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Superfluid turbulence in He II flows appears as a stochastic tangle of quantized vortex lines. Interest in
this system extends beyond the field of superfluid helium to include the study of statistical physics of ex-
tended objects and classical turbulence. A wealth of information concerning the vortex tangle has been
supplied by experiments, by phenomenological models, and by numerical simulation. In the restricted
case of stationary homogeneous flows, a good correlation between theory and experiment has already been
demonstrated. This review therefore concentrates on nonstationary and nonhomogeneous processes with
the goal of understanding the dynamical properties of the vortex tangle. The first part of this paper re-
views the concept of the stochastic vortex tangle with emphasis on the work of Vinen and Schwarz. Spe-
cial attention is given to justifying Vinen's equation as a basis for the study of nonstationary processes.
This analysis reveals that the interpretation of experimental results requires a careful account of the mutu-
al influence of the vortex tangle and the flow of the supefluid. The second part of this paper reviews the
development of the required hyrodynamic equations of superfluid turbulence. These equations are applied
to a number of examples such as linear and nonlinear sound, heat pulses, and fluctuations. The role of sto-
chastic vortices in the phase-transition problem is discussed. Attention is focused on the relation between
hydrodynamic effects and the vortex tangle properties. Finally, the main results concerning the stochastic
vortex tangle are resumed and some of the important questions are pointed out.
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SYMBOLS AND ABBREVIATIONS

A (T)
8,8'
b

E(p, S,jo,v„l.)

HST

I(,Iq, I((
K

R

R peak

Tp

ST
S,o.

Gorter-Mellink constant
Hall-Vinen coe%cients
coeKcient of proportionality be-
tween vL, and v

energy density of He II containing
aVT
friction force per unit of volume
friction force per unit length of
vortex 61ament
hydrodynamics of superAuid tur-
bulence
parameters of anisotropy of the VT
mutual friction coeKcient for a
"frozen" vortex tangle
vortex line density, total quantum
vortex line length per unit of
volume
heat fiux density
radius of the curvature of the vor-
tex 6lament
most probable radius of curvature
vortex core radius
superAuid turbulence
entropy per unit volume and mass,
correspondingly

Permanent address: Institute of Thermophysics, Russian Academy of Sciences, Novosibirsk, Russia.
tPermanent address: Polish Academy of Sciences and the University of Warsaw.

Reviews of Modern Physics, Vol. 67, No. 1, January 1995 0034-6861 /95/67(1) /37(48)/$1 4.20 Q~1995 The American Physical Society 37



38 S. K. Nemirovskii and W. Fiszdon: Superfluid turbulence in He II

tH

tv

Q2

VE
VLD
VT
vg
v(

vs~vn

aalt&~alt

a„P,

p
ps~pn

equation of the vortex line where g
is an arbitrary variable and g is
the arclength
self-induced velocity of the vortex
filament
heat-pulse duration, time of heating
rest time between heat pulses
time of formation of a vortex tan-
gle
second-sound velocity
Vinen's equation
vortex line density
vortex tangle
drift velocity of a vortex tangle
self-induced velocity of a vortex
line in the local approach
superAuid and normal velocities,
correspondingly
(a=p„B/2p, a'=p„B'/2p) friction
parameters
coefficients in the alternative VLD
evolution equation
coefficient of nonlinearity of second
sound
coefficients in the Schwarz VLD
evolution equation
coefficients in the Vinen VLD evo-
lution equation
coefficient in the local-
approximation relation for self-
induced velocity
coefficient of proportionality be-
tween L and U„,

energy of a vortex line per unit of
length
quantum of circulation
scaling parameter
chemical potential
superQuid and normal densities,
correspondingly
relaxation time of the VT

I. INTRODUCTION

This review is concerned with the very important and
still open field of the theory of superAuidity —superAuid
turbulence (ST). The concept of superfjuid turbulence
was introduced by Feynman (1955). He described
superAuid turbulence as a disordered set of quantized
vortex lines, called vortex tangle (VT), which appears in
He II Aows whenever the velocity exceeds a certain fairly
small value.

Super Quid turbulence as a part of the theory of
superAuidity is tightly connected with other topics of the
general theory of superAuidity, e.g., the generation of
vortices, the interaction between very closely spaced vor-

tex lines and hence their reconnection, the problem of
critical velocities, and the role played by quantum vor-
tices in phase transitions. The study of ST yields often
nonstandard solutions elucidating the above-mentioned
problems.

The theory of ST is also important in many applied
research problems of He II. Indeed, the presence of a
vortex tangle (VT) strongly affects the heat ffow, which
can no longer be described by the simple Landau two-
Auid model. The use of He II in large projects, such as
the cooling of superconducting magnets or for space ap-
plications, requires adequate investigations. There is now
renewed interest in the problems of interaction between
classical turbulence and ST, in view of the use of helium
as a test Auid in very high Reynolds number test facilities
(see Donnelly, 199lb).

Besides the great importance of ST in the above-
mentioned cases, the theory of the stochastic vortex tan-
gle in He II is of great interest and importance form the
standpoint of general physics. This is justified by the ex-
istence, in many physical fields, of similar systems of
highly disordered sets of one-dimensional (1D) singulari-
ties, e.g. , chaotic vortices in He 3 or in superconductors,
where they are responsible for many of their physical
properties. Polymer chains, linear defects in solids, and
strings are other examples of disordered, 1D singulari-
ties. The study of the stochastical properties of similar
objects (and also, e.g. , chaotic sets of 2D singularities,
such as membranes and triangular surfaces) belongs to
the field of stochastical physics of extended objects. The
vortex tangle of He II, which is formed by a stochastic
complex of one-dimensional singularities conforming to
the nontrivial nonlinear equation of motion with random
changes of its topological structure, belongs undoubtedly
to this class of objects.

It is possible that the use of the theory of stochastic
vortex lines to clarify the perennial problem of classical
turbulence would be of great value. Some physicists be-
lieve (see, e.g. , papers of Chorin, 1982, 1991a, 1991b; Sig-
gia, 1985; Agistein and Migdal, 1986; Hussain, 1986;
Sethian, 1991b) that many features of classical turbulence
can be treated using the model of interacting vortex
tubes. There follows the assumption that the Kolmo-
gorov spectrum is formed at the crossings of filaments,
i.e., positions of strong singularities. It is also likely that
the dissipation of the kinetic energy is not uniformly dis-
tributed in space, but occurs only at the instances of
quantum vortex lines collisions and reconnections. The
connection between the observed coherent structures in
classical turbulence and the formation of clusters of vor-
tex lines is also discussed. An additional asset of this
model is the possibility of using efFective numerical solu-
tion methods, as the dynamics of vortex filaments is de-
scribed by a set of one-dimensional equations.

The theory of stochastic extended objects is far from
being closed. The statement of the problem, as will be
shown in Sec. II in the case of stochastic vortices in He
II, is exceptionally complicated. Therefore any addition-
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al information concerning the structure and stochastic

dynamics of vortex lines is very helpful and important.
This is one of the main motivations of this review. The
study of the VT in He II, carried out over many years,
has yielded many important results leading to an under-
standing of the stochastic behavior of chaotic 10 singu-
larities.

One of the aims of this paper, resulting from what we
have presented above, is to review the properties of the
stochastic VT in He II gained from the existing relations
between the different elements appearing in the investiga-
tions of ST in He II, such as theoretical models, numeri-
cal simulations, and experimental findings.

Furthermore, a predominant part of experimental in-
vestigations of ST was obtained by means of purely hy-
drodynamic methods, with the exception of a few ion
measurements. The simplest cases when the VLD was
considered homogeneous in space and stationary in time
were described in the excellent reviews of Tough (1982)
and Donnelly and Swanson (1986) and in the monograph
of Donnelly (1991a). The correlation between the con-
cepts of vortex tangle and phenomenological theory and
the numerical results based on a very large number of ex-
perimental observations of turbulent He II Aows was
there convincingly demonstrated. However, the prob-
lems of unsteady phenomena and processes were hardly
touched in these publications. In the present review we
would like to concentrate on nonstationary and nonho-
mogeneous processes. The study of nonstationary phe-
nomena broadens greatly the possibilities for studying the
dynamical properties of the vortex tangle. However, it is
not only a question of adding some new observations, but
also one of exploring some intrinsic properties of the
macroscopic dynamics of ST which generally do not ap-
pear in homogeneous stationary problems. First of all, as
we shall discuss in Sec. V, the study of such problems
leads to serious questions concerning the adequacy of
describing the macroscopic dynamics of a VT in terms of
the single characteristic L (t), even in the hydrodynamic
problems. Furthermore, as opposed to the case of sta-
tionary homogeneous Aows where the use of fixed Aow

parameters for the study of the vortex tangle is justified,
in the nonstationary cases such an approach is not
correct. Indeed, in such cases it is necessary to take into
account the reciprocal inAuence of quantum turbulence
on the evolution of the Aow parameters, which in turn
affect the dynamics of the vortex tangle. One can say
that the intrinsic properties of the VT are strongly con-
nected with pure hydrodynamic efFects. Therefore, to in-
terpret properly the experimental observations concern-
ing the dynamics of the VT, it is necessary to use the full
closed hydrodynamic description of the Aow of He II in
the presence of the VT, the so-called hydrodynamics of
superQuid turbulence (HST). As will be shown later, in a
number of cases this approach may modify some current
views concerning the vortex tangle. We think that some
widely known effects attributed usually to the dynamic
properties of the vortex tangle (vortex anisotropy, anom-

alous decay, propagations of plugs, etc. ) can be partially
or fundamentally explained by HST.

In view of the stated aims, the review is divided into
two parts. In the first part the problems concerned with
the conception of the chaotic vortex tangle are reported.
Section II describes the dynamics of vortex filaments.
This can be regarded as the formulation of the problem
of stochastic behavior of vortex lines. Section III de-
scribes Vinen's phenomenological theory of the macro-
scopic hydrodynamics of the VT in terms of the vortex
line density L(t)—the total length of the VT per unit
volume. Section IV exposes Schwarz's results on micro-
scopic dynamics of disordered vortex filaments. Special
attention is paid to Vinen s equation as a basis for study-
ing nonstationary phenomena. The methods of its
derivation and their justification are discussed. In spite
of the large number of papers on superAuid turbulence,
these questions have so far been neglected.

The second part is concerned with the study of nonsta-
tionary hydrodynamic processes affected by the presence
of a superAuid vortex tangle. It begins with Sec. V,
which summarizes different approaches for obtaining the
equations of HST. Sections VI and VII are devoted to
the methods most often for the investigation of ST with
the help of linear and nonlinear sounds and intense heat
pulses. Section VIII describes a number of other dynami-
cal phenomena probably less related to the HST, but
which indicate new directions of investigation of the VT
or the clarification of the role played by vortices in other
problems of the theory of superAuidity, in particular, in
the phase-transition problem.

The closing section, IX, contains a summary of the re-
viewed results. This summary follows the main purpose
of the review, i.e., the exploration of the relation existing
between the stochastical dynamics of vortex lines and the
experimentally confirmed hydrodynamic effects in
superAuid He II. Special attention is paid to the relations
existing between the properties of the VT and some prob-
lems of the theory of superAuidity, the theory of chaotic
extended objects, and classical turbulence. In addition,
trends in the research of superAuid turbulence are brieAy
discussed.

II. VORTEX LINE DYNAMICS OF SUPERFLUID HELIUM

The properties and the dynamics of vortex lines in
superAuid helium are described in this section. Although
they may be well known, having in mind the formulation
of the problem of stochastic behavior of the system, we
would like to bring together the established results. This
approach consists of a description of the equations of
motion, including the interaction between the vorti. ces
and boundaries, if any, and their interaction with the
normal component. This latter process is specific to
superAuids. The considered problem also includes the
reconnection process when two lines cross and reconnect,
thus changing the topology of the system. Finally, the
stochastical approach also requires a consideration of its
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origin, hence, of possible external random forces, insta-
bilities, and so on.

The phenomenological theory of super fluidity
developed by Landau (1941) was successful. This theory
made it possible not only to explain a large number of
unusual experimental observations, like the fountain
effect, but also to predict new effects such as wavelike
heat propagation. However, from its inception, this
theory encountered fundamental difficulties. One
difficulty was the inability to explain why, in spite of the
absence of shear viscosity, the superfIt. uid is entrained to
rotate in a rotating container. The other difficulty was
the explanation of the existence of a critical velocity, the
process of losing its superfIuid properties, and the ap-
pearance of dissipation mechanisms. Indeed, according
to Landau's theory, in He II below the critical velocity of
generation of rotons, about 60 m/s, the Bow of the com-
ponents must be frictionless. At the same time, as
proved experimentally, at a much lower relative
counterAow velocity v„,=v„—v„a mutual friction be-
tween the two components appeared that resulted in a
temperature gradient VT proportional, according to the
Gorter-Mellink (1949) experiments, to U„, . As we now
know, both "failures" of Landau's theory are due to the
existence of quantized vortices, i.e., one-dimensional to-
pological singularities, of the superAuid component of He
II.

A. The Onsager-Feynman quantized vortices

Onsager (1949) and Feynman (1955) suggested that
Landau's assumption of a rotationless How of the
superfluid component, co(r) =rotv, =0, is violated on
one-dimensional singularities S(g, t) that depend on the
position parameter g and the time t. This line singularity
is shown in Fig. 1 where g is the arc-length parameter.
On these singularities rotv, —+ ~, the velocity also in-

creases to infinity so that the circulation K of the
superAuid velocity about these lines remains constant,

Ir=h/mH, =9.97X 10 cm /s, where h is Planck's con-
stant, and mH, is the mass of the helium atom. This as-
sertion can be written formally as

co(r) =rotv, =Ir IdS5(r S—(g, t)), (2.1)

where the integration is along the line singularity S(g, t).
We call this line a vortex line. The explanation of this
outstanding property is based on the fundamental
quantum-mechanical properties of superfIuid helium de-
scribed in many handbooks [one of them is, of course,
Feynman's (1972) handbook on statistical physics].

It follows from Eq. (2.1) that a single infinite straight
line induces a velocity field, described in cylindrical coor-
dinates by

K
v, = 0, , 0

2'JT'r
(2.2)

having only an azimuthal component which increases
rapidly on approaching the vortex axis. In particular, at

0
r & 3 A, the velocity U, becomes greater than the velocity
of roton generation, i.e., Landau's critical velocity.

Hence the relations (2.2) and (2.1) are invalid at small
0

distances from the vortex line of the order of a few A. At
such distances the vortex line hypothesis, as expressed by
(2.1), fails and must be replaced by an adequate theory.
This is important, from the point of view of our review,
because the small scale structure of the vortex line
inAuences strongly its dynamics and particularly the
reconnection process.

At present no exact microscopic theory of vortex lines
in He II exists. The essential information about the vor-
tex structure obtained mainly in numerous experiments
can be found in the recent book of Donnelly (199la).
However, as in other statistical theories, where the sto-
chastical characteristics are not very sensitive to details
of the interaction between particles, similarly in the case
of vortex lines their structure affects only slightly the
average properties of the vortex tangle. In this sense the
main results of interest in our case can be taken from the
theory of a weakly nonideal Bose gas (see Ginzburg and
Pitaevskii, 1958; Pitaevskii, 1958; Gross, 1961; and
Lifshitz and Pitaevskii, 1980). Although He II cannot be
considered as a weakly nonideal Bose gas, this theory al-
lows us to understand some intrinsic properties of
superAuids and to resolve some particular problems such
as the nonuniform state near the wall or a free surface.
In particular, this theory describes some special objects
identical to vortex lines in He II. According to this
theory, the state of the Bose-Einstein condensate, which
in many respects is identical to the superQuid component
of He II, can be described by the macroscopic" wave
function

FIG. 1. Space curve representing a vortex line with its position
described as S(g, t), when g is arclength. S'=dS/dg is a unit
vector along the vortex line; S"=d'S/d g' is the local curvature
vector (whose magnitude is 1/R); and S'XS" is binormal,
which also has the magnitude 1/R (Donnelly, 1991,Fig. 1.14).

g(r, t) =+nc(r, t)exp[i/(r, t)], (2.3)

where the density of the condensate no(r, t) is related to
the density of the superQuid component but is not identi-
cal. The superAuid velocity can be easily obtained from
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the quantum-mechanical relation between the current
density and the wave function leading to

v, = VP.
Pl

(2.4)

This relation shows that the motion of a Bose condensate
or of the superQuid component is related to the nonuni-
formity of the phase P(r). In particular, states with a
monotonic variation of the phase around a line which
corresponds to a circular motion of the Bose condensate
are possible. Since the wave function is single valued, its
change of phase, on returning to the starting point, is 2m,
hence

v, dl=~ . (2.5}

8 fi ~@+v, ((q(' n)y, —
et 2m

(2.6)

where Up is the effective potential and n is the particle
density. In the stationary case, (2.6) describes, in particu-
lar, a straight-line vortex. The corresponding solution is

g=&n exp(iq&)f (r/ro), (2.7)

where y is the azimuthal angle about the axis and
ro=RI+2mnVo At r))r. o, the fiow field with a con-
stant condensate density and a velocity given by (2.2)
takes place. At r & rp, the condensate density decreases,
which results in suppression of the superAuid component
on the vortex axis. In this model the quantity rp, called
the core radius, is larger than the interatomic distances.
Nevertheless, it is usually assumed that the picture is
similar for quantum vortices in real He II, with the
difference that r p is of the order of the distance between
particles. From different indirect experiments, it ap-

0
peared that vp=1 —2 A. However, close to the X point,
rp grows rapidly and its characteristic length is of the or-
der of the correlation length as described by Ginzburg
and Sobyanin (1976).

Hills and Roberts (1977, 1978a, 1978b) succeeded in
describing the structure of a vortex line without using the
model of a weakly interacting Bose gas. In their phe-
nomenological theory the superfIIuid density p, is used as
an independent variable. Let us recall that in Landau's
theory p, was considered to be an equilibrium function of
the entropy S, density p, and relative velocity v„,. Hills
and Roberts obtained an expression for the free energy as
a function of all the thermodynamic variables. By
minimizing the free energy, a set of differential equations
for the density of the superAuid component can be ob-
tained with parameters that can be deduced from ther-

The integral is calculated along an arbitrary closed
curve around the selected vortex line. Relation (2.5) is
equivalent to (2.1}according to the vortex line hypothesis
in He II. Unlike this hypothesis, the theory of a weakly
interacting Bose gas predicts the microscopic structure of
the vortex lines. The macroscopic wave function f(r, t)
satisfies the Gross-Pitaevskii equation

modynamic data. In this way Hills and Roberts were
able to obtain a solution for a single vortex line. Qualita-
tively, this solution is similar to the solution of the
Gross-Pitaevskii equation; however, the core radius I"p

obtained from this theory is close to the experimentally
found value.

B. Vortex line dynamics

The notions just introduced concerning vortex lines
can now be used to describe their dynamic behavior. At
distances not very close to the vortex line, its equation of
motion resulting from (2.1) and the condition Vv, =0 fol-
lowing Biot-Savart's law is

[S(g', t) —S(g, t) ] X S~
s;(g, t) = dg',

4~ ~S(g', t) —S(g, t) ~'
(2.8)

The velocity distribution inside the core is calculated
from either the Navier-Stokes or Euler equations, taking
into account the pressure distribution inside. The result-
ing classical vortex tubes are assumed to have either a
uniform vorticity distribution or a Gaussian distribution,
or to be just a hollow tube. Frequently, for convenience,
in the case of numerical modeling, such approximate dis-
tributions are assumed. A description and comparison of
different methods used for smoothing the kernel in the
Biot-Savart formula (2.8) for vortex tubes of classical
liquids are given by Sethian (1991a). Different models of
the vortex core result in different velocity fields 8;(g, t);
but they are close to each other, and the difference be-
tween them decreases logarithmically with the core ra-
dius as 1/lnrp. Therefore we can use, for example, the
cutoff parameter according to Hills and Roberts (1978b).
This approximate procedure, which does not require the
solution of the corresponding quantum-mechanical prob-
lem, is valid only for the determination of the velocities
of the elements of the vortex line. However, the use of
the above procedure is not justified for predicting the
behavior of two vortex elements getting very close to
each other. Moreover, no analogy with the case of classi-
cal vortex tubes can be used to handle this problem.

The second problem connected with the cutoff in Biot-
Savart's integral (2.8) is the behavior of the core radius ro

where the integral should be taken along the line S(g', t)
and the first argument is an arbitrary parameter not
necessarily the arc length. The above integral diverges
when S(g', t)—&S(g, t), which requires additional condi-
tions to be imposed on S;(g, t) This p. roblem is closely
connected with the small scale structure of the vortex
line.

Let us recall how this problem is treated in the case of
vortex tubes of classical fiuids. As the integral (2.8)
diverges logarithmically, one of the simplest, widely used
approaches is to introduce a finite core radius rp and to
replace the denominator in (2.8) by

~s(g') —s(g)~ [(s(g') —s(g))'+r', ]'" .
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(2.9)

This integral diverges logarithmically at both the
upper and the lower limits of integration. As far as the
low limit is concerned, the divergence can be dealt with
as in the full Biot-Savart law (2.8) by introducing the ra-
dius ro of the vortex core. As for the upper limit, the ra-
dius of curvature R of the vortex line at the point g seems
to be the appropriate limit. In the case of a deterministic
motion, this quantity is more or less known. In the prob-
lem of a stochastic tangle, where the curvature Auctuates
in a complicated way along the line, this problem is more
involved and the cuto6' at the upper limit is not a fixed
parameter but, to the contrary, depends on the solution.
In particular, it can be chosen as the average radius of
curvature (R ), which is of the order I. '~ . The loga-
rithmic dependence of the cutoff' on the solution was ob-
served in the experiments of Swanson and Donnelly
(1985). Nevertheless, due to the weak logarithmic depen-
dence of the vortex tangle structure on integration, the
cuto6 limits are frequently assumed to be constant. Fi-
nally,

SI ~ SIP
S;(g, t) =/3

3
+nonlocal terms,

Srl 3
(2.10)

where P = (~/4m. )ln( (R ) /ro ). Let us recall that
(S' XS") /~ S'

~
is directed along the binormal, and its

value is equal to the curvature at the considered point
(see Fig. 1). As for the nonlocal terms, according to the
procedure used they are by the order of magnitude of
ln( (R ) /ro ) smaller than the local term. The description
of the dynamics of the vortex line using (2.10) neglecting
nonlocal terms is called the local approach (LA).

As a vortex tangle in superffuid helium ln((R ) /ro) is

in the stretching process of the vortex lines. In most pa-
pers dealing with classical vortices, the conservation of
the volume of the vortex tube is assumed. This amounts
to a restriction of the relation between ro and the param-
eter g to ro —1/~BS/Bg~. Of course this restriction can-
not be imposed on ro in the case of He II because, on
quantum-mechanical grounds, the vortex core radius
remains constant. Gn the other hand, in Agistein and
Migdal's (1986) paper, it was pointed out that the intro-
duction of a cutoff' radius depending on the parameter g
violates the energy conservation law as well as the para-
metric invariance of the equation of motion of the vortex
line. By parametric in variance, we understand the
equivalence of the description of the vortex line dynamics
making a transformation from the variable ( to another
quantity depending monotonically on g. According to
Agistein and Migdal (1986), this is too high a price to pay
for a phenomenological rule of conservation of the
volume of the vortex tube.

Developing S(g', t) close to S(g, t), in the Biot-Savart
law, the integral in (2.8) becomes

~ ~ S'XS" d(g —g')
S, (g, t)=, , +nonlocal terms .

4~

typically of the order of 10, Schwarz (1988) notes that a
certainty within 90% of the local approximation exists,
except in the cases when the two lines are very close to
each other or a line is close to a boundary. However, the
problem is Inore involved, because the neglect of small
nonlocal terms is accompanied by the discarding of the
very important process of stretching the vortex lines due
to nonlocal e6ects. We shall come back to this problem
in Sec. IV.

The velocity of the vortex line, S, , can vary under the
inAuence of an external How, v, . Another obvious
correction must be made when the vortex line ap-
proaches a boundary. A correction due to the induced
velocity v, b, which depends on the shape of the bound-
ary and, in particular, on its roughness, appears and must
be taken into account. The vortex line velocity, taking
into account these corrections, is

S~ =S/. +v~+Vg b (2.11)

The next factor determining the vortex line dynamics,
which we shall now consider, is the mutual interaction
between the quantum vortices and the normal com-
ponent. This is specific for He II, and there is no analogy
in the theory of vortex tubes in classical Auids. As de-
scribed by Khalatnikov (1965), for example, the motion
of the normal component with velocity v„ is equal to the
drift of quasiparticles —phonons and rotons that form
this component. The energy of these quasiparticles is a
function of v„and therefore it is a strongly varying func-
tion close to the vortex line. In other words, there exists
an e6'ective potential describing the interaction between
the quasiparticles and the vortex line. Hence during the
relative motion a momentum transfer results between the
quasiparticles and the vortex line. Thus an interaction
force, called mutual friction, appears. The corresponding
theory is fully described in many reviews (see, e.g. ,
Barenghi et a/. , 1983; Sonin, 1983) and in Donnelly's
(1991a)book. We give here only the result, important for
the dynamics of vortex lines, and make some comments.
The force fD acting on a unit length of the vortex line is

Sl Sl Sl
S'

,
S' " S'

(2.12)

where S is the velocity of the vortex line, which is not
identical to the previously introduced S, precisely be-
cause of the existence of the force fD.

Many papers have been published concerning the cal-
culation of the coefficients D„az (see, e.g., Barenghi
et a/. , 1983; Donnelly, 1991a). There are also many
works concerning di6'erent methods of their experimental
determination. These coeKcients depend not only upon
the thermodynamic quantities like pressure and tempera, -

ture, but also on the velocities (Swanson et a/. , 1987) and
on their time derivatives, Bv„/Bt and Bv, /Bt (Mehl,
1974); i.e., they are nonlocal in time. This creates some

Rev. Mod. Phys. , Vol. 6T, No. 1, January 1995



S. K. Nemirovskii and W. Fiszdon: Superfluid turbulence in He II

uncertainty concerning (2.12), but luckily these latter
effects are small and can be considered as corrections.
We shall assume further that the coefficients D„Dz are
phenomenological constants.

The quasiparticle drift velocity close to the vortex lines
is denoted v'„, and it must be different from v„, which in
the average over a certain volume. Details can be found,
for example, in Barenghi et al. (1983). Following others,
we shall assume v„=v'„, assuming that the difference be-
tween these quantities is absorbed in the coefficients D&

and D2. The so-far unknown quantity S, which, as al-

ready stated, is not equal to S„appears also in (2.12). To
find 8 it is necessary to compare the force fD with the
force fl due to the superAuid component acting on the
vortex line when its velocity S differs from S, . This
method was proposed by Hall and Vinen (1956a, 1956b),
and the force acting on the superAuid component, called
the Magnus force, is

(2.13)

Sl Sl
(2.14)

The coefficients n and o," can be expressed by the previ-
ously used coefficients D, and D2 (see, e.g., Schwarz,
1978). They are also related to Hall and Vinen's B,B '

coefficients by the relations a=p„B/2p, a'=p„B'/2p
These quantities, important for future investigations, are
given in the table in Sec. IV.B.

Equation (2.14) is the basic equation used to describe
different problems connected with the motion of vortex
lines. In particular, the problem of a stochastic vortex
tangle should be investigated using this equation. The
self-induced velocity S;, on the right-hand side of (2.14),
can be expressed in terms of the complete Biot-Savart
law (2.8) or with the singled-out local part, Eq. (2.9). The
alternative use of these relations will be discussed later
when Schwarz's theory is described.

The process of greatest inhuence on the vortex tangle
evolution, also to be considered, is the reconnection of
vortex lines. This remarkable and scarcely studied pro-
cess also appears in other extended objects such as poly-
mers, defects in solids, etc. During their motion, the vor-
tex lines unavoidably cross each other, and the problem
of what happens when this occurs is of crucial impor-
tance for the structure and dynamics of the vortex tangle.
Feynman, in his famous, fundamental (1955) paper, pre-
dicted that the crossing of two vortex lines would be ac-
companied by a reconnection process. This is shown
schematically in Fig. 2. Lines at crossing break and
reconnect with their next neighbors, thus changing the

Comparing f~ and —fD, which is justified when there
are no mass effects during the vortex motion, and
neglecting the velocity, v, b, induced by the boundary
effects results in

I

S=S;+v,+a I,
I

X(v„,—S;)

(b j (c I (dl (e j

FIG. 2. Reconnection process (Feynman, 1955, Fig. 10): (a) ini-
tial stage; (b) and (c) stages of collapse; (d) reconnection stage;
(e) stage of degeneration of vortex rings into thermal excita-
tion s.

topology of the Aow. A number of papers, according to
Sethian's (1991a) review, deal with this problem in the
case of vortex tubes of classical Quids. These results can
be used partly to describe or model vortex reconnection
in superAuid helium. The reconnection problem can be
divided into two parts. One part describes motions of the
lines in their evolution process when they approach each
other up to the point where their mutual inhuence on the
velocity of their motion becomes larger than the self-
induced velocity due to the local curvature. But, at the
same time, they are not close enough to infIuence the
Aow inside the vortex cores. The quantitative criterion is
ro (b, ~R /ln(R/ro), where b, is the distance between
the lines. In these cases the evolution of the approaching
segments can be followed according to Biot-Savart's law
(2.8), where the cutoff radius ro either is constant
(Schwarz, 1985; Tsubota et al. , 1992) or depends on the
label g (Siggia, 1985; Pumir and Siggia, 1987). Qualita-
tively, the results of these investigations are very close
and can be described according to Siggia's (1985) model
as follows. Due to the long-range interaction in Biot-
Savart's integral, cusps may appear on the approaching
and approximately antiparallel segments of two vortex
lines. The curvature of these cusps may be so large that
the self-induced velocity Isee Eq. (2.10)] of each perturba-
tion overcomes the repulsion from the adjoining vortex
line. Further, the cusps grow and approach each other
closer, thus increasing their curvature and correspond-
ingly their self-induced velocities; this process continues
faster and faster. It is important that this process grow
explosively, since the distance between the two perturbed
segments, b, decreases according to the relation
b, -(t" t)'~, where t* is some—quantity depending on
the relevant parameters and initial conditions. Thus,
after a finite time, the vortex lines collapse. It is very im-
portant that the time of collapse is much smaller than the
characteristic time of the motion of the other elements of
the vortex line. Schwarz (1985) describes a similar
behavior of vortex lines and of a vortex line and its image
close to a boundary. In this way antiparallel vortex lines
(a vortex line and its image), whenever they are at a dis-
tance b. ~R/ln(R /ro), suffer a rapid approach and col-
lapse. Initially arbitrarily oriented vortex lines, as shown
also by Schwarz, when they approach each other closer
than some critical distance, start by reorienting their
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close segments so as to bring them into an antiparallel
position. This is followed by the collapse described
above.

The second part of the process starts when the distance
between the vortex lines 5 is comparable to the radius of
the core ro. In this case the induced velocities calculated
from the Biot-Savart integral distort the Row inside the
core. It then becomes necessary to solve the full Navier-
Stokes or Euler equations. The full investigation of the
classical vortex tube by Melander and Hussain (1989) and

by Kida et al. (1991) indicates an extremely complicated
picture of the vortex interaction. Instead of a full annihi-
lation, some very involved stru. ctures, so-called bridgings,
appear where strong dissipation efFects take place. As far
as helium is concerned, when atomic scales come into
play it is necessary to find solutions using either the mod-
el of a weakly interacting Bose gas or Hills and Roberts's
(1978b) theory. We are interested to know, first, if a full

annihilation of the two antiparallel line segments occurs,
as this is necessary for reconnection, and, second, how
much time this process requires, if it takes place at all.
The answer to the first question is positive, as shown by
Nakajima et al. (1978) using a numerical modeling of the
Gross-Pitaevskii equation (2.6): the approaching antipar-
allel quantized vortices are completely annihilated.
Frisch et al. (1992) obtained a similar result for the col-
lapse and annihilation of vortex rings. It was also shown
that the duration of this process is very short compared
with the characteristic time of the dynamics of the vortex
tangle. This information about the short duration of the
reconnection process is very useful, because it justifies the
assumption used by Schwarz (1982b, 1985, 1988) and
Buttke (1988) that the reconnection process is instantane-
ous.

Instantaneous reconnection is, of course, a great
simplification of the problem. Even so, the problem
remains extremely complex in spite of the simplifications
made in obtaining Eq. (2.14). Indeed, this equation
describing the dynamics of the vortex line motion is sub-

stantially nonlinear with several kinds of couplings; and
the nonlinearity is neither polynomial nor even
nonanalytical due to the existence of denominators of the
type I/~S'~. The equation also contains nonlocai terms
expressed by the Biot-Savart law. The presence of rnutu-

al friction terms leads to the violation of some conserva-
tion laws, for example, the conservation of energy. Final-

ly, the reconnection process changes the topology of the
system; hence the quantity S(g, t) as a function of the pa-
rameter g during the collision process receives and stores
discontinuities which accumulate during the stochastic
process of development of the vortex structure. To ap-
preciate the complexity of the problem, we would like to
point out what was shown by Hasimoto (1972): if in
(2.14) all terms except the first are omitted, the local ap-
proach is used, and, finally, the local length is fixed,
~BS/Bg~ =1, Eq. (2.14) can then be reduced to the non-
linear Schrodinger equation. The stochastical behavior
of the nonlinear Schrodinger equation is a very nontrivial

problem which is the subject of intensive study (see, e.g. ,
Shen and Nicholson, 1987; Lebowitz et al. , 1988;
Dyachenko et al. , 1992). Nevertheless, some progress
has been made in the study of the stochastic behavior of
vortex lines in He II, which is described in the next two
sections.

I I I. THE FEYNMAN-VINEN MODEL
OF SUPERFLUIO TURBULENCE

A. Feynman's qualitative model

One of the many unusual efFects encountered in the
early stages of research of superQuidity was that of ex-
tremely high heat conductivity [see Keesom (1936);
Keesom et al. (1938)]. This effect, sometimes called
thermal superconductivity, refers to the observed, very
high (10 times larger than that for He I) coefficient of
proportionality between the temperature drop in a capil-
lary filled with He II and the heat Aux. The two-
component hydrodynamic theory attributes this to the
counterAow of the normal and superAuid components
(Fig. 3) where heat is convected by the normal com-
ponent only. This takes place at very small heat Auxes,
of the order of 1 mW cm, after which the linear law

Q o- 7T is no longer valid. It is very important to note,

vortex tangle

////////// //// / / / /// / ///
=vn

y

~k
/ /////// // ///'//'////'/'/g
heater second-sound t mitter

vs

FIG. 3. Turbulent counterflow in He II. The normal com-
ponent fiows from the heater carrying a heat tiux Q =STv„; the
superAuid component Aows toward the heater. Total mass Aux

density j =p„u„+p, u, =0. The second-sound emitter for study-

ing counterflow parameters is also shown (see Sec. VI}.

Due to the great complexity of Eq. (2.14), there is prac-
tically no adequate theory concerning the stochastical
dynamics of vortex lines in He II. The greatest success
was gained through the phenomenological theory of
superfIt. uid turbulence. This theory, based in its original
form on Feynman's (1955) qualitative considerations, was
developed by Vinen (1957c). Vinen's theory has occupied
during many years an important place in supplying an
explanation of the processes of superQuid turbulence and
was used for their quantitative interpretation. As already
mentioned, this theory bridges, to some extent, the gap
between the model of the chaotic vortex tangle and the
experimental observations. In this section Feynman's
phenomenological model and Vinen's likewise phenome-
nological theory are exposed and their relation with the
dynamics of vortex lines discussed.
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however, that beyond this critical velocity the two-Auid
model remains valid but becomes more involved. In par-
ticular, Gorter and Mellink (1949) have shown that an
amplification of a temperature di6'erence at the ends of a
capillary retained counterflow, but some additional in-
teractions between the two components occur. To over-
come the resulting resistance, it is necessary to apply
larger temperature drops; the heat superconductivity is
greatly violated and, instead of a linear dependence be-
tween VT and Q, there follows a parabolic dependence

A (T)p„

S

(3.1)

where Q=p, STU„, lp is the heat Aux density and the
temperature-dependent quantity A ( T) is the Gorter-
Mellink constant. The experimental values of this con-
stant are shown in Fig. 19. The definitions of other sym-
bols are given in the list of symbols.

In his famous (1955) paper, Feynman considers the ex-
perimentally observed existence of critical velocities and
the appearance of mutual friction as follows. He assumes
that in a helium Aow —for example, a counterAow-
quantized vortices will appear when a critical velocity v„,
is exceeded, as in the case of rotating helium (the cause
and processes of vortex formation were not considered).
Unlike the case of rotating helium, where, due to symme-
try, the alignment, of the generated vortices, or the ones
coming from the wall of the container, is along the axis
of rotation, the vortices in a channel Aow will be arbi-
trarily oriented and twisted. Feynman further assumes
the following scenario for the vortex structure evolution.
As appears from the equation of motion of vortex lines,
considered in the previous section, segments of the bent
vortex line, moving with a velocity di6'erent from the lo-
cal velocity of the superAuid component, are exposed to a
Magnus force directed perpendicularly to the tangential
vector. There follows a variation of the curvature and
hence of the length of the considered segment. Depend-
ing on the orientation and curvature and on the
counterAow velocity v„„stretching or shrinking of the
segment is possible.

Feynman assumed that stretching of the lines prevails,
i.e., that the length of the evolving vortex line, on the
average, grows. While increasing their length, the lines
more densely fill in the volume of the liquid, and the pro-
cesses of interaction between the vortex lines become of
greater importance. Feynman proposed to describe the
interaction resulting from the vortex line crossing as an
instantaneous reconnection. It can be seen that Feynman
perspicaciously guessed the process which much later
(see next section) was obtained by exact calculations. As
a result of reconnection, a fusion of small vortex rings
into larger ones, as well as a breakup into smaller ones, is
possible (see Fig. 2). There follows again an assumption
that the last property dominates; i.e., on the average, a
breakup of the vortex loops takes place. This leads to a
cascadelike process of formation of smaller and smaller

B. Vinen's phenomenological theory

Feynman's qualitative model was developed further in
the classical works of Vinen (1957, 1958). He formulated
these ideas in quantitative relations and, in particular,
obtained the equation bearing his name which gives a
quantitative description of the macroscopic dynamics of
the VT, i.e., of the evolution of the total length of the
vortex lines per unit volume L(t). We shall present
Vinen's theory following up how the microscopic dynam-
ic vortex line motion laws lead to the macroscopic rela-
tions of superAuid turbulence.

Vinen considered homogeneous superAuid turbulence.
Homogeneous turbulence can exist only in the case when
the characteristic interline spacing, 5-L ', is much
smaller than the characteristic size, D, of the system. In
his final version Vinen introduced corrections connected
with the finite dimension D of the container. However,
we shall not consider these e6'ects here. Following
Vinen, we shall consider the case of He II counterAow
due to a heat source (Fig. 3) characterized by a steady
counterAow velocity v„, . The quantity v„, appears as an
external fixed parameter that remains constant during
the evolution of the vortex structure. Vinen's aim was to
obtain an evolution equation L (t) for the VLD according
to the processes described by Feynman. It was assumed
that the time derivative dI. /dt is composed of two terms
corresponding exactly to Feynman's qualitative model,

dl. BI.
dt at

(3 2)

loops. When the scale of the small rings becomes of the
order of the interatomic distances, which is the final stage
of the cascade, the vortex motion degenerates into
thermal excitations. In some sense Feynman identified
the thermal excitations-rotons with the microscopic
small vortex rings. Onsager called rotons "ghosts of the
disappearing rings. " Frisch et al. (1992) showed in their
paper, in which they studied numerically the solution of
the Gross-Pitaevskii equation, that small vortex rings
collapse and radiate phonons. This correction is not im-
portant from the standpoint of the macroscopic VT, as
the phonon-roton equilibrium in He II is very quickly re-
stored (see Khalatnikov, 1965). Thus reduction of the to-
tal length of the vortex lines and the transformation of
the energy of the vortices, which was initially drained
from the main Aow, into thermal excitations take place.
This decrease of the total length, at a su%ciently high
density of the vortex tangle, compensates the growth pro-
cess due to the mutual interaction with the normal com-
ponent. Thus an equilibrium state, characterized by the
total length of the vortex line, which is a function of the
thermodynamic variables and the quantity v„„ is
reached. The structure of the vortex line is an intricate
tangle whose chaotic dynamics is determined by the can-
sidered processes. Feynman called this intricate state
superAuid turbulence.
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The first term on the right-hand side of (3.2) corresponds
to the growth of the VLD due to mutual friction; the
second corresponds to a decay due to the breakup of the
vortex rings. To find the form of the two components,
Vinen used dimensional considerations, the known re-
sults concerning the dynamics of single vortex lines, and
the analogy with classical turbulence. It was assumed
that the term (dL/dt)s, „depends on L and on the mutual
interaction force between the vortex line and the normal
component. Vinen made the very important assumption
that (BL/Bt)s,„ is a function only of the instantaneous
value of L„ the friction force f, and the circulation v.
This property was called the self-preserving state. Ad-
mitting the possibility that (BL/Bt),„can depend on the
previous history of the tangle development, Vinen never-
theless used the self-preserving principle by analogy with
classical turbulence. Another assumption was that the
dependence of v„, is included in the friction force f,
which for single vortex lines must appear in the relation
f /p, a. Dimensional analysis leads to the equation

classical turbulence. He assumed that Feynman's model
of vortex breakup is analogous to Kolmogorov's cascade
in classical turbulence. Under the theory of homogene-
ous isotropic turbulence, the energy dissipation connect-
ed with the cascade is given by

BQ Q
x (3.6)

where u is a characteristic velocity of the pulsation of the
length scale I„;„corresponding to the viscous limit of the
inertial range (see Monin and Yagiom, 1975). Taking for
/„„ in (3.6) the intervortex distance 5-L ' and for u

the azimuthal velocity around a vortex line at a distance
5 which is equal to ir/2rr5= (s/2~)L ', Vinen obtained

dL, L = Pi,L—
dt 22 (3.7)

where Pv is the second parameter in Vinen's theory of
the order of magnitude ~/2ir. With the addition of the
growth and decay processes, there follows immediately
the relation called Vinen's equation (VE),

BI;
gen

=irL Ps,„ (3.3) —cxv iv„~ iL PyL
dt

(3.8)

dt p, w
(3.4)

Assuming that this linear dependence of f remains valid
in the case of a vortex tangle, Vinen concluded that

where Ps,„ is some dimensionless function of its argu-
ment. The determination of this function is one of the
most delicate problems of the phenomenological theory.
Vinen essentially made use in this case of the results of
his and Hall's study (Hall and Vinen, 1956a, 1956b) on
the dynamics of a single vortex ring oriented transversal-
ly with respect to the He II counterAow velocity. It was
found in these investigations that the rate of growth of
the radius, b, of the vortex ring and hence its length are
linearly related to the force f according to the relation

Understanding the importance of this relation for future
applications and the uncertainties concerning the strict-
ncss of thc theoretical approach that lcd to this cquatlon,
Vinen (1957c) made a number of experiments to support
his phenomenological model and to determine the
coefficients ai and Pv.

One of his main results is reproduced in Fig. 4, which
shows dX/dt as a function of X (1—X.'~ ). Here
X=L(t)/L and L =(av/f3&) U„, . The experimental
points shown in the figure supposedly confirm Vinen's re-
sult. However, considering the scatter and experimental
errors, Vinen (1957c) noted that other relations between
dL/dt and L and v„, are not ruled out. In particular,
Vinen admitted that the experimental results can corre-

gen

=a v ~ v„,~L"!,

where av is proportional to the friction coefficient a [see
Eq. (2.14)] and the coefficient of proportionality of order
1 has to be determined experimentally. Hall (1960), in
his review on vortices in helium, give the following inter-
pretation of (3.5). By assuming that the characteristic
average curvature radius R is of the order of the distance
between the vortex lines 5, which is turn is of order
L '~, and substituting b-L ' in (3.4), (BL/Bt)s,„can
be obtained directly, as shown in (3.5). The hypothesis
that the average radius of curvature of the vortex line is
of the order of the average distance between vortex lines
was used by many authors in their qualitative analysis of
ST.

The form of the (BL/Bt)d„ term, responsible for the
vortex decay, was determined by Vinen in analogy with

FIG. 4. Buildup of mutual friction when a heat current is sud-

denly switched on (Vinen, 1957c, I:ig. 2).
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spond, although not so well, to alternative forms of the
generating term, e.g. ,

BL
=~a&tvnsL .

dt
gen

(3 9)

This case corresponds to a quadratic dependence of the
generating function, Ps,„ in Eq. (3.3), on its argument,

Ps,„(g)-g. Relation (3.9) is closer to the phenomeno-
logical theory of classical turbulence of Landau (see Lan-
dau and Lifshitz, 1980). Indeed, by assuming that tur-
bulence can be characterized by a parameter, say, L, and
that its time derivative dL/dt is an analytic function of
L, the relation (3.9) can be interpreted as the first term in
the series expansion. Furthermore, as tI),„ in (3.3) is a
scalar function of the vector argument f, it is reasonable
to assume that the series expansion of this function starts
with the argument squared. If the generating term is tak-
en in the (3.9) shape, then the alternative form of the
VLD evolution equation becomes

dL
=~auUnsL ~a«Ldt

(3.10)

2
v

U2 —y2 2

v
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FIG. 5. Evolution of the vortex line density during the passage
of a second-sound pulse. The input heat Aux was 3 W/cm; the
pulse duration, 10 ms; and the bath temperature, 1.85 K. The
solid line corresponds to the solution of Eq. (3.8); the dotted
line, to the solution of Eq. (3.10} (Nemirovskii and Schmidt,
1990, Fig. 15}.

where a,«, P,t, are corresponding new parameters. A
comparison of experimental results of v. Schwerdtner
et al. (1989c) with the solutions of Vinen's equation (3.8)
and the alternative form (3.10) is shown in Fig. 5. As can
be seen in this 6gure, within the limits of experimental er-
rors both equations fit the experimental results approxi-
mately well. It is thus seen that direct measurements of
the VLD evolution can hardly allow us to select the
proper form of the generating term in the VLD evolution
equation. Nevertheless, in spite of the existing doubts
and difficulties, the VLD evolution equation in the form
(3.8) is generally used to describe nonstationary
superAuid turbulence Aows.

In the stationary case Vinen's equation yields the rela-
tion

Assuming further that the tangle is isotropic and that the
total friction force is proportional to the total vortex line
length, we And that the Gorter-Mellink friction force act-
ing on the superAuid component is

F„,=(2ap, a/3)L v„, = A (T)p,p„u„, . (3.12)

L '(t) =L '(0)+j3vt, (3.13)

where L(0) is the VLD at the instant the counterfiow is
switched o6'. In Vinen's experiments, the free decay fol-
lowed (3.13) asymptotically for large t, but gave values
for Pv about 4—6 times smaller than the ones determined
above. The initial decay was much more rapid and could
have been consistent with a larger value of Pz,' but since
it appeared to depend on the channel size, Vinen
dismissed it as an anomaly associated with the formation
of large eddies.

To explain the discrepancy in the values of P~, Vinen
assumed that the free vortex decay and the decay of vor-
tices in a counterQow correspond to different states of the
vortex tangle, although in both cases they describe a
self-preserving state of the vortex tangle. As follows
from dimensional analysis in both cases, with and
without counterffow, the relation (3.7) is valid, but the
coefftcients P~ are different in both cases, say, PII' and

In other words, according to Vinen, the generating
and decay terms are not simply additive but inAuence
each other. There is an important difference in the tem-
perature dependence of the coefficients f)I)' and gP'. The
Arst one grows with the temperature and the second de-
creases. The idea of the existence of two self-preserving
states is, to some extent, intrinsically contradictory.
Indeed, this terminology denotes the possibility of
describing the VLD dynamics in terms of only L (t), and
the introduction of two self-preserving states is
equivalent to admitting that there exists some additional
characteristic affecting the macroscopic dynamics of the
tangle. It is unknown, a priori, which one of the two
states, or perhaps a third one, will be realized in an ex-
periment with a harmonic heat input.

Besides the difficulties described above, another rather
involved problem in Vinen's theory appears connected
with the time of formation of a vortex tangle tv. If, fol-
lowing Vinen, the quantity tv is used as the time required
for the evolution of VLD up to its L /2 value [see
(3.11)j, there then follows from (3.8)

Introducing this relation in the superAuid hydrodynamics
equation leads to the Gorter-Mellink formula (3.1).

Besides doubts concerning the generating term in Eq.
(3.2), another difficulty results from the application of
Vinen s equation (3.8) to simple nonstationary experi-
ments. Vinen's data for the growth of mutual friction
(Fig. 4) can be combined with steady-state values to give
the parameter pz. This parameter can also be measured
in a free-decay experiment, where the input heat Aux is
suddenly cut off. From the integration of (3.7) it follows
that
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(3.14)

This integral diverges at its lower limit, i.e., t&~ ~. The
origin of the divergence is due to the absence in the
theory of any mechanism responsible for the initial ap-
pearance of vortices in (3.8).

The problem of the critical velocities and of the initial
stages of formation of vortex lines is the most diScult
one in the theory of quantized vortices. In the theory of
homogeneous turbulence, this problem should be con-
sidered as external, and the most natural procedure is to
correct the theory by introducing one more phenomeno-
logical term. From Vinen's experiments it appears that
the essentially finite time t~ is a function of the applied
counterAow; hence Vinen's empirically found relation is

ti, =a~( T)Q (3.15)

where az is of the order of 10 s% /cm . To im-

prove the theoretical considerations, Vinen introduced a
small initiating term in Eq. (3.8) which represents the
mechanism of vortex line generation. This initiating
term ~ u„, was chosen so as to be compatible with the
phenomenological relation (3.15). However, the use of
the initiating term is not widely accepted. Most often, in

studies of superAuid turbulence, the existence of an initial
VI.D is assumed and used as a fitting parameter. Be-
sides, there is experimental evidence (Brewer and Ed-
wards, 1961; Childers and Tough, 1973) that this term
does not exist. Such a term would give rise to an observ-
able low level of dissipation in the steady state.

The basic ideas of the Feynman-Vinen theory have
proved themselves and remain essentially unchanged up
to now, although some progress has been made in the
study of microscopic turbulence. It can be inferred, as
will be shown in the next section, that in its contem-
porary version Vinen's theory is only modernized.

As mentioned in the Introduction, the main results con-

cerning the chaotic vortex tangle in He II were obtained,
on the one hand, from measurements of di6'erent hydro-
dynamic characteristics. On the other hand, hydro-
dynamic laws also produce some e6'ects that should be
distinguished from the 'pure" intrinsic properties of the
vortex tangle (VT). It will be shown in Sec. V.B that
these "hydrodynamic e6'ects" are insignificant in the
case of stationary homogeneous superAuid turbulence.
Therefore only experiments that can be safely assumed to
fit these conditions will be discussed in this section.

A. Kinetic equations of the vortex line distribution

S=PS'X S"+aS' X (v„,—PS' XS") . (4.1)

In the above relation the variable g in S(f, t) corresponds
to the arclength g. This substitution allows us to
dispense with terms like 1/~S'~ in Eq. (2.14). However, as
the variable g, unlike g, is time dependent, hence general-

ly replacing S(g, t) by S(g, t) leads to, for the left-hand
side of (4.1),

To obtain a quantitative description of the vortex tan-

gle, Schwarz (1978) used Feynman's (1955) basic model of
vortex lines. This was an attempt not only to obtain a
qualitative description of the processes described by
Feynman, but also to confirm that these processes follow
from the basic principles, i.e., from the equations of
motion of the vortex lines as described in Sec. II.B.
Schwarz apphed the main equation of motion (2.14) of
the vortex line using the local approximation (2.10). This
approximation was and is still widely questioned. If we
also neglect the term with the coefBcient o, " of the
transversal mutual friction force (which is justified over a
large temperature range, T ~ 1.4 K), then, in the
superAuid velocity reference frame, the vortex line equa-
tion of motion is reduced to

IV. MODERN NOTIONS QN SUPERFLUID TURBULENCE BS,Bg
Bt Bt

(4.2)

Vinen's phenomenological theory of superAuid tur-
bulence (ST), described in the previous section, was de-
rived in the late '50s. During the following two decades
ST was intensely studied, mainly experimentally. A large
number of observations of mostly stationary cases were
made that fitted well into Vinen's theory. The fundamen-
tal concept of this theory was not questioned, and no at-
tempts were made to substantiate it. It was only in 1978
that Schwarz published his paper on a microscopic ap-
proach to superAuid turbulence. Since then the theory
on the vortex tangle model has made great progress.
Thanks to the experimental and theoretical results ob-
tained by a number of scientists, primarily by Schwarz,
Donnelly, Tough, and their co-authors, the correlation
between the macroscopic continuum dynamics and the
microscopic motion of the vortex lines was obtained.

While preparing this section, we were faced with the
dilemma of how to deal with the vortex tangle problem.

In the numerical analysis this requires the rescaling of g
at each step whenever the equations of motion in the
form (4.1) was used. This transformation is very impor-
tant in the theoretical analysis and requires special atten-
tion.

As can be seen from (4.1) the velocity of a line element
depends on the first and second derivatives of S(g, t).
From the kinematic considerations that ~S'~=1,
S' S"=0, and ~S"

~

= 1/R (R is the radius of the vortex
line curvature), it follows that the velocity of a given
point on the line S(g, t) is a function of the magnitude of
the self-induced velocity

~ v& ~

=p/R and of the angle 8 be-
tween vI and the counterAow velocity v„„where v„, is a
fixed parameter, and an azimuthal symmetry is assumed.

It follows from Eq. (4.1) that during its motion the
length hl of the vortex line element varies according to
the relation
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BEE a
(vq~ VI )v( kl

at
(4.3)

hence the variation of the length is also a function of ~v~ ~

and 0.
As the vortex line dynamics and the variation of its

length are functions of ~vI ~
and 8, it seems tempting to

use the phase space
~ v& ~, 8 and to introduce there a distri-

bution function of the total line length A, (~v&I O, t). The
evolution equation for A, can then be regarded as a kinetic
equation in the introduced phase space

aX a~ BO B~ ~lvt I a=—( „,—vl)vik, . (4.4)

A fundamental diII][culty appears at this point, because
the term 8

~ v& ~
/Bt is not only a function of 8 and

~ v& ~, i.e.,
of S' and S", but also of S"' and S', i.e., the third- and
fourth-order derivatives of S(g, t). Expressing it
differently, Eq. (4.4) is not closed, and the introduced
phase space, i.e., the variables ~v& ~, 8, are not complete.
Attempts to broaden the phase space up to fourth order
S and to reformulate accordingly the distribution func-
tion to A, (S',S",S"',S,t) will also remain unsuccessful.
Indeed, it is easy to notice that the time derivatives
BS"'/Bt and dS"/'dt will contain higher-order deriva-
tives that will require further enlargement of the phase
space and so on up to infinity. This is quite similar to the
statistical-mechanics problem of finding a distribution
function from Liouville's equation. Such an attempt
leads to the well-known Bogoliubov's infinite chain of
equations. This infinite chain can be cut if a small pa-
rameter can be found like the gaseous parameter in the
kinetic theory of gases. In this last case it is possible to
"cut the chain" to obtain an approximate distribution.
Unfortunately, this procedure cannot be applied to the
vortex tangle case because the characteristic relaxation
time for all derivatives is about the same, equal to
r-=P/U„, . This can be checked by diff'erentiating (4.1)
with respect to the arclength g.

Another possibility of cutting the infinite chain exists
in the case of a dense gas (or in the case of long-range
forces). In this case the particle trajectory is a random
walk in the averaged field created by other particles.
Hence the evolution of the distribution function satisfies
the Fokker-Planck equation (see, e.g., Lifshitz and Pi-
taevskii, 1981). Indeed, Schwarz assumed that all re-
quired conditions are satisfied in deriving his stochastical
dynamic model of the vortex tangle. He assumed that
the nonlocal terms including the derivatives of order
higher than two in Bv&/Bt are of importance only in the
intersection process of two vortex lines. The inAuence of
the higher derivatives on the dynamics is hence reduced
to a random-walk process and therefore can be described
by introducing phenomenologically a diffusion term. [A
slightly different approach used by Yamada et al. (1989)
is described in Sec. V.C.] Schwarz derived the diffusion
terms using a self-consistent procedure. The distribution
functions A, (~v&~, O, t) obtained in this way were used by

Schwarz to determine many properties of superAuid tur-
bulence. Here we describe only the results concerning
the internal structure of the vortex tangle and the deriva-
tion of the equation for the vortex line density L (t).

The distribution function X(R, O)R in the equilibrium
state (t~ao) is shown in Fig. 6. Unlike the case of
A, ( ~vl ~, 8), the first argument of the X function is the ra-
dius of curvature R =P/~vI ~. As can be seen, the distri-
bution function X(R,O) depends strongly on 8. This
means that the tangle is quite strongly anisotropic, which
contradicts Vinen's model in which the tangle is assumed
to be isotropic. This is one of the most important results
concerning the structure of the vortex tangle.

Another important issue shown in the figure is the ex-
istence of a maximum, R „k, of the distribution function
independent of I9. This means that the lines with curva-
ture -R „'k prevail in the tangle. It is very important
that the most probable radius of curvature be close to the
average distance between the vortex lines 5=L
which can be expressed by 5=c(T)R~„&. The value of
c ( T) is of order one; it depends only on the temperature
and is independent of the relative velocity v„, . Moreover,
Schwarz found that the nondimensional distribution
function

red
peak

, 8 =L 'X(R, O)R p„k (4.5)

depends only weakly on U„, as well as on T.
In other words, it can be said that the dependence on

the above parameters is absorbed in the values of R „k
and L, and the function A,„~(R,O, t) possesses scaling
properties. This means that with increasing U„, the vor-
tex tangle increases its density, keeping its structure, ac-
cording to the new scale R '=R /R„„k. In particular, the
degree of anisotropy of the tangle does not depend on the
relative velocity v„,. This scaling property of the vortex
tangle is illustrated in Fig. 7, which shows A,„d R ' at two
different temperatures and velocities v„, such that the
unreduced distributions kR differ by four orders of mag-
nitude.

1 2

R [10 cm]
FIG. 6. Typical equilibrium distribution (Schwarz, 1978, Fig.
13). Curves are given for various values of cosO.
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03—

0.2—

O. t—

0.0
0.0 0.5 2.0

FIG. 7. Illustration of the scaling, which is a property of the
steady-state k's (Schwarz, 1978, Fig. 22). The reduced distribu-
tion functions A,„z as a function of R '= R /R „„kare plotted for
the two very di6'erent cases T=2.0 K, U„, =20 cm sec ' (dashed
curves) and T=1.2 K, U„, =5 cmsec ' (solid curves). The actu-
al magnitudes of the unreduced distributions A,R difFer by a
factor of order 10 for these two cases.

L,I =gi~Vns
peak

L

peak

(4.7)

where gIand g2 are temperature-dependent coe%cients
obtained from the integration of the scaling invariant
functions A.„& of R ' over R '; hence g, and g2 are in-

dependent of v„, . Since R „k=6/c ( T) and 5=L
Eq. (4.7) becomes

L =a, ~v„, ~L'" P,L', —

in agreement with the form of Vinen's equation (3.8).
Thus Schwarz obtained the macroscopic equation for

the VLD, L (t), starting from first principles, i.e., from
the dynamic equations of motion of a vortex line (2.14)
using an approximation to (4.1). Unlike Vinen, Schwarz
did not use any fitting parameters and obtained all his
coe%cients from his theoretical considerations. Howev-

Schwarz's (1978) next important contribution was the
derivation of the VLD evolution equation from micro-
scopic considerations. Within the limits of Schwarz s ap-
proximation, L ( r ) is the zeroth moment of the A. distribu-
tion function; i.e.,

L(t)= fA(ivii, 8, t)d vI .

Hence, to obtain the evolution equation, it is necessary
to integrate (4.4). The diffusion terms on the left-hand
side of (4.4) containing second-order derivatives of A,with
respect to

~ v& ~
and 8 contained in 8

~
v& ~

/Bt lead to a redis-
tribution of A, in the ~v& ~, 8 space without changing the
VLD L (t) The rem.aining terms can be integrated.
When the above-mentioned scaling properties are taken
into account, the result can be expressed as

2L —
AaitVns ~ (4.11)

Hence, first, as Feynman expected, the conservative in-
teraction (although it includes both the growth and the
decay of the VLD) leads, on the average, to an increase of
the total length; second, there is no annihilation term in
Eq. (4.11), as in Schwarz's model there is no cascade pro-
cess in the space of vortex rings and a following transfor-

er, u, and P, are about an order of magnitude larger than
the corresponding coeflicients ai, and Pi in (3.8).

A second and more fundamental difference is in the
physical interpretation of Eq. (4.8), which is quite
different from the Feynman-Vinen conception. Unlike
their model, where, we recall, the growth of the VLD is
due to mutual friction and the decay is due to the cascade
process of breakup of the vortex rings, Schwarz's approx-
imation attributes the processes described by both terms
to the interaction of the vortices with the normal com-
ponent.

Considering the importance of the VLD evolution
equation for L (t) and the doubts and difficulties resulting
from its phenomenological deduction, we find it
worthwhile to reexamine Schwarz's main assumptions
leading to Eq. (4.8). The already mentioned main doubts
concern the validity of the kinetic equation approach
used to obtain A(~v&~, 9, t). Furthermore, as mentioned
by Schwarz, the use of the solution obtained for A, assum-
ing equilibrium processes is not valid for nonequilibrium
cases. Qf course, the evolution of the tangle can proceed
in a quasistationary way, but this is only a hypothesis
without a proof of its validity. This hypothesis is similar
to Vinen's assumption of the self-preserving state of the
vortex tangle, which is discussed in Sec. V.A.

However, even assuming quasiequilibrium processes,
there are some open points left in Schwarz's deductions.
It was important to use a scaling property of the dimen-
sionless distribution A,„~ (4.5) to obtain (4.8). The use of
a different expression for k„& could be equally well
justified, e.g. ,

A,„z(Ryc(T)v„„6)=L 'X(R, O)(yc(T)U„, ) (4.9)

where, we recall, y is obtained from the relation
L 1/2

Indeed, since in the equilibrium case the following
chain of relations exists,

R z„z = 5/c ( T) = 1/c ( T)L ' = 1/c ( T)y U„, , (4.10)

then any one of the above three relations can be used for
nondimensionalizing the argument R of the function A,„z
without violating the scaling property. Obviously, as-
suming equilibrium conditions, this does not lead to any
differences in the results. However, using the relation
(4.9) instead of (4.5), i.e., using R„„k=1/[c(T)yv„, ] in-
stead of R„„„=1/[c(T)L' ] in (4.7) to obtain the VLD
evolution equation L (r), we notice that both terms in
(4.7) will have the same structure and the dynamic equa-
tion will have the form
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mation into thermal excitations; third, the generating
term agrees with the alternative equations (3.9) and
(3.10).

The above considerations are connected with the selec-
tion of a definite scaling parameter from the set (4.10),
and each choice can be equally criticized. Indeed, we en-
counter here, although at a difFerent level, the same prob-
lem Vinen had in deducing his generating term from di-
mensional considerations. In Schwarz's method, so as in
Vinen's, the choice of the generating term based on the
scaling analysis is possible with certainty only up to a
certain generating function P,„of the argument

yv„, /L' . In the equilibrium case, yv„, /L'~ =1, and
this removes the dificult problem of a proper choice of
Ps,„', but in the nonequilibrium case, the problem remains
open in both approaches.

D=kD*, L=A, L*. (4.14)

L (v„,o)=(cL /P )v„, . (4.16)

Investigations of the VT based on the invariance of the
problem as formulated in (4.12), after the introduction
there of the transformation of variables according to
(4.13) and (4.14), are referred to as "scaling analysis. " If
the number of parameters is small, then a scaling analysis
can give the possibility of' making some predictions. For
example, with the assumption that the VLD L in a
homogeneous, isotropic tangle under stationary condi-
tions is a function only of v„„scaling will lead to the fol-
lowing chain of relations:

L (v„, 0) =A, L '(v„', 0) =A, L "(v„,oA ) =cL v„, o (4.15)

or, in the usual units,

B. Numerical simulations of vortex tangle dynamics

Although Schwarz's kinetic equation method was the
first, most important step taken in the theoretical
research on microscopic dynamics of the VT, neverthe-
less a full clarification of the problem was not achieved.
During the next decade Schwarz developed the very com-
plicated problem of a full numerical simulation of vortex
tangle dynamics (see Schwarz, 1982a, 1982b, 1985, 1988
and Schwarz and Rozen, 1991). Here we shall summa-
rize Schwarz's results on the structure of the He II vor-
tex tangle. One of the most important principles that al-
lowed us to forecast some results and develop the stra-
tegy of numerical research was the scaling analysis,
which was simultaneously developed by Donnelly and his
group (see, e.g. , Swanson and Donnelly, 1985). The scal-
ing analysis and the numerical modeling of the VT were
made according to Eq. (2.14), where the local approxima-
tion S;=S'XS" to the self-induced velocity was used.
The parametrization occurs along g [see remark to Eq.
(4.1)], and the time t and velocities v„, v, are replaced by
to =pt and v„o=v„ /p, v, 0

=v, /p.
The equation of motion of the line vortex then be-

comes

L(L)=g L ~(L~)=g "L *(g L)= cdL— (4.17)

This result also agrees with Vinen's theory. Although
the relations (4.16) and (4.17) can also be obtained from
simple dimensional considerations, they have a deeper
meaning, as they are connected with the initial micro-
scopic equations of motion and thus allow us to substan-
tiate the macroscopic laws. A number of other examples
of using scaling relations to predict the dependence of the
critical velocity on the characteristic dimension of the
Aow or of the frequency relations of the spectrum of the
VLD fluctuations (5L 5L ) are given in Donnelly's
(1991a)book.

To elaborate a strategy of numerical calculations,
Schwarz introduces a few quantities to characterize the
vortex tangle. One of them is the VLD determined as

(4.18)

Thus, through the use of a scaling analysis, the result was
the same as that obtained rom Vinen's theory, which is
confirmed by a number of experiments. Another exam-
ple is connected with the free decay of a vortex tangle.
Assuming that in this case dL/Bto are functions only of
L, we find

=S' X S"+v, 0+aS' X ( v„, 0
—S' X S")

Bto

—a'S'X[S'(v„, o
—S'XS")] . (4.12)

This equation is invariant under the following transfor-
mations (A, here should not be confused with the A, of the
distribution function; see Schwarz, 1982a, 1982b, 1988;
Swanson and Donnelly, 1985; and Donnelly and Swan-
son, 1986):

S=AS*, /=AD*, to=i, to
(4.13)

q
—]

n O~ s 0 " s, o~ ns 0 ~ ns 0 '

The other needed variables and parameters not appearing
in (4.12) must be accordingly transformed. For instance,
the size of D and the VLD, L will be transformed as

where 0 is the volume of the space considered, and the
integration follows the arclength of the whole vortex line
in Q. In (4.18) and below, ensemble averaging of the in-
tegrand is assumed. Further, the average curvature is in-
troduced as

(4.19)

The second part of (4.19) is obtained from the following
considerations. According to the scaling properties of
the system, the quantity ( ~S"

~
) is supposed to be scale

invariant and ( ~S"
~ ) =A, '( ~S"

~ ) . As Schwarz states,
selecting for convenience (L "/L)'~ as a scaling parame-
ter A, , it can immediately be concluded that ( ~S"

~ ) is
proportional to L. Similarly, as will be seen later, the
average value of the curvature squared ( ~S"

~
) is an im-
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portant quantity of the VT macroscopic dynamics. This
quantity, using scaling analysis, can be written as

(4.20)

Schwarz introduces the following parameters to describe
the anisotropy of the tangle:

(4.21)

f [1 (S'—r~) ]dg, (4.22)

(4.23)

Iii/2+Ii= 1 . (4.24)

From the introduced rdations, many properties of the
vortex tangle can be formulated. For instance, the fric-
tion force can be written as

F„,= S'X S'X v„,—S'XS" d . 4.25

where r~~ and r j are, respectively, the unit vectors in the
direction of v„, and perpendicular to v„,. The parame-
ters I~~ and I~ correspond to the space orientations of the
vortex lines, whereas I& describes the anisotropy of the
self-induced velocity S, =PS' XS". In the case of an iso-
tropic distribution, for instance, I~~=I~= 3

and II O.

Adding (4.21) and (4.22) and bearing in mind that
~S'~ =1, we obtain

FIG. 8. Case study of the development of a vortex tangle in a
real channel (Schwarz, 1988, Fig. 4). Here the temperature is
about 1.6 K, and U, p=75 into the front face of the channel sec-
tion shown. Upper left: tp=0, no reconnections; upper right:
tp. =0.0028, three reconnections; middle left: tp =0.05, 18 recon-
nections; middle right: tp=0.20, 844 reconnections; lower left:
tp =0.55 12 128 reconnections' lower right: tp =2.75 124 781
reconnections.

The term with 0.' disappears due to the azimuthal sym-
metry. The tangle drift, velocity vL in the superAuid ve-

locity reference frame can be expressed as

vL, = fSdg —v, . (4.26)

The equations for the second-sound damping, tempera-
ture variation, or chemical-potential drop can be formu-
lated analogously.

Relations like (4.25) or (4.26) are exact relations be-
tween the VT properties and the measured quantities re-
placing the previously assumed phenomenological rela-
tions like (3.11) or (3.12).

It is understood that, to make use of these relations, it
is necessary to have some knowledge of the vortex line
distribution in space or of the statistical properties of its
distribution. Schwarz solved this most important and
most diScult part of the problem using a direct numeri-
cal modeling method of the vortex line dynamics based
on Eq. (4.12). He also used the reconnection ansatz, de-
scribed in Sec. II.B, besides the evolution equation. The
extreme complexity of the dynamics of the He II vortex
lines can be seen in Fig. 8, which illustrates the evolution
of six vortex rings.

From the obtained curves illustrating the evolution of
the tangle, Schwarz concluded that the fraction of small
scale vortices is relatively small. Large vortices expand-

ed over the whole volume are prevalent. This unexpected
result may contradict the homogeneity hypothesis, as the
presence of a large number of large vortices must result
in a strong inAuence of the boundaries. Another qualita-
tive result obtained by Schwarz is the tendency of the
vortex lines to align themselves transversally to the Aow
direction. This property contradicts experimental obser-
vations and may reAect some deficiency of the model in
which an artiIIicial mixing procedure was used. It is also
worth noting that the kinkiness of the tangle increases
with decreasing temperature, i.e., the average curvature
( R ), as compared with the interline spacing, de-
creases.

As far as the quantitative values are concerned, the
main eA'ort was directed at calculating the introduced
variables and parameters appearing in Eqs. (4.18)—(4.23).
In particular, Schwarz calculated the evolution of the
VLD, I. (t). It was shown that I. (t), after a certain tran-
sition time, reaches a stationary state which is, however,
accompanied by Auctuations whose nature has still to be
investigated. Interestingly, the duration of the transition
time is comparable with Vinen's characteristic time of
development of superAuid turbulence tz [see Eq. (3.15)].

The main parameters relevant to VLD evolution and
their temperature dependence have been taken from
Schwarz's (1988) table and are reproduced here.
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190.0000
48.1000
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80.0000
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0.100
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0.133
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2.01
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43.600
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As expected from the assumed scaling properties, the
above coefFicients do not depend on v„, . Using the values
of his own parameters given in this table, Schwarz com-
pares his calculated results with a number of experimen-
tal data. This is not a simple task, as most experimental
results were interpreted in the frame of Vinen's theory
(see Sec. III) using simple relations like (3.11) and (3.12),
which must be replaced by the more rigorous ones given
in this section. For example, instead of using (3.11), the
relation (4.16) giving the VLD as a function of v„, should
be used. The difterence between these two relations is
that the latter contains the logarithmic factor
/3=(i~'I4m )1n(1/c2L ' ro). The high-resolution data of
Martin and Tough (1981) confirmed the existence of this
factor. This result helped to elucidate the real meaning
of the additional parameter vo used to interpret the ex-
perimental data, without the logarithmic factor P leading
to the equation L '„~ =y( u„, —uo ) and hence giving a
nonzero intercept in the L„v„, plane. Analogously,
Schwarz had to use more involved considerations to be
able to compare his results for the mutual friction force
(4.25) with experimental data. The experimental data for
the mutual friction force f„, have been obtained in a
large number of experiments on stationary homogeneous
superAuid turbulence. The coefficient of the v„, term of
the mutual friction obtained from some representative
experiments is shown in Fig. 9 and compared with
Schwarz's result, which, in terms of the above parame-
ters, is given by (ci I~~ cLI&)' . The agree—ment with the
experimental points is quite satisfactory. However, de-
pending on the experimental conditions, the scatter is
large and can be as large as 4 times the average value (see
Tough, 1982). Another experimental confirmation of the
theoretical results was demonstrated by Schwarz (1988),
who compared the calculated and measured variation of
the Gorter-Mellink coefFicient with pressure.

The scarcity of experimental data does not allow a
proper comparison of the anisotropic properties of the
tangle. There is only one published experimental paper
of Wang et al. (1987) concerned with anisotropy. In this
paper the longitudinal and transversal damping of second
sound and temperature drop were measured. The mea-
sured ratio of the anisotropy LT/Lz, which in terms of
the relations introduced by Schwarz is given by I~/I~l~, is
shown by bars in Fig. 10 as functions of the temperature
T. The results of Schwarz's predictions are shown in the

O, l

0
O,OI

i i IIIII I I i i I IIII
O. l I.O

FRICTION COEFFICIENT a

FIG. 9. Comparison of the theoretically predicted, continuous
line mutual friction force coe%cient with selected experiments
(Schwarz, 1988, Fig. 27). Triangles are from Vinen (1957a,
1957b, 1957c); circles, from Brewer and Edwards (1961);
crosses, from Opatowsky and Tough (1981); and squares, from
Swanson (1985).

1 1 l i

1.0
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FIG. 10. Anisotropy ratio as a function of temperature: cir-
cles, computed by Schwarz (1988, Fig. 30); vertical bars, mea-
sured by%ang et al. (1987).

same figure by open circles. It can be concluded that in
this case also the numerical results are within the limits
of the experimental scatter. Recent experiments of
Olszok (1994) confirm the observations of Wang et al.

There is also a reasonable agreement of the VT drift
velocity vL, expressed in Iv„, ~

units in the superfiuid ve-

locity reference frame. In terms of the parameters intro-
duced by Schwarz, the quantity vL, /v„, is approximately
equal to cL I&. A comparison of experimental and nu-

merical results is shown in Fig. 11, where it is seen that
the vortex tangle drifts with the velocity of the superAuid
component. This agrees with Vinen's original assump-
tion, although it contradicts Ashton and Northby's
(1975) ion drift measurements, which showed some slip of
the tangle in the direction of the normal component ve-

locity. Let us note that Vinen considered that the en-
trainrnent of the vortex tangle by the superAuid com-
ponent is due to the assumed isotropy. The described re-
sults show a strong anisotropy but at the same time a tan-
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gle entrainment. So the interplay of different processes in
the dynamics of the vortex line appears to be quite com-
plex and subtle.

Schwarz's results not only confirmed the processes
forecasted by Feynman and Vinen and described them
quantitatively, but also give some new information about
details of the vortex line dynamics. For instance, as men-
tioned in Sec.II.B, the description of vortex line dynam-
ics by Biot-Savart s law leads to the possibility of collapse
of two approaching antiparallel vortex line elements.
However, their further fate cannot be predicted using
this approach. To deal with this problem, Schwarz used
a very sophisticated procedure. He introduced in his cal-
culations a quantity characterizing the annihilation prob-
ability of colliding vortex lines, which he called the
reconnection probability P, and studied its inhuence on
the 6nal result by following the VLD evolution, 1., as the
best known characteristic quantity describing superAuid
turbulence. It appeared that I. depends strongly on the
assumed reconnection probability and that the best
agreement with experimental results is obtained when
each vortex collision is followed by reconnection (see Fig.
12). This result agrees with the findings of Nakajima
et al. (1978) and Frisch et al. (1992). From this point of
view of would like to stress that the simultaneous study
of the vortex line dynamics with the "hydrodynamic"
measurements of the VLD made it possible to arrive at
this very important conclusion about the full reconnec-
tion of quantum vortices, which otherwise would require
some very involved quantum-mechanical calculations.
%'e think that this is a good illustration of the advantages
of studying vortices in He II where some theoretical
difhculties can be compensated by experimental observa-
tions.

In spite of the obvious progress in understanding ST
and a good agreement with experimental results,
Schwarz s theory is sometimes criticized. Buttke (1988,
1991) asserts, having repeated the calculations using a
different algorithm, that the main results concerning Eq.
(4.16) are confirmed only for rough mesh sizes and that
reducing the mesh size gave very different results. From
the exchange of corresponding views between Schwarz
and Buttke in Physical Review Letters (see Buttke, 1987
and Schwarz, 1987), it appears that Buttke's anomalous

Fig. 12. Dependence of line length density on reconnection
probability (Schwarz, 1988). The arrows indicate the time dur-
ing the run at which the probabilities were changed. The lines
have been drawn to guide the eye.

results are an artifact due to the assumption of periodic
boundary conditions. Schwarz avoided the problem us-
ing the artificial mixing procedure mentioned earlier.
The recent results of Anrts and de Waele (1994), which
not only confirmed Schwarz's numerical findings but also
obtained new results for the nonuniform, Poiseuille-like

U„, velocity distribution, clarify somewhat this problem.
We think that a full clarification of this problem is of spe-
cial importance, because this controversy led to some
doubts concerning the formulation of the problem,
specifically, concerning the use of the local induction ap-
proximation (2.10) instead of the full Biot-Savart law
(2.8). This is the second critical remark about Schwarz's
results. Doubts about the use of the local induction ap-
proximation for an adequate description of the evolution
of stochastic vortex lines come from scientists investigat-
ing vortex tubes of classical Auids. From their point of
view, the local approximation, which in classical Auids
does not lead to a change in the length of the vortex tube,
i.e., does not include stretching, is not suitable for
describing satisfactorily vortex dynamics (Chorin, 1979,
1982, 1991; Leonard, 1980; Siggia, 1985; Klein and Maj-
da, 1991). Moreover, there are some statements that the
omission of stretching can lead to the absence of sto-
chastization. Hnnsen and Nelkin (1986) supported
Schwarz s results indicating the difference between classi-
cal vortices and quantized vortices. The stretching of
classical vortices is accompanied by a reduction of its
core radius (Sec. II.B), whereas the core radius of quan-
tized vortices is fixed. This difference in the vortex prop-
erties, according to Hansen and welkin, removes the
problem of the importance of vortex stretching, due to
nonlocal processes, in the vortex dynamics of He II. Agi-
stein and Migdal (1986), on the other hand, criticized the
introduction of the cutoft'radius depending on the label g
(see also Sec. II.B). In their calculations, they fixed the
radius of the core (which is the case of He II) and ob-
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as
at

=PS XS"mls'I'+ r(g, r) (4.27)

where f(g, t) is a random Langevin force with the corre-
lator ( fkf k ) =5~&Fk5(t t'), wher—e k is the wave vec-
tor of a one-dimensional Fourier transformation. The
Langevin force models the random long-range interac-
tion of different elements of the line. The nonlinear in-
teraction described by the first term on the right-hand
side of (4.27) leads to the generation of higher harmonics,
which in their turn generate still higher harmonics and so
on. This cascade process induces the creation of seg-
ments of large curvature as shown in Fig. 13. An addi-
tional curvature generated by the force f stretches into
the region of large k. Thus a Inux of curvature I' appears
in the k space. At very large lkl, which corresponds to
very kinked segments of the vortex line, a dissipation
mechanism, e.g., collapse and vortex annihilation, ap-
pears. These processes lead to dissipation of the curva-
ture of the vortex lines. Competition between the non-
linear generation of high harmonics and the dissipative
mechanisms leads to a stationary picture with a spectral

served the stochastization of initially smooth vortex lines.
We think that to a large degree the uncertainties con-

cerning the relevant questions are connected with the
rapid development of numerical methods used in the in-
vestigation of stochastic vortices in He II and in cia.ssical
fluids, which are very much ahead of the corresponding
theoretical analysis. This results in the introduction of
different, unverified calculating procedures, which per-
mits the formation of different unconfirmed conclusions.

An attempt at a simultaneous theoretical and analyti-
cal investigation of the stochastic dynamics of a vortex
line in the local approximation was undertaken by
Nemirovskii et a/. in (1991); they also omitted the pro-
cesses of reconnection. Although this model is vary far
from the physical reality, nevertheless good agreement
between numerical results and analytical considerations
allows us to draw some conclusions concerning the sto-
chastical dynamics of a vortex line and even to apply
them to the ST problem.

Figure 13 illustrates the evolution of a vortex ring
satisfying the dynamic equation

distribution of the vortex curvature. A vortex line in this
case forms a small tangle (shown in Fig. 13). This state-
ment of the problem is fully analogous to Kolmogorov's
description of classical turbulence. The spectral distribu-
tion was obtained in the above-cited paper using field
theoretical methods. It was found that the Fourier image
(spectrum) of the equal-time correlator of the vortex line
follows the relation

(,Sk Sk~, ) l5(k +k') =constP ~ Ik (4.28)

The spectrum obtained from an exact numerical solution
of the problem (4.27) is illustrated in Fig. 14. It was
found that the spectrum varies depending on the intensi-
ty of the external force, although it remains close to the
theoretical predictions (4.28).

We would like to make a few remarks concerning
Schwarz's results with reference to the solutions of the
simple model described above. The first one is concerned
with the scaling properties. When these properties were
studied, it was assumed that the stochastic dynamics of
the vortex tangle is described by v„, and I.. Correspond-
ingly, in the stationary case, when these quantities are
connected by the relation L, ' =yU„„everything is
determined by one of them (Schwarz selected L). How-
ever, the solution of the model problem shows that there
exists one more parameter in the problem, the Aux of the
curvature I' in k space. The presence of an additional di-
mensional parameter implies that Schwarz's scaling
analysis appears, at the least, to be incomplete. Further-
more, the solution of the model problem shows the im-
portance of random forces affecting the long-range in-
teraction in a vortex tangle. As in Schwarz's local ap-
proximation, this long-range contribution is missing;
hence the corresponding analysis is apparently not com-
plete. If we also add here the absence of stretching as a
nonlocal effect, it may be concluded that some processes
remain outside Schwarz's model. Agreeing in general to
this incompleteness, Schwarz (1988) states that the omit-
ted processes have a small inhuence compared with the
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FIG. 13. Evolution of vortex ring under the inAuence of exter-
nal random force in the local approach [Eq. (4.27)]
(Nemirovskii et al. , 1991,Fig. 1). Projections of the vortex fila-
ment on the plane of the initial ring at di6'erent instants are
shown.
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FIG. 14. Logarithm of the Fourier-transformed equal-time
correlator SI, as a function of logarithm of the wave number k
(Nemirovskii et al. , 1991, Fig. 1). The straight line was calcu-
lated by linear re-".~sion; its slope is —3.13.
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ones left in his approximation, which is confirmed by the
good agreement of his calculations with experimental ob-
servations. When the absence of adjustable parameters in
his calculations is considered, such an explanation is ac-
ceptable. However, one should remember that the exper-
imental data also have a large scatter.

After Feynman's and Vinen's pioneering works,
Schwarz's results were a great advance in the theory of
ST. They changed the hypothesis of chaotic vortex lines
into a realistic microscopic theory based on the dynamics
of the vortex lines. However, when the critical remarks
concerning the formulation of the problem and its solu-
tion are taken into account, it must be,admitted that the
theory of stochastic behavior of quantized vortices in He
II is far from completion, although Schwarz's model ap-
pears to be a good working approximation.

C. Transient behavior of superfluid turbulence

Schwarz and Rozen (1991)used the ideas and observa-
tions described in Sec. IV.B in their investigation of un-

steady cases. Integrating with respect to the arclength g
and ensemble averaging of Eq. (4.3), giving the local vari-
ation of the vortex line length, result in

=—v„, p fS'XS"dg ——1 iS"
i dg .

0
(4.29)

Formally, on the right-hand side of the above equation,
we find the same parameters as in the stationary case [see
Eqs. (4.20) and (4.23)]. However, the use of these quanti-
ties in nonstationary cases is not obvious. But if it is as-
sumed that the process is quasistationary, then the pa-
rameters c2 and I& remain constant and (4.20) and (4.23)
can be used. The relation (4.29) can then be transformed
into the following Vinen-type equation (3.8)

=aI& i u„, p i L etc 2L
aI.
Bt0

(4.30)

Thus assuming quasistationary conditions and using scal-
ing relations leads to Vinen's equation. It is, however,
necessary to add the following comment. As described in
the previous section, the relations (4.20) and (4.23) used
to deduce (4.30) express the scaling properties in the spe-
cial case when the scaling parameter A, is taken equal to
(L*/L)' [see Eqs. (4.13) and (4.14)]. As Schwarz stat-
ed, this was done for convenience. The same would justi-
fy the use of (u„', /u„, ) as a scaling parameter. In view of
I =yv, this would make no di6'erence in the stationary
case. However, in the nonstationary case, when v„, and
L, are independent. of each other, the quantities on the
right-hand side of (4.29) and hence also on the right-hand
side of (4.30) are determined up to a function of
I. ' /y v„, . In particular, by an appropriate choice,
(4.29) can be transformed to the alternative form of the
VLD equation (3.10). Thus we once more return to the
problem of ambiguity concerning the generating term
[see comments to Eqs. (3.8) and (4.8)].

0.0
0 1Q 20

peal,

40 50

FICx. 15. Calculated growth of the line length density when

u„, /P is suddenly increased from 40 to 120 (Schwarz and Rozen,
1991,Fig. 3). The dashed line is the prediction of Vinen's equa-
tion.

To check the assumption of quasistationarity, Schwarz
and Rozen (1991) investigated numerically the VLD dy-
namics L(t) in a transient process. They examined how

precisely the values of II, c2, Ill remain constant. To
avoid the question of initial vortex formation, the transi-
tion between two finite, nonzero v„values was observed.
The free-decay process was also investigated.

The calculated variation in time of L (r)/Lf, where Lf
is the final equilibrium value of the VLD, is shown in Fig.
15. There is a qualitative agreement with the predictions
made according to Vinen's equation, although, as stated
by Schwarz and Rozen, the parameters ai, and Pi, must
be changed. There is also a qualitative agreement with
the alternative form (3.10) of the VLD equation. This
problem could have been clarified if, as Vinen had done,
the dependence of the dimensionless VLD, dX/dt on
X ~ (1—X'~ ) had been shown, which, unfortunately, it
had not. The variation of the parameters of the vortex
tangle structure, during the growth period illustrated in

Fig. 15, is shown in Fig. 16. According to this figure,
only the structure parameter cI remains fairly constant
during the transition period. Schwarz and Rozen con-
cluded that during the transition processes, when large
changes of the heat input Q occur, the equilibrium pa-
rameters of the tangle vary within 25%. Similar calcula-
tions were performed and conclusions drawn for a decay-
ing tangle when the counterAow velocity was suddenly
diminished. This numerical analysis allowed Schwarz
and Rozen to infer that the Vinen VLD evolution equa-
tion (3.8) is a good approximation, at least for applied
problems.

Besides numerical calculations, Schwarz and Rozen
carried out an experimental investigation of the transient
response of a thermal counterAow in a channel to a
change in heat Aux. Although these experiments fall out-
side the class of stationary homogeneous processes and
should be discussed in the second half of this paper, the
results will be considered here, since it appears that the
superAuid turbulence remains quasistationary during the
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FIG. 16. Variation of the tangle-structure parameters during
the growth transient of Fig. 15, showing (a) I~~, (b) II, and (c)
cz/20 (Schwarz and Rozen, 1991, Fig. 4). The horizontal lines
are the steady-state values given by Schwarz (1988).
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FIG. 17. Vortex-tangle decay curve (Schwarz and Rozen, 1991,
Fig. 17). The dashed line is the decay behavior expected on the
basis of the measurements of the growth ST and on the basis of
Eq. (3.13).

transient. The results may then be compared with the
calculations above and serve as a justification for the
Vinen VLD evolution equation (3.8) in weakly nonsta-
tionary processes. Schwarz and Rozen measured the
temperature drop AT between pairs of sensors placed
along a uniform thermal counterAow channel. They
found that the response of b.T(t) to a small change in Q
could satisfactorily fit (3.8) if structure parameters that
differ slightly from those obtained in the stationary case
are used. These results suggest that in the nonstationary
process the VT is more strongly polarized and more
kinky than in the stationary homogeneous state. The
final conclusion of these measurements is that VE (3.8)
describes adequately VLD evolution, but the parameters
ai and Pi must be 2 or 3 times larger than those ob-
tained by Vinen.

Schwarz and Rozen also carried out a series of free-
decay experiments similar to those of Vinen described
above. They measured the time evolution of AT follow-
ing the removal of a heat fiux. Their results (Fig. 17) re-

veal exactly the same structure found by Vinen —an ini-
tial fast decay followed by a slow decay. Their interpre-
tation of the data is quite different from Vinen s, howev-
er. They assumed that the initial fast decay is described
by the Vinen equation (3.8) with the result given in (3.13).
The dashed line in Fig. 17 is obtained from this equation
through the use of their structure parameters obtained in
the transient experiments. Schwarz and Rozen also pro-
posed an explanation for the slow decay. However, as it
is connected with the hydrodynamic model, we shall
leave it to the second part of this paper, which is devoted
to the corresponding considerations. Another important
result was the confirmation of the existence of a small
remnant VLD L,„—10 cm, which may be due to
parasite heat sources. Although this question is beyond
the scope of this review, it is related to the problem of in-
itial conditions for the VE and avoids the necessity of in-
troducing an initiating term to cancel the divergence of
the integral (3.14). However, from an estimate of the in-
tegral, it follows that in this case tv —Q, which contra-
dicts (3.15). A special investigation of this problem
might provide an explanation for the perennial problem
in the theory of quantized vortices in He II, i.e., the ini-
tial appearance of vortex lines.

Schwarz and Rozen's (1991) investigation of VLD
along the channel led to one more interesting result. It
appeared that the section closest to the heater responds
first to the heat pulse, then the section close to the exit of
the channel, and thereafter the middle section. This may
be related to some boundary effects, although the authors
state that this is due to the existence of two turbulence
modes TI and TII (see Tough, 1982); but unlike the
homogeneous TII mode, TL may exhibit some inherent
spatial instability.

Besides the above-mentioned papers of Vinen and of
Schwarz and Rozen, experiments by v. Schwerdtner
et al. (1989c) were also designed to check Vinen's equa-
tion. They used the interesting method of short test
pulses, "riders" superimposed on the top heat main pulse
to measure the second-sound attenuation (see Fig. 18).
The typical result illustrated in Fig. 5 shows a satisfacto-
ry agreement with VE with the coefficients ai, and Pi,
close to Vinen's values. It should be noted that as the au-
thors used the repeated pulse method, there was no initial
VLD problem. It is also worth noting that no anomalous
decay behavior was detected within the experimental test
conditions. In connection with this experiment it can be
remarked that, inside a fairly strong heat pulse, large per-
turbations of the temperature T and counterAow velocity

U„, may occur that should strongly distort the picture;
hence some doubts about the reality of the quantitative
results can exist. On the other hand, this is probably the
unique, direct experimental verification of VE for heat
pulses, Q, very much higher than in previous experi-
ments.

We tried to describe the works we know of devoted to
a direct theoretical and experimental confirmation of the
VLD evolution equation. For a complete description, the
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FIG. 18. Sample of damping measurements (v. Schwerdtner
et al. II989c, Fig. 2): (a) the primary pulse, with a superimposed
testing pulse and several subsequent echoes, as registered by the
sensor strip; (b) the primary pulse only; (c) the test signa1,
difference between (a) and (b).

papers of Sitton and Moss (1972), Ashton and Northby
(1975), and Milliken et al. (1982), in which the VLD evo-
lution during free decay was measured, should also be
mentioned. These papers confirmed that the decay of L
takes place according to (3.7), although with diiferent
coeKcients; however, the problem of the generating term
was not considered.

Resuming this section, we can say that the progress
made in studying nonstationary ST and its relation to the
microscopic VT dynamics is not as advanced as in the
stationary case. Therefore it is important to study the
nonstationary hydrodynamic processes in He II, in the
presence of the vortex tangle, as such investigations
could supply essential information on the nonequilibrium
structure and the macroscopic dynamics of the vortex
tangle.

V. HYDRODYNAMICS OF SUPERFLUID TURBULENCE

A. Problem formulation

The previous sections covered the problems of stochas-
tic behavior of vortex lines in He II, the structure of the
vortex tangle, and the phenomenological description of
superfluid turbulence using the VLD L(r). The experi-
mental study of superAuid turbulence is based mainly on
hydrodynamic methods. The investigation of the vortex
tangle by first- and second-sound probes, as we11 as the
measurements of temperature and pressure gradients and
of heat and mass Aows, are just some examples of the use
of such methods. On the other hand, all known methods
of ST generation, for example, the use of counterAow or
sound waves, are also of a hydrodynamic nature. The
above examples show that there exists a reciprocal
inAuence of the hydrodynamic quantities and the vortex
tangle parameters. A change in the hydrodynamic
characteristics leads to an immediate change in the VLD
and vice versa. Therefore the study of superAuid tur™
bulence and the study of hydrodynamic processes in the
presence of a vortex tangle are indivisible parts of the

same general problem. Hence a study of the properties of
a vortex tangle, for example, in a counterfIow, that as-
sumes that the counterQow parameters are fixed
(v„,=const) is not a fully justified procedure. An equally
wrong procedure is an investigation of the Bow proper-
ties that assumes the VLD is fixed. Although the above
assertions are obvious, such approaches were widely
used.

We conclude that the variations of the ST parameters
and of the hydrodynamic variables are interconnected,
and the aim now is to devise a system of equations
describing these coordinated variations. This set of inter-
connected physical processes will be called the hydro-
dynamics of superfluid turbulence (HST). This problem
appears to be quite intricate, and there exist a few ap-
proaches. We shall describe in this section the existing
methods of deducing the equations of the HST and dis-
cuss the differences. Before discussing the different
methods of deriving the different versions of the HST
equations, it seems necessary to make a few remarks con-
cerning the formulation of the problem. The main aim of
formulating the HST is to combine Vinen's equation and
the classical two-Quid Landau-Khalatnikov hydrodynam-
ic equations (see, e.g. , Khalatnikov, 1965 and Putterman,
1974}. For this purpose it seems important to consider
closely Vinen's assumption about the self-preservation
state of the VT (see Sec. III.B), i.e., that a change of L is
determined only by L and the hydrodynamic parameters.
The more subtle characteristics of the vortex structure
that diff'er from the VLD L (r) do not participate in this
macroscopic description of the process. This assumption
is valid in the stationary homogeneous cases, in which
only L (t) and the orientation of the vortices in space
determine the mutual friction force, which is responsible
for most of the encountered eft'ects. Questions concern-
ing the possibility of describing hydrodynamic processes
in the presence of a vortex tangle, in terms of only one
variable L, when the Aow cannot be considered station-
ary and homogeneous, arise. Indeed, in this case the
quantity VLD L ( r ) in the set of hydrodynamic equations
must acquire a field property; i.e., it is necessary to im-
pose its dependence on the coordinate. Hence
L(t)~L(r, t) The rate o. f change of L(t) must then
obey the relation

dI. BL
dt Bt

+ l d( vLv)t, (5.1)

where vt is the drift velocity of the tangle.
Thus, already in the stationary but inhomogeneous

case, a new variable connected with the fine structure of
the vortex tangle appears. Obviously it is not possible to
determine vL from Vinen's phenomenological theory un-
less some other assumptions are made or experimental
data acquired. %'e recall that Vinen assumed vL to be
equal to the velocity v, of the superAuid component. It
appears that, even in the stationary but nonhomogeneous
case, it is necessary to introduce, in addition to the VLD,
a new variable, which is lacking, in Vinen s theory. The
nonstationary problems are much more involved.
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For a better understanding of the importance of the
above formulation of the problem, let us return to
Schwarz's kinetic theory (Sec. IV.A). Although this
theory is not perfect, it can illustrate the essence of the
problem considered. This theory makes use of the distri-
bution function A, (v&, t). The evolution of L is given by
Eq. (4.4) which, integrated in the phase space v&, yields

+V f S(v&)kd v&= —f (v„,—v&)v&A, d v& .
Bt

(5.2)

The velocity of the elements of the vortex line S(v&)
should be expressed by the self-induced velocity vI ac-
cording to Eq. (4.1). Thus the temporal derivative of L,
which is the zeroth moment of the distribution function
iL(v„t), can be expressed by higher-order moments. Ob-

viously, with the introduction of the higher-moment
equations, there appear on the right-hand side still higher
moments and so on. The resulting case is identical to the
procedure of obtaining the gasdynamic equations using
Boltzmann's kinetic theory. The difference consists in

the absence of the "kinetic equation" in our case. Never-
theless, this analogy allows us to understand the essence
of the problem and to point out ways to deal with it.

In the case of gasdynamics, the cutoff, or shortened
descripti*on, procedure has two important features. First,
due to the existence of a small parameter, the higher mo-
ments relax to equilibrium much faster than the lower
ones. Second, the higher moments thus adjust them-
selves sooner to the lower ones and therefore can be ex-
pressed as functions of the last ones. The use of these
functional relations permits us to obtain a closed set of
equations. If we would like to use the same procedure in
the case of ST and limit ourselves to the consideration of
VLD L(t) only, then it must be demonstrated that
vI = J SA, d vI, fv&AdvI a, nd so on relax faster than

L(t) and assume some functional relation, e.g., the fol-
lowing one,

vI =F(L,v„,v„and say p, T) . (5.3)

The determination of a relation like (5.3) is a separate,
difticult problem. We would like to stress that the ex-
istence of such a relation requires that the relaxation of
the first moment of the distribution function A.(vr, t) be
much faster than the relaxation of the zeroth moment,
i.e., L (t). If this is not the case, then vL must appear in
the hydrodynamic theory as a separate, independent vari-
able.

Strictly speaking, there are no theoretical grounds for
assuming that the relaxation of higher moments is faster
than that of the quantity L (t). To respond properly to
this problem, it is necessary to develop a full stochastic
theory of the vortex tangle —a problem that remains
open. Therefore, following Vinen, we apply his ap-
proach, remembering that it relies strongly on the as-
sumption that L (t) fully determines the macroscopic dy-
namics of the vortex tangle. Of course, it is understood
that in using this assumption we are not interested in the
special problems related to the fine structure of the vor-
tex tangle and its effects. Some justification for using this

assumption is that the resulting model describes well a
multitude of nonstationary experimental observations.
%'e assume, hence, that hydrodynamical processes can be
fully described by the set of the two-fIuid equations plus
the VI.D L (t) equation according to Vinen's (3.8), which
has to be slightly modified to include (5.1) and becomes

+div(Lvi )=ai ~v„, ~L
~ /3&L-

Bt
Because a relation like (5.3) is also unknown, we shall as-

sume that vL =bv„, where b is a constant coeScient as in

the case of steady Aows.

(5.4)

B. Phenomenological approach to the
hydrodynamics of superfluid turbulence

Attempts to describe nonstationary hydrodynamic
processes in He II that included ST actually began with
the formulation of the Gorter-Mellink relation (see
Putterman, 1974). In the simplest approach, the ex-
istence of a vortex tangle was taken into account by in-
troducing a stationary force, given by Gorter and Mel-
link (1949) as F„,= 3 (T)p,p„u„,v„„on the right-hand
side, of the equations for the superAuid and normal veloc-
ities. The important improvement was to introduce in
the Gorter-Mellink law the quantity I.. This was
achieved by making use of the asymptotic relation for I.
leading to F„,= A ( T)p„p, (L /y )v„„where L must
satisfy Viner's equation (3.8). The last mostly used ap-
proach is very effective and describes many observations.
However, this approach has a limited range of applicabil-
ity and, regretfully, what is very important, does not
satisfy all required conservation laws.

However, had the hydrodynamic equations been con-
sidered as a set of conservation laws, one would have ob-
tained a full closed set of equations for all the indepen-
dent variables involved. This was achieved by
Nemirovskii and Lebedev (1983) using the Bekarevich
and Khaiatnikov (1961) method.

The energy density E of the He II vortex free Row is

pUsE = +v j o+Eo(p S go) (5.5)

where jo is the momentum density in the reference sys-
tem relative to the superAuid component, and Eo is the
energy density of this system given by

dEo = TdS +PdP+v „,d jo . (5.6)

5Eo =c ~dI. ,

where the energy of a unit length of the vortex line is

(5.7)

In this classical two-Quid model the equations of motion
are set up so as to obtain, using the conservation laws for
p, S, v„and jo, the energy conservation law. This self-
consistent approach can be extended to the case of He II
containing a vortex tangle.

The presence of vortices modifies the energy density
Eo, which can be taken care of by adding the term
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P K
&v=

4m I OL
'/'2

Thus in the presence of a vortex tangle the energy of the
He II Aow becomes a function of L, which is a new in-
dependent variable in addition to the main set of vari-
ables p, S, v„jo, where L satisfies the relation (5.4). Be-
sides the changes in the energy density, other hydro-
dynamic characteristics, such as the dissipation function,
momentum density tensor, etc. , must also be suitably
changed. However, these changes must be such that the
conservation laws for the set p, S, v„jo, and L lead to the
conservation law for the full energy E(p, S,v„jo,L).
This last requirement yields all corrections to the set of
two-fluid equations, i.e., to a new set of equations, pro-
vided that an additional assumption has been made con-
cerning the dissipation function. In their work the au-
thors used the Feynman-Vinen model. In this model,
two processes are responsible for entropy production.
One of them is the work due to mutual friction between
the vortex lines and the normal component. This work is
proportional to the total length of the vortex line L in
unit volume and to an averaged velocity squared of the
vortices relative to the normal component. Besides this
mechanism of entropy production there is another one
corresponding to the transformation of the energy from
the breaking up of small vortex rings into thermal excita-
tions. This last mechanism yields an entropy production
equal to the product of c, v and the rate of decay of the
vortex tangle p&L . Thus the contribution R' of the vor-
tex tangle to the dissipation function is

R'=(EU„,L+si,PVL )/T . (5.9)

The coeKcient X can be determined if we assume that in
the stationary homogeneous case TR' corresponds to the
work of the Gorter-Mellink force; hence

pv &v2 2

K = A (T)p„p, —s&
~v

(5.10)

The use of (5.9) allows for the unique determination of
the equations of motion of He II in the presence of a vor-
tex tangle, i.e., for the devising of a hydrodynamic theory
of superfluid turbulence. The set of resulting equations is

Bp
Bt

+divj =0,

~JI ~+Ik

Bt BXk

(5.11)

(5.12)

+div[Sv„+S (vt —v„)]= [ELU„,+Ei,Pi,L ],—Bt T

(5.13)

Bv
p, +(v, V)v, +V@ ' bVE) SbVT- —

Bt

w here II,k is the momentum fIlux tensor with an addition-
al term, cvL5;k, due to the presence of vortices, and S
is an additional entropy due to the vortex tangle.

Equations (5.11)—(5.14) and the modified Vinen equa-
tion (5.4) are an essential generalization of the two-Iluid
Landau Khalatnikov model and can be used for the study
of relevant problems. The additional terms on the left-
hand side of the above equations, the so-called reactive
terms, are connected to the corresponding symmetry of
the Hamiltonian of the system.

The dissipative terms on the right-hand side of (5.4)
and (5.14) can be arranged as

BU .

Bt

E——6.
Ps

V ns)i L
p, lv., l

V ns, k L
p, lv., f

Ps Uns, k

E, v
(5.15)

As BE/Bv, k= —pv„, k and BE/BL =Ei„ the relation
(5.15) describes the Onsager reciprocity principle for the
kinetic coeKcients. The antisymmetry of the coe%cients
follows from the difterent behavior of v, and L under
time reversal (Landau and Lifshitz, 1980). The right-
hand side of (5.14), besides the customary Gorter-Mellink
term KL v„„also contains an additional term,
Ei ai, (v„, /lv„, l)L . This term describes the additional
damping resulting from the absorption of the kinetic en-

ergy of the How by the VT during its growth. According
to Feynman, this part of the energy is returned, during
the tangle decay, to the main fIow in the form of entropy.
Usually, when the tangle is close to equilibrium, the
Gorter-Mellink term is much larger than this additional
term. However, when L is very large and vns small, the
additional term can become larger than the Gorter-
Mellink term.

Note that the additional term has a very special form
and does not depend on the magnitude of the velocity but
only on its direction. This property recalls "dry friction"
in classical mechanics and hence this additional term will

be so called. The specific form of this term is directly
connected to the generating term in Vinen's equation.
Indeed, if we had used the alternative equation, (3.10), in-
stead of Vinen's equation (3.8) to deduce the HST, the
additional term would have been proportional to Lvns
and hence of the same form as the Gorter-Mellink term.

As in the stationary case L-U„„both terms on the
right-hand side of (5.14) acquire the same structure; they
are proportional to U„, . Therefore the inAuence of the
additional term is relevant from the standpoint of the dy-
namics of the VT, and its eAect can be observed in non-
stationary cases only (see Sec. VIII.B).

C. A stochastic method of formulating
the hydrodynamics of superfluid turbulence

"ns
=KLV„)+E) Exp L

ns

(5.14) Another method of deducing the set of HST equations
based on the microscopic, Schwarz's "kinetic theory, "
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was used by Yamada and Kashiwamura (1987) and Ya-
mada et al. (1989). This approach was partly developed
in Schwarz's (1978) original works. The problem, as for-
mulated by Yamada et al. , is based on the Langevin sto-
chastic equation and the use of the Fokker-Planck equa-
tion, allowing a deeper understanding of the essence of
the stochastic approach. The following law of variation
of the self-induced velocity results from the equation of
motion (4.1) of the vortex line,

vi =B ( vi ) +H( 8'", S', . . . )

where

B (vi)= —
I [(v„~—v() vi]vi+vI X(v( Xv„~ ) j

(5.16)

(5.17)

and H(S'",S', . . . ) are terms with higher-order deriva-

tives of the vortex line function S(g', t). Like Schwarz,
the authors assumed that the contribution of these terms,
which prevent us from closing the set of equations in the
phase space I S', S"], can be taken into account using the
random-walk hypothesis. This allowed the authors to re-
place H(S"',S', . . . ) with some quantity R(vt, t) which
has the meaning of random actions in the vI space, i.e., of
a Langevin force. This force is assumed to be Gaussian
with a correlator

(R; (vi, t)R&(vI, t) ) =5(t t')D; (—vr, vI ) . (5.18)

The authors introduced a distribution function A(vl, r, t),
of the line length in the phase space v&,

(v&, r, t) ,= (A(r, vI, t) ), (5.19)

It should be noted, that, unlike Schwarz's approach, the
distribution function A, is dependent on r, thus including
cases of nonuniform space distributions.

The following "standard" operations consist in
differentiating A with respect to time and ensemble
averaging. The following Fokker-Planck equation re-
sults,

aa,, (v, )),
+V„[S(vi)A.]+ B;(vi Q, —

Bt " ' 8ul;

=—(v„, —v, )v, k . (5.21)

This last relation is equivalent to Schwarz's equation (4.4)
including spatial nonuniformity [second term on the left-
hand side of (5.21)]. Unlike Schwarz, who concentrated
on formulating the diffusion term and on the determina-
tion of the distribution function, the authors followed a
diff'erent line. By integrating (5.21) in d vI, they elim-
inated the diffusion term and directly obtained the fol-
lowing equation for the VLD,
aL a+V (Lvt )= (v„~ v))v(A(vg, r, r)d vg

3

Bt
(5.22)

where ( . ) denotes, as usual, ensemble averaging, and
A is defined as

A(r, v, , t)= f dg~S'(g, t)~5(r —S(g, t))5(v, v, (g, t)) . —

(5.20)

The right-hand side of this equation can be calculated
only after A,(r, v&, t) has been determined. However, the
authors, following Schwarz, considered this equation,
term by term, agrees with the right-hand side of Vinen's
equation (3.8).

Similarly, the authors determined the force exerted on
the superfluid component by the vortex tangle. Assum-
ing isotropy of the VT, they obtained

F„,=p, ~a f (v„, v&)A—(vr, r, t)d v& . (5.23)

Bycxy v„
- I.

p,
(5.24)

Hence, besides the usual friction force proportional to
v„,L, there is a supplementary term (5.24). This last term
agrees with the term obtained previously in (5.14), except
that the sign is reversed. Therefore the dissipative func-
tion has the structure

T =glLV EV(+ +2' )L3+EyX4LdS 3/2 2 2 (5.25)

which difFers from the one obtained previously, Eq. (5.9).
The quantities g, are related to the parameters of VE.
The dissipation terms of the obtained equations lead to
Onsager's reciprocal principle, but, unlike Eq. (5.15),
with a symmetric coeScient.

Comparing the above with the HST equations, we note
that Yamada et al. have not considered the reactive
terms related to the energy contribution of the vortex
tangle to the thermodynamic variables. However, this is
of minor formal importance, since the contribution of the
tangle to the energy or pressure in the usually encoun-
tered experimental conditions is negligible, although it
can become noticeable at low temperatures.

Leaving out the problem of the reactive terms, we
would like to discuss the remaining, very important
difference between the results obtained in this and the
previous section, i.e., the additional term in the mutual
friction force, as we called it, the "dry friction" term.
This term has an opposite sign in the work of Yamada
et al. as compared with (5.14). From the formal point of
view, this result was obtained because the authors accept-
ed Schwarz's point of view that the generating term as
well as the annihilation term of the VE is related to the
action of the friction forces. Hence the decay of the vor-
tex tangle is accompanied by the return of the energy
from the vortex tangle to the kinetic energy of the main
flow. (In Feynman's model the VT returned its energy to
the main flow in the form of thermal excitations. ) This
may appear, for example, experimentally as a reduction
of the effective Gorter-Mellink mutual friction.

Thus at first sight the formal difference in the interpre-
tation of VE emerged in the HST equation. This favor-

The quant&ty Jv~&d vI in (5.23), from the standpoint of
its structure, coincides with the right-hand-side term of
(5.22). Repeating the assumption that this expression
corresponds to the generating term of Vinen's equation
(3.8), the authors concluded that this term is
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able circumstance revealed the opportunity to check ex-
perimentally which mechanisms are closer to the physi-
cal reality, Feynman-Vinen's or Schwarz's. The pro-
posed experiment is discussed later.

D. Methods based on the variational principle

Geurst (1989, 1992) deduced the HST equations for the
case of a one-dimensional Qow from a variational princi-
ple. This approach, using the vortex tangle model as
modifying the thermodynamic properties, is akin to the
phenomenological method described in Sec. V.B. A dis-
tinctive feature of the method used is that Geurst did not
consider the drift velocity vL as a variable determined
from other quantities, as for example, (5.3), but used it as
a new independent variable responsible for the macro-
scopic dynamics of the VT and obtained the di6'erential
equation for it (see the discussion in Sec. V.A). The start-
ing premise in Geurst s approach is that besides the addi-
tional energy of the system due to the total length of the
vortex tangle (5.7), the energy due to the momentum of
the vortex tangle is added. Thus the differential of the
internal energy is [compare with Eqs. (5.6) and (5.7)j

Eo=pdp+ Tds+pidI.

I 1/2
Vi= (5.28)

The variational principle and the dimensional analysis al-
lowed Geurst, using vL and L„ to express all the intro-
duced quantities and so to close the set of equations. In
particular, the relation for the VT momentum follows:

UI U

Pl =P p, aL' (5.29)

Eqs. (5.4) and (5.11)—(5.14) are generalizations of the
two-fluid model of He II to a three-Quid model. The
third component is the VT.

Further, it is known that the two-velocity hydro-
dynamics is not closed, in the sense that, in this theoreti-
cal approach, the relation between, e.g. , p, /p and v„,
cannot be determined exactly. It can be found only ex-
perimentally or result from the solution of an appropriate
microscopic problem. Gcurst encountered a similar

difhculty. He tried to overcome this problem by using di-
mensional analysis. In particular, he assumed that the
thermodynamic parameters of the VT can be expressed
by the set of introduced variables with the help of a di-
mensionless number, which he called the Vinen number,

+P„d (u„u)+PI d—(uL —u), (5.26)
where /3 is a constant undetermined in this approach.

The chemical potential of the VT is

where P„ is the momentum density of the normal com-
ponent, PI is the momentum density of the vortex tangle,
and U is the average mass velocity. Note that the
coe%cient pL differs from the previously introduced
quantity c&. This difference is due to the inclusion of the
momentum of the VT.

The formulation of the variational principle for He II
turbulent fiows is akin to Lin's (1963). In this method the
set of variables p, S, v„„v is used instead of the usual one,

p, S,v„j. Certainly this change of variables is possible
once the set of equations is available; but it is known that
in the variational method the choice of variables has an
influence on the final form of the resulting equations (see
Zilsel, 1950; Khalatnikov, 1952a; Lin, 1963; Ginzburg
and Sobyanin, 1976). Finally, Geurst obtained six equa-
tions as compared with the five equations of Nemirovskii
and Lebedev (1983) and Yamada et al. (1989). The addi-
tional equation is connected to the momentum of the tan-
gle PL and is

a
Bt I. Bx

UI. PI.
+Pl.

I,I +F„L—
1

rL PL L, (5.27)

where I'„I and I',I are the interaction forces from the
tangle acting on the normal and superAuid components,
respectively. Their sum is not zero, due to the presence
of the momentum of the tangle; rI is the right-hand side
of the VLD evolution equation.

The additional Eq. (5.27) and the previously obtained

BP)
pI Ep (UL v)

=Ey P p IcL iut ui (5.30)

The quantity rL corresponding to the right-hand side of
the VLD evolution equation is

rl =sag(v„u)L i P—~L— (5.31)

where a and p are parameters depending on T and the

q tity

s= sgn(vt —v)sgn(u„—u), (5.32)

which can be equal to + 1 or —1 depending on the direc-
tion of the drifts of the normal component and of the VT
relative to the average mass velocity's being, respectively,
the same or opposite. Finally, the force acting, for exam-
ple, on the superAuid component is

F,L= A L(u„—u) —
, 8 sgn(uL —v)L i (5.33)

Geurst determined the phenomenological coeKcients in
all the obtained relations by comparing his solutions in
the stationary case with the VT parameters calculated by,
Schwarz, as described in Sec. IV.B.

In comparing Geurst's results with those described in
the previous sections, we would like to make a few re-
marks. Concerning the reactive terms, they are close to
those described in Sec. V.B because of the "similarities"
between the phenomenological and variational methods.
The slight differences are due to the corrections related
to the VT momentum taken into account by Geurst.
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These corrections are proportional to (vr —v), which is
due to the special choice of the variational principle. If,
as it is usually done, the superfluid velocity v, had been
used instead of the mass velocity u, then (UI —U) would
be replaced by (UL

—v, ); but according to recent publica-
tions (see, e.g., Donnelly, 1991a), it appears that this is
zero.

The additional term concerning the force acting on the
superAuid component is of special interest because, as
discussed previously, it has opposite signs depending on
the use of the phenomenological or of the kinetic method
to obtain the HST equations. This additional term, as
can be seen from (5.29), has the sign of sin(UI —U); i e.
depending on the direction of the VT drift relative to the
average mass velocity, it can be positive or negative. If
the variational formulation of the problem had been
based on v, instead of v, then the sign of this term would
be underdetermined as vL

=v, .
The following remarks concerning Geurst's derivation

of Vinen's equation from a pure macroscopic hydro-
dynamic analysis will not be out of place: The obtained
result is rather unexpected, as usually it is accepted that
the dynamics of the VT is subject to a microscopic
theory. Let us note, however, that Geurst, had recourse,
as had others, to dimensional analysis. He introduced
the nondimensional parameter Vi (5.28) and developed
some a priori unknown functions in terms of this parame-
ter. As shown before, this does not lead to a unique
derivation of the VI.D L(t) evolution equation. Note
also that the quantity rL (5.31), which is the right-hand
side of the VLD evolution equation, contained an unusu-
al combination, E(U„—U) instead of ~v„, ~, which in turn
results from the selected formulation of the variational
method.

We have shown in this section three different deriva-
tions of the HST equations. These equations are meant
to describe the hydrodynamic processes in He II at veloc-
ities above the critical velocity. As the critical velocities
are very small, most practical problems are in this range.
The solution of these equations describes many cases of
nonstationary hydrodynamic observations. They also
forecast many interesting phenomena that are still to be
discovered.

VI. INTERACTION BETWEEN
SECOND SOUND AND COUNTERFLOW

A. Linear waves

Let us start by looking erst at the problem of interac-
tion between second-sound waves, heat pulses, and a
counterflow including a VT of VLD L (t). The VLD can
depend on time, but the characteristic time of L (t) must
be much larger than the characteristic time of the test
pulse. The study of ST using acoustic methods, primarily
second sound, is the most used, widely applied experi-
mental method.

The main idea is to take advantage of the extra at-
tenuation of second-sound waves resulting from the fric-
tion force due to the interaction between the normal

component and the VT (see Fig. 3). The corresponding
relation for this damping, which is very much larger than
the vicious damping, even for a very small VLD, was ob-
tained by Vinen (1956) and is

I =BaL /6, (6.1)

I k I k k
co=u ~k2~+i ' + + A,

k k

23k —32kk+l
(iu~kry+1)k

E is given in Eqs. (5.9) and (5.10):

PI o ~v~vI or =- +
pspn ps vs

KPI.oI
2pspn

(6.2)

(6.3)

are damping coef5cients in the x and y directions; and

r y
——2P, /(a', u„', ) (6 4)

is the relaxation time of the VT. Other coefticients are
given in the paper by Nemirovskii and Lebedev (1983).
The sign + reAects the difference between the two alter-
native forms of the equations discussed in the previous
section.

The above relation shows that the interaction mecha-
nisms of a second-sound wave and a counterAow are
much richer than it appears only from the additional
damping (6.1) introduced by Vinen. The main difference

where 8 is Hall-Vinen s coefBcient given in Sec. II.A.
The above relation was obtained from the solution of the
set of equations for the propagation of second-sound
waves where the interaction force between the normal
component and the VT, proportional to BL,ov„, was add-
ed. In this approach it was assumed that the vortex tan-
gle is isotropic (this is where the multiplier —, comes from)
and that the value of the VLD is "frozen" equal to I.o.
Equation (6.1), correlating the measured quantity I z
with the VT, is the main relation used for the evalu. ation
of the VLD, L (t). However, a more detailed analysis of
the HST equations, obtained in the previous section,
shows that Vinen's approach is a greatly simplified one.
One of the main simpli6cations is the assumption that L, o
is "frozen. " Indeed, as the second-sound test pulse
changes the value of v„„a corresponding change should
affect L(t). Hence, to the equations for U„, and T used
by Vinen, the equation for the VLD evolution must be
added. Dissipative terms in addition to the Gorter-
Mellink term must also be taken into account. From a
consistent study of this problem by Nemirovskii and Le-
bedev (1983) and Kuznetsov (1991), it appears that the
dispersion law of a monochromatic second-sound wave
5T exp[i (cot —k x —k~y)] propagating in a counterflow
with a VI.D Lo follows the dispersion law co=co(k) given
below,
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occurs when the wave propagates at an angle to the main
flow; i.e., when k, %0. Indeed, in the case of transversal
sound propagation, we have a "pure" extra attenuation
with a decrement I . It should be noted that in view of
(5.10}, I is strictly equal to the Vinen expression I ~
(6.1) only in the stationary case when I. and U„, satisfy
(3.11). Numerical analysis shows that the diff'erence be-

tween I ~ and I ~ is less than 10%%uo smaller than in the
case of a steady counterAow, but depends strongly on the
relation between I. and U„, in transient processes. For-
mally I ~ao when U, —+0, i.e., when the counterAow is

switched off. This, however, is an artifact, as the lineari-
zation procedure breaks down when v, —+O. Neverthe-

less, it can be expected that diminishing U, while keeping
I.o fixed or slowly decreasing leads to an increase (de-

crease for the minus sign) of the damping, i.e., to an ap-
parent, but not real, increase (decrease for the minus

sign) of the VLD. In principle this diff'erence in the sign
of the extra attenuation of the second sound could be
used to determine which one of them is correct. Unfor-
tunately, as this effect is very sma11 compared with the
large experimental scatter, this is hardly possible. The
third term on the right-hand side of (6.2) describes both
damping and dispersion of the second-sound velocity.
This is explained by the modulation of the VLD by U„,

oscillations. The equation of these 5I. modulations has
the character of a relaxation with a characteristic time

rz (6.4). This appears to correspond to the classical case
described by Mandelshtam and Leontovich (1937}.There
theory shows that the propagation of sound is subject to
an additional damping and a dispersion if a relaxation
process of the system exists. Let us note that there are
no VLD modulations for transversal sound, as in Vinen's

equation the absolute value of u„, appears which in the
linear approximation is constant with respect to the wave

amplitude. It is interesting to note that when the wave

vector k is inclined with respect to the longitudinal axis,
then 5v„, is not parallel with respect to k. The following

relation between them exists:

and 8' depend on frequency (scc Scc. II.B}. This effect,
first noticed in sound propagation in rotating bulk helium
and later in the cases of supercritical counterflow (Vidal
et al. , 1971; Vidal, 1972), was explained by Mehl (1974;
see also Sec. II). It brings naturally an additional disper-
sion and dissipation. Studying the kinetics of the
quasiparticle —vortex line interaction, Mehl (1974) as-
sumed that the parameter 8 has an imaginary part F2
which leads to a correction to the velocity of the second
sound,

6u g /u 2
=KB2I Q /6 CO (6.6)

Thus the laws of propagation of axial and transversal
sound are slightly different. In particular, the investiga-
tion of ST using transversal sound is more effective for
the determination of the properties of the equilibrium
VT, i.e., the Gorter-Mellink constant A (T,p) and the
variation of the VLD with v„, . The measured values of
A (T) are shown in Fig. 19. The big differences in the
data of Vinen (1957a) and Ostermeier et al. (1980), al-

though transversal sound was used in both cases, are
worth noting. Tough (1982) suggests that this big
difference can be due to different ST states, TI and TII, in

the two compared cases. The spread of the data on longi-
tudinal sound, considering the variety of factors affecting
the velocity of propagation, is not surprising.

Information on the Gorter-Mellink coeScient, which
contains only the ratio av/P~, is gained from transversal

sound, whereas from data on 1ongitudinal soundings both
coeKcients of Vinen's equation can be obtained. Longi-
tudinal sound experiments are reported in the papers of
Kramers et al. (1960; Kramers, 1965), Ijsselstein et al.
(1979), and de Goeje (1986). The excess attenuation I ~
of the longitudinal second-sound wave and of the disper-
sion Re~ of the second-sound velocity as functions of the
counterfiow velocity u„, is shown in Fig. 20(a) and 20(b).
The kinks of the curves at U„, -2—3 cm/s are due to
transition from TI-TII turbulence structure as explained

5U„ky 1+
k

KpI. O lA37+
+2I + .

p p„ lQ2k7 y+ 1 02k

100

The noncolinearity of the vectors k and 5v„, is due to the
inclination of the sound wave which modulates the values

of the VLD and produces a periodical variation of the
Gorter-Mellink force; this in turn leads to the generation
of secondary waves in the x direction. The inAuence of
the VLD modulations on the additional damping and its
dependence on frequency for a purely longitudina1 sound
wave was considered in many papers (see, e.g., Goeje,
1986). Earlier the question of VLD modulations was dis-

cussed studying intrinsic fluctuations of ST, which are
described in Sec. VIII.

Since the questions of dispersion and extra damping of
second sound in the presence of vortex lines have arisen,
it is necessary to recall that the Hall-Vinen coefficients 8

u&0—E

20— 0
Cl 00 P
o o 0

I ~ l s I ~ I a

FIG. 19. The Gortert-Mellink coe%cient A (T) determined
from second-sound attenuation measurements (Tough, 1982,
Fig. 25). Triangles are from Vinen (1957a); solid circles, from
Kramers et al. (1960); open circles, from Ostermeier et al.
(1980); squares, from Kramers (1965); diamonds, from Ijssel-
stein et al. (1979); stars, from Fiszdon et al. (1991). The solid
line shows A (T) from Schwarz's theory (1978).
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FIG. 20. (a) The excess attenuation of longitudinal second
sound for a pure normal-fluid flow in a circular channel at 1.4 K
(Ijsselstein et al. , 1979). The solid line is computed from Eq.
(6.1). (b) The dispersion of second sound determined simultane-
ously with the attenuation data in (a) (Ijsselstein et al. , 1979).
The solid line corresponds to Eq. (6.7) unifying the dispersion
law {6.2) and Mehl's effect (6.6). {Tough, 1982, Fig. 28.)

by Tough (1982). Without contesting this explanation,
we would like to point out that at least the shape of the
b, u z /u z curve can be explained using the relations
(6.2) —(6.4) resulting from the HST theory. Combining
the dispersion law (6.2) with Mehl's relation (6.6) and as-
suming co~&)&1, we obtain

Au2

u2

2I

CO 'Ty

~B2L
6co

(6.7)

This relation is illustrated by the continuous line in Fig.
20(b). Thus the kink on the excess attenuation curves I i,
and huz/u2 can be explained by the combined efFects as
noted by Mehl and on the VLD modulation. The rela-
tion b,u2/uz ~U„, also agrees with Vidal's (1972) mea-
surement.

The dependence of the damping from the sound fre-
quency and its direction are also given by relations
(6.2)—(6.4). This was confirmed by Goeje's (1986) mea-
surements. The variation of the extra attenuation with
the relative velocity is shown in Fig. 21, where it can be
seen that the curves depending on the frequency branch
off. Unfortunately, it is difticult to determine the 1 &

dependence on the frequency u2k from this curve. Using
similar experimental results and a theoretical analysis
similar to the one described above, Goeje (1986) deduced
the av and Pi, coefficients. It appeared that they are
about 2 times larger than Vinen's. This agrees with
Schwarz and Rozen's measurements for increasing VLD.
Analogous results were obtained by Fiszdon et al.
(1991). Unlike the Leiden group, the authors did not use
monochromatic waves, but followed the dynamics of sin-
gle top hat pulses which, due to dispersion and dissipa-
tion, change appreciably their shape. From the analysis
of the development of the observed pulses, the value of

FIG. 21. All final results for the extra attenuation I &/u2 vs U„

as obtained for the bath temperatures T=1.70 (de Goeje, 1986,
Fig. 5, p. 57). These data show a significant dependence of I &

on the measuring frequency.

2 ( T) and of the coefficients ai„Pv could be deduced. It
can be noticed that the values of the Gorter-Mellink can-
stant obtained from the discrete pulse measurements
differ slightly from the monochromatic wave results and
ar'e closer to Schwarz's theoretical predictions. The
Vinen parameters ai, (and, correspondingly, Pi ), like
Schwarz and Rozen's and de Goeje's, were found to be
1.5 —2.0 larger than Vinen's.

It is interesting that the acoustic method gives the
same ai and Pi values as for the growing vortex tangle.
No special features can be noticed during the slow decay
period. It is possible that this is an indication that the
anornalously slow decay is connected to very small values
of the VLD.

Thus experimental investigations of ST using second
sound together with a theoretical analysis based on the
HST set of equations have brought a wealth of qualitative
and quantitative information concerning the structure
and dynamics of the VT. Taking into account the com-
plexity of the dispersion law (6.2)—(6.5), we can expect
that the possibilities of this research approach are far
from exhausted.

However, there are some acoustical experimental re-
sults that cannot be explained by the dispersion laws
(6.2)—(6.4), and thus they indicate some new VT proper-
ties that do not fit into the Feynman-Vinen theory.

We have already referred to the experiments of Wang
et al. (1987). They measured simultaneously the extra at-
tenuation of second sound in the longitudinal and
transversal directions. The temperature drop along the
channel was also measured. This allowed the authors to
conclude that the VT is strongly anisotropic. Analyzing
the dynamics of the vortex lines, the authors determined
the anisotropy characteristics of the VT and obtained an
expression for the drift of the tangle. This observed an-
isotropy cannot be explained by the dispersion law (6.2),
because at the high frequencies used by Wang et al. the
infiuence of anisotropy on this effect is very small. Thus
the observed phenomena are related to an additional
property of the VT which is not described either by the
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VE or by the HST equations. The variation of the anisot-
ropy coeKcient and on the drift velocity with tempera-
ture is shown in Figs. 10 and 11. This result agrees with
Schwarz's (1988) numerical results, also shown in these
figures. The anisotropy of the VT is of fundamental im-
portance to the entire phenomenological theory of ST
and would change appreciably Vinen's equation. More-
over, in this case the conception of the vortex line density
I. must be totally modified and would very likely have a
tensor structure. Wang et al. reported also that neither
the anisotropy nor the drift velocity depended on the
counterAow velocity. The independence of the degree of
anisotropy on the value of the velocity U„, is quite unex-
pected. Indeed, the counterAow velocity v„„which is
here apparently an external applied field, is the only
cause of anisOtrOp. Hence it would be appropriate to
expect that, as, for example, in magnets, the degree of an-

isotropy should depend on the applied external field. The
observed independence of the degree of anisotropy im-

plies possibly that the isotropic VT becomes anisotropic
under the inhuence of a small counterAow velocity U„„
i.e., the isoiropic state is unstable. Thus a small change
in the direction of the counterAow velocity could produce
a change in the direction of polarization of the tangle.

Nor can the acoustic measurements of the VLD made
by Ostermeier et al. (1978) be explained by the HST
theory or the Feynman-Vinen model. The authors used
the second-sound burst technique and obtained extra at-
tenuation I t, which, according to (6.1), is proportional to
the VLD I. as shown in Fig. 22. The results show some
disagreement with Eq. (3.11). This result strongly con-
tradicts the Feynman-Vinen theory. The authors also re-
ported a strong nonuniformity of the VLD along the
channel. This was refuted by Henberger and Tough
(1982), who did not notice any nonuniformity of the VLD
distribution in the channel. It is probably connected to
the inAuence of the boundaries on the processes of gen-
eration of vortex lines.

B. Nonlinear second sound

There are only a few results on the interaction of non-
linear second-sound waves with ST, and we shall describe
them briefly now. The physics of nonlinear phenomena
is much richer and diverse than that of the linear ones.
This broadens greatly the possibilities of its use as a
probe of the VT. The properties of nonlinear sound
waves in He II are described in Nemirovskii s (1990) re-
view, in which a number of examples about the use of
nonlinear efFects to study superAuid properties is given.
For example, Goldner et al. (1991) made use of such
effects to measure the Kapitza resistance (see also Tsoi
and Nemirovskii, 1980). As reported earlier by Khalatni-
kov (1965), data on nonlinear wave experiments permit-
ted the determination of some thermodynamic quantities,
in particular, their dependence on the counterAow veloci-
ty. Investigations of higher-intensity perturbations such
as shock waves led Liepmann and Laguna (1984) and
Cummings et al. (1978) to the conjecture that vortex
lines can be generated by second-sound waves and shock
waves of finite amplitude. One of the main advantages of
this approach is that the velocity of nonlinear waves, and
of shock waves, depends on their amplitude. The change
of the wave amplitude, caused, for example, by extra at-
tenuation, produces a change in the time of Bight of the
signals. This allows the determination of the wave ampli-
tude variations with higher accuracy than by their direct
measure.

The difhculties are thus transferred to the theoretical
part, where the corresponding efFects can be calculated.
This will be demonstrated by solving the problem of
propagation of a transversal nonlinear second-sound
pulse or wave in a counter6ow (Nemirovskii and Le-
bedev, 1983).

The nonlinear analysis of the second-order HST equa-
tions results in the following relation for the dynamics of
the nonlinear wave,

BU BU,
+[a~i,(T)v, +u2] = —I i,u,

Bt Bg
(6.8)

)0-4 ~ 'f I ~ Tll
(see the notation in the previous section); aK&( T) is the
Khalatnikov (1965) nonlinearity coefficient. Equation
(6.8) can be solved using the method of characteristics.

One of the results that can be used in the evaluation of
experiments is the relation between the time of Qight t„
of the shock front and I i and I o from the relation (6.1).

Integrating (6.8) yields

10
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50 CfD

25.Qcrn
40.Q cfog
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FICy. 22. I z/uzg vs Q at 1.45 K for four positions down the
channel (Ostermeier et al. , 1978, Fig. 2). Solid lines are ob-
tained from corrections of VE (3.8) due to the size of the chan-
nel using a fitting procedure.

'a
[u2+ —,'az„(T)5U, (t)e ']dt =ys,

0
(6.9)

where 5U, (t) is the value of the superAuid velocity at the
shock front, which can also be calculated from (6.8), and

yz is the distance between the emitter and receiver of the
second-sound pulse. Thus, as expected, the experimental
study of the VT using nonlinear sound (shock waves) re-
moves the difBculty connected to measuring the pulse
amplitudes.
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Vll. VORTICES IN INTENSE AND
MODERATE SECOND-SOUND PULSES

A. Generation of vortex lines by second-sound pulses
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Although the use of second-sound waves, described in
the previous section, to study ST is widely applied, it is
not very informative in studies of macroscopic VT dy-
namics. Indeed, as shown by the dispersion law (6.2), its
dynamics is rejected only in the relaxation time ~&.
Moreover, the corresponding effects appear as correc-
tions to the additional damping (6.1) containing informa-
tion only on the value of the VLD and not on its dynam-
ics. This is due to the linearization of the HST equations,
i.e., to the study of only small perturbations of the equi-
librium state. The situation changes greatly when one in-
vestigates He II Aows with large variations of the VLD,
5L-L. The resulting vortex tangle affects greatly the
Bow that contributed to its existence, and it is necessary
to account for their interaction in the first approxima-
tion. This occurs when moderate and long enough heat
pulses propagate through He II.

Although ST has been observed and studied for about
30 years, the investigation of ST generated by strong heat
pulses up to 100 W/cm and microsecond duration is
fairly recent. In spite of the fact that a very large num-
ber of investigations were concerned with counterfiow ve-
locities of the order of a fraction of 1 cm s ', researchers
studying intense second-sound waves with counterAow
velocities of the order up to 1 m s ' did not mention at
all the problem of generation of quantized vortices (see,
e.g., Osborne, 1951; Dessler and Fairbank, 1956; Kitaba-
take and Sawada, 1978; Mezhov-Deglin et al. , 1980;
Lutset et aI. , 1981; Atkin and Fox, 1983; see also the
books of Khalatnikov, 1965; Wilks, 1967; and Putter-
man, 1974). Now it is obvious that the disagreements
were due to the very short duration of the pulses, which
were too short to generate a VT which is strong enough
to inAuence the waves that generated them. Moreover, in
the nonlinear wave theory of He II there exist many com-
plications that overshadow the vortex-generating phe-
nomena, considering them nonessential. In the review
paper of Liepmann and Laguna (1984) concerned with
nonlinear pulses and second-sound shock waves, sys-
tematic deviations from the theoretical predictions that
led to the idea of breakdown of superAuidity and forma-
tion of vortices in nonstationary conditions are con-
sidered. One of the first results on the dynamics of in-
tense second-sound waves, where a strong disagreement
with the theory of nonlinear waves and generation of ST
was suggested, was described in the paper of Cummings
et al. (1978), and the variation of the second-sound veloc-
ity with the pulse intensity was obtained. Their results
are reproduced in Fig. 23. The theoretical calculations of
Lutset et al. (1981) using the two-Quid vortexless model
are shown by the dashed line in this figure. It can be seen
that at heat Auxes exceeding —15 W cm, there is a
strong disagreement between the measured and calculat-

0

FIG. 23. Experimental measurements of the velocity of the
nonlinear second-sound wave, shown by circles (Cummings
et al. , 1978), and theoretical calculations, shown by dashed
lines (Lutset et al. , 1981), based on vortexless equations of hy-

drodynamics of He II.

ed velocities. The observed differences depend on the
temperature and change sign at T-=1.85 K, i.e., at the
point where the nonlinearity coeKcient a~h( T) also
changes sign (see Sec. VI.B). This can be explained by
additional reduction of the wave amplitude and, conse-
quently, to the appearance of a vortex structure.

Turner (1979, 1983) drew similar conclusions from his
observations on periodic rectangular pulses. He noticed
strong distortions of the output signals, illustrated in Fig.
24, with an increase in the pulse amplitude. The distor-
tions could not be explained by the usual nonlinear
theory. Increasing further the input power, he also ob-
served a limiting profile independent of the input (see
Fig. 24). Between other explanations of his observations,
Turner indicated the existence of an intrinsic critical ve-
locity.

The described observations were an indirect indication
that propagation of strong heat pulses lead to the appear-
ance of vortices. It should be noted that the above re-
sults were interpreted as in classical gas dynamics, that
the perturbations of curved shock fronts produce vor-
tices. Nemirovskii and Tsoi (1982) undertook a direct
check of these suppositions. In their experiments the au-
thors sounded the wake of the main heat pulse by a trans-
verse second-sound test pulse that was also nonlinear. As
shown in Sec. VI.B, the time of Aight of a nonlinear pulse
propagating through a VT depends on the VLD L. The

f [ms]

FIG. 24. sects of heater power on the shock pulse profile
[Turner, 1983, Fig. 4(d)]. Arrows indicate the change in profile
with increasing heater power. There is a limiting profile which
does not change with a further increase in the input power.
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difFerences in the times of Qight of test pulses propagating
in the unperturbed helium and after the passage of a
main heat pulse are shown in Fig. 25. The asymptotic
value of about 60 ps corresponds to the difFerence in the
time of Qight of the linear and the nonlinear wave. As
can be seen in the figure, the main pulses of amplitude

Q ~ 30 Wcm and duration r) 100 ms reduce the am-
plitude of the test pulse practically to zero.

It can be noticed further that, independently of the in-

put power, very short main pulses do not afFect the time
of Qight of the test pulse, which implies that the duration
of the main pulse is as important as its amplitude for the
formation of vortices. Hence the vortex tangle does not
develop at the shock front but behind it during the heat-
ing time tH, when the relative velocity U„, still exists.
This agrees with Vinen's conceptions. Moreover, the or-
der of magnitude of the time of generation of a vortex
structure tv agrees with Eq. (3.15). From the same mea-
surements, it appeared that the decay of ST also agrees
roughly with Vinen's theory.

Similar experiments were conducted by Torczynski
(1984b) using a longitudinal test pulse identical to the
main pulse. The distortion of the test pulse that follows
the main pulse depending on the rest time between pulses
is shown in Fig. 26. This observation demonstrates clear-
ly the appearance of the VT. However, in this experi-
mental setup, it cannot be determined where, along the
channel, vortices are formed. Torczynski asserts that the
distortion occurs close to the heater. This assertion is
based on a previous experiment on converging spherical
second-sound waves (Torczynski, 1984a). Let us note
that in the above-cited experiments of Nemirovskii and
Tsoi (1982), the test pulse was located fairly far from the
heater, which shows the possibility of vorticity genera-
tion in the volume but not necessarily close to the heater.
Barenghi (1982) arrived at similar conclusions. His ex-
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FIG. 26. Decreasing the separation time enhances degradation
of the How behind the successive shock front (Torczynski,
1984b, Fig. 3). The wave forms shown are the initial shock
(highest trace) and successive shock with separation times of 20,
10, 5, 2, 1, 0.5, and 0.2 sec. The distance to the heater is 7.2 cm.

periments, made using second-sound attenuation, allowed
him to conclude that the vortex tangle can be created by
shock waves, and the velocity at which the initiation of
vorticity is propagated is the velocity of these shock
waves.

In other experiments, which also indicated the genera-
tion of a VT under the inQuence of short intense heat
pulses, boiling of He II was observed. From the stand-
point of the vortexless two-Quid model even at very
strong heat pulses up to 100 %'cm, the temperature
perturbation 5T is not higher than 5T-0.05—0. 1 K (see
Khalatnikov, 1965 and Putterman, 1974). This may turn
out to be insufhcient to reach even the "He II—vapor"
equilibrium curve in p-T coordinates, whereas it is known
that considerable superheating is required for boiling us-

ing pulse heating (see Kraft, 1978 and Rybarcyk and
Tough, 1980). Some results of experiments on nonsta-
tionary boiling of He II are shown in Fig. 27. The curve
marked "VS" shows van Sciver's (1979) measurements at
moderate heat fluxes, Q ~4 Wcm, of top hat form.
Van Sciver proposed the following relation for the time
necessary for boiling to start,

ra =&vsQ (7.1)

@ —3Q
Qo

~ —60
a -80
e -100
D -200
@ -500
+ -MOOG

!.
6 8 &0 m so IO 60 80)DO

Q L&&cm-~]

FIG. 25. Differences in the times of Aight of the test signal
propagating through undisturbed He II and through a wake
behind the heat pulses of duration tH and amplitude Q (Tsoi,
1987, Fig. 22).

where Bvs depends on the temperature (e.g. , for T=1.8
K, Bvs=110 W scm ). Tsoi and. Lutset (1986) used
higher-intensity pulses and suggested for t& the following
relation (curve TL in Fig. 27),

(7.2)

where BT~ =0.05 W scm . Vinen's (3.15) curve for the
vortex formation time is also shown in Fig. 27 (curve V).

The relation between the boiling and vortex formation
processes is clearly seen in Fig. 27, removing thus the
disagreement between Eqs. (7.1) and (7.2). Indeed, in
these two difFerent experiments the states of the VT with
reference to the equilibrium VLD were quite di6'erent,

and this explains the difFerence in relations (7.1) and (7.2).
He II boiling at intense heat pulses was also observed by
Miklayev et al. (1987), Sydyganov and Kluchnikov
(1988), Ametistov (1988), Ruppert et at. (1987), and
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Some information concerning the interaction between
the different processes involved in the dynamics of the
heat pulse can be gained from the solution of the problem
in the case of a low level of the VLD (Nemirovskii, 1986).
In this case the problem is similar to the problem of
propagation of a nonlinear heat pulse through a VT [see
Sec. IV.B, Eq. (6.8)j. The main difFerence is in the right-
hand side of Eq. (6.8), where I"

U, should be replaced by
ALu„A =Kp /2p, p„, and L obeys Vinen's equation
(5.4). In addition, the variation of the temperature 5T
consists of the usual acoustic part 5T(u, ) and a correc-
tion 6T~ due to the presence of vortices,

10 s I I I I

0,01 0.1 1 10 100
Hept f [Ux f4' q~-~]

FIG. 27. Boiling time tz as a function of applied heat Aux

(Nemirovskii and Tsoi, 1989, Fig. 5). Curve VS, obtained in ex-
periments of van Sciver (1979), corresponds to Eq. (7.1). Curve
TL is from the experiments of Tsoi and Lutset (1986). Vinen's

curve V corresponds to Eq. {3.15).

5T=5T(U, )+5T~ . (7.3)

Vs Bv
+a~„(T)U, -= —ALU, .

Bt X

The temperature variation of the wave is hence

(7.4)

In the system of coordinates moving with the second-
sound velocity u2 in the x direction,

Danil'chenko and Poroshin (1983). The experiments de-
scribed above proved that intense heating of He II leads
very rapidly to the development of a vortex structure
which changes essentially the hydrodynamic properties
of He II.

Somewhat unexpected were the observations of Carey
et al. (1978), Schwarz and Smith (1981), and Milliken
et al. (1982) on the VT generated by high-intensity ul-

trasonic beams. Indeed, in the case of first sound, v„, =0;
and it may appear that there is no reason to initiate a VT.
A possible explanation is that high-intense first-sound
waves transform into second-sound ones due to nonlinear
efFects (Pokrovskii and Khalatnikov, 1976; Putterman
and Garret, 1977; Nemirovskii, 1990). As shown by Kot-
subo and Swift (1989), a secondary harmonic second
sound leads to the initiation of a VT in the normal way
due to the existence of a counterQow velocity v„,.

B. Propagation of moderate second-sound pulses
interacting with the vortices they generated

To avoid confusion we would like to clarify our termi-
nology concerning the intensity of the perturbations we
are studying. We shall understand as "moderate" pertur-
bations of such intensity and duration that will not lead
to phase changes, i.e., evaporation of He II or transition
to He I, but cannot be described by the linear approxima-
tion.

The results described in the previous section were pri-
marily qualitative. Quantitative theoretical and experi-
mental investigations of the dynamics of moderate heat
pulses generating vortices and interacting with their
"own" vortices started in the second half of the eighties.
Theoretical considerations were based on the HST, with
parameters obtained from corresponding experiments us-

ing a fitting procedure.

5T =5T(U, )+ J AU, L dt' . (7.5)

IV

FIG. 28. Schematic of the distortion of the temperature pulse
due to the interaction with is "own '" vortex lines (Nemirovskii
and Schmidt, 1990, Fig. 7). The dashed line represents the vor-
texless case when the pulse should be a '*Burgers" triangle.

The temperature variation 5T is shown schematically
in Fig. 28 for the case of an applied rectangular heat
pulse of duration t~. The acoustical part, 5T(v, ), is the
familiar Burgers triangle, which is the asymptotic solu-
tion for a nonlinear traveling wave. The heat pulse can
be divided into four parts corresponding to different
stages. At the second stage, when the vortices are
formed during the time elapsed from the start of the
pulse, the quantity LV, reaches a maximum and the
right-hand side of (7.4) becomes large, leading to a break
observed in many experiments described in the previous
section. At the third stage, although I. is large but as v,
is small, the left-hand side of (7.4) is small and the curve
again approaches the Burgers triangle. At the fourth
stage, where formally the pulse is over, the temperature
perturbation 5T has not disappeared, as in the vortexless
case. This temperature increase is related to two mecha-
nisms; one is the dissipation of energy connected to the
decay of the VT, and the other is more subtle. As the
right-hand sides of the equations of motion are not zero,
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FIG. 29. Measured temperature evolution as a function of time
for different heating times tI, at a distance of 0.S4 cm from the
heater (Fiszdon et al. , 1990, Fig. 7).

the wave cannot be represented by a simple Riemann in-
variant traveling to the right along the x axis. Inevitably
there appear some reAections causing the appearance of
some velocity v, and temperature 5T perturbations after
the heat pulse has been switched ofF. However, as during
its propagation the pulse decays, the maximum of the
temperature occurs at the heater. This leads to the typi-
cal overshoot, to be described later, observed in many ex-
periments, This temperature increase at the heater may
lead to a boiling of He II there.

At first the difFerence between the total 6T and the
acoustical 5T(U, ) at the leading edge is surprising [see
Eq. (7.5)]. Indeed, at the first instant, after switching the
pulse on, the vortices do not have enough time to be ini-
tiated, and it would be expected that there should be no
difference whatever from the Burgers triangle. However,
Eq. (7.4) has a nonlinear term on the left-hand side,
a~h(T)U, Bv, IBx, which describes the transfer of pertur-
bations inside the pulse; in particular, this term is respon-
sible for the transfer of the deficiency of the velocity U,

appearing in the central part of the front of the pulse.
Recalling now that the velocity of the shock wave de-
pends on the amplitude of the jump (see, e.g. , Khalatni-
kov, 1965), we can state that a pulse generating vortices
will move somewhat slower [or faster if aK„(T) (0]. Es-
timates based on the solution of (7.4) are in good agree-
ment with the experiments of Cummings et al. (1978).

Although the above considerations confirm the vortex
nature of a number of experimental effects, they are not
fully satisfactory from the quantitative point of view. It
is understandable that, due to the complexity of the set of
the main equations, it is necessary to use numerical
methods to obtain better approximations.

Results of a detailed experimental and numerical study
of the temporal and spacial evolution of a moderate heat
pulse in a wide channel are described in the papers of v.
Schwerdtner (1988), v. Schwerdtner et al. (1989c),
Stamm et al. (1989), Fiszdon and v. Schwerdtner (1989),
and Fiszdon et al. (1990).

Examples of the evolution of an initially rectangular
heat pulse depending on the perturbation parameters are
shown in Fig. 29 for different heating times, tH, and in
Fig. 30 at different distances, d, from the heater. The dis-
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FIG. 30. InAuence of distance d from heater on the tempera-
ture evolution (Fiszdon et al. , 1990, Fig. Sa). The heat Aux was
S W/cm and pulse duration was 1 ms; T= 1.4 K.

tinguishing feature of these results is the existence of a
temperature overshoot, which appears close to the heater
and can be many times larger than the shock-wave ampli-
tude. The initial stages qualitatively agree with the previ-
ously described semiqualitative analysis. The strong
dependence of the overshoot on the rest time tz is related
to the generated VLD, as for small tz there is not enough
time for decay and hence the initial VLD, before the next
pulse starts, is larger, leading to a reduction of the veloci-
ty and heat accumulation close to the heater.

Numerical calculations performed using the full set of
HST equations up to the second order and the Vinen
coefficients are described in Fiszdon et al. (1988) and
Noack and Fiszdon (1990). Numerical calculations were
also performed by Gentile and Pakleza (1986) and Pak-
leza and Poppe (1989). This method allowed the investi-
gation of the infiuence of many factors which otherwise
could not have been done. It was found that the in-
clusion of the additional term proposed by Vinen as ini-
tiating the VLD evolution is not effective enough. The
best results were obtained when an initial VLD Lo was
assumed. This also confirmed the superiority of the ex-
perimental procedure of multiple-pulse releases at can-
stant time intervals to arrive at steady periodic test con-
ditions. When only the initial value of the VLD was used
as a fitting parameter, a very good qualitative agreement
and a fair quantitative agreement between the experimen-
tal and the numerical results were obtained. A number
of examples are shown in Fiszdon and v. Schwerdtner
(1989) and Fiszdon et al. (1990). The numerical method
using experimental data wherever necessary also allowed
us to obtain the spatiotemporal evolution of the tempera-
ture, counterAow velocity, and VLD, as illustrated in Fig.
31, which shows the interrelated complex processes
caused by a heat pulse in a one-dimensional large chan-
nel, i.e., with boundary efFects neglected.

The variation of the counterAow velocity at a certain
distance from the heater was measured experimentally
(see v. Schwerdtner et al. , 1989c) using a specially de-
vised second-sound anemometer based on the entrain-
ment, Doppler, effect (see, e.g., Khalatnikov, 1956). An
example of the measurements taken at a distance 0.54 cm
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order deviations from the equilibrium state. This ap
proach requires the knowledge of the dependence of the
thermodynamic variables on v„» which is known up to
first order only (Khalatnikov, 1965). The authors used
this first-order dependence, and their results agree quali-
tatively with those described previously.

Dresner (1982) used a special method to study the dy-
namics of heat Auxes in superfIIuid turbulent He II. He
proposed using the Gorter-Mellink law (3.1) in a similar
way as the Fourier law, Q-V'T, in the heat transfer
problem. But in this case the coeKcient of heat conduc-
tivity should be considered as a function of the tempera-
ture gradient V T. The energy conservation law leads in
our case to a nonlinear heat transfer equation,

(7.6)

w

FIG. 31. Evolution of vortex line density I., temperature in-
crease T, and counterAow velocity U„, in time and space, due to
a second-sound pulse generated at x=0 and t=0, for a bath
temperature of 1.4 K and an initial vortex line density of
3 X 10 /cm (Fiszdon and v. Schwerdtner, 1989, Fig. 1).

from the heater is shown in Fig. 32. The straight line
corresponds to the value U„, =Q/p, ST. At higher heat
fIuxes the differences between the measured and theoreti-
cal curves are large, which corresponds to a higher level
of the VLD. The difFerences at lower heat fiuxes Q are
small; but this may also be due to the short pulse dura-
tion and hence correspond to the vortexless case.

Besides the previously cited numerical calculations,
Murakami and Iwashita (1990, 1991) have, unlike others,
solved the full set of the HST equations without imposing
counterfIow conditions or limiting themselves to second-

't20, -

80
E
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where the constant A, is connected to the Gorter-Mellink
relation (3.1). The above equation can be obtained
from the HST equations, making some substantial
simplifications; in particular, it is valid close to equilibri-
um. It is interesting to note that for stepwise impulses
below 1 VVcm, in cavities of simple geometric shapes
and for large enough times, the results of calculations are
very close to those obtained from the solution of the full
system of equations (see Nemirovskii et al. , 1992) and
obviously can be used in applied problems.

To gain some additional insight into the process of
evolution and generation of the VT, a series of experi-
ments were conducted with converging cylindrical
second-sound waves generated on the inner surface of a
short cylindrical segment (Poppe et al. , 1992; Stamm
and Fiszdon, 1992; Stamm et al. , - 1992; Fiszdon et al. ,
1994). In this "geometry" the attenuation of the pulses
due to the induced vortex tangle is partly compensated
by the increase of the amplitudes of the hydro-
thermodynamic parameters involved. An example of a
measured temporal and spacial evolution of the VLD is
shown in Fig. 33. The large increase of the VLD, at the
center, of the order of 10 cm is remarkable. This re-
sult once more proves that the generation of the VLD
takes place in the bulk of the liquid. Moreover, the ex-
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FIG. 32. Measurements of the counterAow velocity U„, at a dis-
tance of 5 mm from the heater for various rest times t& (v.
Schwerdtner et al. , 1989b, Fig. 10). The pulse duration was 0.5
ms. The straight line corresponds to the usually used relation
u„, =Q/p, crT, T=1.4 K.

FIG. 33. Converging cylindrical wave (Stamm and Fiszdon,
1992, Fig. 4b). Measured spatial and temporal evolution of the
VLD for rest times ts =0.5 s. Heat flux Q was 3 W/cm and
pulse duration tH was 1 ms; T=1.4 K.
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tremely high VLD close to the axis of the cylinder, in
conjunction with the zero counterflow velocity there,
creates conditions of extreme nonequilibrium, which
poses, in these cases, the question of applicability of the
HST and VE model used.

To assess the inAuence of boundaries and sudden chan-
nel cross-section changes, numerical simulations of two-
dimensional counter Aows in simple geometries were
made (Fiszdon et al. , 1992). They indicated that the
inAuence of the boundary layer does affect appreciably
the VLD distribution and the counterAow velocity field
in the channel, but its effect on the temperature is very
small. The efFect of a sudden change of the cross section
is much more important; it strongly affects all Aow pa-
rameters and can generate their Auctuation in time and
oscillations in space. However, the assumption concern-
ing the existence of counterAow conditions except in
plane, axial, or spherical cases can be questioned, as
shown by Vogel and Fiszdon (1990); but as it appears
from the only known numerical studies of Poppe et al.
(1992), except very close to a geometrical singularity
(e.g. , a corner), the error made through the assumption of
counterAow is negligible.

The cases described above of propagation of heat
pulses in He II illustrate some important effects of
superAuid turbulence and are valuable in the interpreta-
tion of experimental observations and possible cryogenic
applications.

In Secs. III.B, IV.A, and IV.C, we described some
difhculties and doubts concerning the proper form of the
VLD evolution equations. It would appear that the good
agreement between experiments and calculations
confirms the usefulness of the evolution equations for the
VLD according to Vinen's equation (3.8).

However, we would like to question this point of view,
as the above-described solutions of the HST equations
the specific properties of Vinen's equation (3.8) are not
conspicuous. In the investigations of the dynamics of
strong heat pulses, the first term of the mutual friction
force KLU„, [see Eq. (5.14)] has the greatest inAuence on
the dynamics of the pulse. However, this term describes
the friction force of a "frozen" tangle which obviously
does not depend on the form of the dynamic equation for
the VLD. In particular, it remains exactly the same if,
instead of Vinen's equation (3.8), we use the alternative
equation (3.10). The behavior of the VLD I. (t), as al-

ready mentioned, is also not sensitive to the form of the
equation. Hence the dynamics of the pulse can be equal-
ly well described using (3.8) or (3.10). This argumenta-
tion is strengthened if we take into account that, in the
heat-pulse calculations, the fitting procedure of the pa-
rameter and coefficients is widely used. Therefore it is
impossible to select the proper form of the evolution
equation for the VLD L (t) from the heat-pulse evolution
investigations. For the same reasons, the usual experi-
ments on heat-pulse dynamics do not allow us to select
the proper sign of the dry-friction term (Secs. V.B and
V.C) or to clarify which interpretation is more truthful.

Finally, the noted agreement between theory and ex-
periment cannot be considered as a confirmation of the
VLD evolution equation (3.8). Moreover, the reported
results on the dynamics of heat pulses introduce addi-
tional complications in the interpretation of the experi-
ments confirming Vinen's equation as described in Secs.
III.B and IV.C. Indeed, in the evaluation of these experi-
ments it was assumed that the velocity v„, is constant,
during the whole process, equal to its value at the heater.
But the results described in the present section show the
contrary. As can be seen in Figs. 31 and 32, the varia-
tions of the counterAow velocity in time and space are
very large. This results from the mutual inAuence of the
VT on the motion that produced it. Obviously, it is inad-
missible to neglect this effect and assume v„, =const, un-

less this is confirmed by the solution of the full HST
equations.

Finally, we would like to comment briefly on "a long-

standing puzzle to which the answer remains incom-
plete" (McClintock, 1994), i.e., "the mechanism by which
quantized vortices can be treated in He II." There are
various theories that can be divided into two groups.
The first group offers different mechanisms of initial gen-
eration of vortices, for example, tunneling, fluctuations,
etc. Another group of the theories is based on the idea
that in superAuid helium there exists permanently some
background of remnant vortices. From the standpoint of
the phenomenological theories, the former group sup-
ports the necessity of introducing the additional initiat-
ing term in Vinen's equation. In turn, the latter group
accepts the assumption of the existence of an initial VLD
whose evolution is described by Vinen's equation.

As noted previously, a better agreement between ex-
perimental data on the propagation of intense heat pulses
and numerical solutions of HST was obtained with the
assumption of the existence of an initial level of VLD,
i.e., Lo, whereas the introduction of an initiating term led
to an unsatisfactory correlation with experimental obser-
vations. Thus it may be surmised that this is some
confirmation of the theory of remnant vortices.

This example showed that an experiment based on a
phenomenological theory may allow us to draw an im-
portant conclusion concerning the subtle microscopic dy-
namics of quantum vortices.

Vill. OTHER DYNAMICAL PHENOMENA

First of all we would like to say what is meant by other
dynamic phenomena. From what was written in Secs. VI
and VII, it can be noted that the mutual interaction be-
tween the ST and the Aow of He II, and vice versa, leads
to a multitude of phenomena. However, basically, these
phenomena are mainly related to the existence of a mutu-
al friction force. But there exist a number of cases when
it is necessary to take into account other effects contained
in the HST equations (5.4) and (5.11)—(5.14). There are
also experimental research results that can be explained
only partially by the solutions of the HST equations. Fi-
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nally, there are research results on unsteady ST that can-
not be explained at all by the HST equations. In this sec-
tion we would like to discuss some relevant cases.

A. Intrinsic fluctuations

Already in the early stages of ST research the follow-
ing question arose. As we are dealing with stochastic
processes, ST must be accompanied by developed Auctua-
tions. In turn, the study of these Auctuations must yield
extensive information on ST alike, e.g., the analysis of the
spectrum of the velocity pulsations in classical turbulence
helps to understand subtle dynamic processes.

There are many papers devoted to Auctuations in He II
(Tough, 1982; Donnelly, 1991a). Regretfully, these stud-
ies have so far, not introduced much clarity in the under-
standing of the stochastic dynamics of the vortex lines.
We think that certain contradictions in the available data
and in their interpretation are connected to the larger
number of degrees of freedom in ST, as compared with
classical turbulence. In ST, not only can disturbances of
the relative velocity 6v„, and of the VLD, 5L be an addi-
tional source of the observed Auctuations, but also, in
some experimental setups, the resulting discreteness of
the vortex lines can be a source.

Although the coexistence of VLD, I.(r, t) and relative
velocity v„,(r, t) introduces additional complications, in

principle, as discussed below, the process can be under-
stood in the frame of the HST theory, which allows us to
connect various Auctuating quantities, e.g., 5L and 5v„,.

Unlike the case of averaged velocities, in experiments
where Auctuations connected to the chaotic motion of
the discrete vortex lines are observed, they cannot be ex-
plained by the "averaged" macroscopic equations of
HST. They are more closely connected to the microscop-
ic description of the vortex line dynamics and, from this
point of view, are informative and useful. There exist a
variety of methods for investigating Auctuating processes,
such as mechanical probes, ion probes, second- and first-
sound probes or measurements of variations of tempera-
ture and chemical potential, TT and 7'p, in a counterAow
and for arbitrary velocity ratios.

Allen et al. (1965) and Griffiths et al. (1964, 1966)
have used mechanical probes. In a series of experiments,
they measured the random displacement of a quartz fiber
with a small bob at the end. They found that the mean-
square displacement ( ( x ) )

'~ grows linearly with the
heat Aux. To explain their observations, Allen et al.
made qualitative estimates. They checked two possible
mechanisms leading to the deAection of the fiber, due ei-
ther to the jolts by the normal Auctuating component or
to the entrainment of the fiber by the quantized vortex
lines. They checked a few parameters such as the aver-
age deflection, period of Auctuations, and so on. Al-
though a comparison of the orders of magnitude showed
that both mechanisms gave similar contributions to the
values of both parameters, the authors concluded that
the fluctuations are due primarily to the turbulence of the

normal component.
Other experimental measurements consisted of

measuring the response of the fiber to short ( —5 ms) heat
pulses which were either superimposed on a steady heat
Aux or applied in a quiescent helium bath. The results
were evaluated quantitatively, introducing a persistence
quantity p determined from a series of responses with
amplitudes o,'„by the relation

p =pa„a„+, ga„. (8.1)

The quantity p can be considered as a correlation func-
tion. The measurements of the variation of p with the
heat Aux are shown in Fig. 34. The decrease of the per-
sistence may be related to the process of pinning and de-
pinning of vortex lines.

The author's interpretation of the results is that,
without Aow or in the presence of very small flow veloci-
ties, the fiber captures a single vortex line which pro-
duces a certain stiffness of the fiber —vortex line system.
The heat pulses excite and deAect the fiber in a practical-
ly deterministic way which results in a "stiff" correlation,
p =1. For large heat Auxes, VLD is large; many vortex
lines are captured; and they are randomly released, weak-
ening, accordingly, the correlation. Piotrovski and
Tough (1978) conducted a similar experiment using a
small paddle as a mechanical probe. The highly sensitive
SQUID technique (superconducting quantum interfer-
ence device) was used to measure the paddle deflection
with an accuracy of a few angstroms. The resonance fre-
quency of the system, paddle, and spring support was
also varied. In Fig. 35 the measured mean-square dis-
placement of the paddle as a function of the heat Aux is
shown. The relation between (x ) and v„, is explained

by the response of the system to a random external force
with an exponential decay

(x'& =S,e (8.2)
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FIG. 34. Persistence p, Eq. (8.1), of the circulation trapped on
the fiber (Tough, 1982, Fig. 34a; Allen et al. , 1965).

where ri, is the relation time of the tangle (6.4). Using a
fitting parameter, the authors concluded that Pi, in
Vinen's equation must be about 0.04X10, which is
close to gP' obtained by Vinen (see Sec. III.B) from free-
decay experiments.

Fluctuations in ST were also measured using second-
sound probes. The Auctuations in the decay of second-
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FIG. 35. Mean-square displacement of a "paddle" immersed in
a turbulent counterAow as a function of the relative velocity for
several temperatures (Tough, 1982, Fig. 35; Piotrovskii and
Tough, 1978). The solid line is calculated from the exponential
power spectral density, Eq. {8.2), with the fitting parameter ~&.

sound signals can be expressed by VLD Auctuations ac-
cording to Eq. (6.1) [see Mantese et al. (1977) and Oster-
meiser et al. (1980)]. In these experiments, attention was
focused on the spectral density (5L (co)ol. (

—~) ) and its
dependence on the counterAow velocity and frequency.
The results principally agreed with each other and can be
explained using Vinen's equation (see Northby, 1978).
Barenghi et al. (1982) finally solved this problem by com-
paring the observed Auctuations with the forced oscilla-
tions of the steady counterAow produced by applied
second-sound random modulations. They showed that
the spectral density of the VLD SL (~) is related to the
spectral density of the noise Si,(co) by the relation which
can be derived from the dispersion law (6.2),

Lo Sv(co)
Sl (co)=4

1+(cur i, )

A comparison of experimental results with those deduced
from (8.3) is shown in Fig. 36, which illustrates the VLD
spectrum SI (co) at Si (co) =const, co/2m & 100 Hz. The
continuous curve corresponds to (8.3) with Pv=0. 19,
which is closer to the value of PP obtained by Vinen (see
Sec. III.A) for increasing VLD. Some disagreements
with (8.3) occur at large co, where, from experiments,
SI (co) =co " and n can reach values of up to n=4.

Hoch et al. (1975) and Sitton and Moss (1972) also

measured Auctuations using ion currents. The general
picture becomes complicated by the processes of interac-
tion of the ions with the vortex lines, which creates
difhculties in the interpretation of experimental data.

In the mid eighties Tough and co-authors made a
series of experimental studies of Auctuations in ST
(Lorenson et al. , 1985; Griswold and Tough, 1987;
Griswold et al. , 1987; Tough, 1989). The authors mea-
sured the chemical-potential variation along the channel.
The results were quite unexpected and interesting. They
proposed a new approach for studying ST that can be
used for the investigation of nonlinear dynamic systems.
Quite unexpectedly, their results were in contradiction
with the previous ones described above. In particular,
and unlike the previously published results wherein an in-
crease of the Auctuation intensity with an increase of the
heat Aux was observed, Tough et aI. found that the level
of Auctuations was small, of the order of 0.1%, in the
whole range of the heat Aux variation with the exception
of the TI-TII transition range. They attributed this
disagreement to the presence of small inhomogeneities in
the experiments of the previous authors which could
cause strong Auctuations. Another remarkable effect was
the noticed peak of the characteristic response time of
the system at Q =Q, .

The resu1ts showing an increase of Auctuations in the
transition region, as well as an increase of the system's
response time, undoubtedly witness that the authors ob-
served some kind of phase transition, however, of non-
equilibrium states. An attempt at a theoretical descrip-
tion of the transition using the methods of nonlinear
dynamical systems was made in the works of Schumaker
and Horsthemke (1987; Horsthemke and Schumaker,
1989). They used the bifurcation theory to explain the
experimental results.

To check these ideas, Griswold et al. (1987) studied
the transition region TI-TII, superimposing a chaotic
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FIG. 36. Typical experimental vortex-line density frequency
spectrum at 1.65 K when the counterAow is modulated by ran-
dom noise (Barenghi, 1982, Fig. 1). The smooth line is a plot of
Eq. (8.3) with the fitting parameter ~&.
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FIG. 37. "Phase diagram" for superAuid turbulence with exter-
nal noise {Griswold and Tough, 1987; also Tough, 1989, Fig.
1.13). The open and solid symbols represent values of the vor-
tex line density I. obtained from the analysis of Auctuations.
The solid symbols represent unstable states of the system. The
solid line is simply a guide to the eye, emphasizing the bistabili-
ty induced by the noise. The dashed line is the deterministic
steady state.
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noise. Using a special method of examining the Auctua-
tion distribution, they reconstructed the behavior of
L '~ D (D is the channel size) in the presence of noise. A
striking proof of the appropriateness of these theories is
shown in Fig. 37. It is possible these new research results
will open a new chapter in the understanding of the na-
ture of superAuid turbulence and the dynamics of chaotic
vortex hnes.

B. Dry-friction effect. Validityandinterpretation
of the Vinen equation

The force acting on the superQuid component contains,
besides the usual Gorter-Mellink force, an additional
term which is called dry friction (see Sec. V). Depending
on the interpretation of the physical processes leading to
the Vinen equation (VE), this term can be either negative
according to the Feynman-Vinen model, or positive ac-
cording to the Schwarz model. The specific form of this
term is directly connected to the special structure of the
generating term of the VE (3.8). Therefore the study of
the effects connected to this term supplies important in-
formation on the macroscopic dynamics of the VT as
well as on the microscopic processes describing the sto-
chastic behavior of the whole vortex tangle. Stamm
et al. (1993), using second sound, investigated this prob-
lem by probing a highly nonequilibrium vortex tangle
characterized by a very large VLD and a small
counterflow velocity. As can be seen from Eq. (5.14),
such conditions are most convenient for the investigation
of dry friction. To describe the evolution of a second-
sound test pulse traversing a nonequilibrium VT, let us
consider, taking into account dry friction, the following
equation,

(8.4)

v„„„(0)=+(22/2&)Lo~ Iexp( —A, Lox/u2) —I) .

(8.6)

The value v,„(0) will be called the threshold. The sign of
the threshold is negative in Schwarz's model and positive
in the Feynman-Vinen model.

The experiments were performed by generating a heat
pulse on the inner wall of a circular ring. This
configuration, as mentioned in Sec. VII.B, provides the
possibility of generating very high VLD Lo, up to 10
cm inside the ring. Preliminary calculations have
shown that due to the reAection at the center, there is a
short time interval when U„, is close to zero. Hence
favorable conditions exists when the dry-friction term
dominates.

The test pulse propagates parallel to the ring axis. The
amplitude of the observed signal as a function of the in-
put amplitude is shown in Fig. 38, where the existence of
a negative threshold can be noted. The VLD resulting
from the slope of these lines is about L, o =5 X 10 cm
From (8.6), for T= 1.4 K and the above VI.D, the value
of the threshold is of the order of 2 Wcm, which
agrees fairly well with the measured value.

The analysis of the dry-friction effect and the results
obtained allowed the authors to make two conclusions.
First, the experimentally confirmed existence of the
threshold, as illustrated in Fig. 38, proves the validity of
Vinen s vortex line density evolution equation (3.8).
Second, the negative value of the observed threshold cor-
responds to a positive value of the additional term in Eq.
(8.4). This implies that He II in the presence of VT is an
active medium that pumps energy into the crossing
sound waves. This effect corresponds to Schwarz's model
of macroscopic dynamics of the vortex tangle. Hence
Schwarz's interpretation of Vinen's equation seems to be
more plausible.

The special geometry of the experimental setup al-
lowed the authors to make the following additional con-

where A, =Ep/2p, p„and A2=cza~/2p, . The upper
negative sign corresponds to the Feynman-Vinen model;
the lower positive sign, to Schwarz's model (Sec. V). This
simplified model describes the evolution of the linear test
pulse along the characteristic x —u2t crossing a non-
equilibrium VT of constant VLD I o. This simplification
may change slightly the precise quantitative results; but,
in exchange, it allows us to see clearly the expected effect.

It can be seen from (8.4) that the generated second-
sound pulse of initial amplitude v„,(0) reaches some
point x with the following amplitude,

v„,(x)=v„,(0)exp( —A, Lax/u2)

2.5—

0.5—

r

I

I

+(2z/A, )LO~
r exp( —2 &Lax/u2) —1] . (8.5)

Hence in the v„,(x), v„,(0) plane of the variation of v„(x)
will be shown by a straight line with the slope
exp( —A, Lax /u2). Depending on the + sign, these lines
will cross the v„,(0) axis at the points +v,„(0),which are
given by

0.0
-3.0 -&.5 Q,O 1.5 3.0 4.5

9;„L&/cm2J
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FIG. 38. Received temperature amplitude T' of the test signal
as a function of the input amplitude (Stamm et al. , 1993, Fig.
3). The solid line represents the test pulse amplitude without
the main pulse.
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elusion. The observed efFect is connected to the anisotro-
py of the VT, which, in the presence of a counterAow, is
polarized in the direction of the Aow. But the test pulse
was propagating in the transverse direction. To remove
this controversy, the authors presume that, after the
main Aow is switched oA, the VT loses its anisotropy and
becomes isotropic. However, as discussed in Sec. VI.A,
an isotropic vortex tangle appears to be unstable. Due
to this instability, the test pulse traversing the VT causes
its polarization this time in the direction of the test pulse
transmitting its energy to the main Aow.

C. Slow decay of the vortex tangle

Bu, /Bt =saL(u„—u, ),
p„(Bu„/Bt)= —p, aL(u„—u, )

—gu„/d

(8.7)

and the L(t) was calculated from VE (3.8). The pro-
posed Inodel equations are a somewhat simplified version
of the HST model described in Sec. V, and, unlike this
last-mentioned set, the term qu„/d representing the
viscous forces is used. The quantity d is a fitting parame-
ter, and it was assumed, as it had been for the classical

0 ~- ——Q.o
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FIG. 39. Model calculation of Eqs. (8.7) and (8.8) correspond-
ing to the experimental conditions of Fig. 17 (Schwarz and
Rozen, 1991,Fig. 3}. The initial values of u„and U, are indicat-
ed by the short-dashed and the long-dashed curves, respectively.

The HST methods were used to explain the problem of
slow decay mentioned in Secs. III.B and IV.C. Vinen in-
terpreted the existence of two difterent rates of decay of
the VT by the existence of two self-preserving states, one
during the growth of the VT when v„, exists and another
one during the free decay. As this contradicts somewhat
the conception of a self-preserving state, it seems ap-
propriate to attempt to explain this process from purely
HST considerations.

To explain their results shown in Fig. 17, Schwarz and
Rozen suggested that, due to the entrainment of the vor-
tex lines, a readjustment of the velocity field v„ takes
place and v„, becomes close to zero, which allows L (r) to
decay according to 1/L (r)-pi, t Howeve. r, later on dur-
ing the viscous decay of u„, the counterAow velocity u„, is
not equal to zero and L (r) decays slower. This behavior
can be described by

Auids, that d =D/15 where D is the characteristic dimen-
sion of the channel. The calculated values shown in Fig.
39 are in qualitative agreement with experimental data.

Another attempt to explain the slow decay problem
based on hydrodynamic considerations was made by
Geurst (1994). In his approach an additional characteris-
tic, besides L, of the VT, the polarity sgn(vL —v), is intro-
duced (see Sec. V.D). This new quantity changes the
form of the right-hand side of the VE [see (5.37)], retain-
ing the assumption of self-preservation. This new form
of the VE asserts that, depending on the direction of the
drift of the VT with respect to the average mass velocity
u, the generating term can either increase the VLD or de-
crease it. This conception is rather di6'erent from
Vinen's approach, in w'hich the generating term only in-
creased the VLD L (t). Geurst's model admits a solution
in closed form that is self-preserving and exhibits three
branches. On one of these the decay branches ofF into an
initial stage of fast decay and a final stage of slow decay
separated by a short transition region. This behavior is
very similar to the experimentally observed one. The
transition from one branch to the other is marked by a
reversal of sign in the polarity of the VT.

One more way to explain the problem of slow decay by
means of HST equations was developed in the work of
Kondaurova (1993). The authors were seeking a direct
solution of the HST equations. Unlike other authors,
they did not impose the value of the counterAow velocity
to be equal to zero, but solved the full problem with cor-
responding initial and boundary conditions. The results
obtained showed that very complicated spatial and tem-
poral variations of all the hydrodynamics variables ap-
pear. It is important that the counterAow velocity not
disapp|:ar immediately after the heat Aux is switched o6;
but that it slowly decrease. In fact, the decrease of the
counterAow velocity is slower than the decrease of the
VLD L(t). As a result, the generating term does not
disappear due to remnant counterQow velocity, and the
VLD decays slower than it is required by Eq. (3.13) (see
Fig. 40). As can be seen, 1/L (t) grows fast at first, then
monotonically slows down. This behavior agrees qualita-
tively with the experiments of Schwarz and Rozen (1991);
however, it does not explain the existence of a transition
region in the behavior of the quantity 1/L(t). The ex-
istence of a nonzero counterAow velocity v„, behind the
pulse leading to a slower decay than predicted by (3.13)
was also reported in the numerical simulations of
Fiszdon and v. Schwerdtner (1989;see also Fig. 31).

A theoretical analysis that excluded the space deriva-
tives in HST was made by Vogel and Fiszdon (1994); the
authors obtained self-similar solutions with two
branches. These branches correspond qualitatively to the
two decay regimes observed in the experiment. Olszok
et al. (1994) also observed the two decay regimes over a
range of temperatures, 1.5—2 K, and conjectured that the
slow decay is due primarily to the normal turbulent
damping and the fast decay to the mutual interaction
forces. The numerical estimation of the Kolmogorov's
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FIG. 41. Time dependence of temperatures measured along the
capillary for a thermal current (Q =4.4X 10 W/cm2, T= 1.34
K) (Peshkov and Tkachenko, 1961,Fig. 3).
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FIG. 40. The quantity 1/L(t) calculated from a set of HST
equations (Kondaurova, 1993). The straight line corresponds to
(3.13).

scale agrees quite well with the average vortex line spac-
ing at the "kink. "

Summarizing it can be stated that the slow decay is of
hyrodynamic nature independent of the intrinsic feature
of the VT. This removes the problem of a "second self-
preservation state, " which is self-contradictory (see Sec.
III.B).

D. Motion of turbulent plugs and fronts

As shown in Sec. VII, the generation of the VT in heat
pulses had a strong inAuence on the structure and dy-
namics of the pulses. Nevertheless, the usual wave mech-
anism of the hydrodynamics of He II plays a dominant
role in its dynamics. Consequently, the velocity of prop-
agation of heat pulses is close to the velocity u2 of the
second-sound wave, although it differs slightly from it
due to the existence of a VT. In addition, the range
affected by vorticity expands in helium with velocities
close to u2.

The nonstationary Aow in He II with small heat cruxes
is quite different. In this case a solitonlike evolution of
the VLD I.(x, t), the so-called turbulent plugs and mov-

ing ST fronts, is observed. The velocities of propagation
of these structures are about three orders of magnitude
smaller than those of the second-sound velocity. Obvi-
ously, mechanisms (other than the above-mentioned one)
connected with the structure and dynamics of the VT are
involved.

Peshkov and Tkachenko (1961) and Bhagat et al.
(1964) studied the kinetics of the formation of ST in long
(up to 8 m) capillaries due to a small heat fiux of the or-
der of 10 —10 Wcm . Data on the evolution of ST
were obtained from thermometers located along the
capillaries. A set of such data from eight thermometers
for a stepwise heat input at one end of the capillary is
shown in Fig. 41. It appears that at the start, nearly in-

di. /c)t +divjL =PL, (8.9)

where PL is the right-hand side of VE (3.8). The density
fiux jL is assumed to be the sum of a drift term [see Eq.
(5.1)] and a diffusive contribution,

)L =vt I. +I'L V'I. . (8.10)

The addition of a diffusive contribution on the right-hand
side of (8.10) seems artificial. Geurst (1989) gives some
arguments supporting the existence of this term. Equa-
tions (8.9) and (8.10) have solitonlike solutions which cor-
respond to the plugs observed in the experiments. Their
dimensions and velocities depend on the Row parameters
and, in particular, on the diffusion coefFicient DI . How-
ever, as stated by the authors, the solution obtained is re-

stantaneously small, steady temperature gradients (curve
marked 0) corresponding to a Poiseuille flow of the nor-
mal component appear. Thereafter, successively at regu-
lar delays, a linear increase of the temperature is regis-
tered. This behavior can be interpreted as a ST front
propagation. At larger heat pulses, the picture changes.
The observations show that along the channel, at
different locations, regions of ST—"plugs" —appear.
The boundaries of these plugs move in unperturbed heli-
um with different velocities, which leads to their motion
as a whole.

Moving fronts and plugs were investigated extensively
by the Leiden group (see Slegtenhorst et al. , 1982a,
1982b; Marees, 1986; Marees et al. , 1987). Besides
counterAow, they also investigated Aows with arbitrary
v„, v, relations. In particular, the authors observed re-
petitive plug structures.

Van Sciver (1979) studied a similar problem, but at
much larger heat cruxes, of the order of 1 Wcm . In
these cases only monotonously varying Aow parameters,
no fronts, were observed. From the above observations it
can be concluded that at small heat cruxes, ST is deter-
mined by some internal vortex turbulence processes
which dominate the wave mechanisms.

An attempt to describe theoretically the above process™
es was made by van Beelen et al. (1988). They proposed
the following modified VE,
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lated to the special model used and primarily to the
artificial introduction of a diffusive contribution.
Fiszdon et al. (1991) studied the solution of a similar
problem, but without the diffusion term. In the station-
ary case the distribution of the VLD I. (t) is stepwise.
Such a standing VLD wave, not confirmed experimental-
ly, may be due to boundary effects.

Nemirovskii (1986) also obtained a running stepwise
solution of the HST equations. The physical meaning of
the solution is of interest. The right-hand side of (5.13),
representing a dissipation function, causes an increase in
temperature. In turn, a temperature difference produces
a counter How-type Aow. Thus a VT that causes a
counterfm. ow decay leads by increasing the entropy to a
temperature drop which in turn induces a counterAow.
The interplay of these two effects leads to a propagating
steplike solution. It should be noted that the approach
yields qualitative solutions in good agreement with the
experimental results of Peshkov et al. (1962).

Although these solitonlike solutions describe different
physical mechanisms, they have one remarkable common
feature in that they represent wavelike solutions appear-
ing in dissipative systems. Let us recall that the study of
ST from the standpoint of nonlinear dynamic systems
was made while investigating ftuctuations described in
Sec. VIII.A. Together with the investigations reported in
this section, it confirms that ST is indeed a dynamical
system in which processes such as self-organized struc-
tures, dynamic phase transition, etc., may appear.

Solutions in the form of ST plugs, based on the analysis
of the dynamics of vortex lines, were also obtained by
Schwarz (1990). The VT plugs in his model are due to a
development of an instability which results in a diffusion
of vortices from the wall to the bulk Aow in the form of a
VT. The author states that this mechanism is sufhcient
to initiate and sustain the turbulent state.

E. Chaotic qUantum vortices and phase transition

area of the system, i.e., -B /ro. Hence the free energy,

PsdKI' =E —TS = ln —2k~ T ln
4~ &o

~
ro

' (8.11)

where kz is the Boltzmann constant and d the film thick-

Thus it can be stated that at low temperatures vortices
can appear only as small vortex-antivortex pairs. It fol-
lows that, when the temperature is above some critical
value given by

p dK
TKT

Smk~
(8.12)

where o., -p, d is the bare areal superAuid density and E,
is the potential energy of the smallest vortex pair. This
quantity plays the role of a chemical potential necessary
to create a pair. Similarly, as in the case of a plasma
where other particles screen the "bare" interaction, the
presence of other pairs can be taken into account by the
introduction of a dielectric constant s(r). The e6'ective
interaction can be written as

it is energetically favorable for a single line to be excited,
and hence the vortex-antivortex pairs will dissociate.
The spontaneous appearance of free vortex lines implies
the loss of long-range order, dissipation by mutual fric-
tion of any superfIow, and hence the breakdown of
superAuidity. When an external Row field is applied, the
large pairs become reoriented and their net backflow
reduces the external Row. This can be observed as a de-
crease in the superAuid density. The statistical problem
of an ensemble of interacting pairs is similar to the model
of a 2D gas of particles interacting via a logarithmic po-
tential, since the energy of a pair varies logarithmically
with the pair separation distance r:

2

E =2~a., —lnr/ro+E, ,
o fi

(8.13)

The description of the phase transition is one of the
important applications of the theory of chaotic quantized
vortices in He II. The idea that phase transition can be
related to the appearance of large vortex rings was first
assumed in the classical works of Onsager (1949) and
Feynman (1955), and was later frequently discussed in a
number of publications as recalled in Kleinert's (1991)
book.

This idea was first applied in 2D systems. Kosterlitz
and Thouless (1973) studied phase transition in 2D sys-
tems and, in particular, in He II. They predicted that the
appearance of large vortex-antivortex pair excitation
could initiate a phase transition to the nonsuperIIIuid
phase. The existence of this transition follows from sim-
ple energy considerations as described, for example, by
Adams and Glaberson (1987; see also Donnelly, 1991a).

The entropy of a single line in the 20 case is propor-
tional to the log of the total number of different indepen-
dent positions of the vortex line which depends on the

2

Ep =2~o., —,, +E, .o R r dp'

Pl ro r'E(I') (8.14)

E(r)=1+4m'(r) . (8.15)

In turn, the susceptibility is related to the polarizability
a(r), which is responsible for the orientation, in the
external fields, of each pair and the number density n (r)
of the pairs of separation r. Hence

—EI( ) 2 dr
k~ T I O4

(8.16)

where E„"(r) is determined by (8.14) which depends on y
via a. The above relations can be used for a self-
consistent solution of the problem.

Continuing the analogy with plasma, it can be surmised
that the dielectric constant s(r') is connected to the sus-
ceptibility by the relation
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The solution obtained by Kosterlitz and Thouless
(1973) confirms the qualitative picture of the transition.
It also forecasts that the appearance of the vortex-
antivortex pairs of large separation leads to an abrupt
change in the areal density dp, from a finite value to zero
at the temperature TET. The corresponding jump is
given by

(8.17)

This main theoretical result was confirmed in a number
of experiments with thin He II films [see references in
Donnelly's (1991a) book]. The dynamical properties of
the 2D phase transition in He II were further developed
by, for example, Ambegaokar et al. (1980).

The 2D theory of phase transitions was extended by
Williams (1987, 1992, 1993a, 1993b) in his studies of the
bulk I, transition in He II. It was found that the critical
temperature increases and that the jump of superAuid
density is broadened, reminiscent of the behavior of
p, ( T) close to Ti .

Williams's 3D theory is very close to the Kosterlitz-
Thouless model. The role of vortex-antivortex pairs in
two dimensions is played by circular vortex rings. The
solution of the corresponding self-consistent problem
showed that the difFerence in the space dimensionality of
the system leads to a power-law dependence of p, ( T) near
phase transition with an exponent +=0.53, which difFers
from the well-known value of v=0.67. To improve this
situation, Williams used the more realistic model and re-
placed the circular vortex rings by distorted, wiggly ones.
This also overcame the deficiency of the theory, which
did not take into account the variation of the core ro at
temperatures close to Tz. The calculation of the distort-
ed vortex ring using the Flory approximation of the self-
avoiding random walk was made by Shenoy (1993). This
approach led to the correct value of v=0.67 of the criti-
cal exponent in the power law for p, ( T). Later, Williams
(1993a, 1993b) expanded his theory to deal with dynami-
cal processes close to Tz and considered the possible ap-
plications to higher-T, superconductors.

Besides the attempts to describe the phase-transition
problem using the model of interacting vortex rings, oth-
er more involved configurations were used. For instance,
Owczarek (1994) considered knotted vortex lines with
nonzero velocity to describe superAuid phase transition.

Although they give a clear physical picture of the
phase transition, the above theories of 3D models of vor-
tex rings are controversial. Leaving aside the critical re-
marks of Weichman and Fisher (1986; see also Weich-
man, 1988), who considered that vortex loops play no
special role in the phase-transition problem, we would
like to make some remarks resulting from the point of
view of our review. We think that the equilibrium model
of interacting vortex rings, which are governed by the
Boltzmann statistics, is in contradiction with the results
presented in Sec. IV. Figure 8 illustrates the evolution of
six vortex rings resulting from a direct numerical calcula-

tion of the 3D equation of motion of the vortex filaments
in He II. Similarly, Fig. 13 illustrates the evolution of a
vortex ring in a field of stochastic forces (resulting, e.g.,
from the presence of other rings), calculated using the
simple local approach. We assume that these examples
demonstrate clearly that interacting vortex rings in He II
evolve into a highly disordered set, governed by the laws
of nonequilibrium statistical mechanics, thus demonstrat-
ing convincingly that the conception of a "gas" of circu-
lar vortex rings is inadequate to describe processes taking
place in superAuid helium.

Therefore not rejecting the role of vortex rings in
describing the bulk A, transition, we think that a quantita-
tive theory must use the more adequate real vortex tangle
described previously instead of idealized circular vortex
rings. In this respect we would like to call attention to
the papers of Chorin (1991, 1992) on stochastic proper-
ties of vortex filaments in ideal Auids. Modeling fila-
ments using the lattice vortex model, Chorin connected
the A. transition to percolation phenomena.

Summarizing the above, we can say that the vortex
model of phase transition is a very promising field; how-
ever, the quantitative theory should take correctly into
account the real properties of the VT. This task, howev-
er, is hindered by the problem of rather scarce informa-
tion concerning the properties of the VT near T&, which
were thoroughly studied in other temperature ranges.
We think that the want of investigation of the VT near
T& is one of the largest gaps in the theory of ST.

Indeed, due to the divergence of the interaction be-
tween the normal component and the vortex filament (see
Sec. II) and due to the growth of the core radius ro, the
structure of the VT is expected to be rather difFerent
from the one described before. It seems that only the
Gorter-Mellink law is more or less confirmed in this re-
gion (see Ahlers, 1969; Leiderer and Pobell, 1970; and
Crooks and Johnson, 1971), but other phenomena have
not been studied. There are some papers dealing with
this problem [see, et al. , Goldner et al. (1993)]where the
unusual behavior of intense heat pulses close to T& is de-
scribed, or the paper of Onuki (1983), who also con-
sidered the relevant questions; but there are no systemat-
ic investigations of the ST that include unsteady phenom-
ena near T&.

IX. CONCLUSIONS

The present state of research on chaotic quantized vor-
tices and hydrodynamic processes in superAuid helium is
presented. A wide range of hydrodynamic, primarily
nonstationary How phenomena in the presence of the vor-
tex tangle in He II are described. A large part of the ob-
served cases is in good agreement with current notions on
chaotic vortex tangles or super Auid turbulence,
confirming their properties and supplying further quanti-
tative information. The study of heat pulses essentially
expanded the limits of investigations of ST. In particu-
lar, it was shown that the evolution of the VLD at
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moderate pulses (Sec. VII) is very much faster, by about
three orders of magnitude, than at the very low intensity
pulses. At the same time, the level of the VLD in heat
pulses exceeded the previously observed one by four or
five orders. On the other hand, the study of Auctuations
of ST (Sec. VIII.A) using mechanical probes allows us to
observe distinct processes of pinning and depinning of
vortex filaments, confirming thus the discrete nature of
ST. As described in Sec. VII.B, the vortex tangle in-
duced by the heat pulse, which propagates with the
second-sound velocity, is generated in the bulk and fol-
lows behind the shock wave. The experimental observa-
tions of propagation of heat pulses in large channels and
in convergent geometries point out also that the evolu-
tion of the VLD is mainly due to the counterAow velocity
v„,. As follows from the observations of heat pulses (Sec.
VII) and of the threshold (see Sec. VIII.B) and also from
direct observations (see Secs. III.B, IV.C), the dynamics
of the VLD I. (r) evolution is adequately described by
Vinen's equation (VE).

In the Introduction we claimed that the study of ST,
with the use of macroscopic methods, can supply a lot of
information on the stochastic dynamics of vortex lines.
We also claimed that this information can be used in the
study of some problems of the theory of superfIIuidity and
even for the study of more genera, 1 problems of stochasti-
cal physics of extended objects and classical turbulence.
Following consistently these aims, we would like to sum-
marize mainly the well-established properties of the VT
in the two areas of interest.

The most important results relevant for the theory of
superAuidity are the following.

Analysis of the dynamics of intense heat pulses (Sec.
VIII.B) concluded that there is some remnant VLD in
the bulk of He II. This was also observed in free-decay
experiments (Sec. IV.C). This result seems to be impor-
tant for the theory of initial nucleation of vortices in He
II.

Analysis of the data on VLD and numerical results al-
lowed Schwarz to conclude that the vortex lines must
reconnect (Sec. IV.B) wherever they collapse. We would
like to recall that a similar conclusion was previously ob-
tained in a few works based on the Gross-Pitaevskii mod-
el (see Sec. II).

The corrections to the Gorter-Mellink relation and to
the second-sound dispersion law, obtained from high-
precision experiments, allowed the clarification of the de-
tails of the interaction between the vortex lines and the
quasiparticle flow (Sec. VI.A).

Finally we would like to point out the possible role of
stochastic vortices in the bulk A, transition in He II (see
Sec. VIII.E).

The following results may be of interest from both
points of view, i.e., stochastic dynamics of extended ob-
jects and classical turbulence.

The self-preservation assumption (Sec. III) is fairly well
confirmed by the agreement with most experimental ob-
servations. According to the discussion in Sec. V.A, this

assumption points out the presence of a hierarchy of the
relaxation times of different moments of the distribution
function A, . Therefore there is some justification for in-

troducing a reduced stochastical description similar to
the kinetic equation or the Fokker-Planck equation.

The success of Schwarz's theory demonstrates, in par-
ticular (see, however, remarks in Sec. IV.B), the possibili-

ty of using the local self-induced approximation to calcu-
late the dynamics of vortex lines. Another important
conclusion from the comparison of the theory and experi-
ments concerns the scaling properties of the VT. These
results are very important for future analytical investiga-
tions, as they show possibilities for simplifying the basic
equations of motion of the vortex lines and for an ade-
quate formulation of the problem of the VT dynamics.

The experiments concerned with the observation of
negative dry friction (Sec. VIII.B) correspond more close-
ly to Schwarz's model of the decay process of the VLD
due to mutual friction (Sec. IV.C). Schwarz's and
Feynman-Vinen's conceptions of the decay process are
quite difFerent. Indeed, in the Feynman-Vinen model the
decay of the vortex tangle is the consequence of the
breaking up of the vortex rings transformed into thermal
excitations. So there is the Aux of some physical quanti-
ty, e.g. , of the local curvature in the space of the sizes of
vortex rings. This model is reminiscent of the Kolmo-
gorov cascade in classical turbulence, and the stochasti-
cal behavior is essentially a nonequilibrium one. In
Schwarz s interpretation only the friction force is respon-
sible for the decrease of the vortex line length, and there
is no Aux in the space of sizes of the vortex rings. Thus
the stochastic process is close to equilibrium. This con-
clusion may be of crucial importance for further theoreti-
cal developments.

In some investigations the VT displays the properties
of nonlinear dynamical systems. For example, the
behavior of fluctuations observed during the transition
TI-TII (Sec. VIII.A) is typical for nonequilibrium phase
transitions and is described with the help of the bifurca-
tion theory. Other examples, from this point of view, are
the solitonlike solutions or self-organized structures,
plugs and VT fronts (cases described in Sec. VIII.D).
This point of view is also confirmed by the negative dry-
friction effect, which shows that ST is an active medium
that can transmit energy to the traversing sound waves as
described in Sec. VIII.B. With the possibility of high-
resolution experiments in He II taken into account, the
VT may be a convenient test model of nonlinear dynamic
systems.

The existence of a vortex structure affects the Aow field
and leads to interesting hydrodynamic effects that must
be taken into account in the evaluation of experiments
and which may also be of interest in applied problems.

The unusual behavior of moderate and strong heat
pulses that generate vortices and interact with them, as
described in Sec. VII.B, is an important example of such
effects. The temperature overshoot and the involved de-
formation of the Aow field are particularly noteworthy.
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The existence of a remnant velocity, obtained from solv-

ing the HST equations, contributes to the understanding
of the slow decay problem (Sec. VIII.C).

The interaction of the second-sound waves with ST
(described in Sec. VI)—which leads to a variety of pro-
cesses such as extra attenuation, dispersion, anisotropy
and coupling between transverse and longitudinal sound
waves, and noncollinearity of velocity perturbations,
5v„„and of the wave vector k—is another example of
applications of HST.

We hope that we succeeded in showing that the simul-
taneous use of theoretical, numerical, and experimental
methods to study of ST is very useful for investigations of
the stochastical dynamics of vortex filaments. However,
motivated by this aim and striving to present a self-
consistent picture, we may have created a wrong impres-
sion that the theory is complete and closed. Actually,
there remain many gaps in the evaluation of a number of
investigated cases, and there remain whole regions to be
studied.

We think first of all that one of the most important
goals is to make an advanced theoretical study of the
problem of dynamics of vortex lines. Indeed, the analyti-
cal methods developed in the theory of polymers, the re-
cent achievements in the study of vortex filaments in
ideal Quids, and the powerful modern methods of statisti-
cal physics together with the available experimental re-
sults support our belief that this task can be successfully
completed. However, we realize that it cannot be comp-
leted in the near future. Therefore, realizing the com-
plexity of a microscopic theory, we think that it is now
necessary to solve the simpler problem of developing an
advanced. phenomenological model. In this development
the more subtle characteristics of the VT structure [not
only the VLD L(t)], its anisotropy and possibly the
discrete structure of ST, should be taken into account. It
can be expected that the experimental investigations
based on such an advanced theory will yield new, rich in-
formation on the structure and dynamics of the VT.

As far as experimental studies are concerned, we think
that, besides the particular problems already pointed out,
it would be important to lay down the following "strateg-
ic" directions.

First of all, it is necessary to extend the temperature
range of ST studies. As noted in Sec. IV, the coefticients
a and a', which are responsible for the coupling of vor-
tices with the normal component, exert a great inhuence
on the evolution of the stochastic VT. Therefore it is im-
portant to see what happens at the lower temperatures
where a and a'~0 and the vortex filaments are free to
evolve, not being infIuenced by mutual friction forces.
This is of interest also because it then becomes possible to
verify a number of results obtained in the case of chaotic
vortex lines in ideal Auids. The region close to T&, where
o, and a' diverge and the vortex lines become frozen with
respect to the normal component, is also of great interest.
Therefore one can expect that the results will not only be
interesting, but may also yield so-far unexpected informa-

tion of importance in some applications, e.g. , in the un-
derstanding of the role of stochastic vortices in the bulk
phase transition (see Sec. VIII.E).

Secondly, we think that experimental studies must be
expanded beyond investigations of simple Aows to more
involved configurations and Aow conditions, e.g., the
study of ST in nonuniform Aows, jets, Rows with He ad-
ditions, etc. Particularly, as described briefly by Tough
et al. (1994), there appear "dramatic di5'erences" be-
tween theory and experiment deserving further investiga-
tions. It is also important to make use of local probes
and measure temperature correlations and, perhaps, ve-
locities to obtain more information about the different
stochastical flow parameters.

Finally, we think that the problem of interaction with
the turbulence of the normal component should be more
closely investigated, because it is possible that it is not
the case of classical turbulence, but of some velocity
fluctuations correlated with the motions of the chaotic
quantum vortex filaments. This interesting and impor-
tant problem should also be of interest and deserves the
attention of theoreticians.

During the preparation of this review, two important
scientific meetings on problems closely connected to the
subject of this review were held: The Low Temperature
XX Conference and the Workshop on Quantum Vortices
and Turbulence in He II. The presentations and discus-
sions at these meetings confirmed our conviction that the
problems discussed in this review are of interest to many
physicists and engineers, and some of the described prob-
lems are under investigation.
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