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A precise form of the quantum-mechanical time-energy uncertainty relation is derived. For any given initial
state (density operatgr time-dependent Hamiltonian, and subspace of reference states, it gives upper and
lower bounds for the probability of finding the system in a state in that subspace at a later or earlier time. The
bounds involve only the initial data, the energy uncertainty in the initial state, and the energy uncertainty in
the reference subspace. They describe how fast the state enters or leaves the reference subspace. They are
exact if, but not only if, the initial state or the projection onto the reference subspace commutes with the
Hamiltonian. The basic tool used in the proof is a simple inequality for expectation values of commutators,
which generalizes the usual uncertainty relation. By introducing suitable comparison dyn@nsts
propagators the bounds can be made arbitrarily tight. They represent a time-dependent variational principle,
in terms of trial propagators, which provides explicit error estimates and reproduces the exact time evolution
when one varies over all trial propagators. As illustrations, we derive accurate lower bounds on the escape time
of a particle out of a potential well modeling a quantum dot, and the total time before whieh in moving

in a uniform magnetic field loses its electron.
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I. INTRODUCTION hove and Lathouwers, 1992They have been spurred by the

development of very short and intense laser pulses {16,

A basic challenge in quantum mechanics is to understand0'® W/cn¥) so as to provide a computational basis for the
how time-dependent Schiimger equations, innocently lin- new processes driven or probed by such laser fi@dseck-
ear and first-order in time as they are, admit solutions exhibhove and Lathouwers, 1982But even with these advances,
iting an incredibly rich variety of different behaviors, rang- the systems for which reliable calculations can be carried out
ing from free wave-packet propagation to complexand the times up to which the results are accurate remain
diffraction phenomena, from the slow decay of metastabldimited. This is in contrast to the situation for stationary
states to fast optical switching, from quantum beats to seenstates, where there are many methods for obtaining accurate
ingly irreversible or chaotic behavior. The origin of such approximations. One may ask why similar methods do not
diverse behavior is the oscillatory nature of the time evolu-€xist for the time-dependent Schlinger equation. The an-
tion and the superposition principle which, by constructiveswer is that, just as for one real variablethe oscillatory
and destructive interference, can produce virtually any “sig-functione™ is more complicated to approximate numerically
nal” (depending on the initial state and the Hamiltonigh  than the monotone decreasing functer, it is much more

noteworthy example exhibiting many of these phenomendlifficult to estimatee™!’” thane™#" whereH is the Hamil-
tonian. An estimation oé A", for large 8, is equivalent to

“Permanent address: Department of Physics and Astronomy, Uni-
versity of Missouri, Columbia, MO 65211. IFor a review of the model, see Barnettal, 1986.
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estimating the low-lying eigenvaluds,<E;<--- and the subspace. This connection between uncertainty and noncom-
corresponding eigenprojectiofs,,P,, ... of H, using mutativity is developed in Sec. Il in a general foiffiheo-
rem 1. Our bounds in Theorem Sec. I\V) describe what
happens when neither the initial state nor the projection onto

e Fl~e Fop, (18 the reference subspace are constants of motion. They coin-
cide, i.e., simultaneously equal the exact result, if and only if
(e PH—e PEopy)~e BEIP, .. (1b) the initial state or the projection is a constant of motion.

Nonsimultaneously, they reproduce the exact result also in

other instances.
as B—x. A beautiful numerical implementation of El) (iii) The freedom to work with arbitrary trial propagators
has recently been carried out to obtain high-precision eigenas long as they define a differentiable family of unitary op-
values and eigenmodes of a fractal dr@@apoval, Gobron, erator$ offers the possibility of improving the bounds ob-
and Margolina, 1991; Sapoval and Gobron, 19%%rhaps tained from the trivial trial propagator in important ways.
the most striking difference between'"’” ande #H mani-  The upper and lower bounds coincide if the trial propagator
fests itself in their path-integral representatigese, for ex-  equals the exact propagator. They provide a time-dependent
ample, Reed and Simon, 1975, Chap. X:lthe Feynman variational principle thatncludes error bars By restricting
integral for the propagatce™'"'" is an oscillatory integral the reference subspace to be one dimensional, restricting
with a generally somewhat dubious mathematical status; thstates to be pure, and weakening the bounds, we obtain a
Feynman-Kac integral foe #" is given in terms of a posi- time-dependent variational principle for wave functions with
tive, finite measure supported on Brownian paths. explicit error bargCorollary 1, Sec. V.

Thus it is of interest to ask whether quantitative informa- In Sec. VI, we compare our results with earlier work. In
tion about the time evolution of states can be obtained, foparticular, we describe precursors of Theorem 2. In the spe-
example in the form of bounds analogous to those for staeial case where the projection onto the reference subspace is
tionary states, i.e., in the form of a variational principle, one dimensional and the initial state is pure, the bounds of
without solving the Schrbinger equation In this paper we Theorem 2 were previously obtained by Pfeif@093. We
present a method that allows one to obtain such informatiothen contrast Theorem 3 with earlier time-dependent varia-
under very general conditions. tional principles, e.g., with Spruch’s boun¢Spruch, 1968

The plan of the paper is as follows. In Sec. Il we indicate,which are sharpened and generalized in Theorem 3. Our
by means of selected examples, how results concerning timéounds in Corollary 1 require knowledge only of a time-
dependent properties can be obtained without explicit knowleependent family of states rather than of a trial propagator, a
edge of the propagator. The general theme illustrated in throvel aspect of our methods. Finally, we draw some parallels
examples is that knowledge of suitable properties of thébetween Theorem 3 and Nekhoroshev's method in classical
spectral measure of the Hamiltonian in the initial state, suctmechanic{Nekhoroshev, 1997
as its “energy spread,” sets limitations on how fast the state Two specific applications of our general results are worked
can change with time. For example, if the energy spread isut in Sec. VI, illustrating the performance of a nontrivial
small, the system cannot depart rapidly from the initial staterial propagator in Theorem 3. The trial propagator will be
or move rapidly into some final state. Conversely, if the statehe propagator of a Hamiltonigicomparison dynamigsfor
changes rapidly in time, the energy spread is necessarilwhich the time-dependent Sclidinger equation can be stud-
large. We refer to a result of this type as a time-energy unied explicitly. The energy uncertainties to be evaluated are
certainty relation. Section Il serves to illustrate some of thehose of the Hamiltonian in the “interaction picture.” The
ideas and goals we pursue in later sections. first example treats the escape to infiniliy arbitrary space

In Secs. lll through V we derive the main result of the dimension$ of an electron initially confined by a potential
paper(Theorem 3. This result provides—for any given ini- barrier. The second example analyzes how a one-electron ion
tial state(pure or mixed, any Hamiltoniantime-dependent on a circular classical orbiinduced, for example, by a uni-
or noY), any subspace of reference states, andgungssof  form magnetic fieldl loses its electron due to tidal effects.
an approximate propagator—explicit upper and lowerThe effect is one of many consequences of the quantum-
bounds for the probability that the system is in a state bemechanical Larmor theorem recently proven byHfich and
longing to the reference subspace at tim&he bounds have Studer (1993. Both examples are instances of long-lived
the following nice properties: resonancesmetastable statgsin both examples, we derive

(i) Computationally, they require only expectations of qua-accurate lower bounds on lifetimes. Our analysis also yields
dratic expressions in the Hamiltonian, describing the energjower bounds on lifetimes of atomic bound states when an
uncertainty in the initial state and in the reference subspacexternal electric field is turned on.

If the approximate(trial) propagator is nontrivial# unit For systems with an unbounded Hamiltonian, the energy
operato), the Hamiltonian and the reference subspace entanncertainties in our results will be traces of products of un-
the calculation of energy uncertainties in an appropriatelfbounded operators. This raises mathematical questions of op-
transformed form. erator domains, cyclic permutability of operators under the

(i) The bounds are nontrivial even when the trial propa-trace, and of formally commuting operators to commute in
gator is trivial, i.e., equals the unit operaidiheorem 2. In  the sense of spectral projections. We shall ignore all such
that case, the energy uncertainties quantify the degree @fuestions in order not to obscure the simplicity of the ideas
noncommutativity of the Hamiltonian and the initial state, and results. In most applications, the verification of technical
and of the Hamiltonian and the projection onto the referenceonditions ignored here will be straightforward.
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Il. ESTIMATES ON TIME EVOLUTION FROM SPECTRAL p.=p, for all te[0,T]. (4
PROPERTIES: EXAMPLES
The proof, using, for example, the Trotter product formula

We consider a system described by a Hilbert spacef  for the propagator, is obvious. This example suggests that if
pure-state vectors and a family of time-dependent Hamiltop, or P almost commute with the Hamiltoniand,, p;
niansH;. Mixed states are represented by density operatorshould vary only slowly witht, and one ought to be able to
p which are positive, trace-class operators@of trace 1. A estimate its variation in terms of the smallness of the com-
state at timet is denoted byp, and is determined by the mutator. This is the idea we shall make precise.
initial statep, by solving the Liouville equation Example 2 A first step towards extending Example 1 to

ipe=[H¢,pil. (299  nonstationary states, is the conventional time-energy un-
certainty relation. It states that if the initial state is
po=|wo){o| and evolves under the time-independent
HamiltonianH, then

if“-//I:Ht‘/’t- (2b) riej=hy;, (5)

In the following, we refer to both equatiori2a) and(2b), as where7; is one of several notiondabeled byj) of lifetime

the Schrdinger equation. Furthermore, we consider an OFof the initial state,s; is the associated energy uncertaint
thogonal projectionP (P=P*=P?) and denote the sub- ] gy Ys

o . o . . andvy; is a constant. Equatiof®) is a version of the rule that
issp'?c;: i&gﬁg \évgﬁ:jg fr())r:) {re]gt?ul:%tii%nOur goal in this paper th_e IifJetime is in_versely propo_rtional to the energy width. We
wish to quote five mathematically rigorous examples of in-
p::=tr(Pp,), (€)) equalities of the form of Eq(5): They are the Mandelstam-
Tamm inequality(Mandelstam and Tamm, 1945; Messiah,
1965; Galindo and Pascual, 1990=1), two special cases
of bounds obtained by Flemingl973 and Bhattacharyya
(1983 (j=2,3), the Gislason-Sabelli-Wood inequalii@is-
lason, Sabelli, and Wood, 198%j=4), and Wigner’s in-
equality (Wigner, 1972 (j=5). In these examples, the life-
times are defined, respectively, by

If the statepg is pure, thermp,=|y:){ |, wherey, solves the
time-dependent Schdinger equation

which is the probability of finding the system in a state in the
subspacé?.7 at timet. Every experimental question about
the time evolution can be cast in the form of E§). For
example, if we choose.=|¢){¢:] and P=|¢)(¢|, then
pe={¢|¥)|? ie., Eq.(3) gives the transition probability
into some final statep, or the survival probability of the
initial state if o=q. If the system consists of two sub-

systems and®=P,®1,,, then Eq.(3) describes the prob- A2 — (el Ad)2) 22

ability of finding subsystent in the subspac®,.7, . Thus, = inf (gl A) — (gAY , (63

by a suitable choice d? and knowledge op;, we can track A=A* t |(d/dO (| Agy)|

the state of the system as a function of time. One may think L . 0

of P as a projection onto states of particular interéir- 721 =INH{t=0:(yolY)| "= 1/2}, (6b)

get” stateg, or as a state selector, or as a detector. We shall  75:=inf{t=0:|( | )|?>=0}, (60

call it the reference projectio.7 the reference subspace,

andp; the transition probability into the reference subspace. i fm 24t 6
As described in the introduction, we intend to use time-  *" Jo (ol gt (6d)

energy uncertainty relations as a shortcut replacing an exact " 5 5 o\ 12

solution of Eq.(2). This differs somewhat from the usual e mi JZ el |“(t—to)%dt 60

perspective which focuses attention on trying to find substi- s t T2 ol ) |?dt

tutes for the nonexisting “time operato(see, e.g., Allcock,
1969; Pfeifer and Levine, 1983; Partovi and BlancenbeclerThe energy uncertainties are given by

1986, 1988; Kobe and Aguilera-Navarro, 199t to find

analogs of the position-momentum uncertainty relation bye;:=({¢o|H?yo) —(¥olH¥))* (j=1,...,49, (73
other means. As a result, our time-energy uncertainty rela-

tions here include several unconventional examples, and they (ffwlwl S(E—H) o) 2(E—Eg)?d E) 12
leave out examples outside the framework of &, such as s ”; n T (| 8(E—H) )| 2dE ’
delay times in scattering theofiMessiah, 1965; Pfeifer and 0

L_evine, 1983; Galin_do anq Pascual, 1998nd traversal gnd the constant@@ll of them optimal are

times through potential barrietslauge and Stmeng, 1989;

Fertig, 1990; Yeel and Andrei, 1992 Two comprehensive y1:=1/2, (83
reviews of time-energy uncertainty relations are those of Al-

(70)

Icock (1969 and Gislason, Sabeli, and Wo¢£985. v2i=ml4, (80)
In this section, we specifically illustrate the general idea  y3:=m/2, (80
that information on the behavior of the probabilglyin t can L _ap
be derived from properties of its Fourier transfopp, of Ya:=3X57 (8d)
which its energy spread is but one example. ys:=1/2. (8¢)
Example 1 A trivial situation in whichp,; can be calcu-
lated without solving Eq(2) is whenpg or P commutes with We first discuss the examples corresponding to
H.forallt € [0,T]. Then j=1,...,4. Ineach of then; is the usual definition of the
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uncertainty(standard deviatignof an observable, here f, time intervals between returns, as may happen if the poten-
in the state,. Thus each of them yields =« when g is  tial has increasingly distant bumps, producing a singular con-
an eigenvector oH, in agreement with Example 1, and tinuous spectrum off.

quantifies the magnitude of the commutdtair, | o) | ] by Letdu, /dE denote the inverse Fourier transform of the
function { ol ),
o= (3~ [H. [ o) (ol 1)} © (ale™ o)
for generaly,. The equivalence df7a) and(9) is verified by (ol M) = f_we“E“hd,ud,o(E). (12)

a simple computation. The timg is the time needed for the
average of any observabfe to be displaced by an amount Clearly u,, is a probability measure. The properties;of

equal to the standard deviation Af i.e., it is the minimum i, 4ked in Ruelle’s theorem are slightly more refined than
time for 44 to change appreciably. The times and 73 are a1 energy uncertainty. They concern the measure class of
the first half-life time and first death time ¢f,, respectively. 11y, While the usual energy uncertainty, Ega, describes a

The time 7,, being the integrated survival probability of L
o, has the meaning of an average lifetimeyef. None of crude global feature q&% (standard deviation The results

these four inequalities makes any assumptions about tH@escribed in(10) illustrate the rule that the long-time behav-
spectrum ofH. ior is governed by the fine structure af, , while the short-
Wigner’s inequality assumes thidthas an absolutely con- time behavior is controlled by the coarse structuraﬂ%.
tinuous spectrum and that an observer measugingatches  The results in Example 2 provide short-time control. Differ-
the system(particle pass. The timet, which minimizes  ent notions of slow vs fast change therefore may require
(---)"2in (6¢) is the mean time of arrival ap of the par- different properties of the measupe, . But whatever the

ticle. Thusrs is the spread in arrival time, i.e., the amount of property ofu,, that is invoked, it typically requires far less

time the particle spends in stage If H is the kinetic-energy information than knowledge of the exact propagator or of the

operator ind dimensions, ther{{¢|y)|>~consxt™9, as i
t—oo, for generic initial conditions, in which case one hasspectral decomposition dﬂ'. In the_ present exar_nple, we
need only know whethe,a% is atomic or nonatomic.

the trivial outcomers=« in d<3. However, if one searches .
for ¢, and ¢ that minimize the productses, it may be Example 4 Ruelle’s theorem is remarkable because the

possible to identify resonance states, their lifetimes, and ereference subspaces it treats are infinite-dimensional and un-

ergy widths for suitabléd (Wigner, 1972. The energy dis- related to the initial state. One expects that more detailed

tribution function in Eq.(7b) can be interpreted as follows: Properties of the long-time behavior pf can be inferred if

[{o| S(E—H) po)|2(dE)? is the probability that the particle _P.|.n Eqg. (3 |s.allolw—d|menS|onaI projection relate(_j to the

in state 4y, if subjected to an energy measurement in themltlal_state. This is indeed the case: For gene#al arbitrary

interval (E,E+dE), can be detected at. Thuses is the time-independentd, andP=po=|45)(to|, one has

width of the energy distribution that, and ¢ have in com- t

mon. (1/t)f py dt’=constxt P~® (12)
Example 3 A celebrated result which estimaté&®), with- 0

out solving(2), is Ruelle’s theorentRuelle, 1969; Reed and for t—o and arbitrarye>0, whereD is the fractal dimen-

Simon, 1979, Chap. XI.17; Hunziker and Sigal, 1998he  sion (Hausdorff dimensionof the support Of,u% (Salem,

system has the Hilbert spaté(R") and a time-independent 1950; Ketzmerick, Petschel, and Geisel, 1992; Holschneider,
Hamiltonian of the formH = kinetic energy+ potential. The 1994 In Eq.(12), p, is the survival probability of the initial
initial state ispo=|o)(4o| Where iy is either in the sub-  state p,= |( | #)|2 and the resulf12) says that the time-
space of bound statéspanned by the eigenvectorsi®f or  averaged survival probability cannot decay too fast. The case
in the subspace of continuum statesthogonal complement p =0 corresponds to a discrete point spectrum and implies a
of the bound statgsThe theorem states that if in E@®) we  decay slower than any power laim agreement with the fact
choose forP the projectionP, onto states with supportinthe that p, is quasiperiodic in this caselt is the analog of part

ball {x e R™[x|<r}, for an arbitraryr <o, then (103 in Ruelle’s theorem. The case< <1 corresponds to
lim inf p, =1 (109 @ Cantor spectrum of Lebesgue measure zerofead may
Foo t=0 correspond to an absolutely continuous spectrum.

It is interesting to compare the hypotheses in Egs,
(10), and(12) in terms of what they assume about spectral
_ t measures, as described in Table I. The table shows that the
I|m(1/t)fopm,dt’ =0 (10D conditions in Ruelle’s theorem and {@2) differ in how they
o measure the size of two related sets. The dé&édymay be
for arbitraryr < if 4 is a continuum state. EquatighOg interpreted as resolving the ca€Eb) in Ruelle’s theorem
says that an arbitrary superposition of stationary stateito corresponding subcases.
(bound state remains—with probability arbitrarily close to Example 5As a final example for estimation qf; from
1—in some finite ball for all times. EquatidiiOb) says that spectral properties, we mention the following obvious result:
a wave packet of extended states leaves—with probability 1Let .77 be arbitrary, H a time-independent Hamiltonian
when averaged over all times—every finite ball. The timebounded from belowpy=|o){ |, andP such thatpy,=0
average in(10b) comes into effect when the wave packetin Eq. (3). Thenp, either is nonzero on a dense open set of
returns to the origin infinitely often, with increasingly long values or vanishes for all; see, for example, Hegerfeldt

if ¢ is a bound state, and
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TABLE |. Properties of the spectral measupes, an.d,quv,/,O invoked in Examples 2—4. The complex measulg,, is the one replacing
ty, if in (12) the left-hand side is replaced y|e """ ;).

Example “Energy spread” Determines
o 1/2
(7a) n;in( J (E—Eo)zd,u%(E)) gj (j=1,...,4)
o \ =2
o d 2 1/2
J;x(EiEO)Z E/‘Lw,(/fo(E) dE
(7o) min T4 . &5
Eg j EM‘P"/’O(E) dE
(10 By atomic, Of iy, continuous whether(10g or (10b) applies
(12 min{dim Q:u, (Q)=1, Q closed D

(1994. This implies that ifp, describes a source state of Bounds for expectations of commutators are obtained
particles, andP is a detector separated from the source by arfrom Eq. (14) by a suitable choice of the form |(-). One
arbitrary distance, the detection probabilityis nonzero im- ~ such inequality is the Heisenberg uncertainty relation.
mediately aftert=0. As pointed out by Buchholz and Lemma 2 (Conventional uncertainty relationLet p be a
Yngvason(1994), this is not in conflict with Einstein causal- density operator ané,B self-adjoint operators. Then
ity.
|tr(p[A,B]|? < 4{tr(pA?*) —tr’(pA)}

2\ __ 42
lll. INEQUALITIES FOR EXPECTATIONS OF X{tr(pB%) —tr(pB)}. (17)
COMMUTATORS Equality holds in Eq(17) if and only if
In this section we derive a trace inequality that will serve {a[A—tr(pA)]+ib[B—tr(pB)]}p=0,

as our principal tool to generate upper and lower bounds fo, . — :
the probabilityp, in Eq. (3). Sincep, satisfies lrorsomea,b e R with (a,b) # (0,0). Theright-hand side of

Eqg. (17) vanishes if and only ifp=ap for somea € R, or
. Bp=Dbp forsomeb € R.

1p=tr(P[He,pe]) =tr(pd P,H]) (13 Proof. For generalA andB, the form (A|B): =tr(pA* B)
is a non-negative sesquilinear form. For self-adjéirB and

by Egs.(2a) and(3), we seek bounds for expectations of the real numbers.b it satisfies

type tr(R[A,B]), whereR is a positive operator an4,B
are self-adjoint. The starting point is the Schwarz inequality. 2_1(A_alR_h)—(R_ |2
We use it in a form that will yield necessary and sufficient [tr(p[A.BDI*=|(A=a[B—b)~(B=blA~a)|
conditions for equality in the bounds: <4(A—alA—a)(B—b|B—b) (18
Lemma 1 Let (-|-) be a non-negative, sesquilinear form
on a space of linear operators, i.e., satisfyingby use of Eq.(14). Minimization of the bound(18) with
(A|IB+C)=(A|B)+(A|C), (A|bB)=Db(A|B), (A|B) respectta andb, using trlp)=1, yields Eq.(17). The con-
=(B|A*), and (A|A)=0, for all operatorsA,B,C in its do-  ditions for equality in(17) and for zero right-hand side of
main and alb € C. Then (17) follow from Lemma 1, Eq.(18), and the observation
that tr(pC*C)=0 is equivalent toCp=0 for arbitraryC.
|(AIB)—(B|A)|? < 4|(A[B)|* < 4(A|A)(B|B). (14 [
The usual application of Eq17) is to estimate the stan-
Equality in the first part holds if and only if R&(B)=0.  dard deviationg- - -}? in terms of the expectation of the
Equality in the second pa(Schwarz inequalityholds if and  commutator. Our purpose, however, is the opposite: we wish
only if to estimate the expectation of the commutator. Specifically,
. . _ we seek a bound for the expectation of the commutator that
(aA+ibBlaA+ibB)=0, 19 equals zero ip commutes withA or B. The bound17) does
with not have this property. The desired bound is achieved in the
following two results. Their relation to the bourid?) will
(8,0)#(0,0), (16) be discussed after Theorem 1.
for somea,b e C. Simultaneougquality in both parts holds Lemma 3 (Uncertainty relation for subspageset P be
if and only if Eqgs.(15) and (16) are satisfied for soma,b  an orthogonal projection and,B self-adjoint operators.
eR. Then
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TABLE II. Corollaries of Theorem 1. The table lists, for different caseRRpfthe resulting properties of the uncertairfyR,A) and of
the boundg17), (19), (22). The observablé is arbitrary. The expressior{f.1)—(11.3) are all non-negative.

f2(R,A) Bounds
R=p=|4){y| =tr(pA%—pApA) (Il.1a) (17), (19), and(22) coincide
=tr(pA?) —tr’(pA) (Il.1b)
=(YIA%Y) — (YlAy)? (I.10)
R=p=p*=0, <tr(pA?) —tr’(pA) (.2) (22) implies (17)
tr(p)=1
R=P=pP*=p?2 =tr(PA2—PAPA) (11.3a) (19) and(22) coincide
=(1/2)tr(=[P,A]?) (11.3b)
[tr(P[A,B])|? < 4t (PA’— PAPAtr(PB’— PBPB). for somereal §,b) # (0,0). Theright-hand side of22) van-

(19 ishes if and only if R,A] =0 or[R,B]=0.
Equality holds in Eq(19) if and only if Proof. For generalA andB, we define
[P,aA+ibB]P=0
for some real§,b) # (0,0). Theright-hand side of19) van-
ishes if and only if P,A]=0 or[P,B]=0.
Proof. For generalA andB, we define

N
(AlB):= Zl Antr(PLA* (1—P,)BP,). (24)

Just as for Eq{(20), one verifies that Eq(24) is a non-
negative sesquilinear form and, for self-adjoinB, satisfies
(A|B)—(B|A)=tr(R[A,B]), which yields Eq.(22) from

(A|B):=tr(PA*(1-P)BP) (203 (14). The remaining assertions in Theorem 1 follow from
=tr(PA*B—PA*PB), (20b) Lemma 1 and the following. For arbitray, one has
where Eq.(20b) follows from P= P2 and cyclic permutation (C|C)=0< CP,=P,CP, (all n) (259
under. the trace. Ong easily v_e_rifies, usig P2=P*, thqt - [P,,C]P,,=0 (all n,m) (25b)
(20a is a non-negative sesquilinear form. For self-adjdint
andB, it gives = [R,C]R=0 (250
(A|B)—(B|A)=tr(PAB—PAPB-PBA+PBPA) = > AP,CPn—AnCP,=0 (all m) (250
n
=tr(P[A,B]). (21
= P,CP,=CP,, (all m) (256
Substitution of Egs(20) and (21) into (14) yields Eq.(19). — (c|c)=0. (250

Next, consider an arbitrarg such that C|C)=0. From Eg.
(20) it follows that (CPy|(1—P)CPy)=0, for all ¢. This

impliesCPy e P.7Z for all ¢, i.e., CP=PCP. Conversely, \,>0, for all nonzero terms iri24). Parts(25b) and (250
o s - hple ) n=>0, .

CPl—DFE:CFF)’_lrgpllles (C[C) _I(? : Thgs C'C)l_o IS equcl:va_leont follow from the spectral theorem. Multiplication g250

to [P,C]P=0 for generalC, and equivalent toR,C1=0 g0 the right byP,, yields (25d. Multiplication of (250)

for self-adjointC. Together with Lemma 1, this proves the from the left by P, yields (\,—\,)P,CP,,=0 and hence

conditions for equality in Eq(19) and for zero right-hand P,CP,,=0 forn ¢nm, which aiveQZSQ bymsubstitution into

side of(19). [J (250). The final ste i
. . . . p follows from(25g. This shows that
Theorem 1 (Strong uncertainty relationLet R be a posi- (C|C)=0 is equivalent tdR,C]R=0 for generalC, and

tive ,c\‘)peratorRzo, with a pure poi_nt spect_rum, eigen&/alues equivalent to R,C]=0 for self-adjointC. (]

{Anjn-1, @nd corresponding eigenprojectionfP,jy_, We call the quantityf (R,A) the uncertainty of the observ-

(N=e). Furthermore, lef andB be self-adjoint operators. apje A with respect to the weighR. For a density operator

Then p and an orthogonal projectidn, we callf(p,A) the uncer-
[tr(R[A,B])|? < 4f%(R,A)f%(R,B), (22)  tainty of A in statep andf(P,A) the uncertainty ofA in the

subspaceéP.7Z. The relation of Theorem 1 to Lemma 2 and

Equation (253 is clear from the proof of Lemma 3 and

here : e ; —_
W N 1o Lemma 3 is exhibited in Table Il. The first line shows that
the three uncertainty relations coincide for pure states. The
- 2_
f(RA):= nzl Anll(PrA=PrAPA) | (29 second line shows that Theorem 1 is stronger than Lemma 2.

The third line shows that Theorem 1 includes Lemma 3. Of
the statements in Table Il, onl§i.2) needs proof. It follows
[R,aA+ibB]R=0, from

Equality holds in Eq(22) if and only if
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in which a, anda_ denote the upper and lower end of the
f2(p,A)=tr(pA2)— >, Atr(P,APA), (26)  spectrum ofA, illustrates that this is indeed the case. It
" shows that the uncertainfR,A) is limited by the width of
2 the part of the spectrum & in the spectral support d&®. To
tr’(pA)= ( > Mtr(PoPA Pn)) prove (300, we consider an orthogonal projectién choose
" an orthonormal basise;} in P77, and note that

2
S(% AV tf<Pﬁ>tf<<PnAPn>2>) @70 t(PA*=PAPA=2 {(#ilA%0) — (¢l APAR))}
2
:(2 W”’n)WU«PnAF’n)Z)) =3 {(eilA20)~(wlAg)Y
g(; W“”)(? Mtr((P“Apn>z)) @8 =3 {(@:~(elAe)) (eilAg)—a)
:2 A tr(P,APA) (29) —(@il(a;—A)(A—a_)g)}

n
<> (a;—(olAe)(@ilAg)—a_)
where we have used the Schwarz inequality i -~ {elAen)(elAe)
[tr(X* V)| <{tr(X* X)tr(Y*Y)}¥2 in (27), the Cauchy in-

equality in(28), and tr(p) =1 in (29). <> max (a,—x)(x—a_.)
We now discuss Theorem {i) Theorem 1 sharpens and I a_=x<a,

extends the conventional uncertainty relation in such a way 1

thatf(R,A)=0 if and only if[R,A]=0, i.e., that the uncer- = Ztr(P)(a+_a_)2’

tainty f(R,A) is a measure of the noncommutativity®fand
A. It decomposes the expectation of the commutafaB]  using |¢;){¢;|<P and (@, —A)(A—a_)=0 in the second
into a product of expectations involvirg andB separately. and fourth line, respectively. This, together with Eg3),

The transformation properties proves Eq.(300. The bound(300 is a variant of what is
o known as Grss’ inequality (Mitrinovi¢, 1970. Nontrivial
f(rR,an)=rHalf(RA), (308 examples in which the bound holds as equality are given in
f(R,U*AU)=f(URU* A) (30p  the next paragraph.

(iii) The unequal role of the weighR and the observable
(r=0;a € R;U= unitary) ensure that both sides of EQ2) A in f(R,A) is highlighted by the scaling propertg03 and
transform in the same way under rescaling and unitangntailsf(R,A) # f(A,R) in general. However, iP andQ are
transformation of the operators. Equatiof80b) also  orthogonal projections, then
ensures that the functionf is unitarily invariant,

1
f(U*RU,U*AU)=f(R,A), as a good measure of noncom- f(P,Q)=1(Q,P)< zmin{\/tr(P),Jtr(Q)}, (30d)
mutativity should be. For given observabldsand B, the 2
condition where the second part is an application of E20¢. Hence
[R,aA+ibB]JR=0, a%+b?>0, (31  the uncertainty ofQ in the subspacd>.” is equal to the

; b defi he ¢l £ mini . uncertainty ofP in the subspac€.7 and is limited by the
or somea,b e R ge Ines the class of minimum-uncertainty yimansion of the smaller of the two subspaces. An interest-
weightsR, i.e., the weights for which equality holds in Eq. ing consequence o30d is that, by the one-to-one corre-

(ang Ian ar;]dB arEe_trFe pos|ltl(t)|,? andnrgi(zim |f(nstij)mrogla'C)"jlrtt'cle’spondence between noncommuting orthogonal projections
{ah fo ?I'C 0ﬁse I ‘t/’><t't/” fe ccr)] ct) tat esycestho . and incompatible yes-no experimentsee, for example,
€ famitiar characterization ot conerent states. since the InJauch, 1968 it endows the propositional calculus of quan-

equality (22) is tighter than(17), the class of weights obey- tum mechanics with a numerical measure of incompatibility,

ing (31 is larger than the class of minimum-uncertaint.yf(P’Q), which preserves the symmetry of the relation “in-
s}ates for(l?),_ however. Iio_r texam.plre]t, tl\r}le unit operﬁtor IS compatible” between two propositions and identifies two
always a minimum-uncertainty weight. viore generatly, .ev'propositions as maximally incompatible when the upper
ery positive function oA or B with a pure point spectrum is bound in(30d is reached. An elementary example of maxi-

a minimum-uncertainty weight. mally incompatible propositions according to this criterion

f(") In Slec. I, wefmtroduc.ed the enﬁrgy undcertamtytas} ?rr:eare the one-dimensional eigenspaces of different spin com-
of several ways of measuring over how wide a part o eponentsSX,Sy,SZ of a spind particle. A more general ex-

energy spectrum a state is spr&g. (7a), Table I, which ample, in .7#=C", is obtained by takingP.7# as the
suggests that(R,A), too, should reflect spectral properties m-dpim;ensi(;nal subspace of vectopgl( o ,Xi) -With =0
of the observablé\. The bound for i=1,...n—m (1s=m=n/2) and Q7% as the
[(n+1)/2]-dimensional subspace of vectors with
Xi=Xp_i+1 fori=1, ... n. Inthis case, the upper bound in

f(R,A)s;/tr(R)(m—a_), (300
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Eq. (300) is reached by virtue o0PQP= 1P, showing that d
the bound is optimal in all dimensions. 17— Ups=—UpsHs, Upe=1. (37b)
(iv) We close our discussion with a remark about improve-

ments upon Theorem 1. It concerns the question whether E®ifferentiation of Eq.(34) with respect ta ands, together
(22) can be improved by decomposing the eigenprojectionsvith Egs. (378 and(37b) and their adjoints, leads to

P, in (23 into lower-dimensional orthogonal projections g

[clearly, all that is needed for22) to hold is _that i7i—prs=[Hi,pesl, (389
R=3.A,P,, \y=0, andP,=P¥ =P2]. The answer is no. at

Indeed, if P, P’, and P" are orthogonal projections with P

P=P’+P”, then ifi =< prs=~Uro[Hs.polUs. (38b)

2 i + 2/pn __f2 — ’ " "=0. )
PPLA) +H(PY.A) = T5(P.A) =2 t(PTAPTAP )(3%) From Eqgs.(35), (383 and Theorem 1, it follows that

Thus Theorem 1 appears to be optimal. 4
PP P |- Pes| = 1tr(P[H{ py o))

IV. GENERALIZED TIME-ENERGY UNCERTAINTY

RELATION <2f(P,H)f(P,pys). (39

Our key idea is that Theorem 1, when applied to the equal'—flgg ?r?g i?:ég%%ﬁ?yal projectioRt and density operatgy, one

tion of motion(13), separates the right-hand side(8) into
factors which, by the orthogonal projection property Rof

2 —
yield closed-form differential inequalities fqu,. These in- F5(P.p)=tr(Pp(1=P)p)
equalities can then be integrated. To treat the general case in =tr(VpPp)* Vp(1—P)\/p)
which the Hamiltonian is time dependent, it is useful first to
consider the probability, as a function of both the initial <{tr(PpP))tr([(1—P)p(1—P)]H)}"?

time and the final time.

2 2 _ _ 1/2
Proposition 1 Let U, 4 be the unitary propagator from <{r(PpPII(1=P)p(1=P))}

initial time s to final time t, for a system with time- =tr(Pp)—tr’(Pp), (40
dependent HamiltoniaHl,; at timet. This satisfies the equa-
tion where we have used EJ) in the first line, the Schwarz
. inequality | tr(X* Y) | <{tr(X* X)tr(Y* Y)}*? in the third line,
Ut,szl_(i/ﬁ)f HyUyp dt’ (33 and non-negativity of the eigenvalues dPpP and
s (1—P)p(1—P) in the fourth line. In the last line we have

forall's, t € R.2Let p, be a fixed density operator afdan ~ Used that tip)=1. Equality holds in Eq(40) if p is a pure
orthogonal projection. Define state. Combination of Eq$39), (40), and(35) proves(363.
From (35), (38b), and Theorem 1, it follows that

Pt,s::Ut,sPOU:s (34) 5 J |t(PU H ]U* )|
— el r' s
Prsi=U(Ppys) 39 7P belTlerPoe
— *
The operatop, 5 and the functiorp, s describe the evolution =[tr(polHs ’Ut'SPUt’Sm
of the density operatqs, from times to timet (Schralinger <2f(po,He) f(po,UFPU, o)
picture;ps s= po) and the corresponding expectation value of ' ’
P, respectively. Then =2f(po,Ho)f(p1,s.P)
J —— <2f(po Ho{tr(pe,sP) —tri(p P)}2 (4D
Ept,s gZﬁilf(PaHt) pt,s_ pt,s (36@

In the last two lines of Eq(41), we have used30b) and
B (I.2) (see Table M. Inequality (41), together with (35),
<2h lf(Po,Hs) VPt,s— pt2,s (36b) proves(36b)_ O
) . ) ) Proposition 2. If the HamiltoniansH; andH;. in Propo-
forall s, t € R, wheref is the function defined in Eq23). sition 1 commute for alt andt’, then the bound$36a,
Proof. Equation(33) implies that the propagator satisfies (36b) are also valid with the replacements
Us=U{ and

J
%pt,s

f(P,Hy) — min{f(P,Hy),f(po,Ho)} (423

17
ii—U; s=HU;s, Ugs=1 37 .
grobe e Tes 37 f(po,Hs) = min{f(P,Hy),f(pg,Ho)}. (420)
Proof. By rewriting the equations of motio88a), (38b) as
2t is necessary to specify some hypotheses on the domain of
definition of the operatorkl, and their dependence d@n Equation

J ~
i —prs=U;{His,polUF 384
(36) then holds on a dense subspace of the Hilbert space. atPus telHis,polUts (38)
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TABLE IIl. Examples in which the upper or lower boun@&0) reproduces the exact value pf. The

system is a two-level system with Hamiltonidh=( 51 (E’Z). The initial state and reference projection

are po= o) and P=|¢){(¢|. The equality ofp, to the upper or lower bound, as stated in the last
column, is restricted to €t<a#/|E;—E,| in the first two examples, and tost<#/(2|E;—E,|) in
the last two examples.

o o] Pt
1 1
(1/&)(1> (1/@)(1) coZ(|E,— E,|t/(2#))=lower bound
1 1 .
(1/\/5)(1> (1/\/5)( 1) sir?(|[E;— E,|t/(24))=upper bound
1 1 . _
(1/\2) i (11\2) X 3(1+sin(|E;—E,|t/#))=upper bound
1 1 . _
(11\2) s (11\2) 1 1(1—sin(|E;—E,|t/A))=lower bound
x g i (38t) 0 if x<0,
! gsPrs” Hstpush sin, (x): =1 sinx if 0sxsm/2, (44)
1 if x=m/2.

where I:|t,3:=Ut*,SHtUtYS is the Hamiltonian in the Heisen-
berg picture, and proceeding as in Proposition 1, one obtaing s>t, the integration limits in43) are interchanged.

the alternative bounds Proof. From Proposition 1 we have the bounds
1% ~ J
ﬁﬁpt,s :|tr(p0[Ht,SaU:sPUt,s])| iz_pT’s$2ﬁ71f(P,H7) VPrs™ pi,s (45)
<2f(pg,Hys)f(po,UrPU J .
(po t,s) (po t,s t,s) ia_pt,a$2ﬁ lf(POaHa)\/m- (46)
~ g
ng(pOaHt,s) VPt,s™ Ptsr (364d)
P For s<t, integration of(45) by separation of variables, from
h %pt,s :|tr(P[Hs,t -Pt,s])l T=sto 7=t, gives
+fpt‘s 2)-117g 2ﬁ—1ftf P,H,)d 4
~ - <
<2f(P,As)f(P.pys) =], (PP e o(PHdm 4
st(P,Hs_t) VP s~ pES. (360)  where the integral on the left-hand side is well defined be-

cause Bspg =<1. Fors<t, integration of(46), from o=t to

They are quite useless in general, because, unlike in Prope==s, gives
sition 1, the factorsf(...,...) here involve the little-
known propagatol), ¢ via |:|t,s- But if the Hamiltonians at if
different times commute, thebd; ; commutes withH,. In
that case, one hag'lt,s:Ht and ﬁs’t:Hs, so that Eq. The sense of inequalit{48) is opposite to that of47), be-
(36') competes with36) and yields the improvemer(#2). cause, in48), we integrate in the negative direction. Since
0 Pss= Pt =tr(Ppo), the two inequalities compete with each

Proposition 3. Under the hypotheses of Proposition 1, theother and yield

Pts S
“(p—p?) “dp=20* [ f(po H,)do. (49
Pt,t t

probability p; s is bounded from above and below, for all PLs
steR,by if (p—p*) Ydp
tr(Ppg)
Pes = SiNG | arcsintr(Ppo) =+ 2(arcsintr(Ppo) —arcsin/py ¢)
t t
ih—lmin{ ftf(P,HT)dT,ftf(po,HU)do']), <2h‘1min” f(P,HT)dT,f f(po,Ha)da'}. (49
s s S S

(43 Solving Eq.(49) for arcsinyp; s and applying the function
where, without loss of generality, we have assumed tha$irﬁ on both sides of the inequality, one obtains the result
s<t, and (43) by monotonicity of sig . [J
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Proposition 3 explains why it is important to consider thelation of f(P,Hs) requires three matrix multiplicatior{se-
two-point probability p; s in Proposition 1: The rate of call Eq.(Il.3)]. This is clearly much less effort than to diag-
change of the probability in the forward time direction is onalizeH,, as a step towards solvin@). In the rare event
bounded by the energy uncertainty in the subspac¢hatf(P,H) or f(pg,HS) are difficult to compute, one may
P.7 [Eqg. (36a]. The rate of change in the backward time drop one of them from Eq50), estimate them by using Eq.
direction is bounded by the energy uncertainty in the initial(30¢), or estimatef (pg,H;) by using Eq.(1l.2) (Table I), at
statepg [Eq. (36b)]. Hence if we want to obtain an inequality the expense of obtaining weaker bounds fipr Difficulties
that combines the two energy uncertainties, we have to corin computingf(P,H) or f(pg,Hs) may occur only ifP or
sider a variation of both the initial timeand the final tima. po have infinite rank(large reference subspace or highly
This is precisely what we have done in the proof of Propo-mixed statg In the other extreme, whefe andp, have rank
sition 3: Ther integration of(45) is from left to right, but the  one, i.e., where®=|¢){ | and po=|#){ |, one has
o integration of(46) is from right to left.

We now return to the original situation in which the initial f(P,Hg)=({@|H20)— (o|Hsp)?)*? (529
time is set equal to zercsE0). To further simplify expres- ’ 9 1/
sions, we choose final times to be positite=Q), with the f(po,Hs) = (ol Hs o) — (#olHso)?) (52b

understanding that the opposite case Q) is equally easy to
get from Proposition 3. We then have the following theorem.
Theorem 2 (Time-energy uncertainty relatipnConsider a

by Eq. (Il.1). In this case, the energy uncertainties are the
usual standard deviations with respect to vector states and

guantum-mechanical system with a family of time-dependen?imple to estimate.

HamiltoniansH; . Let p, be the initial state of the system,
and choose an orthogonal projectiBnThen the probability
p:, defined in Eq(3), is bounded from above and below by

p, = sir?| arcsin/py

th‘lmin[ftf(P,Hs)ds,jtf(po,Hs)ds})
0 0

(50

for all t=0. The functiond and siny are defined in Eq$23)
and (44). In the special case thdgtH.,Hs =0 for all
0=<s,s'<t, one has the improvement

p, = sir?| arcsin/py

t
iﬁ—lfomin{f(P,HS),f(pO,HS)}ds : (51
The upper and lower bound in ER0) coincide if and only
if either[P,H]=0 forall 0 < s < t or[pg,Hs]=0 for all
0=<s=<t. The bounds(51) coincide if and only if, for all
0=s=<t, either[P,H ]=0 or[pg,Hs]=0.

Proof. Inequality(50) is Proposition 3, specialized to zero
initial time and positive final time. Inequality51) follows
from Proposition 2: One substitut¢423 into (363 and in-

tegrates in a way similar to the integration in Proposition 3.
The conditions for the coincidence of upper and lower

bounds are clear from Theorem 1.

(i) The bound<50) express a time-energy uncertainty re-
lation, because they manifestly imply thatremains close to
its initial value py (“large lifetime of py”) if the energy
uncertainty inP.7% or pg is small. Conversely, they imply
that the energy uncertainty iR.77 and the energy uncer-
tainty in po must be large ifp, departs rapidly fromp,
(“short lifetime of py” ).

(iii) By the property thatf(R,Hg)=0 if and only if
[R,H¢]=0, the bound$50) clearly relate the change pf to
the degree of noncommutativity of the pair®,H;) and
(po,Hs). They show thap,=p, if P or pg is a constant of
motion. They generally show what happen$ifand p, are
close to constants of motion.

(iv) The boundq50) are invariant with respect to the in-
terchange of and 1-P. That is, if we writep,=tr (Ppy)
andp; =tr ((1—P)p,), then the upper bound fq, gives the
lower bound forp; and the lower bound fop, gives the
upper bound fop, . This follows from the identity

sirg (arcsin/po*x)=1— sir (arcsin/1—pyTx).

It shows that the bounds naturally respect the complementary
nature of the subspac&s7 and (1- P).77 and the associ-
ated probability interpretations @f, and 1—p;. Variants of
the boundg50) are obtained by applying the inequalities

sin, (arcsinypo=X) = Vpo+2 min{\1—po,
NIES

+

1}sin, (x/2)
(53a

(53b)

<

=

Theorem 2 is the central result of this paper. It achieves

the goals set out in Secs. | and Il in the following way:
(i) The boundq50) do not require any information about
the propagator or the solution of the Sdtlirger equation

for x=0. We use Egs(53a and (53b) in Secs. V and VI.
(v) The boundg50) depend on the energy uncertainties in
P.77 and p, integrated up to timé (cumulative uncertain-

(2). All they require is the ability to compute the energy ties). Thus the bounds coincide &0 and increasingly de-

uncertainty in the reference subspatéR,H.), and the en-
ergy uncertainty in the initial staté(pqy,Hs). Since the en-

part from each other asincreases. When the smaller of the
two cumulative uncertainties reaches the value

ergy uncertainties involve only expectations of quadratic ex#(m/2—arcsinypg) or #arcsinypy, the upper or lower

pressions inHg, Eq. (23), their computation is easy,
compared to the task of solving the Sctfiger equation.

For example, if the Hamiltonian is a finite matrix, the calcu-
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example, ifpg=1, the upper bound is trivial at all times; and
if po=0, the lower bound is trivial at all times. This behavior
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as a function oft shows that the bound&0) control the W. [the dependence oW. enters through55) and (56)].
short-time behavior op,, in agreement with the fact that The minimum and maximum in Eq57) are attained when
uncertaintied (P,H;) andf(pg,Hs) describe coarse features Wy equals the exact propagator for al@<t. When
of the spectrum oH (recall Examples 2 and 3 in Sec).lin W =1, for all 0<s<t, Eq. (54) leads back to Eq(50).
Theorem 3 below, we shall see how the short-time control Proof. Given(i) the propagatortl; generated by the fam-
can be extended to longer times by the introduction of suitily of HamiltoniansH,, and (ii) the orthogonal projection
able comparison dynamics. P, defined by Eq.(55), we wish to find a HamiltoniarH,

(vi) Equality holds in(50) if the upper and lower bounds sych that the propagatat, generated by, satisfies
coincide, in which case the bounds simultaneously equal

p:. This is characterized in Theorem 2. But equality(50)

may also hold in only one or the other inequality, i.e., for the
upper or lower bound only. Simple examples for nonsimul-o; 5| . andP. The rationale is clear: The left-hand side of
taneous equality are given in Table Ill. Thus Table lll illus- Eq. (58) equalsp,, and the right-hand side can be estimated

tr(PUypoUF ) =tr(P0,poUF) (58)

trates that the bound$0) may reproducep; even if p; is
nonstationary. General conditions for
equality in(50) can be derived from the proof of Proposition
1, i.e., from identifying the conditions for equality in Egs.
(363 and(36b), using Theorem 1. We do not write down the

general conditions because they involve the propagators and

hence do not yield simple predictive criteria.

V. COMPARISON DYNAMICS AND VARIATIONAL
PRINCIPLE

by Eqg. (50) with the replacement
Hg— I:|S,

nonsimultaneous

P~ E’t (59
Py > tr( E’totpoo?),
Po > tr(Pypo).

This yields Eq.(54) and exploits, as announced, the circum-
stance that the projection in Theorem 2 may be chdsen

An important feature of Theorem 2 is that the orthogonaldépendent. It remains to find the Hamiltonibip satisfying

projection P can be chosen arbitrarily. In particular, it is
perfectly legitimate to take foP an orthogonal projection
that has a parametric dependencd.onhe idea is that if one
chooses the parametric dependence so as to include part
the time evolution generated by (i.e., so as to approximate
the Heisenberg evolution of a given projectibn, one ex-
pects to be able to improve the boun@®). The following
theorem implements this idea for any ansatz for an approx
mate time evolution.

Theorem 3 (Time-energy uncertainty relation with com-
parison dynamigs The hypotheses and notation are as i
Theorem 1. In addition, let a family of unitary operators
W, (trial propagators differentiable with respect td and
satisfyingWy= 1, be given. Them; is bounded from above
and below by

Py = Sirﬁ

arcsiny tr(Pypg)

iﬁlmin{ fotf(ﬁt,ﬁs)ds,fotf(po,ﬁs)ds]),

(54)
P i=WrPW,, (55)
Hyi= W H W, — i AWE W, (56)
for all t=0. Furthermore, one has
pe=min T..(t,po,P,W.) (573
w
(57b

=maxT_(t,pq,P,W.)
w

for all t=0, whereT_.(t,pq,P,W.) denotes the right-hand
side of Eq.(54) as a function oft, py, P, and the family
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58), i.e.,
U=w,U,, (60)
of ihU,=H,U,, (61)
i#0,=F,0,. 62)

iI_Equation(GO) follows from substituting(55) into (58). The

other two equations are the evolution equations for the
propagatordJ; and U;. Substitution of Eq.60) into (61)

naives

HW, O, =iW,0,+iaw,0,,

=inW,U,+W,H,U,, (63
where Eq.(62) has been used in the second line. Multiplica-
tion of (63) by W from the left and byUf from the right
yields formula(56) for the transformed HamiltoniaH, . We
note thatH; is formally self-adjoint, by the unitarity of
W,, for the latter implies thatV; W,= — W' W, . If the trial
propagator equals the exact propagat=U,, then
Hi=U}HU—iaU}(in) HU=0 (64)
from Egs.(56) and(61). Thus if W= U for all 0<s<t, the
+ part in Eq.(54) vanishes, and54) holds as an equality.
This proves Eq(57) and the statement about the attainment
of the minimum and maximum. Finally, E€G0) is clearly a
special case of54). [

Theorem 3 treats the comparison dynamitk, in a way
that is reminiscent of the decomposition of the time evolu-
tion in the interaction picture. From this viewpoint, one has
the analogy

W, « “free” propagator,
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|5t < “free” Heisenberg evolution ofP, W.; and the estimate gb; may be good even V. is far
. o _ _ _ from the exact time evolutiot) . .
H; < Hamiltonian in the “interaction picture.” The parallels to the variational principle for stationary

states are striking. There one varies a trial state so as to

We use quotation marks to emphasize #ateed not come  minimize the expectation value of the Hamiltonian. Here one
from a separation oH, into a free Hamiltonian and an in- varies a family of trial statep, so as to minimize the right-
teraction part. That is, the family of trial propagat&h4 is  hand side of Eq(65). There every fixed trial state yields an
completely arbitrary. This agrees with the fact that the transypper bound for the ground-state energy. Here every fixed
formed HamiltoniarH, does not refer to any free or interac- family of trial states yields an upper bound, E65), for the
tion part, but depends only ar; andW,, as described by difference between the trial state and the exact state.
Eq. (56). All that is needed forf54) is thatP, andH, can be As an illustration of this time-dependent variational prin-
explicitly computed for a givelw,. The boundg54) may ciple, we use Theorem 3 to derive a simple error estimate for
then be interpreted as estimatipgin terms of the evolution the case in which states are pure and a family of time-
of P or py underW,, plus a correction term involving the dependent trial states, rather than trial propagators, is used.
Hamiltonianl:|s (0=s=<t). Corollary 1. Consider a system with a family of time-

The fact that the familyV. is arbitrary converts inequality dependent Hamiltoniartd,, a solutiony; of the Schrdinger
(54) into a variational principle. Indeed, sind&. occurs equation(2b), and a family of trial stateg, differentiable
only on the right-hand side db4), one may varyV., so as  with respect tot and satisfyingyy= 1. Then, for every
to make the upper bound minimal or the lower bound maxi+eference state and allt=0, one has the bounds
mal. WhenW. is varied over all one-parameter families of
unitary operators, the exact value pf is obtained[Eqgs.  |(¢|y)| = sin,
(57a and (57b)]. Our variational principle provides explicit
error estimates: For evely ., it tells us how close the ap- t L B
proximate state p,:=W,poW; is to the exact state “—’ﬁflJ' (1= [hs)(hs]) 8(hs) [ ds ) (679
pi=UpoU7{ by telling us how closely the expectation values 0

arcsirl( ¢| )|

agree on every projectioR. The comparison op, and p ~ [t ~ o~ ~
may be written in the symmetric form t bo1=[(lw)| = cos | At 0||(1—|</fs><1//s|)5(l/fs)||d5 ;
= (67b
|arcsinytr(Pp,) — arcsinytr(Pp,)| where
t o~ o~ t ~ ~ ~ ~
<h 1 min( fof(Pt,Hs)ds,fof(po,HS)ds], (65) 8(is):=Hgps—itiifs,
which is equivalent to Eq54) and puts the error bound into Cos, (X): = V1= (x).
full evidence. Thus, iW. is a good approximation o, Equality holds in(67) if and only if there exist real numbers
then Hg will be small and the boundé&4) will bracket p; as such thaty,=e'3sy, for all O<s<t.
tightly, even whent is large. Conversely, ifN. is a poor Proof. We write the trial states as

approximation ofU ., then the upper and lower bounds will ;0 — W,y 68
be close to each other only for smaland will rapidly ap- t o
proach 1 and 0 as grows. The dependence of E4) on ~ WhereW. is a family satisfying the hypotheses of Theorem
the cumulative energy uncertainties reflects the fact that thd. For a given trial-state familys., the propagator family
bounds(54) measure the performance of the whole family W. is not unique, of course; but this does not matter for our
W., not just of a single operatd#/, . purposes. Furthermore, we choos®=|¢)(¢| and

It may happen that, for giveW. ,P,p,, the bound¢54)  Po=|¥0){#ol- The energy uncertainties in Theorem 3 then
coincide and thus produce the exact valeeven if W, ~ become

# U, for all 0<s<t (“perfect performance of a wrong fam- 2D ) — 2_ ¥ 2

ily” ). An elementary example is the trivial gue¥¥,= 1 for PP HO = HWE o= (WE olHWE ) €9
0=<s<t, which gives the exact valyg wheneverP or p, is £2(po.Hs) =IHstoll2— (ol Hsho)?

a constant of motiorfiTheorem 2. It shows that the family ~

W., which minimizes and maximizes the functionals =[1(1— o) o) Hsthol®

T.(t,p0,P,--+), need not be unique. The origin of this de-

=[|Wy(1— W (H W — iAW) |2
generacy is that two different familiegy. andW. , may act IWs(L=[ o) trol) Ws (HsWs =% W) o

identically onP or py, = [[(1—= sy (bel) 8 |12
Wi PW,= W PW,, (662 =182 = sl 8152, (70
WipoW; = WipoW; (66D \where Eqs.(52), (55), (56), (68), unitarity of W,, and the

in which case they may perform identically in Theorem 3.definition of () have been used. Since the energy uncer-
Thus one may get a good estimateppffrom a single guess tainty (69) cannot be expressed in terms of the trial states, we
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keep only the ternf(pg,Hs) in Eq. (54), at the expense of  (v) The occurrence of the norf(1—|¢e) (i) (o),
weakening the bounds. This gives the re¢6ita from (70).  rather than of|8(¢)|, corresponds to the fact that E@7)
The result(67b) follows from (678 by choosing the refer- is a variational principle for one-dimensional subspaces
ence state equal to the trial state= 4. Equality holds in  of .7, rather than vectors in7%. Indeed, the norm
Eq. (67) if and only if, for all 0<s<t, the vectors(¢)) is  I(1—|¥s){%s|) 8(ts)| is independent of the phase factor of
proportional tog. A simple calculation shows that this pro- the trial state, bui5(y)|| is not. If interpreted in terms of
portionality is equivalent to the phase factor conditionSubspaces, the family that minimizes or maximizes the right-
claimed in Corollary 10 hqn.d side ot67a} is unique. _The nonuniqueness <_)f the mini-
We now discuss Corollary 1) Intuitively, a trial state MiZing and maximizing familyV. in Theorem 3 disappears
l~/’t is a good approximation of the solutial of the Schie in Corollary 1 because when we consider a specific family of

dinger equation if the remainder af, in the Schidinger density operatoré\ipoW; , as we do in Corollary 1, the

o ~ o degeneracy66) is automatically lifted.

equation is smallg(y) ~0. Corollary 1 makes this idea pre-
cise by providing explicit bounds fog, in terms of ¢,
which are manifestly tight if5(:4¢) is small (0<s<t). In-  VI- COMPARISON WITH EARLIER WORK
terestingly, the bounds require only the norm of the compo- Special cases of Theorem(@me-energy uncertainty rela-
nent of 5(¢s) orthogonal toys, [[(1— ) (¢s) 8¢5l 10 tion without comparison dynamigsiave been obtained pre-
be small—not the norm of(¢s) itself. Thus the bound&$7)  viously. For a general time-independent Hamiltonisin
are tight wheneves( i) lies almost in the subspace spannedFleming (1973 and Bhattacharyy&1983 showed that the
by is. solution ¢, of (2b) satisfies

(ii) The result(67) says that, from a given set of trial-state
families, the best approximation is not necessarily the one  |{#ol#)|=cos, ({¥ol H2o) — (ol H o) ®) 2/ 1).
that minimizes the remainde&’(://t) at the end point, but (72)
the one that minimizeén the sense of the above nortme  This is the lower bound50) and (51) for the special case
cumulative remainder over<9s<t. This agrees with the P=py=|¢o){( 10|, recalling (52) and noting that(50) and
earlier remark that our variational bounds measure the pef51) coincide if the Hamiltonian is time independent. It is
formance of a one-parameter family, hefe, rather than of ~also the bound67b) for the special case in which the trial
a single elementy, . family is ¢s=typ, O=s=t, with remainders(¢)=H .

(iii) Once the best family has been identified and the inteTN€ result(72) was used by Fleming1973 and Bhatta-
gral in (67) has been evaluated, the bour(@3a give esti- charyya(1983 to deduce the b_ogr_1¢5) for the half-life time
mates of the overlap of the exact state and any vector 72 and the death times of the _|n|t|al stateyy . L
¢. This provides a complete catalog of error estimates fOtH For a ge'?era' famlly Of. tme-d_ependent Hamiltonians
the location ofz,b£ in 7. The error estimate for the location ''t* & one-dimensional projectioR=|¢){¢|, and a pure

. L . ) state pg= , the bounds(50) and (51), with (52),
of y relative toy: is given by Eq.(670). Upon introduction were %Obtalilrﬁ(gé lﬁo)l Pfeifefl993, including the examples in

of a suitable phase factet, the estimaté67b) can also be  rapje |11, The bounds were used to investigate revival times,

putin the form the onset of the asymptotic power lai&2), and various
. - pulsed-field problemésee also Pfeifer, 1994lt was claimed
| — €l = (2= 2| (| )] in Pfeifer, 1993, that the bound§1) hold without restric-
1 . tions, under the condition th& andp, have rank one. But
gzsink(zhlf 11— |s){ b)) S(bs) | ds] . we have found a gap in _the arguments for that_ clai_m. So at
0 present Eq(51) is established only if the Hamiltonians at

(72) different times commute with each other. All other assertions
. in Pfeifer, 1993, remain unaffected.
The bound(71) may be used to reestimate the overlap of T4 compare Theorem 3 with results in the literature, we

Y and ¢ from first consider the variational principle implied by Theorem 3
_ 5 s and illustrated in Corollary 1. To the best of our knowledge,
elwn| = Kelg] = (el v— ey Corollary 1 is the first time-dependent variational principle

with explicit error bounds for the exact stafg in terms of
and the Schwarz inequality. But the resulting estimate fothe trial states)s. All previous time-dependent variational
[{el¢)| is weaker thar(67a, as shown by Eq(539. principles for state vectors approximae by an extremal-
(iv) If a trial-state family comes from a known trial- ized trial statey;, without error estimate@ee Gerjuoy, Rau,
propagator family, Eq(68), or if, conversely, a given trial- and Spruch, 1983; Pfeifer and Levine, 1983; Broeckhove,
state family is extended to a trial-propagator family, theLathouwers, and van Leuven, 1989, for some complemen-
bounds(673 can be improved by including the omitted term tary reviews. One such popular principle, attributed to
(69). This will be further discussed in Sec. VI. No such im- McLachlan (Broeckhove, Lathouwers, and van Leuven,
provement is possible i67b) because, fop= ¢, Egs.(69) 1989; McLachlan, 1964 minimizes the norm of the vector
and (70) yield f(P;,Hs)="f(pg,Hs), i.e., identical results. (i) defined in Corollary 1. It provides no error bars be-
Thus the bound67b) is optimal. cause the Schrdinger equation alone gives no information
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about the closeness g# to i when| 8(¢)| is small. Thus time-dependent perturbation thediyyson series fotJ W
Corollary 1 may be viewed as supplying the error bounddo first ordg}f. The efficiency of our me.thod depends entirely
missing in McLachlan’s variational principle and improving On our ability to construct a comparison dynamits ap-

o ~ proximatingU, with sufficient precision on aubspacef the
the principle through the replacement of the nafa{ys)| Hilbert space of state vectorgbefore applying time-

by the norm|(1—){s)) o(s)ll. dependent perturbation thegryThe subspace is either the
At the level of trial propagators, however, Theorem 3 iSrange ofP or the range obo_ A similar comparison dynam-
not the first time-dependent variational principle with errorics is required in Spruch, 1969, and Shakeshaft and Spruch,
bounds. Spructi1969 derived upper and lower bounds for 1974, except that there the subspace is one dimensional.
the overlap of the solutiogl;, of (2b) and any reference state ~ Our methods are reminiscent of Nekhoroshev’'s perturba-

¢ that amount to tion theory in classical mechani¢slekhoroshev, 1997 For
t example, our applications in the next section will lead to
< g1 TRy exponentially long time scales analogous to the exponential
Kelgn] = [(e|Wigho)| £ 4 L”(HSWS W)W ellds, time scales governing the energy exchange between con-

(73)  strained(*frozen”) and unconstrained classical degrees of

. . . ., freedom, obtained by Nekoroshev-type meth@Benettin,
for a trial-propagator familyW. as in Theorem 3. Spruch’s Galgani, and Giorgilli)f 1987, 1989: ggnettin,"ﬂﬁimh, and

boun'ds[Eq. (73)] can be recovered from Theorem 3 as fol- Gjogilli, 1988), although our systems will be very different
lows: If we chooseP=|¢)(¢|.po=|¥o){tol, and keep only  from those studied by Benettt al. (Benettin, Galgani, and

the termf(P,Hy) in Eq. (54), we obtain Giorgilli, 1987, 1989; Benettin, Fhdich, and Giorgilli,
£ 1988. Actually, all results proven in Secs. IlI-V have a

Kol = Sim(arCSiﬂ<<P|thﬂo>|iﬁ_1J f(Pt,Hs)d5> straightforward translation into results concerning classical
0 dynamical systems with flows generated by volume-

‘ preserving vector fields, in particular Hamiltonian systems.
|<<P|Wt¢/o>|iﬁflf f(P,,Hy)ds In this translation, one describes states by probability mea-
0 sures on phase space; a projection operator is the character-
. istic function of a subset of phase spakkjs the Liouville
= |<¢|thﬂo>|iﬁ_lf 1AW ¢||ds. (74)  operator; and good comparison dynamics may be obtained
0 by applying, for example, the Nekhoroshev method.

VA

In the second line, we have used the inequabyb); and in
the third line, we have inserted E@9), dropping its second

term. By Eq.(56) and the unitarity oW, the third line is A variety of applications of Theorem @ime-energy un-
the same as Ed73). certainty relation without comparison dynamicspecialized
This derivation of Eq(73) from (54) shows that Theorem o pure states and one-dimensional projectiBn$iave been
3 strengthens and extends Spruch’s bounds. It puts into evpresented by Pfeife1993. In this section, we sketch appli-
dence the complementary nature of Spruch’s bounds and thgitions of Theorem 3 to problems that involve mixed states
bounds in Corollary 1, one originating from the energy un-and higher-dimensional projections. Specifically, we want to
certainty in the reference subspace, the other from the energiplore the quality of the bound$4) for carefully chosen
uncertainty in the initial state. For initial-value problems, comparison dynamics.
Corollary 1 is easier to apply and yields stronger results in a
well-defined sense; but for final-value problems, the situatiorA. Application 1: Quantum-mechanical particle in a
is just reversed. potential well
For completeness’ sake, we mention that Sprit®69

and Shakeshaft and Spru¢td74 derived additional bounds ~ We study the dynamics of a quantum-mechanical particle
which, in the notation of74), read moving inR" under the influence of a volcano-shaped poten-

¢ tialvg, W|th
<¢|Wt( 1—iﬁ1foHSds) ¢0>

t . t o
=42 [ ol [ 1A WE ldsas. 79

VIl. EXAMPLES AND EXTENSIONS

[(ely)| =

In these bounds, the initial state is propagated by a nonuni-
tary operatorW,(1—i#~1f{H.ds). Hence they are not eas-
ily compared with the results in Theorem 3, in which the
initial state or reference subspace is propagated unitarily.
Our final remark concerns the connection with time-
dependent perturbation theory. Clearly, the bou(¥ds and
(75) are perturbation theoretic in natufeee also Spruch, ¢
1969; Shakeshaft and Spruch, 1874nd so is Theorem 3. L
Indeed, returning to our analysis, we find that in Theorem 3
we have used nothing more than a variant of second-ordeFIG. 1.
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v(X):=60%v(x10), 1<6h<, 76 n
o= e 7o wu00=T1 Q¥ (V). (84
wherev(x) is a smooth function o®R" with the following =1
properties: andh, is the usualth Hermite function normalized such that
(i) The origin x=0 is a local minimum ofv, with  fdxh(x)?2=1. The properties of the functiorts, are well
v(0)=0. known; in particular,
(i) The Hessian ofv at x=0 is positive-definite, with 1
eigenvalue2?>0,i=1, ... n. |h|(x)|sc|’5ex;{—(§—5)x2 , (85)
(i) Let g(x) be a smooth function, witlg(x)=1, for
|x|<3, andg(x)=0, for |x|=1. where, for any < and§>0, ¢, s is a finite constant. Given
We defineg, , by any E<w, there are finitely many sequences$®,
x .18 such that
gsﬁ(x)::‘?’(W)' e>0. 77) Eg<E for all j=1, ... ke, 86)
Let us choose coordinates,, . . . X,, onR" in which the

with ke=a,(E/Qp)", whereQy:= min; Q;>0, anda, is a
geometrical constant. Definind|:=max I;, we also have
1D]<QgEforall j=1, ... ke.

Hessian ofv at x=0 is diagonal. In accordance with the
assumed smoothness of we may require that

1o 2 9 We may view the HamiltoniaH; as a perturbation of
m):ax 9e.o(X)|vo(X) = 5 ;1 Q7| <Cee, (78) H, by the potentialv, 4(x). By Egs.(78) and(82), the op-
erator normJ|w, 4, of w, , is bounded byc,e, and hence
for some constant, and anye>0. _ _ we can apply analytic perturbation thedigato, 1980. We
(iv) Finally we assume thatv(x)| is polynomially  choose a contoure in the complex plane surrounding
bounded. (specH)N[0,E) such that

A typical functionv with these properties is sketched in
Fig. 1. We note thatv, is a potential well of diameter
0(#), with walls of heightO(6?) and of widthO(#).

The Hilbert space of the system is given by

1
dist( vg ,specHg) =: dE=§(E| ke+1)— Ejkp)>0.  (87)

We chooses so small that

T/=L2(R",d"x), (79 2
. . . E
and the Hamlltomr;m is Cie< S(ETQO)' (88)
h
H=H,:=— %A—Fva(x), (800  Then the operator
wherem is the mass of the particle artk< . We are inter- P, E=5 dz(z—H,;)" ! (89)
' aw

ested in estimating the lifetime of a state which, at time YE
t=0, is localized well inside the well of the volcano, asymp-js 5 spectral projection dfi;, with
totically when 6 becomes large. In order to derive precise
estimates of such lifetimes, we consider a comparison dy- p )=k 0
. P =kg and |Pyg— Pgl|<1, 90
namics generated by the Hamiltonian (Pog)=ke IPo.e=Pel 0

Hi=H; g:=Hotw, 4(x), (81)  whereP{ is the spectral projection ¢, onto the subspace,
Where e, spanned by the eigenfunctiofig ), . . . .o}
We claim that ify is in the range oP, g then there is a
h? 1 . finite constaniCg>1 such that
Ho —EA'FE ZQ’IXi , )
= eyl =Cellull, (91

n
v(,(x)—%(z lexlz) . (82)  provided a>0 is sufficiently small(depending one and
=1 Cg). This follows from a Combes-Thomas argument
In order to simplify our notations, we choose units in which (Combes and Thomas, 1973; see also Hunziker, 1 §i&t,
A=m=1. we note that, by Eq90), there is a vectop e .77 such that
We start by considering the harmonic oscillator Hamil- =P, ¢, with | ¢|<const| . Using Eq.(89), we have
tonianH, defined in Eq(82). With the units and conventions

We,0(X) =g, o(X)

just fixed, the spectrum dfi, consists of the eigenvalues ey = Zim dz{e?™*(z—H,) Lo~ eal®y,
n YE
1
E=2 O li+ 3]s (83) (92)
i=1 By Egs.(84)—(86),
wherel=(l4, ...y, andl;=0,1,2, ... fori=1,...,n, ,
corresponding to the eigenfunctions |e*™"g||<const| ¢||,
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if a<(3—8)Q,. Furthermore,
e’ *(z—Hy) Tle” = z—Hy(a))?,
where

|:|1(a)=H1+ 2an—4a?|x|?+4ax- V.

Choosinga small enough, we can use elementary analytic

perturbation theoryKato, 1980 to prove a uniform bound
on

e (z—Hy) e M =[[z— Ax(a)] |,

forall z € yg. From this and Eq92) the bound91) follows
by standard arguments.
Finally, we note that

H—H;=06v, 4,

where

(93

n
1 2.2
Ue_izl Qi
|=

By the definition ofg, ,, the support ofév, 4 is outside a
ball of radiusi(e 6)°. Moreover, by assumptiofiv),

50.9,(9 ::(1_98,(9)

0, [x|<3(e0)?

|5va,a(X)|$[

af’+b|x|2+P(x)/0, |x|>1(e6),

(94
for some finite constants and b and some polynomial
P(x).

With these preliminaries out of the way, we are ready to

apply the bound$54) on the probabilityp; (see Theorem)3
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f2(Pg 4,60 )=Etr(—[P 80, 0%
E,0» £,0 2 6,E e,0 .

We may represen®, ¢ as an integral operator aw, with
integral kernel denoted by , £(x,y). By Egs.(90) and(91),
we have

| I etepizeee gy < (keco?, 99

with Cg and o as specified in Eq(91), andkg as in (86).
Furthermore,

tr(—[Pye.00, 41%) = f |5 e(X,Y)|?[ v, 4(X)

— 6, o(y)12d"xd"y. (100
Recalling inequality(94) and using(99), we conclude that
0<tr(~[Pye,dv, ,]2)<20%e 21", (10

for some finite constant8z and ug that depend oi. [Here
we « ae?® and, by Eqs(91) and(88), « ande depend on
E.]

With

pi:=UipoU{ and pi:= tr(pPye), (102

inequality(54) of Theorem 3, combined with inequalit95),
Eq. (98), and inequality(101), yields the bounds

Py §sirﬁ(arcsir(l—a)ifotf(lz’t,ﬁs)ds),

where

to the present system. The system is in an initial state de- ng(f’t |:|S): \/% tr(—[Ppye, 00, )

scribed by a density matriyp,. Given some number,
0<o<1, there then exists an energy, <« such that

tr(poPye)=(1-0)?, (95
for all E=E, and all 6=1. This follows easily from the
definition (89) of the projectionP, ¢, Egs.(81) and (84),
and assumptiofiii) [Eq. (78)].

We now set
Ut:e*itH, Wt:e*itHly
E)t:W? PoeWi=PyE, (96)

where the last equation follows from the fact tijg is a
spectral projection oH;=H, , [as defined in Eq81)]. We
then havegsee Eq(56)]

|:|t:\/\/:c HWt_lwikWt

:Wt* ov ¢ oW, 97
by Egs.(96) and (93).
Using Eqgs.(30b), (96), and(97), we find that
f(E)t !|:|S):f(VV:lSPH,EWt7315U£,H)
=f(P0'E,5vs‘0), (98)

wheref(R,A) has been defined in ER3J).
Equation(ll.3b) (Table Il) says that
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for E=E,. For o small enough,
ml2—\20<arcsinl—o)<muw/2—\ol2,
and we find that
an =
p; = siré E—\/Z*la + toee He?’|, (104)

for o small enough an&=E ;. These bounds imply that the
statep, of the system remains in the range of the spectral
projectionP,, ¢ of the operatoH, , [defined in Eq(81)], for

E large enough, wittpositive probability p [estimated by
Eqg. (104)], for all times t, with

|t|<conste#e?*”,

(109
This is thekey resultfor the present example. It has the
following corollary: LetQg be the projection onto the sub-
space of wave functions 7 with support in the ball of
radius R centered at the origin iR". Given E<«» and
B>0, there exists a radiuRg z<o such that
I(1-Qr)Pyel<8, (106)
for all R>Rg 5. This is an easy consequence of inequality
(99). From (106) one obtains
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Pe=1tr(P g ept) =tr(QrPyept) +tr((1—Qr)Py ept) We suppose that satisfies assumption§), with v(0)=0
(without loss of generalify and(ii); but (iii) is replaced by
<tr(QrPyepd) + B the following condition: Lefg be as in(iii ), but we define
=0+ tr(Qr(Pge—1)p)+ 8 g.(x):=g(x/g)
<q+ Va1 pe+ B, (1070 and set
2 n
Whgre, in the first inequality we have us€ld6), we have W, (X): =0.(X)| v y(X)— 0_( 2 Q.ZX.Z) .
definedq, by ’ 2\i=1
q: =tr(p:Qr), (108  We assume that

and in the last inequality we have used the cyclicity of the 6% > 2
trace and the Schwarz inequality for the trace and have notdii ) [W., o(X)|<X\(&) > Z’l Qx|
that t(Pye—1)?p)=tr((1—Pyg)p)=1—p,. From Egs.

(104), (107, and(106) we conclude thafior R large enough for all x e R", where\ (¢)— 0 ase—0.

(R>Rg 3,E=E,,B ando small enough We keep propertyiv) of v as above. We then define
1 - hz 02 n
q:=75, for all t with |t|<conste#r?™” (109 Hoi=—5 A+ ;1 Q2?2

for some ug>0. This means that, with high probability, a
particle prepared at time=0 in a state localized well within

a “volcano” of diameterO(6), with walls of heightO(6?) and
and widthO(6) (as described by the potentia}), does not

Hl::H0+W8,9

. . . H=H;+6 ,
escape from it, for all times with 1T %e,0
|t| <exp const#?3]. where
2/ n
We discuss this result as followl) Let us suppose that S ) =[1—0.(x ) — 0_ 02y2
the functionv is C* and hasvanishingthird derivatives at its 0o, oX):=[178:00] vo(x) =5 ;1 U

local minimumx= 0 [this hasnotbeen assumed in the analy-

sis presented above; see EG8)]. In this case, we redefine Then the spectrum dfio consists of the eigenvalues

the functiong, 4(x) [see Eq(77)] by setting n
E|:E 0Q|(||+%), |i=O,1,2,..., i:].,...,n,
=1
X):=g| —|, 110 . . .

%e.6(X) g( @) (110 corresponding to the eigenfunctions
with ¢ small enough. Under the present hypotheses, inequal- n
ity (78) holds for the functiong, , defined in Eq.(110). l/f|(X)=H (GQi)thli(\/GQixi)y
Going through our analysis step by step, we then find that =1
inequality (101) can be improved to which decay like expt 6€|x|?), for Qg:=minQ;. By as-

0<tr(—[P,g,dv 0]2)s28§e‘2“E“’, (107) sumption (iif), we have
and (109 turns out to holdfor all times t with Iw,, gl <N (2)lIHoyl,

|t|<exd consté] (117  forall ¢rin the domain of definition oo, and hence we can

apply analytic perturbation theory to determine the eigenval-
ues ofH, below an energf= %6, #<w, for ¢ sufficiently
small. The Combes-Thomas argumé¢aee (91) and (92)]

can be used, just as before, to show that the corresponding
eigenfunctions ofH, decay like exp— a6|x|?] for some
a>0. Let P, denote the spectral projection Hf; onto the
éf,ubspace spanned by eigenfunctions corresponding to eigen-
values=<Z6. Preparing the system in a statg with the

o property that

i.e., for exponentially large times

One may wonder whether E(L11) can be improved, un-
der suitable assumptions an to superexponentially large
times. Actually, it is easy to see that if(x) —const, as
|x|—c° (i.e., the “volcano” does not permanently confine the
particle), Eq.(111) cannot be improved without changing the
comparison dynamics. This is seen by carefully retracing th
steps of our analysis. In order to improve on Etl1), one
would have to use a comparison dynamics involving a p
tential that grows faster thajx|? as |x|]—o. Examples of tr(poP,)=(1—0)%, 0=<o<I1,
functionsv for which this idea can be implemented can be
constructed without difficulty.

(2) There is another, perhaps more natubait analytically
somewhat more subjlavay of rescaling the function to a |t|<e#?,
potentialv 4: One sets

one can then prove that : =tr(p;P») remains strictly posi-
tive for all timest with

for someu>0. As in Egs.(106)—(109), this result implies
v o(X)= 600 (X). that the time of escape from the interior of the volcano to the
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outside world of a particle prepared, at titne0, in the state

po described above, is exponentially largeéin

Thus, in moving coordinates[given by Eq.(114)], v.(y) is
time independentlt is therefore natural to formulate the

We refrain from presenting details of the proofs of theseschralinger equation for the motion of the electron in the
claims and discussing variants of such results, which th‘ﬁeld of the nucleus irmoving coordinate537 This has been

reader will find easy to work out.

For discussion of and references to other related results

see Cycon, Froese, Kirsch, and Simd987.

B. Application 2: One-electron ion in a magnetic field

The system we consider here consists of a single electr

bound to a nucleus of chargegZ{1)e and massM>m,

wherem denotes the electron mass. At titre0, the nucleus

and the electron are supposed to form a bound state; the
initial state py for the relative motion is supposed to be a
density matrix constructed from energetically low-lying or-

studied in some detail by Fntich and Studer1993. The

result is as follows: Le‘t7=\7( - ,t) be an arbitrary, smooth,
possibly time-dependent vector field generating a volume-

preserving flow ¢, on R3 [i.e., (3/dt) d(y)=V(p(y),t)
with V-V=0]. Then the Schidinger-Pauli equation in mov-
ing coordinatesy= ¢_,(X), is given by

on

. -
|h5¢t(y):Hy¢t(y)v
where iy, is a two-component Pauli spinor, with

e 7 =L2%(R3,d%)®(? (117

bitals. The system is under the influence of a constant mag-

netic field éz(0,0,B) in the z direction. The initial state
Xo for the center-of-mass motion is assumed to be peaked at

a point )?0=(r,0,0), and itsFourier transformy, to be
peaked at a momentum given bP,=MV,, where

\70=(0,—rwc,0), andw, is the cyclotron angular velocity

of a particle of electric chargg=Ze and masdM, i.e.,
_usB

Mc’
By Heisenberg's uncertainty relations,

(112

We

- - h
AXO' AVO>3M

B B 7 S R V3 S
v | TV AV foem VA
9= = - -
®1,+1® —TB~S+2(1)-S, (118

where m, =mM/(m+M)~m is the reduced mass of the
electron,g~2 is its gyromagnetic factog.=ef/(2mc) is
the Bohr magnetoréz(h/Z)(ax ,0y,0) is the spin opera-
tor of the electron, andv=13curl V [with @=(0,0,0.),

w¢ as in Eq.(112), in our examplgis the angular velocity of
the moving coordinate frame. The first term on the right-
hand side of Eq(118) is the kinetic-energy operator in mov-

If Z is large,M is large, and hence the uncertainties of po-ing coordinates, withn*\7 corresponding to the vector po-

sition A)?O and veIocityA\70 can be made very small. It is tential of the Coriolis force; the terrr=r(e/c)\7-5\ is a
then justified to treat the center-of-mass motion of the iorrelativistic correction, due to the circumstance that, in mov-

classically over a very long interval of time. L¥(t) denote
the classical position of the center of mass at tim&hen

X(t)=(rcog wct), —rsin(wgt),0).

We set
0 w. 0
Q:=| @ O , (113
0 0 O

then X(t) =e®X,. Let x be an arbitrary vector iR3. We

introducemoving coordinates
y=e O (114

and define the velocity fielsyf by

.. d . N
V(y)= g (e" %)= -Qy. (119

If )Zz(xl,xz,xs) are the position operators of the electron,
then the Coulomb potential of the electron in the field of the

nucleus is given, at timg by
(Z+1e*  (Z+1)€?
X=X [y=Xol

=:0(y). (116
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ing coordinates, there is an electric field proportional to
(|V|/c)|B|; the term— (m, /2)V? is the potential of the cen-
trifugal force; the term—(g,u/ﬁ)é« Sis the Zeeman energy
of the magnetic moment of the electron spin; and-$
comes from spin precession in the moving coordinate frame.
All vectors on the right-hand side of E(L18) are expressed
in the basis of the moving frame. For simplicity we are ne-
glecting spin-orbit interactions in Eq118) which, for large
Z are actually somewhat significant. For details concerning
the derivation of Eq(118), see Frhlich and Studef1993.
Imposing the Coulomb gauge condition @y we find
that, in the moving frame of the system we are studying,

.. B

AY)= 5 (=Y2.¥1.0), (119
and, by Egs(113 and (115),

V(Y)=wc(~¥2.,Y1,0). (120
Let

m, g

B*—B(l—ZVE),
and Iet,&* be the vector potential in the Coulomb gauge,
whose curl is given by(0,0,B,). Note that, since
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m, /M<1, B, is approximately equal t@®. Furthermore, Which is a tiny electric field. This is the Zeeman-Stark prob-

approximatingg by 2 andm, by m, we find that lem. Note that, in our examplé], is timg independent
We are thus led to study the following general problem
QM 2 oz QM o concerning tunneling in atomic physics: Let be as in Eq.
f B-S+20-5 h B, -S. (121 (117, and letH, be the Hamiltonian for the relative motion

A v the f hat121 i . ion is sianifi of a one-electron ion in a uniformly bounded, time-
ctually, the fact tha(121) is not a strict equation is signifi- independent, external magnetic field. lggt-) be the func-

cant and is the basis of Telegdi's precision experiment detert-Ion defined in assumptiofiii) of Application 1, Eq.(77).
mining theg factor of the electron. For our considerations, | ot ,, pe a piecewise continuous function & with the
however, the deviation of the left-hand side from the right'following properties: We define

hand side of Eq(121) is insignificant.

Finally, . AN
2 Wy(£):=9| 5]v(é), (129
_CAv- &Vz}(e)__ @(L Me)2sy2)
2 y 2McZ\q ™M YTz for any 6>1. We assume that, for some constkrte and
2 an arbitraryf<<co, there exists some finite constaky such
__ 895 o, 0 that
~~ oz Yitya), (122

Iwoll<Agll(Ho+ k1) 4], (129

for all vectorsy in the domain of definition oH,. We also
assume, for example, that, fée= 6,, for some finited,,

ol

since (n, /M)<<(e/q). Note that the potential of the cen-
trifugal force, — (m, /2)\72, is insignificant as compared to
the term— (e/c)A- V.

All these calculations show that

v o €)= v(€) (130

1 [h. e. \? eq eqB ,
HVQ[E(TVJF—A*) —le—e—m(hﬂ/z)

c y—Xo c is polynomially boundedclearly, w,+ év ,=v). We define
- H:=Hy+ev (131
©1,- 10 Q%B* 8 (123 °
and

The terms left out on the right-hand side give corrections of
orderEm/M to atypical energ¥ e specH, . Consideration

of the right side 0f{123 suggests that we use relative coor- for somef= 6, to be chosen below. Then
dinates

HIEH]_,H :=H0+8W9, (132)

N N N H:Hl+85U0. (133)
E=y—=Xo=(y1—1,Y2,Y3). (1249 From standard texts on rigorous atomic phydiesy., Kato,
Then 1980; Cycon, Froese, Kirsch, and Simon, 198& know
that the spectrum dfl consists of an infinityfor an attrac-
_ - tive Coulomb potentialof eigenvalues,
W(Yﬁ'b)"’ 2Mc2r M2 ré; P a 9

2 2
BETVIASIRE TR
(125 corresponding to eigenfunctions,, ¥ ,#,, . .., and an ab-
. . a1
The Bohr radius is many orders of magnitude smaller than solutely —continuous  part[E,,), with Ec=—3gu

r, which, in a cyclotron, is macroscopically large. Thus theX SUR|B(¢)| (incidentally, from now on, we return to units
second term on the right-hand side of Eg25) is, for all  In which7Zi=1). LetE<E., and let ¢ be the subspace of

practical purposes, negligible. The size of the first term is % spanned by all eigenfunctiongyg, i, ... i corre-
eqB ; eqB sponding to eigenvalug<E;< ... < E,_<E. Then
rvrvakyliagrvpvaltc
MC MC EkE+1_EkE::2dE>O, (134)
2Rp2
q°B” , )
<om2" T lwd)” 126 3
2Mc? 2 () (126 Defining fig 1= VE.— E, we have, for alj=1, ... ke,

Thus the atomic physics problem we are studying is that of

an electron in the field of a static nucleus of charge-(L)e |1//j(§)|<cE,5e*<“E*5>|§|, (139
in an external electromagnetic fieldE(,B,), with
B, =(0,0B,) as above, and for any 6>0, wherecg ; is a finite constant; see, for ex-
) ample, Cycon, Froese, Kirsch, and Sim¢h987. Thus
E :(ﬁr 0 0) (127) eigenfunctions oH, decayexponentiallyat infinity. Given
*\Mc? ) 6<c, with #=6,, we shall choose so small that
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d =1—-A, 144
E (136 °h (144

) o forall R=R, and|t|$s*17E,Ae"E‘9. Thus the escape time to
wherek is the constant appearing in EQL29. Thanks 0 jnfinity of the electron grows exponentially i, where

Egs.(129 and(136), we may then use analytic perturbation 5n be chosen so large that ,<const[see Eq(136)].
theory to study the point spectrumldf;, for sufficiently low

energies, and the corresponding eigenfunctions. The ideas Example 1 We setB=0 and choose

here are essentially the same as th_ose_ developed in Applica— v(é)= &, (145
tion 1; see Eqs(87)—(90). The projection operatoPg is . o
defined by i.e., ev(§)=eé;. This is the Stark problem for a constant,
1 external electric fieIcI?:(—s/e,0,0) in thex direction. Set-
PE:T dz(z—H,) 1, (137  ting k=—Ey+1 in (129, we then have
T J e
where the contoug has been defined in Application[&f. It < 6l < 6] (Ho+ k1) 4], (129)
Eqgs.(87)—(89)]. Furthermore, Eq(90) remains trugmutatis
mutandis. i.e., Ay=46. Hence, givere>0 and taking into account Eg.
It is well known that, in the present example, we can agair{136), we may set
apply the Combes-Thomas argument, in a way analogous to 0= res L (146

Egs.(91) and(92), and show that

o for some constankg>0. Then Eqs(142) and(144) yield

| me@npeni i@ty =kcor, 138 ]
p. = sird g—\/2:10 + tesee e (147)

for some constanCg, provided a<ug is small enough.

HereIlg(€, 7) is the integral kernel oP¢ (as in Application andg:=1—A, for R=R, and

1). The bound(138 follows from (135, by the Combes-

Thomas argument. Note that EAL38) claims exponential, |t|$8717E‘AeVE8711 where vg= ugke>0.
rather than Gaussiaas in Application }, decay of
ITIe(€,7)|, as|é|+]|n|—e. Thus the escape time of the electronstois exponentially

The remainder of this story is just as in Application 1. large in 1!
Thus we suppose that the state of the system, with dynamics Example 2 Let us finally return to the problem from
generated by the Hamiltonid, at timet=0 is described by  which we originally started in Application 2, the problem of
a density matrixp, with the property that, for some<1, 3 one-electron ion in a magnetic field. From E(23 and
there exists somE<E_ such that (125 we infer that if we sek=eqB2/(Mc?) then we may

tr(poPg)=(1—0)2. (139  choosed so large that

We setp,:=tr(p;Pg), 0;:=1tr(p;Qr), Where Qg projects
onto the subspace of Pauli spinorsithat vanish outside a
sphere of radiuR centered at the origin dt3. Again, by Eq.
(138), we have

€ o
8r0+§0 < Kg,

for some constantg>0, where the tern$? comes from the
centrifugal potential§§+ 53 in Eq. (125. Thus, as long as

[(1—Qr)Pel—0 as R—oe; (140 r2>kele, 6 grows like 1k; but, asymptotically, as | 0, 6
. ) grows like 1/\/5. Physically, e is very small, so that the
see Eq(106). The estimate replacing.01) now reads escape time of the electron to infinity is comparatively very
large.
O<tr(—[Pg,dv,]?) <252 e’ (141 We make the following remarks:

_ o (1) The techniques developed in Application 2 can be gen-
for 6<6, [see Eq(130] andE<E., wheredg is a finite  eralized to yield lower bounds on lifetimes of states of mul-
constant, angke is positive. Recalling thatt=Hy+ev, we  tielectron ions in external electromagnetic fields.

conclude that ife>0 satisfies Eq(136), and for o suffi- (2) The methods developed in this paper can be applied to
ciently small, prove lower bounds on the lifetimes of excited states of at-
- oms when the electrons are coupled to the quantized electro-
p; = sind 7~ V2¥lo + tedge  HEY|. (142  magnetic field. These bounds agree with those expected from
perturbation theoryBach, Frdilich, and Sigal, 1996
Assuming thaip, is chosen such that (3) The methods developed in this paper are efficient for
proving lower bounds on the lifetimes of unstable states.
tr(pgPg)=1 for some E<E_,, (143 More detailed estimates, including the tef(py,H) in Eq.

(54) and improved trial propagators, are required for obtain-
then one derives from Eq€l42) (with 0=0) and(140) that, ing upper bounds on lifetimes or for deriving a detailed,
given anyA>0, there exists som&,<« and a constant temporal picture of a decay process. Hunzik€890, has
7e >0 such that ife satisfies Eq(136) then constructed methods complementary to ours, based on the
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technique of complex dilations, in order to describe the deGea-Banacloche, J., 1992a, Opt. Commi8).531.

cay of unstable states and obtain bounds on lifetimes. Gea-Banacloche, J., 1992b, Phys. Revi6A7307.
Gerjuoy, E., A. R. P. Rau, and L. Spruch, 1983, Rev. Mod. Pb¥s.
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