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One of Feynman's early applications of path integrals was to superfluid 4He. He showed that
the thermodynamic properties of Bose systems are exactly equivalent to those of a peculiar type
of interacting classical "ring polymer. " Using this mapping, one can generalize Monte Carlo
simulation techniques commonly used for classical systems to simulate boson systems. In this
review, the author introduces this picture of a boson superfluid and shows how superfluidity and
Bose condensation manifest themselves. He shows the excellent agreement between simulations and
experimental measurements on liquid and solid helium for such quantities as pair correlations, the
superfluid density, the energy, and the momentum distribution. Major aspects of computational
techniques developed for a boson superfluid ere discussed: the construction of more accurate
approximate density matrices to reduce the number of points on the path integral, sampling
techniques to move through the space of exchanges and paths quickly, and the construction of
estimators for various properties such as the energy, the momentum distribution, the superfluid
density, and the exchange frequency in a quantum crystal. Finally the path-integral Monte Carlo
method is compared to other quantum Monte Carlo methods.
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The quantum mechanics of many-body systems is usu-
ally presented as a dificult subject, and the phenomena
of Bose condensation and super8uidity are often charac-
terized as ill understood. One of Feynman's early suc-
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FIG. 2. The phase diagram of He.

of 2.14 A. (Kalos, Levesque, and Verlet, 1974). We shall
occasionally use the term "hard-sphere" interaction, but
we do not mean to imply that the calculations have used
this approximation.

Helium, under its own vapor pressure, is a liquid down
to the absolute zero of temperature because the potential
is so weak that the zero-point motion of the atoms dis-
rupts the formation of a crystal; see Fig. 2. It does form
a solid if it is pressurized to 25.3 bars (4He) and 34.4 bars
(sHe). The fact that it is liquid down to zero tempera-
ture makes it a nearly perfect system for studying macro-
scopic quantum efFects. Since the atoms are delocalized,
the indistinguishability of the particles becomes very im-
portant. The most dramatic efFect is superfluidity, which
occurs when He is cooled below 2.17 K. If a cylinder
containing helium at sufIiciently low temperature is ro-
tated slowly, the helium inside will remain at rest, or in
whatever state it was initially prepared. There are other
related properties: superfluid helium can flow through
capillaries without apparent friction, its thermal conduc-
tivity is effectively infinite, and so forth. The reader can
consult Wilks (1967) for details of the experimental rnea-
surements and for the basic theoretical models describing
superfluidity.

The properties of helium are among the best-measured
in experimental physics. Liquid helium has a natural
ability to clean itself of impurities, so that one does not
have the material complications of superconductivity, for
example. Since helium has two isotopes, He and He,
one can experimentally distinguish the efFects of correla-
tion &om those of statistics. One can see that the phase
diagram of bulk He has gas, normal-liquid, superfluid,
and several crystal phases. Many additional phases oc-
cur with He on substrates. The phase diagram of He
is even richer; there are several types of superfIuids and
magnetically ordered solid phases.

In this review, we shall concentrate on calculations
of liquid He. We want to understand what happens

to a box of "hard-sphere" bosons at a temperature low

enough that quantum efFects are important. Liquid He
is a prototypic Bose system, the only simple bosonic su-
perfluid, and is one of the basic models of condensed-
matter physics, only slightly less ubiquitous than a mag-
netic model like the Hubbard model or the Ising model.
It is one of the simplest examples of a phase transi-
tion involving broken symmetry. Bose superfluids are a
model related to the quantum Hall effect (Zhang, Hans-
son, and Kivelson, 1989) and to the melting of vortices
in high-temperature superconductors (Nelson, 1988) and
are closely related to models of magnets (Matsubara and
Matsuda, 1956). They are also a model for preformed
bosons in high-temperature superconductors (Alder and
Peters, 1989; Mott, 1991). Understanding a Bose super-
fluid to the point where we can calculate detailed prop-
erties is probably a necessary first step to being able to
do the same thing for fermion superfluids.

Feynman's path integrals, which map quantum me-
chanics onto a peculiar type of classical "polymers, " pro-
vide a direct way of calculating its properties. These
classical systems can be simulated with either path-
integral Monte Carlo (PIMC) or path-integral molecular-
dynamics (PIMD) techniques and can be understood
with methods from classical statistical mechanics. This
implies that; the thermodynamic properties of a Bose su-
perfluid can be calculated, without approximation, on a
computer.

One might ask why simulation, as opposed to other
theoretical techniques, is called for. To answer this ques-
tion, consider the following syllogism. General classical
systems can be calculated rigorously only by simulation
techniques. (We do not mean to imply that high-quality
classical simulations are easy to do, just that it is possible
to get very good results given enough efFort. ) Much of the
progress in classical statistical mechanics, such as our im-
proved understanding of critical properties, has been cru-
cially aided by numerical experiments. But quantum sys-
tems reduce to classical systems in the high-temperature
limit. In addition, as we shall see, bosons at any tem-
perature are isomorphic to a classical system of "poly-
mers. " Thus, accepting the premise, we conclude that
exact properties of general Bose systems at nonzero tem-
perature can only be calculated by simulation.

Although one may develop accurate approximate
methods for classes of quantum systems, and nice the-
oretical models to understand the relationship between
various properties, it seems almost certain that simula-
tions are needed for high-accuracy calculations on general
quantum systems and to provide the same sort of sup-
port for theory and experiment as simulation does for
classical systems. One finds, in general, that the more
complex a system is, the more one needs simulation as a
tool. Although this article will discuss mainly bulk he-
lium, frankly simulations for bulk systems are not crucial,
since they are well characterized experimentally. But for
more complicated systems, for example, multicomponent
or inhomogeneous systems, quantum simulation methods
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can be very useful. While other theoretical treatments
become much more complicated and approximate, and
those systems are harder to characterize experimentally,
PIMC simulation is essentially no more difIicult or ap-
proximate for complex systems.

It has taken forty years for simulation methods and
computational resources to be developed to the point
where calculations of Bose superfluids are routine. Com-
monly available work stations are sufhcient to do most
of the calculations we shall discuss here. Among the re-
sults that have been calculated are the energy, the spe-
cific heat, the radial distribution function, the momen-
tum distribution, the condensate fraction, and the super-
fluid density of bulk liquid He through the superfluid
transition in both two and three dimensions; properties
of solid He; atomic exchange &equencies in solid He
and on graphite substrates; superfluid densities and en-

ergies of He droplets; and energies and superfluid den-
sities in two-dimensional charged Bose liquids. We are
not going to review all of the results of those calculations
here. Other reviews are available (Schmidt and Ceperley,
1992).

There are many other theoretical approaches to un-

derstanding superfluidity. The best known are field the-
ory and the two-fluid model. We shall also not review
the enormous literature on the theory of, and experi-
ments on, liquid helium, except where necessary to relate
this literature to the path-integral description. It would
be desirable if the PIMC method could determine when
these theories are applicable and estimate their parame-
ters, but to date there has been little work on that sub-
ject. Since PIMC is an exact method, its predictions do
not necessarily fall out of simple equations. Therefore it
is complementary to other theoretical approaches, which
will lead to more simplified models. PIMC is unique in
being able to make quantitative predictions about quan-
tities such as the superfluid transition temperature, the
condensate fraction, the superfluid density, the freezing
density, and detailed properties of helium films on sub-
strates. All of this can be done with only the assumption
of the interatomic potential.

On the other hand, path integrals do not naturally de-
scribe the quasiparticle picture of liquid helium, as a gas
of interacting phonons and rotons. Feynman switched
away from the path-integral theory of helium in favor
of the excitation picture: phonons, rotons, and vortices.
How to go reliably, eKciently, and simply from the imag-
inary time of path integrals into the real time necessary
to describe excitations is an area of active research.

There are other computational methods by which to
calculate the properties of liquid He. McMillan (1965)
introduced the variational Monte Carlo method, calcu-
lating energies and condensate fractions using a pair
product or Jastrow trial wave function. Later Kalos,
Levesque, and Verlet (1974) used the Green's-function
Monte Carlo (GFMC) method to calculate exact energies
for a system of hard-sphere bosons. This was extended
to continuous potentials by Kalos et al. (1981). The

Green's-function Monte Carlo method is closely related
to PIMC simulation but is restricted to zero temperature.
In practice, path integrals give more insight and physi-
cal intuition, while being about equally efFicient numeri-
cally, even for calculating ground-state properties. As an
example, it is not easy to calculate the superfluid den-
sity in the Green's-function Monte Carlo method, since
particle statistics do not enter directly, but it is quite
straightforward in the PIMC method. We shall return to
a comparison between these methods at the end of the
paper.

There has been an enormous amount of work using
PIMC for lattice models. When applied to lattice mod-
els, PIMC is called the "world-line" method. Applica-
tions have been in the lattice gauge theory of particle
physics or for models of high-temperature superconduc-
tors. This review will discuss only continuum models,
since the techniques for lattice models, although mathe-
matically related, appear rather difI'erent. Most of the
methods discussed here are applicable to bosonic lat-
tice models with straightforward modifications (Krauth,
Trivedi, and Ceperley, 1991). In addition, there are very
efficient "cluster" algorithms (Kawashima, and Guber-
natis, 1995) for lattice models that we shall not discuss
here since they have not yet been applied to continuum
models.

There have also been many PIMC calculations for con-
tinuum systems in which particle statistics are not impor-
tant. Examples are electron transfer in liquids and quan-
tum corrections to classical liquids (Berne and Thiru-
malai, 1986). We shall not specifically talk about these
applications but concentrate on the cases in which many-
body exchange can be important. However, the discus-
sion of PIMC techniques applies to simulation of single
quantum particles.

A brief account of this work has appeared in Ceperley
and Pollock (1990). The techniques for classical liquids
are discussed in the book by Allen and Tildesly (1987).
Two general reviews of Monte Carlo methods in statisti-
cal physics have been provided by Binder (1979, 1992).
A general description of path integrals may be found in
Feynman and Hibbs (1965), Schulman (1981),and Klein-
ert (1990). Applications to polymers and to quantum
systems are discussed by Wiegel (1986).

This review explores in detail the path-integral picture,
how it relates to experiments and other ways of thinking
about quantum systems, and how one can use it in prac-
tice to calculate properties of quantum systems. Most of
the paper will be at a very elementary level. Only the
basics of quantum mechanics, probability theory, and sta-
tistical mechanics will be assumed. We shall try to pro-
vide clear, practical guidelines for developing, judging,
and testing new algorithms for path integrals.

The first part of this paper discusses the mathemati-
cal basis of path integrals and the relationship between
path integrals and physical properties. We then make ex-
plicit comparisons between experimental measurements
of liquid helium and path-integral calculations, particu-
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larly those that characterize the microscopic structure.
Hopefully we shall convince the reader that path inte-
grals truly are a reliable way of calculating properties
of superfluids, so that the methods can be applied to
more complex systems with confidence. We shall indi-
cate which kinds of physical properties have been calcu-
lated or could be calculated with the path-integral Monte
Carlo method and the accuracies that can be obtained.
We also show how path integrals can calculate the ex-
change frequencies in solid helium and how these results
compare with experimental measurements on solid He.

The rest of this review is concerned with the details
of the path-integral Monte Carlo approach. The com-
putational task of simulating a quantum system can be
broken into three parts. First, it is necessary to opti-
mize the high-temperature action to reduce the number
of time steps needed to reach superfluid temperatures,
as discussed in Sec. IV. Second, it is necessary to move
quickly through "path space. " The Metropolis Monte
Carlo method is used for this, but specialized techniques
are needed to move the paths, since atomic paths must
be exchanged many times to achieve reliable results when
quantum statistics are important. A straightforward ap-
proach can run into difBculty, since the time scales for re-
laxation of the entangled "polymers" can become exceed-
ingly long. This htappens when the thermal de Broglie
wavelength is comparable to the interparticle spacing,
which is precisely when quantum many-body e8'ects are
important. Sampling methods are discussed in Sec. V.
We discuss these aspects in some detail, since they are
expected to have applicability far beyond the physics of
helium and many of the issues have not been previously
reviewed. Third, it is not always obvious how best to cal-
culate a given quantum property from a well-converged
path. We discuss the calculation of properties such as
the energy and momentum distribution in Sec. VI. Fi-
nally we compare PIMC with other methods of simu-
lating quantum systems and discuss the computational
complexity of quantum simulations.

II. IMAGINARY-TIME PATH INTEGRALS

All static properties and, in principle, dynamical prop-
erties of a quantum system in thermal equilibrium are ob-
tainable &om the thermal density matrix. If this sounds
unfamiliar, the reader might wish to review the material
in Feynman (1972). In this section, we detail the basic
mathematical properties of the density matrix, give the
relationship between the density matrix, path integrals,
and the statistical mechanics of classical "polymers, " ex-
plain how Bose symmetry is expressed with path inte-
grals, and 6x the notation and terminology of our de-
scription.

rium, the probability of a given state i being occupied
is e i/ ~+, with T the temperature. Hence the equilib-
rium value of an operator 0 is

(2.1)

where the partition function is

(2.2)

p(R, R';P) = (Rle ~~lR')

(2.3)

where R = (rq, . . . , r~} and r; is the position of the ith
particle. Assuming space has dimension d = 3 (just to
simplify notation, everything that we discuss can be done
in any dimension), then p(R, R;P) is, in general, a func-
tion of 6N + 1 variables. In the position representation,
the expectation of 0 becomes

(0}= Z 'f dRdR p(RR';())'(R)O, )R) (2.4)

and the partition function is given by

Z= dip B,B; (2.5)

The following simple, exact property of density matri-
ces is the basis of the path-integral method. The product
of two density matrices is a density matrix:

—(P&+P, )A —P, A. —P K (2.6)

and P = 1/I(:~T. In operator notation we write these
equations more simply as Z = tr(e ) +) and (0)
tr(Oe ~+)/Z. The operator e P~ is the density matrix.
In this article P will always be real, by density matrix
we shall always mean e ~~, and the density matrix will
not be normalized by the partition function. For simplic-
ity, our statistical-mechanical ensemble always has fixed
particle number N, temperature T, and volume O.

Although the above traces can be carried out in any
complete basis, we shall work exclusively in a position
basis where the particles are labeled. We work in a po-
sition basis because then all of the elements of the den-
sity matrix are non-negative and can be interpreted as a
probability. Monte Carlo methods are usually much less
eIHicient in a basis where some of the matrix elements
are negative. It will become apparent at the end of this
section why the particles are labeled. The position-space
density matrix is

A. The thermal density matrix

Suppose the exact eigenvalues and eigenfunctions of
a Hamiltonian 'R are (t); and E;. In thermal equilib-

Written for positions, one has a convolution,

P(R1 R3i Pl + R2) = f ~R2P(R1 R2 Rl)P(R2 R3iR2)

(2.7)
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B. Discrete path integrals ature MT. In operators,

The path-integral formula for the many-body density
matrix is arrived at by using the product property M
times, giving an expression for the density matrix at a
temperature T, in terms of density matrices at a temper-

—PR
(

—v'R) (2.s)

where the time step is r = P/M. Written in the position
representation,

p(RO, RM B) / ' ' ' dR18RO ' ' ' O(RM 1p(RO,—Bl', T)p(B1 R2 T) ' ' ' p(RM 1BM;—T). (2.9)

If M is Gnite we have a discrete-time path. If the limit
M M co is taken, one has a continuous path (Bq) where
0 & t ( P. But note that Eq. (2.9) is exact for any
M & x.

The second property that is needed by path integrals
is that, for MT large enough, we can write down a suf-
Gciently accurate approximation to the density matrix.
Thus we shall be able to write down an explicit form
for the low-temperature density matrix which, however,
involves many additional integrals. Suppose the Hamil-
tonian is split into two pieces, 'R = 7 +V, where 7 and V
are the kinetic and potential operators. Recall the exact
operator identity,

representation, its matrix elements are trivial:

e
—V

~&2) e
— V(a, i~( (2.14)

(g ~

~T((P ) —) I, +~"I— '+ ~ & +~i (2 15)

The kinetic matrix can be evaluated using the eigen-
function expansion of 7 . For the moment, consider the
case of distinguishable particles in a cube of side I with
periodic boundary conditions. Then the exact eigenfunc-
tions and eigenvalues of 7 are I ~ e' " and AK,
with K~ = 2an/I and n a 3%-dimensional integer vec-
tor. Then

~2
e
—{7+v}+—. t7,v] —7 —v=.c e (2.10)

—~{7+v} —~7 —~v (2.1i)

As v ~ 0 the commutator term on the left-hand side,
which is of order w, becomes smaller than the other
terms and thus can be neglected. This is known as the
pHmitive approximation:

(2.16)

Equation (2.16) is obtained by approximating the sum
by an integral. This is appropriate only if the thermal
wavelength of one step is much less than the size of the
box,

Hence we can approximate the exact density Inatrix by
the product of the density matrices for 7" and V alone.
One might worry that this will lead to an error in the
limit as M —+ oo, with small errors building up to a finite
error. According to the Trotter (1959) formula, one does
not have to worry:

e-~{7+v}= lim e- 7e-~v
M —+oo- (2.12)

p(R , )2=r

The Trotter formula holds if the three operators 7, V,
and 7 + V are self-adjoint and make sense separately,
for example, if their spectrum is bounded below (Simon,
1979). This is the case for the Hamiltonian describing
helium.

Let us now write the primitive approximation in posi-
tion space,

A~&&1 . (2.17)

p(&o, &M;P) =

t ) (R g
—B )2

4Ar

In some special situations this condition could be vio-
lated, in which case one should use Eq. (2.15) or add
periodic "images" to Eq. (2.16). The exact kinetic den-
sity matrix in periodic boundary conditions is a theta
function, Os(z, q), where z = 7(bx/I and q = e
See Abramowitz and Stegan (1964), Chapter 16, for its
properties. Just to simplify the equations we shall always
assume Eq. (2.17) holds.

Using Eqs. (2.9), (2.13), (2.14), and (2.16) we arrive
at the discrete path-integral expression for the density
matrix in the primitive approximation:

(2.13) +rV(B ) (2.is)
and evaluate the kinetic and potential density matrices.
Since the potential operator is diagonal in the position This expression relates the quantum density matrix at
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any temperature to integrals over the path Bi BM
of soxnething that is like a classical Maxwell-Boltzmann
distribution function. This is the famous mapping &om
a quantum system to a classical system. The Feynman-
Kacs formula, to be used later, is obtained by taking the
limit M m oo, making a continuous path.

Of particular importance for the Monte Carlo evalua-
tion is the following corollary of the convolution property:
if the density matrix is non-negative for any time step w,

by which we mean p(Ri, B2, w) ) 0 V (Ri, B2), then the
density matrix is non-negative for all positive multiples
of 7.. But we see that the density matrix in the primi-
tive approximation is non-negative, so that the density
matrix at all temperatures must be non-negative.

I et us recap the various restrictions and. approxima-
tions that have been made along the way in deriving the
final result:

(i) The Hamiltonian is the sum of a nonrelativistic ki-
netic energy (without a magnetic field) and a real poten-
tial energy that depends only on position.

(ii) We can neglect the commutator between the ki-
netic and potential operators. Trotter showed that this
is mathematically rigorous in the limit of large M. In
Sec. IV we shall explore approximations that converge
faster to the limit.

(iii) We neglected the periodic boundary conditions in
evaluating the kinetic operator. This was only to keep the
formulas simple. To get rid of this approximation one can
either use the exact periodic density matrix or estimate
errors with an image expansion. Errors from ignoring
the boundary conditions are G(q), exponentially small
at large M. Other boundary conditions, for example,
hard walls, are easy to use.

(iv) We assumed distinguishable particles. We shall
get rid of this assumption in the next subsection by sym-
metrizing over particle labels.

All the approximations are controllable. The price
we have to pay for having an explicit expression for
the density matrix is additional integrations; altogether
3%(M —1). Without techniques for multidimensional
integration, nothing would have been gained by expand-
ing the density matrix in a path. Fortunately, simulation
methods can accurately treat such integrands. Since we
have a non-negative integrand [see Eq. (2.18)], the time
to do a Monte Carlo calculation (with a predefined error)
will scale roughly linearly with the number of integrals.
It is feasible to make M rather large, say in the hun-
dreds or thousands, and thereby systematically reduce
the time-step error. We shall discuss this in more detail
in Sec. VIII.

C. Our path-integral notation

Before we further develop the ideas of path integrals,
let us specify the notation that we shall use in the rest
of the article.

The time step is defined as

~ =P/M, (2.19)

and a single Bk is referred to as the kth time slice.
Again Bg represents the 3N positions of the N particles:
BI, = {ri~, . . . , r~ I,}and r; A, a bead, is the position of
the ith particle in the kth time slice. The path is the
sequence of points {Rp Bi, . . . , RM i, RM}. The time
associated with the point BI, is defined as tI, ——kw. We
occasionally use a space-time notation where we define
kg = (Rl„tg). Then we can drop the time argument of
the density mat»x, p(Ri, R2) =—p(Ri R2' lti —t21).

A link m is a pair of time slices (R i, R ) separated
by time 7. The action of a link is defined as minus the
logarithm of the exact density matrix:

S = S(R~ i, R~; ~) = —1n[p(R~ i, B~;v)]. (2.20)

Then the (exact) path-integral expression becomes

(2.22)

The inter-action is then defined as what is left:

U =U(B i R;r)=S —K (2.23)

We shall &equently refer to U as the action, but of course
the complete action also includes the kinetic action.

The approximation [Eq. (2.13)] of allowing the kinetic
and potential energies to commute will be called the
primitive approximation. In the primitive approxima-
tion, the inter-action is

Ui = —[V(R i) + V(R )]. (2.24)

We have symmetrized Uz with respect to B and B
since one knows the exact density matrix is symmetric
and thus the symmetrized form is more accurate. If a
subscript is present on the inter-action, it indicates the
order of approximation; the primitive approximation is
only correct to order v. No subscript implies the exact
action.

A capital letter U refers to the total link inter-action,
while a small letter u(r;, r~; w) refers to a contribution to
the action from a single atom or pair of particles (i, j).
One should not think of the exact U as being strictly
the potential action. That is true for the primitive ac-
tion but, in general, is only correct in the smaLL-~ limit.
The exact U also contains kinetic contributions of higher
order in w.

(2.21)

There will be contributions to S coming from each term
of the Hamiltonian. It is convenient to separate out the
kinetic action &om the rest of the action. The exact
kinetic action for link m will be denoted K
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D. The classical isomomphism

We can interpret the path-integral expression, Eq.
(2.18), as a classical configuration integral; the action is
analogous to a classical potential-energy function divided
by kI3T. In the classical analog, the kinetic link action
corresponds to a spring potential connecting beads repre-
senting the same atom in successive time slices. The clas-
sical system is a chain of beads connected with springs.
We c'all such a chain a polymer. In fact, the bead-spring
model of real-life polymers has had a long and useful
history. The potential action represents forces between
beads of different atoms, keeping the polymers out of
each other's way (for a repulsive potential). The poten-
tial is represented by an interpolymeric potential, which
is peculiar from the classical point of view in that it in-

teracts only at the same "time" and only between beads
on different chains.

Thermodynamical properties, or static properties diag-
onal in configuration space, are determined by the trace
of the density matrix, i.e. , the integral of Eq. (2.18) over

Ro with Ro ——RM. The formula for diagonal elements of
the density matrix then involves a path that returns to
its starting place after M steps: a ring polymer.

We cannot overemphasize the importance of the
quantum-classical isomorphism (Chandler and Wolynes,
1981). Because the partition function of the quantum
system is equal to the partition function of the classical
system, and because of the central importance of the par-
tition function in statistical mechanics, there is an exact,
systematic procedure for understanding many properties
of quantum systems purely in terms of classical statistical
mechanics. Anything about helium that can be written
in terms of the partition function, or more generally as
matrix elements of the density matrix, has a classical
statistical-mechanical analog.

There is a curious shift of vocabulary in going from
the quantum system to the polymer model. Scientists
discussing liquid helium with the aid of path integrals
sometimes resemble children playing the game of "op-
posites, " where the child says the opposite of what is
intended. (I do not want a cookie. ) Usually, the chil-
dren's game degenerates quickly into confusion because
common language is ambiguous and not entirely logical.
Discussions of path integrals should be clearer, since path
integrals are based on mathematics, but the "translation"
is complicated by several features.

The same word applied to the quantum system and the
classical system can mean quite different things. In cases
where confusion of terms is possible, we shaH put the
term referring to polymers in quotes. To further avoid
confusion we do not refer to the "energy" of the polymer
model, but to its action. Another confusing term is en-

tropy. The entropy of a quantum system decreases with
temperature. But at low temperature, the corresponding
polymer system is becoming more disordered. The con-
fusion arises because the "temperature" of the polymer
model is not equal to the quantum temperature.

To translate what we mean by temperature into the

polymer model we must Find how P appears in the ac-
tion. It is best not to see how the time step appears
in the action because the time step is fixed by requiring
that the action be accurate. Hence the spring constant
and the interbead potential should be fixed as temper-
ature varies. This means that P will be proportional to
the number of time slices. The lower the temperature,
the more beads on the polymer. Zero temperature cor-
responds to infinitely long chains. One might worry that
sooner or later space will be completely filled by beads.
This is not a problem because only beads at the same
"time" interact, and hence any given bead always sees N
other beads.

Time is a word that can have at least three different
meanings: real time in the quantum system, the "imag-
inary time" of the path integrals, and the time related
to how the path is moved in the computer program. We
shall call this last time, steps, moves, or sweeps. If we

confuse the first two meanings of time, a word can have
exactly the opposite meaning in the quantum and poly-
mer systems. For example, the "velocity" of a bead is
usefully defined as its displacement &om one time slice
to the next, divided by w. But with this definition atoms
that are "fast" correspond to low-energy atoms, because
they are spread out and their kinetic energy is small.
On the other hand, particles that are trapped in a small
region have a small "velocity" and a high energy. The
inversion of meaning comes because path integrals are
in imaginary time. The kinetic energy in the primitive
approximation is

(2.25)

Kinetic energy is a constant minus the square of the "ve-

locity. " The constant needs to be there so that the total
kinetic energy will always be positive. It is possible for
a single realization of a path to have a negative kinetic
energy, by being spread out more than usual, but the
average over all paths must be positive. There is a large
cancellation between these two terms as w gets small,
since they both diverge as 1/w. We shall Find other ways
to estimate the kinetic energy in Sec. VI.

Any observable corresponding to a scalar function of
coordinates maps trivially from the quantum system into
the polymer model. For example, the particle density is

simply the average density of the beads,

(2.26)

Here (. . ) denotes the conFigurational average over the
polymer. configurations. Since the ring polymers are pe-
riodic in imaginary time, we can average over time slices
m as well as over paths.

There are often several different ways of mapping a
quantum concept onto the classical system. A concept
such as super8uidity is very general and related to many
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quantum-mechanical observables. In a few words, su-
perHuidity is equivalent to the presence of macroscopic
polymers in the classical model. Further explanations
and qualifications of this relation will be given in Sec. III.

A simple but very important quantity is the internal
energy, the sum of the potential and kinetic energies.
As discussed above, the potential energy is identical in
the quantum and classical systems, since it is a function
of coordinates alone. We have also given an expression
for the kinetic energy. Hence we know how to compute
the total energy. But by using Green's theorem we can
write the internal energy in various other forms having
difFerent fIuctuations and different systematic errors. We
call these various forms estimators and discuss them in
Sec. VI.

This aspect of Gguring out difFerent ways of calculating
quantum properties in some ways resembles experimental
physics. The theoretical concept may be perfectly well
defined, but it is up to the ingenuity of the experimental-
ist to And the best way of doing the measurement. Even
what is meant by "best" is subject to debate. Although
mapping the quantum system onto a classical system is
a big step forward, there may still be severe problems in
calculating properties. One limitation is that simulation
methods usually calculate only ratios of integrals, as in
Eq. (2.1). Specialized techniques are required for such
quantities as the free energy or entropy. This is a well-
known and well-studied problem in classical statistical
mechanics. Another problem is that the variance of an
estimator may be too high. This is often the case when
the integrand is both positive and negative. It is most se-
vere for real-time or fermion path integrals but can occur
in other contexts as well, for example, any excited state
of a quantum system. Third, many important quanti-
ties of quantum systems are really de6ned as dynamical
quantities, while the quantum-classical correspondence is
restricted to imaginary time. Often, one can reformulate
the quantum property in imaginary time, but not always.
We shall give some examples in the next sections. There
is still much to be done in learning how to exploit the
quantum-classical correspondence.

I I I I I I I I I I I I I
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place a mark at a common bead for each polymer, since
the potential acts only at equal "times. " It also helps
the eye to pick out individual atoms when their paths
overlap.

Shown in Fig. 4 are the same paths projected onto
the (x, t) and (y, t) planes; the vertical axis is imaginary
time. This is the world-line perspective. Clearly the
trace perspective is more useful, since the spatial, two-
dimensional relationship of the atoms is very important.

What is striking about the trace perspective is the

FIG. 3. The trace of the paths of six helium atoms at a tem-
perature of 2 K with 80 steps on the paths. The 611ed circles
are markers for the (arbitrary) beginning of the path. Paths
that exit on one side of the square reenter on the other side.
Successive beads are connected with straight lines.

E. Visualizing the paths

If path integrals are to be a useful, intuitive tool for
understanding quantum systems, one needs to develop
convenient ways of depicting paths. Here we give some
pictures of two-dimensional path integrals (two dimen-
sions because we do not want to consider the additional
problem of projecting out the z dixnension). What is
usually done is to plot the trace of the paths in the

. X-Y plane, projecting out the "time" coordinate. What
is shown in Fig. 3 are six distinguishable He atoms (%=6)
in a periodic square at 2 K with 80 time slices. This is
four times as many slices as are needed for a real simula-
tion. The filled circles shown are markers for the begin-
ning of imaginary time, i.e., Rq. There is nothing special
about that value of imaginary time, but it is useful to

X

FIG. 4. A world-line diagram of the paths shown in Fig. 3.
The vertical axis is imaginary time.
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messy nature of the paths. They do not look like our ide-
alized picture of ring polymers. In fact real polymers are
quite different. On the length scale of individual atoms,
chemical bonds keep the polymer rigid, but on a much
larger length scale, real polymers are also messy looking.
Because they cannot self-intersect, their paths are more
spread than those of our "ring polymers. "

Both real polymers and these paths are "fractals. "
Suppose we take any one of the line segments in the trace
perspective and blow it up by making the time step many
times smaller. To generate Fig. 5 we have used 8192 time
slices. We can see that the line segment that was used in
Fig. 3 to connect the beads is a poor approximation to
this "fuzzy" object. As the number of time steps tends
to infinity, the set of points visited by the paths will oc-
cupy a finite area; it has a Hausdorf dixnension 2, while
any smooth curve will have dimension l. (A real poly-
mer would have a &actal dimension between 1 and 2,
but that does not concern us. ) In the small-7. limit the
kinetic action always dominates. This means that the
&actal character seen in Fig. 5 is universal, independent
of the potential. In the world-line picture, we see that
the slope dr/dt is almost nowhere continuous. That curve
would appear more and more ragged if the graph were
expanded. For a detailed discussion of these issues see
Mandelbrot (1977).

This fractal character of paths results in a very basic
difference between viewing trajectories from a molecular-
dynamics simulation and from path integrals. In a
"movie" of a path (where viewing time is along the imag-
inary time direction) one's eye is distracted from seeing
any pattern by the continual jerking of the particles, so
"movies" are not a satisfactory way of getting insight into
path integrals.

We are seriously misrepresenting the character of the
paths by simply connecting the neighboring beads with
straight lines. It is far better to shade (or even better
color) the area in between the beads, to indicate which
points could have been visited. This is closely related to
a way of calculating a better approximation to the action,
the cumulant action, which we shall discuss later. Shown
in Fig. 6 are the same paths with all points that are
within a distance o. of the beads shaded. For a detailed
discussion of how this figure was generated, see Moran

FIG. 6. The same paths as in Fig. 3. The shaded area are
points within 0.38 A of a visited point.

and Wagner (1994). On a raster device it is very easy
to generate this type of plot; all of the pixels within a
thermal wavelength A of a bead are turned on.

In comxnon with classical systems, periodic boundary
conditions pose another problem for visualization. The
paths really live on the surface of a 2D or 3D torus. By
showing just the central unit cell, one introduces some
unphysical features: a path can disappear from one side
of the square and reappear on the other side. It is more
satisfactory to repeat the unit cell, so that each polymer
appears uncut at least once in the diagram. The same
paths are plotted in this extended view in Fig. 7. The
central cell is outlined with dashes. The extended cell
view is especially important for superBuids, since it is
the topological di.fference of paths that wind around the

—10+
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FIG. 5. The trace of a free-particle path going from one circle
to the other vrith 8192 steps.

FIG. 7. This is the same trace as in Fig. 3, but the paths have
been replicated four times to eliminate the artificial bound-
aries.
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boundaries that counts.
We have already explained how "true" paths are messy

objects. The fine-scale details are important for get-
ting the calculation right, but not for viewing the paths.
Every little detail is not important, whereas the overall
shape and connectivity of a path is important. It is much
more pleasing to the eye to smooth the paths. In Fig. 8
we have zeroed out all Fourier components above some
threshold. In fact, Fourier smoothing represents a difFer-
ent way of doing discrete path integrals. Instead of work-
ing with a 6nite number of time steps, it is equivalent to
keep a finite number of Fourier components. We shall
discuss the Fourier path-integral method in Sec. V.E.

There is another way in which path integrals are unlike
polymers: the paths have a direction. They correspond
to directed polymers. One can reverse the direction of
"time" for a whole system and one will get an equally
probable path, since the action is invariant on changing t
to P —t But o. ne cannot reverse the time on one atom's
path and not on another atom's path. Neighboring paths
may prefer to have their "velocities" parallel rather than
antiparallel. Thus it may be important to place an arrow
on each particle's path of a trace to indicate its "velocity. "

One should always keep in mind that all these pic-
tures show are points sampled from a product of ther-
mal density matrices. They have only an indirect rela-
tionship to real-time dynamics or paths. They tell us
mathematically precise information, but it must be cor-
rectly interpreted. Correlations along the paths are the
Laplace transform of real-time linear-response functions.
This will be considered in more detail in Sec. VI.F. Even
though the imaginary-time dynamics is not directly real-
time dynamics, it is very important. For example, it is
impossible to tell from a single time slice whether or not
a liquid is a superHuid, but one can recognize a super8uid
by examining the connection of the paths in imaginary
time.

F. Bose symmetry

, ) y(PR).
P

(2.27)

If the Hamiltonian is symmetric under particle exchange,
all states are either even or odd with respect to a given
permutation. Then 7 will project out Bose states. If we

apply P to the density matrix, we will obtain the bosonic
density matrix. Written in position space, this is

1
pgy (Ro, Rg., P) =,) p(Ro, PRi,.P)

P
(2.28)

where p~ is the boson density matrix and p is the boltz-
mannon density matrix. Note that we can apply the per-
mutation to the first argument of p, the last argument,
or both. We will get the same result.

A straightforward evaluation of the permutation sum
is out of the question once N gets large, since there will
be N! terms. The bosonic density matrix for free parti-
cles is an object known in mathematics as a permanent
(a determinant with all the minus signs removed). A
permanent takes on the order of N x 2 operations to
compute explicitly (Mine, 1978), as compared to a de-
terminant, which takes only N operations. Fortunately,
each term in the sum is positive, so we can 8am@/e the
perInutations in the sum. A bosonic simulation consists
of a random walk through the path space and the per-
mutation space. For fermions the cancellation between
the. contributions of even and odd permutations gener-
ally rules out a Monte Carlo evaluation of the integrand
without some major modification.

The partition function for a Bose system has the form

The density matrices up to this point have been appro-
priate to distinguishable (Boitzmann) particle statistics,
since the indistinguishability of particles was not taken
into account. For Bose systems only totally symmetric
eigenfunctions P;(R) contribute to the density matrix—
those such that P;(PR) = P, (R) where P is a permuta-
tion of particle labels, i e , P. .R = (r~, , r~, . . .r~~). De-
fine the particle symmetrization operator

=1 ( M

Zg = ) dRo .dRM q exp —) 8
p m=1

(2.29)
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FIG. 8. The same trace as shown in Fig. 3, but the paths have
been Fourier smoothed by taking only the lowest 11 Fourier
components.

with new boundary conditions on path closure: PB
Bo. Paths are allowed to close on any permutation of
their starting positions. The partition function includes
contributions from all ¹!closures. At .high tempera-
ture the identity permutation dominates, while at zero
temperature all permutations have equal contributions.
In the classical isomorphic system, ring polymers can
"cross-link. " (We only mean to be suggestive: cross-
linking of real polymers is quite difFerent. ) A two-atom
system of M links can be in two possible permutation
states: either two separate ring polymers, each with M
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links, or one larger polymer with 2M links.
Figure 9 shows the world-line view of a typical path of a

2D system of six He atoms in the super6uid state. Three
of the atoms are involved in a cyclic exchange, which
wraps around the periodic boundary conditions. This
pat wrapping arounth g around the boundaries is called a minding
path and is a direct manifestation of super8uidity. In
the world-line view, super8uidity appears as a barber-
pole or candy-cane design of the paths. The next figure,
Fig. 10, shows the trace perspective (the projection onto
the X-Y plane) of the same paths. Here the connection
of the paths and of the winding is much more evident.
The paths have a net "velocity" to the right.

Any permutation can be broken into a product of cyclic
permutations. Each cycle corresponds to several poly-
mers "cross-linking" and forming a larger ring po ymer.
Quantum mechanically the liquid does this to lower its i-

netic energy. In the classical language, cross-linking takes
place to maximize the "entropy"; there are many more
cross-linked configurations than non-cross-linked ones.
According to Feynman's 1953 theory, the superBuid tran-
sition is represented in the classical system by the forma-
tion of macroscopic polymers, i.e. , those stretching across
an entire system and. involving on the order of N atoms.
What we shall see in the following sections is the ex-
plicit dependence of super8uid properties on these macro-
scopic exc anges.h es. Monomer@ are atoms not invo ve in
an exchange —atoms z, such that P = i. We shall find
that the average monomer density is directly related to
the &ee energy of an isotopic impurity.

It is easy to determine when quantum statistics wiill
be important. In the absence of interaction, the size of a
path (or polymer) is its thermal wavelength,

1 0 f' I I I I ~

I
1 I I I

i
I /1 I i

i
l~ I I I

—1010 0
x (L)
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Ap = (2PA) ~ . (2.30)

When the size of the polymer equals the interpolymer
spacing, roug y phl /" it is at least possible for the poly-
mers to link up by exchanging end points. This relation-
s ip~ p=p )
h', A = /" defines the degeneracy temperature

2/d g2
TD

mkgg
(2.31)

FIG. 10. The extended trace of six He atoms at a temper-
ature of 0.75 K and with 53 time slices. The dashed square
represents the periodic boundary conditions. Three of the
atoms are involved in an exchange which winds around the
boundary in the x direction.

FIG. 9. The world-line view of same paths as in Fig. 10.
Three of the atoms are involved In an exchanghan e which wind. s
around the boundary in the x direction.

For temperatures higher than TD, quantum statistics ei-
ther bosonic or fermioiuc) are not very important.

In a liquid state, TD gives a surprisingly good esti-
mate of the superBuid transition temperature. For ideal
Bose condensation in three dimensions, T,/Tri = 3.31.
For liquid 4He at saturated-vapor-pressure (SVP) condi-
tions (essentially zero pressure), &T = 2.32. Particle
localization can cause T to become reduced. For exam-
ple, as liquid He is compressed, T decreases somewhat,

h l 7 es, so that by the time liquid He freezes
T,/T~ = 1.64. To explain this change, Feynman (1953)
argued that the effective mass of the helium atoms is
larger than the bare mass and increases with density.
Later, we shall determine this effective mass with pat
integrals. Putting particles in a quantum so i suppresses

Buid. In He Alms, the transition is of the Kosterlitz-
h l s t e but nonetheless the estimate of the su-

perfluid transition is reasonable: T /TD = l. a e
minimum liquid density (Ceperley and Pollock, 1989).
Note that the Fermi energy for an ideal spin-2 Fermi iq-
uid. is given in erms'd ' t s of the degeneracy temperature by
E /(k T ) =76in3Dand63in2D.H D

In Eq. (2.28), it appeared that Ro was singled ou
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receive the permutation. Examination of Fig. 10 shows
that the time slice where one relabels the particles is
arbitrary. By change of variables one can make the per-
mutation occur at any time slice. This is analogous to
the international date line on the Earth: by convention,
we change the calendar date in the middle of the Pacific
Ocean, but the date line could have been placed any-
where. We could also insert a permutation on every link,
but this would be a useless relabeling of the particles. As
on the Earth, it is convenient to label particles in neigh-
boring time slices the same, but somewhere along the
path the labels must change if the permutation is nontriv-
ial. All time slices are still equivalent, and. they can all be
used to calculate averages. Whenever one constructs an
estimator for an observable, one should consider whether
Bose symmetry has been taken into account properly.

Molecular hydrogen is another example of how per-
mutational symmetry is treated with path integrals. In
liquid or solid molecular hydrogen, two molecules ex-
change places very rarely, but the protons within a sin-
gle molecule exchange very frequently. It is found. that,
in the absence of magnetic impurities, the total nuclear
spin of the molecule is conserved for very long periods of
time, so there are efI'ectively two chemical species, para-
hydrogen and ortho-hydrogen. The para-hydrogen nu-
clear spatial wave function must be symmetric under the
exchange of the two protons, i.e., bosonlike. To calculate
the partition function of para-hydrogen with path inte-
grals, we must allow paths to close on themselves with
a possible permutation, where atoms within the same
molecule may exchange. There are 2 such permutations
where % is the number of hydrogen molecules. These
pair permutations will not cause superfIuidity, since they
only modify the local wave function, but they can afFect
the thermodynamic properties. See, for example, Runge
et al. (1992) or Marx et al. (1993). If we further as-
sume that the molecule is localized at a crystal site and
the molecular bond length is fixed, the only dynamical
variable left is the bond angle. Then the path for each
molecule is a path on the surface of a sphere. For para-
hydrogen, points related to each other by inversion sym-
metry are considered equivalent. For ortho-hydrogen, the
molecular wave functions are antisymmetric under parti-
cle exchange. Each pair exchange brings in an additional
minus sign. Hence the integrand of the partition function
is both positive and negative, so that it cannot map onto
a classical distribution function.

For any discrete or continuous symmetry one can con-
struct a projection operator for states restricted to a par-
ticular symmetry. Whether this is computationally use-
ful depends on whether one has introduced too many
minus signs in the process. Luckily for bosons there are
no minus signs.

III. PATH INTEGRALS AND HELIUM

path integrals, and compare the results with experimen-
tal data. In particular, we focus on the properties directly
related to superfIuidity —the specific heat, the momen-
tum distribution, and the superBuid density. Finally, we
discuss exchange in solid helium and attempt to calculate
the excitation spectrum with path integrals.

A. The lambda phase transition

It was the shape of the specific-heat curve and. its sin-
gularity at 2.17 K that gave rise to the name of the
lambda transition. See Fig. 11. Feynman (1953) ex-
plained how macroscopic bosonic exchange gives rise to
this peak. First he argued that the primitive approxi-
mation for the action would be qualitatively correct for
temperatures near the critical temperature if we allowed
the mass to be an efI'ective mass even with one time slice.
He arrived at the simple form for the partition function

ZM~ --Kp dRf(R) ) exp
~

— ~, (3.1)
t' (R —PR) 2

&

4~*p

where f(R) is a normalized configurational distribution
that at low temperature equals the ground-state density:
f(R) = ~~$0(R)~~2, Kp is a normalization factor, and A*

accounts for the efI'ective mass. This partition function
was earlier proposed by Matsubara (1951) based on the
symmetry of the boson ground state.

The Matsubara-Feynman approximate partition func-
tion captures the physics of the lambda transition. Ac-
cording to Feynman (1953), "It is not hard to understand
that Eq. (3.1) gives a transition. If f were a constant it
would be the same as a partition function for an ideal gas.
The fact that f is not perfectly uniform cannot change
this much. "

One crucial difFerence is that the density of liquid he-
lium is uniform, while ideal bosons tend to attract each
other to maximize exchange and create pockets of high
density. The interatomic potential between helium atoms
will not allow regions of high density. To derive a sim-
pler lattice model, Feynman neglected the temperature
dependence of f(R) and assumed that all configurations
R are more or less equivalent, as long as the atoms are
well separated. The neglect of the temperature depen-
dence is justified empirically by noting that the pair-
correlation function d.oes not change much in the region
of the lambda transition (Ceperley and Pollock, 1986).
We can assume f(R) = ~, P& b(R —PRo) where Re is
a typical configuration of atoms. For simplicity, Feyn-
man (and later Kikuchi) took Ro to be a perfect cubic
lattice. The hard-core repulsion between helium atoms is
then taken into account by allowing precisely one atom
per lattice site. These approximations do not concern us
now, since the PIMC computations will not use them.
Taking a reference configuration, Bo, let us define the
density of exchange distances,

In this section we systematically go through the prop-
erties of liquid helium, explain how they are related to

n(~) =, ).~[*—(Ro —PRO)'l(4&")j.¹! (3.2)
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Then the partition function reduces to

( x)
Z~~ ——Kp dxg x exp (3.3)

On a perfect cubic lattice with spacing d, x will be a
multiple of d /(4A*). Then y = exp[ —d /(4A*P)] is the
link probability. Feynman argued that in the critical re-
gion only permutations that send an atom back to its
original site or to nearest-neighbor sites are important.
If the permutation P is broken into cycles, a 4-cycle cor-
responds to a square on the lattice. A valid permutation
consists of a nonintersecting collection of polygons on the
lattice, nonintersecting because each atom can be a mem-
ber of only a single cycle. Thus the partition function is
obtained by finding the number of ways of drawing non-
intersecting polygons on a lattice. In general, this com-
binatorical problem does not have a known solution. But
on a two-dimensional honeycomb lattice Nienhuis (1984)
has managed to evaluate the lattice sums exactly for the
critical value of y, showing that the lambda transition is
of the Kosterlitz-Thouless type.

Qualitatively, one can understand why there will be
a phase transition when the temperature is low enough.
From Feynman (1953a): "A single large polygon of r
sides contributes a very small amount y" with y ( l.
But a large polygon can be drawn in more ways than a
small one. Increasing the length r by one increases the
number of polygons available by a factor say s (perhaps 3
or 4) although the contribution of each is multiplied by y.
Thus if sy ( 1 (high T) large polygons are unimportant.
As T falls, suddenly when 8y = 1 the contributions from
very large polygons (limited by the size of the container)
begin to be important. This produces a transition. "

In Feynman's original calculation, he got a third-order
transition because of approximations made in calculat-
ing the lattice sum. Kikuchi, Denman, and Schreiber
(1960) have refined these calculations using more elabo-
rate methods. Chester (1955) showed, using cluster ex-
pansion methods directly on the partition function of Eq.
(3.1), that introducing any correlation at all between the
loops will change the transition from third order (ideal
bosons) to second order.

Differentiating Eq. (3.3) with respect to P, we obtain
for the energy

function.
Riser (1984) has performed a Monte Carlo evaluation

of the sum on a cubic lattice, obtaining the specific heat
shown in Fig. 11. To get the transition temperatures
to match, we adjusted the effective mass of the helium
atoms to be 1.30 times the bare mass. While this is a
somewhat small value for the e6'ective mass, scaling the
temperature also takes into account the approximation
of a cubic lattice and the restriction to nearest-neighbor
exchanges. [When Elser calculated the specific heat, he
dropped the first two terms of Eq. (3.5) and plotted only
the Huctuation term, which is the one that diverges at T, .]
There is a remarkable agreement between the lattice spe-
cific heat and the experimental measurement, thus ver-
ifying Feynman s conjecture that the Feynman-Kikuchi
model is a correct description in the critical region.

Simulations of the lattice model of course run much
faster than those of the detailed microscopic model. Be-
low T one has to make modifications to the Matsubara-
Feynman partition function to get the right specific heat,
as explained in Feynman (1953b). This is .because the
number of permutations depends on the local density.
But density Ructuations (phonons) have been left out of
the lattice model.

Shown in Fig. 12 is the probability P that a given par-
ticle belongs to a cycle of length m (hence P P = 1)
as a function of temperature. These results were ob-
tained with PIMC simulation and a realistic interatomic
potential. One sees that above T very few particles are
involved in any exchanges, but at the transition there are
many exchanges. The monomer density, P~ is related to
the energy of placing an impurity in He, as we discuss

5 I I 1 I

l
I I

3T T'(x)e=eo+
2

and for the specific heat

(3.4)

(3.5)

The specific heat is proportional to the mean-squared
Buctuation of the exchange distance. At the critical point
the speci6c heat diverges because there are both long and
short exchanges present. Because it has to do with the
stretching of paths, this is a purely kinetic contribution.
We shall see in, Sec. VI that there is an exact equivalent
to Eq. (3.4), one not based on an approximate partition

I i i i & I I i i & I

p 3 4
T (K)

FIG. 11. The specific heat of He: solid line, experiment at
saturated vapor pressure (Wilks, 1967); triangles with error
bars, PIMC calculations (Ceperley and Pollock, 1986); open
circles, Feynman-Kikuchi model with 20 sites (Elser, 1984).
In Riser's calculation, only the Buctuation term in the specific
heat has been included, and the temperature has been scaled
to match the experimental transition temperature.
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FIG. 12. The probability that an atom belongs to a permu-
tation of length m as a function of temperature in liquid He
at saturated vapor pressure. The solid line represents the
probability of a nonexchanging atom. The dashed lines are
for m = 2, 3, 4, 5. All curves approach the zero-temperature
value of 1/N = 1/64.

FIG. 13. The energy/atom of He: solid line, experiment at
saturated vapor pressure; symbols with error bars, PIMC cal-
culations (Ceperley and Pollock, 1986). The upper panel is
the potential energy (solid line and left scale) and kinetic en-

ergy (dashed line and right scale).

below.
The phase transition for liquid helium belongs to

the universality class characterized by a. two-component
order parameter, usually represented by a single-
particle wave function P(r) and a free-energy functional
(Ginzburg and Pitaevshii, 1958; Pitaevskii, 1961) appro-
priate for long-wavelength excitations:

« ~l«(r)l'+ ~l&(r)l'+
2

&(r)'
V

where p is the chemical potential and V represents the
short-ranged helium-helium potential. The chemical po-
tential is negative and vanishes at the transition tem-
perature, p = (1 —T/T, )p . The free energy vanishes
above T„where the minimum energy is attained when

P(r) = 0. But below T, the ground state has a bro-
ken symmetry because the phase of P is undetermined:
P(r) = e'~Q —p, /V.

Elser (1984) has shown in the dilute-gas limit how the
theory arises from bosonic exchanges in the path-

integral description. A two-component field theory re-
sults &om the fact that a permutation cycle has two pos-
sible senses (except for 1 and 2 cycles). Such a deriva-
tion has to make some assumptions about the existence
of long exchanges, since application of pressure to He
produces a solid phase, which has completely difFerent
properties and a different effective action.

B. The energy of liquid He

Switching now to computations that use the best in-
teratomic and path-integral techniques, we see in Fig. 13

the energy of liquid He as a function of temperature
at saturated-vapor-pressure (SVP) conditions. One sees
that there is a good agreement with experiment. But
the effects of superfIuidity are hardly evident in this
curve; there is just a small point of infinite derivative
at T = 2.17 K. Figure ll shows the specific heat as
obtained by taking finite differences of the path-integral
energies. We shall discuss alternate ways of computing
the specific heat in Sec. VI.B. Although the agreement
with experiment is not bad, the statistical error of C~
is large. Lattice models such as the Feynman-Kikuchi
model are much more convenient for determining critical
properties such as critical exponents, since they are so
much faster than continuum calculations. However, the
continuum calculations are necessary for calculation of
detailed microscopic properties and away from the criti-
cal point.

The effect of Bose condensation on the kinetic energy
is more pronounced. At the transition, the kinetic energy
drops by —1.2 K/atom, but the potential energy increases
by only 0.25 K. Thus the atoms are able to delocalize
with hardly any change in their spatial distribution. It is
difIicult with neutron scattering measurements to see the
small change in kinetic energy. It is possible to measure
the much larger dependence of kinetic energy on density,
which is shown in Fig. 14, both for liquid and solid he-
lium. The evident agreement means that the core of the
He-He interaction has been chosen to have the correct
size, since it is the core size which controls the kinetic
energy.

Pollock and Runge (1992b) have directly calculated the
transition temperature for liquid helium at saturated va-

por pressure using PIMC and a realistic interatomic po-
tential. To estimate the critical temperature they used
ideas of finite size scaling, which have been extensively
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FIG. 14. The kinetic energy in He as estimated from PIMC
at SVP as a function of density (solid line). Most of the calcu-
lations were done at 4 K. The jog in the curve near 30 nm
is the reduction in kinetic energy upon solidification. The
points are estimates from deep-inelastic neutron scattering.
Filled circles are the measurements in the solid phase (Blas-
dell, Ceperley, and Simmons, 1993) at various temperatures
between 1 and 2 K. Open squares are measurements in the
normal liquid at 4.25 K by Herwig et aL (1990).

FIG. 15. Pree-energy difference between periodic and an-
tiperiodic boundary conditions for the indicated temperatures
(in K) as a function of the number of atoms. An estimate of
T, based on extrapolating the slopes of the curves to zero,
gives 2.19 + 0.02 K (Pollock and Runge, 1992). The experi-
mental transition temperature is 2.172 K.

applied to lattice models. The very simplest, but surpris-
ingly accurate, way of determining the transition temper-
ature is to calculate the free-energy diBerence from peri-
odic to antiperiodic boundary conditions. If P(r) is the
wave function of the order parameter, then antiperiodic
boundary conditions are defined by P(r+ L) = —P(r)
with L the size of the simulation box. Using the energy
functional of Eq. (3.6) we determine that the energy to
make this twist equals —pAvr21" 2/V in the superHuid
phase. Thus for d = 3 the free-energy change will be
proportional to L. In the normal phase, the &ee energy
to make the twist will decrease exponentially with the
correlation length, (, AI' e ~~t. As we shall discuss
in the following sections, this &ee-energy change can be
directly calculated by path integrals: It is

Ic Tin(e' * ~ —)

where TV is the instantaneous winding number in the x
direction [see Eq. (3.32)] and the brackets represent an
average over the distribution of paths. The twist free
energy is related to the difFerence in probability of an
even winding and of an odd winding.

Figure 15 shows the result of this calculation for vari-
ous sized systems and as a function of temperature. One
can see very clearly that there is a change in behavior at
the transition temperature. Pollock and Runge estimate
the transition &om this plot to be T = 2.19+0.02 K. The
experimental value is 2.172 K. This remarkable agree-
ment (along with others that we shall discuss) removes

any doubt of the underlying mechanism of the super-
Huid transition. Path-integral Monte Carlo simulation
has succeeded in going directly from a parameter-&ee
microscopic Hamiltonian to the experimental transition
of a quantum many-body system.

C. The pair-correlation function and the structure function

The pair-correlation function g(r) and its Fourier
transform, the structure factor S(k), describe the micro-
scopic arrangement of atoms in liquid helium. There have
been extensive and systematic measurements of these
functions with neutron and x-ray scattering experiments.
The calculated radial distribution function is shown in
Fig. 16 and compared with x-ray and neutron scattering
experiments. The largest disagreement, of about 2%, is
at the nearest-neighbor peak. One expects errors in the
peak height of order % = 1% because of finite size
efFects. In fact, the disagreement between the two scat-
tering measurements is larger than between theory and
experiment. The comparison with the PIMC simulations
gives us conMence in both the numerical methods and
the assumed intermolecular potential.

The pair-correlation function shows very little efFect
of Bose condensation. Shown in Fig. 17 is the di8'er-
ence between the pair correlations of a boson system and
a system with no bosonic exchange, i.e., "boltzmannon
statistics" at the same temperature, 2 K. This is an exam-
ple of a computer "experiment" that is easy to perform
on the computer but impossible in nature. The maxi-
mum difference is only 2%. This temperature, just below
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0.1 Green's-function Monte Carlo calculations of Whitlock
and Panoff (1987), but the estimate of the ground-state
condensate is still close to 8%%uo.

The condensate fraction has a simple meaning in terms
of path integrals. The probability density of observing a
single atom with momentum A: is defined as

0—
2

n», = (2m') f dkg . dk~ J dRQ)R)e ', )kS)

—0.05—
where P(B) is the many-body wave function. If we per-
form the integrals dk2 - . dk~ and thermally occupy the
many-body states, we find

0 1 l ) I ) I ) I I ) I ) ) ) ) I ) ) ) !
0 1 32

k (I(-')

FIG. 20. The difFerence between the structure factor at 4 and
1.67 K at a density 0.0256 A: solid line, as computed with
PIMC; dashed line, as measured by x-ray scattering (Robkoff
aud Hallock, 1982).

1 —'k
n1, = „dr1dr', e '" " ' n(r„r', ),0 2~ "

where the single-particle density matrix is

n rl rl

0
dr2 . drI)I p(rr, 1'2, ..., rIv, 11,1'2, ..., rIv', P).

The smallest wave vector in the simulation is at 0.42 A.

so that the small cells with a Axed number of particles
do not have the density Buctuations caused. by the grow-
ing compressibility. Finally Fig. 20 shows the difI'erence
in the structure factor at high density in going through
the superHuid transition, as calculated by PIMC and as
measured by experiment. The calculated and measured
changes are rather similar. This last plot shows that not
only is PIMC getting the structure correct, it is also get-
ting the change in structure due to Bose condensation
correct.

D. The momentum distlibutian

London (1938) supposed the superfluid transition to be
the analog of the transition that occurs in an ideal Bose
gas where, below the transition. , a finite &action of par-
ticles occupy the zero-momentum state. It is hard to un-
derstand how particles with strong repulsive interactions
could behave like free particles. How can they remain in
a zero-momentum state, which means that they are uni-

formly occupying the entire box, while at the same time
keeping out of each other's way?

Penrose and Onsager (1956) defined Bose condensation
in an interacting system as the macroscopic occupation
of a single-particle state, namely the state of zero mo-
mentum. Using Feynman's partition function and argu-
ments concerning cycle length distribution, they showed
that there would be Bose condensation below T but
not above. They estimated that at zero temperature
8%%uo of the atoms have precisely zero momentum. Since
that time the ground-state calculations have been im-
proved considerably, for example, with the variational
Monte Carlo calculations of McMillan (1965) and the

(3.10)

vr„(R, rr) = —,p(r1, r2, ..., rIv, rr, r2, ..., rIv, P), (3.11)

where Z' is a new normalization constant and r and r' are
independent variables. This density matrix is expanded
into a path. We w'ere careful when we defined the path
integrals to do it for a general (oK-diagonal) matrix ele-
ment. Then the distribution of rq and r~ is given by

n(r, r') oc {h(rr —r)h(r', —r')) {3.12)

where the brackets denote an average over vr . The clas-
sical simulation to be performed is of (K —1) ring poly-

%'e have assumed periodic boundary conditions in a cell
with volume Q. Note that n(r, r') and nk are normalized
as I drn(r, r) = 0 and J dkn~ = 1. For a homogeneous
isotropic liquid we have n(r, r ) = n(~r —r'~), in which
case n(0) = 1. The kinetic energy is proportional to the
second moment of nI, and to the curvature of n(r) at
r=0.

According to Eq. (3.9), the momentum distribution is
the Fourier transform of an ofI'-diagonal element of the
density matrix. The paths that we have been discussing
up to this point, each ending at the start of another par-
ticle's path, cannot be used to calculate the momentum
distribution. Simply put, to get an observable in mo-
mentum space we cannot do the simulation entirely in
the position representation. A].l that is needed to get the
momentum distribution is to remove the restriction on
one of the atoms that it return to its starting position.

The method by which to calculate the single-particle
density matrix is quite simple: one samples paths from
the probability distribution,
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mers and 1 linear polymer. An example of such a path
is shown in Fig. 21.

At high temperature there is no particle exchange and
the distance between the polymers is much greater than
the size of a given polymer, so the internal coordinates
of the single linear polymer will be almost free-particle
like and its end-to-end distribution Gaussian: n(r, r') oc

exp[ —(r —r') /(4AP)j. Taking the Fourier transform, we

end up with the Maxwellian momentum distribution with
a width k~T.

Now we have to consider how Bose statistics affects
the types of paths that are allowed. Care must be taken
to understand the imaginary-time boundary conditions
once permutations are present. Suppose particle 1 is in-
volved in a three-body cyclic permutation with particles
2 and 3. We know that particle 1 begins at r and ends
at r'. That means one has the following boundary con-
ditions on the paths:

become separated depends on the statistical mechanics
of the polymer system and is di8erent for bulk He and
for 4He films (i.e., in 2D or 3D).

For a 3D bulk liquid the single-particle density matrix
in the super8uid state goes to a constant at large r; see
Fig. 22. The momentum distribution, its Fourier trans-
form, will then have a delta function at the origin. We
define the condensate &action as the probability of end-
ing an atom with precisely zero momentum. This will

equal

(2~)'
Ao 0 02AO drdr'n(r, r')

1
drn(r). (3.14)

The factor (2m )sO comes about because no is a proba-
bility density, while no is a probability. The last equation
holds for a homogeneous liquid. If we take the volume of
the box to infinity, the condensate fraction is the large-
distance limit of the single-particle density matrix,

(3.13)
no ——lim n(r).r —+oo

(3.15)

It is simpler to state the conditions physically. There
are two cut ends in the path space, but it does not mat-
ter which particle labels are attached to the ends. If a
macroscopic exchange is present, as is usually the case
in the superfluid state, the two ends can become sepa-
rated by much more than a thermal wavelength if they
are attached to a macroscopic exchange. How far they

The condensate fraction is essentially the probability of
the two cut ends attaching themselves to a macroscopic
exchange. Figure 23 shows the fraction of atoms in the
zero-momentum state, and Fig. 24 the momentum distri-
bution of the noncondensed atoms.

One often hears the question: why is the condensate
fraction at low temperature only 10% while the system

10
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FIG. 21. The extended trace of Gve He atoms at a temper-
ature 0.75 K. The dotted path is that of the cut polymer,
the one that is not periodic in imaginary time. Its end-to-
end distribution is used to calculate the momentum distribu-
tion. The other four atoms are involved in an exchange which
winds around the boundary in the x and y directions. The
dashed square represents the periodic boundary conditions.
The paths have been Fourier smoothed.

FIG. 22. The single-particle density matrix of He above and
below the lambda transition at temperatures 1.18, 2.22, and
4 K (from top to bottom). The calculations (Ceperley and
Pollock, 1987) were done at the density corresponding to sat-
urated vapor pressure. Note that the dotted line, correspond-
ing to a temperature of 2.22 K, which is above T„does not
approach zero at the edge of the box because the 6nite-sized
sample (64 atoms) has a higher transition temperature than
bulk helium.
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FIG. 23. The condensate fraction in He as estimated. from
PIMC at SVP as a function of temperature. The estimates
are obtained by averaging n(r) in the range 2.5 A. & r & 6.0 A.
Thus they are not zero in the normal Quid. The value at 0.1
K is from the zero-temperature Green's-function Monte Carlo
calculations of Whitlock and Panoff (1987). The dashed line
with crosses and error bars is from an analysis of neutron-
scattering data by Snow, Wang, and Sokol (1992).

apart. "Entropy" counteracts this tendency to localize
the two ends. If the attractive force between the ends
drops suKciently quickly, as happens in 30, then nq will
be finite. But the delocalization can only happen if there
are macroscopic exchanges.

The explanation of the condensate &action in terms of
wave functions is quite diferent. Clearly the many-body
wave function must have lots of curvature so that it can
go to zero whenever any pair of atoms overlap. Hence
the kinetic energy is nonzero and high momentum states
must be occupied. In spite of this curvature, a "con-
densed" wave function manages to stay delocalized and
uniformly fills up the low-potential-energy part of config-
uration space. One can pick an arbitrary atom, displace
it a long distance and reinsert it, and with probability
no, Gnd that the wave function is still large.

In neutron-scattering experiments, the distribution of
angles and energies of a neutron beam passing through a
sample of helium is recorded. The measured cross section
ls pl'opol'tlollal 'to tile dynaxIllc stl'llctill'e factol' S(k, (d).
To relate the dynamic structure factor to the momentum
distribution, one must take into account the quantum
states the liquid can end up in after the scattering, "the
final-state e8'ect. " At sufBciently high moxnentum trans-
fer, the impulse approximation holds because the neutron
scatters from a single atom. In this case one 6nds that

is 10Q% superHuid? We shall discuss the superHuidity
in the next subsection, but it is easy to understand the
fact that no is much less than unity. The two ends of
the "cut" polymer are attracted to each other because
they can share the same correlation hole and thus mini-
mize the action. In contrast to real polymers, there is no
interaction between the two ends, since they represent
two halves of the same particle that would push them

S(k, (u) = —J(Y), (3.16)

1J(k, ) = dk dk„nk = — drn(r) cos(k, r). (3.17)

where the scaling variable is defined by Y = (m/k)(u-
Ak2) and

0 ~ 18 I I I I
}

I I I I
i

I I I I
i

I I I I

O. i

0.08

0.02

0 2
k (A-')

FIG. 24. The noncondensed momentum distribution of He
from PIMC calculations with the same conditions as in the
previous figure.

A comparison between the neutron-scattering measure-
ments (Sokol, Soosnick, and Snow, 1989) and PlMC
(Ceperley, 1989) for liquid heliuln is shown in Fig. 25.
Note the good agreement with respect to experiment, at
various temperatures. The experimental results are rela-
tively insensitive to the condensate, thus the rather large
errors on the condensate in Fig. 23.

In He films the momentum distribution is quite dif-
ferent at small momentum. At a nonzero temperature
the two cut ends never lose sight of each other. They feel
an attraction to each other which varies like qtn(~r —r'~)
at large separations. Hence the single-particle density
matrix decays to zero algebraically: n(r) oc r ". The
strength of this interaction depends on the temperature
through the Kosterlitz-Thou}ess relation (Nelson, 1983),

1 = 4vrAPp„where p, is the super8uid density. Hence
a nonzero condensate only appears at zero temperature.
Nonetheless the system is super6uid below its transition
temperature. PIMC calculations (Ceperley and Pollock,
1989) on 2D helium are in good agreement both with
the Kosterlitz-Thouless theory and with experiments on
helium films (Greywall and Busch, 1991).
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0.8 mentum operator in the z direction,

(3.i9)

0.6 and 0, is the angle of the ith particle in cylindrical co-
ordinates. On the other hand, the classical moment of
inertia is given by

+ 0.4

O. P

.OK

.8K

(3.2O)

The ratio of the two moments is defined as the normal
density; what is missing is the superQuid density:

p p lc
(3.21)

0

FIG. 25. Observed neutron scattering (Sokol, Sosnick, and
Snow, 1989) at temperatures of 1.0, 1.8, 2.3, and 3.5 K. The
solid lines are the PIMC predictions (Ceperley and Pollock,
1987) with instrumental resolution and finite-size effects in-
cluded.

Thus the superQuid density is the linear response to an
imposed rotation, just as the electrical conductivity is
the response to an imposed voltage.

One might not think that imaginary-time path inte-
grals would be appropriate to calculate the superQuid
density, since motion in real time is involved. This is not
so. Statistical mechanics does not require the use of an
inertial reference frame. We can transform to the frame
rotating with the bucket to determine the free energy
of rotation. The Hamiltonian in the rotating coordinate
system is simply given by

o ~~z. (3.22)

E. Response to rotatian and the superfluid density

d(C, )
d4)

(3.18)

where E is the free energy, 2, is the total angular mo-

SuperQuidity is experimentally characterized by the re-
sponse of a system to movements of its boundaries. The
rotating bucket experiment was first discussed by Landau
(1941) on the basis of his theory of superfluidity. He pre-
dicted that superQuid helium would show an abnormal
relation between the energy it takes to spin a bucket and
its moment of inertia. Suppose one measures the work
needed to bring a container filled with helium to a steady
rotation rate. A normal Quid in equilibrium will rotate
rigidly with the walls. The work done is E =

z Iu,
where I is the momentum of inertia and cu is the angular
rotation rate. On the other hand, a superQuid will stay
at rest if the walls rotate slowly, so that a smaller energy
is needed to spin up the container. The liquid that stays
at rest is the superQuid. Experiments by Andronikashvili
(1946) confirmed this prediction.

We do not assume that the bucket has cylindrical sym-
metry, so there will be some coupling between the walls
of the bucket and the liquid helium, allowing the liquid
to come to thermal equilibrium with the walls. The ef-
fective moment of inertia is defined as the work done for
an infinitesimally small rotation rate,

Here 'Ro is the Hamiltonian at rest. We pick up the ex-
tra term in transforming the Schroedinger equation from
the laboratory kame to the rotating frame, since the new
angle is given by 8' = 0 —~t. Now we have to find a path-
integral expression for the efFective moment of inertia de-
6ned in Eq. (3.18). The following identity allows us to
take the derivative of an exponential operator that con-
tains a parameter u. First we break up the exponential
into M pieces:

M A/M) (s—i)A/M d (M —k)A/M
dc() deaf

(3.23)

Now we take the limit M -+ oo:

de zA dA (1—&~Ad'te e
d~ o d

(3.24)

The first equation is appropriate to discrete-time path
integrals, the second should be familiar kom linear-
response theory. Of course, if the derivative

&
com-

mutes with A, things are much simpler. We do not want
to assume that the potential is invariant with respect to
rotations so that the angular momentum operator does
not commute with the Hamiltonian.

Now let us take the derivative of the rotating density
matrix with respect to u, as required by Eq. (3.18). We
get

Rev. Mod. Phys. , Vol. 67, No. 2, April 1995



300 D. M. Ceperley: Path integrals in the theory of condensed helium
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We have expressed the normal Quid density in terms of
the matrix elements involving the system at rest. Now
we explicitly evaluate this in terms of discrete path in-
tegrals by having the angular momentum operate on the
action. Since angular momentum commutes with the in-
ternal potential energy, that term will not contribute.
One can show (Pollock and Ceperley, 1987) that an ex-
ternal potential also does not contribute in the limit as
~ ~ 0. In evaluating the sum over k in Eq. (3.23) there
is one tricky point. The A: = 1 term must be treated sep-
arately, since 8 operates twice on one link. That term
gives rise to the classical response. After some algebra
we get

0.4—

0--
1 2

T (K)

p, 2m(A2)

p PAI,
(3.26)

(3.27)

where we have defined. two functions of a given path,
namely, the projected area

FIG. 26. The ratio of superQuid density to total density: solid
line, measured value for bulk He at SVP (Donnelly, 1967);
Q, PIMC calculations with 64 atoms in periodic boundary
conditions and using the winding number formula (Pollock
and Ceperley, 1987); ~, calculations for a droplet of 64 He
atoms and using the area formula (Sindzingre, Klein, and
Ceperley, 1989).

and the moment of inertia (this is a better definition than
given previously)

(3.28)

Note that the area of a path is a vector. For rotations
about the z axis we need only the z component of the
area. By symmetry the average value of A vanishes.
Equation (3.26) is the main result of this section and is
an exact Quctuation-dissipation formula. The superQuid
density is proportional to the mean-squared area of paths
sampled for a container at rest divided by the classical
moment of inertia.

At high temperature the mean-squared. area will be
the sum of the mean-squared areas for each atom's path,
since we can assume that the areas will be uncorrelated
with each other, (A ) = K(a ), where the mean-squared
area of a free particle is (a ) = (AP) /3 (Pollock and
Runge, 1992a). The classical moment of inertia will be
mN(r ). Hence the superfluid density will be p, /p =
2AP/(3(r )). It will be negligible once the size of the
cylinder is greater than the thermal wavelength.

But for a superQuid, the mean-squared area can be
much greater. One finds that the superQuid density ap-
proaches unity at low temperature. See Fig. 26 for the
path-integral estimates of the superQuid density of He
droplets (Sindzingre et aL, 1989). The superfluid density
of a small droplet is not very difFerent from that of the
bulk liquid. SuperQuidity is a microscopic property that
can be defined in a finite system. It is not necessary to
take the thermodynamic limit or to have a phase tran-
sition to see its efFect. The eBect of Bose statistics in a

Bose liquid is to reduce the number of excited states and
hence the coupling to an external potential. This can
happen in a finite system as well as in an infinite system.

A uniform magnetic field acting on charged particles
is equivalent to a rotation, and we can directly apply
all that we have learned about superQuidity to charged.
particles in magnetic fields. The analogous phenomenon
to superQuidity is the Meisner efkct of superconductors.
The Hamiltonian in a magnetic field is

'R = [p —e/cA]' + V(R). (3.29)

(3.30)

where A is the area of the path. For details see Parrinello
and Rahman (1984) and Pollock and Runge (1992a).

There are serious differences which prevent one &om
applying path integrals to superconductors. First (and
less serious), periodic boundary conditions complicate
matters, even in a uniform field. Secondly, most charged
particles are fermions, and so one cannot use these formu-
las when there are more than two fermions without tak-
ing antisymmetry into account. The minus signs, and/or

In a constant magnetic field in the Coulomb gauge, the
lowest-order change in the Hamiltonian due to the mag-
netic Geld is proportional to the angular momentum op-
erator, —'p A = 2' Z„hence the previous discussion

applies if we replace the rotation rate with 2' . Then
the zero-field. diamagnetic susceptibility is
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phases that are introduced, completely change the clas-
sical picture of quantum systems that we have been de-
veloping here. We will not discuss the application to
superconductors any further.

F. Superfluidity in periodic boundary conditions

Now let us change the geometry of the rotating cylin-
der, so we can see how superfluidity manifests itself in
periodic boundary conditions. Periodic boundary condi-
tions are more convenient for simulations, since no sur-
faces appear and there is no curvature in making a loop
around the boundaries. Instead of using a filled cylinder,
we enclose the helium between two cylinders of mean
radius R and spacing d, where d && R. The classical mo-
ment of inertia will be mNR and the area can be written
as WB/2 where W is the urinding number, defined as the
Qux of paths winding around the torus times the circum-
ference of the torus. Here we have ignored all nonwinding
paths, those paths which do not make a complete circuit
around the cylinder, since their contribution is O(B )
and negligible at large R. Now substituting these values
of A and I, into Eq. (3.26) for the superfiuid density we

get

p, (W)
p 2APN'

(3.31)

where the winding number is defined by

(3.32)

Let us review the steps we took to get this new formula
for the superfluid density: we first derived the formula
for a general rotating system, then applied it to concen-
tric cylinders. At the end, we remarked that a torus is
topologically equivalent to the usual periodic boundary
conditions. We could have made the whole derivation di-
rectly in the periodic space by calculating the response of
a periodic system to a linear velocity of its walls. What
appears in Eq. (3.25) in place of l: is the total linear
momentum operator 'P (Pollock and Ceperley, 1987).

Usually one applies periodic boundary conditions in all
three spatial directions. Then the winding number be-
comes a vector, just as the area was a vector. But in
contrast to the area, it is "quantized" in units of the box
length. The winding number is a topological invariant
of a given path; one can determine the winding number
by counting the Qux of paths across any plane; it does
not matter where the plane is inserted. We can think
of these winding paths as the imaginary-time version of
circulating currents. Figure 10 shows a path with wind-
ing (I, O). Paths with a nonzero winding are the signal
for superfluidity. This justifies the claim made earlier,
that the identification of a Bose superfluid requires the
full imaginary-time paths. Static correlation functions
are not enough; one needs to know how the paths are

connected up. Often one sees an extra factor of 1/3 in
front of the winding number formula. This comes from
symrnetrizing over the three equivalent axes in the case
of a cubic unit cell.

We can now come back to the relationship between su-
perfluidity and momentum condensation. Macroscopic
exchange is necessary to have both superfluidity and
momentum condensation. However, neither property is
simply proportional to the number of macroscopic ex-
changes. In 3D systems they go together; in 2D there is
no condensation but the system is still superfluid.

In the above derivation we considered the linear re-
sponse of the system to a movement of the walls. One
can also determine how the free energy depends on an
arbitrary velocity u of the walls. One finds (Pollock and
Ceperley, 1987)

—p(s„—s;) ' vv/h (3.33)

where the averages are over paths in the system with
the walls at rest and E is the kee energy in the sys-
tem with moving walls (where the energy is measured
in the moving coordinates). We see that the partition
function is the Fourier transform of the winding number
distribution. Since the winding numbers are quantized
in units of L, the free energy is periodic: increasing the
velocity by an amount 2vrh/MI leaves the &ee energy in-
variant. Moving the walls has the efFect of changing the
boundary conditions on the phase of the wave function.
If a particle makes a circuit around the periodic box, the
wave function picks up a phase, 2amuL/A, . One can ap-
ply antiperiodic boundary conditions, instead of periodic
boundary conditions, by applying a velocity to the walls
of mQ/~I. This is known in field theory as "twisting
the order parameter. " A superfluid and a normal fluid
respond quite differently to such a twist. A normal fluid
can isolate the twist so the free energy is independent
of the boundary conditions for a large enough system,
while the superfluid's energy increases with the size of
the system. We already used this idea to determine the
superfluid transition temperature. See Fig. 15.

The winding number formula describes how the entire
system will respond to motion of an external potential.
We would also like to know how microscopic correlations
difFer between the superfluid phase and the normal phase
of helium. For example, in the Ising model for a ferro-
magnet one can talk about the total spin susceptibility
of the magnet or about the spin-spin correlation func-
tion. The quantity that is related to superfluidity is the
correlation of the momentum density, the correlation of
the velocity of the Quid at r with the velocity at r'. One
can define it either as an equilibrium velocity-velocity
correlation function or as the linear response of the liq-
uid to an imposed velocity perturbation. Let us define
the local momentum as the expectation of the operator
p(r) = i 5P - i 8(r —r~) V~. Then—the momentum den-
sity correlation function is
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(3.34)

(3.35)

the untagged system, but one of the atoms is no longer
symmetrized with respect to the other atoms. A little
thought shows that we do not need to do a new calcula-
tion. Using Eq. (2.28) we see immediately that the Free

energy to tag an atom is

The erst equation is the definition of the correlation ten-
sor. In a homogeneous liquid a tensor can always be
broken into a longitudinal and a transverse part. G~ has
the short-range correlations of the particles as they try to
avoid each other, while G, has the long-range transverse
superfluid velocity correlations (Baym, 1969),

G, (r) m-
4vr rs

The super8uid response has the following physical inter-
pretation. Suppose we insert a moving particle at the
origin. The super8uid will screen out this motion by
constructing a long-range dipolar backflow Beld so that
it isolates the rest of the system from the moving impu-
rity.

Equation (3.36) relates the momentum correlation
function to path integrals. If we put arrows on our paths
indicating the direction of imaginary time, and we take
these to be "velocities, " the momentum correlation func-
tion is minus the correlation between atoms displaced
by a distance r. The minus sign comes in because the
path integrals are in imaginary time. The macroscopic
exchanges give rise to a long-ranged "velocity" field. The
correlation in velocity is only in the direction parallel to
the separation. G, is simply the probability that two
well-separated particles are members of the same macro-
scopic exchange.

The imaginary-time "velocity" is the order parameter
of the superQuidity. The "velocity" can orient itself in
any direction, but it is advantageous to break the sym-
metry and exchange in one particular direction. Here
again we see how the quantum language and classical
language are reversed. A superBuid isolates itself from
the boundary, while in the corresponding classical sys-
tem one can pull a macroscopic exchange and feel the
e8'ect all the way across the sample.

G. Impurities in superfluid helium

SuperQuid He is unique in its ability to purify itself
and expel impurities. In fact, He is the only impurity
that will dissolve in 4He at very low temperatures. Feyn-
man discussed this problem in one of his original path-
integral papers (Feynman, 1953c). The impurities allow
us to define formally the exchange energy, how it relates
to the exchange probability, the effective mass, and the
chemical potential of an atomic impurity.

We will add the impurity in two steps. In the first
step we determine the free energy of tagging one of the

He atoms in a superBuid, while in the second step we
change the mass of the tagged atom from 4 to 3. The
Hamiltonian of the tagged system is the same as that for

p = —k~Tln(Pi), (3.38)

lim p, = 1.5k~Tin(4~PA*p / ).T—+0
(3.39)

One can calculate the tagged particle's effective mass
(i.e. , A') by looking at how an individual atom "difFuses"
in imaginary time. Figure 28 shows the single-particle
diffusion constant as a function of imaginary time for
liquid 4He, with and without bosonic exchange. The ef-
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FIG. 27. The excess free energy to tag a He atom at SVP
as a function of temperature. The circles are computed from
the nonexchange probability. The dashed line is the efFective-
mass formula.

where Iq is the monomer probability. Here we have
dropped the ideal solution entropy: —k~Tln(N).

Hence the distribution of cycle lengths is something
that can, in principle, be measured. The tagging energy
or exchange energy is shown in Fig. 27. It reaches a
maximum of about 1.5K at a temperature of about 1 K
and then decreases. If anything is done to a helium atom
to inhibit its ability to exchange with its neighbors, one
pays this energetic price. The tagging kee energy is due
to the extra thermal excitations around the tagged atom,
which a homogeneous Bose superQuid does not have.

We can calculate the low-temperature limit oF p(T)
in another way. By translation invariance, the tagged
particle has a dispersion relation: EA,

——Eo+ A*k where
A* is de6ned here. At a sufBciently low temperature,
the excitations of a super6uid having an energy ck will
be thermally damped and can be neglected. Integrating
over the Boltzmann distribution of the tagged system,
we find at low temperature
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FIG. 28. The diffusion of He atoms as a function of imag-
inary time. The vertical axis is ([r(t) —r(0)I )/(6At). The
simulation was done for 64 atoms at a density of 0.02191/A
and at a temperature of 0.5 K. The upper curve is for bosons,
the lower for distinguishable particles. Distinguishable par-
ticles di8'use less because they must return to their starting
places after a "time" of 2 K

where W is the winding number and (( )) denotes an
average over an ensemble in which one particle is ex-
cluded &om exchanging and the action has an additional
winding number bias of —

4&&N. Very large windings are
encouraged; Because one particle cannot exchange, the
winding number cannot reach its full superQuid value,
so that the efFective mass is greater than the bare mass.
Numerically the calculations have not been carried far
enough to see if precise values for the efFective mass can
be obtained.

Now we must do the second step in which we change
the tagged atom into a real impurity. He is a particularly
nice impurity, since the interaction potential between he-
lium atoms does not depend on the mass or statistics
of the nucleus, at least within the Born-Oppenheimer
approximation. With a single impurity, one does not
have to worry about the Fermi statistics. One need only
change the mass of the tagged particle &om 4 to 3 to
determine its &ee energy. The most convenient way to
do this is to difFerentiate the partition function with re-
spect to the tagged particle's mass; the derivative of the
free energy with respect to the mass is the kinetic en-
ergy. Then the &ee energy necessary to tag a particle
and change its mass is

fective mass is proportional to the difFusion relative to
the free-particle difFusion. For very short times, kinetic
energy dominates over potential energy, so that the dif-
fusion equals the &ee-particle difFusion. But at larger
times, the cage of surrounding atoms in the liquid slows
down the difFusion, by a factor of 2. In a liquid, this
difFusion in imaginary time is Markovian, so the proba-
bility density that a particle, after a time P, has difFused
a distance r is Gaussian:

ZK = — dre ' 'p(B+ r, A;P) = Zoe " . (3.41)0
In the small-A: limit one can evaluate this efFective mass
to find that

((W'))
6ApN

(3.42)

These two ways of defining A* (from the excitation en-

ergy and from the difFusion constant) are equal only if
we assume that the probability of a random walk clos-
ing on itself is the value of this distribution function
at the origin, Pq ——G(0)/p. Hence we can compute
the low-temperature value of P~ by calculating the dif-
fusion constant in imaginary time. The dashed line in
Fig. 27 shows this low-temperature behavior obtained
taking A' = 0.5A.

Basile (1992) introduced a third way of calculating the
efFective mass. The partition function for a system with
momentum k is obtained by using a momentum projec-
tion operator,

&~(4}

/l3 —p4 k+T 1n(P&) + din(m)K, (3.43)
rn(3)

where K is the kinetic energy of a tagged particle with
mass m. The method of calculating &ee energies by in-
tegrating the derivative is a standard method used for
classical simulations, where it is known as thermody-
nanuc integration (Frenkel, 1986). It avoids the direct
calculation of the partition function.

At low temperature the kinetic energy of pure 4He is
14.3 K. Calculations (Bonisegni and Ceperley, 1995) for a
He impurity in He give a kinetic energy of 17.1 K. This

kinetic energy is higher because of its lower mass, while
the surrounding cage in the hquid is about the same size.
Recent (Wang and Sokol, 1994) deep-inelastic neutron-
scattering experiments give a significantly lower kinetic
energy of the impurity of 11+3K. The end-point estimate
for the mass integral gives a kinetic contribution of about
4.5 K. Thus the chemical potential at low temperature
is about —7.14 K+4.5 K —2.6 + 0.2 K. This is very
close to, but lower than, the chemical potential of pure

He of —2.47 K. Thus the impurity can dissolve even at
zero temperature. The experimental energy difference is
about 0.31 K (Yorozu et al. , 1992).

Other types of impurities will require changing the in-
teratomic potential. Most other atoms are much more
strongly bound to themselves than to a helium atom;
thus they will not dissolve at very low temperatures. Few
path-integral calculations on impurity systems have been
reported, but there are no reasons why such calculations
could not be carried out.
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H. Exchange in quantum crystals

Up to now we have been discussing only liquid He.
One of the fantastic aspects of path integrals is that they
are able also to improve our understanding of solid he-
lium and calculate its properties on the same footing as
liquid helium. No other method has been able to do this
accurately. Pollock and Ceperley (1984) calculated the
particle-density, the structure factor, and the sound ve-
locity in solid helium with PIMC simulation. In contrast
to ground-state simulations, the solid symmetry was not
put in with a trial wave function. Spontaneous melt-
ing was observed upon lowering the density. Calculated
kinetic energies are in agreement with experiment (Blas-
dell, Ceperley, and Simmons, 1993). The thermodynamic
integration method described in the previous subsection
was used to determine the difFerence in melting pressure
between He and He, resolving a discrepancy between
theory and experiment (Boninsegni and Ceperley, 1994).
An extensive study (Runge and Chester, 1988) of quan-
tum hard spheres was made with PIMC, determining the
solid-Quid phase transition, the elastic moduli, and the
Lindemann melting criterion. In all of the above stud-
ies, the agreement with experiment was very good but
particle statistics was not important.

Crystal He at millikelvin temperatures is one of the
simplest and cleanest examples in nature of a lattice-spin
system. It is unlike any other solid, except solid hydro-
gen, in that the atoms have a large enough zero-point
motion that they frequently change places. This has lit-
tle efFect in solid He, since without spin to "label" the
atoms there is no direct consequence of exchange. But
in He, exchange has the efFect of permuting the spins
and changing its magnetic properties. In this section, we
shall describe how path integrals are related to quantum
exchange and discuss the agreement between experiment
and the calculations of exchange &equencies.

Solid He at low pressure forms a bcc lattice with a
Debye energy 0 20 K. A magnetic ordering occurs at
a much lower temperature, at 1.5 mK. This is the char-
acteristic exchange energy in solid helium. If exchange
were restricted to nearest-neighbor spins, the spin Hamil-
tonian would be the antiferromagnetic Heisenberg model,
which is rather well understood theoretically. Experi-
mentally the phase diagram is completely difFerent. The
ground state is not antiferromagnetic, but the more com-
plicated u d phase with a unit cell consisting of two
planes of up spins followed by two planes of down spins.
Careful analysis of experimental data made plausible the
model that the &equency of exchange of two, three, and
four atoms is approximately equal (Roger, Hetherington,
and Delrieu, 1983), so there is a competition between fer-
romagnetism and antiferromagnetism. Strong objections
were raised against this model (Cross and Fisher, 1985),
since it seemed a priori unlikely, based on estimates of
exchange &equencies using the WKB method, that one
would have several difFerent exchange &equencies of the
same order of magnitude. Calculation of exchange fre-
quencies by path integrals played a crucial role in getting

this multiple-spin model accepted.
Shown in Fig. 29 is a simple model for solid He. In

this model, a single particle is confined to be in the in-
terior of the union of two spheres. Because of the mirror
symmetry, states can be classified in terms of parity. The
splitting between the lowest even and odd states is the
exchange &equency, 2J = Ei —Eo ) 0. A wave func-
tion initially localized in one of the spheres will oscillate
back and forth with a frequency given by J/5. We shall
henceforth assume that the split ting energy is much less
than the zero-point energy, J &( k~T (( 0, so higher ex-
citations can be neglected. This is very well justified in
solid helium, where J/0 ( 10 s. Moreover, J (( phonon
energies, so that solid helium at millikelvin temperatures
is really in the spatial ground state. This is why solid

He is almost perfectly described by a lattice spin model.
Our goal is to calculate the exchange &equencies with

path integrals. Shown in Fig. 30 is a typical world-line di-
agram of the imaginary-time paths in the double-sphere
model. One sees that the path spends a long time in a
single sphere, but occasionally it "tunnels" across to the
other sphere. (The "..." is necessary because we are in
imaginary time. ) The tunneling is rapid, since it costs ki-
netic energy (not potential energy) for the system to stay
very long in between the two spheres. The imaginary-
time transversal of the barrier is called an "instanton"
because it takes place so quickly.

The steady-state rate at which paths cross from one
sphere to the other is J. For reasons that will be-
come obvious shortly, we shall denote the centers of the
two spheres by Z and PZ. Consider the ratio of the
imaginary-time matrix element connecting Z to PZ to
that connecting Z to itself:

~ (p)
P(Z&PZ;P)
p(Z, Z; P)
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FIG. 29. The trace of a path confined to the interior of two
spheres (shown with dashed lines) of radius 1, with centers
separated by a distance of 1.8.
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path integrals applies unchanged. The ratio of the pair-
exchanged partition function to the nonexchanged one
for solid He is shown in Fig. 31.

Atomic exchange couples the nuclear spins on difFerent
lattices sites. One can show (Thouless, 1965) that the
effective spin Hamiltonian is

'R = —) JI( 1) —P,
P

(3.46)

X

FIG. 30. The world-line view of the same path shown in the
previous 6gure. One can see that the path stays inside one
sphere for a long period, until it 6nds the duct to the other
sphere. The actual tunneling occurs very rapidly; these tran-
sitions are called instantons.

0 ifP&Po,
tanh[J(P —Po)] if P ) Po . (3.45)

If we now assume that P is large enough that only the
lowest two states contribute to the density matrix, then
we can show

where P ranges over all K! permutations, (—1)+ is the
sign of the permutation, and P permutes spins. One
need only consider cyclic permutations of a few neigh-
boring atoms, otherwise J~ will be vanishingly small.
Two- and three-body permutations of spin-1/2 particles
can be written as a nearest-neighbor Heisenberg Hamil-
tonian: —Jgl, l

rr; o~. It is not particularly conve-
nient to transform higher-body exchanges into this form.
Thouless (1965) showed that exchange of an even num-
ber of spins favors antiferromagnetism; exchange of an
odd number of spins favors ferromagnetism.

It is quite difficult to calculate these exchange f'requen-
cies for solid helium with other methods. The traditional
WEB approach completely fails because the exchange is
not a potential barrier. The PIMC simulations show that
the potential energy actually becomes loner as the parti-
cles exchange. This is because, in solid helium, the atoms
do not sit at the bottom of the potential well, but slightly
outside it. When they exchange, they move into the well
and thus lower their potential energy. The physics of
solid helium is much better understood by considering
a hard-sphere model; the potential energy is either zero

Here Po ——in[/i(Z)/&j&o(Z)]/J. It has the interpretation
of the "tunneling time. " In what follows we shall assume
that po & p « 1/J, so that f(p) = J(p —po). This
justifies the claim made earlier that J is the imaginary-
time diffusion rate across the barrier.

In the polymer language, J is related to the free energy
it takes to pull a single end of a "linear polymer" kom
one sphere to t;he other. The difference of classical free
energies can be estimated with special techniques devel-
oped for classical simulations (Bennett, 1976). We shall
discuss these methods in Sec. VI.E.

Now let us generalize from the two-sphere model to
a quantum crystal. We follow the theory of Thouless
(1965), which is based on the earlier work of Herring
(1962) on electronic exchange. Because exchange is so
rare in quantum crystals, we can take as our unperturbed
basis a dist, inguishable basis, where labeled particles are
assigned lattice sites. Z denotes one such assignment of
particles to lattice sites, PZ the efFect of applying the
permutation P to that assignment. In a crystal with
N atoms and N lattice sites there are ¹!such states,
so there is an NI degeneracy of the ground state in the
absence of particle exchange. The splitting induced by
tunneling between states Z and PZ is defined to be 2J~.
All of the discussiov concerning how to calculate J~ with

1.5x 10-5—

10 5—

5x 10-6

00
'

0.5 1.5

FIG. 31. The ratio of the nearest-neighbor pair-exchange den-
sity matrix to the non-exchanged density matrix as a func-
tion of inverse temperature. The calculations were done for
16 He atoms in a bcc structure at a molar volume of 20.07
ec/mole. The straight line is a fit through the data; the slope
J2 ——8.6 + 0.5 p,K is the pair-exchange frequency. The calcu-
lations shown in Table I used 54 atoms and a direct method
for estimating the slope.
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if no spheres are overlapping or infinite if a pair over-
laps. The solid forms in order to minimize the kinetic
energy, not the potential energy (see Fig. 14). Atoms
are prevented &om exchanging in the solid because of a
kinetic-energy barrier. As they are exchanging, the wave
function in the transverse direction is compressed and the
kinetic energy increases. Calculations of the exchange
&equency of a hard-sphere model of helium give roughly
the same results as those for a realistic interatomic po-
tential.

It is difFicult to calculate the exchange frequency be-
cause it is a collective phenomenon: other atoms move
out of the way of the exchanging pair. Hence it is diKcult
to estimate the transverse kinetic energy. Other meth-
ods of calculating J~ rely on variational wave functions.
Unfortunately one needs values of the wave functions in
regions where they are very small, far away from where
the wave functions have been optimized, so the variation-
ally calculated exchange &equencies are not reliable.

As we have explained above, the quantum exchange
rate is related to the &ee energy necessary to cross-link
two or more "polymers" in a "polymer crystal. " It is
then possible to take the computer method developed to
simulate super8uid He and find these magnetic coupling
constants in the crystal He. The exchange frequencies
of He and He atoms in the bulk solid have been calcu-
lated by PIMC simulation (Ceperley ancl Jacucci, 1987)
and are shown in Tables I and II. These authors found
that pair interchange is most &equent, but that is fol-

lowed closely by three- and four-atom exchange. So the
basic conclusion of the multiple-exchange model is ver-
ified: there are several competing exchanges which give
rise to the observed magnetic phenomena. But the origi-
nal multiple-exchange model did not go far enough. The

PIMC calculations also show a non-negligible in8uence
of 6ve- and six-atom exchange.

One might wonder how we can calculate the exchange
couplings of spins in a fermion system by doing a cal-
culation of distinguishable helium atoms. Such an ap-
proach would certainly fail for liquid He. The Thouless
approach works because exchange is very rare, so that
between exchanges one can label the helium atoms. An-
tisymmetrization is done only on the spin wave function.
The spatial wave function is essentially bosonic.

Having calculated the lattice Hamiltonian, one must
now solve the spin Hamiltonian to compare with exper-
iment. This is by no means trivial; the ground state
is frustrated, so quantum Monte Carlo techniques will
have a "sign problem. " However, other techniques
high-temperature series expansions, exact diagonaliza-
tion, variational Monte Carlo, and spin-wave methods-
can be used to understand the magnetic phase diagram.

When comparison can be made, the PIMC calculated
&equencies are in agreement with experiment. For exam-
ple, if one expands the inverse magnetic susceptibility in
powers of P, the first nontrivial coefficient is convention-
ally denoted 0 and has been measured to be —1.7+0.1 K.
This expansion should be valid for temperatures greater
than the magnetic ordering temperature but much less
than the Debye temperature. This coefEcient is sim-

ply a linear combination of the exchange frequencies,
8 —4Jpf~ 36Jg + 18Jf + 18Jf + ' . . Using the PIMC-
determined frequencies we obtain the value —1.8 +0.5 K.
The large inaccuracy occurs because of the cancellation
of even and odd exchanges. The predicted value of 8 if
we stopped at pair exchanges would be 2.0, if we include
the three largest exchange &equencies 0.2 + 0.5 K. A less
sensitive comparison of theory and experiment is given

TABLE I. Calculated exchange frequencies (in pK) in bcc He at two densities with the statistical
error in %%uo next to it. The density (in cc/mole) is shown at the top of the column. The exchange
notation gives the set of p(p —1)/2 pair distances among the p atoms exchanging, where 1 is a
nearest neighbor, 2 a next-nearest neighbor, etc. The erst set of numbers specifies the distances of
adjacent atoms on the cycle, the next set the second neighbors, etc. Thus the planar and fokIed
exchanges are both nearest-neighbor four-body exchanges, but dier in the distance between the
second and fourth atoms of the exchange.

Exchange
(11)
(22)
(112)
(113)

(1'; 23)
(1;22)

(1122 31)
(1212 ll)
(1212;14)
(2'; 33)

(1 2; 52341)
(16.36.4$)

(1;123;417)

planar
folded

diamond
eight
para

square

planar

crown
planar

13.8
1.0
4.8

9.8
0.45

20.07
5%
6%
O'Fo

7%
10%

453
62

182
5.3
250
32

6
0.5
11
1.9

24.12

7'Fo

5%
15%

6'Fo

11%
25'Fo

45%
30'Fo

30%
15'Fo

22%
10'Fo
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TABLE II. Calculated exchange frequencies in hcp He at a
molar volume of 21.04 cc. The notation of the exchange is
from Roger (1984).

Name J (pK)
3.2
3.4
2.3
0.5
2.3
1.4

'Fp error
13'Fp

13'Pp

12 jp

13'
12'Fp

20Fp

by the first term in the high-temperature expansion of
the specific heat, e2, which is measured to have the value
of 5.9 mK . With the largest three exchanges one gets a
value of 4.5+0.5 mK and with all the exchanges 5.0+0.7
mK . Some of the di8erence is undoubted due to the 5-,
6-, and higher-body exchanges which were not calculated.

One of the striking experimental results is the fact that
the exchange frequencies scale with the helium density
with a common exponent, g = 18. This is hard to un-
derstand from a traditional tunneling picture, since the
exchange frequency would depend exponentially on the
square root of the barrier height, and there is no rea-
son to expect that the various exchanges would share a
common barrier, especially as a function of density. In
fact the common scaling with density does come out of
the PIMC calculations, though it should be kept in mind
that there is nothing magical about the number 18. For
the three dominant exchanges, g „=19.0, r)q

——19.8,
and g„= 17.6.

The fact that this exponent is roughly independent
of the number of atoms exchanging can be understood
if we assume that exchange is due to virtual vacancy-
interstitial Buctuations. Once a vacancy is created it can
move very rapidly, with an exchange constant J„= 2
K more or less independent of density. (This has also
been calculated with PIMC by a very similar method.
One eliminates one of the atoms in the solid and. cuts
the "polymer" for a neighboriiig atom. Then PJ„ is the
probability that the two end. s of the cut polymer are on
difFerent sites. ) The vacancy moves through the crys-
tal, causing spins to be interchanged, and eventually re-
combines with the interstitial. The pair must be bound,
otherwise zero-point vacancies would exist, contrary to
Thouless' theory and experiment. So the exponent g re-
ft.ects the probability of creating such a pair. The various
exchange &equencies are a consequence of the probabili-
ties of paths that the vacancy takes before it recombines.
Such a theory has not been worked out in detail but
qualitatively explains the experimental and theoretical
find. ings.

I et us brieBy return to hcp He, the stable low-
temperature solid structure. The same calculations that
were done on solid He can also be done for solid He.
The results are shown in Table II. Here there are no ex-
periments to compare with, since there is no magnetism.
One notices that exchange frequencies in solid He are

on the order of 1 pK, presumably because of the heav-
ier mass, the diferent structure, and the higher density.
There have been speculations over the years that solid

He might be a supersolid. The results of Table II suggest
that the transition temperature, if it exists at all, would
be at very low temperatures. The superfluid (solid) den-
sity would be proportional to the mean-squared winding
number, since in the derivation of the winding number
formula we made no assumptions about the arrangements
of the atoms. The supersolid density would be

(3.47)

where % ~ is the winding number of permutation P. Vfe
have assumed that Po~ & P && J~ for all significant P.
It is not at all obvious that one can 6nd such a P sat-
isfying this inequality for all P, since the permutations
which lead to winding will likely take a much longer time
to tunnel. No long-range super8uidity is possible unless
whole rows of atoms move in a collective fashion, since
only macroscopic exchange leads to mass transport. Mi-
croscopic ring exchanges do not contribute to the super-
Auidity. Clearly a supersolid would exist if ground-state
vacancies were present (On. e has ground-state vacancies
if the number of lattice sites is greater than the num-
ber of atoms. ) But the experimental evidence support-
ing the multiple-exchange model of He is very strong
evidence against the existence of such macroscopic ex-
changes or vacancies. Thus the pat¹integral calculations
in conjunction with experimental He data strongly sug-
gest that there will be no supersolid behavior in He at
very low temperatures.

l. The excitation spectrum

In this section we shall discuss the relation between
path integrals and the excitation spectrum, an area in
which progress has begun only recently. A breakthrough
in understanding liquid He carne when Landau (1941)
guessed that the excitation spectrum was unusual. He
postulated the now-familiar picture of super8uidity based
on the properties of the weakly interacting gas of phonons
and rotons.

The dynamic structure factor Si, (ug) is a crucial corre-
lation function to calculate or observe, since through it
one can see the excitations. With neutron scattering one
can directly measure SA, (w). Feynman (1954) introduced
a variational trial function to calculate the phonon-roton
spectrum. He determined an upper bound to the exci-
tation energy, cut, & Ak2/Sg, which becomes precise in
the long-wavelength limit. Feynman and Cohen (1956)
improved these estimates by including back8ow eKects.
The variational approach leaves a number of questions
unanswered. One is guaranteed to find a single excitation
energy, not the entire excitation spectrum, and not the
lifetime of the excitation. It is not clear how super8uidity
comes into play in the variational approach, and extend-
ing the approach to nonzero temperatures brings in more
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Sl (~) = «e' ' (~~(t)~-~(0))

b(~ —E + E„)e ~~"
I(mjpI„, In)I'.

(3.48)

approximations. There are theoretical and experimental
conjectures (Glyde and GriKn, 1990) that the excitation
spectrum also directly reBects the hybridization between
density fluctuations (phonons) and single-particle excita-
tions, caused by the presence of the Bose condensate.

The dynamical structure factor is defined as

le5 —
,

I

l

0.5 —I

I I I I
I

I I I I

I
I

(3.49)

Here pq = g, e'""* is the Fourier transform of the den-
sity. The sum in the second equation is over all pairs
of exact states In) with energy E . The experimental
measurement of S~(u) is shown in Fig. 32. It has a very
sharp peak associated with the phonon-roton spectrum
and broader multiphonon excitations. For a comprehen-
sive review of the microscopic theory and experimental
references see GriKn (1993).

Since imaginary-time path integrals are mathemati-
cally isomorphic to liquid helium, one would expect that
phonons and rotons would show up dramatically in some
property of the "polymer system. " Such is not the case.
Propagating modes in real time become diffusive modes
in imaginary time. The imaginary-time density-density
response function, de6ned as

p'e(t) = Te(p ee 'epee &p e&~),1
(3.S0)

is straightforward to calculate with path integrals and is
shown in Fig. 33 for various wavelengths. One can see
little in the way of structure in EA,, (t); to the eye it is a
featureless exponential decay up to Pj2, and then rises

I I I
I

I I I

I
I I I

I
I I I

I
I I I

0.03—

0.02—

0—
I I I I I I I I I I I I I I I I I

0 20 40 60 80 100
E (K)

FIG. 32. The dynamical structure factor for liquid He at
a temperature of 1.2 K and wavelength 1."= 0.76
solid line, as measured by neutron scattering (Svensson et
al. , 1976); dashed curve, as reconstructed from the PIMC
imaginary-time response function by the maximum-entropy
method (Ceperley and Boninsegni, 1995).

0 0. 1
I I I I I il

0.2 0.3 0.4
t. (K-')

PIG. 33. The density-density response as a function of imagi-
nary time in liquid He at a temperature of 1.2 K as computed
with PIMC: solid line, for II: = 0.76 A. ; short-dashed line,
A: = 2.01 A; long-dashed line, A,'= 2.52 A

again because of the periodicity in imaginary time (that
part is not shown). It is related to Sy(u) by a Laplace
transform,

d~e ' SI, ((u).

Mathematically, EI, (t) and Sy(u) are equivalent, since
an "inverse Laplace transform" (or equivalently analytic
continuation from imaginary to real time) is well defined.
The presence of statistical noise, however, rules out a di-
rect inversion, since very small features in EI, (t) come
from large features in Sk(w). The noise destroys the in-
formation needed to do the inversion. The numerical in-
version of a Laplace transform is a classic ill-conditioned
problem. An early work (Pollock and Ceperley, 1984)
illustrates the difBculties with this inversion on phonons
using PIMC data from solid He; one can almost fit the
imaginary-time data with a single excitation energy. If
more modes are assumed, the PIMC data do not con-
strain their position very much.

It has been proposed by Silver, Sivia, and Gubernatis
(1990) that Bayesian, or maximum-entropy, techniques
could aid in this inversion by Inaking the problem bet-
ter conditioned. In addition to using the Monte Carlo
data for the inverse Laplace transform, one can use prior
information about Sk(w). In some lattice models, the
maximum-entropy method has given very satisfactory in-
versions and it has been shown to give accurate absorp-
tion spectra of an electron in liquid helium by Gallicchio
and Berne (1994). In Sec. VI.F we shall discuss some nu-

merical details of how this analytic continuation is done.
A maximum-entropy inversion from EI, (t) to Sy(tu)

is shown in Fig. 32 and compared to the experimental
neutron-scattering measurements. We are far from a sat-
isfactory calculation of this quantity with path integrals.
Although the method reproduces the overall shape of the
response function, it does not resolve the two-peak struc-
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ture and does not tell us how narrow the phonon-roton
line is. If we take the position of the peak height as an
estimate of the excitation energy, we get the dispersion
curve shown in Fig. 34. The agreement on the excitation
energy with respect to experiment is better than 10'Fo,

but without further studies it is difBcult to assign mean-
ingful error bars to the inversion procedure.

The calculations could be improved by at least one
order of magnitude by much longer sampling, and the
inversion itself could be improved by using sum rules
and other prior information. This would lead to a bet-
ter numerical procedure for determining response func-
tions. What is lacking is the direct connection between
the paths and the excitation spectrum. As the tempera-
ture is raised through the transition, the excitations dra-
matically change character; the effect on F (rt) is hardly
noticeable to the eye.

For the other quantities we have discussed, such as
the superQuid density, the specific heat, and the con-
densate 6.action, we could directly trace their change in
behavior to macroscopic exchanges. There is good rea-
son to believe that this is also the case with the excita-
tion spectrum. When long exchange cycles are present in
the paths, Er, (t) contains contributions with periodicity
greater than P. Take a path where a p cycle is present;
part of the response function has periodicity pP, and its
Fourier transform contains contributions not only at the
frequencies ur„= 2am/P but also at u„= 2vrn/pP These.
frequencies and permutation cycles are not directly mea-
surable, but nonetheless they can have a profound in8u-
ence on the analytic form of the imaginary-time corre-
lation function. Perhaps if this information were used,
a more direct picture of the excitation spectrum would
come out of path integrals.

We now turn from the imaginary-time description of
helium to details of how to perform calculations.

IV. CONSTRUCTING THE ACTION

I I I I I I I I I I I I I 1IL.

0.1 =

0.01 =

It is clearly desirable to make a good but cheap ap-
proximation to the exact link action. Recall that the
link action is defined as minus the logarithm of the den-
sity matrix between two successive points on a path, Eq.
(2.20). The better we can make the individual link ac-
tion, the fewer the number of time slices and the shorter
the "polymer. " The sampling becomes much easier as
the paths have fewer links and the estimation of various
quantities such as the kinetic energy have smaller statis-
tical Quctuations. Cheap means that the action can be
evaluated quickly on a computer, in a time not too much
slower than it takes to compute the pair potential.

We have found that accurate simulations of liquid he-
lium using the primitive approximation for the action,
Eq. (2.18), would require an M = 1000 to reach the
temperature of the super8uid transition, while using a
more accurate action uses only about M = 20 slices. See
Fig. 35 for an example of how the action converges for
three helium atoms in an equilateral triangle separated
by 2.8 A, as a function of the time step. Without im-
proved actions the simulation of the superBuid transition
(Ceperley and Pollock, 1986) in 4He would not have been
possible, given the available resources. Improved actions
were also crucial in calculating the exchange &equencies

25 t i i i
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FIG. 34. A comparison of the phonon-roton dispersion en-
ergies of liquid He calculated with PIMC plus maximum-
entropy inversion (filled circles) to those determined by neu-
tron scattering and thermodynamical measurements (solid
curve; Donnelly, Donnelly, and Hills, 1S81).

FIG. 35. The error of the action for an equilateral triangle of
atoms, separated by 2.88 A. , as computed with the primitive
approximation (triangles) and with the pair action (squares).
The 611ed symbols represent the error in the action as a func-
tion of 7. The open symbols are the error in the action at
P = 0.025 if intermediate time slices are inserted (with time
step 7) and integrated over. This integrated action is worse,
presumably because the path can wander into regions closer
than 2.88 A, where the errors are worse. The primitive action
converges as w, while the pair action as 7 . To keep the error
in the action less than 0.01 (corresponding to a 1% accuracy
in a distribution function or matrix element) would require a
primitive step of 0.003 K or a pair step of 0.015 K
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(Ceperley and Jacucci, 1987) in solid He.
We shall use the Feynman-Kac (FK) formula as a guide

to better actions. It gives the exact action for an arbi-
trary system as a path average. One derives the FK
formula by taking the M ~ ac limit of our basic discrete
path-integral formula, Eq. (2.18). We shall write it as an
average over all free-particle paths,

—U(RO, RF,~) V(R(t) )dt (4.1)

The notation ( )Rvv means to average over all Gaussian
random walks (bridges) from Ro to R~ in a "time" 7.
Here U is the interacting part of the exact action, as
defined in Eq. (2.23).

Remember that a typical Gaussian walk is the fractal
shown in Fig. 5. The essence of the primitive approxi-
mation is that the size of the fractal is small enough that
the potential can be assumed constant in the region of
configuration space that the path could reach. Then the
time integral of the potential is essentially a constant,
independent of where the path goes. The fractal is typ-
ically furthest from the end points halfway through the
path, when the path is on the order of

(4.2)

away from the midpoint. Here %d are the number of
degrees of freedom of the path. Hence A is the charac-
teristic distance at which the path samples the potential.
For 4He with r = 40K it is 0.48 A. (K = 1, d = 3).
This wavelength gets smaller only very slowly, as ~w, as
w decreases. Hence the error of the primitive approxi-
mation might go to zero only very slowly as w —+ 0. In
fact, one can see in Fig. 35 that the error of the primitive
approximation goes as w

The task of finding a good action is difFerent from that
of finding a good integrator for an ordinary difFerential
equation, for example, Newton's equation, because of the
fractal nature of the paths. Since paths do not have con-
tinuous derivatives, predictor-corrector or leapfrog meth-
ods are not as useful. On the other hand, statistical
methods for improving the convergence work very well.
Because the path-integral Inethod is based in imaginary
time where motion is difFusive, the numerical approxi-
mations are much more stable than those for Newton's
equation of motion. One does not have chaos in imag-
inary time, and all distributions at large times always
decay to the ground state, independent of how they were
started.

The exact action is a many-body function. If the in-
teraction is a pair potential, the exact action will have
not only renormalized pair terms, but also three-body
terms, four-body terms, etc. Finding a good action is
analogous to averaging out solvent degrees of freedom in
a liquid or of renormalizing out small-scale motions. We
want to integrate analytically over all the intermediate
time steps so we can leave them out. The action is not a
tremendously sensitive function of the end points, since

—PVC y) dte ~ ' H+ —
~
p~(t), (4.3)

Ot

averaging over paths acts to smooth out the potential.
We want to caution the reader not to get lost in this

section. The primitive approximation contains all the
physics and will converge to the correct answer, given a
small enough w, and it is simple and well defined. Us-
ing a bad action is equivalent to working with a modi-
fied potential energy. There are many cases where it is
appropriate to use the primitive approximation. What
we are concerned about in this section are more com-
plex forms for the action that will give correct results for
much larger x, thereby saving enormous amounts of com-
puter time and making calculations on large systems pos-
sible. Constructing such actions naturally could use all
the standard many-body statistical-mechanical and nu-
merical techniques, e.g. , perturbation theory, cluster ex-
pansions, renormalization techniques, and integral equa-
tion methods. Little has been done in applying many-
body methods to determine better actions.

Several possible strategies for choosing the high-
temperature density matrix will now be examined. All of
them converge to the correct answer at su%ciently high
temperature, but their rates of convergence difFer con-
siderab1y. Note that we need to evaluate the action ofF
the diagonal. Typically the two arguments of the action
will differ by a distance ~R~ —Ro~ 2A . For sampling
purposes (see Sec. V), it will be necessary to have es-
timates of the action at times larger than w. In liquid
4He, we need accurate actions for a range of time steps,
0 1K i & 7. & 0 01K

The simplest way to calculate the exact density matrix
is to use Monte Carlo methods. It is straightforward to
sample Brownian paths and to evaluate the exponential
in the FK formula; see Sec. V.K. One gets into trouble
for many-body systems or at low temperatures, since the
exponential can fIuctuate wildly. But it is possible to use
direct sampling to estimate the exact action in special
situations. The results can be used either to suggest new
forms or to adjust parameters in an existing form. Natu-
rally, one cannot use a second Monte Carlo procedure to
calculate the action during a path-integral Monte Carlo
calculation, as that would defeat the purpose of avoiding
smaller time steps (although this is essentially the basis
of the staging algorithm discussed in the next section).
Functions that can be precomputed and tabulated are
allowed, but not those that require extensive calculation
during the PIMC run.

There exists a Monte Carlo method that does not
have time-step errors: the Green's-function Monte Carlo
method. Kalos, 1 evesque, and Verlet (1974) developed
this exact method for the ground state of liquid He.
Whitlock and Kalos (1979) then extended these meth-
ods to finite temperature, doing a calculation of the two-
particle density matrix with a Monte Carlo method with-
out time-step errors. These methods start from the op-
erator identity
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where p~ is a trial or model density matrix. If the kernel
of the second term is sufBciently well behaved, we can
expand by repeated substitutions of the right-hand side
(RHS) into the left-hand side (LHS). The kernel is the
residual energy and will be discussed below. It is the local
error of the trial density matrix. One starts by finding
a trial density matrix such that the residual energy can
be bounded from above. A method for doing this for
hard spheres is discussed in Kalos, Levesque, and Verlet
(1974) and for Coulomb interactions in Ceperley (1983).

In this iterative way of determining the density ma-
trix, a new computational element has been introduced
into the pat¹integral method: imaginary time t ranges
continuously from 0 to P; it is no longer fixed on a grid.
The number of time slices is a dynamical variable, since
an indefinite number of iterations of Eq. (4.3) may be re-
quired. Whitlock and Kalos mapped this equation onto a
diffusion and branching process, rather than onto a clas-
sical polymer system. In mapping to a polymer system,
the number of beads and the time step would vary during
the simulation.

This exact method has not been adopted because it
is at least an order of magnitude slower than approxi-
mate methods for ground-state calculations, even includ-
ing the price of several calculations to remove systematic
efFects. The largest uncertainties in present-day PIMC
calculations for liquid helium are the scaling to the ther-
modynamic limit, the convergence of the Markov process,
and the uncertainty in the interatomic potential. If they
were ever needed to calculate absolutely accurate ener-
gies at finite temperature, Green's-function Monte Carlo
methods could prove useful. But the price of the "exact
action" label is at present rather high.

A. Criteria for good actions

We begin by discussing criteria that can be used to
rate or choose between various proposed actions. This
will help as we try to improve the action. It is also good
to have a way of telling in advance if a time step is small
enough that one can have con6dence in the simulation.

1. Convergence studies

The "traditional" way in simulations of deciding that
a time step is small enough is to study the convergence
of interesting properties with a series of long simulations
with smaller and smaller time steps. A better action will
give the e~act result with a larger time step. The primary
quantity to look at is the energy, since it is related to the
partition function. But other static quantities such as
the kinetic energy, potential energy, and pair correlation
function should also be studied. Although such conver-
gence studies are certainly necessary to establish that
the action is good and that the code is correct, one needs

other, more direct ways of improving the action.
The main problem with convergence studies is that the

convergence of the energy does not establish how other
quantities converge. For example, it is often found that
the potential energy converges much quicker than the
kinetic energy. This means that the primitive action
may correctly describe static correlations, but not the
imaginary-time dynamics, which, as we have seen, are
directly related to superHuidity. In Sec. VI.F we shall
describe methods based on Bayesian statistics for calcu-
lating real-time dynamics from these imaginary-time cor-
relation functions. Experience with lattice models shows
that very good actions are needed to calculate reliable re-
sponses. In particular, it is the ofF-diagonal action which
is crucial for the dynamics.

Another practical annoyance of convergence studies is
that one would need a new one for every density and
temperature; that is very costly. The computer time to
converge the statistical error becomes much longer as the
time step is decreased. This is because paths with smaller
time steps move much more slowly through phase space
and because the statistical error of the standard estima-
tor for the energy (see Sec. VI) blows up at small r. It is
important that a wide range of time steps be used to test
convergence, say diÃering by a factor of 8, since if the
studied time steps are too close together, small changes
may be masked by statistical Huctuations. This is why
convergence studies are limited to simple systems where
one can aBord this overkill. But the convergence of a real-
istic system may be quite difFerent from that of a simpler
system.

On the other hand, one does know that time-step er-
rors are local in space. Many-body efFects only extend
to a distance A . This implies that errors in the action
are independent of the number of particles. Hence it is
appropriate to study small systems. One also expects the
time-step error to depend primarily on r, not on P. It is
appropriate to study a single temperature and use that
to establish convergence for all other temperatures. How-
ever, there could well be systematic errors if the character
of the path (where it goes in configuration space) changes
appreciably at lower temperature or for more particles.

There is one technique, reweighting, which can vastly
speed up convergence studies (Ceperley and Kalos, 1979).
First, one does a long simulation at the smallest feasible
time step w and saves a large number (at least several
thousand) of paths. Using those paths, one can calculate
how the energy depends on the assumed time step for
time steps that are multiples of the original time step.
Suppose one wants to find the systematic error in the
energy if the time step is doubled. One simply throws
away every second point on the path and recalculates
the energy. The difference in energy E2 —E will have
a much smaller statistical error than either energy alone,
since the same set of paths is being used. In this way
one can use a relatively short run to get some idea of
the systematic errors coming from the time step before a
very long run is initiated.
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2. Exact properties 3. The residual energy

Of course it is best to put in as many exact properties
of the action as are known. The simplest is the Hermitian
property, namely, that U(R, R') = U(R', R). Without
this property, paths will not have "time-reversal" invari-
ance. This property is easy to put in: one simply sym-
metrizes any unsymmetrical form by using the action,

U, (R, R') = [U(R—, R') + U(R', R)]. (4.4)

This can have the effect of making the action good to
one higher order if the unsymmetrical components are
the lowest-order errors.

Another exact property is the behavior of the action as
two particles approach each other, the other particles re-
maining a constant distance apart. It can be shown that
the divergent part of the action should approach a two-
particle form. For a Coulomb interaction, this condition
leads to a cusp condition on the action at r = 0:

The residuaL energy of an approximate density matrix
p~ is defined as

E (R, R', t)=, x+ —1&(R,R';t). (4.6)
1 0

This is often called the Local energy, particularly in
ground-state quantum Monte Carlo algorithms. If we
set the residual energy to zero, we have the Bloch equa-
tion for the density matrix. Thus the residual energy for
an exact density matrix vanishes; it is a local measure of
the error of an approximate density matrix. The Hamil-
tonian 'R is a function of B; thus the residual energy is
not symmetric in B and R'. To evaluate the residual en-

ergy, we need to know how the density matrix depends
on "time, " and we need more than its value at a single
time.

It is useful to write the residual energy as a function
of the inter-action. We find

dU(R, R', r) e;e,
dr;, (d —l)(A; + A, )

E„(R,R, t) = V(R)
Ot t (4.7)

Here e; is the charge on particle i and A; = 52/2m, . The
path averaging in the FK formula smooths the poten-
tial. The smoothing makes the action finite at the origin
instead of having a r singularity.

For a Lennard- Jones, r potential, one can show that
the action at small r must diverge as r . These small-r
conditions can be established by looking at the residual
energy of the action, which we shall define in a moment.

One can also derive exact properties of the action at
large distances by considering the action as a function
of the Fourier transform of the density and then going
to the long-wavelength limit. We shall not discuss the
long-range behavior of the acti.on in this review, since
the helium potential is short ranged.

It is useful to establish how a given property should
converge as a function of ~, so that one knows how to
extrapolate results at a finite time step to a zero time
step. In so doing, we must keep in mind that we need
the off-diagonal action, R g R, since that is what is used
in PIMC. A bound on the range of the ofF-diagonal action
is given by the kinetic action. That tells us that we need
to look at the action for pairs of configurations for which

~R —R'~ ( A oc r ~ . The important off-diagonal points
get closer together as v gets smaller.

We can often determine the expansion of the action
in powers of 5 (or equivalently A) about the classical ac-
tion. This is a powerful method for lattice models be-
cause then the potential is a smooth, analytic function
and the higher-order terms in an expansion of the ac-
tion exist and are likely to be well behaved. For singu-
lar potentials appropriate to realistic continuum models,
the expansion typically diverges. Hence tests of time-
step convergence should always be done on the system
of interest rather than on an analytic potential such as a
harmonic oscillator.

+AU' U~ —A (VU~)

The terms on the RHS are ordered in powers of w, keeping
in mind that U(R) is of order r, and R —R' is of order
7 ~ . One obtains the primitive action by setting the
residual energy to zero and dropping the last three terms
on the RHS.

As an example, the residual energy for the primitive
approximation is

Eg(R, R'; t) = —[V(R) —V(R')] (4.8)

2
(R —R')V'—V—+ —V V — (7'V) .

At At

2 4

If V(R') is sufEciently smooth around R, we can Tay-
lor expand, and the second term will cancel against the
first. If we average over B' using the free-particle dis-
tribution, the third term also cancels against the first.
If the potential is very smooth, the largest contribution
comes from the last term. It is also this last term which
is most divergent as two particles approach each other.
Suppose the interatomic potential goes as r,. . ; then the

last term diverges as r, . The residual energy is far
from zero there!

The residual energy can be used in several ways to im-
prove an action. First, one can rather easily establish
properties of the action in various limits. For example,
as two particles come close to each other, the divergence
in the potential must be accompanied by divergences in
some of the other terms. This is how one can derive
the cusp condition, Eq. (4.5), in a few lines of algebra.
Second, the generalized Feynman-Kacs formula (GFK)
relates a path average of the residual energy to the ex-
act action (see Sec. IV.F below). The GFK can be used
to establish the errors of an existing action or to sug-
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gest better forms. Finally, one could minimize the mean-
squared residual energy to optimize parameters in the
action. This is similar to what is done with ground-state
wave functions (Umrigar, Wilson, and Wilkins, 1988).

4. The root-mean-square error of an action

During a PIMC simulation, one needs the difference
in the action between a proposed path and the old path
in order to decide whether to accept the proposed move.
If the difference between the exact action U and an ap-
proximate action U is always very small, we expect that
averages over the paths will be correct. Hence we are led
to a y criterion for an approximate density matrix:

(4.9)

where (. . )„ indicates an average over some distribution
p(Ri, R2) of multidimensional configurations Ri and R2.
Ideally one should obtain this average from the paths
themselves,

p(Ri, R2, r, P) oc p(Ri, R2, ~)p(R2, Ri, P —~). (4.10)

This distribution will occur in the integrand of any ther-
modynamic observable at a temperature P and time step
r. In fact, in most cases the P dependence is not impor-
tant. It is only important that R~ and B2 are "typical"
points, i.e., likely to be sampled.

The mean-squared error y2 is a dimensionless number
which gives a global characterization of the quality of an

action. If y && N, we have good reason to expect
that the paths produced are representative of "exact"
paths. The number of particles N appears since y is
an extensive quantity. What is needed in a simulation is
an intensive quantity, for example, the change in action
on making a local move. We shall give estimates of y for
several approximate actions to assess their ultimate accu-
racy. The diKculty with using this measure is that U and
hence y2 can only be obtained with another, more com-
putationally expensive, path-integral Monte Carlo calcu-
lation But if it can be calculated, y is an unambiguous
measure of the goodness of an approximate action.

To provide a way of benchmarking actions that we shall
consider later in this section, we calculated an estimate
of the exact action for points taken &om several hundred
paths. Using the exact action, we then determined y
for various approximate actions. The paths came &om
a simulation of 54 He atoms interacting with the Aziz
et al. (1992) potential with a time step of w = 0.025,
at a temperature of 2 K and at SVP density. The ex-
act action was computed by repeatedly (30000 times)
replacing each link with a new path of eight links (seven
beads) and using the FK formula. The Monte Carlo error
on the estimate of the exact action is about 0.03. There is
also another statistical error because we have estimated
y with only several hundred different end points. Fi-
nally there is a systematic error because the action of
the subchains may be biased. Nonetheless, all of these
errors are much smaller than y, so the results can use-
fully discriminate between various approximate actions.
Table III gives these estimates of y. For example, the
rms error of the primitive approximation is 1.49. The
pair density matrix is 20 times as accurate.

TABLE III. Summary of the various actions discussed. The equation number that defines the action is in column 3, the
equation for the residual energy in column 4. Column 5 shows how the error of the action depends on A and w. n is the order
of the off-diagonal expansion for the pair action as given in Eq. (4.47). The last two columns are the rms error of the action as
evaluated with points B and R' taken directly from typical many-body helium paths (54 He atoms at 2 K with a time step of
v = 0.025 K ). y is defined in Eq. (4.9). yD is the diagonal error, where we set B = R', while yoD is the off-diagonal error.
y~ has a Monte Carlo error estimated at 0.030, while the error of yoD is 0.014.

Action

Primitive

Semi-classical

Harmonic

Cumulant

Pair

Pair/end point

Polariz. /prim.

Polariz. /opt.

Exact

UI

U2z

Upo

Eq.

(2.24)

(4.i3)

(4.15)

(4.17)

(4.35)

(4.37)

(4.53)

(4.54)

(2.23)

Residual Eq.

(4.9)

(4.18)

(4.36)

Error

1.49

1.49

2.97

0.129

0.129

0.129

0.129

0.070

0.046

0.0

1.44

1.44

0.138

0.070

0.070

0.740

0.117

0.062

0.0
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B. Semiclassical improvements

Now let us begin the task of Bnding improvements to
the primitive action. Semiclassical methods rely on the
fact that, at very high temperatures, the major contri-
bution to the FK path integral comes from paths neigh-
boring a single "classical" path. The most probable path
connecting the end points is obtained by optimizing the
action in the Feynman-Kacs formula. Suppose it begins
at Bo and ends at B~. Then the classical path will satisfy
an equation of "motion"

d'B = 2AVV(B). (4.11)

This is Newton s equation of motion in the inverted po-
tential —V(R). At sufficiently small "time, " the action is
dominated by the contribution from this one trajectory.
This contribution can be written in the familiar WKB
form as an integral over the potential,

Ssc(Ro, Rs,.~) = ~E +— (R) + E

Usc(Bp, R~., ~) = ~ d.v(B. + (B~ —R.).). (4.13)

This is a better approximation than the primitive approx-
imation since there is some contribution from the entire
region between Bo and BJ;. In Fig. 38 below is shown the
1D cumulant distribution of a free-particle path between
two points. For small "times" it approaches a straight-
line path, justifying this approximation.

Equation (4.13) is the lowest-order approximation to U
in powers of w, assuming the potential is finite and contin-
uous. Note that it is automatically symmetric. Higher-
order terms will both have to improve the trajectory and
have to average locally around the semiclassical path. It
is diIIicult to make further corrections to this formula in
the general many-body case without ending up with an
expression that is too slow to evaluate at each step of the
PIMC.

C. The harmonic approximation

For small "times" the Gaussian paths in the FK for-
mula sample only a small region around the initial and

dRThe energy E = —V(R) + ~z ( ~, ), is a constant of
"motion, " and the integration variable x is the distance
along the path; it has units of length. This formula is not
very useful until we determine how the energy depends
on Bo, BI;, and w. The initial "velocity" of the classical
path must be chosen so that the path will end up at the
Bnal position at the right "time. "

For small imaginary times v. , we can neglect the "ac-
celeration. " The optimal path is then a straight line con-
necting Bo and B~, and the action is the integral of the
potential energy along this straight-line path,

final points, with a size determined by the thermal wave-
length A defined in Eq. (4.2). Suppose we assume that
the potential is quadratic in this region. Then the po-
tential can be specified by giving V(R*),7'V(B*), and
VV'V(R*) where B* is some point in the neighborhood
such as Bo or B~. The vectors and tensors have dimen-
sion 3¹The exact density matrix for a quadratic po-
tential is a Gaussian (see Feynman, 1972). Let us expand
that exact density matrix for the harmonic potential in
powers of A keeping in mind that the distance between
the two "legs" of the density matrix, (R~ —Rs), will be
of order A . The result to order A is

UH(Rp, R~, 7) = 7.V(B') + V'V(R')
6

——(Rp —Ro) V'V'V(R') (R~ —Ro)
12

[V'V(B')j .

This expansion is equivalent to the signer-Kirkwood or
6 expansion of the action if we make the choice of B* =
Bo. See, for example, the derivation for the diagonal
element in Landau and Lifshitz (1977). But with this
choice, ofF-diagonal elements must be symmetrized with
respect to Ro and B~ as in Eq. (4.4).

If we make the midpoint choice, B* = (Be+By)/2, the
action will automatically be symmetrical in Bo and Bp.
The midpoint choice has a very important disadvantage
for singular potentials: the potentials and gradients could
be highly singular there, even if they are small at the end
points. For example, one gets into trouble for a single
quantum particle moving around the outside of a hard
sphere. It is possible for the end points to be outside the
hard sphere, where the potential and gradients are zero,
while the midpoint is inside the sphere, where they are
infinite.

If the potential energy is a sum of pair interactions, all
of the terms except the last one are also pair terms, since
they are linear in V. Hence the eKect of the second and
third terms is to renormalize a pair interaction. But one
can show that the average of the third term over normally
distributed values of (R~ —Ro) (those arising &om a free-
particle path) equals the negative of the second term. As
a result, the second and third terms together have a much
smaller average effect on the probability distribution of a
path. This effect pushes their combined eQ'ect to higher
order in 7. We shall call the last term the polarization
action, since it is similar to the energy of a polarizable
atom in an electric field. This term is not a pair sum, but
the first genuine many-body contribution to the action.
It is higher order in v but the same order in A.

Although one is picking up higher-order contributions
with the harmonic expansion, it is not uniformly conver-
gent for a hard potential. At large r, where the potential
is small, the expansion is adequate, but at small r, where
qua, ntum effects are very important, all terms in the ex-
pansion are large. Suppose the potential goes as r at
small r. Then the second and third terms will diverge
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as r 4 while the last term will diverge as r at small
r. In fact, quantum difFraction causes the exact action
to diverge only as r . Clearly the expansion does not
converge at small r.

The helium-helium interaction is better thought of as a
hard-sphere interaction, i.e., having an infinite strength,
for which the 5 expansion does not converge, since the
gradients of the potential do not exist. This expan-
sion (where one does a Taylor expansion of the potential
about a nearby point) can only be trusted if the higher-
order terms are much less than one. Figure 36 shows
comparisons of the harmonic expansions with the exact
action for a helium-helium potential and Fig. 37 for the
Coulomb potential. The harmonic efFective potential os-
cillates wildly for r ( 3 A.. Even in the case of the much
softer Coulomb interaction, the harmonic action is not
a useful improvement. Usually, the time step is limited
by the errors in the action at small r, so one needs an
improvement of this cusp region. The harmonic action
diverges there. Hence the harmonic expansion used. in a
straightforward way is useless.

There have been many attempts to improve this
method. For example, one can try to choose the harmoriic
reference system better. One strategy is to choose it to
minimize the free energy of the trial action; see, for exam-
ple, Feynman and Kleinert (1986). One can also evaluate
the exact harmonic action instead of keeping only terms
of order A. These improvements could work in a system
that was nearly harmonic, for example, a nearly classi-
cal solid or a molecule with small zero-point vibrations.
However, the improvements will not help much when
the potential is highly anharmonic within the radius of
a thermal wavelength. In addition, simply computing
these higher-order corrections becomes rather time con-

—0.4

—0.6—

—0.8—

1 20 0 0.2 0.3 0.4
I I

0.5

suming in many dimensions. In Sec. VII.D we discuss the
effective-potential Monte Carlo method, which is based
on just such an approach.

One can make a commutator expansion of the action,
which gives a closely related expansion,

See deRaedt and deRaedt (1983) for higher-order expres-
sions. This sort of expansion could be useful on a lattice,
since the operators are bounded. In the continuum, the
commutators are highly singular at short interparticle
distances, so that the expansion is not uniformly con-
vergent in space. In addition, they can also be slow to
evaluate.

FIG. 37. The diagonal action between an electron and a pro-
ton at a temperature of 5 Hartrees computed in different ways:
solid line, the primitive action; long dashes, the harmonic ex-
pansion; short dashes, the exact action; dotted curve, the
cumulant action. r is in units of Bohr radii.

D. The cumulant approximation

0—

If the potential energy is suKciently smooth, one can
take the averaging process of the FK formula up into the
exponent. Let us recall the well-known (van Kampen,
1981) cumulant expansion of the exponential of a random
variate,

I I I I ll I I I I I I I I I I I I I I

2.5 3 3.5
l"

FIG. 36. The diagonal action of two He atoms interacting
with the Aziz et al. (1987) potential at 20 K computed in dif-
ferent ways: solid line, the primitive action; long dashes, the
harmonic expansion; short dashes, the exact action; dotted
cur~e, the cumulant action. r is in units of A. .

(4.16)

Here x is some random variate, the brackets represent
an average, and higher-order cumulants have been ne-
glected. If x is normally distributed, all the higher-order
cumulants are zero and drop out. This is not usually the
case, but it suggests that the expansion might be quickly
convergent if x were close to being a Gaussian variable,
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as it would be if it were the sum of uncorrelated terms.
To relate this to the FK formula, we let x

J'p dtV(R(t)), the total potential of a path, and aver-
age over all &ee-particle paths from Ro to R~. Then the
first-order cumulant action is

E. Calculation of the cumulant action

It is not trivial to calculate the cumulant action. I et
us write it in the form

U~(Rp, Ry, ~) = "t (V(R(t)))„ (4.17)
U~ ——~ dRp, R RO, B~, v. V R . (4.21)

where we average over the total density of points, p(R),
the cumulant density, sampled by the random walk in
going &om Bo to Rp. The cumulant density and the
calculation of the cumulant action are described in the
next subsection.

The cumulant action will exist only if the potential en-

ergy is integrable, that is, only if lim ~p F V(T) = 0 (d 1s

the spatial dimensionality). The Lennard-Jones or hard-
sphere potentials are not integrable. One might think
this is not a serious issue, since most physical potentials
are Coulombic at sufficiently small r. But even though a
realistic helium-helium potential is integrable, it is suffi-
ciently large at short distances that the cumulant action
is a serious overestimate of the helium-helium action; see
Fig. 36. On the other hand, for Coulombic systems the
cumulant action is quite accurate; see Fig. 37.

The residual energy of the cumulant action has a very
simple form:

p('Rg, 7Z) p('R, 742)

p('Rg, 'R2)
(4.22)

The conditional distribution is well defined for inter-
acting particles, but for free particles it has a very simple
analytic form: it is a Gaussian distribution, centered at

(4.23)

and with a variance equal to

Here p, (R; Rp, R~, 7) is the curnulant density, the total
density of points that a path visits as it moves &om Ro
to R~. This distribution is shown in one dimension in
Fig. 38 and in two dimensions in Fig. 39.

Because we shall need it in the next section, let us
erst define the conditiona/ probability distribution, the
probability of sampling a point 'R = (R, t) given that the
path has already visited 7Zq ——(Rq, tq) and will in the
future visit 742 ——(R2, t2) (note the space-time notation):

Ec (R, Rp,.7.) = —) A [V;U~ (R, Rp, 7 )I . (4.18)
(4.24)

The sum is over all particles, and the gradient is with
respect to the particle positions at one end point. The
residual energy is strictly negative. This can be used to
provide a rigorous way of sampling the exact density ma-
trix (Ceperley, 1983) and is related to the fact that the
cumulant action is greater than the exact action. Jen-
son s inequality implies that the first cumulant is an up-
per bound to the exact average,

The mean of the free-particle conditional distribution
proceeds in a straight-line path &om R~ to R2. At the
beginning and end it is a delta function and achieves its
maximum width at the midpoint. Figure 40 depicts this

1.2 I I I I

i
I I I I

[
I I I I

i
I I I I

(4.19)

Interestingly enough, we can use Jensen's inequality the
other way to get a lower bound to the action, so that

~ (V(R))s & U & ~ (V(R))„=U. . (4.20)
0.4

Here the left average, ( . ) &, is over exact paths and the
right average, ( .), is over the free-particle path distri-
bution.

Since U is of order w the residual energy is of order
72. Below we shall see that this implies that corrections
to the cumulant action must be of order ~ . The second-
order cumulant is proportional to the correlation between
the potential at one time and the potential at another
time. Presumably one could develop ways of calculating
it, as well. For example, one could use graphical methods,
as outlined in Kac (1959).

0.2

0—2 0 1 2
X

FIG. 38. The cumulative distribution of a 1D path which goes
from 1/2 to —1/2. The seven curves are for diferent amounts
of imaginary time. The top curve is a classical distribution
in which the path proceeds uniformly from start to end. The
others are for the following values of temperature: 0.1, 0.2,
0.5, 1.0, 2.0, 5.0 in units where A = 1.
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u, (r, r';r) = f d1 f dkexp (
—vkr, ——k ) vv. (4.27)

FIG. 39. A contour plot of the 2D cumulative probability dis-
tribution of a walk that proceeds from one dark circle to the
other. The levels show contours of the probability distribu-
tion function (pdf) from 10% to 90'% of the maximum. The
integral of the pdf over the area of the largest contour contains
8770 of the total probability. Figure 38 is the projection on
the x axis of this plot. The distance between the end points
is equal to the thermal wavelength.

time-dependent Row of probability as the walk progresses
from Bp to By .

The cumulant distribution is simply the time average
of the conditional distribution,

(4.25)

Although p has a simple integral representation, it is, in
general, not an elementary function.

One can make some progress in performing the cumu-
lant integral with Fourier transforms. First note that
the cumulant action is linear in the potential; thus if
the potential is a sum of terms, each term can be con-
sidered independently. So without loss of generality we

can consider the case of a single particle in a spherically
symmetrical external potential. This is equivalent to a
pair potential if one works with relative coordinates and
reduced masses. Define the Fourier transform of the po-
tential as

u, (r, r; r) = r f dke "'v 'vp( y)/y (4.28)

where y = QAk2&/2. Using the asymptotic limit of Daw-
son's integral, one can show that the eKect of the path
averaging is to cut oK the high-k components; they get
reduced by a factor 1/(Ak r)

On the other hand, one could Grst perform the integral
over k in Eq. (4.27). Define the smoothed potential
v, r, o as

v. (r, e) = f dke '"' ~" vu. (4.29)

In the case of a Coulomb potential the smoothed poten-
tial has a simple analytic form, v, (r, (T) = erf(r/v 2o)/r,
showing that the smoothing cuts ofF the potential at small
distances to give the correct cusp to the action. Then the
cumulant action is the integral along the straight line con-
necting the two end points of the smoothed potential:

(4.30)

This form is reminiscent of the semiclassical action,
Eq. (4.13), except now the potential has been smoothed
by the quantum Huctuations so the action is more ac-
curate. Tabulations and analytic approximations of the
cumulant action for the Coulomb potential are given in
Ceperley (1983) and Pollock (1988).

If we first perform the time integral, we get for the
general oK-diagonal case an error function of complex
argument. On the diagonal, where rq is independent of
t, one can write down the Fourier transform in terms of
Dawson's integral I" (x) (see Chap. 7 of Abramowitz and
Stegun, 1970),

vk
1

dre *"'v(r).
2vr ~ (4.26)

F. The pair-product action

Transforming the integral into k space, we And that the
cumulant action is

A better approach for a hard-sphere-like system is to
determine the exact action for two atoms and then to
use that to construct a many-body action. This approach
was suggested by Barker (1979). To justify this approach,
first assume that the potential energy can be broken into
a pairwise sum of terms,

V(B) = ) v(r, —r~). (4.31)

FIG. 40. A representation of the 2D conditional probability
distribution as it progresses from one point to another point.
The center of the circle is the mean value of the distribution,
the radius is its width. Shown are 20 time steps.

x,, = exp — dtv(r, , (t))
p

(4.32)

Now apply the Feynman-Kacs formula, Eq. (4.1). What
enters is the integral of the potential energy along a path.
I et x,~ be the exponentiated integral of the pair energy
along a random walk,
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Then x,z is a random variable drawn from some distribu-
tion function that depends on the end points (Rp, Ry').
In terms of these random variables the FK formula for a
pair potential reads

(4.33)

If the variables x;~ are uncorrelated with each other, we
can interchange the product and averaging operation,

e = I (x;,).
i(j

(4.34)

But the average on the RHS is exactly the interacting
part of the exact action for a pair of atoms. The pair-
product action is

U2(R, R';r) = ) u2(r;, , r';, ;7),

where u2(r, ~, r,'. ; r) is the exact action for a pair of atoms.
In the next subsection, we discuss how to calculate it.

This approximation has several advantages over the
other approaches. First, it is exact for a pair of particles
by definition. Since most collisions occur between atoms
two at a time, they are described correctly. The errors of
U2 come from three- and higher-body correlations. As an
example, consi. der particle 1 interacting with two other
particles, say 2 and 3. If the path goes toward particle
2, then vi2 is larger and vi3 is smaller than average, and
vice versa if it goes toward particle 3. This correlation
efFect is not large in a homogeneous system, since there
are other parti. cles in other directions which will have
the opposite correlations, so that most of the Inany-body
effects tend to cancel. Considerations like this suggest
that the pair product will be correct to lowest order in
a density expansion of the action, since it is only when
we have three atoms in close proximity that we make a
substantial error. The probability for that depends on
the density.

Second, the pair density approximation is perfectly
well defined for all potentials, either Coulombic or hard-
sphere-like, in contrast to the cumulant action, which ex-
ists only for integrable potentials. Third, at low temper-
atures the pair action approaches the solution of the two-
particle wave equation. The result is the pair-product or
3astrow ground-state wave function, which is the ubiqui-
tous choice for a correlated wave function because it does
such a good job of describing most ground-state correla-
tions.

Finally, the residual energy of this action is less singu-
lar than for other forms:

The pair residual energy equals the form of the cumulant
residual energy, Eq. (4.18), except that all the purely
pair terms have been subtracted out. This must be so
because the pair density matrix is exact for a single pair.
Consider what happens when two particles approach very
close to each other, say r12 ~ 0. From Eq. (4.36) the
divergent term involves a single factor of V1u(r12, r12).
For an r 1 potential, u(r) oc r and thus as r12 -+ 0,
E2 oc rz& . However, the cumulant residual energy, since
it still has pair terms, will diverge as the square of this
term, as E~ cx r&& . From Fig. 36 we see that the pair
density matrix for two He atoms is only nonzero for two
atoms with r;~ (3 A. .. But looking at the pair-correlation
function we see that such pairs are relatively rare. We
will pick up a contribution to the residual energy only
when a given atom i has ttuo atoms closer than 3 A. . This
explains why the pair action becomes much better at low
density. Because of the form of the residual energy, we
expect errors in the action to go as w . This is confirmed
in Fig. 35 in an explicit calculation of the action for three
helium atoms.

Many authors (Pollock and Ceperley, 1984) use the
end-point approximation to the pair action,

(4.37)

This approximation is exact on the diagonal (r = r ) and
is symmetrical in B and B . It is very convenient compu-
tationally, since the pair potential in the primitive action
simply gets replaced by an effective potential, and the ac-
tion depends only on the radial variables r;~. Hence once
u2(r; r) has been computed and saved, its use takes the
same amount of computer time as the primitive action
(assuming potentials are calculated with look-up tables).
However, most of the accuracy of the pair action is lost
by the end-point approximation, as we show in Table III.
Jacucci and Omerti (1983) have verified that it is primar-
ily the oK-diagonal terms that are needed to improve the
density matrix, by looking at the convergence of the pair
density matrix for two hard spheres. The full pair ac-
tion contains valuable information about how easily two
atoms can circle around each other. This is lost in the
end-point approximation. Using the end-point approxi-
mation for the action reduces y in liquid He by only a
factor of 2. But using the full pair action reduces y by a
factor of 20!

G. Calculation of the pair density matrix

E2(R, R'; ~) = —) A, ) 7',u2(r;~, r', ; ~)

+ Q(A, + A, ) IV', u (r;, , r', , ;~)]

The exact pair action can be calculated efIiciently by
the matrix-squaring method introduced by Storer (1968)
and Klemm and Storer (1973). First, the pair density
matrix is factorized into a center-of-mass term that is
free-particle like and a term that is a function of the
relative coordinates. Without loss of generality one can
consider only the density matrix for a single particle in a
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spherical external potential. One now expands the rela-
tive pair density matrix in partial waves:

p(r, r'; r)

2D,

o (2l + 1)pi (r, r', 7 ) P~ (cos 0), 3D

(4.38)

Op(r, r'; t)
Ot

G1'

+ v((r) p(r, r'; t)
AT

with boundary conditions p&(r, r', 0) = b(r —r') and
p~(0, r'; t) = 0. The efFective potential is defined as

where 0 is the angle between r and r '. Each partial-wave
component is the density matrix for a 1D particle in a
potential with an additional centrifugal term and satisfies
the Bloch equation

pi (r, r'; w) =
p& (r, r'; w) exp v(x)dx

(4.42)

where the partial-wave component of the free-particle
density matrix is

pE [T)T )7) I 2 l2

I4~&7-]3/& p~ 4Av ' j' 2~7.

2D,

(4.43)

K for 4He. One needs fewer at lower temperatures, more
at higher temperatures.

To start ofF the matrix-squaring iterations, Eq. (4.41),
one needs a high-temperature form for the density ma-
trix. This is the only place the potential actually enters.
Since it is the solution to a 1D problem, we can use the
approximations developed in the previous sections. A
convenient approximation is the semiclassical action, Eq.
(4.13),

(4.40)

pi(r, r'; ~) = «p~(r ~ 7'/2)p~(" " 7/2) (441)

Since each partial wave is a Green's function, they sat-
isfy the convolution equation,

with I~ and i~ the modified and modified spherical Bessel
functions, respectively. [See Secs. 9.6—9.8 and 10.2
in Abramowitz and Stegun, 1970. Note that ii(z)
V'~/(2z) Ii+iy2(z) 1

There are at least two alternative ways of computing
the pair density matrix. First, one can directly use the
eigenfunction expansion of the density matrix,

This is the basic equation of the matrix-squaring
method. If we square the density matrix k times, it will
result in a lowering of the temperature by a factor of
2". Each squaring involves a one-dimensional integral
for each value of T, T', and /. If a uniform grid in T and
T' is used to tabulate the density matrix and the trape-
zoidal rule is used for integration, one literally can square
the matrix, p~(r, r ). This matrix-matrix product is im-
plemented very e%ciently on many computers. However,
a uniforxn grid with no interpolation runs into difFiculty
when high accuracy is required. At high temperature,
the density matrix is sharply peaked near the diagonal,
so the ofF-diagonal elements can disappear between the
grid points. Also, there may not be a suKcient num-
ber of grid points in places where the potential changes
quickly. Use of a nonuniform mesh in T can significantly
reduce the number of integrals to be performed, since the
mesh points can be concentrated in the region where the
potential is very steep. Elements far from the diagonal
do not need to be computed, reducing the number of re-
quired integrals. Finally, the integrand in Eq. (4.41) is
Gaussian-like, and thus Hermite integration is a natu-
ral choice of numerical integration. (See Table 25.10 in
Abramowitz and Stegan, 1970.)

The number of partial waves needed requires some
experimentation but is primarily dictated by the free-
particle part of the solution and the final temperature;
for example, 20—60 partial waves are needed to reach 40

«(r r' ~) = ) .&.*(r)e &-(r')

dkP*„(r)e "" Pg(r'), (4.44)

where P„and PI, are the bound and continuum stationary
solutions of the partial-wave Bloch equation (4.39). This
is particularly convenient for Coulomb or hard-sphere po-
tentials, since there are analytic expressions for the con-
tinuum wave functions (Pollock, 1988). Second, one can
use the Feynman-Kacs formula directly, performing the
path integral with Monte Carlo simulation (Pollock and
Ceperley, 1984). See Sec. V.K. This is not particularly
eKcient because each oK-diagonal element requires a sep-
arate calculation, but, because Monte Carlo simulation
is simple, it is a very good way of checking the results of
a matrix-squaring evaluation.

Once the pair density matrix is computed for some
value of ~, we must reexpress it in a form such that it
can be quickly evaluated during the Monte Carlo simu-
lation. Summation over partial waves is too slow, par-
ticularly at large T and small v; one would need on the
order of r/QA7 partial waves. The pair density matrix
between atoms at initial positions (r, , r~) and final po-
sitions (r';, r') reduces to a function of four variables—
three relative distances and the di8'erence of times. Ex-
plicit construction of a four-dimensional table is possible,
but unnecessarily wastes computer memory. We can use
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the fact that the initial and final positions cannot be too
far apart. It is convenient to use the three distances

1 — I I I I
I

I I I I
I

I I

where r = r; —r~ and r' = r,' —r'. . The variables 8

and z are small, on the order of the thermal de Broglie
wavelength A, and. so we can expand. the action in a
power series:

0. 1

0.01 =

up(r; 7.) + up(r', 7)
the F 7

I =i q=O

(4.46)

I I I
I

I I I I

0.5—

The erst term is the end-point action. The following
terms are purely oK-diagonal contributions. The func-
tions ups(q) can be determined by a least-squares fit to
the partial-wave expansion and tabulated for use in the
subsequent Monte Carlo calculations. The first-order
terms in this expansion are shown in Fig. 41 for the
helium-helium interaction. Notice that the off-diagonal
terms are significant in the region 2 A.& r & 3 A. . A simi-
lar expansion may be written for the w derivative of u
needed iu estimating the internal energy. For the 1/r
interaction in either two or three dimensions, it can be
shown that there is no dependence on z (Pollock, 1988)
because of a special symmetry of the Coulomb interac-
tion.

The convergence of this expansion for helium at 40 K
in terms of y, de6ned earlier, is shown in Fig. 42. We see
that, in the important region 2.5 A. & r & 3 A. , including
each additional higher-order term reduces the rms error
by approximately one order of magnitude. When y drops

0.001 =

0.0001

/

4 5

to a level below 0.01, most thermodynamic properties
should be well converged. Our second-order pair action,
i.e. , n = 2, meets this criterion for r ) 2 A. Most of the
accurate calculations of liquid helium have used n = 2.
Since there are six terms in the expansion for n = 2, the
evaluation of the pair action will be at most six times
slower than the evaluation of the primitive action. In
fact, the terms all share common computation, so it is
only about twice as slow. Because one can drastically
red. uce the number of time slices, using an accurate pair
action is much more efBcient than using the end-point
action, even though it is somewhat slower to evaluate.

FIG. 42. The error y of the action for two He atoms at 20
K located an average distance of r apart. The variable q is
defined in Eq. (4.45). The averaging to determine the error
is over 8 and z. The four curves represent the Gts obtained by
choosing n in Eq. (4.46) from 1 to 4 (top to bottom). Thus
the top curve represents the average error of the end-point
approximation.

0—

—0.5—

—1.5
2 2.5 3.5

FIG. 41. The diagonal and o8'-diagonal components of the
exact pair density matrix for two He atoms vs distance at a
temperature of 40 K: solid curve, the diagonal action; dotted
curve, ufo,. dashed curve, uqq.

H. Beyond the pair action

In the previous subsection we have discussed how to
use the exact two-atom density matrix. Naturally the
question arises whether it is possible to go further with-
out getting tangled up in very-high-dimensional func-
tions. While the exact pair density matrix is at most a
four-dimensional function (with two variables small and
7 fixed), the complete three-body density matrix has 13
variables (of which nine are small and r fixed), so it is
clearly much more diKcult to calculate and to tabulate
the three-body density matrix. It is known from ground-
state variational calculations that the dominant terms
beyond the pair-product (Jastrow) wave function are not
complicated functions but of the simple "polarizability"
form. We shall now see how that form arises for the
density matrix also.
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First, we have to establish the connection between the
residual energy of any approximate action U~ and the ex-
act action U. Let bU = U —U~ be the difference between
the exact action and an approximate action. The gener-
alized Feynman-Kacs (GFK) formula expresses SU as a
path-integral average over drifting random walks gener-
ated by the approximate action,

coming from the approximate actions that we have al-
ready considered. First, if we start from the free-particle
action, then n = 0, and we end up with the primitive
action. Second, if we start with the pair action, then
n = 2, and using Eq. (4.36), the GFK action' has the
polarization form

—sU(a„a~;~)

= (exp E~ (R(t), R~, r —. t) dt
DR%

(4.47)

SUpl, (Rp, Rp, r) = —)
+)

) V;u, (r;, , r',, ; r)

r(A; + A, )-V;uz(r;, , r,', ; 7.)

where (. )DRw denotes the average over all drifting ran-
dom walks that proceed from Ro to R~ in time t, and
E~ is the residual energy defined earlier, Eq. (4.6). The
drifting random walks are defined by the Langevin pro-
cess,

dR(t) R —Rp= q(t)— —2A V'U~(R, R~, r —t) (4.48)
dt 7 —t

E~(R, R~., t) = (t/r)" E~ (Rp, Rp, r). (4.49)

We get

7
SU(Rp, R~., 7) = E~(Rp, Rp., r).n+1 (4.SO)

Accuracy will be improved. if we symmetrize with respect
to Ro and R~.

Now, let us reexamine the residual energy expressions

with rl(t) white noise, (rl(t)g(t )) = AS(t —t'), and initial
condition R(0) = Rp. This process describes Brownian
motion in a velocity field that pushes the walk so that it
arrives at R~ after a time 7. The derivation of this result
is in Pollock and Geperley (1984).

If the approximate action is taken to be the free-
particle action, the original Feynman-Kac formula is ob-
tained, since the residual energy equals the bare potential
and the drift merely serves to generate Brownian random
walks which begin at Ro and end at R~. On the other
hand, if U~ is the exact action, then E~ is seen from its
definition to be identically zero. Then the velocity field
generates fully interacting paths starting from R~ and
ending up at R~.

The GFK formula gives an exact, nonperturbative ex-
pression to correct any approximate action. But to use it
to determine a better action we have the difFicult prob-
lem of how to calculate the averages ( )DRw. One
can use the techniques already discussed to perform the
averages the primitive approximation, the semiclassical
approximation, the cumulant average, or an exact solu-
tion of a subsystem. We shall discuss only the primitive
approximation to the path average, which assumes that
the residual energy is a constant within a thermal wave-

length of the initial and final points. But the residual
energy will in general depend on the time remaining in
the path. Suppos'e we assume it has a power-law behav-
ior,

SUI (Rp, R~, r) = —) A; ) (r; —r;)u)(r;, )

+).(A'+ Ai) Irv~(r'i)j' (4.52)

where m(r) is the adjustable polarization function. The
derivation above suggests that

r du2(r)
12 rt&

(4.53)

This we call the unoptimized polarization. But the to-
tal action for the unoptimized polarization can have an
instability (the action goes to —oo) if a triplet of atoms
collapses to a common point. Prom Table III we see
that putting in an unoptimized polarization function de-
creases the error on the diagonal by a factor of 2 but
actually makes things worse off the diagonal.

To optimize the polarization function io(r), we have
computed the exact density matrix for a sequence of equi-
lateral triangles of He atoms and use this to fix m(r) by

(4.51)

It is interesting to note that, if U2 ——wV, the polariza-
tion term exactly equals the 7 A term in the harmonic
expansion, so this method gives the same result as an
5 expansion in lowest order. Moreover, the polarization
term is identical in functional form to the term that is
needed for improving the ground-state variational wave
function of liquid 4He helium beyond the pair or Jastrow
wave function (Schmidt and Ceperley, 1992). So this
form of the action can go over smoothly as temperature
is lowered to a very accurate ground-state wave function.
This polarization term, even though it is three-body in
form, still takes only O(N2) computer operations to eval-
uate. For a short-ranged potential, it can be evaluated
using neighbor tables in O(K) operations.

In the above derivation, we simply took the residual
energy as the missing action. This completely neglects
the averaging over paths. To approximately include an
effect of the averaging, one can assume that the correc-
tion to the action is of the above form but allow the func-
tion that appears inside to be renormalized. To further
simplify, let us also make the end-point approxixnation.
Hence
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1 I I I I
i

I I We wish to sample these elements in the simulation &om
the probability distribution

0—

—O.P 5' I I I I I I I I I I I I I I I ! I I I I I

This is shown in Fig. 43 and compared with the unop-
timized polarization function. It is seen that in the re-
gion of r ) 3 A. where the two functions are small, they
agree. But at smaller distances, the optimized m is much
smaller and smoother. This is precisely what one expects
the averaging would do. The paths coming from the pair
density matrix. spend a greater &action of the path in re-
gions where the residual energy is smaller and thus reduce
the correction to the density matrix. This optimized po-
larization function reduces the error even further on the
diagonal. Ofr' the diagonal it is an improvement, but not
much of one. Probably one needs also to include ofF-

diagonal components of the polarization function. We
have already learned that this was important at the pair
level, so it is probably true as well for the polarization
action.

The previous sections concerned the physical inter-
pretation of the paths and how to construct accurate
high-temperature actions. Here we consider how to do
the multidimensional integrations and summations that
path integrals require. Without introducing very severe
approximations, the only way of doing the integrals is
stochastically, that is, by sampling the integrand.

The total configuration space to be integrated and
summed over is made of elements: s = [P, RI, ...., RMI
where RI, = (rj I„.. . , r~I, ) are the path variables and P
is the permutation that closes the path, BM+q = PBq.

FIG. 43. The polarization function computed either from the
residual energy expression, Eq. (4.51) (dashed line) or by
Monte Carlo simulation (solid line) from the exact action of
three He atoms arranged in an equilateral triangle with side
r and with a time slice 7 = 20 K.

where S is the action of the kth link. The partition
function Z normalizes the function vr in this space.

This distribution is different &om that of a simple liq-
uid because the points on the path are linked together
by the kinetic springs, which can cause the convergence
of simple simulation techniques to become exceedingly
slow. Ways of speeding up the convergence have been
addressed by several methods, which we shall discuss.
What is less often discussed is the difFiculties in explor-
ing permutation space; that is, how the permutations can
be changed. Convergence in permutation space is the key
to getting reliable results concerning the superQuid tran-
sition and other efI'ects of quantum statistics. We shall
emphasize methods that can be used both to speed. up
the sampling of a single chain and to allow sampling of
exchanges. The reader should bear in mind that all of the
methods discussed here are correct, in the sense that they
will eventually converge. What is at stake is how much
it will cost in computer time to get a given accuracy.

First, we raise the possibility of doing the integrals
with molecular dynamics. We then introduce the general
form of the Metropolis Monte Carlo method, define what
we mean by optimal sampling, and consider what is the
best sampling for a single link of a path. We then discuss
the motivation for moving whole sections of a path, us-
ing either Fourier-space methods or the bisection method.
The bisection method is the only one that has been ap-
plied to continuum superfIuids. We then describe the
problems and methods for sampling permutation space.
Finally, we apply these methods to the direct calculation
of the density matrix.

Before we begin the discussion of Monte Carlo meth-
ods, the reader may be asking whether the molecular-
dynamics (MD) method may be used instead. Indeed,
such methods are useful for some path-integral applica-
tions, and several results have appeared (Parrinello and
Ragman, 1984; deRaedt, Sprik, and Klein, 1984). The
chief difFiculty with dynamical methods, by which we
mean those in which the path variables change continu-
ously with an artificial dynamics, is that it is not possible
for the permutation to change continuously, since it is a
discrete variable. Hence d.ynarnical methods by them-
selves cannot treat problems in which quantum statistics
are important. But even for systems of distinguishable
particles, there are particular problems in applying MD
methods to path integrals.

There are two major concerns with MD methods: er-
godicity and eKciency. It is easy to see that a free-
particle path-integral system will never come into equi-
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librium. The classical analog is a collection of uncoupled
harmonic oscillators which will never exchange energy
with each other. Then the "time" averages will be difFer-
ent kom phase-space averages. But even with an inter-
particle interaction, if the time step w is small enough,
ergodicity is a major worry. Hall and Berne (1984) did
simulations of liquid neon and liquid water and found
that straight molecular dynamics did not agree with the
Monte Carlo results. With the strong harmonic forces
in the classical polymer system, the dynamics is in the
Kolmogorov-Arnold-Moser (KAM) regime and the flow

will be confined to multidimensional tori. One can break
up the long-term correlations by periodically resampling
the momentum. This can be done in a continuous fashion
by using a Nose (1984) thermostat, or one can resample
the velocities (hybrid Monte Carlo) each dynamical step
and accept or reject the changed velocities (Duane et al. ,
1987). Using these methods one is guaranteed to get
convergence to the right distribution.

Once ergodicity is ensured, the major concern with
molecular dynamics is the efBciency of sampling phase
space. For small ~ one needs dynamical steps small
enough to capture the oscillations of the springs. (Be-
ware of a new danger of confusion, as there will be a time
step associated with this dynamics, distinct from the w

of imaginary time. ) One finds that the paths move very
slowly through phase space. Tuckerman et al. (1993)
have introduced novel methods for speeding convergence
by separating the slow and fast dynamical scales. In fact,
the methods for separating these motions are an imita-
tion of how one solves the equivalent problem in Metropo-
lis Monte Carlo simulation. They have shown in some
cases that path-integral molecular dynamics (PIMD) can
be almost as efBcient as PIMC.

These results are interesting because there are situ-
ations in which dynamical techniques are advantageous.
In Monte Carlo methods, an elementary move is typically
of one or several particles at several time steps, while in
molecular dynamics, one moves all particles at all time
steps simultaneously. In some cases, this can be compu-
tationally much more efBcient. For example, one might
want to do a PIMD calculation of a system where the
Born-Oppenheimer electronic energy is calculated with
a dynamical method such as the Car-Parrinello (1986)
local-density-functional algorithm. The electronic calcu-
lation must be done for all the ions simultaneously, so one
may as well move all the path variables as well. Another
example of a case in which dynamical methods may prove
useful is provided by fermion path integrals. The matrix
elements of backflow density matrices (Ceperley, 1991)
are all coupled together, and it is convenient to calculate
them together. Finally, systems with constrained degrees
of &eedom, like a molecule with fixed bond lengths, can
usually be handled more conveniently with dynamical
methods. These applications will not be discussed in this
review. Here we are primarily interested in the problem
of Bose condensation, and discrete movement through
permutation space is crucial. Henceforth we shall dis-

cuss only Monte Carlo methods for performing the path
sampling.

B. Markov chains and the Metropolis algorithm

7r(s)'P(s -+ s') = 7r(s').

The transition is ergodic if one can move from any state
to any other state in a finite number of steps with a
nonzero probability, i.e. , there are no barriers or con-
served quantities that restrict the walk to a subset of the
full conIIiguration space.

The transition probabilities are usually set up so that
they satisfy detailed balance: the transition rate from s
to s' equals the reverse rate,

vr(s)'P(s ~ s') = ~(s')'P(s' m s). (5.3)

Assuming ergodicity, detailed balance is sufBcient to
guarantee that one samples ~(s) in the limit of many
steps.

The Metropolis method is a particular way of ensuring
that the transition rules satisfy detailed balance. The
transition probability is split into an "a priori" sam-
pling distribution T(s —+ s') and an acceptance proba-
bility A(s m s'),

'P(s ~ s') = T(s -+ s')A(s —
& s'). (5 4)

In the original Metropolis procedure, T(s ~ s') was cho-
sen to be a constant distribution inside a cube and zero
outside. In the generalized Metropolis procedure (Ka-
los and Whitlock, 1986), more general types of sampling
distributions are allowed and trial moves are accepted
according to

T(s' + s)vr(s')
A(s -+ s') = min 1, —

It is easy to verify detailed balance and hence asymptotic
convergence with this procedure. Moves that are not
accepted are rejected and remain at the same location for
at least one more step. Note that accepted or rejected
steps contribute to averages in the same way.

For bosons, it is necessary to have several diferent
kinds of moves, for example, moves that change path

The vast majority of path-integral calculations are
done with various generalizations of the Metropolis et
aL (1953) rejection algorithm, which is a particular
type of Markov process (Hammersley and Handscomb,
1964). To construct a Markov chain, one changes the
state of the system according to a fixed transition rale,
P(s —i s'), thus generating a random walk through state
space, (so, si, s2. . .). [Note that P(s '-+ s') is a probabil-
ity distribution. ] If the transition probability is ergodic,
the distribution of s converges to the unique equilibrium
state which solves the equation,
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variables and moves that change the permutation. So it
is necessary to generalize the Metropolis procedure to the
case in which one has a menu of possible moves. There
are two ways of implementing such a menu. The sim-
plest is to choose the type of Inove randomly, according
to some Axed probability. For example, one can choose
the particle or the time slice to be updated from some
distribution. Equation (5.5) still applies if one includes
in the definition of T(s -+ s') the probability of selecting
that move from the menu. A more common procedure is
to go through all possible atoms and time slices systemat-
ically. After one pass, moves of aH. coordinates have been
attempted once. Equation (5.2) can be used to justify
the correctness of this procedure. Composition of moves
is valid. as long as each type of move individually satisfies
detailed balance. Having many types of moves makes the
algorithm much more robust, since before doing a calcu-
lation one does not necessarily know which moves will

lead to rapid movement through phase space.
Since asymptotic convergence is easy to guarantee, the

main issue is whether con6guration space is explored
thoroughly in a reasonable amount of computer time. I et
us now define a measure of the convergence rate and of
the eKciency of a given Markov process. This is need. ed.

to compare the eKciency of diBerent transition rules, to
estimate how long the runs should. be, and to calculate
statistical errors.

The rate of convergence is a function of the property
being calculated. Generally one expects that there are
local properties which converge quickly and long-ranged
properties, such as order parameters near a phase bound-

ary, which converge very slowly. Let 0(s) be a given

property and let its value at step k of the random walk
be Ok. I et the mean and. variance of 0 be denoted by
0 = (Oi, ) and vci = ((Oi, —0) ), where the averages are
over vr. These quantities depend only on the distribution,
not on the Monte Carlo procedure. Qn the other hand,
the standard error of the estimate, the average of 0 over
a Markov chain with P steps, is

error[0] = oui =

The correlation time K~, de6ned as

(5.7)

gives the average number of steps to decorrelate the prop-
erty O. The correlation time will depend crucially on the
transition rule and has a minimum value of jk. for optimal
transition rules.

To determine the true statistical error in a random
walk, one needs to estimate this correlation time. To
do this it is very important that the total length of the
random walk be much greater than r~. Otherwise the
result and the error will be unreliable. Runs in which the
number of steps is P && pc~ are called mell converged. It
is a good practice occasionaDy to run very long runs to

1
(c~ = )

cT PT K~v~ T (5.8)

where T is the computer time per step. The eFiciency
depends not only on the algorithm but also on the com-
puter and the implementation. Methods that generate
more steps per hour are, other things being equal, more
eKcient. We are fortunate to live in a time when the
eKciency is increasing because of rapid. advances in com-
puters. Improvements in algorithms can also give rise to
dramatic increases in eKciency. If we ignore how much
computer time a move takes, an optimal transition rule
is one which minimizes v~, since v@ is independent of
the sampling algorithm.

There are advantages in defining an intrinsic eQciency
of an algorithm, since one does not necessarily want to
d.etermine the eKciency for each property separately. It
is best to optimize an algorithm to compute a whole spec-
trum of properties. Di8'usion of paths through phase
space provides at least an intuitive measure of conver-
gence. Let us define the diffusion constant DIt of an
algorithm by

(5 9)

where Bk —Bk is the total change in the kth time slice in
one Monte Carlo step and T is the CPU time per step.
Note that this change is zero if a move is rejected. The
tiIne step w is in the formula so one can make relative
comparisons with diferent values of 7 and P. We can
introduce a similar measure for movement through per-

test that the results are well converged.
The correlation time defined above is an equilibrium

average. There is another correlation time relevant to
Markov chains, namely, how many steps it takes to reach
equilibrium from some starting state. Normally this will
be at least as long as the equilibrium correlation time,
but in some cases it can be much longer. The simplest
way of testing convergence is to start the random walk
from several, radically diferent, starting places and see if
a variety of well-chosen properties converge to the same
values. A starting place appropriate for a d.ense liquid
or solid is with all the atoms sitting on lattice sites for
all of the time slices and connected with the identity
permutation. However, it may take a very large num-
ber of steps for the initial solid to melt. The quantum
paths are no diBerent in this respect from classical sys-
tems; metastability and hysteresis are characteristic near
a phase boundary. A random starting place is with a
random permutation and placing each path variable ran-
domly in the simulation box. It may be very diIIIicult for
the paths to disentangle themselves from this starting
place. More physical starting places are well-converged
paths at neighboring densities and temperatures.

The efficiency of a random-walk procedure (for the
property 0) is defined as how quickly the errors bars
decrease as a function of computer time,

Rev. Mod. Phys. , Vol. 67, No. 2, April 1995



D. M. Ceperley: Path integrals in the theory of condensed helium 325

mutation space,

(l~ —I"
~I

) (5.10)

T*(s -+ s') =
C, '

where the normalization constant is

(5.11)

)
s

ted%'(8)

(5.12)

Then one sees by substitution in Eq. (5.5) that the ac-
ceptance probability will be

where ~P —P'~ counts the number of elements of the per-
mutation that are changed in an (accepted) permutation
move. For example, if only pair permutations are being
considered, D~ will be twice the number of accepted pair
moves per second. Finally the number of winding changes
per second, D~, is an important measure of the speed at
which the winding number distribution converges. The
values of these diffusion constants depend not only on
the computer and the algorithm, but also on the physics.
DifFusion of the atoms and change of the permutation in
a solid is much less than in a liquid, irrespective of the
algorithm.

Usually transition rules are local; at a given step only
a few coordinates are moved. If we try to move too many
variables simultaneously, the move will almost certainly
be rejected, leading to long correlation times. Given a
transition rule, we define the neighborhood JV(s) for each
point in state space as the set of states s' that can be
reached in a single move from s. (By the way, it is im-
portant for detailed balance that the neighborhoods be
reBexive. If s is in the neighborhood of s, then s is in
the neighborhood of s'.) With the heat-bath transition
rule, one samples elements &om the neighborhood with
a transition probability proportional to their equilibrium
distribution,

C. Single-slice sampling

T*(R) oc p(7Zi, 'R) p('R, 742). (5.14)

The ratio of normalization factors in Eq. (5.13) is always
one, because the neighborhood does not change after the
move. With T* all moves are accepted.

For a lattice model, it would be straightforward to sam-
ple T*, but in the continuum one cannot quickly compute
the needed normalizations. In the rest of this section
we shall discuss a way of sampling an approximate T*.
Dropping factors independent of R and factoring out the
&ee-particle action,

Now consider the problem of how best to sample a sin-
gle point on the path. This is an elementary operation of
the path-integral algorithm that we shall build upon in
the following sections. The task is to sample a point R at
time 7 which is to be connected to two 6xed end points,
R~ and R2, with imaginary-time coordinates, 0 and 2w,

respectively. Usually we want to resample only a few co-
ordinates, say only n &( N particles are allowed to move.
A/l the integrals, vectors, and tensors in this subsection
mill range only over the n moving-atom coordinates. The
other particles can be regarded as a fixed background.

In the simplest choice for the transition probability,
the classic rule, a single atom at a single time slice is
displaced uniformly inside a cube of side 4, adjusted to
achieve 50% acceptance. It is clear that A must be on the
order of, or smaller than, the thermal de Broglie wave-
length for a slice, A A = QA7 .

As mentioned above, the heat-bath transition rule will
have the smallest correlation time among all transition
rules. The neighborhood of this move is the subspace
obtained by fixing 3(NM —n) variables and the permu-
tation, but allowing n atoms at one time slice to vary
throughout the box. The optimal sampling distribution
for a point 'R, conditional on the path's having earlier
visited 'Rq and later visiting X.2, is then proportional to

A(s -+ s') = min 1,
s'

(5.13) T*(R) oc exp — —U(7Z, Ri) —U(7Z, 7@2)
(R —R )

20

If the neighborhood of s equals the neighborhood of s'
then all moves will be accepted. For all transition rules
with the same neighborhoods, the heat-bath rule will con-
verge to the equilibrium distribution fastest and have the
smallest correlation time.

This heat-bath rule is frequently used in lattice spin
models where one can easily compute the normalization
constant. Note that the normalization constant is needed
in the acceptance ratio formula and to perform the sam-
pling. The heat-bath approach is not often used in con-
tinuum systems because the normalizations are diKcult
to compute; note that the integral in Eq. (5.12) extends
over all space. We shall later use the heat-bath rule di-
rectly to sample permutation changes, but for path vari-
ables we shall try to find a method close to the heat bath,
so that the correlation time is small, but able to be exe-
cuted quickly. We take this up in the next subsection.

(5.15)
where the midpoint is R = (Ri + R2)/2, the squared
width is o = Av, and n is the number of moving parti-
cles. The noninteracting density matrix gives a Gaussian
centered at R and width ~o.. This distribution can be
easily sampled and is called free particle sampl-ing. Free-
particle sampling is already an improvement over classic
sampling, because it leads to 100'Fo acceptances in the
absence of the potential or in the high-temperature limit
and because the step size 4 is automatically set to be
the width of the kinetic action.

A repulsive potential will cut holes in the &ee-particle
Gaussian distribution where a nonmoving atom is present
or where two moving atoms overlap. Although it would
be possible to develop sophisticated ways of sampling T*,
it has been found more efBcient to further approximate
T* by some function that can be sampled quickly and let

Rev. Mod. Phys. , Vol. 67, No. 2, April 1995



D. M. Ceperaey: Path integrals in the theory of condensed helium

the Metropolis algorithm correct the sampling, since all
that matters in the end is the eKciency. Note 6rst an
important difference between the Monte Carlo sampling
of a classical liquid and that of path integrals. In Monte
Carlo on a classical system, the new atom could be any-
where in the box, while the effective neighborhood of the
path is localized by the kinetic action to a region of the
order of A . This makes it easier to develop approxi-
mate expressions for the optimal path-integral sampling
distribution.

To go beyond &ee-particle sampling, we can choose
for a transition probability the most general correlated
Gaussian in 3n variables,

T, (R) = g(2~)s-d. t(A).-l"-Rll'"l '~"-"~, (5.i6)

where the 3n x 3n positive-definite covariance matrix A
and the mean position vector Bare free parameters of the
sampling. %e shall choose the mean and covariance to
approximate the moments of T'(R). Basing the parame-
ters of the Gaussian on the moments will not necessarily
lead to the best transition probability, but it does give a
unique rule for determining them and it works very well
if T* happens to be close to a multivariate Gaussian, as
is the case for small ~.

To develop expressions for A and B, we define a 8am-

pling potential by

exp[ —U(R )] = W =

—U('R, R, )—U(R. ,R, )
R,a.

f dRRT*(R) BU
aB (5.is)

f dR (R —R) (R —R) T'(R)A=
W

( a'U
!

= 0 I —0
OR BR )

' (5.19)

where I is the unit tensor. tA'e see that U is a generating
function for the moments of T*. If we approximate U
(the integral is too slow to evaluate during the PIMC) we
can automatically generate expressions for the Gaussian
parameters by difFerentiating.

Now, we make three further approximations. First,
we make the end-point approximation for the action in
Eq. (5.is),

U('R, 'Ri) + U(R, 'R2) U(R, R; r) + const. (5.20)

Second, we assume the diagonal action is a sum of pair
terms so that U(R, R;7.) = g,.&. u(r; ~, r; ~;~). Third,

where the ( . ) simply indicates an average over the free-
particle Gaussian centered at the midpoint. The exact
moments of T* can be written in terms of derivatives of
U,

for the average in Eq. (5.18) we make the uncorrelated
approximation: we assume the terms in the sum to be
uncorrelated so that we can interchange the product and
averaging operations,

~(&ij i~)
R,cri&j

(5.21)

Then the averages can be explicitly performed, since they
involve two atoms at a time. This is the same trick we
used in subsection IV.E to define the pair action. Then
the pairwise sampling potential u is

X; —X'm, ; '
t&;(&& exp

20

xj —rmj '
20

—u(r;, , r'i r) '(5.22)

Using spherical coordinates, this integral, a convolution,
reduces to two 1D Fourier transforms. The evaluation is
done before the Monte Carlo calculation begins and u is
tabulated. The total sampling potential is

U = ) u(r, ;~; r). (5.23)

The above equation is for the case in which both atoms,
i and j, are moving. If either atom is Axed, say i is a
fixed atom and j is a moving atom, one should replace
the Gaussian in r; with its actual (old) position.

Correlated sampling proceeds as follows. First the
midpoint B for the move is determined. Then B and
A are determined using Eqs. (5.18) and (5.20) from the
tabulated functions u. To sample the multivariate nor-
mal distribution, one Cholesky-factorizes the covariance
matrix as A = SS, where S is an upper triangular ma-
trix. Then if y is a vector of Gaussian random numbers
with zero mean and unit variance, Sy+ B has the de-
sired mean and variance. The diagonal divisors in the
Cholesky decomposition of A are needed to find the ac-
tual value of T(R) and the acceptance probability for a
move in Eq. (5.5).

Because of the uncorrelated approximation used in cal-
culating the covariance matrix, Eq. (5.21), A may have
unphysical negative eigenvalues. This occurs very rarely,
typically every few thousand moves. For these rare cases,
free-particle sampling, i.e. , setting U = 0, may be used
instead. This will acct only the acceptance ratio. If
this happens very &equently, it may be worthwhile to
de6ne the sampling potential in some other way, so that
its second derivative is smaller.

The eKect of atomic interactions on the free sampling is
to push the mean position of an atom away from its &ee-
particle mean, if another (nonmoving) particle is nearby
or if a moving particle has its free-particle mean nearby.
Similarly, the free-particle variance is changed by inter-
actions with neighboring particles. In directions where
the curvature of the potential is positive, the cage of sur-
rounding atoms results in a narrower Gaussian's being
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sampled. Putting correlation into the transition prob-
ability is much more important when several particles
are being moved at once, as during a permutation move.
Then correlation is essential to keep them out of each
other's way.

Finally, consider the high-temperature limit. If the
width 0 / is much smaller than variations of the poten-
tial, then we see from Eq. (5.18) that U(R ) = U(R ) =
rV(R ). The mean position is pushed by the classi-
cal force. This is equivalent to smart Monte Carlo. See
Rossky, Doll, and Friedman (1978) and Allen and Tildes-
ley (1987). For longer time steps, U(R ) differs from
rV(R ) in that it is smoothed out over regions of radius
A .

Another strategy for improving the sampling is to ap-
proximate the potential locally with a harmonic potential
and use the density matrix of the harmonic potential for
the transition probability. One will have achieved many
of the features discussed above, since that density ma-
trix is a correlated Gaussian. This approach will work
well if locally the potential is harmonic, e.g. , for tightly
bound atoms in a molecule or solid. One application for
which this has been tried is on protons in water molecules
(Friesner and Levy, 1984). On the other hand, it will
have difBculties when the potential is nonharmonic. Liq-
uid helium is far from harmonic; the atoms do not like to
sit on the bottom of the potential well but rather where
the potential has a negative curvature. The harmonic
approximation does not solve the main problem, for he-
lium is the hard-core interaction. The sampling potential
de6ned above works for any type of pair interaction. It
ruris into diKculty if T* is highly non-Gaussian or when
the uncorrelated approximation breaks down.

action, so one can explicitly solve the Smoluchowski equa-
tion and determine the complete relaxation spectrum of
the path. The mathematical problem is equivalent to
solving for the phonon frequencies of a harmonic crystal.
One finds that the inverse relaxation times of a path with
M slices are (n + z)[1 —cos(2vrm/M)j, where n and m
label modes. Thus the slowest mode, (n = O, m = 1),
will take on the order of (M/m)2 passes to come to equi-
librium. But since the computer time per pass also scales
as M, we find that computer time needed to change the
overall shape of a single path scales as M .

The diffusion of the center of mass c can be analyzed
in the same way. After a move of a single bead, the
mean-squared center of mass will change as

(5.24)

so the computer time needed to get the center of mass to
difFuse a fixed distance will also scale as M . Hence the
eKciency of any Markov process that has single-time-
slice moves will have a correlation time that scales as
M oc w for large M.

Our estimate so far has worried only about the inter-
nal degrees of freedom of a chain. Entanglement effects
coming from the interaction of several atoms will slow
the relaxation further. But as M gets large, the kinetic
action dominates, so our analysis will give the asymp-
totic scaling correctly. This scaling law, in conjunction
with the use of the primitive action, which necessitates
very large values of M, has ruined many path-integral
studies. For example, using the primitive action requires

O. The necessity af multislice moves

No matter how well single-bead sampling has been op-
timized, as the value of ~ decreases, the random walk
will difFuse through configuration space more and more
slowly. In this subsection we examine how the paths dif-
fuse through phase space if the random walk consists of
only single-bead moves. We assume that the tempera-
ture is held fixed, but 7 and hence the number of time
slices varies. The largest displacement allowed by the
free-particle density matrix is of order A = QAr. Inter-
actions or poor sampling can reduce this displacement,
but it is impossible for the average displacement to be-
come much greater than A, since this is fixed by the
kinetic springs.

We can calculate how fast a free-particle path will
move through path space. Time in this subsection refers
to steps of the Markov process, which moves the system
through path space. Consider a Monte Carlo procedure
in. which each bead is moved in turn. If we ignore "short-
time" details, the evolution of the paths is described by a
diffusion equation, the Smoluchowski equation, and the
movement of the paths is equivalent to Rouse (1953) dy-
namics of polymers. A single path has a purely harmonic

A
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FIG. 44. The diffusion constant and acceptance ratio for 64
He atoms at saturated vapor pressure and 2 K: solid line,

simulation with r = 0.0125/K; long-dashed curve, simulation
with r = 0.025/K; short-dashed curve, simulation with t =
0.05/K. The horizontal axis refers to the "time" of the move,
i.e., n7. . The moves were made with the bisection algorithm
with free-particle sampling. All moves were of single atoms,
no permutations were done. DR is the diffusion constant for
the center of mass of a single chain in A /K s on a SPARC-10
work station. (a) is the total acceptance ratio for the same
kind of move.
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a time step twenty times smaller than the pair action. If
one is also using single-slice sampling, this will slow con-
vergence by a factor of 8000. A very large price has been
paid for simple actions and simple moves! To achieve
faster convergence, one must go beyond moves of a single
time slice.

Figure 44 shows the diftusion constant as a function of
and the number of time slices simultaneously moved.

Numerically we find that DR scales as ~ if single-slice
moves are made. The single-slice moves are the three left-
most points of the three lower curves. We next describe
sampling methods with a much more favorable scaling,
where several time slices are moved together.

E. Whole-chain and normal-mode sampling

M
2mikl/M

l=1
(5.25)

The total kinetic action is decoupled in normal modes,

The simplest multiple-slice move is a displact. ment
move, in which the entire chain is translated by an
amount b. One could say that we are treating the cen-
ter of mass of a chain as a classical degree of freedom.
The size of the displacement b can be sampled from a
uniform distribution inside a cube with side 4, with 4
chosen to maximize the mean-squared dift'usion of the
center of mass. Usually this is done by making sure that
the acceptance ratio is between 25%%uo and 75%. The ki-
netic action is unchanged by the displacement, assum-
ing that the atom is not permuting with another atom,
otherwise all members of an exchange cycle must be dis-
placed. Displacements will be rejected if the chain ends
up overlapping with another chain. If the temperature
is somewhat higher than the degeneracy temperature, so
that the size of the path is less than the interparticle
spacing, these moves are very useful. The displacement
will not change the internal shape of the path; there has
to be a difFerent kind of move to do that. Since the move
will take O(M) operations, a displacement should be at-
tempted much less frequently than other kinds of quicker
moves.

To generalize the displacement move to the internal
degrees of freedom of the paths, we use the normal modes
of the kinetic action. These are obtained by a discrete
Fourier transform along the "time direction" (Feynman
and Hibbs, 1965). We define the normal-mode coordinate
by

k=1
(5.27)

The path is no longer a fractal, but a smooth curve, as we
have depicted in Fig. 8. The discussion of the previous
section concerning improved actions is largely irrelevant.
Instead, one has to worry about approximating the efFect
of the neglected modes, A: ) M. Their efFect can be
accounted for by using the cumulant action. This is called
partial averaging. One works with an efI'ective potential,
which is obtained by averaging over the neglected higher
modes)

V,g (r, u) = (27ra„) ~ dr'e ~ "v(r + r'), (5.28)

make the picture of Fig. 8, where normal modes with
k & 10 were set to zero.

There are two quite difI'erent ways of using normal
modes. First, in normal-mode sampling one uses this
form of the kinetic action to construct a transition move
(Takahashi and Imada, 1984; Runge and Chester, 1988).
One samples one or more Qg from some transition proba-
bility, for example a Gaussian distribution with squared
width, AP/[2 sin (hark/m)]. Then the new path coordi-
nates are determined by the inverse Fourier transform
and the move is accepted or rejected based on the change
in action and the ratios of transition probabilities. In the
absence of a pair potential, all moves would be accepted.
%hen a potential is present, only the large k modes can
be sampled directly from the free-particle Gaussian, since
they cause a small movement of the path. In contrast,
the low k modes are moved only a small amount, say
~Q&

—
Qy~ ( pg, with pI, adjusted to get 50%%uo acceptances

The center-of-mass mode (k = 0) is just the displacement
move that we already described. These moves are much
slower than single-slice moves, since they take O(M) op-
erations.

The second, much more radical, approach is to work
directly with the normal-mode variables by rewriting the
path integrals as integrals over QA, instead of BA, . This
is called the method of Fourier path integrals (Coalson
et al. , 1988). In using the Feynman-Kacs formula, rather
than discretizing the random walk in M time steps, one
instead discretizes in M normal modes. Either discretiza-
tion is valid, but the two truncations have difI'erent con-
vergences. Once one limits the number of modes, then
the coordinate-space path is difI'erentiable to all orders in
imaginary time, and thus one can use higher-order inte-
gration formulas for the action, I dtV(B(t)) where B(t)
is now defined by

(5.26)

Each of the 3AM normal-mode variables Qk is indepen-
dent of the others and has a Gaussian distribution. This
process of transforming into normal modes was used to

assuming this integral exists where o'„= 2AP[u(l —u)—
i sin (kuvr)k 2) is the "time-dependent" width.

There have as yet been no systematic comparisons
of e%ciency of the Fourier-based methods versus the
discrete-time path integrals. Some model examples
of exchange have been tried with these methods by
Chakravarty (1993), but they have not yet been ex-

Rev. Mod. Phys. , Vol. 6?, No. 2, April 1995



D. M. Ceperley: Path integrals in the theory of condensed helium 329

tended to superfluid systems. It would seem difBcult to
efhciently construct exchanging paths in Fourier space,
while it is not difBcult in coordinate space, as we shall
describe in Sec. V.J.

F. The multilevel metropolis method

Multilevel Monte Carlo is a general sampling method
(Ceperley and Pollock, 1986, 1990) which can efficiently
make multislice, many-particle moves. It gains in efB-
ciency because the coarsest movements are sampled and
accepted or rejected before the oner movements are even
constructed. Thus the nuinber of moves/second is much
higher, because time is not wasted on moves that will
eventually be rejected. We describe the method in gen-
eral terms in this subsection and apply it to path and
permutation moves in the following subsections.

Suppose the full configuration s is dynamically parti-
tioned at the beginning of a Monte Carlo step into l + 1
levels s = (so, si, ... , si), where the coordinates so are
to be unchanged by the move, s~ are sampled in the first
level, s2 are sampled in the second level, etc. The primed
coordinates (si, ..., sI) are the new trial positions in the
sense of a Metropolis rejection method; the unprimed
ones are the corresponding old positions with sp ——sp.
We shall explicitly d.escribe how the levels are constructed
in the following subsection.

%'e now make an approximation to the action as a
function of variables in that level and in previous levels.
This approximate action will help in deciding whether the
sampling of the path should continue beyond the current
level. [We shall call mi the level action; properly speak-
ing, the action is —ln(vri, ).] We require only that feasi-
ble paths (ones that have a nonzero probability) have a
nonzero level action and that the action at the last level
be exact,

One can show that T& will be a normalized probability
if and only if vri, is defined as in Eq. (5.30).

Once the partitioning and the sampling rule Ty are
chosen, the algorithm is quite simple. The sampling pro-
ceeds past level k with probability

(5.32)

That is, we compare AA,. with a uniformly distributed
random number in (0, 1), and if A), is larger we go on to
sample the next level. If AI, is smaller, we go back to the
beginning and make a new partitioning. Here 7rp, needed
in the first level, is arbitrary and can be set to one, since
it will cancel out of the ratio. This acceptance probability
has been constructed so that it satisfies a form of detailed
balance for each level A::

mg(s), ', erg(s')
T) (s~)A) (s') =, Ti (»)A~(s) (5.»)

8 7I)d i S

As is usual in the Metropolis approach, one must com-
pute not only the forward-move action and transition
probability, but also the reverse-move action and the
probability of sampling the old. path. The moves will al-
ways be accepted if the transition probabilities and level
actions are set to their optimal values.

The total transition probability for a trial move making
it through all / levels is

P(s m s') =
k=z

T), (s') Ag (s'). (5.34)

By multiplying Eq. (5.33) from 1 to l and using Eq.
(5.29), one can verify that the total move satisfies the
detailed balance condition, Eq. (5.3). Thus the algo-
rithm vill asymptotically converge to ~ independent of
Ty and the level actions aA.. .

m) sp, sy, ..., s) ——a s . (5.29)

The optimal level action would be one where vri(so, si)
is proportional to the reduced distribution function of
s~ conditional on sp, i.e. , where the finer levels are inte-
grated out. That is, the optimal kth level action is

888(88, 81, ~ ~ ~, 88) = f d8888 ' ' ' d8l 88(8) ~ (5.30)

(5.31)

This optimal choice is only a guideline. Nonoptimal
choices will simply lead. to slower movement through
phase space.

Now, we choose a sampling rule for sj, contingent
on the levels already sampled. T), (s&) can depend on
sI), si, ..., s& i. By Ti, (s),) we refer to the same function
of the coordinates sp, s~, ..., sp ~. We require only that
Tp be a probability distribution and that Tp be nonzero
for feasible paths. The optimal choice is given by the
heat-bath rule,

G. The Levy construction

Before we describe the bisection method, it is useful to
describe a simpler and earlier algorithm for sampling a
Bee-particle path, the Levy construction. In the Levy
(1939) construction of a Brownian bridge, one begins
with two fixed end points (say Bo at "time" 0 and B(s
at "time" P) and samples a bisecting point at time P/2,
exactly as we have already described with free-particle
sampling in Sec. V.C. The bisecting point B of the in-
terval ('Ri, 'R2) is

Rg+ R2
2

+g, (5.35)

where g is a normally distributed random vector, with
mean zero and covariance, QA~t2 —ti~. For free parti-
cles, this exactly samples the action except for a minor
problem with the periodic boundary conditions, so there
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are no rejections. Having sampled B = Bpy2, one now
bisects the two new intervals (0, P/2) and (P/2, P), gen-
erating points Bpy4 and B3pg4 with the same algorithm.
One continues recursively, doubling the number of sam-
pled points at each level, stopping only when the "time"
difFerence of the intervals is w.

This is a simpler, but more powerful, sampling method
for free particles than the normal-mode method. It is
simpler in that there are no Fourier transforms. It is
more powerful because it generalizes to fully interacting
paths and can be used in combination with the multilevel
method to accomplish early rejection.

H. The bisection method

Let us now combine the Levy construction of the path
with the multilevel Metropolis method. Suppose a single-
particle or many-particle path consisting of m = 2' —1
time slices is "clipped out" where / is the level. The fixed
end points are B; and B,+ . The new points to be sam-
pled will have the coordinates B,+-i, . . . , B,+ q. The
places that pose the greatest difIiculty for ending a new
path are in the middle of the interval B;+ y2, simply
because the middle is the farthest from the end points,
which are known to have acceptable potential energies.
The coordinates are partitioned into levels as in the Levy
construction. By bisecting the interval rather than work-
ing from one end, one discovers the blockages quickly. If
an overlap is found, the construction of the paths comes
to a halt.

The bisection algorithm is recursive. First the mid-
point is sampled. Then the same algorithm is used to
find the midpoints of the two remaining intervals, etc.
The coordinates to be moved are partitioned as

(i) so ——atom positions outside of time slices in con-
sideration and atoms not being moved.

(ii) sq ——coordinates of atoms being moved at the mid-
dle time slice i + m/2.

(iii) s2 ——coordinates of atoms being moved at i +
m/4, i+ 3m/4.

(iv) . . .
(v) s~ = coordinates of atoms being moved at i + 1, i+

3 " i+m —1.
Now we need to define an action at the kth level. The

optimal choice from Eq. (5.30) is the integral over all the
variables in the higher levels. If we assume that all the
atoms are being moved, the integral over the time slices
yet to be sampled can easily be performed. The optimal
level action would be simply the product of density ma-
trices with the appropriate time argument. For the first
level we get

~,*(B;+ g, ) = p('R;, 7Z, + g2) p(R. ;+ g2, 'R;+ ). (5.36)

In practice, we are moving only a few atoms at once, so
even if we could calculate the exact action at (m/2)r, we
make an approximation in assuming all atoms are being
moved. The product property of density matrices holds
only if all particle coordinates are being integrated over.

In fact, the detailed form of the level action does not mat-
ter very much. One is looking for a quick and dirty way
of deciding whether to continue the bisection procedure
or to reject and start over. Any function that detects
overlaps will accomplish this. We are free to choose any
convenient approximation, since it only aKects the con-
vergence. One can use the same approximations to the
action at (m/2)r that were developed. in Sec. IV, but now
accuracy is less important than speed. For example, one
can use the end-point approximation for the action, ne-
glecting ofF-diagonal terms. An efFective mass can easily
be incorporated to compensate for the ofF-diagonal con-
tributions. At the final level, the exact action must be
calculated [see Eq. (5.29)], but rejections are less fre-
quent at the final level because the sampling methods
work better the smaller the "time" di6'erence, so the ex-
tra work is less likely to be wasted.

Once the level action has been chosen, we must choose
the transition probability. But this is exactly the problem
that we already considered in subsection V.C: how to
sample a single time slice optimally. The only difference
is that the time step is some multiple of w instead of

Rejections are due to the combined efFect of using
approximate sampling functions and using approximate
level actions.

In "classic" Monte Carlo calculations, there is a step-
size parameter 4 which is adjusted to make the average
acceptance ratio close to 50/0. The analogous parameter
in this method is the number of levels l and the number
n of atoms involved in a move. Figure 44 shows the
difFusion of the center of mass as a function of both ~
and the number of slices being moved. If the level is too
small, difFusion is slowed because of the pinning of the
Axed end points of a move. But if the level is chosen
to be too large, the acceptance ratio, shown in the upper
panel, becomes too small. We And that difFusion through
phase space is optimal when the total acceptance ratio is
approximately 0.2.

Let us examine now how the eKciency of the bisection
algorithm scales with ~. Using the maxima of Fig. 44, we
find that the eKciency scales roughly as 7 ' . Any algo-
rithm must scale as 7, since merely calculating the action
takes time proportional to the number of time slices. The
additional power of 0.4 presumably arises because addi-
tional time slices cause rejections, which slow the difFu-
sion through phase space. This scaling is much superior
to the ~ scaling characteristic of single-slice sampling.

In another type of multiple-time-slice method, the
threading algorithm (Pollock and Ceperley, 1984), one
cuts out a section of m time slices and generates a new
path by growing from time slice 0 to slice n with the
diffusion algorithm

B;+g ——B; —2r AV'ST (B;,B„;(n —1)r) + rl; v 2v. A.

(5.37)

Here g; is a normally distributed random vector with
zero mean and unit variance, and ST is a trial action. As
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in the bisection method, the time argument of S~ will
be greater than 7 if more than one time slice is being
updated. The trial action is used only to guide the walk,
and any convenient approximation can be used for it.
Inaccuracies will afFect only the acceptance ratio, not the
converged distribution. After the new path is generated,
it is accepted or rejected in the usual Metropolis fashion
based on the difFerence between the old and new actions
and on the ratio of the sampling probabilities for the
old and new paths. The form of the difFusion can be
shown to be optimal in the sense that, if the trial action
were exact, with all atoms being moved and ~ sufIiciently
small, the acceptance ratio would be one. In practice,
moves of more than a few time slices are often rejected.
The disadvantage is that a lot of work has to be done
before the move is finally accepted or rejected, so the
method has been superseded by the bisection method.

The staging algorithm, which has been applied to a
single electron in a classical liquid by Sprik, Klein, and
Chandler (1985), is based on ideas similar to those for
the bisection method. The first level is sampled using
the &ee-particle action, and then a second level is re-
peatedly sainpled (hundreds of times) to find the action
of the first level. One moves a primary polymer chain,
but to accept or reject the move one introduces secondary
chains of P steps. In this way, one computes a level ac-
tion directly when it is needed. The multilevel sampling
method handles this much more effectively, since only a
single secondary chain is introduced. Cruzeiro-Hansson,
Baum, and Finney (1990) have shown that it is not really
necessary to redo the staging many times. Within the
Metropolis sampling, it is possible to have a single sec-
ondary path for each link and to make a trial secondary
move along with the primary move. The multilevel bi-
section method is a more general and powerful way of
setting up a partitioning of path variables.

be to insert a pair permutation of two atoms without
moving the coordinates of the path. We shall call this a
direct permutational move, a move in permutation space
without any relaxation of the path. This type of move
can fail to sample the permutation space for a system
with hard-core interactions like helium.

Permutation space consists of¹!distinct pockets of
probability density, each corresponding to a given per-
mutation. To estimate the rate at which the random
walk moves from one pocket to another, let us use the
transition-state theory of a chemical reaction. The traD-
sition state is the point midway between two regions of
high probability, the configuration at the top of a po-
tential barrier. The rate at which a system will go from
one state to the other depends on the product of the
transition-state probability and the attempt frequency.
In our case, the transition state for a direct permuta-
tional move will be the most favorable arrangement of
the path variables midway between two permutations.

The transition state for a path of two helium atoms (in
relative coordinates) is shown in Fig. 45. In this state it
is equally probable for the path to close to the right (the
identity permutation) or to the left (a pair exchange). In
the end-point approximation the transition-state proba-
bility if the two atoms are a distance r apart is given
by

T(I m Pi2) = T(Pig m I)

oc r dr exp —2[u(r;r) + u(r;P —r)]

(5.S8)
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I. The necessity of joint permutation-path moves

Vile now take up the problem of permutation-space
sampling. Here the problem of ergodicity is particularly
acute. Path coordinates will eventually reach equilibrium
if the calculation is suSRciently long, since the paths can
slowly difFuse through phase space. However, permuta-
tion space is discrete, and it can easily occur that all the
attempted permutation moves of a (finite) random walk
are rejected. There is no internal indication that permu-
tational equilibrium has not been attained. Of course,
at high temperature the rate should be small, since the
atoms do not want to exchange. However, once the de-
generacy temperature is reached, the atoms should begin
to exchange spontaneously. Lack of exchange in an algo-
rithm is occasionally taken as evidence that exchange is
not important. To reach this conclusion, one must verify
that the types of permutational moves allow the random
walk to fully explore permutational space. In this sub-
section we want to show how this problem arises.

The simplest type of move in permutation space would

0—

I I I I I I I I I I I l I I I

—4 0 2

FIG. 45. The transition-state path for pair exchange. For
this path the transition rate is maximal going from the direct
to the exchange path. The two ways of closing the path,
shown as dashed lines, are equally likely. The total path has
a temperature of 1.21 K, each link a time step of 0.025 K
These are three-dimensional paths projected onto the X-Y
plane. That explains why some of the paths appear to go
into the excluded region of less than 2 A.
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This rate is shown in Fig. 46 for various values of w as a
function of r. To find the transition state, we maximize T
with respect to r. For a reasonable time step of w = 0.025K, the rate is maximized at 2 x 10 when two atoms
are a distance 2.75 A. apart and are halfway exchanged.

As can be seen, transition probability depends cru-
cially on the time step. For time steps of O. l K it is on the
order of O.l, but it rapidly becomes much smaller. If the
time step is small, one will never see any permutational
changes with "direct" moves. But we must keep w from
getting too large, otherwise the action will be inaccurate.
The length of path that must be moved with the permu-
tation is set by the degeneracy temperature, while the
time step of the simulation is determined by the strength
of the interaction potential. There is no reason for these
two time steps to be the same. The hard-core nature of
the He-He interaction is crucial here. It causes the tran-
sition rate to have a maximum. If it were possible for
atoms to get closer together than 2 A. , two atoms could.
overlap and thereby exchange. The rate for direct per-
mutation moves would be much larger. However, note
that in addition to the "potential" barrier, the rate is
also limited by the phase-space factor r'ide.

A permutation involving three or more atoms will have
a smaller "potential" barrier for a direct transition, since
three atoms can exchange without going around each
other. But one will still find that the transition rate
for direct moves is very small because the phase space
for direct moves is small.

There is an even more serious problem of ergodicity:
to change the winding number requires a global path
move. Local moves, i.e., those confined in a small region
of the simulation cell, cannot possibly change the wind-

ing number. One needs to make a permutation move

that stretches across the cell. For three-dimensional sys-
tems, this must involve a cyclic exchange of at least N /3

atoms.

3. Permutation sampling

Now let us reapply the heat-bath and multilevel
Metropolis methods to the joint sampling of permuta-
tions and path moves. As we discussed with regard to
bisection, a set of m —1 time slices are selected for the
path move with end points 'R; and 'R;+ . A local per-
mutation move consists of applying a cyclic exchange of
n atoms to an existing path. What we now describe is
how to pick the permutation. Once the permutation is
picked, the bisection algorithm is used to sample a path
corresponding to that permutation exactly as before. We
can regard the permutation change as the first level in the
multilevel sampling method. The second level will be the
midpoint of the interval, B;+ y2, and so forth.

Since permutation space is discrete, we can directly use
the optimal algorithm, the heat-bath transition proba-
bility. The heat-bath transition probability for a per-
mutational change is T*(P) oc p(7Z;, 'P'R;+ ), where P'
ranges over all cyclic permutations involving n atoms.
The neighborhood for pair permutations has N(N —1)/2
elements, for three-body permutations N(N —1)(N —2) /3
elements, etc. If we make the end-point approximation
for the density matrix, terms involving the interaction
will drop out, since they are symmetric under particle
interchange. Hence T* depends only on the free-particle
kinetic action,

T'('P) = exp —) (r, ; —r~, ,+ ) /4nA*7.
I i=1
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(5.39)

tk, ——exp[ —(rk; —r, ;+ )'/(4mA~)]. (5.4O)

The probability for trying a cyclic exchange of l atoms
with labels (kq, . . . , k~) is

where Cl is a normalization factor, Eq. (5.12), defined so
that the probability of making some permutation move is
one. The A* in this expression is an effective mass to take
into account ofF-diagonal contributions that we dropped.
This transition probability can be used in two diferent
ways. The cyclic permutation can either be explicitly
sampled from a precomputed table or it can be implicitly
sampled with a walk through particle labels.

In the first method, a table of all transition probabil-
ities within the neighborhood is constructed. The table
can be constructed rather rapidly, since it involves only
particle distances between the end points,

FIG. 46. Log of the probability of getting a pair exchange
accepted vs the distance between the two particles for four
diferent time steps (from the bottom 0.0125, 0.025, 0.05, and
0.10 K ') .

1T (P) = tk~ kqtk~ ks . ~ tk( k~.Cl
(5.41)

It is best to put in the table only permutations that have
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a probability of being chosen greater than some thresh-
old. The total number of possible permutations grows
rapidly with the size of the maximum cyclic exchange
being considered and the number of particles. But the
number of permutations with a probability greater than
some threshold does not grow rapidly, since all of the
atoms need to be within a thermal wavelength of their
exchanging partner. Those permutations can be found
quickly using a tree search. One then constructs a list of
the likely permutations and of the probability of choos-
ing a given permutation. The permutation is sampled
with the usual method of sampling a discrete distribu-
tion. Having set up this permutation table, one amortizes
its computational cost by attempting many permutation
moves before moving on to a new interval of time slices.

There are two disadvantages with this explicit con-
struction of the permutation table. First, there is a con-
siderable overhead in building the table, particularly as
the size of the permutation move grows. Second, because
the normalization constant for the transition probability
depends on the initial state, there must be a final test to
see if the move will be accepted based on CI/C~ [see Eq.
(5.13)]. To calculate this ratio, the permutation table
must be built for the neighborhood of 'P. Updating the
old permutation table to reflect a change in neighborhood
is rather involved. The acceptance ratio for the path vari-
ables is usually very small, so that the time constructing
the permutation table is not dominant, but nonetheless
it would be better to avoid this explicit way of selecting
the permutation change.

An alternative way of constructing a permutation table
solves these two problems. One constructs the tI,~ matrix
as before, but then walks through the table at random,
trying to make a cyclic permutation of l atoms. The
initial atom of the cyclic exchange, kq, is chosen randomly
&om the list of all the atoms. The second atom, k2, is
then selected with probability proportional to ti„g, /hg, ,
where hi, , = g& ti„j„and so forth. After all of the I

labels are selected (and a check is done to make sure
they are all different), the trial permutation is accepted
or rejected with probability:

A=min
hI,

~le), Icy

+ ha&

at A

(5.42)

One gets a sum of terms in the numerator and denomi-
nator because a cyclic permutation can be generated by
starting at any one of the members of the cycle. If it
is accepted, the bisection algorithm to sample the path
variables begins. Acceptances are rare. Essentially there
is only 1 chance in N that the cycle will close on itself
with a large value of the last link tI„A,, But the process
of constructing each loop is very rapid, so the overall
efBciency is not bad.

Now consider the number of atoms involved in a per-
mutation change. It is important to go beyond pair in-
terchanges in a dense liquid, since it is much easier for
three or four atoms to permute cyclically than it is for

two atoms. The starting place for the Monte Carlo ran-
dom walk is typically the identity permutation. We have
found that it is particularly difFicult to get pair inter-
changes accepted from the identity permutation. Once
triple and quadruple exchanges cause the state of the
system to have a number of long exchange loops, pair
interchanges can efhciently add and subtract from these
longer exchanges. Thus rejection of pair exchanges at the
beginning of a calculation is a poor indication of whether
or not exchange of particles is an important physical ef-
fect.

K. The direct computation of the density matrix

Up to this point, we have been concerned only with
how to construct a Markov process, which can then be
used to evaluate ratios of integrals over the density ma-
trix. In Sec. IV we explained why it is sometimes useful
to determine the precise value of the density matrix for
Axed end points. See, for example, the calculation of y in
Table III. We shall encounter a+@ther motivation when
we introduce the method of estimating the exchange fre-
quencies in quantum crystals. In this subsection we ex-
plain how to apply the ideas already developed plus a
few new ones to a direct calculation of the many-body
density matrix.

The basic idea is quite simple. One samples many
paths with fixed end points (Ro and RM) and finds the
average of the exponentiated action. Suppose we sample
a path RA, (0 ( k ( M) &om some probability distri-
bution P(Ri, R2, . . . , RM i). Then f'rom Eq. (2.21) the
density matrix is the average

(5.43)

where S& is some approximate link action. The sim-

plest way is to do &ee-particle sampling, that is, directly
sample the free-particle kinetic action. If we also use the
primitive action, then this equation is the Feynman-Kacs
formula, Eq. (4.1).

The basic difBculty with calculating the density ma-
trix is that we are averaging the exponential of something
whose fluctuations grow with the number of particles N
and with the inverse temperature P (or M). Physically,
the larger the system or the lower the temperature, the
larger the chance that somewhere along the path there
will be an overlap and the estimator will vanish. The con-
tribution to the integrand will be dominated by rarer and
rarer paths that do not have any overlaps. It is because
of such problems that one uses Markov chain methods,
where one always works with an acceptable path. Markov
sampling is the preferred way of calculating expectation
values, that is, traces over the density matrix divided
by the partition function. The density matrix can be
caculated directly, but one must always be careful the
estimator is not dominated by a few rare events.

Most of the tricks that we have developed so far can
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be used to optimize this evaluation. There. are also two
new tricks that we shall describe: pruning and multiple
sampling.

1. Bisection

Use of the bisection procedure (or the Levy construc-
tion) can help organize the calculation. One samples the
midpoint of the path and computes the ratio of the level
action to the sampling probability. That average is the
estimate of the density matrix for that level. Then, one
bisects each of the two subintervals and determines the
density matrix in the next level, etc. In this way one
determines the dependence of the estimate of the density
matrix on v in a correlated way. As we shall see, one
can also sample multiple times and branches within the
bisection method. We will call each successive bisection
a "level. " The first level is the RMg2, the second level is

(RMy4, I4My4), and so forth.

2. Level action

One can use either the primitive action to estimate the
density matrix or any of the improved versions that we

discussed in the previous section. The accuracy of the
action will control how many levels one needs to obtain
convergence to the exact density matrix. The systematic
error of the estimate in a given level is controlled by the
action one uses in that level alone. Shown in Fig. 36 are
estimates using the primitive action and using the pair
action. We shall see another reason for using good actions
in a moment; they are helpful in predicting whether one
should continue a given bisection.

3. Sampling

Normally in direct computations of the action one uses
f'ree-particle sampling. Sometimes one will get better
results by attempting to optimize single-slice sampling,
as was explained in Sec. V.c. However, we must be
very careful about undersampling. By undersampling,
we mean sampling regions of path space where both the
integrand, and P are getting small but where the sam-

pling probability is decreasing faster than the integrand,
so that the ratio in Eq. (5.43) diverges. It is quite easy
for this to happen. In the worst case, the variance of
the estimator does not exist, so the central-limit theo-
rem will not apply. One should always verify analyti-
cally that the variance exists with any proposed sam-
pling. Markov sampling does not have this particular
problem. That is one of its major advantages. If one
undersamples, that merely slows the convergence. It is
always best to begin testing with free-particle sampling,
since the variance of the density-matrix estimate for free-
particle sampling will always exist (assuming the energy
spectrum is bounded below).

Now we can state the zero-variance principle of esti-

mating the density matrix. If one uses optimal sampling
and the exact level action, each sample of the density
matrix at each level will give the exact result. Of course,
this is not practical, since it would require an analytic
form for the exact density matrix at each time step. It
is a guide: as one "bootstraps" one's approximations for
better actions and better samplings, the variance will be
reduced.

4. Pruning

Suppose a given sampled path has an estimate x~ of
the density matrix at level L and suppose that xo is our
best estimate of the density matrix. If x~ is less than
xo, with probability p = 2:i/xo, we continue the process
of going to finer levels. One saves computer time by
not computing the fine details of paths that contribute
little to the final average because they already contain
an overlap. This is analogous to the rejection procedure
we did in multilevel sampling. The probability for the
final estimate then includes the additional factor p. Here
again we see how accurate level actions can help. (The
level actions enter into xi.) If you discard paths based
on bad estimates of their "future" contributions, you can
expect to increase the overall variance. If xi/xo is larger
than unity, one can use it to make multiple copies; we
discuss that next.

5. Multiple sampling

Up to now we have been applying ideas already de-
veloped for Markov random walks. Multiple sampling,
in which we sample d possible next level points instead
of only one, was not discussed in the context of Markov
chains. With it we take advantage of two features of
path integrals. First, Buctuations in neighboring slices
are completely independent, because we take a product
of the action to get the total density matrix. The product
of terms will fluctuate more than an individual term. If
we do some averaging first, we can get rid of most of the
nonlinear terms in the variance of the product. Another
advantage of multiple sampling is that it takes less than
d times as long to sample (and compute the action) for d
points, since some of the computation is shared between
the samples.

The following illustrates the basic idea of multiple sam-
pling. Suppose we have already sampled the first level
and obtained a single sampled midpoint. Now proceed-
ing onto the next level, we need to sample the left subin-
terval, called "A," and the right subinterval, called "B."
Instead of sampling a single A and B, suppose we saxnple
d points of A. and d points of B, getting estimates a, and
6; with 1 & i & d. Define the average value on the right
and left as o, and 6 (assuming the midpoint is fixed).

Now since the left and right samples are independent
of each other, we can show that the best estimator for
the product ab is the product of the averages on the left
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and right; that is, d P, a;b~ T. he variance of this es-

timator (for a given midpoint) is vo + d (a vs + b v ) +
d v vg, where v and vg are the variances of a; and 6;
and vo comes from the fact the midpoint itself is sam-
pled; it is vo ——(a2b2) —(ob)2. One can see that the
various terms contributing to the variances depend dif-
ferently on the number of sampled points d. We cannot
do much about the first two terms except sample longer,
as they represent an inherent variance, but the third term
comes from the product of fluctuations. It is nonlinear
and it can be reduced by multiple sampling. It will be im-
portant to do this if the variance divided. by the average
value is greater than one, v /a ) 1.

As an illustration, consider the hard-sphere model.
The primitive action vanishes if no spheres overlap, oth-
erwise it is infinite. If we use &ee-particle sampling, then
the density-matrix estimator is 1 in the case of no overlap
and 0 for an overlap. Let the probability of obtaining a
nonoverlapping path in the subinterval A or Bbe p where
0 ( p ( 1. We find that a = p and v„= p(l —p) and thus
the variance of the density-matrix estimator for d sam-
ples is vo+p (1 —p)[2pd i+(1—p)d 2]. For small p, the
optimal number of sampled points is roughly d = p
We need enough sampled points on the left and the right
so that there will be a good chance of having at least one
good point on the left and one good point on the right.

We shall only sketch how to proceed to the next level.
After the estimator is formed, the points to the left and
right are pruned. Then one does multiple sampling on
the surviving left and right intervals depending on the
individual estimator. All of this information is folded
back into the final estimator for the density matrix in a
recursive fashion. This multiple sampling trick has not
been implemented in Markov sampling, though it would
seem to be useful there as well.

For the direct density-matrix calculation it is impor-
tant to use bisection with very good level actions. Cor-
related sampling can be dangerous but can also help. It
is possible to compute the exact actions with a precision
of 0.1 'Fo on a system containing 54 He atoms with only
30000 sampled points. These results were shown in Ta-
ble III. Pruning and multiple sampling can considerably
reduce the variance.

Vl. CALCULATING PROPERTIES

Once the action is chosen and sampling is accom-
plished, we are ready to calculate expectation values. In
this section we discuss some of the technical details of
constructing estimators for various physical quantities.
What we need to do is to express a given quantum ex-
pectation of the density matrix as an average over a path.

Properties can often be computed in di8'erent ways. A
specific formula used to calculate some physical quantity
is called an estimator. Each estimator is characterized
by its statistical error, efficiency (statistical error for a
given length run), bias (nonlinear distortion), time step-
error, and finite size error In additi-on, some e.stimators

are easier physically to interpret or easier to program.
These various criteria for what constitutes a good estima-
tor make the choice rather subtle. Generally one wants
an estimator that minimizes the maximum of the various
errors. There has been very little systematic investiga-
tion of these issues for the PIMC method.

It is straightforward to calculate scalar operators,
such as the density, the potential energy, and the pair-
correlation function; they are simply averages over the
paths. Use can be made of the symmetry in imaginary
time, since all time slices are equivalent. Thus the aver-
age density is

Z)C

where r, q is the coordinate of particle i at "time" t. To
simplify the notation, in this section me shall not sym-
metrize over "time"; we leave that to the reader. We
shall use ( .) to indicate an average over the paths and
over links t.

The density can also be computed a~ the functional
derivative of the free energy with respect to an exter-
nal potential. See Takahashi (1986) or Schweizer et al.
(1981). This defiiution has the advantage that the es-
timator will be consistent with the free energy, so ther-
modynamic identities will hold between the estimators
for any time step instead of only in the limit of zero
time step. This might lead to smaller systematic errors,
although that has not been demonstrated. The statisti-
cal errors for the two estimators should be roughly the
same. The thermodynamic way of estimating the den-
sity is more complicated and less intuitive than directly
applying the density operator to the paths.

Other interesting properties, such as the energy, the
free energy, the momentum distribution, and the super-
Buid density, are not as straightforward to calculate. We
discuss how to calculate these other properties below.

A. Energy

The internal energy is one of the main properties that
one wants to get out of a simulation. There are a vari-
ety of ways of estimating the energy, but surprisingly, the
problem of finding the best estimator has not yet been re-
solved. The situation in variational and Green s-function
Monte Carlo and in classical simulations is quite di8'er-
ent. In these methods it is obvious how to calculate the
energy. For classical Monte Carlo simulation, the tem-
perature is fixed and the kinetic energy is always k~T/2
per d.egree of freedom. Hence estimating the energy re-
duces to estimating the potential energy. The statistical
error of the potential is then proportional to the root-
mean-squared fm.uctuation of the potential energy, which
is related to the specific heat. The principle way to reduce
the statistical error is to minimize the autocorrelation of
the potential as the random walk proceeds.

On the other hand, in ground-state methods, the sta-
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tistical error is proportional to the root-mean-squared
fluctuations of the residual (or local) energy of the trial
wave function. The statistical error has the zero-variance
principle (Ceperley and Kalos, 1979): as the trial wave
function approaches an exact eigenstate, the statistical
error vanishes. One can control the efficiency by optimiz-
ing the trial wave function. At zero temperature there
are alternative ways of computing the energy. Since the
kinetic energy is a partial derivative, one can use Green s
theorem to find difFerent estimators. However, the zero-
variance principle applies only to the "direct" estimator.

PIMC is in between the classical and zero-temperature
situation. One of the advantages of PIMC simulation is
that there is no trial function, but one pays the price
in that the variance is more difficult to control. Again,
the kinetic energy can be cast in difFerent forms by using
Green's theorem. With PIMC it is not clear in general
which is the best form. One form is best for small time
steps, another for large time steps.

Let us for the moment split the energy into a calcu-
lation of the potential energy and the kinetic energy K.
The potential energy is easy to calculate, since it is di-

agonal in configuration space, although we will discuss
an alternative estimator in terms of a free-energy deriva-
tive. The simplest way to think of the kinetic energy is in
terms of the stretching of the polymers, or equivalently,
the single-particle imaginary-time "difFusion. " We define
the diftusion distance as

(6 2)

The function D(t) for superfluid helium is shown in

Fig. 28. Expanding the diffusion distance in a power
series about t = 0, one can show

D(t) = 2At[3 —2KDt+ O(t') j.

1 dZ

ZdP
(6.6)

Interpreting the ratio as an average over imaginary-time
paths, applying the derivative to link i alone, and writing
in terms of the action, we get

(6 7)

At suKciently small T, U reduces to 7.V. In the high-
temperature limit, the first two terms are the kinetic en-

ergy and the last is the potential energy. For larger 7,
the last term also contains a kinetic contribution.

To see this, let us define the thermodynamic estima-
tor of the kinetic energy as the mass derivative of the
partition function,

fA CLZ

PZ dm
(6.8)

Applying this to link i alone, we get

We remind the reader that U' is the total action for link
i, not including the free-particle kinetic action. We have
ordered the terms in increasing powers of 7. Notice that
the first two terms diverge as ~ —+ O'. This is the same
Buctuation problem we alluded to with the dift'usion es-
timator of the kinetic energy. This estimator is not often
used because one has to compute the first and second
spatial derivatives of U. This is not a serious problem,
but it can be avoided by changing to a "time" derivative.
Again, because all the links are identical, one can average
over i.

The thermodynamic estimator of the energy is obtained
by difI'erentiating the partition function with respect to
the inverse temperature,

Then K~ is the dgfusion estimate of the kinetic energy.
The kinetic energy is the initial slowing down of the dy-
namics of the paths, due to the interaction and due to
the periodic boundary conditions on the paths in imag-
inary time. The use of this equation is not convenient
for calculating the kinetic energy, because it is hard to
estimate the second derivative at zero time, since even
the first derivative is fI.uctuating. We will come to this
shortly.

The direct or IIamiltonian energy estimator is defined

E~ = Tr('Re ~ )/Tr(e ~~).

One interprets the ratio as a path average and then ex-
plicitly applies Q to a given link. Clearly it does not
matter which link, since Q commutes with e +. This
gives

(6.5)

SN (R; —R; z) A dU')Kz
2~ 4A~2 ~ dA

(6 9)

Then the thermodynamic estimator for the potential en-

ergy is

dU' A dU'
(6.10)

Using the pair action, these various expressions are fairly
straightforward to compute, since the derivatives are
with respect to w and A. This simply means that two
additional tables need to be constructed for the deriva-
tives.

There is clearly a close relationship between the di-
rect and thermodynamic estimators of the energy: they
share the first two terms. But the systematic, time-step
errors of these two estimators can be difFerent. Runge
and Chester (1988) found the difference between these
two estimators, EH —ET, to be very useful in testing
the convergence of the energy with respect to w. Using
the same paths to find both energies, one may estimate
the systematic difference between the two with a much
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smaller statistical error than an estimate of either energy
by itself.

The variance of these two estimators, EII and ET, will
be equal in the limit of accurate action. This is because
an accurate action will satisfy the Bloch equation, so that
EH and E~ will be equal for any particular path sam-
pled. Both estimators have in common that their error
behaves very poorly at small w; they grow as v . The
first two terms are of order w but, since kinetic energy
is independent of w, there is a cancellation between these
terms. As 7 becomes small, we are trying to And a small
difFerence between the constant first term and an almost
equally large but fIuctuating second term. This is exactly
the same problem that we mentioned with the difFusion
estimator. The problem is independent of the temper-
ature but depends on the time step. If the additional
variance caused by autocorrelation is ignored, the error
will be proportional to w (1 —2&K/3) r ~ (1 —1/M),
where the second expression uses the classical expression
for the kinetic energy and M is the number of time slices.
If one goes to the classical limit by Axing M and letting
w get small, the absolute error of the kinetic energy will
grow. In the classical limit, the kinetic energy approaches
3k&T/2. Hence, using this estimator, it is very difIIcult
to estimate quantum corrections to the kinetic energy
in the classical limit. In a moment we shall look at an
estimator without this problem.

On the other hand, in the large-w limit, the variance
of these two estimators vanishes. This follows because at
low temperature the action becomes the exact ground-
state wave function and so is an eigenfunction of Q. It is
not obvious a priori whether, for time steps actually in
use for liquid helium, one is closer to the small-v or the
large-w limit.

We call E~ the thermodynamical estimator because it
can be integrated to get the free energy,

Po

The virial energy estimator is

(Rl.+; —B;)(R,+ I —B;)

(6.12)

where E; is a generalization of the classical force,

(6.13)

and 4; is the deviation of a particle s position from its
average position,

(6.14)

10 I I I I I I I I I I I I I I I-

10' =

The derivation of this estimator is given in Appendix A.
Care must be taken in interpreting terms like (B; —R~. )
to ensure that the atoms always have continuous trajec-
tories in the presence of periodic boundary conditions
and exchange. The parameter L, with (1 ( L ( M),
is the window size for averaging. If it is chosen to be
unity, then by inspection the virial estimator reduces
to the thermodynamic estimator. Its maximum value
is I = M; this is the conventional choice. If there are

dPErI, (6.11)

where the free energy is defined as e ~ = Z. For this to
be identically true, ET has to be computed with constant
M, not constant w as is usually done.

When we take the P derivative, the order of an ap-
proximation to the action will be reduced by one, so if
the approxiInate action has an error of order w, the es-
timator for the energy is correct only to order w . It is
for this reason the kinetic energy converges more slowly
with respect to the time step than other properties. This
is shown in Fig. 47. The largest time-step errors of the
energy estimator appear to be fluctuations that average
to zero. However, the first contribution beyond the pair
action, the polarization action, is a systematic shift that
is often important to include.

It is possible to eliminate the troublesome kinetic-
energy terms, which cause the large variance at small
r, by integrating by parts over the path variables (Her-
man, Bruskin, and Berne, 1982). One ends up with an
estimator similar to the virial expression for the pressure.

10 '=

10 2 I I I I I II
0.001

I I I I I I I I I

0.01
~ (K-')

I I I I I I I I

0.1

FIG. 47. The error of the estimated energy for an equilateral
triangle of atoms, separated by 2.88 A, as computed with the
primitive action (triangles) and with the pair action (squares).
The error in the action for this geometry and these time steps
is shown in Fig. 35. The 6lled symbols represent the error in
the energy as a function of w. The open symbols are the error
in the action at P = 0.025 if intermediate time slices are in-
serted (with time step r) and integrated over. This integrated
energy is worse, presumably because the path can wander into
regions closer than 2.88 A. , where the errors are worse. The
primitive energy converges as 7. when it is integrated over,
but only as 7 point-by-point.
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no exchanges or windings, the second term will drop out,
since B;+M ——B;. The virial estimator is very e6'ective
at computing quantum corrections to a nearly classical
system, since the first term does not Quctuate and is the
classical kinetic energy, the second term vanishes, and the
last term is approximately the classical potential energy.

The systematic error of E~ is exactly that of ET and
does not depend on 1. However, the statistical error will
depend on I. By averaging over L links, one reduces the
magnitude, and hence the statistical error, of the first
two terms in the thermodynamic estimator by a factor
I. Shown in Fig. 48 is the energy and its error bars as a
function of window size. By windowing over a few time
slices we Inanage to reduce the statistical error by almost
50%. Further increases in window size have little effect.
One can see that the value of the energy is independent
of I. This is a check that the paths have come into lo-
cal equilibrium and that the actions and their derivatives
are consistent with each other. For example, if the ac-
tion contains ofF-diagonal terms, it is rather important to
include the gradients of these terms in I".

There was a suggestion (Giansanti and Jacucci, 1988)
that E~ is much more sluggish in becoming decorrelated
in a random walk than is ET, thus reducing overall e%-
ciency of the virial estimator. Whether this is true or not
seems to depend sensitively on the physical system and
on the transition rules (Cao and Berne, 1989). It is prob-
ably best to compute the energy and its errors (including
the effect of autocorrelation) for a range of window sizes
and then, after the calculation is over, choose the window
size that minimizes the statistical error.

The virial estimator provides a more rigorous justifica-
tion for the Feynman expression for the energy, Eq. (3.4),
if we take I = M. The only term that depends explic-
itly on bosonic exchange is the second term; the rest is
just a background kinetic and potential energy. We can
approxixnately write

N

Ev. = background-
- (ra, ; —rJ„,;)

k=1
(6.15)

B. Specific heat and pressure

Now we wish to make some brief remarks on two other
related quantities, the specific heat and the pressure. The
remarks are brief because there is little literature on the
subject.

The pressure is the volume derivative of the &ee energy,

dj
n. (6.16)

Expanding now as a path average we get the thermody-
namic estimator for the pressure,

PT —— 3N — ' ' + 2B;V'; U . 6.17
1 (R; —B; i)'

3~0 2A~

One can also calculate the pressure using the virial the-
orem. For a pair potential, the formula is

(6.18)

This will have a difI'erent systematic and statistical er-
ror. The errors will depend on how the kinetic energy is
calculated. The variance of the thermodynamic pressure
can be reduced using the results of Appendix A to get
a virial estimator that has the systematic error of the
thermodynamic estimator.

The specific heat at constant volume is de6ned as the
derivative of the energy with respect to the temperature,

where P is the permutation. The contribution shown is
the kinetic energy involved in Bose condensation; it is
proportional to the number of exchanges.

There is an estimator related to the virial estimator,
the stretch estimator of Ceperley and Pollock (1984). It
was constructed with the idea of implementing a zero-
variance principle. In practice, it has not led to lower
variances.

= P' ((X —E)'),

(6.19)

(6.20)
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where (. ) is a path average and E is the average energy.
The second equation is the Quctuation formula for the
specific heat. Because the operator (Q —E) commutes
with the density matrix, one can apply the two factors
to two different links of the path. One can also replace
'R with the w derivative, as was done with the energy.
Hence one can write the Quctuation formula as

FIG. 48. The energy and the variance of the virial estimator
as a function of window size for liquid He at 4 K. The error of
the leftmost point is equivalent to the direct estimator. The
most efBcient estimator has error bars roughly 50+0 lower.

&- = &' ((E';+~ —E)(E~;+~ —E)) (6.21)

where E; ~ is an energy estimator obtained by diKerenti-
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ating slices i through j only,

(6.22)

The direct and virial estimators for E; ~ are given in Ap-
pendix A. The links i and j and the window size L are
arbitrary as long as they do not overlap. The estimated
specific heat will be independent of the choice of these
parameters; that is another good test of the correctness
and convergence of the result. Remember that imaginary
time is periodic, so that links are numbered modulo M,
the number of time slices.

If the intervals of the two windows do overlap, one
has additional terms for the specific-heat estimator, since
then the operators ('R —E) will act twice on the same
link. Marx, Nielaba, and Binder (1992) discuss a total
specific-heat estimator for L = 1, in which one sums i and

j over all possible values including the overlapping cases
i = j. One might expect that overlapping terms would
have a larger variance, since they come from applying
the Hamiltonian (or equivalently the r derivative) to the
same link, and the resulting estimator is more singular.
One could argue that a low variance estimator would be
obtained by choosing the virial window size to minimize
the variance of the energy and by avoiding overlapping
windows. These estimators have not been applied to he-
lium.

What has been done in practice to calculate the spe-
cific heat is to perform a sequence of calculations span-
ning a range of temperatures. The energies are then fit
to an appropriate function, e.g. , a Pade function. The
specific heat is then obtained by analytically differentiat-
ing. Ceperley and Pollock (1989) followed this procedure
to determine the specific heat of helium films in the re-
gion of the superfIuid phase transition. The fitting can be
constrained to include known high- and low-temperature
behavior. However, this brute force method requires sim-
ulations at many temperatures and a careful Gt to an
appropriate function. Clearly systematic errors can be
introduced. The specific heat obtained in this way can-
not be easily used to determine detailed properties of a
phase transition, since one has to assume a given func-
tional form of the fit.

C. Momentum distribution

To determine the momentum distribution and the con-
densate &action, one calculates the single-particle den-
sity matrix and then takes its Fourier transform. See
Sec. III.D. Two complementary algorithms have been
used (Ceperley and Pollock, 1987) to calculate the single-
particle density matrix, n(rq, r~).

The first method is an imitation of what one does at
zero temperature (McMillan, 1965). During a normal
simulation (that is, diagonal, all closed polymers) one oc-
casionally stops and displaces each bead, making a path
momentarily open. Then n(r) is the average ratio of the
displaced to the undisplaced density matrix. Suppose

atom 1 in time slice 1 is chosen to be cut. We sample
a new coordinate r11 from the free-particle distribution
P(r~~) = po(r~~, rq2, r). Note that the new coordinate
is connected to atom 1 in the second time slice. The
permutation and the coordinates of the other beads, the
rest of the path, are held fixed. Then an estimator for
the single-particle density matrix is

p(&i ~ r&i &2) (6.28)

r11 r12
exp

4A~
(6.24)

U(B—i E rIi, Rg—) + U(Bi, B2) . (6.25)

The arrow +—means that a single atomic coordinate is re-
placed. One sees a possible problem that does not occur
in ground-state applications. Springs that were originally
stretched out (with large values of ~rj q

—rq2~) contribute
exponentially more to the estimator. To reduce the vari-

2

ance one should interpret exp[~'"~&'"~ j as the number
of samples of r11 to be taken for that link. One samples
more when the expected contribution is larger. One can
improve the method still further by displacing both of the
cut ends, that is, also sampling r1'1, which will connect
to r10.

This displacement method is accurate for computing
n(r) for r on the order of the thermal wavelength A

It is an appropriate method for nearly classical systems
and can be carried out simultaneously with computing
diagonal properties. One can use the symmetry with re-
spect to particles and time slices. However, for larger dis-
placements &om the diagonal, which are needed to com-
pute the condensate fraction, the statistical error grows
rapidly because the major contributions come &om differ-
ent arrangements of the neighboring atoms and diferent
permutations. To get reliable results for r greater than a
thermal wavelength requires a collective displacement of
an entire chain.

In the second method, one atom is allowed to be o8 the
diagonal during the entire random walk. In the polymer
language, the simulation is of N —1 ring polymers and 1
linear or open polymer. This is a direct interpretation of
the defining equation for the single-particle density ma-
trix, Eq. (3.10). An additional variable, namely, rl~~, is
introduced into the Monte Carlo simulation. During the
random walk this additional variable is moved and ac-
cepted or rejected as are the other path and permutation
variables. At each step of the random walk, the distance
r11 —r1] is added to a histogram. The final histogram
of occurrences of rgg —r~~ is proportional to n(rgg, r~~).
In a superfIuid the two ends can become well separated
because of the addition of other atoms' paths in the mid-
dle of the linear polymer. The fraction of atoms having
exactly zero momentum (the condensate fraction) is the
value of the properly normalized end-to-end distribution
at large r.
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The difhculty with this second method is that a com-
pletely new simulation needs to be done to obtain the
momentum distribution. Another diKculty is that only
one distance out of the 3AM path variables contributes
to the single-particle density matrix, so that the eKciency
is low. Further, the computer code becomes more com-
plicated, since one atom is now treated differently from
the others. However, on,e can argue that the condensate
&action, which is the superHuid order parameter, is as
important a quantity to calculate as the energy, so the
extra eKort is well justified.

In fact, it is worthwhile to modify the method so as
to achieve lower statistical errors on the end-to-end dis-
tribution. One easy modification is to add to the ac-
tion an artificial potential between the two ends, equal
to in[n (r)r2], so that the end-to-end distance will spend
roughly the same amount of time at large and small dis-
tances. By Eq. (3.15), the condensate fraction is the
ratio of the time the polymer is stretched out to the time
it is contracted. Here n (r) is any convenient approxima-
tion to n(r), for example, no+ (1—no) exp( —cr ) with no
a rough guess of the condensate fraction and c set by the
kinetic energy. At the end of the calculation, the efFect
of this importance sampling is divided out of the end-to-
end distribution. It serves only to reduce the variance.
Finally, one adjusts the normalization of the end-to-end
distribution so that n(0) = l. Using the above impor-
tance function, this will be easier, since one has controlled
how often the two ends are close together. Another way
to improve the eKciency of the calculation is to move and
permute the disconnected atom more &equently than the
other atoms. The atoms not in the immediate neighbor-
hood of the cut ends act as a sluggish background. In
this way the eKciency does not decrease so rapidly as
more atoms are added to the system.

p, (u) (W2h(ri —r', —a))
p 2APN

(6.26)

[One applies the "minimum image condition" for periodic
boundary conditions to the argument of h( . .).] Then
the superHuid density can be obtained by taking a —+ 0.
This is how one ties a knot. The construction uses a
linear string and, at the end, one solders the ends to-

rithm discussed in the last section will change the wind-
ing number very infrequently if only four particle ex-
changes are included for a system with N ) 100. Fig-
ure 49 shows the instantaneous values of the super8uid
density for 100 blocks of a simulation of a 64-atom 4He

system at a temperature near the superQuid transition.
One can see the system switching back and forth between
a superQuid state and a nonsuperHuid state every several
blocks. Each of these blocks consisted of about 50 000 at-
tempted paths moves, 300 successful permutation moves,
and 50 successful winding number changes, and took 1/2
hour on a SPARC-10 work station. One can improve the
eKciency by preferentially making moves that change the
winding number. To do this, one enhances the probabil-
ity for moves that change the winding number during the
construction of the permutation table. See Sec. V.J.

There are several ways around this problem. As a first
example, one can cut one of the polymers, i.e. , allow one
atom to be ofF the diagonal, as was done in the calcula-
tion of the single-particle density matrix. The winding
number is still defined in Eq. (3.32). If there is a cut end,
the winding number is no longer quantized to be a mul-
tiple of the box length, so it can change with a sequence
of local moves. But the superHuid density is defined on
the diagonal. Suppose the two ends of atom 1 are at po-
sitions rq and r&. Define a generalized super8uid density
by

O. Supelfluid density

The superQuid density can be calculated in several dif-

ferent ways. The most elegant approach is to use the
relation, between the super8uid density and the mean-
squared. winding number, Eq. (3.31). The winding num-

ber %" is the imaginary-time current of particles, de-
fined in Eq. (3.32). Accurate computation of the mean-
squared winding number is diKcult, since a change in W
involves a global move of the paths. In the w ~ 0 limit,
the paths are continuous directed loops, so the winding
number equals the Bux of paths through any given plane.
This implies that to change the winding number in the z
direction, one must change the Hux in all planes orthog-
onal to the z axis. Pieces of paths spanning the entire
x must change. Hence the number of atoms needed to
make a winding number change will, at least, be propor-
tional to the length of the periodic cell. If the simulation
is of N atoms in a cube, we should expect to move simul-
taneously N ~3 of them in order to see a winding number
change.

In fact, we find that the multiparticle bisection algo-
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FIG. 49. The block averages of the superQuid density for 100
consecutive blocks for bulk He at 2.22 K, very near the su-

perHuid transition. The superBuid density is estimated at
0.32 + 0.04 from this data. This is higher than the actual
superauid density because of 6nite-size eKects.
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M
= ).(rq, &+i —r~ ,i)e' (6.27)

gether. The advantage of this method is that it can be
done while one is calculating the single-particle density
matrix. One expects that the superfluid density will be
a smooth function of a, so the extrapolation to zero will
not introduce large errors. This method has not yet been
applied to superfluid systems.

It is also possible to compute superfluid properties
without changing the winding number. After all, there
are experimental consequences of superfluidity even if
the geometry is not simply connected. If one has a
large enough system, the superfluid density can be ob-
tained &om the long-range properties of the momentum-
momentum correlation function G(r), as defined in Eq.
(3.36) and described by Pollock and Ceperley (1987).
This method has a larger statistical error and there is
some ambiguity in how to determine the asymptotic value
of the slowly decaying correlation function in a 6nite sys-
tem.

It has been suggested that one can define a
"&equency"-dependent winding number (Batrouni,
Scalettar, and Zimanyi, 1990). (This is the frequency
in imaginary time. ) The physical superfluid density is
obtained as the zero-"&equency" limit. This method has
been used in world-line calculations of bosons on a lattice.
Let us define the Fourier transform of the path "velocity"
with respect to imaginary time,
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FIG. 50. The "frequency-" and wave-vector-dependent super-
Huid density for a 2D 61m of 25 helium atoms at 1.17 K as
a function of "frequency. " The "true" superQuid density is
shown as the horizontal solid line. The upper two curves
are for k = 0, the lower two curves are for k = 0.26 A

the lowest positive wave vector of the periodic box. The two
solid lines are from a simulation in which the winding number
equilibrated, thus that upper curve (k = 0) goes to the true
superHuid density at cu = 0. The dotted curves are from a
simulation in which the moves constrained the paths to have
zero winding number.

Clearly the usual winding number is Wo. Then a "ke-
quency" dependent density is de6ned as

(6.28)

We can exactly calculate the above average in the clas-
sical limit. The velocities of the paths are Bee-particle
like, and no windings can occur if the thermal wave-

length is smaller than the size of the box. One can write
W „= [exp(2irik/M) —1]Qi„where QA, is the normal-
mode coordinate defined in Eq. (5.25). Then the average
is trivial, since the action is decoupled in normal modes.
The result is p, (ai) = p(l —b o). The new estimator
is 100% superfluid at all &equencies except the physi-
cally relevant one. Clearly, in a continuum system, this
method cannot be used to determine if a system is super-
Quid, since even a classical system would pass the test for
any positive ~! It is mysterious why it should also work
for a lattice Hubbard model at positive temperatures,
since that model in the low-density limit should approach
a continuum model. In using it one is implicitly assuming
that the system is at zero temperature, with impurities
to break translational symmetry. In Fig. 50 is shown
the generalized density as computed for a helium 61m at
T = 1.17 K and compared with the results at zero fre-
quency. What is plotted is this "&equency"-dependent
density, obtained &om a simulation with zero winding
number and the equilibrium distribution of winding num-

hers. These two simulations agree with each other at
larger frequencies. It is seen that correlations do indeed
reduce the value of the smallest positive &equency &om
the &ee-particle value. But it does not seem that there
is any way of reliably extrapolating to the zero-&equency
limit. Keep in mind that the lines shown in this 6gure
only serve to connect the points. At any positive tem-
perature (as opposed to zero temperature), this response
function is only defined for "&equencies" that are integer
multiples of 2mk~T.

Possibly if we Fourier transform with respect to space,
defining '@7k P (r. i i r. )e2wi(t&~+kryo and tak-

2)
ing u —+ 0 before k —+ 0 will allow more reliable ex-
trapolations. Figure 50 shows that this extrapolation is
also problematical. One ends up with a zero superfluid
&action, instead of a finite but small (0.26) &action.

E. Exchange frequencies in quantum crystals

In this subsection we describe the algorithm that was
used to calculate the exchange frequencies in solid he-
lium referred to in Sec. III.H. Only one algorithm to
determine this ratio has been investigated in detail. Re-
member that the exchange &equency is estimated &om
the ratio of the partition function of an exchanging path
to one that is not exchanging; see Eq. (3.44). Let us call
a path that does not exchange an "A" path, and one with
a cyclic permutation a "B"path. The respective parti-
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dRodR&dRae ' " W(Rx~ Ra~ Ro)

W(R~, Ra, Ro) e

T(Ra iRo)

W(R~, Ra, Ro)e-s"
T(R~[Ro) (6.29)

tion functions are denoted Z~ and Z~. To determine the
ratio fa = Za/Z~ is nontrivial because the Metropolis
method we have been using cannot directly calculate the
value of a partition function. In the classical simulation
literature there are many specialized techniques for cal-
culating such ratios, and we will adapt one of them.

Bennett (1976) described an optimized method of de-
termining IIree-energy differences between two related
classical systems, sometimes called the two-sided accep-
tance ratio method. Bennett considers the case in which
the action in the two systems difFers, while for the ex-
change &equency it is the topological connection of the
paths which difFers. As in Sec. V.I, we cannot go di-
rectly from system "A" to "B" or vice versa; we have
to move path variables also. For this we generalize Ben-
nett's method to allow for sampling the other system. As
in the bisection method, we partition any path into two
pieces, a Bxed background Bo, with action So, and an
active part of the path where a permutation will be ei-
ther inserted or removed. The action of the active piece
alone will be denoted S~ for an "A" path or S~ for a
"B"path.

Now it is not difBcult to see that the following inte-
gral over a weighting function W(R~, Ra, Ro) can be ex-
pressed either as an "A" average or a "B"average:

Using this weighting function, we obtain an estimate
for the ratio of partition functions,

(6.31)

where

8 = Sx —Sa + ln[T(R&~Ro)/T(Ra[Ro)]. (6.32)

Note that e is exactly what is used to decide whether
moves from "A" to "B"will be accepted (e ~ for moves
from "B" to "A") in a generalized Metropolis proce-
dure; see Eq. {5.5). Hence the name "acceptance ratio
method. " One needs to find both the forward probability
and the reverse probability. Bennett showed that it was
more eKcient and much more robust to do that mapping
in both ways, as we have described, and speculated that
mapping was superior to actually making the moves.

To summarize, one carries out two PIMC simulations,
one in the "A" system and one in the "B"system. During
each simulation one tries to map [using T(B) or T(A)]
into the other system, recording b for the mapping and.
the averages of Eq. (6.31). The parameter c and the
relative length of the "A." and "B" runs are chosen to
minimize the error. Usually it is most efEcient to run
the "B" system 2—5 times longer than the "A" system,
since it is more sluggish. A typical determination of the
&equency versus c is shown in Fig. 51. The fact that J is
independent of c within statistical errors is a very strong
check on the correctness of the algorithm.

It is useful to examine the histogram of occurrences of
values of b. If there is an overlap in the distributions,

The "A" average is constructed with (Ro, R~) sam-
pled from the distribution e s' "/Z~, by the usual
Metropolis method. , and then occasionally the B~ path is
sampled from T(Ra ~Ro). For the "B"average, the roles
of "A" and "B"are reversed. . We see that the partition
function ratio is the ratio of an "A." process estimator
to a "B"process estimator. Bennett determined the op-
timal weighting function, the one which minimizes the
variance of the partition function ratio, and. found

85 I

l
I I I I

l
I I I I

]
I I I l

- —1
e e—S~ —c

T(R~ [Ro) T(RaiRo)
, (6.3O)

where c is a constant chosen to minimize the variance.
Bennett argues that the value c = 1n[(N~Za)/(Nag~)]
is optimal where N~ and N~ are the numbers of uncor-
related estimates in the two runs. We have found that
one can d.o somewhat better by choosing c dynamically
to minimize the Gnal error because the correlations are
significantly different in the two runs. (Note that Ben-
nett did not sample the other system as we do, hence
for him B~ ——B~. The algebra for finding the optimal
weighting function is not afFected by generalizing it to
include a sampling function. )

1 1 I I I I I I I I I I I I i l

0 5 10 15

FIG. 51. The estimated nearest-neighbor pair-exchange fre-
quency for various values of the blending parameter c. The
curve corresponds to the histograms in Fig. 52. The optimal
value of c is found to be 5.5. For a well-converged calculation,
the exchange frequency should be independent of c within the
statistical errors.
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then one can trust the determination of the &ee-energy
estimator. Otherwise the mapping from one system to
the other has been unsuccessful; the "B"generated from
the Markov chain are in a different region of phase space
&om those that are mapped directly &om "A". An ex-
ample for nearest-neighbor exchange is shown in Fig. 52;
using the bisection procedure we were able to get a sig-
nificant overlap.

The number of time slices used in the mapping is de-
termined by optimization. If it is too small, the path
cannot stretch over the barrier; if it is too large, sam-
pling becomes difEcult. It turns out that eight time
slices works best for 7 = 0.025Ã . Suppose we are
able to do optimal sampling over a segment of m time
slices, starting at R; and ending at R;+ . Then for
the "A" to "B" mapping we would get the value h

S(R;,—PR;+ , mr) +'S(R;,PR;+, mr). An estimate
of this can be used to select which intervals &om the
"B"run attempt sampling. If we attempted to undo the
exchange on time intervals where the "B"path is entirely
on one side of the barrier, the mapped path would have
two exchanges, not zero, and an inappropriate value of
8, one that did not fall in the overlap region. In the "A"
run we could use the kinetic action to select the time in-
tervals and the cluster of atoms in which to attempt an
exchange, exactly as was done in Sec. V.J.

Note that the error on the exchange &equency in Ta-
ble I is independent of the magnitude of the exchange
&equency. It depends on the ability to map the "A"
system into the "B" system and vice versa, not on the
magnitude of the exchange frequency. It does depend on
the number of exchanging atoms, since long exchanges
are harder to sample.

All the techniques described in Sec. V.K can be used
to increase the efBciency of the mapping. In particular,
multiple sampling is advantageous: at each level several
possible bisections are made. The favorable combinations
are used to continue the construction of the new path to
Gner levels. In the "B"walk, the cluster of atoms actually
exchanging controls the eKciency. Thus the Metropo-
lis Monte Carlo moves should focus on updating those
atoms, and move the other atoms much less frequently.
If this is done, the efFiciency of calculating the exchange
&equency becomes independent of the size of the crystal.

There is a further trick that can speed the calcula-
tion. Note that the exchange &equency is the slope of
the partition function, and one would have to do cal-
culations for several temperatures to determine both J
and Po in Eq. (3.45). The offset Po has a very intu-
itive classical interpretation —it is the "tunneling time. "
The exchange frequency is J~ = f~(P)/(P —Po). The
denominator counts the total number of ways of plac-
ing the exchange in the interval (0, P). There is an ofj-
set of Po because we have constrained the path to form
a perfect lattice at the beginning and end. If we keep
track of the "crossing time" we can estimate both Po
and J &om a single calculation. To de6ne the crossing
time, we project the "B" path onto a reaction coordi-
nate: z(t) = (Rt —Z) (PZ —z). The possible crossing
times are the solutions of z(t, ) = 2IPz —zI . There must
be an odd number of them; we define the middle one as
the crossing time. We record the histograms as before,
but all the while keeping track of the crossing time in the
"B"system. In Fig. 53 we show the estimated exchange
frequency, including only the paths with crossing times
satisfying t ( t, ( P —t where J(t) = f(t, P)/(P —2t). lf
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FIG. 52. The histograms for relative actions b defined in Eq.
(6.32) for mapping from the "A" system to the "H" system
(upper left curve) and vice versa, which is shown as h( —h)
(lower left curve). These calculations (Ceperley and Jacucci,
1987) are for nearest-neighbor pair exchange with 54 He
atoms at a density of 0.03 A

FIG. 53. The exchange frequency versus "crossing time win-
dow" t for nearest-neighbor pair exchange as shown in Fig. 52.
J(t) is described in the text. J(0) is smaller because the paths
are forced to begin and end on perfect lattice sites. If one re-
stricts attention to path exchanging away from the ends, this
eifect is removed. The error bars increase for t = P/2 because
there are fewer exchanging paths with those crossing times.
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we pick t ) 0.1 K, then J(t) is independent of t within
the statistical errors.

F. Bayesian methods for estimating real-time response
functions

In Sec. III.I we discussed the relationship between
imaginary-time path integrals and the real-time response
functions. Here we provide more details on the re-
cent progress in using Bayesian inference to recon-
struct the real-time response from the PIMC-determined
imaginary-time correlation functions.

The dynamic structure factor S(u) is related to the
imaginary-time intermediate scattering function E(t) by
a Laplace transform, Eq. (3.51). However, the inver-
sion to obtain S(m) from E(t) is unstable with respect to
noise in E(t). Recently maximum-entropy methods (Sil-
ver, Sivia, and Gubernatis, 1990; Gubernatis et aL, 1991)
have been applied to make the inversion better condi-
tioned, with remarkable success for some lattice models.
These methods combine highly accurate Monte Carlo-
generated imaginary-time response functions with any
theoretical input that may be available, and effectively
give the most likely dynamical response function consis-
tent with all the input. Jarrell and Gubernatis (1995)
have recently reviewed the fundamentals and practical
details of this approach, so we shall only touch on the
basic points.

Hayes' theorem can be written in the following form:

P(S(~)IE(t)) ~ &~(E(t)IS(~))P~(S(~)) (6 33)

In words, the probability of S(ur), given our PIMC
data and the theoretical input [the posterior probability),
equals the probability of the PIMC data given S(ur) [the
likelihood] times the prior knowledge of S(u) [the prior
function]. We have neglected a normalization constant.
We now discuss assumed forms for II, and P~.

The central-limit theorem guarantees that the noise in
F(t) from a well-converged PIMC is normally distributed
so that the likelihood probability must equal

P, (F(t)lS(~)) = exp —-') bF(t)~(t, t')-'SF(t')
g gl

(6.34)

where b'E(t) = E(t) —(F(t)). There are, however, several
practical difFiculties. First, we have to ensure that our re-
sults are well converged so that a Gaussian distribution
is appropriate. This must be done empirically and may
require long runs. Second, both the mean value of E(t)
and all the correlations, o (t, t') = (h'F(t)SE(t')), are ob-
tained &om the same data. The relative error of 0 can
be large, since it is proportional to the fourth moment
of bE. In addition, if there are M time slices, then the
covariance matrix has about M /4 entries. To get esti-
mates of all those correlations requires at least that many
independent estimates of E(t); in practice many more are

required. Note that we are not assuming that b' E(t) is
independent from bF(t') for t g t'. That assumption is
not true, even in the limit of good statistics; fluctuations
at one point on the path are positively correlated with
fluctuations elsewhere. Very long runs may be needed
to determine oI A practical shortcut is to zero its ofI'-

diagonal contributions to o.. For short runs this shortcut
generally gives better results, but leads to a bias and may
increase the overall error.

The form and even the existence of the prior func-
tion is controversial. One knows a few things about any
physical S(~): it is everywhere non-negative, it satisfies
detailed balance and various sum rules, and it has certain
asymptotic behaviors at large and small u. We need to
coiistruct a prior function so that any S(w) not satisfying
these conditions will have a zero prior function. For im-

age reconstruction and many-other applications the en-

tropic prior has worked very well,

Pp(S(u))) oc exp n ) S(u)) ln (S((u)/m(~)), (6.35)

where a is an adjustable parameter and m(w) is the de-

fault model. There is no proof that the entropic prior
is correct for the "distribution" that describes S(u).
But the entropic prior is a convenient function that has
worked very well in many applications, and it has a num-
ber of nice properties. It keeps S(ur) positive and it has
a maximum when S(u) = m(u), but decays very slowly
around this maximum. This means that as the PIMC
data get better, the prior function quickly gets out of
the way but, in regions where the data is poor, the de-
fault model is important. The "flat" default model is

m(~) = 1. Together the entropic prior and the likeli-
hood function are convex, so that the posterior probabil-
ity has a unique maximum. The parameter n controls
how close S and I should be. It is adjusted using a va-

riety of techniques; see Gubernatis et al. , 1991 or Jarrell
and Gubernatis, 1995.

Having chosen the likelihood and prior function, one
can take either of two approaches to using Bayes' the-
orem. In the maximum-entropy approach one finds
the S(u) that is most likely, the one which maximizes

P(S(u)lE(t)). This is a good procedure when the prob-
ability distribution is narrow. Finding the maximum is
very fast. Errors are estimated by computing second
derivatives at the maximum. A second, more intuitive
and more rigorous approach, average entropy, is to sam-
ple S(~) with a probability equal to the posterior prob-
ability. This can easily be done with Metropolis Monte
Carlo. This approach is slower (but not nearly as slow as
generating the original PIMC data) but does not rely
on any assumptions about how narrow or skewed the
probability function is. Some features of S(u) may be
tightly constrained by the PIMC data, while other fea-
tures are not constrained. To compute errors one simply
looks at the fluctuations of S(u) coming &om the Markov
chain which samples S(u). An additional advantage of
the average-entropy approach is that the model can be

Rev. Mod. Phys. , Vol. 67, No. 2, April 1995



D. M. Ceperley: Path integrals in the theory of condensed helium 345

self-consistently defined as m(ur) = (S(ur)).
There are at least two ways of improving the result of

the Bayesian analysis; one can sharpen either the likeli-
hood function or the prior function. One can get more in-
formation &om the PIMC simulation by running longer,
or more eFiciently and by using other estimators. One
possibility that has been explored by CaR'arel and Ceper-
ley (1992) is to estimate the "time" derivative of E(t).
Because of strong correlations between E(t) and E(t'),
this constrains S(u) more tightly. The second way is
to get better prior knowledge, for example, more exact
properties. If one has confidence that some theoretical
approach generates reasonable families of S(ur), one can
work in that function space instead of in the full S(u)
space. That will increase the statistical precision at the
cost of an additional assumption.

Vll. COMPARISON WlTH OTHER QUANTUM MONTE
CARLO METHODS

In this section we make some brief comparisons with
other Monte Carlo methods that have been applied to
liquid and solid helium or related quantum many-body
systems. In particular we shall examine variational
Monte Carlo (VMC), variational path integrals (VPI),
shadow wave functions (SWF), projector Monte Carlo
[also known as Green's-function Monte Carlo (GFMC)
or diffusion Monte Carlo (DMC)], and efFective-potential
Monte Carlo (EPMC). We hope the reader will be able
to see the interrelationships between the various meth-
ods, the strengths and weakness of the methods, and
how to choose the appropriate method. This will also
give us an opportunity to comment on whether some of
the tricks and lessons we have discussed in this review
apply to the other methods. Finally, we hope to con-
vince the reader that path-integral Monte Carlo is the
best general-purpose method for simulations of bosonic
systems.

A. Variational Monte Carlo

applies; as the trial function approaches an exact eigen-
state, the variance vanishes. For a comprehensive review
of the methods and applications to helium see Ceperley
and Kalos (1979) and Schmidt and Ceperley (1992).

One of the advantages of the VMC method is that it
is simple both to understand and to program. The cal-
culations are perhaps an order of magnitude faster than
for PIMC. States that are a ground state of a given sym-
metry, such as fermions, phonons, rotons, and vortices
can be treated by making an appropriate trial function.
With VMC one can tell energetically how important a
given correlation is by systematically adding terms to the
trial function. One ends up with an explicit trial function
which helps in understanding the quantum system.

But VMC is hardly a black box. To get reliable results
one must very carefully optimize trial functions and sys-
tematically add more complicated eKects. There is noth-
ing internal to the method that tells you when to stop
introducing more correlations. Humans (unlike comput-
ers) have a tendency to stop when they like the look
of the results. This inevitably introduces a systematic
error. Even the best pair-product trial functions miss
about 1.2 K energy in liquid He. If one includes three-
body correlations, one still misses 0.3 K. This variational
bias (i.e., the amount of energy missed by a given class
of trial functions) depends on the phase; it is smaller in
the solid than in the liquid. Thus variational calculations
of the liquid-solid transition will put the transition den-
sity too low. We discuss other problems with the solid
next. VMC becomes much less reliable as the physical
system gets more complex because a high-quality trial
function has too many possible variational parameters to
optimize easily. PIMC and. GFMC build this complexity
into the algorithm, rather than have the human guess
which terms are needed.

Variational calculations of solid helium have an addi-
tional possible problem. In order to get the solid to be
stable and to have reasonably good energies, orie typically
uses a trial wave function that breaks both translational
and particle symmetry. The atoms are explicitly tied to
lattice sites with Gaussians,

Variational Monte Carlo (VMC) is the oldest of the
simulation techniques that have been applied to helium
(McMillan, 1965). One assumes a trial wave function
Q~, usually of the pair-product (Jastrow) form, QT
exp[ —P,.&. u(r, ~)]. Then the variational energy, an up-
per bound to the exact energy, is given by

(7.1)

One performs the ratio of integrals by using the Metropo-
lis Monte Carlo or molecular dynamics method to sample
the distribution, ~@T ( / J' (QT ~

. The variational energy
is the average value of the residual or local energy of the
trial function, EI, = @& 'R@z. One chooses parameters
in the trial function to minimize the variational energy
or by some other procedure. The zero-variance principle

(7 2)

where C is a variational parameter and fZ;) is the set of
perfect lattice sites. The resulting energy is quite good,
better than in the liquid. Although one can argue that
it is quite respectable to have a broken-symmetry trial
function in the thermodynamic limit, the symmetry of
the solid is put into the calculation rather than coming
out automatically. One can restore the symmetry of the
Hamiltonian by using a translation operator and a per-
mutation operator without increasing the energy signifi-
cantly. Nonetheless, it is dificult to study such problems
as the liquid-solid interface or vacancies in a solid with a
trial function that has the crystal symmetry put in from
the start.

There is another fundamental problem with VMC; the
energy is insensitive to long-range correlations. The en-
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ergy is dominated by the local order, i.e., the nearest-
neighbor correlation. The long-range order usually has
to be put into the trial function using an analytical the-
ory. It does not come out. It is a very tricky matter to use
VMC calculations to elucidate the long-range structure
of the ground-state wave function, particularly if there
are several plausible choices. Of course, liquid and solid
helium are well understood, but for systems even a little
more complicated, VMC is not really up to giving any
more than suggestive results about the order. All VMC
rigorously gives is an upper bound to the ground. -state
energy.

This type of variational calculation is only appropriate
at zero temperature. One might think that this would be
an advantage if one were interested in helium only at very
low temperatures. After all, PIMC has to work its way
down from the classical regime. However, at zero tem-
perature there is no difference between a boson system
and a boltzmannon system. Particle statistics make a
tremendous difference in observed properties, since most
of the states near the ground state disappear on sym-
metrizing, and a gap opens up, resulting in superfIuidity.
One can easily distinguish between a boltzmannon and a
boson system at any positive temperature. This is why
the first calculations of the super6uid density were done
with PIMC, not with a strictly zero-temperature method.
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FIG. 54. The energyiatom of liquid He versus projection
time as calculated by the diffusion Monte Carlo method
(Boninsegni, 1994). The initial point (P = 0) is the varia-
tional energy of a McMillan (1965) pair-product trial func-
tion. Also shown are the results for a triplet trial function, a
shadow trial function (the projection time is defined by the
width of its Gaussian), and the exact value as calculated by
GFMC (all from Vitiello et aL, 1990).

B. Variational path integrals and shadow wave functions

What we now describe is a cross between the varia-
tional method and path integrals. A well-known method
to improve a trial function is to apply a function of the
Hamiltonian to project out the ground state. Although
other choices are possible, for brevity and to make the
connection to path integrals, we only consider using the
density matrix as a projector. Define

terms into the trial function.
To calculate the VPI energy with Monte Carlo simu-

lation, we need to break up the density-matrix operator
into small pieces, each with a time step r, and approxi-
mate the density matrix as before. This leads to a path
(R M. . .Ro. . .RM) having a probability distribution

II(R M. . . Rp. . . RM)

(7.3) @+ (~ ) —Q. M+~ S(R, g, R, ,v-) g
Clearly P(P) converges to the exact ground-state wave
function exponentially fast as P increases, assuming 1lIz

has some overlap with the ground state. In the next sub-
section, we shall implement the projection with branch-
ing random walks. Here we do the projection with
Metropohs Monte Carlo. We shall call this the vari-
ational path-integral (VPI) method. It allows us for-
mally to make the connection between diffusion Monte
Carlo, variational Monte Carlo, shadow wave functions,
and PIMC.

In VPI one uses P(P) as a trial wave function to find
a sequence of decreasing upper bounds, E(P), to the
ground-state energy. The upper bound at P = 0 will
be the usual variational energy of gT, but then Ep will
converge monotonically to the exact ground-state energy
in P. Figure 54 shows an application of this to liquid he-
lium. After only a single time slice w = 0.025 K, most
of the errors of a pair-product trial function are 6xed in
the energy. In the VPI approach, one corrects a trial
function by projecting instead of manually putting new

where S is the link action. We have 2M links because we
need integrals over lg(P)~ .

Except for the different boundary conditions on the
ends of the paths, VPI and PIMC are the same: one
has linear polymers, not ring polymers, and there is a
special action, —1n(III'z ), which acts between the atoms
at ends of the polymers. If the trial function is a pair-
product (Jastrow) function, this is just an additional pair
potential at the ends. One no longer has the symmetry
over time of the path integral. The middle slice, Bo,
needed to compute observables can be different &om the
ends. As with PIMC, one has to choose a good form
for the action and a method to move the paths around.
Since the paths are open, one does not have to worry
about permutations; single-atom moves are sufhcient.

The energy is calculated by allowing the Hamiltonian
to act either on S(Ro, Ri) or on S(Ro, R i). But if the
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time step is small enough, the Hamiltonian can com-
mute through density matrices and one can average over
which link the Hamiltonian should act, gaining eKciency
if there are many links. One can also use the tricks we de-
veloped in Sec. VI.A to lower the variance of the energy.
But there is a new feature of VPI: one recovers the zero-
variance principle of the variational Monte Carlo method
by moving the Hamiltonian to one end of the path and
letting it act on the trial function instead of on one of
the link actions.

The advantage of VPI is that, for strictly ground-state
applications, many fewer links will be required than with
PIMC, since the number of links is related to deficiencies
of the trial function and the needed projection time, not
the statistical mechanics of how cold the system must
be to achieve the ground state. One must be cautious
in determining how many links will be required. Most
of the variational energy will be picked up very quickly,
as we see in the 6gure. Long-range correlation functions
will be fixed much more slowly. An example is the con-
densate fraction in the conjectured supersolid helium. It
has been proved by Reatto and Masserini {1988)that the
VPI wave function for finite M has a nonzero condensate
in both the liquid and the solid phase if the trial func-
tion does. A short-ranged Jastrow trial function has a
condensate, thus the VPI trial function using this will
have a condensate for any finite number of links. Hence
one cannot use this approach to ask the question whether
the solid phase is Bose condensed, without examining the
limit M m oo.

Note that the variational principle allows us to mini-
mize the energy with respect to the action. This is the
basic idea of the shadow wave function (SWF) as intro-
duced by Vitiello et al. (1988, 1990). To date all shadow
wave functions have been restricted to the primitive ap-
proximation for the action and only a single time step,
M = 1. The parameters in the shadow trial function
are a pair potential between atoms at the ends of the
polymer, a diferent one in the middle, and the spring
constant connecting them. They all can be varied to
minimize the energy. The energy must be computed by
having the Hamiltonian act on the middle time slice. If
one had the exact action, one would achieve the lowest
energy by making P as large as possible. However, using
only the primitive action, it is found that the optimal
value of P is 0.068 K i, more than twice what is used for
the PIMC time step. The shadow wave-function energy
in liquid helium is about 0.8 K/atom above the exact
results, better than the purely pair-product energy (i.e.,
M = 0), but not as good as putting in three-body corre-
lations. The SWF energy is much higher than one would
get by using a projection for the same time. The restric-
tion to an action with only simple spring couplings costs
a signi6cant energy.

The big advantage VPI arid shadow wave functions
have over variational Monte Carlo is that one does not
have to impose a solid symmetry in the trial function
to get a solid (Vitiello, Runge, and Kalos, 1988). Just

going from M = 0 to M = 1 is enough to stabilize the
quantum solid. One can study cases in which the liq-
uid and solid are in equilibrium without imposing the
result in advance. However, the result is not a "black
box." With shadow wave functions one still has to opti-
mize variational parameters, and the liquid-solid transi-
tion does not come out at the experimental density. The
code is significantly more complicated than with varia-
tional Monte Carlo, since it has many of the sampling
problems that PIMC has; polymers can get more entan-
gled than atoms, so convergence can be slow. Error bars
on the energy are larger because the zero-variance prin-
ciple of VMC is lost. The variance would be reduced by
using the exact action, since then the Hamiltonian could
be moved over to act on the trial function.

VPIs and SWFs are variational wave functions, so they
share some of the advantages and disadvantages that we
discussed earlier with VMC. By adding more links, one
does get much lower energies very quickly, in an auto-
matic fashion. But long-range correlations may converge
much more slowly. One can also use VPI to calculate
excited-state properties, but by expanding into a path
one has made a very significant reduction in eKciency.
Take the example of a phonon. The Feynman trial func-
tion for a phonon is @i, = g,. e'"'*@0, where go is a
ground-state trial function. The distribution to be sam-
pled is no longer positive or even real.'The infamous sign
problem of quantum Monte Carlo is back. One is forced
to sample the modulus of @ g(R M)gi, (BM) and use the
sign as a weight, but the statistical ef6ciency will go to
zero for long projecting times. One does not have this
problem with variational Monte Carlo because the two
ends of the path are at the same location, so one has a
perfect square. Hence the calculation of excited states,
either by PIMC or by variational path integrals, still has
major problems.

C. Green's-function and diffusion Monte Carlo

The 6rst exact calculation of liquid helium using the
Green's function Monte Carlo (GFMC) method was by
Kalos, Levesque, and Verlet in 1974. For reviews of the
method and results see Ceperley and Kalos (1979) and
Schmidt and Ceperley (1992). Diff'usion Monte Carlo
{DMC) is a simplified version of GFMC with time-step
errors. What we shall be describing here is DMC. The
diBerence between DMC and GFMC is irrelevant in mak-
ing the comparison with PIMC.

In PIMC or variational path integrals, the entire path
is held in the computer memory and one jiggles the path
with the Metropolis Monte Carlo method: the random
walk is an arti6cial process used to sample path space.
The walk continues for an inde6nite number of steps to
reduce the statistical errors. The number of slices on the
path is held fixed. Changing P involves a new run.

GFMC is a technique mathematically very similar to
the VPI method. The density matrix e ~+ is used to
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project out the ground state from some initial state.
However, the implementation of this projection is en-
tirely diferent kom that of variational path integrals. In
GFMC, the evolution in imaginary time is also the evolu-
tion of the Markov process; the dynamics of the random
walk is given by the density matrix. The evolution in
imaginary time continues indefinitely until a steady state
is reached, simultaneously reaching convergence in P and
reducing the statistical errors.

In GFMC (without importance sampling), the proba-
bility of sampling B' contingent on R is proportional to
(R'~e +~R). The normalization (the integral over R')
is not unity and depends on R. Hence the number of
sampled points B', or their weight, must depend on R.
For systems of many atoms, one has to use branching
in order to interpret the projection as a random walk.
The state space of the stochastic process is an ensemble
of configurations (R;). A step consists of a diKusion for
each member of the ensemble and a branching step, in
wliich some configurations are deleted and some are du-
plicated. Typically several hundred configurations make
up an ensemble. Importance sampling by a trial wave
function @z reduces the ffuctuations of the branching,
so that it is proportional to the error of the trial func-
tion. In practice, the number of configurations held in
the computer memory is roughly the same in GFMC and
PIMC.

Of course the major advantage of PIMC is the ability
to calculate properties at temperatures greater than zero.
This could be a disadvantage for calculating purely zero-
temperature properties, but it is generally an advantage
in comparing with experimental data. In a bulk super-
IIIuid, there are very few excited states; below 1 K, He
is essentially in the ground state, so in practice even the
restriction to nonzero temperature is not always impor-
tant.

One of the main advantages of PIMC is that order
parameters, such as the super6uid density and the tun-
neling frequency in solid He, are more simply expressed
in terms of path integrals. In GFMC it is much less ob-
vious how Bose symmetry is expressed. In a superHuid
system, the GFMC walks disuse through phase space,
they are not trapped.

It would seem that, because of the zero-variance prin-
ciple, the GFMC method would be more efFicient at com-

puting the ground-state energy. However, in practice
GFMC and PIMC give similar error bars on the energy
for similar amounts of computer time. (Of course this
statement refers only to calculations on liquid helium
with existing codes. ) Other properties, such as the pair
distribution function, are more diKcult to estimate with
GFMC, since the simulation calculates averages with the
"mixed" estimator, the product of the ground. -state wave
function and the trial wave function. Removal of the ef-
fect of the trial function is biased and adds to the diK-
culty of the method. It is diKcult for GFMC to break
away from the long-range order of a trial function. PIMC
does not have this difhculty, giving exact thermal aver-

ages.
For an eKcient GFMC calculation one needs to have

a good trial function. Usually a preliminary step is a
good variational Monte Carlo optimization, at least at
the pair-product level. Once a good trial function has
been found, then the machinery of GFMC takes over.
But this erst step can take a lot of graduate student
time.

PIMC is much more of a "black box." One puts in
the action, allows the code to run for a long time, and
measures the observables. It is much more likely in PIMC
that the paths by themselves will make the transition to a
new, unexpected state. To balance this, PIMC has more
problems with ergodicity. We have seen the diKculty
with constructing moves that change the winding num-
ber and permutation cycles. Those issues do not arise
in GFMC, where the dynamics is fixed by the density
matrix and the trial function. Since the random walks
need not close, they can move through phase space more
easily.

Another problem with GFMC is its efBciency as the
number of atoms gets large. Two problems arise. First
the branching factor grows exponentially with the num-
ber of atoms. To keep the branching fixed requires the
time step to go as N ~, which increases the compu-
tational eKort. Second, members of the ensemble get
more correlated with each other. To keep the algorithm
unbiased, the size of the ensemble must grow with ¹

These scaling difFiculties with GFMC have not been in-
vestigated in detail, and it is not known how serious they
are. They do not arise in PIMC; classical statistical me-
chanics assures us that nothing strange happens as we
add more polymers. Correlation times can be longer, but
they can be reduced with classical sampling techniques.
In Sec. VIII we shall review the complexity of PIMC
simulation.

For all of these reasons, PIMC is a better "black box"
than VMC, VPI, or GFMC.

D. Effective-potential Monte Carlo

Finally we should like to discuss the relationship be-
tween the effective-potential Monte Carlo (EPMC) and
PIMC methods.

" For a nearly classical system, say solid
neon at 50 K, one might hope to be able to write down
a sufFiciently accurate action so that only one link (i.e.,
M = 1) of the path integral would be needed. In a
PIMC simulation with a single link, only the diagonal
action U(R) is needed. Then a "classical" Monte Carlo
or molecular-dynamics simulation of atoms with an eKec-
tive potential could calculate all thermodynamic prop-
erties. For the primitive approximation for the action,
U(R) = PV(R); the eff'ective potential equals the po-
tential. To get any quantum corrections with M = 1
requires one to go beyond the primitive action.

In using the

effective-potential

Monte Carlo, one
chooses U(R) based on a local harmonic approximation
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to the full potential. Consider the Rnite-temperature
variational principle for the free energy I' (Feynman,
1972),

Here Vz is a trial potential, V is the true potential, (. . )T
is an average over the density matrix generated by the
trial potential, and ET is the &ee energy of the trial po-
tential. In EPMC one chooses the trial potential to be
quadratic, so that most of the averages can be performed
analytically in terms of normal modes of the potential.
The parameters in the quadratic potential are allowed
to be general functions of the centroid of the path, and
they are determined by minimizing the &ee energy. If
this is done, the second term on the right-hand side van-
ishes. The self-consistent potential is de6ned similarly to
the sampling potential introduced in Eq. (5.18). For a
description of the method see Liu, Horton, and Cowley
(1991).

The bound on the free energy will be very good if the
true potential is nearly harmonic in important regions
of configuration space. However, the equations that de-
termine the efFective potential reduce to self-consistently
determining the phonon &equencies of an efFective dy-
namical matrix, which involves diagonalizing a 3M x 3M
matrix. The efFective potential and the phonon &equen-
cies need to be resolved at each step of the EPMC, since
the harmonic potential depends on B. To avoid such
heavy computation within a classical simulation, further
approximations are made, by expanding in terms of the
displacement with respect to the lattice sites and trun-
cating terms. This makes the method nonvariational.

There have been claims (Liu et aL, 1992; Cuccoli et
al. , 1992) that EPMC is much more efficient than PIMC
when applied to systems such as solid neon. However, the
tests used very ineKcient PIMC algorithms with only the
primitive approximation, the simplest sampling method,
and the thermodynamic estimator for the energy and
specific heat. Because of the high temperature used for
the comparison, the virial estimator of the energy should
have been used. The comparisons do not apply to an ef-
ficient implementation of PIMC. If one knows in advance
that the system is nearly harmonic, then EPMC could
give useful results, but only if it is only a few times more
expensive than the classical calculation.

PIMC is a general approach that can treat any system,
liquid or solid, while EPMC is restricted to nearly har-
monic systems and even there requires approximations.
The primary justi6cation for using PIMC is its greater
generality and accuracy. However, one might wonder in
what situations one could gain eKciency by introducing
complexity into the trial action. In EPMC the action
is quite complex; one has to determine the phonon &e-
quencies at each step of the EPMC, which makes the
calculation very slow for large numbers of atoms. The
approach in PIMC is to do a good job of constructing
the action, by, for example, using the exact pair action.
But one uses only actions that can be quickly computed.

Once the pair action is tabulated, looking it up during the
PIMC is only a few times slower than using the primitive
approximation. One has not increased the complexity of
the calculation in so doing but only slowed the evalua-
tion of the action by a factor of about two. To improve
the action further, one takes more time slices rather than
devoting computation to an improved action. We discuss
the complexity of PIMC in the next section. Ultimately,
detailed tests are needed to determine where to draw the
line between increased complexity of the action, the ac-
curacy of various approximations, and more time slices.

VIII. COIVIPUTATIONAI COMPLEXITY

Tci(6) oc e (8.1)

The exponent b we call the comp/exity of the algorithm for
O. In this section we pull together some of the formulas
we have discussed earlier to estimate the b appropriate
to calculations of the ground-state energy of bulk liquid
He. This power-law behavior is quite difFerent from the

scaling one gets from an explicit method, one where the
wave function or density matrix is completely tabulated
throughout many-body con6guration space. In that case
the computer time will inevitably scale exponentially in
the number of particles.

As we discussed in Sec. V, the statistical error of a ran-
dom walk is related to the computer time by T = 1/((e, ).
Here ( is the efFiciency of the Monte Carlo sampling. If
we only had to worry about the statistical error, the com-
plexity would be b = 2. But to make sure that the
systematic errors go to zero we need to know how the
efBciency depends on the time step, the number of par-
ticles, and the temperature. Now the efBciency, in turn,
is related to v, the intrinsic variance of an estimator (the
variance assuming all steps of the random walk are un-
correlated), to t, the computer time per step, and to e,
the number of steps over which the random walk is cor-
related, by

(8.2)

Now let us examine how small the time step v needs
to be in order that the time-step error be equal to the

Suppose we wish to calculate a given property Q of
a quantum system to within an absolute error e. This
error can arise &om several difFerent sources: the statis-
tical error e„ the time-step error e, finite-size errors e~,
and possibly extrapolation to zero temperature, ep. The
length of the simulation, the time step, the temperature,
and the number of particles need to be adjusted so that
the errors are less than e. Let Tei(e) be the amount of
computer time (or other resources) such a calculation will
take. As we shall see, in PIMC the computer time has a
power-law dependence on the accuracy,
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statistical error. The simplest approach to getting rid
of the time-step error is to reduce the time step until
the change in the estimated value of Q is independent of
7 within the statistical errors. But if one knows the ~
dependence, one can extrapolate &om larger values of 7.
There will be some additional statistical error incurred in
extrapolating, but overall one will save computer time.
We shall ignore the possibility that one can change the
scaling in w by extrapolation.

Let us assume that the eKciency scales with the time
step as ( oc r . As mentioned above, there are two parts
to the eKciency. The diffusion constant, D = tK, is
roughly independent of the quantity to be estimated. We
estimated, in Sec. V.H, that single-slice sampling had an
exponent of 3 for D, and the bisection algorithm an expo-
nent of 1.4. The second part of the eKciency is the intrin-
sic variance. Taking the example of the average internal
energy, in Sec. VI.A we showed that for the thermody-
namic estimator v oc w, while the virial estimator was
independent of w. Once the time step is small enough, the
variance is independent of the number of time slices, since
the neighboring time slices are highly correlated in imag-
inary time. So, for estimating the energy, we see that
1 & o. & 5 depending on the sophistication of sampling
and constructing the estimator. The value of o, —1.4
is appropriate for the bisection algorithm with the virial
energy estimator.

Let us suppose that the time-step error scales as e„oc
w" where K, = 2 in the primitive approximation. Higher
exponents are achievable with better actions. Then,
when we match these two errors, e, e implies that
b = 2+ n/r, . For very accurate runs, we not only have
to beat down the statistica1 errors but we have to de-
crease the time step. The effect is that the error bars
converge more slowly. With a good sampling method,
estimator, and action, b 2.5, while with the primi-
tive action, single-slice sampling, and the virial estima-
tor, b —4.5. This shows the importance of optimizing
the PIMC algorithm.

Now let us see how the computer time scales with the
number of atoms, for the moment ignoring Bose statis-
tics. We assume that the efficiency scales as ( oc N
that the system is not near a phase transition, and that
the size of the box is much greater than the correlation
length. Then the number of passes (a pass is one move
for each particle) to decorrelate some property will be
independent of the size of the system, so that r oc K. (It
is important to remember here that we have defined r in
terms of elementary local Monte Carlo steps, while phys-
ically it is simpler to measure the relaxation in terms of
steps in which all the particles get moved. ) If we look at a
local property, such as the energy/atom or the pressure,
what we lose in the slower updating in a larger system,
we gain in having more local regions to average over.

We also need to know how the computer time per step
depends on the number of atoms. For helium, the poten-
tial is short ranged, so that in calculating the potential or
action one only needs to sum locally. Using neighbor ta-

bles, the computer time for a single move is independent
of the number of atoms. Recently the "fast-multipole" al-
gorithm has been developed for charged systems. In that
algorithm, the total potential and force can be computed
in a time proportional to the number of atoms. Such an
algorithm has not been developed for Monte Carlo meth-
ods, where atoms are moved individually; the work for
a single-particle move for a Coulomb potential currently
goesastocN /

With the above assumptions, p 0. One can increase
the system without incurring any penalty in eKciency
and eBectively approach the thermodynamic limit. Lim-
itations of computer time and memory, not to speak of
slow relaxation of the system, will limit this in practice. If
we assume that the error in the energy goes as e~ oc N
then after matching the statistical, time-step, and finite-
size errors, we find b = 2+ n/K+ p. Approaching the
thermodynamic limit causes a further increase in the ex-
ponent, but that increase can be made quite small away
from a phase transition.

Now let us return to the question of whether Bose
statistics changes the complexity. In the permutational
sampling, what is done is to attempt few-body permuta-
tions in a local region. Those permutations can be found
by local searches which are independent of the number
of atoms. Again we assume we are away from the super-
Buid transition, so the system at large N should settle
into either a normal-liquid state or a super8uid state, and
the correlation time should be independent of the size of
the system. Hence Bose statistics should not change the
complexity. Quantities such as the condensate fraction
and the superHuid density may not scale as well with the
number of particles. As we discussed in Sec. VI, moves
that change the mean-squared. winding number become
harder and harder to construct as the system gets larger.
We also discussed new, but untested, ways around these
diIIIiculties. How these methods really scale is not known.

Finally what happens as we go lower in temperature'?
Often one is interested in the zero-temperature values.
Clearly the computer time to update the path, scales
as the number of time slices. But for a property like
the energy, doubling the number of time slices has no
eBect on the efBciency, since there are twice as many
links over which one can collect statistics. This is what
is observed in practice. Once one is below the superBuid
transition, the errors bars depend only on the duration
of the run, not the temperature. In bulk He the error
of the energy due to thermal Quctuations goes as ep oc

P . Hence in bulk helium it is quite easy to reduce
these statistical Quctuations and get to the ground state.
For this, Bose statistics are a distinct advantage over
boltzmannon statistics, where ep oc P

The complexity of dynamical properties such as the
the roton lifetime or the energy of a vortex are still more
difBcult to estimate. It is not known how the Bayesian
methods we discussed earlier scale with e or ¹ There
is a "leap of faith" required in believing the internal er-
ror estimates calculated by the maximum-entropy ana-
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lytic continuation. These methods are a necessary tool
for PIMC, but more practical and theoretical studies are
needed to assess their convergence.

The main goal of this subsection on complexity is to
reinforce the conclusion that accurate simulations of the
thermodynamics of Bose systems are possible; the corn-
plexity of Bose superQuids is not much worse than for
the classical Ising model. Of course, the efBciency, i.e.,
the coefBcient in &ont, is orders of magnitude lower in
the case of PIMC calculations of helium. There are many
possible ways to increase the eKciency, including waiting
for faster computers.

One can use the complexity to estimate crudely when
certain calculations will be possible. Looking over the
last 6fty years, one sees that the speed of the faster com-
puters is exponentially increasing, with a doubling time
of between one and two years. Assuming scientists con-
tinue to get access to those computers and that this rapid
development continues, one can ask when a given PIMC
will be possible. As early as 1986 the energy per atom
of liquid 4He was calculated to an accuracy of +0.04
K/atom (Ceperley and Pollock, 1986). Assuming the
performance of computers has a doubling time of Y = 1
year and that the complexity has an exponent b = 2.5,
the doubling time for the accuracy will be Yb = 2.5 years.
Hence by the end of this decade, even assuming there are
not better methods, we should be able to compute the
energy to better than = +0.001 K/atom. That more ac-
curate energies have not appeared in the literature is be-
cause there is little scienti6c interest in the ground-state
energy.

As we indicated above, the complexity of quantum me-
chanics in general is exponential in the number of par-
ticles (Feynman, 1985). By general quantum mechan-
ics, we mean a method analogous to classical molecu-
lar dynamics which can evolve an arbitrary initial state
in real time. Both specifying the initial state and per-
forming the evolution is exponentially difBcult. One sees
this effect by watching the computational literature of
quantum dynamics. Even with the rapid growth of com-
putational resources, the largest explicit simulations of
interacting particles in the continuum are of four-body
systems. Path integrals get around this limitation be-
cause they are probabilistic, they sample configuration
space rather than integrate over it. But known meth-
ods of doing this efBciently require a real action which
limits their application to bosons in imaginary time. It
is not clear how much can be ultimately calculated in
imaginary time. We gave a few examples of quanti-
ties that one might naively have thought were dynamical
but that turned out to be easily obtainable in imaginary
time: the superQuid density, the exchange &equency in
quantum crystals, and the momentum distribution. One
can Gnd many more examples. Computational many-
body physics has another challenge, namely to devise an
approximation-free algorithm that can treat fermions as
well as we can now treat imaginary-time bosons. With-
out that, the scope of PIMC is quite limited.

IX. SUMMARY AND OUTLOOK

Let us return to an issue raised in the beginning of this
article. Does the path-integral picture provide an under-
standing of superQuidity and Bose condensation? With
PIMC we have the ability to make (arbitrarily) precise
numerical calculations of boson systems. There is noth-
ing like getting the numbers out and doing precise com-
parisons with experiment and other theories to prove that
the theory and calculational methods are correct. The
nuxnerical aspects of path-integral Monte Carlo are still
very immature; this is the erst comprehensive review,
and even the interaction potential between helium atoms
is known to only 1% accuracy, which limits the degree to
which numerical calculations can be compared to experi-
ment. But so far we have not discovered any major prob-
lems in comparing the calculations with experiment. Dif-
ficulties to date are readily explained by computational
shortcuts, lack of a precise potential-energy function, or
experimental difBculties. As we have just explained in
the preceding section, there are no insurmountable di%-
culties with doing much more precise calculations on the
equilibrium properties of Bose superQuids if there were a
good enough motivation.

But is this an understanding'? We assert that PIMC
simulation has helped us understand superQuid helium
and solid helium. Bose condensation and superQuidity
are both seen to result &om macroscopic exchange, just
as Feynman argued. Path integrals map the original
problem of quantum-statistical mechanics into a domain
that it is easier to understand. The path-integral picture
gives us a new understanding of superQuidity, Bose con-
densation, the exchange energy, and tunneling in quan-
tum crystals, to mention just a few physical phenomena.
The path-integral picture also shows how these various
concepts are related in detail, thus unifying our under-
standing of them.

What is the future outlook'? Of course much needs to
be done to make PIMC, as applied to bosonic systems,
more eKcient and better able to calculate a broad range
of properties. Vortices are a very important feature of
superQuidity, but detailed calculations of vortex proper-
ties in superQuid He have not yet been attempted. One
would like to see vortices come naturally &om path in-
tegrals and to be able to calculate their properties in an
approximation-&ee way, as we can for quantities like the
momentum distribution or the superQuid density.

But the PIMC method has not been extensively de-
veloped to do only simulations of liquid and solid He.
Imaginary-time path integrals are also useful in many
other areas of quantum physics. We have not touched
at all on the much more extensive uses of path-integral
methods for lattice models, for example, those used in
lattice gauge theory, in spin models of magnetism or
of electrons in disordered media, or in superconductors.
There are of many analogies to what we have developed
here but also important difFerences.

There has been some recent progress in extending
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bosonic PIMC to continuum fermion systems in an ap-
proximate way, but by a method that is practical for
hundreds of fermions. The bosonic paths are prevented
&om crossing nodes of a trial density matrix. If these
nodes are chosen correctly, the results are exact. This
restricted path-integral method has been applied to liq-
uid He (Ceperley, 1992), to mixtures of liquid sHe and

He (Boninsegni and Ceperley, 1995), and to a hydro-
gen plasma (Pierleoni et at. , 1994). Many more applica-
tions are possible. The computational problems posed
by fermion path integrals are just those we have re-
viewed for bosonic systems: finding good actions, sam-
pling paths, constructing permutations, and estimating
quantities. Fermions add another level of complexity on
top of this. The fermion method promises to give new
insights and computational abilities on highly correlated
fermion systems.

'We hope that eventually PIMC simulation can be a
"black box." A nonexpert will specify the temperature,
particle masses, spins, interactions, chemical potentiajs,
and boundary conditions of the quantum system. The
computer will return estimates of various observables,
complete with error bars. It should be a major goal of
computational many-body physics to show how this can
be done. Of course, much work is needed.

ACKNOWLEOG MENTS

I am supported by the National Science Foundation
(NSF DMR91-08126), by the Office of Naval Research
(N00014-90-J-1783), by the National Center for Su-
percomputing Applications, and by the Department of
Physics at the University of Illinois, Urbana-Champaign.
I thank the Institut Romand de Recherche Numerique
en Physique des Materiaux at the Ecole Polytechnique
Federale de I ausanne and the Institute for Theoretical
Physics at the University of California, Santa Barbara
for support during the writing of this paper. I thank
Bernard Bernu, Nandini Trivedi, and George Bertsch for
useful suggestions concerning the manuscript.

APPENOIX A: THE VIRIAL ESTIMATQR OF THE
ENERGY

The derivation of the virial energy estimator for the
general case of arbitrary actions, periodic boundary con-
ditions, arbitrary window time, and particle exchange is
not in the literature, so we sketch it here (Berne, 1990).
We do this by using Green's theorem to transform the
highly Quctuating kinetic term to one that Quctuates less.

Consider the path-integral expression for the density
matrix with I links,

where K and U are defined in Eqs. (2.22) and (2.23). To
do things properly, we must worry about periodic bound-
ary conditions. The simplest way to do that is to change
the integration variables Rom Ri to bi = R; —R, 1. We
shall always assume that 7 is small enough that me can
neglect paths that wrap around the boundary within a
single step. Note that we are not neglecting paths that
wind around the boundaries after I steps. The kinetic
action K' depends only on b;. When R, is needed, in U
or elsewhere, we shall define it in terms of the b's,

2

R, = Ro+)
s=l

(A2)

(A4)

where (. ) indicates an average over Ri .Rl, i, and
U = dU/d~.

To transform the kinetic term into something that
might Quctuate less, consider the integral

L —1

). d&a . . d~l, i(R; —R-o)V';e (A.5)
POL i

Here V'; is the 3% gradient with respect to R;. If we

apply the V', to the left, we see that

G = 3N(L —1), — (A6)

since all surface terms will vanish for a sufBciently small
time step. Applying the gradient to the right gives

bi —b,.+1G = — ) (R; —Ro)
* '+ + V;(U'+ U'+')

i=1

(A7)

This expression can be simplified with the identity

) (R; —Ro)(h; —8;+i) = —81.(RL, —Ro) + )
(A8)

Eliminating the kinetic action with these expressions, we

get

Now we compute the energy as the ~ derivative of this
path,

d ln(por, )OL—
G7

Carrying out the derivative of the action as in Eq. (6.7),
we obtain

poJ. (L7.) = (Ro~e ~RI, )

dR1- - dRL 1exp — K'+ U'i

(A1) (A9)
3N SL, (RI, —Ro)

4/&2
L L—1

+ ) Ci'+ —) (R; —R.o)'V;(U'+ &*+')) .
i=1 '=1
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The internal energy is an average of EOI. ,'one has to
average over the end points as well as B;. We can also
symmetrize both over the initial time-slice label and the
"direction of time. " We And

particle: ring polymer.

potential energy: iso-"time" potential between beads.

1 1
@v =

&
(&I,i+a, ) =

X (&&,& I.)—~ (A10)

single-particle density matrix: the end-to-end distribu-
tion of an open polymer [Eq. (3.10)].

This is the virial estimator. After some rewriting one
ends up with Eq. (6.12).

superfluid density: the mean-squared winding number
[Eq. (3.31)].

superfluid state: a state in which a finite fraction of poly-
mers are hooked together in polymers of macroscopic size.

APPENDIX 8: LEXICON OF THE
QUANTUM-CLASSICAL ISOMORPHISM

temperature: (1) inverse polymer length [Eq. (2.19)]; (2)
inverse coupling constant for the interpolymer poten-
tial [Eq. (2.24)]; (3) spring constant between neighboring
beads [Eq. (2.22)].

In this appendix we summarize the relationship be-
tween quantum concepts and the classical polymer lan-
guage. Where possible, we have included the equation
number that gives the precise meaning of this mapping.

Bose condensation: delocalization of ends of an open
polymer [Eq. (3.14)].

boson 8tatistic8: allowing the possibility that polymers
can hook up in any possible way [Eq. (2.29)].

degeneracy temperature: condition in which polymers are
dense enough and extended enough that they touch and
can exchange [Eq. (2.31)].

density: the bead density [Eq. (2.26)].

exchange energy: logarithm of the &action of monomers
(times k~T) [Eq. (3.38)].

exchange frequency in a crystal: free energy to link poly-
mers in a polymer crystal [Eq. (3.45)].

free energy: free energy of a system of ring polymers
[Eq. (2.29)].

imaginary velocity: bond vector.

kinetic energy: negative spring energy [Eq. (2.25)].

moment of inertia: the mean-squared area of ring poly-
mers [Eq. (3.26)].

momentum correlation function: bond-bond correlation
[Eq. (3.36)].

momentum distribution: Fourier transform of end-end
distribution [Eq. (3.9)].

pair correlation function-: pair-correlation function be-
tween beads at the same "time. "

thermal uiavelength: polymer extension [Eq. (2.30)].
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