunneling equations from dispersion relations

In this equation, only asymptotic terms are on the left and e gispersion relations that follow are obtained from the
only local terms are on the right, since—11/F—0 as ot plasma dispersion relation after separating out the cold
|| . If one were to neglect absorption, setting the right-plasma termgassumed constantn each dielectric tensor
hand side of Eq(11) to zero, one would obtain EG8),  glement and then adding the lowest-order term in the finite
whose tunneling coefficient is given exactly by Larmor orbit expansion at which the particular resonance
w1+ 9| term first arises. In some tensor elements, the lowest-order
n=T (12 term is of higher order than in other tensor elements, in
which case the term is discarded, so that the resonance terms
For the case with + y>0, Eq.(7) with F=1 can be directly  are all of the same order. For ions, the treatment is consis-
integrated with exactly the same result. In this case, there igently nonrelativistic, while for electrons, the treatment is
no absorption; so whatever is not transmitted is either reconsistently weakly relativistic. For cases when stronger
flected or converted to the Bernstein wave. Numerically, withrelativistic effects are important, the mode conversion cor-
F # 1, the surprising result is that the same result is obtainedections are not important.
In fact, it has been shown(Ng, 1999 that, with
F=—{Z({), this is an analytic result, depending only on
Z(?)’s being an analytic function of with zeros only in the 1. lon cyclotron harmonics
lower half¢ plane[this is also sufficient to guarantee that the
right-hand side of Eq(11) is anabsorptionfunction, since
zeros in the upper half plane imply a source funcliorhe
unexpected conclusion is that even the eikonal approxim
tion finds the transmission coefficient to be independent o
absorption! The reason for this is that there awe sources F20 — y f 22 4 (= 1)\ 22(f7 4+ £)=0, (13

for the imaginary part ok(z), one being due to absorption wheref™ denotes thath derivative off and
and one being due to tunneling. That part due to absorption

The general form of the tunneling equation faih order
ion cyclotron harmonics neglecting absorption in the finite
but small Larmor orbit limit(Ngan and Swanson, 197 %
Squivalent to

cancels out because of the analytic behavioZ @f), while ez | 2 | tnI[1/(n*-1)+p?lc

the tunneling contribution remains. The final proof that ab- L wpil—ﬁin_l ' (14)
sorption has no effect on transmission is more subtle than

this, however, since these arguments are based on an ap- , [1+(n—1)p?][1—(n+1)p]

proximate theory. The complete solution of E@l) shows NaA= [1+(n°—1)p?] ' (15
that, in general, the absorption term on the right does influ- 5 )

ence transmission; but with our choice of absorption func- _ 1+(n"-1)p (16)
tions, the contribution vanishes. The contribution to reflec- n 1+n+(n°-1)p?|"’
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842 D. G. Swanson: Cyclotron absorption and emission

wherep=k,V,/w is the parallel index of refractiotrelative  ion case, except that for the case of tHemode with

to V,); L is the magnetic-field gradient scale length, wherek,=0, one uses the weakly relativistic plasma dispersion
the magnetic field is taken to vary 8¢x) =B(1+x/L) so  functionF({), using textbook notatiofSwanson, 19891n
that positivex and positivez= wnx/V, represent the high- this case, the dielectric tensor elements may be written as

magnetic-field side of the resonangg;is the ratio of the ion X2\t
pressure to the magnetic pressuvg; is the Alfven speed; K, =S— n—el,an+3/2(—MX/|-) , (19
and Eq.(15) is the cold plasma dispersion relation fiog 2™n!
(relative toV,). The tunneling factor is given by an)\g’l

m(1+y,) an |ny:D_WﬂFn+3/2(_MX/L) ) (20

7]= T A\ 2n—2 -
202 whereX=w}/w? p=mc¥/kT,, andS andD are the cold

It is customary to shift the origin iz for n=2 so that Eq. Plasma terms,
(13) is of standard form or equivalent to Eq(8). S=1-n?X/(n?>-1) ,

This generalized tunneling equation arises from the hot )
plasma dispersion relation where the dielectric tensor com- D=-nX/(n"~1) .
ponents are composed of the cold plasma terms plus the haFrom these, thé&X-mode dispersion relation may be written
monic resonant terms to the lowest order Np= %kfpfi in terms ofF(z) = {F4({—q), which forn=2 leads to Eq.
wherep,; is the ion Larmor radius. Then this algebraic dis- (11) with q=7/2 and{=(z+ y/\?)/ k, while for n>2 one
persion relatior(plotted forn=2 in Fig. 1, where Branch 1 finds
corresponds to the fast Alfmewave on the high-field side (2n) _ o, (20=2) 4 ¢ 4\ny 2N—2 ¢ 1p
and Branch 2 to the fast Alfvewave on the low-field sigds v v DG 2
converted to the differential equation, as in the example in =(—1)"\2""2Z1-1/F](¢"+ ) , (21
the previous section. For each of the resonances represente?1 th iable ch o / d with
by Egq. (13), there is no reflection from the high-field where Ihe variable changg—z=n, ewX/c was used wi

side (R;=0), but there is reflection from the low-field anep S2"Iu"t c
side; and the reflected amplitude is given by N X221 L
R,=—(1—e 27 =T2—1. From either side, the power nei- *
ther transmitted nor reflected is converted to an ion Bernstein ~ y=—2S/(S+D) ,
mode(Branch 3. 2

When absorption is includedwhich occurs whenever ni=(S+D)(S-D)/S,
k,, the wave number parallel to the magnetic field, is non- KQ— 7/)\5, n=2,

zero, the resonant terms involve the plasma dispersion func-  Zp=

tion, Z(¢), throughF(z)=—¢Z(¢{), and the pertinent differ- «a. n>2,
ential equations are modified so that Efj3) becomes Eq. {=2lk, n>2,
(12) for n=2 with {=(z9—2z)/x andzy=— y/\?2, while for B
n>2 one finds k=wln /lcu,
Y+ B2 (=DM ) q=n+g ,
= (= D"\ AL+ LZ(OW ) (18)

wheren, is the index of refraction for the cold-mode. As
wherel=—27/k, andK=nAkZL\/E for all n. It is apparent in the ion case, an additional shift of the origin for=2 is
that if k,—0, k—0, so thatZ({)— —1/{ and the right-hand required to make the tunneling equation of standard form.
sides of Eqs(11) and(18) vanish, with the result that there is The tunneling factor is then given by
no absorption for propagation exactly perpendicular to the
P! ropa . 7|1+

magnetic field. Fon=2, it has been proved analytically that =27 - (22
the transmission coefficient is still given By=e™ 7 with » 2\;
unchanged except through the dispersive tgrmand that |t may be noted that 4 y<0, and the dispersion relation is
there is still zero reflection from the high-field sitBwanson  of the form of Fig. 2 forn=2.
and Shvets, 1993a, 19938he proof has been generalized As in the ion case, the amplitude transmission coefficient
to n=3 and appears to be true for all ordélg and Swan- is given byT=e" 7, is the same from both sides, is indepen-
son, 1994a dent of the localized absorption terms on the right of Egs.

In addition to the ion cyclotron harmonics, the fourth- (11) and (21), and there is no reflection on Branch 1, the
order tunneling equation also models the two-ion hybridhigh-magnetic-field side(Swanson and Shvets, 1993a,
resonance with appropriate choices i&randfy (Swanson, 19930. On Branch 2, the low-field side, the reflection is

1985. nonzero and depends strongly on absorption, as do the con-
version coefficients.
2. Electron cyclotron harmonics B. Tunneling equations from the Vlasov equations

The derivation of the tunneling equations for harmonics of As noted in Sec. I.B.4, there is a fundamental inconsis-
the electron cyclotron frequency proceeds similarly as in theency in deriving a dispersion relation with a uniform plasma
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D. G. Swanson: Cyclotron absorption and emission 843

assumed, then allowing for slow variations in the plasmawith a=3/2, u=[Z(§)]‘3’4, and
parameters, followed by a trivial inversion back to a differ-

ential equation. Here in Sec. I1.B the resolution of the ambi- g = — E)\ZKZUH\ZK(Ur_UZ)/Z_ Yo'+ 102)
guities noted there will be reviewed. 3 3
Two different approaches to solving this problem were 1 2 4
successful at about the same time. One method was to start + 2—7v4+ §v2v’+ §vv"+v’2+ v,
directly with the Vlasov-Maxwell set of equations and never
take a Fourier transform in the direction of the slow variation 4 8
(Swanson, 1981 the other was based on a variational ap- 91=§>\2 1+ §KU/Z —gwt 2—703+ §(v"+vv’) :
proach(Colestock and Kashuba, 1983s an example of the
changes from these procedures, the resonant term in the sec- 2 ,
ond ion harmonic case is modified so that 92=35 "=\« v)+2v’,

wiLF d wéipEiLFi

\ o9 where v(z)=—u'/u=(3/4Z)(dZ/dz) and the prime de-
' 2¢%x dx 4c’x  dx’

notes a derivative with respect 2o The corresponding equa-

_ tion for E, is similar, yielding Eq.(26) again, except that
where F=—{¢Z({) (note thatF—1 far from the resonant a=1/2, u=[Z(£)]" ¥ and

layen. It is clear from this change that the resonant term lies
between the two derivatives rather than lying in front of  go=—2\%k%0+\2k(v' —v?)/Z— y(v' +3v?)+ 3v*
them; so the differential equation will be more involved. The

appropriate wave equation for the second harmonic may be

(23

_602U7_3U72+v/// ,

written in either of two ways, such that after changing vari- 1

ables toz—zy= wnpx/V,, wheren,= w/k, V, with k; be- gl=§)\2(1+4kv/Z)+2'yv+4v"—803 ,
ing the cold plasma wave-vector compongat constant

here, one finds U= —2\2k?v+6(v' +v?) ,

1 + pz) E” where v(z)=—u'/u=(1/4Z)(dZ/dz). In both cases, the

3 * terms on the right fall off asymptotically at least as fast as
1/z; so they represent localized effects, and the imaginary

(1+p)E, =0, (24)  parts represent absorption.

Generally speaking, the scattering coefficients are similar
whereK = *%/4p, which is an equation for the wave field for this more general case, where the transmission coeffi-
E,=E,+iE,, while cients are still equal and independent of the absorption, and

there is still no reflection from the high-magnetic-field side.
Numerical studies show th&, differs little from the simpler
case, but is not identical, and the conversion coefficients dif-
fer more but not greatly; but broad parameter range compatri-
(1+p2)Ey:O (25) sons are not available.
Similar expressions follow for the electron cyclotron sec-

is the appropriate equation f&, . The only difference is in ond harmonic, where the equations coriesponding to Egs.
the order of the derivatives in the first term.Zf[which is (24 and(25) with the variable change—z,= — wnyx/c are

the gbbreviateti(g)] were taken to commute with the de- AXN2(FE )" +8XL(F7E ) +S(E” +E_)=0

rivative operator(as is assumed in the dispersion-relation (27)

formulation), then Eq.(24) would be equivalent to Eq25),

and both would be equivalent to EL1). From this it is and

apparent that the wave amplitude in Eqg. (11) could be

taken to represent eith&, or E, . 28)
It might appear that, since the coefficients of the odd de-

rivative terms that result from expanding either of the equawhere F;, is an abbreviation forF4,({—7/2) with

tions above fall off asymptotically as 1,/ one could obtain  {=(z+ y/\?)/«, zo=T7«/2— y/\?, and

the same asymptotic form as Ed.1) where the asymptotic R—1—2X

terms are on the left and the localized terms are on the right, '

except that the localized terms on the right would be more | —1_5x/3 ,

complicated. Such a simple separation does not work, how-

ever, sinceE” has a growing slow-wave component such S=1-4X/3,

that the third derivative term is not localized. The separation 5

into asymptotic and local can be accomplished by letting Nx=RL/S.

tifggd’.in It-Z_q. (t24) an_lqht_hen chl?osing(z) to eliminate the Equation(28) can then be reduced to the form of EG6)
_|r erivative term. This results in again, except thata=1/2, y=—2SIR, u=[Fy{
PNy a +2) Fyp=gogt gy 00", (26)  —7/2)]7, and

4 ro\m 2 1 2 Y 2
NaK(ZE!,)"+2n3K 3P (ZEL) ' +ny

+

1
T _n2
3~ P

"
Ey

1
.2
3TP

1
NaK(ZEy)' + 2n,§}<(§ - p2) (ZE))'+n}

+

1
T _n2
3~ P

AXN&(F75Ey)" +8XL(F7E)) +S(Ey+E,) =0,
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844 D. G. Swanson: Cyclotron absorption and emission

[ 2 (2 2
90:_5)\ k“(FoplF7p=1)+Nk(v' —v)/Fyp k
fBranchs
—y(v'+3v%)+3v*—6v%'—30'2+v" ,
1 2 " 3
91257\ (1+4xkv/Fop)+2yv+4v"—8v”, Branch 3 —> _ <— Branch 4
7 Branch1 — |7 T T T T T ==
92=— 5N\°k%(Fop/F7p—1)+6(v' +0?) < Branch 2

2

wherev(z)=—u'/u=(1/4F;;) (dF;,/d2).

The asymptotic solutions of E26) with the right-hand
side set to zero are knowfstix and Swanson, 1983nd
have the peculiar property thatR,/=|1—exp(—27
+ ima)|>1 for 1-e?7/3<2a<3+e 27/3. Fora # 0 or
a # 2, then, one must include the terms on the right for any
physically meaningful result. When the full equations arer|G. 4. Form of dispersion relation for the five-branch case with
solved, the results are close, but not equivalent, to those olpr=2, X=0.3, n?=0.1, \>=2; sok3=n3/n2=1.59.
tained from the tunneling equations from dispersion rela-
tions. charge-to-mass ratio of the majority and minority species;
but this topic is beyond the scope of this review.

When propagation is not exactly normal to the magnetic
field, it is possible for arX-mode(or quasiX-mode, since a

There have been a variety of methods used to obtain n2ureX-mode has),=0) and anO-mode(or quasiO-modg
o coexist. When the full dispersion relation is examined, it is

merical solutions to obtain the scattering coefficients and tha arent that thev are counled throuah the intermediate
wave fields with absorption included, among them being di-, PP y p g

rect numerical integratiorfColestock and Kashuba, 1983; Egr:gsg?énsrﬂg\?vi' iﬁxlgr;sp Iis:r:dth; S\,?,hkérr]gspg disizeéilgpagfé?:
Imre and Weitzner, 1985finite element methodéHellsten  iciiv” of an X-mode (Bra{nches 1 and )2and ‘an O-mode
etal, 1989, finite different methoddJaegeret al, 1988,  (granches 3 and)dnear the second electron cyclotron har-
and order-reduction methods. Order-reduction techniques renonic for X< 1/2, while Fig. 5 has 34 X<1, the case in
duce the fourth-order equation of E§) to a related second- \yhich the wave propagates above the upper hybrid reso-
order equation. Accomplished first without absorptionpance, and is not accessible from the low-density region.
(Cairns and Lashmore-Davies, 1988ter efforts with ab-  These problems are five-branch problems, since there are
sorption included have been investigated using phase-spafige propagating branches, including the tw¢é-mode
methods (Ye and Kaufman, 1988and other techniques branches on either side, the t@mode branches on either
(Fuchs and Bers, 1988; Kast al, 1988; Lashmore-Davies side, and again the Bernstein mode. Whérincreases be-
etal, 1988; Chowetal, 1990. In general, all order- yond 1,theD-mode ceases to propagate, and one again has a
reduction methods make some approximations that rendéhree-branch problem. Due to relativistic effects, these
their results less accurate than those from the higher-orddroundaries depend somewhat on the temperature, but these
methods, but faster, and in some cases analytic results have

been obtained. Since this review is primarily concerned with .

the connection between absorption and emission, the focus X Branch 5 /

will be narrowed to the Green’s-function meth(®wanson,
1978, 1980, where the response to an emission source is
treated by finding the Green’s function for the appropriate
tunneling equation with absorption, and although more com-
plicated with higher-order equations, this technique has
yielded a number of exact analytic results.

z

C. Order-reduction methods

Branch 45
D. Five-branch tunneling equations ranch & =

Branch 2 —

Most mode conversion problems are three-branch prob-
lems, where two of the branches are identified as(tbk-
tively) fast wave on either side of the resonance layer, and
the slow wave. The two cases are shown in Fig. 1 and Fig. 2,
where, in each case, Branch 1 is labeled as the branch on
which an incoming wave sees a resonance first, while Branch
2 sees a cutoff first. Branch 3 is the Bernstein mode in eitheriG. 5. Form of dispersion relation for the five-branch case with
case. At the two-ion hybrid resonance, the dispersion relation=2, X=0.91, n?=0.12, A\?=1.5; sok3=0.051. Inset isx 10
could resemble either Fig. 1 or Fig. 2, depending on themagnification of coupling region.

z
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D. G. Swanson: Cyclotron absorption and emission 845

subtleties shall be ignored, including only weakly relativistic ,={2P gL —n2)+(n2—P—2L)
effects.

Although higher harmonics may lead to higher-order dif-  X[RL+PS—nZ(S+P)]}/Srg, (36)
ferential equations, all mode conversion problems may b?l(z)z)\z(z—zo)(l—llF) , (37)
classified as either three-branch or five-branch problems,
since the fast-wave branches are cold plasma waves, amrg=(P+ 2L—n§)/n§<)\2, (38

there can be only two kinds of fast waves from the cold

plasma dispersion relation. The addition of finite temperaturé_ (z=20)/x (39
adds the Bernstein wave, but there is no known coupling tQ.—n |/, | (40)
any other warm plasma wave which leads to five or more ] )
propagating branches. Wheneveror \,, are not small, one With I=wL/c, the normalized scale length, and andng
may keep higher-order terms, leading to higher-order differare the roots of the cold plasma dispersion relation,
ent!al equations, bu't there are still gither thrge or five propa- Srﬁ_[RLJr PS— ng(S+ P)]nf

gating branches. Since the tunneling equations used to de-

scribe these cases are of ordem @r higher for a three- +P(R—n§)(L—n§)=0 , (42
branch problem at theth harmonic, and of orderr2+2 or which approactRL/S and P, respectively, ag,—0.

higher for a corresponding five-branch problem, all other so- . .
" . The exact tunneling parameters for this case are
lutions are nonpropagating.

nx=7|(1= yo+ y2)[2\2(1—K5)| (42
70= (o= kY2 +ke)/2\?ko(1—K3)] - (43
1. X-mode—O-mode coupling for n=2 2. X-mode—0O-mode coupling for n=3
At the second electron harmonic with # 0, the dominant Near the third electron harmonic, the resonant terms are of
terms in the hot plasma dispersion relation are, to lowesbrderi?2; so, keeping resonant terms of that order and cold
order in\ = 3k?pZ,, plasma terms, the dielectric tensor terms are
‘o 2XLF k3c? - 243KLF  kic*
S ) W 2 TS R W 4
o iD 2iIXLF Kk3c? 20 _ 243XLF kic?
2= TP ) W GO KT ) W 49
Ks=P+2(\?) , (3D Ks=P+(\%) (46)

where xo=ql/u, F=07({—0q,a), {—q=—ux/L with  where, in this casey=9/2 and the cold terms are
g=7/2, anda= %,unﬁ; the cold plasma terms afe=1-X R=1—3X/2=S+D ,

andD = —2X/3. The neglected term iK5 relates to another
weak mode conversion of th®-mode to a different slow L=1-3X/4=S-D ,

wave which is not a Bernstein wave and occurs at a different

location and has no coupling to thémode. This process S=1-9X/8,

can be treated as a pair of separate three-branch problems p_ _3x/g .

without absorption, but the effects of absorption on the mu- ) )

tual coupling are not then properly described. Using thes€hanging variables as before, one can convert the hot plasma
dielectric tensor components in the hot plasma dispersiofispersion relation into the differential equation

relation and lettingk’— —d?/dx’ lead to the five-branch yuiii 1y yoi— \47[ yiv 4 (14 K2) g/ + K2y ]+ v, + your
tunneling equation

— iv A 2
l/iUi+7\ZZ[d/iv+(1+kg)l/f”+kg¢']+‘)/21,/1”+’)/ol,0 h(Z)[lﬁ +(1+k0)¢ +k0¢] ) (47)
. where
=h(@)[ ¢+ (1+k§) ¥ +kgy] , (32) 16425
17

where the variable changg—z= wny(x—Xg)/c has been )\AZM’ (48

used, and the constants are given @yu and Swanson, X
1993a , P(R-nf)(L-n3) nd 40
A= puS/2XIng, (33) o srf n2’ 49
, P(R-n)(L-n) nj - _ 2P R-n)(L—n}) 50

(n2—P—2L)P(R—n,2)(L—n2) 2P(L—n2)[RL+PS—n2(S+P)]

Yo= s : (39 Y2=— St : (51)
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846 D. G. Swanson: Cyclotron absorption and emission

h(z)=—\4z—20)(1—1/F) , (520  TABLE I. Asymptotic solutions forf,, when 1+ y>0.
Zo=—2P(L—n?)/n}\?, (53) —wez f, z—
with {=(z—zy)/x and k=nyl/u as before. f_ f, e’f_—ee’s_
The exact tunneling parameters for this case are —f, +e(f_+e%0.) f, —e ", +ge s
1— yo+ ¥2— ¥ elg_+1f_ fs e’f,+e ’s_—e’s,
nxzﬂm ) (54) —e g +f_ fy e s_
Y~ K3y2+ko(k— 76)‘

o= NK(1-KD) |- (59  tweenp= =i, but no branch cut in the plane. Since the

emission due to a source will be treated later via the use of a
_ _ Green’s function, which is constructed from adjoint solu-
E. Solutions and scattering parameters tions, the solutions of the adjoint equation,

For cases without absorption, exact solutions can be found F'*+\*(zF'+2F'+zF)+yF=0, (59
in terms of quadrat.ures, from which a nur'nb'er of analyticy e similar, given by
results can be obtained. When absorption is included, some 5
analytic results are still possible; but some of the scatterinqc(z):f exp{p—Jr
coefficients require numerical analysis, and a variety of nu- 3\°
merical schemes have been used by various authors. In Secs. , ) . )
I.E.1 and II.E.2, both the exact solutions and their asymp- C€neral techniques for solving all finite order tunneling
totic forms will be given. The effects of absorption on these€duations whose coefficients are composed of constant and
solutions will be included, along with some empirical results/inear terms extend these results to the higher-order harmon-
for pertinent scattering parameters which accurately summdgs and to five-branch probleni@ambier and Schmitt, 1983;
rize the numerical work and prepare the way for the emissiofP@mbier and Swanson, 1985
analysis.

1 1+
z— F p+ )\—ytan’lp

dp. (60

. . . . 2. Asymptotics and scattering parameters
1. Exact analytical solutions and their classification

When the method of steepest descents is used on the exact
olutions, each saddle point corresponds to one of the char-
Hcteristic solutions. For the slow or electrostatic waves, the
'saddle-point method gives the asymptotic forms for large
|z| as

As an example of the exact solutions that may be founcj5
for each case without absorption, the standard tunnelin
equation is examined first. The differential equation is Eq
(8), and a solution in the form of a Laplace integral,

f(2)= frepz?m)dp , (56

1 Z—)OO L)

s.(2)= V7 exp *i E)\23’2+ il

TN\IAET T 3 4
is assumed, which, when inserted into the differential equa-
tion, results in(after some integrations by parts

Jr 2
U+(Z)=WW9XP(§?\|Z|3/2): ==,
47\ 27 (2 ) F FleP?
fr{pf M(p*+1)f +2pf]+ yflePrdp iV 2 e
i 0-7(2): Wex —5)\|Z| y Z— — 00
+\2(p2+1)eP# (p)|r=0, (57)

. i For the fast-wave solutions, the steepest-descent method is
where four independent contourk, define the four solu-

less satisfactory, but with an expansion about the points

tions. This equation is satisfied fi{p) satisfies p=*i, the Hankel integral gives

N2(p?+1)F =(p*—22%p+ ) , mie 72 iy 4 g\ A4

. . y==———exXpiz+ —In| 22— 5+ —+i|— 53|,
and if the end points of the contours are chosen so that the™ T['(1+in/m) T N 3\
final expression of Eq57) vanishes at the end points. This (61)

is a first-order differential equation with solutions andf_=f* . The adjoint solutions may be obtained from the
- p® p 1+y relation F=f"+f, which is exact for all solutions. These,
—(n2 -1 —1 . . .
f(p)=(p+1) "exp 33z~ 2+ z tan p| . along with the slow-wave solutions, represent the indepen-
' o o _ dent wave solutions, but none individually satisfy the condi-
The solution of the original equation is then given by tions for incoming and outgoing waves along with causality.
3 By examining the appropriate contouds, which must be
p 1 1+y d ) X -
f(z)=| ex W‘F Z—F p+ N2 tan 1p Il topologically equivalent for botlz—~ and z— —o, it is
r

possible to establish four independent solutions for the case
( 1+ vy>0, as shown in Table | where=1—e27. Solution

This expression is equivalent to E¢P) with the variable f; corresponds to an incident fast wavie (on the righj on

changep=taru. There is a branch cut in the plane be- Branch 1;f, corresponds to an incident fast wave_ (on the
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D. G. Swanson: Cyclotron absorption and emission 847

n—-2

TABLE Il. Asymptotic solutions forf,, when 1+ y<0.
Pn:F*f(2“71)+F’f*<2”’2)+ E (_)If(2n7I73)H:(I)
=0

— 07 fq Z—®©

erf, f, f,+ee’s, +(—)"R,—c.c., (65
e Mf_—ge "o_ f2 f_78f++8677]3+ Where

e "g_+e’f_ fa f,+e’ls_—e s, " v .

—e’0, +e7f, f, e’s, Ho=F" =y F =1+ (1= y ) f" = yuf ,

R,= fME*(n—1) 4 f*(ﬂ—l)[f(n—Z)_ ,ynf(n)] ,

o andF=f"+f is the adjoint solution.
left) on Branch 2;f; corresponds to an incident slow wave Similar conservation laws may be found for the five-

(s+) on Branch 3; and, corresponds to an exponentially pranch problems; for example, for EB2), the conserved
growing solution ¢, ) for z<0. The expressions on the right quantity is

indicate the asymptotic forms as—o0, and the expressions )
on the left indicate the asymptotic forms as> — . P=F*f'4+ f* " (F' = f*) +[(1+k5) yo— Ky ] f*'f

For the case 1vy<0, the corresponding solutions are ” " Demen e
given in Table Il, where, agair;, corresponds to an incident (2" yof) —kof 1" = 3ot *"f7 = c.c., (66
fast wave(f, on the left on Branch 1f, corresponds to an whereF = f"”+ (1+k3)f"+k3f is the adjoint solution.
incident fast wave(f_ on the righ} on Branch 2;f; corre- The conservation laws above illustrate the fact that wave
sponds to an incident slow wave_) on Branch 3; and,  energy is conserved without absorption. The effects of ab-
corresponds to an exponentially growing solutien,) as  sorption on these conservation laws are discussed in Sec.
Z— — @, 111.D; their relation to emission, in Sec. IV.B.2.

In each case, there is no reflection fgr, so R;=0; the
amplitude reflection coefficient for a fast wave incident on|||. EFFECTS OF LOCALIZED ABSORPTION
Branch 2 isR,=—¢; and the transmission coefficient for
both cases i3,=T,=e~ 7. Whatever power is neither trans-  There are several ways to include absorption numerically,
mitted nor reflected is converted to Branch 3, sofrom a variety of numerical schemes for different integration
|C1d?=1-T2=¢ and|C,4?=T5(1—-T3)=ce 27. For an of the governing differential equation to a variety of approxi-
incident slow wave, there is no transmission, since the slovmation schemes, but the method described here will be use-
wave propagates only on one side, and the reflection coeffful in both absorption and emission, an advantage not easily
cient isRz=—e~27; and, from reciprocity, the power frac- shared with the other methods. This method treats the local-
tion converted from Branch 1 or 2 to Branch 3 is the same irized absorption term as if it were a localized source, and
either direction, sdCs;|?=|C14? and|C3,|?=|C,4?. These then, through the use of the Green's function for the left-
expressions comprise the scattering coefficients and are exdwand side, the differential equation is converted into an inte-
without absorption. gral equation whose kernel is known analytically.

A. Physical origins of localized absorption and its impact
on scattering parameters

3. Conservation laws ) ) o )
While the mathematical descriptions of the absorption

Without absorption, every tunneling equation has an exadfunctions have been presented above, it should be noted that
conservation law, which, for the standard fourth-order tun-he basic physics of the absorption is essentially the same for
neling equation, Eq(8), takes the form both electrons and ions and independent of harmonic num-

P(F)=f"f*"+f"f* —fF*' — o f* —c.c. | (62) ber. In every case, the absorption is due_ to an ext_ension of

. ) Landau damping to the cyclotron harmonics, wherein an ob-

wheref is any of the solutions, andP/dz=0 follows from  server rotating at the wave frequency would observe the
the differential equation. From thiS, one finds for the asymp'damping to be Landau damp|ng This means that on some

totic solutions that

P(s:) __, Pl __
e L T e (63

so that, for example, the connection formula figr from
Table | leads to the relation

P(f.)+R3P(f_)=T3P(f, )+ C3P(s) , (64)

with R,=—g, T,=e 7, andC,3= —e™ 7¢*?, from which it

time scale which is long compared to the wave period, some
collisions are required, since otherwise there is no wave en-
ergy lost to the plasma, only phase mixing. The difference in
the damping between the nonrelativistic ions and the weakly
relativistic electrons is that, for ions, the width of the reso-

nance region is due to the Doppler shifts due to the finite
value of k,, while, for electrons, the width is due to the

actual shifts of the resonance due to the relativistic mass
increase. While there is a corresponding Doppler broadening

follows that everything not transmitted or reflected is con-for electrons with finitek,, described by the weakly relativ-

verted.

istic plasma dispersion functiory({,a) with a=,un§/2 in-

For general harmonics, similar conservation laws exist, sstead of theF,(¢) with a=0, the relativistic spread usually
that for Eq.(18) without absorption, the corresponding con- dominates the Doppler spread and the corresponding absorp-

served quantity i§Shvets, 199p
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848 D. G. Swanson: Cyclotron absorption and emission

The effects of this absorption are quite different on differ-sets the integrand of Eq69) to zero, and that satisfy the
ent scattering parameters. As discussed in the following segump conditions, them)(z) is a solution of the original prob-
tions, absorption has no effect whatsoever on certain scattelem (Swanson, 1978
ing parameters, extremely weak effects on one parameter in The integral equation which corresponds to E&y) with
five-branch problems, and relatively strong effects on othed + y>0 may be written as

arameters. In particular, all of the transmission coefficients _ _ n n
iF:‘l both the threep- and five-branch problems are unaffected bjf(?) = (2 + fa(2)lt efa(@) ot F1(2)la+ e fo(2) ]k

absorption, as are the reflection coefficients from the high- (79
field side. In five-branch problems, one conversion coeffiwhere, withg(z,¢)=h(2)WV(z), ¥ ="+ ¢,

cient from one side between themode and thé-mode is 1 .

zero, independent of absorption, while from the other side, IH‘ZMJ Fi(y)h(y)¥(y)dy, (76)

the coupling is nonzero but typically weak, and nearly inde-
pendent of absorption. The low-field-side reflection coeffi- 1 -
cients and all conversion coefficients between the slow and IT:W{ Fi(y)h(y)¥(y)dy, (77
fast waves are generally strongly affected by absorption, mAE ]z

eventually vanishing with sufficiently strong absorption. whereh(z) =\2x[¢+1/Z(¢)] for ions andfo="fs—f,. This
These will be described more in detail in the subsequenfs valid for k=1,2,3, the three physically meaningful solu-

sections.

B. The integral equation method

tions; but due to a divergent integral, this must be modified
for k=4.

The corresponding result for weakly relativistic electrons
where 1+ y<0 (see Table N is

Because the tunneling equations, once the localized ab-
sorption terms have been separated out and placed on thig(z)=f(2) + f1(2)| 5+ efa(2) gt F2(2) 1 +efo(2)] 4,
right-hand side, have only constant plus linear coefficients (78)
and admit analytic solutions, itis also straightforward to findyhere the sink term for electrons iB(z)=A\2«[{+1/
the Green’s function for the left-hand side analytically andg_ (»—7/2)], andf,=e 27f;—f,. In each case, the solu-

convert the differential equation into an integral equation. As;igp, f, (which is not an independent solutjois exponen-

an example, writing Eq(11) as

YN ZY + (N2 y) =9z ) (67
whereg(z,#)—0 at least as fast dg| ! as|z| -, allows

tially decaying ass_ asz— —, so that the product of an
exponentially growing {, or F,) and an exponentially de-
caying term is bounded. Similar growing and decaying solu-
tions occur as products in increasing numbers in all of the

the solution to be written in terms of the Green'’s function Sohigher-order integral equations for the higher harmonics, but

that

o= syaly.uyay

@ . (68)
=f7 Gz Y)[¥"+ Ny +(Ny+ ) yldy
=f [GY+\%(yG"+2G' +yG)+ yGlydy

+boundary conditions jump conditions , (69

where the first step was by substitution and the remaind

was by integration by parts after breaki@z,y) into two
separate elements, one fgpr-z and another foy<<z. The
radiating boundary condition at infinity is

{W”G—¢”G’+w’(G”+)\2yG)—¢[G’”+)\2yG’

+\2G]}*..=0. (70

The jump conditions at the discontinuity, where-z, are
G(z,z,)—G(z,z_)=0, (71
G'(z,z,)—G'(z,z_)=0, (72
G"(z,z,)—G"(z,z_)=0, (73
G"(z,z4)—G"(z,z_.)=1. (74

the three fundamental propagating solutions remain substan-
tially the same.

1. Numerical solution of the integral equation

Once cast into the form of an integral equation, the
method of substitution generally converges over a relatively
broad range of absorption strengths, characterized by the pa-
rameter x. The first step is to obtain accurate values of
f(2) andF,(z) over a wide enough range efthat the sink
function is small at the end points and that asymptotic ap-

Sbroximations are valid near the end points. This is accom-

plished by starting at either end with a contour integral
evaluation off,(z,) andF(z,), k=1,2,3,4 and their first
three derivatives. Then any numerical integrator may be used
to integrate to the other limit, except that care must be taken
to ensure that accuracy is maintained. This is accomplished
by checking at each step the self-consistency of the solutions
by the use of the identities,

eFafo—eFofs+Fofi—Fif,=0, (79
eFafo—eFofs+Fafi—Fif,=0, (80)
eFfo—sFLfat F4fy—F1f,=0 | (81)
eFyfo—eFyfatFyfi—Ff=2miN% (82)

If the Green’s function is then constructed from a linear com-which derive from the jump conditions. By use of the iden-

bination of the adjoint solutions, defined by E§9), which
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TABLE lll. Amplitude scattering parameters for the ion case with 2.

Transmission Reflection Conversion
1, e 279, e*(1-e 21y -Cy)
—e Rj= ——— Ci=—
e e SEERe) . (1+2C)
19, s(1+Cp+19, e eV 1+15,+Cy)
T,=e 71+ =T T ey Co=—
(1+Cy) (1-Cy) (1+&Cy)
T;=0 - e 27(1+el3;—eCy) C31=C3p, C3=Cy3
Re=~ (1+eCy)
27iN2e 2. Scattering parameters in terms of /;, integrals
fofo—efify+ 16 —ffo=——, 83 . _ . .
lalo™&lolaT 211 T1l2 (1+7y) @3 The asymptotic solutions foy may be determined di-
e e Eie iy 2 rectly from the integral equation by using the asymptotic
eFaFo—eFoFatFoF —FiFp=2miN"e . B4 forms of the exact expressions and the limiting values of the
The corresponding identities fortly<<0 are various integrals, each of which is of the form
8F4f0_8F0f4_F2f1+F1f2:0 y (85) 1 o
Ijk:mf Fi(y)h(y)¥(y)dy, (89
8F£f0_8F6f4_Féfl+Fif2=O y (86) -
27N 2e where the semi-infinite integrals have been replaced by infi-
efyfo—efyfy—fof +f1f=— , (87)  nite integrals. For numerical accuracy, it is more efficient to
(1+7) break the infinite integrals into three pieces, such that
’ _ ’ = ’ _ N4
8F4F0 SFOF4 F2F1+F1F2—27T|)\ e . (88) Ijkzl?k—’_AJT(—'—A]_ku (90)
Whenever serious discrepancies arise among these identiti%,]ere

the functions are redefined by evaluating the contour inte-
grals at the failure point, and the integration is continued 1 Zm

with as many restarts as necessary. Typically, restarts are |?k=m f Fi(y)h(y)¥(y)dy , (93)
necessary only on the side with the growing solutions; but in o

higher-order equations, there are growing solutions on bot@nd theA j, are semi-infinite integrals evaluated analytically
sides, so more restarts with the numerical contour integralgom the leading terms of the asymptotic forms. All of the

are required. Generally, since the topology of the contoufeading terms in thé , reduce to a constant times one of the
integrals changes several times over the entire rangg of g integrals:

and is invariably different foe large and positive from that

for z large and negative, it is wise to arrange to restart judi- NP (FLF_  qpi? o2
ciously at least once so that the intermediate range will re- " aminZe 2, Z z= Amizs’ (92)
quire no restart.

The integral equation then uses one of these “exact” so- N2k? [=S,.S_ A k?
lutions, f, as the trial function in the integrals for the first Cs=amin%s . Z z= 21772 (93

step to obtain the first estimate fgf,, and then continues by
iteration with each successivi, until the scattering coeffi- For the electron case, these correction terms must be multi-
cients(which are obtained from the integrals on each iteraplied by 20=7. The end points;+z,,, must be chosen to
tion) no longer change at the accuracy desired. If the funcmake C; small. The scattering coefficients including these
tions were self-adjoint, convergence would be guaranteedntegrals which depend on absorption are given in Table IlI
but if the sink distribution is too broad, the method eventu-for the ion case and in Table IV for the electron case.

ally fails to converge. For a five-branch case, the corresponding scattering coef-

TABLE IV. Amplitude scattering parameters for the electron case wit2.

Transmission Reflection Conversion
_ 191 e 219, s"A(1+e 2§ Cy)
T,=€ 7]1+(1—Cf)} Rl:(l+Cf) Cis= (1-¢Cy
19, g(1+C)—19, e 7eY(1+13,+Cy)
Te=e 1 s R GReh Ca” @ ecy
T3=0 e 2”(1-zl3;+2Cy) C31=Cy3, C3=Cy3
Re=~ (1-&Cy
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TABLE V. Scattering parameters for a five-branch electron case with2 and X<1/2, where
gx=exp(—2nx) andgo=exp(—27p). For 3/4&<X<1, theX andO subscripts must be interchanged.

Transmission Reflection Conversion

IT1|>=9x/1-9x9oeol 21 IRy |?=0%g5e 3|1 11 |C132=0%93exe0ll 31l
|C1d?=exeol1+9xTol 41l
|C15|2: goex|1—goeol 51|2

|T2|2:9><|1_gx9080|12|2 |Rz|2:|"3><_g><90'3o|22|2 |(:23|2:§PJ><9%8><80||32|2
|C24l?=9xexe0|1—gol 42|2
|Cod?=0xgoex| 1+ &0l 5d?

|T3l*=gol1—goex!4d” |R3|?=g5e5134? |Cay?=]Cy4?
|Ca2?=[Cxq?
|Cad®=20l1-goex!sd”

|T4|2:go|1_90t‘3x|34|2 |R4|2:|9><t‘3o_908x|44|2 |C41|2:|C14|2
2_ 2
|C4al*=Cp4

|Cag®=9osolgx+exlsd?

IT5|?=0 |Rs|?=|gxgo—exeol 54 |Csil?=|C1qd?
|Csi?=[C14?
|Cs3?=|Csd?
|Csq?=[Cyd?

ficients in terms of the;, integrals are given in Table V for until recently on estimates of the transmission obtained from
the second electron harmonic case, where in this case thltegrating the imaginary part ok across an absorption

integrals are defined by layer, so that
1 2]

k= P ' =2f|mkx dx, 95

ik zwwexsojmFJ(y)h(y)‘I’k(y)dy- (94) T [k(x)] (95)

where the integral is across the entire layer. In spite of the
fact that the conditions for validity of this simplistic esti-
mate, namely, that (k#)|dk/dx|<1, are violated in the ab-
sorption layer, the answer is exact. The difficulty is in the
In some of these cases, it is possible to find the values dpterpretation, since, from the more nearly exact dispersion
the;, without solving the integral equation at all. In certain relations which include finite Larmor orbit terms, the imagi-
cases, it is possible to close the contour either above or béary part ofk(x) arises fromtwo sources, namely, absorption
low. In a few cases, the contour may be closed, and, usingnd tunneling. Ironically, the contribution from absorption
the analytic properties of either tt&¢) or the Fo(¢) func- cancels ide_ntically, and only the part dge to tunneling con-
tions, one may find there are no poles in the pertinent halfributes. This changes the entire paradigm of resonance ab-
plane, so that; =0, and absorption has no effect whateversorption, especially as it affects electron cyclotron emission.
on the pertinent scattering parameter. For the three-branch In spite of the fact that the validity of the eikonal method
problems, this occurs for the integrdig=1,,=1,,=0, so is in grave doubt, it is remarkable that it still gives the ex-
that both transmission coefficients are independent of abactly correct answer. If, for example, one takes the dispersion
sorption (Swanson and Shvets, 1993The other result is relation of Eq.(6) with 1>1+y>0 (typical for the ion sec-
that the reflection coefficient from the high-field side is al-ond harmonig thenk is complex in the tunneling layer,
ways zero. The corresponding results for the five-branch case- <z=<z, wherez. =2(1* {1+ y), so that the integral is
(Ng and Swanson, 199%tare thatl;=1;,=1,=13=15, (Swanson and Shvets, 1993b
=l43=131=113=13,=1,3=0, so that again the transmission z,
coefficients for both theX-mode and théd-mode are inde- ”:j Im[k(z)]dz (96)
pendent of absorption, and those coefficients that are zero -

3. Analytic evaluation of certain scattering parameters

z

without absorption remain zero. m(1+7)
The transmission coefficient does depend on the cold =~z (97

plasma index of refractiom, , which depends on the value

of n, in the ion case; otherwise, the absorption prodess andr=2%. This integral is exact, and the result is precisely
no effect whatsoever on the transmission coeffici&his the same as those obtained from both the tunneling equation
result is counterintuitive, since our intuition has been basednd the usual second-order equations with absorption in-
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cluded but tunneling ignored. Furthermore, if absorption is For the weakly relativistic electron case, the nonzero re-
included in the dispersion relation, so that E8).is modified  flection coefficient may be expressed in a similar form, such
to that
Nzty 2 Nzt+y Ry=RyeeXf — (2n+3) agex?] (106)

S vIke+ F =0, (99 _ _ _ o

wheren is the harmonic number. In this case one still finds

where now absorption is included througk= — ZZ(¢), with  are<1, but the deviations from unity are not small. The
{=(z9—2)/k, then the result iprecisely the same for any reflection coefficient falls much faster with increasing
k, except that now the range of the integral is infinite, sincewhere, in the electron case,depends mostly on tempera-
there is an imaginary part df for any z unlessk=0 (the  ture, while in the ion case, the strongest dependence is on
case without absorptionThe integral is now a complicated k,) due to the weakly relativistic factorog=2n+3; but as
contour integral, but, both analyticalfNg, 1994 and nu- 4 falls significantly below unity, this effect is lessened.
merically, the result is independent efand hence indepen-  aAn accurate empirical formula fosg, for n=2 (Ng and

k4

dent of absorption. Swanson, 1994a which was obtained from the series

method, may be expressed by
=1-A[l—-exp —ax?)], 10

4. Numerical evaluation of the other scattering parameters “Re [ 3 <] (1079

with
From early numerical solutions of the integral equation for )
the ion case, it was conjectured that the nonzero reflection A=2.14 exp5.6Xx*%/a , (108
coefficient from the low-field side was equivalent to a= —19.46- 6.05¢+ 24.1/(1— 2X)°1 . (109
_ 2
Ry =RaoeXpl = agik®) , (99 A corresponding formula for the conversion coefficient
whereR,o= — ¢ is the value without absorption angk;=1  from the high-field side is given by
(Swanson, 1985 More accurate computations have shown ICyd?=¢ exp — ldac,k?) (110

thatag;=<1, but the deviations from unity are very smailg
and Swanson, 199%aThis higher accuracy was obtained where

when it was noted that the integrallig, could be closed, but — A (X)exd — a- (X)IT

that there were an infinite number of poles. Through the use acr=Ar(X)exi — ar(X)ITe]

of asymptotic expressions for thg(z), ¥(z), andh(z), +Ax(X)exd — ax(X)IT,] , (111
the integrals could be evaluated, leading to a power series in

« which is convergentfor the five-branch problem, the con- Ay (X)= 0.23-7178:3167+ 0'096?43101 . (112
vergence of the series depend on the valug&g)f In each X (1-2X)

case the reflection coefficieR, can be rapidly obtained this

way with high accuracy. Numerical results for the conversion A, (X)
coefficients are obtained from solving the integral equation
iteratively, as the contours cannot be closed for these inte- a1(X)=0.0867128- 0.005659X — 0.008752X>2
grals. For the ion case with=2, empirical formulas for the

1.1393939 0.4479536
= —o67es + (1= 2) L08%E6: (113

conversion coefficients and the slow-wave reflection coeffi- 0.0898992
cient may be represented by + (1—2x) 001z (114
|C1q=|Cyadexp(— acix?) (100 a,(X) = —0.0453434- 0.020483X + 0.00201 X2
|C2d=|Coadexn — acok?) , (101 0.069961
+ ———5 00330873 11
|Rs] = |Rad eXpl — atpsrc?) (102 (1 2x) s (119
where agairC,3,andC,g are the values without absorption, whereT, is in KeV. (Caution: these formulas should not be
and extrapolated to largéT,., since eventually they indicate a

rising value of|C,42, which is not physical.The conversion

— = 57/4
ac1=€ 8.8y, (103 coefficient |C,3? is typically small compared to either
ag=e "41.357 , (104) |C13|_2 or |R,|?, so that it affects absorption little and, as will
o 065 be discussed later, emission not at all.
arz=e 77122977, (109 An even more accurate empirical formula for 3 (Swan-
These empirical formulas give the conversion coefficientsSOn and Ng, 1995is
within 1% over a broad range of parameters, &dwithin are=1-1.9261—exp —ax?)]/a, (116

5%. These expressions indicate that, for thermal plasmas,.

both the reflection and the conversion coefficients are Gausg‘-”th

ian in k, and that the conversion coefficient for waves from ) 0.01389

the low-field side is uniformly smaller than the conversiona(X,l)=4+[b(l)X+c()X“]exg — m—=—F=~1| » (117
S o i o (1-1.5X)

coefficient from the high-field side, and falls faster with in-

creasing absorption. b(1)=0.127-302.41 , (118
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c(1)=0.1581-472.14 + 1020042 , (119 converted be absorbed, or from the conservation laws of Sec.
herel = wL/c is th lized e | h. Th ¢ II.LE.3. When absorption is included in these expressioss
wherel = wL/c Is the normalized scale length. These Ormu'ing ¢ and¥ instead off andF), dP/dz # 0, which indicates

las give the reflection coefficient to better than 1% accuraCyp i the power on the various propagating branches is not
over the entire range where the reflection coefficient is 1% Okonserved. The balance is the absorbed fraction and can be

greater. There are no correspondingly good empirical formubbtained from the asymptotic forms dP/dz.

las for the conversion coefficients available. These are not .. e five-branch problems, the corresponding expres-
necessary to calculate the total emission, as will be discuss%qions are '

later, but they are necessary to calculate the emission profile

function. The conversion coefficients are Gaussiankin A1=1-T2—|Cy?—|Cyg?, (125
however, and although the coefficients are not simple, it is

—1_T2_ 2__ 2_ 2
true also for the electrons thHE,4>|C,4 uniformly. Ap=1-Ty—[Rel*~|Caf "~ |Cod ", (126
Acpqrate expressions for some of the nonzero scattering A3=1—T(23—|C35|2 , (127)
coefficients in the five-branch problem have also been ob-
tained using the power-series meth@dg and Swanson, Ay=1-T3—|Ry|2—|Cyy?—|Cag?, (128

1994h. Some results for the limiting behavior of two of the
scattering coefficients indicate that
2 2 _ 2 2 where Ty=exp(— 7x) and To=exp(— 7). In each case
[Rel*=[Reol"exil —dakox], ko<1/3, (120 |Cjx|=|Cy;| and, except for the transmission coefficients, all
|C1d?=|C1ad?exd —q(1—ko)?«?], ko>1/3, (121)  are Gaussian ik with varying coefficients. The coefficient
C,1 is nonzero and extremely weakly dependent on absorp-
tion relative to the rest.

As=1—|Rs|?—|Cs1|?—|Cs?—|Csd?—|Csd? , (129

where the limits ork, determine the range over which the
power series inc converges, so are limits on the method, not
on the expressions, which show similar tendencies for any

0<ko<1. The numerically observed weak dependence of

C14 0n absorption is at least in part due to the fact that most. Reciprocity relations

cases havé, close to 1, so that the exponential factor is

nearly always small. Fundamental reciprocity between certain scattering param-
eters was first obtained by a complicated and tedious proof
(Cho and Swanson, 199D more straightforward proof is
The power absorbed on each branch is relatively easilgvident from the symmetry of the Green’s functigtu and

5. Power absorption fractions

given in terms of the scattering parameters, such that Swanson, 1993bwhere, by construction,
A=1-T?—|C.4?, (122 G(z,y)=G(y,2) , (130
A,=1—T2—|R,|2—|Cy?, (123 Using this result along with the integral equation
As=1—|Rg|?~|C1g?~|Coq?, (1249 Vi(2)=Fj(2)+ f  G(zy)h(y)¥;(y)dy, (131)

with T=e™ 7. These relations can be derived either from the
requirement that whatever is not transmitted, reflected, othel integrals may be written as

27Ti)\28|jk=jw Fi(2)¥(2)h(z)dz (132
N f @@z f 2k (@h(2) f Gy (yhy)dy (133
:f:‘l’j(z)‘lfk(z)h(z)dz— f:dyklfj(y)h(y)f:G(y,z)\Pk(z)h(z)dz (134
:27Ti)\28|kj. (135

With the other relationships among the scattering coeffifaw of Eq.(62), which was exact without absorption, is now
cients, this guarantees reciprocity. written for an absorbing solution, so that

D. Conservation laws with absorption P(p)=o¢" "+ " * — " y* ' — v’ y* —c.C. , (136

The conservation laws with absorption included lead towhich is no longer conserved; the loss of energy flux is given
explicit expressions for the net absorption. The conservatioby
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TABLE VI. Asymptotic form for ¢, with 1+ y>0. The three results can be combined into a single expression of
the form
Tz ¥n o>
T,f_ e My f_+Ryf, +e7\sCpas_ Ak:akf_ W(2)|¥(2)|%dz, (145
—Rf_—f, U2 —Tf = VeCps_
—Cof _ 1\ e s —s,—Rys_—Cyf. /e  with thea, given by
, a=e 27  a,=1, az=e % . (146
! — —h*
P'(9)=[h@)=h*@)][¥]*. (137 Although there are some differences along the way, this final
If the absorption function \{z) is now defined as result is equally valid for the case with+ly<<O0.
h(z) —h*(z)
D= i (139

so thatw(z) is real, then integrating Eq137) overz gives V. CYCLOTRON AND SYNCHROTRON EMISSION
FROM NONUNIFORMLY MAGNETIZED PLASMAS

27miN%e [ZITL (l’[/k)_zlr?wp(wk) While there have been numerous papers and at least one
major review of electron cyclotron emissi@Bornaticiet al,,

1983, the basis for these estimates of the radiation has gen-

erally rested on eikonal methods which relate the transmis-

] ) ) sion coefficient of Eq(95) to blackbody radiatior{Bekefi,
Without absorption, the fact th&’=0 required that the 1966, such that

limiting values ofP be the same on both sides, but now it is -
evident that the difference between the incident side and the E=(1—€ ")lgg, (147

opposite side is the amount absorbed. The integral on th\‘/?/hereE is the plasma emissivityr is called the optical

right is positive definite for allw(z)>0 and leads to the depth, 1-e~ " is called the opacity, anthg is the blackbody
general expression emiss,ivity , ’

Pinc= Popp= * Pabs, (140 h w3 bolkT . w’kT
wherePpsis the integral in Eq(139) and the upper sign is 'BB:87T3C2(e -1 = 8m3c2
taken if the incident term is positive and the negative sign _ )
otherwise. The importance of(z), which is positive defi- for kT>#Aw. The very method ignores reflection, and the

nite for three-branch problems and effectively so for weaklydiSPersion relations do not include more conversion; so with
relativistic five-branch problems, is apparent in that, as ghe finding that the transmission coefficient, and hencis
weight function in the integrals, it guarantees convergencdNdependent of absorption, it becomes urgent to find the ap-
since it decays exponentially on either side. propriate revision of the ;tandard theqry that more acqurately
For the specific case for-1y>0, the asymptotic forms relates absorption to emission. Surprisingly, the classical ex-

for the propagating branches are given in Table V. ApplyingPreSSiF’n is virtually exact for emis_sion on the high-magnetic-
the power balance to the first solution leads to field side of the resonance; but this occurs for subtle reasons,

5 5 5 5 5 since it has ndirect dependence on absorption, upon which
e"P(f_) e”|Ry|*P(f,) e°"|C1g°P(s.) emission is dependent.
2miN%e 2miN%e 2miN%e In this section, an appropriate generalization of Ed7),
2ol 12 which is called the generalized Kirchhoff's lad@GKL), will
e Ty *P(f.) _ Jm w(2)|¥4(2)|2dz, (141 be derived from thermodynamic arguments. The implications
- 1 y . . . . .
2miNoe —w of this generalization, both in terms of nhomenclature and in
terms of experimental manifestations, will be discussed. The
section concludes with a discussion of the source distribution

=ij w(2)| ¥ (2)]?dz . (139

(148

which, upon the use of the relations of E29), becomes

A=1—|Ry|?>—|T4|?—|C14? function, which is associated with the distributed absorption
. function and is useful for estimating precisely where in the
:e—znf W(2)|¥,(2)|%dz . (142) plasma the radiation originates.
. o . A. Generalized Kirchhoff’s law
Proceeding in a similar manner, one finds for the second and
third solutions In general, Kirchhoff’s law is a statement that emission is
o related to absorption through some equilibrium relationships.
A,=1—|R,|?—|T,|?— |C23|2=j w(z)|Wy(z)|%dz, From this general principle, it is obvious that no medium can

emit radiation if it absorbs none. The fact that the conven-

(143 tional optical depth(shown to be due to tunneling onlys
As;=1—|R3|?—|C3q%—|C3)? unrelated to absorption leaves one with an emission formula
that has no connection between emission and absorption, and
=e‘2”sfw W(2)|W4(2)|2dz . (144) henc_e apparentlyio_latesKirchhoff’s law. When m_ode con-
—o version effects are included, the effects of reflection and con-
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version must be included; and rather than simply guessing at
the modified expressions, a proof of the generalized expres- 1251 X =045
sions follows.

The proof of the generalized Kirchhoff's law begins with
the assumption that a plasma layer of finite thickness is
bounded on either side by perfectly absorbing walls. Taking,
for example, the three-branch case represented by Fig. 1, one
sees that the cyclotron layer will emit radiation to the right 501 0.3
on Branches 1 and 3 of intensities andE3 and to the left
on Branch 2 of intensit§,. The walls, which are presumed
to be at the same temperature as the plasma, will radiate
blackbody radiation which will be incident on the plasma 00 " 200
layer with intensitiesl,, I,, and I; on the respective
branches. This incident radiation will be partially transmit-
ted, partially reflected, and partially converted, which will FIG. 6. Percentage error in electron cyclotron emission measure-
add to the directly emitted radiation, so that the totals orinents ofE, at the second harmonic from neglectRf.
each branch are

0.4

% Errorg,
-
ot
T

251//0.2
0.1

T T T
400 600 800 ¢77. 1000

can be followed by ray tracing, and the slow wave turns and
E1t R+ [Tl %12+ [Cayl?13=11, (149 moves back toward the resonance, but typically at a different
2 P o vertical position where it is totally absorbed. But if the ab-

Eot [To 1Rl o[ Col 5=, (150 sorptionpis total, there exists at thgt point a blackbody emitter
Es+|Cyd?l1+|Cosl?l 5+ |Rs) 2 5=13, (151 radiating a slow wave of intensityzz, since the emitting

. . . . point is at a different point in space where the temperature is

where the equality on the right is required for thermody-7+ \yhen this slow wave propagates back to the mode con-

namic equilibrium, since each mode is independent at thgersion layer on Branch 3, it is then partially converted to the
walls. Equilibrium requires that the radiation impinging on o fast-wave branches, so that thieservedcemission is the

the walls from each branch exactly balance the radiatioryym of the direct and indirect emission. The net emission is

from the walls on the same branch. Since the wall is a blackihen
body and each branch radiates independently, equipartition

r_ A 2n_ 2 2
requires thatl ;=1,=13=1gg, Which leads directly to the E;=(1-e *7—[Cy3*) e t]Cail e, (159
generalized Kirchhoff's lawSwanson and Shvets, 1992 Ey=(1—e 27=|R,|?—|Cyd?)! gs+|Cad?I 5. (156
Ex=Aulgs, k=123, (152 Since, for typical plasmas, the direct source is very close

where theA, are given in Eqgs(122) through(124) for the fto the indirect source, it is reasonable,to assﬂ'r’ne_T. Tak-.
three-branch problem, and in Eqd.25 through (129 for  ing them to be the samo thatlgg=17g) and using reci-
the five-branch problertthe extension of the above proof to Procity, one finds that the converted terms cancel exactly, so

five branches is trivial, exceft=1,2,3,4,5). The proof is that

then extend(_ed_tp a_case_without walls, I(_atting th(_a walls _be El=(1—e 2")lgg, (157
removed to infinity, in which case the emission will remain , . )
the same provided the temperature of the plasma is main- Ez=(1—e *7—|Ry|*)lgg. (158

tained through some external energy source via collisions. Remarkably, Eq(157) is identical to the classical emission
formula, so no observable differences are expected from the
1. Electron cyclotron emission high-field side. The nonzero reflection coefficient on the low-
_ o field side means that the emission on the outside of a toka-
For the electron cyclotron harmonics, the GKL indicatesmak, for example, will be systematically less than the clas-
that the emission from the low-magnetic-field side is differ-gjca1 amount.

ent from the emission on the high-field side. In particular, the From the empirical formulas of Sec. 111.B.4, it is possible

X-mode emission formulas are to estimate the error that might occur if the standard formu-
E;=(1—e 27—|C14?) gz, (153  las were used, neglecting the effects of reflectio&jn The
y ) 5 percentage error for themissionat the second electron har-
Ex=(1-e *7—|R,|*—|Csq*)! g8, (1549 monic is given by
sinceR;=0. Since neitheR, nor either of the conversion 100R,|2 100

(159

coefficients vanish, the direct emission from a cyclotron% Error= — 5= > ,
resonant layer is less than that given by the conventional 1-e"*7=[R,[* exp(ldagx®)/e—1
formula. There is also indirect emission, however, and itwith ag obtained from Eqs(107) and(109). This result is a
must be taken into account. By indirect emission is meant théunction of I T, o« BoLT, andX only, so the results are illus-
radiation from an internal thermal source of slow-wave ra-trated in Fig. 6, wher&, is in keV andX is the parameter. It
diation away from the resonance which is then partially condis evident that the maximum error can be quite large; but for
verted to anX-mode. In particular, for a tokamak scenario or many applicationd, is so large that the error is small except
any device having rotational transfortassumed weak but at extremely low temperatures. For example, if one were to
nonvanishing the direct emission on the Bernstein branchconsider a tokamak plasma wily=5 T andL =3.5 m, then
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FIG. 7. Actual(solid) and inferred temperatures with reflection ne- F|G'29- Percentage error in estimating absorption, neglecting
glected for tokamak withRy=0.7 m, By=1 T, T.o=500 eV. |C14 % at 2w, for four values ofX. Solid lines show the empirical
Neo=1.0x101 m®  (OOO0) Neo=1.3510m° (@@ ®) formula result over the range fitted, and dotted lines are extrapola-
n§o= 1.7x109m® (———), a=20 t::m_ tions. Symbols are some of the fitted points.

. representing emission on the inside of a tokamikas not
|=2x10, so that the maximum error would occur for a 'usl?tified thg nomenclature describing its use. Calling the
temperature near 10 eV, and for a 1-keV temperature, th§, antityr=2 4 an optical depth derived from the picture that
error is minimal. The error r!ses_sharp!y as th_e Wave aPthe wave energy was dissipating as it passed through the
proaches cutoff aX=0.5, but is still relatively unimportant apsorbing layer, but now it is established that this quantity is
for most fusion plasmas. If, on the other hand, one were tghdependent of absorption. In view of this, the term should
consider a smaller tokamak with=0.72 m, Bo=1 T  fall into disuse for harmonic resonances and be replaced by
(f=56 GH2, andT,,=500 eV, where both the temperature “tunneling factor,” or some such designation that connects
and density are parabolic, then tinéerred temperatureor  the quantity with the physical picture. It is easy to generalize
several peak densities would be those given in Fig. 7. Neathe concept of opacity by simply including the reflection and
r/a=0.25, the emission error is about 125% and the temeonversion coefficients in the expression. It should be noted
perature error is 40% for the highest density shdawhere at this point that analytic expressions fgrare given along
X~0.45). For space or astrophysical plasmas, large errongith good empirical formulas fofR,|, so that accurate esti-
could easily occur; and in some cases, the assumption thatates of emission can be made without extensive numerical
lgg=I'gg May be questionable in extended space plasmagrocedures, since the conversion coefficients are unneces-
increasing the error further. sary.

For the corresponding third harmonic case, with-1¥8 To further underscore the discrepancy between the classi-
in Eq. (159 andag obtained from Eqs(116) through(119), cal formula and those of the full-wave analysis, it should be
the error is even smaller. It is shown in Fig. 8, where agairnoted that even though the emission from the high-field side
Te is in keV andX is the parameter. The maximum error for is independent of the converted wave enettg, absorption
this case is nearly two orders of magnitude smaller than fois not Just as Fig. 6 shows the error in neglecting the reflec-
the second-harmonic case. Whereas in the second-harmorien term in estimating the emission, Fig. 9 shows the error
case the maximum error continues to increase toward cutoffil estimating theabsorptionwithout considering the con-
the maximum error for the third harmonic is largest for verted energy. This error is obtained from
X=0.592 and decreases as one approaches cutoff at 1—-e 27-A, 100
X=2/3. % Error=100 = 2 '

Even though this analysis has basically justified the clas- Aq explacyx”) —1
sical emission formula for one cagthe least likely case, where|Cy4? is obtained from Eq(110) through the formulas
of Egs.(11]) through(115). Thus, even though the tunneling
factor gives the correct emission formula, it does not de-
scribe absorption, as the differences can easily exceed a fac-
tor of 2. It is only due to theindirect emission which in
many cases is the dominant contribution, that the total emis-
sion happens to match the classical expression. In large tok-
amaks, where even the conversion is smidl.&1000), the
distinction is probably unimportant; but the identification of
the tunneling factor with an absorption factor must be used
only with great caution, since technically they are indepen-
dent.

Using the same general methods as were used to establish
the GKL, one can also calculate the effects of cold reflecting
FIG. 8. Percentage error in electron cyclotron emission measurawalls. For this calculation, it is assumed that the slow wave
ments ofE, at the third harmonic from neglect &;. is absorbed internally and that Eq4.57) and (158 accu-

(160
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which then mode convert to the emitting fast-wave branch. If
there were a source due to an instability on the slow-wave
branch that would be strong enough to dominate the thermal
components, this could be ascertained from observing the
ratio E;/E,which would approach the ratj€;,/C3,|? in the
limit as the thermal portion became negligible. In such a case
one would interpret theégg as being due to the instability
source strength rather than any real temperature.
FIG. 10. Emission and reflection for a three-branch case. For a nonthermal VeIOCity distribution, either for iOI’lS or
electrons, it is possible to generalize the absorption term
. ) , h(z) to an actual velocity distribution, if known. Since the
rately represent the fast-wave emission with absorbing wallS;pite [ armor orbit terms and the emissivity depend only on
If the wall reflectivity isp, and the radiation incident on each averages, for only modest deviations from a Maxwellian, one
wallis I, andl,, as in Fig. 10, then the net radiation on eaChcouId expect good agreement by repladiigby 2(E)/3 for

wall is everything except the shape of the absorption profile or the
1 =Ej+p|T,|%,+p|Ry|?I 4, (161) emission profile, where the details would be more important.
l,=Ej+p|T1|?l1+ p|Ry) 5. (162  B. Source distribution function and the local Kirchhoff’s

Solving forl, andl, between these, and using the fact thatlaw

T1’=T2=T=e 7, Ry=0, and the expressions fd; and Because emission and absorption are related not only glo-
E; from Egs.(157) and(158), one finds bally but locally, it is evident that knowing what the absorp-
(1-T2)(1+pT2)— p|Ry|? tion profile is must somehow determine the emission profile
1= > AV BB s (163 or source distribution function. The relationship is not intu-

1-p|Ro|*=(pT?) o - , o

itively obvious, however, since the local emission may be

(1-T?) (14 pT?) —|R,|? partially reabsorbed by the medium before it escapes, so that

= 1-p|R,[?— (pT2)Z ‘BB (164 the effective source will be related, but not equivalent, to the
sink. The global emission is governed by the GKL and is due

WhenR; is neglected, these become equal and reduce to thg some as yet undetermined combination of all three propa-

usual expressiofBornaticiet al, 1983, gating branches. This emission is governed by a source dis-
1—T2 tribution function,s(z), which leads to a radiating solution
|=——5lgg. (165 ¢(z) which is governed bye.g., for the second-harmonic
1-pT
case
dU+N22¢"+(N2z+ y)p=h(2)D+5(2) , (166)

2. lon cyclotron emission . . .
which can no longer be easily converted to an integral equa-

There are many similarities between the electron and iogjgn, sinces(z) is not explicitly a function ofp(z). The term
emiSSion cases, but one Significal’lt diﬂ:erence. The eXpre%Vohling h(z) on the nght Cou|d be moved to the |eft-hand
sions for the direct emission are entirely parallel to Eqssjde, in which case the basis set for the Green’s function will
(153 and (154), as are the expressions for the sum of thepe the y,(z) or the ¥,(z), which represent the homoge-
direct and indirect emission given by Eq455 and(156),  neous solutions with absorption. Given th&), one may
but in this case, there is no reason to expegt~Igs.  write the solutiong(z) in terms of the Green’s function and
Whereas in the electron case, the remote sink/source for thRle sources(z). Unfortunately, however, this is an inverse
Bernstein wave is very close to the resonance layer, since thgoblem, since something is known about the asymptotic
converted wave eventually turns back toward the resonand®rm of ¢(z) from the GKL, but the objective is to fins{z).
layer, the ion Bernstein wave does not turn back, and thehe generalization of Eq166) to higher harmonics or to
location of the remote sink/source may be far from the resofive-branch problems is straightforward, since one simply
nance layer. The actual location must usually be determinegdds thes(z) source term on the right-hand side of the gov-
from ray tracing, and the influence of a small vertical com-erning absorption equation.
ponent of magnetic fieldassumed small in the layer, since
B-VB=0 has been assumethakes a great deal of differ-
ence in the trajectory of the converted wave energy. The In order to derive expressions for the emission from a
appropriate expressions for ion thermal emission are thergsource in an absorbing plasma, EG66) must be solved.
fore given by Eqs.(155 and (156), and in this case, the The radiative solution is given lfCho and Swanson, 1990c
empirical formulas for the conversion coefficients are impor- N _ N _
tant. P(2)=S; Y1+ S, ot S5 3+ S, Y, (167

It may also be noted that in the ion cyclotron emissionwhere they,(z), 1<k=<4, are linearly independent solutions
case, there are many possibilities for nonthermal emissiorsf Eq. (11) and where
which may be due either to a nonthermal velocity distribu-
tion or to radiation from an instability, particularly from SI3(2)=fwBlg(y)S(y)dy, (168
beam-plasma-type instabilities on the Bernstein wave branch ’ z 7

1. Integral expressions for emission
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~ z ated field¢, should be determined only by the correspond-
S,42)= f_sz,zt(Y)S(Y)dy : (169  ing J, for the same branch. Using Eq4d.70) through(175)
and (183), one finds the integrals in E¢182), given by
The functionsB;(z) are in turn related to they, and the
_ 4+ 7
W= ¢y + i through the relations S1 DadatCage™ s
B,=—DaW,+CppeV 170 > el
1=~ DaWot Laxe™Wy, (170 S;| T | —D1Jy+Tiee"d,
BZZ_D3\I}1_D1‘I’31 (171) 84 en(C23]1+T28\]3)
égz - Dl\I’2+T18e”\P4, (172) 1
By=e(Coq1+T1sW3) (173 X 2 min%56"(D,CayT1D3) (184
where so that one obtains from Eq4.79 through(181), after some
I§,—=27Ti)\28e’7(D1C32—T1D3)BJ— ' (174 algebra, the results
J1
Di=¢ly, —e T—
1 a1 p1=¢€ 2minZs ! (185
D3:(l+8|43) ’ J
1 o _ P25 T (186
§=5o f h(y)Fa(y)¥(y)dy, j=13. (179
2miN‘e Z min 3
_ 3
The asymptotic behavior of the radiative solution, which ~ ¢3=—e€ 75— (187
can have only outgoing waves, may be represented in the
form Since this final result is independent of the andD 5 coef-
ficients, it is valid for anyz,, in the definition ofl 4; .
P2l ()= (D)=~ el (D)~ @35-(2) (176 The final expressions are then obtained by combining Eq.

where thee,, k=1,2,3, are complex constants which are(177) with Egs. (185 through (187 and putting
related to the energy fractions radiated on each branch, givda| =2m\2e, with the result

by w 2
E1,2:|3<P1,2|Zv E3:|a<P3|2/<P , 77 Bl j_ocs(z)\lfk(z)dz ’ (189
wherea is some constant related to the source magnitudeyhere thea, are already given by Eq146).
which is assumed to satisfy a normalization condition of the
form
fw p(2)|s(2)|?dz=P,, (178 2. Extremum theorem with the generalized Kirchhoff's law

If one models a source/sink by a single delta function, then
wherep(z) is some weight function. Since a change in thethe source automatically satisfies the GKL and the emission
value ofa just means a redefinition &, for a given weight s in closed form. For a finite number of delta functions, the
function, the value of this constant can be chosen for conveproblem is already indeterminate if the number exceeds a
nience. From Eqg167), (168), (169), (174), and the asymp-  few, since the only constraints are the GKL. For a continuous
totic behavior of thejy , 1<k=4, along with the reciprocity source/sink, a variational analysis is required. Since the

relations, one obtains the relations maximum emission is constrained by the blackbody limit,
01=T,S,+€e "D;S, /¢ , (179 the idea is to maximi_zEk, which is a functional ofs(z)
through Eq.(188), subject to the GKL of Eq(152) and the
2=e"(T1S;—C3553) , (180  condition thatP, be fixed. Since thé\, are not functionals

of s(z), the right-hand side of Eq152) is fixed for eackhk;

= -n
¢3=CasSte "DsSy, (181 so the objective is to maximize the left-hand side for
where the definition k=1,2,3 simultaneously. If the functiors{z) which maxi-
" mizes the emission is denotsg, and theE, are related to
SI.EJ Bj(y)s(y)dy, j=1,2,3,4, (182 the J,[ s], the problem statement is to firgd, such thatSh-
- vets and Swanson, 1993
has been introduced. It is convenient to introduce the integral  |3,[s 7|2=maxJ,[s]|2 k=1,2,3. (189
expressions s(2)
o Additionally, these maxima are related through the GKL so
Jk=f s(z)¥(z)dz, k=1,2,3, (183  that
which represents the “projections” of the unique source on |Jk[sm]|2:ﬂ|BB, k=1,23. (190
to thekth branch. One thus expects that for dgythe radi- Ay

Rev. Mod. Phys., Vol. 67, No. 4, October 1995



858 D. G. Swanson: Cyclotron absorption and emission

The final constraint is through the boundednesss(@) This reasonable ansatz of H3.97) follows rigorously from
throughPy, whose value for a particular weight function is the variational approach to the maximization of the integral
to be adjusted to give the blackbody value of the GKL. Thisof radiation.
weight function will of necessity be related to the absorption
function. 4. Variational analysis

It is convenient to recast the variational problem in terms
of the functionals

([ s]=Ey[sl/Ax, (198

S0 that the problem becomes a determination of the function
Sm(2) such that

3. Cauchy-Schwartz estimates

Since bothE, and A, may be represented by integral ex-
pressions, it is instructive to begin with the Cauchy-Schwart
inequality,

[(Fla)a2=(ID)ulgl0)s aoy  aSwTlalsn)Tlalom mmaxids]=les, (199
where the scalar product of two square-integrable f“nCti°n§ubject to the normalization of E4L78).

is defined by Using the usual prescription for a variational analysis, one

0 introduces the functional
(flg)o= f_ o(2)f*(2)g(2)dz, (192 3
with a weight functiono(z) that falls off sufficiently rapidly Pls]= k; #ad 8]~ NPl ST, (200

as|z|—« that the integral is bounded. The expression for .
absorption is then given b =a (W |¥),, while the where the Lagrar)ge_mulnpllega@k and\ corre_spond to the
emission integral from Eq183) is the scalar product defined GKL and normalization condmon; respgctlvely. From the
by Eq. (192 with f(2)=s*(2)o L andg(z) =W (2). With symmetry of the GKL conditions, it follows that
the Cauchy-Schwartz inequality applied to the emission re.f:?:r':ﬁ.é?a:trl]ét':or the solution of the extremum problem,
lation E,=a,|J|?, the result is LS requi

oP[sy,,n]=0, (201

for any smooth functionp(z).
Introducing the Hermitian matrig;, such that

Ek[s]sakf |s|2cf1dzf o| W [2dz (193

for each fixedk=1,2,3. In particular, ifo(z) =w(z), then

- |S 2 gjk:<qu|\l,k>wzg;(cj ' er =123, (202)
Ek[s]sAkf Wdz , (194  one finds that the absorbed fractions are simly= a,gyx
- andl [ s]=|J[s]|%/gkk- Taking the variation of> indicated
and if, in addition,c=1/p (so thatp=1/w), then in Eqg. (201, one obtains
Ek[S]SAkf_ p(2)|s(2)|?dz=APy. (199  &[s, 77]=f n*(y)dy[ —Ap(y)s(y)
Since the inequality in Eq(191) reduces to equality only 3
whenf andg are linearly dependent, the extremum for the +> \If*k*Jk[s(y)]Mk/gkkJ +c.c=0, (203
emission along a particular bran&h(taking them one at a k=1
time) occurs, from Eq(193), when which leads to the integral eigenvalue problem,
s(z)xo(2)¥y . (196

kp(y)sm(y)—I:K(y,Z)sm(Z)dFO ; (204

This result indicates that for a single branch, the source must
be proportional at each pqlnt to thg we|ght function, Wh'C.hwith the Hermitian kernel
must be chosen from physical considerations. From the spirit
of the fluctuation-dissipation theorem Kirchhoff’s law, it is 3 .
obvious thaio(z) should relate to the local dissipative prop- K(y,Z)Zkgs mVE VY (2)/gu=K*(zy) . (209
erties. o

Following the prescription from Eq(195, one would The problem posed by Eq&04) and (205 has the solu-
have a separate source for each branch; but all three wavéen

are coupled, and the source distribution function is unique 1 3
for all branches. The obvious way to treat the problem and ¢ (2)= 2 aW*(2) (206
generalize the results is to take " p()isy
s where the coefficients; are determined from the algebraic
Sm(Z)ZCT(Z)kZ1 a Vi (2) , (197 eigenvalue problem
3
_ Ok

Where theay are unknown complex consta}nts_ to be d_e_ter E aj(‘l’j|‘1’k>|1/p=>\—ak- (207
mined from the GKL and the source normalization condition. j=1
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Note that the expression of E@06) for the source distribu-
tion function is identical to that of Eq197) if the weight

The x5 is in turn, given by

C_q b

function in the scalar product has been chosen as x;=c,x3+cix,+Co+ —+ g (219
o(2)=1/p(z). Moreover, the physical interpretation re- X2 X2~
quires one to consider both of these expressions as a localith
Kirchhoff’s law. This physical requirement removes the am- ——q/
biguity in the weight function in the normalization condition. C2= A2/t
Since the functionw(z) defined by Eq.(138) is the only c,=1-2s/r?,
suitable absorptive function in the physical system, one must 3
conclude thab(z) = 1lw(z), and COZ(Q1QZ+Q1Q3+q2q3)/r _4Q1Q3S/r )
3 c.1=(01—0q3)/2,
— *
sm(z)—w(z)kg1 a Vi (2) . (208 b=cod—ds—C_1,
The problem is reduced to finding the unknown complex  d=2q,q5/r ,
coefficients,q,, that satisfy _
(1) the normalization condition, r=2 Rez1273) ,
3 $=010203,
k%l 9 =Po; (209 a=|zdl?
(2) the eigenvalue problem, andxz is one of the roots of
3
n__
> ajgjkzxgﬂ—kkak, k=123  and (210 nZo 42 =0, (220
=1 k
(3) the GKL conditions, where )
do= _d)“,
11=12=15=es, 211 07 €10
where dy=(2g5-rd)c_d ,
SHepe dy=03—205C_1d(Co—¢1d) +q;d%(0,— Ga)
l= F——a. 21
“ % g (212 +rd(c-1—0s) ,
It may be noted that d3= _ZQ3C_1d_zqg(CO_Cld)_qud(qz_qs)
A=lgg/Po. (213 +r[d(co—cyd) +gs+d?],

Indeed, after multiplying Eq(204) by s} (y) and integrating
overy, one finds, taking into account E(.78 and the GKL
equations) [ Sy,]=Igg, that

3

APo= kzl il I 9= gg

which results in Eq(213).

This variational problem is not of the standard form, but
the evaluation of they, has been accomplished by a series of

transformations and a minimizatiofShvets and Swanson
1993. The basic result is

a1=(1gs/91) YA 11+ 230+ Z5 w3)/|Y] (214
ay=(1a/92) ™ (Z5 + Ty + 21 w3) Y] | (219
a3=(1ps/939 YA 2,+ 2 wy+ T303)/|Y] (216

where z=y,y,—y!, n=1-|yil? [Y|=1-]yi|*~ |y,

—| y3l?+2 Refayaya), ¥i=0jk/(9j;9x) % and thew, are
given byw;=1 and

ds=ds(Co—C1d)*— 205~ 203C,C_1d+q1(0p— )
—r(d+cg—cqd) ,

ds=—203C,+2q3(Co—cyd) +d0p,

de=03+203C2(Co—Cyd) ,

d;=2q3c;,

dg=0lsC5.

' Finally, one must determine which real root forto choose

by calculating
3

gl (7= %) =Po| Y|/l g5 , (221)
wherex; is determined from
3
X1 XoX3— 2 QX+ =0 . (222
k=1

Since it is desired to find themallest(most efficien} source

w222122_23x3 ’ (217 that will produce the blackbody radiation, thg root that
XoX3— 01 minimizes the sum in Eq(221) is to be chosen. Although
S tedious, this produces the unique source distribution function
_T17s 7oreTs (219  that satisfies all of the constraints and maximizes the radia-
X2X3— (1 tion.
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|se()I*

T 1
0.0 0.1 0.2 z{cm) 0.3

FIG. 11. Comparison of sink functiowg(x) with source function

2 \nji — 0 3 — — ' —
[5:()|* with n=10""m"%, By=3 T, L =0.2 m with T,=400 eV, FIG. 13. Source functiofise(x)|? (arb. unitg with n=10?° m~3,

By=3 T,L=0.2 m with 106 T,=<700 eV and corresponding val-
The procedures described above for the three-branch probes of 5.
lems have been generalized to the five-branch probi&gs
Shvets, and Swanson, 1995)[": the minimization pr0b|em half the diSplacement. of the sink. With a 3-m §Ca|e Iength,
cannot be reduced to finding the roots of a polynomial. Morehe source would be displaced 0.5 cm and the sink 1 cm from
general downhill simplex methods in multidimensions arethe resonance location. The narrowing is more than a factor

required, but the form of the source distribution function isOf 2, and the bump on the tail appearing on the right is
the same as Eq(208 except that the sum is over effectively a second souramn the other side of the tunneling

k=1.23.4.5. One other difference between the three-branciiYe" AS the layer becomes so thick that there is virtually no
and the five-branch problems is thatz) is positive definite unneling, the two sources become isolated from each other,

. and one observes only one of the two. The numerical tech-
fFor threel-:brancn pr?vblergs dure] to the bemawoblzohf) ?‘”d fniques used for this analysis eventually fail for sufficiently
/ﬁq(g)' or the  five-branc case, t e Dbehavior - Ofyyicy layers(the integral equation fails to convejgdetter
7q({—0,a) leads to a narrow region witlv(z)<0. The  ,merical techniques must be developed to see the shapes

only pertinent emission quantity {s(z)|*, however; so the anq |ocations of these double sources, but the tendency is

final result is positive definite. already clear. Figures 12 and 13 show the temperature de-
pendence of the sink and soufge respectively, where it is
5. Numerical results and their interpretation apparent that the shift of the peaks and the widths are

) o o roughly proportional to temperaturShvets and Swanson,
The importance of the source distribution function is that1993. In each of these cases, both peaks are on the high-
it indicates both where the effective source is located and thgagnetic-field side of the resonance, since relativistic effects

effective width of the source. The general effect of modegccur on that side.
conversion on the source distribution is to make a systematic For jons, which are nonrelativistic, thve (x) sink function
shift in the peak and a narrOWing of the W|dth, relative to theis Symmetric about the resonance, but tbﬂx)|2 source
corresponding peak and width of the sink or absorption funcfynction is not. In other respects, however, the shifts and
tion. In Fig. 11, the sink functiomw,(x) is plotted on the nparrowing of the source function are qualitatively the same.
same axis withse(x)|?, where both the shift and the narrow- A comparison of the sink and source on the same axis for
ing are evident. For this example, with both amplitudes norigns is shown in Fig. 14, where, again, both are normalized
malized to unity for comparison, the source function is atto unit amplitude for the comparison. For this case, the peak
of the sink is, of course, unshifted, but the peak of the source
has been shifted by 0.46% a&f. This shift is toward the
03 T 500 &V mode conversion layegpositive x is in the direction ofin-
T creasingmagnetic fieldl because the mode-converted branch
is the strongest absorber and therefore the strongest emitter.
For the ion casek, controls the strength of absorption and

0.2

. emission; so in Figs. 15 and 16 the variation of both sink and
2 source, respectively, witk, is shown. For the source func-

s tion, again both the width and the peak increase roughly
0.1

linearly with k,, which controls the absorption/emission
strength. Furthermore, the ion source distribution develops
bumps on the tails on both sides of the resonance due to

0.0/ A l ) : . . interference between the propagating branches, but these re-

0.0 0.1 0.2 z(em) 0.3 main small for virtually all practical parameters.
Finally, a five-branch case is shown in Fig. 17 for weakly

FIG. 12. Absorption functiow(x) with n=107m=3, B,=3 T,  relativistic electrons(Ng, Shvets, and Swanson, 1995n
L=0.2 m with 106sT,<500 eV. this case, sincé, # 0, the relativistic function7(z,a),
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FIG. 14. Comparison of sink functiow;(x) with source function

H i 2 ; — 0 -3
|5,(X)|? with n=2X10° m~3, By=5 T, L=2 m, T,=2 keV with FIG. 16. Absorption functlor_1|si(x)| with n=2x10° m3,
K8 m L. Bo=5T,L=2 m,T;=2 keV withk,=2, 4, 6, 8, 10 m".

which includes Doppler broadening, leads to a more complidue to weak relativistic effects which substantially reduce or
cated sink function and a correspondingly more complicate@liminate reflection and conversion. In this limit, there is
source function. Aside from the rapid transition near 0.2 cmagain only transmission and absorption, but there is a non-
both the shift of the centroid and the narrowing of the sourcerivial range of parameters where reflection may make a sub-
relative to the sink are evident. Note that in this example, thestantial error in the estimate of emission from the classical
effective center of the source is shifted about 2.5% éfom  formulas in smaller, cooler devices. The difficulty with ig-
the resonance, still about half of the shift of the sink func-noring the new paradigm or way of understanding the pro-
tion, if one uses the mean values instead of the peaks.  cesses is, first, that it describes the physics incorrectly, and,
second, that nontrivial errors in the interpretation of ECE

V. CONCLUSIONS may occur. .
There is also a new way to find the shape of the source

The principal conclusions are that the classical formula fodistribution function. The effects of mode conversion along
electron cyclotron emissiotECE) is validated for large with the subtle effects of indirect emission have shown that
laboratory plasmagbut not for plasmas in genejabut that  the traditional formulas for emissiotbut not absorption
a new paradigm for describing and understanding the proce§g®m a cyclotron harmonic layer are virtually exact in the
is necessary. The necessity for the new paradigm arises froane case from the high-field side and that the effects of re-
the complete physics of the several processes in the cycldlection are small for large tokamaks and many laboratory
tron harmonic layer, as opposed to the previous pictur@|a8mas. The fact that the tunneling factor alone, which is
which included only transmission and absorption. The comindependent of absorption, should reproduce the result for
plete picture shows that only reflection and mode conversiothe optical depth, which was based only on absorption, must
are affected by absorption and that transmission is indepere regarded as an accident and is another example of cases
dent of absorption. This picture has been evident from thavhen the right answer was obtained from either wrong or
beginning for ion cyclotron harmonics, where for smigJl  insufficient analysis. For the case for ion cyclotron harmonic
the absorption is weak, but transmission, reflection, mod@mission, however, the accidents of electron emission do not
conversion, and absorption have all been observed simult®ccur; so the classical optical depth/opacity formulas are not
neously. This picture of electron cyclotron absorption hasappropriate. The fact that the indirect emission is not neces-
been less evident because of the much stronger absorption

e o
=Y
T 1

-054

-6 -4 -2 0 2 4z(cm)g
FIG. 17. Electron absorption functiom(x) and distributed source
FIG. 15. Absorption functiomw;(x) with n=2x107"m™3, B;=5  strength|s(x)|? with n,=2.7x10" m™3, B,=0.1 T,L=0.1 m,
T,L=2 m,T;=2 keV withk,=2, 4, 6, 8, 10 ml. T.=5 keV, andn=0.1.
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