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When the analysis of absorption with mode conversion effects included began to mature in recent years, the
study of the corresponding effects on emission began and has led to some surprising results. The classical
expressions for cyclotron or synchrotron emission from a harmonic resonance were originally derived from
models that did not include mode conversion or its attendant reflection, and classical expressions for the
optical depth and opacity were obtained. When mode conversion was included, the principal surprise was that
the transmission coefficient, which was understood as being due to absorption, is totally independent of
absorption and due exclusively to tunneling. The other surprise from the mode conversion analysis is that the
observed emission arises from two distinct sources, one direct and one from an indirect Bernstein wave source
which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that
mode conversion cancels out for the electron case, but not for ions. The only corrections to electron cyclotron
emission are then due to reflection effects, and these have been shown to be small for many laboratory
plasmas, leading to the validation of the classical formula for these cases, but via an entirely new paradigm
in its interpretation. This review includes a summary of the absorption process for both electron and ion
cyclotron harmonics, and reviews carefully the emission physics, including both potential error estimates and
a discussion of the emission source distribution in space.
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I. INTRODUCTION

A. Background and overview

The advent of mode conversion theory dawned when it
was understood that cold plasma resonances are resolved by
warm plasma effects when collisions are weak, and that
when the resonance is approached in space due to an inho-
mogeneity, there is invariably some linear coupling between
a cold plasma wave and a warm plasma wave. The original
analysis ~Stix, 1965! demonstrated that approaching the
lower hybrid resonance in a finite-temperature plasma leads
not to a pole, but to a region in the plasma where all of the
incident wave energy is converted to a fundamentally differ-
ent warm electrostatic wave. If there is absorption involved
in such an isolated resonance, it is associated with the even-
tual fate of the converted wave, and almost never occurs near
the conversion layer.
The connection between cyclotron harmonic resonances

and mode conversion has long been established~Erokhin,
1969; Ngan and Swanson, 1977; Antonsen and Manheimer,
1978!, and the role of absorption in the mode conversion
process has been discussed by many@Swanson, 1980; Cole-
stock and Kashuba, 1983; Swanson, 1985~a review of ion
cyclotron cases!; Kay et al., 1988; Lashmore-Davieset al.,
1988; Ye and Kaufman, 1988; Chowet al., 1990#; but the
effects of mode conversion on emission have only relatively
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recently been addressed~Swanson and Cho, 1989; Cho and
Swanson, 1990a, 1990b; Swanson and Shvets, 1992!. The
principal focus of this review is to pull together some of the
new results on emission as influenced by mode conversion,
and since the absorption process is crucial to emission, the
work on absorption will also be reviewed briefly. The impor-
tance of electron cyclotron emission~ECE! as a plasma di-
agnostic has influenced the various contributions in this area,
so that most of the analysis relates to emission and absorp-
tion near the second and third harmonics of the electron cy-
clotron frequency, although corresponding work at ion cyclo-
tron harmonic resonances will be included. It is not the
purpose of this paper to review all of mode conversion
theory, since some resonances, such as the lower hybrid and
upper hybrid resonances, are virtually free of absorption, and
hence of emission. Absorption and emission at the two-ion
hybrid resonance could have been included, since the theory
is very similar; but although this absorption process is im-
portant, the emission process seems not to be of great inter-
est. This narrows the scope of the model equations to the
class of tunneling equations, where there is propagation on
both sides of the resonance or mode conversion layer in
which there is finite transmission, reflection, and conversion
to Bernstein modes.
As will be discussed in detail in the following sections,

absorption has no direct effect on the transmissionthrough
one of these mode conversion layers; so all of the absorption
and emission will be tied to the reflection and conversion
processes, which are theonly components affected by ab-
sorption. This flies in the face of conventional wisdom which
has long estimated opacity and optical depth from a trans-
mission coefficient calculated from integrating the imaginary
part of the wave vector, which has beenassumedto be due to
absorption, across the layer. One of the remarkable results of
the more nearly exact treatment which includes mode con-
version effects is the exact agreement in one case with the
traditional expressions for opacity, although for subtle rea-
sons. Another case includes effects of reflection; so reflection
coefficients will be carefully examined so that accurate esti-
mates of these effects may be obtained. In many cases, these
effects are small, so that classical expressions are often reli-
able; but the change in paradigm, or way of understanding
the processes involved, is a major shift which includes a
mandatory change in the language used to describe opacity,
or at least a redefinition of what one means by the words.
While the classical theory for electron cyclotron harmonic
emission is largely validated except for our understanding of
the physics involved, the ion cyclotron harmonic resonance
emission is substantially different, and the classical opacity
formula may fail badly except in the extreme case of very
strong absorption~due to relatively largekz!. There do exist,
however, cases of practical importance where electron cyclo-
tron emission differs substantially from classical theory; so
that deviations due to mode conversion theory are not merely
academic. It is also found that there is a systematic shift
between the peaks of the emission source distribution func-
tion and the absorption distribution function, as well as a
narrowing of the source relative to the sink, due to mode
conversion. This modifies our understanding of where the
radiation source is located.

B. The fundamentals of mode conversion theory

The fundamental goal of mode conversion theory is an
exact full-wave analysis of spatially resolved resonances. In
Sec. I. B, the domain of mode conversion theory is described
with minimal algebra to clarify the nature of the problems,
the kinds of methods used, and the kinds of results obtain-
able.

1. Full-wave theory

A full-wave analysis means that a complete exact solution
of a wave equation is solved as opposed to an approximate
solution by eikonal methods. This does not mean that asymp-
totic forms are not used in the solutions, which are eikonal
forms, but that thecoupling coefficients betweenthe asymp-
totically propagating wave branches are foundwithout any
eikonal approximations. Some of these coefficients are deter-
mined exactly, and some are evaluated numerically, but no
approximations need be made. The term ‘‘exact’’ means that
once the wave equation is determined, no further approxima-
tions are made. There are always some approximations in
establishing the appropriate wave equation. Certain of the
results are virtually independent of the approximations made
in establishing the wave equation, such as the independence
of the transmission coefficient from absorption, since it de-
pends only on the analytic nature of the plasma dispersion
function. This is worth noting, since this result is probably
the most surprising one of all from mode conversion theory,
since it is contrary to conventional wisdom which has tradi-
tionally attributed finite transmission through a resonance
layer to absorption, whereas these effects are not directly
related. Other scattering coefficients do depend on the ap-
proximations made in establishing the wave equation, but
weakly.

2. Plasma resonances in space

The domain of mode conversion theory is restricted to
plasma resonances that are approached in space due to a
weak inhomogeneity in the plasma parameters, typically ei-
ther the density or the magnetic field, and are resolved by the
coupling to a different mode or wave type rather than being
resolved solely by absorption processes. The typical cases
are isolated resonances, back-to-back resonance-cutoff pairs,
or a cutoff-resonance-cutoff triplet, provided that these are
encountered sufficiently closely in space that each individual
feature has some influence on the other. Extensions include
cases in which a warm wave may change from a forward
wave to a backward wave, which is effectively a mode con-
version, and behaves like an isolated resonance. That such
resonances lead to mode conversion is evident from the
‘‘Mode Conversion Theorem’’ ~see Swanson, 1989, pp. 242,
243!: ‘‘In an inhomogeneous plasma, linear mode conversion
is always involved to some extent in resolving every plasma
resonance.’’ The proof begins with a generalized dispersion
relationD(k,x)50, where the plasma parameters~density or
magnetic field! are~slowly! spatially varying. Expanding this
dispersion relation about some particular,kc , one may write
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D~k,x!5D@kc~x!,x#1
]D

]k Ukc~k2kc!1
1

2

]2D

]k2U
kc

~k2kc!
2

1O ~k2kc!
3 . ~1!

Choosing to expand about the point where the group ve-
locity vanishes, or wherevg5]v/]k5(]D/]k)/(]D/]v)
5 0, one finds that the first-order term vanishes. Neglecting
the higher-order terms, the result may be approximated by
the expression

D~k,x!5P~x!1Q~x!~k2kc!
250 , ~2!

so that, defining a shiftedks5k2kc , this may be written as

ks
252P~x!/Q~x! . ~3!

Clearly,P(x0)50 is a cutoff, andQ(xR)50 is a resonance.
However, any time the highest-order term in an expansion
such as in Eq.~2! vanishes, one must go at least to thenext
higher order in order to adequately describe the dispersion
characteristics; and from Eq.~1!, this next term is of order
ks
3 ~which vanishes whenever the dispersion relation is even
in k, since the first-order term was chosen to vanish! or
ks
4 . These higher-order terms are related toanother waveand
indicate mode conversion between at least two types of
waves. The proviso in the theorem, ‘‘to some extent,’’ notes
that if there is some absorption,Q(x) may never truly van-
ish, and in such a case it must be determined whether the
fourth- ~or higher-! order term exceeds the minimum of the
quadratic term~mode conversion dominant! or vice versa
~absorption dominant!.

3. Dispersion relations

The wave equation to be analyzed is typically obtained by
converting a dispersion relation~for a homogeneous plasma!
into a differential equation by lettingik→d/dx. A more
nearly precise method is to include the weak inhomogeneity
from the beginning and reduce the Vlasov-Maxwell equa-
tions to a single wave equation. The resulting wave equation
is typically an ordinary differential equation, as the resonant
surface is locally plane and the variation normal to the plane
is one dimensional. Some implementations use a partial dif-
ferential equation to include variations over the entire cross
section with boundary conditions and antennas. In this re-
view, the analysis is restricted to cyclotron harmonic reso-
nances with slow variations in the magnetic field only, rep-
resented byB(x)5B0(11x/L) andB•¹B50, andL is the
scale length for the magnetic-field variation (L;R0 for a
tokamak!. The model equations and analysis are almost iden-
tical to those of the two-ion hybrid resonance, but that case is
not considered here.
Dispersion relations, typically represented byD(v,k)50

in a homogeneous plasma, are here represented by
D@k(x)#50, since at the resonance surface~at x50!,
v5nvc0 , and the dispersion is due to the variation ink(x)
about x50 throughvc5vc0(11x/L). In addition to the
cold plasma terms, which for the cases considered here de-
scribe either the fast Alfve´n wave or theX-mode, there is
typically a warm plasma term. For the harmonic resonances
considered here, the warm plasma term is a Bernstein wave
and fundamental to the analysis, since the harmonic reso-

nances enter the dispersion relation through finite Larmor
orbit effects, characterized byle,i5

1
2k

2rLe,i. The Bessel

function expansions inle,i are normally truncated at the
lowest order which includes the particular harmonic reso-
nance, sincele,i!1, but some integro-differential equation
methods make no such approximations.
The most common dispersion relations that arise in mode

conversion problems are~at least asymptotically! of the form

k41~a2x1b2!k
21a0x1b050 , ~4!

with a2 Þ 0. For the isolated resonance case such as the lower
hybrid resonance,a050, whilea0 /a2,0 for the case with a
back-to-back resonance-cutoff pair. This latter result is ap-
parent by dropping thek4 term ~throwing away the warm
wave!, so thatk252a0 /a2.0 asuxu→`, which is the cold
plasma dispersion relation away from the resonance. At least
one of thebn must be nonzero, but either one can be made to
vanish by a simple translation of the origin. By changing to
dimensionless variables, the two cases may be put instan-
dard form, so that the isolated resonance case in standard
form is

k42l2zk21b50 , ~5!

wherel2 ~not the same asle,i above! andb are real dimen-
sionless constants andz is proportional tox. A plot of this
dispersion relation forl2.0 may be found in Fig. 6 of my
textbook~Swanson, 1989!. The corresponding standard form
for the resonance-cutoff pair is

k42l2zk21l2z1g50 , ~6!

whereg andl2 are real constants. Effects of localized ab-
sorption may be included by lettinga2 anda0 be replaced by
complex functions ofx whose asymptotic limit is a real con-
stant. The transmission coefficient obtained from the eikonal
method usesk(z) from this equation and finds the amplitude
transmission coefficient to beT5e2h whereh is thetunnel-
ing factorgiven by

h5E Im@k~z!#dz . ~7!

Depending on the value ofg, there are two distinct forms
that the dispersion relation can take. For 11g.0, which is
characteristic of the ion cyclotron harmonics, a plot of Eq.
~6! is given in Fig. 1. The three propagating branches are
labeled such that Branch 1 represents the fast wave on the
high-magnetic-field side; Branch 2 represents the fast wave
on the low-magnetic-field side; and Branch 3 is the Bernstein
mode. Since the plot is ofk2, each branch permits both in-
coming and outgoing waves, with the arrows indicating in-
coming waves. The complex region in the center is the tun-
neling region wherek has an imaginary part due solely to
tunneling.
For the electron case, 11g,0, and the coupling is dis-

tinctly different, as may be seen in Fig. 2. Again the propa-
gating branches are labeled, but here Branches 1 and 2 rep-
resent the X-mode on the high- and low-field sides,
respectively. The branches are labeled so that, in either case,
Branch 1 represents a~relatively! fast wave which encoun-
ters the resonance before the cutoff, while Branch 2 encoun-
ters the cutoff before the resonance. Branch 3 is always a
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Bernstein mode. For this case,k2 is real for all realz, and
tunneling is not immediately apparent. At first glance, it
would appear that a wave incident along Branch 1 would
simply convert to Branch 3, while a wave incident along
Branch 2 would simply reflect. This would imply no trans-
mission at all, since transmission relates Branches 1 and 2
~fast wave on one side to a fast wave on the other side!.
There is transmission, but the coupling points@where the
discriminant of Eq.~6! vanishes# in this case occur for com-
plex z, such thatl2z6526 ir with r52Au11gu, and the
integration path in Eq.~7! must be deformed to pass through
these points to couple the fast waves on the two sides. An
example of this coupling is illustrated in Fig. 3, where, with
g522, r52, and the discriminant vanishes at
l2z52(16 i ) wherek2526 i . The integration path in the
figure is a semicircle in the complexz plane, such that
l2z52(11eiu) and 0<u<p, as illustrated, orp<u<2p
for waves traveling in the opposite direction. It is apparent
from the figure that Branch 1 is now connected to Branch 2
and thatk2 is complex betweenl2z50 andl2z54, so that
Eq. ~7! yields a nonzero result. Any path in thez plane that is

real at each end and passes through the coupling point will
do, since the integral is path independent.

4. Wave equations

The wave equation is usually obtained from the appropri-
ate dispersion relation by lettingik→d/dx, or in the dimen-
sionless form,ik→d/dz. There is ambiguity in this recipe,
since, in the dispersion relation, thel2zk2 term in Eq. ~6!
could also be written ask2l2z or kl2zk, all of which are
equivalent untilk becomes an operator. The proper recipe
can only be deduced by going back to the Vlasov-Maxwell
equations and never using the Fourier transform in the first
place. Fortunately, the differences do not turn out to be large,
so the simplest recipe will be used. In this case, Eq.~6!
becomes thetunneling equation,

f iv1l2z f91~l2z1g! f50 , ~8!

where f (z) is proportional to the wave electric field, typi-
cally they component. This equation admits an exact solu-
tion in terms of an integral via the Laplace integral method,
namely,

f ~z!5E
G
expF S z2

1

l2D tanu1
tan3u

3l2 1
11g

l2 uGdu , ~9!

where each of the four independent solutions is represented
by one of the four independent contours,Gk , k51,2,3,4, in
the complexu plane. Each contour must terminate at one of
the points, un5(n11/2)p, approached at angles
0,62p/3, so the integrand always vanishes at the end
points. The scattering coefficients are obtained from the as-
ymptotic forms of these exact solutions; and without absorp-
tion, these coefficients are exact. The asymptotic properties
of the propagating solutions are determined from saddle
points of the integrand, which are always determined from
the original dispersion relation, regardless of whether the
wave equation is obtained from the simplest recipe or from
one of the more nearly exact methods.
For higher harmonics, the resonant term enters the disper-

sion relation through a higher-order term in the finite Larmor
radius expansion, so the dispersion relation is higher order in
k2. The wave equation is correspondingly of higher order,

FIG. 2. Dispersion relation for tunneling equation forn52 with
11g,0.

FIG. 3. Form of dispersion relation withg522 and
l2z52(11eiu) for 0<Re(l2z)<4. Re(k2) is solid; Im(k2) is
dashed for the slow wave and dotted for the fast wave.

FIG. 1. Dispersion relation for tunneling equation forn52 with
11g.0. Solid lines are the Re(k2), and Im(k2) is dotted.
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but exact solutions of similar type may be found for any
order ~Gambier and Schmitt, 1983; Gambier and Swanson,
1985!.

5. Localized absorption

When localized absorption is included, the wave equation
can no longer be solved exactly in terms of integrals; but
several exact results have been found by separating the local
and asymptotic features of the dispersion relation. To illus-
trate how this separation is accomplished, a representative
case is considered in whichanx, n50,2, is replaced by
anx/F(x), andF(x)→1 as uxu→` but is an analytic func-
tion everywhere. For a nonrelativistic case,F52zZ(z),
wherez is proportional tox ~andz!. The appropriate disper-
sion relation may then be written as

k42S l2z1g

F~z!
2g D k21 l2z1g

F~z!
50 . ~10!

The eikonal method would solve this biquadratic fork(z)
and findh from Eq. ~7!.
In the separation scheme, no such approximations are

made; but the terms involving 1/F are moved to the other
side, and corresponding terms withF51 are added to both
sides. After lettingik→d/dz, one is led to the wave equation

c iv1l2zc91~l2z1g!c5~l2z1g!@121/F#~c91c! .
~11!

In this equation, only asymptotic terms are on the left and
only local terms are on the right, since 121/F→0 as
uzu→`. If one were to neglect absorption, setting the right-
hand side of Eq.~11! to zero, one would obtain Eq.~8!,
whose tunneling coefficient is given exactly by

h5
pu11gu
2l2 . ~12!

For the case with 11g.0, Eq.~7! with F51 can be directly
integrated with exactly the same result. In this case, there is
no absorption; so whatever is not transmitted is either re-
flected or converted to the Bernstein wave. Numerically, with
F Þ 1, the surprising result is that the same result is obtained.
In fact, it has been shown~Ng, 1994! that, with
F52zZ(z), this is an analytic result, depending only on
Z(z)’s being an analytic function ofz with zeros only in the
lower halfz plane@this is also sufficient to guarantee that the
right-hand side of Eq.~11! is anabsorptionfunction, since
zeros in the upper half plane imply a source function#. The
unexpected conclusion is that even the eikonal approxima-
tion finds the transmission coefficient to be independent of
absorption! The reason for this is that there aretwo sources
for the imaginary part ofk(z), one being due to absorption
and one being due to tunneling. That part due to absorption
cancels out because of the analytic behavior ofZ(z), while
the tunneling contribution remains. The final proof that ab-
sorption has no effect on transmission is more subtle than
this, however, since these arguments are based on an ap-
proximate theory. The complete solution of Eq.~11! shows
that, in general, the absorption term on the right does influ-
ence transmission; but with our choice of absorption func-
tions, the contribution vanishes. The contribution to reflec-

tion and conversion does not vanish, however, so that
conservation of energy is still guaranteed.
The solution of Eq.~11! is accomplished by first convert-

ing it to an integral equation, treating the right-hand side as a
source/sink function, and finding the Green’s function for the
left-hand side. The advantage of this method over direct nu-
merical integration is that the scattering parameters may then
be expressed in terms of explicit integrals, some of which
can be evaluated analytically and some numerically. The in-
tegral associated with the reflection coefficient on Branch 2
may be converted into a power series which admits higher
accuracy than numerical integration methods.

II. ELECTRON AND ION CYCLOTRON
HARMONIC RESONANCES

In this section, the fundamental wave equations from the
dispersion-relation method are listed, and then the corre-
sponding wave equations from the direct solution of the
Vlasov-Maxwell equations are given. This will include
higher-order harmonics and even cases in which there are
five propagating branches due to the coupling of theX-mode
and O-mode with finite kz . The corresponding scattering
parameters are given analytically when absorption is ne-
glected. The effects of absorption are treated in Sec. III.

A. Tunneling equations from dispersion relations

The dispersion relations that follow are obtained from the
hot plasma dispersion relation after separating out the cold
plasma terms~assumed constant! in each dielectric tensor
element and then adding the lowest-order term in the finite
Larmor orbit expansion at which the particular resonance
term first arises. In some tensor elements, the lowest-order
term is of higher order than in other tensor elements, in
which case the term is discarded, so that the resonance terms
are all of the same order. For ions, the treatment is consis-
tently nonrelativistic, while for electrons, the treatment is
consistently weakly relativistic. For cases when stronger
relativistic effects are important, the mode conversion cor-
rections are not important.

1. Ion cyclotron harmonics

The general form of the tunneling equation fornth order
ion cyclotron harmonics neglecting absorption in the finite
but small Larmor orbit limit~Ngan and Swanson, 1977! is
equivalent to

f ~2n!2gnf
~2n22!1~21!nln

2n22z~ f 91 f !50 , ~13!

where f (n) denotes thenth derivative off and

ln
2n225S 2

nAn
D 2n21n! @1/~n221!1p2#c

vpiLb i
n21 , ~14!

nA
25

@11~n21!p2#@12~n11!p2#

@11~n221!p2#
, ~15!

gn522F 11~n221!p2

11n1~n221!p2G , ~16!
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wherep5kzVA /v is the parallel index of refraction~relative
to VA); L is the magnetic-field gradient scale length, where
the magnetic field is taken to vary asB(x)5B0(11x/L) so
that positivex and positivez5vnAx/VA represent the high-
magnetic-field side of the resonance;b i is the ratio of the ion
pressure to the magnetic pressure;VA is the Alfvén speed;
and Eq.~15! is the cold plasma dispersion relation fornA
~relative toVA). The tunneling factor is given by

h5
p~11gn!

2ln
2n22 . ~17!

It is customary to shift the origin inz for n52 so that Eq.
~13! is of standard form, or equivalent to Eq.~8!.
This generalized tunneling equation arises from the hot

plasma dispersion relation where the dielectric tensor com-
ponents are composed of the cold plasma terms plus the har-
monic resonant terms to the lowest order inl i5

1
2k'

2rLi
2

whererLi is the ion Larmor radius. Then this algebraic dis-
persion relation~plotted forn52 in Fig. 1, where Branch 1
corresponds to the fast Alfve´n wave on the high-field side
and Branch 2 to the fast Alfve´n wave on the low-field side! is
converted to the differential equation, as in the example in
the previous section. For each of the resonances represented
by Eq. ~13!, there is no reflection from the high-field
side (R150), but there is reflection from the low-field
side; and the reflected amplitude is given by
R252(12e22h)5T221. From either side, the power nei-
ther transmitted nor reflected is converted to an ion Bernstein
mode~Branch 3!.
When absorption is included~which occurs whenever

kz , the wave number parallel to the magnetic field, is non-
zero!, the resonant terms involve the plasma dispersion func-
tion, Z(z), throughF(z)52zZ(z), and the pertinent differ-
ential equations are modified so that Eq.~13! becomes Eq.
~11! for n52 with z5(z02z)/k andz052g/l2, while for
n.2 one finds

c~2n!1gnc
~2n22!1~21!nln

2n22z~c91c!

5~21!nln
2n22k@z11/Z~z!#~c91c! , ~18!

wherez52z/k, andk5nAkzLAb i for all n. It is apparent
that if kz→0, k→0, so thatZ(z)→21/z and the right-hand
sides of Eqs.~11! and~18! vanish, with the result that there is
no absorption for propagation exactly perpendicular to the
magnetic field. Forn52, it has been proved analytically that
the transmission coefficient is still given byT5e2h with h
unchanged except through the dispersive termp, and that
there is still zero reflection from the high-field side~Swanson
and Shvets, 1993a, 1993b!. The proof has been generalized
to n53 and appears to be true for all orders~Ng and Swan-
son, 1994a!.
In addition to the ion cyclotron harmonics, the fourth-

order tunneling equation also models the two-ion hybrid
resonance with appropriate choices forl2 andg ~Swanson,
1985!.

2. Electron cyclotron harmonics

The derivation of the tunneling equations for harmonics of
the electron cyclotron frequency proceeds similarly as in the

ion case, except that for the case of theX-mode with
kz50, one uses the weakly relativistic plasma dispersion
functionFq(z), using textbook notation~Swanson, 1989!. In
this case, the dielectric tensor elements may be written as

Kxx.S2
Xn2le

n21

2nn!
mFn13/2~2mx/L ! , ~19!

iK xy.D2
Xn2le

n21

2nn!
mFn13/2~2mx/L ! , ~20!

whereX[vp
2/v2, m[mc2/kTe , andS andD are the cold

plasma terms,

S512n2X/~n221! ,

D52nX/~n221! .

From these, theX-mode dispersion relation may be written
in terms ofF(z)5zFq(z2q), which for n52 leads to Eq.
~11! with q57/2 andz5(z1g/l2)/k, while for n.2 one
finds

c~2n!2gc~2n22!1~21!nln
2n22z~c91c!

5~21!nln
2n22z@121/F#~c91c! , ~21!

where the variable changez02z5n'vx/c was used with

ln
2n225

S2nn!mn21

Xn2nn'
2n21

c

vL
,

g522S/~S1D ! ,

n'
25~S1D !~S2D !/S ,

z05H kq2g/l2
2 , n52,

kq, n.2,

z5z/k, n.2 ,

k5vLn' /cm ,

q5n1
3

2
,

wheren' is the index of refraction for the coldX-mode. As
in the ion case, an additional shift of the origin forn52 is
required to make the tunneling equation of standard form.
The tunneling factor is then given by

h5
pu11gu
2ln

2n22 . ~22!

It may be noted that 11g,0, and the dispersion relation is
of the form of Fig. 2 forn52.
As in the ion case, the amplitude transmission coefficient

is given byT5e2h, is the same from both sides, is indepen-
dent of the localized absorption terms on the right of Eqs.
~11! and ~21!, and there is no reflection on Branch 1, the
high-magnetic-field side~Swanson and Shvets, 1993a,
1993b!. On Branch 2, the low-field side, the reflection is
nonzero and depends strongly on absorption, as do the con-
version coefficients.

B. Tunneling equations from the Vlasov equations

As noted in Sec. I.B.4, there is a fundamental inconsis-
tency in deriving a dispersion relation with a uniform plasma
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assumed, then allowing for slow variations in the plasma
parameters, followed by a trivial inversion back to a differ-
ential equation. Here in Sec. II.B the resolution of the ambi-
guities noted there will be reviewed.
Two different approaches to solving this problem were

successful at about the same time. One method was to start
directly with the Vlasov-Maxwell set of equations and never
take a Fourier transform in the direction of the slow variation
~Swanson, 1981!; the other was based on a variational ap-
proach~Colestock and Kashuba, 1983!. As an example of the
changes from these procedures, the resonant term in the sec-
ond ion harmonic case is modified so that

l i

vpi
2 LF

2c2x
→2

d

dx

vpi
2 rLi

2 LF

4c2x

d

dx
, ~23!

whereF52zZ(z) ~note thatF→1 far from the resonant
layer!. It is clear from this change that the resonant term lies
between the two derivatives rather than lying in front of
them; so the differential equation will be more involved. The
appropriate wave equation for the second harmonic may be
written in either of two ways, such that after changing vari-
ables toz2z05vnAx/VA , wherenA5v/k'VA with k' be-
ing the cold plasma wave-vector component~a constant
here!, one finds

nA
4K~ZE18 !-12nA

2KS 132p2D ~ZE18 !81nA
2 S 131p2DE19

1S 132p2D ~11p2!E150 , ~24!

whereK5b i
1/2/4p, which is an equation for the wave field

E15Ex1 iEy , while

nA
4K~ZEy-!812nA

2KS 132p2D ~ZEy8!81nA
2 S 131p2DEy9

1S 132p2D ~11p2!Ey50 ~25!

is the appropriate equation forEy . The only difference is in
the order of the derivatives in the first term. IfZ @which is
the abbreviatedZ(z)# were taken to commute with the de-
rivative operator~as is assumed in the dispersion-relation
formulation!, then Eq.~24! would be equivalent to Eq.~25!,
and both would be equivalent to Eq.~11!. From this it is
apparent that the wave amplitudec in Eq. ~11! could be
taken to represent eitherE1 or Ey .
It might appear that, since the coefficients of the odd de-

rivative terms that result from expanding either of the equa-
tions above fall off asymptotically as 1/x, one could obtain
the same asymptotic form as Eq.~11! where the asymptotic
terms are on the left and the localized terms are on the right,
except that the localized terms on the right would be more
complicated. Such a simple separation does not work, how-
ever, sinceE- has a growing slow-wave component such
that the third derivative term is not localized. The separation
into asymptotic and local can be accomplished by letting
E15uc in Eq. ~24! and then choosingu(z) to eliminate the
third derivative term. This results in

c iv1l2~zc91ac81zc!1gc5g0c1g1c81g2c9 , ~26!

with a53/2, u5@Z(z)#23/4, and

g052
2

3
l2k2v1l2k~v82v2!/Z2gS v81

1

3
v2D

1
1

27
v41

2

3
v2v81

4

3
vv91v821v- ,

g15
3

2
l2S 11

4

3
kv/ZD2

2

3
gv1

8

27
v31

8

3
~v91vv8! ,

g25
2

3
~v22l2k2v !12v8 ,

where v(z)52u8/u5(3/4Z)(dZ/dz) and the prime de-
notes a derivative with respect toz. The corresponding equa-
tion for Ey is similar, yielding Eq.~26! again, except that
a51/2, u5@Z(z)#21/4, and

g0522l2k2v1l2k~v82v2!/Z2g~v813v2!13v4

26v2v823v821v- ,

g15
1

2
l2~114kv/Z!12gv14v928v3 ,

g2522l2k2v16~v81v2! ,

where v(z)52u8/u5(1/4Z)(dZ/dz). In both cases, the
terms on the right fall off asymptotically at least as fast as
1/z; so they represent localized effects, and the imaginary
parts represent absorption.
Generally speaking, the scattering coefficients are similar

for this more general case, where the transmission coeffi-
cients are still equal and independent of the absorption, and
there is still no reflection from the high-magnetic-field side.
Numerical studies show thatR2 differs little from the simpler
case, but is not identical, and the conversion coefficients dif-
fer more but not greatly; but broad parameter range compari-
sons are not available.
Similar expressions follow for the electron cyclotron sec-

ond harmonic, where the equations corresponding to Eqs.
~24! and~25! with the variable changez2z052vnXx/c are

4XnX
2~F7/2E28 !-18XL~F7/2E28 !81S~E29 1E2!50

~27!

and

4XnX
2~F7/2Ey-!818XL~F7/2Ey8!81S~Ey91Ey!50 ,

~28!

where F7/2 is an abbreviation forF7/2(z27/2) with
z5(z1g/l2)/k, z057k/22g/l2, and

R5122X ,

L5122X/3 ,

S5124X/3 ,

nX
25RL/S .

Equation~28! can then be reduced to the form of Eq.~26!
again, except thata51/2, g522S/R, u5@F7/2(z
2 7/2)]21/4, and
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g052
7

2
l2k2~F9/2/F7/221!1l2k~v82v2!/F7/2

2g~v813v2!13v426v2v823v821v- ,

g15
1

2
l2~114kv/F7/2!12gv14v928v3 ,

g252
7

2
l2k2~F9/2/F7/221!16~v81v2! ,

wherev(z)52u8/u5(1/4F7/2)(dF7/2/dz).
The asymptotic solutions of Eq.~26! with the right-hand

side set to zero are known~Stix and Swanson, 1983! and
have the peculiar property thatuR2u5u12exp(22h
1 ipa)u.1 for 12e2h/3,2a,31e22h/3. Fora Þ 0 or
a Þ 2, then, one must include the terms on the right for any
physically meaningful result. When the full equations are
solved, the results are close, but not equivalent, to those ob-
tained from the tunneling equations from dispersion rela-
tions.

C. Order-reduction methods

There have been a variety of methods used to obtain nu-
merical solutions to obtain the scattering coefficients and the
wave fields with absorption included, among them being di-
rect numerical integration~Colestock and Kashuba, 1983;
Imre and Weitzner, 1985!, finite element methods~Hellsten
et al., 1985!, finite different methods~Jaegeret al., 1988!,
and order-reduction methods. Order-reduction techniques re-
duce the fourth-order equation of Eq.~8! to a related second-
order equation. Accomplished first without absorption
~Cairns and Lashmore-Davies, 1983!, later efforts with ab-
sorption included have been investigated using phase-space
methods ~Ye and Kaufman, 1988! and other techniques
~Fuchs and Bers, 1988; Kayet al., 1988; Lashmore-Davies
et al., 1988; Chow et al., 1990!. In general, all order-
reduction methods make some approximations that render
their results less accurate than those from the higher-order
methods, but faster, and in some cases analytic results have
been obtained. Since this review is primarily concerned with
the connection between absorption and emission, the focus
will be narrowed to the Green’s-function method~Swanson,
1978, 1980!, where the response to an emission source is
treated by finding the Green’s function for the appropriate
tunneling equation with absorption, and although more com-
plicated with higher-order equations, this technique has
yielded a number of exact analytic results.

D. Five-branch tunneling equations

Most mode conversion problems are three-branch prob-
lems, where two of the branches are identified as the~rela-
tively! fast wave on either side of the resonance layer, and
the slow wave. The two cases are shown in Fig. 1 and Fig. 2,
where, in each case, Branch 1 is labeled as the branch on
which an incoming wave sees a resonance first, while Branch
2 sees a cutoff first. Branch 3 is the Bernstein mode in either
case. At the two-ion hybrid resonance, the dispersion relation
could resemble either Fig. 1 or Fig. 2, depending on the

charge-to-mass ratio of the majority and minority species;
but this topic is beyond the scope of this review.
When propagation is not exactly normal to the magnetic

field, it is possible for anX-mode~or quasi-X-mode, since a
pureX-mode hasnz50) and anO-mode~or quasi-O-mode!
to coexist. When the full dispersion relation is examined, it is
apparent that they are coupled through the intermediate
Bernstein mode. Examples of these kinds of dispersion rela-
tions are shown in Figs. 4 and 5, where Fig. 4 is character-
istic of an X-mode ~Branches 1 and 2! and anO-mode
~Branches 3 and 4! near the second electron cyclotron har-
monic for X,1/2, while Fig. 5 has 3/4,X,1, the case in
which the wave propagates above the upper hybrid reso-
nance, and is not accessible from the low-density region.
These problems are five-branch problems, since there are
five propagating branches, including the twoX-mode
branches on either side, the twoO-mode branches on either
side, and again the Bernstein mode. WhenX increases be-
yond 1, theO-mode ceases to propagate, and one again has a
three-branch problem. Due to relativistic effects, these
boundaries depend somewhat on the temperature, but these

FIG. 4. Form of dispersion relation for the five-branch case with
n52, X50.3, nz

250.1, l252; sok0
25nO

2 /nX
251.59.

FIG. 5. Form of dispersion relation for the five-branch case with
n52, X50.91, nz

250.12, l251.5; so k0
250.051. Inset is310

magnification of coupling region.
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subtleties shall be ignored, including only weakly relativistic
effects.
Although higher harmonics may lead to higher-order dif-

ferential equations, all mode conversion problems may be
classified as either three-branch or five-branch problems,
since the fast-wave branches are cold plasma waves, and
there can be only two kinds of fast waves from the cold
plasma dispersion relation. The addition of finite temperature
adds the Bernstein wave, but there is no known coupling to
any other warm plasma wave which leads to five or more
propagating branches. Wheneverl i or le are not small, one
may keep higher-order terms, leading to higher-order differ-
ential equations, but there are still either three or five propa-
gating branches. Since the tunneling equations used to de-
scribe these cases are of order 2n or higher for a three-
branch problem at thenth harmonic, and of order 2n12 or
higher for a corresponding five-branch problem, all other so-
lutions are nonpropagating.

1. X-mode–O-mode coupling for n52

At the second electron harmonic withnz Þ 0, the dominant
terms in the hot plasma dispersion relation are, to lowest
order inl5 1

2k'
2rLe

2 ,

K15S1
2XLF

m~x2x0!

k'
2c2

v2 , ~29!

K252 iD2
2iXLF

m~x2x0!

k'
2c2

v2 , ~30!

K35P1O ~l2! , ~31!

where x05qL/m, F5zF q(z2q,a), z2q52mx/L with
q57/2, anda5 1

2mnz
2 ; the cold plasma terms areP512X

andD522X/3. The neglected term inK3 relates to another
weak mode conversion of theO-mode to a different slow
wave which is not a Bernstein wave and occurs at a different
location and has no coupling to theX-mode. This process
can be treated as a pair of separate three-branch problems
without absorption, but the effects of absorption on the mu-
tual coupling are not then properly described. Using these
dielectric tensor components in the hot plasma dispersion
relation and lettingk2→2d2/dx2 lead to the five-branch
tunneling equation

cv i1l2z@c iv1~11k0
2!c91k0

2c#1g2c91g0c

5h~z!@c iv1~11k0
2!c91k0

2c# , ~32!

where the variable changez02z5vnX(x2x0)/c has been
used, and the constants are given by~Hu and Swanson,
1993a!

l25mS/2XlnX
3 , ~33!

k0
25

P~R2nz
2!~L2nz

2!

SnX
4 5

nO
2

nX
2 , ~34!

g05
~nz

22P22L !P~R2nz2!~L2nz
2!

SnX
6 , ~35!

g25$2PS~L2nz
2!1~nz

22P22L !

3@RL1PS2nz
2~S1P!#%/SnX

4 , ~36!

h~z!5l2~z2z0!~121/F ! , ~37!

z05~P12L2nz
2!/nX

2l2 , ~38!

z5~z2z0!/k , ~39!

k5nXl /m , ~40!

with l5vL/c, the normalized scale length, andnX
2 andnO

2

are the roots of the cold plasma dispersion relation,

Sn'
42@RL1PS2nz

2~S1P!#n'
2

1P~R2nz
2!~L2nz

2!50 , ~41!

which approachRL/S andP, respectively, asnz→0.
The exact tunneling parameters for this case are

hX5pu~12g01g2!/2l2~12k0
2!u , ~42!

hO5pu~g02k0
2g21k0

6!/2l2k0~12k0
2!u . ~43!

2. X-mode–O-mode coupling for n53

Near the third electron harmonic, the resonant terms are of
orderle

2 ; so, keeping resonant terms of that order and cold
plasma terms, the dielectric tensor terms are

K15S1
243XLF

16m2~x2x0!

k'
4c4

v4 , ~44!

K252 iD2
243iXLF

16m2~x2x0!

k'
4c4

v4 , ~45!

K35P1O ~l3! , ~46!

where, in this case,q59/2 and the cold terms are

R5123X/25S1D ,

L5123X/45S2D ,

S5129X/8 ,

D523X/8 .

Changing variables as before, one can convert the hot plasma
dispersion relation into the differential equation

cv i i i 1c6c
v i2l4z@c iv1~11k0

2!c91k0
2c#1g2c91g0c

5h~z!@c iv1~11k0
2!c91k0

2c# , ~47!

where

l45
16m2S

243XlnX
5 , ~48!

k0
25

P~R2nz
2!~L2nz

2!

Snx
4 5

nO
2

nX
2 , ~49!

g052
2P2~R2nz

2!~L2nz
2!2

Snx
8 , ~50!

g252
2P~L2nz

2!@RL1PS2nz
2~S1P!#

SnX
6 , ~51!
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h~z!52l4~z2z0!~121/F ! , ~52!

z0522P~L2nz
2!/nX

4l2 , ~53!

with z5(z2z0)/k andk5nXl /m as before.
The exact tunneling parameters for this case are

hX5pU12g01g22g6

2l4~12k0
2!

U , ~54!

hO5pUg02k0
2g21k0

6~k0
22g6!

2l4k0~12k0
2!

U . ~55!

E. Solutions and scattering parameters

For cases without absorption, exact solutions can be found
in terms of quadratures, from which a number of analytic
results can be obtained. When absorption is included, some
analytic results are still possible; but some of the scattering
coefficients require numerical analysis, and a variety of nu-
merical schemes have been used by various authors. In Secs.
II.E.1 and II.E.2, both the exact solutions and their asymp-
totic forms will be given. The effects of absorption on these
solutions will be included, along with some empirical results
for pertinent scattering parameters which accurately summa-
rize the numerical work and prepare the way for the emission
analysis.

1. Exact analytical solutions and their classification

As an example of the exact solutions that may be found
for each case without absorption, the standard tunneling
equation is examined first. The differential equation is Eq.
~8!, and a solution in the form of a Laplace integral,

f ~z!5E
G
epzf̃ ~p!dp , ~56!

is assumed, which, when inserted into the differential equa-
tion, results in~after some integrations by parts!

E
G
$p4 f̃2l2@~p211! f̃ 812p f̃#1g f̃ %epzdp

1l2~p211!epzf̃ ~p!uG50 , ~57!

where four independent contours,G, define the four solu-
tions. This equation is satisfied iff̃ (p) satisfies

l2~p211! f̃ 85~p422l2p1g! f̃ ,

and if the end points of the contours are chosen so that the
final expression of Eq.~57! vanishes at the end points. This
is a first-order differential equation with solutions

f̃ ~p!5~p211!21expS p3

3l2 2
p

l2 1
11g

l2 tan21pD .

The solution of the original equation is then given by

f ~z!5E
G
expF p33l2 1S z2

1

l2D p1
11g

l2 tan21pG dp

p211
.

~58!

This expression is equivalent to Eq.~9! with the variable
changep5tanu. There is a branch cut in thep plane be-

tweenp56 i , but no branch cut in theu plane. Since the
emission due to a source will be treated later via the use of a
Green’s function, which is constructed from adjoint solu-
tions, the solutions of the adjoint equation,

Fiv1l2~zF912F81zF!1gF50 , ~59!

are similar, given by

F~z!5E
G
expF p33l2 1S z2

1

l2D p1
11g

l2 tan21pGdp . ~60!

General techniques for solving all finite order tunneling
equations whose coefficients are composed of constant and
linear terms extend these results to the higher-order harmon-
ics and to five-branch problems~Gambier and Schmitt, 1983;
Gambier and Swanson, 1985!.

2. Asymptotics and scattering parameters

When the method of steepest descents is used on the exact
solutions, each saddle point corresponds to one of the char-
acteristic solutions. For the slow or electrostatic waves, the
saddle-point method gives the asymptotic forms for large
uzu as

s6~z!5
Ap

l3/2z5/4
expF6 i S 23 lz3/21

p

4 D G , z→` ,

s1~z!5
Ap

l3/2uzu5/4
expS 23 luzu3/2D , z→2` ,

s2~z!5
iAp

l3/2uzu5/4
expS 2

2

3
luzu3/2D , z→2` .

For the fast-wave solutions, the steepest-descent method is
less satisfactory, but with an expansion about the points
p56 i , the Hankel integral gives

f15
p ie2h/2

G~11 ih/p!
expF iz1

ih

p
lnS 2z2

4

l2 1
h

p
1 i D2

4i

3l2G ,
~61!

and f25 f1* . The adjoint solutions may be obtained from the
relation F5 f 91 f , which is exact for all solutions. These,
along with the slow-wave solutions, represent the indepen-
dent wave solutions, but none individually satisfy the condi-
tions for incoming and outgoing waves along with causality.
By examining the appropriate contours,G, which must be
topologically equivalent for bothz→` and z→2`, it is
possible to establish four independent solutions for the case
11g.0, as shown in Table I where«[12e22h. Solution
f 1 corresponds to an incident fast wave (f2 on the right! on
Branch 1;f 2 corresponds to an incident fast wave (f1 on the

TABLE I. Asymptotic solutions forf n when 11g.0.

2`←z fn z→`

f2 f 1 eh f22«ehs2

2 f11«( f21ehs2) f 2 2e2h f11«e2hs2

ehs21 f2 f 3 eh f11e2hs22ehs1

2e2hs11 f2 f 4 e2hs2
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left! on Branch 2;f 3 corresponds to an incident slow wave
(s1) on Branch 3; andf 4 corresponds to an exponentially
growing solution (s1) for z,0. The expressions on the right
indicate the asymptotic forms asz→`, and the expressions
on the left indicate the asymptotic forms asz→2`.
For the case 11g,0, the corresponding solutions are

given in Table II, where, again,f1 corresponds to an incident
fast wave~f1 on the left! on Branch 1;f2 corresponds to an
incident fast wave~f2 on the right! on Branch 2;f3 corre-
sponds to an incident slow wave~s2! on Branch 3; andf4
corresponds to an exponentially growing solution~s1! as
z→2`.
In each case, there is no reflection forf 1 , soR150; the

amplitude reflection coefficient for a fast wave incident on
Branch 2 isR252«; and the transmission coefficient for
both cases isT15T25e2h. Whatever power is neither trans-
mitted nor reflected is converted to Branch 3, so
uC13u2512T1

25« and uC23u25T2
2(12T2

2)5«e22h. For an
incident slow wave, there is no transmission, since the slow
wave propagates only on one side, and the reflection coeffi-
cient isR352e22h; and, from reciprocity, the power frac-
tion converted from Branch 1 or 2 to Branch 3 is the same in
either direction, souC31u25uC13u2 anduC32u25uC23u2. These
expressions comprise the scattering coefficients and are exact
without absorption.

3. Conservation laws

Without absorption, every tunneling equation has an exact
conservation law, which, for the standard fourth-order tun-
neling equation, Eq.~8!, takes the form

P~ f !5 f- f * 91 f- f *2 f 9 f * 82g f 8 f *2c.c. , ~62!

where f is any of the solutions, anddP/dz50 follows from
the differential equation. From this, one finds for the asymp-
totic solutions that

P~s6!

2p il2 561,
P~ f6!

2p il2 57« , ~63!

so that, for example, the connection formula forf 2 from
Table I leads to the relation

P~ f1!1R2
2P~ f2!5T2

2P~ f1!1C23
2 P~s2! , ~64!

with R252«, T25e2h, andC2352e2h«1/2, from which it
follows that everything not transmitted or reflected is con-
verted.
For general harmonics, similar conservation laws exist, so

that for Eq.~18! without absorption, the corresponding con-
served quantity is~Shvets, 1992!

Pn5F* f ~2n21!1F8 f * ~2n22!1 (
l50

n22

~2 ! l f ~2n2 l23!Hn*
~ l !

1~2 !nRn2c.c. , ~65!

where

Hn5F92gnF5 f iv1~12gn! f 92gnf ,

Rn5 f ~n!F* ~n21!1 f * ~n21!@ f ~n22!2gnf
~n!# ,

andF5 f 91 f is the adjoint solution.
Similar conservation laws may be found for the five-

branch problems; for example, for Eq.~32!, the conserved
quantity is

P5F* f v1 f * iv~F82 f v!1@~11k0
2!g02k0

2g2# f * 8 f

1 f-~g2f 91g0f !2k0
2f- f 92g0f * 9 f 82 c.c. , ~66!

whereF5 f iv1(11k0
2) f 91k0

2f is the adjoint solution.
The conservation laws above illustrate the fact that wave

energy is conserved without absorption. The effects of ab-
sorption on these conservation laws are discussed in Sec.
III.D; their relation to emission, in Sec. IV.B.2.

III. EFFECTS OF LOCALIZED ABSORPTION

There are several ways to include absorption numerically,
from a variety of numerical schemes for different integration
of the governing differential equation to a variety of approxi-
mation schemes, but the method described here will be use-
ful in both absorption and emission, an advantage not easily
shared with the other methods. This method treats the local-
ized absorption term as if it were a localized source, and
then, through the use of the Green’s function for the left-
hand side, the differential equation is converted into an inte-
gral equation whose kernel is known analytically.

A. Physical origins of localized absorption and its impact
on scattering parameters

While the mathematical descriptions of the absorption
functions have been presented above, it should be noted that
the basic physics of the absorption is essentially the same for
both electrons and ions and independent of harmonic num-
ber. In every case, the absorption is due to an extension of
Landau damping to the cyclotron harmonics, wherein an ob-
server rotating at the wave frequency would observe the
damping to be Landau damping. This means that on some
time scale which is long compared to the wave period, some
collisions are required, since otherwise there is no wave en-
ergy lost to the plasma, only phase mixing. The difference in
the damping between the nonrelativistic ions and the weakly
relativistic electrons is that, for ions, the width of the reso-
nance region is due to the Doppler shifts due to the finite
value of kz , while, for electrons, the width is due to the
actual shifts of the resonance due to the relativistic mass
increase. While there is a corresponding Doppler broadening
for electrons with finitekz , described by the weakly relativ-
istic plasma dispersion functionF q(z,a) with a5mnz

2/2 in-
stead of theFq(z) with a50, the relativistic spread usually
dominates the Doppler spread and the corresponding absorp-
tion.

TABLE II. Asymptotic solutions forf n when 11g,0.

2`←z fn z→`

eh f1 f 1 f11«ehs1

e2h f22«e2hs2 f 2 f22« f11«e2hs1

e2hs21eh f2 f 3 f11ehs22e2hs1

2ehs11eh f1 f 4 ehs1
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The effects of this absorption are quite different on differ-
ent scattering parameters. As discussed in the following sec-
tions, absorption has no effect whatsoever on certain scatter-
ing parameters, extremely weak effects on one parameter in
five-branch problems, and relatively strong effects on other
parameters. In particular, all of the transmission coefficients
in both the three- and five-branch problems are unaffected by
absorption, as are the reflection coefficients from the high-
field side. In five-branch problems, one conversion coeffi-
cient from one side between theX-mode and theO-mode is
zero, independent of absorption, while from the other side,
the coupling is nonzero but typically weak, and nearly inde-
pendent of absorption. The low-field-side reflection coeffi-
cients and all conversion coefficients between the slow and
fast waves are generally strongly affected by absorption,
eventually vanishing with sufficiently strong absorption.
These will be described more in detail in the subsequent
sections.

B. The integral equation method

Because the tunneling equations, once the localized ab-
sorption terms have been separated out and placed on the
right-hand side, have only constant plus linear coefficients
and admit analytic solutions, it is also straightforward to find
the Green’s function for the left-hand side analytically and
convert the differential equation into an integral equation. As
an example, writing Eq.~11! as

c iv1l2zc91~l2z1g!c5g~z,c! , ~67!

whereg(z,c)→0 at least as fast asuzu21 as uzu→`, allows
the solution to be written in terms of the Green’s function so
that

c5E
2`

`

G~z,y!g@y,c~y!#dy

~68!
5E

2`

`

G~z,y!@c iv1l2yc91~l2y1g!c#dy

5E
2`

`

@Giv1l2~yG912G81yG!1gG#cdy

1boundary conditions1 jump conditions , ~69!

where the first step was by substitution and the remainder
was by integration by parts after breakingG(z,y) into two
separate elements, one fory.z and another fory,z. The
radiating boundary condition at infinity is

$c-G2c9G81c8~G91l2yG!2c@G-1l2yG8

1l2G#%2`
` 50 . ~70!

The jump conditions at the discontinuity, wherey5z, are

G~z,z1!2G~z,z2!50 , ~71!

G8~z,z1!2G8~z,z2!50 , ~72!

G9~z,z1!2G9~z,z2!50 , ~73!

G-~z,z1!2G-~z,z2!51 . ~74!

If the Green’s function is then constructed from a linear com-
bination of the adjoint solutions, defined by Eq.~59!, which

sets the integrand of Eq.~69! to zero, and that satisfy the
jump conditions, thenc(z) is a solution of the original prob-
lem ~Swanson, 1978!.
The integral equation which corresponds to Eq.~67! with

11g.0 may be written as

ck~z!5 f k~z!1 f 2~z!I 1k
2 1« f 4~z!I 0k

2 1 f 1~z!I 2k
1 1« f 0~z!I 4k

1 ,
~75!

where, withg(z,c)5h(z)C(z), C5c91c,

I jk
25

1

2p il2«E2`

z

F j~y!h~y!Ck~y!dy , ~76!

I jk
15

1

2p il2«Ez
`

F j~y!h~y!Ck~y!dy , ~77!

whereh(z)5l2k@z11/Z(z)# for ions andf 05 f 32 f 1 . This
is valid for k51,2,3, the three physically meaningful solu-
tions; but due to a divergent integral, this must be modified
for k54.
The corresponding result for weakly relativistic electrons

where 11g,0 ~see Table II! is

ck~z!5 f k~z!1 f 1~z!I 2k
2 1« f 4~z!I 0k

2 1 f 2~z!I 1k
1 1« f 0~z!I 4k

1 ,
~78!

where the sink term for electrons ish(z)5l2k@z11/
F7/2(z27/2)], and f 05e22h f 32 f 2 . In each case, the solu-
tion f 0 ~which is not an independent solution! is exponen-
tially decaying ass2 asz→2`, so that the product of an
exponentially growing (f 4 or F4) and an exponentially de-
caying term is bounded. Similar growing and decaying solu-
tions occur as products in increasing numbers in all of the
higher-order integral equations for the higher harmonics, but
the three fundamental propagating solutions remain substan-
tially the same.

1. Numerical solution of the integral equation

Once cast into the form of an integral equation, the
method of substitution generally converges over a relatively
broad range of absorption strengths, characterized by the pa-
rameterk. The first step is to obtain accurate values of
f k(z) andFk(z) over a wide enough range ofz that the sink
function is small at the end points and that asymptotic ap-
proximations are valid near the end points. This is accom-
plished by starting at either end with a contour integral
evaluation off k(zm) andFk(zm), k51,2,3,4 and their first
three derivatives. Then any numerical integrator may be used
to integrate to the other limit, except that care must be taken
to ensure that accuracy is maintained. This is accomplished
by checking at each step the self-consistency of the solutions
by the use of the identities,

«F4f 02«F0f 41F2f 12F1f 250 , ~79!

«F48 f 02«F08 f 41F28 f 12F18 f 250 , ~80!

«F49 f 02«F09 f 41F29 f 12F19 f 250 , ~81!

«F4- f 02«F0- f 41F2- f 12F1- f 252p il2« , ~82!

which derive from the jump conditions. By use of the iden-
tity F5 f 91 f , the last two identities may be recast as
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« f 48 f 02« f 08 f 41 f 28 f 12 f 18 f 252
2p il2«

~11g!
, ~83!

«F48F02«F08F41F28F12F18F252p il2« . ~84!

The corresponding identities for 11g,0 are

«F4f 02«F0f 42F2f 11F1f 250 , ~85!

«F48 f 02«F08 f 42F28 f 11F18 f 250 , ~86!

« f 48 f 02« f 08 f 42 f 28 f 11 f 18 f 252
2p il2«

~11g!
, ~87!

«F48F02«F08F42F28F11F18F252p il2« . ~88!

Whenever serious discrepancies arise among these identities,
the functions are redefined by evaluating the contour inte-
grals at the failure point, and the integration is continued
with as many restarts as necessary. Typically, restarts are
necessary only on the side with the growing solutions; but in
higher-order equations, there are growing solutions on both
sides, so more restarts with the numerical contour integrals
are required. Generally, since the topology of the contour
integrals changes several times over the entire range ofz,
and is invariably different forz large and positive from that
for z large and negative, it is wise to arrange to restart judi-
ciously at least once so that the intermediate range will re-
quire no restart.
The integral equation then uses one of these ‘‘exact’’ so-

lutions, f k , as the trial function in the integrals for the first
step to obtain the first estimate forck , and then continues by
iteration with each successiveck until the scattering coeffi-
cients~which are obtained from the integrals on each itera-
tion! no longer change at the accuracy desired. If the func-
tions were self-adjoint, convergence would be guaranteed,
but if the sink distribution is too broad, the method eventu-
ally fails to converge.

2. Scattering parameters in terms of I jk integrals

The asymptotic solutions forc may be determined di-
rectly from the integral equation by using the asymptotic
forms of the exact expressions and the limiting values of the
various integrals, each of which is of the form

I jk5
1

2p il2«E2`

`

F j~y!h~y!Ck~y!dy , ~89!

where the semi-infinite integrals have been replaced by infi-
nite integrals. For numerical accuracy, it is more efficient to
break the infinite integrals into three pieces, such that

I jk5I jk
0 1D jk

11D jk
2 , ~90!

where

I jk
0 5

1

2p il2«E2zm

zm
F j~y!h~y!Ck~y!dy , ~91!

and theD jk
6 are semi-infinite integrals evaluated analytically

from the leading terms of the asymptotic forms. All of the
leading terms in theD jk

6 reduce to a constant times one of the
two integrals:

Cf5
l2k2

4p il2«Ezm
`F1F2

z
dz5

hk2

4p izm
2 , ~92!

Cs5
l2k2

4p il2«Ezm
`S1S2

z
dz5

lk2

2izm
1/2 . ~93!

For the electron case, these correction terms must be multi-
plied by 2q57. The end points,6zm , must be chosen to
makeCs small. The scattering coefficients including these
integrals which depend on absorption are given in Table III
for the ion case and in Table IV for the electron case.
For a five-branch case, the corresponding scattering coef-

TABLE IV. Amplitude scattering parameters for the electron case withn52.

Transmission Reflection Conversion

T15e2hF11
I21
0

~12Cf !
G R15

e22hI 11
0

(11Cf)
C135

«1/2(11e22hI 31
0 2Cf)

(12«Cs)

T25e2hF11
I21
0

~11Cf !
G R252

«(11Cf)2I 22
0

(12Cf)
C235

e2h«1/2(11I 32
0 1Cf)

(12«Cs)

T350
R352

e22h(12«I 33
0 1«Cs)

(12«Cs)

C315C13, C325C23

TABLE III. Amplitude scattering parameters for the ion case withn52.

Transmission Reflection Conversion

T15e2hF11
I21
0

~11Cf !
G R15

e22hI 11
0

(11Cf)
C1352

«1/2(12e22hI 31
0 2Cf)

(11«Cs)

T25e2hF11
I12
0

~11Cf !
G R252

«(11Cf)1I 22
0

(12Cf)
C2352

e2h«1/2(11I 32
0 1Cf)

(11«Cs)

T350
R352

e22h(11«I 33
0 2«Cs)

(11«Cs)

C315C31, C325C23

849D. G. Swanson: Cyclotron absorption and emission

Rev. Mod. Phys., Vol. 67, No. 4, October 1995



ficients in terms of theI jk integrals are given in Table V for
the second electron harmonic case, where in this case the
integrals are defined by

I jk5
1

2p il4«X«O
E

2`

`

F j~y!h~y!Ck~y!dy . ~94!

3. Analytic evaluation of certain scattering parameters

In some of these cases, it is possible to find the values of
the I jk without solving the integral equation at all. In certain
cases, it is possible to close the contour either above or be-
low. In a few cases, the contour may be closed, and, using
the analytic properties of either theZ(z) or theFq(z) func-
tions, one may find there are no poles in the pertinent half
plane, so thatI jk50, and absorption has no effect whatever
on the pertinent scattering parameter. For the three-branch
problems, this occurs for the integralsI 115I 125I 2150, so
that both transmission coefficients are independent of ab-
sorption ~Swanson and Shvets, 1993a!. The other result is
that the reflection coefficient from the high-field side is al-
ways zero. The corresponding results for the five-branch case
~Ng and Swanson, 1994b! are that I 115I 125I 215I 335I 34
5I 435I 315I 135I 325I 2350, so that again the transmission
coefficients for both theX-mode and theO-mode are inde-
pendent of absorption, and those coefficients that are zero
without absorption remain zero.
The transmission coefficient does depend on the cold

plasma index of refraction,n' , which depends on the value
of nz in the ion case; otherwise, the absorption processhas
no effect whatsoever on the transmission coefficient. This
result is counterintuitive, since our intuition has been based

until recently on estimates of the transmission obtained from
integrating the imaginary part ofk across an absorption
layer, so that

t52E Im@k~x!#dx , ~95!

where the integral is across the entire layer. In spite of the
fact that the conditions for validity of this simplistic esti-
mate, namely, that (1/k2)udk/dxu!1, are violated in the ab-
sorption layer, the answer is exact. The difficulty is in the
interpretation, since, from the more nearly exact dispersion
relations which include finite Larmor orbit terms, the imagi-
nary part ofk(x) arises fromtwosources, namely, absorption
and tunneling. Ironically, the contribution from absorption
cancels identically, and only the part due to tunneling con-
tributes. This changes the entire paradigm of resonance ab-
sorption, especially as it affects electron cyclotron emission.
In spite of the fact that the validity of the eikonal method

is in grave doubt, it is remarkable that it still gives the ex-
actly correct answer. If, for example, one takes the dispersion
relation of Eq.~6! with 1.11g.0 ~typical for the ion sec-
ond harmonic!, then k is complex in the tunneling layer,
z2<z<z1 wherez652(16A11g), so that the integral is
~Swanson and Shvets, 1993b!

h5E
z2

z1

Im@k~z!#dz ~96!

5
p~11g!

2l2 , ~97!

andt52h. This integral is exact, and the result is precisely
the same as those obtained from both the tunneling equation
and the usual second-order equations with absorption in-

TABLE V. Scattering parameters for a five-branch electron case withn52 and X,1/2, where
gX5exp(22hX) andgO5exp(22hO). For 3/4,X,1, theX andO subscripts must be interchanged.

Transmission Reflection Conversion

uT1u25gXu12gXgO«OI 21u2 uR1u25gX
4gO

2 «O
2 uI 11u2 uC13u25gX

2gO
3 «X«OuI 31u2

uC14u25«X«Ou11gXgOI 41u2

uC15u25gO«Xu12gO«OI 51u2

uT2u25gXu12gXgO«OI 12u2 uR2u25u«X2gXgO«OI 22u2 uC23u25gXgO
3 «X«OuI 32u2

uC24u25gX«X«Ou12gOI 42u2

uC25u25gXgO«Xu11«OI 52u2

uT3u25gOu12gO«XI 43u2 uR3u25gO
4 «O

2 uI 33u2 uC31u25uC13u2

uC32u25uC23u2

uC35u25«Ou12gO«XI 53u2

uT4u25gOu12gO«XI 34u2 uR4u25ugX«O2gO«XI 44u2 uC41u25uC14u2

uC42u25C24u2

uC45u25gO«OugX1«XI 54u2

uT5u250 uR5u25ugXgO2«X«OI 55u2 uC51u25uC13u2

uC52u25uC13u2

uC53u25uC35u2

uC54u25uC45u2
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cluded but tunneling ignored. Furthermore, if absorption is
included in the dispersion relation, so that Eq.~6! is modified
to

k42Fl2z1g

F
2gGk21 l2z1g

F
50 , ~98!

where now absorption is included throughF52zZ(z), with
z5(z02z)/k, then the result isprecisely the same for any
k, except that now the range of the integral is infinite, since
there is an imaginary part ofk for any z unlessk50 ~the
case without absorption!. The integral is now a complicated
contour integral, but, both analytically~Ng, 1994! and nu-
merically, the result is independent ofk and hence indepen-
dent of absorption.

4. Numerical evaluation of the other scattering parameters

From early numerical solutions of the integral equation for
the ion case, it was conjectured that the nonzero reflection
coefficient from the low-field side was equivalent to

R25R20exp~2aRik
2! , ~99!

whereR2052« is the value without absorption andaRi51
~Swanson, 1985!. More accurate computations have shown
thataRi<1, but the deviations from unity are very small~Ng
and Swanson, 1994a!. This higher accuracy was obtained
when it was noted that the integral inI 22 could be closed, but
that there were an infinite number of poles. Through the use
of asymptotic expressions for theFk(z), Ck(z), andh(z),
the integrals could be evaluated, leading to a power series in
k which is convergent~for the five-branch problem, the con-
vergence of the series depend on the value ofk0). In each
case the reflection coefficientR2 can be rapidly obtained this
way with high accuracy. Numerical results for the conversion
coefficients are obtained from solving the integral equation
iteratively, as the contours cannot be closed for these inte-
grals. For the ion case withn52, empirical formulas for the
conversion coefficients and the slow-wave reflection coeffi-
cient may be represented by

uC13u5uC130uexp~2aC1k
2! , ~100!

uC23u5uC230uexp~2aC2k
2! , ~101!

uR3u5uR30uexp~2aR3k
2! , ~102!

where againC130 andC230 are the values without absorption,
and

aC15e25h/4/18.8h , ~103!

ac25e2h/4/1.35Ah , ~104!

aR35e2h/4/1.22h0.65 . ~105!

These empirical formulas give the conversion coefficients
within 1% over a broad range of parameters, andR3 within
5%. These expressions indicate that, for thermal plasmas,
both the reflection and the conversion coefficients are Gauss-
ian in k, and that the conversion coefficient for waves from
the low-field side is uniformly smaller than the conversion
coefficient from the high-field side, and falls faster with in-
creasing absorption.

For the weakly relativistic electron case, the nonzero re-
flection coefficient may be expressed in a similar form, such
that

R25R20exp@2~2n13!aRek
2# , ~106!

wheren is the harmonic number. In this case one still finds
aRe<1, but the deviations from unity are not small. The
reflection coefficient falls much faster with increasingk
~where, in the electron case,k depends mostly on tempera-
ture, while in the ion case, the strongest dependence is on
kz) due to the weakly relativistic factor 2q52n13; but as
aRe falls significantly below unity, this effect is lessened.
An accurate empirical formula foraRe for n52 ~Ng and

Swanson, 1994a!, which was obtained from the series
method, may be expressed by

aRe512A@12exp~2ak2!# , ~107!

with

A52.14 exp~5.6X2.3!/a , ~108!

a5219.4626.05X124.1/~122X!0.1 . ~109!

A corresponding formula for the conversion coefficient
from the high-field side is given by

uC13u25« exp~214aC1k
2! , ~110!

where

aC15A1~X!exp@2a1~X!lTe#

1A2~X!exp@2a2~X!lTe# , ~111!

A1~X!5
0.217847

X0.70171461
0.0969301

~122X!1.4182316
, ~112!

A2~X!5
1.1393939

X0.67166 1
0.4479536

~122X!1.0896186
, ~113!

a1~X!50.086712820.0056594X20.0087522X2

1
0.0898992

~122X!0.013258
, ~114!

a2~X!520.045343420.0204839X10.002012X2

1
0.069961

~122X!0.0340873
, ~115!

whereTe is in KeV. ~Caution: these formulas should not be
extrapolated to largelTe , since eventually they indicate a
rising value ofuC13u2, which is not physical.! The conversion
coefficient uC23u2 is typically small compared to either
uC13u2 or uR2u2, so that it affects absorption little and, as will
be discussed later, emission not at all.
An even more accurate empirical formula forn53 ~Swan-

son and Ng, 1995! is

aRe5121.926@12exp~2ak2!#/a , ~116!

with

a~X,l !541@b~ l !X1c~ l !X2#expF2
0.01389

~121.5X!G , ~117!

b~ l !50.1272302.4/l , ~118!
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c~ l !50.15812472.1/l110200/l 2 , ~119!

wherel5vL/c is the normalized scale length. These formu-
las give the reflection coefficient to better than 1% accuracy
over the entire range where the reflection coefficient is 1% or
greater. There are no correspondingly good empirical formu-
las for the conversion coefficients available. These are not
necessary to calculate the total emission, as will be discussed
later, but they are necessary to calculate the emission profile
function. The conversion coefficients are Gaussian ink,
however, and although the coefficients are not simple, it is
true also for the electrons thatuC13u.uC23u uniformly.
Accurate expressions for some of the nonzero scattering

coefficients in the five-branch problem have also been ob-
tained using the power-series method~Ng and Swanson,
1994b!. Some results for the limiting behavior of two of the
scattering coefficients indicate that

uR2u2.uR20u2exp@24qk0
2k2#, k0,1/3 , ~120!

uC14u2.uC140u2exp@2q~12k0!
2k2#, k0.1/3 , ~121!

where the limits onk0 determine the range over which the
power series ink converges, so are limits on the method, not
on the expressions, which show similar tendencies for any
0,k0,1. The numerically observed weak dependence of
C14 on absorption is at least in part due to the fact that most
cases havek0 close to 1, so that the exponential factor is
nearly always small.

5. Power absorption fractions

The power absorbed on each branch is relatively easily
given in terms of the scattering parameters, such that

A1512T22uC13u2 , ~122!

A2512T22uR2u22uC23u2 , ~123!

A3512uR3u22uC13u22uC23u2 , ~124!

with T5e2h. These relations can be derived either from the
requirement that whatever is not transmitted, reflected, or

converted be absorbed, or from the conservation laws of Sec.
II.E.3. When absorption is included in these expressions~us-
ingc andC instead off andF!, dP/dzÞ 0, which indicates
that the power on the various propagating branches is not
conserved. The balance is the absorbed fraction and can be
obtained from the asymptotic forms ofdP/dz.
For the five-branch problems, the corresponding expres-

sions are

A1512TX
22uC14u22uC15u2 , ~125!

A2512TX
22uR2u22uC24u22uC25u2 , ~126!

A3512TO
2 2uC35u2 , ~127!

A4512TO
2 2uR4u22uC41u22uC45u2 , ~128!

A5512uR5u22uC51u22uC52u22uC53u22uC54u2 , ~129!

where TX5exp(2hX) and TO5exp(2hO). In each case
uCjku5uCkju and, except for the transmission coefficients, all
are Gaussian ink with varying coefficients. The coefficient
C41 is nonzero and extremely weakly dependent on absorp-
tion relative to the rest.

C. Reciprocity relations

Fundamental reciprocity between certain scattering param-
eters was first obtained by a complicated and tedious proof
~Cho and Swanson, 1990b!. A more straightforward proof is
evident from the symmetry of the Green’s function~Hu and
Swanson, 1993b!, where, by construction,

G~z,y!5G~y,z! , ~130!

Using this result along with the integral equation

C j~z!5F j~z!1E
2`

`

G~z,y!h~y!C j~y!dy , ~131!

the I jk integrals may be written as

2p il2«I jk5E
2`

`

F j~z!Ck~z!h~z!dz ~132!

5E
2`

`

C j~z!Ck~z!h~z!dz2E
2`

`

dzCk~z!h~z!E
2`

`

G~z,y!C j~y!h~y!dy ~133!

5E
2`

`

C j~z!Ck~z!h~z!dz2E
2`

`

dyC j~y!h~y!E
2`

`

G~y,z!Ck~z!h~z!dz ~134!

52p il2«I k j . ~135!

With the other relationships among the scattering coeffi-
cients, this guarantees reciprocity.

D. Conservation laws with absorption

The conservation laws with absorption included lead to
explicit expressions for the net absorption. The conservation

law of Eq. ~62!, which was exact without absorption, is now
written for an absorbing solution, so that

P~c!5c-c* 91c-c*2c9c* 82gc8c*2c.c. , ~136!

which is no longer conserved; the loss of energy flux is given
by
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P8~c!5@h~z!2h* ~z!#uCu2 . ~137!

If the absorption function w(z) is now defined as

w~z![
h~z!2h* ~z!

2p il2«
, ~138!

so thatw(z) is real, then integrating Eq.~137! over z gives

1

2p il2« F limz→`

P~ck!2 lim
z→2`

P~ck!G
5E

2`

`

w~z!uCk~z!u2dz . ~139!

Without absorption, the fact thatP850 required that the
limiting values ofP be the same on both sides, but now it is
evident that the difference between the incident side and the
opposite side is the amount absorbed. The integral on the
right is positive definite for allw(z).0 and leads to the
general expression

Pinc2Popp56Pabs, ~140!

wherePabs is the integral in Eq.~139! and the upper sign is
taken if the incident term is positive and the negative sign
otherwise. The importance ofw(z), which is positive defi-
nite for three-branch problems and effectively so for weakly
relativistic five-branch problems, is apparent in that, as a
weight function in the integrals, it guarantees convergence,
since it decays exponentially on either side.
For the specific case for 11g.0, the asymptotic forms

for the propagating branches are given in Table VI. Applying
the power balance to the first solution leads to

e2hP~ f2!

2p il2«
1
e2huR1u2P~ f1!

2p il2«
1
e2huC13u2P~s2!

2p il2«

2
e2huT1u2P~ f2!

2p il2«
5E

2`

`

w~z!uC1~z!u2dz , ~141!

which, upon the use of the relations of Eq.~129!, becomes

A1[12uR1u22uT1u22uC13u2

5e22hE
2`

`

w~z!uC1~z!u2dz . ~142!

Proceeding in a similar manner, one finds for the second and
third solutions

A2[12uR2u22uT2u22uC23u25E
2`

`

w~z!uC2~z!u2dz ,

~143!

A3[12uR3u22uC31u22uC32u2

5e22h«E
2`

`

w~z!uC3~z!u2dz . ~144!

The three results can be combined into a single expression of
the form

Ak5akE
2`

`

w~z!uCk~z!u2dz , ~145!

with theak given by

a15e22h, a251, a35e22h« . ~146!

Although there are some differences along the way, this final
result is equally valid for the case with 11g,0.

IV. CYCLOTRON AND SYNCHROTRON EMISSION
FROM NONUNIFORMLY MAGNETIZED PLASMAS

While there have been numerous papers and at least one
major review of electron cyclotron emission~Bornaticiet al.,
1983!, the basis for these estimates of the radiation has gen-
erally rested on eikonal methods which relate the transmis-
sion coefficient of Eq.~95! to blackbody radiation~Bekefi,
1966!, such that

E5~12e2t!IBB , ~147!

where E is the plasma emissivity,t is called the optical
depth, 12e2t is called the opacity, andIBB is the blackbody
emissivity,

IBB5
\v3

8p3c2
~e\v/kT21!21.

v2kT

8p3c2
~148!

for kT@\v. The very method ignores reflection, and the
dispersion relations do not include more conversion; so with
the finding that the transmission coefficient, and hencet, is
independent of absorption, it becomes urgent to find the ap-
propriate revision of the standard theory that more accurately
relates absorption to emission. Surprisingly, the classical ex-
pression is virtually exact for emission on the high-magnetic-
field side of the resonance; but this occurs for subtle reasons,
since it has nodirect dependence on absorption, upon which
emission is dependent.
In this section, an appropriate generalization of Eq.~147!,

which is called the generalized Kirchhoff’s law~GKL!, will
be derived from thermodynamic arguments. The implications
of this generalization, both in terms of nomenclature and in
terms of experimental manifestations, will be discussed. The
section concludes with a discussion of the source distribution
function, which is associated with the distributed absorption
function and is useful for estimating precisely where in the
plasma the radiation originates.

A. Generalized Kirchhoff’s law

In general, Kirchhoff’s law is a statement that emission is
related to absorption through some equilibrium relationships.
From this general principle, it is obvious that no medium can
emit radiation if it absorbs none. The fact that the conven-
tional optical depth~shown to be due to tunneling only! is
unrelated to absorption leaves one with an emission formula
that has no connection between emission and absorption, and
hence apparentlyviolatesKirchhoff’s law. When mode con-
version effects are included, the effects of reflection and con-

TABLE VI. Asymptotic form for cn with 11g.0.

2`←z cn z→`

T1f2 e2hc1 f21R1f11ehA«C13s2

2R2f22 f1 c2 2T2f12A«C23s2

2C23f2 /A« e2hc3 2s12R3s22C31f1 /A«
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version must be included; and rather than simply guessing at
the modified expressions, a proof of the generalized expres-
sions follows.
The proof of the generalized Kirchhoff’s law begins with

the assumption that a plasma layer of finite thickness is
bounded on either side by perfectly absorbing walls. Taking,
for example, the three-branch case represented by Fig. 1, one
sees that the cyclotron layer will emit radiation to the right
on Branches 1 and 3 of intensitiesE1 andE3 and to the left
on Branch 2 of intensityE2 . The walls, which are presumed
to be at the same temperature as the plasma, will radiate
blackbody radiation which will be incident on the plasma
layer with intensitiesI 1 , I 2 , and I 3 on the respective
branches. This incident radiation will be partially transmit-
ted, partially reflected, and partially converted, which will
add to the directly emitted radiation, so that the totals on
each branch are

E11uR1u2I 11uT2u2I 21uC31u2I 35I 1 , ~149!

E21uT1u2I 11uR2u2I 21uC32u2I 35I 2 , ~150!

E31uC13u2I 11uC23u2I 21uR3u2I 35I 3 , ~151!

where the equality on the right is required for thermody-
namic equilibrium, since each mode is independent at the
walls. Equilibrium requires that the radiation impinging on
the walls from each branch exactly balance the radiation
from the walls on the same branch. Since the wall is a black-
body and each branch radiates independently, equipartition
requires thatI 15I 25I 35IBB , which leads directly to the
generalized Kirchhoff’s law~Swanson and Shvets, 1992!,

Ek5AkIBB , k51,2,3 , ~152!

where theAk are given in Eqs.~122! through~124! for the
three-branch problem, and in Eqs.~125! through ~129! for
the five-branch problem~the extension of the above proof to
five branches is trivial, exceptk51,2,3,4,5). The proof is
then extended to a case without walls, letting the walls be
removed to infinity, in which case the emission will remain
the same provided the temperature of the plasma is main-
tained through some external energy source via collisions.

1. Electron cyclotron emission

For the electron cyclotron harmonics, the GKL indicates
that the emission from the low-magnetic-field side is differ-
ent from the emission on the high-field side. In particular, the
X-mode emission formulas are

E15~12e22h2uC13u2!IBB , ~153!

E25~12e22h2uR2u22uC23u2!I BB , ~154!

sinceR150. Since neitherR2 nor either of the conversion
coefficients vanish, the direct emission from a cyclotron
resonant layer is less than that given by the conventional
formula. There is also indirect emission, however, and it
must be taken into account. By indirect emission is meant the
radiation from an internal thermal source of slow-wave ra-
diation away from the resonance which is then partially con-
verted to anX-mode. In particular, for a tokamak scenario or
any device having rotational transform~assumed weak but
nonvanishing!, the direct emission on the Bernstein branch

can be followed by ray tracing, and the slow wave turns and
moves back toward the resonance, but typically at a different
vertical position where it is totally absorbed. But if the ab-
sorption is total, there exists at that point a blackbody emitter
radiating a slow wave of intensityI BB8 , since the emitting
point is at a different point in space where the temperature is
T8. When this slow wave propagates back to the mode con-
version layer on Branch 3, it is then partially converted to the
two fast-wave branches, so that theobservedemission is the
sum of the direct and indirect emission. The net emission is
then

E185~12e22h2uC13u2!IBB1uC31u2IBB8 , ~155!

E285~12e22h5uR2u22uC23u2!I BB1uC32u2IBB8 . ~156!

Since, for typical plasmas, the direct source is very close
to the indirect source, it is reasonable to assumeT8;T. Tak-
ing them to be the same~so thatIBB5I BB8 ) and using reci-
procity, one finds that the converted terms cancel exactly, so
that

E185~12e22h!IBB , ~157!

E285~12e22h2uR2u2!IBB . ~158!

Remarkably, Eq.~157! is identical to the classical emission
formula, so no observable differences are expected from the
high-field side. The nonzero reflection coefficient on the low-
field side means that the emission on the outside of a toka-
mak, for example, will be systematically less than the clas-
sical amount.
From the empirical formulas of Sec. III.B.4, it is possible

to estimate the error that might occur if the standard formu-
las were used, neglecting the effects of reflection inE28 . The
percentage error for theemissionat the second electron har-
monic is given by

% Error5
100uR2u2

12e22h2uR2u2
5

100

exp~14aRk2!/«21
, ~159!

with aR obtained from Eqs.~107! and~109!. This result is a
function of lTe } B0LTe andX only, so the results are illus-
trated in Fig. 6, whereTe is in keV andX is the parameter. It
is evident that the maximum error can be quite large; but for
many applications,l is so large that the error is small except
at extremely low temperatures. For example, if one were to
consider a tokamak plasma withB055 T andL53.5 m, then

FIG. 6. Percentage error in electron cyclotron emission measure-
ments ofE2 at the second harmonic from neglect ofR2 .
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l523104, so that the maximum error would occur for a
temperature near 10 eV, and for a 1-keV temperature, the
error is minimal. The error rises sharply as the wave ap-
proaches cutoff atX50.5, but is still relatively unimportant
for most fusion plasmas. If, on the other hand, one were to
consider a smaller tokamak withL50.72 m, B051 T
( f556 GHz!, andTe05500 eV, where both the temperature
and density are parabolic, then theinferred temperaturesfor
several peak densities would be those given in Fig. 7. Near
r /a50.25, the emission error is about 125% and the tem-
perature error is 40% for the highest density shown~where
X;0.45). For space or astrophysical plasmas, large errors
could easily occur; and in some cases, the assumption that
IBB.I BB8 may be questionable in extended space plasmas
increasing the error further.
For the corresponding third harmonic case, with 14→18

in Eq. ~159! andaR obtained from Eqs.~116! through~119!,
the error is even smaller. It is shown in Fig. 8, where again
Te is in keV andX is the parameter. The maximum error for
this case is nearly two orders of magnitude smaller than for
the second-harmonic case. Whereas in the second-harmonic
case the maximum error continues to increase toward cutoff,
the maximum error for the third harmonic is largest for
X50.592 and decreases as one approaches cutoff at
X52/3.
Even though this analysis has basically justified the clas-

sical emission formula for one case~the least likely case,

representing emission on the inside of a tokamak!, it has not
justified the nomenclature describing its use. Calling the
quantityt52h an optical depth derived from the picture that
the wave energy was dissipating as it passed through the
absorbing layer, but now it is established that this quantity is
independent of absorption. In view of this, the term should
fall into disuse for harmonic resonances and be replaced by
‘‘tunneling factor,’’ or some such designation that connects
the quantity with the physical picture. It is easy to generalize
the concept of opacity by simply including the reflection and
conversion coefficients in the expression. It should be noted
at this point that analytic expressions forh are given along
with good empirical formulas foruR2u, so that accurate esti-
mates of emission can be made without extensive numerical
procedures, since the conversion coefficients are unneces-
sary.
To further underscore the discrepancy between the classi-

cal formula and those of the full-wave analysis, it should be
noted that even though the emission from the high-field side
is independent of the converted wave energy,the absorption
is not. Just as Fig. 6 shows the error in neglecting the reflec-
tion term in estimating the emission, Fig. 9 shows the error
in estimating theabsorptionwithout considering the con-
verted energy. This error is obtained from

% Error5100
12e22h2A1

A1
5

100

exp~aC1k
2!21

, ~160!

whereuC13u2 is obtained from Eq.~110! through the formulas
of Eqs.~111! through~115!. Thus, even though the tunneling
factor gives the correct emission formula, it does not de-
scribe absorption, as the differences can easily exceed a fac-
tor of 2. It is only due to theindirect emission, which in
many cases is the dominant contribution, that the total emis-
sion happens to match the classical expression. In large tok-
amaks, where even the conversion is small (lTe.1000), the
distinction is probably unimportant; but the identification of
the tunneling factor with an absorption factor must be used
only with great caution, since technically they are indepen-
dent.
Using the same general methods as were used to establish

the GKL, one can also calculate the effects of cold reflecting
walls. For this calculation, it is assumed that the slow wave
is absorbed internally and that Eqs.~157! and ~158! accu-

FIG. 8. Percentage error in electron cyclotron emission measure-
ments ofE2 at the third harmonic from neglect ofR2 .

FIG. 7. Actual~solid! and inferred temperatures with reflection ne-
glected for tokamak withR050.7 m, B051 T, Te05500 eV,
ne051.031019/ m3 (sss), ne051.3531019/m3 (ddd),
ne051.731019/m3 (222), a520 cm.

FIG. 9. Percentage error in estimating absorption, neglecting
uC13u2 at 2vce for four values ofX. Solid lines show the empirical
formula result over the range fitted, and dotted lines are extrapola-
tions. Symbols are some of the fitted points.
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rately represent the fast-wave emission with absorbing walls.
If the wall reflectivity isr, and the radiation incident on each
wall is I 1 andI 2 , as in Fig. 10, then the net radiation on each
wall is

I 15E181ruT2u2I 21ruR1u2I 1 , ~161!

I 25E281ruT1u2I 11ruR2u2I 2 . ~162!

Solving for I 1 and I 2 between these, and using the fact that
T15T25T5e2h, R150, and the expressions forE18 and
E28 from Eqs.~157! and ~158!, one finds

I 15
~12T2!~11rT2!2ruR2u2

12ruR2u22~rT2!2
IBB , ~163!

I 25
~12T2!~11rT2!2uR2u2

12ruR2u22~rT2!2
IBB . ~164!

WhenR2 is neglected, these become equal and reduce to the
usual expression~Bornaticiet al., 1983!,

I5
12T2

12rT2
IBB . ~165!

2. Ion cyclotron emission

There are many similarities between the electron and ion
emission cases, but one significant difference. The expres-
sions for the direct emission are entirely parallel to Eqs.
~153! and ~154!, as are the expressions for the sum of the
direct and indirect emission given by Eqs.~155! and ~156!,
but in this case, there is no reason to expectI BB;IBB8 .
Whereas in the electron case, the remote sink/source for the
Bernstein wave is very close to the resonance layer, since the
converted wave eventually turns back toward the resonance
layer, the ion Bernstein wave does not turn back, and the
location of the remote sink/source may be far from the reso-
nance layer. The actual location must usually be determined
from ray tracing, and the influence of a small vertical com-
ponent of magnetic field~assumed small in the layer, since
B•¹B50 has been assumed! makes a great deal of differ-
ence in the trajectory of the converted wave energy. The
appropriate expressions for ion thermal emission are there-
fore given by Eqs.~155! and ~156!, and in this case, the
empirical formulas for the conversion coefficients are impor-
tant.
It may also be noted that in the ion cyclotron emission

case, there are many possibilities for nonthermal emission,
which may be due either to a nonthermal velocity distribu-
tion or to radiation from an instability, particularly from
beam-plasma-type instabilities on the Bernstein wave branch

which then mode convert to the emitting fast-wave branch. If
there were a source due to an instability on the slow-wave
branch that would be strong enough to dominate the thermal
components, this could be ascertained from observing the
ratioE18/E28which would approach the ratiouC31/C32u2 in the
limit as the thermal portion became negligible. In such a case
one would interpret theIBB8 as being due to the instability
source strength rather than any real temperature.
For a nonthermal velocity distribution, either for ions or

electrons, it is possible to generalize the absorption term
h(z) to an actual velocity distribution, if known. Since the
finite Larmor orbit terms and the emissivity depend only on
averages, for only modest deviations from a Maxwellian, one
could expect good agreement by replacingkT by 2^E&/3 for
everything except the shape of the absorption profile or the
emission profile, where the details would be more important.

B. Source distribution function and the local Kirchhoff’s
law

Because emission and absorption are related not only glo-
bally but locally, it is evident that knowing what the absorp-
tion profile is must somehow determine the emission profile
or source distribution function. The relationship is not intu-
itively obvious, however, since the local emission may be
partially reabsorbed by the medium before it escapes, so that
the effective source will be related, but not equivalent, to the
sink. The global emission is governed by the GKL and is due
to some as yet undetermined combination of all three propa-
gating branches. This emission is governed by a source dis-
tribution function,s(z), which leads to a radiating solution
f(z) which is governed by~e.g., for the second-harmonic
case!

f iv1l2zf91~l2z1g!f5h~z!F1s~z! , ~166!

which can no longer be easily converted to an integral equa-
tion, sinces(z) is not explicitly a function off(z). The term
involving h(z) on the right could be moved to the left-hand
side, in which case the basis set for the Green’s function will
be theck(z) or the Ck(z), which represent the homoge-
neous solutions with absorption. Given thes(z), one may
write the solutionf(z) in terms of the Green’s function and
the sources(z). Unfortunately, however, this is an inverse
problem, since something is known about the asymptotic
form off(z) from the GKL, but the objective is to finds(z).
The generalization of Eq.~166! to higher harmonics or to
five-branch problems is straightforward, since one simply
adds thes(z) source term on the right-hand side of the gov-
erning absorption equation.

1. Integral expressions for emission

In order to derive expressions for the emission from a
source in an absorbing plasma, Eq.~166! must be solved.
The radiative solution is given by~Cho and Swanson, 1990c!

f~z!5S1
1c11S2

2c21S3
1c31S4

2c4 , ~167!

where theck(z), 1<k<4, are linearly independent solutions
of Eq. ~11! and where

S1,3
1 ~z!5E

z

`

B1,3~y!s~y!dy , ~168!

FIG. 10. Emission and reflection for a three-branch case.
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S2,4
2 ~z!5E

2`

z

B2,4~y!s~y!dy . ~169!

The functionsBj (z) are in turn related to theck and the
Ck5ck91ck through the relations

B̃152D3C21C23e
hC4 , ~170!

B̃252D3C12D1C3 , ~171!

B̃352D1C21T1«e
hC4 , ~172!

B̃45eh~C23C11T1«C3! , ~173!

where

B̃j52p il2«eh~D1C322T1D3!Bj , ~174!

D15«I 41,

D35~11«I 43! ,

I 4 j5
1

2p il2«Ezmin
`

h~y!F4~y!C j~y!dy, j51,3 . ~175!

The asymptotic behavior of the radiative solution, which
can have only outgoing waves, may be represented in the
form

w2f2~z!←f~z!→2w1f1~z!2w3s2~z! , ~176!

where thewk , k51,2,3, are complex constants which are
related to the energy fractions radiated on each branch, given
by

E1,25uaw1,2u2, E35uaw3u2/w , ~177!

wherea is some constant related to the source magnitude,
which is assumed to satisfy a normalization condition of the
form

E
2`

`

r~z!us~z!u2dz5P0 , ~178!

wherer(z) is some weight function. Since a change in the
value ofa just means a redefinition ofP0 for a given weight
function, the value of this constant can be chosen for conve-
nience. From Eqs.~167!, ~168!, ~169!, ~174!, and the asymp-
totic behavior of theck , 1<k<4, along with the reciprocity
relations, one obtains the relations

w15T2S21e2hD1S4 /« , ~179!

w25eh~T1S12C32S3! , ~180!

w35C23S21e2hD3S4 , ~181!

where the definition

Sj[E
2`

`

Bj~y!s~y!dy, j51,2,3,4 , ~182!

has been introduced. It is convenient to introduce the integral
expressions

Jk5E
2`

`

s~z!Ck~z!dz, k51,2,3 , ~183!

which represents the ‘‘projections’’ of the unique source on
to thekth branch. One thus expects that for anyk, the radi-

ated fieldfk should be determined only by the correspond-
ing Jk for the same branch. Using Eqs.~170! through~175!
and ~183!, one finds the integrals in Eq.~182!, given by

S S1S2S3
S4
D 5S 2D3J21C23e

hJ4

2D3J12D1J3

2D1J21T1«e
hJ4

eh~C23J11T2«J3!
D

3
1

2p il2«eh~D1C322T1D3!
, ~184!

so that one obtains from Eqs.~179! through~181!, after some
algebra, the results

w15e2h
J1

2p il2«
, ~185!

w25
J2

2p il2«
, ~186!

w352«e2h
J3

2p il2«
. ~187!

Since this final result is independent of theD1 andD3 coef-
ficients, it is valid for anyzmin in the definition ofI 4 j .
The final expressions are then obtained by combining Eq.

~177! with Eqs. ~185! through ~187! and putting
uau52pl2«, with the result

Ek5akU E
2`

`

s~z!Ck~z!dzU2 , ~188!

where theak are already given by Eq.~146!.

2. Extremum theorem with the generalized Kirchhoff’s law

If one models a source/sink by a single delta function, then
the source automatically satisfies the GKL and the emission
is in closed form. For a finite number of delta functions, the
problem is already indeterminate if the number exceeds a
few, since the only constraints are the GKL. For a continuous
source/sink, a variational analysis is required. Since the
maximum emission is constrained by the blackbody limit,
the idea is to maximizeEk , which is a functional ofs(z)
through Eq.~188!, subject to the GKL of Eq.~152! and the
condition thatP0 be fixed. Since theAk are not functionals
of s(z), the right-hand side of Eq.~152! is fixed for eachk;
so the objective is to maximize the left-hand side for
k51,2,3 simultaneously. If the functionss(z) which maxi-
mizes the emission is denotedsm , and theEk are related to
theJk@s#, the problem statement is to findsm such that~Sh-
vets and Swanson, 1993!

uJk@sm#u25max
s~z!

uJk@s#u2, k51,2,3 . ~189!

Additionally, these maxima are related through the GKL so
that

uJk@sm#u25
Ak

ak
IBB , k51,2,3 . ~190!
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The final constraint is through the boundedness ofs(z)
throughP0 , whose value for a particular weight function is
to be adjusted to give the blackbody value of the GKL. This
weight function will of necessity be related to the absorption
function.

3. Cauchy-Schwartz estimates

Since bothEk andAk may be represented by integral ex-
pressions, it is instructive to begin with the Cauchy-Schwartz
inequality,

u^ f ug&su2<^ f u f &s^gug&s , ~191!

where the scalar product of two square-integrable functions
is defined by

^ f ug&s[E
2`

`

s~z! f * ~z!g~z!dz , ~192!

with a weight functions(z) that falls off sufficiently rapidly
as uzu→` that the integral is bounded. The expression for
absorption is then given byAk5ak^CkuCk&w , while the
emission integral from Eq.~183! is the scalar product defined
by Eq. ~192! with f (z)5s* (z)s21 andg(z)5Ck(z). With
the Cauchy-Schwartz inequality applied to the emission re-
lation Ek5akuJku2, the result is

Ek@s#<akE
2`

`

usu2s21dzE
2`

`

suCku2dz ~193!

for each fixedk51,2,3. In particular, ifs(z)5w(z), then

Ek@s#<AkE
2`

` usu2

w
dz , ~194!

and if, in addition,s51/r ~so thatr51/w), then

Ek@s#<AkE
2`

`

r~z!us~z!u2dz5AkP0 . ~195!

Since the inequality in Eq.~191! reduces to equality only
when f andg are linearly dependent, the extremum for the
emission along a particular branchk ~taking them one at a
time! occurs, from Eq.~193!, when

s~z!}s~z!Ck* . ~196!

This result indicates that for a single branch, the source must
be proportional at each point to the weight function, which
must be chosen from physical considerations. From the spirit
of the fluctuation-dissipation theorem Kirchhoff’s law, it is
obvious thats(z) should relate to the local dissipative prop-
erties.
Following the prescription from Eq.~195!, one would

have a separate source for each branch; but all three waves
are coupled, and the source distribution function is unique
for all branches. The obvious way to treat the problem and
generalize the results is to take

sm~z!5s~z!(
k51

3

akCk* ~z! , ~197!

where theak are unknown complex constants to be deter-
mined from the GKL and the source normalization condition.

This reasonable ansatz of Eq.~197! follows rigorously from
the variational approach to the maximization of the integral
of radiation.

4. Variational analysis

It is convenient to recast the variational problem in terms
of the functionals

I k@s#5Ek@s#/Ak , ~198!

so that the problem becomes a determination of the function
sm(z) such that

I 1~sm!5I 2~sm!5I 3~sm!5max
s

I k@s#5IBB , ~199!

subject to the normalization of Eq.~178!.
Using the usual prescription for a variational analysis, one

introduces the functional

F@s#5 (
k51

3

mkI k@s#2lP0@s# , ~200!

where the Lagrange multipliersmk andl correspond to the
GKL and normalization conditions, respectively. From the
symmetry of the GKL conditions, it follows that
m11m21m351. For the solution of the extremum problem,
it is required that

dF@sm ,h#50 , ~201!

for any smooth functionh(z).
Introducing the Hermitian matrixgjk such that

gjk5^C j uCk&w5gk j* , k, j51,2,3 , ~202!

one finds that the absorbed fractions are simplyAk5akgkk
andI k@s#5uJk@s#u2/gkk . Taking the variation ofF indicated
in Eq. ~201!, one obtains

dF@s,h#5E
2`

`

h* ~y!dyH 2lr~y!s~y!

1 (
k51

3

Ck* Jk@s~y!#mk /gkkJ 1c.c.50 , ~203!

which leads to the integral eigenvalue problem,

lr~y!sm~y!2E
2`

`

K~y,z!sm~z!dz50 , ~204!

with the Hermitian kernel

K~y,z!5 (
k51,3

3

mkCk* ~y!Ck~z!/gkk5K* ~z,y! . ~205!

The problem posed by Eqs.~204! and ~205! has the solu-
tion

sm~z!5
1

r~z!(j51

3

a jC j* ~z! , ~206!

where the coefficientsa j are determined from the algebraic
eigenvalue problem

(
j51

3

a j^C j uCk&u1/r5l
gkk
mk

ak . ~207!
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Note that the expression of Eq.~206! for the source distribu-
tion function is identical to that of Eq.~197! if the weight
function in the scalar product has been chosen as
s(z)51/r(z). Moreover, the physical interpretation re-
quires one to consider both of these expressions as a local
Kirchhoff’s law. This physical requirement removes the am-
biguity in the weight function in the normalization condition.
Since the functionw(z) defined by Eq.~138! is the only
suitable absorptive function in the physical system, one must
conclude thatr(z)51/w(z), and

sm~z!5w~z!(
k51

3

akCk* ~z! . ~208!

The problem is reduced to finding the unknown complex
coefficients,ak , that satisfy

~1! the normalization condition,

(
k, j51

3

ak* gk j* a j5P0 ; ~209!

~2! the eigenvalue problem,

(
j51

3

a jgjk5l
gkk
mk

ak , k51,2,3 and ~210!

~3! the GKL conditions,

I 15I 25I 35IBB , ~211!

where

I k5(
i , j

a i*
gik* gk j*

gkk
a j . ~212!

It may be noted that

l5IBB /P0 . ~213!

Indeed, after multiplying Eq.~204! by sm* (y) and integrating
overy, one finds, taking into account Eq.~178! and the GKL
equations,I k@sm#5IBB , that

lP05 (
k51

3

mkuJku2/gkk5I BB ,

which results in Eq.~213!.
This variational problem is not of the standard form, but

the evaluation of theak has been accomplished by a series of
transformations and a minimization~Shvets and Swanson,
1993!. The basic result is

a15~ IBB /g11!
1/2~t11z3v21z2*v3!/uYu , ~214!

a25~ IBB /g22!
1/2~z3*1t2v21z1v3!/uYu , ~215!

a35~ IBB /g33!
1/2~z21z1*v21t3v3!/uYu , ~216!

where zi5yjyk2yi* , tk512uyku2, uYu512uy1u22uy2u2

2u y3u212 Re(y1y2y3), yi5gjk /(gj j gkk)
1/2, and thevk are

given byv151 and

v25
z1z22z3x3
x2x32q1

, ~217!

v35
z1* z3*2z2x2x3
x2x32q1

. ~218!

The x3 is in turn, given by

x35c2x2
21c1x21c01

c21

x2
1

b

x22d
, ~219!

with

c252q2 /r ,

c15122s/r 2 ,

c05~q1q21q1q31q2q3!/r24q1q3s/r
3 ,

c215~q12q3!/2 ,

b5c0d2q32c21 ,

d52q1q3 /r ,

r52 Re~z1z2z3! ,

s5q1q2q3 ,

qk5uzku2 ,

andx2 is one of the roots of

(
n50

8

dnx2
n50 , ~220!

where

d05q3~c21d!2 ,

d15~2q3
22rd !c21d ,

d25q3
322q3c21d~c02c1d!1q1d

2~q22q3!

1rd~c212q3! ,

d3522q3c21d22q3
2~c02c1d!22q1d~q22q3!

1r @d~c02c1d!1q31d2# ,

d45q3~c02c1d!222q3
222q3c2c21d1q1~q22q3!

2r ~d1c02c1d! ,

d5522q3
2c212q3~c02c1d!1dq2 ,

d65q312q3c2~c02c1d! ,

d752q3c2 ,

d85q3c2
2 .

Finally, one must determine which real root forx2 to choose
by calculating

(
k51

3

~tk2xk!5P0uYu/IBB , ~221!

wherex1 is determined from

x1x2x32 (
k51

3

qkxk1r50 . ~222!

Since it is desired to find thesmallest~most efficient! source
that will produce the blackbody radiation, thex2 root that
minimizes the sum in Eq.~221! is to be chosen. Although
tedious, this produces the unique source distribution function
that satisfies all of the constraints and maximizes the radia-
tion.
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The procedures described above for the three-branch prob-
lems have been generalized to the five-branch problems~Ng,
Shvets, and Swanson, 1995!, but the minimization problem
cannot be reduced to finding the roots of a polynomial. More
general downhill simplex methods in multidimensions are
required, but the form of the source distribution function is
the same as Eq.~208! except that the sum is over
k51,2,3,4,5. One other difference between the three-branch
and the five-branch problems is thatw(z) is positive definite
for three-branch problems due to the behavior ofZ(z) and
Fq(z). For the five-branch case, the behavior of
F q(z2q,a) leads to a narrow region withw(z),0. The
only pertinent emission quantity isus(z)u2, however; so the
final result is positive definite.

5. Numerical results and their interpretation

The importance of the source distribution function is that
it indicates both where the effective source is located and the
effective width of the source. The general effect of mode
conversion on the source distribution is to make a systematic
shift in the peak and a narrowing of the width, relative to the
corresponding peak and width of the sink or absorption func-
tion. In Fig. 11, the sink functionwe(x) is plotted on the
same axis withuse(x)u2, where both the shift and the narrow-
ing are evident. For this example, with both amplitudes nor-
malized to unity for comparison, the source function is at

half the displacement of the sink. With a 3-m scale length,
the source would be displaced 0.5 cm and the sink 1 cm from
the resonance location. The narrowing is more than a factor
of 2, and the bump on the tail appearing on the right is
effectively a second sourceon the other side of the tunneling
layer. As the layer becomes so thick that there is virtually no
tunneling, the two sources become isolated from each other,
and one observes only one of the two. The numerical tech-
niques used for this analysis eventually fail for sufficiently
thick layers~the integral equation fails to converge!. Better
numerical techniques must be developed to see the shapes
and locations of these double sources, but the tendency is
already clear. Figures 12 and 13 show the temperature de-
pendence of the sink and source~s!, respectively, where it is
apparent that the shift of the peaks and the widths are
roughly proportional to temperature~Shvets and Swanson,
1993!. In each of these cases, both peaks are on the high-
magnetic-field side of the resonance, since relativistic effects
occur on that side.
For ions, which are nonrelativistic, thewi(x) sink function

is symmetric about the resonance, but theusi(x)u2 source
function is not. In other respects, however, the shifts and
narrowing of the source function are qualitatively the same.
A comparison of the sink and source on the same axis for
ions is shown in Fig. 14, where, again, both are normalized
to unit amplitude for the comparison. For this case, the peak
of the sink is, of course, unshifted, but the peak of the source
has been shifted by 0.46% ofL. This shift is toward the
mode conversion layer~positive x is in the direction ofin-
creasingmagnetic field! because the mode-converted branch
is the strongest absorber and therefore the strongest emitter.
For the ion case,kz controls the strength of absorption and
emission; so in Figs. 15 and 16 the variation of both sink and
source, respectively, withkz is shown. For the source func-
tion, again both the width and the peak increase roughly
linearly with kz , which controls the absorption/emission
strength. Furthermore, the ion source distribution develops
bumps on the tails on both sides of the resonance due to
interference between the propagating branches, but these re-
main small for virtually all practical parameters.
Finally, a five-branch case is shown in Fig. 17 for weakly

relativistic electrons~Ng, Shvets, and Swanson, 1995!. In
this case, sincekz Þ 0, the relativistic functionF q(z,a),

FIG. 12. Absorption functionwe(x) with n51020 m23, B053 T,
L50.2 m with 100<Te<500 eV.

FIG. 11. Comparison of sink functionwe(x) with source function
use(x)u2 with n51020 m23, B053 T, L50.2 m withTe5400 eV. FIG. 13. Source functionuse(x)u2 ~arb. units! with n51020 m23,

B053 T, L50.2 m with 100<Te<700 eV and corresponding val-
ues ofh.

860 D. G. Swanson: Cyclotron absorption and emission

Rev. Mod. Phys., Vol. 67, No. 4, October 1995



which includes Doppler broadening, leads to a more compli-
cated sink function and a correspondingly more complicated
source function. Aside from the rapid transition near 0.2 cm,
both the shift of the centroid and the narrowing of the source
relative to the sink are evident. Note that in this example, the
effective center of the source is shifted about 2.5% ofL from
the resonance, still about half of the shift of the sink func-
tion, if one uses the mean values instead of the peaks.

V. CONCLUSIONS

The principal conclusions are that the classical formula for
electron cyclotron emission~ECE! is validated for large
laboratory plasmas~but not for plasmas in general!, but that
a new paradigm for describing and understanding the process
is necessary. The necessity for the new paradigm arises from
the complete physics of the several processes in the cyclo-
tron harmonic layer, as opposed to the previous picture
which included only transmission and absorption. The com-
plete picture shows that only reflection and mode conversion
are affected by absorption and that transmission is indepen-
dent of absorption. This picture has been evident from the
beginning for ion cyclotron harmonics, where for smallkz
the absorption is weak, but transmission, reflection, mode
conversion, and absorption have all been observed simulta-
neously. This picture of electron cyclotron absorption has
been less evident because of the much stronger absorption

due to weak relativistic effects which substantially reduce or
eliminate reflection and conversion. In this limit, there is
again only transmission and absorption, but there is a non-
trivial range of parameters where reflection may make a sub-
stantial error in the estimate of emission from the classical
formulas in smaller, cooler devices. The difficulty with ig-
noring the new paradigm or way of understanding the pro-
cesses is, first, that it describes the physics incorrectly, and,
second, that nontrivial errors in the interpretation of ECE
may occur.
There is also a new way to find the shape of the source

distribution function. The effects of mode conversion along
with the subtle effects of indirect emission have shown that
the traditional formulas for emission~but not absorption!
from a cyclotron harmonic layer are virtually exact in the
one case from the high-field side and that the effects of re-
flection are small for large tokamaks and many laboratory
plasmas. The fact that the tunneling factor alone, which is
independent of absorption, should reproduce the result for
the optical depth, which was based only on absorption, must
be regarded as an accident and is another example of cases
when the right answer was obtained from either wrong or
insufficient analysis. For the case for ion cyclotron harmonic
emission, however, the accidents of electron emission do not
occur; so the classical optical depth/opacity formulas are not
appropriate. The fact that the indirect emission is not neces-

FIG. 15. Absorption functionwi(x) with n5231020 m23, B055
T, L52 m, Ti52 keV with kz52, 4, 6, 8, 10 m21.

FIG. 17. Electron absorption functionw(x) and distributed source
strengthus(x)u2 with ne52.731017 m23, B050.1 T, L50.1 m,
Te55 keV, andni50.1.

FIG. 14. Comparison of sink functionwi(x) with source function
usi(x)u2 with n5231020 m23, B055 T, L52 m, Ti52 keV with
kz58 m21.

FIG. 16. Absorption functionusi(x)u2 with n5231020 m23,
B055 T, L52 m, Ti52 keV with kz52, 4, 6, 8, 10 m21.
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sarily near the harmonic layer requires the conversion coef-
ficients as well as the reflection coefficient, and these are not
always so small. The work could be extended to the two-ion
hybrid resonances as well as the harmonic resonances; but
whenever the nonthermal emission exceeds the thermal
emission~which is not uncommon!, the analysis of the mode
conversion problem is probably fruitless. Even with pure
thermal ion emission, one must know the effective tempera-
ture of the indirect emission source to be able to interpret the
result, and this complicates the analysis of experimental data
enormously.
The description of the emission source through the source

distribution function could be useful in interpreting ECE
data, since it more closely indicates the emission source lo-
cation. While the shifts are not typically large, they are sys-
tematic and better than using estimates from the absorption
function, which are typically off by a factor of 2 for ECE; the
ion absorption function shows no shift whatsoever, while the
source does.
The principal weaknesses of this analysis arise from the

assumption that the finite Larmor orbit parameter,l
51

2k'
2r2, is small and from the use of the tunneling equations

derived from the dispersion relations rather than from the
Vlasov equations. Both of these effects can be included, but
for most cases the corrections will be predictably small. For
example, including the next-higher-order terms inl simply
leads to a higher-order differential equation and a slightly
modified tunneling factor. All of the analytic results remain
unchanged except through the change inh, and this is suf-
ficient for accurate estimates of emission and absorption. The
more complicated tunneling equations obtained from the
Vlasov equations have no effect on the tunneling factor and
minimal effect on the reflection coefficient. Since the conver-
sion coefficients cancel out in ECE, these corrections are not
expected to produce any measurable error. The inherent as-
sumption that the magnetic-field gradient is large compared
to a wavelength, where, for example,l5vL/c520 roughly
corresponds toL;3l' , restricts the validity of the analysis
to l.20.
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