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The development of different analytical and approximate numerical methods for calculations of
shock-wave propagation in the inhomogeneous interstellar medium is reviewed. The models of
ultracompact H II regions, nonspherical supernova remnants, bubbles produced by stellar winds
of hot stars, and expanding supershells are discussed on the basis of these calculations.
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Interaction of shock waves with the surrounding gas is
a fundamental problem in astrophysics. Shock waves are
common in the interstellar medium (ISM) because of a
great variety of supersonic motions and energetic events,
such as cloud-cloud collisions, bipolar outQow &om young
protostellar objects, powerful mass loss by massive stars
in a late stage of their evolution (stellar winds), super-
nova (SN) explosions, correlated SNe explosions in OB
associations and the central parts of "star burst" galax-
ies; shock waves are also associated with spiral density
waves, radio galaxies, and quasars.

A study of shock-wave propagation is essential for an
understanding of the structure, evolution, and energy
budget of the interstellar medium. Spiral and irregular
galaxies, including the Milky Way, display a variety of
large-scale interstellar structures identi6ed as holes and
shells in the neutral hydrogen distribution (see reviews

by Tenorio-Tagle and Bodenheimer, 1988; Brinks, 1990;
Silich, 1990). These objects were first discovered in the
Small Magellanic Cloud (SMC) by Hindman (1967) and
later were recognized as a characteristic feature of the
interstellar medium in our own galaxy by Heiles (1979),
who presented a photographic compilation of the neutral
hydrogen distribution over a number of small velocity in-
tervals LV = 2 —8kms ~. These "snapshots" reveal
a number of shells and "supershells" with dimensions of
several hundred parsecs and a complex morphology. An
in&ared shell which is probably connected with the Be 87
association has been discovered by Lozinskaya and Repin
(1990). It was suggested this shell might be a result of
action on the interstellar gas medium by the stellar wind
of Wolf-Rayet and Oy stars.

Later the same structures were discovered in the
nearby spirals M31 (Brinks and Bajaja, 1986), M33 (Deul
and Hartog, 1990), NGC 55 (Graham and Lawrie, 1982),
and irregulars IC 10 (Shostak and van Woerden, 1983),
Ho II (Puche et aI, 1992), and other galaxies. A program
to study the shell structure in dwarf galaxies was recently
undertaken by Puche et al. (1992; Puche and Westpfahl,
1995). Eight dwarf galaxies of the M81 group —NGC
4214, 3077, UGC 3974, 5666, 4305, 5139, SEXTANS A,
and M81DWA —were observed in the radio band with
the Very Large Array (VLA). These data show many ex-

Reviews of Modern Physics, Vol. 67, No. 3, July 1995 0034-6863 /95/67(3)/661 (52)/$14. 80 1995 The American Physical Society 661



662 G. S. Bisnovatyi-Kogan and S. A. Silich: Shock-wave propagation. . .

panding shells of neutral hydrogen. In the largest dwarfs,
traces of induced star formation stimulated. by the ex-
pansion and collision of the shells are observed. A space
correlation of star-forming regions with the edges of the
greatest holes in the neutral hydrogen distribution has
been observed in the Large Magellanic Cloud (LMC) by
Dopita et aL (1985). Observational evidence for the initi-
ation of the star-formation process by expanding shells on
di6'erent spatial scales has been d.iscussed by Elmegreen
(1992). In the low-mass dwarf galaxies one large bub-
ble structure dominates the ISM (Puche and Westpfahl,
1995). Spectral evidence for a powerful mass loss (super-
wind) &om the blue compact galaxy SBS0948+532 has
been presented by Izotov et aL (1994). A spectacular
line-emitting bubble of diameter = lkpc, with violent
gas motion that ranges over 2000 km s, has been ob-
served in the nuclear region of the galaxy NGC 3079 by
Veilleux et at. (1994).

In the LMC expanding shells of ionized hydrogen
have been revealed by means of H images analyzed by
Meaburn (1980). In some cases H shells coincide with
the neutral hydrogen one and represent its inner part
ionized by embedded luminous stars.

The largest shells have diameters much greater than
the characteristic scale of the gas distribution in the Z di-
rection of the galactic disk and sometimes reach 1 kpc
and more. Supershells are also subject to a large-scale
galactic shear due to differential rotation of the galactic
disk and therefore have a complicated three-dimensional
(3D) morphology.

The strongest shock waves in galaxies, apart &om the
violent phenomena in active galactic nuclei, are produced
by supernova explosions. Investigations of supernovae
remnants (SNR), which are the observational manifesta-
tions of SN shocks, give valuable information about the
energetics of the supernova event as well as about the
properties of the interstellar medium, where these shocks
propagate.

Supernovae are responsible for formation of the hot
(T 10 K) rarefied-gas regions in galaxies, representing
cavities formed by the SN shock waves. The existence of
a hot galactic gas phase in addition to warm ( 10 K)
and cold ( 100K) phases was established by McKee and
Ostriker (1977).

SNRs are the sources not only of thermal emission of
hot gas in optical, UV, and x-ray regions, but also of very
strong radio emission, resulting from synchrotron radia-
tion of the relativistic electrons in the magnetic field.
That means that SNRs are also accelerational d.evices in
which particles reach relativistic energies E » mc and
thus are important sources of cosmic rays. Particle accel-
eration in SNR shocks, as well as interstellar shock struc-
ture, comprise very broad areas of investigation, which
will not be considered here (see Fedorenko, 1983; the re-
views of Eilek and Hughes, 1990; and Draine and McKee,
1993).

Shocks from a single supernova and. multiple super-
novae in OB associations are thought to be important in

acceleration of interstellar clouds, as was emphasized by
Cowie et aL (1981). New it becomes obvious that the
interaction of blastwaves with interstellar cloud. s plays
an important role in the fund. amental astrophysical pro-
cess of star formation. Progress on this complex problem
has been made in recent years by Klein et at. (1990),
Elmegreen (1992), Mac Low et aL (1994), and others.
The first numerical results were summarized by Klein et
aL (1994). But many questions remain to be answered.

Recent high-resolution and high-sensitivity rad. io ob-
servations have shown that supernova remnants them-
selves generally do not posses spherical symmetry. Many
SNRs have limb-brightened cylindrical or barrel-like
structure, with two regions of low intensity near the top
and bottom of the axis of symmetry and with a gradi-
ent of radio brightness along the shell. Kesteven and
Caswell (1987) have even suggested that the majority of
SNRs fall into this category. A number of x-ray and op-
tical remnants show diferent features of this morphology
as well.

Formation of shocks may have resulted not only kom
explosions, like those of supernovae, but also &om long-
term continuous acceleration, produced by radiation
pressure or hot stellar winds, of coronal origin. Shocks
are formed on the boundary between the hot wind and
the interstellar gas pushed by it. This boundary may
propagate outward or become stationary, probably like
that between the solar corona and interstellar gas near
the orbit of Pluto (Weigert and Wendker, 1989). Rings
around the most luminous stars —such as the 0 super-
giants and Wolf-Rayet stars —are the observational ap-
pearance of these interactive shocks (Lozinskaya, 1992).
Less intensive shocks also exist around solar-type stars
having coronal outgrows.

The phenomena observed in newborn stars indicate
the exis+ence around these objects of shocks with com-
plicated geometrical structure. Newborn stars, formed
after the collapse of rotating gas clouds, are surrounded
by discs with the angular momentum of the parent cloud
and are strongly convective, producing very strong coro-
nal heating. These conditions lead to the formation of
strong nonspherical winds containing jets, which produce
a complicated system of shock waves.

The most energetic phenomena in space are probably
connected with active galactic nuclei and quasars. In the
presence of strong magnetic 6elds and rotation, explo-
sions accoxnpanied by huge increases in the radiation Hux

and the 6ux of relativistic particles lead to formation of
directed eruptions observed. as jets in many quasars and
active galactic nuclei.

The bipolar outflow from protostar objects (see the
review of Lada, 1985) and bow shocks surrounding ultra-
compact H II regions (Mac Low et aL, 1991) represent
the lower range of the scale for shock-wave phenomena
in the inerstellar medium.

The characteristic feature of all these phenomena is
their complicated nonspherical morphology. An ade-
quate physical model for them has to include both 2D
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The basic relations we need to discuss for self-similar
problems are the hydrodynamical equations of continuity,
motion, and energy conservation (Landau and Lifshitz,
1953; Zeldovich and Raizer, 1966):

Bp—+ div(pu) = 0,
Bt

BU 1+ (u~)u = ——~ P + g,Bt p
(2.1)

8 f pu2 ) fu2
+e

I

——div pu
I

—+~
I

+ pQBt ( 2 ) q2 )
where u is the Quid velocity, p and P are the gas density
and pressure, t is the time, I is the gravitational acceler-
ation, e is the internal energy per unit volume, cu is the
enthalpy, and Q is the energy supply rate per unit mass
kom the external energy sources. As a rule we assume
the equation of state for a perfect gas

and 3D numerical simulations. An accurate description
of such events usually requires numerical calculations,
which have made progress in recent years. However, the
current two-dimensional schemes are very complicated
due to the nonlinear character of the hydrodynamical
equations and the importance of radiative cooling and
gravity for the late stages of an interstellar shock-wave's
evolution. The three-dimensional codes that have ap-
peared in the last few years are even more complicated
and require long computation times even on'the most
powerful computers. Therefore we need methods that are
easy to work with and could give reasonable accuracy,
at least in simulating the shape and dynamics of com-
plex two- and three-dimensional shock waves, although
it is true that such approximate methods are usually
only valid over a limited parameter regime. Approximate
methods may also be useful for assessing the accuracy of
more complicated full 2D and 3D calculations.

The description of these semi. analytic and approximate
methods for calculating shock-wave propagation in the
nonuniform interstellar medium, as well as the descrip-
tion of their application to difFerent astrophysical prob-
lems, is the main purpose of this review.

II. SPHERICALLY SYMMETRIC SHOCKS

A. Self-similar solutions

1. Equations and conditions for self-similarity. Sedov solution

Bp 1 B(pur")
rA

Bu Bu 1 BP = fp, (2.4)

Bs O8T —+ Tu —= f, .
Bt Br

Here s = cv ln(P/p&) is the specific entropy, whilef, f„, f, are the sources of mass, momentum, and en-

ergy. For a uniform medium, parameter a may be taken
as the ambient gas density pp. Then 8 = 0, A: = —3, and
the self-similar solution may be presented in the form
(Sedov, 1958; Zeldovich and Raizer, 1966)

P r2
p = p»(&) —= —,~(&)

p t2

with the independent nondimensional variable

u = —v((), (2 5)

r
At

(2.6)

For these variables the dimensionless self-similar equa-
tions may be expressed as (Zeldovich and Raizer, 1966)

« f

(v' + (v —n) ( —= —(A+ 1) v + (P
g

and P, p, u are the dimensionless pressure, density, and
velocity. According to the vr theorem of the theory of
dimensions (Sedov, 1958; Korobeinikov, 1985), any func-
tional relation, independent of the system of units, be-
tween (n + 1)-dimensional variables can be rewritten as
a relation between (n + 1 —k)-nondimensional variables,
where A: is the number of variables with independent di-
mensions. There are only three main scaling units in hy-
drodynamics; thus according to the vr theorem the num-
ber of independent parameters in dimensionless hydrody-
namic equations is three fewer than their number in the
dimensional ones. When the number of independent vari-
ables in the dimensionless equations can be reduced to
one, there is a self-similar solution. For one-dimensional
Bows, this happens when the number of independent di-
mensional parameters does not exceed two.

The hydro dynamical equations for one-dimensional
motion with spherical (A = 2), cylindrical (A = 1), or
plane (A=O) symmetry can be written

P =RpT, (2 2)
«I

(v —n) (v' + (7 ' +f( = 2f v(v—1) + P—„, — —
g

where T is the gas temperature and R is the gas constant.
Equations (2.1), like any others, can be written in

nondimensional form with scaling of time t, coordinates
r, and mass M. Scaling of all other physical quantities
is done using the power functions of t, r, M having cor-
responding dimensions (Sedov, 1958),

g' v —1(= —h —1)(= = —2- +-
'T g V —0! V —0!

where

t - f„
gpp

(2.7)

a a
rk+lt8+2 ' p rk+3ts p ' (2.3)

where a is a parameter with dimension [aj = ML"T',

The similarity index o. is determined by the requirement
that the time dependence drop out of the right side of
Eqs. (2.7).
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ri A -4+1 -(A —2)/3 p(A+2) {4+1)
1 (2.9)

which is obtained by combining the first and the last
equations in (2.7). In the general case we have to com-
plement Eqs. (2.7)—(2.9) with the initial and boundary
conditions in dimensionless form.

The classical example of the self-similar solution is that
of an adiabatic blastwave caused by a point explosion in
a cold (P,„q ——0), homogeneous, uniform medium, which
has been found. by Sedov (1946) and Taylor (1950). There
are only two parameters with independent dimension in
this problem: the energy of explosion Eo and the density
of the ambient gas po. The only nondimensional compo-
sition formed by Eo, po, and the independent variables t,
P ls

i/5

((o&0&')
(2.io)

where (o ——2.02597 for p = 5/3 is a constant which
follows &om the energy integral and the solution of the
self-similar equations (Sedov, 1958). Taking the nondi-
mensional coordinate of the shock (, equal to 1, we get
the radius of the shock &ont B, as a function of time,

i/5

4«) (2.11)

The velocity of a strong spherical shock is then given by

dB, 2R,
dt 5 t

(2.12)

For the case of a strong spherical shock the self-similar
equations can be solved analytically (Sedov, 1946). Fig-
ure 1 shows the distribution of the hydrodynamic quan-
tities inside the spherical remnant that follows &om the
Sedov (1946) solution, on which the majority of the ap-
proximate methods are based. Two main features of the
Sedov-Taylor solution follow &om this IIigure. They are

For zero P, P„, and P there exists an integral of
adiabaticy in the form

the concentration of the swept-up gas in a thin layer near
the shock boundary and the almost uniform distribution
of the gas pressure inside the cavity, with the exception
of a small region behind the shock &ont.

While the internal structure of the blastwave at time
t is related to that at any other time through simple
scaling, the properties mentioned above are present at
least during the adiabatic phase of the shock's evolution.
The mass concentration behind the shock &ont becomes
even Inore prominent at the radiative phase, when the
swept-up gas collapses into a thin cold shell that expands
with almost the same speed as the shock &ont itself.

2. Solutions for a point explosion with heat conductivity and
cloud evaporation

The spherical shock &om a point explosion has been
successfully applied to explain a variety of features of the
observed SNRs. However, theoretical studies (Bychkov
and Pikelner, 1975; McKee and Ostriker, 1977; Cowie et
at. , 1981) and observational evidence (Long and Helfand,
1979; Lozinskaya, 1992) indicate that evaporation of mat-
ter from small dense clouds that are engulfed by a shock
front and are embedded into a hot tenuous gas might
strongly afI'ect the evolution of SNRs and multisupernova
shells (Kunze et al. , 1992).

An analytical approximation to describe the evolution
of spherical SNRs with evaporating clouds has been pro-
posed by McKee and Ostriker (1977; Ostriker and Mc-
Kee, 1988). A detailed numerical model of spherical SNR
evolution in a cloudy ISM has been developed by Cowie
et al. (1981). Tsunemi and Inoue (1980) carried out a
numerical analysis of the evolution of clouds trapped in
a hot SNR cavity and of their inHuence on the spectrum
of the Cygnus loop. The results of analytical and numer-
ical studies of the evolution of spherical SNRs in a three-
phase ISM have been summarized by McKee (1982).

In a quasistationary state, the values of the total flux
L (heat conductivity plus advection) and mass flux m are
constant (Landau and Lifshitz, 1959; Bisnovatyi-Kogan,
1967; Cowie and McKee, 1977):

m~ —+ —a, ~+4vrr q=L,( 2 2
(2.13)

0.6—

0.4—
P/Pp

0.2—

I.O
y'= 5/5

0.8—
4ar pu = m. (2.i4)

Here a;2 = kT/p is the isothermal sound speed, and p is
the mean mass per particle. The heat flux q is conducted
by the electrons, and the classical thermal conductivity
in a fully ionized equilibrium hydrogen plasma (Spitzer,
1962),

0 1 I I I I

0 0.2 0.4 0.6
R/Rs

0.8 1.0
1.84x1O-'T'/'

ergs s deg cm
lnA

(2.i5)

FIG. 1. Distribution of dimensionless density and pressure
behind an adiabatic shock front initiated by a point explosion
in a homogeneous interstellar medium.

is based on the difFusion approximation, that is, on the
assumption that the mean free path of the electrons is less
than the characteristic scale of the temperature gradient
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(2kT, & '
q.~, = 0.4

~

' n, kT, .
(z-m, )

(2.16)

Cowie and McKee (1977) argued that the upper limit on
the saturated heat flux should take the form

.2qsat; = 5@8pai (2.17)

where 4, is a parameter less than, or of order of, unity,
which depends on cloud geometry, presence and conflgu-
ration of the magnetic Geld, etc.

In addition to the quasistationarity condition, Cowie
and McKee (1977) set the total energy flux to be zero:
L = 0 in (2.13). Then the solution of Eq. (2.13) gives the
mass loss rates from the cloud in these two cases as

M, i~, = 2.75x10 T r~, gs, 0.03 ( cr ( 1, (2.18)

M, &
——3.75x10 T i r"~,4,o i gs, o ) 1, (2.19)

lT = T/
~
~T ~. Here T is the intercloud gas temper-

ature, while lnA is the Coulomb logarithm. But when
the mean free path of the electrons becomes comparable
to the temperature scale height in the cloud, the heat
flux is no longer q = —K ~ T. In such a case it depends
on some characteristic velocity v,h that is of the order
of the electron thermal velocity, q = 5n, kT v,h. Cowie

1/2
and McKee (1977) estimated v,s as v, s = {s

"* and

have called this eKect "saturation. " The saturated heat
flux is given by

sion energy Ep. The unique dimensionless combination
of these parameters is

g1/10@—1/10~ —3/5P 0 (2.23)

It follows from this equation that the shock radius is in
direct proportion to t / and the shock velocity varies as
g
—2/5

A similarity solution for shock-wave evolution in a
cloudy medium in the case of saturated evaporation has
been found by White and Long (1991). This solution
is applicable to a young (less than —20000yr) super-
nova remnant. It was applied by Long et al. (1991) to
SNRs 3C400.2 and W28. They assumed that the clouds
are much denser than the intercloud medium and uni-
formly distributed, with a small volume filling factor.
Then clouds that have been engulfed by a shock wave
are still cold and do not acquire a signiGcant velocity.
The dense cloud material is then evaporated and mixed
with post-shock hot intercloud gas. It is assumed that
the clouds lose gas having zero internal energy and zero
velocity. This gas extracts energy from the shock-heated
intercloud medium to reach the intercloud gas parame-
ters. The relative kinetic energy of the newly ejected and
post-shock mass is converted into the thermal energy of
the gas mixture. Then the right sides of the hydrody-
namical equations (2.4) for a spherically symmetric SNR
may be expressed as (Mathews and Baker, 1971; White
and Long, 1991)

(2.24)

where r~, is the cloud radius in parsec units, T is the
temperature of the surrounding hot gas, and p

(2.25)

(2.20) 3 & p~f, = c„T —(p —1-)
p 2 P (2.26)

These results have been further studied recently by Dal-
ton and Balbus (1993). Doroshkevich and Zeldovich
(1980) have analyzed the nonstationary structure of the
interface between hot and cold gas in the case of nonlin-
ear conductivity and volume energy loss.

Chieze and Lazareff (1981) looked for a similarity so-
lution for a supernova remnant expansion into a two-
component interstellar medium containing high-density
clouds and low-density intercloud gas. They suggested
that due to thermal conductivity (classical case) the
mean cloud evaporation rate has the form

(2.21)

used in the first equation of (2.4), with fz ——f, = 0. To
make the problem of self-similar type, the external gas
density distribution was taken as

(2.22)

where j is the integrated cloud evaporation rate per
unit volume. To Gnd a similarity solution, we have to
make the usual substitutions: P = P, f((), f(l) = 1,
p = p, g((), g(l) = 1, u = u, h((), h(1) = 2/(p + 1),
j =j,k((), ( = r/R„where P„p„u„andj, are the val-
ues of the gas pressure, density, velocity, and cloud evap-
oration rate at the shock front. The existence of a simi-
larity solution demands the combination C =j,r, /u, p,
to be constant. This implies that the cloud evaporation
rate at the shock front has to be in inverse proportion
to the time t evolved: j,~l/t. This dependence of the
cloud evaporation rate m on t is in fact very close to that
expected for saturated conduction (Cowie and McKee,
1977), which is usually correct for a young SNR. White
and Long (1991) introduced a simple approximate form
for the cloud evaporation rate that follows from Cowie
and McKee's (1977) result (2.19) and the similarity con-
dition j, 1/t:

where b is a dimensionless parameter. Then only four-
dimensional parameters remain: r, t, 0, and the explo-

(2.27)
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, o - {a)

~o.s =

gl
f = 0, fp

———„b(t —to),

(2.28)

0.5 Om p

FIG. 2. DlstI'lbut1on of tbd 1 d

Q ~ ~

eneous c oudy medium, in terms of o;

om White and Long, 1991.

where to is the moment that the si nwhcI'c R e slglla1 Rrrlvcs Rt R 1Rycl
1 COOI' lIlatC f'

) Wlt
thc cIlcre energy px'oduction; 0 = 1 2m 4m

0 1

Ol A = 0) I 2 '

sec ion; an m is thhe IIlRSS Of

se -slml ar solution of thiss - 1
'

is problem takes
e ovlc a11d Ralzel

q 1966)

(2.29)

where m ls the mass of the clo de c ou ) t ls thc tlDlc ) Rlld
n ls a lmensionless constant that dR cscI lbcs thc IRtc of
cloud evapoxation. For o, && 1 clouds evac ou s evaporate slowly,

This model has two m
8olutloxl: ot! Rnd = w

o more parameters than the S de eov

gRs cIlslt Rnd
pc) pg ) w cl c pg 18 the lIltcl clo

y p, ~ is the contribution of the 1 d
w ou

the mean ISM density.
c cou 8 to

The main CIII'ect of cloud evaporation is to

T dependence of the eva
c s rong

tern
cvRpox'ation IIlass-1oss 1atc oIl thc

emperature) and to decrease the tern eracIIl sc c cDlpcratuI e inside the
e ensity, pressure, and tempexature d t

utions inside the re
C 18 ll-

and Lon 1991 m
e e remnant that follow &om the Wh'

g ( ) model for different values of n and
e 1te

presented in Fi . 2. It
a ues 0 cI a11 al'e

ig. . t follows from this picture that d
sity may even be e k

e a cn-
e peaked neax' the center of the cavit

only in the case of lar
c cavl y, but

large P, when the bulk of the ISM is
concentrated in the cold 1 dc ou COI11poncnt. IIl thc IIlo

, t e mo mass ls concentrated

4 0

w1th a s1gnal that moves as ro ——B(t)(o and R t = At
fol po = po = coIlst. Thc sc

follows:
e pro em may then be written as

I
e' + {n —() —+ A—

oIQPo

(2.30)

Self-similar so utions exist when thc I lght sides of
Eqs. (2.30) do not depend on t, that is,

(2.31)

3. Blast wave
' '

ve initiated by a strong burst of' radiation

Bisnovaty1-Eagan and Murzina {1995~ haveBlsnovat 1-K ~ avc cxRIIllllcd
o a uniform gas to the ag e action of a short

PoI' Rnt) lIl Particular) lIl
si erlng possible mechanisms for the ori in of a

The influence of a burst of li t on
escrl e as a b-like souxce of moment
c rig sl es of Eqs. ~2.4&. For T o

of the ho
or Thompson scattering

e p otons on electrons. in a ure h

So for a real light pulse ro ase propagating with constant speed
c, a similarity solution exist 1 p e geometry. Fors on y ln lane

an cy ln rical motion at 6 = cb' s
solutions exist f h

a = c, se1f-similar
's g pushing out separately; for8 OI' CRtlIl OI' us
[where Vo(t = f'o t ls tile

R, o catlllg RIld pushln CRIl bc
o e a t e self-similar variables 2.5oe a t - '

es ~ . and(2. 29) are
e y simp e relations

(2.32)
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( () 4+1 "3 (A g —1 (2.33)

The conservation laws taking account of pushing out
and/or heating, for a discontinuity propagating through
a cold uniform gas at rest, lead to the following relations
between the density ratio L, nondimensional constant B,
and self-similar coordinate of the discontinuity (p..

Substituting the first equation (2.30), with zero on the
right side, into Eq. (2.32) gives the integral of adiabaticity
in the form

Thus, in the spherical case, the light pulse could lead to
a shock formation that might generate in a dense cloud a
luminous ring, visible in optical or radio &equencies. The
numerical calculations of the hydrodynamics accompa-
nying light-pulse propagation (Timochin and Bisnovatyi-
Kogan, 1995) are in good agreement with this self-similar
solution.

I
s a ~ ~ I ~ s ~ ~ I ~ s ~ ~

I
~ ~ ~ ~

4
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1+2B/Q v
0.3—

0.8
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(a)

1+2B/(2

6B=
o &(& A2+A

'

0.1—

When the light &ont is ahead of the discontinuity, the
discontinuity disappears at B=0, so a minus sign must
be chosen here. It follows from Eqs. (2.34) that, for a
self-similar solution to exist with the shock behind the
heating &ont, it is necessary to have

00 '

0.1—

~ a ~ I a ~ s ~ I

1

B ( 9/32(p

for the case with heating only, and

41 / 225
1 — 1 — (p 0.1137(p,

)25 1681

(2.35)

(2.36)
0.05—

SPHER.
CASE

(b)

when both heating and pushing are included. Physically
this means that sound speed must not exceed the speed of
the signal. This requirement is violated when the power
of the signal exceeds the critical one.

Any spherical or cylindrical pulse initially causes in-
6nite pressure at the center, which inevitably produces
an expanding shock wave —by contrast to a rarefaction
wave in a plane How. The shock wave is formed behind
the signal moving through a cold gas at rest. The re-
sults of numerical integration for a spherical light pulse
are presented in Fig. 3 (Bisnovatyi-Kogan and Murzina,
1995). One can see from Fig. 3 that the family of spher-
i.cal geometry solutions, which are of the most physical
interest, possesses some special features, which, for post-
shock How, are very close to each other for all values of
the parameter B = B/(p. This means that the shock
propagation behavior is de6ned primarily by the initial
heating at the center, while the inHuence of the signal ve-
locity on the process is small. The velocity of the shock-
wave propagation almost does not depend on the (p. So
the shock-wave expansion r =g,gAt =(,hb~~ ss/t is al-
most the same for all the values of the signal speed,

1/4
r 2.1~

~
v t = 0.75Q ~ Qt(cm).

q 4m. m„p

0 1

2.5— s ~ s ~
I ~ ~ ~ s

I
a a a s

I
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1.5
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FIG. 3. Solutions for self-similar values of velocity v, temper-
ature f, and density g as functions of g for different values
of B = B/(o [see Eq. (2.34)]: 0.01 (1); 0.1 (2); 0.19 (3); and
0.1994 (c). The last value corresponds to the critical B, when
the shock wave merges with the light front. Light-front po-
sitions are indicated by points. From Bisnovatyi-Kogan and
Murzina, 1995.
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B. The viria| theorem approach

IH tllls sectloIl wc consider thc analytic RppI'oach of Os-
triker and McKee (1988), based on the generalization of
the virial theorem applied to a thin shell, with allowance
for its variable mass. Ostriker and McKee (1988) allowed
also the expansion of the ambient gas and took Into ac-
count the c8'ects of cloud evaporation and the cloud drag
&iction.

Lct us coIlsldeI' foI' slIIlpllclty shock-wave propagation
in a homogeneous (cloudless) interstellar medium, when
gas motion can be described by Eqs. (2.4) with f = f„=
0. Hexe B, and. u, = B, are the shock-front Iadius and
velocity, pl and ul are the gas density and velocity just
behind the shock &ont, p and u are the hydrodynamical
variables within the shock cavity, and 0 is the volume of
the remnaxlt. Consider the identity

Then combining Eqs. (2.39) alld (2.42) gives the following
basic equation for blastwave motion:

3p —5—(KIIMR, ul) = 3(p —l)Eg t — KO2Mul,
Gt 2

(2.43)

whexe the post-shock velocity ul for a strong shock wave
ls

(2.44)

The moments K are constants in the case of a self-
slIllllRI' blastwave (Ostl'lkel' Rlld MCKCC, 1988). Fol' a
polIlt explosloIl with Et 1 = Eo= coI'lst Eq. (2.43) 11Bs a
power-law solution B, = At". It is easy to hand by simple
substltutloIl that

rpudO = 4m.B,plu, ul +
0

B,
r —(pu) dO. (2.37)

Bt

1/5
t2ys4«) (2.45)

Let us introduce the dimensionless moments of radius
and velocity

ER
(2.38)

where M(t) is the mass of the gas within the cavity. Then
identity (2.37) may be rewritten. , with the aid of the equa-
tions of mass and momentum conservation, in the form
(Ostriker and McKee, 1988)

0
45(~' —1.)

16% Kgl + 5( +1)%02
(2.46)

Fox' a power-law distribution of the ambient gas density

p = po(rlro)" (2.47)

tllC followlIlg kllleInatlc I'elRtloll ls valid {Ostl'lkel' Rnd
McKee, 1988):

3—(KIIMR, ul) = 4~R, [P —Po + pouo {u, —uc) ]Gt

+K0@Mu1+ W. (2.39)

HcI'e thc llldex 0 dcIlotcs thc unperturbed VRlucs, P ls
the mean gas pressure inside the remnant,

(2.40)

and W" is the gravitational energy,

R,
W = pgrdA.

0
(24~)

The second basic equation is that of energy consexva-
tion:

where Et q is the total energy of the blastwave, which is
equivalent to the total injected energy if the blastwave is
assumed. to be adlabatlc, axld the ambient gas ls station-
ary and cold. VA have Et~t ——const for a point explosion,
and Et t is a function of time for a stellar wind or mul-

tlplc sup cx'Ilovac.
Let us consider a shock wave -expansion in a cold (Po ——

0), stationary (uo ——0) medium without gravity (W = 0).

(2.48)

In order to complete the solution, the moments Kll and
%02 must be found. To get the exact values of Ail
and K02 we have to specify the hydrodynamic variables
within the cavity as functions of r and t. An approximate
approach to calculating K~~ ) pI'ovldlIlg good accuracy)
11Rs bcc11 described by Ostl'lkel' Rnd MCKcc (1988).

The hydrodynamic quantities u(r, t), p(r, t), and
P(r, t) in a self-similar blastwavc may be written in the
fol xn

X(A) = a A'.

In the two-power approximation we have

X(A) = a A" + (1 —a )A".

(2.50)

(2.51)

X(r, t) = Xl (t)X (A),

where A = r/R, is the independent nondimensional vari-
able and Xl(t) is the post-shock value of the correspond-
ing hydrodynalnical variable (see previous section). Os-
triker and McKee assumed some X(A) to be a power
fuIlct loIl of A. The slIDplcst RppI'oxlDlRtloIl ls a lllMRr

velocity approximation, which assumes that the velocity
field within the remnant is a lineaI' function of radius r:
u = B8A. TlM oIle-poweI' appI'oxlHlatloIl assumes
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~~o

~o~
(o

LVA
0.8571
0.8571
0.8571
1.8568

OPA
0.8571
0.8000
0.7500
1.9894

TPA
0.8367
0.7889
0.7445
2.0175

Exact
0.83567
0.78557
0.74042
2.02597

The parameters a, lq, and l2 are fixed by the integral
constraints on A(A) which follow from the conservation
laws, or by requiring the derivative of X(A) to be correct
at the remnant boundaries.

In the linear velocity approximation there exists a sim-

ple relation between the Inoments:

+mn —+m+n 0 +0 m+n.

This relation, when inserted into Eq. (2.48), gives

1~ii = ~0~ =
1 + 2{P—1)

{3-A:)(~+a)

(2.52)

(2.53)

and completes the solution. For a uniform interstellar
medium (k = 0),

3(p+ 1)
Kig = %02 =

5p+ 1

and constant (p is equal to

(2.54)

0—75(q' —1)(5q+ 1)
16'(11'—5)

(2.55)

A comparison between approximate and exact values for
an adiabatic shock wave in a uniform medium with p =
5/3 is presented in Table I from Ostriker and McKee
(1988).

Koo and McKee (1990) have extended this method for
the expansion of an adiabatic shock wave in a medium
with a Bnite total mass, where the mass of the shell may
reach its maximum value and the motions of the shell and
accelerating shock wave have to be treated separately.
The method is applied to different cases of astrophysical
interest in the review of Ostriker and McKee (1988).

TABLE I. Parameters of a self-similar blastwave in a uni-
form medium: LVA, linear velocity approximation; OPA, one-
power approximation; TPA, two-power approximation. From
Ostriker and McKee (1988).

R
M = Mp+4vr p(r)r dr,

0

—(Mu) = 47rB (Pi„—P) + Mg,
d

(2.56)

(2.57)

portant and swept-up gas collapses into a cool dense shell
expanding with nearly the velocity of the shock front.
The gas pressure is almost uniform within the cavity,
where the gas temperature is high, and the average inte-
rior sound speed is much greater than the shell's expan-
sion velocity.

The thin-shell approximation is based on two main
simplifications. First, it is assumed that all swept-up in-
tercloud gas accumulates into an infinitely thin shell just
behind the shock front and moves with the post-shock
velocity ui. Second, the pressure distribution inside the
cavity P(r, t) is approxiinately taken with a specified
space profile, so that only one parametric dependence
P;„(t) remains. It is taken to be uniform in all cases
where magnetic field is negligible.

There is one kinematic inconsistency in this approach.
If all swept-up gas is concentrated in the thin shell behind
the shock &ont, then it must move with the velocity u, of
the shock front, rather than the post-shock velocity u~.
This contradiction vanishes for radiative blastwaves when
the ratio of specific heats p ~ 1 and the post-shock ve-
locity approaches the blastwave speed. Nevertheless, nu-
merical calculations for axial symmetry made by Falle et
al. (1984), Mac Low and McCray (1988), and Bisnovatiy-
Kogan et aL (1989) have shown that this approximation
is sufficiently good not only for spherically symmetric
shocks, but also for blastwaves with a more complicated
morphology. Of course, in this approximation we lose
information about the distribution of the hydrodynamic
quantities within the remnant and. use only the average
value for the inner gas pressure P;„. However it is possi-
ble to describe such important shell properties as shape,
expansion velocity, and surface density distribution. The
thin-layer approximation is well known in plasma physics
(Imshennik, 1977), and its astrophysical applications in
2D and 3D cases are described in subsequent sections of
this review.

For the spherically symmetrical case and a smooth
background medium without clouds, the equations of
mass and momentum conservation may be expressed as
follows (Cherny, 1957; Bisnovatiy-Kogan and Blinnikov,
1982):

C. Thin-layer approximation

As has been shown in the previous paragraphs, in a
spherical adiabatic shock wave almost all swept-up inter-
cloud gas is concentrated in a thin layer behind the shock
&ont. The intercloud gas density distributions inside the
blastwave, with and without evaporated clouds, are sim-
ilar when the cloud component does not include most of
the interstellar matter. The concentration of the mass
near the shock &ont becomes even more pronounced in
the radiative phase, when radiative cooling becomes im-

dB p+ 1
dt 2

(2.58)

where M is the mass of the shell, M0 is the ejected mass,
B is the shock radius, and u is the gas velocity behind
the shock; p(r) and P are the density and the pressure
of the ambient gas, while g is the external gravitational
field. The equations describing the energy balance in the
remnant and the relation between the shell velocity u
and B depend. on physical conditions. For an adiabatic
blastwave without gravity,
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1 2@o = &th + -M,
2

(2.60)

dEth = —4mR P;„u.
Ch

(2.6i)

Equations (2.56)—(2.59) have a simple solution for a ho-

mogeneous interstellar medium without gravity if the
swept-up mass is much greater than the ejected one (see
also Zeldovich and Raizer, 1966):

where Ep ——const is the energy of the explosion, Eqh ——

&~P;„R is the thermal energy of the blastwave, and

p is the ratio of the specific heats (adiabatic power). For
a radiative blastwave,

&g(r) = ~og(&/Ro)
" (2.68)

namics. The gravitational inHuence is the most marked
for gas motion in the vicinity of relativistic objects, for
dynamics of large-scale galactic structures, or in regions
with strong concentrations of stars like the circumnuclear
regions of galaxies {Oort, 1978).

It is not possible to extend the self-similar method to
these problems, because allowance for the contribution of
gravitational force introduces a third parameter with an
independent dimension. Assuming that the main sim-
plifications of the thin-layer approximation are correct,
we shall consider the propagation of a strong spherical
shock in a stationary medium that consists of stellar and
gas components with a power-law density distribution
(Silich, 1985; Pas'ko and Silich, 1986),

- X/5(oEo t
Pp

0—75(p —1)(p+ 1)'
16~(3q —i)

where (Chernyi, 1957; Andriankin et aL, 1962)

(2.62)

(2.63)

~ (&) = so. (&/Ro) (2.69)

Mg —— ppgR (Rp/R)",

For a strong shock we can neglect the ambient gas pres-
sure and set Po ——0; then, for density distribution {2.68),
Eqs. (2.56)—(2.59) may be rewritten as

Kinetic and thermal energy remain constant during shock
propagation and are equal to M, = pp, R (Rp/R)

(2.64)
(2.70)

Taking into account that the shock speed dR/dt is con-
nected with the pressure behind the shock P, by the re-
lation

jV- 4vr 3 1PB + —Mgu + E~,
3(p —1) 2

dR
dt

p+1P.
2 pp

2(p+ 1) Ep 4vr

3p —1 0' 3

The average pressure inside the bubble is

(2.66)

(2.67)

2
R-7+1

Here p is the adiabatic index of the gas, G is the grav-
itational constant and E~ is the work done by the hot
remnant interior against the gravitational field of the stel-
lar component of the medium, to compress the gas with a
sinooth density distribution (2.68) into an infinitely thin
shell.

Equations (2.70) inay be reduced to one linear differ-
ential equation for a shock-wave velocity (Silich, 1985),

which gives in this approxiination P, /P;„= 2. Thus
two methods [the virial theorem, Eqs. (2.45) and (2.55),
and the thin-layer approximation, Eqs. (2.62) and (2.63)]
give similar results for a shock-wave expansion that are
in a good agreement with the Sedov-Taylor self-similar
solution. Equations (2.56)—(2.59) allow us to calculate
both the adiabatic (M » Mo) and the earlier stages of
supernova remnant evolution when the ejected mass is
similar to or even greater than the swept-up mass.

Q. Shock waves in gravitating media

The action of gravity on the motion of interstellar gas is
one of the characteristic features of interstellar hydrody-

1 3—n5 m n- —

q�R) «)
(2.7i)

(2.72)

K= (2A+ n —3)(2+ 3p —n —m) GM«M, .
3(~ —1)(2&+ 2 —m)(5 —m —~) R,Z

(2.73)

Here Mpg and Mp, are the masses of the gas and of the
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stars inside the radius Ro [see Eq. (2.70)j. In the absence
of gravity (K = 0), for n = 0, Eq. (2.71) gives for the
shock-wave expansion in a uniform medium the Sedov-
Taylor solution in the form (2.62) and (2.63).

The adiabatic phase of the remnant's evolution per-
sists until radiative cooling of the hot compressed gas
behind the shock &ont becomes important and a thin,
dense, cold shell is formed, enclosing a low density hot
gas within the cavity (Cox, 1972; Chevalier, 1974). Then
the radiative stage of blastwave evolution begins. New
portions of the swept-up interstellar gas cool so quickly
that all thermal energy of the gas crossing the shock is
radiated, and the cavity does not gain any energy dur-
ing expansion. The rarefied hot cavity expands adiabat-
ically, pushing away the surrounding dense shell, so that
PR x = C„. Nuxnerical calculations (Chevalier, 1974;
Falle, 1981) have shown that, during the short transi-
tion phase &om an adiabatic to a radiative blastwave,
almost half of the remnant's thermal energy is carried
away by radiation. By contrast to the thermal energy,
the kinetic energy of the remnant (and the velocity of
the shell) does not suffer significant change. By the same
substitution R2 = y, Eqs. (2.56)—(2.57), (2.60)—(2.61),
and (2.68)—(2.69) may be reduced to a single linear dif-
ferential equation, whose solution can be presented in the
form (Pas'ko and Silich, 1986)

3 n—
+1 ERi

(=
( 1), +6 —(x

2' Bfl—3P

6 —3q —n D.' (2.75)

2Bi B6=
8 —2n —m D2 (2.76)

The requirement of Rnite mass at the center of the ex-
plosion and finite work done by the hot interior against
the gravitational forces constrains the exponents n and
m to the values n ( 3, m ( 3, n+ m & 5. Then the
absolute value of the negative terms in Eq. (2.74) always
increases with B faster than the positive term. This re-
sults in an abrupt (faster than power-law) velocity de-
crease and shock-wave damping. This possibility is illus-
trated in Fig. 4, where the dependence of the shock-wave
velocity on radius B is shown for a uniform system with
parameters similar to those of the circumnuclear region
of the Milky Way Galaxy (see Oort, 1977): m = —1.8,
Ro ——1kpc, M, (Ro) = 10xoM~, Mg(R ) = 103MO. Here
the dashed line represents shock-wave expansion when
the gravitational action of stars is negligible. Gravity
remains inefFective when j(2/(j (( 1. Then the term
(R,/R)3 is more important, and the expression in the
brackets of Eq. (2.74) becomes equal to zero after shock-

wave damping, i.e., when u, & (R) becomes less than the
speed of sound in the ambient interstellar gas.

t'Ri' " "
x (+(x I RER

(2.74)

Here B and D are the radius and the shock-wave ve-
locity at the beginning of the radiative phase (Cox, 1972;
Blinnikov et al , 1982; Falle. et al. , 1984). The constants
(, (x, and (2 are

E. Dynamics of shells driven by radiation pressure
from field stars

Very large shells having diameters of the order of a
kiloparsec and expansion velocities of 10—30 km s have
been observed during the last decade in our own (Heiles,
1979) and nearby galaxies (Meaburn, 1980; Brinks and
Bajaja, 1986; Deul and Hartog, 1990; Puche et alt. , 1992;
Puche and Westpfahl, 1995).

Two main physical mechanisms for the creation of
such shells are considered in current research. The first
is multiple supernovae explosions from OB-association

(a)

]-z=nz
z-s =os

I
g-1=07

Ji' ~/g
I E,-,/Ey

0
R/R~

i
j

I

i i f

/ Z
~crt% 41l&o

l l i~ ~

FIG. 4. Shock-wave expansion in a gravi-
tating medium with the parameters of the
circumnuclear region of the galaxy. Dashed
lines represent shock-wave expansion if the
external gravitational field is negligible, e is
the part of the thermal energy that is carried
away by radiation during a short transition
from the adiabatic to the radiative phase. (a)
Explosion energy E = 10 ergs; (b) Explo-
sion energy E = 10 ergs. From Pas'ko and
Silich, 1986.
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[1 —exp( —q ~)], (2.77)

where LF is the excess of the radiative Aux from the cav-
ity, c is the light speed, and w is the optical depth of the
shell. Q = 0.74 is the wavelength-averaged momentum
absorption eKciency factor. If the iriitial state of the in-
terstellar medium is uniform, then the resulting radiative
flux contributed by all stars (inside and outside the cav-
ity) exerting pressure on the shell is equal to the differ-
ence between the Qux &om a cleared cavity and one filled
with gas at the mean interstellar density. This difference
for a uniform spherical volume with mean isotropic emis-
sivity inside the cavity j, outside the remnant j0, and
wavelength-averaged linear extinction coefficient K [for
our galaxy K = 1.51 x (n/1. 2 cm s) kpc ~], may be
expressed as follows (Elmegreen and Chiang, 1982):

AE = 4(j„o,R) —C'(jp, K, R),

where B is the shell radius,

(2.78)

stars (Bruhweiler et al. , 1980; Tomisaka et al. , 1981; Mc-
Cray and Kafatos, 1987). The second is collision of mas-
sive high-velocity clouds with the galactic plane (Tenorio-
Tagle, 1980, 1981; Tenorio-Tagle et al. , 1986; Comeron
and Torra, 1992).

Elmegreen and Chiang (1982) have proposed an alter-
native mechanism. They assume that supershells reach
their huge sizes developing from smaller shells around 0
and 8 stars in OB associations under the in8uence of ra-
diation pressure from field stars in the rarefied interior of
a supernova remnant.

They suggest that initial perturbations produce a cav-
ity in the gas with a dense shell. Absorption inside the
cavity is small, and radiation Aux from the stars becomes
anisotropic due to dilution. The dense swept-up layer ab-
sorbs the photon momentum, which leads to creation of
a radiative force—"radiation pressure. " This radiation
pressure accelerates the grains in the shell, which trans-
mit this force to the gas by grain-gas collisions and by
the ambient magnetic field. Thus starlight energy may
be transferred under these circumstances to the kinetic
energy of the shell motion. The radiation pressure from
the field stars exerted on a thin shell is given by

Here x = BK is the dimensionless radius of the shell
having the physical sense of the optical depth of the un-
perturbed gas along the cavity radius.

Expansion of a spherically symmetric self-gravitating
shell in a uniform medium, with density p =

&&
m~n and

pressure P„obeys the equation (Elmegreen and Chiang,
1982; Pas'ko and Silich, 1988)

= '( '")+p[r(.) o.26]
dT x

x [1 —exp( —x/4)] —o,x. (2.83)

Here the optical depth 7 of a thin spherical shell, formed
from a uniform cavity gas with linear absorption coefB-
cient K, is 7 = s, and Q is taken as approximately
0.75, so as to allow for analytical solution. The numeri-
cal solution of this equation with o; = 0 was studied by
Elmegreen and Chiang (1982). Three types of solutions
emerged from their calculations. For small initial radius,
external pressure exceeds radiative pressure throughout
the evolution, and the shell decelerates steadily to zero
velocity. For greater initial radius x0, deceleration is re-
placed by an acceleration phase. The turnaround point
for P = 1 and xo ——2.25 corresponds to approximately
10 yr. For large initial radius x0, radiative pressure P„
exceeds external gas pressure P from the very beginning.
In this case the shell expands with increasing speed up
to its breakup by Rayleigh-Taylor or Jeans instability.

Self-gravity of the shell has been taken into account
by Pas'ko and Silich (1988), who have found an analytic
solution for Eq. (2.83) with an arbitrary parameter n.
The shell is accelerated if the right-hand side of Eq. (2.83)
is positive, that is, if

d f4 , l , 1 G /4
harp,

—R u! = 4vrR (P, —P, ) ——
] harp,

—R
dt (3 ' ' ' 2R2 3 ' )

(2.82)

Here G is the gravitational constant and u is the shell
velocity. This equation may be rewritten in dimen-
sionless form for M = u/ao, ao —— Po/p„ time
T = taoK, and dimensionless parameters P = 2.5U/Po,
n = 27rGp, /3K Po, ( = P, /Po (for Po = 1.7 x
10 ergscm s we have n = 2.2), as

C(j, K, R) = 2~j sin 8 cos 8dO
o & M & Pm[i'(x) —0.26]! 1—

!

f exp( —x/4) )
2R Gos 0

x exp( —Kr) dr.
0

(2.79)

Elmegreen and Chiang (1982) have shown that Eq. (2.77)
can be written as

P = 0.8Ux [I'(x) —0.26] [1 —exp( —x/4)], (2.80)

where

3 1I'(x) = 1 ——1+ [(1+2x) exp( —2x) —1]4x 2x2

(2.81)

(2.84)

Equation (2.84) shows that the expansion velocity may
increase only if parameter P lies above the curve,

nx2+ 3(
x [I'(2:) —0.26] [1 —exp( —x/4) ]

(2.85)

For any external pressure P, (parameter (), the curve
(2.85) has a minimum. Figure 5 shows that there is a
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FIG. 5. Curves P(x) for difFerent values of (: (1) ( = 0; (2)
( = 1; (3) ( = 30. From Pas'ko and Silich, 1988.

critical value P, 25. The expansion velocity may in-
crease only if P ) P, . This condition is necessary but not
suKcient for shell acceleration. Whether the shell accel-
erates or not (for P ) P, ) depends on the initial values
of Mo, shell radius xo, and external pressure P . For a
given P„ inequality (2.84) defines the region in the I, x
plane where dM/dT is positive (if P )P;„).This region
lies between the abscissa and the curve,

M = (Pe[I'(x) —0.26] [1 —exp( —x/4)]/3
—nx'/3 —() ~ . (2.86)

In our galaxy the ratio of radiation energy density U to
mean gas pressure Po is such that P = 1 (Elmegreen and
Chiang, 1982). This value is much less than the critical
one, P, 25. Thus we cannot test in our galaxy the
hypothesis that the largest expanding neutral hydrogen
shells may be produced by radiation pressure of the field
stars.

F. interstellar bubbles

l~)
AMBIENT

INTERSTCLLAR GAS tel
SHOQKE0

LAR GAS

Lozinskaya (1992). Dopita et at. (1994) have published
an atlas of the ring nebulae around Wolf-Rayet stars in
the Magellanic Clouds. The origin of extensive gaseous
envelopes around Wolf-Rayet stars has been discussed by
Bisnovatyi-Kogan and Nadyozhin (1972).

The principal model for the interaction of a stellar wind
with the circumstellar gas medium has been described by
Pikel'ner (1968), Pikel'ner and Shcheglov (1968), Ave-
disova (1971), Dyson and de Vries (1972), and Dyson
(1973). They have shown that the evolution of a wind-
driven bubble is very similar to the evolution of a su-
pernova remnant. There is a short initial phase of &ee
expansion, an adiabatic phase, and a radiative or snow-
plow phase when, due to the increasing importance of
radiative cooling, the swept-up interstellar gas collapses
into a thin cold shell. A comprehensive model for the evo-
lution of a wind-driven interstellar bubble has been ad-
vanced by Castor et aL (1975) and Weaver et aL (1977).
A schematic view of a radiative wind bubble is shown
in Fig. 6. The bubble has a four-zone structure: (a)
free-expansion stellar wind zone with the constant expan-
sion velocity V which is surrounded by the inner shock
surface; (b) hot, almost isobaric region occupied by the
shocked interstellar gas evaporated from the dense shell
and stellar wind gas; (c) dense, cold shell containing most
of the swept-up interstellar gas separated from region (b)
by contact discontinuity; and (d) undisturbed interstellar
gas region separated from region (c) by the outer shock
wave. The large temperature gradient between the hot
rare6ed interior and the cold expanding shell causes the
shell to evaporate and add mass inside the cavity. The
process of shell evaporation is similar to that of the clouds
inside a supernova remnant, described in Sec. II.A.2. In
order to illustrate this process Castor et al. (1975) have

Strong stellar winds with terminal velocities of about
1000kms ~ kom stars of early spectral type were discov-
ered by Morton (1967). Earlier Gershberg and Scheglov
(1964) observed peculiar gas motions with velocities of
some dozen kilometers per second in the Orion, NGC
6618, and NGC 6523 nebulae. Johnson and Hogg (1965)
have drawn attention to a new class of circle nebulae and
suggested that they might be caused by the action of
strong stellar winds &om the central Wolf-Rayet stars.
Such winds cause the ejection of gas with a large amount
of kinetic energy into the medium around progenitors of
type-II supernovae. SN 1987A provides an example of
such a process [see the reviews of Imshennik and Nady-
ozhin (1989) and McCray (1993)]. Extensive observa-
tional evidence of the interaction of stellar wind with the
ambient interstellar gas medium has been collected by

FIG. 6. Schematic sketch of a re.diative bubble driven by stel-
lar wind.
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examined a time-independent plane-parallel solution for
the mass-loss rate,

dEb
Lp —47rB, I'bu

dt
(2.96)

Mb ——4m puB„ (2.97)

where B, is the shell radius, and p and u are the density
and velocity in region (b). Assuming that radiative cool-
ing is negligible in the transition zone, we can write the
equation of energy conservation in the form

~ [pu(-,'u' + —',a') + q] = O,

where a2 = kT/p, T is the temperature, p is the mean
mass per particle, q = —v ~ T. The thermal con-
ductivity is given by v = CT ~, C = 6.0 x 10
ergs cm s K . Integration of this equation gives

5 2 ( lu2
t 2 dTa'M,

-~ 1+ ——
I

—4~R.'~
2 ( 5a2) ' dz

(2.89)

where z = B, —r is the distance from the shell to the
center of the remnant. The integration constant A rep-
resents the difFerence between the inward enthalpy fIux
and the outward heat fIux and approximately equals zero.
Since the motion in region (b) is subsonic, we can neglect
the second term in the brackets and solve Eq. (2.89) sep-
arately &om the equation of motion with two boundary
conditions: T = 0 at z = 0 and T = Tb near the center
of region (b):

Pb = (P —1)
3Eb

(2.98)

Here pp is the density of the ambient gas, B, and u,
are the radius and velocity of the shell, M is the mass
of the swept-up interstellar gas, I p ——2M~V is the
wind energy supply rate, I'b is the pressure of the hot
interior gas, and Eb is the total thermal energy of this gas.
Substitution of M and u, &om Eqs. (2.94) and (2.97)
into Eqs. (2.95) and (2.96), then Pb &om Eq. (2.95) into
(2.98) and Eb from Eq. (2.98) into (2.96) yields the one
difFerential equation:

"'(RR)+(3, 2)R- R" (RR)='(' ')' —'.
dE~ dt 4vrp B

(2.99)

375(q —1) I.,
28(9p —4) sr ps

(2.1oo)

It is easy to see by simple substitution that this equation
has a power-law solution (Castor et aL, 1975; Avedisova,
1971),

T(r) = Tb(1 —r/R, )2~s, (2.9o)
3B.

&8 =
5

(2.101)

where

&25k M, &'
Tb =

( 16vr p, CR2 )

3(& —1) Ls 4

700(9~ —4) ~p,
(2.1O2)

Integration of Eq. (2.93) by the bubble volume gives the
mass of the gas in region (b):

Then mass Bux due to evaporation of the dense cold shell
may be expressed as a function of central temperature Tb
and shell radius B,:

12'
Mb = P7LbB

39
(2.103)

~ 167'.p, 5/2

25k

The distribution of gas number density n(r ) follows from
the condition n(r)T(r) = nbTb,

Assuming that the pressure inside the bubble Pb is ap-
proximately uniform and equals knbTb, the interior mass
Mb may be expressed as function of time and central
temperature Tb,

n(r) = nb(1 —r/R, ) (2.93)
125vrP PbB3'=

39k T. (2.104)

Comparison with the nonstationary spherically symmet-
ric solution (Weaver et al. , 1977) shows that this approx-
imation is valid within a factor of 2.

The motion of the bubble shell follows from the equa-
tions of mass, momentum and energy conservation (Cas-
tor et a/. , 1975) and is similar to that of a radiative shock
wave &om a point explosion:

where R, and Pb are defined by Eqs. (2.100) and (2.102).
Combining derivatives of Eq. (2.104) with respect to t
with Eq. (2.92), we get the difFerential equation that de-
fines Tb as function of time. This equation has a power-
law solution (Castor et aL, 1975) which allows us to define
Tb as a function of the energy input rate Lp and bubble
radius B

M = —mppB„ (2.94) 128125(p —1) Lo
5824(9p —4)vr CR, (2.105)

—(Mu, ) = 4vrR, Pb,
dt The equation of state Pb = knbTb and Eqs. (2.100) and
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(2.102) then give the central gas number density,

15(p —1) Lpt

4~(9~ —4) kTbR.' (2.106)

This theory has been applied by McCray and Kafatos
(1987) to the dynamics of supershells caused by stellar
winds and coherent supernovae explosions in OB associ-
ations. It was assumed that most massive stars are born
in compact groups containing some dozens or hundreds
stars. A typical OB association in our galaxy has 20—40
stars of spectral type earlier than B3 (Heiles, 1987). The
combined action of these stars will create an expanding
bubble with radius given by Eq. (2.100), which may be
rewritten in astrophysical quantities as

R, = 267(Lss/np) t~ pc, (2.107)

LsN = 6.3 x 10 (NoBEsi) ergss (2.108)

where NoB is the number of massive (M ) 7Mo) stars
in the OB association and E51 is the explosion energy in
units of 10 ergs. Mac Low and McCray (1988) have
shown that after the first 5—10 star explosions discrete
supernovae may be treated as events with a continuous
energy input rate LsN. Then the radius and velocity of
an expanding bubble may be expressed by Eqs. (2.100)—
(2.101) (McCray and Kafatos, 1977):

R.b = 97(NoBEsi/np) t~ Pc, (2.109)

V,i, = 5.7(NoBEsi/np) t7 kiii s (2.110)

The distortion of the largest shells by the gas density
gradient and galactic disk shear will be discussed in
Secs. III.G and III.H.

Chu and Mac Low (1990), Wang and Helfand (1991),
and Chu et al. (1993) have found enhanced difFuse x-ray
emission &om some H II regions of the Large Magellanic
Cloud containing OB associations. Most of these com-
plexes have simple shell-like morphology. Their x-ray lu-
minosities range &om 7x 10 ergs s to 7x 10 ergs s

where L38 is the energy input rate in 10 ergss units,
t7 is time in units of 10 yr, and np is the particle number
density of the ambient gas.

Thus the combined action of stellar winds in a typi-
cal OB association may create a bubble with a radius of
some dozens of parsecs before the first supernova explo-
sion. But the main growth of supershells with radii of
hundreds of parsecs is driven by the subsequent super-
nova explosions in the OB association.

The main sequence lifetimes of massive stars are given
approximately by roB --3 x 10~(M/10MO) i.s yr for
7 & M & 30Mo (Stothers, 1972) and rQB 9 x
10 (M/10MO) ' yr for 30 ( M & 80MO (Chiosi et
al. , 1978). Then for the initial mass function dN/dM =
M f +~l, P = 1.6, supernovae will release energy with
the average rate

A classical H II region has too low a temperature

( 104K) to be a source of x-ray emission. But as
has been shown in this subsection the combined eKect
of strong stellar winds &om massive stars belonging to
OB associations may produce an expanding bubble filled
by a hot ( 10s K) rarefied mixture of shocked stellar
wind and interstellar gas evaporated &om the cold thin
shell. Thus we may assume that x-ray/H II complexes in
the Large Magellanic Cloud represent an early stage of
superbubble evolution. The x-ray luminosity &om a hot
bubble interior is given by the integral

R,
L = 47r n;(r)A (T(r))r dr,

0
(2.111)

where distributions of the ion number density n;(r)
24n(r) and temperature T(r) inside the reinnant are
given by Eqs. (2.90), (2.93), (2.105), and (2.106). The
x-ray emissivity falls quickly for temperatures below the
critical one, T 5 x 105 K, so the outer region of a hot
bubble interior will not add to the total x-ray luminos-
ity. Chu and Mac Low (1990) have estimated that over
the temperature range 2.5 x 10 —10 K the x-ray emissiv-
ity A within the Einstein energy band of 0.2—4 keV is
almost independent of temperature. It may be approxi-
mated within a 25% accuracy by the constant value

A 9 x 10 (ergscm s (2.112)

where ( is metallicity. Then integration of Eq. (2.111)
with density and temperature distributions (2.90) and
(2.93) gives (Chu and Mac Low, 1990)

= 3.29 x 10 (I(r)Ls~i
17/35 19/35x Ap t6 ergs s (2.113)

where r = T,/Tb, I(r) is the dimensionless integral

I(r) =
33 3 11

(2.114)

Chu and Mac Low (1990; Chu et al. , 1993) have shown
that for N51D and N44 complexes, x-ray luminosities es-
timated from Eq. (2.113) fall an order of magnitude below
the observed value. They proposed a mechanism for an
ofF-center supernova explosion, which will be considered
in Sec. III.F.3. Wang and Helfand (1991) have reached
the same conclusion based on more detail analysis of the
x-ray observations.

Franco et al. (1993) have examined the interaction of
small clumps ejected during supernova explosions with
the multisupernova shell. At early times the contrast be-
tween the density of ejected fragments and that of gas in
the bubble interior remains low, and clumps move almost
&eely. Then reverse shock begins electively to erode the
&agments. If the ejected &agments can survive until they
collide with the bubble shell (which is possible during the
first few 10 years of the remnant's evolution) they will
reshock some &action of the previously cold shell and
reheat it to temperatures of about 10 K. Thus during
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the erst few 10 years of evolution the remnant should
be highly inhomogeneous, with a series of local bright x-
ray spots indicating the places where ejected fragments
impacted with the shell.

A similar view on the origin of the powerful x-ray
emission from SN1986j was proposed by Chugai (1993).
In this model x-ray emission is associated with shocked
clouds compressed by the dynamic pressure of supernova
ejecta.

Bochkarev and Lozinskaya (1985) have calculated the
expected x-ray emission from eight ring nebulae around
Wolf-Rayet and Oy stars. They also used a model (Cas-
tor et al. , 1975) for bubble structure and data (Raymond
and Smith, 1977) for the x-ray emissivity, and took into
account the x-ray absorption as consistent with model A
from Ride and Walker (1977). The spectral density of
the x-ray flux was written

ered propagation of adiabatic shock waves kom a point
explosion in a plane-strati6ed exponential atmosphere
with the gas density distribution

p(z) = po exp (—z/Zo). (3.1)

There are three independent dimensional parameters in
the problem: the midplane density pp, the characteristic
scale height of the gas density inhomogeneity Zp, and
the energy of the explosion Ep. Thus it is not possible
to extend the self-similar method to describe shock-wave
propagation in this case.

The main idea of the Kompaneets approach is to cal-
culate the smoothed, averaged parameters of the hot gas
within the remnant only, and not to consider possible
space variations of the thermodynamical variables.

It is assumed that the pressure in the shocked gas is
uniform and. equal to

B3n~2E = ' exp( —7.„) AEp
P,i, ——(p —1) (3.2)

(2.115)
where x = B/B, is a dimensionless coordinate in the
bubble interior, r is the distance to the nebula, and w

is the optical depth. Integral (2.115) was calculated nu-

merically. The expected x-ray Quxes fell in the interval
10 —10 ergs cm s

Bochkarev (1985) has calculated the spectra of x-ray-
emitting bubbles in the equilibrium-ionization approx-
imation and. compared them with the spectra of the
isothermal gas plasma. The isothermal bubble spectra
are generally harder but have a steeper low-frequency
cutoff. Calculations of the soft (0.1—0.4 keV) x-ray emis-
sion for six strong stellar wind nebulae —NGC 6888, S
119, S 308, NGC 2359, NGC 3199, and NGC 7635—
were improved by Bochkarev and Zhekov (1990), who
took into account the deviation of the hot gas ionization
state from equilibrium. They showed that this eKect de-
creases the estimated x-ray Quxes and the central bub-
ble temperature by several times but enhances the hard.

(hv ) 1keV) part of the nebula spectra.
Soft x-ray emission &om the nebula NGC6888, formed.

by the stellar wind of the central Wolf-Rayet star
HD192163, was discovered by Bochkarev (1988) after
processing of the Einstein observatory d.ata. The x-
ray flux in the 0.2—3.0-keV band was estimated. to be
1 x 10 ergs cm s . This value is an order of mag-
nitude lower than that predicted by the model of Castor
et aL (1975), but agrees well with the calculations of
Bochkarev and Zhekov (1990).

III. TWO-DIMENSIONAL SHOCKS

where z2 and zq are the coordinates of the remnant top
and bottom.

The physical reasons for this simpli6cation are the high
temperature and great sound speed in the shocked gas,
which permit redistribution of the internal energy to a
nearly isobaric state before the shock &ont moves an ap-
preciable distance. The Kompaneets approximation as-
sumes also that the shock is strong, i.e., the ambient gas
pressure is negligible. Then Hugoniot conditions deter-
mine the normal component of the expansion velocity at
any point in the shock front as function of time:

p+ 1 P, (ti)n—
2 p

(3.4)

where p(z) is the density of the ambient interstellar gas.
Let us define the surface of the shock front as f (r, z, t)

= 0. The time derivative of this function is

where p is the ratio of specific heats. Here the constant
A describes deviation of the post-shock pressure &om the
mean value and the &action of the explosion energy that
is converted into the thermal energy of the hot interior
gas. We consider here an axially symmetric problem in
cylindrical coordinates (r, P, z). The volume 0 of the
remnant is d.efined by the integral

A. Kompaneets approximation
df Of Of Of

Bt Oz OP
(3.5)

1. Propagation of an adiabatic shock wave
in an exponential atmosphere

The component of the arbitrary vector D which is normal
to this surface may be expressed as

The 6rst analytic discussion of two-dimensional shock
waves was presented by Kompaneets (1960). He consid-

D„=nD+nD, =
i

D + D, i. (36)
1 /Of Of
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Then combination of Eqs. (3.5) and (3.6) gives an ex-
pression for the shock-wave velocity in the form (see also
Shapiro, 1979)

8f/Bt (3.7)

(Br l ' (Br l—exp (z/Zp)
~

—
~

+ 1 = 0.
(~y) (Bz) (3.8)

Assuming that the equation of the shock surface may be
written in the evident form r = r(z, t) and equating (3.7)
to (3.4), we get an equation for the evolution of the shock
&ont,

atmospheric blowout. The bottom of the shock wave

z2 ———2Zp ln 2 (3.i6)

r~~„= 2Z0 arccos y

0
(3.17)

does not penetrate downward more than 1.4 scale
height in this model, as a consequence of our assumption
of uniform pressure within the cavity (see I aumbach and
Probstein, 1969). When the shock wave blows out, the
remnant volume goes to infinity, while internal gas pres-
sure and downstream velocity drop to zero. The maxi-
mum cylindrical radius of the blastwave can be obtained
f om Eq. (3.14) if (ar/az) = O:

Here y is a transformed time variable,

y= dt,
1 AEp

p 2 pp

and it has been taken into account that

(3.9)

This radius cannot exceed the critical value r = mZ0
for any explosion energy, because a larger &action of the
explosion energy is escaping away &om the plane of the
explosion z = 0 in the direction of the steepest density
gradient.

Aside &om the exponential atmosphere, the Kompa-
neets approximation may be used to determine shock-
wave expansion initiated by a point explosion in a variety
of ambient gas density distributions.

Equation (3.8) may be solved analytically by separation
of the variables (Stepanov, 1958):

BP OP—= +QP exp (—z/Zp) —1,
Oy Bz

(3.11)

r = (y + +$2 exp (—z/Zp) —1dz + b((),
0

(3.i2)

Or ' ( exp (—z/Zp) Bb—=y+ Z +
p QP exp (—z/Zp) —1

f z lr = 2Zp»ccos exp
2 (2Zp)

+exp
/

/ ).(Zp)

y
2

4Zp2

(3.i4)

where ( is a parameter. The function b(() is defined by
the initial conditions and is equal to zero, for shocks that
are spherical at the initial time (small y). Elimination of
the parameter ( from Eqs. (3.12) and (3.13) then yields
the expression for the shape of the shock front:

2. Expansion of an adiabatic shock wave in an exponential

atmosphere with nonzero asymptotics

p = pp [exp (—z/Zp) + n], (3.is)

where o. is an arbitrary constant, 0 ( o. ( 1. Silich and
Fomin (1983) have extended the Kompaneets method to
this problem. If we use Eqs. (3.11)—(3.13) and use instead
of ( the constant g = ( i, we get the basic equations for
the evolution of the shock &ont as follows:

r = rj
~
y+ /exp( —z/Zp) +n —r12dz

~
+b(q),

0

The atmospheric blowout phenomenon is the conse-
quence of the specific (pure exponential) gas density dis-
tribution. A great variety of astrophysical objects (flat
galaxies with extended halos, atmospheres of planets and
stars, etc. ) have more complicated multicomponent gas
density distributions, which in the first approximation
may be described as exponential but with a nonzero
asymptotic value:

exp (—zi, 2/2Zp) = 1+ y
2 0

(3.15)

An equation for the top and bottom of the blastwave
follows f'rom Eq. (3.14) if we set r to zero:

Br ' exp (—z/Zp) + n db
z

——y+ d'+
Bg p /exp (—z/Zp) + n —i72 drI

= 0.

A solution of Eq. (3.15) exists for 0 & y & 2Zp. When y
approaches 2Z0 and physical time t also remains finite,
the top of the remnant reaches infinity. Physically this
means infinite shock acceleration in the z direction due
to the strong density gradient. This is an effect of the

(3.2o)

The requirement that the shock be spherically symmetric
at an early time after the explosion defines the function
b(rI) as zero (Kompaneets, 1960). Then Eqs. (3.19) and
(3.20) give
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P —2ZQ

E

�f/
arccos gg2 —n

(3.28)

y = 2Zp /exp (—z/Zo) + n —g2 + gl + n —g2

+A'fJ f'.

—erccce lexp (z/2 Ze) grrz —rrj ),

y = 2Zp gl+n —g

—/exp( z—/Zo) + n —g2 + ng r,

in the region

(3.21)

(3.22)

This is matched with the solution of Eqs. (3.24) and
(3.25) automatically.

The motion of the remnant top and bottom (r = 0)
follows from Eqs. (3.21), (3.22), (3.24), and (3.25) if g ~
0'

y ( 1+el+ n-'
zt, ~&

—— + 2Zo 1 + ln —gl+ n-i
2

(3.29)

z & Z+(y) & 0, zb, = —2Zoln + 0(n ).g + 2ZQ y/2

2 p
(3.30)

exp (—z/Zp) + n & rI & 0,

(3.23)
The maximum radius of the remnant r (y) and the ra-
dius rp(y) of the remnant in the plane z = 0 follow from
Eqs. (3.27) and (3.28) if we set z = Z+(y) or z = 0. For
large times (y » 2Zo) they are

P —.2ZQ arccos[exp (z/2Zo) gg2 —nj
r-(y) = ~
&o(y) = g

(3.31)

(3.32)
—ai'ccos Q'g —n (3.24)

(3.25)

in the region

y = 2Zp /exp (—z/Zo) + n —i22 —gl + n —g2

+ng r,

It may be assumed from these equations that the expan-
sion velocities of the shock wave in the plane z = 0 and far
away &om it are equal, despite a large density gradient
in the z direction for o, (& 1. This obvious contradiction
vanishes if we take into account that ro(y) is the radius
of intersection of the shock front with the plane z = 0, so
the motion of this line does not represent the motion of
the shock &ont. This is a phase speed whose large value

z(Z (y) (0, n+1 &g &0. (3.26)

Restrictions (3.23) and (3.26) follow from the require-
ment that radius of the shock &ont r and transformed
time y have to be real. The functions Z+(y) and Z (y)
follow &om Eqs. (3.21), (3.22), (3.24), and (3.25) if rj

exp( —z/Zo) +n and g = 1+ n. However, in contrast
with the Kompaneets (1960) solution, Eqs. (3.21), (3.22),
(3.24), and (3.25) define only the parts of the shock front
near the Z axis. The lower boundary of the region (3.23)
corresponds to the plane z = z(t), where the derivations
Or/Dz change their sign and the shock radius reaches
maximum.

In the intermediate zone Z+(y) & z & Z (y) the func-
tion b(g) g 0. One can find it by matching the functions
r(z, q) and y(z, g) in the plane z = Z+(y). The solution
of Eqs. (3.19) and (3.20) then takes the form

ztzi)

00

12

0
15 2V JO 3G I /z,

7' = 2Zp arccos exp z 2ZQ 'g —0!
gg' —n

+ arccos gvP —n

FIG. 7. Shape of the shock wave initiated by a point explosion
in an exponential atmosphere with nonzero asymptotics for
difFerent "times" v = y/ZO. Dashed line represents shape of
the shock front in a pure exponential atmosphere (n = 0) at
the time of blowout v = 2. From Silich and Fomin, 1983.
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is a result of the small angle P between the shock-wave
surface and the z = 0 plane (Silich and Fomin, 1983),

10

tang = ~n, (3.33)

The shape of the shock kont for diferent values of y is
shown in Fig. 7 . Here the dashed line represents blowout
phenomena for n = 0.

Thus even a small deviation &om the pure exponen-
tial distribution (3.1) provides qualitative changes in the
shock-wave expansion. The "expansion time" y is no
longer constrained by the value 2Zo. The cylindrical ra-
dius of the shock &ont is not restricted when the gas
density is constant at in6nity, in contrast to Kompaneets'
(1960) solution with pure exponential gas distribution.

3. Off-center point explosion in a cloud

An oK-center point explosion in a medium that is radi-
ally stratified has been considered by Korycansky (1992).
This work was an attempt to understand the eÃects of an
impact in a deep gaseous envelope, such as might have
happened to the planet Uranus early in its history, ac-
counting for its large obliquity.

In polar coordinates (r, 0), Eq. (3.8) may be rewritten
in the form

0 I I I I ~ ~ I I I I l l t I I I I t I

0 2 4 6 8 lO

FIG. 8. Shape of the shock wave from an ofF-center point
explosion in a radially strati6ed cloud. Dashed lines represent
paths followed by the points on the shock front. The power-
law index in the gas density distribution is cu = 5. Prom
Korycansky, 1992.

In terms of the "real" coordinates r, 0 this equation
yields

2 —id 0 y 2 —(d2 2

2(r/a) ~ cos = 1 — + (r/a)'
2 4a2

(a~l po (B~)
p() (3.34) (3.40)

where the shock-wave surface is de6ned by the function

Q (r, 0, y) = X(r, y) —8 = 0. (3.35)

The density distribution is modeled by a spherically sym-
metric power law,

p(r) = po(r/o) (3.36)

The explosion occurs on the axis 0 = 0 at the radius
r = a. Korycansky (1992) proposed to solve Eq. (3.34)
by means of a coordinate transformation in which the so-
lution takes spherical form, with the center in the initial
blast location. Let us introduce the variables

( = (r/a), p = ay, (3.37)

and choose the constant o, to eliminate the density vari-
ation outside the brackets in Eq. (3.34). Then Eq. (3.34)
is reduced to

t'ay) '
1 t'Bgl

+ —,
4 oiy)

(3.38)

where the constant y, is equal to 2a/l2 —ul, and n = (2—
id)/2. Equation (3.38) may be considered as an equation
for shock-wave propagation in a uniform medium. Thus
its solution is a sphere of radius x = y/y, :

The maximum r+ and minimum r radii of the remnant
along the 0 axis follow &om Eq. (3.40) if we set 0 = 0:

y I
2 —cd

lf'~ =G 1+
2G

(3.41)

For u ) 2, r+ ~ oo if y -+ y . This does not mean
that blowout occurs as in the case of a pure exponential
atmosphere because in this case time t goes to infinity
in the same limit. The shapes of the shocks for the case
u = 5 is shown in Fig. 8. Here the dashed lines represent
the paths followed by points on the shock front. For
u ) 2 the intersection of the remnant at large time t by
the plane through the symmetry axis, becomes a pair of
straight lines that intersect at some angle 8 . For cu ) 4
the value of 0 is less than vr, and the whole remnant is
located in the upper half-space.

4. Other applications and comments

The Kompaneets approximation has been widely ap-
plied to difFerent astrophysical problems. Lozinskaya
(1979) used Eq. (3.14) to interpret the asymmetric shape
and velocity field of the supernova remnant IC 443. Ko-
valenko (1987) found an hourglass solution for the shape
of the shock &ont that appears after an explosion in the
gas density distribution

2(cosg = 1+( —2; . (3.39) p = pp[cosh (z/Ze) + n]. (3.42)
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Ag —— ,
.

A2
——2; A =2= y+1. =. = 7+1

37-1 37-1 (3.43)

This distribution approximates the density strati6cation
in the gaseous disks of spiral galaxies. Schiano (1985)
used the Kompaneets approximation to model the form
of the cavity produced by wind fjkow &om an active galac-
tic nucleus. Kontorovich and Pimenov (1995) have ap-
plied this method for solar bursts.

By "Kompaneets approximation" we denote the
method in which (a) the shock velocity at each point is
directed normal to the layer. (b) The energy density be-
hind the shock is taken as a constant part of the average
total energy of the bubble.

The constant A in (3.2) is given analytically
[Eqs. (2.64)—(2.67)j in the thin-layer approximation, A =
AgA2.

p = 1.4 (Sedov, 1959; Kestenboim et al. , 1974). Conser-
vation of the thermal energy of the remnant (the value of
A is constant in the Kompaneets approach) and neglect
of the pressure gradient within the cavity lead to a faster
expansion of the shock &ont in the upward direction and
slower motion in the downward one.

A further improvement of this method, in which dy-
naxnic equations for thin-layer motion are solved directly
and simplifications (a) and (b) are not used, is discussed
below, and we call it "the thin-layer approximation. "
We stress this difference here, because both methods are
sometimes referred to in the literature by the same name,
"Kompaneets approximation" (Mac Low and McCray,
1988). In fact, Kornpaneets also significantly improved
his simplest version (Andriankin et al. , 1962), so we use
another name for it only to make the description clearer.

where Aq is the ratio of thermal energy to the total energy
of the explosion Ai ——Eti,/Eo, and A2 is the ratio of the
post-shock pressure to the average pressure in the bubble.
A more exact value of A is obtained by comparison of the
Sedov and Kompaneets methods for a point explosion
in a uniform medium. That gives the expression A =
32~(p/75(p —1), where (o &om the Sedov solution is
defined in Eci. (2.10). For p = 1;5/3 the values from the
Sedov (1959) solution are A = 2; 1.53, and &om (3.43) we
have A = 2;1.33.

These two suggestions (Kompaneets, 1960) permit us
to reduce the problem to a kinematic one, because when
we know the pressure behind the shock, then the ve-
locity of the shock kont is found directly from the
Hugoniot relation (3.4). The Kompaneets approxima-
tion is compared with the results of full numerical cal-
culations (Kestenboim et al. , 1974) for a pure expo-
nential atmosphere in Fig. 9. Here dimensionless time
v = t/(aopoZo/Eo) ~, where constant no ——0.851 for

= T'=5.8 y

p I I I I I I I I l I I! I gJ I i il I j I I I I irLJ

0 I

R/Zo

FIG. 9. Comparison of the Kompaneets approximation
(dashed lines) with the full 2D calculations (solid lines).
7 = t/(cl'OpoZO /EO) ls the dimensionless time.

B. Th&n-layer approx&matron

dp OB—= p(z)(u (D —V)ri,
dt BA

(3.45)

The snowplow or thin-shell approximation was devel-
oped in plasma physics and hydrodynamics (Leontovich
and Osovetz, 1956; Andriankin et al. , 1962; Imshennik,
1977) and has been extended to two-dimensional astro-
physical problems by Bisnovatyi-Kogan and Blinnikov
(1982), Mac Low and McCray (1988), Bisnovatyi-Kogan
et al. (1989), and others. Different modifications of this
method and the Kompaneets method for adiabatic shock
waves have been compared with the full 2D calculations
by Hnatyk (1987).

We consider here the extension of the thin-layer ap-
proximation following the papers of Bisnovatyi-Kogan
and Blinnikov (1982) and Bisnovatyi-Kogan et al. (1989).
As a more general case we consider an ambient gas
with density distribution p(z), which moves with veloc-
ity distribution V(m, z). Let us introduce a cylindrical
coordinate system u, P, z and consider axial symmetry
B/B$ = 0. If R = (a, z) is the Euler radius vector of the
shock &ont, n is the unit vector normal to the shock sur-
face, and A is the Lagrangian coordinate along the &ont,
then the mass of the shell per unit Lagrangian coordinate
A and per radian around the symmetry axis Z may be
expressed as

(3.44)

where cr is the surface density of the layer and EBB/BA:—
BE/BA is the surface area per unit Lagrangian coordinate
and per radian around the axis of symmetry Z. We as-
sume that all interstellar gas swept up by the shock wave
accumulates in a thin shell near the shock &ont. The time
derivative of the momentum of the Lagrangian element
is determined by the pressure difference between the hot
internal and warm external gases, LP = P;„—P „q, the
action of gravity I, and the additional momentum of the
swept-up interstellar gas. Thus equations for the mass
and momentum conservation of the Lagrangian element
may be written in the form
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d BZ dp
dt OA dt
—(pU) = AP n+ V —pg. (s.46)

are (Bisnovatyi-Kogan and Blinnikov, 1982)

Here p(z) = ppf(z), U is the gas velocity behind the
shock, and D is the shock-front velocity. In components
we have

(du) dz i(dt'dt's
'

p —1 p . (»)
&max

Er, = vr p(U + U, )dA.
&min

(3.53)

(s.54)

( ciz ci~) (BB)
(3.47)

1

(ci(ui ' (Oz )+(» j (»)

D = D. n= Un.p+ 1

2
(3.48)

For a radiative blastwave we use the condition

po
——@no is the mass density of the interstellar medium

in the plane of symmetry z = 0, and rl = (14/ll)m~ is
the mass per particle in a neutral gas with the "normal"
chemical composition nH, /nH = 0.1. The equations of
mass and momentum conservation (3.45) and (3.46) are
coupled by the relation between gas velocity U and shock
velocity D. Bisnovatyi-Kogan and Blinnikov (1982) dis-
tinguished between the normal components of gas and
shock velocities and used for the adiabatic shock wave

The equation of energy conservation

E~oe = E~h. + EI + Eg (s.55)

then defines the internal gas pressure P;„. For a cold am-
bient medium without gravity that is at rest, the energy
conservation equation may be written in the simple form

aP;, (t) f cu (A) i
idA

E»&

p(U + U, )dA.

C. Sector approximation

The system of equations (3.45), (3.46), (3.48) or (3.49),
and (3.50)—(3.55) then describes the motion of the rem-
nant.

(s.49)

which is asymptotically accurate at p ~ 1. At the be-
ginning of the calculation the remnant is divided into N
Lagrangian layers by planes parallel to the plane of sym-
metry z = 0. The motion of every Lagrangian element
is followed using the equations of mass and momentum
conservation (3.45) and (3.46). The whole system of or-
dinary differential equations is coupled by the equation
of energy conservation and expression for the internal gas
pressure

P;„=(q-1) „', (3.50)

where

+xnax ( ciz )
O =sr u) (A) ~dA

iBA)
(s.51)

t &max

Ego& = Eo+
~
I(t) + vr IJ,(V + sjrT/g)dA dt.

0 ~min

(3.52)

The thermal Eqh and kinetic EA, energies of the remnant

is the volume inside the blastwave. The total energy of
the adiabatic remnant is defined as the sum of the ini-
tially deposited energy Eo, energy input rate 1(t), and
added kinetic and thermal energies of the swept-up in-
terstellar gas:

( rr,
pl, (rl„o) = po exp

~

— cos 8 ~,
)

(3.57)

where the Lagrangian coordinate rI, is defined as the po-
sition of a particular Quid particle at the time of the
explosion. Assuming radial How, the equation of mass
conservation may be written as

pI, TI (&I, = pP
2 (s.58)

The equation of momentum conservation yields (Klim-
ishin, 1984)

An approximation very similar in spirit to the snow-

plow model was developed by Laumbach and Probstein
(1969). This method was applied to a strong point ex-
plosion in a plane-strati6ed exponential atmosphere. The
flow was assumed to be radial, and energy and momen-
tum were conserved in separate radial sectors. Later
this was referred to as the "sector approximation. " This
assumption is equivalent to treating the streamlines as
straight and does not take into account the tangential
velocities along the shock &ont that appear in the de-
veloped stage of evolution under the infI.uence of &ont
distortion and gravity.

Let us introduce the spherical coordinate system r, P, 8
with the polar angle 0 measured from the vertical axis,
which is the axis of symmetry. We assume that an ex-
plosion occurs in the center of the coordinate system.
Laumbach and Probstein (1969) have used a Lagrangian
formulation of the hydrodynamic equations. Then the
initial gas density distribution (3.1) can be written as
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82r r2 BP
2+Ot2 pI, r&~ BrI,

(3.59)

The boundary conditions for a strong shock may be writ-
ten as

= 7+1
Psh = pI &

7 —1

2 2
Psh = pLD~+1

(3.60)

(3.61)

where D = R is the shock-front velocity and R is the
shock-&ont radius. The independent variables are the
Lagrangian coordinate rL, and time t. The equations of
momentum (3.59) and energy conservation may be writ-
ten in integral form consistent with the assumption that
mass within a particular solid angle is constant:

R
P(rL„ t, 8) —P,i,(R, 0) = —,pl, ridrl„(3.62)0't

behind the shock &ont. In the Laumbach and Prob-
stein (1969) approach this means that, for any radius
r diferent from the shock radius R, the corresponding
value of the initial radius rL, is equal to zero. Then
P(r, 0, t) = P(0, t) and the integral (3.63) may be evalu-
ated by substituting the pressure near the remnant center
P(0, t) for P(r, O, t) and replacing Br/Bt by its value at
the shock &ont. Actually this entails the same averaging
of internal parameters as in the thin-layer approximation
with the additional assumption of straight particle tra-
jectories. After taking into account Eqs. (3.61), (3.64),
(3.65), and (3.66) in (3.62) and (3.63), and integrating pI,
from Eq. (3.57), we get the ordinary differential equation
for the evolution of the shock front

(3.68)

where the functions f (rI) and g(rI) are given by the for-
mula (I,aumbach and Probstein, 1969)

(&r1 '
E0 ——2' r dr+-

o o V
—1 2 o

8 (2p —1)q
3 h' —1)(&+ 1)'

(1,x 1 —exp( —q) ~

—q +g+1
~

(3.69)

x pl.rI drI, sin OdO.

Here E0 is the explosion energy, the erst term on the
right side of Eq. (3.63) is the internal energy, and the
second term is the kinetic energy per unit solid angle. To
integrate Eqs. (3.62) and (3.63) we consider the Taylor
expansion of the radius r(rl„ t) near the shock front,

Br 1 8 r
r(rl„t) = R+ (rr, —R) + —,(rl. —R)'+.".

Orr 2 Brl

(3.64)

g(g) =—2 rI' exp( —rI)

3 7' —1

p —1 7)+3+
2(2q —1) (q+ 1)q

—1 f (i7). (3.70)

It is easy to see that motion of any part of the shock
&ont may be scaled &om a single solution for a definite
direction (along the definite angle 0). In the case of a
uniform atmosphere with infinite Z0, the variable g goes
to zero, rI = Rcos0/Zo ~ 0. In this limit we have
instead of Eq. (3.68)

Taking into account that near the shock front

t' Br l (pi, r~2) p —1

i~rL)R 4 p" )a &+1
f'0'r

t 2 R 2 /1 BP )
$8ri ) R p+ 1R2 p+ 1 (P OrL, ) ~

(3.65)

(3.66)

d'R q(5~+ 1) 1 (dR)
dt2 (2q —1)(q+1) R g dt )+

9(q —1)(~+ 1)' E.
16~(2q —1)R' p,

and differentiating Eq. (3.64) with respect to time, I aum-
bach and Probstein (1969) obtained relations for the lo-
cation, velocity, and acceleration of the shock front r,
(Br/Bt), and (8 r/Bt ), Approxima. ting r (0 r/Bt )
in the integral (3.62) by the values of r and (0 r/Ot )
at the shock &ont, we get the internal pressure P as a
function of rI„ location of the shock front R, polar angle
0, and a new variable

B
cos O.

+0

To evaluate the energy integral (3.63) it was assumed
that all swept-up interstellar mass is concentrated just

The solution of this equation gives the shock radius as a
function of time

1
E

0 f'5
po

(3.72)

where

225 (q —1)(~+1)'
32vr (4p' —p+3) (3.73)

Note that, when neglecting the third term in (3.64), one
arrives at the thin-layer approximation in the spherical
case. We have instead of (3.71)
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d2R 6p 1 &dR) 9 p —1Eo+
dt2 p+1R ddt) 8~ R4 po' (3.74)

D(R) = const[p(R)R +'] (3.75)

where D is the blastwave velocity, B is the shock-wave
location, and N = 0, 1, 2 for plane, cylindrical, and spher-
ical shocks, respectively. The constant 8 is de6ned as

which gives the solution (2.62), (2.63) instead of (3.72),
(3.73). It was mentioned by Laumbach and Probstein
(1969) that Eqs. (2.62) and (2.63) give better coincidence
with the exact Sedov solution than do (3.72) and (3.73).

Numerical calculations of Falle et aL (1984) and
Hnatyk (1987) have shown that the Laumbach and Prob-
stein approximation underestimates the size and velocity
of the shock. This is a consequence of the assumption
that all mass is concentrated near the shock front and is
accelerated to the shock-front velocity. Gaffet (1978) has
improved this approach by taking into account higher-
order terms in the Taylor expansion (3.64). Sakashita
and Hanami (1986) have generalized the Laumbach and
Probstein approach to a mind-driven bubble. Hnatyk
(1988) used a modification of this method based on the
approximate formula for shock-wave expansion (Klim-
ishin and Hnatyk, 1981) to calculate adiabatic blastwave
evolution in an exponential atmosphere, inside an inter-
stellar cloud, and near a density discontinuity. It was
proposed to approximate adiabatic shock-wave expansion
in an inhomogeneous medium with the gas density dis-
tribution p(R) by the formula

D. Thin-tayer approximation for axial hydromagnetic flows

dl~ Rd8
dl dl

(3.80)

Regular magnetic Gelds may be expected to be one of
the physical factors leading to axially symmetric hydro-
dynamical fI.ows and various barrel-like envelopes, from
planetary nebulae to superbubbles. Here we consider a
generalization of the thin-shell approach for axisymmet-
ric hydromagnetic fIows. The basic concept is the def-
inition of a control volume that is neither Eulerian nor
Lagrangian. This concept was introduced by Giuliani
(1982) and really is a combination of the sector approx-
imation and thin-layer approaches. The control volume,
following Giuliani (1982), is not fixed in the coordinate
system and not connected with definite gas particles, but
is located between two neighboring radius vectors R and
R' and moves through space with the velocity of the
swept-up interstellar gas. The shell is supposed to have
a 6nite half-thickness 4, and we define the line going
through the middle of the shell as the "center line" (see
Fig. 10 from Giuliani, 1982). Let us introduce the spher-
ical coordinate system (r, 8, P) and consider axisymmet-
ric flow. Then function R(O, t) defines the center line,
while the e~ and e~~ in Fig. 10 are unit vectors normal
and tangent to the center line. The parameter ( is the
angle between the radial vector R and the normal e~. It
is assumed the shell is thin and 4/R is a small number.
The length of the segment along the shell dl is related to
the length along the spherical surface dlR ——BdO by the
equation

1/2, if m(R) &%+1 and D & D,
1/5, if m(R) )%+1 or D (D, (3.76) Taking into account that

where m(R) = d ln p/d ln R—,

D
2

3+ N op
(3.77)

and n is the constant to be taken from the Sedov (1946)
solution. The location of the shock &ont in any direction
then is determined by solution of two ordinary differential
equations:

ex

dD D
[m —(N + 1)].

(3.78)

(3.79)

h
e„

Numerical integration of these equations along difFerent
rays &om the explosion point then reproduces the shock-
&ont evolution. At early stages of expansion, inhomo-
geneity in the ambient gas distribution leads to a signif-
icant anisotropy in the density, temperature, and x-ray
luminosity along the shock &ont, while the shape of the
remnant often remains almost spherical, with the cen-
ter shifted &om the center of the explosion. This may
explain some supernova remnants, in which sphericity
exists along with gradients in the surface brightness.

FIG. 10. Schematic sketch of the shell section indicating some
of the geometrical quantities used in discussing a magnetized
superbubble. From Giuliani, 1982.
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we get

B—B'
sin( = (3.81)

the magnetic field, i.e. , the conservation of the magnetic
Aux through the arbitrary Lagrangian surface, which
moves with the gas 8ow.

Let us introduce the column density
1 BB
B88 (3.s2)

e~ = e„cos(+eo sin(, (3.s3)

eii = —e„sin(+ ee cos(. (3.84)

The normal and parallel components of the control vol-
ume midpoint (center-line) velocity may then be written

OB
u~ = cos()

Ot
(3.s5)

Thus at a fixed tiine t the angle ( is defined by the shape
of the remnant, or the shape of the remnant may be
restored if one knows the function ( = ((0).

The unit norrnals e~ and e~~ are connected with the
unit vectors e„and eo along and perpendicular to the
radius vector R by the equations

R,
o. = pdg = 24p,

R;
(3.92)

8
pdV = pundS — pvndS,

Bt
(3.93)

where v is the gas velocity and u is velocity of the con-
trol volume, as defined by Eqs. (3.85) and (3.86). Equa-
tion (3.93) may be rewritten in the form

where q is the distance inside the shell along the normal
to the center line, B; and B, are the shell's inner and
outer radii, and p is the average density across the shell.
The variation of mass within the control volume dV is
defined by the mass Aux due to gas motion across the
surface of a control volume and the mass Aux due to the
motion of the control volume through the background
material:

OB
u

ii
= — siI1 (. (3.s6)

For a strong isothermal shock wave the shell material
moves with almost the same velocity as the shell bound-
aries, and we have

8
Bt (o AdOdg) = [(u~ —v~0) poAdOdg]II.

—[(u~ —v~, )p;AdOdg]II,

+[(uii —uii)oRsin Odg]n
—[(&ii

—u
i i )0»in ed'] K' (3.94)

'Ug = 'tlat

where v is the shell gas velocity. Taking into account
that the length of the shell segment is dl = BdO/cos(
[see Eq. (3.80)], one can get an expression for dV of the
control volume:

B sinO
dV = 2A dOdg.

cos

The basic magnetohydrodynamic equations include the
equations of mass and momentum conservation and the
induction equation for the magnetic field B. For a highly
conducting medium without viscosity and heat conduc-
tivity, these equations may be written in the form (Ku-
likovskyi and Lyubimov, 1962)

B sinO
cos

(3.95)

and the subscripts 0 and i denote the ambient gas pa-
rameters and hydrodynamical variables just behind the
inner-shell boundary. The erst two terms describe mass
Qow through the outer and inner surfaces of the con-
trol volume, and the last two terms re8ect the mass How

through its lateral surfaces.
Thermal conductivity is suppressed across the mag-

netic field. Therefore, in a magnetized bubble, there is
no evaporative mass Aux from the shell to the hot bubble
interior and one may set the density of the hot gas within
the cavity to zero, p, = 0. Taking into account that

—+ div(pv) = 0,
Op

Ot
(3.s9)

o-BA 2o-BB 8(—o. tan( —,
A Bt B Bt Ot

(3.96)

Ov' ( B')
Ot

+ (v&)v = 7 I
++

p ( sm)

+ (BV)»4ap
(3.90)

OB
Bt

= rot(v x B). (3.91)

The last equation represents the fI.ux &eezing condition of

one can write the equation of mass conservation (3.89)
for a thin shell with A/B (( 1 in the form (Chevalier and
Luo, 1994)

2o. BB= po(u~ —&~o) ——
B Ot

1 8
[Bo'siI10(uii uii)] ~ (3.97)

In a similar fashion one can rewrite Eq. (3.90) for mo-
mentum conservation. For a strong shock wave with

Rev. Mod. Phys. , Vol. 67, No. 3, July 1995



G. S. Bisnovatyi-Kogan and S. A. Silich: Shock-wave propagation. . . 685

Po+BO2/8m (( P;„+B;/8', this equation becomes (Giu-
liani, 1982)

BU Bgp
0 = pp(it~ —v~p) (vp —v) + (B —Bp)

04 4m

e~
] P;„+ ' [+ '(B —8;)( B21 B ;

8' p 4vr

cos( civ
+(uii —~ii)~ »O (3.98)

Rs
2~ BosinOdR = vr(R, sinO) Bo.

R;
(3.99)

Since the Beld lines are frozen and lie within the shell,
magnetic pressure within a hot bubble interior is assumed
to be negligible,

B2B'- =08' (3.100)

Thus at the inner surface of the shell pressure continuity
requires

B2
P;+ ' = kn;„T;„,8' (3.101)

where n;„and T;„are the gas number density and tem-
perature within the cavity, and P, and B, are the gas
pressure and magnetic field at the inner shell boundary.
In the radiative phase of the bubble's evolution the equa-
tion of energy conservation at the outer shell boundary
may be replaced by the relation

T1 = T.- (3.102)

The subscript 1 denotes the hydrodynamical values just
behind the radiative shock front; T, was assumed by Fer-
riere et aL (1991)to be in the range 100K & T, & 1000K.
The Rankine-Hugoniot relations express the mass, mo-

The terms in the first set of brackets are the sum of the
ram pressure and magnetic stress acting on the outer
surface of the shell. The next terms are the sum of the
thermal and magnetic pressures and magnetic stress act-
ing on the inner shell boundary.

These equations have been used by Chevalier and Luo
(1994) to calculate the shape of a self-similar wind bubble
in a toroidal magnetic 6eld. A similar set of equations for
the average values across the shell of mass M, radial Q,
and poloidal Qe components of momentum was derived
by Ferriere et a/. (1991) to calculate superbubble expan-
sion in a homogeneous interstellar medium permeated by
a uniform magnetic field.

To get a full set of equations Ferriere et a/. (1991)used
the magnetic Aux-&eezing condition, added boundary
conditions on the inner surface of the bubble, and used
Rankine-Hugoniot relations at the outer shock surface.
The Aux-&eezing condition implies that the magnetic Aux

C, through the part of the shell within a cone of constant
angle 0, is equal to a Aux 40 of the ambient magnetic
6eld through a disk with the radius B = B, sin 0:

mentum, and magnetic Hux conservation on the shock
boundary. For a magnetohydrodynamic discontinuity
they may be written in the form

pi'U~z = poVS&)

2
B2

ii+ Pg+ = p()Vs&+ Po+8' 87r

pyvyl Uy
4m

= poV8J Va
4m

)

Biz = Box)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

Here the subscript 0 refers to the values ahead of the
shock front, V, is the shock velocity, and vq is the gas
velocity behind the shock &ont, calculated in the shock
&arne of reference.

E. Bow shocks around hot stars

The Infrared Astronomical Satellite (IRAS) all-sky
survey of extended sources revealed a number of arc-
shaped features with unusually high color temperatures
[I(60ym)/I(100 pm) ) 0.3]. The 15 most prominent ob-
jects were summarized by van Buren and McCray (1988).
Most of them (13 of 15) have been identified with a cen-
tral OB or Wolf-Rayet star. About 20% of the ultracom-
pact H II regions around hot luminous stars embedded in
molecular clouds show a similar cometarylike morphology
(Mac Low et a/. , 1991). The prototype of this relatively
new class of objects is the nebula G34.3+0.2 (Reid and
Ho, 1985). This limb-brightened shell with a luminous
head and extended tail has a linear scale of 0.06 pc and
is embedded in a dense NH3 clump. Radio recombina-
tion lines of hydrogen show significant broadening and
a systematic velocity gradient across the nebula (Garay
et a/. , 1986). Several physical mechanisins may explain
these objects: the supersonic expansion of the Strom-
gren zone (Raga, 1986); the confining pressure of the
interstellar magnetic field (Gaume and Mutel, 1987); the
champagne Bow model that was developed in a series of
papers by Tenorio- Tagle and co-workers (Bodenheimer et
aL, 1979; Tenorio-Tagle, 1979; Yorke et a/. , 1983); and
stellar wind expansion in a medium with a density gradi-
ent (Tomisaka and Ikeuchi, 1986; Mac Low and McCray,
1988; Bisnovatyi-Kogan et aL, 1989). One of the main
theoretical di%culties of the problem is that the dense
ionized region is expected to expand in a relatively short
(= 10 yr) time due to excess internal pressure if there
is no confining mechanism. Van Buren et a/. (1990) and
Mac Low et aL (1991) have proposed that confinement is
produced by a ram pressure of the surrounding medium
if a massive star producing stellar wind moves superson-
ically through the ambient molecular cloud.

When an early-type star moves supersonically with the
speed V, through the ambient gas, the structure and dy-
namics of a spherically symmetric bubble, described in
Sec. II, should be modified. In the earliest stage of bub-

Rev. Mod. Phys. , Vol. 67, No. 3, July 1995



686 G. S. Bisnovatyi-Kogan and S. A. Silich: Shock-wave propagation. . .

ble expansion, when the inner shock &ont is still far away
from the outer shell, a shocked stellar wind [region (b)
in Fig. 6] remains isobaric irrespective of stellar loca-
tion, and the star's motion has no efFect on the bubble
dynamics. But when the inner shock front reaches the
outer shell, the dynamics and internal structure of the
bubble change drastically. This happens when the ex-
pansion velocity of the outer shock becomes comparable
to the speed of the star. Since region (b) no longer exists,
the shape of the leading edge of the bubble is determined
by a balance between ram pressure from the stellar wind
and the pressure of the ambient interstellar medium:

l = r as (van Buren and McCray, 1988; van Buren et al. ,
1990)

l —1 74 g 10&9M ~2V ~2 &/2V —& cm (3.110)

Here the star's mass-loss rate is in units of 10 Mo per
year, wind velocity is in units of 10 cm s, and star ve-
locity is in units of 10 cms . The shell surface density
0., thickness h, and tangential velocity of the swept-up
material near the stagnation point may then be estimated
&om the equations of mass and momentum conservation.

The mass swept up by the bow-shock shell inside the
coordinate interval (O,x) is equal to

2 = 2
p V „=pV,„, (3.108)

mb(x) = 7rx2 p, V, . (3.111)

M
ptU 4

(3.109)

where M is the star's mass-loss rate. The How appears
to be similar to the fIow around a blunt body in a su-
personic stream. This shape remains stationary and has
been calculated analytically by Baranov et al. (1971)
and Dyson (1975). Near the stagnation point the shell
curvature of the bubble may be well approximated by a
parabola, y = x2/3l, where x and y are coordinates per-
pendicular and parallel to the direction of motion. The
distance between the top of the bow shock and the star
l (see Fig. 11) follows from Eqs. (3.108) and (3.109) with

where V and V, are components of the stellar wind
normal to the shell and stellar velocities, while p and. p
are densities of the stellar wind ejecta and ambient cloud
material. V, V„and p, are assumed to be constant.
The density profile in a freely expanding stationary wind
changes as

In a stationary How this mass should be equal to the mass
How along the shell,

m.h(x) = 2~xa.u, (x), (3.112)

where u&(x) is the velocity of the swept-up material tan-
gential to the shell. The tangential component of the
equation of momentum conservation leads to (van Buren
et at. , 1990)

u, (x)m.h(x) = V. ,gamb.
0

(3.113)

Here the contributions to mass and momentum koln the
stellar wind were estimated to be negligible in comparison
with that of the swept-up gas material, while V, q is the
star's velocity, tangential to the surface of the bow shock.
Equating mass input and output rates [Eqs. (3.111) and
(3.112)],we get the tangential velocity component in the
shell,

u, (x) = —V.x.pc
20

(3.114)

Substituting into Eq. (3.113) for V, q in the vicinity of
the stagnation point,

2x
V,, = ——V8) l

8) (3.115)

we get the tangential Qow velocity and surface density
of the shell in the neighborhood of the stagnation point
(Mac Low et aL, 1991),

free flowing wind

cooling region

HXE region

4 x
u, (x) = —V.—,

9 'l'
90. = —p l.
8

(3.116)

(3.117)

shocked molecular gas

ambient medium

When the stellar wind material passes through the ter-
minal inner shock it has a high temperature,

SHIH V2'=
16 k

(3.118)

FIG. 11. Structure of an ultracompact H II region produced
by strong stellar wind from a supersonically moving star.

However, energy losses are very efFective here, and van
Buren et aL (1990) have shown that evaporation of the
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swept-up cloud material reduces the temperature in this
zone to values at which cooling becomes important. Ve-
locity shears and the Kelvin-Helmholtz instability may
be another mechanism for the e8'ective exchange of mass
between swept-up shell and shocked wind region. Bust
which enters this region may enhance the cooling rate by
a factor of 1GO. Thus we have to expect rapid cooling and
attenuation of the shocked wind layer between terminal
shock and contact discontinuity. Then the dynamics of
the shell in the vicinity of the stagnation point will be
governed by momentum rather than by the energy in-
put &om the stellar wind material. A two-dimensional
numerical model of a momentum-driven shell surround-
ing a massive star with strong stellar wind which moves
supersonically through a molecular cloud was developed
by Mac Low et al. (1991). This model is developed
analogously to the thin-layer approximation described in
Sec. III.B.The shell is divided into a number of cylindri-
cal segments with mass m~, coordinates rz, z~, and ve-
locity uz ——dr&/dt. The coordinate system is connected
with the moving star. Then the ambient gas has velocity
V, . The equation of mass conservation takes into account

both the mass swept up by the bow shock and the mass
ejected by the star as wind material:

dpi' = p, Z~(u~ —V, )n~ 4- p Z~(V —u~)n~

= mc + mar ~ (3.119)

Here Z~ and vector n~ are, respectively, the segment area
of a Lagrangian element, and the unit normal. The equa-
tion of momentum conservation (3.46) for a momentum-
driven shell reduces to

6
(p~u~) = m V —m V, —P,„cZ~n~, (3.120)

where P,„t is the. ,ambient gas pressure, which is impor-
tant only far downstream &om the stagnation point. A
spherical shell with radius much smaller than the char-
acteristic scale l, and negligible velocity has been taken
as initial conditions. Due to a tangential component of
velocity, mass constantly Hows away &om the head of
the remnant and the space resolution near the stagna-
tion point becomes too crude. To maintain sufBcient res-
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olution, the Lagrangian grid was restored &om time to
time.

This algorithm gives two-dimensional shape, velocity,
and surface density 0 in the bow-shock region. The par-
ticle number density nH in the ionized part of the shell
was calculated as n~ = p, V2/kT, where the temperature
of the ionized layer was assumed to be T = 10 K. Then
the thickness h = rr/pgn~ of the particular Lagrangian
element and Gnally the surface brightness S could be cal-
culated (Mac Low et aL, 1991). The calculated shapes
of the ultracompact H II regions visible &om difFerent
viewing angles are presented in the Fig. 12. Here a typ-
ical 06 star, moving at a velocity of 5kms through a
cloud with particle number density n, = 10 cm was
assumed.

F. Axially symmetric supernova remnants

High-resolution and high-sensitivity observations of su-
pernova remnants (SNR) have shown that radio-emitting
regions generally do not possess spherical symmetry. The
most commonly observed departure &om spherical syrn-
metry is the presence of two bright arcs with radio bright-
ness changing gradually along their length, which are
located on the opposite sides of the axis of symmetry
and are separated on the top and bottom by regions
of weak emission (Kesteven and Caswell, 1987; Man-
chester, 1987). Usually remnants with this type of sym-
metry are referred to as barrel-like supernova remnants.
Storey et aL (1992) have made a quantitative analysis of
the morphology of SNR G296.5+10.0. Their calculations
demonstrate a high degree of axial symmetry, even in the
small-scale Glamentary features that are seen in both ra-
dio arcs. Kesteven and Caswell (1987) have suggested
that the majority of SNRs are barrel-shaped. A number
of x-ray (Seward, 1990) and optical remnants fall into this
category as well. This type of morphology is revealed in
both young and old SNRs.

The possible mechanisms for generation of such a
structure may be divided into four categories (Bisnovatyi-
Kogan et aL, 1990; Storey et aL, 1992). In the first,
the shape of the remnant is dominated by external fac-
tors such as large-scale density gradients in the surround-
ing medium or compression of a preexisting regular in-
terstellar magnetic Geld, as has been proposed for SNR
G327.6+14.6 (the remnant of the historical supernova
SN1006) and SNR G296.5+10.0 by Roger et aL (1988).
In the second mechanism, the remnant's Inorphology is
dominated by the distortion of the ambient interstellar
medium by the powerful mass-loss rate of the presuper-
nova wind, as considered by Lozinskaya (1992) and as
probably is observed in SN 1987 A (Crotts et aL, 1989;
Jakobsen et aL, 1991; Panagia et aL, 1991). The third
mechanism is an anisotropic supernova explosion, and the
fourth is the interaction of collimated jets of relativistic
particles &om a central pulsar within the SNR shell.

1. Asymmetric explosion in a uniform medium

Anisotropy of the velocity Geld and mass distribution
with a concentration of the ejected material in the equa-
torial plane of the progenitor star are the natural con-
sequences of the magnetorotational mechanism of a su-
pernova explosion (Bisnovatyi-Kogan, 1970; Ardelian et
aL, 1979) or of a thermonuclear explosion of a rotat-
ing presupernova star (Bodenheimer and Woosley, 1983;
Chechetkin et aL, 1989). This mechanism is partially
supported by x-ray observations of ringlike structures in
several young supernova remnants (Tuohy et aL, 1982;
Markert et al. , 1983), which may be treated as the ob-
servational evidence of a highly anisotropic explosion.

Bisnovatyi-Kogan and Blinnikov (1982) have examined
the evolution of an initially anisotropic remnant in a uni-
form ambient medium. In addition to the Kompaneets
approximation, where the problem had an analytical so-
lution, they used the thin-layer approximation described
in Sec. III.B. At the initial time t = 0 the supernova
remnant was assumed to be spheroidal,

u) = R, sinO,

z=R cosO,

(3.121)

(3.122)

with an equatorial radius B, pole radius A„, and homo-
geneous surface density distribution ap. The expansion
velocity of the remnant was deGned as

u(8) = uo(l —bcos20) (3.123)

( /@ )1/2Rs/2 (3.124)

Here "spherization" means low relative difference be-
tween the equator and pole radii of the supernova rem-
nant, 0.9 & R„/R, & 1. This does not, however, mean
the homogeneity of the remnant. A large inhomogene-
ity may still exist in the surface density distribution,
with difFerences in the surface density near the pole and
equator of a factor 2—3. Bisnovatyi-Kogan and Blinnikov
(1982) have proposed that this effect may explain the
observations of the Cas A remnant (Fabian et aL, 1980),
in which spherical morphology is accompanied by great
difFerences in surface brightness distribution.

with the highest velocity at the equator, U, = Uo(1+ b),
and the lowest at the pole, U„= Uo(l —b). The ex-
plosion energy Ep and kinetic energy Ep of the shell,
the density of the ambient medium pp, and the mass of
ejected material Mp were considered as additional pa-
rameters of the problem. Only adiabatic solutions were
considered. A sequence of models with diferent initial
shapes 2 ( R,/R„& 5, different ratios of the expansion
velocities at pole and equator, 1 ( U, /U~ & 3, differ-
ent masses of ejecta, and difFerent initial kinetic energies
were calculated. The spherization of the SNR happened
after 107p, where 7p is the characteristic time scale,
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The constant oo then may be expressed through the mass
of ejecta M,~ as

T=16800 30-
MO= 2.5

30--

20--

M;
4vrB2(sA+ 4 ~ |)

' (3.130)

and the constant A determines the distribution of the
surface density along the shell.

The explosion energy Eo was assumed to be 10 ergs.
The ratio of the surface densities on the remnant's pole
and equator at t = 0 was taken to be in the range o.„/0, =
0.1—0.2. The ejected mass M~ = 2M~ was 250—1000
times greater then the initial swept-up interstellar mass
Mo. These parameters correspond to an initial radius of
0.5—1.0 pc.

The best-6t model to the morphology of SNR 1006
corresponds to an anisotropic supernova explosion in a
plane-strati6ed gas distribution,
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FIG. 15. Simulations of SNR G296.5+10.0 by an explosion of
energy Eo ——10 ergs in a gas tunnel. (a) The shape of the
remnant. (b) The surface density distribution in the remnant.
M„. = 2.5MO, the remnant age t = 16800 yrs. Dashed lines
represent the shape and the plane of symmetry of the ambient
gas density distribution. Prom Bisnovatyi-Kogan et a/. , 1990.

2(1 —a) z
n(z) = np 1+ arctan-

vr(1+ n) zo
(3.131)

where no ——0.05 cm, o. = 3, and zo ——1 pc. Such a den-
sity distribution can be related to the local inhomogene-
ity of the interstellar medium. The shape of the remnant
and surface density distribution after 980 years of evo-
lution are shown in Fig. 14. The shape of the remnant
is close to spherical, but applelike features are present.
This is a consequence of the initial surface density, and
consequently of the initial xnomentum distribution, with
the maxima of the Z coxnponent of the momentum being
in the intermediate regions between the poles and the
equator of the remnant. The radius of the remnant is
equal to 6 pc and it is in the transition phase &om &ee
to adiabatic expansion. The shock velocities at the poles
are 3900 km s (on the top) and 2700 km s ~ (on the
bottom). At the equator, the expansion velocity is equal
to 5100kms . These values are in good agreement with
the data of Kirshner et al. (1987) and with the estima-
tion of the expansion velocities of ejected material in the

central part of the remnant (Wu et al. , 1983). The radius
of the remnant 6—7 pc, implies a distance to the remnant
of 1.4—1.6 kpc.

Numerical simulations of the evolution of G296.5+10.0
(Bisnovatyi-Kogan et al. , 1990) have shown that it is im-
possible to obtain the observed shape and great contrast
in the surface density distribution by an asymmetric ex-
plosion in a uniform medium. The morphology of SNR
G296.5+10.0 could be explained if a spherical explosion
occurred in the gas near the bridge between two old su-
pernova remnants and was produced by their merging.
The results of calculations are presented in Fig. 15, where
dashed lines represent the shape and symmetry plane of
the gas density distribution. The maximum number den-
sity in the plane of symmetry is no ——1 cm . The char-
acteristic scale of the density gradient along the Z axis
is H = 10 pc. The point of the explosion is shifted up
&om the symxnetry plane by zo ——7.5 pc. The age of
the remnant is about 17000 years, but it is still in the
adiabatic stage. The velocities of the shock are equal to
1100km s on the top, 440 km s on the bottoxn, and
250kms in the midplane of the ambient gas density
distribution.

6--
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2--

6-

3. Supernova explosion inside a wind-driven cavity

CL I

M 4 0
-2--

10
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FIG. 14. Simulations of SNR 1006 by an anisotropic explosion
on the edge of the gas layer. (a) The shape of the remnant;
(b) the surface density distribution in the remnant. Eo
10 ergs, M„. = 2MO, the remnant age t = 980 yrs, a„jo, =
0.1 at the beginning of calculations. Prom Bisnovatyi-Kogan
et a/. , 1990.

The massive progenitors of Type-II and Ib supernovae
undergo a signi6cant mass loss during their red and
blue giant phases prior to explosion. This stellar wind
modifj. es the ambient density distribution and creates an
expanding shell, as was shown in Sec. II. Chu (1981),
Lozinskaya and Sitnik (1988), Dufour (1989), Lozinskaya
(1992); and Dopita et al. (1994) have presented numer-
ous examples of optical shells around Wolf-Rayet and Of
stars. Sirn. ilar structures are observed in different wave-
length bands as well as in the nearby galaxies (Rosado,
1989; Laval et aL, 1992). Asymmetric shapes of plane-
tary nebulae are often observed (Balick, 1987). On the
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p(r 0) = —Psin 8+ (1 —P)
M 3

4m' 2V 2
(3.132)

other hand, a number of observational (Hamilton, 1985;
Danziger and Bouchet, 1989; Lozinskaya, 1992; Chugai,
1993) and theoretical papers (see Arnett et a/. , 1989) in-
dicate that supernova ejecta are not smooth flowing but
contain a great number of dense fast &agments. As a
first approach to the problem, consider the expansion of
a blast wave in a gas with power-law density distribu-
tion. The first application of a self-similar solution to
an explosion in a spherically symmetric preexisting cav-
ity was carried out by Cox and Franco (1981). Cox and
Edgar (1983) included the efFects of thermal conduction.
Krol' and Fomin (1978) considered shock-wave expansion
in a medium disturbed by a previous shock wave. The
later evolution of a SNR, however, depends strongly on
the details of the expelled gas thermalization in the early
stage of the expansion. Chevalier (1982) and Nadyozhin
(1985) have found a self-similar solution for outgoing and
reverse shocks assuming power-law density distributions
for both the ejecta and the ambient medium. Detailed
10 and 2D numerical simulations of the interaction of
the ejected material, containing high-density &agments,
with the ambient gas were performed by Franco et al.
(1991; see also the application of approximate methods
by Chevalier and Liang, 1989, and Tenorio-Tagle et al. ,
1991). The ejected material expands almost freely until
it impacts with the wind-driven dense shell. This inter-
action generates optical, UV, and x-ray emission. If the
mass of the shell is smaller than —50Mo, the SN shock
overruns the shell and proceeds to propagate through the
undisturbed gas in the form of an adiabatic shock. Ra-
diative losses during the temporal merging of shocks are
not important in this case. For larger masses of shell
the radiative losses are so great that the supernova shock
loses considerable energy and cannot overrun the shell.
The shock merges with the shell and they proceed to
propagate as one radiative shock, carrying away all mo-
mentum.

Igumentshchev et aL (1992) have studied the dynamics
of adiabatic supernova ejecta in a disklike envelope with
the gas density distribution

3M~ a + cos 28
p r, e

4m r2VR 3a —1
(3.133)

The fast, isotropic blue supergiant wind has a mass-loss
rate of M~ ——3x 10 Mo yr and an expansion velocity
Ve = 550kms ~. Luo and McCray (199lb) assumed
the constant a = 1.5, which implies an equator-to-pole
density contrast p, /p„= 5/1, whereas Wang and Mazzali
(1992) used a different form of asymmetry and suggested
that this ratio is only 1.25.

The calculated contrast in the column density distri-
bution &om the pole to the equator of the shell is much
greater than in the red supergiant envelope because of the
convergence of the Lagrangian elements near the shell's
equator. Thus the waist of the shell is much brighter
than the lobes due to higher column densities. Figure
16 from Luo and McCray (199lb) shows the predicted

vealed an elliptical ring around SN 1987A. Analysis of
the Doppler velocity of the ring shows that the ellipse is
actually a circular ring that is inclined at 45 and ex-
pands with —10kms velocity. Deeper ground-based
observations by Crotts et a/. (1989) and Wamper et a/.

(1990) have revealed two large loops which are connected
with the expanding ring. Thus all the structure is inter-
preted as the projection of the hourglass-shaped shell (see
for more details the reviews of Imshennik and Nadyozhin,
1989, and McCray, 1993). Luo and McCray (1991a,
1991b) and Wang and Mazzali (1992) have proposed that
this unusual shell forxnation is the result of fast wind ex-
pansion &om a blue supergiant in the relict, axially sym-
metric wind envelope of a red supergiant and have pre-
dicted the evolution of the x-ray, UV, in&ared, and radio
emission of the remnant. The bubble formation was sim-
ulated, using the Chin-shell approximation. To reproduce
an hourglass shape with the observed scales and veloc-
ities, Luo and McCray and Wang and Mazzali adopted
the parameters of Lundqvist and Fransson (1991) for the
stellar wind model. The steady, low-velocity red super-
giant wind has the mass-loss rate M~ ——10 Mo yr
expansion velocity (Va = 10 kms ~), and axially sym-
metric gas density distribution

39- i
I 1 I

f i I I
f

/ I 2.0

produced by nonspherical mass loss &om a progenitor
star. They have found a signi6cant elongation of the
remnant in the direction of the maximum density gradi-
ent during a relatively short (& 400 yr) initial phase of
evolution.

A self-similar solution for the interaction region be-
tween a fast inner stellar wind and a slower outer one
has been developed by Chevalier and Imamura (1983) in
which both winds are assumed to be spherically symmet-
ric and adiabatic.

Observations of narrow UV and optical emission lines
indicate the presence of a circumstellar shell around SN
1987A that was ionized by the initial UV and x-ray Bash
&om the supernova explosion. The [OIII]A5007 images
(Wampler et a/. , 1990; Jakobsen et aL, 1991) have re-
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FIG. 16. The predicted luminosity of SNR 1987A in the dif-
ferent wavebands resulting from the interaction of supernova
ejecta with an axially symmetric wind-driven shell. From Luo
and McCray, 1991b.
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UV, nonthermal radio, soft (0.1 keV & hv & 3.5keV)
and hard (3.5keV & hv & 10keV) x-ray luminosities of
the SN 1987A remnant.

The collision of supernova ejecta of Vz 3000kms
and xIlass AI&j with a bubble outer shell of radius R,
is accompanied by the formation of forward and reverse
shocks (Chevalier and Liang, 1989). If the mass of the
hot low-density bubble interior is Mp, it must happen at
t 1.4(Ms/M, i) ~ (R, /Vq) (Chevalier, 1982), about 15
yr after the explosion, i.e., at the beginning of the next
century. Then UV and x-ray luminosities of the rem-
nant should rise abruptly above 10 ergss i (Luo and
McCray, 1991a, 1991b).

A comprehensive model of the circumstellar shell
around SN 1987A based on the full 2D hydrodynamic cal-
culations has been developed by Blondin and Lundqvist
(1993). The main difference between these calculations
and those of Luo and McCray (1991b) is the absence of
a cusp at the shell equator due to the pressure gradient
within the cavity. This leads to a much faster (60—70
kms i) ring expansion and suggests that the standard
Lundqvist and Fransson (1991) model of the stellar wind
cannot 6t the observations. To get the observed parame-
ters of the SN 1987A shell, Blondin and Lundqvist (1993)
have been forced to adopt relatively extreme values for
the progenitor wind parameters: a high concentration of
the red supergiant wind near the equator of the progeni--
tor star, an equator-to-pole density contrast of = 20, and
a low-energy, radiatively cooling b1ue supergiant wind
with M~ ——3 x 10 Moyr and V~ ——300kms

The nature of the red supergiant's wind asymmetry is
not known, but it may be due to a binary companion
of the progenitor star, as has been proposed for a plane-
tary nebula by Morris (1981), and. Kolesnik and Pilyugin
(1986).

Two unprecedented and mysterious rings of H emis-
sion have been discovered in &ont of and behind the ex-
plosion point of SN 1987A by NASA's Hubble Space Tele-
scope (Burrows et al. , 1994). These rings probably coin-
cide with the surface of the hourglass shell whose origin
has been discussed above.

Chu and Mac Low (1990) and Chu et al. (1993) have
analyzed the archival data &om the Einstein Observatory
and new ROSAT observations to look for diAuse x-ray
emission &om regions containing OB associations in the
Large Magellanic Cloud (LMC). DifFuse x-ray emissions
were positively detected in ten OB associations concen-
trated in seven OB/H II systems. These systems are pre-
sented in Table II. Another five systems show enhanced
soft x-ray emission with a low level of conMence. Most
of these complexes have simple shell-like morphology in
the H emission and may best be classified as an early
stage of superbubble evolution.

The observed x-ray luminosities range &om 7 x
103 ergs s ~ to 7 x 10 ergs s across the Einstein 0.2—
4 keV band and generally coincide well with the more
careful analysis of Einstein data made by Wang et al.
(1991). Chu and Mac Low (1990) have considered one

TABLE II. X-ray emitting OB/H II systems in the Large
Magellanic Cloud.

Neubla
N44

N51D
N57A
N70

N154
N157
N158

OB association
LH47, LH48
LH51, LH54

LH76
LH114

LH81, LH87
LH100

LH101, LH104

X-ray luminosity
(10 ergs s )

14
3.3
0.74
1.8
8.6
70
11

of' the complexes, the nebula N51D containing the OB
associations LH51 and LH54. The shell diameters reach
75—150 pc. The contribution of early-type stars located
within the systems to the total x-ray luminosities was es-
timated to be not greater than 1%. Thus the observed
x-ray emission must be &om a hot rarefied interstellar
gas. But application of the theory described in Sec. II
to the N51D and N44 nebulae shows that calculated x-
ray luminosities fall an order of magnitude below that
derived &om the Einstein and ROSAT observations. A
supernova explosion near the center of the bubble does
not increase the total x-ray luminosity by much, since
in a huge bubble the blastwave &om a supernova explo-
sion sweeps up enough mass and slows down to below
x-ray-emitting speed in a relatively short time. Thus the
enhancement of x-ray emission due to interaction of &eely
expanding ejecta with the preexisting shell is negligible
(Chu and Mac Low, 1990).

To overcome this inconsistency, Chu and Mac Low
(1990) have proposed a mechanism for an off-center su-
pernova explosion inside a preexisting wind-driven bub-
ble. To simulate 2D shock expansion within the cavity
they use a numerical code based on the thin-layer ap-
proximation that is similar to that described by Mac Low
and McCray (1988) and Bisnovatyi-Kogan et al. (1989;
for more detail, see Sec. III.B). Chu and Mac Low (1990)
distinguish between mean pressure P;„= (p —1)Eti,/0
and post-shock pressure P, = AP;„[see Eq. (3.2)] in the
adiabatic shock wave. They adopt the constant A = 1.53
(see Koo and McKee, 1990, and our discussion of the
Kompaneets approximation, Sec. III.A.4). To reproduce
the pressure enhancement in the region between outgoing
and reverse shocks during the impact of the SNR with the
dense bubble shell, they increase the pressure behind the
shock by the factor P, which was chosen as P = 4.5. This
factor applies while the reverse shock propagates through
the shell and then rapidly approaches the regular interior
pressure. The gas density and the temperature distribu-
tions within the wind-driven cavity are assumed to follow
the conductive evaporation profiles [see Eqs. (2.90) and
(2.93)].

The final results are sensitive to the adopted den-
sity of the bubble shell. During impact with the cold
(T 100K) neutral shell, the supernova blastwave de-
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PIG. 17. X-ray luminosity of a supernova remnant produced
by an o8-'center explosion inside a wind-driven bubble for dif-
ferent initial positions x of the progenitor star. Prom Chu
and Mac Low, 1990.

celerates almost immediately to below x-ray-emitting ve-

locities, and growth of the x-ray luminosity is negligi-
ble. But young supershells have to be photoionized and
heated by t;he hot early-type stars &om the embedded
OB associations. Thus it is appropriate to assume the
shell boundary as that where the temperature falls to
10 K. After collision with such a shell, the supernova
shock-wave velocity remains high enough to heat it to

10 K for several thousand years. To compare this
model with observation, Chu and Mac Low (1990) cal-
culate the dynamics and x-ray emission of the nebula
N51D. This is a bubble with radius 53 pc expanding at
30—35 kms velocity. The application of the model of
Weaver et al. (1977) to the expansion of this nebula gives

an estimate of about 1 Myr for its age. The x-ray emis-
sion &om N51D lies completely within the H II region,
L~ = 3.3 x 10 ergss . The ambient interstellar gas
number density was estimated &om the H observations
of Meaburn and Terrett (1980) and from the dynamics of
the nebula to be n 0.5cm . The expected x-ray lu-

minosities display a variety of behaviors for models with
difFerent locations of the progenitor star within the cavity
and are shown in Fig. 17. Thus an oK-center SNR inter-
acting with the inner photoionized edge of a shell driven

by stellar wind &om an OB association may produce the
observed x-ray luminosity.

OB stars possess a strong stellar wind over the en-
tire main sequence lifetime (de Jager et al. , 1988; Oey
and Massey, 1994), so the age of a star exploded as a
supernova cannot exceed essentially the dynamic time
of the bubble, 7 10 yr, if simultaneous birth of
all stars in the association is assumed. Choisi et al.
(1978) have estimated the main sequence lifetime of
stars within the mass range 30Mo & M & 80Mo as

= 9 x 10s(M/10MO) os yr. The calculations of
Maeder (1988) gave a lifetime of 3 Myr even for a 120-
Mo star. Therefore it seems likely that this nebula is still
at the stellar-wind-driven stage of expansion and some
special conditions are required for the early stages of su-

pernova explosions.
A possible kinematic identification of the "hidden" su-

pernova remnants inside the small Magellanic Cloud H
II regions N19 and N66 is presented by Rosado et al.
(1994). More detailed study of the stellar content of
OB/H II systems and analysis of x-ray maps of higher
sensitivity would greatly enhance our understanding of
the problem.

G. Supershells in a plane-stratified interstellar medium

Sites of recent star formation show strong evidence of
the collective efFects of stellar winds and supernova inter-
action with the surrounding interstellar medium. Obser-
vations of our galaxy by Heiles (1979, 1984) and of the
nearby spiral galaxies M31 and M33 by Brinks and Ba-
jaja (1986) and Deul and Hartog (1990) have confirmed
that shell-like structures are a common feature of the
interstellar medium. Puche et aL (1992, 1995) have un-
dertaken a program to study the neutral hydrogen com-
ponent of the interstellar medium in dwarf galaxies, as
an attempt to extract transient properties of bubble evo-
lution which are dificult to observe in the massive spiral
systems due to distortion efFects of the galactic shear,
and to provide an observational base for a comprehen-
sive evolutionary scenario of the interstellar medium. All
observed galaxies show a large amount of internal struc-
ture in the form of H I expanding shells. For example
a detailed study of the almost face-on irregular galaxy
Ho II (Puche et al. , 1992) has revealed 51 holes in the
H I density distribution that typically range in size &om
100 to 1700 pc and that provide evidence of expansion
at a velocity V = 10kms i . Deul and Hartog (1990)
looked for CO emission connected with the interior of
the four H I holes in M33 to investigate the possibility
that H I holes really are not empty but are filled with
a molecular gas as dense as the surrounding H I. Their
upper limits are much less than the expected mass of
molecular gas if the conversion factor between the CO
surface brightness and H2 surface density is of the same
order of magnitude as the galactic one. For a detailed
review of the observational aspects of the problem, see
Tenorio-Tagle and Bodenheimer (1988), Brinks (1990),
Silich (1990), and Heiles (1991).

The fundamental problem that arises in connection
with these objects is the identification of the energy
source of the shell expansion (Tenorio-Tagle and Boden-
heimer, 1988). If the stellar wind and supernova explo-
sions are the main sources of energy for bubble expan-
sion (Bruhweiler et at. , 1980; Tomisaka and Ikeuchi, 1986;
McCray and Kafatos, 1987), then the interior of the H
I bubble should be filled with a hot (= 10s) rarefied gas
and should be observed as a source of extended soft x-ray
emission. Until recent years there have been no positive
observations of hot gas connected with H I holes or shells,
with the exception of the Cash et al. (1980) x-ray fea-
ture known as the Cygnus Superbubble [see, however,
Bochkarev and Sitnik (1985), who argued that this re-
gion is a projection of several physically separated sources
at diferent distances &om the sun in the direction of
the Carina-Cygnus spiral arm, and Comeron and Torra
(1994), who discuss the origin of the Cygnus OB1-OB9
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Rs so cia t1ons] .
Domgorgen et aL (1995) have analyzed the IUE (In-

tel llatloIlal Ultlavlolet Explol'el' 8Rtelllte) lllgll-dispel sloll
spectra of four stars located either insid. e or behind the
LMC-4 region. They discovered absox'ption lines of highly
ionized. species in the spectra of all four stars, which
was interpreted as evidence for the existence of a hot
gas coxnponent in this region. The 6rst detections of
diR'use x-ray emission &om the hot interior of superbub-
bles IMC-2 and LMC-4 were presented. by Wang and
Helfand (1991), Bomans et aL (1994), and Singh et aL

(1987). The total x-ray luminosities were estimated as
L 2 x 10 7 ergs s &om the LMC-2 region in the Ein-
stein Observatory 0.16—3.5-keV IPC broadband (Wang
and Helfand, 1991), and I = 1.4 x 10 ~ergss 1 from
the LMC-4 region in the ROSAT 0.1—2.4-keV band (Bo-
mans et aL, 1994). The temperatures of the hot x-ray-
CIIllttlxlg gas ax'c assuIxled to bc T ~ 5 x 10 K ln the
LMC-2 bubble and T = 2.4 x 10 K in the LMC-4. The
enhanced x-I'ay cxnlssloD colIlcl«ics well with thc cavity
seen in H I and IRAS maps. A compxehensive reanalysis
of the Einstein IPC data on the LMC has been provided
recently by Wang et aL (1991). A local (on the character-
istic scale 1 kpc) anticorrelation of difFuse x-ray emis-
sion with the H I surface density distribution has been
revealed. These xesults are consistent with the coher-
ent supernovae model of the interstellar medium in the
LMC. Disuse x-xay emission Rom young ionized bubbles
containing OB associations has been «Iiscovered. recently
by Chu and Mac Low (1990; Chu et al. , 1993). As was
shown in the pxevious section, they considered. the evo-
lution of the bubble to bc still stloIlgly 1DHuenced by a
stloIlg 8tellax' wlIl«I fj.om IDRsslvc staI'8 1D OB RssoclRtlGDs
as well as by the first supernova explosions.

The characteristic sizes of expanding shells often ex-
ceed the disk thickness of their host galaxies and reach
0.1—1 kpc, with estimated kinetic energies of up to 10 3—

10 ergs (Heiles, 1984; Tenorio-Tagle and Bodenheimer,
1988). Therefore the dynalnics of the largest "super-
shells" depend stxongly on the gas density distribution
in the vertical direction, unless. the galactic disk is very
thick. Galactic shear is another very ixnportant dynamic
factor which de6DCS the late stages of superbubble evo-
lution. Here we consider the action of these two agents
separately, while the bubble evolution induced by their
combined action is described in the next section.

The 6rst fully two-d. imensional calculations of super-
bubble evolution were provided by Tomisaka and Ikeuchi
(1986) for Fuchs and Thielheim's (1979) two-component
model of the intexstellar medium with the gas density
d.istribution

n(z) = no 0.22exp
i
—,

i
+0.78exp i-c(z)) ( 4(z)l

~,' )
(3.134)

and gravitational potential

C(.) =6S.6ln 1+0.9565sinh'
~

O.75S—
~

(km. ')'.
&o j

Here the constants 0'; = 14.4kms, o = 7.lkms
and zo ——124pc are the velocity dispersions of the intex-
stellar gas and clouds and the scale height of the gravi;
tatlollal field. Tile two-dlmenslOnal MRCCorII1RCk (1971)
numerical scheme, with Rrti6cial viscosity and space res-
olution Lr = Lz = 5 pc or Lr = Lz = 10pc, was
employed. Each supernova was assuxned, to release en-

ergy ESN ——105~ ergs and mass m, ~
= 10Mo. Classical

thermal conductivity was included in one variant of the
calculations. It plays an important xole in the formation
of the internal bubble structure. The temperature within
the cavity becomes sxnoother and lower, whereas density
increases (see, however, the discussion at the end of this
section) .

We shall treat the superbubble as a large stellar wind
cavity (McCl'Ry Rnd Kafaf 08 1987' McCl'Ry and Mac
Low, 1988) supported by continuous supernovae explo-
sions. Mac Low and McCray (1988) have shown that
once a cold dense shell with isobaric interior has formed. ,
the mass of the interior becomes great enough for R sin-
gle SNR to be subsonic before collision with the common
huge shell. Thus the hot interiox' gas bufFers the dis-
crete supernovae explosions, allowing us to treat them as
a continuous enexgy input rate. Mac Low and McCxay
(1988) also calculated the dynamics of a spherical bubble
driven by discrete) Poisson-dlstrlbuted supcI'nova cxplo-
sions. They concluded that bubble expansion becomes
identical to the continuous-input case after 5—10 super-
novae have occurred [see, however, Tenorio-Tagle et aL

(1987), who found in this case more complicated inter-
nal structure dominated by some kind of instabi. lity, and
discussion of this instability by Mac Low et aL, 1989].
Thc adiabatic phase of thc bUbble 8 evolutloIl pel slsts
until radiative cooling becomes important in the hot gas
behind the shock &ont, at time

3A:T,
(3.136)

ng

where T, and n, are the post-shock gas temperature and.
XlllIllbel' dellsity, Rlld A(T) 18 'tile Coollllg fullCtloll. Tllell
durlIlg R short tlxnc x'R«IlRtlGIl takes away Rppx'GxlIxlRtcly

half of the rexnnant's thermal energy (Chevalier, 1974;
Falle, 1981; Blinnikov et aL, 1982), and almost all swept-
up gas collapses into a thin, dense, cold. shell with a low-
density hot gas within the cavity. Taking

t =23x 10 n ( I yr (3.138)

where no is the particle numbex density in the ambi. -.

ent interstellar medium and I38 is the energy input rate
duc to lcpcatc«I supel IlovRc cxplosloIls lIl 10 CI'gs 8
units. Thin-shell formation in interstellar shocks associ-
ated with supexnova explosions in an arbitrary power-law
d.ensity d.istribution has been exploxed. by Franco et OL

A(T) = 1 x 10 Ts
' ( ergscm s

where Ts is the temperature in 108 K units and ( is the
DlctRlllclty, RD«I RssUIIllIlg R stI'GIlg RdlRbatlc shock wave,
Mac Low and McCray (1988) estimated that the radia-
tive phase begins after a short time of evolution,
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(1994).
The inner density of a radiative superbubble was con-

sidered to be dominated by the mass evaporated &om the
cold dense shell. Mac Low and McCray (1988) adapted
the formula (2.92) for mass Hux M,~ to a nonspherical
bubble as follows:

&meLxI" ~T5/2
25 k ' ~. B'

where p;„= 23mH is the mean mass per particle in the
hot bubble interior, C = 6 x 10 ~ergss x cm x K ~/' is
the coeKcient of thermal conductivity, T, is the tempera-
ture near the center of the bubble, dZ and R = v &u + z
are the surface area and the radius of the particular La-
grangian element (see Sec. III.B), k is the Boltzmann
constant, and A;„and A are minimum and maxi-
mum values of the Lagrangian coordinates.

The energy budget for a radiative bubble includes the
energy input rate from supernova explosions L(t), work
P,„dO/dt done by the shell expansion, and radiative cool-
ing of the rare6ed hot bubble interior,

mation, as described in Sec. III.B, has been developed by
Mac Low and McCray (1988) and Bisnovatyi-Kogan et al.
(1989). Bisnovatyi-Kogan et al. (1989) started from the
adiabatic bubble and used the same density distribution
(3.134) and z component of gravity 4(z) (3.135) as in
the previous paper of Tomisaka and Ikeuchi (1986), but
did not take into account radiative loses from the hot
bubble interior, whereas Mac Low and McCray (1988)
allowed them. The above schemes show good agreement
for bubble evolution in a pure exponential gas disk up
to 6 Myr, but display a signi6cant difference &orn those
of Tomisaka and Ikeuchi (1986) in the case of relatively
high gas number density in the midplane of' the galaxy.
This difference comes from the numerical mass diffusion
across the contact discontinuity &om the cold shell to the
hot bubble interior in the Tornisaka and Ikeuchi (1986)
scheme and overestimation of radiative cooling of the
bubble interior (Bisnovatyi-Kogan et aL, 1989, Mac Low
et al. , 1989).

Mac Low et aL (1989) compared fully two-dimensional
calculations with the thin-layer approximation. The re-
sults of their calculations for a Gaussian atmosphere

&maxI It = n,'„A(T;„)dO,
&min

(3.14O)
p = po exp( —z'/H') (3.142)

where 0 is the bubble volume. Therefore the equations
of energy conservation (3.56) must be replaced by

&max gg= I (t) —La(t) —27r P;„U„dA, (3.141)dt ~ .
'" "BA

where U is the component of the expansion velocity nor-
mal to the shock &ont.

A numerical scheme based on the thin-layer approxi-

with characteristic scale height H=100 pc and energy in-
put rate I = 1.67 x 10 ergss are shown in Fig. 18.
One can see that the thin-layer approximation works sur-
prisingly well until the shell begins to accelerate and be-
comes Rayleigh-Taylor unstable.

In a disk galaxy, bubbles have two possibilities for their
final fates. Either they accelerate, become Rayleigh-
Taylor unstable, and blow out hot gas into the galactic
halo, or they fall back to the galactic plane under the in-

800

600

z(pc) coo

FIG. 18. Superbubble expansion in the
Gaussian gas layer as follows from the full
two-dimensional calculations and from the
thin-layer method (left thick line). The age
of the remnant t = 5 Myr, energy input rate
L38 ——1.67. From Mac Low et al. , 1989.

200 400 600 800
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ftuence of interstellar gas pressure and the galactic gravi-
tational field (Mac Low and McCray, 1988; Silich, 1991).
The blowout phenomenon was considered with full two-
dimensional simulations by Tomisaka and Ikeuchi (1986),
Mac Low et al. (1989), Igumentshchev et al. (1990), and
Tenorio-Tagle et al. (1990). The hybrid Fuchs and Thiel-
heim (1979) or Dickey and Lockman (1990) (see Sec. IV)
gas distribution seems to be less favorable for blowout.
Superbubbles are prevented &om accelerating by a dy-
namically important large-scale density component and
actually do not blow hot gas out into a rarefied galactic
halo unless unrealistically rich OB associations are as-
sumed or the energy source is displaced &om the galactic
plane. Nevertheless continuous supernova explosions in
OB associations may produce very large holes in the in-
terstellar medium after pushing out the dense gas near
the galactic plane.

Galactic-scale bipolar outfIow from the nuclei of star-
burst galaxies (which have experienced a very high star
formation rate in the recent past) was studied with
full 2D numerical simulations by Tomisaka and Ikeuchi
(1988), and Tomisaka and Bregman (1993). The ex-
tended (up to 10—50 kpc) x-ray emission around the star-
burst galaxy M82 was reproduced with an extremely high
supernova explosion rate 0.1 yr ~ in the nuclear region
of the galaxy. The evolutionary time of the event was
estimated to be about 50 Myr. During this time the star-
burst emits (3 x 10ss—104P) ergss i in the GINGA LAC
(1.56—8.265 keV) band and —104i ergss i in the Ein-
stein or ROSAT HM band. The cool ring that is formed
near the galactic plane seems to correspond to the CO
spur extending to the halo region in the galaxy M82.

H. Supershells in a difFerentially rotating galactic disk

Interstellar matter is not sitting at rest, as was as-
sumed in the previous section, but rather moves around
the galactic center. The rotation velocities are defined by
the mass distribution and reveal strong deviation from
solid-body rotation except in the central parts of some
galaxies. The characteristic lifetime of a superbubble
(10 —10 yr) is comparable with the period of galactic
rotation, and therefore huge expanding shells have to
be subject to a large-scale galactic shear. This effect
was considered in two dimensions by Tenorio-Tagle and
Palous (1987; Palous et al. , 1990). The galactic disk
was modeled as a homogeneous slab, rotating wit'h con-
stant velocity Vp(R) = 250kms, with a thickness of
H = 200pc. The interstellar gas number no was taken
to be no ——3cm 3 at B = 5kpc &om the galactic cen-
ter, no ——1 cm at B = 10kpc, and no ——0.3cm at
B = 20kpc. At the beginning of the calculations a cylin-
drical shell with full width 6 = H was assumed. The total
amount of energy, Eo ——10 ergs, was released instanta-
neously and distributed as 2/3Ep in the form of thermal
energy of the remnant interior, and 1/3Ep is the kinetic
energy of the shell. The initial temperature To was equal
in all models (Tp ——10 K) and thus defined the gas num-

ber density within the cavity. It was assumed that only
half of the mass of the interstellar gas was concentrated
in the cold thin shell, while the other half was pushed out
through the top and the bottom of the remnant. Free ex-
pansion into the galactic halo with the sound velocity a,
was allowed, leading to a rapid adiabatic decrease in the
internal pressure I;„,

P;„(t) = Pp [n(t = 0)/n(t)]

and growth of the remnant's height h,

(3.143)

t
h(t) = II+2 a,dt.

0
(3.144)

Here 0 is the rexnnant's volume, while p = 5/3 is the
ratio of the speci6c heats.

The cylindrical shell was approximated by a number
of plane Lagrangian elements orientated parallel to the
axis of symmetry Z. The mass of a particular Lagrangian
element increases with time as

t
p(t) = pp + W(t)u„(t) ppdt,

0
(3.145)

(3.146)

where mass per unit thickness is defined by Eq. (3.145)
and g is the mean mass per particle. When column num-
ber density N exceeds the critical value (Arshutkin and
Kolesnik, 1984; Franco and Cox, 1986)

N, = 10 '(Zo/Z) cm (3.147)

where Z is metallicity, the optical depth of the back-
ground UV radiation becomes greater than unity. A de-
crease in photoionizing radiation then allows for rapid
molecule formation in the inner part of the shell. Thus
we may expect molecular cloud formation during the late
stages of superbubble evolution. Figure 19 (Tenorio-
Tagle and Palous, 1987) displays cross sections of su-
pershells by the midplane of the galaxy at different evo-
lutionary times. The effect of differential galactic rota-
tion becomes apparent after 2 x 10 yr of evolution. The
remnant ellipticity grows with time, which leads to in-

where p, (t) is the mass per unit shell thickness. W(t) is
the width of the element, which is de6ned as the distance
between centers of adjacent elements, and u is the nor-
mal component of the expansion velocity. The motion of
the Lagrangian elements was described in the galactocen-
tric coordinate kame B,O corotating with the ambient
interstellar xnedium (the angular velocity of the coordi-
nate frame is ~p ——Vp/R). It was ixnpossible to take into
account the Z component of gravity in this approach, but
in some variants of the calculations self-gravity (gravita-
tional interaction between different Lagrangian elements)
was allowed.

The number column density across any Lagrangian el-
ement may be expressed as
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X

/pc]

0-

~/2
E~h = '" R; sinOdO.

3(~ -1) (3.148)

If L is the mechanical luminosity of the OB association,
then Eqh evolves according to

l

-2
Y fkpcj

n'/2

(3.149)

PIG. 19. Pace-on view of a 2D bubble in a difFerentially ro-
tating galactic disk after 6 and 12 Myr of evolution. Dashed
lines are the same if the self-gravity of the shell has been taken
into account. Prom Tenorio-Tagle and Palous, 1987.

We expect more pronounced action of the magnetic 6eld
at a later time, when the ratio of the external magnetic
field pressure B02/87r to the raxn pressure poV2 becomes
greater. Then departure &om the nonmagnetic case at
the early stage of evolution may be described by the ex-
pansion. of the governing equations in powers of the pa-
rameter

homogeneous mass distribution along the shell. Most of
the swept-up material streams towards opposite ends of
the remnant, where conditions for molecular cloud for-
mation are created. Thus while supernova explosions are
usually considered as a disruptive agent in the interstellar
medium, on a larger scale the combined action of multi-
ple supernovae may have the opposite eKect. They collect
interstellar gas into giant molecular clouds and thus may
trigger the process of new star formation, as has been
proposed by Gerola and Seiden (1978) and Franco and
Shore (1984). Palous et al. (1990) have applied this algo-
rithm to the limited sample of supershells in the galaxies
M31 and M33. For two shells in M31, criterion (3.147)
is satis6ed and the swept-up matter accumulated at the
ends is able to form giant molecular clouds. In contrast,
there are no conditions for molecular cloud formation in
any shells that have been considered in M33.

I. Bubble expansion in a uniform magnetic field

Although the strength of the magnetic Geld is not well
defined, there is some evidence, due to Rand and Kulka-
rni (1989), that its value is close to a few pG. Thus the
magnetic pressure P —10 (B/5 pG) dyncm 2 may
be comparable with the gas pressure in the galactic in-
terstellar medium, P~ —4 x 10 s dyncm (Jenkins
et al. , 1983), or even with the ram pressure acting on
the bubble shell, P, —10 x2 (p/2 x 10 gcm )
(u/10kxns )2dyncm 2. Thus it can play an essential
role in bubble dynamics and in8uence the internal struc-
ture of a superbubble.

It is assumed that Inagnetic 6eld is ft.oxen into the
Quid. Then the magnetic Geld lines are con6ned inside
the shell, magnetic pressure within the cavity is negligi-
ble, and the total interior pressure P;„ includes only the
thermal contribution. Assuming the gas pressure inside
the cavity to be uniform (the high temperature within
the cavity and thus sound speed in the internal gas is
higher than the blastwave velocity in the ambient inter-
stellar gas), we get the interior energy of the remnant in
the form

Bo
+8~paV2

(3.150)

Let us estimate now the shell thickness. Taking into ac-
count that all hydrodynamical variables vary only mod-
erately across the shell (Ferriere et al. , 1991), we may
approximate them by the values immediately behind the
shock &ont. If mass redistribution along the shell may
be neglected, then

1 R,
Pa =

3 ~RPo (3.151)

1 R,T,
Po, (3.152)

where P„p„and T, are the mean gas pressure, density,
and temperature in the shell.

Neglecting for a crude estimation the departure of the
unit normal to the shock &ont from the radial direction,
we have &om the Eq. (3.99)

R,
Bse = Bo sinO.

2LR (3.153)

AB 1 1T, (1T. + (e'sin 0)2
R, 2 3TO" i3TO ")

(3.154)

where e„ is a small parameter,

Po

p Q2 (3.155)

Within a narrow region near the xnagnetic poles (0 = 0)

Combining these equations with the Rankine-Hugoniot
relations (3.103)—(3.107) on the shock front, Ferriere et
aL (1991) have found an approxixnate equation for the
shell thickness:
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LR 1T,
P (3.156)

Here the action of the magnetic 6eld is negligible, the ram
pressure is balanced by the thermal pressure of the swept-
up gas, and the shell is thin. Away &om the magnetic
poles the magnetic pressure becomes the dominant agent
to balance the ram pressure, and the shell thickness grows
as

LR 1= —e sin O.
R, 2

(3.157)

Thus we may expect the volume of a hot magnetized
bubble interior to be reduced in comparison with bubble
expansion in a nonmagnetic ambient medium.

Ferriere et al. (1991) have developed this approach
to provide a numerical simulation of the evolution of a
magnetized supershell. They have divided the shell into
a number of pieces separated by cones with a constant
O. The hydrodynamical evolution of each of these ele-
ments is described by equations for the inner radius R
and outer radius R, of the shell as functions of the con-
trol volume velocity, equations of mass, and radial and
poloidal momentum conservation, which are similar to
Eqs. (3.97) and (3.98). This set of major equations is ac-
companied by the equation of magnetic-Geld fIux conser-
vation (3.99), two boundary conditions at the inner shell
surface (3.100)—(3.101), and five boundary conditions at
the outer radiative shock (3.103)—(3.107).

The results of the numerical calculations have shown
that magnetic tension in the shell causes the inner bubble
boundary to be elongated in the direction of the exter-
nal magnetic Geld, whereas the outer shock &ont teDds
to move faster in the perpendicular direction. The shell
thickness is much greater than in the nonmagnetic case
(with the exception of the bubble poles) and increases
&om the bubble pole to the equator. These main con-
clusions coincide well with the results of the full mag-
netohydrodynamical calculations provided by Tomisaka
(1991,1992), who used a "monotonic scheme" of van Leer
(1977) and Norman and Winkler (1986) to solve the hy-
drodynamical equations and the "constrained transport
method" (Evans and Hawley, 1988) to solve the induction
equation for the magnetic Geld. He considered ten mod-
els with an energy input rate I &om 3 x 1036ergss
to 3 x 10 ergss, interstellar gas number density n
&om 0.03cm to 0.3cm 3, and regular galactic mag-
netic field Bo ——(0 —5) pG.

The volume of the hot bubble interior as a function
of time is shown in the Fig. 20. Here model A is for
&o ——3pG, L = 3 x 10 ergss, and no ——0.3cm
model B is the same, except for Bo ——5 pG, and model
I" is for zero magnetic Geld, Bo ——0. The dashed line
presents the analytic results for a nonmagnetic bubble.
It follows from this figure that the volume of a hot bubble
interior is reduced to 45%—60% of that for a nonmagnetic
bubble. This difFerence decreases with the increase of the
QB-association mechanical luminosity and becomes small
(only 2%) for superbubbles with L = 3 x 10 ergss
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FIG. 20. Time evolution of a magnetized bubble volume filled
vrith a hot interior gas. Numerical results for Bo ——0 are
preserited as a dashed line. From Toxnisaka, 1992.

Thus it seems likely that bubbles with a low energy
deposition Inay be confined within a thin galactic disk
layer by a regular magnetic Geld, but such a 6eld does
not exert a strong inBuence over the more active super-
bubbles. Nevertheless it seems likely that magnetic field
action may partially reduce the filing factor of the hot
rare6ed phase of the interstellar medium and may restrict
mass How &om the galactic disk to the halo.

IV. THREE-DIMENSIONAL SHOCKS

In this section we shall extend our analysis to three-
dimensional shocks. We shall focus here on the relatively
simple thin-layer approximation and its application to
some astrophysical problems.

A. Thin-layer approximation

dm

dt
= p(x, y, z)(u —V')nZ,

d dm
dt
—(mu) = APnE+ V „+mg,dt

(4.1)

(4.2)

where n is the unit vector normal to the shock &ont, I
is the acceleration of the external gravitational Geld, V

Three-dimensional numerical schemes based on the
thin-layer approximation have been developed indepen-
dently by Palous (1990, 1992) and Bisnovatyi-Kogan and
Silich (1991; Silich, 1992a, 1992b).

Let us introduce, following Bisnovatyi-Kogan and
Silich (1991; Silich, 1992a, 1992b) the Cartesian coor-
dinate system (x, y, z). The shock wave will be approxi-
mated by a number of Lagrangian elements which repre-
sent segments of the shock &ont and cover the surface of
the remnant. If m is the mass, r is the radius vector, u
is the velocity of the particular Lagrangian element, and
p(x, y, z) = pof (x, y, z) is the ambient gas density, then
the equations of mass and momentum conservation may
be written as follows:
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is the velocity Beld of the undisturbed gas How, Z is the
surface area of the Lagrangian element, m = 0Z, 0 is
the surface density, and LP = P;„—P „~ is the pressure
diR'erence between the hot interior and the cooler external
gas. The pressure P;„of the hot tenuous gas within the
cavity is a function of the bubble's thermal energy E&h
and volume 0:

du~

dt

AP 8(y, z)
p, 8(AiA2)

du„b, P 8(z, x)
dt p 8(AiA2)

du, AP B(x,y)
dt p, 8(AiA2)

uy —Vy PX+ Qy)
P

u —V,
pg + gz)

(4.1O)

(4.11)

(4.12)

P;„= (p —1)Eih/O. (4.4)

To describe the expansion of the shock we Inust be able
to specify its surface area and de6ne the volume of any
closed three-dimensional region. It is well known &om
difFerential geometry that any surface may be speci6ed
parametrically, with Cartesian coordinates at any point
on the surface being a function of two parameters, A~ and
A2. x = x(Ai, A2), y = y(Ai, A2), z = z(Ai, A2). Then the
surface area element may be de6ned by the expression
(Budak and Fomin, 1965):

dZ = S(Ai, A2)dAidA2, (4 5)

- 2

8(y, z) 0(z, x)
D(A„'A. )

+
a(A, ',

A, )
I X/2

ci(x, y)+ a(x„'x,) )

- 2

(4.6)

] &l,max &2,max0=—
3 ~1,min ~2,min

B(x,y)
8(Ai, A2)

where 0(x;, x~)/B(Ai, A2) = det[8(x;, x~)/0(Ai, A2)] are
the appropriate Jacobians. The most numerically trac-
table expression for the volume of a 3D remnant follows
&om the Ostrogradskii-Gauss theorem and the de6nition
of the surface integral of second kind (Budak and Fomin,
1965):

dx 8g
dt ' dt

= u~) = uy)
dz—= u~.
dt

(4.1S)

Here the function y is de6ned as

E~o~ = E~h + Ea + Eg (4.15)

where Eqh, EA, and Eg are the thermal energy of the hot
bubble interior and the kinetic and gravitational energies
of the shell, respectively. Variations of the total energy
Eq q of the remnant throughout the adiabatic stage of
evolution are defined by the energy input rate L(t) and
the kinetic and thermal energies of the swept-up inter-
stellar gas with temperature T(x, y, z):

8(y, z)
) a(A„'A, )

0(z, x) 8(x, y)+(-, —,)„,', ,
+(.— .)„,', ,

The motion of any Lagrangian element is then described
by seven ordinary difFerential equations Eqs. (4.9)—(4.13).
Approximating the shock &ont by a number N of La-
grangian elements, one gets a system of 7N difFerential
equations of mass and momentum conservation. This set
of equations is coupled by Eq. (4.4), for the gas pressure
within the cavity, and the equation of energy conserva-
tion, valid for an adiabatic shock:

~(z y)
0(Ai, A2)

8(y, z)
0(Ai, A2)

(4 7)

The components of the unit vector normal to the remnant
surface are (Budak and Fomin, 1965):

t
Ee,a

——Eo + L(t)
0

1+—
2 ~l,min ~2,min

p, (Vz + 3kT/rI)

1 B(y, z)
S 8(AidA2)

' (4 8) xdAgdA2 dt, (4.16)

1 8(z, x)
S 8(AidA2)'

1 8(x, y)
S 0(AidA2)'

If parameters A~ and A2 are considered as the Lagrangian
coordinates of the shock front, then Eqs. (4.1)—(4.3) may
be rewritten for the mass p = OS(Ai, A2) per unit of
Lagrangian area, in the very compact form (convenient
for numerical integration)

] l,max 2,max

Ea =—
2 ~l,min ~2,min

p(u + u„+ u, )dAidA2. (4.17)

The work done against gravity is

pugdA, dA2 dt. (4.18)

where Eo is the initially deposited energy and g is the
mean mass per particle. The kinetic energy of the rem-
nant is assumed to be concentrated in the thin shell be-
hind the shock &ont:

8p—= PX)dt
(4 9)

During the radiative phase of expansion, the gas behind
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1,max 2,max
= I(t)—

~1,min ~2,min

x S(At, A2)dAtdA2,

I';„u„

(4.19)

where u is the velocity component normal to the shock
&ont.

Numerical integration of the full set of equations
[Eqs. (4.9)—(4.13) for every Lagrangian element; the
equation of state (4.4) and equation of energy conser-
vation (4.15) for an adiabatic shock; or Eq. (4.19) for
an isothermal shock] then determines the shape, ex-
pansion velocities, and distribution of surface density
o' = p/S(At, A2) along the shell.

B. 30 adiabatic supernova remnants

the shock &ont cools so quickly that it does not add to
the total energy of the remnant. Rarefied hot gas inside
the cavity expands adiabatically and accelerates the sur-
rounding dense shell. The time derivative of the thermal
energy of the remnant is then defined by the equation
[used instead of Eq. (4.15)]:

where the constant (p is defined

0
75(q —1)

Sm
(4.25)

This definition gives better coincidence with the exact
Sedov values for difFerent p than does the approximate
formula (2.63) (Bisnovatyi-Kogan and Blinnikov, 1982).
The initial mass of the remnant was assumed to be equal
to the mass of the swept-up interstellar gas. Then the
initial surface density was

Mg 1= —poBe)4+B2 3
(4.26)

and the initial mass per unit Lagrangian coordinate was
de6ned by the expression

1 1
p = —ppB, S(Ai, A2) = ppB, s—inAt.

3 - 3
(4.27)

The temperature of the surrounding gas was taken con-
stant, T~ = 10 K. Figure 21 shows the results of cal-
culations for the initial radius B = 1 pc of the rem-
nant, the particle number density in the center of the

The evolution of three-dimensional adiabatic super-
nova remnants has been considered by Bisnovatyi-Kogan
and Silich (1991). An instantaneous point explosion with
the energy Ep ——10st ergs was assumed. Then Eq. (4.16)
could be rewritten in diBerential form,

70, 0 =— I,O

1,max 2,max

2 ~1,min ~2,min

p[V + 3kT/rI]dAidA2

(4.2O)

1 —0!o
P =Po

.1+ (&/»)'+ (&/Wp)'+ (z/zp)', + np, (4.21)

where xo, yo, and zo are the characteristic inhomogene-
ity scales in the x, y, and z directions, ap = p /pp.
The Lagrangian coordinates were defined so that at the
beginning of the calculations

x = R sinAlcosA2

Q = B~ Sin A] sin A2)

z = Bto cos Al)

(4.22)

i.e., as spherical coordinates at the surface of an initially
spherical bubble. The initial radius B and. expansion ve-

locity Up were determined by the Sedov (1959) solution,

Calculations were performed for two sets of initial condi-
tions. First was an initially spherical supernova remnant,
which expands in the medium with an ellipsoidal density
distribution
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FIG. 21. Sections and surface density distributions of an
adiabatic shock wave formed from a point explosion in a
medium with ellipsoidal density distribution. The remnant
age t = 9500 yrs. (a) Section by the plane z = 0; (b) section
by the plane y = 0; (c) section by the plane x = 0. From
Bisnovatyi-Kogan and Silich, 1991.
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ambient gas density distribution no ——po/rI = 1cm (g
is the mean mass per particle), the ratio ao of the gas
density at infinity to the central gas density np = 0.01,
and the characteristic scale of the gas density distribu-
tion, xp ——2pc, yp ——4pc, and zp ——8pc. The spheri-
cal shell eventually evolved into a dumbbell-shaped. rem-
nant. The direction of the largest elongation coincides
with the direction of the highest density gradient (x axis).
The surface density distribution is highly anisotropic and
reaches maximum near the remnant waist. The expan-
sion velocities along x, y, and z axes after 9500 years
are equal to u~ = 1420kms, u„= 770kms, and
u = 490kms

Expansion of a supernova remnant that was initially a
triaxial ellipsoid, in a homogeneous ambient gas distribu-
tion, was considered as an another example of SD rem-
nant evolution. The Lagrangian coordinates were taken
&om the relations

x = R sinAicosA2,

the mass of ejecta Mej and its ratio to the swept-up mass
M~, the density of the ambient gas p~, and the ellip-
soid parameters n and P were taken as the initial pa-
rameters. The results of calculations for an ejected mass
M,~

= 3MO, explosion energy Eo ——10s~ ergs, with 73%%uo

in the form of kinetic energy, and ellipsoid axes ratiosR: R„:R, = 1:2: 4 are presented in Fig. 22.
The most interesting evolutionary feature of the adia-
batic triaxial remnant is the change in the direction of
elongation. The largest axis R at the beginning of the
calculations becomes the smallest, and the smallest axis
R, becomes the largest. The shock, which was initially
highly elongated in the x direction, is converted into an
ellipsoidal body elongated in the direction of the z axis.
The surface density distribution remains almost homoge-
neous over the whole remnant.

C. Supershells in a plane-stratified differentially rotating
galactic disk

y Ry sin Ai sin A2 ) (4.28)
Numerical simulations of superbubble expansion in a

plane-stratified, difFerentially rotating galactic disk have

z = R, cosA1

3 M„Mg l
g4nnP pg M,~)

(4.20)

The expansion velocity at the beginning of the calcula-
tions was taken as constant along the remnant,

with R„=nR, R, =PR and nP (1. Here x, y, z
are coordinates of the shock &ont at the beginning of the
calculations. The major axis R is expressed through the
ratio of the ejected mass M,

&
and swept-up mass M~, the

density of the surrounding gas pg, and the constants n
and P:

Jl
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80,0

Up ——(2Zg/M„) ~, (4.30)

My+ M;
f S(Ag, A2)dAgdA2

directed normal to the shell.
The constant initial surface density cr was defined by
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where

P ' ~' P '+QP' —~2
Sp ——1 + — 1n

QP
—2 j2 P—1 QP

—2 b2

-]2 0
-IZ, a I2,0

g

2, $ '-
00-

o, O

I I I I

g00 l800

(4.32)

b = 1+ (n —1) sin A2. (4.33)

The total released energy Ep and the &action of it that
is converted into kinetic energy of the shell motion Eg„

FIG. 22. Sections and surface density distributions of an ini-
tially triaxial, ellipsoidal, adiabatic shock wave in a homoge-
neous interstellar medium. The remnant age t = 4100yrs.
(a) Section in the plane z = 0; (b) section in the plane y = 0;
(c) section in the plane x = 0. From Bisnovatyi-Kogan and
Silich, 1991.
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x = Rp+ R, slnAycosA2,

y = R, sinAq sin A2,

z = zp+R~cosAy)
(4.34)

where —vr/2 & Ai & m/2 and 0 & A2 & 2m. The iiutial
radius of the remnant R was taken to be much smaller
than the characteristic scale of the gas density gradients
in the galactic disk. As was estimated in Sec. III.G,
galactic bubbles enter the radiative phase at an early
time in their expansion. Therefore the analytic solution
[Eqs. (2.100—(2.102)] of Weaver et aL (1977) for the ex-
pansion velocity Up and thermal energy E&p p, depending
on the initial time tH, were used as initial conditions:

been provided by Palous (1990, 1992; Silich, 1991, 1992a,
1992b; Mashchenko and Silich, 1994).

Let us introd. uce a galactocentric coordinate system
(x, y, z) with the initial bubble location at a distance Rp
&om the galactic center and zp above the galactic plane.
Then the Lagrangian coordinates Aq and A2 may be in-
troduced by

tion is approximated with the three-component density
distribution discussed by Dickey and Lockman (1990):

n(z) = ni exp( —z /Hi) + n2 exp( —z /H2)
+nsexp( —

l
z

l /Hs) = n, (0)f(z), (4.42)

along with the coherent change of all three components
in the gas density distribution,

where nq(0) = ni + n2 + ns is the total gas number den-
sity in the midplane of the galaxy and f (z = 0) = l. In
the solar vicinity nq ——0.395cIn, Hq ——127pc; n2 ——

0.107cm, H2 ——318pc; ns ——0.064cm, H3 ——403pc.
Some calculations have been carried out (Silich, 1992b)
for a composite Lockman et aL (1986), and Reynolds
(1989) gas density distribution with a widespread ion-
ized component. The characteristic scale heights H; in
Eq. (4.42) for explosions happening at diB'erent places
in the galaxy were taken proportional to the half-width

Hqyq of the H I layer in the galactic plane:

H;(R) = nH;(Ro), n = Hi(2(R)/Hi)2(Ro), (4.43)

& 125 L lp'
Up ——0.6 —

l
t~

gl54vr pp)
(4.35)

Here

n;(R) = Pn; (Ro), i = 1,2, 3. (4.44)

5
Eth, o = —LotH,ll (4.36) i OH((R)

OHI(Ro)
(4.45)

(154m' ppR, )l
q 125 Lp )

(4.37)

Here pp is the undisturbed interstellar gas density at a
point with coordinates of the bubble center, while Lp is
the energy input rate due to winds &om massive stars
and supernova explosions in an OB association. Taking
into account galactic rotation V, q, one obtains the com-
ponents of the expansion velocity at an initial time t~.

U~ = Up sin Ay cos A2 —Vz.~t —,g

x
Uy —Up SlIl A$ SlIl A2 + Vg~t

U, = Up cos Al,

(4.38)

2V, , (4.39)

2V, ,
Qy =

R2 9)

where the rotation curve of Wouterloot et aL (1990)

V, g(R) = 220(R/8. 5 kpc) ' kms (4.41)

was ad.opted.
The average structure of the gaseous disk in the z direc-

where R = gx2 + y2 is the cylindrical galactocentric ra-
dius of the particular Lagrangian element. It was as-
sumed that interstellar gas rotates around the center of
the galaxy under the action of a gravitational 6eld,

z
g~ = —27rGo'g —4+Gp~z,

Z + Zd

(4.46)

where op and zg are the surface density and scale height
of the stellar disk. The parameter p~ is the e6'ective
density of the galactic halo. For a uniform spherical halo
with density pgp we have p~ = pgp/3. To fit the observed
rotation curve, parameters pH and og had to be coupled
with the relation (Kuijken and Gilmore, 1989)

p~ = 0.015 —0.0047
l l

Mo/pc . (4.47)
q50Mo pc')

Finally Caldwell and Ostriker's (1981) exponential dis-
tribution of the stellar coInponent surface density along
the galactic disk was adopted,

(Ro —R)
~~(R) = &~(Ro) exp

l

(4.48)

with the characteristic scale of inhomogeneity L
4.5kpc and crt(Ro) = 46Mo/pc2.

The temperature distribution in. the gaseous disc of our
galaxy is poorly known. But measurements of the soft-

where oHp is the surface density of a neutral hydrogen
disk. The parameters Hlg2 and oHI were taken &om the
Wouterloot et aL (1990) model. In the solar vicinity
Hi)2(Ro) = 150pc, aHi(Ro) = 8.57Mo/pc .
component of gravity g, was approximated by the linear
interpolation of Allen's (1976) data or was specified by
the analytic formula of Kuijken and Gilmore (1989):
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x-ray background and OVI absorption lines by Burstein
et al. (1976) and Jenkins and Meloy (1974) indicate the
existence of a hot galactic halo. To include this efFect
it was tentatively assumed that temperature grows with
the distance to the galactic plane as

3000—
3 t=72.8 Myr

1 t= 3$.9 Myr

or

n2T
(4.49)

35.2 Myr

I I [ CM l i f
l I

-30 -15 0 15 30
Uz(km/s)

Ap Tp
T(z) =

n,(zj
(4.50)

Z«&ax=890pc
(b

Zmax=1j.40pc

t=28Myr Zmin=-890pc t=28Myr Zmin=-490pc

Zmax~550yc Xmax&40pc

where the gas temperature in the midplane of the galaxy
was taken to be Tp ——6000K.

It was assumed that the mass accumulation stops for
those Lagrangian elements which reach the regions where
sound speed a, begins to exceed the expansion velocity.
Note that the thin-layer approximation is no longer va i
under such conditions. The motion of these elements
proceeds without collisions.

The thin-layer approximation [Eqs. (4.9)—(4.14) and
Eq. (4.4)] eras used by Silich (1992a, 1992b; Silich et
&&l., 1994) to investigate galactic superbubble evolution
in three dimensions.

Figure 23 shows a multisupernova remenant in the
shape of an hourglass, with a noticeable degree of de-
formation by the galactic shear. After the bubble takes
such a shape, both gravity and pressure within the cav-
ity combine to decelerate the lower parts of the shell.

PIG. 24. Variation of the z component of thof the bubble ex-
pansion velocity with the position of the Lagrangian elemen
above the galactic plane. Curves 1 and 2 correspond to t e
e ' t L = 2 and L = 0.5 and a z component
of the gravity as in the solar vicinity. Curve 3 is the bubble's
evolution with an energy input rate o 38 — k~ ~ ~ f L = 0.5 and weak
gravity like that at 15 kpc from the galactic center. Prom
Silich, 1992b.

The z component of the expansion velocity slows down
and changes direction near the plane of symmetry z = 0.
This process is illustrated in Fig. 24, where distribution
of the z component of expansion velocity over the rem-
nant surface is shown for supershells located at diferent
distances &om the galactic center. An expanding cusp,
i.e., an expanding dense ring, is orme qd in the e uato-
rial plane of the remnant. This is, as we might expec,
the onset of destruction of the shell as a coherent struc-
ture. In the inner part of the Galaxy up to 50%% of the
swept-up interstellar gas is concentrated near the galac-
tic midplane after 35 Myr of evolution (Silich, 1992b).
Figure 25 displays a cross section of the supershell cross
section by the midplane of the Galaxy at diKerent times.
The action of the z component of the gravity restricts
the lifetime of the superbubble and does not allow deve-
opment of highly elongated structures. The ratio of the
major to the minor axis of the supershell does not exceed
2—3 during the time of cusp formation. A displacement
of the energy source Rom the plane of symmetry in t e

t~j4Myr Zmin~-550pc t~14Myr Zmin~-3SOpc

10000 =
(

t~35.9 Myr

t 29.57500 =

5000 ««««««««««««i««««
5000 7500

a)

Myr

t~b5.2 Myr

{b)

t 29.6 Myr

5000 7500 10000

x(pc)

PIG. 23. Galactic superbubble morphology for different lo-
cations of the parent OB association relative to the galactic
plane. Left: the OB association is at the midplane of the
galaxy. Right: the OB association is 50 pc above the galactic
plane. Prom Silich et al. , 1994.

FIG. 25. Sections of superbubbles in the galactic plane z = 0
at different times. The bubble centers lie at 10 kpc from the
galactic center. (a) Energy input rate I,38 —2; (b) energy
input rate L38 ——0.5. Prom Silich, 1992b.
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FIG. 26. Distribution of the relative column density along the shell. (a) OB association is in the midplane of the galaxy. Curves
1,2,3 correspond to the galactocentric radii B = 5, 8.5, and 15 kpc. (b) OB association lies above the galactic plane. Curves
1,2,3 correspond to 0, 50, and 100 pc distance from the OB association to the galactic plane. Energy input rate L38 ——1.05,
B = 8.5 kpc. Prom Mashchenko and Silich, 1994.

z direction generates a strongly asymmetrical structure,
and the bubble may break out of the galactic disk (Silich
et at. , 1994).

Palous (1992) has made a realistic matching of the H
I distribution in a particular region of the Milky Way
Galaxy, 55' & E & 75, —5 & b & 5, within the radial
velocity interval 97kms & VgsR & 75kms, which
corresponds to the galactocentric distance B = 17 kpc
and contains an expanding supershell GS064-01-97. He
found that he could reproduce observations if at this dis-
tance the &action of H I in the thick exponential com-
ponent [the third term in Eq. (4.42)] is 3 to 5 times
greater than near the Sun. So numerical models based on
the thin-layer approximation have predictive capabilities
that may be quite useful.

The organizing role of supershe'lls in molecular cloud
formation has been reexamined for three-dimensional
remnants by Mashchenko and Silich (1994). They used
the galactic model, as described above, and performed
calculations for three galactocentric radii (5 kpc, 8.5 kpc,
and 15 kpc) and three position of the parent OB associa-
tion above the galactic plane (0, 50 pc, and 100 pc). The
energy input rate was assumed to be constant, with three
difFerent values I = (0.315; 1.05, or 3.15)xlOs ergss
which corresponds to 30—300 supernova explosions during
30 Myr, the lifetime of an OB association.

The time evolution of a superbubble shape in a dif-
ferentially rotating galactic disk is illustrated in Fig. 23.
The OB association located in the midplane of the galaxy
(left in Fig. 23) generates a superbubble that divers
strongly &om the remnant produced by the same asso-
ciation located 50 pc above the galactic plane (right in
Fig. 23). In any case, during the late stages of expansion
near the galactic plane, a typical "belt" with enhanced
surface density develops.

The distribution of the relative column density N/N„
near the waist of a supershell for difFerent bubble loca-
tions in the galaxy is presented in Fig. 26. Here the crit-
ical value N which shields the internal shell layers Rom
the background UV radiation is defined by Eq. (3.147).
The column number densities across some segments of

Mcl

0
16 18 20 22 24

t (Myr)
26 28

FIG. 27. The mass of the shell material that can be trans-
formed into molecular form. Curves 1,2,3 correspond to the
energy release rates I38 ——0.315, 1.05, and 3.15. The bubble
center is 5 kpc from the galactic center. From Mashchenko
and Silich, 1994.

the remnant Inay exceed the critical value N, . This may
happen in the inner parts of the Milky Way (R ( 15 kpc)
only, if the OB association is located fewer than 100pc
&om the galactic plane. It was estimated that the molec-
ular layer is likely to be developed within a very narrow
(in the z direction) parts of the shell. This newly formed
molecular gas layer is con6ned to a slab with a half-width
smaller than one hundred parsecs, in agreement with the
observed distribution of molecular clouds in the Milky
Way Galaxy (Solomon and Sanders, 1980). The mass of
the shell, which can be transformed into molecular form,
may reach about 10sMO (see Fig. 27), despite the small
thickness of the molecular layer. Most of the molecular
gas is concentrated on opposite ends of the remnant, as
was expected &om the two-dimensional calculations of
Tenorio-Tagle and Palous (1987; Palous et aL, 1990). It
seems, therefore, very likely that supershells may play
an important role in molecular cloud formation and thus
stimulate the process of star formation in the galaxy.
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thickness of the gaseous disk in a normal spiral galaxy.
The vertical distribution of the H I gas number density
is approximated by the Gaussian law
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FIG. 28. The rotation curve of the Ho II galaxy and its ana-
lytic approximation. From Puche et a/. , 1992.

D. Superbubbles in the Holi galaxy

The galaxy Ho II (Puche et al. , 1992) is the dwarf
irregular companion of the M81 group, which lies at a
mean distance of 3.2 Mpc. The total kinematic mass of
the galaxy was estimated as Mq & = 2 x 10 Mo with
approximately 30%%uo of this mass in the form of neutral
hydrogen (MHy = 7 x 10 Mo). The scale height of the H
I layer derived &om measurements of the velocity disper-
sion is H = 625pc. This value is much greater than the

with the radial H I column density distribution tabulated
by Puche et aL (1992). The orientation parameters,
inclination i and position angle PA, were estimated to
be i 40', PA 177'. The rotation curve (Fig. 28)
displays a fast, almost linear, growth in the inner part of
the galaxy and then almost Hat behavior up to a distance
of 7.5 kpc from the galactic center.

The VLA observations (Puche et al. , 1992) of the HoII
galaxy have revealed 51 objects, with characteristic sizes
ranging Rom 100 pc to 1700 pc, which may be considered
as expanding shells or holes in the H I column density
distribution. Massive stars in the centers of large holes
and H emission &om the interior of small structures and.
boundary regions of the larger ones provide observational
evidence for the mechanism of multiple correlated super-
nova explosions within rich OB associations, as has been
discussed earlier.

Location and orientation of the H I holes in the plane
of view are shown in Fig. 29 from Puche et al. (1992).
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FIG. 29. Location and orienta-
tion of the H I holes in the Ho
II galaxy. From Puche et al. ,
1991.
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(4.52)

1+ (—")z
(4.58)

where G is the gravity constant, r = gx2 + y2 is the
cylindrical radius, and ~ = gx2 + y2 + z2 is the spheri-
cal radius. To fj.t the rotation curve, the parameters M
and r, were determined as follows: M = 1.179 x 109MO
and r, = 929 pc. Thermal evaporation of the cold dense
shell and radiative cooling &om the hot bubble interior
were allowed.

The numerical model described at the beginning of
this section generates the three-dimensional shape, sur-
face density distribution, and expansion velocity Geld of
the remnant. To compare the results of numerical cal-
culations with observations, we must project the shells
onto the plane of the sky.

Let us introduce a galactic coordinate system x, y, z,
with its origin at the center of Ho II, and the coordinates
z', y', z', with the z' and y' axes located in the plane
of the sky and the z' axis directed towards the observer.
If one assumes the x' axis to be common and coinciding
with the line which is the intersection between the plane
of the galaxy and the plane of view, then the observed
coordinates x', y', z' are de6ned as follows:

X X )

y' = ycosi+ zsini,

z = —ysini+ zcosi,

(4.54)

(4.55)

(4.56)

where i is inclination angle. Note that as a rule anal-

There are some examples of almost radial orientation of
the major axis of the remnant which seem diKcult to
understand &om the theory developed. in Sec, III. To de-
termine evolutionary differences between superbubbles in
massive disk galaxies and those in dwarf, low-mass sys-
tems, Mashchenko and Silich (1995) have provided nu-
merical simulations of superbubble evolution in the. Ho
II galaxy.

It was tentatively assumed. that density of the stellar
component obeys the King distribution and is the domi-
nant agent in the gravity Beld, i.e., the self-gravity of the
gas component was ignored. Then the z component of the
gravitational field g, and rotational velocity V, q(r) may
be expressed as follows (Tomisaka and Ikeuchi, 1988):

ysis of the galactic rotation curve alone does not allow
us to distinguish between i and (180 —i), i.e. , between
two possible directions of the angular momentum of the
galaxy.

The H I column density along any line of sight which in-
tersects with the remnant surface may then be expressed
as

N(x', y') = ) ' + n(x', y', z')dz',
cos

(4.57)

where the index j denotes intersection with difI'erent La-
grangian layers, Nz ——o~/ri is the column number density
of the shell, o.

~ is the surface mass density, g is the mean
mass per particle, (~ is the angle between line of sight
and the unit vector normal to the shell surface. The last
term in Eq. (4.57) gives the total column density outside
the remnant. The column number density goes to inanity
for those Lagrangian elements in which (~ ~ 90 . To ex-
clude this eQect, which is due to an infinitely small shell
thickness, it was assumed the projected column number
density for Lagrangian elements with (z ) 60' would
be the same as for the angle (~ = 60'. This somewhat
arbitrary procedure smoothed the column density distri-
bution near the edge of the H I hole in the plane of the
sky, but did not provide a significant inBuence on the
later analysis. Approximating the column density iso-
dense with the 10'%%uo contrast relative to the surrounding
gas by an elliptical hole, one gets then the position of the
hole center, its major and minor axes, and their orienta-
tion.

Superbubble evolution was simulated for three galacto-
centric radii: R=1.5 kpc, 4.17 kpc, and 6 kpc. The parent
OB association was assumed to be located in the mid-
plane of the galaxy and to provide an energy input rate
3.4 x 10 ergss which corresponds to approximately
30 supernova explosions during 30 Myrs, lifetime of the
OB association. For every galactocentric radius nineteen
polar angles, 0;, 0,+~

——0;+10' were considered, where
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FIG. 30. The density of distribution for the main axis of the
H I hole to be oriented in the P direction. From Mashchenko
and Silich, 1995.
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Galactic
center

FIG. 31. Scheme of H I holes orientation in the plane of sky.
From Mashchenko and Silich, 1995.

4.17 kpc, and 6 kpc. Thus for the adopted direction of
the galactic spin i 40', all major axes of the H I holes
have to be within the range 90' & P & 180'. Were the
vector of the galactic angular momentum to be directed
away from the observer (i' = 180' —i = 140'), the angle
P should fall in the interval 0' & P & 90'. Thus we get
a simple method which allows us to distinguish between
two possible directions of galactic spin. If the major axes
of the H I holes are concentrated in the third quadrant
(90' & P & 180'), then i' & 90'. If the major axes of the
holes are in the second quadrant (0' & P & 90'), then
angle i ' should be greater than 90'.

An observed value for the angle P may be extracted
&om the Puche et al (199.2) observations as follows:

Q = PAh, —p + 90', (4.59)

1 Any
Pb = (4.58)

Here n is the total number of holes for which calculations
were done at the particular galactocentric radius R, Ln~
is the number of holes with the main axis in the interval
EP, and P is the angle between the line which connects
the center of the galaxy with the center of the H I hole
and the observed main axis of the ellipse, which repre-
sents this hole (see scheme in Fig. 31). The tangential
orientation of the main axis corresponds to P = 90'. The
histograms 1,2,3 are for galactocentric radii R = 1.5 kpc,

0 is the angle between the x axis and the radius vector
of the shell's center in the plane of the galaxy. The value
of 00 was adopted to be —90

For inner galactic regions with R ( 1.5kpc, calcula-
tions were continued up to 70 Myr. The theoretical maps
of the column density distribution and parameters of the
holes were calculated with the interval 10 Myr for ev-
ery value of the polar angle O. For galactocentric radii
R = 4.17kpc and R = 6kpc, calculations were stopped
after 80 Myrs, and the time interval was equal to 20 Myr.
Thus the H I maps and main observational parameters of
each H I hole (its major and minor axes and their orien-
tation) were generated for 285 supershells with different
ages and different locations in the galaxy.

The results of the numerical calculations are presented
in Fig. 30 in the form of histograms for the density of dis-
tribution pb of H I holes with major axes in the different
directions P:

where PAp is the position angle of the hole s major axis,
while P is the polar angle of the hole's center. Analysis
of the observational data shows that major axes of the
H I holes in the Ho II galaxy are really concentrated in
the third quadrant (see Table III), but only in the outer
part of the galaxy (R ) 3.4kpc). Here the y2 criterion
rejects equipartition of the main axes between the sec-
ond and third quadrants with the probability o; = 95%.
In the inner part of the galaxy, distribution of the main
axes of the holes between second and third quadrants
is more homogeneous. Here the y criterion rejects the
homogeneous distribution of the main axes between sec-
ond and third quadrants with the probability n = 70'Fp

only. This analysis gives evidence in favor of the Ho II
spin's being directed away from the observer (i' 140').
This conclusion is in contradiction with the results of
Karachentsev (1989), who predicts (i' = 43 + 8') from
an analysis of the distribution of the dust clouds. We
are uncertain about the reasons for this discrepancy. Ei-
ther Karachentsev's method does not work well for the
almost-face-on galaxies, or some physical reason restricts
the action of the galactic shear on supershell evolution.

We assume the different orientations of the H I holes
come &om interaction of the shell with large-scale in-
terstellar clouds or &om supershell collisions, which are
more &equent in the inner part of the galaxy as a result
of their higher density in this region. Thus analysis of the
statistical properties of superbubble ensembles and com-
parison with the numerical models may provide a good
opportunity to study the structure and global properties
of the interstellar medium in the nearby galaxies.

V. CONCLUDING REMARKS

TABLE III. The orientation of H I holes in the Ho LI galaxy.

Galacto centric
distance

(kpc)
0—7.5
0—3.4

3.4-7.5

Number of
holes with

0' &/&90'
24
9
15

Number of
holes with

90' & Q & 180'
20
14
6

45 Jp

70&p

95+p

Observations of shell-like structures in galaxies have
revealed considerable deviations kom spherical symme-
try, prompting the development of theories dealing with
nonspherical, mainly axisymmetrical gas 8ows. We have
described here models based mainly on the thin-layer ap-
proximation, which permits us to calculate not only 2D,
but also 3D, models (in fact, they are called 1.5D and
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2.5D hydrodynamics, because of the negligible thickness
of the shell and the use of an averaged value of the inner
gas pressure in the calculations). The interpretation and
models of diferent astrophysical objects observed during
the last decade are presented here on the basis of these
calculations.

This approach remains approximate, but the precision
of the calculations is rather high, because the parameter
4/R is really small, whereas the temperature and the
sound speed within the cavity are high in most cases
of application. It is not clear how much the models
could be improved by the use of full 2D and 3D calcula-
tions. Three-dimensional calculations require such pow-
erful computers and so much time to reach reasonable
precision, that they cannot be used for a great number
of observed objects. This is true of 3D calculations with
barotropic equations of state, as well as for calculations
taking account of thermal processes.

The existence of the small parameter A/R produces
di%culties even for 2D calculations, especially those tak-
ing account of thermal processes. The sensitivity of the
radiation processes to temperature in combination with
large gradients in the shell makes necessary a very fine
grid in the shell and around, which must be adaptive be-
cause of continuous joining of matter to the shell. These
diKculties probably could be solved by using mixed
Eulerian-I agrangian schemes with adaptation, but the
results of 2D calculations made up to the present time

by less sophisticated methods in many cases do not ex-
ceed in precision the calculations made by the thin-shell
approximation.

In our opinion, the methods described here can be
widely applied for construction of models interpreting nu-

merous observations of supernova remnants, superbub-
bles, and other shell objects. The full 2D and 3D cal-
culations can in principle reach higher precision and give
more complete information, but complications connected
with the development of numerical schemes and consum-

ing of numerical time would not, in our opinion, permit
their use for interpretation of numerous observations, but
only for more detailed study of the most interesting ob-

jects.
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