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A precise form of the quantum-mechanical time-energy uncertainty relation is derived. For any given initial
state~density operator!, time-dependent Hamiltonian, and subspace of reference states, it gives upper and
lower bounds for the probability of finding the system in a state in that subspace at a later or earlier time. The
bounds involve only the initial data, the energy uncertainty in the initial state, and the energy uncertainty in
the reference subspace. They describe how fast the state enters or leaves the reference subspace. They are
exact if, but not only if, the initial state or the projection onto the reference subspace commutes with the
Hamiltonian. The basic tool used in the proof is a simple inequality for expectation values of commutators,
which generalizes the usual uncertainty relation. By introducing suitable comparison dynamics~trial
propagators!, the bounds can be made arbitrarily tight. They represent a time-dependent variational principle,
in terms of trial propagators, which provides explicit error estimates and reproduces the exact time evolution
when one varies over all trial propagators. As illustrations, we derive accurate lower bounds on the escape time
of a particle out of a potential well modeling a quantum dot, and the total time before which aHe1 ion moving
in a uniform magnetic field loses its electron.

CONTENTS

I. Introduction 759
II. Estimates on Time Evolution from Spectral Properties:

Examples 761
III. Inequalities for Expectations of Commutators 763
IV. Generalized Time-Energy Uncertainty Relation 766
V. Comparison Dynamics and Variational Principle 769
VI. Comparison with Earlier Work 771
VII. Examples and Extensions 772

A. Application 1: Quantum-mechanical particle in a
potential well 772

B. Application 2: One-electron ion in a magnetic field 776
Acknowledgments 779
References 779

I. INTRODUCTION

A basic challenge in quantum mechanics is to understand
how time-dependent Schro¨dinger equations, innocently lin-
ear and first-order in time as they are, admit solutions exhib-
iting an incredibly rich variety of different behaviors, rang-
ing from free wave-packet propagation to complex
diffraction phenomena, from the slow decay of metastable
states to fast optical switching, from quantum beats to seem-
ingly irreversible or chaotic behavior. The origin of such
diverse behavior is the oscillatory nature of the time evolu-
tion and the superposition principle which, by constructive
and destructive interference, can produce virtually any ‘‘sig-
nal’’ ~depending on the initial state and the Hamiltonian!. A
noteworthy example exhibiting many of these phenomena

governed by a single Hamiltonian is the Jaynes-Cummings
model ~Jaynes and Cummings, 1963!, a prototype of two
interacting quantum systems.1 The model produces collapses
and revivals of the atomic population inversion, dynamic
generation of approximate product states~disentanglement!,
irreversible subdynamics, and spontaneously broken symme-
tries ~Pfeifer, 1982, 1983; Gea-Banacloche, 1990, 1991,
1992a, 1992b; Averbukh, 1992; Buzeket al., 1992!.
The oscillatory nature of the quantum-mechanical time

evolution is the source of various difficulties encountered
when one attempts to solve the Schro¨dinger equation nu-
merically. Reliable numerical methods to integrate the time-
dependent Schro¨dinger equation for systems with several
spatial variables have become available only quite recently
~Broeckhove, Lathouwers, and van Leuven, 1986; Broeck-
hove and Lathouwers, 1992!. They have been spurred by the
development of very short and intense laser pulses (10214 s,
1018 W/cm2) so as to provide a computational basis for the
new processes driven or probed by such laser fields~Broeck-
hove and Lathouwers, 1992!. But even with these advances,
the systems for which reliable calculations can be carried out
and the times up to which the results are accurate remain
limited. This is in contrast to the situation for stationary
states, where there are many methods for obtaining accurate
approximations. One may ask why similar methods do not
exist for the time-dependent Schro¨dinger equation. The an-
swer is that, just as for one real variablex the oscillatory
functioneix is more complicated to approximate numerically
than the monotone decreasing functione2x, it is much more
difficult to estimateeiHt /\ thane2bH whereH is the Hamil-
tonian. An estimation ofe2bH, for largeb, is equivalent to
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estimating the low-lying eigenvaluesE0,E1,••• and the
corresponding eigenprojectionsP0 ,P1 , . . . of H, using

e2bH;e2bE0P0 ~1a!

~e2bH2e2bE0P0!;e2bE1P1 , . . . ~1b!

asb→`. A beautiful numerical implementation of Eq.~1!
has recently been carried out to obtain high-precision eigen-
values and eigenmodes of a fractal drum~Sapoval, Gobron,
and Margolina, 1991; Sapoval and Gobron, 1993!. Perhaps
the most striking difference betweene2 iHt /\ ande2bH mani-
fests itself in their path-integral representations~see, for ex-
ample, Reed and Simon, 1975, Chap. X.11!: the Feynman
integral for the propagatore2 iHt /\ is an oscillatory integral
with a generally somewhat dubious mathematical status; the
Feynman-Kac integral fore2bH is given in terms of a posi-
tive, finite measure supported on Brownian paths.
Thus it is of interest to ask whether quantitative informa-

tion about the time evolution of states can be obtained, for
example in the form of bounds analogous to those for sta-
tionary states, i.e., in the form of a variational principle,
without solving the Schro¨dinger equation. In this paper we
present a method that allows one to obtain such information
under very general conditions.
The plan of the paper is as follows. In Sec. II we indicate,

by means of selected examples, how results concerning time-
dependent properties can be obtained without explicit knowl-
edge of the propagator. The general theme illustrated in the
examples is that knowledge of suitable properties of the
spectral measure of the Hamiltonian in the initial state, such
as its ‘‘energy spread,’’ sets limitations on how fast the state
can change with time. For example, if the energy spread is
small, the system cannot depart rapidly from the initial state
or move rapidly into some final state. Conversely, if the state
changes rapidly in time, the energy spread is necessarily
large. We refer to a result of this type as a time-energy un-
certainty relation. Section II serves to illustrate some of the
ideas and goals we pursue in later sections.
In Secs. III through V we derive the main result of the

paper~Theorem 3!. This result provides—for any given ini-
tial state~pure or mixed!, any Hamiltonian~time-dependent
or not!, any subspace of reference states, and anyguessof
an approximate propagator—explicit upper and lower
bounds for the probability that the system is in a state be-
longing to the reference subspace at timet. The bounds have
the following nice properties:

~i! Computationally, they require only expectations of qua-
dratic expressions in the Hamiltonian, describing the energy
uncertainty in the initial state and in the reference subspace.
If the approximate~trial! propagator is nontrivial~Þ unit
operator!, the Hamiltonian and the reference subspace enter
the calculation of energy uncertainties in an appropriately
transformed form.

~ii ! The bounds are nontrivial even when the trial propa-
gator is trivial, i.e., equals the unit operator~Theorem 2!. In
that case, the energy uncertainties quantify the degree of
noncommutativity of the Hamiltonian and the initial state,
and of the Hamiltonian and the projection onto the reference

subspace. This connection between uncertainty and noncom-
mutativity is developed in Sec. III in a general form~Theo-
rem 1!. Our bounds in Theorem 2~Sec. IV! describe what
happens when neither the initial state nor the projection onto
the reference subspace are constants of motion. They coin-
cide, i.e., simultaneously equal the exact result, if and only if
the initial state or the projection is a constant of motion.
Nonsimultaneously, they reproduce the exact result also in
other instances.

~iii ! The freedom to work with arbitrary trial propagators
~as long as they define a differentiable family of unitary op-
erators! offers the possibility of improving the bounds ob-
tained from the trivial trial propagator in important ways.
The upper and lower bounds coincide if the trial propagator
equals the exact propagator. They provide a time-dependent
variational principle thatincludes error bars. By restricting
the reference subspace to be one dimensional, restricting
states to be pure, and weakening the bounds, we obtain a
time-dependent variational principle for wave functions with
explicit error bars~Corollary 1, Sec. V!.
In Sec. VI, we compare our results with earlier work. In

particular, we describe precursors of Theorem 2. In the spe-
cial case where the projection onto the reference subspace is
one dimensional and the initial state is pure, the bounds of
Theorem 2 were previously obtained by Pfeifer~1993!. We
then contrast Theorem 3 with earlier time-dependent varia-
tional principles, e.g., with Spruch’s bounds~Spruch, 1969!,
which are sharpened and generalized in Theorem 3. Our
bounds in Corollary 1 require knowledge only of a time-
dependent family of states rather than of a trial propagator, a
novel aspect of our methods. Finally, we draw some parallels
between Theorem 3 and Nekhoroshev’s method in classical
mechanics~Nekhoroshev, 1977!.
Two specific applications of our general results are worked

out in Sec. VII, illustrating the performance of a nontrivial
trial propagator in Theorem 3. The trial propagator will be
the propagator of a Hamiltonian~comparison dynamics!, for
which the time-dependent Schro¨dinger equation can be stud-
ied explicitly. The energy uncertainties to be evaluated are
those of the Hamiltonian in the ‘‘interaction picture.’’ The
first example treats the escape to infinity~in arbitrary space
dimensions! of an electron initially confined by a potential
barrier. The second example analyzes how a one-electron ion
on a circular classical orbit~induced, for example, by a uni-
form magnetic field! loses its electron due to tidal effects.
The effect is one of many consequences of the quantum-
mechanical Larmor theorem recently proven by Fro¨hlich and
Studer ~1993!. Both examples are instances of long-lived
resonances~metastable states!. In both examples, we derive
accurate lower bounds on lifetimes. Our analysis also yields
lower bounds on lifetimes of atomic bound states when an
external electric field is turned on.
For systems with an unbounded Hamiltonian, the energy

uncertainties in our results will be traces of products of un-
bounded operators. This raises mathematical questions of op-
erator domains, cyclic permutability of operators under the
trace, and of formally commuting operators to commute in
the sense of spectral projections. We shall ignore all such
questions in order not to obscure the simplicity of the ideas
and results. In most applications, the verification of technical
conditions ignored here will be straightforward.
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II. ESTIMATES ON TIME EVOLUTION FROM SPECTRAL
PROPERTIES: EXAMPLES

We consider a system described by a Hilbert spaceH of
pure-state vectors and a family of time-dependent Hamilto-
niansHt . Mixed states are represented by density operators
r which are positive, trace-class operators onH of trace 1. A
state at timet is denoted byr t and is determined by the
initial stater0 by solving the Liouville equation

i\ṙ t5@Ht ,r t#. ~2a!

If the stater0 is pure, thenr t5uc t&^c tu, wherec t solves the
time-dependent Schro¨dinger equation

i\ċ t5Htc t . ~2b!

In the following, we refer to both equations,~2a! and~2b!, as
the Schro¨dinger equation. Furthermore, we consider an or-
thogonal projectionP (P5P*5P2) and denote the sub-
space onto which it projects byPH. Our goal in this paper
is to obtain bounds for the function

pt :5tr~Pr t!, ~3!

which is the probability of finding the system in a state in the
subspacePH at time t. Every experimental question about
the time evolution can be cast in the form of Eq.~3!. For
example, if we chooser t5uc t&^c tu and P5uw&^wu, then
pt5u^wuc t&u2, i.e., Eq. ~3! gives the transition probability
into some final statew, or the survival probability of the
initial state if w5c0 . If the system consists of two sub-
systems andP5PI ^1II , then Eq.~3! describes the prob-
ability of finding subsystemI in the subspacePIH I . Thus,
by a suitable choice ofP and knowledge ofpt , we can track
the state of the system as a function of time. One may think
of P as a projection onto states of particular interest~‘‘tar-
get’’ states!, or as a state selector, or as a detector. We shall
call it the reference projection,PH the reference subspace,
andpt the transition probability into the reference subspace.
As described in the introduction, we intend to use time-

energy uncertainty relations as a shortcut replacing an exact
solution of Eq.~2!. This differs somewhat from the usual
perspective which focuses attention on trying to find substi-
tutes for the nonexisting ‘‘time operator’’~see, e.g., Allcock,
1969; Pfeifer and Levine, 1983; Partovi and Blancenbecler,
1986, 1988; Kobe and Aguilera-Navarro, 1994! or to find
analogs of the position-momentum uncertainty relation by
other means. As a result, our time-energy uncertainty rela-
tions here include several unconventional examples, and they
leave out examples outside the framework of Eq.~3!, such as
delay times in scattering theory~Messiah, 1965; Pfeifer and
Levine, 1983; Galindo and Pascual, 1990! and traversal
times through potential barriers~Hauge and Sto”vneng, 1989;
Fertig, 1990; Yu¨cel and Andrei, 1992!. Two comprehensive
reviews of time-energy uncertainty relations are those of Al-
lcock ~1969! and Gislason, Sabeli, and Wood~1985!.
In this section, we specifically illustrate the general idea

that information on the behavior of the probabilitypt in t can
be derived from properties of its Fourier transformp̂E , of
which its energy spread is but one example.
Example 1. A trivial situation in whichpt can be calcu-

lated without solving Eq.~2! is whenr0 or P commutes with
Ht for all t P @0,T#. Then

pt5p0 for all tP@0,T#. ~4!

The proof, using, for example, the Trotter product formula
for the propagator, is obvious. This example suggests that if
r0 or P almost commute with the HamiltoniansHt , pt
should vary only slowly witht, and one ought to be able to
estimate its variation in terms of the smallness of the com-
mutator. This is the idea we shall make precise.
Example 2. A first step towards extending Example 1 to

nonstationary statesr0 is the conventional time-energy un-
certainty relation. It states that if the initial state is
r05uc0&^c0u and evolves under the time-independent
HamiltonianH, then

t j« j>\g j , ~5!

wheret j is one of several notions~labeled byj ! of lifetime
of the initial state,« j is the associated energy uncertainty,
andg j is a constant. Equation~5! is a version of the rule that
the lifetime is inversely proportional to the energy width. We
wish to quote five mathematically rigorous examples of in-
equalities of the form of Eq.~5!: They are the Mandelstam-
Tamm inequality~Mandelstam and Tamm, 1945; Messiah,
1965; Galindo and Pascual, 1990! ( j51), two special cases
of bounds obtained by Fleming~1973! and Bhattacharyya
~1983! ( j52,3), the Gislason-Sabelli-Wood inequality~Gis-
lason, Sabelli, and Wood, 1985! ( j54), and Wigner’s in-
equality ~Wigner, 1972! ( j55). In these examples, the life-
times are defined, respectively, by

t1 :5 inf
A5A* ,t

~^c tuA2c t&2^c tuAc t&
2!1/2

u~d/dt!^c tuAc t&u
, ~6a!

t2 :5 inf$t>0:u^c0uc t&u251/2%, ~6b!

t3 :5 inf$t>0:u^c0uc t&u250%, ~6c!

t4 :5E
0

`

u^c0uc t&u2dt, ~6d!

t5 :5min
t0

S *2`
` u^wuc t&u2~ t2t0!

2dt

*2`
` u^wuc t&u2dt

D 1/2. ~6e!

The energy uncertainties are given by

« j :5~^c0uH2c0&2^c0uHc0&
2!1/2 ~ j51, . . . ,4!, ~7a!

«5 :5min
E0

S *2`
` u^wud~E2H !c0&u2~E2E0!

2dE

*2`
` u^wud~E2H !c0&u2dE

D 1/2, ~7b!

and the constants~all of them optimal! are

g1 :51/2, ~8a!

g2 :5p/4, ~8b!

g3 :5p/2, ~8c!

g4 :533523/2p, ~8d!

g5 :51/2. ~8e!

We first discuss the examples corresponding to
j51, . . . ,4. Ineach of them« j is the usual definition of the
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uncertainty~standard deviation! of an observable, here ofH,
in the statec0 . Thus each of them yieldst j5` whenc0 is
an eigenvector ofH, in agreement with Example 1, and
quantifies the magnitude of the commutator@H,uc0&^c0u# by

« j5$ 1
2 tr~2@H,uc0&^c0u#2!%1/2, ~9!

for generalc0 . The equivalence of~7a! and~9! is verified by
a simple computation. The timet1 is the time needed for the
average of any observableA to be displaced by an amount
equal to the standard deviation ofA, i.e., it is the minimum
time for c t to change appreciably. The timest2 and t3 are
the first half-life time and first death time ofc0 , respectively.
The time t4 , being the integrated survival probability of
c0 , has the meaning of an average lifetime ofc0 . None of
these four inequalities makes any assumptions about the
spectrum ofH.
Wigner’s inequality assumes thatH has an absolutely con-

tinuous spectrum and that an observer measuringw watches
the system~particle! pass. The timet0 which minimizes
(•••)1/2 in ~6e! is the mean time of arrival atw of the par-
ticle. Thust5 is the spread in arrival time, i.e., the amount of
time the particle spends in statew. If H is the kinetic-energy
operator ind dimensions, thenu^wuc t&u2;const3t2d, as
t→`, for generic initial conditions, in which case one has
the trivial outcomet55` in d<3. However, if one searches
for c0 and w that minimize the productt5«5 , it may be
possible to identify resonance states, their lifetimes, and en-
ergy widths for suitableH ~Wigner, 1972!. The energy dis-
tribution function in Eq.~7b! can be interpreted as follows:
u^wud(E2H)c0&u2(dE)2 is the probability that the particle
in statec0 , if subjected to an energy measurement in the
interval (E,E1dE), can be detected atw. Thus «5 is the
width of the energy distribution thatc0 andw have in com-
mon.
Example 3. A celebrated result which estimates~3!, with-

out solving~2!, is Ruelle’s theorem~Ruelle, 1969; Reed and
Simon, 1979, Chap. XI.17; Hunziker and Sigal, 1994!. The
system has the Hilbert spaceL2(Rn) and a time-independent
Hamiltonian of the formH5 kinetic energy1 potential. The
initial state isr05uc0&^c0u wherec0 is either in the sub-
space of bound states~spanned by the eigenvectors ofH! or
in the subspace of continuum states~orthogonal complement
of the bound states!. The theorem states that if in Eq.~3! we
choose forP the projectionPr onto states with support in the
ball $x P Rn:uxu,r %, for an arbitraryr,`, then

lim
r→`

inf
t>0

pr ,t51 ~10a!

if c0 is a bound state, and

lim
t→`

~1/t !E
0

t

pr ,t8dt850 ~10b!

for arbitraryr,` if c0 is a continuum state. Equation~10a!
says that an arbitrary superposition of stationary states
~bound state! remains—with probability arbitrarily close to
1—in some finite ball for all times. Equation~10b! says that
a wave packet of extended states leaves—with probability 1,
when averaged over all times—every finite ball. The time
average in~10b! comes into effect when the wave packet
returns to the origin infinitely often, with increasingly long

time intervals between returns, as may happen if the poten-
tial has increasingly distant bumps, producing a singular con-
tinuous spectrum ofH.
Let dmc0

/dE denote the inverse Fourier transform of the

function ^c0ue2 iHt /\c0&,

^c0ue2 iHt /\c0&5E
2`

`

e2 iEt/\dmc0
~E!. ~11!

Clearlymc0
is a probability measure. The properties ofmc0

invoked in Ruelle’s theorem are slightly more refined than
mere energy uncertainty. They concern the measure class of
mc0

, while the usual energy uncertainty, Eq.~7a!, describes a

crude global feature ofmc0
~standard deviation!. The results

described in~10! illustrate the rule that the long-time behav-
ior is governed by the fine structure ofmc0

, while the short-

time behavior is controlled by the coarse structure ofmc0
.

The results in Example 2 provide short-time control. Differ-
ent notions of slow vs fast change therefore may require
different properties of the measuremc0

. But whatever the

property ofmc0
that is invoked, it typically requires far less

information than knowledge of the exact propagator or of the
spectral decomposition ofH. In the present example, we
need only know whethermc0

is atomic or nonatomic.
Example 4. Ruelle’s theorem is remarkable because the

reference subspaces it treats are infinite-dimensional and un-
related to the initial state. One expects that more detailed
properties of the long-time behavior ofpt can be inferred if
P in Eq. ~3! is a low-dimensional projection related to the
initial state. This is indeed the case: For generalH, arbitrary
time-independentH, andP5r05uc0&^c0u, one has

~1/t !E
0

t

pt8dt8>const3t2D2« ~12!

for t→` and arbitrary«.0, whereD is the fractal dimen-
sion ~Hausdorff dimension! of the support ofmc0

~Salem,
1950; Ketzmerick, Petschel, and Geisel, 1992; Holschneider,
1994!. In Eq. ~12!, pt is the survival probability of the initial
state,pt5u^c0uc t&u2, and the result~12! says that the time-
averaged survival probability cannot decay too fast. The case
D50 corresponds to a discrete point spectrum and implies a
decay slower than any power law~in agreement with the fact
that pt is quasiperiodic in this case!. It is the analog of part
~10a! in Ruelle’s theorem. The case 0,D,1 corresponds to
a Cantor spectrum of Lebesgue measure zero; andD51 may
correspond to an absolutely continuous spectrum.
It is interesting to compare the hypotheses in Eqs.~5!,

~10!, and ~12! in terms of what they assume about spectral
measures, as described in Table I. The table shows that the
conditions in Ruelle’s theorem and in~12! differ in how they
measure the size of two related sets. The decay~12! may be
interpreted as resolving the case~10b! in Ruelle’s theorem
into corresponding subcases.
Example 5. As a final example for estimation ofpt from

spectral properties, we mention the following obvious result:
Let H be arbitrary,H a time-independent Hamiltonian
bounded from below, r05uc0&^c0u, andP such thatp050
in Eq. ~3!. Thenpt either is nonzero on a dense open set oft
values or vanishes for allt; see, for example, Hegerfeldt
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~1994!. This implies that ifr0 describes a source state of
particles, andP is a detector separated from the source by an
arbitrary distance, the detection probabilitypt is nonzero im-
mediately after t50. As pointed out by Buchholz and
Yngvason~1994!, this is not in conflict with Einstein causal-
ity.

III. INEQUALITIES FOR EXPECTATIONS OF
COMMUTATORS

In this section we derive a trace inequality that will serve
as our principal tool to generate upper and lower bounds for
the probabilitypt in Eq. ~3!. Sincept satisfies

i\ ṗt5tr~P@Ht ,r t# !5tr~r t@P,Ht# ! ~13!

by Eqs.~2a! and~3!, we seek bounds for expectations of the
type tr(iR[A,B]), whereR is a positive operator andA,B
are self-adjoint. The starting point is the Schwarz inequality.
We use it in a form that will yield necessary and sufficient
conditions for equality in the bounds:
Lemma 1. Let (•u•) be a non-negative, sesquilinear form

on a space of linear operators, i.e., satisfying
(AuB1C)5(AuB)1(AuC), (AubB)5b(AuB), (AuB)
5(BuA* ), and (AuA)>0, for all operatorsA,B,C in its do-
main and allb P C. Then

u~AuB!2~BuA!u2 < 4u~AuB!u2 < 4~AuA!~BuB!. ~14!

Equality in the first part holds if and only if Re(AuB)50.
Equality in the second part~Schwarz inequality! holds if and
only if

~aA1 ibBuaA1 ibB!50, ~15!

with

~a,b!Þ~0,0!, ~16!

for somea,b P C. Simultaneousequality in both parts holds
if and only if Eqs.~15! and ~16! are satisfied for somea,b
PR.

Bounds for expectations of commutators are obtained
from Eq. ~14! by a suitable choice of the form (•u•). One
such inequality is the Heisenberg uncertainty relation.
Lemma 2 ~Conventional uncertainty relation!. Let r be a

density operator andA,B self-adjoint operators. Then

utr~r@A,B# !u2 < 4$tr~rA2!2tr2~rA!%

3$tr~rB2!2tr2~rB!%. ~17!

Equality holds in Eq.~17! if and only if

$a@A2tr~rA!#1 ib@B2tr~rB!#%r50,

for somea,b P Rwith (a,b) Þ (0,0). Theright-hand side of
Eq. ~17! vanishes if and only ifAr5ar for somea P R, or
Br5br for someb P R.
Proof. For generalA andB, the form (AuB):5tr(rA*B)

is a non-negative sesquilinear form. For self-adjointA,B and
real numbersa,b it satisfies

utr~r@A,B# !u25u~A2auB2b!2~B2buA2a!u2

<4~A2auA2a!~B2buB2b! ~18!

by use of Eq.~14!. Minimization of the bound~18! with
respect toa andb, using tr(r)51, yields Eq.~17!. The con-
ditions for equality in~17! and for zero right-hand side of
~17! follow from Lemma 1, Eq.~18!, and the observation
that tr(rC*C)50 is equivalent toCr50 for arbitraryC.
h
The usual application of Eq.~17! is to estimate the stan-

dard deviations$•••%1/2 in terms of the expectation of the
commutator. Our purpose, however, is the opposite: we wish
to estimate the expectation of the commutator. Specifically,
we seek a bound for the expectation of the commutator that
equals zero ifr commutes withA or B. The bound~17! does
not have this property. The desired bound is achieved in the
following two results. Their relation to the bound~17! will
be discussed after Theorem 1.
Lemma 3 ~Uncertainty relation for subspaces!. Let P be

an orthogonal projection andA,B self-adjoint operators.
Then

TABLE I. Properties of the spectral measuresmc0
andmw,c0

invoked in Examples 2–4. The complex measuremw,c0
is the one replacing

mc0
if in ~11! the left-hand side is replaced by^wue2 iHt /\c0&.

Example ‘‘Energy spread’’ Determines

~7a! min
E0

S E
2`

`

~E2E0!
2dmc0

~E! D 1/2 « j ( j51, . . . ,4)

~7b! min
E0 S E2`

`

~E2E0!
2U d

dE
mw,c0

~E!U2dE
E

2`

` U d

dE
mw,c0

~E!U2dE D 1/2

«5

~10! mc0
atomic, ormc0

continuous whether~10a! or ~10b! applies

~12! min$dim V:mc0
(V)51, V closed% D
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utr~P@A,B# !u2 < 4tr~PA22PAPA!tr~PB22PBPB!.
~19!

Equality holds in Eq.~19! if and only if

@P,aA1 ibB#P50

for some real (a,b) Þ (0,0). Theright-hand side of~19! van-
ishes if and only if [P,A]50 or @P,B#50.
Proof. For generalA andB, we define

~AuB!:5tr„PA* ~12P!BP… ~20a!

5tr~PA*B2PA*PB!, ~20b!

where Eq.~20b! follows fromP5P2 and cyclic permutation
under the trace. One easily verifies, usingP5P25P* , that
~20a! is a non-negative sesquilinear form. For self-adjointA
andB, it gives

~AuB!2~BuA!5tr~PAB2PAPB2PBA1PBPA!

5tr~P@A,B# !. ~21!

Substitution of Eqs.~20! and ~21! into ~14! yields Eq.~19!.
Next, consider an arbitraryC such that (CuC)50. From Eq.
~20! it follows that ^CPcu(12P)CPc&50, for all c. This
impliesCPc P PH for all c, i.e.,CP5PCP. Conversely,
CP5PCP implies (CuC)50. Thus (CuC)50 is equivalent
to @P,C#P50 for generalC, and equivalent to [P,C]50
for self-adjointC. Together with Lemma 1, this proves the
conditions for equality in Eq.~19! and for zero right-hand
side of ~19!. h
Theorem 1 ~Strong uncertainty relation!. LetR be a posi-

tive operator,R>0, with a pure point spectrum, eigenvalues
$ln%n51

N , and corresponding eigenprojections$Pn%n51
N

(N<`). Furthermore, letA andB be self-adjoint operators.
Then

utr~R@A,B# !u2 < 4 f 2~R,A! f 2~R,B!, ~22!

where

f ~R,A!:5S (
n51

N

lntr~PnA
22PnAPnA!D 1/2. ~23!

Equality holds in Eq.~22! if and only if

@R,aA1 ibB#R50,

for some real (a,b) Þ (0,0). Theright-hand side of~22! van-
ishes if and only if [R,A]50 or @R,B#50.
Proof. For generalA andB, we define

~AuB!:5 (
n51

N

lntr„PnA* ~12Pn!BPn…. ~24!

Just as for Eq.~20!, one verifies that Eq.~24! is a non-
negative sesquilinear form and, for self-adjointA,B, satisfies
(AuB)2(BuA)5tr(R@A,B#), which yields Eq. ~22! from
~14!. The remaining assertions in Theorem 1 follow from
Lemma 1 and the following. For arbitraryC, one has

~CuC!50⇔ CPn5PnCPn ~all n! ~25a!

⇒ @Pn ,C#Pm50 ~all n,m) ~25b!

⇒ @R,C#R50 ~25c!

⇒ (
n

lnPnCPm2lmCPm50 ~all m! ~25d!

⇒ PmCPm5CPm ~all m! ~25e!

⇒ ~CuC!50. ~25f!

Equation ~25a! is clear from the proof of Lemma 3 and
ln.0, for all nonzero terms in~24!. Parts~25b! and ~25c!
follow from the spectral theorem. Multiplication of~25c!
from the right byPm yields ~25d!. Multiplication of ~25d!
from the left byPn yields (ln2lm)PnCPm50 and hence
PnCPm50 for n Þ m, which gives~25e! by substitution into
~25d!. The final step follows from~25a!. This shows that
(CuC)50 is equivalent to@R,C#R50 for generalC, and
equivalent to@R,C#50 for self-adjointC. h
We call the quantityf (R,A) the uncertainty of the observ-

ableA with respect to the weightR. For a density operator
r and an orthogonal projectionP, we call f (r,A) the uncer-
tainty ofA in stater and f (P,A) the uncertainty ofA in the
subspacePH. The relation of Theorem 1 to Lemma 2 and
Lemma 3 is exhibited in Table II. The first line shows that
the three uncertainty relations coincide for pure states. The
second line shows that Theorem 1 is stronger than Lemma 2.
The third line shows that Theorem 1 includes Lemma 3. Of
the statements in Table II, only~II.2! needs proof. It follows
from

TABLE II. Corollaries of Theorem 1. The table lists, for different cases ofR, the resulting properties of the uncertaintyf (R,A) and of
the bounds~17!, ~19!, ~22!. The observableA is arbitrary. The expressions~II.1!–~II.3! are all non-negative.

f 2(R,A) Bounds

R5r5uc&^cu 5tr(rA22rArA) ~II.1a! ~17!, ~19!, and~22! coincide

5tr(rA2)2tr2(rA) ~II.1b!

5^cuA2c&2^cuAc&2 ~II.1c!

R5r5r*>0, <tr(rA2)2tr2(rA) ~II.2! ~22! implies ~17!

tr(r)51

R5P5P*5P2 5tr(PA22PAPA) ~II.3a! ~19! and ~22! coincide

5(1/2)tr(2@P,A#2) ~II.3b!
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f 2~r,A!5tr~rA2!2(
n

lntr~PnAPnA!, ~26!

tr2~rA!5S (
n

lntr~PnPnAPn! D 2
<S (

n
lnA tr~Pn

2!tr„~PnAPn!
2
…D 2 ~27!

5S (
n

Alntr~Pn!Alntr„~PnAPn!
2
…D 2

<S (
n

lntr~Pn! D S (
n

lntr„~PnAPn!
2
…D ~28!

5(
n

lntr~PnAPnA! ~29!

where we have used the Schwarz inequality
utr(X*Y)u<$tr(X*X)tr(Y*Y)%1/2 in ~27!, the Cauchy in-
equality in ~28!, and tr(r)51 in ~29!.
We now discuss Theorem 1.~i! Theorem 1 sharpens and

extends the conventional uncertainty relation in such a way
that f (R,A)50 if and only if @R,A#50, i.e., that the uncer-
tainty f (R,A) is a measure of the noncommutativity ofR and
A. It decomposes the expectation of the commutator [A,B]
into a product of expectations involvingA andB separately.
The transformation properties

f ~rR,aA!5r 1/2uau f ~R,A!, ~30a!

f ~R,U*AU!5 f ~URU* ,A! ~30b!

(r>0;a P R;U5 unitary! ensure that both sides of Eq.~22!
transform in the same way under rescaling and unitary
transformation of the operators. Equation~30b! also
ensures that the functionf is unitarily invariant,
f (U*RU,U*AU)5 f (R,A), as a good measure of noncom-
mutativity should be. For given observablesA and B, the
condition

@R,aA1 ibB#R50, a21b2.0, ~31!

for somea,b P R defines the class of minimum-uncertainty
weightsR, i.e., the weights for which equality holds in Eq.
~22!. If A andB are the position and momentum of a particle,
and one choosesR5uc&^cu, the condition~31! reduces to
the familiar characterization of coherent states. Since the in-
equality ~22! is tighter than~17!, the class of weights obey-
ing ~31! is larger than the class of minimum-uncertainty
states for~17!, however. For example, the unit operator is
always a minimum-uncertainty weight. More generally, ev-
ery positive function ofA or B with a pure point spectrum is
a minimum-uncertainty weight.

~ii ! In Sec. II, we introduced the energy uncertainty as one
of several ways of measuring over how wide a part of the
energy spectrum a state is spread@Eq. ~7a!, Table I#, which
suggests thatf (R,A), too, should reflect spectral properties
of the observableA. The bound

f ~R,A!<
1

2
Atr~R!~a12a2!, ~30c!

in which a1 anda2 denote the upper and lower end of the
spectrum ofA, illustrates that this is indeed the case. It
shows that the uncertaintyf (R,A) is limited by the width of
the part of the spectrum ofA in the spectral support ofR. To
prove~30c!, we consider an orthogonal projectionP, choose
an orthonormal basis$w i% in PH, and note that

tr~PA22PAPA!5(
i

$^w i uA2w i&2^w i uAPAw i&%

<(
i

$^w i uA2w i&2^w i uAw i&
2%

5(
i

$~a12^w i uAw i&!~^w i uAw i&2a2!

2^w i u~a12A!~A2a2!w i&%

<(
i

~a12^w i uAw i&!~^w i uAw i&2a2!

<(
i

max
a2<x<a1

~a12x!~x2a2!

5
1

4
tr~P!~a12a2!2,

using uw i&^w i u<P and (a12A)(A2a2)>0 in the second
and fourth line, respectively. This, together with Eq.~23!,
proves Eq.~30c!. The bound~30c! is a variant of what is
known as Gru¨ss’ inequality ~Mitrinović, 1970!. Nontrivial
examples in which the bound holds as equality are given in
the next paragraph.

~iii ! The unequal role of the weightR and the observable
A in f (R,A) is highlighted by the scaling property~30a! and
entailsf (R,A) Þ f (A,R) in general. However, ifP andQ are
orthogonal projections, then

f ~P,Q!5 f ~Q,P!<
1

2
min$Atr~P!,Atr~Q!%, ~30d!

where the second part is an application of Eq.~30c!. Hence
the uncertainty ofQ in the subspacePH is equal to the
uncertainty ofP in the subspaceQH and is limited by the
dimension of the smaller of the two subspaces. An interest-
ing consequence of~30d! is that, by the one-to-one corre-
spondence between noncommuting orthogonal projections
and incompatible yes-no experiments~see, for example,
Jauch, 1968!, it endows the propositional calculus of quan-
tum mechanics with a numerical measure of incompatibility,
f (P,Q), which preserves the symmetry of the relation ‘‘in-
compatible’’ between two propositions and identifies two
propositions as maximally incompatible when the upper
bound in~30d! is reached. An elementary example of maxi-
mally incompatible propositions according to this criterion
are the one-dimensional eigenspaces of different spin com-
ponentsSx ,Sy ,Sz of a spin-12 particle. A more general ex-
ample, in H5Cn, is obtained by takingPH as the
m-dimensional subspace of vectors (x1 , . . . ,xn) with xi50
for i51, . . . ,n2m (1<m<n/2) and QH as the
[(n11)/2]-dimensional subspace of vectors with
xi5xn2 i11 for i51, . . . ,n. In this case, the upper bound in
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Eq. ~30d! is reached by virtue ofPQP5 1
2P, showing that

the bound is optimal in all dimensions.
~iv! We close our discussion with a remark about improve-

ments upon Theorem 1. It concerns the question whether Eq.
~22! can be improved by decomposing the eigenprojections
Pn in ~23! into lower-dimensional orthogonal projections
@clearly, all that is needed for~22! to hold is that
R5(nlnPn , ln>0, andPn5Pn*5Pn

2#. The answer is no.
Indeed, if P, P8, and P9 are orthogonal projections with
P5P81P9, then

f 2~P8,A!1 f 2~P9,A!2 f 2~P,A!52 tr~P8AP9AP8!>0.
~32!

Thus Theorem 1 appears to be optimal.

IV. GENERALIZED TIME-ENERGY UNCERTAINTY
RELATION

Our key idea is that Theorem 1, when applied to the equa-
tion of motion~13!, separates the right-hand side of~13! into
factors which, by the orthogonal projection property ofP,
yield closed-form differential inequalities forpt . These in-
equalities can then be integrated. To treat the general case in
which the Hamiltonian is time dependent, it is useful first to
consider the probabilitypt as a function of both the initial
time and the final time.
Proposition 1. Let Ut,s be the unitary propagator from

initial time s to final time t, for a system with time-
dependent HamiltonianHt at time t. This satisfies the equa-
tion

Ut,s512~ i /\!E
s

t

Ht8Ut8,sdt8 ~33!

for all s, t P R.2 Let r0 be a fixed density operator andP an
orthogonal projection. Define

r t,s :5Ut,sr0Ut,s* ~34!

pt,s :5tr~Pr t,s!. ~35!

The operatorr t,s and the functionpt,s describe the evolution
of the density operatorr0 from times to time t ~Schrödinger
picture;rs,s5r0) and the corresponding expectation value of
P, respectively. Then

U ]

]t
pt,sU<2\21f ~P,Ht!Apt,s2pt,s

2 ~36a!

U ]

]s
pt,sU<2\21f ~r0 ,Hs!Apt,s2pt,s

2 ~36b!

for all s, t P R, wheref is the function defined in Eq.~23!.
Proof. Equation~33! implies that the propagator satisfies

Us,t5Ut,s* and

i\
]

]t
Ut,s5HtUt,s , Us,s51 ~37a!

i\
]

]s
Ut,s52Ut,sHs , Ut,t51. ~37b!

Differentiation of Eq.~34! with respect tot ands, together
with Eqs.~37a! and ~37b! and their adjoints, leads to

i\
]

]t
r t,s5@Ht ,r t,s#, ~38a!

i\
]

]s
r t,s52Ut,s@Hs ,r0#Ut,s* . ~38b!

From Eqs.~35!, ~38a! and Theorem 1, it follows that

\U ]

]t
pt,sU5utr~P@Ht ,r t,s# !u

<2 f ~P,Ht! f ~P,r t,s!. ~39!

For any orthogonal projectionP and density operatorr, one
has the inequality

f 2~P,r!5tr„Pr~12P!r…

5tr„~ArPAr!*Ar~12P!Ar…

<$ tr„~PrP!2…tr„@~12P!r~12P!#2…%1/2

<$ tr2~PrP!tr2„~12P!r~12P!…%1/2

5tr~Pr!2tr2~Pr!, ~40!

where we have used Eq.~23! in the first line, the Schwarz
inequality utr(X*Y)u<$tr(X*X)tr(Y*Y)%1/2 in the third line,
and non-negativity of the eigenvalues ofPrP and
(12P)r(12P) in the fourth line. In the last line we have
used that tr~r!51. Equality holds in Eq.~40! if r is a pure
state. Combination of Eqs.~39!, ~40!, and~35! proves~36a!.
From ~35!, ~38b!, and Theorem 1, it follows that

\U ]

]s
pt,sU5utr~PUt,s@Hs ,r0#Ut,s* !u

5utr~r0@Hs ,Ut,s* PUt,s# !u

<2 f ~r0 ,Hs! f ~r0 ,Ut,s* PUt,s!

52 f ~r0 ,Hs! f ~r t,s ,P!

<2 f ~r0 ,Hs!$tr~r t,sP!2tr2~r t,sP!%1/2. ~41!

In the last two lines of Eq.~41!, we have used~30b! and
~II.2! ~see Table II!. Inequality ~41!, together with ~35!,
proves~36b!. h

Proposition 2. If the HamiltoniansHt andHt8 in Propo-
sition 1 commute for allt and t8, then the bounds~36a!,
~36b! are also valid with the replacements

f ~P,Ht! ° min$ f ~P,Ht!, f ~r0 ,Ht!% ~42a!

f ~r0 ,Hs! ° min$ f ~P,Hs!, f ~r0 ,Hs!%. ~42b!

Proof. By rewriting the equations of motion~38a!, ~38b! as

i\
]

]t
r t,s5Ut,s@H̃t,s ,r0#Ut,s* ~38a8!

2It is necessary to specify some hypotheses on the domain of
definition of the operatorsHt and their dependence ont. Equation
~36! then holds on a dense subspace of the Hilbert space.
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i\
]

]s
r t,s52@H̃s,t ,r t,s#, ~38b8!

where H̃t,s :5Ut,s* HtUt,s is the Hamiltonian in the Heisen-
berg picture, and proceeding as in Proposition 1, one obtains
the alternative bounds

\U ]

]t
pt,sU5utr~r0@H̃t,s ,Ut,s* PUt,s# !u

<2 f ~r0 ,H̃t,s! f ~r0 ,Ut,s* PUt,s!

<2 f ~r0 ,H̃t,s!Apt,s2pt,s
2 , ~36a8!

\U ]

]s
pt,sU5utr~P@H̃s,t ,r t,s# !u

<2 f ~P,H̃s,t! f ~P,r t,s!

<2 f ~P,H̃s,t!Apt,s2pt,s
2 . ~36b8!

They are quite useless in general, because, unlike in Propo-
sition 1, the factorsf ( . . . , . . . ) here involve the little-
known propagatorUt,s via H̃t,s . But if the Hamiltonians at
different times commute, thenUt,s commutes withHt . In
that case, one hasH̃t,s5Ht and H̃s,t5Hs , so that Eq.
(368) competes with~36! and yields the improvement~42!.
h
Proposition 3. Under the hypotheses of Proposition 1, the

probability pt,s is bounded from above and below, for all
s,tP R, by

pt,s >
< sin

*
2 SarcsinAtr~Pr0!

6\21minH E
s

t

f ~P,Ht!dt,E
s

t

f ~r0 ,Hs!dsJ D ,
~43!

where, without loss of generality, we have assumed that
s,t, and

sin* ~x!:5H 0 if x<0,

sinx if 0<x<p/2,

1 if x>p/2.

~44!

If s.t, the integration limits in~43! are interchanged.
Proof. From Proposition 1 we have the bounds

6
]

]t
pt,s<2\21f ~P,Ht!Apt,s2pt,s

2 ~45!

6
]

]s
pt,s<2\21f ~r0 ,Hs!Apt,s2pt,s

2 . ~46!

For s,t, integration of~45! by separation of variables, from
t5s to t5t, gives

6E
ps,s

pt,s
~p2p2!21/2dp<2\21E

s

t

f ~P,Ht!dt, ~47!

where the integral on the left-hand side is well defined be-
cause 0<ps,t<1. Fors,t, integration of~46!, from s5t to
s5s, gives

6E
pt,t

pt,s
~p2p2!21/2dp>2\21E

t

s

f ~r0 ,Hs!ds. ~48!

The sense of inequality~48! is opposite to that of~47!, be-
cause, in~48!, we integrate in the negatives direction. Since
ps,s5pt,t5tr(Pr0), the two inequalities compete with each
other and yield

6E
tr~Pr0!

pt,s
~p2p2!21/2dp

562~arcsinAtr~Pr0!2arcsinApt,s!

<2\21 minH E
s

t

f ~P,Ht!dt,E
s

t

f ~r0 ,Hs!dsJ . ~49!

Solving Eq. ~49! for arcsinApt,s and applying the function
sin
*
2 on both sides of the inequality, one obtains the result

~43! by monotonicity of sin* . h

TABLE III. Examples in which the upper or lower bound~50! reproduces the exact value ofpt . The
system is a two-level system with HamiltonianH5( 0

E1
E2
0 ). The initial state and reference projection

are r05uc0&^c0u and P5uw&^wu. The equality ofpt to the upper or lower bound, as stated in the last
column, is restricted to 0<t<p\/uE12E2u in the first two examples, and to 0<t<p\/(2uE12E2u) in
the last two examples.

c0 w pt

~1/A2!S 11D ~1/A2!S 11D cos2„uE12E2ut/~2\!…5 lower bound

~1/A2!S 11D ~1/A2!S 1

21D sin2„uE12E2ut/~2\!…5upper bound

~1/A2!S 1
i
D ~1/A2!S 11D 1

2 „11sin~ uE12E2ut/\!…5upper bound

~1/A2!S 1

2 i
D ~1/A2!S 11D 1

2 „12sin~ uE12E2ut/\!…5 lower bound
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Proposition 3 explains why it is important to consider the
two-point probability pt,s in Proposition 1: The rate of
change of the probability in the forward time direction is
bounded by the energy uncertainty in the subspace
PH @Eq. ~36a!#. The rate of change in the backward time
direction is bounded by the energy uncertainty in the initial
stater0 @Eq. ~36b!#. Hence if we want to obtain an inequality
that combines the two energy uncertainties, we have to con-
sider a variation of both the initial times and the final timet.
This is precisely what we have done in the proof of Propo-
sition 3: Thet integration of~45! is from left to right, but the
s integration of~46! is from right to left.
We now return to the original situation in which the initial

time is set equal to zero (s50). To further simplify expres-
sions, we choose final times to be positive (t>0), with the
understanding that the opposite case (t<0) is equally easy to
get from Proposition 3. We then have the following theorem.
Theorem 2~Time-energy uncertainty relation!. Consider a

quantum-mechanical system with a family of time-dependent
HamiltoniansHt . Let r0 be the initial state of the system,
and choose an orthogonal projectionP. Then the probability
pt , defined in Eq.~3!, is bounded from above and below by

pt >
< sin

*
2 S arcsinAp0

6\21minH E
0

t

f ~P,Hs!ds,E
0

t

f ~r0 ,Hs!dsJ D
~50!

for all t>0. The functionsf and sin* are defined in Eqs.~23!
and ~44!. In the special case that@Hs ,Hs8#50 for all
0<s,s8<t, one has the improvement

pt >
< sin

*
2 S arcsinAp0

6\21E
0

t

min$ f ~P,Hs!, f ~r0 ,Hs!%dsD . ~51!

The upper and lower bound in Eq.~50! coincide if and only
if either @P,Hs#50 for all 0 < s < t or @r0 ,Hs#50 for all
0<s<t. The bounds~51! coincide if and only if, for all
0<s<t, either@P,Hs#50 or @r0 ,Hs#50.
Proof. Inequality~50! is Proposition 3, specialized to zero

initial time and positive final time. Inequality~51! follows
from Proposition 2: One substitutes~42a! into ~36a! and in-
tegrates in a way similar to the integration in Proposition 3.
The conditions for the coincidence of upper and lower
bounds are clear from Theorem 1.h
Theorem 2 is the central result of this paper. It achieves

the goals set out in Secs. I and II in the following way:
~i! The bounds~50! do not require any information about

the propagator or the solution of the Schro¨dinger equation
~2!. All they require is the ability to compute the energy
uncertainty in the reference subspace,f (P,Hs), and the en-
ergy uncertainty in the initial state,f (r0 ,Hs). Since the en-
ergy uncertainties involve only expectations of quadratic ex-
pressions inHs , Eq. ~23!, their computation is easy,
compared to the task of solving the Schro¨dinger equation.
For example, if the Hamiltonian is a finite matrix, the calcu-

lation of f (P,Hs) requires three matrix multiplications@re-
call Eq. ~II.3!#. This is clearly much less effort than to diag-
onalizeHs, as a step towards solving~2!. In the rare event
that f (P,Hs) or f (r0 ,Hs) are difficult to compute, one may
drop one of them from Eq.~50!, estimate them by using Eq.
~30c!, or estimatef (r0 ,Hs) by using Eq.~II.2! ~Table II!, at
the expense of obtaining weaker bounds forpt . Difficulties
in computingf (P,Hs) or f (r0 ,Hs) may occur only ifP or
r0 have infinite rank~large reference subspace or highly
mixed state!. In the other extreme, whereP andr0 have rank
one, i.e., whereP5uw&^wu andr05uc0&^c0u, one has

f ~P,Hs!5~^wuHs
2w&2^wuHsw&2!1/2 ~52a!

f ~r0 ,Hs!5~^c0uHs
2c0&2^c0uHsc0&

2!1/2 ~52b!

by Eq. ~II.1!. In this case, the energy uncertainties are the
usual standard deviations with respect to vector states and
simple to estimate.

~ii ! The bounds~50! express a time-energy uncertainty re-
lation, because they manifestly imply thatpt remains close to
its initial value p0 ~‘‘large lifetime of r0’’ ! if the energy
uncertainty inPH or r0 is small. Conversely, they imply
that the energy uncertainty inPH and the energy uncer-
tainty in r0 must be large ifpt departs rapidly fromp0
~‘‘short lifetime of r0’’ !.

~iii ! By the property thatf (R,Hs)50 if and only if
@R,Hs#50, the bounds~50! clearly relate the change ofpt to
the degree of noncommutativity of the pairs (P,Hs) and
(r0 ,Hs). They show thatpt[p0 if P or r0 is a constant of
motion. They generally show what happens ifP andr0 are
close to constants of motion.

~iv! The bounds~50! are invariant with respect to the in-
terchange ofP and 12P. That is, if we writept5tr (Pr t)
andpt85tr „(12P)r t…, then the upper bound forpt gives the
lower bound forpt8 and the lower bound forpt gives the
upper bound forpt8 . This follows from the identity

sin
*
2 ~arcsinAp06x!512 sin

*
2 ~arcsinA12p07x!.

It shows that the bounds naturally respect the complementary
nature of the subspacesPH and (12P)H and the associ-
ated probability interpretations ofpt and 12pt . Variants of
the bounds~50! are obtained by applying the inequalities

sin* ~arcsinAp06x! >
< Ap012 min$A12p0,61%sin* ~x/2!

~53a!

>
< Ap06x, ~53b!

for x>0. We use Eqs.~53a! and ~53b! in Secs. V and VI.
~v! The bounds~50! depend on the energy uncertainties in

PH andr0 , integrated up to timet ~cumulative uncertain-
ties!. Thus the bounds coincide att50 and increasingly de-
part from each other ast increases. When the smaller of the
two cumulative uncertainties reaches the value
\(p/22arcsinAp0) or \arcsinAp0, the upper or lower
bound forpt becomes trivial, i.e., 1 and 0, respectively. For
example, ifp051, the upper bound is trivial at all times; and
if p050, the lower bound is trivial at all times. This behavior
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as a function oft shows that the bounds~50! control the
short-time behavior ofpt , in agreement with the fact that
uncertaintiesf (P,Hs) and f (r0 ,Hs) describe coarse features
of the spectrum ofHs ~recall Examples 2 and 3 in Sec. II!. In
Theorem 3 below, we shall see how the short-time control
can be extended to longer times by the introduction of suit-
able comparison dynamics.

~vi! Equality holds in~50! if the upper and lower bounds
coincide, in which case the bounds simultaneously equal
pt . This is characterized in Theorem 2. But equality in~50!
may also hold in only one or the other inequality, i.e., for the
upper or lower bound only. Simple examples for nonsimul-
taneous equality are given in Table III. Thus Table III illus-
trates that the bounds~50! may reproducept even if pt is
nonstationary. General conditions for nonsimultaneous
equality in~50! can be derived from the proof of Proposition
1, i.e., from identifying the conditions for equality in Eqs.
~36a! and~36b!, using Theorem 1. We do not write down the
general conditions because they involve the propagators and
hence do not yield simple predictive criteria.

V. COMPARISON DYNAMICS AND VARIATIONAL
PRINCIPLE

An important feature of Theorem 2 is that the orthogonal
projection P can be chosen arbitrarily. In particular, it is
perfectly legitimate to take forP an orthogonal projection
that has a parametric dependence ont. The idea is that if one
chooses the parametric dependence so as to include part of
the time evolution generated byHt ~i.e., so as to approximate
the Heisenberg evolution of a given projectionP!, one ex-
pects to be able to improve the bounds~50!. The following
theorem implements this idea for any ansatz for an approxi-
mate time evolution.
Theorem 3 ~Time-energy uncertainty relation with com-

parison dynamics!. The hypotheses and notation are as in
Theorem 1. In addition, let a family of unitary operators
Wt ~trial propagators!, differentiable with respect tot and
satisfyingW051, be given. Thenpt is bounded from above
and below by

pt >
< sin

*
2 S arcsinA tr~ P̃tr0!

6\21minH E
0

t

f ~ P̃t ,H̃s!ds,E
0

t

f ~r0 ,H̃s!dsJ D ,
~54!

P̃t :5Wt*PWt , ~55!

H̃t :5Wt*HtWt2 i\Wt* Ẇt ~56!

for all t>0. Furthermore, one has

pt5min
W

T1~ t,r0 ,P,W•
! ~57a!

5max
W

T2~ t,r0 ,P,W•
! ~57b!

for all t>0, whereT6(t,r0 ,P,W•

) denotes the right-hand
side of Eq.~54! as a function oft, r0 , P, and the family

W
•

@the dependence onW
•

enters through~55! and ~56!#.
The minimum and maximum in Eq.~57! are attained when
Ws equals the exact propagator for all 0<s<t. When
Ws51, for all 0<s<t, Eq. ~54! leads back to Eq.~50!.
Proof. Given ~i! the propagatorsUt generated by the fam-

ily of HamiltoniansHt , and ~ii ! the orthogonal projection
P̃t defined by Eq.~55!, we wish to find a HamiltonianH̃t

such that the propagatorŨt generated byH̃t satisfies

tr~PUtr0Ut* !5tr~ P̃tŨ tr0Ũt* ! ~58!

for all r0 andP. The rationale is clear: The left-hand side of
Eq. ~58! equalspt , and the right-hand side can be estimated
by Eq. ~50! with the replacement

Hs ° H̃s ,

P ° P̃t ~59!

pt ° tr~ P̃tŨ tr0Ũt* !,

p0 ° tr~ P̃tr0!.

This yields Eq.~54! and exploits, as announced, the circum-
stance that the projection in Theorem 2 may be chosent
dependent. It remains to find the HamiltonianH̃t satisfying
~58!, i.e.,

Ut5WtŨt , ~60!

i\U̇t5HtUt , ~61!

i\ Ũ̇ t5H̃tŨ t. ~62!

Equation~60! follows from substituting~55! into ~58!. The
other two equations are the evolution equations for the
propagatorsUt and Ũt . Substitution of Eq.~60! into ~61!
gives

HtWtŨt5 i\ẆtŨt1 i\WtŨ̇t,

5 i\ẆtŨt1WtH̃tŨt , ~63!

where Eq.~62! has been used in the second line. Multiplica-
tion of ~63! by Wt* from the left and byŨt* from the right
yields formula~56! for the transformed HamiltonianH̃t . We
note that H̃t is formally self-adjoint, by the unitarity of
Wt , for the latter implies thatWt* Ẇt5 2 Ẇt*Wt . If the trial
propagator equals the exact propagator,Wt5Ut , then

H̃t5Ut*HtUt2 i\Ut* ~ i\!21HtUt50 ~64!

from Eqs.~56! and~61!. Thus ifWs5Us for all 0<s<t, the
6 part in Eq.~54! vanishes, and~54! holds as an equality.
This proves Eq.~57! and the statement about the attainment
of the minimum and maximum. Finally, Eq.~50! is clearly a
special case of~54!. h

Theorem 3 treats the comparison dynamics,Wt , in a way
that is reminiscent of the decomposition of the time evolu-
tion in the interaction picture. From this viewpoint, one has
the analogy

Wt ↔ ‘‘free’’ propagator,
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P̃t ↔ ‘‘free’’ Heisenberg evolution ofP,

H̃t ↔ Hamiltonian in the ‘‘interaction picture.’’

We use quotation marks to emphasize thatWt need not come
from a separation ofHt into a free Hamiltonian and an in-
teraction part. That is, the family of trial propagatorsWt is
completely arbitrary. This agrees with the fact that the trans-
formed HamiltonianH̃t does not refer to any free or interac-
tion part, but depends only onHt andWt , as described by
Eq. ~56!. All that is needed for~54! is that P̃t andH̃t can be
explicitly computed for a givenWt . The bounds~54! may
then be interpreted as estimatingpt in terms of the evolution
of P or r0 underWt , plus a correction term involving the
HamiltonianH̃s (0<s<t).
The fact that the familyW

•

is arbitrary converts inequality
~54! into a variational principle. Indeed, sinceW

•

occurs
only on the right-hand side of~54!, one may varyW

•

, so as
to make the upper bound minimal or the lower bound maxi-
mal. WhenW

•

is varied over all one-parameter families of
unitary operators, the exact value ofpt is obtained@Eqs.
~57a! and ~57b!#. Our variational principle provides explicit
error estimates: For everyW

•

, it tells us how close the ap-
proximate state r̃ t :5Wtr0Wt* is to the exact state
r t5Utr0Ut* by telling us how closely the expectation values
agree on every projectionP. The comparison ofr̃ t and r t
may be written in the symmetric form

uarcsinAtr~Pr̃ t!2 arcsinAtr~Pr t!u

<\21 minH E
0

t

f ~ P̃t ,H̃s!ds,E
0

t

f ~r0 ,H̃s!dsJ , ~65!

which is equivalent to Eq.~54! and puts the error bound into
full evidence. Thus, ifW

•

is a good approximation ofU
•

,
then H̃s will be small and the bounds~54! will bracket pt
tightly, even whent is large. Conversely, ifW

•

is a poor
approximation ofU

•

, then the upper and lower bounds will
be close to each other only for smallt and will rapidly ap-
proach 1 and 0 ast grows. The dependence of Eq.~54! on
the cumulative energy uncertainties reflects the fact that the
bounds~54! measure the performance of the whole family
W

•

, not just of a single operatorWt .
It may happen that, for givenW

•

,P,r0 , the bounds~54!
coincide and thus produce the exact valuept even if Ws
Þ Us for all 0,s<t ~‘‘perfect performance of a wrong fam-
ily’’ !. An elementary example is the trivial guess,Ws51 for
0<s<t, which gives the exact valuept wheneverP or r0 is
a constant of motion~Theorem 2!. It shows that the family
W

•

, which minimizes and maximizes the functionals
T6(t,r0 ,P,•••), need not be unique. The origin of this de-
generacy is that two different families,W

•

andW
•

, may act
identically onP or r0 ,

Wt*PWt5Wt*PWt , ~66a!

Wtr0Wt*5Wtr0Wt* , ~66b!

in which case they may perform identically in Theorem 3.
Thus one may get a good estimate ofpt from a single guess

W
•

; and the estimate ofpt may be good even ifW
•

is far
from the exact time evolutionU

•

.
The parallels to the variational principle for stationary

states are striking. There one varies a trial state so as to
minimize the expectation value of the Hamiltonian. Here one
varies a family of trial statesr̃ t so as to minimize the right-
hand side of Eq.~65!. There every fixed trial state yields an
upper bound for the ground-state energy. Here every fixed
family of trial states yields an upper bound, Eq.~65!, for the
difference between the trial state and the exact state.
As an illustration of this time-dependent variational prin-

ciple, we use Theorem 3 to derive a simple error estimate for
the case in which states are pure and a family of time-
dependent trial states, rather than trial propagators, is used.
Corollary 1 . Consider a system with a family of time-

dependent HamiltoniansHt , a solutionc t of the Schro¨dinger
equation~2b!, and a family of trial statesc̃ t , differentiable
with respect tot and satisfyingc̃05c0 . Then, for every
reference statew and all t>0, one has the bounds

u^wuc t&u >
< sin* S arcsinu^wuc̃ t&u

6\21E
0

t

i~12uc̃s&^c̃su!d~c̃s!ids D , ~67a!

1 > u^c̃ tuc t&u > cos* S \21E
0

t

i~12uc̃s&^c̃su!d~c̃s!idsD ,
~67b!

where

d~c̃s!:5Hsc̃s2 i\c̃̇s ,

cos* ~x!:5A12sin
*
2 ~x!.

Equality holds in~67! if and only if there exist real numbers
as such thatc̃s5eiascs , for all 0<s<t.
Proof. We write the trial states as

c̃ t5Wtc0 , ~68!

whereW
•

is a family satisfying the hypotheses of Theorem
3. For a given trial-state familyc̃

•

, the propagator family
W

•

is not unique, of course; but this does not matter for our
purposes. Furthermore, we chooseP5uw&^wu and
r05uc0&^c0u. The energy uncertainties in Theorem 3 then
become

f 2~ P̃t ,H̃s!5iH̃sWt*wi22^Wt*wuH̃sWt*w&2, ~69!

f 2~r0 ,H̃s!5iH̃sc0i22^c0uH̃sc0&
2

5i~12uc0&^c0u!H̃sc0i2

5iWs~12uc0&^c0u!Ws* ~HsWs2 i\Ẇs!c0i2

5i~12uc̃s&^c̃su!d~c̃s!i2

5id~c̃s!i22u^c̃sud~c̃s!&u2, ~70!

where Eqs.~52!, ~55!, ~56!, ~68!, unitarity ofWs , and the
definition of d(c̃s) have been used. Since the energy uncer-
tainty ~69! cannot be expressed in terms of the trial states, we
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keep only the termf (r0 ,H̃s) in Eq. ~54!, at the expense of
weakening the bounds. This gives the result~67a! from ~70!.
The result~67b! follows from ~67a! by choosing the refer-
ence state equal to the trial state,w5c̃ t . Equality holds in
Eq. ~67! if and only if, for all 0<s<t, the vectord(c̃s) is
proportional toc̃s . A simple calculation shows that this pro-
portionality is equivalent to the phase factor condition
claimed in Corollary 1.h
We now discuss Corollary 1.~i! Intuitively, a trial state

c̃ t is a good approximation of the solutionc t of the Schro¨-
dinger equation if the remainder ofc̃ t in the Schro¨dinger
equation is small,d(c̃ t)'0. Corollary 1 makes this idea pre-
cise by providing explicit bounds forc t in terms of c̃s ,
which are manifestly tight ifd(c̃s) is small (0<s<t). In-
terestingly, the bounds require only the norm of the compo-
nent of d(c̃s) orthogonal toc̃s , i(12uc̃s&^c̃su)d(c̃s)i , to
be small—not the norm ofd(c̃s) itself. Thus the bounds~67!
are tight wheneverd(c̃s) lies almost in the subspace spanned
by c̃s .

~ii ! The result~67! says that, from a given set of trial-state
families, the best approximation is not necessarily the one
that minimizes the remainderd(c̃ t) at the end pointt, but
the one that minimizes~in the sense of the above norm! the
cumulative remainder over 0<s<t. This agrees with the
earlier remark that our variational bounds measure the per-
formance of a one-parameter family, herec̃

•

, rather than of
a single element,c̃ t .

~iii ! Once the best family has been identified and the inte-
gral in ~67! has been evaluated, the bounds~67a! give esti-
mates of the overlap of the exact statec t and any vector
w. This provides a complete catalog of error estimates for
the location ofc t in H. The error estimate for the location
of c t relative toc̃ t is given by Eq.~67b!. Upon introduction
of a suitable phase factoreiat, the estimate~67b! can also be
put in the form

ic t2eiatc̃ ti5~222u^c tuc̃ t&u!1/2

<2sin* S 12 \21E
0

t

i~12uc̃s&^c̃su!d~c̃s!idsD .
~71!

The bound~71! may be used to reestimate the overlap of
c t andw from

u^wuc t&u >
< u^wuc̃ t&u6u^wuc t2eiatc̃ t&u

and the Schwarz inequality. But the resulting estimate for
u^wuc t&u is weaker than~67a!, as shown by Eq.~53a!.

~iv! If a trial-state family comes from a known trial-
propagator family, Eq.~68!, or if, conversely, a given trial-
state family is extended to a trial-propagator family, the
bounds~67a! can be improved by including the omitted term
~69!. This will be further discussed in Sec. VI. No such im-
provement is possible in~67b! because, forw5c̃ t , Eqs.~69!
and ~70! yield f ( P̃t ,H̃s)5 f (r0 ,H̃s), i.e., identical results.
Thus the bound~67b! is optimal.

~v! The occurrence of the normi(12uc̃s&^c̃su)d(c̃s)i ,
rather than ofid(c̃s)i , corresponds to the fact that Eq.~67!
is a variational principle for one-dimensional subspaces
of H, rather than vectors inH. Indeed, the norm
i(12uc̃s&^c̃su)d(c̃s)i is independent of the phase factor of
the trial state, butid(c̃s)i is not. If interpreted in terms of
subspaces, the family that minimizes or maximizes the right-
hand side of~67a! is unique. The nonuniqueness of the mini-
mizing and maximizing familyW

•

in Theorem 3 disappears
in Corollary 1 because when we consider a specific family of
density operatorsWtr0Wt* , as we do in Corollary 1, the
degeneracy~66! is automatically lifted.

VI. COMPARISON WITH EARLIER WORK

Special cases of Theorem 2~time-energy uncertainty rela-
tion without comparison dynamics! have been obtained pre-
viously. For a general time-independent HamiltonianH,
Fleming ~1973! and Bhattacharyya~1983! showed that the
solutionc t of ~2b! satisfies

u^c0uc t&u>cos* „~^c0uH2c0&2^c0uHc0&
2!1/2t/\….

~72!

This is the lower bound~50! and ~51! for the special case
P5r05uc0&^c0u, recalling ~52! and noting that~50! and
~51! coincide if the Hamiltonian is time independent. It is
also the bound~67b! for the special case in which the trial
family is c̃s5c0 , 0<s<t, with remainderd(c̃s)5Hc0 .
The result~72! was used by Fleming~1973! and Bhatta-
charyya~1983! to deduce the bound~5! for the half-life time
t2 and the death timet3 of the initial statec0 .
For a general family of time-dependent Hamiltonians

Ht , a one-dimensional projectionP5uw&^wu, and a pure
state r05uc0&^c0u, the bounds~50! and ~51!, with ~52!,
were obtained by Pfeifer~1993!, including the examples in
Table III. The bounds were used to investigate revival times,
the onset of the asymptotic power law~12!, and various
pulsed-field problems~see also Pfeifer, 1994!. It was claimed
in Pfeifer, 1993, that the bounds~51! hold without restric-
tions, under the condition thatP andr0 have rank one. But
we have found a gap in the arguments for that claim. So at
present Eq.~51! is established only if the Hamiltonians at
different times commute with each other. All other assertions
in Pfeifer, 1993, remain unaffected.
To compare Theorem 3 with results in the literature, we

first consider the variational principle implied by Theorem 3
and illustrated in Corollary 1. To the best of our knowledge,
Corollary 1 is the first time-dependent variational principle
with explicit error bounds for the exact statec t in terms of
the trial statesc̃s . All previous time-dependent variational
principles for state vectors approximatec t by an extremal-
ized trial statec̃ t , without error estimates~see Gerjuoy, Rau,
and Spruch, 1983; Pfeifer and Levine, 1983; Broeckhove,
Lathouwers, and van Leuven, 1989, for some complemen-
tary reviews!. One such popular principle, attributed to
McLachlan ~Broeckhove, Lathouwers, and van Leuven,
1989; McLachlan, 1964!, minimizes the norm of the vector
d(c̃ t) defined in Corollary 1. It provides no error bars be-
cause the Schro¨dinger equation alone gives no information
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about the closeness ofc̃ t to c t when id(c̃ t)i is small. Thus
Corollary 1 may be viewed as supplying the error bounds
missing in McLachlan’s variational principle and improving
the principle through the replacement of the normid(c̃s)i
by the normi(12uc̃s&^c̃su)d(c̃s)i .
At the level of trial propagators, however, Theorem 3 is

not the first time-dependent variational principle with error
bounds. Spruch~1969! derived upper and lower bounds for
the overlap of the solutionc t of ~2b! and any reference state
w that amount to

u^wuc t&u >
< u^wuWtc0&u6\21E

0

t

i~HsWs2 i\Ẇs!Wt*wids,

~73!

for a trial-propagator familyW
•

as in Theorem 3. Spruch’s
bounds@Eq. ~73!# can be recovered from Theorem 3 as fol-
lows: If we chooseP5uw&^wu,r05uc0&^c0u, and keep only
the termf ( P̃t,H̃s) in Eq. ~54!, we obtain

u^wuc t&u >
< sin* S arcsinu^wuWtc0&u6\21E

0

t

f ~ P̃t ,H̃s!dsD
>
< u^wuWtc0&u6\21E

0

t

f ~ P̃t ,H̃s!ds

>
< u^wuWtc0&u6\21E

0

t

iH̃sWt*wids. ~74!

In the second line, we have used the inequality~53b!; and in
the third line, we have inserted Eq.~69!, dropping its second
term. By Eq.~56! and the unitarity ofWs , the third line is
the same as Eq.~73!.
This derivation of Eq.~73! from ~54! shows that Theorem

3 strengthens and extends Spruch’s bounds. It puts into evi-
dence the complementary nature of Spruch’s bounds and the
bounds in Corollary 1, one originating from the energy un-
certainty in the reference subspace, the other from the energy
uncertainty in the initial state. For initial-value problems,
Corollary 1 is easier to apply and yields stronger results in a
well-defined sense; but for final-value problems, the situation
is just reversed.
For completeness’ sake, we mention that Spruch~1969!

and Shakeshaft and Spruch~1974! derived additional bounds
which, in the notation of~74!, read

u^wuc t&u >
< U K wuWtS 12 i\21E

0

t

H̃sdsDc0L U
6\22E

0

t

iH̃sc0i E
s

t

iH̃s8Wt*wids8ds. ~75!

In these bounds, the initial state is propagated by a nonuni-
tary operator,Wt(12 i\21*0

t H̃sds). Hence they are not eas-
ily compared with the results in Theorem 3, in which the
initial state or reference subspace is propagated unitarily.
Our final remark concerns the connection with time-

dependent perturbation theory. Clearly, the bounds~74! and
~75! are perturbation theoretic in nature~see also Spruch,
1969; Shakeshaft and Spruch, 1974!; and so is Theorem 3.
Indeed, returning to our analysis, we find that in Theorem 3
we have used nothing more than a variant of second-order,

time-dependent perturbation theory~Dyson series forUtWt*
to first order!. The efficiency of our method depends entirely
on our ability to construct a comparison dynamicsWt ap-
proximatingUt with sufficient precision on asubspaceof the
Hilbert space of state vectors~before applying time-
dependent perturbation theory!. The subspace is either the
range ofP or the range ofr0 . A similar comparison dynam-
ics is required in Spruch, 1969, and Shakeshaft and Spruch,
1974, except that there the subspace is one dimensional.
Our methods are reminiscent of Nekhoroshev’s perturba-

tion theory in classical mechanics~Nekhoroshev, 1977!. For
example, our applications in the next section will lead to
exponentially long time scales analogous to the exponential
time scales governing the energy exchange between con-
strained~‘‘frozen’’ ! and unconstrained classical degrees of
freedom, obtained by Nekoroshev-type methods~Benettin,
Galgani, and Giorgilli, 1987, 1989; Benettin, Fro¨hlich, and
Giorgilli, 1988!, although our systems will be very different
from those studied by Benettinet al. ~Benettin, Galgani, and
Giorgilli, 1987, 1989; Benettin, Fro¨hlich, and Giorgilli,
1988!. Actually, all results proven in Secs. III–V have a
straightforward translation into results concerning classical
dynamical systems with flows generated by volume-
preserving vector fields, in particular Hamiltonian systems.
In this translation, one describes states by probability mea-
sures on phase space; a projection operator is the character-
istic function of a subset of phase space;H is the Liouville
operator; and good comparison dynamics may be obtained
by applying, for example, the Nekhoroshev method.

VII. EXAMPLES AND EXTENSIONS

A variety of applications of Theorem 2~time-energy un-
certainty relation without comparison dynamics!, specialized
to pure states and one-dimensional projectionsP, have been
presented by Pfeifer~1993!. In this section, we sketch appli-
cations of Theorem 3 to problems that involve mixed states
and higher-dimensional projections. Specifically, we want to
explore the quality of the bounds~54! for carefully chosen
comparison dynamics.

A. Application 1: Quantum-mechanical particle in a
potential well

We study the dynamics of a quantum-mechanical particle
moving inRn under the influence of a volcano-shaped poten-
tial vu , with

FIG. 1.
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vu~x!:5u2v~x/u!, 1<u,`, ~76!

wherev(x) is a smooth function onRn with the following
properties:

~i! The origin x50 is a local minimum ofv, with
v(0)50.

~ii ! The Hessian ofv at x50 is positive-definite, with
eigenvaluesV i

2.0, i51, . . . ,n.
~iii ! Let g(x) be a smooth function, withg(x)51, for

uxu< 1
2, andg(x)50, for uxu>1.

We defineg«,u by

g«,u~x!:5gS x

~«u!1/3D , «.0. ~77!

Let us choose coordinates,x1 , . . . ,xn , onR
n in which the

Hessian ofv at x50 is diagonal. In accordance with the
assumed smoothness ofv, we may require that

max
x

g«,u~x!Uvu~x!2
1

2 (
i51

n

V i
2xi

2U<c1«, ~78!

for some constantc1 and any«.0.
~iv! Finally we assume thatuv(x)u is polynomially

bounded.
A typical function v with these properties is sketched in

Fig. 1. We note thatvu is a potential well of diameter
O(u), with walls of heightO(u2) and of widthO(u).
The Hilbert space of the system is given by

H5L2~Rn,dnx!, ~79!

and the Hamiltonian is

H[Hu :52
\2

2m
D1vu~x!, ~80!

wherem is the mass of the particle andu,`. We are inter-
ested in estimating the lifetime of a state which, at time
t50, is localized well inside the well of the volcano, asymp-
totically whenu becomes large. In order to derive precise
estimates of such lifetimes, we consider a comparison dy-
namics generated by the Hamiltonian

H1[H1,u :5H01w«,u~x!, ~81!

where

H052
\2

2m
D1

1

2 S (
i51

n

V i
2xi

2D ,
w«,u~x!5g«,u~x!Fvu~x!2

1

2 S (
i51

n

V i
2xi

2D G . ~82!

In order to simplify our notations, we choose units in which
\5m51.
We start by considering the harmonic oscillator Hamil-

tonianH0 defined in Eq.~82!. With the units and conventions
just fixed, the spectrum ofH0 consists of the eigenvalues

El5(
i51

n

V i S l i1 1

2D , ~83!

where l5( l 1 , . . . ,l n), and l i50,1,2, . . . fori51, . . . , n,
corresponding to the eigenfunctions

c l~x!5)
i51

n

V i
1/4hl i~AV ixi !, ~84!

andhl is the usuall th Hermite function normalized such that
*dxhl(x)

251. The properties of the functionshl are well
known; in particular,

uhl~x!u<cl ,d expF2S 122d D x2G , ~85!

where, for anyl,` andd.0, cl ,d is a finite constant. Given
any E,`, there are finitely many sequences,l(1),
. . . ,l(kE), such that

El~ j !,E for all j51, . . . ,kE , ~86!

with kE<an(E/V0)
n, whereV0:5 mini V i.0, andan is a

geometrical constant. Definingu lu:5maxi l i , we also have
u l( j )u,V0

21E for all j51, . . . ,kE .
We may view the HamiltonianH1 as a perturbation of

H0 by the potentialw«,u(x). By Eqs.~78! and ~82!, the op-
erator norm,iw«,ui , of w«,u is bounded byc1«, and hence
we can apply analytic perturbation theory~Kato, 1980!. We
choose a contourgE in the complex plane surrounding
~specH0)ù@0,E) such that

dist~gE ,specH0!5:dE5
1

2
~El ~kE11!2El~kE!!.0. ~87!

We choose« so small that

c1«<
dE
2

3~E1V0!
. ~88!

Then the operator

Pu,E5
1

2p i RgE

dz~z2H1!
21 ~89!

is a spectral projection ofH1 , with

tr~Pu,E!5kE and iPu,E2PE
0 i,1, ~90!

wherePE
0 is the spectral projection ofH0 onto the subspace,

HE , spanned by the eigenfunctions$c l(1), . . . ,c l(kE)%.
We claim that ifc is in the range ofPu,E then there is a

finite constantCE.1 such that

ieauxu2ci<CEici , ~91!

provided a.0 is sufficiently small~depending on« and
CE). This follows from a Combes-Thomas argument
~Combes and Thomas, 1973; see also Hunziker, 1977!: First,
we note that, by Eq.~90!, there is a vectorw P HE such that
c5Pu,Ew, with iwi<constici . Using Eq.~89!, we have

eauxu2c5
1

2p i RgE

dz$eauxu2~z2H1!
21e2auxu2%eauxu2w.

~92!

By Eqs.~84!–~86!,

ieauxu2wi<constiwi ,
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if a,( 122d)V0 . Furthermore,

eauxu2~z2H1!
21e2auxu25„z2H̃1~a!…21,

where

H̃1~a!5H112an24a2uxu214ax•¹.

Choosinga small enough, we can use elementary analytic
perturbation theory~Kato, 1980! to prove a uniform bound
on

ieauxu2~z2H1!
21e2auxu2i5i@z2H̃1~a!#21i ,

for all zP gE . From this and Eq.~92! the bound~91! follows
by standard arguments.
Finally, we note that

H2H15dv«,u , ~93!

where

dv«,u :5~12g«,u!Fvu2 1
2(
i51

n

V i
2xi

2G .
By the definition ofg«,u , the support ofdv«,u is outside a
ball of radius1

2(«u)1/3. Moreover, by assumption~iv!,

udv«,u~x!u<H 0, uxu< 1
2 ~«u!1/3,

au21buxu21P~x!/u, uxu. 1
2 ~«u!1/3,

~94!

for some finite constantsa and b and some polynomial
P(x).
With these preliminaries out of the way, we are ready to

apply the bounds~54! on the probabilitypt ~see Theorem 3!
to the present system. The system is in an initial state de-
scribed by a density matrixr0 . Given some numbers,
0,s,1, there then exists an energyEs,` such that

tr~r0Pu,E!>~12s!2, ~95!

for all E>Es and all u>1. This follows easily from the
definition ~89! of the projectionPu,E , Eqs. ~81! and ~84!,
and assumption~iii ! @Eq. ~78!#.
We now set

Ut5e2 i tH , Wt5e2 i tH1,

P̃t5Wt*Pu,EWt5Pu,E , ~96!

where the last equation follows from the fact thatPu,E is a
spectral projection ofH1[H1,u @as defined in Eq.~81!#. We
then have@see Eq.~56!#

H̃t5Wt*HWt2 iWt* Ẇt

5Wt* dve,uWt , ~97!

by Eqs.~96! and ~93!.
Using Eqs.~30b!, ~96!, and~97!, we find that

f ~ P̃t ,H̃s!5 f ~Wt2s* Pu,EWt2s ,dv«,u!

5 f ~Pu,E ,dv«,u!, ~98!

where f (R,A) has been defined in Eq.~23!.
Equation~II.3b! ~Table II! says that

f 2~PE,u ,dv«,u!5
1

2
tr~2@Pu,E ,dv«,u#2!.

We may representPu,E as an integral operator onH, with
integral kernel denoted byPu,E(x,y). By Eqs.~90! and~91!,
we have

E uPu,E~x,y!u2e2a~ uxu21uyu2!dnxdny<~kECE!2, ~99!

with CE anda as specified in Eq.~91!, andkE as in ~86!.
Furthermore,

tr~2@Pu,E ,dv«,u#2!5E uPu,E~x,y!u2@dv«,u~x!

2dv«,u~y!#2dnxdny. ~100!

Recalling inequality~94! and using~99!, we conclude that

0<tr~2@Pu,E ,dv«,u#2!<2dE
2e22mEu2/3, ~101!

for some finite constantsdE andmE that depend onE. @Here
mE } a«2/3, and, by Eqs.~91! and~88!, a and« depend on
E.#
With

r t :5Utr0Ut* and pt :5 tr~r tPu,E!, ~102!

inequality~54! of Theorem 3, combined with inequality~95!,
Eq. ~98!, and inequality~101!, yields the bounds

pt >
< sin

*
2 S arcsin~12s!6E

0

t

f ~ P̃t ,H̃s!dsD ,
where

0< f ~ P̃t ,H̃s!5A1
2 tr~2@Pu,E ,dv«,u#2!

<dEe
2mEu2/3, ~103!

for E>Es . For s small enough,

p/22A2s<arcsin~12s!<p/22As/2,

and we find that

pt >
< sin

*
2 S p

2
2A271s 6 tdEe

2mEu2/3D , ~104!

for s small enough andE>Es . These bounds imply that the
stater t of the system remains in the range of the spectral
projectionPu,E of the operatorH1,u @defined in Eq.~81!#, for
E large enough, withpositive probability pt @estimated by
Eq. ~104!#, for all times t, with

utu,constemEu2/3. ~105!

This is thekey result for the present example. It has the
following corollary: LetQR be the projection onto the sub-
space of wave functions inH with support in the ball of
radius R centered at the origin inRn. Given E,` and
b.0, there exists a radiusRE,b,` such that

i~12QR!Pu,Ei<b, ~106!

for all R.RE,b . This is an easy consequence of inequality
~99!. From ~106! one obtains
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pt5tr~Pu,Er t!5tr~QRPu,Er t!1tr„~12QR!Pu,Er t…

<tr~QRPu,Er t!1b

5qt1tr„QR~Pu,E21!r t…1b

<qt1AqtA12pt1b, ~107!

where, in the first inequality we have used~106!, we have
definedqt by

qt :5tr~r tQR!, ~108!

and in the last inequality we have used the cyclicity of the
trace and the Schwarz inequality for the trace and have noted
that tr„(Pu,E21)2r t…5tr„(12Pu,E)r t…512pt . From Eqs.
~104!, ~107!, and~106! we conclude that,for R large enough
(R.RE,b ,E>Es ,b ands small enough!,

qt>
1

2
, for all t with utu,constem̃Ru2/3, ~109!

for somem̃R.0. This means that, with high probability, a
particle prepared at timet50 in a state localized well within
a ‘‘volcano’’ of diameterO(u), with walls of heightO(u2)
and widthO(u) ~as described by the potentialvu), does not
escape from it, for all timest with

utu,exp@constu2/3#.

We discuss this result as follows.~1! Let us suppose that
the functionv is C4 and hasvanishingthird derivatives at its
local minimumx50 @this hasnotbeen assumed in the analy-
sis presented above; see Eq.~78!#. In this case, we redefine
the functiong«,u(x) @see Eq.~77!# by setting

g«,u~x!:5gS x

A«u
D , ~110!

with « small enough. Under the present hypotheses, inequal-
ity ~78! holds for the functiong«,u defined in Eq.~110!.
Going through our analysis step by step, we then find that
inequality ~101! can be improved to

0<tr~2@Pu,E ,dvu#2!<2dE
2e22mEu, ~1018!

and ~109! turns out to holdfor all times t with

utu<exp@constu#, ~111!

i.e., for exponentially large times.
One may wonder whether Eq.~111! can be improved, un-

der suitable assumptions onv, to superexponentially large
times. Actually, it is easy to see that ifv(x)→const, as
uxu→` ~i.e., the ‘‘volcano’’ does not permanently confine the
particle!, Eq. ~111! cannot be improved without changing the
comparison dynamics. This is seen by carefully retracing the
steps of our analysis. In order to improve on Eq.~111!, one
would have to use a comparison dynamics involving a po-
tential that grows faster thanuxu2 as uxu→`. Examples of
functionsv for which this idea can be implemented can be
constructed without difficulty.

~2! There is another, perhaps more natural~but analytically
somewhat more subtle! way of rescaling the functionv to a
potentialvu : One sets

vu~x!5u2v~x!.

We suppose thatv satisfies assumptions~i!, with v(0)50
~without loss of generality!, and~ii !; but ~iii ! is replaced by
the following condition: Letg be as in~iii !, but we define

g«~x!:5g~x/«!

and set

w«,u~x!:5g«~x!Fvu~x!2
u2

2 S (
i51

n

V i
2xi

2D G .
We assume that

~ iii 8! uw«,u~x!u<l~«!
u2

2 S (
i51

n

V i
2xi

2D ,
for all x P Rn, wherel(«)→0 as«→0.
We keep property~iv! of v as above. We then define

H0 :52
\2

2m
D1

u2

2 S (
i51

n

V i
2xi

2D
H1 :5H01w«,u

and

H5H11dv«,u ,

where

dv«,u~x!:5@12g«~x!#Fvu~x!2
u2

2 S (
i51

n

V i
2xi

2D G .
Then the spectrum ofH0 consists of the eigenvalues

El5(
i51

n

uV i~ l i1
1
2 !, l i50,1,2,. . . , i51, . . . ,n,

corresponding to the eigenfunctions

c l~x!5)
i51

n

~uV i !
1/4hl i~AuV ixi !,

which decay like exp(2uV0uxu2), for V0:5minjV j . By as-
sumption (iii8), we have

iw«,uci<l~«!iH0ci ,

for all c in the domain of definition ofH0 , and hence we can
apply analytic perturbation theory to determine the eigenval-
ues ofH1 below an energyE5Eu, E,`, for « sufficiently
small. The Combes-Thomas argument@see ~91! and ~92!#
can be used, just as before, to show that the corresponding
eigenfunctions ofH1 decay like exp@2aEuuxu2# for some
aE.0. LetPE denote the spectral projection ofH1 onto the
subspace spanned by eigenfunctions corresponding to eigen-
values<Eu. Preparing the system in a stater0 with the
property that

tr~r0PE!>~12s!2, 0<s!1,

one can then prove thatpt :5tr(r tPE) remains strictly posi-
tive for all timest with

utu<emEu,

for somemE.0. As in Eqs.~106!–~109!, this result implies
that the time of escape from the interior of the volcano to the
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outside world of a particle prepared, at timet50, in the state
r0 described above, is exponentially large inu.
We refrain from presenting details of the proofs of these

claims and discussing variants of such results, which the
reader will find easy to work out.
For discussion of and references to other related results

see Cycon, Froese, Kirsch, and Simon~1987!.

B. Application 2: One-electron ion in a magnetic field

The system we consider here consists of a single electron
bound to a nucleus of charge (Z11)e and massM@m,
wherem denotes the electron mass. At timet50, the nucleus
and the electron are supposed to form a bound state; the
initial stater0 for the relative motion is supposed to be a
density matrix constructed from energetically low-lying or-
bitals. The system is under the influence of a constant mag-
netic field BW 5(0,0,B) in the z direction. The initial state
x0 for the center-of-mass motion is assumed to be peaked at
a point XW 05(r ,0,0), and itsFourier transformx̂0 to be
peaked at a momentum given byPW 05MVW 0 , where
VW 05(0,2rvc ,0), andvc is the cyclotron angular velocity
of a particle of electric chargeq5Ze and massM , i.e.,

vc5
qB

Mc
. ~112!

By Heisenberg’s uncertainty relations,

DXW 0•DVW 0>3
\

M
.

If Z is large,M is large, and hence the uncertainties of po-
sition DXW 0 and velocityDVW 0 can be made very small. It is
then justified to treat the center-of-mass motion of the ion
classically over a very long interval of time. LetXW (t) denote
the classical position of the center of mass at timet. Then

XW ~ t !5„rcos~vct !,2rsin~vct !,0….

We set

V:5S 0 vc 0

2vc 0 0

0 0 0
D ; ~113!

thenXW (t)5eVtXW 0 . Let xW be an arbitrary vector inR3. We
introducemoving coordinates

yW5e2VtxW ~114!

and define the velocity fieldVW by

VW ~yW !5
d

dt
~e2VtxW !52VyW . ~115!

If xW5(x1 ,x2 ,x3) are the position operators of the electron,
then the Coulomb potential of the electron in the field of the
nucleus is given, at timet, by

2
~Z11!e2

uxW2XW ~ t !u
52

~Z11!e2

uyW2XW 0u
5:vc~yW !. ~116!

Thus, in moving coordinatesyW @given by Eq.~114!#, vc(yW ) is
time independent. It is therefore natural to formulate the
Schrödinger equation for the motion of the electron in the
field of the nucleus inmoving coordinates, yW . This has been
studied in some detail by Fro¨hlich and Studer~1993!. The
result is as follows: LetVW 5VW ( • ,t) be an arbitrary, smooth,
possibly time-dependent vector field generating a volume-
preserving flowf t on R3 @i.e., (]/]t)f t(yW )5VW „f t(yW ),t…
with ¹W •VW 50#. Then the Schro¨dinger-Pauli equation in mov-
ing coordinates,yW5f2t(xW ), is given by

i\
]

]t
c t~yW !5Hyc t~yW !,

wherec t is a two-component Pauli spinor, with

c tPH:5L2~R3,d3y! ^C2 ~117!

and

Hy5H 1

2m*
S \

i
¹W 1

e

c
AW 2m*V

W D 21vc2
e

c
VW •AW 2

m*
2
VW 2J

^1211^ H 2
gm

\
BW •SW 12vW •SW J , ~118!

wherem*5mM/(m1M )'m is the reduced mass of the
electron,g'2 is its gyromagnetic factor,m5e\/(2mc) is
the Bohr magneton,SW 5(\/2)(sx ,sy ,sz) is the spin opera-
tor of the electron, andvW 5 1

2 curl VW @with vW 5(0,0,vc),
vc as in Eq.~112!, in our example# is the angular velocity of
the moving coordinate frame. The first term on the right-
hand side of Eq.~118! is the kinetic-energy operator in mov-
ing coordinates, withm*V

W corresponding to the vector po-
tential of the Coriolis force; the term2(e/c)VW •AW is a
relativistic correction, due to the circumstance that, in mov-
ing coordinates, there is an electric field proportional to
(uVW u/c)uBW u; the term2(m* /2)V

W 2 is the potential of the cen-
trifugal force; the term2(gm/\)BW •SW is the Zeeman energy
of the magnetic moment of the electron spin; and 2vW •SW
comes from spin precession in the moving coordinate frame.
All vectors on the right-hand side of Eq.~118! are expressed
in the basis of the moving frame. For simplicity we are ne-
glecting spin-orbit interactions in Eq.~118! which, for large
Z are actually somewhat significant. For details concerning
the derivation of Eq.~118!, see Fro¨hlich and Studer~1993!.
Imposing the Coulomb gauge condition onAW , we find

that, in the moving frame of the system we are studying,

AW ~yW !5
B

2
~2y2 ,y1 ,0!, ~119!

and, by Eqs.~113! and ~115!,

VW ~yW !5vc~2y2 ,y1 ,0!. ~120!

Let

B*5BS 122
m*
M

q

eD ,
and letAW * be the vector potential in the Coulomb gauge,
whose curl is given by (0,0,B* ). Note that, since
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m* /M!1, B* is approximately equal toB. Furthermore,
approximatingg by 2 andm* by m, we find that

2
gm

\
BW •SW 12vW •SW '2

gm

\
BW * •S

W . ~121!

Actually, the fact that~121! is not a strict equation is signifi-
cant and is the basis of Telegdi’s precision experiment deter-
mining theg factor of the electron. For our considerations,
however, the deviation of the left-hand side from the right-
hand side of Eq.~121! is insignificant.
Finally,

F2
e

c
AW •VW 2

m*
2
VW 2G~yW !52

~qB!2

2Mc2 S eq1
m*
M D ~y1

21y2
2!

'2
eqB

*
2

2Mc2
~y1

21y2
2!, ~122!

since (m* /M )!(e/q). Note that the potential of the cen-

trifugal force,2(m* /2)V
W 2, is insignificant as compared to

the term2(e/c)AW •VW .
All these calculations show that

Hy'H 1

2m*
S \

i
¹W 1

e

c
AW * D 22 eq

uyW2XW 0u
2
eqB

*
2

2Mc2
~y1

21y2
2!J

^1221^
gm

\
BW * •S

W . ~123!

The terms left out on the right-hand side give corrections of
orderEm/M to a typical energyE P specHy . Consideration
of the right side of~123! suggests that we use relative coor-
dinates

jW :5yW2XW 05~y12r ,y2 ,y3!. ~124!

Then

2
eqB

*
2

2Mc2
~y1

21y2
2!1

eqB
*
2

2Mc2
r 252

eqB
*
2

Mc2
r j1

2
eqB

*
2

2Mc2
~j1

21j2
2!.

~125!

The Bohr radiusa is many orders of magnitude smaller than
r , which, in a cyclotron, is macroscopically large. Thus the
second term on the right-hand side of Eq.~125! is, for all
practical purposes, negligible. The size of the first term is

UeqB*2
Mc2

r j1U; eqB
*
2

Mc2
ra

!
q2B2

2Mc2
r 25

M

2
~vcr !2. ~126!

Thus the atomic physics problem we are studying is that of
an electron in the field of a static nucleus of charge (Z11)e
in an external electromagnetic field (EW * ,B

W
* ), with

BW *5(0,0,B* ) as above, and

EW *5S qB*2Mc2
r ,0,0D , ~127!

which is a tiny electric field. This is the Zeeman-Stark prob-
lem. Note that, in our example,Hy is time independent.
We are thus led to study the following general problem

concerning tunneling in atomic physics: LetH be as in Eq.
~117!, and letH0 be the Hamiltonian for the relative motion
of a one-electron ion in a uniformly bounded, time-
independent, external magnetic field. Letg(•) be the func-
tion defined in assumption~iii ! of Application 1, Eq.~77!.
Let v be a piecewise continuous function onR3 with the
following properties: We define

wu~jW !:5gS jW

u
D v~jW !, ~128!

for any u.1. We assume that, for some constantk,` and
an arbitraryu,`, there exists some finite constantLu such
that

iwuci<Lui~H01k1!ci , ~129!

for all vectorsc in the domain of definition ofH0 . We also
assume, for example, that, foru>u0 , for some finiteu0 ,

dvu~jW !:5F12gS jW

u
D Gv~jW ! ~130!

is polynomially bounded~clearly,wu1dvu5v). We define

H:5H01«v ~131!

and

H1[H1,u :5H01«wu , ~132!

for someu>u0 to be chosen below. Then

H5H11«dvu . ~133!

From standard texts on rigorous atomic physics~e.g., Kato,
1980; Cycon, Froese, Kirsch, and Simon, 1987! we know
that the spectrum ofH0 consists of an infinity~for an attrac-
tive Coulomb potential! of eigenvalues,

E0<E1<E2< . . .,Ec ,

corresponding to eigenfunctionsc0 ,c1 ,c2 , . . . , and an ab-

solutely continuous part @Ec ,`), with Ec>2 1
2gm

3 supjuBW (jW )u ~incidentally, from now on, we return to units
in which \51). LetE,Ec , and letHE be the subspace of
H spanned by all eigenfunctionsc0 ,c1 , . . . ,ckE

corre-

sponding to eigenvaluesE0<E1< . . . < EkE
<E. Then

EkE112EkE
5:2dE.0. ~134!

Defining m̃E :5AEc2E, we have, for allj51, . . . ,kE ,

uc j~jW !u<cE,de
2~m̃E2d!ujW u, ~135!

for any d.0, wherecE,d is a finite constant; see, for ex-
ample, Cycon, Froese, Kirsch, and Simon~1987!. Thus
eigenfunctions ofH0 decayexponentiallyat infinity. Given
u,`, with u>u0 , we shall choose« so small that
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«Lu,
dE

uE1ku
, ~136!

wherek is the constant appearing in Eq.~129!. Thanks to
Eqs.~129! and~136!, we may then use analytic perturbation
theory to study the point spectrum ofH1 , for sufficiently low
energies, and the corresponding eigenfunctions. The ideas
here are essentially the same as those developed in Applica-
tion 1; see Eqs.~87!–~90!. The projection operatorPE is
defined by

PE5
1

2p i RgE

dz~z2H1!
21, ~137!

where the contourgE has been defined in Application 1@cf.
Eqs.~87!–~89!#. Furthermore, Eq.~90! remains true~mutatis
mutandis!.
It is well known that, in the present example, we can again

apply the Combes-Thomas argument, in a way analogous to
Eqs.~91! and ~92!, and show that

E uPE~jW ,hW !u2e2a~ ujW u1uhW u!d3jd3h<~kECE!2, ~138!

for some constantCE , provideda,m̃E is small enough.
HerePE(jW ,hW ) is the integral kernel ofPE ~as in Application
1!. The bound~138! follows from ~135!, by the Combes-
Thomas argument. Note that Eq.~138! claims exponential,
rather than Gaussian~as in Application 1!, decay of
uPE(jW ,hW )u, asujW u1uhW u→`.
The remainder of this story is just as in Application 1.

Thus we suppose that the state of the system, with dynamics
generated by the HamiltonianH, at timet50 is described by
a density matrixr0 with the property that, for somes,1,
there exists someE,Ec such that

tr~r0PE!>~12s!2. ~139!

We set pt :5tr(r tPE), qt :5tr(r tQR), whereQR projects
onto the subspace of Pauli spinors inH that vanish outside a
sphere of radiusR centered at the origin ofR3. Again, by Eq.
~138!, we have

i~12QR!PEi→0 as R→`; ~140!

see Eq.~106!. The estimate replacing~101! now reads

0<tr~2@PE ,dvu#2!<2dE
2e22mEu, ~141!

for u<u0 @see Eq.~130!# andE,Ec , wheredE is a finite
constant, andmE is positive. Recalling thatH5H01«v, we
conclude that if«.0 satisfies Eq.~136!, and for s suffi-
ciently small,

pt >
< sin

*
2 S p

2
2A271s 6 t«dEe

2mEuD . ~142!

Assuming thatr0 is chosen such that

tr~r0PE!51 for someE,Ec , ~143!

then one derives from Eqs.~142! ~with s50) and~140! that,
given anyD.0, there exists someRD,` and a constant
tE,D.0 such that if« satisfies Eq.~136! then

qt>12D, ~144!

for all R>RD andutu<«21tE,De
mEu. Thus the escape time to

infinity of the electron grows exponentially inu, whereu
can be chosen so large that«Lu<const@see Eq.~136!#.

Example 1. We setBW 50 and choose

v~jW !5j1 , ~145!

i.e., «v(jW )5«j1 . This is the Stark problem for a constant,

external electric fieldEW 5(2«/e,0,0) in thex direction. Set-
ting k52E011 in ~129!, we then have

iwuci<uici<ui~H01k1!ci , ~1298!

i.e.,Lu5u. Hence, given«.0 and taking into account Eq.
~136!, we may set

u5kE«21, ~146!

for some constantkE.0. Then Eqs.~142! and ~144! yield

pt >
< sin

*
2 S p

2
2A271s 6 t«dEe

2nE«21D , ~147!

andqt>12D, for R>RD and

utu<«21tE,De
nE«21

, where nE5mEkE.0.

Thus the escape time of the electron to` is exponentially
large in 1/«!
Example 2. Let us finally return to the problem from

which we originally started in Application 2, the problem of
a one-electron ion in a magnetic field. From Eqs.~123! and
~125! we infer that if we set«5eqB

*
2 /(Mc2) then we may

chooseu so large that

«ru1
«

2
u2<kE ,

for some constantkE.0, where the termu2 comes from the
centrifugal potentialj1

21j2
2 in Eq. ~125!. Thus, as long as

r 2@kE /«, u grows like 1/«; but, asymptotically, as«↓0, u
grows like 1/A«. Physically,« is very small, so that the
escape time of the electron to infinity is comparatively very
large.
We make the following remarks:
~1! The techniques developed in Application 2 can be gen-

eralized to yield lower bounds on lifetimes of states of mul-
tielectron ions in external electromagnetic fields.

~2! The methods developed in this paper can be applied to
prove lower bounds on the lifetimes of excited states of at-
oms when the electrons are coupled to the quantized electro-
magnetic field. These bounds agree with those expected from
perturbation theory~Bach, Fröhlich, and Sigal, 1995!.

~3! The methods developed in this paper are efficient for
proving lower bounds on the lifetimes of unstable states.
More detailed estimates, including the termf (r0 ,H̃s) in Eq.
~54! and improved trial propagators, are required for obtain-
ing upper bounds on lifetimes or for deriving a detailed,
temporal picture of a decay process. Hunziker~1990!, has
constructed methods complementary to ours, based on the
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technique of complex dilations, in order to describe the de-
cay of unstable states and obtain bounds on lifetimes.
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