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Although thermodynamic fluctuation theory originated from statistical mechanics, it may be put on a
completely thermodynamic basis, in no essential need of any microscopic foundation. This review views
the theory from the macroscopic perspective, emphasizing, in particular, notions of covariance and con-
sistency, expressed naturally using the language of Riemannian geometry. Coupled with these concepts is
an extension of the basic structure of thermodynamic fluctuation theory beyond the classical one of a sub-
system in contact with an infinite uniform reservoir. Used here is a hierarchy of concentric subsystems,
each of which samples only the thermodynamic state of the subsystem immediately larger than it. The re-
sult is a covariant thermodynamic fluctuation theory which is plausible beyond the standard second-order
entropy expansion. It includes the conservation laws and is mathematically consistent when applied to
fluctuations inside subsystems. Tests on known models show improvements. Perhaps most significantly,
the covariant theory offers a qualitatively new tool for the study of fluctuation phenomena: the Riemanni-
an thermodynamic curvature. The thermodynamic curvature gives, for any given thermodynamic state, a
lower bound for the length scale where the classical thermodynamic fluctuation theory based on a uniform
environment could conceivably hold. Straightforward computation near the critical point reveals that the
curvature equals the correlation volume, a physically appealing finding. The combination of the interpre-
tation of curvature with a well-known proportionality between the free energy and the inverse of the
correlation volume yields a purely thermodynamic theory of the critical point. The scaled equation of
state follows from the values of the critical exponents. The thermodynamic Riemannian metric may be
put into the broader context of information theory.
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606 G. Ruppeiner: Riemannian geometry in thermodynamic fluctuation theory

I. OVERVIEW

The formula for entropy
S=kglnQ (1.1)

inscribed on Boltzmann’s gravestone!' is one of the main-
stays of statistical mechanics. The inversion of this for-
mula by Einstein,

kg |’ (1.2)

Q=exp

is the starting point for thermodynamic fluctuation
theory, now found in almost every textbook on statistical
mechanics. What could possibly be new about this topic?

This question is addressed here in a review of a number
of ideas which have followed the founding of the classical
thermodynamic fluctuation theory. This review is organ-
ized as follows: first, a relatively simple and comprehen-
sive introduction that provides a nontechnical discussion
of the basic physical ideas; second, a summary of the
classical thermodynamic fluctuation theory, including a
discussion of its limitations; third, a review of work add-
ing covariance, consistency, and the Riemannian
geometry to the theory; fourth, simple examples comput-
ing fluctuations for models where methods from statisti-
cal mechanics offer an exact comparison; finally, a discus-
sion of the Riemannian thermodynamic curvature and
the curvature theory of the critical point. Since many of
the ideas of Riemannian geometry are not familiar in the
thermodynamic context, some care will be taken in devel-
oping them.

In this era when computers are increasingly being used
to perform symbolic mathematics, a note is in order
about their role in this review. Though many of the re-
sults have been checked with such programs, all the
non-numerical calculations were performed by hand,
with the exception of those in Sec. VI.C.

Table I gives the general notation in this review.

Il. INTRODUCTION

A. Fluctuations with one variable

Consider a very large closed thermodynamic system
AVo in thermodynamic equilibrium. It has fixed volume

V, and fixed energy per volume u,. Let A, with fixed
volume ¥, be some subsystem of AVo (see Fig. 1). The

energy per volume of A4, is u, which is not fixed by any
explicit constraint?; all the other independent thermo-

This is the modern notation; actually appearing is S =k logW
(Broda, 1983).

2Some texts leave the fluctuating function unspecified (e.g.,
Landau and Lifshitz, 1977). However, it is difficult to envision a
single thermodynamic quantity fluctuating at fixed energy; so
there seems to be no essential loss in generality in taking it to be
the energy density, or some function of the energy density.
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Av,

FIG. 1. Usual setup in the classical thermodynamic fluctuation
theory. A single subsystem A, with volume ¥V, of a much
larger closed environment AVo‘ Both A4, and its reservoir

A”o/ Ay are regarded as uniform systems. This structure is

also used in canonical ensembles in statistical mechanics.

dynamic parameters of 4, are held fixed. An example of
such a case is a pure fluid subsystem of Ay, with closed

boundaries, in which only the exchange of heat is allowed
with the environment. Another example in which a sin-
gle fluctuating variable suffices is a paramagnetic spin
system.

The usual statement of the second law of thermo-
dynamics says that u takes on that value which maxim-
izes the entropy So(u,u,) of Ay (Callen, 1985). Howev-

er, statistical mechanics says more; it describes fluctua-
tions around this state of maximum entropy (Landau and
Lifshitz, 1977). Let us argue from the microcanonical
ensemble. Here the basic postulate is that all accessible
microstates® of AVo occur with equal probability. There-

fore the probability of finding the internal energy of A4,
between u and u +du is proportional to the number of
microstates of 4 Vs corresponding to this range:

Py(ulug)du=CQy(u,uq)du , (2.1)

where Q(u,u,) is the density of states, and C is a nor-
malization constant.*

Now, by Eq. (1.1), Boltzmann’s constant kp times the
natural logarithm of Qy(u,u,) is the entropy of 4y, , so

Solu,ug)

% du . (2.2)

Py(uluy)du=C exp

3A microstate is the specification of the quantum numbers of
all the atomic constituents of the subsystem. A macrostate con-
sists just of the specification of the independent macroscopic pa-
rameters, such as energy or particle density. Generally, a mi-
crostate determines uniquely a macrostate, but not vice versa.

4This probability is for finding a state in a small range at some
specific instant in time, with no knowledge about the history of
the subsystem. Information about history improves the chances
of guessing the state, since states are correlated over time. But
time correlations belong to the domain of dynamic phenomena
and are beyond the scope of either equilibrium statistical
mechanics or thermodynamic fluctuation theory.
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TABLE 1. Notation for symbols appearing in more than one place in this review. Because of the large number of symbols in thermo-
dynamics, we occasionally use the same symbol for different quantities. The usage should be clear from the context.

Notation Meaning
Ay open subsystem of AVo with volume V
A"o large closed thermodynamic system with volume ¥,
A,,c environment AVO\AV, with volume V., =V,—V, of Ay in Ayo
F=(1/T, —,u‘/T, “‘[.Lz/ T,...,u’/T) intensive parameters in the entropy representation
F,=(1/T,—u'/T, ...,—p/T, ... extended list of intensive parameters
K* drift vector
M magnetization
N number of atoms in a single-component system
N number of molecules of the ith species
P=(T,u\1?, ... ,u") intensive parameters in the energy representation
P=Py(x|xq)=P,(x|x,) probability density with V— o
x x
pP=pP ‘ t(? probability density with nonzero ¢,
P,=(T,u',...,—p,...,u") extended list of intensive parameters
So=Sp(x,x4) entropy of AVo when A, is in the state x
T temperature of Ay
T, critical temperature
U internal energy of A,
V,Ve.,Vo volumes of Ay, AVC’ and AVo’ respectively
X=(U,N,N% ..., ,N" extensive parameters in the entropy representation
X,=(UN', ...,V,...,N) extended list of extensive parameters
Y,=(S,N',...,V,...,N" extended list of extensive parameters
a=X/V=(u,pLp% . ..,p" standard densities of 4, in the entropy representation
ay,a, standard densities of AVo and AVc’ respectively
a,=(U/X'N'/X? ...,1) extended list of densities
d spatial dimension
f=u—Ts Helmholtz free energy
g determinant of g
8ap metric elements
g% inverse of the metric elements
h magnetic field
kg Boltzmann’s constant
m=M/N magnetization per spin
n=r+1 dimension of the thermodynamic state space
P pressure
r number of fluid components
s=s(a) entropy per volume
t=1/V “time” parameter
t=(T—T,)/T, reduced temperature
u=U/V internal energy per volume of A,
Uug internal energy per volume of Ayo
x=(xL,x2 ...,x" general coordinates
x'=(x"x"% ... ,x" general coordinates
Ax®*=x%—x§ coordinate differential
Qyla,aq) density of states
K=K K, constant of proportionality between R and ¢!
Ky constant of proportionality between ¢ and £~¢
Ky constant of proportionality between R and &?
" chemical potential of a single fluid component
u chemical potential of ith fluid component
correlation volume
&=—R/2 Gaussian curvature
P single-component fluid density
o density of the ith fluid component
¢=s—u/T+up/T thermodynamic potential, or free energy, per volume
o=u—Ts—up thermodynamic potential, or free energy, per volume
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If we regard entropy as a thermodynamic quantity equal
to the sum of the entropies of 4, and its environment
AVo\ Ay, then we have arrived at the classical theory of

thermodynamic fluctuations (Einstein, 1907, 1910). The
next step is usually to take V,— « and to approximate
the probability density Py (u|u,) by expanding the entro-
py to second order about its maximum at ¥ =u,. A stan-
dard exercise (Landau and Lifshitz, 1977; see also Sec.
II1.B of this review) reveals

PV(u|u0)du
=1/ Vglug)/(Zmlexp --?Vg(uo)(u—uo)z du, (23)
where
1 d%
= R 2.4
8(uo) kg du? u=u, @4

and s=s(u) is the entropy per volume in the thermo-
dynamic limit. This Gaussian approximation is adequate
for small deviations of u from u,.

B. Some technical problems

Despite its effectiveness, this line of thought leads to
difficulties when pursued beyond the Gaussian approxi-
mation. First, instead of characterizing the thermo-
dynamic state of 4, with the energy density u, suppose
we choose some other thermodynamic parameter
x=x(u)? The counting of the microstates which led to
Eq. (2.1) can be done equally well with x. If we simply
take the entropy again to be proportional to the loga-
rithm of the density of states, the result should be the
same expression as Eq. (2.2) with x’s in place of u’s.
Indeed, Landau and Lifshitz (1977) presented this equa-
tion with a general coordinate x, since, as they put it,
“the discussion made no use of any specific property of
the energy.”

But we obtain a different expression if instead we start
with Eq. (2.2) and make a straightforward coordinate
transformation ¥ —x(u). The left-hand side goes to

Pyulug)du= dx =Py(x|xq)dx ,

du
PV(u|u0) [dx

(2.5)

which gives the probability of finding the new parameter
in the range from x to x +dx. On the right-hand side of
Eq. (2.2) the thermodynamic entropy is a function of
state, invariant with respect to a coordinate transforma-
tion. Therefore

So(x,xq)

PV(x ‘XQ)dx =C
kB

dx , (2.6)

du o,
dx P
which does not have the form of Eq. (2.2), since the

derivative of u on the right-hand side is not generally a

Rev. Mod. Phys., Vol. 67, No. 3, July 1995

constant and may not simply be absorbed in the normali-
zation factor C.

Consequently, if we argue using statistical mechanics,
we get one expression, but if we argue using mathematics
in the purely thermodynamic regime, we get another.
Indeed, the latter argument reveals clearly that the form
of the thermodynamic fluctuation formula (2.2) depends
on the coordinates; we say that the equation fails to be
covariant. This suggests possible problems not only with
Eq. (2.2), but with the statistical mechanical argument
that produced it.

At first, this may appear to be a minor issue, open to
several possible solutions. Perhaps the somewhat offhand
presentation given here of the statistical mechanical
derivation of the theory has overlooked some special
feature of the energy density, which sets it apart from
other variables.” Hence the prefactor of the exponential
term in Eq. (2.6) might simply always happen to be a con-
stant in energy coordinates. But it is not easy to frame
an argument as to why this should be so. Indeed, the
proposition that theory equation (2.2) is correctly stated
in terms of the energy density is easy to test with simple
examples. As will be seen in Sec. V, results do not offer
much support for such a point of view.

A second try is simply to back out of this issue by say-
ing that, at large enough volumes, fluctuations in the in-
tensive parameters® become very small, and the Gaussian
approximation, free of this difficulty, as we show below,
is adequate. Furthermore, we cannot expect more from
thermodynamics. We hope to convince the reader, how-
ever, that this viewpoint is unnecessarily limiting.

Let us look at another class of problems with Eq. (2.2),
which we refer to as a lack of consistency. First, we
define the average value of a thermodynamic function as

(fY= [ FPy(x|xo)dx . @.7)
There is nothing in the entropy function to ensure that
2.8

if Vy— . Physically, Eq. (2.8) must hold for all V, as
will be shown in Sec. III.C, but it clearly will not hold
with Eq. (2.2) unless Sy(u,u,) is an even function of
u —uy. There is nothing in the laws of thermodynamics
which demands that the entropy be such, beyond the
Gaussian approximation.

In Sec. II.LD we shall see yet another problem in the
category of consistency: the Chapman-Kolmogorov
equation is not satisfied by Eq. (2.2). This equation
emerges when we go to the next level and consider fluc-

<u>=u0

SIndeed, the discussion of the microcanonical ensemble is fre-
quently given in the context of Liouville’s theorem of classical
mechanics, where the energy does have a special role.

SAn intensive parameter is one that does not scale up with the
system size, for example, density, temperature, or pressure. An
extensive parameter scales up in proportion to the system size,
for example, internal energy, mole numbers, or entropy.
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tuations inside the subsystem A4,.

It must be emphasized that these issues are not
confined merely to very small subsystems. Fluctuations
near the critical point become very large, and the Gauss-
ian approximation to the classical thermodynamic fluc-
tuation theory becomes inadequate, for subsystems of
macroscopic size.

Before proceeding, let us show that the Gaussian ap-
proximation (2.3) has a number of very positive features
that allow it to serve as an essential building block for a
correct theory. First, it becomes exact as the subsystem
volume V becomes very large, since in this limit fluctua-
tions of the intensive quantities become very small.
Second, the Gaussian approximation is covariant in
form. A straightforward coordinate transformation
u—x(u) in Eq. (2.3) establishes that, to second order in
the displacement from x,[ =x(ug)],

Py(x|xo)dx =1 Vg(xg)/(27)

X exp —gg(xo)(x—xo)z dx, (2.9

where’

2

glxg)= glug) . (2.10)

du
dx

Fluctuations are small in the regime of validity of the
Gaussian approximation; so the derivative of u with
respect to x is constant over the range of reasonably
probable states. Therefore Eq. (2.9) is of precisely the
same form as Eq. (2.3) in energy coordinates. Third,
from the symmetry of the Gaussian distribution, the
average value of x is x, for any choice of coordinate, in-
cluding the energy density.

C. A physical difficulty

Let us depart for now from these somewhat formal
mathematical technicalities and turn to a problem at the
heart of the physics. For specificity, let AVo be a very

large closed pure-fluid system with known, and fixed,
thermodynamic state. Open the boundary of the en-
closed subsystem A to the exchange of particles, as well
as energy, with its environment A4 v,\ Ay

A standard assumption in classical thermodynamic
fluctuation theory is that the environment Ay \ Ay of

Ay is uniform. However, there are certainly departures
from homogeneity. Especially significant are those of the
local surroundings of A4, which tend to fluctuate along
with 4. These fluctuations raise questions about the as-

7Equation (2.10) is the transformation rule for a second-rank
tensor. This transformation rule appears in standard treat-
ments of the Gaussian approximation (Landau and Lifshitz,
1977) and is in no sense new to thermodynamics.
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sumption of a uniform environment.

For simplicity, pitch the discussion entirely in terms of
density fluctuations, even though doing so is not really
correct, since the energy fluctuates independently of den-
sity. But this assumption does serve as an educational
device and is not completely removed from realistic
cases, since, near the critical point, density fluctuations
are much larger than energy fluctuations. The full for-
malism is discussed in Sec. IV.

Consider first a fairly large volume V. Sample the de-
tailed microscopic state of AVo at some given instant in

time. At this instant, we might find 4, locally surround-
ed by a region of density higher all around than average,
or lower all around than average. But, as is not uncom-
mon in statistics, there are more ways to get ‘“mixed” sit-
uations than situations in which things go all one way
(see Fig. 2). Such mixed situations have densities whose
averages all around at some instant in time tend to be
close to that of the whole environment. If mixed situa-
tions are dominant, then the assumption that the envi-
ronment is uniform has some plausibility.

But let V get smaller and such logic runs afoul of the
spatial correlations in the positions of the molecules, par-
ticularly those contributed by the attractive parts of the
intermolecular forces. According to the canonical distri-
bution in statistical mechanics, the probabilistic weight
of a microstate in some region of AV0 is increased if the

energy is lowered. Unless the molecules are packed very
closely, bringing a pair of molecules closer together
lowers the energy. The attractive intermolecular interac-
tions thus tend to cause molecules to cluster together
loosely, with local density higher than average (see Fig.
3). Of course, over a long period of time, the average
density at any point in AVo must be pg; so clustering

must come at the expense of regions with corresponding-
ly lowered densities.

high average low
7 7z
Ay,
7
7 .
mixed mixed mixed
Z 2 /
4
7 7

FIG. 2. Possible densities surrounding A4, at a given instant in
time. If Vis very large, then there will be more mixed-type situ-
ations, with regions of both high and low densities, than those
with the density all around less or greater than average. Mixed
situations tend to have average densities close to p,. For small-
er volumes, however, the high- and the low-density
configurations are favored because of molecular spatial correla-
tions, and the subsystem A, rarely sees itself surrounded by an
environment represented by the overall state of the system A4 Vor
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FIG. 3. Two nearby molecules in the fluid. In comparison with
the ideal gas, attractive intermolecular interactions tend to in-
crease their probability of being found close to each other at
any instant in time.

The average size of these clusters of raised and lowered
density is called the correlation length £. It may be con-
siderably greater than the range of the intermolecular in-
teraction, even approaching infinity at the critical point.
In statistical mechanics, £ is usually defined as the range
of the exponentially decaying envelope of the correlation
function (Landau and Lifshitz, 1977; Fisher, 1983). In
some parts of this review, such a strict interpretation is
what is intended; but in most places the meaning is a bit
looser. Rice and Chang (1974) roughly defined the corre-
lation length as the average distance between a region of
density fluctuation in one direction and a region of fluc-
tuation in the other. Widom (1974) has given a similar
definition. The quantity £%, where d is the spatial dimen-
sionality, is called the correlation volume.

IfvV< §d, Ay tends to find itself, at any instant in time,
with increased probability inside either a cluster of in-
creased density or a relatively depleted region. This has
the effect of enhancing the probability of the “high” and
the “low” density boundary configurations in Fig. 2, at
the expense of the “mixed” configurations. The local
surroundings of A, at any instant of time, then usually
deviate widely from the overall state of the infinite envi-
ronment.

One might argue that these details of the local environ-
ment of 4, will somehow all average out over time, and
that the assumption of a uniform environment remains
sound even in these volume regimes. But this seems too
much to hope for since, in the typical case, the interac-
tion of the subsystem A, with the infinite medium is en-
tirely through the local surroundings. Such profound
fluctuations likely make a difference.

In the canonical ensemble of rigorous statistical
mechanics (Ruelle, 1969; Griffiths, 1972), this issue is
evaded by taking the thermodynamic limit V— .
However, this limit defines away the problem of thermo-
dynamic fluctuations. The canonical ensemble, with
finite volume V, may be used to calculate fluctuation mo-
ments (Reif, 1965). But without the thermodynamic lim-
it, the canonical ensemble is vulnerable to the same
difficulties as those mentioned above. Indeed, Greene
and Callen (1951) proved that the fluctuation moments
computed with the statistical mechanical ensembles (with
finite V) are the same as those computed with the classi-
cal thermodynamic fluctuation theory. Statistical
mechanics does deal rigorously with fluctuations through
correlation functions, but these do not provide the same
information as thermodynamic fluctuation theory.

At this point, we add that the problem of physical con-
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cern here must be distinguished from the thermodynam-
ics of finite-sized systems (Hill, 1963, 1964) and from the
finite-scaling theory of critical phenomena (Barber, 1983).
In both these theories, the basic structure is a uniform
environment surrounding some finite subsystem. This is
physically justified in the problems they deal with, such
as small liquid droplets surrounded by air, or a fluid en-
closed in a copper sample cell.

D. Towards a solution

Let us now work towards a common solution to the
problems that have been raised. The first step is to intro-
duce another open subsystem AV1 of AVo' It, in turn,

contains A, (see Fig. 4). For pedagogical reasons, we
again oversimplify and concentrate just on density fluc-
tuations. We regard the fixed thermodynamic state of
A v, as known.

Imagine sampling the thermodynamic state of AV1 at

some instant in time, and let us say that its density is p;.
Given this information, what is the probability that 4,
will have a density between p and p+dp at this instant in
time? Clearly, knowing the density p; should narrow the
possibilities over just knowing p,. To find out how, start
with a basic assumption about fluctuations: at some in-
stant in time, the probability of finding the density of 4,
between p and p+dp, given the density of AVx’ depends

only on p;, and not on p,.

This assumption is called Markovicity. Basically, it
states that, at some instant in time, the situation inside a
subsystem is determined solely by the thermodynamic
state of that subsystem at that instant in time. Markovi-
city allows us to invoke the mathematics of Markov pro-
cesses, which offers at least a good start for the theory.
Though one would not expect Markovicity to hold exact-
ly, there is some direct evidence for its validity (see Sec.
IV.A.2).

We shall denote the conditional probability density for
finding the density of A, between p and p+dp at some
instant of time, given the density p; of 4 v, at that instant

of time, as

AVo

FIG. 4. Introduction of an intermediate open subsystem Ayl.

It is contained by AVo and in turn contains 4.
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P | P
Ple | ¢ |9P> 2.11)
where
1
t=— .
v (2.12)

is the inverse of the volume (and in no sense a measure of
real time). Subscripts on ¢ refer to the corresponding
subscripts on V. Using the inverse of the volume rather
than the volume as the size parameter makes the connec-
tion to a diffusion-type equation (below) very natural.
We shall use the notation of Eq. (2.11) for the probability
density when ¢ is not necessarily zero, with the notation
of Eq. (2.1) reserved for cases when it is.

A necessary self-consistency principle is the
Chapman-Kolmogorov equation:
P | Po _ P | P P1 | Po
Plel ¢ =fr|, t Bl | g |2P1
(2.13)

In words, if we integrate out the intermediate density p,,
we are left with the conditional probability density for p,
given p,. This principle may be invoked not just when
the largest of the three systems is the infinite closed 4 Vyr

with fixed thermodynamic state, but when it is yet anoth-
er finite open subsystem whose state is sampled at some
instant in time. Ruppeiner (1983b) showed with a simple
example that the Chapman-Kolmogorov equation does
not hold in the classical thermodynamic fluctuation
theory beyond the Gaussian approximation.

To determine the conditional probability densities re-
quires a resolution to the problems discussed in the previ-
ous section. Fortunately, as a foundation for a correct
theory, a relatively simple situation presents itself. This
has ¢, nearly ¢. Nearly equal volumes allow for very little
uncertainty in the value for p, for given value of p;, and
we expect that a simple Gaussian probability density
would be adequate. Define

At=t—t, (2.14)
and
Ap=p—p, . (2.15)

If #; =0 (an infinite system), we can immediately write, by
analogy with Eq. (2.3),

p
P t

Pm
Iy

Pm

Iy

PMm—1

Iy —1
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P1

611

Av0

Av

FIG. 5. Hierarchy of open concentric subsystems
A,,1 o) AV2 D-++D AVMD Ay of decreasing size. Each subsys-

tem samples only the thermodynamic state of its immediate sur-
rounding neighbor. :

P P1 . g(pl) 172 1 5
t t 2w At €xp 2Atg(P1)(AP) ’
(2.16)
where
1 d%
glp)=—7"""7" . (2.17)
P1 kp dp2 p=p,

This becomes exact for small Az. Equation (2.16) is pre-
dicted by statistical mechanics as well, and holds even if
we drop the assumption that the energy is fixed.

If ¢, >0, the situation is less clear, and to make head-
way we assume that Eq. (2.16) holds as well, with At
given by Eq. (2.14). Implicit in this is that g(p) has no
explicit volume dependence. These assumptions are
called translational invariance, and the reader may veri-
fy, with a logical application of the rules of the classical
thermodynamic fluctuation theory presented in Sec.
IIL.B, that it is actually predicted in the Gaussian ap-
proximation of this theory. However, this assumption is
too simple to hold at volumes less than the order of the
correlation volume, as we shall see in Sec. IV.D. But,
since we have nothing better, we use this for now. The
probability distribution in the limit Az—O0 is called the
short-time propagator.

The two probability densities in the integrand of Eq.
(2.13) are not short-time propagators. There are two
ways to bring these in. The first is to introduce more
subsystems in the hierarchy of systems:
AVODAVIDAVZD cee :)AVMD Ay (see Fig. 5). Take
the limit as M — o and let all the adjacent subsystem
volumes approach one another. Assuming Markovicity
at every level, and repeatedly applying Eq. (2.13), leads to

Po

to (2.18)

dpy * - dpy,
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where the integration is over the M intermediate vari-
ables p,p5,...,ppy- In the limit considered, all the
quantities in the integrand are short-time propagators.
Physically, the picture is fluctuations inside fluctuations
inside fluctuations..., as each subsystem in the hierarchy
samples only the thermodynamic state of the subsystem
immediately larger than it.> Mathematically, such an ap-
proach can be expressed in terms of the path-integral for-
malism (Schulman, 1981), where one thinks of the proba-
bility of finding a density p in a large environment with
density p, as a sum over all parametrized paths p(z) in
density space leading from p, to p.

The second way to bring in the short-time propagator
appears technically easier. Again, we start with Eq.
(2.13) and let ¢, be very close to t. We may write

p—Ap
t—At

Po
Io

p
t

p—Ap
t—At

Po

Lo

p
t

=fp

d(Ap) .

(2.19)

Using now the short-time propagator equation (2.16), ex-
panding the second quantity in the integrand of Eq.
(2.19) to first order in Af and to second order in Ap, and
doing the Gaussian integrals leads to

8P _1

2
AR 2.20)
o

a2

This is a diffusion-type equation, with the inverse of the
volume playing the role of the time.* !°

We shall not press this somewhat loose derivation fur-
ther. Again, it is not really correct, since it ignores ener-
gy fluctuations as well as a number of subtleties regarding
path integrals, whose resolution requires Riemannian
geometry. But this argument does serve to advance a
diffusion-type equation in connection with thermo-
dynamic fluctuations.

8Kadanoff (1976) gave a qualitative discussion along these
lines, though it was limited to volumes less than the correlation
volume and with no assumption of Markovicity.

9The spirit of this derivation, which reduces a problem to a
small “time” step and ends up with a diffusion equation, dates
back at least to Einstein’s work on Brownian movement (Ein-
stein, 1905b). Of course, the physical problem there was quite
different from that here.

100ne might think that the use of the inverse volume in the
role of a “time” in a diffusion-type equation is somewhat far-
fetched. But unusual variables in this role occur also in the
Schrddinger equation of quantum mechanics, where one uses
the square root of —1 times the real time, and in the density-
matrix formulation of statistical mechanics (Feynman, 1972),
where one uses the inverse of the temperature.
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E. Covariant and consistent theory with one variable

Guided by the above discussion, we shall postulate a
partial differential equation that contains a set of desired
principles. We shall return to the general variable x and
let the initial condition be ¢t =0, corresponding to the
infinite system A4 Vor

First, note that a diffusion-type equation, Eq. (2.20),
with delta-function “initial condition,”

P, _o(x|x0)=8(x —x,) , (2.21)

is mathematically analogous to that governing the
diffusion of a small drop of ink in a capillary filled with
water (Arfken, 1970). The one-dimensional space of all
thermodynamic states parametrized by x corresponds to
the water, and the concentration of ink to the probability
distribution of thermodynamic states. As the volume de-
creases, the thermodynamic probability distribution
broadens just as the ink spreads with increasing real time.
As the basis for a physical principle, Eq. (2.20) has a
serious shortcoming. It does not preserve the normaliza-
tion of the probability, unless g(p) is a constant function,
as the argument below shows. However, this is easily
resolved by writing the equation in the more general
form
oP_ 3

Y —‘&—[K(X)P]‘F

1.9
2 ax?

where K (x) is a function of x to be determined, and g(x)
turns out to be the coefficient in the Gaussian distribu-
tion equation (2.9).!! For small At, this has a Gaussian
solution precisely of the form of Eq. (2.16).

Let us examine some general consequences of this
equation. We denote by x, and x, the limits of the ther-
modynamic phase space, the smallest and the largest
values of x, respectively. By successive multiplications
by x, and integration by parts,

g~ Ux)P], (2.22)

d X, *p 3 *p
il = — 1.9 (o1
i fxa Pdx (KP) %, +3 O (g~'P) %, , (2.23)
d 3 "
£ = — %41, 9 (51
dt<x> (K) (xKP)|xa+2xax(g P) .
1 "
-5 (g7'P) L 2.24)

11We could write the equation as well in the form

P _ aP 1 P
¥= o(x)P‘*‘Cl(x)‘a—x'FECz(X) axz )

with the functions ¢y(x), ¢;(x), and ¢,(x) simply related to K(x)
and g(x). However, as we shall see, the form of the equation in
(2.22) has several advantages, including automatic inclusion of
normalization for arbitrary functions K(x) and g(x).
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and

%(x2>=(g_l>+2(xK)+boundary terms .

Returning momentarily to u coordinates, we evaluate
K(u). By Eq. (2.8),

(2.25)

d

i =0 , 2.2
r (u) (2.26)
and Eq. (2.24) in u coordinates certainly indicates that we
must set

K(u)=0 (2.27)

for all u, since for small ¢ the boundary terms are negligi-
ble, and the average of K (u) is just K(u,).

Before turning to the state space boundary terms in
Eq. (2.24), it helps to consider first the requirement of
normalization of the probability density at all volumes.
We need

X
g; [ pax=0, (2.28)

which, with K(#)=0 and Eq. (2.23), requires us to set

2 o-1p) (2.29)
du
to zero at the boundary.

Consider now the effect of the boundaries on (u ). We
cannot explicitly demand that the function g ~!P and its
first derivative both be zero at the boundaries, since that
would overdetermine the boundary conditions. If, how-
ever, g ! happens to vanish at the edges, then all the
boundary terms in Eq. (2.24) will vanish, and (u ) will
remain fixed even if fluctuations are large enough to
reach the state space boundaries. A zero g_1 corre-
sponds to vanishing second fluctuation moments, not
unusual at the boundaries; see, for example, Sec. V.A.

We return now to the discussion in general coordi-
nates. If the distribution is tightly concentrated about
some point, then Egs. (2.24) and (2.25) lead to

((x—x, )2>=ng—1(x0) . (2.30)
This is exactly the same as that of the Gaussian fluctua-
tion theory, as the reader may readily verify, establishing
the identity of g(x) with the coefficient in the Gaussian
approximation.

All that remains is to determine how K(x) and g(x)
transform under a change of variables x —x’(x). Covari-
ance demands that the form of the equation be the same
in any coordinate system; so we expect

Q;—.__a._ ’ ' ’ _1_ 62 r—1 ’ ’
EY: o’ KNP 1+ 55" TP . 23D
From Eq. (2.5),
p=2%%p, (2.32)
dx
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On substituting Eq. (2.32) into Eq. (2.31), writing the par-
tial derivative with respect to x’ in terms of x, dividing
by dx /dx’, and equating coefficients of the derivatives of
P with those in Eq. (2.22), we can show that g and K
must transform as
2

ax | (2.33)

8= dx’

and

' 2,1
K=k 4 L,1dx

o T2 a? (2.34)

The former expression matches Eq. (2.10) As we shall
see, this is the metric transformation rule in Riemannian
geometry. Hence this geometry emerges naturally from
the requirement of covariance of the fluctuation equa-
tion. )

We have assumed that neither K(x) nor g(x) depends
on volume, an element of the hypothesis of translational
invariance.

The modified thermodynamic fluctuation theory yields
better probability distributions than the classical one in a
number of simple cases which may be worked out exact-
ly; the reader may turn immediately to the example in
Sec. V.A for a simple case involving one parameter. If
this were all there were to it, however, the results would
amount to merely a quantitative improvement over the
classical theory. But the Riemannian thermodynamic
curvature offers more: a new tool for looking at the sub-
ject of fluctuations. The addition of another independent
fluctuating thermodynamic parameter brings this out.

F. Riemannian geometry and fluctuations
with two independent variables

Here we discuss fluctuations with two independent
variables. This situation occurs, for example, if the
pure-fluid subsystem and its environment exchange parti-
cles as well as energy. Two independent fluctuating vari-
ables allow a Riemannian geometry with nonzero ther-
modynamic curvature.

As an introduction, we present some of the essential
ingredients of Riemannian geometry in two dimensions,
since it is not conventionally encountered in thermo-
dynamics.!? Riemannian geometry has a reputation for
being somewhat difficult. Contributing to this perception
is its use in general relativity, where four-dimensional

12A semipopular account of Riemannian geometry is given by
Le Corbeiller (1954).
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“spacetimes” with non-positive-definite metrics occur.!

But the situation in thermodynamics is considerably
easier. There are simple examples with two-dimensional
geometries and positive-definite metrics.

The first element of a two-dimensional Riemannian
geometry is a two-dimensional surface or manifold,
which is, roughly speaking, a set of points parametrized
smoothly by two coordinates x =(x%x!). We refer the
interested reader to a text on Riemannian geometry for a
rigorous definition, including precise statements of
smoothness and regularity (Laugwitz, 1965). In physics,
points on a manifold represent physical quantities (here
thermodynamic states) with a meaning beyond those of
the coordinates.

The second element of a Riemannian geometry is a
rule for distance, or line element, Al between each pair of
neighboring points with coordinate differences Ax“®. The
line element is expressed as a quadratic form:

1
(AlP=3 8uv(X)AXHFAXY (2.35)

®,v=0

where the matrix of coefficients g,g(x) is called the
metric tensor. A manifold with a rule for distance in the
form of Eq. (2.35) is called a Riemannian manifold. A
key requirement is that for a given pair of points Al must
be independent of the coordinate system used to specify
the points. Distance must also be a concept that tran-
scends the coordinate system!

It is important to emphasize that there is absolutely no
requirement that these two-dimensional Riemannian
manifolds be surfaces that can be embedded in flat three-
dimensional spaces, although the latter are certainly ex-
amples of Riemannian manifolds. All that is essential are
points and distances on the manifold itself.

A familiar example of a Riemannian manifold is the
Euclidean plane, which in Cartesian coordinates has line
element

(AI?=(AxP*+(Ax')? . (2.36)
Points in the plane may also be represented by polar

coordinates, with line element

(A1?=(Ar)*+r3A0)*, (2.37)

13Here is a reminiscence of E. G. Strauss passed on to A. Pais
(1982, p. 213): “Einstein told Grossmann that he needed a
geometry which allowed for the most general transformations
that leave [the line element] invariant. Grossman replied that
Einstein was looking for Riemannian geometry. But,
Grossmann added, that it is a terrible mess which physicists
should not be involved with. Einstein then asked if there were
any other geometries he could use. Grossmann said no, and
pointed out to Einstein that the differential equations of
Riemannian geometry are nonlinear, which he considered a bad
feature. Einstein replied to this last remark that he thought, on
the contrary, that this was a great advantage.”
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where r denotes the distance from the origin, and 6 the
angle with respect to the abscissa.

An example involving an entirely different Riemannian
manifold is the two-dimensional sphere of radius a,
which in spherical coordinates has line element

(Al)?=a%*(A0)*+a>sin’0(Ad)? , (2.38)

where 6 is the angle with respect to the z axis and ¢ is the
azimuthal angle.

With these examples, we raise a question of central
concern in Riemannian geometry: how can we tell from
the metric elements whether or not two given metrics
correspond to the same manifold? As we shall see in Sec.
IV.C.2, this question leads to the Riemannian curvature,
the third essential element of a Riemannian geometry.
Two coordinate systems describe the same manifold if
their curvatures at corresponding points are the same.

Curvature is induced when the definition for distance
is applied, and measures at any point on the manifold the
local deviation from flat Euclidean geometry. Consider
the simple example of a small circle of radius » drawn on
the surface of the two-dimensional sphere (see Fig. 6).
The radius r is measured along great circles, since sec-
tions of great circles correspond to paths of minimum
distance on the sphere. In Riemannian geometry, dis-
tance is generally measured only within the manifold!
Because the sphere is intrinsically curved, the circumfer-
ence of the circle differs from that of a circle of the same
radius on the flat plane. Indeed, it is a fairly elementary
exercise for us to use the sphere to show that

c=2m+16’—Rr3+0(r4), (2.39)
where R=—2/a? is called the Riemannian curvature

scalar of the sphere.

A sphere has the property that the curvature on its
surface is the same at all points, a property which cer-
tainly does not hold in general—witness, for example,
the surface of an egg. But with the appropriate local
value of R, Eq. (2.39) actually holds in the neighborhood
of any point on a two-dimensional Riemannian manifold.

N

FIG. 6. Sphere with radius @ on which is drawn a small circle
with radius r. The circle’s radius is measured along great cir-
cles of the sphere, and its circumference is less than that of a
circle of the same radius on the plane, reflecting the intrinsic
curvature of the sphere.
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Going further, the Riemannian curvature provides the
answer to all questions about the intrinsic deviation from
Euclidean geometry. As another example, of both practi-
cal and theoretical interest to Gauss (1827), consider a
triangle composed of three geodesic (curves of minimum
length) segments. By how much does the sum of the inte-
rior angles deviate from 7#? The curvature gives the
answer.

We shall take these issues up further in Sec. IV.C. Let
us add that because the scalar curvature contains all in-
formation in two dimensions, any theory based on curva-
ture must be based on R. But in higher dimensions, the
situation is more complicated, and we might conceivably
need several components of the fourth-rank Riemann
tensor.

To represent a physical problem with a Riemannian
manifold, it is necessary to have a set of physical objects
that corresponds to the set of points of the manifold, and
a rule for distance in the form of a scalar quadratic form.

|

Pylalay)da®da’= v exp
2 L r=0
where Aa®*=a%—a§,
1 9%
(ag)=—77—"7——=, (2.41)

Bapdo kp 9a*3a”
and

g(ao)zdet[gaﬁ(ao)] . (2.42)

This result follows from a standard calculation (Landau
and Lifshitz, 1977), which is presented in detail in Sec.
I11.B.

For two given neighboring states, the value of the
positive-definite quadratic form,

1
(AlY=3 g,.(ap)ha*Aa”, (2.43)

n,v=0

is independent of the choice of coordinate system, since
the entropy difference between two states is independent
of the coordinate system used to represent those states.
This is, of course, necessary, since the probability of a
fluctuation depends only on the thermodynamic states.
Equation (2.43) has the properties of a Riemannian
metric between thermodynamic states, including, as we
shall see, the transformation property. In the next sec-
tion we discuss the physical significance of the induced
thermodynamic curvature.

Let us add that the units of the square of the thermo-
dynamic length are those of inverse volume. This differs
from Riemann geometry in, say, general relativity, where
the units are meters squared.
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Distance should be physically motivated and to some de-
gree unique. If this obtains, there is, in addition to other
possible insights, the possibility that the induced intrinsic
curvature might offer a new tool for the formulation of
physical principles. That is certainly the case in general
relativity, and the extent to which this is effective in ther-
modynamics is part of the discussion in this review.

Return now to thermodynamic fluctuation theory.
Generalize the discussion by considering again an open
pure-fluid subsystem A, of the infinite closed system
Ayo. An exchange of particles is now allowed, and both
the energy per volume a° and the number of particles per
volume a! fluctuate. Again, issues of covariance and
consistency exist, and ways of dealing with them are
identical in style to those for one variable; details are de-
ferred to Sec. IV.A. We concentrate here on the thermo-
dynamic Riemannian curvature scalar.

Expanding the total entropy to second order abtout its
maximum yields

(2.40)

G. Thermodynamic Riemannian curvature

The thermodynamic Riemannian curvature was first
evaluated for several cases by Ruppeiner (1979, 1981). It
has units of volume. It is zero for the monoatomic ideal
gas, where there are no interparticle interactions.'* The
curvature goes to infinity at the critical point in the same
way as the correlation volume £%. These properties sug-
gest that it is a measure of effective interactions. The sit-
uation is shown schematically in Fig. 7.

The theory presented in Sec. IV indicates that curva-
ture is a measure of the smallest volume where classical
thermodynamic fluctuation theory based on the assump-
tion of a uniform environment could conceivably work.
Near the critical point, we expect this volume to be &%, so
we expect a proportionality between the curvature and
the correlation volume:

R =K,&%, (2.44)

where K, is a dimensionless constant of order unity.

The thermodynamic curvature connects with another
aspect of thermodynamic fluctuation theory, one which is
not usually stressed in the standard treatments. First, we

14Ingarden et al. (1979) independently found zero curvature
for a similar ideal-gas metric, in the context of information
theory. They did not, however, connect this result to any gen-
eral statement of the relation between curvature and interac-
tions.
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Vs

(a) no interactions

(b) interactions

FIG. 7. The physical meaning of Riemannian thermodynamic
curvature. If interactions between molecules are absent, as in
the ideal gas, the space of thermodynamic states is flat, or near-
ly so. If interactions are present, the space curves in propor-
tion. The curvature goes to infinity near the critical point and
has units of volume. It appears to be related to the statistical
mechanical correlation length.

introduce the thermodynamic potential or free energy
per volume:

o=s— u-+ P (2.45)

T T
where T is the temperature and u is the chemical poten-
tial. It is a straightforward exercise, using the conserva-
tion of the energy and of the number of particles, to
prove that the deviation of the entropy from its max-
imum value is

1
TO

o

As —
S To

AS,=V Au+ Ap |, (2.46)

where the O subscript refers to the parameters of the very
large 4y, .

Near the critical point, usual treatments (Landau and
Lifshitz, 1977) show that fluctuations in the temperature
and the chemical potential go to zero, while those of the
entropy and the standard extensive quantities become
very large. Hence the quantity in brackets in Eq. (2.46) is
very nearly the differential of A¢ and

AS,=~VA¢$ . (2.47)
But for typical fluctuations,
[ASO!sz N (2-48)
and so
kg
Ad|l=— . .
|Adl=~—; (2.49)

Assume now that at the correlation volume £¢ fluctua-
tions in the thermodynamic potential per volume ¢ be-
come of the same order as the quantity itself:

Ap=¢ .
Combining with Eq. (2.49) yields

(2.50)
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where k, is a dimensionless constant with absolute value
of order unity.

In the modern theory of critical phenomena, this is
usually referred to as the ‘“hyperscaling” assumption
(Kadanoff, 1966; Widom, 1974). Here, ¢ denotes just the
“singular part” of the free energy, that associated with
the long-ranged correlations between parts of the system.
This must go to zero at the critical point, since &
diverges. Hence ¢ may be determined, at least to leading
order, by subtracting from the free energy its value at the
critical point.!> We add that Einstein (1904) used, in his
treatment of the Planck radiation law, an argument such
as that which leads to Eq. (2.50).

When Eq. (2.44) is used to eliminate the correlation
volume with Eq. (2.51), we obtain

’ (2.51)

k
R=—k—, (2.52)
é
where
K=K1K2 . (2.53)

In words, this geometric equation states that the thermo-
dynamic curvature is proportional to the inverse of the free
energy. This principle may be expressed as a partial
differential equation for the free energy, the solution of
which is discussed in Sec. VI.C. It leads to a form of the
free energy near the critical point which has several
features expected from the modern theory of critical phe-
nomena.

There exists a rough analogy between the geometric
equation and the field equations in general relativity. In
the latter case, the simplest law connecting mass-energy
to curvature is chosen. Here, it is interactions which
produce the curvature, and Eq. (2.52) appears to be the
simplest relation connecting them. It seems, at least, a
good start.

15This relation has a somewhat unsettled status in the modern
theory of critical phenomena. Fisher (1983) gave a somewhat
different argument to arrive at Eq. (2.51): “The argument we
use may, perhaps, be regarded as not very plausible, but it does
lead to the desired result, and other arguments are not much
more convincing!” This statement would appear to apply equal-
ly well to the derivation presented here.

An interesting approach is by Goodstein (1975), who pro-
posed a simple postulate for critical-point phenomena: “Noth-
ing matters except £&.” This, together with dimensional analysis,
led him to Eq. (2.51). All the relationships between the critical
indices were shown to follow from this postulate. It is unclear,
however, if Goodstein’s postulate can be used to derive the
scaled form of the free energy.
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lll. CLASSICAL THERMODYNAMIC
FLUCTUATION THEORY

In this section we summarize the basics of the classical
thermodynamic fluctuation theory, with particular em-
phasis on its Gaussian approximation. Since the covari-
ant thermodynamic fluctuation theory must be
equivalent to the classical theory for very large subsystem
sizes, the classical theory naturally forms an essential
part of the discussion. Also included is a brief discussion
of the origin of the subject, and other related recent
literature.

A. Origin

The origin of thermodynamic fluctuation theory is
closely connected with that of statistical mechanics. It is
usually attributed to Einstein, who used it as early as
1904 to assist in understanding blackbody radiation.
With what is now called the canonical partition function,
he calculated the second moment of the energy fluctua-
tion {(AU)?) with the Planck blackbody law and related
it to the heat capacity. He derived the volume at which
the energy fluctuations reach the same magnitude as the
energy, and reasoned that it must correspond to a physi-
cally significant length scale. Einstein found this length
scale to be of the same order as the wavelength A, at the
peak of the blackbody curve. The calculation used the
value of Boltzmann’s constant from the kinetic theory of
gases, and the success of the connection between what
were thought to be waves on the one hand and particles
on the other, prior to the general notion of wave-particle
duality, appeared to have had considerable impact on
Einstein’s thinking. Einstein (1904) concluded his paper:
“One can see that both the kind of dependence on the
temperature and the order of magnitude of [A,,] can be
correctly determined from the general molecular theory
of heat, and considering the broad generality of our as-
sumptions, we believe that this agreement must not be as-
cribed to chance.”!®

Einstein first expressed probabilities in the form of the
exponential of the entropy equation (1.2) in 1907 in con-
nection with a proposed experiment to determine
Boltzmann’s constant by measuring voltage fluctuations
across a shorted capacitor. Einstein’s thoughts on ther-
modynamic fluctuation theory reached fruition in 1910
with his analysis of light scattering near the critical
point; and the theory developed here in Sec. II1.B differs

16Though this result may have been a guiding factor in
Einstein’s (1905a) Nobel Prize—winning work on the photoelec-
tric effect, it was not essential to its development. The key in
that paper was the analogy between the expressions for the en-
tropy resulting from the Planck blackbody law and that of the
ideal gas.
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little from Einstein’s in its essential points.!” Thermo-
dynamic fluctuations formed a part of Einstein’s larger
program of exploring atomic properties, and in this con-
nection his work (Einstein, 1956) on Brownian motion
must be mentioned.!®

Smoluchowski (1908) applied thermodynamic fluctua-
tion theory to fluids, including an analysis of the near
critical point. This paper led Einstein (1910) to his more
detailed work.

Gibbs (1902) actually wrote down the thermodynamic
formula for the second moments of the energy fluctua-
tions before Einstein, who was not aware of Gibbs’s work
when he published his early papers on statistical mechan-
ics. Einstein (1911) said later that had he known of it, he
would not have published his own work on statistical
mechanics. With regard to thermodynamic fluctuation
theory, however, the motivation of these two individuals
was quite different, and giving Einstein credit for its
founding, as most texts do, seems not unfair. Gibbs was
interested primarily in establishing that fluctuations van-
ish in the thermodynamic limit. This, while anticipating
the concerns of modern statistical mechanics, did little to
advance the thermodynamic fluctuation theory in its own
right. Klein (1967) and Pais (1982) have discussed these
historical issues. Gearhart (1990) has also written a re-
cent history of Einstein’s early work on statistical
mechanics. In addition, the ongoing publication of the
Einstein papers (1987, 1989, 1993) is a valuable resource.

It was subsequently argued by Szilard (1925), Lewis
(1931), Callen (1960), Tisza and Quay (1963), and Man-
delbrot (1964) that thermodynamic fluctuation theory
can stand alone and is in no essential need of statistical
mechanics for its foundation. This is certainly the philo-
sophy in this review. The place of thermodynamic fluc-
tuation theory in the totality of physics has been dis-
cussed by Tisza (1963). In addition, Tisza (1966) has pub-
lished a collection of his papers on thermodynamics, in-
cluding fluctuation theory.

B. The Gaussian approximation to the
classical thermodynamic fluctuation theory

This section is intended primarily to set the context
and notation in this review. It is in no way intended to

17The classical theory has been slow to change, as pointed out
by Callen (1965): “When I was asked by Professor Prigogine to
review and comment on my work on the theory of fluctuations I
was flattered, for my first thought was that this is truly a field
for gentlemen. Few fields have been so leisurely in their pace,
so untouched by the frantic rush of publication, or so graced by
the illustriousness of their founders. Almost all we know today
was foreshadowed in the work of Einstein half a century ago.”

18A semipopular account of both Brownian motion and ther-
modynamic fluctuations has been given by Lavenda (1985).
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be as complete and logically rigorous in establishing the
foundations of the classical thermodynamic fluctuation
theory as, for example, Tisza and Quay (1963). It is also
specific to systems with the volume as the fixed scale and
with all other variables fluctuating. For a compact expo-
sition of the general formalism, see Greene and Callen
(1951), whose derivation is summarized in Sec. II1.C.

At the outset, we distinguish between two spaces. The
first is the real physical space, with dimension d. The
second is the thermodynamic state space, with dimension
n, each point of which represents a thermodynamic state.

The thermodynamics in this section is done on open
fluid subsystems, with fluctuating energy and particle
numbers. Open subsystems seem essential in this ap-
proach, since, in probing the intrinsic properties of fluids,
artificial internal boundaries, occurring, for example, if
the mole numbers are held fixed, should be avoided. The
extensive volume V is held separate as a nonfluctuating
parameter. This formalism is easily adapted to magnetic
systems (see Sec. III.G).

We distinguish between two types of parameters for
specifying the thermodynamic state of a subsystem. The
first type consists of mechanical parameters, such as the
energy, particle number, or magnetization, which at any
instant of time can be computed directly by elementary
sums over microscopic quantities. The second are purely
thermodynamic parameters, such as the temperature,
chemical potential, and entropy. These are related to dis-
tributions over microscopic quantities and, in contrast to
the mechanical parameters, are not directly related to mi-
croscopic quantities. The former are the most con-
venient for specifying the thermodynamic state of subsys-
tems.

We turn now to fluctuations and consider an open sub-
system Ay, with fixed volume ¥V, of a thermodynamic
fluid system AVo with a very large (approaching infinity)

volume V), as in Fig. 1. The system AVo consists of r

fluid components (assumed to be chemically noninteract-
ing) and is in equilibrium. Denote by the n-tuple
a,=(ad, a}, a3,...,al) the internal energy per volume
and the number of particles per volume of the r com-
ponents of AVo‘ These mechanical parameters are the

standard densities in the entropy representation (Callen,
1985); they constitute the thermodynamic state of AVo'

The subsystem A‘V has the corresponding thermodynam-
ic state a.

. The classical thermodynamic fluctuation theory (Lan-
dau and Lifshitz, 1977) can be stated in the form of three
basic axioms.

Axiom 1. Ay and its reservoir Ay = Ay \ Ay, with
volume V,=V,—V, are each homogeneous systems de-
scribed by the thermodynamics in the thermodynamic
limit.

Axiom 2. The conditional probability of finding 4 in
a state with parameters between a and a +da, provided
Ay, is in the state a, is
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Pylalag)da®dal - - - da”

So(a,ao)

Xy (3.1

=C exp da’da'---da”,

where Sy(a,a,) is the entropy of the system A v, when its

subsystem A is in the state a, and C is a normalization
factor.!’

Axiom 3. Entropy is additive, but not conserved. The
standard extensive parameters (internal energy and parti-
cle numbers) are both additive and conserved.

The next step is generally to expand the entropy to
second order about the homogeneous state, where a =a,,.

By Axioms 1 and 3,
Sola,ag)=Vs(a)+V,s(a,), (3.2)

where s(a) is the entropy per volume and a, denotes the
standard densities of 4 v, By Axiom 3,

(Voag —Va®)
a:=—°°V—— (3.3)
c

Expanding the entropy densities in Eq. (3.2) about
al=af§=a®yields

Sola,a9)=Vs(ag)+V,s(ay)+ Vais;(aﬂ—ag)
a

as
+Vcw(aé‘—0f)‘)
1 3%
2y Y9 u__ . p v__ v
+2 aa“aav(a afg)Na*—ay)
1 _——BZS b ghYg¥—qg?
2 caa“aa"(ac abNa;—ag)+ ’
(3.4)

where the derivatives are all evaluated at a,. Here and
henceforth, we use the Einstein summation convention,
which asserts that repeated indices in products are as-
sumed to be summed over their full range (0,...,r). We
use as well the convention that the list of unsummed in-
dices in any expression starts with a, and summed, or
dummy, indices start with pu.

Substituting Eq. (3.3) into Eq. (3.4) and letting V,—
yields

1 d%s
Sola,ay)=Vyslag)+—V—"—Aa*Aa’+ -+ , (3.5)
0 0 0T 2 " 3akda”
where
Aa®=a®—af . (3.6)

The cancellation of the first-order terms reveals that the

195.(a,a,) also depends on the two volumes, but this is not ex-
plicitly denoted with the notation.
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state @ =a corresponds to an extremum of the total en-
tropy. The usual thermodynamic stability relations (Lan-
dau and Lifshitz, 1977) establish that it corresponds to a
maximum of the entropy. Alternately, the stability rela-
tions may be forced by demanding that the entropy be a
maximum if @ =a,.

The form of Eq. (3.5) holds only in the standard densi-
ties (or linear transformations of these densities), because
additivity is specific to these coordinates. To express .S
in a general set of thermodynamic coordinates x =x(a)
requires special care.”’ Expanding the entropy to second
order about the maximum at x =x,=x(a,) yields?!

So(x,0)=Saltorxo)+ L =00 _axuaxs, (1)
olX,Xg olXg>Xo 2 3xFox” XTAx ", .
where Ax *=x%—xg.

The second derivatives here are not typical thermo-
dynamic derivatives, in contrast to those in Eq. (3.5),
since Sy(x,x,) depends on two distinct thermodynamic
systems with different states. As a first step in expressing
these derivatives in terms of thermodynamic quantities,
we transform them to some other coordinate system
x'=x'(x). Through the chain rule

3 _ax'* 3

ax*  ax® ax'H’ 3.8)
it is easy to show that
3’8, Px'# BSo  ax'k ax' S
3x%0xP  ox%3xP 3x'#  ax* 9xP dx'fox'"
(3.9)

At the maximum of S, this becomes
8%, __Ox'* ox'” d%S,
ax%xP  9x* axP ax'Hax'"

the transformation rule for the components of a second-
rank tensor.??

) (3.10)

20We shall assume, without explicitly saying so on each oc-
casion, that coordinate transformations are continuous and
differentiable and have nonzero Jacobians, except possibly at
special points, such as critical points.

21 Alternately, we could use Eq. (3.2), which holds as well with
a—x, to expand the entropy densities of 4, and its environ-
ment separately; however, this requires the expansion of
(x#—x4§) in powers of (x*—x§ ), which is difficult to interpret,
since additivity equation (3.3) does not hold in general coordi-
nates.

22A tensor is any indexed quantity that transforms as

_ox'*ox'r o axf xS .
ax* axh ox'™ oax'" e

under a coordinate transformation x'—x(x') (Weinberg, 1972).
Upper indices are called contravariant indices, and lower ones
are called covariant indices. The rank of a tensor is the total
number of its indices. Since both x and x’ denote sets of arbi-
trary coordinates, one may exchange primes with unprimes and
still have a valid expression.

Wi
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It is now possible to express the general second deriva-
tives in terms of purely thermodynamic functions. Com-
paring Egs. (3.5) and (3.10) yields

8250 _ ,9a" da” %
ax “9x? 3x? 3x”P 9atda”

Although in actual calculations this expression does not
see much use, it does establish that the second derivatives
of S, may be expressed in terms of familiar thermo-
dynamic variables no matter what the coordinates. It
also shows that these derivatives vary linearly with the
volume.

Using the quadratic expansion, we may write the
Gaussian approximation to the thermodynamic fluctua-
tion theory:

Py(x|xy)dx®x! - - dx"

3.11)

n/2 v
=27 exp -—~2-gm(xo)Ax”Ax"
XV g(x)dx%x" -+ dx", (3.12)
where
1 62S0

8aplX0)= = P =, (3.13)
and

g(xo)=det[g,p5(x0)] . (3.14)

The normalization factor was worked out with a straight-
forward evaluation of Gaussian integrals (Landau and
Lifshitz, 1977).2

We may readily compute the average values

(3.15)

(Ax%)=0
and
B(x4)
(Axeaxpy=2_20" (3.16)
4
where g denotes the elements of the inverse of the ma-
trix g,g.

It is easy to verify that the quadratic form in the argu-
ment of the exponential in Eq. (3.12) transforms as a sca-
lar under a coordinate transformation. To first order,

a
Ax%= dx Ax'#
ox'#
which is the transformation rule for a first-rank contra-
variant tensor. Substituting into the quadratic form and
using transformation rule (3.10), with primes and
unprimes switched, reveals the invariance. This is neces-
sary, since neither the probability of a fluctuation be-

(3.17)

23The method requires the diagonalization of g.g(x,) to bring
the quadratic form to a sum of uncoupled quadratic terms, and
then the evaluation of simple Gaussian integrals.
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tween two states nor the entropy difference should de-
pend on the system of coordinates used to represent those
states.

The quadratic form

(Al)=g,,(xo)Ax Ax” (3.18)

constitutes a positive-definite Riemannian metric on ther-
modynamic state space (Ingarden et al., 1979; Rup-
peiner, 1979, 1981). It is independent of ¥ by Egs. (3.11)
and (3.13). Physically, the interpretation for distance be-
tween two thermodynamic states is clear: the less the
probability of a fluctuation between two states, the further
apart they are. Note as well that

V'g(xy)dx%dx!---dx" (3.19)

is the invariant volume element on a Riemannian mani-
fold (Weinberg, 1972, p. 99).

The requirement that the line element be positive for
any set of values of the coordinate differentials, except
where they are all zero, sets conditions on the metric ele-
ments g,5. First, clearly all of the diagonal metric ele-
ments must be positive. These elements are, for example,
heat capacities or compressibilities. The requirement
that they be positive is a manifestation of thermodynamic
stability, or Le Chatelier’s principle.

Positive diagonal metric elements are not enough to
ensure a positive-definite line element, however. A neces-
sary and sufficient condition (Eves, 1966) is that the lead-
ing principle minors of the metric elements, defined by

Po=1, (3.20)
P1=80 > (3.21)
_ 800 8&o1 (3.22)
P2 gy gu |’ ’
goo 801 802
P3= (810 81 812> (3.23)
820 821 82
and so on, and finally
r.=lgl, (3.24)

all be positive.

Tisza (1951, 1961, 1966) has discussed at length the im-
plications of the positivity of forms constructed from
second derivatives of thermodynamic potentials, with
particular attention focused on what happens in the
neighborhood of phase transitions.

Before returning to the physics, let us explore the form
of the thermodynamic metric in several coordinate sys-
tems. For assistance, we derive two helpful intermediate
relations. First, we denote by F=(1/T, —u'/T,
—u?/T,...,—u’/T) the standard intensive quantities
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in the entropy representation (Callen, 1985)*:
ds(a)
Fo=——= (3.25)
da“®

Here, T is the temperature and u’ the chemical potential
of the ith fluid component. The F¥s are a complete set
of n coordinates on the thermodynamic phase space. The
pressure p, conjugate to the fixed volume V and expressi-
ble in terms of the other coordinates, is not included.?
With the aid of Eqg. (3.5), we have
a1
(Aly>=——AF*Aa",
kg

(3.26)

which is a convenient starting point for expressing the
metric in several coordinate systems.?® Another con-
venient intermediate expression results from the variables
of the energy representation, where s replaces u as the
zeroth coordinate and the conjugate intensive variables
are P=( T,,ul,y,z, ..., u"). Substituting

Aa’=Au=TAs+ 3 p'Aa’, 3.27)
i=1
AF=—Lar, (3.28)
T
and
A W
AF'=17AT——Au' (3.29)
with 1 <i <r, into Eq. (3.26) leads to
2 1 1 s . .
=——ATA iAa'. .
(Al) T s+kBTi§lAyAa (3.30)

To express the metric in F coordinates, we write

24The coordinates F? look like the components of the gradient
of the entropy, geometric objects that have covariant (lower) in-
dices. This is deceiving, however. Definition (3.25) has no im-
plication for the transformation properties. The differentials
dF ¢ transform as contravariant vectors, with upper indices, like
the differentials of all coordinates. In symplectic-type thermo-
dynamic geometries, where one desires to preserve conjugate re-
lations between “extensive” and ‘‘intensive” variables, one
would use quite a different transformation rule.

25This certainly does not mean that p is fixed, however. Its
fluctuations are related to those of the other thermodynamic pa-
rameters through equations of state.

26The sum over the two contravariant indices looks awkward.
Indeed, this is not a natural metric expression on the n-
dimensional thermodynamic state space, since twice as many
coordinate differentials appear as there are independent coordi-
nates. This expression is used here only as a computational aid.
Mrugala et al. (1990) have used such expressions as metrics in
2n-dimensional contact spaces. Such geometries can be used to
embed the Riemannian geometries of thermodynamics in
higher-dimensional flat spaces.
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a

Aq= %AF" 3.31)
and substitute into Eq. (3.26). This yields

(A= kIB 31,73% FEAF™ (3.32)
where

#(FOF!, ... F')=s—Fkqh (3.33)
It is a relatively simple exercise to show that

é=p/T . (3.34)

This thermodynamic potential is kz /V times the loga-
rithm of the grand canonical partition function. Didsi
et al. (1984) and Janyszek and Mrugala (1989b) used F*
as their coordinate system.

To express the metric in (T,a',a?, ...
nates, we write

,a”) coordi-

as= | AT+Ié1 [aa Adt, (3.35)
and

Ap'= —g"% AT+Jé1 _féa.u_] Al (3.36)
Using the Maxwell relation

5‘% - | (3.37)
and substituting into Eq. (3.30), we obtain
ap=m | 2 A+ 3 W A ginal

3T ;72 | 9a’
(3.38)

This line element is diagonal for the pure fluid =1, as
well as for the multicomponent ideal gas. Ruppeiner and
Davis (1990) used these coordinates.

To express the metric in P coordinates, we write

9s

As= 3T

AT+S
i=1

Ay (3.39)

au

and
,_ | 9a’ | da’ ;
 J— J
Aa T AT+ 2 W, Ayl . (3.40)
Substituting into Eq. (3.30) yields
Alp=——1_ 0 _\purpv, (3.41)
kgT 3PH3P" '
where
o(T,uhp?, ..., u=u—Ts—3 pp’ . (3.42)
i=1
It is easy to show that
o=—p=—¢T . (3.43)

A more difficult case, not considered in detail here, was
encountered in the Takahashi gas (Ruppeiner and
Chance, 1990).- This system has » =1 and allows for the
explicit evaluation of the Gibbs free energy
®=®(T,p,N), but not for the other potentials in terms
of their natural parameters. The problem with the Gibbs
free energy in this application is that the fluctuating par-
ticle number N, rather than the fixed volume V, is one of
the natural parameters. The condition of fixed V leads to
an implicit relation between T, p, and N, which must be
taken into account.

See Table II for a summary of the metrics in various
coordinate systems.

C. The general classical thermodynamic
fluctuation theory

The full formalism for classical thermodynamic fluc-
tuation theory was worked out by Greene and Callen
(1951) and elaborated upon by Callen (1965). They
worked out the case where the fixed subsystem scale is
not necessarily the volume, and where independent vari-
ables in addition to the subsystem scale might be fixed,
for example, by a semipermeable partition. In addition,
they established that (1) fluctuation moments to all or-
ders computed with the full classical thermodynamic
fluctuation theory are the same as those computed with
the appropriate statistical mechanical ensemble; and that

TABLE II. Thermodynamic potentials, or free energies, and the Riemannian line elements in four

coordinate systems.

Coordinates Potential Line element (Al)?

= 1.2 r — 1 azs AatAa”

a=(u,p',p* . ..,p") s ks aza”aav a
1 3%

= —u'/T,...—u' /T =g —Ftq# — AF*AF”

F=(1/T,—u'/T u'/T) ¢(E) s a k, FFOF AF
Lo 1 0w
pP= L2yt P)=u—Ts— g ——— APHAPY
(T,p',p*,p") o(P)=u—Ts iél,ua %, T 3P"3P”

(T,p'p% .. .p"») f=u—Ts L |8 | (arp+ k 2 —H—Aa*Aaf

kT | 3T "

111
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(2) second fluctuation moments computed with the
Gaussian fluctuation approximation to thermodynamic
fluctuation theory agree with those above, but higher-
order moments do not.

Since Greene and Callen (1951) allowed for the possi-
bility of volume fluctuations, let us add ¥ to the list of
standard extensive parameters X, defined in Table I1.%
This addition results in an extended list of variables,
denoted by Xe=(U,N1, ..., V,...,N"). The internal
energy U of the subsystem is first on the list, but the
remaining parameters occur in no particular order, ex-
cept that the variables that are fixed are placed at the end
of the list. In thermodynamics one extensive variable
must always be fixed as the subsystem scale (Callen,
1985), so there will be at most n =r + 1 independent vari-
ables.

Dividing X, by the fixed subsystem scale X' results in
an extended list of »n densities a,=(U/X],

Nl/Xe", ..., V/X],...,1). Define as well the corre-
sponding extended list of conjugate intensive quantities:
as
Fg= , (3.44)
¢ axe
which results in F,=(1/T, —u'/T,...,p/T,...,

—up"/T). The Gibbs-Duhem relation (Callen, 1985) al-
lows us to express any one of these variables in terms of
the others. The dependent variable, or, indeed, any other
intensive thermodynamic function, may also be expressed
in terms of the n densities a,, or some mixture of n vari-
ables selected from the sets F, and a,. In keeping with
the general philosophy of thermodynamics, Greene and
Callen (1951) implicitly assumed that relations among in-
tensive variables are worked out in the thermodynamic
limit and do not depend on the volume. Tisza and Quay
(1963) criticized such an assumption.

Before presenting the details of the generalized classi-
cal thermodynamic fluctuation theory, let us prove an
important theorem. Consider momentarily, again, a
completely open subsystem A, where the volume V is
the fixed scale, and where all of the other independent
variables are allowed to fluctuate. We show that the
average standard densities must equal the environment
densities at all volumes V.

For the argument, let the very large A A have periodic

boundary conditions; the nature of the boundary condi-
tions should be irrelevant in the limit as ¥j— «, so long
as the system AV0 is in a single phase not at the critical

point. Imagine 4, to be composed of a set of 7 identi-
Yo n

cal open systems A4;,A4,,..., A,,, each with volume
Vo /7 (see Fig. 8). Let X, denote some extensive parame-

27The notation here differs from that of Greene and Callen
(1951). They used lower-case x’s for the instantaneous values of
the standard extensive quantities, which are denoted by capital
X’s here. Green and Callen reserved capital letters for average
values, denoted simply by (X ) in this review.
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A1 A2 A3

Ay

FIG. 8. System AVo broken into 7 identical subsystems. The
boundary conditions for AVo are periodic, so each subsystem
has the same average properties.

ter of AVo and let X; be the corresponding extensive pa-

rameter of A; at some time. Define ay=X,/V, and
a;=nX;/V,. It follows from additivity that, at any time,

aAg=— a; .
0 ni§1’

(3.45)

But, because the boundary of 4, is periodic, (a;) is in-

dependent of i. When the ensemble average in Eq. (3.45)
is taken, it follows that

(a;)=(a)=a,, (3.46)

proving the theorem.
It is essential in such an argument that AVo be an

infinite system, to which periodic boundary conditions
can be applied without affecting the subsystems; but the
subsystems may be of any size. This argument is restrict-
ed, however, to standard densities. For thermodynamic
variables such as the temperature, which are not addi-
tive, it does not work and the result does not hold beyond
the Gaussian approximation.

When the subsystem is not open but has a boundary
barring passage of some of the chemical species, this ar-
gument will also be inadequate. In this case the environ-
ment is generally not equivalent to one evenly partitioned
into subsystems with boundaries. However, Greene and
Callen (1951) implicitly assumed the result anyway:

(X2)
X

(a2)= (3.47)

zag) ,

and we shall proceed under this assumption.
Consider the situation in which the variables X7,

Xel, ...,X] (1<j<n) all fluctuate, but the variables

X;*1 ...,X" are fixed. The grand canonical probability
of finding the subsystem in its ith discrete microstate is?®

28See Landau and Lifshitz (1977), p. 102, Eq. (35.2) for the case
with r=1; the extension to more thermodynamic variables is
immediate.
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1 ; Jj
Ww; =exp "'7(‘— S[FSO’-”rFeJO]_'_zFfOXf ]’
B pn=0
(3.48)
where
. J
S[FY%,...,Fi,]=8— 3 FE(X!) . (3.49)

pn=0
The thermodynamic parameters F5, are characteristic of
the infinite reservoir, and the parameters X are charac-
teristic of the subsystem in its ith microstate. The aver-
age of a general function over the microstates f; is
defined by

(fI=3 fiw; , (3.50)

where the sum is over all of the microstates. The entropy
S is the entropy of the subsystem in the state correspond-
ing to that of the intensive variables of the environment:

S=X!s(a%,al,...,al71). (3.51)

Using Egs. (3.44), (3.47), and (3.51), we may verify that

—aa—a—S[Fgo, oo Fiy 1= —(X2) (3.52)
e0
for k=0, 1,...,j. The theorem

ow; 1 va_(ya

Fe Ky (XZ— (X w; (3.53)

follows easily. We then take the second derivatives of
3 ;w; and set the result to zero, since the probability is
normalized. This yields

92 0

(AngX£>=kBWS[FeO, s Flyl, (3.54)
e0 e0

where

a=Xx2—(X2) . (3.55)

Green and Callen (1951) showed that this result for the
second fluctuation moments is the same as that calculat-
ed with the Gaussian approximation to the thermo-
dynamic fluctuation theory.

Differentiating 3 ;w; again yields the third fluctuation
moments

(AX2AXEAXY)

3
—— 72 Gl 0

= S[FS,...,Fi].
? aF20F8 aFy, [Feo o]

(3.56)
The expressions for the higher-order fluctuation mo-
ments are more complicated, but there is a hierarchy of
equations which yields them all in terms of thermo-
dynamic quantities.

In addition, Greene and Callen (1951) went to the con-
tinuum approximation and worked out the fluctuation
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moments to all orders using the full classical fluctuation
theory equation (3.1) in standard density coordinates.
They demonstrated that these moments are exactly the
same as those calculated with the grand canonical distri-
bution, but differ beyond the second order from those
calculated with the Gaussian approximation.

D. Higher-order entropy expansions

A natural try at improving the Gaussian approxima-
tion to the classical thermodynamic fluctuation theory is
to include more terms in the expansion of the entropy.
The literature does not pay much attention to this, but
there is certainly a body of opinion that more terms help.

Smoluchowski (1908) expanded the entropy about the
critical point in powers of the density only. He noted
that in the van der Waals model, both the first and
second derivatives of the pressure with respect to the
density vanish at the critical point. Therefore the
fourth-order density term in the entropy expansion is
needed to keep the second moments of the density fluc-
tuations finite. However, in addition to the difficulties
with entropy expansions beyond the second order raised
in this review (Secs. IL.B and II.C), such an expansion
must be questioned in light of present-day thinking that
the thermodynamic functions at the critical point are
nonanalytic.?

A survey of textbooks on statistical mechanics and sta-
tistical thermodynamics finds that most contain some
treatment of thermodynamic fluctuation theory. The
standard discussion begins with an expression of the
second fluctuation moments of the energy density
((Au)?) of systems closed to density fluctuations in
terms of the heat capacity, using the canonical ensemble.
It is usually noted that these fluctuations go to zero in
the thermodynamic limit, as required. Many texts also
evaluate the second moment of the density fluctuations
((Ap)*) for open systems with the grand canonical en-
semble. They usually point out that, because of the
diverging isothermal compressibility, density fluctuations
at all length scales become very large near the critical
point, resulting in, for example, critical opalescence.
Many texts give the Einstein fluctuation formula (3.1)
and show that in the thermodynamic limit the second
fluctuation moments are the same as those calculated
with the statistical mechanical ensembles.

Most textbooks do not deal with the expansion of the
entropy beyond second order, and none we have read at-
tempt to relate results of such expansions to quantitative
experimental measurements. Tolman (1938) emphasizes

29Nonanalyticity of the thermodynamic functions at the criti-
cal point is now well accepted (Fisher, 1983). Onsager (1944)
was the first to find rigorous proof of nonanalyticity at the criti-
cal point in a statistical mechanical model, the two-dimensional
Ising model. Tisza (1951) gave an early thermodynamic argu-
ment for nonanalyticity in ferroelectrics.
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that the Einstein thermodynamic fluctuation theory is
only an approximation, giving valid results for the second
moments, but not beyond that. Fowler (1955) discusses
thermodynamic fluctuation theory extensively, including
a critical examination of the Boltzmann formula relating
entropy and probability. Rice (1967) works out the
third-order term in the entropy expansion for density
fluctuations and gives some estimates of when it might
become important, particularly near the critical point.
Fowler (1955), King (1962), ter Haar (1966), and Lee,
Sears, and Turcotte (1973) present Smoluchowski’s (1908)
expansion about the critical point.

We might attempt to argue that the results of Green
and Callen (1951) establishing the equivalence between
the fluctuation moments computed with the canonical
ensemble and the full classical thermodynamic fluctua-
tion theory equation (3.1) prove that classical thermo-
dynamic fluctuation theory is exact at all volumes in
standard density coordinates. But this equivalence is de-
ceptive because the thermodynamic limit must be in-
voked in all calculations with statistical mechanical en-
sembles; specifically, the subsystem must become infinite
in size. Only here is statistical mechanics consistent in
that different ensembles give the same results (Ruelle,
1969; Griffiths, 1972). But, in this limit, the Gaussian
theory also becomes exact, and the deviation Greene and
Callen (1951) found between the full thermodynamic fluc-
tuation theory and its Gaussian approximation must be-
come impossible to detect.

Another attempt at expanding the entropy is to recog-
nize that the thermodynamic functions are smoothly
varying and to include gradients of the density in the ex-
pansion. This line of thought leads to the Ornstein-
Zernike theory of critical fluctuations (Landau and
Lifshitz, 1977).

E. Shortcomings of the classical thermodynamic
fluctuation theory

The classical thermodynamic fluctuation theory suffers
from several problems at volumes not large enough for its
Gaussian approximation to be valid. These were dis-
cussed in Sec. II, and we elaborate here.

The first problem with the classical thermodynamic
fluctuation theory concerns Axiom 1, which contains the
assertion that the environment of subsystem A4, may be
characterized only by its intensive parameters. As was
discussed in Sec. II.C, this assumption is reasonable pro-
vided that there is negligible spatial correlation between
molecules on opposite sides of 4, which will be the case
if ¥ >>£9 Here Ay will at any time see itself surrounded
by an environment that at any instant in time looks simi-
larto 4 Ve But this is not so at smaller volumes, and Ax-

iom 1 ceases to be plausible.

The second, more formal problem with classical ther-
modynamic fluctuation theory is that it fails to be covari-
ant, since a coordinate transformation x —x’(x) intro-
duces the Jacobian of the transformation in the thermo-
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dynamic state space volume element dx%dx!---dx” in
Eq. (3.1), as was argued in Sec. I1.B. The Jacobian is gen-
erally not constant®® and cannot simply be absorbed in
the normalization constant C. Neither can it be absorbed
in the entropy Sy(a,a,), which transforms as a scalar.
Therefore we must assert that there is some ‘special coor-
dinate system in which Eq. (3.1) works. However, nei-
ther the classical thermodynamic fluctuation theory nor
statistical mechanics offers any guidance as to what such
a special coordinate system might be.

The third problem with the classical thermodynamic
fluctuation theory is that it yields incorrect average
values for the standard densities beyond second order in
the entropy expansion. As was shown in Eq. (3.46), we
expect

(a®)=a§, (3.57)
if ¥V, is infinite, by the conservation of the standard ex-
tensive parameters. However, this is not what Eq. (3.1)
predicts, unless Sy(a,a,) is an even function of a*—ag.
But, there is nothing in the laws of thermodynamics that
demands that this be so. This problem is classified under
a lack of consistency. The importance of conservation
laws in the context of thermodynamic fluctuation theory
was emphasized by Didsi and Lukacs (1985a).

The fourth problem with classical thermodynamic fluc-
tuation theory is that it does not satisfy the Chapman-
Kolmogorov consistency relation (2.13). This condition
arose when we extended the thermodynamic fluctuation
theory to include fluctuations inside the subsystem.

F. Physical meaning of fluctuating

‘thermodynamic parameters

A natural question is the physical meaning of thermo-
dynamic parameters for subsystems. Other than in the
thermodynamic limit, statistical mechanics offers no
unique definition for these quantities, and their physical
meaning has been disputed. The operational viewpoint in
this review is that of Landau and Lifshitz (1977), in
which equations of state (from the thermodynamic limit)
are used to assign values of thermodynamic parameters
to subsystems from the known values of the mechanical
parameters. This operating method comes from the hy-
pothesis of “‘translational invariance” and is discussed in
Sec. IL.D. It is at least implicit in most textbook discus-
sions of thermodynamic fluctuations. Other viewpoints
are discussed briefly in this section.

The meaning of temperature for fluctuating subsystems
has recently been debated from several points of view
(Feshbach, 1987; Kittel, 1988; Mandelbrot, 1989). Fesh-
bach (1987) discussed the use of temperature to analyze

30Ruppeiner (1983b) argued that treating the Jacobian as a
constant is consistent with stopping the entropy expansion at
second order.
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heavy nuclei collision data.3! The basic picture is that of
an excited nucleus (“‘subsystem’’) in an environment con-
sisting of other excited nuclei (““heat reservoir””). Fesh-
bach cautions that the use of temperature in the analysis
of collision products requires that the temperature fluc-
tuations of any given nucleus be small, so that the decay
products of each nucleus will be characteristic of those of
the whole ensemble. Temperature fluctuations were es-
timated with what Feshbach presents as a “thermo-
dynamic uncertainty relation”

1
A=
AU T

=kp . (3.58)

The energy may be expressed in terms of the temperature
using the Fermi-gas model, and Feshbach finds that in
typical cases of interest temperature fluctuations are only
about an order of magnitude less than the temperature,
large enough to raise questions about quantitative ther-
modynamic results from nuclear collisions.

Kittel (1988), writing in apparent response to Fesh-
bach, argued that the phrase “temperature fluctuation” is
an ‘“oxymoron” because temperature is defined only in
the thermodynamic limit, where it does not fluctuate. He
stated that the temperature of a subsystem must be that
of the infinite surrounding heat reservoir.

Mandelbrot (1989), however, argued that the tempera-
ture of fluctuating subsystems is a very well-defined con-
cept if one is willing to go a step beyond elementary
probability theory and use the theory of estimators of sta-
tistical parameters (Mandelbrot, 1962, 1964). The basic
idea is that the temperature of a subsystem can be deter-
mined by examining its energies at various times and
making the best guess at the temperature of the reservoir
with which it might have been in contact. The uncertain-
ty in the answer is taken as AT. These arguments are ba-
sically connected with the theory of thermometry.
Lavenda (1991) has given an extensive discussion of this
idea, including its history.

Lindhardt (1986), referring to a lecture by Bohr (1932,
p. 401),? argued that Eq. (3.58) may be regarded as a
“thermodynamic uncertainty principle” for energy and
temperature, but only in the sense discussed by Mandel-
brot (1989), and not in the sense of Landau and Lifshitz
(1977), where the energy and the temperature are related
by an equation of state. A proper uncertainty relation re-
quires independent variables.

31A semipopular account of this subject, with particular em-
phasis on nuclear phases and phase transitions, is given by
Greiner and St6cker (1985).

32Heisenberg (1971, p. 103) presents conversations with Bohr
on complementarity principles and how the relation between
equilibrium thermodynamics and statistical mechanics is con-
nected to the relation between classical mechanics and quantum
mechanics.
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It is tempting to seek a conflict between these two
points of view and to argue that the validity of the one
negates the other. But there does not seem to be any in-
compatibility, since in one case the temperature being in-
terpreted is that of the reservoir, and in the other it is
that of the subsystem.

Chui et al. (1992) found direct experimental evidence
for the validity of the Landau and Lifshitz (1977)
equation-of-state interpretation. They measured temper-
ature fluctuations in a paramagnetic crystal at low tem-
peratures with high-resolution thermometers. The tem-
perature measurement was made directly of the subsys-
tem, and the energy was deduced from the magnetiza-
tion.

Klein (1960) examined pressure fluctuations from
several points of view, both statistical and thermodynam-
ic, and concluded that the thermodynamic approach
(Landau and Lifshitz, 1977) is basically correct.

Kratky (1985) reviewed fluctuations of thermodynamic
parameters, with particular emphasis on pressure fluctua-
tions. He concluded that in the microcanonical ensem-
ble, all mechanical and thermodynamic parameters are
fixed; but in other ensembles, the thermodynamic param-
eters fluctuate according to the fluctuations of the
mechanical parameters, in a way consistent with Landau
and Lifshitz (1977).

Schlogl (1988) discussed the thermodynamic uncertain-
ty relations for the case of more than one pair of fluctuat-
ing variables.

G. Magnetic-fluid analogy

A class of physical systems parallel to fluid systems are
magnetic systems. Thermodynamically, there is a simple
analogy between these classes of systems, which we now
examine for the case n =2. Consider a magnetic system
of N spins in a magnetic field 4. Let M be the magnetiza-
tion, which is the sum of the magnetic moments of all the
spins in the system. We may show (Kittel, 1958) that the
differential of the internal energy is

dU=TdS+hdM . (3.59)

Here, the field 4, but not the magnet that produces it, is
taken to be a part of the system. For the pure fluid with
the volume V fixed,

dU=TdS+udN . (3.60)
Hence the formal analogy
NoV, M<N, hou, mop, (3.61)

where m =M /N is the magnetization per spin.

A problem with this analogy may appear at first to be
the difficulty of fixing the energy and magnetization of
the large system AVo’ because it is not isolated from the
magnet, which is not part of the system. By contrast, for

fluids we may at least conceptually fix both the energy
and the particle number simply by physically closing the
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boundary around the system. This raises the question of
the validity of Axiom 3 in Sec. III.B for magnetic sys-
tems, since that axiom, used in Eq. (3.3), asserts the con-
servation laws for energy and particle numbers.

The resolution of this difficulty may be found in the
equivalence of the canonical and the microcanonical en-
sembles in the thermodynamic limit (Ruelle, 1969;
Griffiths, 1972). In the former, we fix the thermodynam-
ic parameters of the environment, and in the latter, we fix
the standard densities of the subsystem. The resulting
thermodynamic properties are the same. Magnetic sys-
tems are most naturally described with the canonical en-
semble. The equivalence to the microcanonical ensemble
assures us that there will be no error in proceeding as if
the standard extensive quantities for very large magnetic
systems are strictly conserved.

H. Other results concerning classical fluctuation theory

Klein and Tisza (1949) pointed out the inadequacy of
Axiom 1 of the classical theory near the critical point
and addressed it with a thermodynamic theory based on
a subdivision of the system A4 2 into equal-sized cells ar-

ranged on a regular spatial array, as in Fig. 8. In this
construction, the subsystem A, is one of the cells, and it
samples the universe only through the thermodynamic
states of its immediate neighbors. This formalism yields
information about the pair-correlation function, includ-
ing, with suitable approximations, the Ornstein-Zernike
theory. Klein and Tisza (1949) argued that their theory
also produces finite density fluctuations near the critical
point, in contrast to the unphysical infinite density fluc-
tuations produced by the diverging isothermal compressi-
bility in the Gaussian approximation.’> The symmetry
properties also may be used to make deductions, particu-
larly about A points in solids. The authors criticized the
approach of Smoluchowski (1908) in expanding the en-
tropy beyond second order in the density, because (in the
language of this review) of the breakdown in Axiom 1 of
Sec. IIL.B.

Bonner (1956) discussed the application of thermo-
dynamic fluctuation theory to self-gravitating spherical
masses of gas. The onset of instability resulting in col-
lapse was predicted. Some discussion was given of the
role of fluctuations in the formation of the nebula early in
the universe.

Glansdorff and Prigogine (1971) discussed thermo-
dynamic fluctuation theory in systems far from equilibri-
um.

Jou and Careta (1982) applied thermodynamic fluctua-
tion theory to extended irreversible thermodynamics.
The entire subject of extended irreversible thermodynam-
ics, including fluctuation theory, was recently reviewed

330f course, keeping higher-order terms in the entropy expan-
sion also holds the density fluctuations finite.
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by Jou, Casas-Vazquez, and Lebon (1988).

Pavon and Rubi (1983, 1985) applied thermodynamic
fluctuation theory to the thermodynamics of black holes.

Schlogl (1985) related the thermodynamic metric to
the scheme of bit-number cumulants of probability distri-
butions.

Levine (1986) described a formalism for generalizing
thermodynamic Riemannian geometry. Use was made of
a Euclidean geometry for classical thermodynamics.

Debenedetti (1986a, 1986b) has worked out an explicit
formalism of thermodynamic fluctuations as far as the
Gaussian terms in multicomponent fluid mixtures. This
includes a geometric representation, though not of the
type in this review (Debenedetti, 1986b). This work was
extended by Panagiotopoulos and Reid (1986) and by
Yan and Chen (1992).

Compagner (1989) compared the thermodynamic limit
obtained by approaching infinite volume with that ob-
tained by the continuum limit kz —0, where fluctuations
disappear. Particular attention was given to capillary
phenomena, but there was little discussion of phase tran-
sitions and the critical point.

IV. COVARIANT AND CONSISTENT
THERMODYNAMIC FLUCTUATION THEORY

In this section, the covariant and consistent thermo-
dynamic fluctuation theory is presented. Motivated by
the discussion in Sec. IL.E, we postulate that the proba-
bility density for thermodynamic fluctuations is the solu-
tion to a second-order linear parabolic partial differential
equation, whose coefficients are determined by the re-
quirement that the solution match the classical theory in
the thermodynamic limit. A lower bound on the volume
where this theory could agree with the classical theory
based on a uniform environment is given by the Rieman-
nian thermodynamic curvature. Routine calculations of
the curvature, from known thermodynamics, reveal that
in several cases the curvature is proportional to the
correlation volume, a physically appealing finding.

The basic philosophy in the theory is similar in style to
that in theories of quantum mechanics, where the usual
starting points are postulated partial differential equa-
tions which fit a set of desired general principles.

A. Thermodynamic fluctuation
partial differential equation

We begin with the assumption that the fluctuation
probability density satisfies a generalized diffusion-type
partial differential equation,*

340ne may present a derivation for this equation similar in
spirit to that presented in Sec. IL.D. A useful addition to this
argument is a logical application of Axioms 1-3 of the classical
thermodynamic fluctuation theory (Ruppeiner, 1983a, 1983b;
Diési and Lukacs, 1985a). Didsi and Lukics are especially clear
in their derivation of a Fokker-Planck-type equation emphasiz-
ing the conservation laws.
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3P
axHax”

The “time” ¢ is in no sense a measure of the real time, but
of the volume:

t=1/V .

a_P= 123 a_P l uv
co(x)P-!-cl(x)axu—!- 5 ¢k (x)

EY (4.1)

4.2)

The equation should be linear in P, to accommodate a
normalization constant (Wehner and Wolfer, 1987). The
form of Eq. (4.1) does not explicitly preserve normaliza-
tion, however. It appears as an implicit relation among
the coefficients. A form that preserves normalization is
OP _ 3 (g 1_&

ot Py [K¥Mx)P]+ 2 nFan”
which is the thermodynamic fluctuation equation that
will be used henceforth. This partial differential equation
is formally identical to the Fokker-Planck equation in ir-
reversible thermodynamics (Graham, 1977a). It seems to
be the simplest general type of mathematical structure
that accommodates thermodynamic fluctuation theory.
The first application of a partial differential equation for
thermodynamic fluctuation theory appears to have been
by Ruppeiner (1983a, 1983b). Didsi and Lukacs (1985a)
were the first to emphasize the role of conservation laws
in determining the coefficients K *(x).

K*“ is called the drift vector and g°? is the inverse of
the metric tensor, which is assumed to be symmetric un-
der an exchange of indices. The standard terminology
and notation are somewhat misleading here, since the
quantity K¢ does not, in fact, transform as a first-rank
contravariant tensor, as we shall see. For a form of the
equation in which everything transforms as a tensor, see
Graham (1977b) and Diési and Lukéacs (1985a).%
Mathematically, these coefficients could be allowed to de-
pend on ¢ as well as on x. The absence of time depen-
dence is the hypothesis of “translational invariance.”

[g*"(x)P], 4.3)

1. Average values

Let us now use Eq. (4.3) to work out average values,
which are generally defined by

(f)= [ fPax , 4.4)
where
dx =dx%x'---dx". 4.5)

It is straightforward to show (Graham, 1977b) by multi-
plication of Eq. (4.3) by the coordinates, and integration
by parts that

< [pax=0, *.6)

35There is a small error in Eq. (3.10) of the latter paper.
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4 (xay=(K), @.7)
dt

and

4 (xaxBy=(xKO) + (PR +(g®) . @B
Boundary terms have been omitted for brevity; see
Wehner and Wolfer (1983b) for their inclusion. For
probability distributions tightly clustered near some
point, they are irrelevant. For large fluctuations, bound-
ary conditions are chosen to conserve the normalization,
as in Sec. II.

Consider next the classical theory in the thermo-
dynamic limit £ —0. The initial condition is a Dirac del-

ta function:
Pt_)o(xlxo)zs(x _xO) > (4.9)

where x, is the state of the infinite environment. From
Egs. (4.7) and (4.8),

lim -2 (x — x & )N(xP—xB)) =g ™B(x,) ; 4.10)
t—o0dt

so, to leading order in ¢,
(Ax*AxB)=g®B(xy)t , 4.11)

which is identical to Eq. (3.16). Here, Ax*=x%—x§.
Equation (4.11) shows that g in this section must be the
same as the thermodynamic metric of Sec. III.

The average values of the standard density coordinates
do not depend on t, by Eq. (3.46). For small ¢ the average
value for K% x) is very nearly its value evaluated at x;
and Eq. (4.7) leads us to conclude that

K*a)=0. 4.12)

This, together with the transformation rules for K%x)
and g°(x), presented below, determines the equation
coefficients uniquely in any coordinate system.

2. Thermodynamic Markovicity

Let us explore some basic principles that follow from
Eq. 4.3). First, note that, in a parabolic partial
differential equation, a unique solution exists in some
domain, given an initial condition for P at some time ¢,
(not necessarily zero) and a boundary condition (Morse
and Feshbach, 1953). The boundary condition may con-
sist either of the specification of the probability density
on the boundary of the domain, or of the normal deriva-
tive of the probability density, or be some linear com-
bination of the two.

Mathematically, the history that has led to a given ini-
tial condition at ¢ =t is irrelevant. In the theory of ran-
dom processes, such a statement is called a Markov rule
(Reif, 1965), and it motivates using the following notation
for the probability density:
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X0

P , (4.13)

t |ty

as in Sec. ILD. We always assume a Dirac delta function
initial condition if ¢ —t¢,, since in this limit the system
Ay is the same as AVo' Markovicity has an immediate

strong physical implication: given a subsystem at some
instant in time in some thermodynamic state, the proba-
bility of a fluctuation inside that subsystem at that in-
stant in time depends only on the subsystem’s thermo-
dynamic state and not on that of the exterior environ-
ment. Computer experiments on the two-dimensional Is-
ing model support Markovicity at all length scales (Rup-
peiner, 1985a, 1986).

As was discussed in Sec. II.D, thermodynamic Marko-
vicity, along with a short-time propagator, offers an alter-
native foundation for the theory, in terms of the path-
integral formalism of Ruppeiner (1983b). The detailed
mathematics behind this was worked out by Grabert and
Green (1979), though in a different physical context.

Markovicity can only be an approximation, likely to be
most effective in cases with short-ranged intermolecular
potentials and for subsystems not too small. The hope is
that the validity of Markovicity will not be diminished by
the diverging range & of the pair-correlation function of
AVo near the critical point. One might argue that this

cannot be so, because if the correlation length of 4y, is

very large, then the effect of any one spin will be felt over
long distances, and certainly a spin inside 4, could sam-
ple spins well outside 4. Such an attempt at refutation
fails, however, because the pair-correlation function is
formed by computing long-time averages over all of the
microstates of the infinite system Ay . On the other

hand, Markovicity addresses the ensemble of microstates
of just the subsystem A, with macroscopic variables re-
stricted to some small range.

Markovicity is implicit in the canonical ensemble in
statistical mechanics which assigns equal probabilities for
all microstates with given macroscopic parameters. But
the canonical ensemble is valid only in the thermodynam-
ic limit. The hope is that the weaker statement of Mar-
kovicity will remain valid to a good approximation even
down to very small volumes.

3. Chapman-Kolmogorov equation

Another condition satisfied by solutions to Eq. (4.3) is
the Chapman-Kolmogorov equation

=fp

X
t

X1
3

X0

X x | x,
P to t |t |F 1o 9%

(4.14)

with #>¢;>1¢,. Its proof consists of two steps. First, it
is easily verified that the right-hand side of Eq. (4.14) is a
solution to Eq. (4.3) if
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X
t

X1

P ’

(4.15)

is a solution. Second, the Dirac delta-function initial
condition implies

‘ x | x; x; | %o
;qtlllffa,fp tn P L | b dxi
xy | xg
=P . t | ° (4.16)

the necessary initial condition. The uniqueness theorem
for solutions of Eq. (4.3) (Morse and Feshbach, 1953)
then completes the proof.

The classical thermodynamic fluctuation theory does
not satisfy the Chapman-Kolmogorov equation, as was
explicitly demonstrated with a simple example (Rup-
peiner, 1983b). The Gaussian approximation to the
theory does satisfy it, so long as we do not allow varia-
tion of the metric elements with the thermodynamic
state.

4. Covariance

Consider now the covariance of the thermodynamic
fluctuation partial differential equation.’®3” What is
meant by covariance under a coordinate transformation
from one set of thermodynamic variables x to another set
x'(x)? First of all, if we, working with the new coordi-
nates, were to formulate a theory of our own, our equa-
tion would look formally like Eq. (4.3). Second, there ex-
ists an explicit prior prescription that relates the proba-
bility density in the new coordinates to those in the old
coordinates:

Pdx=P'dx’ . (4.17)

This equation follows from the requirement that the
probability of finding the thermodynamic state in some
range of states be independent of the particular coordi-
nates used to specify that range of states. Third, using
the foregoing prescription, we must be able to show that
the thermodynamic fluctuation equation in the new coor-
dinates not only looks like the fluctuation equation in the
old coordinates, but is equivalent to it. That the form of
Eq. (4.3) satisfies all these conditions is, a priori, not clear,
but it does, as the following demonstrates.

36This discussion on covariance paraphrases that of Sakurai
(1980) in connection with the derivation of the transformation
properties of the Dirac equation. I consider only coordinate
transformations independent of ¢.

3"Many of the tensor calculations in Sec. IV were checked
with the computer program MathTensor (Parker and Christen-
sen, 1991).
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In x' coordinates,

9P’ 3 1@
=———(K'*P')+————
ot ax’”( ) 2 9x'Hox'"
To resolve the issue of how K’ and g’ °? are related to
K and g%, we systematically compare Eqgs. (4.3) and
(4.18). First, a standard theorem in advanced calculus
lets us rewrite Eq. (4.17) as

(g'#P')y. (4.18)

9x
dax’

pP'= P, (4.19)

where the coefficient of P on the right-hand side is the
Jacobian. We then substitute this into Eq. (4.18) and ex-
press derivatives with respect to x’ with

a _ ox* 9
ax'®  9x'® IxH

We compare with Eq. (4.3) by differentiating, dividing by
the Jacobian, and equating corresponding coefficients of
the derivatives of P. The calculation is aided by the iden-
tities (Sokolnikoff, 1964)

(4.20)

d ox [__|Oox | ox” x'H @.21)
ax® | ax’ ax’ | ax'* ax%x '
) oxP | __ axt oxP %' 4.22)
ox% | ox'? ax'? ax'” ax%xH ’ ’
and
0x% Ix'* __ Ix'* Ix* _ .4
dx'* 3xh h dxH ax’ﬁ~~ B> 4.23)
where the Kronecker delta function
o 0 if a#p,

All derivatives with respect to x’ * may be placed into ei-
ther the Jacobian or factors of

Ix“
. (4.25)
ax' P
Equating the n? second derivatives of P yields
x’'® Ix'P
B Ll (4.26)
axk ax” °
Equating the » first derivatives of P yields
ra 2.1 a
ko= "guy Low 8x'7 “.27)
oxH 2 oxHox"”

At this point all of the equation coefficients have been
determined. Factors with just P now equate as well, indi-

Rev. Mod. Phys., Vol. 67, No. 3, July 1995

macroscopic.

cating consistency and completing the calculation.®

The covariance of the equation was clearly discussed
by Graham (1977b), who derived both it and transforma-
tion rules (4.26) and (4.27) from the microscopic
Langevin equation to deal with the problem of irreversi-
ble thermodynamics. In this review, of course, not only
is the context quite different, but the starting point is
Essentially, requirements of covariance,
consistency, and the thermodynamic limit take the place
of microscopic equations!

5. Translational invariance

There is yet another feature in the theory: neither K¢
nor g% depends explicitly on z. This assumption of
“translational invariance,” implicit in the notation, is not
demanded by the mathematics. It is just the simplest as-
sumption that may be made about the volume depen-
dence. In the classical theory, translational invariance is
contained in Axiom 1 in Sec. III.B. The thermodynamics
in the thermodynamic limit offers little guidance as to
possible alternatives. As is discussed in Sec. IV.D, this
assumption is reasonable at volumes above the correla-
tion volume, but not at lesser volumes.

6. Summary of rules of the covariant and
consistent thermodynamic fluctuation theory

To conclude this section, here is a review of the theory.
The discussion began with the choice of a particular par-
tial differential equation, one motivated by the considera-
tions in Sec. II. While deducing properties from this
equation is instructive, this presentation nevertheless
leaves a sense that the choice of the original equation was
somewhat arbitrary. Therefore let us go the other way
and begin with the desired principles of the theory:

(1) volume independence of the average standard densi-
ties;

(2) Chapman-Kolmogorov consistency equation;

(3) covariance; and

(4) consistency with the classical thermodynamic fluc-
tuation theory in the limit of very large volumes.

In addition, a fifth assumption was added for the pur-
poses of simplicity:

(5) translational invariance.

This fifth assumption has a lesser status than the first
four and, in fact, fails at small volumes.

As we have argued, Eq. (4.3) satisfies all these princi-

38Not just any equation will satisfy requirements of covari-
ance; it is possible that no transformation rule for g% and K
would have worked. “When we know the transformation prop-
erties of a certain quantity [in our case P in Eq. (4.17)], we can
often guess the laws which govern its behavior merely from the
requirement that physical laws must be covariant under trans-
formation from one coordinate system to another; at least, the
number of possible such laws is greatly reduced” Joseph (1965).
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ples. Note as well that the equation was taken to be
linear to accommodate an arbitrary normalization con-
stant. The question of uniqueness remains and is not ex-
plored in generality here. Nevertheless, the choice of
equations is severely limited by principles 1-5. Of
course, alternate theories may be constructed by modify-
ing these basic assumptions, but our hope is that they,
and Eq. (4.3), form at least a good start.

To conclude this section, note that the Gaussian ap-
proximation to the classical thermodynamic fluctuation
theory satisfies principles 1-5. However, this approxi-
mation is limited to very large volumes. Beyond the
Gaussian approximation, the full classical thermodynam-
ic fluctuation theory equation (3.1) fails to satisfy the first
three principles.

n/2

Vg exp

X0
0

1
2wt

2t

Such an approximate solution has been used (in a
different context), for example, by Dekker (1976) and by
Wehner and Wolfer (1985).

For any given Ax?, with ¢ becoming small, this equa-
tion becomes equivalent to the Gaussian approximation
to the classical theory equation (3.12):

X Xq 1 n/2
— ‘/.
P t 0 27t g
Xexp | — g, AxPAx” (4.30)
2t°H

This confirms that in the thermodynamic limit, the co-
variant thermodynamic fluctuation theory approaches
the classical theory. Any deviation of the covariant ther-
modynamic fluctuation theory from the Gaussian ap-
proximate expression signals a disagreement with the

I

n/2
Vg exp

x | xg

0

1

P —_
2t

=c

1 v
t Eg# P S

where ¢ is a constant. Such a solution has been dis-
cussed, for example, by Wehner and Wolfer (1983a). It
also reduces to the Gaussian approximation of the classi-
cal theory in the thermodynamic limit ¢ —0. This solu-
tion, however, suffers from the problem that it does not
preserve normalization, because of the presence of the
first exponential term.

Methods for finding approximate solutions to the
Fokker-Planck equation are well known and are dealt
with in the literature [see Wehner and Wolfer (1983a) for
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B. Fluctuations at large volumes

The solution to the thermodynamic fluctuation equa-
tion separates naturally into different volume regimes:
large, intermediate, and small. Start with large volumes,
where ¢ is small. In this case, the probability distribution
is strongly centered near the initial point x,, and the drift
K ® and the metric elements g% will not vary much over
the region of significance. As a first try, simply evaluate
the equation coefficients at x4 and write

P__ P 1, PP
dxHox"”

ot oxH 2 g
It is straightforward to verify that a normalized solution
with Dirac delta-function initial condition is

(4.28)

(4.29)

I
classical thermodynamic fluctuation theory, which is not

covariant beyond second order in the entropy expansion.

A somewhat awkward problem with the approxima-
tion equation (4.28) is that it neglects the fact that the
first derivatives of gf are formally as important as the
drift K% To see this, perform the derivatives out explic-
itly in Eq. (4.3) before setting the coefficients to con-
stants:

oP 1 oP
O _ |[Lopy _pu w ey
ot 2g v Kl | PH(™,—K )ax“
1 3P
g (4.31)
Zg oxHox"
where the comma notation “,@” denotes partial

differentiation with respect to x* Now evaluate the

coefficients at x; the solution is

1
- -i;gw(Ax”—f—g”g’gt —K*#t)(Ax V+g"§,§t —K"t) |,

(4.32)

references]. The approximations are not unique, howev-
er, because there are several ways of approximating
derivatives by finite differences (Graham, 1977a). Im-
proving upon Eq. (4.29), making it more accurate, and
going to the limit of infinitesimal time interval leads to
the path-integral solution of the diffusion equation (Gra-
ham, 1977a, 1977b; Grabert and Green, 1979; Dekker,
1979, 1980, 1981; Langouche, Roekaerts, and Tirapegui,
1980; Takahashi and Watanabe, 1981). These ap-
proaches lead to Riemannian geometry. But the path-
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integral method is difficult and more than is needed here.
It suffices that for very small times the solution is Gauss-
ian, and that deviations from this approximation result
from derivatives of the metric and because of nonzero
drift K. All approximate solutions support these points.

C. Fluctuations at volumes of the order
of the thermodynamic curvature

1. General absence of “ideal coordinates”

As t increases, the Gaussian approximation equation
(4.30) eventually fails for typical fluctuations. There are
two ways this can happen. The first is that fluctuations
become so large that the metric elements can no longer
be treated as constants evaluated at the initial point x.
The second is for the drift terms proportional to ¢ in the
argument of the exponential in Eq. (4.29) to become too
large to ignore.

For any ¢ and any reservoir state x,, it is possible to
find coordinate systems such that either or both of these
problems are present; the upper limit on ¢ such that the
Gaussian theory is valid in all coordinate systems is zero.
The fundamental question is whether we can find an
upper limit on ¢ such that the classical thermodynamic
fluctuation theory must fail in all coordinate systems for
all larger #’s.

The first impression might be that transformation rules
(4.26) and (4.27) can always be solved to find an ideal
coordinate system where the drift vector K¢ is globally
zero and where the metric elements g,z are globally con-
stant. However, this turns out not to be the case, as we
now argue.

Two methods for attempting to construct an ideal
coordinate system suggest themselves. The first begins
with a transformation to a class of coordinate systems
where K*=0,% followed by a transformation to coordi-
nates within this class to make g,z globally constant.
The second method reverses the order of these opera-
tions.

The first method is unlikely to work. Given that we
have found a coordinate system with K?=0, we may
maintain this equality with a linear transformation.
However, such a transformation with Eq. (4.26) will not
result in constant g,g, unless we were so fortunate that
the initial transformation made them constant. Another
try is to choose some nonlinear transformation that
leaves the second term on the right side of Eq. (4.27) zero
and brings the metric elements to constants. However, as
we shall demonstrate, it is not generally possible to do
even the latter, much less both.

Though this argument establishes that an ideal coordi-
nate system is unlikely to exist for a given thermodynam-
ic system, it fails to offer any limiting value for ¢ beyond

39Such coordinates certainly exist, e.g., the standard densities.
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which the classical theory must fail for typical fluctua-
tions, no matter what the coordinate system. For this we
must look in detail at the second procedure of first at-
tempting to make the metric elements constant.

2. Equivalent metrics

Geometrically, the question of whether we may find,
for a given metric g,5(x), a new coordinate system with
globally constant metric elements was of much interest to
mathematicians in the last century; see Kline (1972) for a
discussion of these historical issues. A more general
question was eventually answered by Riemann (1861):
Given a coordinate system x with line element

di*=g,,(x)dx*dx" , (4.33)

is it possible to find another coordinate system x'=x'(x)
with given metric elements g;B(x')?‘“) A key restriction
is that the coordinate transformation x'(x) must preserve
the distance between every pair of neighboring points*!:

glw(x)dx"dx"=g;w(x')dx’”dx’ v. (4.34)

Riemann showed that this is possible if and only if a cer-
tain indexed quantity, called the Riemann tensor, trans-
forms as a fourth-rank tensor.

Modern differential geometry provides some very
elegant treatments of Riemannian geometry, and we refer
the interested reader to the literature (see, e.g., Spivak,
1970a, 1970b, 1975a, 1975b, 1975¢c; Weinberg, 1972; Mis-
ner, Thorne, and Wheeler, 1973). These treatments start
with language and axioms whose immediate connection
to the problem at hand is not transparent, and much of
which is not essential for the purposes of this review. We
shall deviate from the modern presentations and use a
more direct one in the spirit of Riemann’s original
derivation. Most of the manipulations we make are stan-
dard (see, e.g., Weinberg, 1972). What is somewhat un-
conventional in this treatment is the context of the
Taylor-series solution.

The metric relation (4.34) may be expressed in the
form of a first-order partial differential equation for
x'(x):

I‘u rv
gaplx)= dx’” 3x (4.35)

= an® ax? g;w(xl) .

40As a sample problem, consider the plane. In Cartesian coor-
dinates, the metric elements consist of the identity matrix
8ap(x)=8,5 Take g} (x’)=1, g},(x')=0, and g3 (x")=x}%
The corresponding transformation is to polar coordinates
defined by x, =x)cosx} and x, =xsinxj;. However, such prob-
lems may be solved only under very special circumstances, as
we shall see.

411n Sec. III this corresponds to the statement that small en-
tropy differences between two neighboring states are indepen-
dent of the coordinates.
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The dependence of both sets of symmetric metric ele-
ments on their coordinates is assumed to be known. One
may observe that there is likely to be a problem finding a
solution x’(x), since there are n(n+1)/2 independent
equations, but only n functions to adjust to satisfy these
equations. Such an overdetermination forces a set of
consistency relations that must be satisfied as well. Our
basic procedure will be to assume that there is a solution,
and then to have the conditions required to make this as-
sumption self-consistent emerge naturally.

Consider some point x, in the space of states and write

x'Hx)=x""+x’ “’“Ax“—l— —ZITx’ “’#vAx"AxV
+%x’ @ eAxHAxVAX R R (4.36)

where Ax*=x%—x§ and where all the derivative
coefficients on the right-hand side are evaluated at x,.
These derivatives can be determined by repeated
differentiation of Eq. (4.35) and the solution of relatively
simple algebraic equations. The value of x, may be set
arbitrarily.

The mechanical solution procedure for the derivatives
has the potential problem that the resulting series
coefficients might not all have commuting lower indices;
such invariance under index exchange is essential, since
the order of partial differentiation must be irrelevant. In
our discussion, we shall start with the first derivatives
and then work our way up. The job is somewhat
simplified, since at each new derivative, we need consider
only the exchange of the two final indices. The others
commute already from the work at the lower-order
derivatives.

The first set of algebraic equations is the partial
differential equation (4.35) itself, evaluated at the point
Xt
J

8ap=x"" X" g8 - (4.37)

We say that g and g’ are congruent matrices at x, (Eves,
1966), which is certainly required for the transformation
to exist. It may be shown that if one of the two matrices
is symmetric, then the other one must be symmetric as
well. Of key importance in the construction of locally
Cartesian coordinates is the theorem (Eves, 1966) that
any symmetric positive-definite matrix is congruent to
the identity matrix. '
Differentiating Eq. (4.35) with respect to x,, yields

g _Ox'# ox"" ax'ﬁg, ax'* a%x'v g
B 3x axP ax? °F"* T axP ax%ax? M

ax'* %'V g’
ax® dxPaxr "M’
where the derivatives of g, and g, are with respect to
their respective natural variables x and x’'. To solve for
the second derivatives x’* g, it is helpful to introduce

the Christoffel symbols

(4.38)

_1
FaBYZEgua(guﬁ,7+guy,ﬁ_gﬁy,#) ’ (4.39)
symmetric in their lower two indices,
[%,=T%;. (4.40)

There is a corresponding definition in x’ coordinates.
Some algebra with the indexed quantities and Eq. (4.26)
yield

afoa . ax:a_ o axrp axlv
axPax” Br axne B ax? axP

Because of the symmetry of the Christoffel symbols, the
right-hand side of the equation is invariant with respect
to an exchange of 8 and v, as required. Evaluation at x,
yields the second-order Taylor-series coefficients x'* g,
directly. ,

Now differentiate Eq. (4.41) with respect to x%:

(4.41)

a3x'“ ax"'ax’g ax,VaX'g ax"’ ax"'ax’gax”’
— = —THgI"C —THg '@ i SO + Tk, I
9xPax 79x B Y axT axH Bre vE ax® axk r8T Ve gxk Ve KO 9x8 3x7 3xP
h o OXTOXEAXO L, o, Ax'C L, Bx'Y_ . Ox'Max'vax't
+r ”Vgr a'w ox® oxB ox? +r Byr " 5 +r Br:® gxn g ax? oxf ax®’ “442)

where the second derivatives were eliminated by substi-
tuting the known values Eq. (4.41). These third deriva-
tives are already symmetric under an exchange of B and
7, but not necessarily with respect to an exchange of y

and 8. Require
x'a’m,a—x'a,ﬁay—':O . (4.43)

A straightforward calculation shows that this obtains if
and only if the four indexed quantity

R%,s=T, 5T %;s,, T % s =T g%, (4.44)
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[
(with a corresponding definition in primed coordinates)
transforms as a fourth-rank tensor:

o _ 3x® ax'v ax'box’0 .,
Pra™ ox'm axP 3x" ax® veo

R"‘Bys is called the Riemann curvature tensor, and its
tensor transformation rule is the consistency relation we
have sought.

The proof is now essentially complete, because the
fourth-order coefficients x’“ g,5. must have commuting
last two indices, since both 8 and € originate from the

(4.45)
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differentiation of a single expression. The same is true
for the higher-order coefficients.

The requirement equation (4.45) is a necessary condi-
tion for the existence of a solution to the partial
differential equation (4.35). It allows the construction of
a Taylor-series solution. That it is a sufficient condition,
however, is not obvious, since there is no guarantee that
the Taylor series will actually converge. We shall not
take up this issue here, but will be content to have
motivated naturally the choice of Riemannian curvature.
Those interested in how to prove convergence of Taylor-
series solutions to general partial differential equations
should consult, for example, Garabedian (1964).

According to Kline (1972), Riemann, using a special
construction, proved that Eq. (4.45) is a sufficient condi-
tion for the case with zero curvature. Christoffel later
proved it in general with a similar construction.

3. Properties of the Riemannian curvature tensor

Let us pause to state some readily proved properties of
the Riemann curvature tensor. From Eq. (4.44),

R aB}’8= —R aBB‘y (4.46)
and

R aB,},a“‘"R a},53+R “531,=0 . (4.47)
Of value is the tensor with four covariant indices,

R opys =8auR"pys - (4.48)

Straightforward calculation with Eq. (4.39), Eq. (4.44),
and the readily proved identities

8eu8" v = 8oy 8"” 4.49)
and

8apy =8an T py T8pu T ay (4.50)
demonstrates that (Weinberg, 1972, p. 141)

Rgys =R 508 » 4.51)

R 4py5 =~ Rpays =~ Ropsy =Rpasy (4.52)
and

R opys T RoysptRaspy, =0 . (4.53)

Define, as well, the second-rank Ricci tensor*?
Rop=RVgup, (4.54)

which we may write as

42Equation (4.23) can be used to prove that the contraction of
a tensor, defined in footnote 22 in Sec. III, formed by summing
an upper and a lower index is a tensor, but with rank reduced
by 2.
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Raﬂ =g’WR/LaVB . (4.55)

The symmetry property equation (4.51) establishes that
the Ricci tensor is symmetric. Finally, define the
Riemannian curvature scalar:

R=g"R,, . (4.56)

The value of R at any point is independent of the choice
of coordinate system,; it is a scalar.

There are a number of possible sign conventions. We
could as well have defined R, in Eq. (4.44) with a
minus sign. Or, in defining the Ricci tensor, we could
contract on the final lower index; the result differs by a
minus sign. (Contraction on the first lower index yields
zero.) We have used the sign convention of Weinberg
(1972), which yields a negative curvature scalar R for
standard spheres with positive-definite metrics. It also
yields a negative thermodynamic curvature near the criti-
cal point. Misner, Thorne, and Wheeler (1973) have
given a comprehensive summary of sign conventions in
various texts. Of course, authors are free to use any sign
convention, but they should certainly make clear which
they have picked.

4. Riemann normal coordinates

Let us return to the problem that necessitated these
derivations, that of finding coordinates where the metric
elements are globally constant. If the metric elements are
constant in some coordinate system, all components of
the curvature must be zero, as is clear from definition
(4.44) of the curvature. But, by the tensor transformation
equation (4.45), if the curvature is zero in one coordinate
system, then it must be zero in all coordinate systems.
Thus the vanishing of the Riemann tensor is a necessary
condition for the existence of a coordinate system where
the metric elements are constant. It is also a sufficient
condition, since a vanishing Riemannian curvature al-
lows us to satisfy the consistency equation (4.45) with a
constant metric.*’

As we shall see in Sec. VI, the single-component ideal
gas has zero thermodynamic curvature. Conceivably,
then, the classical thermodynamic fluctuation theory
could work all the way down to atomic volumes. Indeed,
statistical mechanical calculation of the fluctuations sup-
ports such a point of view (Ruppeiner, 1983b).

But the typical case corresponds to nonzero curvature.
Here the question is, How far may we move away from
the point x, and still have the geometry behave reason-
ably close to that of a flat surface? To address this, we
first find coordinates x'(x) as close as possible to Carte-
sian coordinates in the neighborhood of the point x.

43A11 these results are valid only locally. There is no implica-
tion for the overall topology. For example, a cylinder has zero
Riemannian curvature, but it is certainly not topologically
equivalent to the plane.
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With no essential loss of generality, we take x 5 =0.
The first condition we wish to impose is that, at x (, the
metric elements be locally Cartesian:

8ap=084p - (4.57)
This may be accomplished simply by solving the algebra-
ic equations (4.37) for the first derivatives x’“ 5 There
are more unknowns than equations, and the extra degrees
of freedom allow a choice of orientation of the coordinate
system.

Next, try to set as many derivatives of g;B(x) to zero
at x, as possible. We begin with the first derivatives and
simply take

I'%,=0, (4.58)

which yields with Eq. (4.41) the second-derivative

coefficients

x'® g, =Ikgx' ""” . (4.59)
The second derivatives of gi,ﬁ(x ), however, may not all
be set to zero, because doing so would result in zero cur-
vature, which we assumed not to be the case. This marks
the end of the process of setting derivatives of the metric
elements to zero.

We may, however, effect some further improvement by
examining geodesics. As a first step, note that since we

can make the first derivatives of g,z vanish, we have

R,aﬂ‘;lS:r’ aBY,G—IV aﬁs,y R (4,60)

where the left-hand side is known at this stage by the ten-
sor transformation rule for the curvature equation (4.45).
The first derivatives of the Christoffel symbols can clearly
be chosen in such a way as to satisfy this consistency re-
lation. However, the choice is not unique, since we may
add any indexed quantity symmetric in ¥ and & to the
first derivatives of the Christoffel symbols and not change
the difference in Eq. (4.60).
The particular choice

r “By,5=%(R’“Bya+R’ % ps) (4.61)
satisfies Eq. (4.60), as we may readily verify using Eqgs.
(4.46) and (4.47). Substituting back into Eq. (4.42) would
now yield the coefficients x“ g,5. These coordinates are
called Riemann normal coordinates. As shown below,
they are the closest possible to locally Cartesian coordi-
nates. Higher-derivative coefficients are not unique.

We here and henceforth drop the prime superscript,
since the original coordinate system will no longer be
used in this section.

A basic construction in Riemannian geometry is the
geodesic, paths of shortest distance between pairs of
neighboring points. The length of a path x(A) is given by

172

I v
dx" dx dn,
where A is taken to be the arclength of the curve. A

T T (4.62)
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straightforward exercise in the calculus of variations

(Misner, Thorne, and Wheeler, 1973) establishes that geo-

desics are solutions to the geodesic equation:
d*x® o dxt dx¥ _

dA? B dA dA

(4.63)

Without any loss of generality, we may choose x,=0 and
measure A from this point. Geodesic curves passing
through x, =0 may be written as a Taylor series:

x“=bak+%c“k2+%d“k3+0(k4). (4.64)
The expansion of the Christoffel symbols is
e, (x)=r%,+T%, b5A+0(A%) . (4.65)

Substituting these series into the geodesic equation in
Riemann normal coordinates and equating like powers of
A, we find that ¢ vanishes, since the Christoffel symbols
vanish, and d“ vanishes by the antisymmetry of the
Riemann tensor in its last two indices. We have

xI=bpA+0(A%) . (4.66)

In a curved space, this equation is the closest we can
come to that of a flat space.

5. Regime of validity of the classical thermodynamic
fluctuation theory

We now have all of the tools needed to estimate how
far we may move from the point x so that the geometry
still looks reasonably flat. We work in two dimensions,
where a convenient measure of deviation from flatness is
the circumference of a circle with small radius r and cen-
tered at x,=0. The circle is the locus of all points on the
geodesics starting from x, with the parameter A=r.

Useful is the expansion of the metric elements:

8an=Bust 3 8ap b2 +O) . .67
It also helps to express the direction cosines parametri-
cally:

bl=cosb and b?=sind , (4.68)

where 0 ranges from O to 27. In Riemann normal coor-
dinates, Eq. (4.50) leads to
1
gaB’Yﬁ = _3_(R ayBs +Rﬁya8 ) . (4.69)

Of use, as well, is the readily proved relation for the
Riemann curvature scalar,

- 2R 1512
4

which follows from the symmetry relations of the
Riemann tensor, and which holds in any coordinate sys-
tem.

The circumference of the circle is

, (4.70)
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dxt dx”
' do de

2
c=[" |g do . 4.71)
6=0

Substituting the metric expansion and the parametric ex-
pressions for b¢, and doing a somewhat laborious compu-
tation, yields

C=27rr+%Rr3+O(r4) , 4.72)
the formula of Bertrand and Puiseux (Spivak, 1970b).
Note that it is essential in the calculation that Eq. (4.66)
hold to O(A*).

Let us add some remarks about units. First, in the
thermodynamic Riemannian geometry, the square of the
distance has units of inverse volume, since the argument
of the exponential function in Eq. (3.12) must be dimen-
sionless. With Eq. (4.72), this clearly shows that the sca-
lar curvature R must have units of volume. This results
as well from the long formula (4.56), regardless of the di-
mension n of the thermodynamic state space.

We are now in a position to estimate how large typical
fluctuations may become so that the state space still ap-
pears locally reasonably flat. We require that the first
term on the right-hand side of Eq. (4.72) dominate the
second. This is obtained if

2 12
re<< | Rl .
However, from Eq. (3.12) for fluctuations, we observe
that the typical fluctuation has distance
2.2
r-= V .
To be in the regime where the classical theory provides a
good approximation to the fluctuations requires then that

(4.73)
(4.74)

V>>%IR| . (4.75)

Hence |R| sets the limiting lower volume for the clas-
sical theory. Certainly, it cannot hold for smaller
volumes, no mater how we choose the coordinate system.
Of course, in any particular case, it is possible that the
classical theory could fail at a larger volume because of
the drift K%, which is connected with the additivity of
the standard extensive parameters. Since K¢ does not
transform as a tensor, it is harder to make a general
statement about its effect on the limiting volume. There
does not appear to have been any investigation of the role
of K ¢ in any specific case.

In any event, Eq. (4.75) certainly offers a lower bound
for the volume of the validity of the classical thermo-
dynamic fluctuation theory. In Sec. II we argued that,
physically, this theory must fail at length scales of the or-
der of the correlation volume, where regarding the envi-
ronment of the subsystem as uniform is no longer ade-
quate. This leads us to interpret |R| as the correlation
volume:

R =x,E%, (4.76)
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where «, is a constant with absolute value of order unity.
This interpretation is supported by calculations, as we
shall see in Sec. VI.

Little has been reported in higher dimensions. Perhaps
calculations of this type will reveal similar properties
about the physical meaning of the thermodynamic curva-
ture. Indeed, in the path-integral approach (Ruppeiner,
1983b), the quantity R appears no matter what the di-
mension. It is worth pointing out, however, that in two
dimensions R provides complete information about the
curvature at any particular point, since, by Eq. (4.70) and
the symmetries of the Riemann tensor equations
(4.51)-(4.53), all the components of R 5,5 may be con-
structed knowing R. Hence any two-dimensional ther-
modynamic curvature theory must be based on R. The
same is not true in higher dimensions.

Didsi and Lukacs (1985b, 1986) took a somewhat
different direction in estimating the volume at which the
classical theory breaks down. Working in standard den-
sity coordinates, they calculated the next-order terms
[0(£?)] in the second fluctuation moments. They found
these terms to be related to the second derivatives of the
metric elements and attributed them to “spatial correla-
tions.” Furthermore, they interpreted as the correlation
volume the volume at which these correction terms equal
the leading ones. There is a different volume for every
pair of fluctuating variables, and Diési and Lukacs
(1985b) explicitly evaluated the maximum one.

Diési and Lukacs (1985b) worked out the examples of
the ideal gas and the gas of photons. For the ideal gas,
their correlation volume was on the order of the specific
volume occupied by a single molecule, a sensible result,
since this volume certainly signifies the scale at which a
thermodynamic description must fail. For the photon
gas, which has zero Riemann curvature because its
geometry is one dimensional, they obtained a volume on
the order of the wavelength of the peak of the blackbody
curve. This is, again, a physically appealing result, and
the volume is of the same order as that found by Einstein
(1904) in which the volume where energy fluctuations are
of the same order as the energy. Near the critical point,
their volume was estimated to be on the order of the
correlation volume.

If the calculation were made in Riemann normal coor-
dinates, the method used by these authors would likely
lead to the same basic estimate as Eq. (4.75), since in
these coordinates the second derivatives of the metric ele-
ments are simply related to the curvature scalar through
Eq. (4.69).

Diési and Lukacs (1986) inverted their logic and began
by assuming the existence of two different length scales in
a dilute gas. When worked backwards, this assumption
yields an equation of state of the van der Waals type.

D. Fluctuations at volumes less than the
order of the thermodynamic curvature

In this section, we discuss thermodynamic fluctuation
theory at volumes less than the correlation volume of
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Ay,. It seems clear that fluctuations in this regime must

behave quite differently from those at large volumes,
since translational invariance fails. Present evidence in-
dicates, however, that Markovicity remains reliable
(Ruppeiner, 1986), offering at least the possibility for a
thermodynamic theory in this volume regime.

We begin by arguing that translational invariance
breaks down. Translational invariance includes the as-
sertion that the intensive quantities, including the metric
elements, are the same as those of an infinite system with
the same mechanical parameters. It is well known, how-
ever, from the modern theory of critical phenomena, that
to produce the thermodynamics in the thermodynamic
limit near the critical point requires contributions from
many scales of length, all the way up to the correlation
length (Wilson, 1979). In subsystems, however, length
scales larger than the system size do not exist. This is not
a problem for large subsystems; but for subsystems small-
er than the correlation volume, this exclusion surely
affects the thermodynamics.

The properties of the pair-correlation function allow a
more detailed argument. Consider an infinite ferromag-
netic Ising lattice AVo of arbitrary dimensionality, with

spin at the ith lattice site 0; ==1 and with an interaction
Hamiltonian

H=— 2 J,JO,O'J—h 2 O;, (4.77)
i,jsAVO it-:AV0
where
J;; =0 (4.78)

ij
for all i and j. Let A, be a subsystem of AVo’ and con-

sider the set of all microstates of A4, with energy per
volume and magnetization per volume each falling into
some very small range. This set is called a subsystem mi-
crocanonical ensemble. As time advances, 4, will fluc-
tuate through various microstates, and occasionally into
the small interval of interest. By definition, for any mi-
crostate of A,

m=iV S o;. (4.79)

iedy
For convenience, we take the small range of the magneti-
zation to be centered on m =0. Then

0=(m2>=—1—2 S (o0, (4.80)

i,jedy

where the average is taken over only the states of in-
terest, and the interval size has been set to zero, for sim-
plicity of discussion. In the thermodynamic limit
V — o, the argument of the summation (0,0 ;) becomes
the pair-correlation function, which, for the ferromagnet-
ic Ising model, may rigorously be proven to be positive
for all i and j (Griffiths, 1972).

This cannot hold, however, for the finite subsystem.
Since the diagonal elements i =j all contribute + 1, some
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of the terms in the sum equation (4.80) must clearly be
negative. This finding clashes with the hypothesis of
translational invariance, which asserts that {o ;0 f ) is in-
dependent of V. Translational invariance fails at volumes
of the order of the correlation volume.*

Ruppeiner (1985a, 1986) explored this point with com-
puter simulations on the two-dimensional Ising model
and found such negative parts of (o ;0 f ) for subsystems.
Ruppeiner (1986) also found a breakdown of translational
invariance in the purely thermodynamic internal energy.

A replacement principle for translational invariance
probably must include not only a dependence on the size
and shape of A4, but on its position within AVo (if the

outer system is not infinite in volume). Whether general
statements, independent of the microscopic details, are
possible is unclear.

For an example of the type of hypothesis we are seek-
ing, but without Markovicity, Bruce (1981) stated a scal-
ing type postulate for order parameter fluctuation proba-
bilities near the critical point. More recently Bruce and
Wilding (1992) examined both energy and density fluc-
tuations near the liquid-gas critical point using idea from
finite size scaling theory and the concept of field mixing.

Rice and Chang (1974) anticipated several of the physi-
cal ideas in this section with statistical mechanical argu-
ments. They argued that in the pure fluid the thermo-
dynamic expression for density fluctuations

< 2>_ kgTky

V b

where ky is the isothermal compressibility, should work
all the way down to microscopic volumes in the ideal gas,
but near the critical point must fail at volumes of the or-
der of the correlation volume. Moreover, they suggested
that at volumes less than the correlation volume, this
thermodynamic expression could still work, but with a
different value for k, one associated with the local ther-
modynamic state.

Rice and Chang (1974) also made a statistical mechani-
cal argument for the inverse proportionality between the
singular part of the free energy and the correlation
volume equation (2.51). They derived exponent scaling
relations.

4Ap
p .

(4.81)

44Technically, the argument about negative parts of the corre-
lation function applies also in the thermodynamic limit V— co.
Here, however, {m?) is zero without negative parts to the
correlation function, since the denominator of the right-hand
side of Eq. (4.80) diverges as the square of V, whereas the sum
of the terms near the diagonal of the numerator, the only
significant ones for short-range interactions, diverges only as V.
Another way to look at this is that the negative parts may be
distributed over an infinite number of spins, not available to a
finite subsystem.
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E. Geodesic length

A natural question in Riemannian geometry is the
physical meaning of geodesics, curves between two points
of locally minimum distance. For nearby thermodynam-
ic states, the square of the lengths of the geodesics gives
the probability of a fluctuation between the states. But
this does not appear to generalize to larger separations
between thermodynamic states. Indeed, a curved space
might even allow more than a single geodesic connecting
a given pair of states.

An interesting attempt at a physical interpretation for
geodesics was given by Didsi, Lukacs, and Racz (1989),
who used geodesics as a basis for classifying thermo-
dynamic states into different “phases.” The basic physi-
cal motivation was the difficulty posed by the termination
of the liquid-gas phase-separation curve at the critical
point to the task of differentiating between liquid and gas
states. These authors defined two thermodynamic states
as belonging to the same “phase” if they can be connect-
ed by a smooth geodesic. They explicitly computed the
geodesics for the van der Waals model and found four
distinct regimes.

We point out, however, that at the boundaries between
these phases there are no discontinuities in the thermo-
dynamic functions; so the distinct regimes found by these
authors do not correspond to phases in the Ehrenfest
sense. Their definition also fails to be transitive; namely,
if states 4 and B are in the same phase and states B and
C are in the same phase, then it does not necessarily fol-
low that states 4 and C are in the same phase.

F. Weinhold’s geometry

An interesting inner product on classical thermo-
dynamic phase space was proposed by Weinhold (1975a,
1975b, 1975¢, 1975d, 1976a, 1976b). It, and requirements
of mathematical consistency, allowed for a geometric
representation of the basic laws of standard equilibrium
thermodynamics.

Weinhold worked in the energy representation, where
we denote the full (extended) set of n +1 extensive vari-
ables of the subsystem by Y,=(S,N',...,V,...,N").%
These variables are identical to the extended set X, of ex-
tensive variables in the entropy representation, except in
the first slot where the entropy rather than the internal
energy appears. The last variable is the fixed subsystem
scale, which might be the volume. The corresponding
conjugate intensive parameters

pa_ U

¢=3ye (4.82)

are P,=(T,u!,...,—p,...,u"). By the Gibbs-Duhem
relation (Callen 1985), any one of the P®s may be ex-
45The notation here differs from Weinhold’s.
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pressed in terms of the others. The dependent PZ is usu-
ally chosen to be the last one, which is conjugate to the
fixed subsystem scale.

Differentials of thermodynamic functions may be
represented by vectors in a vector space. As a set of basis
vectors, the n independent dP®’s will serve, since

n—1
daf="3 2Laps

(4.83)
pn=0 aPéL

for any thermodynamic function f. Weinhold’s (1975a,
1975b, 1975c, 1975d, 1976a, 1976b) contribution was to
assign an inner product:

U

(dP%|dPB)=
clap. aY2YP

(4.84)
between pairs of basis vectors. This inner product is

clearly commutative. In addition, Weinhold imposed the
requirement that it be bilinear:

(dPZ|adPP+bdP})=a(dP2|dPP)+b(dP2|dPY) ,
(4.85)

for any values of the constants a and b, with a similar re-
lation for the left-hand slot. These relations and Eq.
(4.83) enable us to write the inner product of any pair of
vectors. -

One is free, of course, to assign any inner product to
thermodynamic phase space. But to make it interesting,
there must be some physical motivation. Weinhold’s idea
was to represent the second law of thermodynamics with
a positive-definite inner product. One may prove that
(Mrugafa, 1984; Salamon, Nulton, and Ihrig, 1984)%6

n—1 2 n—1 2
> U gymyr=—17's 25

2 __gxrdxy .
L, AYHAYY om0 XHAX

(4.86)

By the argument in Sec. IIL.B, the right-hand side is a
positive-definite quadratic form. Therefore the left-hand
side of Eq. (4.86) is also positive definite, and this suffices
to prove (Eves, 1966) that the matrix in Eq. (4.84) is posi-
tive definite.

We then have

(dP2|dP*)>0 4.87)

and

46When the volume is the fixed scale, this follows from equat-
ing Egs. (3.26) and (3.30). The extension to the general case is
immediate.
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(dP2|dP2)(dP#|dP8)—(dP2|dPF)* >0 . (4.88)

In addition, other inequalities may be constructed with
relations (3.20)-(3.24). These inequalities are expressions
of the second law of thermodynamics. Weinhold provid-
ed a number of examples of calculations with his
geometry.

Weinhold’s geometry could equally well have been for-
mulated in the entropy representation (Ruppeiner, 1979),
since his inner product may be multiplied by any positive
function without changing the inequalities. Because of
applications in fluctuation theory and thermodynamics in
finite time, it is nowadays more fashionable to use the en-
tropy representation.

We may formally turn Weinhold’s inner product into a
true Riemannian metric of the type in this review, as Eq.
(4.86) shows. However, such a geometry appears to have
no physical meaning in the context of purely equilibrium
thermodynamics.” Though Weinhold (1976b) did re-
mark on the possibility of a Riemannian metric in ther-
modynamics, this does not seem to have been his basic
intent. For a true thermodynamic Riemannian
geometry, we must add fluctuations or finite-time pro-
cesses.

G. Embedding of thermodynamic manifolds
in higher-dimensional flat spaces

The introduction of a Riemannian metric based on the
second derivatives of either the entropy or the energy
gave rise at one point to a dispute concerning embed-
dings of the corresponding n-dimensional thermodynam-
ic manifolds in (n+1)-dimensional Euclidean spaces
(Gilmore, 1984, 1985; Horn, 1985; Ruppeiner, 1985b).
The dispute has since been resolved (Andresen, Berry,
Gilmore, Ihrig, and Salamon 1988). The key point is that
there is neither an explicit nor an implicit assumption in
the introduction of the thermodynamic metric that the
corresponding thermodynamic state space can be embed-

4TConsider the following quote from Tisza (1961): “Neither
the elementary, nor the Riemannian theory of curvature can be
applied in Gibbs space, in which no physically meaningful
metric form is definable.” If one extends beyond the purely
equilibrium theory, it is, of course, a different story.
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ded in a higher-dimensional Euclidean metric space.**

Berry (1988) has given a brief review of the controversy
and its resolution. He discussed three types of Riemanni-
an metrics in thermodynamic state space, including an
account of their uses and limitations.

Examples of thermodynamic manifolds embedded in
higher-dimensional flat spaces are the Gibbs-type repre-
sentations, which show energy or entropy surfaces
graphed in a flat space with n +1 extensive quantities as
axes. Gilmore (1984) has shown, from thermodynamic
convexity, that all Gaussian sectional curvatures of such
manifolds are positive.

However, the curvature need not be positive for the
purely intrinsic Riemannian thermodynamic geometries.
Ruppeiner (1985b) found an example satisfying thermo-
dynamic stability and possessing either positive or nega-
tive curvature with the adjusting of some parameters.
Curvature with both signs was also found by Ruppeiner
and Chance (1990) in the Takahashi gas and by Janyszek
and Mrugala (1990a) in the ideal quantum gases. These
findings clearly demonstrate that there is no connection
between the Riemannian geometry of this review and
that of the embedded Gibbs spaces.

There are, nevertheless, some interesting questions re-
lated to embeddings. Andresen, Berry, Ihrig, and
Salamon (1988) proved that a thermodynamic Riemanni-
an metric of the form used here cannot be induced on an
equation-of-state surface from a Euclidean metric in an
ambient (n + 1)-dimensional Gibbs space of all extensive
state variables. But it can be induced if the ambient
space is assumed to have a curved Riemannian metric,

“8Imprecise semantics can contribute to misunderstanding.
Gauss (1827) showed that on two-dimensional surfaces embed-
ded in three-dimensional Euclidean spaces, a scalar surface
quantity called the Gaussian curvature can be computed know-
ing only the metric on the embedded surface in terms of a pair
of surface coordinates. The Gaussian curvature is proportional
to the Riemannian curvature scalar on the surface
(K=—R /2), which in the Riemannian geometry requires no
higher-dimensional embedding space for either its definition or
its computation. Though the Gaussian curvature may formally
be computed from the metric in exactly the same manner as the
Riemannian curvature, it is semantically superior to refer to the
thermodynamic curvature as “Riemannian curvature,” and not
as “Gaussian curvature.” The latter term, used by Ruppeiner
(1979, 1981), implies (but certainly does not require) a flat
three-dimensional embedding space.

“In dealing with thermodynamic metric geometry, care
should be taken to fix one of the extensive variables as the con-
stant system scale. The metric geometry of the type here should
not be formulated with full extended lists of variables such as
X, or Y,. If the scale is not fixed, but included as one of the
variable parameters, a metric with zero determinant results, and
the geometry is singular. Physically, this corresponds to the
fact that a fluctuation in the volume at fixed particle and energy
densities does not change the entropy.
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which is, however, not unique. Such a geometry was
considered by Gilmore (1984).

A question that Andresen, Berry, Ihrig, and Salamon
(1988b) did not address is whether or not we may find
some “lift function” f(x), not necessarily one of the usu-
al thermodynamic parameters, such that the (n-+1)-
dimensional space with axes [x,f(x)] has a Euclidean
metric which induces the proper Riemannian metric on
the graph of f(x). Constructions of this type are com-
mon in general relativity, to allow, for example, the visu-
alization of spacetime near black holes (Misner, Thorne,
and Wheeler, 1973, p. 614). Though such structures are
unlikely to exist in general in thermodynamics, there may
be specific examples in which this could lend insight.

H. Information theoretic approaches

Substantial efforts have been made to place thermo-
dynamic fluctuation theory within the broader context of
information theory. For a review of the classic work in
this area, see Tisza and Quay (1963). More recent work
has been done following up Rao’s (1945) concept of rela-
tive information in mathematical statistics (Ingarden,
1976, 1981, 1987; Ingarden et al., 1979; Ingarden and
Janyszek, 1982; Ingarden, Janyszek, Kossakowski, and
Kawaguchi, 1982; Ingarden, Kawaguchi, and Sato, 1982;
Salamon, Nulton, and Berry, 1985). For an extended dis-
cussion of the general topic of information theory and
Riemannian geometry, see Amari (1985). Campbell
(1985) has also discussed Riemannian geometry in infor-
mation theory. For a recent introduction to information
theory in statistical mechanics, see Grandy (1987). Infor-
mation theory is used in many branches of science and
technology. Moreover, it gives a direct and strong sup-
port for the fluctuation interpretation of the metric and
curvature.

A significant contribution in this area has been the use
of contact structures, introduced by Hermann (1973),
who suggested that these are very natural in thermo-
dynamics. Contact structures have been connected to
the Riemannian geometry of thermodynamics (Mrugala,
1984; Janyszek, 1986a, 1986b; Janyszek and Mrugala,
1989a; Mrugala et al., 1990). The starting point here is
the statistical mechanical partition function. The
Riemannian geometric structure is induced from a
(2n +1)-dimensional space with a metric related to that
in Eq. (3.26).

Another interesting idea in the broader context is that
of “statistical distance” in quantum mechanics (Wooters,
1981). This involves a Riemannian metric of the same
kind as that used here. Though it was presented in the
context of quantum mechanics, it has seen use in the
thermodynamic type of geometries as well (Salamon
et al., 1985; Feldmann et al., 1986).

I. Finite-time thermodynamics

A major application of the Riemannian thermodynam-
ic metric has been in finite-time thermodynamics. This
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subject is too large to review here, and we refer the
reader to the literature for details (Salamon et al., 1980;
Salamon and Berry, 1983; Andresen et al., 1984).

Finite-time thermodynamics deals with limits to the
control of thermodynamic processes. In standard ther-
modynamics, a key tool for dealing with such processes is
the notion of reversible processes. These take place
infinitely slowly, so that the system is never out of equi-
librium with its environment. The total entropy remains
constant, and there is no loss of ability to convert heat
into work. Such reversible processes are then compared
with the net effect of real processes to assess the extent of
losses.

Real processes, however, of necessity take place in a
finite time, and the entropy of the universe consequently
must increase, even if these processes are controlled to
minimize the amount of entropy production. In finite-
time thermodynamics, the physical problem is this:
given the total time within which the process must be
completed, along which path in thermodynamic phase
space should it proceed to minimize the increase in entro-
py? Salamon and Berry (1983) proved that the dissipated
availability is given by the square of the thermodynamic
length times a mean relaxation time and divided by the
total time of the process. Making the connection be-
tween optimal processes and those which minimize ther-
modynamic length was expanded upon by Nulton,
Salamon, Andresen, and Anmin (1985). These notions
have also been applied within the context of simulated
annealing (Nulton and Salamon, 1988; Ruppeiner, 1988,
Salamon et al., 1988; Ruppeiner et al., 1991).

J. Other results on metric geometries
of thermodynamics

In this section we discuss some other issues of metric
geometry in thermodynamics, a subject which certainly
extends beyond fluctuations.

Best known in thermodynamics are affine geometries,
geometries with no metric. These have seen application
in the state space representation originated by Gibbs to
illustrate, among other things, the phases of matter.
Tisza (1961) emphasized that though the n-dimensional
Gibbs geometry has no well-defined notion of distance in
the sense of Riemann (in the purely equilibrium theory!),
it nevertheless has a well-defined curvature with respect
to the flat (n +1)-dimensional embedding space. This
curvature, quite different from that featured in this re-
view, has fixed sign, because of the convexity of the ther-
modynamic potentials. The mathematics of the underly-
ing geometry was developed by Pick and Blaschke
(Blaschke, 1923).

Buchdahl (1966) used a Euclidean metric in thermo-
dynamics:

(A= z (Ax#)? .

n=0

(4.89)
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This rule for distance permits the notion of the “thermo-
dynamic neighborhood” of a thermodynamic state. We
may object, however, to assigning any quantitative physi-
cal meaning to such a metric, since the distance between
two thermodynamic states will depend on the choice of
the coordinate system. Hence perhaps this distance re-
veals more about the person who chose the coordinates
than about the properties of the system of interest!

Peterson (1979) has drawn an analogy between thermo-
dynamics and classical mechanics and has demonstrated
that both can be based on a symplectic structure.

Provost and Vallee (1980) applied Riemannian
geometry to the structure of quantum mechanics and dis-
cussed some issue of the curvature. They connected the
curvature to the dispersion of the wave packet.

Didsi et al. (1984) used the geometry in this review to
make a geometric interpretation of the renormalization-
group theory of the critical point. The scaling laws are
shown to follow from the assumption of a conformal Kil-
ling symmetry in the metric.

Schlogl (1985) related the thermodynamic metric to
the scheme of bit-number cumulants.

Sieniutycz and Salamon (1986) applied notions of co-
variance to the extended nonequilibrium thermodynam-
ics of lumped systems. This program was continued by
Sieniutycz and Berry (1989), who wrote down a Lagrang-
ian density leading to the components of the energy-
momentum tensor and corresponding conservation laws.
Sieniutycz and Berry (1991) applied these ideas to a ther-
modynamics with fluxes included as thermodynamic pa-
rameters, and worked out the thermodynamic Riemanni-
an curvature.

Lukacs and Martinas (1986) proved that the postulates
of equilibrium thermodynamics (Callen, 1960) do not
specify the entropy uniquely. Only the Riemannian
structure of the thermodynamic state space is uniquely
determined.

Caianiello and Noce (1988) have discussed the Rieman-
nian geometry of thermodynamics within the context of
the thermodynamic uncertainty relations.

Sieniutycz and Salamon (1990) have reviewed topics re-
lated to thermodynamic fluctuation theory, including a
Riemannian metric, within a broader context containing
general nonequilibrium theories, and the connection of
those topics with extremum principles.

Janyszek and Mrugala (1990b) discussed both Rieman-
nian and Finslerian geometry in thermodynamic fluctua-
tion theory. In particular, they introduced a Finsler-type
metric for nonequilibrium thermodynamics.

Pevzner (1991) applied projective differential geometry
to the Riemannian metric structure. He calculated vari-
ous forms of the Gaussian curvature in multicomponent
ideal gases.

Obata, Hara, and Endo (1992) applied Riemannian
geometry to Uhlenbeck-Ornstein processes and to a ran-
dom walk.

Krommes and Hu (1993) discussed Riemannian
geometry in thermodynamics to examine the proper ther-
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modynamic variables to choose in expressing Onsager re-
ciprocity in irreversible thermodynamics.

V. EXAMPLES

This section presents examples of fluctuations, mostly
in simple spin systems whose thermodynamics are
known. These are then compared with exact calculations
from statistical mechanics.

A. Paramagnet

The first example illustrates that the covariant thermo-
dynamic fluctuation theory not only offers qualitatively
new ideas, but quantitative improvements in the simplest
of problems.

Consider a subsystem A4, of N noninteracting spins in
an environment of an infinite number of identical spins,
characterized by a temperature 7 and an external mag-
netic field A. Each spin is allowed to be in one of two mi-
crostates, up or down, denoted for the ith spin by
o;=-+1 or —1, respectively. A specification of the
values of all o;’s of Ay denotes the microstate of the sub-
system.

Statistical mechanics (Ma, 1985) gives the probability
of finding some particular microstate as

1

7 €XP

H

T |’ (5.1

where the Hamiltonian is

N
H=—h 3 o;, (5.2)
i=1
and the partition function
—oN. N |h
Z =2"cosh —7:] . (5.3)

In this example, and the next one, we have set kz =1.
All of the thermodynamics follows from the free ener-

gy per spin®
= ] ] R

The magnetization for the environment 4 N, (No— ) is

o(T,h)=— %mz = —TIn | 2cosh

dw

oh

mop=—

=tanh
T

> (5.5)

and the entropy per spin, written as a function of the
magnetization, is

30Quantities “per spin” for a magnetic system are effectively
the same as those “per volume” for fluid systems, since the spins
are fixed in place.
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=In[2V'1/(1—m?)]—(tanh~'m)m .
h

(5.6)

Since we may write the entropy as a function just of the
magnetization, the Riemannian geometry of this system
is one dimensional.

The metric element follows [by Table II, and

the magnetic-fluid-analogy equation (3.61)] from
differentiating s(m) twice:
1
= (5.7)
& 1—m?

The drift K is zero in these coordinates. Hence, by Egs.
(2.22) and Eq. (4.3), the fluctuation equation is

P _1 &

2 amz[(1~m2)P], (5.8)

with t=1/N. This equation is subject to the initial con-
dition

P,_om|my)=8(m—m,), (5.9)
and boundary conditions at m =21 which preserve nor-
malization:

98 (,-1py—
5 —(87'P)=0. (5.10)

At the boundaries, g ~! is zero; so by the reasoning in
Sec. IL.E, {m ) will also remain constant, as expected for
a standard extensive parameter. Note further that since
the derivative of g ~! is not zero at the boundary, Eq.
(5.10) requires the boundary condition P=0, which is
used here.

Consider now the numerical solution to Eq. (5.8) for
the case m;=0.5. In place of a delta-function initial
condition, we use a Gaussian distribution equation (2.9)

for N=50:
N ] 172
——-—7 exp

2(1—m3)

P =
w(mmo) l21r(1——m(2,

N(m—mo)2 ]

(5.11)

Results for the covariant and consistent thermodynamic

1+m0
2

N!
[N(m+1)/2][N(m—1)/2]!

PN(m |m0)=

Results are shown in the first column of Fig. 9.
We may sow that the classical thermodynamic fluctua-
tion theory establishes

__ds(m)

AS,=N| -2~

(m—-mo)+s(m)—~s(mo)l
m=m0

(5.13)
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FIG. 9. Fluctuation probability density for the paramagnet
computed for four subsystem volumes three different ways: (1)
exactly, with the binomial distribution; (2) with the covariant
thermodynamic fluctuation theory; and (3) with the full thermo-
dynamic fluctuation theory. The covariant theory yields quan-
titatively better results than the classical thermodynamic fluc-
tuation theory, as is shown explicitly for N=4. The covariant
theory, but not the classical theory, mimics the rise at the edges
into a limiting delta-function-like behavior.

fluctuation theory are shown in column 2 of Fig. 9. As ¢
increases, the curve broadens as fluctuations in m grow.
There is a sharp rise in P near m = +1 as the curve tries
to mimic the true bimodal distribution for the single spin.

For comparison, the fluctuation probability distribu-
tion may be evaluated exactly with elementary probabili-
ty theory, which yields the binomial distribution (Reif,
1965)

Nm+1)72 Nm—1)72
L (5.12)
3 .
f
and
Py(m|mgy)dm =C exp(AS,)dm , (5.14)

where C is a normalization constant which may be deter-
mined from numerical integration of the probability den-
sity. Results of this theory are shown in column 3 of Fig.
9. In addition, we point out that, according to Greene
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and Callen (1951), these results are the same as would be
obtained with the canonical ensemble with finite V.

The covariant theory agrees better with the exact re-
sults than the classical thermodynamic fluctuation
theory. Note that neither the full classical thermo-
dynamic fluctuation theory nor its Gaussian approxima-
tion attempts to model the sharp rise in the probability
distribution at the end points. Note as well that the co-
variant theory conserves {m ), whereas the fuil classical
theory does not. This was verified in the calculations.

B. One-dimensional Ising model

Ruppeiner (1983a) numerically solved the covariant
thermodynamic fluctuation equation for the one-
dimensional Ising model. The form of the equation was,
however, slightly different from that used here in that the
covariant drift, rather than the drift in the standard den-
sities, was set to zero everywhere. The rationale for such
a choice was to avoid restrictions specific to particular
coordinates. However, explicit conditions imposed in
certain coordinates do not break general covariance; and
requiring conservation laws, as first suggested by Didsi
and Lukacs (1985a), seems very natural. The same is
done in general relativity, which is certainly covariant
(Misner, Thorne, and Wheeler, 1973).

The 1D Ising model consists of a set of spins as above,
but arranged in a line, and each spin interacting with its
nearest neighbor, as described by the Hamiltonian

o0 o)
=—J ‘zlaiaH_l—*h 21 o,
1= 1=
where J is the coupling constant. In the ferromagnetic
case, adjacent spins tend to align with each other, and J
is positive. In the antiferromagnetic case, adjacent spins
tend to disalign, and J is negative. It is a straightforward
calculation in statistical mechanics (Thompson, 1972) to
show that the thermodynamic potential is

#(x,y)=In[e*coshy +(esinh?y +e ~2¥)!1/2] |

(5.15)

(5.16)

where x =J /T, and y = —h /T. The metric elements are
now straightforward to work out in F coordinates by us-
ing the line element in Eq. (3.32) and the magnetic-fluid-
analogy equation (3.61).

The comparison procedure (Ruppeiner, 1983a) used
T /J=0.8 and h=0. The probability of the fluctuation
in the magnetization of the subsystem of spins was then
computed as a function of subsystem size in three
different ways: (1) exactly,”! (2) with the covariant ther-

51The exact calculation was performed beginning with the
grand canonical distribution in the thermodynamic limit. Us-
ing this, the probability of finding some value m of the magneti-
zation of the finite 4y may be calculated by summing the prob-
abilities of all the microstates in the system in the thermo-
dynamic limit that have value m for the magnetization of the
finite Ay. This is a somewhat unusual way to calculate in sta-
tistical mechanics. It has been done, for example, by Bruce and
co-workers in a number of dimensions (see, e.g., Bruce, 1981).
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modynamic fluctuation theory, and (3) using the full Ein-
stein thermodynamic fluctuation theory. Results are
shown in Fig. 10.

The covariant theory yields results superior to the full
classical one, even at very large volumes. At small
volumes, it predicts the upturn of the magnetization at
the edges, which occurs when the spins essentially lock
into place with one another either up or down. This hap-
pens at subsystem sizes of the order of the correlation
length, in this case 6.6 lattice sites (Ruppeiner, 1983a).

To repeat the calculation with exactly the same ther-
modynamic covariant fluctuation equation as that used
here would likely yield even better results, since it explic-
itly includes the conservation laws.

C. Ideal gas

Fluctuations in the ideal gas were worked out by Rup-
peiner (1983b). The classical theory was found to work
very well down to volumes of the order of a single mole-
cule (10% deviation at the level of five molecules), as ex-

Exact Covariant Theory Classical Theory
N =250
’.
r
N =100
N =30

2.4

& o.8} g__)
o.o0k 1 1 " L L /;\

-1.0 0.0 1.0
m

(mimg)

FIG. 10. Fluctuation probability density for the ferromagnetic
1D Ising model computed for four subsystem volumes three
different ways: (1) exactly, with statistical mechanics; (2) with
the covariant thermodynamic fluctuation theory; and (3) with
the full thermodynamic fluctuation theory. The covariant
theory yields quantitatively better results generally. In particu-
lar, it attempts to mimic the rise at the edges into a limiting
delta-function-like behavior.
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pected, since the curvature is zero. The covariant theory
shows some slight improvement over the classical theory.

VI. THERMODYNAMIC RIEMANNIAN CURVATURE

In this section, we present a three-part discussion of
the thermodynamic curvature. The first part reviews cal-
culations of the curvature from the known thermo-
dynamics of several models. An earlier, less detailed re-
view of some of this work was given by Ruppeiner (1990).
The second part covers the stability interpretation of the
thermodynamic curvature (Janyszek and Mrugala,
1989b). The third part discusses a theory of critical phe-
nomena based on thermodynamic curvature.

A. Thermodynamic curvature for known models

It is natural to calculate the thermodynamic curvature
for models whose thermodynamics is known exactly.
This has been done by several authors, though not always
with the interpretation for thermodynamic curvature
featured in this review.

We repeat that, by the rules of Riemannian geometry,
the value of the thermodynamic curvature for any partic-
ular thermodynamic state is independent of the coordi-
nate system in which it is calculated. The choice of coor-
dinates is one entirely of convenience. This point is
essential, since we desire to endow the curvature with an
intrinsic physical meaning.

1. Single-component ideal gas

A simple and fundamental example is the single-
component ideal gas. Here the constituent molecules are
all identical and interact only very weakly with one
another. They are allowed, however, to have internal en-
ergy levels.

The Helmholtz free energy per volume

f=u—Ts 6.1)
is
f(T,p)=pkgTInp+pkpf(T), (6.2)

where p=N/V is the density, and where f(T) is some
function of the temperature with negative second deriva-
tive, to assure a positive-definite heat capacity (Landau
and Lifshitz, 1977). We have

N
s 3T (6.3)
P
and
af
= | . (6.4)

This yields, with the line element equation (3.38),
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(Al)2=——ﬂ"i;—f—Tl(AT)2+%(Ap)2 . 6.5)

It is instructive to demonstrate (Ruppeiner, 1979) that
the curvature is zero simply by making a coordinate
transformation to Euclidean coordinates. Define

T = om
t= fTO\/—f (T)/TdT , (6.6)
where T is an arbitrary positive constant, and define
xl=v 2p[cos(4t)+sin(L1z)] (6.7)
and
x?=v"72p[cos(1t)—sin(1t)] . (6.8)

Straightforward computation verifies that
(AI?=(Ax")*+(Ax?)*, (6.9)

which is a locally Euclidean line element. This is
sufficient to prove that the ideal gas has zero Riemannian
curvature.”

Zero curvature was obtained by Ruppeiner (1979) and,
independently for a similar metric, by Ingarden et al.
(1979). It is a very appealing result, clearly linking ther-
modynamic curvature with interactions. Zero curvature
is not essential to make this connection, however. A cur-
vature on the order of the specific volume per molecule
would serve as well, and is actually more typical.

Zero curvature also follows from the original metric
equation (6.5) using the equation for the Riemannian cur-
vature. For a diagonal metric,

(Al =g (Ax ") +g,(Ax2)?, (6.10)

we may readily verify from Eq. (4.70) that the Riemanni-
an curvature scalar is

__1 d
\/E ax!

1 98y
Vg ox?

1 08x»
Vg ax!

d
ox?

(6.11)
Substitution of the line element equation (6.5) immediate-
ly yields zero thermodynamic curvature.’> Despite zero
curvature, however, the topology of this Riemannian
geometry is not that of the plane (Ruppeiner, 1983b; Nul-
ton and Salamon, 1985), but resembles more a helical
structure.

52The curvature for the ideal gas with the particle number
rather than the volume as the fixed scale is also zero (Nulton
and Salamon, 1985).

53When the metric is not diagonal, and of the form

(AlP=g, (Ax ' +2g,Ax 'Ax?+ g (Ax2),

it is straightforward to verify from Eq. (4.70) that the Riemanni-
an curvature scalar is (Sokolnikoff, 1964)

-__1 ]2 g2 9%u _ 1 %xn
Vg |ox! |gyve x* Vg ax!
9 iaglz__ 1 %8u __8n ogn
ox? \/E ox? \/_g- dx? g”‘/g Ix!
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2. Ideal paramagnet

Analogous to the monatomic ideal gas is the ideal

paramagnet of noninteracting magnetic spins. It is
characterized by the equation of state
h
m=f|—=1, 6.12)
£l (

where f is some function with positive first derivative
(Kittel 1958). This equation of state leads to the theorem

Qu

=0. 6.
oh 0 (6.13)

T

The line element in (T, m ) coordinates is, from Eq. (3.38)
and the magnetic-fluid-analogy equation (3.61),

(Al V=g (AT +g,,,(Am)*, (6.14)
where
1 as
&rr= i s (6.15)
T kgT | T |,
and
1 oh
= - . 6.16
Emm =9y T | 3m |, (€16
The magnetic equation of state, (6.12), now yields
98 mm
— | =0, 6.17
aT | 0 ( )
and the theorem equation (6.13) yields
9
L1 | . (6.18)
am .T

Substituting into the equation for the thermodynamic
curvature, (6.11), shows that the thermodynamic curva-
ture is zero for the ideal paramagnet, provided the metric
element

grr7#0 . (6.19)

If the zero obtains, as is the case if neither the spins nor
the underlying lattice possesses internal energy levels, the
geometry is singular and effectively one dimensional.
This technically has zero curvature as well, since in one
dimension we may always find a Euclidean coordinate
system.

This example was worked out by Janyszek and
Mrugala (1989b), who made several of these points.

3. Multicomponent ideal gas

The thermodynamic curvature of the multicomponent
ideal gas is also straightforward to work out (Ruppeiner
and Davis, 1990). The Helmholtz free energy per volume
is
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,a)=73 a'kgTha'+ S a'kpfi(T),

i=1 i=1

f(T,ala? ...

(6.20)

where the f;(T)’s are functions of the temperature whose
second derivatives are negative to ensure a positive-
definite heat capacity (Landau and Lifshitz, 1977). Using
the free energy in the metric equation (3.38) yields a diag-
onal line element

(ATP+ 3 (Aai?, ©621)

i=1

N [z a'hy(T)

i=1

where

,'”( T) S
T

Because of the simplicity of the metric, many of the
elements of the curvature tensor vanish, or have the same
functional form. Accordingly, it is fairly direct to show
with Eq. (4.56) that

h(T)=— 0. (6.22)

;1 h(T) 3 afh,.(T)—g a'lh(T))?
R=1= = = . (6.23)
2|3 a'n(T)

i=1

If all of the h;(T)s are the same, as would be the case
were all the constituents of the mixture monoatomic, Eq.
(6.23) will reduce to

r=t=1 (6.24)
2p
where
p=3 a’ (6.25)

is the total number density. This is a surprisingly simple
result, depending neither on the temperature nor on the
relative densities of the component gases. For the
single-component ideal gas, » =1, and R is zero, as was
found above.

The curvature in Eq. (6.24) is on the order of the
volume where there is just a single particle present, at
which a thermodynamic description must certainly fail.
Indeed, Ruppeiner (1983b) explicitly showed that for a
single-component ideal gas, the classical thermodynamic
fluctuation theory works reasonably well even for
volumes containing only a few particles. But for smaller
volumes, it breaks down. These results for the thermo-
dynamic curvature are therefore consistent with expecta-
tions that such curvature gives the volume where the
classical theory breaks down. However, the computation
linking curvature to a limiting volume in Sec. IV.C.5 has
only been done for n =2, and the general significance of
curvature in higher dimensions is largely unexplored. So
this physical interpretation is perhaps premature.

It has been shown (Ruppeiner and Davis, 1990) that
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Eq. (6.24) provides at least a rough estimate for Eq. (6.23)
even for general h,(T)’s.

The result (6.24) linking the curvature to the molecular
volume seems surprising at first, since molecular proper-
ties appear to emerge from a purely thermodynamic cal-
culation, when the thermodynamics has no basic con-
stant with the units of length. The resolution to this ap-
parent paradox is simple: the thermodynamics put into
the calculation at first, Eq. (6.20), already contains atom-
ic properties through Boltzmann’s constant kz. The
theory of fluctuations, expressed in Eq. (3.1), contains
this same constant, which connects thermodynamics with
atomic properties. Compagner (1989) has described what
happens to thermodynamics in the limit kz—0. One
consequence of this limit is that thermodynamic fluctua-
tions in the ideal gas disappear at all length scales.

4. |ldeal quantum gases

Janyszek and Mrugala (1990a; see also Janyszek,
1986b) worked out the thermodynamic curvature for
ideal Fermi and Bose gases. They used the notation of
Pathria (1972). The thermodynamic potential

1 _p|_ 30 |3
¢ T kg(2S+1DAT°f 4 AR (6.26)
where
=—h_..___.__'— (6.27)
VvV 2rmky T
is the thermal wavelength,
n=eu/(kBT) , (6.28)
1 x!ldx
I,m)= , 2
f+,m) F(l)fx=on“exj:1 (6.29)

[FEGmfeGm=2f G iGm+ oG (3 f (— L)

h is Planck’s constant, m is the particle mass, S is the
particle spin, and I'(/) is the gamma function.* The +
sign corresponds to the Fermi gas, and the — sign to the
Bose gas.

The metric elements are

1

gaB=k_B—¢,aB (6.30)

in F=(1/T,—p/T) coordinates; see Table II. Janyszek
and Mrugala (1989b) demonstrated that if the metric ele-
ments may be written purely as the second derivatives of
a certain thermodynamic potential, then the thermo-
dynamic curvature may be written in terms of second
and third derivatives®>:

¢ b1 n

¢ a2 b2

kp (P12 122 $om;

= p) . (6.31)
2 d1u b12

b1 b2

This relationship follows from Eq. (4.70) for the thermo-
dynamic curvature. It appears, at first, somewhat
surprising, since generally the curvature depends on the
second derivatives of the metric elements. Hence one
would expect it to involve fourth derivatives of the poten-
tial. But fourth derivatives cancel when the calculation
is performed with a metric of the form Eq. (6.30). Gil-
more (1984) has also made this point.

Working out the thermodynamic curvature is now a
straightforward exercise of evaluating the derivatives:

R=—5)A%28+1)"!

(6.32)

[5f+(Gmf(5m =371 (3,m]

Janyszek and Mrugala (1990a) reported that for the ideal Fermi gas, R is always positive (in the sign convention of this
review), whereas for the ideal Bose gas, it is always negative and diverges strongly as the temperature approaches

54This expression is from Janyszek and Mrugala (1990a) and follows from Landau and Lifshitz [1977, Eq. (55.6)]. To make the
transformation from the Landau-Lifshitz (1977) expression to the one used here, note that their Q= —TV¢.
53These authors used a curvature sign convention the opposite of that used here.
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zero.® This limit is related to the Bose-Einstein phase
transition, which has some analogies with the liquid-
vapor phase transition (Pathria, 1972). In both the Fermi
and Bose gases, the curvature goes to zero in the limit of
the ideal gas.

The possible relationship between the curvature and
the correlation volume in this system has not been ex-
plored.

5. Takahashi gas

An elementary one-dimensional model of hard rods is
the Takahashi gas (Takahashi, 1942; Giirsey, 1950). The
rods are impenetrable, and each has length b. There is an
attractive square-well potential between adjacent rods:

w, 0<r<b,
Y(r)=1—e, br<2b,

0, 2b=r,

(6.33)

where r is the distance between the centers of the neigh-
boring rods.
For this system, the correlation function is defined as

G(r)=

ﬂ;ﬂi ] : 6.34)

where p(r) is the average density at a distance r from
some particular rod. A method for finding the correla-
tion function for one-dimensional continuum systems
with nearest-neighbor interactions was worked out by
Salsburg, Zwanzig, and Kirkwood (1953). For large 7,
G(r) follows the form of Ornstein and Zernike (Fisher
and Widom, 1969):

A exp(—kr)cos(k,r)

G(r)= L —d-1/2 ’

(6.35)

where 4, k, and k, are all functions of the temperature
T and the pressure p. The correlation length £=1/k,
gives the range of the envelope of the exponentially de-
caying envelope of G(r).

Fisher and Widom (1969) examined a correlation func-
tion expansion for this system and looked for the term
with the longest-ranged exponentially decaying envelope.
They showed that there is a locus in the (T,p) plane over
which the asymptotic decay of the correlation function
crosses from monotonic to oscillatory. In the diffuse gas-
like phase, the attractive part of the interaction dom-
inates, and the correlation function decay is monotonic.
As one increases the density, at a given low temperature,

56Robinson (1951) discussed how to evaluate the functions
f+(l,m) by series, especially necessary for negative I’s, when the
integral does not converge. There are two small errors in Eqgs.
(4.17) and (4.21) of Janyszek and Mrugala (1990a): the prefactor
20 should be a 5, and the final f,,(77) in the numerator of Eq.
(4.21) should be f_, (7).
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the long-range part of G(r) becomes oscillatory, as the
smallest value of k; in the correlation function expansion
has corresponding k,70. This signals that the hard-core
repulsive part of the potential has become dominant.

As the system is compressed from low density at fixed
low temperature, it undergoes an abrupt pseudo-phase
transition from a gaslike phase to a liquidlike phase in
which most of the rods remain within each other’s poten-
tial wells. This resembles an ‘“‘anomalous first-order
phase transition” in which the pressure changes discon-
tinuously, but the density remains fixed (Milton and Fish-
er, 1983; Fisher and Milton, 1986; Ruppeiner, 1991a).
The density corresponding to this transition varies little
with the temperature. Indeed, Fisher and Milton (1986)
have argued that the laws of thermodynamics require
that the density remain thus “fixed” in true phase transi-
tions of this type. Of course a one-dimensional system
with finite potential cannot have a true phase transition,
but the change in p is nevertheless very abrupt and ap-
proaches a true discontinuity as 7—0.

The calculation of the thermodynamic metric poses a
special problem for the Takahashi gas, because the only
thermodynamic potential that may readily be expressed
in terms of its natural variables is the Gibbs free energy:

®(T,p,N)=—NT InJ !;— , (6.36)
where
sJ(s)=ex £ lex (—bs)
P T P
X [1— [1—exp - exp(—bs)] , (6.37)

and kp has been set to unity. The difficulty with the
metric calculation is that all three variables in the Gibbs
free energy are allowed to fluctuate, with the condition of
the fixed volume appearing as an implicit constraint. The
details were worked out by Ruppeiner and Chance
(1990).

The thermodynamic curvature is shown in Fig. 11.
We use the Gaussian curvature

Eg=—R/2. (6.38)

The theory in Sec. IV does not give the constant of pro-
portionality between curvature and the correlation
volume, except that its absolute value should be of order
unity. For reasons that are not precisely understood, £
is in excellent agreement with the correlation length in a
number of one-dimensional models, including this one in
the gaslike regime, as Fig. 11 clearly shows. Here, the
correlation function decay is monotonic.

The curvature at the pseudo-phase transition (corre-
sponding to p~!=3b/2) is seen to have a narrow nega-
tive spike, whose origin is not as yet explained.

In the liquidlike phase, where the correlation function
decay is oscillatory, £; is on the order of a rod length.
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FIG. 11. Correlation length & and the thermodynamic Gauss-
ian curvature £; as functions of p~! for T=0.1 for the
Takahashi gas with e=b=1. Agreement between £ and & is
excellent in the gaslike phase with p~! larger than about 3/2.
The curvature £ is seen to possess a narrow negative spike at
the pseudo-phase transition p~!=3/2. In the liquidlike phase,
£¢ is on the order of a rod length.

While the detailed statistical mechanics of fluctuations in
the liquidlike phase of this model does not appear to have
been worked out, we would expect that, as in the ideal
gas, classical thermodynamic fluctuation theory works in
the liquidlike phase down to length scales on the order of
arod length. Therefore small curvatures are no surprise.

The thermodynamic curvature was calculated for the
thermodynamics not including the kinetic energy. If the
kinetic-energy term is included, the results are more
difficult to interpret, particularly at small pressures (Rup-
peiner and Chance, 1990).

Fisher and Widom (1969) found that, at any given low
temperature, the crossover from monotonic to oscillatory
occurs at a clearly higher density than the pseudo-phase
transition.. This would appear to conflict with the ther-
modynamic Riemannian curvature where the crossover
from one type of behavior to another happens at the
pseudo-phase transition. But Fisher and Widom (1969)
compared only the ranges of the exponentially decaying
envelopes of the leading monotonic and oscillatory terms
in the correlation function expansion; they did not exam-
ine the amplitudes of these terms.

Ruppeiner and Chance (1990) noted that the amplitude
of the leading monotonic term in the correlation function
expansion vanishes at the pseudo-phase transition as
T—0, and argued that physically the crosscver of the
correlation function decay happens effectively at the
pseudo-phase transition, consistent with the thermo-
dynamic curvature. This resolves the apparent
discrepancy. Ruppeiner (1991a) found similar behavior
in a triangular potential ¥(7).

6. One-dimensional Ising model

The one-dimensional Ising model has a relatively sim-
ple thermodynamics. Its thermodynamic curvature was

first worked out numerically by Ruppeiner (1981). A
simple and exact expression for R was later found by
Janyszek and Mrugala (1989b), who started with the
known expression, Eq. (5.16), for the thermodynamic po-
tential, and worked out the metric elements with Eq.
(3.32) and the magnetic-fluid-analogy equation (3.61).
Equation (6.31) now yields the remarkably simple result
(Janyszek and Mrugala, 1989b)

—R =coshy(sinh?y +e %) 1241 | (6.39)

consistent with the results of Ruppeiner (1981). Though
Ruppeiner’s (1981) metric in (7T,m ) coordinates was di-
agonal, Eq. (3.32) has the advantage that the metric ele-
ments are derivatives of the natural thermodynamic po-
tential.

Ruppeiner (1981) also evaluated the correlation length
and found that for the ferromagnetic case J >0, where
the correlation function decay is monotonic, the thermo-
dynamic Gaussian curvature & is in excellent agreement
with the correlation length, never deviating by more than
a single lattice constant. For the antiferromagnetic case
J <0, the correlation function decay is oscillatory, with a
wavelength of the order of the lattice spacing, and &g is
always on the order of the separation distance between
adjacent spins.

Though the results for the ferromagnetic case J >0 are
convincing, the ones for the antiferromagnetic case J <0
are not clear cut. Let us discuss this, beginning with the
statistical mechanics. The introduction of staggered
spins and magnetic field,

o;=(—1)o,, (6.40)

hi=(—D'h, (6.41)
and the transformation

J'=—J>0, (6.42)
leads to the Hamiltonian

H=—J'S oioiri— S hio), (6.43)

i=1 i=1

precisely the same as that for the ferromagnetic J > 0.
Hence, with the staggered quantities, we get the same
thermodynamic curvature and correlation length as with
J >0, and correspondingly good agreement between
them.

With unstaggered quantities, Ruppeiner (1983b) noted
that for A =0 the spins essentially lock into place with
one another in a single microstate, with alternating spins,
at a length corresponding to the correlation length & for
the envelope of the oscillatory correlation function. The
correlation length £ diverges as 7—0. Therefore & sets a
lower limit on the volume at which thermodynamics may
reasonably be applied, and thermodynamic curvatures on
the order of a lattice spacing have little physical
significance.

Janyszek and Mrugala (1989b) interpreted the results
for this model in terms of “stability” (see Sec. VL.B), say-
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ing that the J <0 case is more stable than the J > O case.

Another viewpoint, however, is to note that the mag-
netic field 4 is not the variable conjugate to the “order
parameter” in antiferromagnets, which is the staggered
magnetization, and that the curvature for J <0 was
worked out with the “wrong” thermodynamics. As not-
ed above, the use of a staggered magnetization and field
leads to the same curvature as the J > 0 case.

7. Critical point

Perhaps the most significant thermodynamic curvature
results so far have been found near the critical point.

Let us begin by describing simple phase transitions and
the critical point. The language of magnetic systems is
used, but it is easily changed to that of fluid systems
(Stanley, 1971; Fisher, 1983). We denote the temperature
of the critical point by T,. It is useful to define the re-
duced temperature

_T-T,
T

c

t (6.44)

The magnetization is m, which acts as the “order param-
eter.” We also define the conjugate ‘“‘ordering field” 4.
The order parameter has the property that in zero order-
ing field, it is zero above T, and nonzero below it. Figure
12 shows a sketch of the phase diagram for a simple mag-
netic system near its critical point. Table III gives the
notation for critical phenomena, which is reasonably
standard.

Thermodynamic quantities behave as power laws near
the critical point. These power laws are characterized by
critical exponents and critical amplitudes. For example,
the specific heat at constant field for A =0 is

(6.45)

where the + and — superscripts on the critical ampli-

TABLE III. Basic notation for critical phenomena.

Cil=—w,/T)=A%t"" t>0 h=0
C,=A (—t)" ¢ t<0 h=0
h=Dm|m|®! t=0

h=m|m|* 'h(x) m+#0
m(=—w,)=B(—t)° t<0 h=0
t= T

x=t|m|"'/P m=#0
z=h|t|™® 70

E=&ft t>0 h=0
E=E7(—1t)" t<0 h=0
olt,h)=[t|*"*¥(z) 10
)(,(=——w,,,;,)=l"+t_7 t>0 h=0
X, = (—t)77 t<0 h=0
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coexistence curve
VY m

critical point

FIG. 12. Schematic of (¢,m ) space. It shows the critical point,
which corresponds to the point of highest temperature at which
the system shows zero magnetization in zero magnetic field. At
lesser temperatures the system spontaneously magnetizes in one
of two directions.

tude A% refer to the sign of £’ Generally, A differs

from A~ . A factor of T has been set to the critical tem-

perature, since we are very close to the critical point.

As another example, consider the isothermal suscepti-
bility for A =0:
o

oh?
Yet another example is the spontaneous magnetization
curve for h=0and ¢ <0:

X, = =T*¢|~7. (6.46)

—_ 80 _  p_ 8
m o TB(—t).

There is also a relation on the critical isotherm ¢ =0:

h=Dm|m|® 1.

(6.47)

(6.48)

These power laws appear even in “classical” theories,
such as that of van der Waals, for which the critical ex-
ponents have values a=0, 8=1/2, y =1, and §=3 (Fish-
er, 1983). Generally speaking, the behavior at the critical
point is nonanalytic. Namely, the free energy cannot be
expanded in a Taylor series, and the critical exponents
are neither integers nor simple fractions.

An essential ingredient in the modern picture of criti-
cal phenomena is scaling, namely, the hypothesis that the
free energy per volume near the critical point is a gen-
eralized homogeneous function of its arguments (Widom,
1965; Kadanoff, 1966; Stanley, 1971; Fisher, 1983):

o(t,h)=n|t|P®*tVY(n,h|t|75), (6.49)

where Y( ) is a function of one variable and n, and n, are
constants. (These constants are not needed for the state-
ment of scaling, but are needed for the statement of
universality below.) It is straightforward to verify that
this assumption implies that only two of the critical ex-
ponents are independent of each other; there exists a
class of scaling equations among them. For example,

57In most treatments of critical phenomena, the free energy o
is denoted by f, a symbol which has another meaning in this re-
view; “f was used as well by Ruppeiner (1991b, 1993).
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y=B(6—1)and 2—a=p(5+1).

Note, this free energy per volume is only that connect-
ed with critical phenomena, the nonanalytic singular
part. There is, in addition, a regular background part,
which plays only a weak role in the critical properties
and which we do not consider further here.

Another essential ingredient in critical phenomena is
universality, which asserts that the critical exponents and
the function Y( ) are the same within given “universality
classes,” differentiated by their spatial and the order-
parameter dimensionalities. For example, all pure fluids
are in the same universality class, that of the three-
dimensional Ising model. The constants n; and n, are
material dependent and differentiate between systems in
the same universality classes.

In addition, there is the hyperscaling relation (Widom,
1974), which relates the correlation volume §" to w(t,h).
The basic idea is that the (extensive) free energy associat-
ed with fluctuations at volumes of the order of &7 is
kpTc. The free energy is equated to the singular part of
the (extensive) free energy near the critical point and,
therefore, to the singular part of the free energy per
volume,

kpTc
gd

where «, is a dimensionless constant of order minus uni-

ty. Equation (6.50) is equivalent to Eq. (2.51), by Eq.

(3.43) with the replacement T— T. It is a simple exer-
cise to show that Eq. (6.50) leads to the exponent relation

(6.51)

o(t,h)=k, ) (6.50)

dv=2—a,

where v is the correlation length exponent; see Table III.

“Two-scale factor universality” (Stauffer et al., 1972)
includes the above statements about scaling, universality,
and the correlation volume and adds one more. It can be
written as four independent statements: (1) w(z,h) is a
generalized homogeneous function of its arguments; (2)
the function Y() is universal up to the two material-
dependent constants n, and n,, one for the function and
the other for its argument; (3) w(¢,h) is proportional to
the inverse of the correlation volume; and (4) k, is a
universal constant.

The thermodynamic metric is given by Eq. (3.41); and
very near the critical point, T in the prefactor may be re-
garded as a constant and

8ap —mw’aﬁ , (6.52)
in coordinates (¢, ). Equation (6.31), with an extra fac-
tor of — T, now allows us to calculate the curvature by
using a series expansion of the function Y( ) for small
values of its argument. For h =0,

_ (B3—1)(8— 1k Tc
T (BS+B—1)(1+8)Y(0)

t*72 . (6.53)
To get this expression, it was assumed that the order pa-
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rameter m=—w , in zero field is zero, and hence
Y’(0)=0. This means that it is valid only for ¢t >0. This
result was obtained by Ruppeiner (1990) and, in a more
roundabout manner, by Ruppeiner (1979).

By Eq. (6.51) we see that the thermodynamic curvature
diverges at the critical point in the same way as the
correlation volume (Ruppeiner, 1979). In addition, the
specific heat is

_ 2—a)1—a)Y(0)” ¢
TC )

Ch = (6.54)
Since the specific heat must be positive, and since a is
typically near zero (Fisher, 1983), we see that Y(0) must
be negative. Therefore, with typical values of the critical
exponents, R must be negative. The quantity

RC,t2=—B(5—1)(B5— 1)k (6.55)

is a universal constant, consistent with the prediction of
two-scale factor universality (Stauffer et al., 1972). This
means that both the amplitude of the curvature and its
exponent are the same as those of the correlation volume.

The relation between the correlation length and the
curvature will be explored further in Sec. VI.C.

8. van der Waals model

Also straightforward to calculate is the thermodynam-
ic curvature for the van der Waals model, which
Janyszek (1990) worked out for closed systems. Rup-
peiner (1990) gave some discussion of this model for open
systems, and the discussion is extended here.

The Helmholtz free energy per volume of the van der
Waals model is

S(T,p)=pkgTIn +pkge(T)

P
Po

—pkpTIn(1—bp)—akyp® , (6.56)

where e(T) is a function of T with a negative second
derivative, and a, b, and p, are constants (Landau and
Lifshitz, 1977). For a gas with constant heat capacity per
molecule ¢, (dimensionless and of order unity, e.g., 3/2
for the monatomic ideal gas),

e(T=—c,Tln |7 |+g,, (6.57)
T,

where T and g, are constants. From Eq. (3.38) we see
that the metric is diagonal, with metric elements
_ PG
=

grr (6.58)

and
P
PP P( 1— bp )2 T
The curvature may be worked out with Eq. (6.11):

(6.59)
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R={—(1—bp)[—2a’*p+6a’bp>*—6a’b?p*+2a2b’p*+2aT

—ac,T—2abpT +3abc,pT —3ab’c,p*T +ab’c,p’T+bc, T*]}[c,(—2ap+4abp*—2ab*p3+T)?] 7! .

Of interest is the thermodynamic curvature near the
critical point, which is characterized by having both the
metric element g, and its first derivative with respect to
p be zero. It has parameters (Landau and Lifshitz, 1977)

8a 1
T.=—— =—.
T 2 PT
Using Eq. (6.60) for the thermodynamic curvature, and
substituting the critical density p. and the reduced tem-
perature ¢, yields, to leading order in ¢,
3b -2
2c,

(6.61)

R=—

(6.62)

The specific-heat exponent a=0; so R has the same criti-
cal exponent as the correlation volume, by the scaling re-
lation (6.51). The amplitude is on the order of the molec-
ular volume. The same is true of the correlation volume
amplitude £ (Sengers and Levelt Sengers, 1978).

Very near the critical point, the specific heat is

_ cka
aT?  3b

and the combination

) (6.63)

RC,1*=——ky (6.64)
to leading order in ¢. This is in agreement with the result
from the two-scale factor universality equation (6.55),
with the classical exponents B=1/2 and 6=3.

Janyszek and Mrugala (1989b) worked out another
mean-field-theory model, the Curie-Weiss model, with
similar results.

One may wonder what the curvature does at first-order
phase transitions. The answer for the van der Waals gas
is—nothing special. By Eq. (6.60), the curvature
diverges only when the denominator goes to zero, which
it does at the critical point and along the spinodal curve.
Focusing on its effect on correlation length, Widom
(1974) argued that the correlation length remains at
about the thickness of the interface between the two
phases. This thickness is finite except at the critical
point.

9. Other cases

Casas-Vazquez and Jou (1985) evaluated the Rieman-
nian curvature scalar of the ideal gas using the formalism
of extended irreversible thermodynamics, including a
heat current as an additional thermodynamic parameter.
This treatment required a three-dimensional Riemannian
manifold. These authors used the particle number rather
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(6.60)

than the volume as the fixed subsystem size parameter.
The use of closed rather than open subsystems makes a
physical interpretation of thermodynamic curvature in
terms of this review unclear, and the authors did not at-
tempt it.

Mijatovic, Veselinovic, and Trencevski (1987) evalu-
ated the geometry in the paramagnetic ideal gas, which is
represented by a three-dimensional Riemannian
geometry. These authors, however, used the ‘“energy
form™ of the metric, which differs from the one used here
by a multiplicative factor inversely proportional to the
temperature. They also used the particle number as the
fixed scale.

Sieniutycz and Berry (1991) also worked out the ther-
modynamic curvature in a formalism of extended irrever-
sible thermodynamics. They related their results to those
of Casas-Vazquez and Jou (1985).

B. Stability interpretation of the thermodynamic curvature

Janyszek and Mrugala (1989b) offered an alternative
interpretation of the thermodynamic curvature. They
suggested that R is a measure of the stability. Namely,
the larger the R (in the sign convention used here), the
more stable the system. This interpretation was partially
motivated by the results for the 1D Ising model, where
the magnetization in the ferromagnetic case has large
fluctuations at low temperatures and zero field, but corre-
sponding states for the antiferromagnetic case have small
fluctuations. Hence, in the former case, large groups of
spins flop back and forth, and it is in this sense less
stable.

Also compelling is the work by these authors on the
boson and fermion ideal gases, discussed in Sec. VI.A 4.
These fundamentally different systems have thermo-
dynamic curvature with opposite signs. For the Bose
gas, R is negative, and for the Fermi gas it is positive, in-
dicating that the Bose gas, with the effectively attractive
interactions, is the less stable.

The stability interpretation is certainly intellectually
appealing and offers a direct interpretation of the sign of
the Riemannian curvature, which the interpretation
featured here has not. There are, however, some ques-
tions the stability interpretation has not yet addressed. It
has not offered an interpretation for the units of the ther-
modynamic curvature. Nor has it explained why the am-
plitude and the critical exponent of the thermodynamic
curvature are those of the correlation length. It also
lacks a statistical foundation, so it is unclear why it
should offer a measure of stability in some new distinct
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way.

In addition, Janyszek (1990) has postulated that the
sign of the thermodynamic curvature shall always be the
same for any system near the critical point. This postu-
late places a restriction on the values of the critical ex-
ponents:

ry>a, (6.65)

in accordance with what is presently known. This sug-
gests the viewpoint that the first law of thermodynamics
makes a statement about the first derivatives of the entro-
py; the second law, the second derivatives; and the curva-
ture, a statement about the third derivatives.’® A state-
ment about the third derivatives of the entropy is certain-
ly in the spirit of the geometric equation (2.52), but the
postulate about the sign of the curvature is less restrictive
and does not explicitly involve fluctuations.

C. Riemannian geometric theory of critical phenomena

Here we shall summarize the Riemannian geometric
theory of critical phenomena (Ruppeiner, 1990, 1991b,
1993).

Again, Eq. (2.52) gives the connection between the
thermodynamic curvature and the free energy:

kg
K s (6.66)
where k is a dimensionless constant of order unity.>
More frequently encountered in the literature of critical
phenomena is the thermodynamic potential w(¢,h). By
Eq. (3.43)

k—2-¢
1)

R= , (6.67)
where we have set =T, an approximation that suffices
for the asymptotic critical properties, but not if we are
interested in corrections to this, a subject not pursued
here.

The metric is given by Eq. (6.52), and the curvature
follows from Eq. (6.31):

58This viewpoint was expressed to me by H. Janyszek and R.
Mrugala.

59The negative sign is introduced to have k be positive, as in
Ruppeiner (1990, 1991b). Both the dimensionless constants k;
and k, are negative in systems like the pure fluid. Near the crit-
ical point, ¢ is positive and R is negative. In the earlier refer-
ences the geometric equation was expressed in terms of
o(=—T¢), which was denoted by the symbol “f,” since that is
standard usage in the literature of critical phenomena. In this
review, the symbol “f>’ is reserved for the Helmholtz free ener-
gy (see Table I).
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By Dpp Opp
@ gy O yp O pp

D eh Dthh O hhh

K
- = (6.68)
Dy @ @
D th D ph
Expanding the determinants yields
(@ 4@ hp @ tnp = @y @, hh @, et — O, 11D, hhh @, e
+ @O hp D 1y D 1h + O h @ ppp @ 1t — O pp O thp D 411 )
X[2@ 40 gy —@ 5o 5] =2 . (6.69)
L1t D hh L th @, th . .

The geometric equation may be reduced to a third-
order nonlinear ordinary differential equation (Rup-
peiner, 1991b) by the substitution

olt,h)=[t|°Y(z), (6.70)
where
z=h|t|™°. 6.71)

The function Y(z) has different branches for ¢t >0 and
t <0 which join smoothly at ¢t=0. This substitution
equation is exactly the scaling form of the free-energy
equation (6.49). The constants a and b are free parame-
ters in the theory and are related to the usual critical ex-
ponents by a comparison with Eq. (6.49):

a=2—a=B(8+1) (6.72)

and

b=p6 . (6.73)

The resulting ordinary differential equation is of the
form

Y3 2)=F,[z,Y(2),Y'(2),Y"(2)] , (6.74)

where the function F, is a ratio of polynomials too
lengthy to write out here. The terms quadratic in Y3)(z)
in Eq. (6.69) cancel. It may be shown (Ruppeiner,
1991b) that the solution of the differential equation is reg-
ular at z=0 and ¢ > 0 if and only if

o (b=1)2b—a)
ala—1) ’

the value used henceforth.

A third-order differential equation in the form of Eq.
(6.74) can be solved uniquely in the neighborhood of any
nonsingular point, provided exactly three constants of in-
tegration are given (Ince, 1956). These constants of in-
tegration are connected with the following three condi-
tions, the first two of which are readily proved from the
geometric equation: (1) if Y(z) is a solution, then n,Y(z)
is a solution; (2) if Y(z) is a solution, then Y(n,z) is a
solution. The third integration constant is connected
with the following standard assumption: (3) the order pa-

(6.75)
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rameter m = —@ ; is zero in zero field 4 at temperatures
above the critical temperature.

Conditions (1) and (2) are exactly consistent with the
prediction of two-scale factor universality. The constants
n, and n, are equivalent to the scaling factors in Eq.
(6.49). It can be shown that condition (3) results, with
the geometric equation, in a free energy that is an even
function of h. The case of asymmetric solutions will be
discussed below.

A convenient test case is offered by the mean-field-
theory exponents (Fisher, 1983) B=1/2 and 6=3. The
free energy resulting from the geometric equation is
found to be analytic everywhere in the one-phase region
(Ruppeiner, 1991b) and results in exactly

h=d1mt+d2m3 ) (6.76)

where d, and d, are constants. This corresponds to the
well-known mean-field-theory equation of state (Kadanoff
et al., 1967). In addition, the specific heat may be found
with the geometric equation, and the universal ratio of
specific-heat amplitudes 4 /4~ =1/4 is exactly that
found by Brezin et al. (1974) with renormalization-group
theory for mean-field theory.

A more physically meaningful case is the 3D ferromag-
netic Ising model, with critical exponents near B=5/16
and §=35 (Liu and Fisher, 1989). With these values for
the critical exponents, a solution to the geometric equa-
tion may again be worked out with the same basic pro-
cedure as that followed for the mean-field-theory ex-
ponents (Ruppeiner, 1991b). Qualitatively, the free ener-
gy looks similar to that of the mean-field-theory ex-
ponents, but with one major difference. The solution
curve intersects a line of singularities, which results in a
discontinuity in the second derivatives of the free energy
along a curve above the critical temperature. Ruppeiner
(1991b) chose the smoothest solution possible.

We might take the view that the discontinuity is a
feature of the theory which should be sought in the
analysis of experimental data, since it is not ruled out by
any general principle of thermodynamics or statistical
mechanics (Griffiths, 1967). If it existed, it would show
up as a discontinuity of the order of 5% in the isothermal
compressibility along a supercritical curve intersecting
the critical point. Ruppeiner (1992) has concluded that
present pure-fluid pressure volume temperature data are
not sufficient to rule it out.

However, in light of present theoretical understanding
of the critical point, such a nonanalyticity seems unlikely
in real systems. It is believed that the critical properties
fall into universality classes according to the spatial and
order-parameter dimensionalities. The pure fluid falls
into the same universality class as the three-dimensional
Ising model, whose free energy is certainly analytic
everywhere except the critical point and the phase
boundary (Ruelle, 1969). Hence a more realistic attitude
to take with respect to the discontinuity is that it is
perhaps an undesirable feature of the theory, which one
should work to correct. One possible explanation is that
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either ¢ or & does not correspond to the true physical re-
duced temperature or ordering field, and that a transfor-
mation of coordinates to the true physical ones would re-
move the singularity.

Compare now the predicted results for the 3D Ising ex-
ponents with known results. It is conventional to use the
Griffiths (1967) form of the equation of state:

h=m|m|* 'h(x), (6.77)
where

x=t|m|1¢. (6.78)
Define, as well, the related constants

ho=h(x)|,—o=D (6.79)
and

xo=—%|p=0,<o=B 1. (6.80)

Figure 13(a) shows h(x)/h, as a function of

(x+x4)/xy computed from the geometric equation
(Ruppeiner, 1991b); it depends only on the values of the
critical exponents and is hence universal. A universal
curve in these variables is in accordance with expecta-
tions from scaling and universality. Figure 13(b) shows
the known 3D Ising curve (Domb, 1974). The agreement
is close, within about 10% over the full range.

Another important example is the pure fluid. To make
the translation between magnetic systems and fluid sys-
tems, we use

m—(p—pc)/pc (6.81)

and

h—[p—pm(T)/pcl, (6.82)

where p- and pc are the critical density and critical
chemical potential, respectively, and u(7T) is the chemical
potential along the critical isochore and coexistence
curve. The pure fluid was historically analyzed using
critical exponents near S=0.35 and 6=4.45 (Levelt
Sengers, 1974).%° The pure-fluid exponents lead to a solu-
tion that is qualitatively similar to that for the 3D Ising
exponents, including a discontinuous second derivative of
the free energy. Figure 14 shows the theory compared
with experiment in four pure fluids. The match is evi-
dently very good and could certainly be improved by
varying the critical exponents to produce the best fit.

In real physical problems, the free energy is not typi-
cally an even function of 4. In the modern theory of crit-
ical phenomena, this is generally handled with the
mixing-of-coordinates scheme of Rehr and Mermin
(1973):

60More recent measurements and analyses of fluid data (Pitt-
man et al., 1979; Albright et al., 1987) indicate that very near
the critical point the pure fluid exponents become those of the
3D Ising model, as expected from universality.
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FIG. 13. Quantity h(x)/h, as a function of (x +x4)/x, computed two different ways: (a) from the geometric equation with 8=5/16
and 8=5; and (b) from the known results for the 3D Ising model (Domb, 1974). The down-pointing arrow in (a) corresponds to the
place where the geometric equation curve suffers a discontinuity in the slope. The Ising curve shows no such discontinuity. The
curves are in good agreement with each other, within about 10% over the full range shown.

u=cit+cyh (6.83)

and

v=c3t+csh , (6.84)

where u and v are the new thermodynamic parameters,
and the coefficients c,, c,, ¢3, and ¢, are constant.

The mixing of coordinates has been demonstrated to be
consistent with the Riemannian geometric theory of criti-
cal phenomena (Ruppeiner, 1993). Furthermore, with
the scaled form of the free energy and the assumption of
universality, this appears to be the only scheme for intro-
ducing into the theory an asymmetry that does not have
a singularity in the free energy near the critical isochore.

These results merely scratch the surface of the prob-
lems in the theory of critical phenomena. A question of
obvious importance is the possibility of including a loga-

100

10-2
102 100 102 104 106
(X+Xg)/Xg

FIG. 14. Quantity h(x)/h, as a function of (x +x,)/x, com-
puted from the geometric equation with =0.35 and §=4.45
and determined from experiment in four pure fluids (Levelt
Sengers, 1974). The down-pointing arrow indicates the discon-
tinuity in the slope of the geometric equation curve. The match
between theory and experiment is very good.
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rithmic term in the solution of the geometric equation.
Such a term dominates the critical-point specific heat in,
for example, the two-dimensional Ising model (Onsager,
1944). Another issue of interest is how to include non-
singular “background” terms in the free energy. Such a
question would be of particular interest for cases with
negative heat-capacity exponents a. A problem of a
somewhat higher order of difficulty is that of including
more thermodynamic variables, as needed, for example,
near tricritical points. This raises the whole question of
the proper form of the geometric equation in this case,
since Eq. (6.66) does not necessarily generalize to higher
dimensions. These considerations may also reveal how to
deal with the issue of “corrections to scaling,” which
emerges if we are interested in deviations from the
asymptotic critical behavior.

Donato and Valenti (1994) examined the general prop-
erties of the geometric equation. They treated a general
class of third-order hyperbolic nonlinear partial
differential equations in two variables, with solutions in
some sense as well behaved as possible. Namely, discon-
tinuities in the derivatives never evolve into shocks. Not
yet resolved, however, are such fundamental issues as
what general boundary conditions are required to specify
a unique solution and make it a “well-posed problem”
(Garabedian, 1964).

We may inquire into other possible forms for the con-
nection between the thermodynamic curvature and the
free energy. A more general equation is

a, aj
R+a1+?+}—2—+ s
kkpg )
=— n +B,+B0+ B3+ - - (6.85)

The constants @, ... ;... must be formed from quantities
with units of length. This means that they are unlikely to
have universal values, because there are no universal con-
stants in thermodynamics or statistical mechanics with
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Riemannian Geometry of
Thermodynamics

Axioms of Equilibrium
Thermodynamics A

Power-Law Divergences
Scaled Equation of State
Hyperscaling

Two-Scale Factor Universality

Mixing of Variables

Universality of Critical Exponents

Values of the Critical Exponents

Classical or Quantum
Mechanics

Statistical mechanics

FIG. 15. Basic context of the Riemannian geometric theory of
critical phenomena. The top of the diagram represents macro-
scopic, and the bottom microscopic. Statistical mechanics, aug-
mented by renormalization-group theory, may be used to “build
up” from the microscopic to deduce information about the mac-
roscopic. In contrast, the covariant thermodynamic fluctuation
theory “builds down” from the macroscopic using Riemannian
geometry. Microscopic details enter the theory through the
values of the critical exponents.

the units of length. Nonuniversal quantities, such as the
critical density, would have to be considered. Thus the
form of this more general equation would not be expect-
ed to be universal. This is an unexplored area.

This theory forms a logical completion of the structure
developed in this review, where we ‘“‘build down” from
the thermodynamic limit to extract information about
finite subsystems. This is the inverse of the process in
statistical mechanics, where we “build up” from the mi-
croscopic to get at the macroscopic (see Fig. 15). The
basic philosophy is perhaps not too different from that
expressed by Mandelbrot (1956): ‘“Since, therefore, the
kinetic foundations of thermodynamics are not sufficient
in the absence of further hypotheses of randomness, are
they still quite necessary in the presence of such hy-
potheses? Or else, could not one ‘short-circuit’ the
atoms, by centering upon any element of randomness... .”

VIl. CONCLUSIONS

This review has examined several aspects of thermo-
dynamic fluctuation theory, with emphasis on the explicit
inclusion of the concepts of covariance and consistency.
These are naturally developed using the language of
Riemannian geometry.

The covariant thermodynamic fluctuation theory has
the same form in all coordinate systems and conserves
energy and mole numbers at all subsystem volumes. In
addition, it may be applied consistently to fluctuations
within subsystems. Coupled with these concepts is an ex-
tension of the basic structure of thermodynamic fluctua-
tion theory beyond the classical one of a subsystem in
contact with an infinite uniform reservoir. Used here is a
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hierarchy of concentric subsystems, each of which sam-
ples only the thermodynamic state of the subsystem im-
mediately larger than itself. Tests on known models re-
veal qualitative improvements over the classical theory.

This theory has microscopic foundations. These make
it clear that the basic rules for fluctuations at volumes
less than the correlation volume must be fundamentally
different from those near the thermodynamic limit. They
are yet to be completely discovered. However, present
evidence suggests that the principle of Markovicity offers
at least a foundation for a thermodynamic theory at such
volumes.

Of special interest is the Riemannian thermodynamic
curvature, which gives a lower bound for the volume
where the classical theory based on the assumption of a
uniform environment may work. Physically, there are
good reasons to believe that near the critical point this
volume should be the correlation volume, and straight-
forward evaluation of the curvature in several models
confirms this. The combination of the interpretation of
the thermodynamic curvature with a simple postulate of
critical phenomena yields a purely thermodynamic
theory of critical phenomena. It is consistent with
several aspects of the modern theory of critical phenome-
na.
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