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This colloquium reviews some unusual paramagnetic phenomena in granular high-temperature
superconductors. These are consistently explained by assuming that there is frustration in the
coupling patterns between the neighboring grains. Such frustration effects occur in a natural
way in a multiply connected superconductor with Josephson junctions if the order parameter has
unconventional symmetry due to Cooper pairing in a higher angular momentum channel, e.g.,
d-wave pairing. A simple model is introduced to describe the magnetic properties of a frustrated
granular superconductor. Large orbital magnetic moments are spontaneously created, leading
to superparamagnetic behavior. These results suggest that the unusual paramagnetic phenom-
ena are a consequence of unconventional symmetry of the pairing state in the high-temperature

superconductors.
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I. INTRODUCTION

The discovery of the high-temperature superconduc-
tors (HTSC), a class of materials based on planar cop-
per oxide structures, has raised many questions that are
linked to long-standing theoretical challenges in solid-
state physics. The HTSC state is achieved by doping in-
sulating parent compounds with a relatively small num-
ber of carriers, usually holes (electron vacancies). The
parent insulators, however, are not conventional band
insulators where an even number of electrons per unit
cell is an essential requirement to fill completely a set
of Bloch bands. This requirement is not fulfilled here;
rather, there are nine d electrons per Cu ion, and a single-
electron band theory wrongly predicts a half-filled band
showing metallic behavior. The solution to this puzzle
is the very strong Coulomb repulsion between electrons
which forces them to be localized on individual ionic sites.
This type of insulator, known as a Mott insulator, is im-
mediately distinguished from conventional insulators by
the spin degrees of freedom which are active at low en-
ergy. In the present case the Cu?* ions are missing one
electron from the 3d shell, and the resulting S = 1/2
spin degrees of freedom are coupled by a nearest-neighbor
Heisenberg interaction causing them to order antiferro-
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magnetically. Anderson (1987) realized very early that
the appropriate description for the superconductor must
be an extension of the Heisenberg model to include the
mobility of the spins which arises when they exchange
position with the dopant holes that are introduced onto
a fraction of the Cu ions. A relatively small concentration
of holes is sufficient to destroy the magnetic order and to
trigger a transition to a “metallic” phase exhibiting su-
perconductivity with an unprecedentedly high transition
temperature of the order 100 K.

The classical BCS theory describes superconductivity
as a state in which electrons with opposite momenta, k
and —k, and opposite spin form bound pairs (so-called
Cooper pairs) with a definite relative angular momen-
tum. If we assume that superconductivity in HTSC is
also due to Cooper pairing, then we encounter the possi-
bility that the strong on-site repulsive interaction among
the electrons, responsible for the Mott insulating behav-
ior in the parent compounds, may prevent the formation
of pairs with s-wave (angular momentum ¢ = 0) symme-
try. However, Cooper pairs can form in a higher angular
momentum state that, due to the symmetry of the pair
wave function in real space, does not have configurations
with both electrons on the same site and so they reduce
the effect of the Coulomb repulsion. Conventional metal-
lic superconductors all have s-wave symmetry, and only
in the special case of the heavy-fermion superconductors
(another case with strong intra-atomic Coulomb repul-
sion) is there strong experimental evidence of unconven-
tional pairing in a metal. In the case of the HTSC, the
issue of whether the pairing symmetry is conventional or
unconventional has been hotly debated for some time.
The most discussed candidate for unconventional pairing
is the so-called d,2_,2 state, in which the angular mo-
mentum of the pair is quenched by the lattice potential,
but the pairing channel is £ = 2 or d wave. Such pair-
ing states occur in various theories based on microscopic
models for the CuO; planes (Bickers et al., 1987; Gros
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et al., 1987; see also Dagotto, 1994). Additionally, this
symmetry is supported by phenomenological theories in
which the pairing is mediated by the exchange of spin
fluctuations, which are especially strong since the HTSC
are very close to antiferromagnetic order (Moriya et al.,
1990; Monthoux et al., 1992; Ueda et al., 1992; Monthoux
and Pines, 1993; see also Rice, 1994).

For a long time experimental data seemed to rule out
unconventional pairing, branding it as nothing but a pe-
culiarity of certain theories. However, recent improve-
ments in sample quality and new techniques have led to
results that are very suggestive of d-wave pairing sym-
metry. [For a discussion, see the recent article by Levi
(1993)]. The first class of experiments addresses the ques-
tion indirectly through the properties of the quasiparticle
excitations of the superconductor. One of the important
results of BCS theory is the existence of a gap in the
quasiparticle energy spectrum, |A(k)|, proportional to
the strength of the pairing amplitude. While in the sim-
plest case of an s-wave superconductor this amplitude,
and therefore the gap, is more or less direction indepen-
dent on the Fermi surface, we expect that a higher an-
gular momentum pairing has sign changes in the pairing
amplitude as one varies the direction on the Fermi sur-
face. This, in turn, leads to zeros or nodes in the gap
along specific directions in momentum space as a conse-
quence of symmetry. The thermodynamics of a supercon-
ductor at low temperatures is determined by excitations
involving two quasiparticles. It follows that in an s-wave
superconductor at low temperatures these have a finite
minimum excitation energy A, which is reflected in an
exponential temperature dependence e~2/*8T for prop-
erties such as the electronic specific heat. This behavior
contrasts with that of a superconductor with nodes in the
energy gap which lead to two-quasiparticle excitations
at arbitrary small energies and to a power-law behavior
[~ T™ (n: some integer)] in electronic properties at low
temperatures.

The first clear signs of the existence of low-energy ex-
citations in HTSC were found in NMR measurements
(Martindale et al., 1993), and simultaneously in data
on the London penetration depth at low temperatures
when Hardy et al. (1993) reported a deviation linear in
T from the value at T' = 0 K. The detailed interpreta-
tion of these experiments is complicated by a sensitivity
of the measurement and the theory to sample imperfec-
tions. Angle-resolved photoemission, in principle, mea-
sures directly the single-quasiparticle energy-momentum
relation. Shen et al. (1993) reported the vanishing of
the energy gap for quasiparticles moving along the (1,1)
axes in the CuO; planes, i.e., k, = *k,. This behavior
is consistent with d2_,2 character for the pairing ampli-
tude, which vanishes along k, = tk, and has its maxi-
mal strength along the (1,0) and (0,1) directions. Recent
studies of the angle-integrated density of states of quasi-
particles using a scanning tunneling microscope (Barbi-
ellini et al., 1994) also gave support to d-wave symmetry,
with evidence of a tail in the density of states stretching
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down to the chemical potential. All these experiments,
although very sophisticated, are indirect and are sensitive
only to changes in the magnitude of the pairing ampli-
tude. They cannot distinguish a strong angular varia-
tion without an actual sign change, i.e., an anisotropic
s-wave form, from the case of d-wave pairing where the
amplitude changes sign upon a rotation through /2 in
k space.

This article is devoted to a discussion of phenomena
that reflect in a direct way the symmetry of the super-
conducting state in HTSC. The first sign of such phenom-
ena was observed in the unusual paramagnetic response
of some granular HTSC, the understanding of which will
be the main topic here. It is widely believed that intrin-
sic frustration in the granular system is the cause of this
effect, as we shall discuss below in detail. Meanwhile,
a number of beautiful test experiments that can probe
the unconventional nature of a HTSC in controlled ge-
ometries evolved from the idea of frustration. We shall
address them briefly at the end of this article, and they
will be further discussed in a companion article by Van
Harlingen.

Il. EXPERIMENTS ON GRANULAR
HIGH-TEMPERATURE SUPERCONDUCTORS

A granular superconductor consists of many super-
conducting islands, the grains. The contacts where the
grains touch each other act as weak links interconnecting
the grains to form a complex network. Such a system has
the properties of a multiply connected superconductor. If
it undergoes the superconducting transition in zero exter-
nal magnetic field, it exhibits, usually, a complete Meiss-
ner effect at low temperatures, provided the probing field
is small enough to affect only weakly the screening cur-
rents flowing through the links. On the other hand, if it
is cooled in a finite field, a certain amount of magnetic
flux is trapped in the voids of the multiply connected
sample, so that the Meissner effect is only partial even
at very low temperatures (Fig. 1).

Surprisingly, the magnetic behavior of granular
Bi;Sr2CaCuz05 under field cooling (FC) conditions is
quite different. For very small fields (Hex ~0.01-1 Oe),
a paramagnetic response appears below the supercon-
ducting transition temperature. A characteristic sig-
nature of this effect is the strong nonlinearity of the
dc susceptibility defined as xg4., the ratio between the
measured magnetization M and the applied field Hex
(Fig. 2). The smaller the Hex, the larger is the para-
magnetic response x4 (Svedlindh et al., 1989; Brau-
nisch et al., 1992, 1993; Heinzel et al., 1993; Niskanen,
1993; Niskanen et al., 1993; Shrivastava, 1994). For fields
Heyx > 1 Oe, x4qc changes sign to become weakly diamag-

netic. This behavior suggests the existence of magnetic
degrees of freedom associated with orbital currents spon-
taneously created in the superconducting state which in-
teract weakly, so that even rather small fields are suf-
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FIG. 1. Standard behavior of the dc susceptibility in granular
superconductors (BizSr;CaCuz0s) under ZFC and FC condi-
tions. The FC susceptibility shows only a fractional Meissner
effect, about 1/3 of the complete Meissner effect for ZFC.
The measurements were done on a high-quality sintered sam-
ple (Braunisch et al., 1992, 1993).

ficient to enforce nearly complete polarization. Their
(positive) paramagnetic contribution My to the magne-
tization competes with the linear (negative) diamagnetic
response of the system. The total magnetization takes
the form [M(Hex) = Mo(Hex) + XdiaHex] and leads
to Xdec = Mo(Hex)/Hex + Xaia- A rather good fit of
the experimental data is obtained using the following
field dependence of M, suggested by Kusmartsev (1992a,
1992b): Mo(Hex) = M{Hex/(Ho + Hex) (Braunisch et
al., 1992, 1993; Niskanen, 1993; Niskanen et al, 1994).
The characteristic field Hy can be interpreted as the field
scale below which thermal and interaction effects act to
suppress complete polarization. As T' — 0, Hy is of the
order 0.1 Oe.

When the experiment is done under zero-field cool-
ing (ZFC) conditions, at first sight there is nothing
more than the Meissner effect that appears in ordinary
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FIG. 2. Unusual behavior of the dc susceptibility in a gran-
ular superconductor (BizSr2CaCuz;0s) under ZFC and FC
conditions. A strong paramagnetic signal is observed for FC
in small fields (< 1 Oe): Wohlleben effect. The measurements

were done on a melt-processed sample (Braunisch et al., 1992,
1993).
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FIG. 3. ZFC dc susceptibility close to T.: (a) bare dc suscep-
tibility and (b) reduced dc susceptibility where the nonlinear
signal is emphasized by subtraction of the linear diamagnetic
signal, x(H) — x(H*) with H* = 4 gauss (Svedlindh et al.,
1989).

granular superconductors. However, Svedlindh and co-
workers found, upon careful analysis, a rather small non-
linear contribution superposed on the dominant linear
diamagnetic response. By subtracting the diamagnetic
part (e.g., Xdc measured in a comparatively large ex-
ternal field H*), one discovers a clear peak structure in
Oxde = Xdc(H) — xdc(H*) for H < H* in the vicinity of
the superconducting transition. The magnitude of this
structure is field dependent: the smaller the applied field,
the more pronounced is the signal (Fig. 3; Svedlindh et
al., 1989; Niskanen, 1993).

This peculiar nonlinear paramagnetism has received
various names in literature, such as the “anti-Meissner
effect” or the “paramagnetic Meissner effect.” It has be-
come clear, however, that this effect has nothing to do
with the screening behavior of a superconductor named
after Meissner and Ochsenfeld, but represents a new phe-
nomenon. As an alternative name, we proposed earlier to
call it the Wohlleben effect.! We shall adopt this name
here, too.

Actually, a number of other anomalous features are
found in ceramic samples that show the Wohlleben
effect—a nonmonotonic behavior of microwave absorp-
tion with a varying external magnetic field (Braunisch
et al., 1992, 1993; Kataev et al, 1993) and an unusual

!This name was chosen after Dieter Wohlleben, who with
his group explored the properties of this effect in detail and
emphasized its importance in the context of high-temperature
superconductivity. Dieter Wohlleben died tragically in sum-
mer 1992.
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anomaly in the second harmonic of the ac susceptibility
in a static field (Heinzel et al., 1993). These features can
also be explained within the framework outlined below,
but it would take us into too much detail to discuss these
effects here.

Standard granular superconductors are often modeled
as networks of Josephson junctions (weak links) con-
necting the grains, i.e., a so-called Josephson network.
Good Josephson junctions between two grains guarantee
a phase-coherent. tunneling of the Cooper pairs between
different grains and allow the percolation of supercon-
ductivity throughout the whole granular sample. The
simplified version of such a network is a model with the
phases ¢; of the order parameter on each grain as the only
degree of freedom, so that the Hamiltonian is given by the
sum of all junction energies: H = — 37, . Eyjcos(Adij )
with E;; > 0 as the random Josephson coupling between
the grains ¢ and j and A¢;; = ¢; — ¢;. This system is
unfrustrated, and the lowest energy state is given by ¢; =
constant for all 7, minimizing the energy of all junctions
simultaneously. This changes as soon as a magnetic field
is applied, since the phase ¢; is subject to gauge effects:
A¢ij = Ai; — (21 /Do) [} ds - A where A is the vector
potential. For finite A, the system is frustrated and the
energy cannot be minimized for each junction indepen-
dently. This system is also called a gauge glass, because
it exhibits various glass properties. It has been stud-
ied extensively for more than a decade (for a review, see
Blatter et al., 1994). However, to the best of our knowl-
edge, such a system does not show any of the observed
behavior discussed above.

Several groups suggested that the anomalous effects
could arise from a frustration due to intrinsic properties
of the Josephson junctions rather than an extrinsic frus-
tration due to an applied magnetic field. Some years ago
Bulaevskii and co-workers (1977) showed that the pres-
ence of independent magnetic impurities in the junction
opened up a new tunneling channel involving a spin-flip
intermediate state which actually gave a negative con-
tribution to the Josephson critical current, Iy, between
singlet superconductors. If conditions could be realized
in which this spin-flip channel dominates over the regu-
lar tunneling channel, then a negative total critical cur-
rent (I; < 0) would appear in the Josephson relation,
I = I;sin(A¢), which we discuss below. Alternatively,
we could express the relationship as I = I.sin(A¢ + )
with I.(= |I5|) as the magnitude of the Josephson criti-
cal current. Such a junction with a phase shift 7 is called
a 7 junction. It is, however, debatable whether the con-
ditions necessary to make Iy < 0 can be realized in prac-
tice, since an increase in the concentration of magnetic
impurities in the junctions will lead to coupling between
the impurity spins, which in turn will lead to inelastic
tunneling processes. To the best of our knowledge, no
controlled example of such a 7 junction has been real-
ized. Nonetheless, the idea that such junctions might
exist led Bulaevskii et al. (1977) to predict some inter-
esting consequences, as we shall discuss below, and also
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inspired others to look into related possibilities (Glazman
and Matveev, 1989; Spivak and Kivelson, 1991).

An alternative mechanism for generating an intrinsic
w-phase shift in a Josephson junction is based on the
idea of an unconventional order parameter. Non-s-wave
pair wave functions possess a phase that depends on
the angular direction in k space. It has been pointed
out by Geshkenbein and co-workers that, in the context
of heavy-fermion superconductivity, Josephson junctions
are sensitive to this phase, and special arrangements may
lead to frustration effects (Geshkenbein and Larkin, 1986;
Geshkenbein et al,, 1987). Later, Sigrist and Rice an-
alyzed the situation for high-temperature superconduc-
tors, assuming dg2_,2» symmetry for the superconducting
order parameter (Sigrist and Rice, 1992). As the em-
phasis of this paper lies on the consequences of d-wave
superconductivity, we shall go into more detail here on
this mechanism.

1il. JOSEPHSON EFFECT IN d-WAVE
SUPERCONDUCTORS

The Josephson effect is certainly one of the most in-
triguing phenomena in superconductivity. It is a conse-
quence of coherent tunneling between two superconduct-
ing condensates, each of which is represented by a com-
plex macroscopic wave function, which is the order pa-
rameter of superconductivity. On a microscopic level we
can describe this effect as the tunneling of Cooper pairs
from the pairing state on one side of the junction to that
of the other side. In a tunneling process, electrons moving
perpendicularly to the interface make the largest contri-
bution. So it follows that the strength of Josephson tun-
neling will depend on a weighted average over the pairing
wave function, weighted in favor of electronic momenta
in this perpendicular direction. Therefore the Josephson
effect is a direction-sensitive phenomenon connected with
the orientation of the junction and with the crystal axis
of the superconductor on each side. This fact is of mi-
nor importance for conventional s-wave superconductors
with an essentially isotropic pair wave function. How-
ever, in the case of non-s-wave superconductivity, where
pair wave functions have an internal angular structure,
this property can lead to intriguing new effects.

We discuss here as a concrete example the proper-
ties of a Josephson junction for the above-mentioned
dy2 _,2-wave superconductors. For simplicity, we assume
that the basic crystal symmetry of the superconductor is
tetragonal (z axis is the fourfold rotation axis), described
by the point group Dy, neglecting for the moment the
orthorhombic distortion actually present in most of the
HTSC. In this symmetry the typical form of the pair wave
function in k space is

P(k) = (axra—_xy) = cosk, — cosk,, (1)

where ay, is the annihilation operator for an electron
with momentum k and spin s, and (...) denotes the ther-
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mal average. The anisotropic function cosk, — cosk, has
the same symmetry properties in Dy, as k2 — kz, a homo-
geneous polynomial of second order in k. For this reason,
this state is referred to as the “d-wave state”—i.e., the
relative angular momentum is £ = 2—although the clas-
sification with respect to the angular momentum has no
real meaning under discrete crystal-field symmetry. The
electrons are paired in a spin singlet, and the parity of
the orbital wave function is even.

It is easy to formulate a Ginzburg-Landau theory of
this d-wave superconducting state based on its symme-
try properties. We introduce a complex order parameter
7, which behaves the same way as the pair wave function
in Eq. (1) under symmetry transformations and depends
on temperature and position in space, 5 = n(r,T). The
Ginzburg-Landau free-energy functional is an expansion
in 77 near the superconducting transition temperature 7,
where 7 is small. It has to be a scalar under the oper-
ations of the complete symmetry group of the system,
which consists of the crystal symmetry, Dy, time rever-
sal K, and the U(1) gauge symmetry. Hence its general
form is given by

F= / Er[AT) P + Bnl* + K1 (IDanf? + | Dynl?)
1
FE|Danf? + =B - (B — 2H)] @)

(for reviews, see Gor’kov, 1987; Annett, 1990; and Sigrist
and Ueda, 1991). The real coefficients 8 and K, are
phenomenological parameters, and A(T) [= o(T — T.)]
changes sign at the superconducting transition tempera-
ture T;. The symbols D, , . denote the components of
the gauge-invariant gradient D = (V —27:A /®,), where
A is the vector potential (with B = V x A) and ® is
the flux quantum hc/2e. This free energy for the d-wave
order parameter is identical to that of an s-wave super-
conductor in a tetragonal system. Therefore on this level
there is no obvious difference between them.

For the discussion of the Josephson effect, we introduce
the coupling between the order parameters of two linked
superconductors. Within the Ginzburg-Landau theory
this is straightforwardly formulated in terms of bound-
ary conditions (see de Gennes, 1966 and Landau and Lif-
shitz, 1980). We consider two superconductors, (1) and
(2), connected by tunneling through a planar interface.
This can be included in the Ginzburg-Landau theory by
adding an interface term to the free energy which repre-
sents the coupling between the two order parameters, 7(1)
and 7(2), to lowest order and generates the correct bound-
ary conditions (Geshkenbein and Larkin, 1986; Annett,
1990; Yip et al., 1990; Sigrist and Ueda, 1991),

Fig= /dS tox (1) (ma))x(2)(n2))

x[n{yne) + na)yniz)ls (3)

where the integral runs over the whole interface and ¢
is a real parameter denoting the coupling strength. The
functions x(;)(n(;)) are symmetry functions of the in-
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terface normal vector n(;) given in the crystal basis of
the side (7). This interface term is invariant under inde-
pendent Dy transformations on each side, if we choose
X()(m(;)) to have the same symmetry properties as the
order parameter 7(;) or the pair wave function. Thus

' X(5)(n(;)) should be a constant if the superconductor (j)

is an isotropic s-wave superconductor. However, x;)(n)
has essentially the same form as ¢(k = n) in Eq. (1) for
a dg2_,2-wave superconductor [x(m) = cos n, — cosny or
2 _ 2
ng —ngl.
The boundary conditions of the Ginzburg-Landau the-
ory are obtained by variation of the complete free-energy

functional with respect to 7y (and 7)),

[K1(n(1)2Ds + n(1)y Dy) + Kan(y).D:]ne)

= —tox (1) (m(1))X(2) (n(2))7(2) (4)

on the interface. A second analogous boundary condi-
tion is given by interchanging the side indices (1) and
(2). These equations can be related to the supercurrent
passing through the interface. The supercurrent density
on side (j) along n has the form

OF  4mc .
n-J;=cn- A — (I)—Olm{n(j)[Kl(nsz + nyDy)

Combining Egs. (4) and (5), we obtain for the current
density perpendicular to the interface

4met
J= B, % x (1) (n1))x(2)(nz))

X|nq)line) lsin(z — ¢1), (6)

where we introduced 7;) = |7(;)|exp(i¢;) on each side of
the interface. Equation (6) allows us to define the Joseph-
son critical current, I; = (4mwcto/Po)x(1)(n(1)) X(2)(0(2)),
which depends on the normal vectors (Fig. 4). Obviously,
I; is determined by the matching of the pair wave func-
tions of both sides at the junction, in particular, by their
mutual misorientation. It can have either sign for specific
choices of n;), if at least one of the two superconductors
has d-wave pairing symmetry. A negative critical cur-
rent is equivalent to an intrinsic phase shift of m in the
junction. Because x(n) has essentially the same struc-
ture as 1(k), the current through this interface exhibits
a direct coupling to the phase of Cooper pair wave func-
tions, which can be different for different directions in
momentum space in the case of unconventional pairing.
The Josephson effect is direction sensitive and therefore
allows one to probe the phase of the pair wave function.
The existence of 7 junctions is a natural consequence of
this property in d-wave superconductors. It is impor-
tant to notice that diffuse tunneling does not change the
characteristics of the junction as long as the symmetry
with respect to the interface normal vectors is preserved.
One effect of diffuse scattering is the suppression of the
tunneling due to destructive interference effects.
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FIG. 4. Josephson junction between two d-wave superconduc-
tors. The circles show the orientation of the crystal lattice and
the pair wave function % (k) o cosk, — cosky on both sides of
the junction. This example corresponds to a 7 junction.

IV. FRUSTRATION AND SPONTANEOUS CURRENTS
IN MULTIPLY CONNECTED GEOMETRIES

The connection of two superconductors by a 7 junction
does not, by itself, lead to any special observable effects.
The phases of the order parameters on both sides simply
arrange to minimize the Josephson-junction energy, o
—cos(¢2 — ¢1 + ), by setting the phase difference, ¢o —
¢1, equal to m. There is no way to measure this phase
shift directly. It merely corresponds to a phase change
in one of the two superconductors, e.g., 7(1) = —n(1) or
¢1 — ¢1 + w. This transformation is equivalent to the
exchange of the z and y coordinates in superconductor
(1), an allowed redefinition in a tetragonal system. Hence
whether a junction is a 7 or a 0 junction or not is, in this
sense, only a matter of convention.

On the other hand, physical consequences arising from
7 junctions can be expected in multiply connected super-
conducting systems. Let us illustrate this by the example
of three superconducting segments forming a loop with
three junctions (Fig. 5). The arrangement is chosen so
that all junctions are w junctions by our definition. We
can now apply the above transformation (z <> y) to one
of the segments to convert its adjacent junctions into 0
junctions, leaving one 7 junction only. There is no fur-
ther transformation that could “remove” the remaining
7 junction without changing one of the two 0 junctions
again into a 7 junction. This example leads us to the
general statement that a loop with an odd number of
7 junctions in a multiply connected system, under all
redefinitions of the crystal axis (or the order-parameter

FIG. 5. Superconducting loop with three junctions. The lines
of the shading represent the direction of the z axis in each
segment, while the z axis is pointing out of the plane. In this
arrangement every junction is a 7 junction by definition.
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phases), has at least one 7 junction. Hence there is no
way to minimize the energy of all junctions and, at the
same time, to keep the order-parameter phase constant
in each segment. This means frustration for this loop.

A rather simple arrangement for studying the proper-
ties of such a frustrated system is a single superconduct-
ing loop with just one junction (Fig. 6). This situation
can, for example, be realized in a loop with many strong
and just one rather weak junction, which, as the weak-
est link, determines the properties of the whole system.
Assuming that the current I, which flows in the loop, is
small compared to the critical current of the grains, we
find the energy given by the simple form

F(I,A¢) = %L[2 - %ICCCOS(AQS—FQ), (7

where L denotes the self-inductance of the loop and I, =
| Iy | as discussed earlier. The phase shift « is 0 for an
unfrustrated and 7 for a frustrated loop. In this reduced
form the free energy consists only of the current-magnetic
field energy (first term) and the junction energy (second
term). A simple relation between A¢ and the current
can be found from the integral

27 mvg
Lds-(VqS—(}TOA):/Cds- 7 (8)

along a path C within the loop starting at one side of the
junction and ending on the other side. The path C is deep
enough inside the superconductor so that the superfluid
velocity v, vanishes due to the Meissner screening effect.
Under the simplifying assumption that the junction has
no spatial extension, so that all the current flows through
one point, this leads to

2w 27 1
A¢ =2mn — E@=2ﬂ'n— 3, (‘I’ex—f— —C-LI) , (9)
where @, the total flux threading the loop, consists of the
contributions of the external field and the current I (and
n is an integer phase winding number). Substituting A¢
in Eq. (7), we obtain

1, &I [2n 1
= — — + ~LI) + «f.
F(I,®.x) 202 LI e cos 3, Doy - «a

(10)

This model of a superconducting loop has been discussed
by Silver and Zimmermann (1967) for unfrustrated loops

FIG. 6. Single loop with a single junction.
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and by Bulaevskii et al. (1977) for frustrated loops. By
minimizing F' with respect to I for a given Py, we obtain
the relation between I and ®., (Fig. 7). The properties
of the solutions are determined by the dimensionless pa-
rameter v = 2w LI./®oc. For v < 1, I is a single-valued
periodic function of ®.x. However, if v > 1, then I(®ex)
is multivalued near ®.x = (2m + 1)®,/2 for @ = 0 and
b, = mPg for « = 7. In both cases the inner branch is
always unstable, while the outer two branches are either
stable or at least metastable (m: integer). The transi-
tion from the metastable to the stable state corresponds
to a phase slip connected with the change of the phase
winding number of the order parameter in the loop. It is
important to notice that for zero external field, @, = 0,
the frustrated loop (a = m) carries a spontaneous cur-
rent, £1 if v > 1. This time-reversal-symmetry-breaking
state appears through a continuous transition when the
parameter vy exceeds 1.

Let us briefly consider the response of the system to
a small external field in different regimes. If v < 1, the
response is linear,

2mI.cosa
I=—— %, 11
®o(1 + ycosa) ' (11)
and diamagnetic for @ = 0 (unfrustrated), but para-

magnetic for « = n (frustrated). The situation does not
change for &« = 0 when v exceeds 1. On the other hand,
for a = m, we enter the regime of nonlinear paramag-
netic response if v > 1, because of the presence of a
spontaneous current; i.e., the right-hand side of Eq. (11)
diverges at v = 1.

Our simple example demonstrates an effect that we
may consider typical for this kind of frustrated system.
If the Josephson coupling is weak, it is favorable for the

FIG. 7. Current I as a function of the external flux ®ex: (a)
for an unfrustrated loop and (b) for a frustrated loop. Dashed
lines indicate characteristics for v < 1 and solid lines for v >
1.
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system to keep the phases constant everywhere and to
pay the maximal energy loss at the junction. However, as
the junction grows stronger, the system enters the regime
where it pays to lower the junction energy at the expense
of a phase gradient in the superconductor. Physically, a
phase gradient means the existence of a finite current.
For very large I., this spontaneous current generates a
flux & ~ +®,/2 (in zero external field) which originates
from the winding of the order-parameter phase by n’s
going once around the loop. Note that in conventional
superconductors, winding only as a multiple of 27 is pos-
sible. '

V. FRUSTRATED GRANULAR SUPERCONDUCTORS

Granular superconductors as frustrated networks can
have very complex properties. Models for describing
them, like the Josephson network model, are, in gen-
eral, very difficult to handle. Therefore we shall intro-
duce here a model that can be quite easily analyzed. It
captures most of the essential physics and is remarkably
successful in reproducing various features observed in the
experiments discussed in Sec. II.

Our model is based on the single loop studied in the
previous section. We consider now an ensemble of in-
dependent loops of this kind, each characterized by the
critical current I, the self-inductance L, the area S, and
their orientation € in space relative to the direction of the
external field. There are Ny unfrustrated and N, frus-
trated loops. The unfrustrated loops produce, among
other properties, the diamagnetic response of the sys-
tem. The shortcomings of our model are obvious. We
neglect the interaction among the loops, and volume and
network effects such as flux trapping cannot be included
here. The diamagnetic response obtained from the un-
frustrated loops cannot completely account for the Meiss-
ner effect, which is the screening of the magnetic field out
of the interior of a sample by means of surface currents.
Nevertheless, as we shall see below, various other impor-
tant features of the system are included in this model.

Let us first give a rough outline of the properties of our
model under different cooling procedures. Temperature
enters here via the critical current I, = I.(T), which
vanishes when T' > T, and grows for T < T.. Hence,
by cooling, I. increases below T, in each loop, so that
gradually, in more and more loops, v(I.) exceeds 1 and
spontaneous currents start to flow in the frustrated ones.
It is clear how we deal with the history of cooling in this
model. In zero external field, these spontaneous currents
nucleate randomly in a positive or negative direction, and
their contribution to the total magnetization of the sys-
tem averages to zero. At low temperatures, the direction
of the currents is rigidly fixed, because the two current
states are separated by a large energy barrier, and the
response to a weak magnetic field is dominated by dia-
magnetism (Meissner effect in the real system). On the
other hand, by cooling in a finite field, one can polarize
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all the spontaneous currents when they nucleate in each
loop, and they will give rise to a nonlinear paramagnetic
contribution to the magnetization. As the magnetization
due to these currents is only weakly field dependent for
small fields, the dc susceptibility has the form mentioned
in Sec. II: xac = Mo/ Hex + Xdia Where My stays constant
as Hex — 0. Certainly, fluctuations and interaction ef-
fects would lead to a shrinking My for very small Hey, as
suggested in Sec. II.

We consider now the behavior of the ensemble model
near 7, in more detail, using a specific form for the dis-
tribution of I., P(I.,T) = (4I./1?)exp(—2I./I), where
I is the average critical current o« (T, — T) for T < T,
near T,.. The orientational distribution is assumed to be
completely random, while L and S shall be the same for
all loops. We consider first the case of FC. The aver-
age magnetization is proportional to the average current
projected to the axis of the external field,

M(T) x / 4o / ALP(I,T)cos0 S nala(le, Bex = SHeost), (12)
4 0 =
a=0,w
[
where n, = No/V denotes the concentration of loops ity upon an increase in the temperature again. We can

with @ = 0 or w (V: the volume of the system) and
dQY = dpdcosf. For I,, we choose the current of the
most stable state that the system would access were it
cooled in a field; i.e., the currents are paramagnetically
polarized. The dc susceptibility, xac = M /Hey, is plot-
ted for T close to T, in Fig. 8 for various values of the
field and for a ratio no/n, = 3. The comparison with
Fig. 2 shows an overall qualitative agreement with ex-
periment. For weak fields, we find a large paramagnetic
response. The competition between the nonlinear para-
magnetic and linear diamagnetic contributions leads to
a weakly diamagnetic signal for larger fields. As an ad-
ditional detail, we find that immediately below T, the
system develops a weak diamagnetic response, and only
upon a further lowering of the temperature does the large
paramagnetic signal develop. The reason for this feature
lies in the fact that close to T the critical currents of most
of the frustrated loops are too small to drive spontaneous
currents. This initial diamagnetic drop is a typical fea-
ture of frustrated superconductors and is observed clearly
in many experiments (Svedlindh et al., 1989; Braunisch
et al., 1993; Niskanen et al., 1993).

Now we turn to the situation in which the system
is first cooled to low temperatures in zero field. Then
a small field is applied to measure the dc susceptibil-

0.3

T-T, 0

FIG. 8. FC dc susceptibility of the loop ensemble for the
parameters given in the text. The fields are given in units of
®0/S (s: loop area). Arbitrary units on both axes.
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neglect here phase slip (flux creep) phenomena, which
would modify the current distribution over longer time
scales than that of the measurement. Therefore we work
with the assumption that all states stable in zero field
are occupied with equal probability even after the small
field is applied, which turns some of these states into
metastable ones. In this sense we perform an averag-
ing in Eq. (12), where now I, is the average over the
two states (stable and metastable in a field) with oppo-
site spontaneous current. Clearly, the averaged current,
I, is very small and the diamagnetic response of the
unfrustrated loops dominated. Nevertheless, by consid-
ering the difference between the dc susceptibilities of a
small and a larger field, we can essentially subtract the
linear diamagnetic part in order to uncover a nonlinear
response on Hey due to the frustrated loops. The result
in Fig. 9 shows a peak structure that is in good qual-
itative agreement with the experimental data shown in
Fig. 3. It reproduces the behavior that the peak is higher
the weaker the applied field, as well as the crossing of the
curves at lower temperature. The peak is connected with
the presence of a transition between the loop states, with
and without spontaneous current. At very low tempera-
tures, the spontaneous currents are “frozen” in a random
configuration and are hardly affected by the application

T-T, 0
FIG. 9. Reduced ZFC dc susceptibility with subtracted linear
diamagnetic signal: x(H) — x(H') for H < H' and H' =
0.4®0/S (units of the field as in Fig. 9). Arbitrary units on
both axes.
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of an external field. (Due to the Meissner screening ef-
fect of a real system, an external field could in any case
affect only a small region near the surface.) In the vicin-
ity of the transition (v = 1), currents in the frustrated
loops are easier to polarize. In other words, the minima
of the energy landscape of the currents are here rather
flat and extended. Turning the temperature towards T,
the polarizability of the currents is reduced again, be-
cause they are suppressed and have to vanish completely
at T.. (Note, that close to T, the Meissner effect is re-
duced in the real system, and the applied field penetrates
into a wider region.) The disorder (I, distribution in our
model) in the system leads to a broad peak, which has
similarities with features observed in magnetic systems
with quenched disorder.

Despite the simplicity and shortcomings of the model
of an ensemble of independent loops, it describes consis-
tently several details of the observed properties of gran-
ular BipSryCaCu,Oyg, in particular, in the vicinity of the
superconducting transition temperature 7T,. The reason
for this success lies in the fact that close to 7T, the dis-
tribution of frustrated loops contributing large sponta-
neous currents is rather sparse, so that interaction ef-
fects among them are of minor importance. Effects due
to an external field, like screening and flux trapping in the
voids of the system, are rather limited in this regime, too.
However, they certainly have a strong influence on the
low-temperature behavior. Meissner screening prevents
drastic changes in the current pattern reached by zero-
field cooling upon application of a small external field at
low temperature. Furthermore, we should not forget that
flux trapping in the FC case enhances the paramagnetic
response by reducing the screening effects and supporting
the polarization of the spontaneous currents in depth of
the granular sample. It is, however, necessary to empha-
size here that flux trapping alone cannot account for the
Wohlleben effect, because in the superconducting state
the (FC) magnetization exceeds the value of the normal
state (see Fig. 2). In terms of flux trapping only, this
would require that the granular superconductor attract
magnetic field. Instead, from our discussion, a picture
emerges in which paramagnetic degrees of freedom are
created due to the presence of a frustrated superconduct-
ing state. The magnetic moments due to the spontaneous
supercurrents can rise to large magnitudes. Estimates of
order 108-10;p for a loop result from an assumption
of 10 um as a realistic diameter of a loop in a granu-
lar sample and an assumption that the circular current
generates about half a flux quantum ®¢, LI/c = ®,/2.
The existence of such large magnetic moments suggests
that we interpret these systems as a new type of super-
paramagnet. A direct test of the existence of sponta-
neous orbital moments in ZFC samples, which is central
to the model presented here, is, in principle, possible by
scanning the surface with a magnetic microscope, e.g.,
scanning SQUID (superconducting quantum interference
device) or Hall probes. Local variations in the magnetic
field should be observed, although a ZFC sample has no
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net magnetic moment.

The nature of the large moments is essentially that of
spontaneously created vortices with ® =~ ®,/2 in a mul-
tiply connected system. Hence their properties are quite
different from those of ordinary magnetic moments. The
inversion of a moment here is connected with phase slip
processes which are slow at low temperatures and, in
many situations, energetically unfavorable. Therefore a
moment (current) pattern, once generated, is rather inert
to changes. In this respect, the environment of such half-
quantized vortices is important. It was pointed out by
Kusmartsev (1992a, 1992b) that neighboring frustrated
loops in a network prefer to lock their fluxes in antipar-
allel directions. A sufficiently strong magnetic field may
be able to align them by overcoming this interaction.
Certainly such interaction effects lead to the reduction
of the effective number of polarizable moments in very
small fields. A recent numerical study of Josephson net-
works with 7 junctions confirms this view (Dominguez et
al., 1994). Interaction and network effects can also lead
to properties related to glass behavior, in particular, if
the concentration of frustrated loops is large. This aspect
was recently investigated by Panyukov and Zaikin (1994),
who explored the phase diagram of various possible states
ranging from a weakly frustrated superconductor through
glasslike phases to states where the percolation of super-
conductivity was suppressed due to strong frustration ef-
fects in the network. Following our discussion, we would
locate the granular Bi;Sr;CaCu;0g systems in the first
rather than the last category. However, particular char-
acteristics that would allow an unambiguous distinction
among these categories have not yet been worked out.

VI. ARE HIGH-TEMPERATURE SUPERCONDUCTORS
d-WAVE SUPERCONDUCTORS?

The discussion so far actually does not allow us to dis-
criminate among the different origins proposed to cause
intrinsic frustration, i.e., d-wave or other unconventional
forms of superconductivity or 7 junctions arising from a
very strong spin-flip channel. Recent progress in mate-
rial preparation has given some indications, however. It
has been found that samples with a strong Wohlleben ef-
fect consist of large grains (size ~ 10 ym) and are z-axis
textured within small clusters, but have random mutual
orientation in the basal plane (see Khomskii, 1994). This
configuration provides, of course, optimal conditions for
frustration in the case of a d,2_,2-wave superconductor.
In addition, the small clusters might be rather weakly
connected to each other, a fact that would support our
view of a system of independent entities (loops) that can
be described in an ensemble model.

The mechanism of creating a frustrated superconduc-
tor based on unconventional superconductivity can pro-
vide a new scheme of testing the nature of the super-
conducting state beyond the study of granular systems.
It is possible to create in a controlled way a frustrated
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system (e.g., a single loop), assuming a certain material
has a superconducting order parameter with, for exam-
ple, d-wave symmetry. There are essentially two types
of measurements for testing whether a loop is frustrated.
One method uses interference effects (SQUID) in order
to detect a possible m-phase shift in a Josephson junc-
tion (Wollman et al., 1993, 1994; Brawner and Ott, 1994;
Iguchi and Wen, 1994; Mathai et al., 1994). Another way
is the observation of spontaneous currents in small frus-
trated loop structures (Tsuei et al., 1994). The measure-
ments performed so far consider exclusively YBa;Cuz O~
and provide very strong support for the d-wave scenario,
but we shall not go into that here, since they will be
reviewed in an RMP Colloquium by Van Harlingen.

In closing we would like to comment on some other
recent experiments, which have been interpreted as evi-
dence against a d-wave symmetry. Two such experiments
are the presence of a small but finite Josephson coupling
between a conventional s-wave superconductor deposited
on a c-axis film of YBay;Cu3O7 (Sun et al, 1994) and a
finite Josephson coupling across interfaces between two
YBa;Cuz O regions with crystalline axis misoriented by
45° (Chaudhari and Lin, 1994). In both cases the appli-
cation of Eq. (6) predicts I, = 0, contrary to the exper-
imental results. The first point that we wish to make is
that this vanishing by symmetry of I. depends on strict
d-wave symmetry, which in turn requires tetragonality.
But YBa;Cu3Or superconductors have CuO chains ori-
ented along one axis, and the magnitude of the supercon-
ducting order parameters differs substantially along di-
rections in the ab plane parallel and perpendicular to the
chains. As a consequence, the nodes of the order param-
eter do not lie along the (1,+1) directions in the plane,
and there will be a finite overlap with an s-wave super-
conductor through Eq. (6). However, Sun et al. (1994)
report observing similar effects on heavily twinned sam-
ples in which the chain axis rotates through 90° across a
twin boundary, so that on the average the overlap with an
s-wave superconductor vanishes. But the interface will
be composed of regions with finite I, whose sign varies.
Millis (1994) has analyzed such problems in connection
with the Chaudhari-Lin experiments. He showed that, if
the magnitude of the Josephson coupling is strong but
with spatially varying sign, then local vortices will ap-
pear to relieve the frustration. This class of problems
is under active investigation and further progress can be
expected.

By contrast, the frustration effects discussed here are
more robust, since they do not depend on strict d-wave
symmetry, only on the sign change of the order parameter
when rotated through 90°. Therefore we believe that our
conclusions regarding the unconventional nature of the
superconductivity and the predominant d,2_,2 character
are on firm ground.

ACKNOWLEDGMENTS

We are very grateful to the late Dieter Wohlleben for
introducing us to this field, and we would also like to ac-

Rev. Mod. Phys., Vol. 67, No. 2, April 1995

knowledge many stimulating discussions with colleagues
(G. Blatter, D. Brawner, C. Bruder, M. Feigelman, A.
Furusaki, V. Geshkenbein, M. Kardar, D.I. Khomskii,
Y.B. Kim, P.A. Lee, A. Millis, A.C. Mota, H.R. Ott, H.
Tsunetsugu, K. Ueda). We thank the Swiss National-
fonds for financial support, and M.S. especially acknowl-
edges support from Swiss Nationalfonds.

REFERENCES

Anderson, P.W., 1987, Science 235, 1196.

Annett, J.F., 1990, Adv. Phys. 39, 83.

Barbiellini, B., O. Fischer, M. Peter, C. Renner, and M.
Weger, 1994, Physica C 220, 55.

Bickers, N.E., D.J. Scalapino, and R.T. Scalettar, 1987, Int.
J. Mod. Phys. B 1, 687.

Blatter, G., M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin,
and V.M. Vinokur, 1994, Rev. Mod. Phys. 66, 1125.

Braunisch, W., N. Knauf, G. Bauer, A. Kock, A. Becker, B.
Freitag, A. Griitz, V. Kataev, S. Neuhausen, B. Roden, D.
Khomskii, and D. Wohlleben, 1993, Phys. Rev. B 48, 4030.

Braunisch, W., N. Knauf, V. Kataev, S. Neuhausen, A. Griitz,
A. Kock, B. Roden, D. Khomskii, and D. Wohlleben, 1992,
Phys. Rev. Lett. 68, 1908.

Brawner, D., and H.-R. Ott, 1994, Phys. Rev. B 50, 6530.

Bulaevskii, L.N., V.V. Kuzii, and A.A. Sobyanin, 1977,
Pis'ma Zh. Eksp. Teor. Fiz. 25, 314 [JETP Lett. 25, 290
(1977)].

Chaudhari, P., and S.-Y. Lin, 1994, Phys. Rev. Lett. 72, 1048.

Dagotto, E. 1994, Rev. Mod. Phys. 66, 763.

de Gennes, P.G., 1966, Superconductivity in Metals and Alloys
(reissued 1989 by Addison-Wesley, Reading, MA).

Dominguez, D., E.A. Jagla, and C.A. Balseiro, 1994, Phys.
Rev. Lett. 72, 2773.

Geshkenbein, V.B., and A.l. Larkin, 1986, Pis’ma Zh. Eksp.
Teor. Fiz. 43, 306 [JETP Lett. 43, 395 (1986)].

Geshkenbein, V.B., A.L. Larkin, and A. Barone, 1987, Phys.
Rev. B 36, 235.

Glazman, L.I., and K.A. Matveev, 1989, Pis’ma Zh. Eksp.
Teor. Fiz. 49, 570 [JETP Lett. 49, 659 (1989)].

Gor’kov, L.P., 1987, Sov. Sci. Rev. A Phys. 9, 1.

Gros, C., 1988, Phys. Rev. B 38, 931.

Gros, C., R. Joynt, and T.M. Rice, 1987, Z. Phys. B 68, 425.

Hardy, W.N., D.A. Bonn, D.C. Morgan, R. Liang, and K.
Zhang, 1993, Phys. Rev. Lett. 70, 3999.

Heinzel, Ch., Th. Theilig, and P. Ziemann, 1993, Phys. Rev.
B 48, 3445.

Iguchi, I., and Z. Wen, 1994, Phys. Rev. B 49, 12 388.

Kataev, V., N. Knauf, W. Braunisch, R. Miiller, R. Borowski,
B. Roden, and D. Khomskii, 1993, Pis’'ma Zh. Eksp. Teor.
Fiz. 58, 656 [JETP Lett. 58, 636 (1993)].

Khomskii, D.I., 1994, J. Low Temp. Phys. 95, 205.

Kusmartsev, F.V., 1992a, Phys. Lett. A 169, 108.

Kusmartsev, F.V.; 1992b, Phys. Rev. Lett. 69, 2268.

Landau, L.D., and E.M. Lifshitz, 1980, Course of Theoretical
Physics, Vol. 9 (Pergamon, New York).

Levi, B.G., 1993, Phys. Today 46, No. 5, 17.

Martindale, J.A., S.E. Barrett, K.E. O’Hara, C.P. Slichter,
W.C. Lee, and D.M. Ginsberg, 1993, Phys. Rev. B 47, 9155.

Mathai, A., Y. Gim, R.C. Black, A. Amar, and F.C. Well-



M. Sigrist and T. M. Rice: Unusual paramagnetic phenomena 513

stood, 1994, unpublished.

Millis, A.J., 1994, Phys. Rev. B 49, 15408.

Monthoux, P., A. Balatsky, and D. Pines, 1992, Phys. Rev. B
46, 14803.

Monthoux, P., and D. Pines, 1993, Phys. Rev. B 47, 6069.

Moriya, T., Y. Takahashi, and K. Ueda, 1990, J. Phys. Soc.
Jpn. 59, 2905.

Niskanen, K., 1993, Ph.D. thesis (University of Uppsala).

Niskanen, K., J. Magnusson, P. Nordblad, P. Svedlindh,
A.-S. Ullstrém, and T. Lundstrom, 1994, Physica B 194-
196, 1549.

Panyukov, S.V., and A.D. Zaikin, 1994, Physica B 203, 527.

Rice, T.M., 1994, Strongly Correlated Electronic Materials,
edited by K.S. Bedell et al. (Addison-Wesley, Reading, MA),
p. 494.

Shen, Z.-X., D.S. Dessau, B.O. Wells, D.M. King, W.E.
Spicer, A.J. Arko, D. Marshall, L.W. Lombardo, A. Ka-
pitulnik, P. Dickinson, S. Doniach, J. DiCarlo, A.G. Loeser,
and C.H. Park, 1993, Phys. Rev. Lett. 70, 1553.

Shrivastava, K.N., 1994, Solid State Commun. 90, 589.

Sigrist, M., and T.M. Rice, 1992, J. Phys. Soc. Jpn. 61, 4283.

Sigrist, M., and T.M. Rice, 1994, J. Low Temp. Phys. 95,

Rev. Mod. Phys., Vol. 67, No. 2, April 1995

389.

Sigrist, M., and K. Ueda, 1991, Rev. Mod. Phys. 63, 239.

Silver, A.H., and L.LE. Zimmermann, 1967, Phys. Rev. 157,
317.

Spivak, B.I., and S. Kivelson, 1991, Phys. Rev. B 43, 3740.

Sun, A.G., D.A. Gajewski, M.B. Maple, and R.C. Dynes,
1994, Phys. Rev. Lett. 72, 2267.

Svedlindh, P., K. Niskanen, P. Norling, P. Nordblad, L. Lund-
gren, B. Lénnberg, and T. Lundstrém, 1989, Physica C 162-
164, 1365.

Tsuei, C.C., J.R. Kirtley, C.C. Chi, L.S. Yu-Jahnes, A.
Gupta, T. Shaw, J.Z. Sun, and M.B. Ketchen, 1994, Phys.
Rev. Lett. 73, 593.

Ueda, K., T. Moriya, and Y. Takahashi, 1992, J. Phys. Chem.
Solids 53, 1515.

Wollman, D.A., D.J. Van Harlingen, J. Giapintzakis, and
D.M. Ginsberg, 1995, Phys. Rev. Lett. 74, 797.

Wollman, D.A., D.J. Van Harlingen, W.C. Lee, D.M. Gins-
berg, and A.J. Leggett, 1993, Phys. Rev. Lett. 71, 2134.

Yip, S.K., O.F. De Alcantara Bonfim, and P. Kumar, 1990,
Phys. Rev. B 41, 11 214.



