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The elements, theoretical basis, and experimental status of perturbative quantum chromodynamics are
presented. Relevant field-theoretic methods are introduced at a nonspecialist level, along with a review of
the basic ideas and methods of the parton model. This is followed by an account of the fundamental
theorems of quantum chromodynamics, which generalize the parton model. Summaries of the theoretical
and experimental status of the most important hard-scattering processes are then given, including
electron-positron annihilation, deeply inelastic scattering, and hard hadron-hadron scattering, as induced
both by electoweak interactions and by quantum chromodynamics directly. In addition, a discussion is
presented of the global fitting approach to the determination of parton distributions in nucleons.
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I. INTRODUCTION

The Standard Model of elementary particles and their
interactions has two basic components: the spontaneous-
ly broken SU(2) XU(l) electroweak theory, and the un-
broken SU(3) color gauge theory, known as quantum
chromodynamics (QCD). If we date the birth of the
theory of strong interactions to the discovery of the neu-
tron, QCD has existed for about a third of the ensuing
time, profoundly deepening and enlarging our view of the
subject.

Perhaps it is worthwhile to recall the situation in
strong-interaction studies at the time when QCD
emerged. Into the mid-sixties, the picture of strong in-
teractions centered on general principles of scattering
amplitudes (analyticity, unitarity, crossing, etc.) that
could be developed without information on elementary
constituents. The idea was widely entertained that the
strong interactions were not to be described by a renor-
malizable field theory of point particles, which had been
so successful for quantum electrodynamics (Weinberg,
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1977; Schweber, 1994). Whether one accepted this
viewpoint or not, ' in the absence of a viable theory of
strongly interacting elementary particles it was clearly
necessary to rely on general properties of the scattering
matrix. Perturbative field theory, if utilized at all, could
be employed primarily to illustrate and explore the
consequences of these properties (Eden, Landshoff, Olive,
and Polkinghorne, 1966).

In this context, Regge theory (Regge, 1959; Chew and
Frautschi, 1961;P. D. B. Collins, 1971) and its allies and
generalizations, such as the dual model (Veneziano, 1968;
Mandelstam, 1974) and Reggeon calculus (Gribov, 1968;
Abarbanel, Bronzan, Sugar, and %hite, 1975; Baker and
Ter-Martirosyan, 1976), which described particles pri-
marily as analytic features of the S matrix, nourished. A
large body of experimental data, including near-forward
elastic (Giacomelli, 1976), diffractive (Goulianos, 1983),
and high-multiplicity inelastic scattering (Mueller, 1970;
Frazer et aI., 1972), are still best understood in this
language. These developments also gave rise, of course,
to string theory (Nambu, 1970; Goto, 1971; Green,
Schwarz, and Witten, 1987). The weak and electromag-
netic interactions of hadrons with leptons was, and still
is, profitably described by current algebra (Gell-Mann
and Levy, 1960; Adler and Dashen, 1968), which provid-
ed elementary operators, the currents, even without ele-
mentary particles. The currents themselves are linked to
strong dynamics by the partially conserved axial-vector
current hypothesis, which led to an efII'ective field theory
for pions (Weinberg, 1970) that remains today our funda-
mental picture of low-energy strong interactions (Wein-
berg, 1979; Leutwyler, 1992). Into this rich and complex
set of investigations and viewpoints came partons and
quarks.

The study of the strong interactions was transformed
with the advent of accelerators in the multi-GeV energy
range. The famous SI.AC experiments of the 1960s and
1970s were the first to show the pointlike substructure of
hadrons (Bloom et al. , 1969; Friedman and Kendall,
1972). The parton model (Feynman, 1969, 1972; Bjorken
and Paschos, 1969) showed that elementary constituents,
interacting weakly, could convincingly explain the cen-
tral experimental results. In the same period, the quark
model (Gell-Mann, 1964; Zweig, 1964; Kokkedee, 1969)
rationalized hadron spectroscopy. Out of it grew the
idea of color (Han and Nambu, 196S; Greenberg, 1964), a
new quantum number postulated in the first instance to
avoid the apparent paradox that the quark model seemed
to require spin-1/2 quarks with bosonic statistics.

The idea of extending the global color model to a
gauge theory (Fritzsch et a/. , 1973; Gross and Wilczek,

1973b; Weinberg, 1973) was in many ways a natural one,
but the motivation for doing so was incalculably
strengthened by the newfound ability to quantize gauge
theories in a manner that was at once unitary and renor-
malizable, developed, in large part to describe elec-
troweak interactions. Concurrently, the growth of the
technology of the renormalization group and the opera-
tor product expansion (Wilson, 1969; Callan, 1970;
Symanzik, 1970; Christ, Hasslacher, and Mueller, 1972;
Frishman, 1974) made it clear that any field theory of the
strong interactions would have to have an energy-
dependent coupling strength, to harmonize the low-
energy nature of the strong interactions, which gives
them their name, with their weakness at high energy (or
short distances). The concept of asymptotic freedom
(Gross and Wilczek, 1973a; Politzer, 1973), which is
satisfied almost uniquely by quantum chromodynamics,
brilliantly flied these demands.

As will appear in the following sections, asymptotic
freedom is a perturbative concept. Yet, as searches for
free quarks, let alone gluons, continued to give null re-
sults, it became evident that the perturbation theory of
quantum chromodynamics had to be approached some-
what differently from that of, say, quantum electro-
dynamics. The usual 5 matrix and cross sections for iso-
lated quarks and gluons in QCD all vanish, completely
replaced by bound-state dynamics. This is the hypothesis
of "confinement. " After some time it also became obvi-
ous that, although asymptotic freedom is a perturbative
prediction, confinement is not. The use of perturbation
theory in quantum chromodynamics, that is, "perturba-
tive QCD, "or pQCD, therefore developed rather slowly
and even haltingly, amid considerable scepticism. Never-
theless, many predictions of the theory, primarily but not
exclusively associated with inclusive processes, do not de-
pend upon its long-distance behavior. These short-
distance predictions are the realm of perturbative QCD.

Since QCD remains an "unsolved" theory, with no sin-
gle approximation method applicable to all length scales,
the justification for the use of perturbative QCD rests in
large part directly on experiment. In this regard, many
of us remember vividly the rapid transformation of quan-
tum chromodynamics from a promising but controversial
candidate theory to a full-Hedged part of the Standard
Model, taken perhaps too confidently for granted. In this
transformation, the achievements of lattice-based numer-
ical studies also played an important role (Wilson, 1974;
Kogut and Susskind, 1975; Creutz, 1983).

Over time, it has become ever clearer that perturbative

For an impression of this intellectual climate, see the lectures
of Chew and Dalitz, published side by side in DeWitt and
Jacob, 196S.

2See in this connection the lectures of Gell-Mann and Wilczek
in Zerwas and Kastrup, 1992.

3Among the landmarks of this development are Faddeev and
Popov, 1967; 't Hooft, 1971a, 1971b; 't Hooft and Veltman,
1972; and Lee and Zinn-Justin, 1972a, 1972b, 1972c.
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QCD naturally describes a large set of high-energy,
large-momentum-transfer cross sections. It is in this re-
strictive yet important area that its formalism has
developed, and in which it has proved an invaluable tool
in the study of the strong interactions. Beyond this, how-
ever, the very successes of a purely perturbative ap-
proach challenge us to bridge the gap between perturba-
tive and nonperturbative aspects of the theory. Every ex-
periment in strong interactions tests QCD from some
6xed "short" distance to its very longest distance scales,
over which the value of the strong coupling may change
radically. From a mathematical point of view, as well,
QCD has special features. As we shall outline below,
many of the basic tests and predictions of the theory rely
on arguments "to arbitrary order" in perturbation
theory. Thus the very role of perturbative expansions in
four-dimensional quantum 6eld theories is accessible in
QCD as in no other component of the Standard Model.
Perhaps the greatest legacy of QCD will be in the
theoretical and experimental methods that must still be
developed to meet its unique demands.

Our intention in this handbook is to review the basic
ideas and methods of perturbative QCD, especially in
those areas for which there is ample experimental
verification. This work is meant to be a sourcebook on
perturbative QCD, accessible and useful to experts and
novices, experimentalists and theorists alike. In it, we
have collected discussions of the basic ideas and applica-
tions of the theory. While we have no intention of re-
placing more scholarly presentations of 6eld-theoretic
techniques and experimental reviews, we have included
in the next two sections and in the appendices consider-
able introductory material on the basic concepts of QCD,
its perturbative treatment, and the parton model, out of
which it grew. In the fourth section, we summarize the
basic theorems upon which the perturbative treatment
rests. We hope that sophisticated readers will find useful
the discussions, applications, and experimental reviews of
specific processes and techniques in the sections that fol-
low. These are organized according to process, including
electron-positron annihilation, deeply inelastic scattering,
and hadron-hadron cross sections, 6rst those induced by
electroweak interactions and then those induced by QCD
itself. We conclude with a description of the "global" ap-
proach to nucleon parton distributions. For the simplest
processes, we have exhibited theoretical predictions ex-
phcitly. Given the complexity of many recent results,
this is not always possible, and we have relied in this case
on references to the literature and, as is increasingly
becoming relevant, to specialized computer programs.

This article is the product of the CTEQ collaboration
as a whole, consisting of both experimentalists and theor-
ists, and we have not attempted to enforce on ourselves

~Coordinated Theoretical-Experimental Project on QCD.

an artificial uniformity of presentation and style. We
hope and believe, however, that readers will find below a
coordinated and fundamentally uni6ed text. We should
also like to think of this as an evolving document, and, in
this initial version, concentrate on inclusive high-energy
reactions, for which the most basic results and processes
are treated in detail. Directions abound for expansion,
particularly toward moderate energy, the perturbative-
nonperturbative junction, and hadronic structure: elastic
scattering, "small-x" evolution, pQCD in the Regge
limit, Sudakov resummation techniques, asymptotic
behavior, QCD coherence, ' QCD in nuclei, " and
transparency, ' on the (supporting) roles of pQCD in
Monte Carlo simulations of event structure, QCD sum
rules and heavy-quark efFective theory, and much more.

This section reviews a number of relevant facts about
QCD as a field theory, primarily its Lagrange density and
Feynman rules, amplitudes, and their renormalization,
and the concepts of asymptotic freedom and infrared
safety. We assume here a general familiarity with ele-
mentary methods in field theory. More detailed discus-
sions of field theory topics may be found in textbooks.
Asymptotic freedom, infrared safety, and the renormal-
ization group applied to QCD are also covered in a num-
ber of useful reviews (Muta, 1987; Mueller, 1989;
Dokshitzer et al. , 1991;Sterman, 1991).

A. LBgraAQ ISA

The Aurry of 6elds, indices, and labels in the telegraph-
ic formulas that follow in this subsection are probably ac-

58rodsky and Lepage, 1989, summarize this subject up to that
time. Much recent work has discussed the roles of Sudakov
effects (Landshoff and Pritchard, 1980; Lepage and Brodsky,
1980; Mueller, 1981;Pire and Ralston, 1982; Botts and Sterman,
1989; Li and Sterman, 1992) and "soft" physics (Isgur and
Llewellyn Smith, 1989; Radyushkin, 1984; Jacob and Kroll,
1993).

See especially the reviews of Gribov, Levin, and Ryskin, 1983,
Levin and Ryskin, 1990, and the discussion of modified evolu-
tion in Mueller and Qiu, 1986.

See Kuraev, Lipatov, and Fadin, 1976; Balitskii and Lipatov,
1978; Lipatov, 1989;Faddeev and Korchemsky, 199S.
8For a variety of applications, see Collins and Soper, 1981;

Mueller, 1981; Sen, 1981; Sterman, 1987; Collins, 1989; Catani
and Trentadue, 1991;Catani, Trunock, Webber, and Trentadue,
1993.
9Tkachov, 1983.
' See the reviews of Bassetto, Ciafaloni, and Marchesini, 1983;

Dokshitzer, Khoze, and Troyan, 1989; Dokshitzer et al. , 1991.
iiReviewed in Frankfurt and Strikman, 1988.

Brodsky, 1982; Mueller, 1982; Brodsky and Mueller, 1988.

Rev. Mod. Phys. , Vol. 67, No. 1, January 1995



Sterrnan et a/. : Handbook of perturbative QCD 161

cessible only after the benefit of a pedagogical introduc-
tion that must be found elsewhere. We anticipate, how-
ever, that some number of readers may find these formu-
las a useful refresher of memory. Others will be satisfied
by the summary of perturbation theory rules in Fig. 1,
and will wish to skip to subsection II.B, which begins a
review of quantum-theoretic concepts much less depen-
dent on the technical content of QCD, but which, toward
the end, explains what is special about QCD.

Quantum chromodynamics is defined as a field theory
by its Lagrange density,

have taken the T,' ' to be Hermitian, which makes QCD
look a lot like QED. Some useful facts about the algebra
of generators are listed in Appendix A.

DF[ A] is the couariant deriuatiue in the N,
dimensional representation of SU(N, ), which acts on the
spinor quark fields in Eq. (2.2), with color indices
i = 1. . .X, . There are nf independent quark fields

(nf =6 in the Standard Model), labeled by fiauor
f (=u, d, c,s, t, b). In the QCD Lagrangian, they are dis-
tinguished only by their masses.

The quark fields all transform as

ff [t/)f(x}, t/)f(x), A(x), c(x),c(x);g, mf ] (x)= Uf, (x)gf;(x), (2.6)

+invar++gauge++ghost &

which is a function of fields [i/tf (quark), A (gluon}, and c
(ghost)] and parameters g and mf, where f labels distinct
quark fields. X)„„„is the classical density, invariant un-
der local SU(N, ) gauge transformations, with N, =3 for
QCD. X;„„,is of the form that was originally written
down by Yang and Mills (Yang and Mills, 1954),

1I//f [ig [ A ] mf ] I/Jf
—

a F [ A ]
f

under local gauge transformations, where

N —1
C

U;(x)= exp i g P, (x)T( '

a=1
(2.7)

with P, (x) real. Defined this way, U,j(x) for each x is an
element of the group SU(N, ), which is the local invari-
ance that has been built into the theory. The correspond-
ing transformation for the gluon field is most easily ex-
pressed in terms of an N, XN, matrix, A„(x),

N —12
C

4

((/)f P [i ( y ))t') D„,[ A ]
f=1 a,P=1 ii =1

[A„(x)],"—= g A„,(x)(T,'F'), (2.8)

—mf 5t) 5f; ]t/rf

N —1

F„,,[A)F",[A] .
p, v=O a =1

(2.2)

which is the form that occurs in the covariant derivative.
The gluonic field is then defined to transform as

A' (x)=U(x)A (x)U '(x)+ —[8 U(x)]U '(x) .IJ P g P

(2.9)In the second expression, we have written out all indices
explicitly, using the notations With these transformation rules, the gauge invariance of

X;„„,is not difficult to check.
The gauge invariance of X;„„„actually makes it some-

what difBcult to quantize. This problem is solved by add-
ing to X;„„„gaugefixing -and ghost densities, X,„,and

Xgh„„as in Eq. (2.1). The former may be chosen almost
freely, the two most common choices being

D„,, [A]—=a„5,, +igA„.(T( '),, (2.3)

(2.4)F„,.[A]=a„A,—a.A„.—gC.„A„,A„.

C

g (B„A)')', 1&A, & ~,
a=1

gauge

—1
C

(n A ) )(,~oo
a=1

(2.10)gauge

where n" is a fixed vector. The first defines the set of
"covariant" gauges, the most familiar having A, =1, the
I'eynman gauge. The second defines the "axial" or
"physical" gauges (Leibbrandt, 1987), since taking A, to
infinity eliminates the need for ghost fields. Here, pick-
ing n" to be lightlike, n =0, defines the light-cone gauge.
For A, —+ Do, a nonzero value of n A leads to infinite ac-
tion, and for this reason the physical gauges are often
called "n A =0" gauges.

Finally, in the covariant gauges we must add a ghostThese commutation relations define the algebra. Here we

Let us describe what these formulas represent, working
backwards from Eq. (2.4).

F„„,is the non-Abelian field strength defined in terms
of the gluon vector field At', with N, 1 group com-—
ponents b gis the QC.D ("strong") coupling, and C,&„
a, b, c =1, . . . , X, —1 are real numbers, called the struc-
ture constants of SU(N, ), which define its Lie algebra.
As mentioned above, for QCD (Fritzsch et al. , 1973;
Gross and Wilczek, 1973b; Weinberg, 1973},N, =3, but
for Inany purposes it is useful to exhibit the X, depen-
dence explicitly. X, is often called the "number of
colors. "

The Lie algebra is defined by the commutation rela-
tions of the N, l, N, XN, matrice—s ( T,' '); that appear
in the definition of D&,J, Eq. (2.3),

[ T(F) T(F)
) iC T(F) (2.5)
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Lagrangian (Feynman, 1963; DeWitt, 1967; Faddeev and
Popov, 1967; 't Hooft and Veltman, 1972),

n n kk"G"(k, n)=i n.k (n.kP
(2.12)

X „„,=(B„c,)(8"5,d —gC,&d Ag')cd, (2.11)

where c,(x) and c, (x) are scalar ghost and antighost
fields. In the quantization procedure, ghost I[ields an-
ticommute, despite their spin. In an SU(X, ) theory, the
ghost Selds ensure that the gauge fixing does not spoil the
unitarity of the "physical" S matrix that governs the
scattering of quarks and gluons in perturbation theory.

B. Feynman rules and Green functions

The perturbation theory (Feynman) rules for QCD are
summarized in Fig. 1. With our choice of (Hermitian)
generators T,'"', the quark-gluon coupling is just like the
QED fermion-photon vertex, except for the extra matrix
factor T~ '. The remaining rules for vertices are not
dificult to derive in detail, but their essential structure is
already revealed by the correspondence (B~P)~ iqz, —
where q is the momentum flowing into the vertex at any
field P.

As for the propagators, we pause only to notice some
special features of physical gauges. In the n .-3 =0
gauge, we have, from the propagator in Fig. 1,

(a) Propagators
Gluon, quark and ghost lines of momentum k

b~ 1 k k"
v, a ~~ p, , b i . —g""+(1 ——), covariant gaugek~+ie A k~+ i~

bI knv+nk kk"—g""+ — — - —n — —1 physical gaugek~+i~ n k (n k)~3

1 1 1I'
(n.k) 2 (n.k +i@) (n.k ie—)

(2.13)

This definition is awkward beyond tree level (when loops
are present), and other definitions (Mandelstam, 1983;
Leibbrandt, 1987) are necessary to carry out loop calcula-
tions correctly (Bassetto, Nardelli, and Soldati, 1991;
Bassetto et al. , 1993). In any case, it is often desirable to
back up results derived in physical gauges with calcula-
tions or arguments based on covariant gauge reasoning.

The Feynman rules allow us to define Green functions
in momentum space. These are the vacuum expectation
values of time-ordered products of 6elds,

(2~) &(pi+ +p„)G . . . (pi, . . . ,p„)

=g Jd'x, e " '(o~T[y. (x, ) ~ ~ y. (x„)]~o),

Note the lack of a pole at k =0 on the right-hand side of
this relation. This means that the unphysical gluon po-
larization that is proportional to its momentum does not
propagate as a particle in these gauges. The lack of a
pole for the gluon scalar polarization is the essential
reason why ghosts are not necessary in physical gauges.
This simplification also makes these gauges useful for
many all-order arguments in pQCD. The price, however,
is the unphysical poles at n k=0, which are often
thought of as principal values,

a, i —= P,j

(b} Vertices (all momenta de6ned to Hoer in)

VI,SI

",+,—.,[(/+~) l~-

N, G

fq
k'~

b'Y Yc

Vg, Rg

(2.14)

where the n; represent both space-time and group indices
of the fields, collectively denoted by P. At any fixed or-
der in perturbation theory, 6 . . . is given by the sum

1 n

of all diagrams constructed according to the rules of Fig.
1. Corresponding to each of the Ihelds in the matrix ele-
ment, every diagram will have an external propagator
carrying momentum p; into the diagram, with free exter-
nal indices a;. Essentially all of the physical information
of the theory is contained in its Green functions.

V,~q P2 Vg, Ge Vg, ag
(iv)

(i) —~g(&.' ').'[7 Io-
(ii) go.~k.'

(~) —g&. . .[g"' 6» —~}"'+g '(P —&} '+ g"'"'(P3 —PI) I

(i } ~g2 [ g Q ( Vi V3 V3V4 Vi V4 V3V3)

+ Q Q (gV&V4gV3V3 gViV3gV3V4)

FIG. 1. Perturbation theory rules for @CD.

The route from Feynman rules, through Green func-
tions, to experimentally observable quantities is straight-
forward, but involves a number of steps which it may be
useful to outline. In what follows, we shall briefly review
the roles of the S matrix, cross sections, renormalization
schemes, and regularization.

%'e do not address yet the issue of whether perturba-
tion theory is of any use for reliable calculations of physi-
cal quantities in QCD.
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1. The S matrix and cross sections

G f3(p)~R~G f3(p) "'+finite . (2.15)

If the particles under discussion are hadrons, then R4,
I

By themselves, Green functions are not always direct
physical observables. For one thing, their external lines
are not necessarily on-mass-shell, and, in a gauge theory,
the Green fuiictions are not even gauge invariant. The
relation between Green functions and physical quantities
like cross sections is, however, quite simple. I.et us re-
view the basic steps in a generic situation with fields P~.

First, a two-point Green function has a pole at
p =m . Near the pole, it has the form of a "free" prop-
agator (Fig. 1) times a scalar constant R &,

and the physical mass M are not perturbatively calcul-
able. If, nevertheless, we discuss the perturbative S Ina-
trix for quarks and gluons, then R

&
and M can be com-

puted as power series in the coupling

R~=l+O(g ),
M=m+0(g ) .

(2.16)

The S matrix is simply the amplitude for the scattering of
momentum eigenstates into other momentum eigenstates.
In particle physics, the most important S-matrix ele-
ments describe the scattering of two incoming particles
into some set of outgoing particles. The S matrix is de-
rived from Green functions by "reduction formulas" of
the general form

s((p„s, )+(p„s,) (p, ,s, )+ (p„,s„))=g g(p, ,s,. )

G
—1

(p )free

R 1/2 Gfi . . . fi (pi,p2) p3& ~ ~ & pn) t
1 n

(2.17)

where now s; represents the spin (and other quantum numbers) of particle i Here. g(p;, s;) represents the wave func-
f

tion of external particle i, given by

u(p, s) for an incoming Dirac particle

u(p, s) for an outgoing Dirac particle

U(p, s) for an incoming Dirac antiparticle

U(p, s) for an outgoing Dirac antiparticle

e(p, s) for an incoming vector particle

e'(p, s) for an outgoing vector particle .

(2.18)

Once again, G & (p; ) "' is the free propagator, for field i, but with the correct physical mass of the corresponding parti-
' L

cle.
From the S matrix, it is customary to de6ne the transition matrix T by

S =I+iT, (2.19)

with I the identity matrix in the space of states. For momentum eigenstates, T contains an explicit momentum-
conservation 5 function, which it is convenient to separate explicitly,

iT((pi, s, )+(p2, s~)~(p3, s3)+ (pn, sn))=(2m) |i (pi+p3 —
p3

— —p„)

XJR((pi, si )+(p2, s2)~(p3, s3)+ +(p„,s„)) .

It is JK-matrix elements that are used to derive cross sections, by integrating the general infinitesimal cross section,

(2.20)

do'((pi, si )+ (p2, s2 )~(p3, s3 )+ + (pn, sn ) )= 1
dPS&

4+(pi p2) —mim2

X ~JN((p»si )+(pz, sz)~(p3, s3)+ +(pn, sn ))~ (2.21)

over n-particle phase space, with co; =(p;+m, )'~,

d n

dPS„=Q N, (2m. ) i3 p, +p —g p.
2';(2m ) J =3

(2.22)

Here X;=1 for vector and scalar particles, as well as for
Dirac particles when we normalize their wave functions
according to u(p, s)u(p, s)=2m. For the other common
choice, u(p, s)u(p, s)=1, we have N; =2m for Dirac fer-
mions. If one integrates a differential cross section over
the phase space for n identical particles, then one should
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include an additional factor of $„=1/n! that compen-
sates for counting the same physical state n'f times. When
discussing the perturbative expansion of a cross section,
it is often useful to work directly with diagrams for

~
JM,

~
.

The rules for this expansion are almost the same as for
the S matrix and are summarized in Appendix B.

point we are try1ng to make right now.
The purpose of renormalization is to replace divergent

integrals like the one above by finite expressions, in a sys-
tematic fashion. For the logarithrnically divergent in-
tegrals at hand, renormalization consists of the replace-
ment (suppressing the x integral)

2. UV divergences, renormalization, and schemes
—i M (p)I '"")(p)~I ""(p,p) = ln

(4~) p,
2

(2.25)

In the second equality, we have combined the two
denominators into one by a trick known as Feynman pa-
rametrization. In the third, we have completed the
square in the denominator by the change of variable
k'=k —xp. Of course, all this is purely formal, since the
integral as it stands is divergent for k ~ Oo, that is, in the
ultraviolet. Nevertheless, let us consider a one-loop in-
tegral of the generic form

4(„„)() dk 1
JP

=
(2m) [k —M (p)]

(2.24)

which is undefined because of a logarithmic divergence at
infinity. We let M (p) denote the dependence on external
momentum(a) of the diagram (and "Feynman parame-
ters" like x above). In QCD there is in general also
momentum dependence through Dirac traces and vector
indices in the numerator, but they will not a6'ect the

Green functions, and consequently cross sections, cal-
culated according to the unmodified Feynman rules de-
scribed above su6'er a severe problem when we include di-
agrams with loops. These are the ultraviolet (UV) diver-
gences, associated with infinite loop momenta. We may
think of these divergences as due to virtual states in
which energy conservation is violated by an arbitrarily
large amount. Let us see how these problems come about
and review how they can be solved in perturbative calcu-
lations.

A typical one-loop integral UV divergence is illustrat-
ed by the diagram with scalar lines in Fig. 2. For scalar
lines the diagram is given, before renormalization, by

k 1

(2m) (k —I )[(p —k) —m ]

d'k 1

(2m. ) (k —2' k+x@2—I )~

d'k'4
~4

P 2
I

0 (2~) [k' +x (1—x)p —m ]

(2.23)

where p is a new mass, not included as a parameter in the
original Lagrangian of the theory. Note that we can
check Eq. (2.25) by differentiating Eq. (2.24) with respect
to M, doing the (now convergent) k integral and then in-
tegrating the result with respect to M to get Eq. (2.25)
up to a constant. To begin with, p is completely arbi-
trary and may diQ'er from integral to integral. It is neces-
sary to specify a set of rules to determine the values of p
for each divergent diagram. Such a set of rules is called a
renormalization scheme.

There are two basic kinds of schemes currently in wide
use.

(i) In a momentum subtraction scheme we choose

p =M (go ) such that I ""(go ) =0, (2.26)

with po some fixed set of external rnomenta, and I a par-
ticular divergent vertex function. This is what is done in

quantum electrodynamics, for instance, when we renor-
malize so that all the one-loop (and higher) corrections to
the photon-electron vertex vanish at zero momentum
transfer. (In this case po is any point where the photon
momentum is zero and the electrons are on-shell so that

(ii) In the second generic renormalization scheme, p is
chosen the same for every divergent integral and appears
as a free parameter in renormalized Green functions.
This defines a mimimal subtraction scheme. Because of
its underlying simplicity, minimal subtraction is favored
for many practical pQCD calculations. See Appendix C
for its basis in "dimensional regularization. " Despite this
rather technical origin, minimal subtraction for one-loop

diagrams reduces to the simple prescription described
here. The precise scheme usually used for Ininimal sub-
traction is called the "modified minimal subtraction" or
MS scheme.

Clearly, what we have said so far is highly simplified.
It can be shown that these renormalization schemes are
flexible enough to handle not only logarithmically, but
also quadratically divergent integrals, and that they ap-
ply to Inulti-loop as we11 as one-loop integrals. SuKce it
to say that these issues may be handled, and the substitu-
tion (2.25) we have just described captures the heart of
the issue (Collins, 1984).

3. The renormalization scale and experiment

FIG. 2. An ultraviolet-divergent one-loop scalar diagram.

The question now naturally arises, what can we do
with a theory that has an arbitrary parameter p in it7
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The procedure for getting unique experimental predic-
tions is this. For simplicity, let us assume we have a
massless theory with only a single coupling constant g.
We now compute a cross section —any cross section—
which we shall call o.(p,p), with p denoting the momenta
of the particles involved. The perturbation theory for o.

will always have some UV-divergent integrals in it, so its
(renormalized) perturbation series will look like

(2.27)

where A is the highest order that we have had the
strength to compute and the a„are coeKcients that are
the results of the computation. Now first we go out and
measure cr(p, p) for some particular set of momenta p.
Next we fix p to be whatever we like. Then we can solUe

Eq. (2.27) for g, with a result that we denote g(p) [g(p)
is implicitly also a function of p and of A]. This may not
seem to accomplish much, until we realize that we can
now compute o. for any value of p. Thus, at the price of
doing one experiment, we have predictions for a whole
set of experiments. Not only that, but if g really is the
only parameter in the theory, we have unique predictions
for every single cross section in the theory for which we
are willing to compute a perturbative series.

Now, because o (p,p) is a physical quantity, it must be
independent of our choice of p, which leads us to the
equation

(2.28)

where we must remember to keep the p dependence in
g(p). This equation holds exactly if we have the exact
solution of the theory. If we apply it to the finite order
approximation, Eq. (2.27), then there will be errors of the
order of the first uncomputed term in the perturbation
expansion. ' This will be a useful approximation if the
coupling is small, which leads us to our next topic,
asymptotic freedom.

D. Asymptotic freedom

The successes of QCD in describing the strong interac-
tions are summarized by two terms: asymptotic freedom
(Gross and Wilczek, 1973a; Politzer, 1973) and
confinement To under. stand the importance of these two
attributes we should recall some facts about the strong

interactions. Hadron spectra are very well described by
the quark model, but quarks have never been seen in iso-
lation. Any efFort to produce single quarks in scattering
experiments leads only to the production of the familiar
mesons and baryons. Evidently, the forces between
quarks are strong. Paradoxically, however, certain high-
energy cross sections are quite successfully described by a
model in which the quarks do not interact at all. This is
the parton model, which we shall describe in Sec. III.
Asymptotic freedom refers to the weakness of the short-
distance interaction, while the confinement of quarks fol-
lows from its strength at long distances.

An extraordinary feature of QCD is its ability to ac-
comrnodate both kinds of behavior. It does this by mak-
ing the forces between quarks a rather complicated func-
tion of distance. Qualitatively, when two quarks are
close together, the force is relatively weak (this is asymp-
totic freedom), but when they move farther apart the
force becomes much stronger (confinement). At some
distance, it becomes easier to make new quarks and anti-
quarks, which combine to form hadrons, than to keep
pulling against the ever-increasing force. The realization
that a single theory might describe such a complicated
behavior is commonplace nowadays, but it required a
major reorientation in our way of thinking about funda-
Inental forces.

The detailed evidence for the coexistence of asymptotic
freedom and confinement in QCD is a complicated web
of analytic and numerical results and inferences. In this
handbook, we shall be concerned mainly with the experi-
mental consequences of asymptotic freedom. Neverthe-
less, in the following we shall try to give the reader an
idea of the origin of these properties of QCD, as they are
embodied in the Feynman rules that we have just out-
lined.

1. Forces in QCD and QED

A reasonably direct approach to asymptotic freedom
and confinement is through a discussion of the e6'ective
forces that are implicit in the Feynman rules of the
theory. To see what is involved, we can consider first the
more familiar case of quantum electrodynamics (QED),
where we know quite well the basic force, the Coulomb
force, derived from the potential between two particles at
rest,

(2.29)

How to minimize these errors in practical cases is a subject
of ongoing discussion and controversy (Stevenson, 1981;Steven-
son, 1984; Brodsky, Lepage, and Mackenzie, 1983; Brodsky and
Lu, 1994). %'e shall take the point of view that weak p depen-
dence is a good qualitative sign that errors are not large, but
that this assumption must be closely examined on a case-by-case
basis.

Q, and Qz represent the magnitudes of two charges,
separated by r. The charges are measured in a system of
units in which the permittivity of the vacuum (Ep in mks
units) is unity. (This is the usual system of units for
quantum field theory. ) Let us see how this potential
comes about in QED, which is the Abelian version of the
gauge theory with Lagrange density, Eq. (2.2).

The Coulomb potential may be derived by considering
the scattering of two very heavy charged particles. If the
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particles are sufficiently heavy, we can ignore energy
transfer compared to momentum transfer and use a non-
relativistic approximation (p /2M «M). If we wanted
to go into detail, we would compute the nonrelativistic
scattered wave functions in terms of momentum transfer,
from which we could infer a spatial potential. We shall
short-circuit this reasoning and just give the rule: the po-
tential is the spatial Fourier transform of the gauge-field
propagator, considered as a function of three-momentum
(~k~) only, multiplied by the coupling constants at the
vertices and divided by i —F.or equal charges, Q,. =e,
this is

3d k;g., l

(2m ) —k
2 sin(k~r~ )

(2m )
(2.30)

where the second equality comes from the angular in-
tegrals. That this is the Coulomb potential for unit
charges follows from the integral formula,

d ky( ) I —ik rg (k2)
(2n. )

(2.32)

with 3 (k ) given at lowest order by single-photon ex-
change as above.

Let us pursue our picture of the nonrelativistic scatter-
ing of heavy particles in perturbation theory a bit further
and discuss the effects of some of the perturbative correc-
tions to Fig. 3, shown in Fig. 4.

These graphs describe 0 (e ) contributions to the po-
tential, whose momentum dependence may be different
from the lowest order. We may think of the ferxnion loop
in the first diagram as virtual "light" fermions, of a mass
m «M. To define the potential at this order, we actual-
ly need to introduce an infrared cutofF', or to sum over
soft-photon emission, and to carry out renormalization.
All this will not affect the main point we want to make
here, however, and we shall assume that this has been

sin(x) m.

0 X 2

The purpose of this simple exercise is to show how close
the Feynman rules are to our ideas of potential and force.
What we have verified so far is that the potential can be
found from the lowest-order diagram shown in Fig. 3.

Beyond lowest order in perturbation theory the poten-
tial will still be the Fourier transform of the scattering
amplitude,

FIG. 4. Field theory corrections to the potential in QED.

done, without going into details. Rather, we shall con-
centrate on the physical picture.

Our basic problem is that we cannot separate experi-
mentally the contributions of the various diagrams of
Fig. 4, or those from yet higher orders, from the lowest-
order amplitude. As we shall see, the higher-order
corrections modify the momentum dependence and
therefore the potential. How, then, do we ever manage
to determine the electromagnetic coupling? We do it by
defining the amplitude at some fixed momentum transfer—k =t0 to be

u(to)3 (to)=
to

where the fine struct-ure constant a is

(2.33)

e
4m

(2.34)

Notice that this form says nothing yet about the mornen-
tum dependence of A(t), only about what it is at a
specific value of its argument. Since we define this to be
the coupling divided by t0, the value of the coupling that
we find depends upon the t0 that we choose.

The qualitative effects of the corrections in Fig. 4 to
e (to)=4ma(to) are easily understood without explicit
calculations. The main contribution is from the first dia-
gram, in which the two incoming charges are linked by a
virtual photon that includes a "self-energy" diagram con-
sisting of a fermion-antifermion pair. The net charge of
such pairs is zero, and they act to "screen" each of the
original charges, as seen by the other. We may think of
each heavy charge as being surrounded by a cloud of
light charged pairs. If the incoming charges are far
apart, each sees a very large cloud, which serves to de-
crease the effective charge of the other. As t0 increases,
however, the charges come closer together (by the uncer-
tainty principle), get inside the clouds, and the screening
becomes less effective. This w'e can summarize by

(2.35)

FIG. 3. The lowest-order potential in QED.

at least for contributions from the first diagram. Actual-
ly, the next two diagrams, in which virtual photons are
emitted and reabsorbed by one of the charges, do not
change this result, because at this order the emission of
an extra virtual photon does not change the charge distri-
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bution at all. Explicit calculations show that Eq. (2.35)
holds quite generally. It states that as the momentum
transfer increases, the observed charge also increases.
We shall see how to make this observation quantitative in
the next subsection. Clearly, this is a problem at ex-
tremely high energies. For QED, however, the charge, as
observed in Coulomb scattering (to=0), is so small that
e (to) does not become large until truly astronomical
scales.

Now let us see what happens in QCD, where we define
an effective charge g (to ) by direct analogy to Eq. (2.33).
We also define an effective "fine-structure constant" for
QCD by

(2.36)

The corrections of Fig. 4 are all present in QCD, with
photons replaced by gluons. In addition, at the same or-
der, we also have to include diagrams with three-gluon
couplings, as in Fig. 5.

As in QED, the effect of virtual corrections is to sur-
round our heavy (non-Abelian} charged particles by
clouds of charge. There is a very important difference,
however. In the non-Abelian case the emission of a
gluon does not leave the non-Abelian charge of the heavy
particle unchanged. Although the total charge is con-
served, it "leaks away" into the cloud of virtual particles.
Thus, for small t0, when the two heavy particles stay far
apart, they are actually more likely to see each other' s
true charge. As t0 increases, they penetrate further and
further into each other's charge clouds and are less and
less likely to measure the true charge. For this (only
heuristic!) reason, we may expect "antiscreening" for the
non-Abelian theory, just the opposite of QED,

a, (t, ) &0 .
dt0

(2.37)

FIG. 5. Non-Abelian correction to the QCD potential.

This means that, as t0 increases, the observed coupling
decreases This i.s what we mean by asymptotic freedom
At the same time, as t0 decreases, the coupling increases.
Again, explicit calculation verifies this behavior. Of
course, it is easier to go to small energy than large, and
we shall see that at low energies the effective coupling de-
duced from perturbation theory actually diverges. This
shows that perturbation theory will not be applicable at
low energies where, apparently, the interaction becomes
very strong. In this fashion, a perturbative description at

short distances and high energies is compatible with
confinement at long distances and low energies.

Let us now go on to make these observations more
quantitative, by introducing an explicit equation for the
effective coupling. This discussion will also serve to in-
troduce a very important concept for QCD, the renor
malization group.

2. The renormalization group and the effective coupling

Let us see what the two-particle scattering amplitude
looks like for momentum transfers not equal to t0. As we
have seen, it is necessary to introduce a unit of mass p,
called the renormalization scale. In the case at hand, for
heavy-particle scattering with momentum transfer t0, we
may choose p as

t02= (2.38)

2 2 1
+a2oa, (p ) +

jk2
(2.39)

with a2& a number and a20 a possibly complicated func-
tion of the masses and the infrared cutoK Now here is
the fundamental observation, upon which the renormal-
ization group is based. The group consists of simply the
set of all rescalings of p. The amplitude A (k ) is a physi
cal quantity, which can, in principle, be measured by ex-
periment. As such, it cannot depend on our choice of p
This is equivalent to Eq. (2.28), or in this case,

d [tA(t)]
dp

Then, from Eq. (2.39),

da, (ju ) = —a2ia, (i )+

(2.40)

(2.41)

Thus we have derived an equation for the effective cou-
pling, which determines its p dependence, so long as the
coupling remains small enough that higher-order terms
remain small. The solution to this equation is known as
the eQectiue or running coupling According .to our ob-
servations above, in QCD we shall find that a2i )0, so
that the coupling decreases as p increases. Thus asymp-
totic freedom is a quantifiable concept.

The conventional way of expressing asymptotic free-
dom is through the dependence of the linear coupling
g(p)=+4na, (p ),

This notation is a generalization of the specific choice,
Eq. (2.33},that we have made to define the amplitude. In
fact, the latter is a special case of a "momentum subtrac-
tion scheme, " as introduced in Sec. II.C.2. To define
A (to) in perturbation theory, it is necessary to introduce
a renormalization mass, and Eq. (2.33) is one way to do
this.

In terms of a, (p ), the amplitude is of the form

2 1 2 2 ln(k/p)A(k )=a, (p ) +aqia, (p )
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p =p(g(p)),dg(p)
dp

(2.42) out according to the MS scheme, then the corresponding
A is called AMs.

where the beta function is a power series in g beginning at
O(g'), E. Quark masses

a, o.,
p(g) = —g pi+ p+. . .

4m. '
4m

(2.43)

p, can be found directly from a&i calculated as above, or
from any other physical quantity that depends on p in
perturbation theory. It is, as expected, positive for QCD,

p, = 11—2nf/3=(11K, —2nf )/3, (2.44)

(2.45}

where the value of u, (po) gives the boundary condition
for the solution of the difFerential equation. In this form,
the running coupling seems to depend on both a, (po) and

po, but in fact it has to be independent of where we start.
Therefore it is often convenient to write a, (p ) in terms
of a single variable,

a, (p )=— i 2
(lowest order ),4m

P,ln(p /A )
(2.46)

where

2~/(P, a, (~o2) )
A —poe (lowest oidel')

sets the scale for the running coupling. This scale is the
famous A&co which is the object of much measurement.

A more accurate solution for a, (p ) is obtained by us-

ing the first two terms in the p function. One conven-
tionally writes a, (p ) in an expansion in powers of
1/ln(p /A ), where the coefficient of [1/ln(p /A )]"is a
polynomial in ln[ln(p /A )]. Keeping P, and P2 allows
us to determine the coefficients of [1/ln(p /A )],

cr, (p')

P,ln(p /A )

P2ln[ln(p /A )]

Piln (p /A )

+0
ln(p/A )

(2.48)

where pi=102 —38nf /3 Notice t.hat there is no contri-
bution of the form c/ln (p /A ). Such a contribution
can be absorbed into a redefinition of A. One defines A

by the condition that c =0. If renormalization is carried

where nf is the number of flavors of quarks and X, the
number of colors. The positive contribution, 11, comes
mainly from the non-Abelian diagrams, Fig. 5. The neg-
ative contribution, —2nf /3, which weakens asymptotic
freedom, comes from the fermion loop diagram in Fig. 4.
In these terms, the solution to the lowest-order approxi-
mation to Eq. (2.42) can be written in terms of a, as

~z, (po)
&,(p )= i i z (lowest order),

1+(Pi/4~)~, (po)»(p'/po)

Having discussed the QCD coupling, we now turn to
the other physical parameters in the Lagrange density,
Eq. (2.1), the quark masses. When we compute higher-
order loop graphs in the theory, the corrections to the
masses are divergent (infinite but temporarily controlled
by some regularization process) and the masses them-
selves must be renormalized. The simplest renormaliza-
tion scheme, "MS," or Ininimal subtraction, involves the
continuation of the theory into a dimension difterent
from four (Appendix C). I.et us illustrate this feature in

QED, in the MS scheme. When we compute the one-
loop change in the mass, we find, in 4—2e dimensions,

mo=m 1+ —+O(e }
3e 1

8~2 ~
(2.49)

e 3 pl
m, =m 1+ 2 ——ln +O(e )

8m 2 p
(2.50)

where p is an arbitrary mass scale. We thus know the
identification between the mathematical parameter in the
renormalized Lagrangian and the quantity that is mea-
sured in the laboratory.

For QCD this last step does not work. Color
confinement is postulated to explain the absence in Na-
ture of free quarks, and therefore the physical mass is
unobservable. In perturbation theory there is a parame-
ter mo and a renormalized parameter I, which is treated
in the renormalization-group equation in the same way as
the coupling constant. If we choose the mass-
independent renormalization scheme given above, then
the solution of the renormalization-group equation fol-
lows from the introduction of a running coupling con-
stant g (p) for the quark-gluon interaction and also a run-

where mo is the mass parameter in the Lagrangian in the
absence of interactions (e =0), and m is the parameter
that we use in the interacting case. Note that both
masses are still mathematical parameters. As expected,
as E~O(n —&4) the difference between the two is infinite,
corresponding to an infinite shift in the mass due to the
interaction of the electron with its own electromagnetic
field. This is not as bad as it sounds, since mo, in particu-
lar, is not observable. The advantage of using this renor-
malization scheme is that m and mo are related by a sim-

ple formula which involves an expansion in pole terms
with residues that are powers in the renormalized cou-
pling constant.

Note that ~either I nor mo is the physical mass of the
electron. We must define the physical mass of the elec-
tron, m„as the position of the pole in the renormalized
electron two-point Green function. An examination of
the corrections to this propagator in perturbation theory
yields the finite relation
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ning mass m (p) for every quark flavor (up, down,
strange, etc). In the theoretical analysis of deep-inelastic
scattering from "light-mass" quarks, the only true scale
is the quantity AQCD The running masses decrease as
the scale increases, so ratios such as m„/AocD are small
for the up, down, and strange quarks (Gasser and
Leutwyler, 1982). Therefore we are justified in treating
these quarks as massless. The running mass is evaluated
at a scale where it is small, and therefore plays no role in
the analysis of data.

In the case of the heavier quarks, such as charm, bot-
tom, and top, the masses from spectroscopy are large,
AQCD (I~ (w b (Ug g, so there are new scales in the
theory. First we observe that, when w'e choose the renor-
malization scale close to the mass m& of the heavy quark,
the pole of the heavy-quark propagator is close to
p =m& [with order a, (m&) corrections]. At scales of
virtuality well below the quark mass, the only effects of
heavy-quark propagators are in loop corrections, and
these are of a form that permits them to be canceled by
adjustment of renormalization counterterms. This is the
decoupling theorem of Appelquist, Carazzone, and
Symanzik (Symanzik, 1973; Appelquist and Carazzone,
1975, 1977). When we work with virtualities well above
the heavy-quark mass, it is the mass that can be neglect-
ed: we treat the quark on the same footing as the light
quark, and the renormalization scale p is of the order of
the large scale. Clearly we have two regimes: when

p»m&, the heavy quark participates fully, and when

p«m&, we should omit the heavy quark. Matching
conditions are necessary. As Collins, Wilczek, and Zee
(1978; see also Witten, 1976; Georgi and Politzer, 1976)
showed, this can be done by a suitable choice of renor-
malization scheme. They use MS for everything when

p&m&, but they use zero-momentum subtraction for
loops with heavy quarks when p & m&, and MS for every-
thing else. This method gives automatic decoupling of
heavy quarks when it is applicable and allows calcula-
tions at scales of order m& with all mass effects taken
into account. At the break point p =m&, the number of
active quark flavors in the P function is changed by ex-
actly one, and the coupling is made continuous there. It
can be shown by explicit calculation that, at the one-loop
approximation, this break point is at p/mti = 1 and not
at some other ratio, provided that MS renormalization is
used (Collins and Tung, 1986). If desired, higher-order
corrections to this matching condition can be calculated.
It is not yet known how to make an accurate direct ex-
perimental measurement of a running quark mass, so we
simply adjust I& to fit a physical quantity such as the
production cross section. Therefore one should not be
surprised when these masses do not exactly agree with
the naive expectation of one-half the energy of the
threshold for "open" heavy-quark production.

F. Infrared safety

where the p; denote external momenta and m; the inter-
nal (quark) masses mf and any external invariants that
are also small. It is quite common that the coefficients a;
are large, regardless of the value of a, (p). In fact, almost
all cross sections in perturbative QCD are infrared (IR)
divergent, because of the vanishing gluon mass (see Sec.
IV). That is, they are not even defined in the renormal-
ized theory. Nevertheless, we shall find that there is a
large class of quantities which are infrared safe (Sterman
and Weinberg, 1977; Dokshitzer er al. , 1980). Infrared-
safe quantities are those which do not depend on the
long-distance behavior of the theory. For such quanti-
ties, the a„are infrared finite and also possess a finite lim-
it for vanishing I;, so that

2 m2 P7l;o, ,g(p) =o,O, g(IM) '1+0
p2 p2 p2 Q2

(2.52)

where Q is a scale characteristic of the large invariants
among the p; p . (When there is more than one such
scale, the situation becomes more complicated but can
remain within the realm of pQCD. )

For an infrared-safe quantity, Eq. (2.28) has the solu-
tion

2

a 2,0,g(p) =o(1,0,g(Q)),
p

(2.53)

in which all momentum dependence has been put in the
couplings. When Q is large, the coupling decreases, and
the perturbation series becomes better and better.

A major goal of perturbative QCD is to identify and
analyze experimental quantities to which asymptotic
freedom may be applied consistently. We shall often find
it necessary to reorganize the perturbation series to iden-
tify and compute infrared-safe quantities. Typical of the
results are the factorization theorems to be discussed in
Sec. IV. Before reorganization, the coefficients in the
perturbation series are so large that it is of no practical
value to use them. After reorganization, we isolate fac-
tors for which low-order perturbation theory is useful in
practical applications.

III. THE PARTON MODEI: FUNDAMENTAL
CROSS SECTIONS

A. Overview; heuristic justification

practical case. Let o [p;.p /p, m; /p, g(p)] represent
some physical quantity that we can compute in perturba-
tion theory,

2 cc ~PI PJ Vlf PI PJ mg
o

2 . 2g(p) = y a„.. . er(p),
P P n ——0 . P P

(2.51)

With our solution for the running coupling, we now
have an idea of how asymptotic freedom can help in a

The parton model is applicable, with varying degrees
of accuracy, to any hadronic cross section involving a
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large momentum transfer. Historically, its development
(Bjorken and Paschos, 1969; Feynman, 1969, 1972) was a
response to the observation of scaling (Bloom et al. ,
1969; Briedenbach et a/. , 1969; Friedman and Kendall,
1972), which we shall define below. The parton model in-
terprets scaling as a consequence of charged pointlike
constituents in the proton. These pointlike constituents
are the quarks of QCD.

The parton model is, in essence, a generalization of the
impulse approximation. We assume that any physically
observed hadron, of momentum pi", is made up of con-
stituent particles, its "partons, " which we shall identify
with quarks and gluons. At high energy, we neglect the
masses of hadrons and partons compared to the scale Q
of the hard scattering. Furthermore, we assume that
every relevant parton entering the hard scattering from
an initial-state hadron has momentum xp", with
0&x & 1; here pf" is the momentum of the parent hadron
and within the hard scattering we make the approxima-
tionp =0.

Parton-model cross sections are calculated from the
tree graphs (no loops) for partonic scattering, by combin-
ing them with probability densities, as follows. Consider
collisions of hadrons A and B to make some suitable final
state, e.g., one containing a lepton pair of large invariant
mass. (This particular case is the Drell-Yan process. )

Then the parton-model cross section for this process has
the schematic form

1
do c(l)- g I dz da k(l/z)ac)k(z),

partons k

(3.2)

where now Dc&k(z) is the fragmentation function that de-
scribes the probability for parton k, with momentum
i"/z, to produce a hadron C (l") in the final state. A gen-
eral parton-model cross section will involve both initial-
and final-state hadrons of definite momentum.

The physical insights behind the parton model are
most easily seen in deeply inelastic lepton-hadron scatter-
ing. Figure 6 gives a schematic picture of this process in
the spirit of the parton model. Figure 6(a) shows the sys-
tem before the scattering, as seen in the center-of-mass
frame. The hadron, say a nucleon, consists of a set of
partons (denoted by X's), in some virtual state of definite
fractional momenta g~p. The central observation is that
this virtual state is characterized by a lifetime ~ in the

o.„z(p,p )- g I dx dx'&,"(xp,x'p')
partons i,j

XP;~„(x)$/)~ (x '), (3.l)

where o'; is the corresponding Born-approximation cross
section for the scattering of partons i and j to produce
the chosen final state, and $,.&1, (x) is the probability den-

sity for finding parton i in the hadron h, carrying
momentum xp, 0~x ~ 1. Here P;&„ is called the distri
bution of parton i in hadron A.

Similarly, for a final-state hadron C, with momentum I,
we relate hadronic to partonic cross sections by

X

(c)

FIG. 6. Schematic parton-model picture for deep-inelastic
scattering.

1 /Q2
2PRO

(3.3)

with Ro the radius of the nucleon. Such an estimate
makes sense to the extent that the partons are e8'ectively
"frozen" during the short time it takes the electron to
pass by. Then the cross section may be written as the
probability of finding a single parton with given momen-

nucleon rest frame. The precise value of w depends on
the details of nucleon structure. I.et us suppose, howev-
er, that there is an eIIFective lower bound, ~& ~0, so that
the nucleon is made up primarily of virtual states of
nonzero lifetime in its own rest frame.

In the center-of-mass system, the nucleon sufFers
both Lorentz contraction and time dilation. Thus, in
this frame, the lifetime of our virtual state is
r(1 —u' /c ) '~ &&r, with u* the velocity. Combined
with Lorentz contraction (indicated in the figure by a
disc shape), this means that the time it takes the electron
to cross the nucleon vanishes as the center-of-mass ener-
gy goes to infinity.

Therefore, at the time of collision, Fig. 6(b), the elec-
tron sees a collection of partons that are eIIFectively
"frozen" during its transit. To exchange a large momen-
tum q" with one of the partons, the electron must come
as close to it as O(1/Q), Q = —q, in the transverse
direction, by the uncertainty principle. The details of the
exchange depend on the underlying electron-parton in-
teraction, such as QED.

Most importantly, if we assume that the partons are
more or less randomly spread out over the disc, the prob-
ability of finding an additional parton near enough to
take part in the hard scattering is suppressed by the
geometrical factor
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turn fraction, times the cross section for the interaction.
After the collision, Fig. 6(c), anything may happen,

and as the scattered electron recedes, the fragments of
the nucleon interact, create quark pairs, and eventually
respect confinement. All this is assumed to take place on
time scales that are also long compared with the
electron's collision with the nucleon. Then the process of
"hadronization, " by which quarks and gluons coalesce
into the observed particles, happens too late to inhuence
the hard scattering itself. This assumption underlies the
idea of treating the parton-electron scattering in the elas-
tic Born approximation. %e do not assume that the scat-
tered quark is really on-shell, only that it is much closer
to the mass shell than Q and lives a much longer time
than 1/Q, as Q ~ ao.

In summary, the parton model rests upon two physical
concepts: (a) the I.orentz contraction and time dilation
of internal states of the nucleon and (b) the long-time na-
ture of hadronization. The "initial-state" interactions be-
tween partons happen too early to affect the basic scatter-
ing, and hence the inclusive cross section, while the
"final-state" interactions between fragments happen too
late. Up to kinematic factors, then, the scattering is
directly proportional to the density of partons, which is
frozen over the short scattering time scale.

To apply the parton-model formulas, Eqs. (3.1) and
(3.2), we need to calculate elastic-scattering processes for
these partons in the Born approximation. Of course, we
do not get something for nothing, and it will also be
necessary to incorporate information on the structure of
hadrons via the functions P;&h(x). The magic of the par-
ton model is that it is not necessary to solve the problem
of hadron binding. Instead, the required information will
be available from experiment. To see how, we study
cross sections for the scattering of hadrons and leptons.
Such cross sections will begin at order a, with a =e /4n
the electromagnetic (or more generally electroweak) fine-

structure constant.

B. Lepton-hadron cross sections

There are three standard lepton-hadron parton-model
cross sections, corresponding to the following underlying
partonic reactions: (1) lepton-parton elastic scattering,
(2) lepton pair annihilation into parton pairs, and (3) par-
ton pair annihilation into lepton pairs. They correspond,
respectively, to deeply inelastic scattering, e+e annihila-
tion, and the DreI/-Yan process At the . (observable) ha-
dronic level, these cross sections are all inclusive for had-
rons in the final state. In this subsection we treat deeply
inelastic scattering.

where l(k) represents a lepton of momentum k", h (p) a
hadron of momentum p", and X an arbitrary hadronic
state. Normally, h (p) will be a nucleon or nucleus. The
process, illustrated in Fig. 7, is initiated by the exchange
of vector boson V. The classic DIS experiment is totally
inclusive in the hadronic final state, so that it is necessary
only to observe the outgoing lepton, of momentum k'".
The discussion of DIS, more than that of any other cross
section, is couched in a rather specialized kinematic no-
tation, which we shall now brie6y review. It should be
kept in mind that the kinematics are much more general
than the parton model, and even than pQCD.

In DIS, the momentum transfer between lepton and
hadron, q, is spacelike,

(3.5)

Q'
2p 'q 2NzI, v

(3.6)

where v is the energy transferred from the lepton to the
hadron in the hadron (target) rest frame,

v=7'9/ma =Ek Ek . (3.7)

v is naturally related to the dimensionless variable y,

p.q Ek —Ek
3' = p.k E (3.8)

which measures the ratio of the energy transferred to the
hadronic system to the total leptonic energy available in
the target rest frame.

For a nucleus with atomic number A, it is usually con-
venient to rescale x by A, so that the denominator in Eq.
(3.6) is still the mass of a nucleon. For fixed x, the mass
of the hadronic final state is given by

W =m&+ (1—x) .
x

(3 9)

Thus, for x fixed and Q large, the mass of the hadronic

In addition, as the term implies, in DIS the hadronic final
state X has an invariant mass much larger than that of
the nucleon. This is normally parametrized in terms of
the Bjorken scaling Uariable x,

1. Deeply inelastic scattering kinematics

A deeply inelastic scattering (DIS) process is generical-
ly of the form

l (k)+ h (p) ~l'(k')+X, (3.4) FIG. 7. Deeply inelastic scattering.
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final state is also large.
The incoming lepton Inay be an electron, a muon, or

an (anti)neutrino (for recent references, consult Geesa-
man et a/ , 1.990), and the exchanged vector boson a pho-
ton, W, or Z. At lowest order in electroweak interac-
tions, the cross section may be split into leptonic and ha-
dromc parts,

al to q q@. Corrections to this approximation vanish for
V =y and are suppressed by the ratio m& /m) for
V= 8 +—

,Z.
The leptonic tensors can be evaluated explicitly (with a

conventional but arbitrary normalization) from

(3.12)

d k' ~4

2slk'I 4m (q —m) )
(3.10)

where V labels the exchanged vector boson, of mass mz,
and where

where I &l is the perturbative vertex coupling lepton I to
vector V and the (unique) outgoing lepton l', but with the
factor c), removed. The factor 1/2 is for the spin average
for unpolarized electrons. It should be removed for neu-
trino scattering. To be specific, we may take

c
W

(3.11)

PP ~
—yP

yl
(3.13)

(3.14)

I" =y"(I+y5) . (3.1S)
for reasons which will become clear in a moment. (Note
that each weak-interaction coupling involves

g = e/ isn8~. ) In this equation, we assume the form
—g p/(q —m) ) for the vector-boson propagator,
neglecting gauge- and mass-dependent terms proportion-

The hadronic tensor, on the other hand, is defined to
all orders in the strong interaction in terms of the matrix
elements

w(~h)(p, q)= g g (h(p, o)lj„(0)~x)(x~j„(0)h(p, (T))(2m)'5'(p+q —p ) .1

cr X
(3.16)

Here, j„(x)is the appropriate electroweak current operator, labeled by the corresponding vector boson and divided by
the appropriate c~ [Eq. (3.11)]. (This procedure does not result in unit coupling for quarks; see Sec. III.B.2.) When ap-

propriate, we average over the nucleon spin o., which simpli6es our analysis. ' We have performed this average in Eq.
(3.16), and the normalization factor includes a factor 1/2 for this average.

Symmetry properties give important restrictions on the form 8'„' "' may take. These restrictions may be summarized

by expanding the tensor in terms of scalar structure functions W,' "'. The general expansion may be expressed as

pr( vh) P ~
IV( vh)(x g2)+ P 'q P 'q

pv JMv x, P P 2 & & 2

1 gr( vh ) (x g 2
)

Plh

(3.17)

i4Spin dependence has lately emerged as a topic of interest and controversy in experiment (Ashman et ah. , 1988, 1989; see also Al-

guard et ah. , 1978, 1979; Baum et a/. , 1983}and theory (Altarelli and Ross, 1988; Carlitz, Collins and Mueller, 1988; Efremov and

Teryaev, 1988; Bodwin and Qiu, 1990; Jatfe and Manohar, 1990; Gluck and Reya, 1991).
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Note that there are a variety of conventions in the litera-
ture about the definitions of 8' and of the variable v.
This variation is less pronounced for the scaling structure
functions I;, to be defined below. Our conventions for
the I; s are consistent with those in the 1992 Review of
Particle Properties (Particle Data Group, 1992), taking
into account its Erratum, ' and with the detailed deriva-
tion found in Chapter 6 of de Wit and Smith (1986), al-
though our 8',. difFer from those of the latter.

The structure functions are generally parametrized in
terms of x and Q . At this stage, there is no relation be-
tween the 8" "' for difFerent bosons V, although parity
invariance of the strong interactions implies (for photon
exchange only)

I'I.,~ =I'I+I'3 +i..g
= 2„—+i . (3.22)

Ek~ X" ' 28', "'(x,q )sin (8/2)
dx dg m

+ Wz "'(x,q )cos (8/2)

The structure functions can be found directly from ex-
periments in which only the outgoing lepton's momen-
tum is measured. For instance, the difFerential cross sec-
tion in terms of the dimensionless variables x and y may
be written in terms of incoming and outgoing lepton en-
ergies and scattering angle in the target rest frame as

W',&"'(x,Q') =0 . (3.18)
E+E'+ Pr( vh)

( 2) 2(8/2)

F2(x, Q )=
mp

8'2(x, Q ), (3.19)

The functions W~ of Eq. (3.17) are usually replaced, for
the purposes of exhibiting data, by alternate, but
equivalent, structure functions I;, which will turn out to
be particularly simple in the parton model,

F,(x, Q )=8', (x, Q ),

where the + corresponds to V = 8'*, and where

~(l y) 8 2 ml, E
4 7

~(vg' ) ~(v W ) ~2+ mI, E
2sin (8' )(Q +Mii )

(3.23)

(3.24)

F3(x,Q )= 8'3(x, Q ) .
my

Yet another equivalent basis for the structure functions is
inspired by assigning polarizations to the vector boson V,
in the target rest frame:

e~ (q) = —(0; 1, —i, O),1

2

eI (q) = —(0; l, i, O),1

2

ei,„s(q)= ( Q +v;0, 0, v) .1

(3.20)

These correspond to helicities of +1, —1 and to longitu-
dinal (sometimes called "scalar" ) polarization for the ex-
changed particle, respectively. Up to corrections of or-
der mi, /Q, 8'„',"' has the expansion

8'„', '=g ei'(q)„ei(q)gi„(x, q ), (3.21)

The erratum refers to the expression for I 3 on page III.52 in
Particle Data Group, 1992; it does not apply to the Particle
Properties Data Booklet.

where X=I.,R, long labels the helicity. In this approxi-
mation, the "helicity" structure functions are related to
the structure functions of Eq. (3.19) by the simple rela-
tions

(lh) 2 mI xp

dx dy 2 2E

2

+S y —~ xI."")
y g X (3.25)

where 5~ is +1 for V= 8'+ (neutrino beam), —1 for
V= 8' (antineutrino beam), and zero for the photon,
while mh is the target mass.

2. Cross sections and parton distributions

Now let us see what the parton model has to say about
deep-inelastic scattering. As emphasized above, in the
parton model the scattering of the nucleon is due entirely
to the scattering of its individual constituents. If these
constituents are quarks and gluons, then only quarks will
couple to electroweak currents in the Born approxima-
tion. The DIS cross section is then given by the probabil-
ity Pf/I, (g) of finding a quark of Savor f and fractional
momentum g' in hadron h, times the cross section for the
elastic scattering of that parton.

A typical parton-model DIS cross section is therefore
given by

(lh) ~(lf)

dEdn, "q), =&J."'dE,dn, '"""-"'
(3.26)

Here 0~ is the weak mixing angle, and
m'a /(2M' sin 8s ) =Gz/m', with Gz the Fermi constant.

Other useful expressions for this cross section are given
directly in terms ofy,
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F,'~"'(x)=y f de,' /'(x/g)y/„(g) . (3.28)
0

Here the F ' are the structure functions at the parton
level; they can be calculated from the Born diagram of
Fig. 9. The factor of 1/g in Eq. (3.27) arises from the
normalization of the parton states as compared with the
hadron states and from the factors of p in the definitions
of the structure functions from 8'„—the vector p~ must
be changed to gp" for scattering off a parton.

For example, with electromagnetic scattering, we have

(3.29)

where eQ& is the electric charge of the quark of fiavor f.
A factor e has been absorbed into cr in Eq. (3.11). This
gives

2F'~ '(x)=F'rI'(x)=Q 5(1—x) (3.30)

Substituting these functions into Eqs. (3.27) and (3.28),
we find the electromagnetic structure functions in terms
of quark distributions,

2xFIr"'(x)=F',r '(x)=g Q/xPI „(x) .
f

(3.31)

Two important aspects of these expressions are (i) the
structure functions depend on the Bjorken scaling vari-
able x only, and not on the momentum transfer directly;

FIG. 8. Parton-model picture of deep-inelastic scattering: (a)
Parton-model scattering. (b) Interference graph.

The distribution Pf/h is at this point undetermined. The
perturbative equivalent of the parton-model picture of
DIS is illustrated, in "cut diagram" notation (Appendix
B), in Fig. 8(a).

We note the absence of diagrams such as Fig. 8(b), in
which the scattering of quark f with fraction g interferes
with the scattering of a quark of fraction P, the momen-
tum being made up by an extra gluon. This feature is re-
ferred to as the "incoherence" of the parton model.

From Eqs. (3.10), (3.17), and (3.19) we derive relations
for the structure functions F; in the parton model,

F.' "'(x)=yf ~F.' I'(x/g)y/, „(g) (a =1,3), (3.27)
0

FIG. 9. Born diagram.

(ii) the two functions satisfy the relation 2xF, =F2
The first result is known as scaling (Bjorken, 1969). Its

observation (Bloom et al. , 1969; Breidenbach et al. ,
1969; Friedman and Kendall, 1972) was the inspiration
for the parton model. The second, known as the Callan-
Gross relation (Callan and Gross, 1969) follows from the
specifics of the Born diagram, Fig. 9, and as such is evi-
dence for the spin-1/2 nature of charged partons (the
quarks).

Evidently, measuring F$ or F2 immediately gives an
experimental determination of the combination of distri-
butions, gfQfff/h(x) for h a proton or a neutron. Now
isospin invariance implies that

(('u/p Pd/n ~ Pd/p Pu/n (3.32)

with u ihe up and d the down quark. In the approxima-
tion that the proton and neutron contain u and d quarks
only, a measurement of F2 for p and n, combined with

Eq. (3.32), determines the distributions p„/i, and pd/h.
These distributions can then be used to predict other DIS
cross sections, such as neutrino scattering, to the same
approximation.

Of course, in real life things are not so simple. Quan-
turn mechanics tells us that virtual states will include
quark-antiquark pairs of every Aavor. The sum in Eq.
(3.31) will therefore include the strange, charm, and even
the bottom and top quarks, in addition to all the anti-
quarks. Although we may expect that the admixture of
very heavy quark pairs in a nucleon is relatively small, we
clearly need more information than is supplied by elec-
tromagnetic scattering alone, even to determine the dis-
tributions of light antiquarks, for instance. For this pur-
pose, we shall find neutrino and antineutrino scattering
ideal.

The parton-model cross sections for charged weak
currents are almost as easy to compute as for the elec-
tromagnetic current, and the answers are just as satisfy-
ingly simple. Quarks of definite mass —that is, the
quarks of the strong-interaction Lagrangian —are not
eigenstates of the wea¹interaction Lagrangian. As a re-
sult, the basic vertex for u + 8' —+d is almost like the
vertex for v, + W ~e, that is, (1/2&2)gy"(1 —y, ),
with g =e/sin8ii, but not quite. Instead, g is replaced
by g V„d, where V„d is an element in a three-by-three uni-

tary matrix called the Cabibbo-Kobayashi-Maska~a mix-
ing matrix. As a result of the mixing, the absorption of a
8' can change an up quark not only into a down quark,
with coupling gV„d, but also into a strange quark, with
coupling gV„„or a bottom quark, with coupling gV„b.
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(3.33)

V„d —cos(gc, V„,—sin8&,

The three mixing-matrix elements V„d, V„„and V„b where 0& is the same Cabibbo angle as was first intro-
form a row of the unitary matrix V and hence satisfy duced to relate strangeness-changing to strangeness-

preserving weak decays.
We are now ready to compute the parton-modejL ha-

In practice, V„b is relatively small, and dronic tensor for charged weak currents acting on the up
quark, through the exchange of a 8' from an incoming

(3.34) antiquark (of any flavor). We find [compare Eq. (3.29)]

d3 '
( W„', "')&, = f Tr[y„(1 y—~)(gf+g)y„(1 —y5)P](2m) 5 (p' —p —q), (3.35)

F( wh) (F(w+h)+F( w h)
)i+ i —i2

(3.36)

We now introduce the notation Uh(x) for the parton dis-
tribution for quark U of charge 2/3 (up, charm, top) in
hadron h, and Dh(x) for quark D of charge —1/3 (down,
strange, bottom). Et is also convenient to define valence
distributions for the U and D quarks by

Uh(x) = Uh(x) —Uh(x),

D„'(x)=Dh(x) —Dh(x) .
(3.37)

where we have used Eq. (3.33) and have, as usual,
neglected the masses of the outgoing quarks. The factors
of

~ V„~ ~
have sumined to unity in the inclusive cross sec-

tion, while the overall factors c~ are absorbed into the
normalization of the cross section as in Eq. (3.10).

Computing the I' s for individual quarks and anti-
quarks, and hence for hadrons, is now a straightforward
matter of taking traces. We shall not give the details
here, only quote the results. The relation to parton dis-
tributions is simplified for some purposes in terms of the
sums and differences of neutrino and antineutrino struc-
ture functions,

while for the differences we get

F~2~' =x g Dh(x) xg Uh(x)—,
D U

F3 g[D—h(x)+Dh(x)] g [Uh(x)+ Uh(x)]
D U

(3.40)

If we measure all four of these distributions, for both p
and n, and assume isospin invariance and an isospin-
symmetric sea [i.e., u (x)=d(x) =s(x), with c (x)
=b (x)= t (x)=0], the full set of cross sections becomes
overdetermined, and the self-consistency of the parton
model may be tested. The sole one of these assumptions
that is dangerous in @CD is the assumption of isospin
symmetry of the sea quarks.

For completeness, let us give the same results as above,
in terms of neutrino ( W+ ) and antineutrino ( W ) struc-
ture functions directly,

F2+"'=x g [Dh(x)+Dh(x)]+x g [Uh(x)+ Uh(x)],
D U

(3.39)
F&+"'=g Dh(x)+g Uh(x),

The motivation underlying these definitions is that for
every extra antiquark produced in a virtual state there is
also an extra quark. The valence distributions are what
is left when the influence of these "extra" quarks (usually
called sea quarks) is removed. (However, note that sea
quarks and antiquarks need not necessarily have the
same distribution in x.)

In these terms, the parton-model results for charged
weak interactions are remarkably informative. First of
all, we find that the relation characteristic of spin-one-
half partons still holds,

and

F2 "' =2x g Dh(x)+g Uh(x)
D U

F,'~ h&=2x yD„(x)+y U„(x)

F~~ h~=2 yD„(x)—y U„(x)
D U

F~,~ h~=2 —yD„(x)+y U„(x)
D U

(3.41)

(3.42)

(3.43)

(3.44)

2~y ( wh) y ( wh) (3.38)
C. 8+8 annihilation

The explicit results for the sums of structure functions
are

Another fundamental cross section is the annihilation
of lepton pairs into hadrons, e+e —+ hadrons. There
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are three variations on this theme for which we can
derive predictions in the parton model: the total cross
section, single-hadron inclusive cross sections, and jet
cross sections.

1. Total cross section

The total cross section for e e annihilation into had-
rons falls immediately into the parton-model framework,
because it is completely inclusive in the hadronic final
state. At the same time, there are no hadrons in ihe ini-
tial state, so the parton-model cross section is given im-
mediately in terms of the lowest-order electromagnetic
elastic cross section for e e ~qq. This cross section is
given by the "annihilation" Feynman diagrams, shown in
Fig. 10, in which the lepton pair annihilates into a virtual
photon or Z vector boson, which subsequently decays
into the quark pair. The fermion-vector vertices are
given by [compare Eq. (3.15)] eQ,.y" for the photon, with

Q; the fractional electric charge of fermion i, and for the
Z

eI"= . y"(V; —A;y~) .
slnH ~cosH g

(3.45)

Here A,. and V; characterize the vector and axial-vector
couplings and are given by

2; =r3 2Q;sin Ogr

V;=t3,
(3.46)

where X, is the number of colors, s is the squared
center-of-mass energy, a (=e /4m) is the usual elec-
tromagnetic fine-structure constant, and the sum is over
all quarks with masses small enough to be produced at s.

Qf is the fractional electric charge of liavor f. In com-
puting Eq. (3.47), we have neglected quark masses com-
pared to V's. Note that, because cr„„is directly propor-

with t3 the weak isospin of (the left-handed component
of) fermion i (t3=+1/2 for neutrinos and up quarks,
—1/2 for negatively charged leptons and down quarks).

At energies much less than the Z mass, only the virtual
photon is important, and we easily derive the cross sec-
tion from the electromagnetic vertex alone,

4%,mn
g Q2

S

tional to X„ its measurement is a direct observation of
the number of colors, X,=3, jointly with the fractional-
charge content of each Qavor.

At very high energies, like those available at SLC and
LEP, the Z becomes important and gives the full parton-
model annihilation cross section,

4N
a (s)„„= g Qf (1—2y Vf + [ Vf + Af ] y ),

3$

(3.48)

where the sum is over the final-state quarks and leptons
and where

1

~ 4 cosHgrslnHp
(3.49)

2. Single-hadron inclusive annihilation

q =I, +I~,
q=Q&0, (3.50)

with I& the incoming electron momentum. Two natural
dimensionless variables, defined in terms of invariants,
measure the energy and direction (relative to the electron
momentum) of the produced particle in the center-of-
mass system, q=0,

1=—(1—cos8 ) .
(3.51)

A stronger use of parton-model methods is found in
single hadro-n inclusiue (1PI) cross sections, for instance,
e+e ~h(p)+X, in which all events with a hadron of
momentum p are included. The corresponding ampli-
tudes, illustrated in Fig. 11, are the "crossed" versions of
deeply inelastic scattering amplitudes for the hadronic
antiparticle h. The latter process is found from 1PI an-
nihilation by transferring h from final to initial state,
where it is identified with h, and the positron from initial
to final state, where it is identified as an electron.

The kinematics for 1PI annihilation processes are
developed in an analogous manner to those for deeply in-
elastic scattering. The basic scale is set by the total
momentum,

FIG. 10. Born diagrams for e e annihilation.
FIG. 11. Inclusive single-hadron production in e e annihila-
tion.
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These variables are the analogs of, but not identical to,
the x and y defined in Eqs. (3.6) and (3.8).

For simplicity, we shall specialize to 1PI through a
photon, as is appropriate for energies well below the Z
mass. In this case we have, analogous to Eq. (3.10) for
DIS,

d~h+ =
2 LPy(l, )Wp~y.h)(p, q)dx dy,

1
e e 2 ~y i P (3.52)

with I.I' a leptonic tensor, given at order e, and 8'„
the hadronic tensor [compare Eq. (3.16)j, defined by

W(y") (p, q) = g ( Oj~yt (0)
~
X,h (p, o ) ) (X,h (p, o ) ~j,(0)~0)(2'�)5 (p +q

—p )
=1

7T

q(Jq" F(yh)( 2)+ p q
P P 2 q

P 'q F(yh) ( 2) (3.53)

The F 's are 1PI structure functions, in terms of which
the cross section is given by

F'y"'——3y (1 y)F'y"'—
dx dg 3 2

(3.54)

The factor X, is, as usual, the number of colors, included
so that we do not have to sum explicitly over the colors
of partons below. Note, as in Eq. (3.25), the explicit na-
ture of the y (angular) dependence.

The application of the parton model to 1PI cross sec-
tions is very straightforward. From Eq. (3.2) we have

do."+ (x,y, q2) d(Tf~ (x',y, q )
dx dz

dxdy f dx dy

XDf(y"'(z) gx' —x rz),
(3.55)

where the sum is over quark Savors f (not including anti-
quarks), since in the Born approximation only quark
pairs, and not gluons, are produced in the annihilation
process. Df(z) is the fragmentation function for quark f
into hadron h, with the latter carrying fraction z of the
momentum of the former. It now requires a very
straightforward calculation, involving a single fermion
trace, to derive the 1PI structure functions in the parton
model,

F(yh)( )
—

Q 2D ( )

or, in terms of the cross section,

(3.56)

where, as above, the angle is measured in the overall
center-of-mass frame.

do "+ (x yq )

g Qf (1+cos 8( ~ )Dh yf (x),
dx dg q

(3.57)

3. Jet cross sections

From Eq. (3.57), we see that in the parton model the
angular dependence of hadrons in the final state directly
follows that of the underlying quarks. The 1+cos 0
dependence is characteristic of spin- —, particles (scalar
quarks would have given sin 8, for instance). This
feature ranks with the Callan-Gross relation and the nor-
malization of the total annihilation cross section, as fun-
damental evidence for quarks.

There is even more to it than that, however. If we
really take Eq. (3.57) seriously, we may conclude that
each and every hadron appears in the final state in the
same direction as the virtual quark whose fragmentation
product it is. This would mean that, in any given event,
every hadron with a nonzero fraction of the total energy
would move in the direction either of the virtual quark or
of the virtual antiquark. In such a final state, all hadrons
would appear as part of one or two jets of parallel-
moving particles. Indeed, from this plaint of view, we can
compute a jet cross section, which in the parton model is
identical with the differential Born cross section for
e+e annihilation into quark pairs,

d a"P (cos8, q )

dx dy
=2l())', g Qf (1+cos 8),

(3.58)

where now 0 is the angle between either of,the jets and
the incoming electron in the overaH center-of-mass
frame. The factor of 2 relative to Eq. (3.57) comes from
counting both jets equally. The integral of this cross sec-
tion over 8 from zero to m is the total cross section, Eq.
(3.48).

Notice that this conclusion is not forced upon us by the
parton-model arguments of Sec. III.A. There we claimed
only that the cross section for a single hadron is closely
related to the underlying partonic direction. It is clear
that the extension to jet cross sections is approximate at
best. As we shaH see, however, this approximation be-
comes better and better as the energy increases. In fact,
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we shall be able to reinterpret the underlying Born cross
section in any inclusive parton-model cross section as a
cross section for jets, emerging in the directions of, and
with the energies of, the outgoing partons. In this
lowest-order approximation, the jets are "ideal" and con-
sist of a set of exactly parallel-moving hadrons. In realis-
tic cross sections it will be necessary to define what we
mean by jets more carefully.

l3. l3rell-Yan production

The production in hadronic collisions of a lepton pair
with large invariant mass (e+e,p+p, p+v„,p V„, etc.)

yields complementary information to that revealed in
deeply inelastic co11isions and electron-positron col-
lisions.

Since the theoretical framework for the analysis of
these processes was originally proposed by Drell and
Yan, ' these reactions are commonly referred to as ha-
dronic Drell-Yan (DY) production.

The study of massive lepton pair production started
with the Columbia-BNL experiment on proton-nucleus
collisions (Christenson et a/. , 1970, 1973). Reviews of
the early work can be found in Lederman (1976), Craigie
(1978), and Stroynowski (1981). Since the lepton pairs
have no direct interactions with hadrons, they are really
the manifestation of the production of virtual gauge par-
ticles, y, 8',Z, which couple to lepton pairs through
electromagnetic or weak interactions. As the virtual
gauge bosons are timelike, any on-mass-shell vector-
meson resonances that couple to virtual photons, such as
the J/ttj (Aubert et al. , 1974) and the Y (Herb et al. ,
1977; Innes et al. , 1977), are produced. The intermediate
bosons 8'* and Z can also be produ. ced as physical parti-
cles when the center-of-mass energy is large enough. In
the case of the intermediate bosons, the DY cross sec-
tions are largest when the particles are actually produced
on-mass-shell. Given their well-known branching ratios
into leptonic channels, the detection of single leptons at
large p, is the characteristic signal for the production of
W (Arnison et al. , 1983a; Bagnaia et al. , 1983; Banner
et al. , 1983a) and Z (Albajar et ol., 1987; Ansari et al. ,
1987).

Let us consider first the basic electromagnetic reaction
written as the production of a virtual photon followed by
its decay into a lepton pair,

A (p)+B (p') ~y*(q)+X
~1(k)+l'(k')+X,

where X labels all the undetected hadrons in the final
state so that the process is inclusive. The notation is the

~ See Drell, Levy, and Yan, 1969a, 19691, 1970; Drell and
Yan, 1970, 1971;Yan and Drell, 1970.

same as in the previous sections. Since the virtual pho-
ton is timelike, q =k+k' satisfies q =Q )0. One of
the easiest variables to measure experimentally is q, the
invariant mass of the pair. It is convenient to introduce
the DY scaling variable

(3.60)

where the total center-of-mass energy of the hadronic
colllslon ls determlIled from s —(p +p )

The parton-model interpretation of the DY process is
that in the hadronic collision two partons, say a quark-
antiquark pair, annihilate to produce the virtual photon.
In this case we write the hadronic DY cross section as a
product of the partonic DY cross section for the reaction

q (gp)+q(g'p')~l (k)+I'(k'), times two parton distribu-
tion functions,

do'~Ja(p p
d 2 =Xf dkdk'4'yea(k)
dg

do&)~(gp, g'p', q)
x $~~~(g') .

(3.61)

The distributions P(g) and P(g') are assumed to be the
same "universal" functions as are measured in deeply in-
elastic scattering. The hard scattering is the Born ap-
proximation for quark-antiquark annihilation into a vir-
tual photon, averaged over the color degrees of freedom
of the initial quark and antiquark. The resulting
differential cross section is

(3.62)

Substituting this result and the definition of ~ into Eq.
(3.61), we find for the photon

do ~Ja(p~p ~q)

2

, XQy f dkdk'4Ir~(C+(r K)4I„(k') . —
3X,qs ~

(3.63)

The general inclusive DY cross section is of the form

(3.64)

with V=y, 8'*,Z. The factor o.o contains the overall
dimensions, while the dimensionless function 8'zz is
defined as the integral over the appropriate product of
distribution functions times couplings (in units of e),
which we denote by D~~~,

W~~(r)= f dg f dg'5(r g')D~~(g, g') . —(3.6S)

In the electromagnetic case we have
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4m.a
3Nqs

(3.66) (W)tot
~as2 2—~z &—

3 sin O~cos g~ s s

while Wz~~ is computed with

D~ra(k 0') =X &,'{0,i~(k)Aquas(k')+0;~~(k)4, ia(k')] .

(3.67)
E. O(aa, ) processes

(3.75)

For intermediate boson production, we only have to
change cro and Dzz. In the case of Z, we have

1+[1—4 sin8~]
192K,sin 8s cos 8s, (q Mz) +MzI z

(3.68)

for the reaction qq~e+e, where I z is the total width
of the Z boson,

o.MzI'z=
z 2 [1—4sin 8s +8sin 8s. ] .

24sin O~cos 0~

(3.69)

The relevant product of distributions is

D~a(k 0') =X Cq {4,~~(k)4;~s(k')

The next level in complexity for parton-model cross
sections is that for which the partonic scattering involves
the inelastic emission or absorption of a photon. The
Born cross section will then be of order aa„ instead of a
as above. These processes are photoproduction and
direct-photon production processes, respectively (Owens,
1987).

Once again, the cross section at the hadron level is
given in terms of a convolution of parton distribution
functions, the hard-scattering parton-level subprocess
cross sections, and the appropriate fragmentation func-
tions. The inclusive invariant cross section of the type
3 +8—+C+Xis given by

0'
Ec 3 ( AB —+C+X)

dpc

= g J dx, dxbdz, P~lA(x~)4'bya(xb)
abed

+0—/g(k)4 /B(k )] (3.70)
X

z (ab +cd)DC«—(z, )5(s+ t+ u ),
z, rr dt

7T As
2

g (z) —8'z
12 sin O~cos Ogr

Mz q'=~z2
s

(3.71)

The corresponding results for V = 8' are

mz 1
4 2 z 2 z12K,sin 8~ (q —M~) +Ms I' s,

Dgg(g, g')=cos 8c{ug(g)ds(g )+cg(g)ss(f )]

+sin 8c{ua(C)ss(g')+c„(g)ds(g')]

for production in the qq channel, where C = 1

+ {1 —4~ Qq ~sin 8s ] .
The total Z production rate is found by integrating

over q, in the "narrow-width approximation"
rz «Mz

(3.76)

dcT
(w re)=

mom, e +
s 3 s Q

(3.77)

where in our case a, . . . , d label partons and/or the pho-
ton. Hatted variables, (s ), etc. , refer to invariants of the
partonic subprocess. As is conventional, we have explic-
itly exhibited the 5 function associated with the phase
space for the two-body scattering of massless particles in
Eq. (3.76). The other kinematic factor (s/z, n) is associ-
ated with the difFerence between the hadronic di6'erential
Ecd /dpc and the partonic difFerential (d /dt ).

Now consider the process of direct-photon production
in hadron-hadron collisions. The term "direct photon"
refers to those photons produced in the hard-scattering
subprocess which are not decay products of some parti-
cle. There are two two-body subprocesses that can pro-
duce direct photons: the QCD Compton subprocess

gq ~yq and the annihilation subprocess qq ~yg. The
cross sections for these are

+(A~B), (3.73)

uM~
12sin2e~

' (3.74)

where uz —=P„&„,etc. As usual, 8~ and 8c are the weak

mixing and Cabibbo mixing angles, respectively. Then
the total 8 production rate is

8 2 u t
e +

s t u
(3.78)

where e is the fractional electric charge of the quark q.
Note that the running coupling u, is a function of the re-
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normalization scale p. For transverse momenta of the
order of v's, these two subprocesses provide the dom-
inant contribution to direct-photon production. In other
kinematic regions, it may be necessary to incorporate
bremsstrahlung effects, which are QED corrections to
purely hadronic two-body scattering. We shall discuss
this issue in a later section. Here, we only note that we
must also construct fragmentation functions of photons
in partons, like Dz&~(z).

The case of photopr'oduction is quite similar since at
the parton level one is just a time-reversed version of the
other. Accordingly, the subprocess expressions difFer

only by color factors associated with the interchange of
the initial and final states. The two basic subprocesses
are QCD Compton scattering and photon-gluon fusion,
the cross sections for which are given by

1. Deep-lnelastlc scattering

There are a number of reviews of deep-inelastic
scattering experiments and comparisons of the measured
structure functions F,'(x, g ) [where i =p(e), v, v and
i =1,2, 3 (or I., for longitudinal)] with the QPM and
QCD; see, for instance, Sciulli (1990) and Mishra and Sci-
ulli (1989). We shall only describe briefly the main
features of this rather extensive area of experimental and
phenomenological work. The expressions for F,'{x,g ) in
terms of the universal parton distribution functions

P,z„( xg ), where (a, 2) label the parton and hadron
(mostly nucleon), respectively, are given in many text-
books, such as Roberts, 1990, and review articles (for ex-
ample, Tung et al. , 1989) and in Sec. III.B.2 above.

do
(yq ~gq) =—mao. , Se —+=

s 3 s u
(3.79)

do
dt

qq)= e +~2s t u
(3.80)

These subprocess expressions may be used in Eq. (3.76)
without fragmentation functions, in which case one ob-
tains the cross section for jet production. On the other
hand, inserting the appropriate hadronic fragmentation
function enables one to calculate the cross section for
photoproduction of that type of hadron.

F. The parton model and experiment

Historically, the parton model, or more traditionally,
the quark-parton model (QPM), was motivated by high-
energy experimental results of the late 1960s, especially
the famous deep-inelastic scattering experiment at SLAC
(Bloom et al. , 1969; Breidenbach et a/. , 1969; Feynman,
1969, 1972). The subsequent success of this picture in
providing a unified description of a wide variety of high-
energy processes gave strong impetus to the search for a
theoretical foundation for its validity, resulting in the
discovery of asymptotic freedom and the formulation of
perturbative QCD as the basic framework for describing
hard high-energy physics processes. In this section, we
summarize the main features of the QPM which have
been successfully compared with experiments. It is use-
ful to keep in Inind that the significance of the QPM
stems not from any specific triumph, but from the
coherent framework it provides to correlate a wide range
of processes. To review, the basic tenet of the QPM is
that a large class of (physically measurable) high-energy
cross-sections is related to a class of (theoretically calcul-
able) partonic cross sections through a set of universal
parton distribution functions, which represent the proba-
bilities of finding partons inside hadrons.

8. Scaling

The most striking feature of the first SLAC DIS data
(Bloom et al. , 1969; Breidenbach et al. , 1969) was scal-
ing, the approximate independence of the measured
structure functions F,(x, g ) of g —an indication of
scattering from pointlike constituents, the "partons, "
analogous to the classic Rutherford experiment on atom-
ic structure. The basic idea of the QPM originated from
this observed fact, which has since been corroborated by
similar observations in aI/ high-energy hard processes.

6 Quarks as pal tons

The identification of the "partons" with the previously
known quarks (from hadron spectroscopy, which con-
cerns physics at an altogether different energy scale) was
cemented by a series of seminal experiments and phe-
nomenological analyses: (i) the near vanishing of the lon-
gitudinal structure function in eX scattering suggested
that the spin of the parton is 1/2 —the Callan-Gross rela-
tion, Eq. (3.31); (ii) the measured value of the ratio of to-
tal cross sections for neutrino to antineutrino scattering
on isoscalar nuclei (i.e., nuclei with equal numbers of pro-
tons and neutrons, and hence of u and d quarks) is about
3. This result can be derived by integrating the
dlffcrcntlal closs scctlolls, Eq. (3.25), uslllg flic QPM ex-
pressions Eq. {3.42) and Eq. (3.44) for the structure func-
tions with all antiquark distributions set to zero. [The
corresponding cross-section ratio for scattering of neutri-
nos and antineutrinos from atomic electrons is also about
3 (Eichten et al. , 1973).] This striking fact strongly sug-
gests that the nucleon consists primarily of spin-1/2 par-
tons, rather than antipartons, which couple to the inter-
mediate vector bosons the same way as the leptons; (iii)
the subsequent detailed measurements of the difFerential
cross section d o. /(dx dy), Eq. (3.2S), and hence of the
full structure functions F,' "'(x,g ) have consistently
confirmed this interpretation and yielded a wealth of in-
formation on the distribution of these partons inside the
nucleon.
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c. The charge ratio

The structure functions F2(x, Q ) measured in
neutral-current (virtual) y exchange processes (l =e,p)
and in charged-current W exchange processes (l =v, v)
are in principle di6'erent. In the quark-parton model,
they are related to the same set of parton distribution
functions —in fact, as a simple sum of the latter, each
multiplied by an appropriate coupling constant (the
squared charge for y and an appropriate weak isospin
matrix element for 8/ exchange). After summing
over parton flavors, one expects F~z' '(x, Q )/
F~2""+' '(x, Q ) =5/18 for scattering off an isoscalar tar-
get A. This "charge ratio, " valid for all (x, Q ) where
the QPM applies, has been verified to a great degree of
accuracy in the very-high-statistics DIS experiments, for
example, BCDMS (Benvenuti et al. , 1987a, 1987b,
1990a, 1990b) and CCFR (MacFarlane et al. , 1984), after
appropriate small corrections from strange and charm
quarks and higher-order QCD corrections (Mishra,
1991).

d. Quark number sum rules

center-of-mass energy (for a comprehensive review, see
Wu, 1984), staying constant [see Eq. (3.47)] over certain
ranges (now known to correspond to regions between
heavy-quark flavor thresholds). This is the analog of scal-
ing behavior for DIS and suggests that the underlying in-
teraction mechanism is e+e ~ parton-antiparton pair.
The absolute value of this ratio is proportional to the
sum of the squared charges of the partons. The overall
constant is 1 for spin-1/2 partons and 1/4 for spin-0 par-
tons. The measured values agree well with the assump-
tion that partons are quarks with the usual assigned
charges.

b. Two-jet final states as evidence for underlying partons

Perhaps the most direct evidence for the existence of
partons comes from the clear emergence of jetlike ha-
dronic final states in experiments done at the PETRA
and PEP e+e colliders (Wu, 1984). The dominance of
these events gave the first visual evidence for the underly-
ing parton-antiparton pair final state previously inferred
indirectly from the total-cross-section measurements and
from DIS.

The "valence-quark" distributions of the proton satisfy
the obvious quark number sum rules:

IN„= f dx(u(x) —u(x))=2,
0

1
Nd= f dx(d(x) —d(x))=1 .

In the quark-parton model, linear combinations of these
integrals are related to various integrals of measurable
structure functions, e.g.,

Fq" —I'q =X„—Nd =1 Adler Sum Rule
& dx

[xF3" xFp ] =N„+—Nd =3f & dx

(Gross-Llewellyn Smith Sum Rule) .

These sum rules have been extensively checked by all
relevant deep-inelastic scattering experiments. Within
the experimental accuracy (and, by now, known QCD
corrections to the latter), they are verified. The measured
integral for the Adler sum rule is (Allasia et al. , 1984,
1985) 1.01+0.20; for the Gross-Llewellyn Smith sum rule
it is (Mishra, 1991) 2. 50+0.08. (There is an expected
QCD correction to the naive QPM value for the Gross-
Llewellyn Smith suin rule of approximately —0.34.)

2. Electron-positron annihilation into hadrons

a. Total cross section and scaling

The total cross section for hadron final states in e+e
annihilation normalized to the pointlike cross section for
e+e ~p+p behaves roughly as a step function in the

c. Angular distribution and spin of the parton

If we assume the underlying parton picture, the angu-
lar distribution of the two-jet final states gives direct evi-
dence on the angular distribution of the created parton
pair, which is sensitive to the spin of the parton and its
coupling to the virtual photon. The measured distribu-
tion agrees very well with the canonical (1+cos 8) distri-
bution for spin-1/2 partons: Eq. (3.58) and Wu (1984).

3. Lepton-pair production (Dreil-Yan process)

The most convincing evidence that the quark-parton
model provides the correct framework for high-energy
processes in general came (historically) from its success
in accounting for features of the measured lepton-pair-
production ( A +8~l+l +X) cross sections, using the
same simple parton picture and the same parton distribu-
tions determined from deep-inelastic scattering.

In the QPM, lepton-pair production proceeds through
the basic quark-antiquark annihilation qq ~/+ l, the
Drell-Yan process. The QPM cross section at fixed
center-of-mass pair rapidity, y =(1/2)ln(x i /x2), is given

by

0 47TA 2Q, = xix2 + eq[kq/A(xl )4 /e«2)-
dy dQ'

+0-/A(xi)|I)q/8(x2)]

where x, 2=(Q/&s )e ~ are scaling variables. The main
features of this formula are listed below
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a. Scaling

The fact that the right-hand side is independent of any
energy scale (say, Q)—i.e., the dimensionless cross sec-
tion satisfies scaling —is again evidence for the underly-
ing pointlike interaction (Lederman, 1979; Stroynowski,
1981). For a recent high-statistics experiment, see Brown
et al. (1989) and Moreno et al. (1991). This feature al-
lows one to predict the cross section at higher energies
from low-energy measurements. We must reemphasize
that scaling is exactly true in the QPM and that it is
somewhat violated in QCD.

b. Color factor

The overall factor in this formula contains a "color
factor" 3 in the denominator, which played an important
role in determining quantum chromodynamics to be the
underlying fundamental theory for strong interactions
when parton distribution functions measured in deep-
inelastic scattering experiments were used in the above
formula to test against lepton-pair cross sections. To get
quantitative agreement with experiment, the higher-order
corrections in a, (Q) predicted by QCD are essential.

c. Cross-section ratios

The above QPM formula for lepton pair production
leads to many simple predictions on cross-section ratios
which agree well with experiment and which were instru-
mental in establishing the credibility of the quark-parton
model during its infancy. For instance,

2
1

1
0 (rr+N~p, +p, )

cr(rr N~ij, +p )

where X denotes an "isoscalar" target. This is indeed
found to be true. This is the region where the "valence
quark" is presumed to dominate. In contrast, the ratio
rises toward 1 for ~~0, where m. contain equal amounts
of u and d quarks (Pilcher, 1979).

d. Angular distribution of the leptons

4. Other hard processes

The basic features of the quark-parton model are also
observed in other high-energy "hard processes, " e.g.,
production of high-transverse-momentum direct photons

Since the underlying fundamental process for lepton
pair production, qq —+I+I, is very similar to
e+e —+p+p, the angular distribution of the outgoing
leptons in their center-of-mass frame is expected to be
—(1+cos 0)—just as for the latter —if the QPM is
correct. Experiments amply confirm this fact (Lederman,
1979; Pilcher, 1979; Stroynowski, 1981; Brown et al. ,
1989).

and production of high-transverse-momentum jets. Al-
though the three processes described in previous sections
played a more crucial role in establishing the QPM pic-
ture historically, all the hard processes are highly
relevant in current studies of the QCD-improved parton
model, which provides the foundation for the quantita-
tive formulation of high-energy processes in the Standard
Model and beyond.

IV. PERTURBATIVE QCD: FUNDAMENTAL THEOREMS

The first goal of perturbative QCD is to find a
justification of the parton model in field theory and to
identify systematic procedures for improving upon
parton-model predictions. This program is conveniently
summarized in terms of a series of fundamental
theorems, which we describe below. Each of these results
generalizes one of the parton-model cross sections of the
previous section. It should be kept in mind, however,
that the methods developed below allow us to address a
wider range of problems than can be systematically treat-
ed in the parton model, and, although perturbative QCD
is in some sense a descendent of the parton model, it has
a life of its own. Moreover, many of the results of pertur-
bative QCD have been derived from the fundamental La-
grangian of QCD. Thus they must be regarded as real
predictions of the theory, and not just as a model.

A. Infrared safety in e+e annihilation

The first set of theorems that we shall discuss apply to
e+e annihilation. Here the results are simplified by the
lack of hadrons in the initial state. We shall treat the
perturbative QCD generalizations of parton-model ex-
pressions for the total and jet cross sections.

1. Total cross section

The simplest of the parton-model cross sections is the
total cross section for e+e annihilation into hadrons,
Eq. (3.47). In this case, no phenomenologically deter-
mined parton distribution or fragmentation functions are
necessary. Instead we have an absolute prediction, which
is in quite good agreement with experiment. Yet, Eq.
(3.47) is the Born cross section for the production of a
quark pair, not of physical hadrons, and it is hadrons
that we observe in experiment, not free quarks. The suc-
cess of this prediction is understandable because the total
cross section is infrared safe in the sense described in Sec.
II.F above. Recall that an infrared-safe quantity be-
comes independent of the masses of light partons (gluons
and light quarks) in the high-energy limit and is dominat-
ed by highly off-shell virtual states in perturbation
theory. In configuration space, an infrared-safe quantity
is correspondingly dependent only on the short-distance
behavior of QCD, not on the long-distance dynamics that
produce confinement and the details of the hadronic
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spectrum. Such a quantity possesses a perturbative ex-
pansion in the running coupling that is free of logarithms
or other sensitive functions that depend on large ratios,
such as Q/m, with m a parton mass and Q the overall
momentum scale.

Thus our first theorem of perturbative QCD is that the
total e+e annihilation cross section is infrared safe,

o „,(g,p, m /p, a, (p) )

II(g /p, 0,a, (p)}I1+O(m /g )I,1
(4.1)

where m labels the fixed-mass scales in the theory, JM is
the renormalization scale (Sec. II.C.2), and we have fac-
tored out an overall factor Q, leaving behind depen-
dence on dimensionless variables in the function II. An
important result is that, because of its IR safety, the total
cross section may be computed in massless QCD, up to
corrections that vanish as a power of the energy as far as
the light quarks are concerned.

Now 0.„,is a physical quantity and is consequently in-

dependent of the renormalization scale p. In particular,
we have

ll(g'/p', a, (p') ) =11(1,a, (Q') ), (4.2)

where we have suppressed the mass argument, since we
are working in massless perturbation theory. Technically
speaking, the cross section satisfies the renormalization-
group equation

p
8

+P(g)
8 II(g /pz, a(p))=0

Bp Bg
(4.3)

4+a 00

II(l,a, (g ))=N, g Qf g s„a,"(Q) . (4.4)g g 9 f 7l s

Here we have factored out the parton-model result, Eq.
(3.47), so that the first term in the series is

sp=1 (4.5)

We shall discuss the calculation of higher terms in Sec. V
below.

For large Q the running coupling, Eq. (2.48),

a, (Q)
4m

1

P,ln(g /A )
r

Pzln ln(g /Az)

P31nz( Q 2/+2 )

+0
ln(g /A)

(4.6)

falls off, and remaining terms in the series are small
corrections. Here is the reason that the parton-model re-

but the content of this equation is the same as Eq. (4.2).
When the perturbative total cross section is exhibited,

it is usually the right-hand side of Eq. (4.2) that is given
as a power series in a, (Q), in which the coefficients are
pure numbers, since all energy dependence is absorbed
into the running coupling,

suit works so well.
The formal proof of the infrared safety of II(g /p )

follows from the famous theorem of Kinoshita and Lee
and Nauenberg (Kinoshita, 1962; Lee and Nauenberg,
1964), that fully inclusive transition probabilities are
finite in the zero-mass limit. Actually, the arguments of
Kinoshita and Lee and Nauenberg require one to sum
over all degenerate initial as well as final states, but in
this case, because there are no hadrons in the initial state,
a simple sum over final states will do. The extension of
these results to QCD was discussed by Poggio and Quinn
(1976) and Sterman (1976, 1978).

The relevant physical observation that justifies infrared
safety is that the creation of a quark pair is a short-
distance phenomenon, which is not expected to interfere
quantuxn mechanically with the long-distance processes
that produce hadrons from quarks. Consequently the
cross section can be thought of as a product of probabili-
ties, one for quark pair creation (Born diagram plus cal-
culable corrections), the other for the evolution of quarks
to hadrons. In the fully inclusive cross section, we sum
over all final states. Then, because of the absence of in-
terference between short- and--long-distance effects, the
probabilities for hadrons to be produced from quarks
sum to unity, since, without further electroweak correc-
tions, off-shell quarks always produce on-shell hadrons.
This will happen in perturbation theory (where the role
of hadrons is played by on-shell quarks and gluons), as
well as in the real world (where hadrons are the physical-
ly observed particles}. Thus any infrared sensitivity that
might be present in perturbation theory should cancel
after the sum over final states, leaving only the short-
distance cross section for producing the pair in the first
place.

2. Other infrared-safe quantities in 8+8 annihilation

The infrared safety of o.„,can be extended to a large
class of cross sections measured in e+e annihilation.
To understand what quantities are infrared safe and why,
one should consider a perturbative calculation in which
the quarks as well as the gluons are massless. Then any
sensitivity to long-distance effects will show up as an in-
frared divergence in the calculation.

How would such a divergence arise? A detailed
analysis given in Sterman, 1978, yields a simple answer:
the potential divergences are all related to soft or col-
linear momentum configurations. First, a massless on-
shell particle with momentum p" can emit a massless
particle with momentum q"=0 and remain on-shell. In-
tegration over inomenta q" close to q"=0 produces soft
divergences in cross sections. Second, a massless on-shell
particle with momentum p" can emit a massless particle
with momentum q"=zp", 0&z ~ 1, and remain on-shell.
Integration over momenta q" close to q"=zp" produces
collinear divergences in cross sections.
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When the total cross section for e+e annihilation is
calculated perturbatively, individual terms are infinite,
but the infinities cancel for reasons based on unitarity, as
discussed in the previous subsection. There are other

quantities for which a similar cancellation occurs. Con-
sider a quantity J that is defined in the style of Kunszt
and Soper (1992), in terms of parton cross sections and
functions 4„,by

1 do[2] „~ 1 do [3]d+2 ~2(pl ~p2 +
)

d+2dE3d+3 +3~pl 'p2'J 3d Q2dE3d 03
1 do [4]+ —, do dE dQ dE„dQ & (p" p" p" p")+ ' ' '

dn, dE, dn, dE.dn. (4.7)

The functions S„specify the measurement to be made.
An example of 2 is the total cross section, for which all
of the 4'„equal 1. Another example is the thrust distri-
bution do /dT where, for an event containing n particles,
the thrust T is (Farhi, 1977)

g lp; ul

'T„(pli', . . . ,p„")=max

& Ip;I

(4.8)

Here u is a unit vector defining the "thrust axis, " which
is chosen to maximize the thrust. To calculate do /dT,
one uses Eq. (4.7) with

&„(p~&, . . . ,p„")=&(T 7'„(p~&, —,p„")) . (4.9)

4„+,(pli, . . . , (1 A)p„",Ap~) =$—„(p", , . . . ,p„") (4.10)

Perhaps the most important examples of J are the vari-
ous jet cross sections, to be discussed in Secs. V and VIII.

Under what conditions will the cancellation of infrared
infinities that occurred for the total cross section also
occur for the quantity S'.~ Without loss of generality, we

may assume that the S„are invariant under interchange
of their n arguments p„". Then the discussion above of
collinear and soft divergences should make it clear that
one needs

gences may be understood as an extension of the KLN
theorem (Kinoshita, 1962; Lee and Nauenberg, 1964).
The heuristic arguments given above for the total cross
section apply in this case as well. We need only observe
that long-distance interactions (and hence infrared sensi-
tivity) arise from interactions that occur over a long time
period. These are just the interactions involving
parallel-moving particles or very-low-momentum parti-
cles. As long as the measured quantity is not sensitive to
whether such a long-time interaction has occurred, one
can still cancel the divergences in perturbation theory us-
ing unitarity: the sum of the probabilities that the in-
teraction does or does not occur is unity.

On the level of @CD calculations, infrared safety
means that a quantity can be calculated in perturbation
theory without obtaining infinity. Since the infrared
infinities come from long-distance physics, the physical
interpretation is that infrared-safe quantities are insensi-
tive to long-distance physics.

B. Factorization theorems in deeply inelastic scattering

In this subsection, we introduce two of the basic ideas
of perturbative QCD, factorization, which enables us to
derive and generalize the parton model, and evolution,
which enables us to compute scale-breaking effects sys-
tematically.

for 0 ~ A, ~ 1. That is to say, the measurement should not
distinguish between a final state in which two particles
are collinear and the final state in which these two parti-
cles are replaced by one particle carrying the sum of the
momenta of these collinear particles. Similarly, the mea-
surement should not distinguish between a final state in
which one particle has zero momentum and the final
state in which this particle is omitted entirely.

The argument that a cross section specified by func-
tions 4 with this property does not have infrared diver-

1. Factorization for structure functions

Theorem. The field theory realization of the parton
model is the theorem of factovization of long-distance
from short-distance dependence for deeply inelastic
scattering (Collins, Soper, and Sterman, 1989). This
theorem states that the sum of all the diagrammatic con-
tributions to the structure functions is a direct generali-
zation of the parton-model results, Eqs. (3.27) and (3.28),
given by

F,' "'(x,Q )= g f C,' '(x/g, Q /p, p/Ip, , a, (p ))P;ih(g, p/, p ) (a =1,3),
i=f f, G

j.

F2 "'(x,Q )= g dgCz '(x/g, Q /p, ,p/~/p, ct, (p'))P;qq(g, ij fop
i=f f, G

(4.11)

(4.12)
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Here i denotes a sum over all partons: quarks, anti-
quarks, and gluons.

We note, in contrast to the parton-model formula,
dependence on two mass scales, p and JM&. The former is
the renormalization scale, which is necessary in any per-
turbative computation. The latter, however, is specific to
factorization calculations and is called the factorization
scale. It serves to define the separation of short-distance
from long-distance effects. Roughly speaking, any propa-
gator that is off-shell by p& or more will contribute to
C,' '. Below this scale, it will be grouped into P;/i, . The
precise definition of p& is made when we give a formal
definition of the parton distributions. It appears in the
definition of the parton distributions in a fashion very
similar to the way the renormalization scale p appears in
renormalization.

Often it will be convenient to choose the two scales p
and p& to be equal, but this need not be done in general.

The substance of factorization is contained in the fol-
lowing properties of the functions C,' ' and P;/h.

(i) Each hard-scattering function

C,' '(xi/, Q Ip, p&lp, a,, (p )), a =1,2, 3, (4.13)

is infrared safe, calculable in perturbation theory. It de-
pends on the label a, on the electroweak vector boson V,
on the parton i, and on the renormalization and factori-
zation scales, but it is independent of long-distance
effects. In particular, it is independent of the identity of
hadron h. For example, it is the same in the deep-
inelastic scattering of a proton and a neutron and, for
that matter, in the DIS of a pion or kaon. It is a general-
ization of the Born elastic-scattering structure functions
in the parton-model formula, Eq. (3.30).

(ii) The parton distribution, P;/I, (g,p~, p, a, (p )), on
the other hand, contains all the infrared sensitivity of the
original cross section. It is specific to the hadron h and
depends on p&. On the other hand it is uniuersal, that is,
it is independent of the particular hard-scattering process
that we treat: it is the same for the different structure
functions I', and I'2, for example, and it depends neither
on a nor on V, nor even on Q, unless we pick p =Q . It
is a direct generalization of the parton-model quark dis-
tribution.

Use and interpretation. The use of factorization is also
a generalization of the parton model. The C's are to be
computed in perturbation theory, and the P's are to be
measured by comparing Eqs. (4.11) and (4.12) to experi-
ment, given explicit expressions for the C's. Once
enough information is amassed to determine the parton
distributions from some standard set of cross sections, we
can use factorization to provide predictions for other fac-
torizable cross sections and for the same process at other
Q2

The essential question is therefore to give a method of
computation for the hard-scattering functions C,' "'. To
do so, we use the fact that the C's are independent of the
external hadron. We can therefore calculate them in per-
turbation theory, with the external hadron replaced by a

2. Factorization schemes

Even before we discuss how to define the distribution

Pf /f perturbatively, it is clear that, in the absence of in-
teractions, it should enable the factorization formula to
reproduce the Born cross section. We must therefore
have

ff/f (g)=5( 1 —g) (4.14)

(Here and below, we use a notation f" to denote the ith
order in the perturbation expansion of a quantity f,

~7Analysis of this kind has been phrased in terms of general-
ized parton distributions (Ellis, Furmanski, and Petronzio,
1982, 1983; Jaffe, 1983; Qiu, 1990; Qiu and Stertnan, 1991a) and
in terms of the operator product expansion (Okawa, 1981;
Shuryak and Vainshtein, 1981; Jaffe and Soldate, 1982; Luttrell
and Wada, 1982) which fall off as powers of Q .

parton. This wi11 require us to consider the distribution
of a parton in a parton: P, /J, where we have a parton la-
bel instead of a hadron label. Then we shall need a
prescription for computing the cross sections or structure
functions with a parto~ target and separating out the
hard-scattering from the parton distributions P, /J.

Such a prescription obviously involves a degree of
choice. A set of rules that makes the choices is often
called a "factorization scheme, " by analogy to renormal-
ization scheme. Such a scheme defines at the same time
the hard-scattering functions and the parton distribu-
tions. Once this has been done, we can discard the per-
turbative parton distributions, which have no particular
meaning since they are dominated by infrared effects and
thus by infrared parameters that we cannot Ioeasure.
Nevertheless, the factorization theorem ensures that the
hard-scattering functions determined in this calculation
are insensitive to infrared scales and parameters and are
applicable to cross sections computed with phenomeno-
logically determined hadronic parton distributions.

Explicit results for hard-scattering functions may be
found in Sec. VI, along with a discussion of the mechan-
ics of their calculation for the archetypical factorized
cross section: the electromagnetic DIS structure func-
tions of a quark, I",~~'.

Generalizations. So far, we have discussed factoriza-
tion for the fully inclusive structure functions. Essential-
ly the same factorization theorem applies, however, to
any DIS cross section defined by a sum over hadronic
final states that satisfies the same condition [Eq. (4.10)]
that implies infrared safety in e+e annihilation (Libby
and Sterman, 1978a). Other generalizations apply to
nonscaling, "higher-twist" contributions' and to spin-
dependent distributions (Artru and Mekhfi, 1990; Ral-
ston and Soper, 1979; Collins, 1993a).
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which in the above equation is P.) Then we find by direct
substitution in Eqs. (4.11) and (4.12) that, for a = 1,2,

F'rf"0'(x)=g 5(1—x)=C'~f" '(x)f (4.15)

just as in Eq. (3.30).
Beyond lowest order in perturbation theory there is

considerable ambiguity in separating the hard-scattering
functions from their corresponding parton distributions.
In general, any choice for the parton distributions that
satisfies Eq. (4.14) at lowest order and that absorbs all
long-distance efFects at higher order is acceptable.
Short-distance "finite parts" at higher orders may be ap-
portioned arbitrarily between the C's and P's. A
prescription that eliminates this ambiguity is what we
mean by a factorization scheme. The choice of scheme is
a matter of taste and convenience, bui ii is absolutely
crucial to use schemes consistently and to know in which
scheme any given calculation or comparison to data is
carried out. The two most commonly used schemes,
called DIS and MS, reQect two difFerent uses to which
the freedom in factorization may be put.

The DIS scheme is appealing for its close correspon-
dence to experiment (Altarelli, Ellis, and Martinelli,
1979). In this scheme, we demand that, order-by-order in
perturbation theory, all corrections to the structure func-
tions I" z

"' be absorbed into the distributions of the
quarks and antiquarks. This means that, at p =pf =g,
the hard-scattering functions are exactly equal to their
parton-model values:

C'~i'(x}=g 5(1—x),
C,'~~ (x)=g'n( 1 —x),

q

c,"&'(x)=o,
(4.16)

The first (rightmost) operator absorbs the parton from
the hadronic state, and the second emits it again. This

to all orders of perturbation theory. Of course, it is pos-
sible to do this for only one of the structure functions.
The other structure functions will receive corrections at
order n, and beyond. Note that this definition does not
6x the gluon distribution.

The MS or modified minimal subtraction scheme (Bar-
deen, Buras, Duke, and Muta, 1978), on the other hand,
is appealing for its theoretical elegance and calculational
simplicity. In this scheme the parton distributions are
de6ned directly in terms of hadronic matrix elements
(Curci, Furmanski, and Petronxio, 1980; Collins and Sop-
er, 1982). In their simplest form, these matrix elements
may be given in terms of operators b;(xp, kT) and
b; (xp, kT), which annihilate and create parton i, with
longitudinal momentum xp and transverse momentum
kz in hadron h of momentum p,

(,p,')= J (h (p) ~b; ( p, k„)b;( p, k )~h (p) ) .
d k~
(2'�)'

(4.17)

parton distribution is, in essence, the expectation value of
a number operator in the hadronic state. A little sophis-
ticated footwork reexpresses the matrix element in Eq.
(4.17) in terms of the quantum field corresponding to par-
ton i. Thus, for instance, the MS distribution for a quark
of flavor f is given by

pfqh(x, p')= I e '~ ~ (h(p)~1((y, o+,OT)y+

x y(0, 0+,o, ) ~h (p) &, (4.18)

where an average over the spin of h(p) is understood.
Similar explicit expressions can be given for the anti-
quark (in which the roles of 1(t and g are exchanged) and
for the gluon, for which the relevant Geld is
F+~=(1/V'2l(F T+F ~} where T labels the transverse
components relative to the momentum p. [There are
some complications due to gauge invariance that we have
ignored in definition (4.18). See Sec. IV.D.]

More insight into these two "canonical" ways of
defining parton distributions can be gained from the ex-
plicit one-loop calculations described in Sec. VI.D below.

3. Evolution

(4.19)

We have chosen p=jMf. This equation is known as the
Gribov-Lipatov-Altarelli-Parisi evolution equation (Gri-
bov and Lipatov, 1972a; Altarelli and Parisi, 1977). The
evolution kernels P;~(x) are given by perturbative expan-
sions, beginning with 0 (a, ). Their explicit forms will be
discussed in Sec. VI below. The one-loop terms in the
kernels are independent of the scheme used to de6ne the
parton distributions.

Everything in the process just described was carried
out for fixed Q2. But even a single DIS experiment sup-
plies data over a range of momentum transfers. A re-
markable consequence of factorization is that measuring
parton distributions for one scale p allows their predic-
tion for any other scale p', as long as both p and p' are
large enough that both a, (p) and a, (p') are small. This
result, called the evolution of structure functions, in-
creases the power of pgCD enormously. Thus, for in-
stance, measuring Fi'r"'(x, g ) is enough to predict, not
only F',r"'(x, g ), but also FI~"'(x,g' ) and Fi2r"'(x, g' )

for all large Q' . We should note that precise predictions
require analogous information from neutrino scattering
to perform the Aavor separation of the parton densities.

The evolution of the parton distributions is most often,
and most conveniently, described in terms of integro-
difFerential equations,

d 2

dp
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Note that the integral on the right-hand side of Eq.
(4.19) begins at x. Thus it is only necessary to know

pj/1, (g, QO) for g&x at some starting value of the scale

p =Qo in order to derive PJ/h (x,p ) at a higher value

1u
=Q. This is a great simplification, since data at small x

are hard to come by at moderate energies.
Without going into the details of the evolution kernels,

we can get some insight into their use by applying Eq.
(4.19) to a parton state h =j and expanding to first order
in a„using Eq. (4.14),

p P, /J(x, a, (p ))=PJ(x)+O(a, ) .2 d

dp
(4.20)

F(vNS) F(vp) F(vn)
g (4.21)

where p is the proton and n the neutron. For the follow-
ing discussion, we suppress the label V and choose

pf p Then Fi ', for instance, satisfies the factoriza-
tion theorem,

From this relation, we already see that the evolution ker-
nels show up as the coefficients of the logarithmic
factorization-scale dependence in one-loop calculations.

The evolution equations control the dependence of
parton distributions on the factorization scale. If we
choose p=1uf =Q, the momentum transfer in DIS, then
there are no large ratios in the arguments of the hard-
scattering functions C, in the factorization theorem. Un-
der these circumstances, we expect the perturbative series
for the C's to be well under control, with no large
coefficients of cx, at first order and beyond, at the same
time that a, itself is relatively small. Of course, this
means that most of the information on Q dependence
has simply been shufBed into the parton distributions.
The beauty of the evolution equations is that they tell us
how to compute this dependence, given only that we
have measured the parton distributions at one scale Qo.
In the language of the parton model, the evolution equa-
tions enable us to compute the Q dependence of the par-
ton distributions and hence the "scale breaking" of the
structure functions themselves.

It is relatively easy to derive the evolution equations
(4.19) directly from the factorization theorem, Eqs. (4.11)
and (4.12). This instructive derivation also enables us to
introduce the famous analysis of scale breaking in DIS in
terms of moments of structure functions.

Evolution is directly related to our freedom in choos-
ing the renormalization and factorization scales. We no-
tice first that the value of pf in the factorization
theorem, Eqs. (4.11) and (4.12), is free. Again, a natural
choice for DIS is pf =@=Q, so that the C,' ', as well as
the p;/i„are functions of a, (Q ). With this choice, the
evolution of parton distributions is sufBcient to evolve the
complete structure functions.

The derivation of evolution is simplified in so-called
nonsinglet structure functions, the simplest of which are

P (NS) (x g2)

ONS(x I ) g Qflff/ « .I ') Nf/
—(»I ')) (4 2»

f
where we have absorbed the quark charges into its
definition, which makes the short-distance function in-
dependent of f.

The term "valence" refers to our expectation that the
distributions of gluons, and of "sea" quarks, produced in
pairs by gluons, should be the same in the proton as in
the neutron. These contributions, which are singlets un-
der the isospin group SU(2), cancel in the difference in
Eq. (4.21). Note that this result holds exactly only for
electromagnetic structure functions, since the elec-
tromagnetic interactions respect charge conjugation,
which exchanges the roles of quarks and antiquarks.
What remains is almost entirely due to the difference in
the "valence" u and d quark content of the proton and
neutron. The simplification in Eq. (4.22) relative to Eqs.
(4.11) and (4.12) is that the result is a single convolution,
rather than a sum of convolutions.

Now both the functions on the right of Eq. (4.22) are
functions of p, but the physical quantity F', ' on the left
is not,

d F(NS) (4.24)
GP

Thus the p dependence in C
&

' must compensate that of
QNs. The information contained in this observation may
be brought out clearly by introducing moments of the
structure functions,

p 1Ns)(& Q2) —
J dxx n —1F1Ns) (x g2)

0

(4.25)

where C' ' and PNs are

C(NS) Q
( 2)n, 2~&'~ P

p
I—I d n —IC(NS1 Q

( 2)
0 p

~')= jde" 'V
0

Now, applying moments to Eq. (4.22), we find that

1u 1nPNs(n, p ) = —y'„Ns'(a, (p2))

(4.26)

= —p—lnC I n, ,p, (4.27)(NS)

C(NS) ~ p2 2

0 p

where QNs is a "valence" quark distribution. More prop-
erly, it is the difFerence between p and n quark distribu-
tions,
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where y(„)(a,()M ) ) is a function of a, only, since this is
the only variable that pNS and C' ' have in common.
(Note that the ratio Q/)Mf in C, for instance, is indepen-
dent of the )M dependence in P, because the latter would
occur in ratios like p/A, , with A, an infrared cutofF. ) y(„
is known as an anomalous dimension, since it acts like a
factor p,

" in the (dimensionless. ) function In/Ns(n, p )

The anomalous dimensions y„can be constructed
directly from the one-loop value of the parton distribu-
tloI1. (At ollc loop pf /f and QNs Ric tllc same fol RI1

external quark. ) Although Pf&f is certainly not IR safe,
y'„) is, because it is also a derivative of C ' '( n ). The

derivative of Pf(')f is particularly simple, however,

y'„)=—
)M InPNS(n, a, (p ))

GP

'dx x"-IF")(x)+O(~2)
0 w s (4.28)

with P~(~"(x) found from Eq. (4.20). To give substance to
these rather abstract considerations, let us exhibit the ex-
plicit integral from which we find y' ', which may be
found directly from the explicit form for Pqz(x}, given in
Sec. VI,

&s 1+x x" ' —2'C (F) dx + " ' —&(I — )
0 1 X 2

A 7l ]
C2(F) 4 g — — + 1

2Ir 2 m n(n+1) (4.29)

We note an important subsidiary result,

y(xs) O1 (4.30)

which states that the integral of the nonsinglet distribution,

Mi = I, "CLANS(k v'» (4.31)

is independent of the factorization scale. This is gratifying, since M, measures the number of valence quarks. For
n ) 1, the y„s are all positive and increase with n. This means that higher moments, which test the size of QNS(x) near
x =1, vanish more rapidly than lower moments as Q ~ ao. Along with y() '=0, this implies a "softening" of QNs with

Q, in which the average x decreases as Q increases. This behavior is characteristic of all parton distributions.
The formal solution to the evolution equation, Eq. (4.27), gives the behavior of QNs(n, Q ) as a function of Q and

hence of F,' '(n, g ),

NNs(" Q }=(l)NS(" Qo ) "P ' dt y ((2.{goe'))
2 0

F( '(n, g )=C', '(n, a, (Q )}PNs(n, go)exP ~ ——J dt y„(a,(goe')}

(4.32)

The Q behavior thus determined depends on whether or
not our theory is asymptotically free. Writing

in a hypothetical "fixed-point" theory, in which

u, (P ) =ao,
P~ 00

(4.3S)

(~S) s ())
'Vn Xn

and using Eq. (2.46) for the one-loop running collpllIlg in

QCD, we find

—2y(„"/4!e, I

F(Ns)( g2) lnQ /A

lng() /A

This is a relatively mild logarithmic Q dependence,
which is consistent with an approximate scaling over the
limited range of Q in early experiments (Friedman and
Kendall, 1972). It is to be contrasted with the behavior

~ 2 —(ao/2m )y(„
F(Ns)(n g2) Q

Q2
(4.36)

The evolution result, Eq. (4.32), was known for some time
(Christ, Hasslacher, and Mueller, 1972) before asymptot-
ic freedom was discovered (Cxross and Wilczek, 1973R;
Politzer, 1973). The inconsistency of experimentally ob-
served scaling behavior with strong scale breaking like
Eq. (4.36) seemed to make the application of field theory

with ao%0. In the latter case we would have a Isomer
scale breaking,
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0 zi (x Q )=4 rh(x Qo) (4.37)

for all Q )Qo, and the theory would exhibit true scaling
behavior. Note the close correspondence of this assump-
tion to the assumption ~& v.

o for the lifetimes of virtual
states in our heuristic justification of the parton model in
Sec. III.A. 1. In a renormalizable theory, however, this
never happens: there are always states of arbitrarily
short lifetimes and lines that are arbitrarily far off-shell.
That is the reason the theory must be renormalized to be-
gin with. The evolution of P;&& (x, Q ), therefore, mea-
sures the distribution of off-shell partons. The rather
weak evolution of an asymptotically free theory, Eq.

to the strong interactions problematic. The derivation of
approximate scaling from asymptotic freedom was there-
fore a very important result (Gross and Wilczek, 1973b,
1974; Georgi and Politzer, 1974).

In the parton model, P;&&(x) has the direct interpreta-
tion of the density of partons of type i and fractional
momentum x in hadron h. In pQCD, P;&h(x, P ) has
essentially the same interpretation, but with the added re™
striction that the parton be off-shell by approximately no
more than the scale p . Beyond this limit, a parton
would be incorporated into the hard-scattering functions
C,"in Eqs. (4.11) and (4.12).

Now if QCD had a natural maximum off-shellness Qo
for its virtual partons, then we would have

(4.34), shows that production of these partons is not
strong.

C. Other factorization theorerns

1. Drell-Yan

The factorization theorem for the Drell-Yan process is
typical of factorization theorems for a large class of
hard-scattering processes' and it is formulated as fol-
lows.

The process is the inclusive production of a lepton pair
of high invariant mass via an electroweak particle in
hadron-hadron collisions. The classical case is a high-
mass virtual photon: A +8—+@*+anything, with
y*~e+e or y —+p+p . Here A and 8 are two in-
coming hadrons. Essentially identical theorems apply to
the production of 8'or Z bosons.

We let s be the square of the total center-of-mass ener-

gy and q" be the momentum of the y*. The kinematic
region to which the theorem applies is where &s and Q
are large, with Q /s fixed (Q is +q ). The transverse
momentum qi of the y' is either of order Q or is in-

tegrated over.
In the case that qj is integrated over, the factorization

theorem for the unpolarized Drell- Yan cross section
reads

2dg~ dgiiP, &„(gz,p )H,&, , O, Q, Q;,a, (p) P&&z(gii, p )+remainder,
dQ dydQ o, b

~~ xa p ii Q
(4.38)

where y is the rapidity of the virtual photon in the overall
center-of-mass frame and d 0 is the element of solid angle
for the lepton pair. The polar and azimuthal angles for
this decay are 9 and P, respectively, relative to some
chosen axes. The remainder is suppressed by Q com-
pared to the term shown. The suxns over a and b are over
parton species, and we write

As in DIS, extensions to more specific final states are
possible. For instance, jet cross sections, defined by anal-

ogy to e+e annihilation, obey factorization formulas of
the same form as Eq. (4.38) (Libby and Sterman, 1978a).
Other extensions, to first nonleading power in Q (Berger

x~ =e«+Q /s, x~=e «+Q /s (4.39)

The function H, b is the ultraviolet-dominated hard-
scattering cross section, computable in perturbation
theory. It plays the role of a parton-level cross section
and is often written as

d&

dQ dy dQ
(4.40)

The parton distribution functions P are the same as in
deeply inelastic scattering. Figure 12 illustrates the fac-
torization theorem.

~8Early papers on this subject include those of Mueller, 1974,
Politzer, 1977, and Sachrajda, 1978. All-order discussions, con-
centrating for the most part on the role of collinear divergences,
were given by Amati, Petronzio, and Veneziano, 1978a, 1978b;
Libby and Sterman, 1978a, 1978b; Ellis et al. , 1979; and

Efremov and Radyushkin, 1980a, 1980b. The delicate role of
infrared divergences was brought out in the two-loop calcula-
tions of Doria, Frenkel, and Taylor, 1980, and Di'Lieto, Gend-

ron, Halliday, and Sachrajda, 1981, and were dealt with at all

orders by Bodwin, 1985; and Collins, Soper, and Sterman, 1985,
1988. For a review of the status of the theorem, see Collins,

Soper, and Sterman, 1989.
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be renormalized away (Mueller, 1978; Collins and Soper,
1982) to define finite parton distributions and fragmenta-
tion functions to be used in the factorization formulas.
Although these definitions are not necessary for all phe-
nomenological uses, they are needed to make precise the
rules for Feynman graph calculations, for example.

1. Quark distribution functions

The distribution function for a quark of flavor i in a
hadron h with momentum p„ in the plus direction is
(Collins and Soper, 1982)

+ — — +
() tx(i)—=j e ' * p tTt;(Oy, pt) Pexp —ig j dy' 4, (Oy', Ot)t, ();(0) p) .

2& 2 0
(4.42)

The path-ordered exponential of the gluon field is needed to make the definition gauge invariant. Here and below, t,
denotes the generator T,' '. We see that the simplified distributions of Eq. (4.18) are exact only in the A + =0 gauge.

When the hadron can have polarization, the helicity asymmetry of a quark in a hadron is defined by

Aged'/ (dt) j"=-e ' t t p dt'(O, y, pt) P exp —ig j dy 4,+'(O, y 0)t', dt,. (,0) p)0
(4.43)

where A, is the helicity of the hadron, normalized so that A, =+1 corresponds to a fully polarized nucleon.
A hadron may also have a component of spin transverse to the collision axis. We define a transUersity asymmetry,

~rP; jh, « the qua«by
+ p

eetttxdt, tx(g):je 'tt—t p dt,. (O,y, pt) P exp —ig j dy 4,+(O,y'', Ot)t, t), (0) p), (4.44)
0 J

where s~i is the transverse part of the hadron s Pauli-Lubanski spin vector, normalized so that 100% transverse polar-
ization corresponds to sos J„=—1.

2. Gluon distribution functions

Operator definitions for the distribution of gluons in a hadron are made in an analogous fashion to those for quarks:

pgjh(g)—= g f + e '~ ' &plG+j(o,y, oi)PG+'(0)lp &,2s' p
2

~ifglh(k)= 2 I'jj"—f + e '" ' &plG"(oy oi»G" (0)lp&hd=l
2m.gp

2

~Tfgtth(k) 2 Pih jj' f + e ' &'&
&p lG'j(o, y —,0,)'PG+j (0)lp &„„„,,

2m' +

(4.45)

(4.46)

(4.47)

where 6„, is the gluon field strength tensor and P
denotes the path-ordered exponential of the gluon field
along the light cone that makes the operators gauge in-
variant, in exact analogy to Eq. (4.42),

phe —=phel =011 22

p hei — p hei
12 21

(4.49)

P= I' exp ig f —f —dy' A,+(O,y', oi)T,
0 0

lin 2n, n, (4.50)

(4.48)

where T, =T,' ' are the generating matrices for the ad-
joint representation of color SU(N, ). The j index runs
over the two transverse dimensions, and the spin projec-
tion operators are defined by

By angular momentum conservation, the linear polariza-
tion of a gluon is zero in a spin —,' hadron (Artru and
Mekhfi, 1990). The reason is that the linear polarization
is measured by an operator that Hips helicity by two
units. Since no helicity is absorbed by the space-time
part of the definition of the parton densities (the integrals
are azimuthally symmetric), the helicity flip in the opera-
tor must correspond to a helicity Qip term in the density
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matrix for the hadron. In the definition of the linear po-
larization of the gluon, Eq. (4.47), the hadron must there-
fore be of spin higher than —,', e.g., a deuteron, of spin 1;
we assume it is in a pure state of linear polarization in the
direction n" to define b, Tfg&i, .

3. Fragmentation functions

The unpolarized fragmentation function for finding a
hadron h in the decay products of a quark of flavor c is
(Mueller, 1978; Collins and Soper, 1982)

(4.51)

We have ignored here the path-ordered exponential of
the gluon field that is needed to make this a gauge-
invariant definition. The sum is over all final states con-
taining the chosen hadron.

Definitions for polarized fragmentation functions can
be found in Collins, 1993b, and Collins, Heppelmann,
and Ladinsky, 1994.

V. 8+8 ANNlHILATIGN

Among the most basic of the concepts of perturbative
QCD is infrared safety. As discussed in Sec. IV, total
and jet cross sections in e+e annihilation are them-
selves infrared safe, without factorization into long- and
short-distance components. In this section, we review ex-
plicit low-order results for these quantities.

A. Total cross section

The basic squared amplitudes for the total cross sec-
tion in e+e annihilation are illustrated in Fig. 14 at one
loop, in the cut diagram notation of Appendix B.

At this level, the ultraviolet (UV) divergences in the
self-energies cancel those in the vertex corrections. This
cancellation is related to the manner in which quantum
electrodynamics is renormalized: at zero photon momen-
turn, all radiative corrections to the charge must vanish.
That QCD respects the renormalization conditions of
@ED was a necessary condition for it to be a viable
theory of the strong interactions. At a technical level,
the result follows fi'oin [&QcD Q 1=0 w'th ~qcD the
Hamiltonian and Q the operator for electromagnetic
charge.

Because of this cancellation, the one-loop cross section
is independent of the scheme that we specify to renormal-
ize QCD, and the result is identical in all schemes.
Beyond one loop, however, it is necessary to specify a re-
normalization scheme, and results will, in general, differ
from scheme to scheme.

The total cross section for e+ e annihilation at
center-of-mass energy Q (in the one-photon approxima-
tion) has now been computed up to three loops with
massless quarks in an MS renormalization scheme (Gor-
ishny, Kataev, and Larin, 1991; Surguladze and Samuel,
1991).Here is what it looks like:

a, (Q') a, (Q')
0.(Q )=cro 1+ (3C~)+ —C —+C C2 3

F 2 F A

123 —44/(3) +CFTnf( —22+16$(3))

~z, (Q')
+ Cg — +C~C~ ( —127—572((3)+880/(5) )

90445
F

10948
P 3 ) + 440

+C~Tnf( —29+304$(3)—320$(5))+C~C„Tnf — + g(3)+ g(5)

4832
F )if

L

2&Qf
g(3) —C ~ C — Tn + ' — —128((3)

9 3 3 f (~yQ') 16 3
f

(5.1)
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B. e+e total cross section at one loop

(a) (b)

FIG. 14. One-loop corrections to the e+e annihilation cross
section.

In this expression, 0.0 is the parton-model total cross sec-
tion, Eq. (3.47),

4K+a
3gz f (5.2)

nf is the number of quark flavors, and Ã is the number of
colors. The group invariants, C~, CFC„, etc., give struc-
ture to the otherwise unremitting sequence of integers,
fractions, and "zeta functions" in the three-loop result.
For simplicity, we have written Cz=—C2(F), etc. , and
from Appendix A we have C„=4/3, C~=3, T= —,',
D =40/3 in QCD. Here g(m) is the Riemann zeta func-
tion, beloved of mathematicians,

o„,=L"'(k„k2)H„,(q} . (5.6)

Here k i and k2 are the lepton's momenta and

q =ki +k2, q "q„=Q . We define L to absorb the photon
propagator and the overall kinematic normalization of
the cross section, 1/(8Q ), where we neglect the lepton
mass and average over spins. Similarly we absorb the in-
tegral over final-state phase space into H. The leptonic
part is then given by the Dirac trace

1 eL""(k„k2)=
8Q2 (Q2)2

Tr[k', y"hazy']

The explicit calculations that lead to the 0 (o., ) results
are, like the results themselves, extremely complicated
and can be carried out only with the aid of computers.
The 0 (a, }corrections, however, already exhibit some of
the basic problems of pgCD and their resolution through
infrared safety.

At lowest order, the total cross section is given by the
Born diagram, zeroth order in a, . The diagrams that
contribute to the total cross section at 0 (a, } are of two
kinds, those in which a gluon appears in the final state
[Fig. 14] and those which represent the interference be-
tween an amplitude with an O(a, ) virtual-loop correc-
tiori and the zeroth order [Fig. 14]. The leptonic and ha-
dronic parts of these diagrams are connected by only a
single photon (which we may take in Feynman gauge,
with propagator —g &/Q ), and it is consequently natu-
ral to write the cross section as a product of leptonic,
L""(k„k2),and hadronic, H„,(q), tensors,

00

g(x)= g
n=O n

whose specific values encountered above are

(5.3)
2

(k~)k2+k~2ki —(Q /2)g"') . (5.7)

g(3) = 1.202056 9,
g(5) = 1.036 927 8 .

(5.4}

Using these values, we find that the numericajk coefficients
for SU(3) with five quark fiavors are

The calculation of o.„,is simplified by employing con-
servation of the electromagnetic current, which, as we
mentioned above, is respected by QCD,

o(g )=oo(g ) 1+ +1.409

2 q "H„„(q)=H„„q"=0 . (5.8)

cx,—12.805

'3

(5.5}

Now, because H is a symmetric tensor that can only de-
pend on the total momentum q, we find that it has the
form

We note that the coefficient —12.805 represents a second
try; previously published results gave an uncomfortably
large incorrect value of about 60. These results are for
electron-positron annihilation via a virtual photon. In
the LEP experiments, a virtual Z is involved and
modifications in the formula are required (Larin, van Rit-
bergen, and Vermaseren, 1994). Most of the pieces of the
modified formula are known, but some order a, terms in-

volving heavy-quark loops are not yet published.

H„„=(q„q„—Q g„„)H(g },

with H (Q ) a scalar function that can be found by

H(Q )= ( g"'H „) . —2 1

3g2 P~

Combining these results, it is easy to show that

(5.9)

(5.10)
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2

, 2 ( g—"')II„(Q) .'to't

6( Q
2 )2 Pv

Thus it is only necessary to compute the contraction of

the hadronic tensor with g„ to derive the total cross sec-
tion.

To compute the hadronic tensor, we write it as the in-
tegral over three-particle phase space of the squared ma-
trix element for gluon emission,

dpidk
g H (Q)= f

l l l

le(kPi)l (5.12)
4(2m ) Ip)

Here p& is the quark's, k the gluon's, and q
—p, —k =—p2 the antiquark's momentum, while At(k, p, )l„represents the

contribution of Fig. 14(a) to the squared matrix element. The subscript r denotes that this contribution is real, as op-
posed to those from Fig. 14(b), which involve virtual loops and are therefore complex. In this (spin-averaged) case, At

l „
is independent of the direction of I& i and of the azimuthal angle k about p, . %e may then evaluate these angular in-
tegrals to give

—g""H,.(Q)=, f ~pgp) f dk k f d»(Q' —2q (p(+k)+2Ip)lll l(1 —u))IAt(k, p))l', , (5.13)

where u is the cosine of the angle between p, and k and Q =V'Q .
Next let us have a look at lAt(k, p, ) l„, Fig. 14(a). Because the fermions are now quarks, it includes the product of a

Dirac trace times a color trace, given by

lAt(k, p, )l„=2Tr[T,' 'T,' ']g e Q Qf — —Tr[yg, y (gf, +k)y"gf2y (
—$2 —k')]1

2p, .k 2@2 k

+,Trfy„V i+&)y"4i)y.Vi+&)y'V2)1
(2p, .k )

(5.14)

It is at this point that we see the kind of problems one en-
counters in a perturbative @CD calculation. They are
exactly of the sort anticipated in Sec. IV.A. 1.

There are two denominator factors in Eq. (5.14), corre-
sponding to the propagators for the two virtual fermions
in each diagram. Consider, for instance,

pg. k = lpgllitl(1 —u) . (5.15)

This factor vanishes at two generic points in phase space,

k =0~k&" soft,

u =1~k collinear to pI .
(5.16)

f ~k" soft,dk
0 k

du ~k collinear to p]I .
1 u

(5.17)

Not surprisingly, there is yet another region where the
integral diverges, for k collinear to p2,

It is easy to check that the integral over phase space is
divergent in both of these limits —at the soft limit, where
the gluon momentum vanishes, and at the collinear limit,
where it becomes parallel to the quark's momentum. In
these two limits, the k and u integrals become, respec-
tively,

p k = (1+ )+O((1+u»'
lppl

(5.18)

Thus soft and collinear divergences are already present at
one loop in massless QCD.

In Sec. IV.A. 1 we argued that infrared sensitivity can-
cels between difFerent final states. At this order, there are
only two final states to choose from, the quark-antiquark
state and the quark-antiquark-gluon state. It is possible
to show that if the integrands for these contributions to
o.„,are combined, all sources of divergence cancel, be-
fore any integrals are done (Sterman, 1978). For many
purposes, however, it is useful to do the integrals in an
infrared regularized theory, in which the soft and col-
linear divergences have been rendered finite by some
modification of the theory, in much the same spirit as for
UV divergences. It is important to realize that an
infrared-regulated theory is not the same as the original
theory, because infrared regulation changes the long-
distance behavior. But, in the limit that the regulator is
taken away, the infrared-regulated theory should give the
same predictions as the real theory for infrared-safe
quantities, which do not depend on the long-distance
behavior anyway.

Actually, it is not so easy to find a completely satisfac-
tory infrared regulator for @CD, one that does not affect
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the short-distance behavior at some high order. Interest-
ingly enough, dimensional regularization (Appendix C)
provides such a regulator. In this case, we (formally) car-
ry out all integrals in 4—2e dimensions. Divergences ap-
pear as poles at vanishing regulator scale e (i.e., at four
dimensions). There are some subtle points here, especial-
ly since the same method is also used to regulate UV
divergences. Nevertheless, one may apply it consistently.
Another method, which works well at least to one loop,

is to assign a small mass m to the gluon (in Feynman
gauge, for simplicity). Here infrared and collinear diver-
gences appear as logarithms of m~. This method may be
dangerous beyond one loop, because a gluon mass breaks
gauge invariance, but it works well enough at this level.

Let us quote the results for the two-particle and three-
particle cross sections represented by Fig. 14. For the
two-particle final state, the cross sections are, at one
loop,

(m ) &g
02 0OCy —21n (Q/m )+31n(Q/m ) ——+

4

2 Ocr(~)—
7T

3(1 E)—
(3—2e)I'(2 —2e)

2E

4m@ 1+ 3

Q
2 E2i 2e'

~2
+4

(5.19)

for gluon-mass and dimensional regularization, respectively. Notice that, although the two expressions share some
features, they are vastly different, and each depends upon one of the unphysical parameters, m or e. This is a sign that
the long-distance behaviors of the regulated theories are different.

The three-particle final state gives these results at one loop:

(m ) s
&ocr 21n (Q/m )

—31n(Q/m )+——5 m'

2

0 3
=cToCp

(~)— a, 3(1—e)
(3—2e)I (2—2e)

26
4m.p

Q2
1 3+

2E'

m +19
2 4

(5.20)

Comparing the two- and three-particle results for each
choice of regularization, we find that most of their
respective terms cancel, leaving behind exactly the simple
O(a, ) correction of Eq. (5.1). This demonstrates explic-
itly that the total cross section is independent of long-
distance behavior, at least to this approximation. The ex-
plicit calculations of Gorishny, Kataev, and Larin (1991}
and Surguladze and Samuel (1991}show that it is possible
to verify this result much more dramatically, based in
part on special algorithms for multiloop diagrams (Cher-
tykrin and Tkachov, 1981;Tkachov, 1981).

C. Energy-energy correlation

The total cross section for e+e annihilation, being an
infrared-safe quantity (see Sec. IV.A}, can be used to
study the short-distance behavior of the Standard Model
without complications from long-distance physics. How-
ever, it is by no means the only such quantity. By look-
ing at infrared-safe quantities that probe the hadronic
final states produced in e+e annihilation, we can learn
about the structure of the interaction Lagrangian that
controls the short-distance physics.

We have discussed in Sec. V.A how certain measure-
ments can involve the final state in such a way that the
measured quantity is not sensitive to collinear parton

branching or the emission of soft partons [see Eqs. (4.7),
(4.10)]. There we used as an example the thrust distribu-
tion do /d V' defined in Eqs. (4.8) and (4.9). Another fre-
quently used quantity is the energy-energy correlation
function (Basham, Brown, Ellis, and Love, 1979; Brown
and Ellis, 1981),

1 dX
0 T d cos+

(5.21)

1 dX
d cos+

Oz. —1 d cos+
(5.23)

The energy-energy correlation function is infrared safe.
To verify that the required condition (4.10) is satisfied,
consider S„+i(p", , . . . , (1 A, )p I', Ap„" ). We hav—e

A convenient way to define X is to use the general equa-
tion (4.7). If we let 2 in (4.7) be dX/d cosy, then the
functions S„ that define the contribution from an n

particle final state are

n n

S„(p",, . . . ,p„")=g g 5(cosy —cosy; ), (5.22)
i =1 j=1

where y,~
is the angle between particles i and j. Recall

that the normalization of the S„ is such that S„=1 for
all n gives the total cross section. Then, since X;E;=&s,
the normalization for X is
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n —i n —i E;E n —1 E, [gE~+(I —g)E~]
4„+,(p~&, . . . , (1 A—, )p„",Ap„")= g g 5(cosy —cosy; )+2 g 5(cosy —cosy;„)

i=1 J=l i=1

[A,E„+(1—
A, )E„]+ 5(cosy —cosy„„)

=g (pP pP) (5.24)

There are other distributions besides the thrust distri-
bution and the energy-energy correlation that probe the
shape of the hadronic energy distribution. Jet cross sec-
tions, to which we now turn, fall into this class. Concise
descriptions of other, related quantities, with calculations
and references, may be found in Kunszt, Nason, Mar-
chesini, and Webber (1989).

D. Jets

In a typical electron-positron annihilation event at
LEP or SLC, two, or sometimes three or more, sprays of
particles are produced. The more energetic of the parti-
cles within each spray are typically confined to an angu-
lar range of a few tenths of a radian. These sprays of par-
ticles are called jets, and various measurable cross sec-
tions to produce jets are calculable (Sterman, 1978). For
instance, one can measure the inclusive cross section to
make two jets with given energies and angles, plus any-
thing else. Most commonly, one measures the cross sec-
tion for the final state to contain exactly 2, 3,4. . . jets.

One thinks of a jet as consisting of the decay products
of a single ofF-shell parton, a quark or gluon, that was
produced in the annihilation by a short-distance process.
It is not, however, completely straightforward to define
precisely how many jets are present in a given final state
and what their momenta and energies are. The physical
problem is that the decay products from an energetic
parton are not infinitely well collimated, and, in particu-
lar, will generally inclUde the remnants of some rather
soft gluons that are emitted at large angles. Worse, be-
cause partons can join as well as divide, and because of
quantum interference, a given hadron can be a "decay
product" of more than one hard parton at once. Thus a.

jet cross section is to some extent an artifact.
If a jet cross section is an artifact, so be it. One must

simply give a careful definition of how the jet content of
the final state is to be measured. Then one must calculate
(perturbatively) the cross section to make jets in a given
configuration according to this definition. In order that
the cross section reQect short-distance physics, one must
arrange the jet definition so that the corresponding jet
cross sections are infrared safe in the sense of Eq. (4.10).

The possibility of calculating and measuring infrared-
safe jet cross sections was first explored by Sterman and
Weinberg (1977). The definition given there involved
cones, something like the cones often used to define jets
in hadron-hadron collisions, as described in Sec. VIII.

The definitions used nowadays for electron-positron col-
lisions involve an algorithm for successively combining
hadrons into jets, using some function of the momenta as
a measure of "jettiness. " (In the corresponding calcula-
tion, one uses the same algorithm to successively com-
bine partons into jets. ) Here, we shall describe the origi-
nal example of this class, the so-called JADE algorithm
(Bethke et a/. , 1988). There are several variations that
are used, of which we may mention particularly the Dur-
ham algorithm (Catani, Dokshitzer, Olsson, Turnok, and
Webber, 1991). ' A summary may be found in Bethke,
Kunszt, Soper, and Stirling, 1992.

The successive combination algorithms are iterative.
At each stage, two jets from a list of jets are combined
into one. One begins with a list of jets that are just the
observed particles. At each stage of the iteration, one
considers two jets i and j as candidates for combination
into a single jet according to the value of a dimensionless
"jettiness" variable y;-. Pairs with small y," are con-
sidered to be the most jetlike. For the JADE algorithm,

2E;EJ(1—cos9; )y= (5.25)

The pair i,j with the smallest value of y; is combined
first. When two jets are combined the four-momentum
p" of the new jet is determined by a combination formu-
la. For the JADE algorithm, the combination formula is
simply

s "=s"+a" (5.26)

21Named for the Durham Workshop on Jet Studies at LEP
and HERA, December, 1990, out of rvhich it developed.

After this joining, there is a new list of jets. The process
continues until every remaining y," is larger than a preset
cutofF, y,„,. In this way, each event is classified as con-
taining two, three, four, etc. , jets, where the number of
jets depends on the cutofFy, „,chosen.

Notice that this algorithm is infrared safe, because it
satisfies Eq. (4.10). A paticle that has only an
infinitesimal energy will not afFect the final number of jets
or their four-momenta, since it will contribute only an
infinitesimal amount to the final four-momentum of the
jet in which it is included. Similarly, if two particles are
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nearly collinear, with p('=Ap" and p('=(1 —
A, )p(', then

the first step of the algorithm is to combine them into one
jet with momentum close to p".

E. Calculations

One can categorize the possible infrared-safe quantities
in electron-positron annihilation as "X-jet like" by con-
sidering the functions S„,Eq. (4.7), that define the mea-
surement. If Sz&0, we say that the quantity is "two-jet
like." If /2=0 but $3%0, we say that the quantity is
"three-jet like. " With this nomenclature, the total an-
nihilation cross section is two-jet like. Quantities such as
the cross section to make exactly three jets (for a given

y,„,) or the energy-energy correlation function away
from y=0, m. are "three-jet like. "

As we have seen in Sec. V.A, the total cross section has
been calculated to order a, . Since this is three orders
beyond the Born approximation, the comparison of the
prediction to data can provide an extraordinarily
stringent test of the Standard Model. However, there is
an experimental limitation of the usefulness of a two-jet-
like quantity like the total cross section as a way to mea-
sure a, or to provide a test of the QCD part of the Stan-
dard Model. The limitation is that the Born approxima-
tion to such a quantity is independent of a, ; QCD enters
only in the higher-order corrections. Thus extraordinary
experimental accuracy is required in order to measure
the QCD contribution precisely.

With three-jet-like quantities, one is measuring some-
thing that, in the Born approximation, is proportional to
o, Thus the experimental demands are less stringent.

However, the theoretical difhculties are greater. Nonper-
turbative effects are estimated to play a larger role than
in the completely inclusive total cross section. (See, for
example, Bethke, Kunszt, Soper and Stirling, 1992.)
More importantly, the perturbative calculations are more
comphcated. The calculation depends on realizing can-
cellations of collinear and soft divergences between con-
tributions from four parton final states and from three
parton final states with virtual-loop corrections. (The re-
sults for the virtual-loop graphs are generally taken from
Ellis, Ross, and Terrano, 1981.) There are calculations of
individual three-jet-like quantities at order n, in the
literature. References may be found in Kunszt, Nason,
Marchesini, and Webber (1989). There is now also a
computer program by Kunszt and Nason (Kunszt,
Nason, Marchesini, and Webber, 1989) that can calculate
any infrared finite three-jet quantity at order a, . Basical-
ly, one has only to supply a suitable computer code for
the functions S2 and S3 that specify the measurement.

Vl. DEEPLY INELASTIC SCATTERING

A. Use of perturbative corrections in DIS

The use of parton distributions in pQCD is similar to
their use in the parton model. The basic facts are still (i)
that the IR safe short-distance functions C,' ' are in-

dependent of the external hadron h and (ii) that the dis-
tributions p;&h are "universal, " for instance, the same for
the structure functions F) and Fz defined in Eq. (3.19).
For convenience, we reproduce here the DIS factoriza-
tion theorems, Eqs. (4.11) and (4.12),

F(vh)(x Q2) — g I 0 C(v/)(x/g Q2/p2 a (p2))P (f p2) (g —
1 3)

i=f f, G
0

F2 ")(x,Q )= g I dgC2( '(x/g, g /p, a, (p ))P, qh(g, p )

i=f f, G

(6.1)

(where we have set the factorization scale equal to the renormalization scale )M), and the evolution equation (4.19),

I Oilh(xI a (I )) X I P'j a (I ) 0 /h(kl a (I'
dp

''
J ffG"

(6.2)

With these results in hand, we can make predictions by
combining perturbative calculations with experimental
input. In this section, we discuss how this works in low-
order corrections.

Unlike an infrared-safe total cross section, the hard-
scattering coei5cient functions of DIS factorization are
not simple finite functions of n, . Instead, they must be
defined as infrared-safe "distributions, " generalized func-

g (x)
1 —x +

(6.3)

tions that give finite answers when convoluted with
smooth functions. The most familiar example of a distri-
bution is a delta function. Here we introduce the "plus"
distribution, denoted
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whose integral with a smooth function f (x }is defined by B. One-loop corrections in DIS

g(x) id (f (x)—f (1))g(x)
1 x 1. MS scheme

f—(1)f dx (6.4)

A plus distribution corresponds to a divergent integral
that is regularized by a divergent subtraction, in this case
f (1) times the integral from 0 to 1. (Note that the last
term on the right vanishes when z =0.} Plus distribu-
tions are ubiquitous in both hard-scattering functions
and parton distributions, for all nontrivial factorization
theorems in QCD. The manner in which they arise in
one-loop corrections is discussed in Sec. VI.D below.

The three basic quantities in the factorization and evo-
lution theorems above are (i) the coefficient functions
C( '), (ii) the evolution kernels I';, and (iii) the parton
distributions P;&), . Of these, the first two are computable
as power series in a, as realistic, infrared-safe quantities.
The distributions, on the other hand, are directly com-
putable only for p, &J, with both i and j partons, and then
only in an infrared-regulated version of the theory. Such
unphysical parton distributions, however, enable us to
isolate the physical coefficient functions and evolution
kernels. I.et us review how this works.

As an example, consider the relation between the
structure functions F,' ', V=y, 8' +—

, and the physical
parton distributions P;z), (x, )((, ). The procedure can be
summarized as follows:

(a) Compute the regulated distributions P;& and P;&s
to some order in perturbation theory.

(b) Compute F,' ~), with j=q, g to the same order.
(c) Combine the results of (a) and (b) to derive C,' ~) to

this order.
(d) Combine C,' ~) with experimentally determined

F,' ' to derive the nonperturbative P &), to the same or-
der in perturbation theory by applying the factorization
theorem.

These distributions, in turn, can be combined with
hard-scattering functions from other processes to derive
predictions from the theory. Nate that the parton distri-
butions and coefficient functions are factorization-scheme
dependent, in the sense described in Sec. IV.B. The evo-
lution kernels P,", however, are scheme independent in
the one-loop approximation.

At 0 (a, ) the procedure we have just described is par-
ticularly straightforward. For instance, in the elec-
tromagnetic case, Eqs. (4.11) and (4.12) yield

In the MS scheme, the distributions are defined by ma-
trix elements as in Sec. IV.D and are simple at one loop
in perturbation theory, although the resulting coefficient
functions tend to be a bit complicated. They are also
convention dependent. To compare the following results
with the literature, it is necessary to check not only the
definitions of the F„Eq. (3.19), but also the explicit fac-
torization formulas, Eq. (6.1). For instance, the results
below for C2 differ from those quoted in Furmanski and
Petronzio (1982) by a factor x.

From the procedure just described, the explicit
nonzero one-loop coefficient functions for DIS are given
in the MS factorization scheme by (a/2m )C,' '"",with

(vq)(i) x 1+x
1

(1 x) 3'2 1-x'" x 4

+—(9+5x)1

4 +

C( vq)(&) — C( vq)(&)1 1

C(v&)(1) C(v&)(1) C (1+ )
1

3 2 F (6.6)

C( s)("=T~nfx [x +(1—x) ]ln
1 —x

X

—1+8x (1—x)

C' s""= C' g""—T n [4x(1—x)]1
Fnf X —X

where n& is the number of quarks

flavors,

CF
=C2(F) =4/3 for N, =3 and T~ = T (F)= 1/2 (see Ap-
pendix A). Similarly, the one-loop kernels are given by
(a, /2~)P'J. ", with (Altarelli and Parisi, 1977; Altarelli,
1982)

F(Vf)(1)( Q2) y(1) ( 2)+C(Vf)(1) Q
( )

p

(6.5)

Here and below, we suppress an overall factor Qf (the
fractional charge of the quark) in F, for electromagnetic
scattering.

22See Furmanski and Petronzio, 1982; Matsuura, Hamberg,
and van Neerven, 1990; Hamberg, 1991; Hamberg, van Neer-
ven, and Matsuura, 1991;van Neerven and Zijlstra, 1991, 1992;
and Zijlstra and van Neerven, 1991, 1992.
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P"'(x)=cp (1+x )
1 3+—5(1—x)

qq I'
. +1 —x 2

J

(x +2)(D1$)—[1+& ( )C(vq)(Ms) ]y(Ms)

+~ (+ )C( vgNMs) y{Ms)y2 (6.11)

(1—x) +1
gq

(6.7)

where S represents the convolution in Eq. (6.1). Here
the e6'ect of the gluon distribution in E2 is shared evenly
by the n& quark fiavors (the same number as is used in
the beta function at thfs momentum scale; see Sec. II.E).
Similarly, a frequently used (but nonunique) definition for
the DIS gluon distribution in terms of the MS distribu-
tions at order a, is

2)(DIS)—[1 ( )C1 Vg)(MS) ] y(MS1

+ C ——T(E)n 5(1—x)11 2 ( ) y C( vq)(Ms) @y(Ms)

q

(6.12)

where C„=C2( A ) = 3 in @CD (Appendix A). Finally,
the MS distributions for partons in partons are (with
a=2 —n/2)

(6.8)

These relations hold to order a, for h a parton or a phys-
ical hadron.

Because of Eq. (6.5), the remaining coefficient func-
tions in the DIS scheme are trivially found from those in
the MS scheme. The reward for the somewhat compli-
cated partonic distributions in the DIS scheme
(remember, they are unphysical anyway) is much simpler
one-loop coe%cient functions; in addition to the defining
equations (6.10), we find (see, for instance, Altarelli,
1982),

where we conventionally choose
C( vq)(1) (x )— (6.13)

M =pe y —1n4m
(6.9)

C', vg""(x)= —T(F)nf4x (1—x), (6.14)

with yE Euler's constant. This choice corresponds to a
natural definition for the renormalized matrix elements
that define the distributions (see Sec. IV.D).

C',"""(x)= —C,(F)(1+x) . (6.15)

2. DIS scheme C. Two-loop corrections

C' vq'(x) =5(1—x),

C' ~q' (x ) =5(1—x), (6.10)

C"g'(x) =0 .2

The 13IS scheme is defined to all orders in perturbation
theory by Eq. (4.16),

Recently, DIS coeScient functions have been calculat-
ed in DIS and MS schemes by van Neerven and co-
workers. This, of course, requires the determination of
perturbative parton distributions and evolution functions
at beyond lowest order as well. The full expressions are
bulky, and we shall not reproduce them here. To give
the flavor of the results, however, it may be useful to give
the two-loop evolution kernel for the nonsinglet distribu-
tions (Sec. IV.B.3), P; (x) (Altarelli, 1982):

That is, we renormalize the parton densities so that the
parton model is exact at p=g. This gives somewhat
more complicated results for one-loop distributions of
partons in partons (Owens and Tung, 1992), which, how-
ever, are determined in terms of the MS distribution to
one loop by

23See Matsuura, Hamberg, and van Neerven, 1990; Hamberg,
1991; Hamberg, van Neerven, and Matsuura, 1991; van Neer-
ven and Zijlstra, 1991, 1992; and Zijlstra and van Neerven,
1991, 1992.
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1+
F

1 —x
'2

CX . C —22
F

1+x
lnx ln(1 —x)—5(1—x)—

1 —x
3 +2x lnx ——(1+x)ln x1 2

1 x 2

In x — ln + — +2(1+x)lnx +11 1 —x 367 m 61

X

215
12

+—C T2
F

1+x
1 x

29 1 13
12 4 4

+ —+ x . +5(l —x)f dx Q (x,a, )+O(a, ),
0 W

(6.16)

where

Q (x,a, )= a,
2m

C ——C C 2(1+x)lnx +4(1—x)+ ln x —41nx ln(1+x) —4Li ( —x)—1 1+x
F 2 A F 1+x 2 3

(6.17)

O. Computation of one-loop DlS correction

Pv pr( yf)(1) F(yf)(1)1 1
Pv 2 (y (yf)( 1) 2xy (yf)(i)

)X

(6.18)

p»Jp ~p (yf)(i) —Q (F(yf)(i) 2xF(yf)(i) )pV 8 3 2 ]

Typical (cut) Feynman diagrams that contribute to
8 „'~ ' are shown in Fig. 15. At lowest order, they in-

volve either gluon emission, or one-loop radiative correc-
tions. Here we shall give enough detail on the gluon
emission process to illustrate the physical content of fac-
torization. For more details, see Altarelli, Ellis, and
Martinelli (1978, 1979), Abad and Humpert (1979), Hara-
da, Kaneko, and Sakai (1979), Kubar-Andre and Paige
(1979),and Humpert and van Neerven (1981).

Since we are interested in structure functions, it is con-
venient to use the contractions

Qf these, the first is by far the more demanding to calcu-
late, because the Dirac equation may be used to eliminate
all but one of the diagrams shown in Fig. 15 for

p "p'W„. (We should note that when these calculations
are carried out using the method of dimensional regulari-
zation these identities become somewhat more complicat-
ed. See Appendix C.)

Let us have a look at the real-gluon contribution to
—g""8'„. It can be computed as if the diagrams de-
scribed the Born approximation for the two-to-two pro-
cess y'+ f~f +g, with g a gluon,

gv~gr(rf)(() = (~~(rf (s, t, qi)~z)»', (6.19)
ps

where JR is the squared matrix element for this process,
normalized according to Eq. (3.16) and averaged over the
spin of the initial-state quark. Jps denotes the integral
over two-particle phase space. The matrix element is de-
scribed in terms of the usual kinematic variables,

s =(p +q), t =(p —k)2,

u =(q —k), s+t+u = —Qz,
(6.20)

in terms of which it is given explicitly by (recall, we are
suppressing Qf )

(~Jg'rf'(s, t, qi)~ )'" =4a— 2Qg

st

FIG. 15. Low-order diagrams for deep-inelastic scattering.

(6.21)

The phase-space integral is particularly simple in the
center-of-mass frame, where it reduces to an integral over
g=cos0, with 8 the angle between p and k. In this
frame, t, u, and s are given by

—Q (1—g) —
Q (I+/)

2x 2x
(6.22)

Q (1—x)
s =

X
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As usual, x =Q /2p. q. Collecting these expressions in
Eq. (6.19), we have

(i) as 4 r(d 2(1—x)+ 1 —g

virtual-gluon corrections, we shall change variables from
the cosg to the transverse momentum of the gluon, kT,
relative to the direction of the incoming quark. In the
center-of-mass frame, the relation between the two vari-
ables is

+ 2x (1+/)
(1—x)(1—g)

(6.23)

As it stands this expression has problems of two kinds,
closely related to those found at one loop in e+e an-
nihilation.

First, the unmodified integral diverges at /= 1, that is,
when the gluon is parallel to the initial-state quark. This
is the familiar collinear divergence, associated with the
degeneracy of on-shell single-quark and parallel-moving
quark-gluon states. It is just the sort of contribution that
corresponds to the evolution of an isolated quark long be-
fore the interaction takes place, and should be absorbed
into the distribution pf/f, In a careful calculation, we
would regularize the collinear divergence dimensionally,
or by giving the quark a mass. We can even cut off the
angular integral at some minimum angle. Each of these
choices will show up only in the precise definition of the
infrared-sensitive part of pf/f which we are going to dis-
card anyway. We shall therefore assume that regulariza-
tion has been carried out and shall not modify the expli-
cit expressions below. Thus we may assume that the ex-
pression for W(" is well defined for all x&1.

The divergences as x~1 are our second problem.
Given that s =Q (1—x ) /x, they are evidently associated
with a vanishing mass for the final state, which happens
if the emitted gluon has zero momentum (soft divergence)
or is collinear to the outgoing quark. Divergences of this
sort are not candidates for absorption into the parton dis-
tribution, because they depend on details of the momen-
tum transfer and the final state. On the other hand, an
unmitigated divergence of this kind cannot be pushed
into the hard-scattering functions C(z) either, because a
pole at z =1 in C(z) would lead to a singularity in the
basic factorization integral, Eq. (6.1), whenever x =g. If
factorization is going to work, the x =1 poles must be
canceled.

As in e+e annihilation, we look to virtual processes
to cancel divergences associated with real-gluon emis-
sion. There is an important difference, however, in the
kinematics of DIS and the annihilation processes. The
virtual diagrams of Fig. 15 can only contribute at x =1
precisely; in fact, they are proportional to a factor
5(1—x), which comes from the mass-shell 5 function
5([p+q] ). Thus, as anticipated above, the complete
answer will be infrared finite as a distribution, rather
than as a function.

Let us now skip to the answer. It will consist of plus
distributions in x, in addition to finite terms. Collinear-
divergent integrals will remain, which will have to be ab-
sorbed in the parton distributions. To compare real and

k =Q (1—g).T x
(6.24)

Leaving the divergent kT integral explicit, we obtain the
one-loop electromagnetic structure functions

cx g2 dk 1+x2
F'rf""(x)= . +—5(1—x)

2m o k 1 —x + 2

+C ( )
1+x

1
1 —x 3

1 x x 2

+—(9+Sx)
1

4

2xF(yfN ) F(yf)( )—
1

(6.25)

We see explicitly the collinear-divergent kT integral,
which will be absorbed into pf/f according to Eq. (6.5),
and the evolution kernel

1+x 3+—5(1-x)=—F"'(x),
1 —x 2 qq

(6.26)

a, (Q ) (/ dkT
6'~f Q' Ms= 2 I z Fee(x)

2m o
(6.27)

lflf/f(x, Q )Dis=F2 ""(x,a, (Q )) (6.28)

The first, "MS," distribution, Eq. (6.27), absorbs as little
as possible into P, that is, only the collinear-divergent
term, leaving the remainder to the C, 's. It is particularly
simple in dimensional regularization, where the divergent
term may be identified as the coefBcient of a pole like
1/(n —4), with n the "number" of dimensions. Alterna-
tively, in the second, "DIS," distribution, Eq. (6.28), we
absorb as much as we can in the parton distribution, the
standard choice being all of F(2r '(x, Qo ), at the momen-
tum scale Qo =(Mf.

which is of central importance in determining the Q
dependence of the DIS cross section (Sec. IV.B.3).

As promised, all x~1 divergences have canceled in
Eq. (6.25), a necessary condition for factorization. We
note, also, that F2 and F& differ by an infrared-safe func-
tion. This means that the same parton distribution pf/f
will absorb the infrared sensitivity of both structure func-
tions. This is another prerequisite for factorization.
Thus the calculation of DIS structure functions at one
loop gives us two highly nontrivial checks of the factori-
zation formulas, Eq. (6.1).

The explicit forms of one-loop corrections suggest the
two standard choices of parton distributions, discussed in
Sec. VI.B above,
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E. Review of DIS experiments

1. Historical perspective

Early work on electron-nuclei scattering led to the
discovery of the scaling property of the structure func-
tions. This scaling property demonstrated the existence
of pointlike constituents —partons —within the proton;
these partons are now identified as the quarks and
gluons. In a sense, DIS experiments of the 1960s estab-
lished the substructure of the proton in the same manner
that the Rutherford scattering experiments established
the substructure of the atom in 1911.

DIS experiments provided the experimental founda-
tion for the parton model (Sec. III), which, for the case of
lepton-hadron scattering, can be summarized by the fol-
lowing formula:

o ( Ih ~ l 'X)=p, ~i, I33 & ( la ~I 'X),

where P, && is the parton distribution function,
&(la~i'X) is the hard-scattering cross section, and
represents convolution in momentum fraction. The im-
plicit assumption in the parton model is that the lepton
scatters incoherently from the parton constituents. The
principal achievement of the parton model is that we
have taken a physical cross section that is dificult to cal-
culate directly and divided it into a term that we can cal-
culate in perturbation theory, o(la~i'X), and a term
that we extract from experiment, P, &l, .

Obviously, the utility of the parton model relies on our
ability to determine P, &i, or, equivalently, the structure
functions F;. The basic procedure used is to compute
o (la ~1'X) in perturbation theory, measure o (lh —+I'X)
experimentally, and thereby extract P, &I, . Unfortunately,
this is easier said than done, as we must unfold the con-
volution to find P, &i, .

At present, the data from DIS experiments provide the
most precise determination of the functions P, &h. The
advantage of the DIS process is apparent when contrast-
ed with a hadron-hadron scattering process where the
parton-model formula would read o =P & P and we
would have to unfold two convolutions to extract P.

Although an important goal of DIS experiments is the
extraction of parton distribution functions, these experi-
ments cover a wide range of topics, including the pre-
c1s1on measurements of sin0 ~, Cabibbo-Kobayashi-
Maskawa matrix elements, quark masses, and branching
ratios. We shall limit the scope of our discussion, howev-

er, primarily to the extraction of parton distribution
functions.

The generic DIS scattering experiment consists of a
lepton beam (e, p, or v) incident on a nucleon target. In
the simplest version of this experiment (totally inclusive
DIS), only the final-state lepton is observed, and the had-
ron remnants are ignored. For example, the SLAC-MIT
group (Breidenbach et al. , 1969; Bloom et al. , 1969) scat-
tered an electron beam of energy 7 GeV to 17 GeV from
a hydrogen target. The energy of the outgoing electron
was measured using a magnetic spectrometer for scatter-
ing angles 8=6' and 10'.

In the QCD parton model, we assume that the DIS
process occurs via the exchange of a virtual boson ( W
for charged-current reactions, y or Z in neutral-current
events) with momentum q"=k"—k'". The momentum
of the exchanged boson def1nes the energy scale, and the
momentum fraction is given by the Bjorken scaling vari-
able x:

Q = q=4E—„E„sin (Ol2),

2Z„Z„,sin'(en)
X =

2q.P mi, (Ek Ek )—
(6.29)

Therefore, by measuring only the final-state lepton ener-

gy (Ei,. ) and angle (8) in the target rest frame, we can
determine Q and x, and thereby extract the structure
functions.

The surprising discovery by the SLAC-MIT group was
that the structure functions were insensitive to Q and
depended only on the scaling variable x. In the context
of QCD, we now know that there is a logarithmic Q
dependence which spoils the exact scaling. Therefore the
goal of modern experiments is to measure the structure
functions in terms of both Q and x.

2. The experiments

We shall present a selective survey of the DIS experi-
ents as listed in Galic et al. (1992). The DIS experi-

ments can be divided into two categories: those with
charged (e,p) and those with neutral (v„v„) lepton
beams.

%'e shall consider four neutrino-induced DIS experi-
ments. At CERN, both CDHS (CERN, Dortmund,
Heidelberg, and Saclay) [CERN-WA-001] and CHARM
(CERN, Hamburg, Amsterdam, Rome, Moscow)
[CERN-WA-018] used a v„/v„beam with an energy

~4For a broader historical perspective, see Cahn and

Goldhaber, 1989.
Note, to leading orde~, the structure functions are simply re-

lated to the parton distributions. However, beyond leading or-
der, the relations are more complex.

For lack of space we can cite neither all experiments nor all
references. For those experiments discussed, the experiment
number is given so that the interested reader can Gnd a com-
plete list of publications in Galic et al. (1992). Note that this
information is also available on the SPIRES database.
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~ 260 GeV. These experiments were completed in 1984.
At Fermilab, CCFR (Chicago, Columbia, Fermilab, Ro-
chester) [FNAL-770] used a v„/v„beam with an energy
~600 GeV; their experiment was completed in 1988.
FMMF (Fermilab, Michigan State, MIT, and University
of Florida) [FNAL-733] had a v„/v& beam with an ener-

gy ~500 GeV, and their experiment was completed in
1988. CDHS and CCFR used massive (about 7 g/cc) Fe
calorimeters, which yielded a larger statistical sample.
CHARM and FMMF used lighter (about 2 g/cc) "fine-
grained" calorimeters, which yielded good pattern recog-
nition, but lower statistics.

The major charged-lepton-induced DIS experiments
include the following. EMC (European Muon Collabora-
tion) [CERN-NA-028] used a p beam with an energy
+325 GeV; this experiment was completed in 1983.
NMC (New Muon Collaboration) [CERN-NA-037] used
an improved EMC detector to extend the kinematic
range to x=[0.005,0.75] and Q =[1,200] GeVz; this
experiment was completed in 1989. SMC (Spin Muon
Collaboration} [CERN-NA-047] is a second reincarna-
tion of the EMC detector designed to measure the spin-
dependent asymmetries of longitudinally polarized
muons scattering from polarized targets. SMC began
operation in 1991. BCDMS (Bologna, CERN, Dubna,
Munich, Saclay) [CERN-NA-004] used a p beam with an
energy 100 GeV ~ E„~280 GeV and completed their ex-
periment in 1985.

Finally, there is a new class of experiments which has
only become reality recently, those conducted at lepton-
hadron colliders. The HERA collider at DESY. began
taking data in 1992, colliding 26.7 GeV electrons on 820
GeV protons for a &s =296 GeV. With two experi-
ments called H1 and ZEUS this facility will be capable of
measuring structure functions in the range x ~ 10 and

Q +30000 GeV . Results from their early runs have
been published by ZEUS Collaboration (Derrick et al. ,
1993b), and Hl Collaboration (Abt et al. , 1993, 1994}.
These results already cover values of x below 10 . They
are especially notable for the rise in F2(x} at low x,
which is consistent with a variety of theoretical con-
siderations (Kuraev, Lipatov, and Fadin, 1976; Balitskii
and Lipatov, 1978; Bassetto, Ciafaloni, and Marchesini,
1983; Gribov, Levin, and Ryskin, 1983; Levin and Rys-
kin, 1990).

periments, we prefer to convert the nuclear structure
functions to isoscalar structure functions. This necessary
conversion is nontrivial and can introduce significant un-
certainties.

We have sketched the process for extracting the struc-
ture functions summed over parton flavors; however,
realistic extraction of the parton distribution functions is
more complicated. In principle, we can use proton- and
neutron-scattering data to extract the up and down dis-
tributions separately, but this is not straightforward.

A further complication arises when we try to deter-
mine the sea-quark distributions. For example, the s-
quark distribution is determined using the subprocess
s+ 8'—+c, with the final-state c quark observed. Unfor-
tunately, this process is sensitive to threshold effects aris-
ing from the charm-quark mass, as well as large
nonleading-order contributions arising from the mixing
of the gluon and strange-quark distributions.

New high-precision DIS data, as well as improved
h@her-order theoretical calculations, force us to go
beyond leading-order perturbation theory. When we car-
ry our calculations and data analysis beyond the leading
order of perturbation theory, all the subtleties of the re-
normalization scheme and scale dependence arise.

F. Experimental status of parton distributions

In this section we review some properties of parton dis-
tribution functions, as currently determined from experi-
ment. We begin with overall features and go on to dis-
cuss the experimental status of scaling violation, evolu-
tion, and the determination of A&co.

1. General features

In neutrino scattering the built-in flavor selection, as
described for the parton model in Sec. III, provides a
powerful means of extracting parton distribution func-
tions. Nevertheless, neutrino experiments on light tar-
gets (H or D) suffer in statistical precision. In the follow-

ing, we briefly review the results of neutrino experiments
on hydrogen, with special attention to the precision mea-
surements from neutrino scattering off isoscalar targets.

3. Outstanding issues in DlS

The DIS process is by far the most accurate experi-
ment for measuring the quark distributions; however,
since there is no direct lepton-gluon coupling, the DIS
process is sensitive only to the gluon distributions at
next-to-leading-order. Given the significant role that the
gluons play in QCD, it is important to obtain their par-
ton distribution function in a separate process, such as
direct-photon production.

DIS experiments are performed with a variety of nu-
clear targets. To compare structure functions among ex-

a. Quark densities from v-H scattering

Neutrino measurements of quark densities from a hy-
drogen target are in agreement between the two experi-
ments, CDHS (Abramowicz et a/. , 1984) and WA21
(BEBC; Jones et al. , 1989), at about the 15%%uo level. Fig-
ure 16 shows the ratio of quark and antiquark com-
ponents as measured by the two groups. [It should be
noted that the CDHS data have been adjusted in overall
normalization to reflect this group's recent cross-section
measurement (Berge et al. , 1987)].
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FIG. 18. The ratio of xF3 from CDHSW (CERN, Dortmund,
Heidelberg, Saclay, Warsaw; Berge et al. , 1991) to xF3 from
CCFR (Chicago, Columbia, Fermilab, Rochester; Mishra et al. ,
1992), with Q ) 1 GeV, as a function of x with statistical er-
rors only.

FIG. 16. Ratios (Mishra and Sciulli, 1989) of the data from ex-
periments WA21 (BEBC, Big European Bubble Chamber; Jones
et al. , 1989) and CDHS (CERN, Dortmund, Heidelberg, Sa-
clay; Abramowicz et al. , 1984): (crosses, quarks; solid circles,
antiquarks).

b. Valence quark densitiesin the proton

cy in the shape of xdF(x). The precise reason for the
discrepancy is not known. It is hoped that the recent
muon experiment data from the BCDMS and NMC col-
laborations on hydrogen and deuterium might resolve
this experimental conQict.

The present status of separate valence quark com-
ponents, xu&(x) and xdz(x), is summarized in Fig. 17(a)
and Fig. 17(b). As noted in Mishra and Sciulli (1989),
while there is general agreement on xuv(x) between the
muon experiment (EMC) and neutrino experiments
(WA21, WA25, and CDHS), there is a distinct discrepan-

c. Valence quark densitiesin anisoscalar target

The valence quark density for an isoscalar target (i.e.,
the average of neutron and proton), which is the non-
singlet structure function xF3 (x, Q ), is much more accu-
rately determined in high-statistics neutrino experiments.
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FIG. 17. Valence quark densities (Mishra and Sciulli, 1989) in a
proton: (a) xu„(b) xd, as a function of x. The data are from
EMC (European Muon Collaboration; Aubert et aI., 1987),
WA21 (Jones et al. , 1989), WA25 (Allasia et al. , 1984, 1985),
and CDHS (CERN, Dortmund, Heidelberg, Saclay;
Abramowicz et QI., 1984). The solid curve is the parametriza-
tion of Morfj. n and Tung (1991).

FIG. 19. The antiquark component (Mishra and Sciulli, 1989)
of the proton as measured by three neutrino experiments. The
three sets of CERN data are from WA21 (Jones et al. , 1989),
WA25 (Allasia et a/. , 1984, 1985), and CDHS (CERN, Dort-
mund, Heidelberg, Saclay; Abramowicz et al. , 1984). The solid
curve is the parametrization of Morfin and Tung (1991).
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The CCFR collaboration (Mishra et a/. , 1992) has
presented new measurements on xI'3(x, Q ). These are
compared with the CDHSW data (CERN, Dortmund,
Heidelberg, Saclay, Warsaw; Berge et a/. , 1991) in Fig.
18. The Q -averaged ratio of the CDHSW to the CCFR
values of xF3 are plotted as a function of x. The figure
shows that within the systematic error of the overall nor-
malization ( =2.5%—3%) the two measurements of xF3
are in agreement. There are, however, differences in the
Q dependence at a given x between the two data sets.
This has important ramifications for the test of scaling
violations in xF3(x, Q ), as discussed below.

d. Antiquark densitiesin anisoscalar target

The antiquark densities as measured in light. targets by
three different groups at CERN, WA21, WA25, and
CDHS, are in agreement, as shown in Fig. 19 (for details
see Mishra and Sciulli, 1989). The new high-statistics
measurement of xq(x, Q ) measured in the Fe target by
the CCFR collaboration (Mishra et a/. , 1992) is shown in
Fig. 20. The data show that xq(x)%0 up to x ~ 0.40.

v=0. 52+0.07 . (6.30)

A noteworthy feature of the CCFR data (see Foudas
et a/. , 1990) is that the measured s (x) [s(x)] is somewhat
softer than the nonstrange sea (obtained from the single-
muon charged current events). This is illustrated in Fig.
21. Two new developments are underway: (a) CCFR has
quadrupled its sample of p+p events by including data
from two separate runs (FNAL E744 and E770) and by
imposing a softer muon momentum cut on the second
muon (E„)4 GeV); (b) It has been shown that, within
the perturbative QCD framework, it is necessary to per-
form the analysis at least to order a, to achieve con-
sistency (Aivazis, Olness, and Tung, 1990). It is hoped
that these developments may help answer the question:
is the strange sea different from the nonstrange sea'7

2. Evolution

(Abramowicz et a/. , 1982) and CCFR (Lang et a/. , 1987;
Foudas et a/. , 1990) leading-order analyses agree in their
determination of the fractional strangeness content of the
nucleon sea [Ir=2s/(u +d )]; the average of the two mea-
surements is

e. Strange-quark content of anisoscalar nucleon sea

Neutrino-induced opposite-sign dimuons p p offer
the most promising measurement of the strange-quark
content s (x) [s(x)] of the nucleon sea. In addition, these
events permit determination of the electroweak paraxne-
ters V,d (the Kobayashi-Maskawa matrix element: this is
the only direct determination of this parameter) and m,
(the mass parameter of the charm quark. This is precise-
ly the parameter that, at present, limits the precision of
sin 8~ determination in v-X scattering). The CDHS

Within the framework of DIS scattering described in
Sec. IV there are elegant and unambiguous QCD predic-
tions that can be verified experimentally. In DIS there is
no fragmentation uncertainty, since one deals with in-
clusive final-state hadrons; the scale, which is the four-
momentum transfer Q, is well defined; the higher-order
corrections are small and the scaling violations are well
described by the evolution eqations (Altarelli and Parisi,
1977). Moreover, the measurements yield structure func-
tions at different values of x and Q, and thus afford a

0.6

0.4

&&: xq(x) at Q =3 GeV

: xq(x) at Q =& «~
FIG. 20. The antiquark component of a nu-
cleon measured in an isoscalar target (v-Fe)
by the CCFR (Chicago, Columbia, Fermilab,
Rochester) collaboration (Mishra et al. , 1992).
q(x) as a function of x is shown for two values
of Q: 3 GeV and 5 CxeV .
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system of tests of evolution (Sec. IV.B.3).
Among the elegant predictions of perturbative QCD

are slopes of structure functions with respect to Q as a
function of x and the absolute magnitude and depen-
dence of R (x,g )=crL /o r on x and Q . Below we ex-
amine the status of these tests.

o.I E2 —2xEj

2xE,
(6.31)

R (x, Q ) =o I /o. z. This parameter is related to the
structure functions E2, and F, as

a. Measurements ofR(x, Q~) versus Q("0

The R parameter of deep-inelastic scattering is defined
as the ratio of the absorption cross section of the longitu-
dinally to the transversely polarized virtual boson,

where Fi is the longitudinal structure function, and the
other symbols have their usual meaning (Mishra and Sci-
ulli, 1989). Perturbative QCD predicts the magnitude of
R and its dependence on x and Q (due to gluon radiation
and quark pair production) to be (Altarelli and Martinel-
li, 1978; Gliick and Reya, 1978)

r

&s(g') x' ( dz 8, , xR(x, Q )= f F2(z, Q )+4f—1 ——zP g, (z, g )
2m 2xF(xQ ) xz 3 z

(6.32)

where f is the number of quark flavors if the incident lepton is a neutrino, and the sum of the squares of quark charges
if the incident lepton is a muon or an electron; Ps&h(z, Q ) is the gluon distribution. Numerous experiments have mea-

sured R (x, Q ) and claimed consistency with the theoretical prediction. Nevertheless, from recent measurements at
SLAC (Dasu et al. , 1988; Whitlow et al. , 1990) and a simple model for higher-twist effects, it is argued by Mishra and
Sciulli (1990) that the present cumulative deep-inelastic scattering data are consistent with but do not demonstrate
R R QCD Precise measuretnents of R (x, Q ) at sufficiently high Q [e.g. , Q ) 10—1 5 (GeV/c ) ] in next-generation
deep-inelastic experiments (Mishra, 1990a; Guyot et al. , 1988) will provide a compelling test of perturbative QCD.

b. Evolution of nonsi nglet structure function

In the DIS scheme, we can combine Eqs. (6.1), (6.2), and (6.10) to find evolution equations for the singlet and non-
singlet functions F2 ' and E2

dF(Ns) (x g2) 'P (z, a, )F,("" —",g' dz,
d lng

dF(,"(x,g') xP (z, a, )F(2 ' —,Q +P (z, a, )P )h —,Q dz

(6.33)

(6.34)
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=(r, (Q')g(x, Q') .

d lnQ
(6.35)

The term g(x, Q ) involves an integral of xF)(z, Q ) for

where the P," are the usual evolution kernels, given at
one loop [Eq. (6.7)]. Thus in the DIS scheme the non-
singlet (NS) evolution of F2 involves only the structure
function itself, the known splitting function, and a, . The
singlet (S) equation is coupled with that of the gluons
and is hence less directly related to experiment. An
analysis of the kernels shows, however, that the slope of
each F,' ' is expected (at leading order) to pass through
zero at about x =0.1, as shown for I 3 in Fig. 22.

In a manner similar to Fz ', the evolution equation for
xF3 can be written in the form

z &x; the integral is evaluated using the known splitting
function Pqq (which has been calculated to next-to-
leading order). Thus the only unknown on the right-hand
side of the above equation is the strong-coupling con-
stant: the logarithmic slope of xF3 is proportional to a,
at each x.

Neutrino experiments on heavy targets can perform
this test with the nonsinglet structure function xF3. The
high-statistics CDHSW data (Berge et al. , 1991) do not
agree well with the predicted dependence of the scaling
violations on x, although the authors state that the
discrepancies are within their systematic errors. Previ-
ous CCFR data lacked the statistical power to offer a
conclusive test (Oltman et al. , 1992). The recent CCFR
nonsinglet data show an evolution consistent with the
pQCD prediction and provide an accurate determination
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FIG. 23. The xF3 data from the CCFR {Chi-
cago, Columbia, Fermilab, Rochester) colla-
boration (Quintas et al. , 1993), and the best
next-to-leading-order QCD fit. Cuts of Q & 5

GeV and x &0.7 were applied for a next-to-
leading-order fit including target mass correc-
tions.
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of a, (Quintas, 1992; Quintas et al. , 1993).
Measurements of the scaling violations are sensitive to

miscalibrations of either the hadron or muon energies.
For example, a 1% nuscalibration can cause a 50-MeV
mismeasurement of A&CD, but hadron and muon errors
enter with opposite signs. Thus if both hadro~ and muon
energies were in error by the same amount, the error in

A&cD would be small. While it is important that the had-
ron and muon energy calibrations and resolution func-
tions be well known, it is crucial that the energy scales be
cross-calibrated to minimize energy uncertainty as a
source of error.

Figure 23 shows that the CCFR data have an evolution
of xF3 consistent with the pQCD prediction. The pQCD
prediction is a next-to-leading-order calculation in the
modified minimal subtraction MS scheme. A Q ) 15
(GeV/c) cut was applied to eliminate the nonperturba-
tive region, and another x & 0.7 cut to remove the
highest x bin (where resolution corrections are sensitive
to Fermi motion). The best QCD fits to the data were ob-
tained as illustrated in the figure.

shown in Fig. 24 result from power-law fits to both data
and theory over the Q range of the data. The logarith-
mic slopes of the data agree well with the QCD predic-
tion throughout the entire x range. This observation is
independent of calibration adjustments within reasonable
limits. At low-x values the data agree well with predic-
tions independent of the value of A&co.

The value of A&cD (with four quark fiavors at one loop
order in MS scheme) resulting from the fit to xFs data is
179+36 MeV, with a y of 53.5 for 53 degrees of freedom
(y =53.5/53). Varying the Q cuts does not
significantly change AQcD for Q ) 10 (GeV/c), the best
fit gives A«D=171+32 MeV (g =66.4/63); and for
Q ) 5 (GeV/c ) & AqcD = 170+31 MeV (g =83.8/80).

More precise determinations of A&CD from the non-
singlet evolution are obtained by substituting F2 for xF3
at large values of x. The evolution of F2 should conform
to that of a nonsinglet structure function in a region,
x &x,„„solong as x,„, is large enough that the effects of
antiquarks, gluons, and the longitudinal structure func-
tion on its Q evolution are negligible. The "best" value
of A&co from nonsinglet evolution is obtained by substi-
tuting F2 for xF3 for x )0.5. (The slopes for F2 in this
region are also shown in Fig. 27 below. } This nonsinglet

c. Determination of AQcp

BCDMS: Fs(H2) 8c F2(C)

0.00 ~

1
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l —o.10
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0.1

Non —singlet /CD Fit
CY~ —0.&50

bQ
O —O.2O
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FIG. 25. The BCDMS (Bologna, CERN, Dubna, Munich, Sa-
clay) collaboration (Benvenuti et al. , 1987a, 1987b) measure-
ment of the logarithmic derivative of F2 with respect to
Q, d logFz/d logQ, as a function of x with hydrogen (solid
symbols) and carbon {open symbols). The best next-to-leading-
order QCD nonsinglet fits to these data are also shown. It is as-
sumed that for x )0.25 the F2 data essentially evolve as non-
singlets. The figure is from Mishra and Sciulli (1989).

FICr. 24. The slopes of xF3 (=d lnxF3/d lnQ ) for the CCFR
data (Chicago, Columbia, Fermilab, Rochester collaboration;
Quintas et a/. , 1993) are shown in circles. The curve is a predic-
tion from perturbative QCD with target mass corrections. The
slopes for F2 (squares) in the region x &0.4 are also shown
(with x values shifted by +2% for clarity).
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A good visual representation of structure-function evo-
lution compares the magnitude of the Q dependence of
the data in each x bin with the dependence predicted by
the fit. This is shown by plotting the "slopes"
(=d lnxF3/d lnQ ) as a function of x. Figure 24 shows
the CCFR data along with the curve through the points
predicted by the theory. More specifically, the values
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0.}

BCDMS Singlet Fit fOr H2

I
~ ~ ~ ~

fit yields

A&cD=210+28 MeV for Q ) 15 (GeV/c) (6.36)

0.0

Varying the x,„, from 0.5 to 0.4 does not significantly
change A&CD,

' the above substitution yields
A&cD=216+25 MeV with good fit. Using 2xI", instead
of I'2 in this fit changes A&CD by + 1 MeV.

-0.f
Ol
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bQ0
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FIG. 26. The singlet evolution of the BCDMS measurement
(Bologna, CERN, Dubna, Munich, Saclay; Benvenuti et al. ,
1987a, 1987b) of F2 in a hydrogen target. The effect of gluons,
prominent at low x, is shown by the hatched region between the
singlet (solid), and nonsinglet (dotted) QCD fits. The figure is
from Mishra and Sciulli (1989).

(+) EMC. l' (l'e). Q & lo GeV

0 0 I I ~ ~

l
I

d. Evolufion of singlet structure function

We note (for details see Mishra and Sciulli, 1989) that
there were some experimental convicts in I2 evolution:
whereas the BCDMS data showed lovely agreement with
the theory (see Figs. 25 and 26), the EMC and the
CDHSW data on I'z slopes were steeper than the predic-
tion (Figs. 27 and 28). The CCFR data on F2 show an
evolution consistent with pQCD. Figures 29 and 30 illus-
trate this consistency. It should be noted, however, that
for the F2 evolution the functional form of the x depen-
dence of the gluons must be assumed, and its coefticient
must be determined from the data.

We point out that, assuming the QCD evolution is une-
quivocally verified in the nonsinglet evolution, the singlet
evolution permits the extraction of the gluon structure

(:.:-:) CDHSW: l" (Fe):0 & lo Gev00''''' I

3, f

-O. i

1 MeV

CY —0.20

bQ0

CY -0.20

bQ0
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3(
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0 0.2 0.4 0.6 0.8 1

X

FIG. 27. The EMC measurement of the logarithmic derivative
of F2 with respect to Q, d logFq/d logQ, as a function of x
with iron target. Also shown is the next-to-leading-order QCD
curve with typical value of AQcD as analyzed by the BCDMS
collaboration (Bologna, CERN, Dubna, Munich, Salcay; Ben-
venuti et al. , 1987b). The figure is from Mishra and Sciulli
(1989).

—0.4 ~ I I L I I I l I ~ I I I ~ I ~ I I ~ I I

0 0.2 0.4 0.6 0.8

FIG. 28. The CDHSW measurement (CERN, Dortmund,
Heidelberg, Saclay, Warsaw collaboration; Berge et al. , 1991)
of the logarithmic derivative of F2 with respect to
Q, d logF2/d logQ, as a function of x with an iron target.
Also shown is the next-to-leading-order QCD curve with typical
value of AQCD as analyzed by the BCDMS collaboration (Bolog-
na, CERN, Dubna, Munich, Saclay; Benvenuti et al. , 1987b).
The figure is from Mishra and Sciulli (1989).
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FIG. 29. The F2 data of the CCFR collabora-
tion (Chicago, Columbia, Fermilab, Rochester;
Quintas et al. , 1993) and the best next-to-
leading-order QCD fit. Cuts of Q ) 5

(GeV/e) and x (0.7 were applied for a next-
to-leading-order At including target mass
corrections.
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function. In neutrino experiments, the simultaneous euo-

lution of F2 and xF3 permits a very powerful constraint
on the gluon degrees of freedom (Oltman et a/. , 1992).

G. Status of DIS sum rules

1. Introduction

0.2
CCFR: Singlet Slopes

Fz Data
F2 NLO QCD —Fit

0.0

The invariant structure functions that parametrize the
deep-inelastic scattering cross section are related to the

densities of quarks constituting the nucleon by the
quark-parton model (QPM; Sec. III). Quark-parton-
model sum rules are thus consistency conditions that re-
late appropriate integrals of measured quark densities to
the total number and charges of the constituent quarks.
In the following, we review from a phenomenological
perspective the sum rules and the experimental chal-
lenges and tests of certain important sum rules in DIS ex-
periments (Sciulli, 1986; Mishra and Sciulli, 1989). Sum
rules establish relationships among the total integrated
quark and antiquark densities. For simplicity, we consid-
er the contributions of the first-generation quark densi-
ties. (Higher-generation quark densities generally cancel
in the sum rules. ) If we denote the total u-quark and d-

quark densities by
1 1

U =J u(x)dx, Dz= J d(x)dx, (6.37)

it follows from isospin invariance that the total density of
the u quark in the proton must be equal to the total den-
sity of the d quark in the neutron:

—0.1 U=U =D„,
U=U =B

p n~

B=D =U„,
B=a =U„.

(6.38)

—0.4
0

W & 10 GeV

Q & 10 GeV

0.2 0.4 0.6 0.6

The above simple relationships follow directly from the
assigned baryon and isospin quantum numbers of the nu-
cleon, and no violation of these relations has been report-
ed to date.

FIG. 30. The slopes of Fz(=d logFz/d logQ ) for the CCFR
data (Chicago, Columbia, Fermilab, Rochester; Quintas et al. ,
1993), shown as squares. The curve is a prediction from pertur-
bative QCD.

7For a historical perspective of the DIS experiments, see Sci-
ulli, 1991.
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The experimental challenges in precision tests of QPM
sum-rule predictions spring from two sources:

(1) Low-x region: the experiments measure momen-
tum densities of the partons, i.e., xq (x); the sum rules in-
volve integration over the number of quarks. The sums
are thus obtained by integrating over the measured
momentum densities divided by x, which weights the
low-x region heavily. A good experimental resolution
and a good understanding of the resolution functions of
the measured quantities in the low-x region are necessary
for accurate tests.

(2) Relative normalization: Sum rules involve
differences of structure functions or cross sections. The
relative normalization between relevant cross sections,
therefore, must be accurately measured. Furthermore, as
can be seen below, differences often must vanish at x =0,
or the sum rule will become divergent. This imposes an
additional emphasis upon measuring the relative normal-
ization well.

2. Gross-Llewellyn Smith sum rule

The Gross-Llewellyn Smith (GLS) sum rule is the most
accurately tested of sum rules. The GLS sum rule pre-
dicts that the number of valence quarks in a nucleon, up
to finite Q corrections, is three (Gross and Llewellyn
Smith, 1969; Beg, 1975). It involves an integration over
the nonsinglet neutrino structure function, xF3(x, Q )/x,
which is obtained by subtracting the antineutrino
differential cross section on an isoscalar target from the
corresponding neutrino cross section. In the quark-
parton model, the GLS sum rule is =2.50+0.018(stat. )+0.078(syst. ) . (6.41)

a, result may be derived from C3 ~' in Eq. (6.6). This
computation is greatly simplified by using the fact that
the integral from 0 to 1 of a plus distribution vanishes.

Due to the 1/x weighting in the integrand, the small-x
region (x (0.1) is particularly important; 90% of the in-
tegral comes from the region x ~0. 1. It follows that the
most important requirements for ensuring that systemat-
ic errors will be small are (a) accurate determination of
the muon direction and (b) accurate determination of the
relative v/v flux. Since xF3 is obtained from the
difference of v and v cross sections, small relative nor-
malization errors can become magnified by the weighting
in the integral. The absolute normalization uses an aver-
age of v-X cross-section measurements.

As an example, in the CCFR measurement of SGLs,
the values of xF3 are interpolated or extrapolated to
Qo =3 (GeV/c), which is approximately the mean Q of
the data in the x bin which contributes most heavily to
the integral. The resulting xF3 is then fit to a function of
the form f (x)= Ax (1—x)' (b )0). The integral of the
fit weighted by 1/x gives Sors. The estimated systematic
error due to fitting on SGLs is +0.040. The dominant
systematic error of the measurement comes from the un-
certainty in determining the absolute level of the flux,
2.2%%uo. The other two systematic errors are 1.5% from
uncertainties in relative v to v flux measurement and 1%
from uncertainties in muon-energy calibration. The re-
ported CCFR value for Sois is (Leung, 1991; Leung
et a/. , 1993)

1 3xF
~GLS f dx

x 2x

) xF,"
S = dx =(U —U)+(D D)=3 . —

GLS (6.39)

To verify this result [see Eq. (3.44)], recall that
( 8"+h)F' "'=F' "' for h =p, n and use isospin invariance, Eq.

(6.38). The integrand of the sum rule is the coeScient of
1 —(1—y) in the difFerence of the two diff'erential cross
sections.

The effects of scaling violations modify this sum rule.
Perturbative QCD predicts a calculable deviation of the
GLS sum rule from 3. In next-to-leading order, S&Ls is
given by

2 2.5 3 3.5 4
I I I I I I I I I I I I I I I I

CDHS

CCFRR

VfA25

3.20 a 0.5

2.56 a 0.42

2.83 + 0.20

2.70 * 0.40.

I xF3 a, (Q2) g
SoLs= I dx =3 ' 1 + +g(Q )

0 2x 7T 2 CCFR(NBB) 2.78 a 0.15

(6.40)

The quark-parton model relates the parity-violating
structure function xF3 to the valence quark density of
the nucleon, and the sum rule follows. The second term
in the equation corresponds to the known perturbative
QCD correction, while the third term corresponds to an
estimate of the power suppressed (twist-4) contribution to
the sum rule (Iijima, 1983). Using perturbative QCD
with A&cD=200 MeV, we find that the sum rule there-
fore predicts Sozs =2.66 at Q =3 (GeV/c) . The order-

CCFR(QTB) 2.50 + 0.08

FIG. 31. The world status of the Gross-Llewellyn Smith sum-
rule measurement, as summarized by the CCFR collaboration
(Chicago, Columbia, Fermilab, Rochester; Leung et al. , 1993).
The other data are from CDHS (CERN, Dortmund, Heidel-
berg, Saclay; de Groot et al. , 1979), CHARM (CERN, Ham-

burg, Amsterdam, Rome, Moscow; Bergsma et al. , 1983),
CCFRR (Caltech, Columbia, Fermilab, Rochester, Rockefeller;
MacFarlane et al. , 1984), %'A25 (Allasia et al. , 1984, 1985), and
CCFR-NBB (NBB=narrow-band beam; Oltman et al. , 1992).
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The theoretical prediction of SGis, for the measured
A=213+50 MeV from the evolution of the nonsinglet
structure function, is 2.66+0.04 [see Eq. (6.40)]. The
prediction, assuming negligible contributions from
higher-twist effects, target mass corrections (Mishra,
1990b, summarized in Brock, Brown, Corcoran, and
Montgomery, 1990), and higher-order QCD corrections,
is within 1.8 standard deviations of the measurement.
The current status of Sz~s measurements is shown in
Fig. 31.

The 3%%uo accuracy of the GLS sum rule at Q =3 GeV
raises theoretical concerns about nonleading contribu-
tions, which are discussed by Shuryak and Vainshtein
(1981)and Iijima (1983).

3. Adler sum rule

1 I

1 Vn VP
Fp —Fp

p 2X
dX,

't0

«V/c

50 100

F&G. 32. The WA25 measurement (A11asia et al. , 1985) of the
Adler sum rule with various Q cuts.

The vanishing of the one-loop correction to Sz follows
immediately from the fact that C2 ~'(x)/x in Eq. (6.6) is
a plus distribution. In terms of the total number of u and
d quarks, the sum rule implies [see Eq. (3.42)]

1S„=f [d„(x)+u„(x)—d, (x)—u, (x)]dx

=D +U —D —Un n p p

=(U —U) (D D) . —— (6.43)

The prediction follows from the last equation.
The WA25 (BEBC) collaboration (Allasia et al. , 1984,

1985) has used neutrino data on a light target to obtain
this sum rule. Their measurement, averaged over
1 & Q (40 (GeV/c) and assuming the Callan-Gross re-
lation, yields

S~ = 1.01+0.08(stat. )+0.18(syst. ), (6.44)

which is consistent with the prediction at the 20% level.
Figure 32 presents the WA25 measurement of Sz at van-
ous Q cuts. It should be pointed out, however, that the
%'A25 collaboration used a va1ue for the total vX cross
section that is lower than the current consistent value
(see Blair et al. , 1983, and Berge et al. , 1987). The cen-
tral value of the sum rule, therefore, should be adjusted:
S~ = 1.08+0.08+0. 18.

The Adler sum rule is particularly dificult to test accu-
rately. Obtaining statistically accurate neutrino data on
a light target would require a very intense neutrino beam.
The need for good low-x resolution and accurate relative

The Adler sum rule predicts the integrated difFerence
between neutrino-neutron and neutrino-proton structure
functions. Unlike the GLS sum rule, this sum rule is ex™
pected to be exact for the leading twist term; that is,
there are expected to be no perturbative corrections with
higher powers of n, . This is because its derivation relies
on commutators of currents. It states (Adler, 1966)

(y vn ~vp )
(6.42)

normalization between proton and neutron (deuterium)
targets imposes additional constraints. No new efFort is
in view to improve upon the present 20% measurement
of Sq.

4. Gottfried sum rule

The Gottfried sum rule is the "Adler sum rule analog"
for charged-lepton probes. The sum ru1e involves the
difFerence of F2 measured in proton and neutron targets
using a muon beam (Gottfried, 1967):

i (pvp —pp" )
SG = — dx =—+correction .

0 X 3
(6.45)

=
—,
' [( U + U ) (D +D ) ] . — (6.46)

There are no one-loop corrections from the Wilson
coefficients of Eq. (6.6). If one assumes (Mishra and Sci-
ulli, 1989) that the total number of anti-up and anti-down
quarks inside a proton is the same, i.e., U=D, then the
sum rule predicts a value of 1/3.

The corrections to the Gottfried sum rule come both
from higher-order perturbative corrections and from
violations of the assumption that U =D.

It is the assumption U=D inside the proton that is
seriously impugned by the recent NMC measurement of
SG (Arnaudruz et al. , 1991). Before discussing the ex-
periment, let us analyze the contribution of various quark
species to SG.

When written in terms of u- and d-quark contribu-
tions, this is the first sum rule in which the contributions
of quark and antiquark of the same type add. For all

As in the case of the Adler sum rule, it is instructive to
express this sum rule in terms of contributions (integrals)
from individual quark densities [see Eq. (3.31)]:

SG =
—,
' [4( U~+ U~ )+(D~+D~ )

—4( U„+ U„)—(D„+D„)]
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other sum rules —Gross-Llewellyn Smith, Adler,
Bjorken —the contribution of, say, u quark and anti-
quark subtract.

There is no a priori reason to believe that the total
number of u is the same as d inside a proton. That the
proton has two valence u quarks, and one valence d
quark implies that the number of u-u pairs will be less
than the corresponding number of d-d pairs in the nu-
cleon sea —the suppression of u quarks in the sea will be
due to the exclusion principle (Field and Feynman, 1977).
Isospin symmetry does not predict equality. Use of the
Adler sum rule, Eq. (6.43), however, enables SG to be cast
in the form

SG =
—,
' [( U —U) —(D —D ) +—'[( U D)]—

&C

K
cj
CV

LL.

U

0.3—

0.2

0.1—

10

I & I sil l

0-2

2 2
Q = /GeV

0.15

LA
I

CL
U

0.1

0.05
)a

10

I i ( I ~ lit 0

=—'+ —'[(U D)] .— (6.47)

1 F2 /F$-
Ft'2 Fz =2F2(deute—rium) X

1+F2/F$
(6.48)

Figure 33 shows the NMC measurement of (F$ Fz ), —
dark symbols (right scale), and that of the corresponding
integral, f (F$ Fz)dx, open sym—bols (left scale), as a
function of x. The "circles" and "triangles" are two dis-
tinct methods of obtaining these data; their agreement re-
veals consistency. The lowest measured x bin was 0.004.
Over the measured x region, they reported

In addition, there is a small violation of SG=1/3
caused by perturbation theory. If U=D at some initial

Qo, then the one-loop Altarelli-Parisi evolution does not
alter this. The one-loop Wilson coefFicient does not give
a correction to the sum rule: the calculation is the same
as for the Adler sum rule. But graphs of order a, gen-
erate both a Wilson coefficient that corrects the sum rule
and an evolution that generates a nonzero value for
U =D. Ross and Sachrajda (1979) showed that this effect
is numerically small.

If U&D, then it follows that SG &(1/3). This was
found by the NMC Collaboration (Amaudruz et a/. ,
1991). Prior to these data, earlier measurement lacked
precision in the critical low-x region to provide a con-
clusive test of the sum rule. The SG measurements by the
SLAC (Bodek et a/. , 1973), EMC (Aubert et a/. , 1987),
and BCDMS (Benvenuti et a/. , 1990a, 1990b) groups
were all consistent with the naive prediction of 1/3,
within their large errors (typically 20%). The earlier
measurements, however, did show consistently a central
value of SG that was lower than the prediction. The
NMC experiment had the commensurate statistics and
resolution in the low-x region to measure the F2/F$ ra-
tio down to small values of x (Allasia et a/. , 1990). Us-
ing this measured ratio, and the world average of I'2
(deuterium), they obtained Ft2 Fz. —

FIG. 33. The measurement of the New Muon Collaboration
(Amaudruz et al. , 1991): dark symbols and the right scale,
F$ F2 as a fu—nction of x; open symbols and left scale, the in-
tegral f (F$ Fz)dx —leading to the Gottfried sum rule. The

circles and triangles represent two di6'erent methods of extrac-
tion.

The measured x dependence, just like that of xI'3 in the
GLS measurement, is consistent with a power-law fIt in
x. This fit could be extrapolated to the unmeasured re-
gion in x below 0.004. The corrected sum rule is

SG =0.240+0.016 for 0 & x ~ 1 . (6.50)

5. Bjorken sum rule

Polarized hard scattering is a rich subject, with many
recent developments. Here we discuss the extra struc-
ture functions that exist in polarized deep-inelastic
scattering. For a spin-half target, there are two polarized

This precise measurement of SG is more than 6ve stan-
dard deviations higher than the naive prediction of —,.

The discrepancy has engendered a lot of interest.
Some authors have postulated large asymmetry in the nu-
cleon sea (Preparata, Ratcliffe, and Soffer, 1991); others
have attributed the cause of disagreement to extrapola-
tion to the unmeasured region in x (Martin, Stirling, and
Roberts, 1990). Eichten et a/. (Eichten, Hinchliffe, and
guigg, 1992, 1993) have interpreted this discrepancy as
due to higher-twist effects involving the coherent cou-
pling of quarks to pions. That there is an asymmetry be-
tween the u and d seas in the proton is not surprising;
perhaps the startling feature is the possible magnitude of
the asymmetry.

(FI P FP")—
S,=I ' '

dx

=0.227+0.007+0.014 for 0.004~x +0.8 . (6.49)

2~References to recent work can be found in Collins, Heppel-
me, nn, and Robinett, 1991, and in Bunce et al. , 1992. See also
Hughes and Kuti, 1983.
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structure functions, gi and g2. QCD predicts that g2 is

higher twist and therefore gives a small contribution to
the cross section. The only measurements to date are of
gi .. for polarized protons at SLAC (Alguard et a/. , 1979;
Baum et al. , 1983) and by the EMC (Ashman et al. ,
1988, 1989), and recently for polarized deuterium by the
Spin Muon Collaboration (Adeva et al. , 1993). Data on
polarized He have been obtained by the E142 experi-
ment at SLAC (Anthony et al. , 1993). New data on po-
larized protons have been reported by the SMC (Adams
et al. , 1994). In the near future more data will come
from experiments at SLAC and from the Spin Muon Col-
laboration.

Consider the scattering of polarized muons (or elec-
trons) off a polarized nucleon, with the axis of the polar-
ization being the collision axis. We let cr( t t')(cr( f l)) be
the cross section when the target polarization is parallel
(antiparallel) to the beam polarization. Then

d [cr( f f)—o'(f ~ = e
(1—/2), (,Q),

dx dy 2~Q2
(6.51)

1 gw ~s 21 — +O(a, )
6 gy vr

=0. 191+0.002, (6.53)

where I, denotes the first moment of g, . The Wilson
coefficient has been calculated to order 0., by Larin and
Vermaseren (1991}.The sum rule arises because the first
moment of a polarized quark density plus the antiquark
density is the expectation value of an axial-current opera-
tor:

(6.54)

The Bjorken sum rule is a firm prediction of QCD,
since it rests on established perturbative methods and on
isospin invariance. It has been tested at low accuracy by
the Spin Muon Collaboration (Adeva et al. , 1993). With
the aid of the EMC result (Ashman et al. , 1988, 1989),

where we have dropped terms that are suppressed by a
power of Q in the Bjorken limit. The perturbative QCD
prediction for g, is

g, (x, Q) =—g eI(P& P&)+O(—a, ),=1
f

where the 0 (a, ) and 0 (a, ) corrections are known (Ko-
daira et al. , 1979; Kodaira, 1980; Zijlstra and van Neer-
ven, 1994). Here, P&(P&) represents the number density
of partons of fiavor f that are polarized parallel (antipar-
allel) to the initial hadron.

The Bjorken sum rule (Bjorken, 1966, 1970) relates the
difference between g &

for the proton and neutron to the
nucleon vector and axial-vector couplings gz and gz,

15—:I i,
' —I ", = f [gt,'(x) g", (x)]dx—

I f(EMC) =0.114+0.012(stat. )+0.026(syst. )

the SMC deuterium data give

(6.55)

I "(SMC)= —0.08+0.04(stat. )+0.04(syst. ) (6.56)

so that

SB,(SMC) =0.20+0.05(stat. )+0.05(syst. ), (6.57)

in agreement with the theoretical prediction, Eq. (6.53).
Ellis and Jaffe (1974) derived sum rules for g~i and g",

separately. Their critical assumption was that the
strange quarks in the nucleon are unpolarized, so that in
the notation of Eq. (6.54) b,s =0. This hypothesis is plau-
sible, but it is by no means a prediction of QCD. In addi-
tion, the derivation used fiavor SU(3) symmetry to relate
the nonsinglet matrix elements in the operator product
expansion to semileptonic decay rates of strange baryons;
this is less accurate than isospin invariance. Modern
values then predict (A.shman et al. , 1988, 1989)

I &i(EJ)=0.189+0.005,

I ",(EJ)= —0.002+0.005 .
(6.58)

Au =+0.80+0.04, Ad = —0.46+0.04,
As = —0. 13+0.04 .

(6.59)

Taken at face value, these numbers imply that the
strange sea quarks have substantial polarization and that
the quarks carry a small fraction of the spin of the proton
(since Du+Ad+As =0.22+0. 10).

It is possible to evade this conclusion: for example,
one may question the direct identification of the hf's in
Eq. (6.59) with spin fractions carried by quarks in a
quark-model wave function (Altarelli and Ross, 1988;
Carlitz, Colhns, and Mueller, 1988; Efremov and Ter-
yaev, 1988). Then there could be a large spin asymmetry
in the gluons. In any event, if the violation of the Ellis-
Jaffe sum rule continues to be confirmed, then it implies
some surprising features of the nucleon wave function
and of the associated nonperturbative physics. There is
interesting work still to be done (Hughes and Kuti, 1983;
Collins, Heppelmann, and Robinett, 1991; Bunce et al. ,
1992), particularly in a fiavor separation of the spin-
dependent parton densities.

The EMC and SMC results, as shown in Fig. 34,
violate the Ellis-Jaffe sum rules. For the proton moment,
the latest SMC value (Adams et ai. , 1994) is
I ~&

=0. 136+0.011+0.011. For the neutron, the Spin
Muon Collaboration (Adeva et al. , 1993) reports
I ", = —0.08+0.04+0.04, while the E142 Collaboration
(Anthony et ai. , 1993}reports I ", = —0.022+0.011.

An analysis of the data available in mid-1993 was
made by Ellis and Karliner (1993). Since some of the
data are at rather low Q, they included an estimate of
higher-twist corections by Balitsky, Braun, and Koleshi-
chenko (1990), with the result that
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FIG. 34. The EMC measurement (Ashman
et al. , 1988) of the spin structure function:
squares and right scale, the proton gf{x);dia-
monds and left scale, the integral Jg[{x)dx as
a function of x.

0 00

I

0.01
k

0.05
I

0.1

X

0.00

Vll. ELECTROWEAK-INDUCED HARD
HADRON-HADRON CROSS SECTIONS

The factorization program is fully realized in hadron-
hadron cross sections. The underlying hard scattering
may be initiated by electroweak interactions, as in Drell-
Yan or direct-photon production, or may be a pure QCD
process, as in jet and heavy-quark production. In this
section, we discuss hard-scattering corrections in the sim-
plest electroweak processes.

A. Hard-scattering corrections
in the Dreii-Yen cross section; O(a, ) corrections

The Drell-Yan process was introduced in Sec. III.D.
We shall present the one-loop correction, noting that the

I

inclusive Drell-Yan cross section is probably the only
realistic hadronic cross section that is simple enough to
present in detail. For definiteness, we limit ourselves to
the purely electromagnetic process.

The basic factorization theorem for the unpolarized
cross section was introduced in Sec. IU.C.1 and illustrat-
ed in Fig. 12. Since the electromagnetic production of
lepton pairs by a virtual photon involves only lowest-
order QED, the angular dependence in 9 and {{) can be
calculated later. Although Eq. (4.38) holds for the dou-
ble differential cross section, the generalization is
straightforward, and here we consider only the correc-
tions to the single difFerential cross section do /dQ writ-
ten in the form

do. (r, Q2) =r y dnA dnB d»«/nAnB z)4'. IA(nA P—)H.b(»&, (I »Ob/B(nB P»
dQ b 0 0 0

(7.1)

where the parton-parton cross section H, b is evaluated at
the scaled variable z =Q /gAqBs, with &s the center-
of-mass energy of the hadron-hadron system. The
theoretical justification for this result is analyzed by Col-
lins, Soper, and Sterman (1989).

The hard-scattering cross section II,b has a perturba-
tive expansion in a, of the form

from Eq. (7.1) by considering a particular case, namely,
the parton-parton reaction. Then the functions P(g)
measure the parton content of the external partons. In
this case, the quantity on the left-hand side is an n-
dimensional scattering cross section, which contains

H(0)+ ~ ~(&)+. . . (7.2)

In lowest order of perturbation theory, the only channel
allowed is q +q ~y*, where q labels a quark with charge
Q~, and the photon is virtual. H{ ' is therefore given by
the parton-model (Born) cross section. At higher order
we proceed as in Sec. UI.A for deep-inelastic scattering.
The hard-scattering cross section is independent of the
nature of the external hadrons, so we can compute it

FIG. 35. Cut diagrams for 0(a, ) corrections to the Drell-Yan
cross section.
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poles as e—+0. As in DIS, perturbative expansions for
the distributions P;&J enable us to solve for the hard-
scattering functions H.

In 0 (u, ) we have to consider both the virtual correc-
tions to this basic vertex diagram and the gluon brems-
strahlung reaction q+q~y*+g. In addition there are
new channels q+g —+q+y* and q+g~q+y*. The
latter reactions are very interesting from the experimen-
tal point of view, because they make the cross section
sensitive to the gluon density in the hadron.

The calculation of one-loop corrections proceeds much
as for deep-inelastic scattering. The cut graphs are
shown in Fig. 35. We recognize that they are the crossed

versions of the diagrams for deeply inelastic scattering.
If we regularize the ultraviolet and infrared diver-

gences by working in n dimensions, then all pole terms
cancel, apart from the collinear poles due to gluon radia-
tion paralle1 to the directions of the incoming quark and
antiquark. As in the DIS cross section, Sec. VI.D, this is
the cancellation of final-state interactions, which is neces-
sary for the factorization theorem, Eq. (7.1), to hold. The
remaining collinear divergences can be absorbed into the
perturbative parton distributions, leaving behind the
hard-scattering function. To make this explicit, we ex-
pand Eq. (7.1) with external partons a and b, to order a„
using PI&I(x) =5;~5(1—x) [Eq. (4.14)]. We find

(r, Q, e)+ (r, Q, e)=H,'b'(r, Q, e)+ H,'b'(r, Q, e) g—I d7)~$'), (ri~, e)H,'b'(r, Q, e)

' g f di)sP'q') q(i)s, e)Hawd'(r, Q, e) .
7T

(7.3)

Thus, to extract the one-loop hard scattering, we need the (regulated) one-loop cross section and the (regulated) one-
loop parton distributions, given in Sec. VI.B for the MS and DIS schemes. Actually, because H,'b) is nonzero only for
quark-antiquark scattering, with [see Eq. (3.62)]

4 2
H' '(z)=Q 5(l —z),

lfl7 f 3~Q 2 (7.4)

we only need P~'&~ =tI'i"& and P~'&s =P"z at this level. As usual, we denote the number of colors by X.
The explicit quark-antiquark cross section at one loop is given by

(&)

, dQ 3' s
"(,Q', e)=

E4'
Q2

——y P' +w' '(x) ~
i)

E gq qq
(7.5)

where [with g(2) =m /6, see Eq. (5.3)]

w'"(x) =5(1—x)CF [2$(2)—4]+C~ 42), (x)—2( 1+x)ln(1 —x)— lnx
I+X2

P"' is the one-loop evolution kernel (splitting function) given in Eq. (6.7), and we define

111 ( 1 —z)
m (7.7)
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Note that we take e—=2 —n /2. Other conventions, of course, change the formulas somewhat.
The other partonic reaction q +g ~y+ q, which starts at 0 (a, ), gives

(1)+s ~qg 2 p 4m a ~s
(r, ,e)=

dQ 3NQ s

E'4'
Q2

r

——y P"'+ta"'(x)E qg qg (7.8)

with

io' '(x)=C (1—2x+2x )ln +—(3+2x —3x )
1 (1—x) 1 2

qg F x 2
(7.9)

where again I""is the one-loop splitting function.
The determination of the one-loop hard-scattering functions is now a simple matter. For MS distributions [Eqs. (6.8)

and (6.9), for instance], we use

P, ib(x, e)=5,i, 5(1—x) —— P,")ib( x) +0(u, ), (7.10)

in which the residues of the pole terms are the splitting functions. Substituting Eq. (7.10) into the general expanded for-
mula Eq. (7.3), and comparing the results with Eqs. (7.5) and (7.8), we find simply

( — )

qq qq
(7.11)

HMS(1) =W
(1)—

Wqg (7.12)

For the DIS scheme, the parton distributions, Eqs. (6.11) and (6.12), are a bit more complicated, because they have
picked up various infrared-safe corrections from the one-loop deeply inelastic scattering cross section. The principles
are the same, however, and we find in this scheme (Altarelli, Ellis, and Martinelli, 1978, 1979; Abad and Humpert,
19'79; Harada, Kaneko, and Sakai, 1979; Kubar-Andre and Paige, 1979; Humpert and van Neerven, 1981),

4 2

(1+z )Di(z)+3Do+ +1 5(1—z) —6—4z

(7.13)I ' '= —~ (z +(1—z) )ln(1 —z)+ —z —5z+ —. .DIS(1) 1 2
qg 4 2 2

Both Eqs. (7.12) and (7.13) provide absolute predictions for the Drell-Yan cross section, when combined with parton
distributions in Eq. (7.1). It is important, of course, to use distributions that have been determined in the corresponding
scheme, usually from deeply inelastic scattering (see Sec. III). As a practical matter, the hard-scattering corrections at
one loop turn out to be substantial, sometimes as large as the zeroth-order (parton-model) cross section. This is the
theoretical side of the "K-factor" problem for Drell-Yan (see below). In Sec. VII.C we shall see that the experimental
situation is consistent with large perturbative corrections relative to the parton model. Considerable progress has been
made in understanding the origin of large corrections for values of ~= Q /s not too small (Curci and Greco, 1980; Par-
isi, 1980; Sterman, 1987; Appell, Mackenzie, and Sterman, 1988; Magnea and Sterman, 1990; Catani and Trentadue,
1991;Contopanagos and Sterman, 1993),but it is fair to say that the problem is not yet solved.

B. Drell-Yan at two loops

Along with deep-inelastic scattering, the inclusive Drell-Yan cross section has been fully analyzed at two loops in a
series of papers by van Neerven and his collaborators, in both the DIS scheme and the MS scheme (Matsuura, 1989;
Matsuura, van der Marek, and van Neerven, 1989; Matsuura, Hamberg, and van Neerven, 1990; Hamberg, 1991;Ham-
berg, van Neerven, and Matsuura, 1991; van Neerven and Zijlstra, 1991, 1992; Zijlstra and van Neerven, 1991). The
full results for the hard-scattering functions at two loops are quite lengthy, but it is perhaps useful to exhibit here the
full plus and 5-function distributions, as they occur in the quark-antiquark two-loop MS hard-scattering function (Ham-
berg, van Neerven, and Matsuura, 1991):
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II(2),s+ v( )—
Q'g

Q2
5(1—z) C„C~ [+933 —24/(3) ]ln

2—11 ln
M

12 ((2)2+ 592 g(2)+2@(3) 1535

P

+C [18—32((2)]in' +[24((2)+176((3)—93]ln

+ —,'((2) —70((2)—60/(3)+ —',"

——"ln +8/(3) ——'"g(2)+ —"'Q2

M 9 6

+C„C~ —4342)o(z)ln
M

+ [ [—'"—16((2) ]2)o(z )
——'"2) (z) ] ln9 0 3 1 M

——'3'2)2(z)+ [ ","—32$(2)]2),(z)+ [56$(3)+ '37'g(2) —","]2)0(z)

+C~ [642)i(z)+482)0(z) ]ln + [ 192$2(z)+962),(z) —[128+64/(2) ]X)0(z)] ln
M

+ 128& (z) —(12@'(2)+256)n,(z)+256/(3)n (z)

+nf C~ —3Xlo(z)ln (z) —160/) (z) + [ 224 32 g(2) ]g) ( )

(7.14)

To these results are added various smooth functions of
the variable z. VVe may note that it is only in quark-
antiquark scattering that distributions occur that are
singular at z = l. Note that there are plus distributions
UP to 2)3(Z).

-52-

C. Drell-Yan cross sections: Experimental review

The production of dileptons in high-energy collisions
has been a staple of all hadron machines in the world for
more than two decades. Lepton pairs in hadronic col-
lisions were first observed at Brookhaven by Lederman
and his group (see Christenson et al. , 1973 and Leder-
man and Pope, 1971). See Fig. 36 for the invariant mass
spectrum of this original experiment. This early experi-
ment was conceived as a scheme for searching for the
carrier of the charged weak process, the intermediate
vector boson (IVB). This technique has contributed
greatly to the high-energy physics landscape, leading to
the discovery of two new quarks (more below) and pro-
viding information on parton distributions of the nu-
cleon. It is essentially the sole arbiter of parton distribu-
tions of mesons and serves as a valuable test for a host of
naive parton-model predictions as well as sophisticated
QCD calculations.

5 ~ a a ~ I

-35-

4a -56-
C9
C)

-38-

I I I I
-,11t

I 2 3 4 5 6 7

M„„[Gev/c'j

FgQ, 36. Dimuon spectra from early BNL experiment E,I-eder-
man and Pope, 1971).
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1. Massive photon production

The parton-model picture of the Drell-Yan reaction
has been described above in Sec. III.D. In the collision
of, say, two protons, a quark from one proton seeks out
and annihilates with an antiquark from the other proton
to form a single, ofF-shell photon, which subsequently
converts into the observable lepton pairs. The term
"Drell-Yan" has been extended to include the production
of any spin-1 virtual particle produced by electroweak in-
teractions.

a. General experimental techniques

The choice of experimental technique depends on the
physics and the beam configuration. Because of the low
cross section, and of the desirability for high-rate studies
of a continuum cross section, fixed-target experiments at
the highest available energies or colliding-beam experi-
ments utilizing the highest possible luminosities are ad-
vantageous. At Brookhaven, the original fixed-target
experiment with incident nucleon and pion beams
was utilized to produce dimuon pairs. At Fermilab,
Brookhaven, and CERN, such experiments were carried
out for many years, only recently culminating with E605
at Fermilab. It was with electron pairs, however, that
the Brookhaven experiment discovered the J/g in a fol-
lowup to the original dimuon approach. Electrons were
used with this double-arm spectrometer because of better
mass resolution (a few percent). For a review of this ex-
periment, see Ting (1977).

Simultaneous with the early fixed-target experiments,
the CERN ISR mounted experiments using the collision
of two proton beams in the center of mass. At present,
the tradition of high-energy colliding hadron beams is ac-
tive with the final analysis of the CERN SPS facility and
with the ongoing Fermilab Tevatron program, both
proton-antiproton colliding-beam machines. This tradi-
tion should be continued into anticipated proton
colliding-beam facilities such as the LHC.

Because of the high intensities necessary, most fixed-
target experiments have concentrated on muon final
states. The production of the background leptons from
decays and of the "punchthrough" of interaction and
beam-related particles can be suppressed through the
utilization of heavy-hadron absorbers directly down-
stream from the target. Muons traverse such dumps with
ease and may be momentum analyzed in a magnetic spec-
trometer, while electrons would be totally invisible. The
negative feature of such an approach is that the momen-
tum resolution for muons is degraded through multiple
scattering (by about 15 jo). Large air-core, rather than
iron, magnets have been used to suppress this degrada-
tion. Colliding-beam experiments are much cleaner in
this regard and have concentrated on the better resolu-
tion obtainable with electromagnetic calorimetry. Conse-
quently, early intermediate-vector-boson production ex-
periments, and the early ISR experiments were able to
concentrate on electron final states, and key universality

tests were performed in the early days. At the highest
energies, and in the forward direction, where back-
grounds from decays are severe, electron measurements
are still superior, as generally iron toroids are utilized for
muon analysis in these regions. In either approach, mass
resolution is important in order to distinguish the contin-
uum from the resonant dilepton states or, as is the case
with the intermediate-vector-boson experiments, to mea-
sure precisely the mass of the decaying particle.

Among the notable achievements utilizing this tech-
nique of looking at dilepton final states are the discovery
of new quark species, determination of parton distribu-
tions, and the measurement of the normalization of the
cross section.

b. New quarks

Production of dileptons has served well as the indica-
tor for the qq resonant states —the "onia" of charm and
beauty, in particular. Most recently, the technique was
extended to the highest energies and resulted in the
discovery of the bottom-quark resonant state Y. Of
course, the original discovery, at both SPEAR and
Brookhaven, of the J/P was nearly scooped by the origi-
nal Drell-Yan Brookhaven experiment, which missed the
interpretation of a shoulder in the invariant-mass spec-
trum (Fig. 36). This story is one of the famous tales of
high-energy physics.

c. Nucleon distributions

The earliest utility of continuum dilepton production
was as an important test of the parton model and, with
the acceptance of the parton model, determination of the
momentum distributions of the partons participating in
the collision, especially the quark "sea."

With incident-proton beams, the parton distributions
of the proton can be extracted in a manner not dissimilar
from the procedure in deeply inelastic scattering.
Through the comparison of incident-proton and antipro-
ton beams, NA3 at CERN was able to extract both the
valence and the sea-quark momentum content.

By parametrizing a scaling set of valence and sea dis-
tributions by shape parameters,

u (x)= Ax (1—x) ",P„

d (x )=0.57u (x),
S(x)=C(1—x) ',P,

NA3 found (Badier et al. , 1980) the results in Table I
(from Rutherfoord, 1979). For comparison, the CDHS
results (de Groot et al. , 1979) from neutrino scattering
are also shown, as are the results of E288 (Ito et al. ,
1981) from Fermilab, which made DIS-inspired parame-
trizations of the valence distributions.
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TABLE I. Representative shape parameters for parton distri-
butions (Rutherfoord, 1979). The experiments listed were con-
ducted by the CDHS Collaboration {CERN, Dortmund, Heidel-
berg, and Saclay} and E288 (Ito et a/. , 1980) at Fermilab and
NA3 (Badier et al. , 1980) at CERN.

CDHS

below the Z mass at &s =630 GeV is determined to be
a =405+51+84 pb by UA2 (Alitti et al. , 1992a). This is
in rough agreement with O(as) calculations. CDF has
also measured the integral cross section for electron pairs
below the Z mass (see Abe et al. , 1991a).

a
0.

0.51+0.07
2.38+0.09

8.0+0.7

0.60+0.08
3.59+0.14
9.03+0.30 7.62+0.08

d. Pion distributions

With incident-pion beams and assumptions about the
nucleon parton distributions, NA3 also 6t for the parton
distributions of quarks inside a pion. Again, they
parametrized the distributions with a form

V(x)=3&x (1—x)~,

S (x)= As(1 —x) ' .P,

They found a=0.41+0.04 and P=0.95+0.05. More
up-to-date fits to parton distributions also employ Drell-
Yan data (see Sec. IX).

e. Scaling

& 225 GeV/c F 326
& 225 GeV/c E444

The parton model suggests that the cross section for
lepton pairs of invariant mass g should scale as a func-
tion of the variable, &r=g/Ys. Figure 37, reproduced
from Grosso-Pilcher and Shochet (1986), shows a variety
of data, over a moderate range of &s. The scaling
behavior is reasonably demonstrated. The cross section

The fact that the normalization of the cross section in
the parton model is o6'by substantial factors is consistent
with theoretical results (see Sec. VII.A. 1). Table II shows
a variety of experiments and their measured "E
factor" —the correction required of the naive theory to
match the data. As can be seen, the discrepancy is typi-
cally large, a factor of 2 or more. As we have observed
above, however, even the lowest-order correction is quite
large, at least in the DIS scheme, where
K —I+2ma, /3-1. 6 for a, -0.3, appropriate for pair
masses of a few GeV. Clearly, concerns about the useful-
ness of the perturbation series were understandable, until
it was discovered that, for the dominant vertex correc-
tions, the series exponentiates for all orders. The series is

2~a /3
then expressible as K —+e ' = l. 8 (Altarelli, Ellis, and
Martinelli, 1979; Parisi, 1980). That the major part of
the discrepancy is explained in this fashion is comforting,
but the problem is not fully solved. Nevertheless, consid-
erable theoretical progress has been made recently in or-
ganizing the full set of relevant corrections (Sterman,
1987; Appell, Mackenzie, and Sterman, 1988; Catani and
Trentadue, 1991; Contopanagos and Sterman, 1993).
Other sources of the discrepancy have also been pro-
posed. The contributions of very-low-x regions, below
the accessible data used for the parametrizations, could
be important, since much of the cross section could still
be "hidden" in that region. Also, corrections for Fermi
motion in the heavy targets and the pion-parton distribu-
tion shapes can be invoked. Most important, probably, is
the uncertainty in the normalization of the data, which
could be in the tens of percent.

n,
IO

~ l50 GeV/c
o 200 GeV/c NA3
~ 280 GeV/c

Beam/target

TABLE II. K factors for dilepton experiments (Grosso-Pilcher
and Shochet, 1986).

Group cm Energy K

P4

CLP

C:

Io0

bi~ iO'-

I

0.2

FIG. 37. Scaling behavior of pion-nucleon Drell-Yan cross sec-
tion. The figure is from Grosso-Pilcher and Shochet (1986).

E288
E439
CHFMNP
AABCSY
NA3
E537
NA3
NA3

p/Pt
p /V7

p/p

p /Pt
p/W

(p —P)/Pt
~/pt

27.4
27.4

44, 63
44, 63
27.4
15.3
16.8
16.8
22.9
20.6
19.1

16.8,18.1

8.7

1.7
1.6+0.3
1.6+0.2
1.7
3.1+0.5+0.3
2.45+0. 12+0.20
2.3+0.4
2.49+0.37
2.22+0.33
2.70+0.08+0.40
2.8+0. 1

2.5
2.6+0.5
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2. Wand Z production

While one of the original motivations for using dilep-
ton final states was a search for the intermediate vector
boson (IVB) of the conventional weak interaction, it was
many years before its discovery was realized. Now, the
production of both 8' and Z bosons forms an important
part of the experimental program of all of the highest-
energy colliders. The language used is that of the origi-
nal Drell- Yan prescription, with only electroweak
modifications.

The importance of 8'and Z production is many facet-
ed. Primarily, the precise determination of the 8'mass is
of utmost importance in the program of global elec-
troweak parameter determination. The production of in-
termediate vector bosons plus hadronic jets serves as an
important laboratory for QCD measurements. The
analysis of the V-A asymmetry in 8'decays is a sensitive
measure of parton density functions. Finally, the obser-
vation of 8 s is among the clues for the uncovering of
the top quark (Abe et al. , 1994).

a. General experimental techniques

The three major detectors that have or will have im-
pact on the physics issues listed above are UA2 at
CERN, CDF, and DO at Fermilab. The UA2 and DO
detectors feature precision calorimetry and no magnetic-
field measurement capability, save for muons. CDF, on
the other hand, has a central superconducting solenoidal
field, which aids in electron identification (by comparing
the calorimeter and momentum determination for the
same presumed electrons) and allows for muon momen-
turn analysis without iron, except as a filter.

In most cases, precision mass determination experi-
ments are done in the electron channel. Only CDF, with
its solenoidal field momentum determination for muons,
is able to perform a precise mass measurement, using
muons uncompromised by the multiple scattering errors
inherent in iron toroids. For UA2 and DO, only pre-
cision electromagnetic calorimetry is available.

UA2 has completed its runs, while CDF and DO are in
the course of a long period of experimentation at the
Tevatron. The total of the data accumulated by UA2
was 13 pb ' and by CDF up to the Fall of 1992, about 5

pb '. While it played the leading part in the initial
discovery of the intermediate vector boson, UA1 did not
have a significant role in the precision mass measure-
ments.

Recent determinations from these experiments include
the following (Abe et al. , 1990b, 1991b; Alitti et al. ,
1990, 1992b; Z?LU, 1993):

CDF ms (e)=79.91+0.35+0.24+0. 19 GeV,

mii (p) =79.90+0.53+0.32+0.08 GeV,

UA2 m~(e) =80.35+0.33+0.17+0.81 GeV

DO ms (p)=79.86+0. 16+0.20+0.31 GeV .

Here, the first error is statistical, the second is systemat-
ic, and the third is the energy-scale uncertainty. For
UA2, the quantity measured is the ratio of the S'mass to
that of the Z mass, thereby canceling the scale uncertain-
ty. They find m (8')/m (Z)=0.8813+0.00336&0.0019.
They extract m(W) by scaling with the I.EP value of
m(Z)=91. 175+0.021 GeV. The systematic errors for
both experiments are really statistically limited by the
paucity of Z events.

6 Running ofa,

The UA2 collaboration has expended considerable
e6'ort in a determination of the strong coupling n, . They
determine, in a comparison of 8'+1 jet to 8'+2 jet
events, a, =0.123+0.018+0.017 (Ansari et a/. , 19SS; Al-
itti et al. , 1991b). Here, the first error is statistical, the
second is experimental systematic (including parton dis-
tributions). This result is very dependent on Monte Car-
lo simulation and an independent determination of the
parton densities required by the Monte Carlo. The rela-
tively small value of u, observed at these high momen-
turn scales is evidence that the coupling is indeed asymp-
totically free (Sec. II.D.2).

D. l3irect photons: TheorY

In this section an overview of some of the relevant
theoretical issues for direct-photon production will be
presented. A more detailed review can be found in
Owens, 1987. As noted previously (Sec. III.E), a calcula-
tion of direct-photon production starts with the two
0 (aa, ) subprocesses gq ~yq (Compton) and qq ~yg
(annihilation). For large values of xT, these two sub-

processes provide the dominant contribution to direct-
photon production. The interplay between the two con-
tributions can be studied by comparing cross sections ob-
tained with particle and antiparticle beams. For exam-
ple, the Compton subprocess dominates in pp collisions
for large xT, since the antiquark distributions are small in
this region. However, the annihilation term can be
significant in pp collisions, since the u and d distributions
in the antiproton are the same as the u and d distribu-
tions in the proton. Both of these subprocesses result in
final states that consist of a high-pT photon balanced ap-
proximately by a recoiling jet on the opposite side of the
event. There will be very little hadronic activity in the
immediate region of the photon.

For typical fixed-target experiments, xT is in the range
of 0.2 to 0.6, and the above two subprocesses provide the
dominant mechanism for direct-photon production.
However, in collding-beam experiments it is possible to
get to smaller values of xT. For example, at &s =1800
GeV, pz =18 GeV corresponds to xz. =0.02. Here one
can encounter sizable contributions from bremsstrahlung
processes. In this class of processes, a quark- or gluon-
initiated jet in the final state radiates a photon in the pro-
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cess of hadronization. This gives rise to events with sub-
stantial hadronic activity in the general region of the pro-
duced photon. In the framework under discussion here,
one can take this contribution into account by using pho-
ton fragmentation functions. These give the probability
density for a quark or gluon to produce a photon that
takes a fraction z of the parent parton's momentum. The
simplest form for these functions follows from a simple
QED calculation, which yields

zD ) (z, Q )=e [I+(I—z) ]ln(Q /A ) (7.15)

and

zar~s(z, Q ) =0 . (7.16)

Here Q represents a scale which is characteristic of the
transverse momentum of the photon with respect to the
parent quark, which will typically be on the order of pT.
The quantity A serves as an infrared cuto6' —in typical
leading-logarithm calculations it is usually set equal to
the value chosen for the QCD scale parameter A&cD,
which appears in o., and in the scale-violating distribu-
tion functions. It is possible to calculate QCD correc-
tions to the fragmentation functions in Eqs. (7.15) and
(7.16) that result from gluon radiation by quarks and
gluons and from the production of qq pairs from gluons.
These may be found by using modified forms of the evo-
lution equations for the scale dependence of the parton
distribution functions. A more detailed discussion of this
procedure, together with parametrizations of the result-
ing functions, can be found in Owens, 1987. In addition
to these calculable parts, there is also the possibility of
nonperturbative contributions to the photon fragmenta-
tion functions. Generally, this type of term is thought to
give rise to relatively soft photons, since their production
would occur late in the parton shower and would
represent a long-distance e6'ect. Vector-meson domi-
nance is often used to model this component.

The bremsstrahlung contribution can be calculated us-

ing the general factorized cross section Eq. (3.76) with all
possible two-body quark-quark, quark-gluon, and gluon-
gluon subprocesses convoluted with appropriate distribu-
tion and fragmentation functions. Notice that the frag-
mentation function in Eq. (7.15) increases logarithmically
with the scale Q. This feature remains true for the
QCD-corrected functions, as well. Thus the fragmenta-
tion functions are formally of order a/a, . When these
are convoluted with subprocess cross sections of order n,
(such as qq ~qq, etc.) one obtains a result of order na, .

The bremsstrahlung contribution falls o6' more rapidly
in xT than do the other lowest;order contributions. This
is due partly to the extra convolution in z and partly to
what is called the trigger bias effect. The distribution
functions tend to fall ofF faster with increasing mornen-
tum fraction than do the fragmentation functions. Thus
the most eKcient way of getting a high-pz photon is to
shift towards lower x in the distribution functions and

higher z in the fragmentation function. This tends to
force the photon to have z near one, where the fragmen-
tation function is smaller relative to its value in the low-z
region. Hence the bremsstrahlung contribution is largest
in the region of small xT values typically explored at col-
liders. Often this contribution is suppressed by the use of
isolation cuts, which are required as part of the trigger in
order to identify photons efhciently. The efFects of such
cuts can be modeled by modifying the fragmentation
functions. When higher-order e6'ects are included in the
calculation, some care must be used to define the isola-
tion cuts in a way that can be simulated in the theoretical
calculation. These points are discussed, for example, by
Baer, Ohnemus, and Owens (1990) and Berger and Qiu
(1991).

Two calculations of 0 (aa, ) have been presented in the
literature, and corresponding computer programs have
been widely distributed. In Aurenche, Douiri, Baier,
Fontannaz, and Schiff (1984), the inclusive invariant
cross section was calculated and the integrations over the
unobserved partons were done analytically. This results
in a relatively fast program, but one that can calculate
only a small number of observables. In Baer, Ohnemus,
and Owens (1990), a Monte-Carlo algorithm was used for
the required integrations, resulting in a program that
could be used for a greater number of observables, but at
the cost of a larger amount of computer time.

One of the reasons for the high degree of interest in
direct-photon production is that the gluon distribution
enters it in lowest order. In deeply inelastic scattering
the gluon distribution contributes to the structure func-
tions only in the next-to-leading order and to the slope of
the Q dependence in leading order. Accordingly, deeply
inelastic data are sensitive to the gluon distribution only
in the region of relatively small values of x, where the
gluon contribution is comparable to that from the
quarks. However, the direct-photon data are sensitive to
the gluon distribution at larger values of x, and the in-
clusion of such data into global fits can provide comple-
mentary information (Owens and Tung, 1992). Such fits
have been done by a number of groups (Aurenche, Baier,
Fontannaz, Owens, and Werlen, 1989; Harriman, Mar-
tin, Roberts, and Stirling, 1990; Botts et al. , 1993). The
resulting gluon distributions are thus constrained at both
low and high values of x.

A process closely related to single-photon production
is the production of photon pairs. It forms a background
to a possible Higgs-boson signal in the intermediate-mass
range, which covers masses from about 80 to 160 GeV.
A next-to-leading-order Monte Carlo-based program has
been presented by Baily, Ohnemus, and Owens (1992),
and the program has been made available. The Monte
Carlo nature of the program enables one to simulate the
e6'ects of various cuts. Thus predictions can be corn-
pared to current data and one can also study strategies
for Higgs searches and detector optimization. See Bailey
and Owens (1993) for an example and additional details.
Additional discussion and references to earlier work are
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given by Owens (1987) and Bailey, Ohnemus, and Owens
(1992).

E. Direct-photon production: Experiment

Direct-photon production provides an excellent arena
both for precision tests of QCD and for ineasurements of
gluon distribution functions. In this section, we concen-
trate on the backgrounds to direct-photon production
and the experimental techniques used to extract the sig-
nal. There are several reviews, to which the reader is re-
ferred, that examine these subjects in more detail (Ferbel
and Molzon, 1984; Owens, 1987; Aurenche and Whalley,
1989; Huston, 1990).

The 4-vector of a photon can, in general, be recon-
structed with greater precision than the 4-vector of a jet.
The direct photon is one particle, whose position and en-
ergy can be well measured in an electromagnetic calorim-
eter, while a jet consists of a number of particles spread
out over a fairly wide area of phase space. Jet energy is
deposited in both electromagnetic and hadronic calorim-
eters. In addition, there is an ambiguity at some level as
to which particles belong to the jet and which particles
belong to the underlying event.

On the other hand, the rate for direct-photon produc-
tion is greatly reduced from that for jet production, be-
cause to lowest order direct-photon production is propor-
tional to au„while jet production is proportional to a, .
As a result, the y/jet ratio is typically on the order of a
few times 10

Direct-photon measurements sufFer from potentially
large backgrounds, primarily from those rare jets in
which a large fraction of the momentum of the jet is car-
ried by a single m, and one of the two photons of the m

decay is not detected. Since the y/jet ratio is on the or-
der of 10, and the jet rate is suppressed by a factor of
several hundred if the requirement is made that a m. take
80% or more of the jet's momentum, the y/~ ratio is
typically on the order of a few percent or a few tens of
percent. The value of this ratio depends on the kinematic
region and, as will be seen later, it also depends crucially
on the imposition of an isolation cut. The y/m. ratio is
the most critical number in a direct-photon measure-
ment. If this ratio is too small, then a measurement will
not be possible, or at least will be very difficult. [Back-
grounds can come from other sources such as g —+yy,
co~a y decays, etc. but the bulk (typically )80%) of
the background originates from m 's.]

There are a number of measurement strategies that are
possible, each designed to minimize the backgrounds
from these meson decays.
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FIG. 38. Two-photon energy asymmetry distribution in m de-
cay (Alverson et al. , 1992).
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applicable mainly for fixed-target experiments, due to the
requirements of a large separation from the interaction
point to the calorimeter and/or fine lateral sampling.
Losses are inevitable, even if the reconstruction tech-
nique is possible. Consider the energy asymmetry distri-
bution for the two photons from a ~ from Fermilab ex-
periment E706 shown in Fig. 38 (Alverson et al. , 1992).
For perfect detection, this distribution would be Bat from
0 to 1. ( A =P~cos8'~ where 8' is the decay angle in the
m rest frame; since the m. has spin 0, the decay distribu-
tion should be fiat in cos8*.) Experimental measure-
ments show a "rolloff" of this distribution at high asym-
metry, either because the soft photon is outside the ac-
ceptance of the calorimeter or because its energy is too
soft to be measured. There can also be a similar "rollofF"
at low asymmetry due to the coalescence of the two pho-
tons in the calorimeter, which is not present in this plot.
These losses of m. 's and g's can cause a significant back-
ground to direct photons; however, this background can
be reliably calculated, given the experimental knowledge
of the n (g) cross sections and asymmetry distributions.
In Fig. 39 is shown the y/m ratio measured in Experi-

a. Reconstruction
01

This technique involves simply measuring the positions
and energies of the two photons and requiring the resul-
tant mass to be consistent with that of the m or g within
experimental resolution. In practice, this technique is

5 6 7

p Be Doto p («~/c)

FIG. 39. y/m ratio in experiment E706 (Alverson et al. , 1993).
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ment E706 at Fermilab, along with the calculated back-
ground. The background-subtracted y jm ratio is seen
to be in excellent agreement with the leading-log @CD
prediction. Note the rise in the y/m ratio as transverse
momentum increases. This is due to the running of a,
and the efFect of the m fragmentation function.

b. Conversion

The percentage of electromagnetic showers (due to
direct-photon candidates) that convert in the material be-
tween the interaction point and the calorimeter (typically
1 —2 radiation lengths) can be measured. Showers origi-
nating from m or g decays will have a conversion frac-
tion larger than that of showers from direct photons. A
calculation of the amount of material traversed by the
photons and the observed conversion percentage allows
an extraction of the direct-photon fraction in the data
sample. This technique works best if the direct-photon
fraction of the sample is at least of the same order as the
m background. Figure 40 shows the measured conver-
sion probability, in a preshower detector, for isolated
direct-photon candidates in UA2 (Alitti et a/. , 1992c).
Also shown are the expected conversion rates if the data
sample consisted solely of ~ 's or solely of direct photons.
Note that the data are closer to the photon expectation
than to the m. expectation, indicating that the y/m ratio
is larger than 1.

c. Profiles

Even if the two photons cannot. be resolved, a measure-
ment of the lateral and jor longitudinal profile of the elec-
tromagnetic shower may allow a discrimination beween
direct photons and m 's. Showers originating from m 's

appear broader due to the opening angle of the two pho-
tons. This technique loses effectiveness as the m energy
increases, since the opening angle decreases as 1/E o.

The longitudinal development of direct-photon and m

showers wi11 also difFer, as the average energy of a ~
photon is half that of the direct photon. Since the longi-
tudinal development of an electromagnetic shower varies
only log arith mically with the photon energy, the
difFerences may be subtle. As for conversion, this tech-
nique works best if the y jm. ratio is fairly large.

d. Isolation

This technique requires that the photon candidate be
"unaccompanied" inside a cone of a certain radius R
[R =+(b,q +b,P ); typically R =0.5 —1.0] centered on
the photon direction, with g the pseudorapidity and P
the azimuthal angle. Unaccompanied means that the
amount of additional energy inside the cone is less than a
certain fraction of the photon's energy or less than some
Axed scale. The application of isolation discriminates
strongly against m events, since a m is usually accom-
panied by additional particles from the fragmentation of
the jet. Direct photons from the leading-order processes
are unafFected, since the photon is isolated. Photons
originating from bremsstrahlung processes are also
strongly discriminated against, again because of the pres-
ence of a nearby jet. The efFect of an isolation cut on the
direct-photon signal can be calculated in a nonleading-
order calculation, of the type described in Sec. V.D
above. Isolation cuts are used for all collider direct-
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FIG. 41. Leading-log predictions for y/w ratios with various
isolation cuts (figure by J. Huston from program of J. Owens).
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photon measurements. Application of an isolation cut at
the colliders can increase the y/m ratio from the order
of a few percent to on the order of 1 or greater. A
leading-log prediction for the y/m ratio for the UA2 ki-
nematic region is shown in Fig. 41. Note that the in-
clusive y/m ratio is very small (a few percent at low
transverse momentum), but the imposition of an isolation
cut dramatically increases this ratio.

e. Experiments
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Data have been taken by many experiments using all of
the techniques discussed above (Ferbel and Molzon,
1984). Good agreement is found with the predictions of
perturbative @CD, with the possible exception of the
low-x, ( =p, /&s ) data of CDF and UA2. Some of these
direct-photon data have been utilized in parton distribu-
tion fits (Aurenche et al. , 1989; Harriman, Martin,
Roberts, and Stirling, 1990; Sutton, Martin, Roberts, and
Stirling, 1992; Tung, 1993;Botts et a/. , 1993) to measure,
or at least constrain, the gluon distribution function in
both protons and pions. The fixed-target data are sensi-
tive to gluon momentum fractions between 0.2 and 0.6,
while the collider inclusive photon data probe the region
from approximately 0.01 to 0.25.

More information about the direct-photon event is
possible if the jet opposite to the direct photon is also
measured. The cos8* distribution for y+jet events from
CDF is shown in Fig. 42. The angular distribution is
flatter than the distribution for two-jet production, due to
the absence of t-channel gluon exchange diagrams at
leading order. Measurement of both the photon and the
jet completely determines the kinematics of the events, in
particular the momentum fractions of the incoming par-
tons. This should be useful for parton distribution fits,
especially for determining the gluon distribution at very
small x -(10 —10 ) at CDF and DO.

Vill. QCD-INDUCED HARD HADRON-HADRON
CROSS SECTIONS

A. Jet production in hadron collisions

In this section, we combine ideas developed in the pre-
vious sections. First, in Sec. VII.A, we learned that the
cross section for creation of muon pairs in hadron col-
lisions is determined by both short-distance physics and

a s t I I s

0.2 0.4 0.6 0.8
cos8

FIG. 42. Angular distribution for y+jet events at the CDF
(Collider Detector Facility). LO=leading order, NLO=next-
to-leading order. From Abe et al. (CDF Collaboration)
(1993b).

long-distance physics, but that the long-distance effects
can be isolated in factors that tell the probabilities of
finding partons in each of the two incoming hadrons.
The remaining factor, H in Eq. (7.1), contains only
short-distance physics. One can interpret H as the cross
section for the incoming partons to make a muon pair
plus anything else. The "anything else" here is impor-
tant: we sum over all final states of the hadronic system.
Second, in Sec. IV.A, we saw that in electron-positron
annihilation it is possible to define cross sections in which
certain characteristics of the hadronic final state are
specified without thereby introducing new sensitivity to
long-distance physics. In particular, we could define in-
frared finite jet cross sections.

Combining these ideas, we expect that one can specify
jet cross sections in hadron collisions such that the
theoretical formula for the cross section is factored into
parton distribution functions that contain long-distance
physics associated with the initial states and a hard-
scattering cross section that contains only short-distance
physics. The general form of such a cross section, analo-
gous to Eq. (4.7) for electron-positron annihilation, can
be written in the style of Kunszt and Soper (1992) as

Pl =2 a, b

(8.1)

d&[n]
drlidP& ' ' ' d'9 dP + (Pi

dg)dpi ' ' ' d'g~d p~
(8.2)
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Here g'„,gti are the momentum fractions of the incoming
partons and g, is the rapidity of outgoing parton i, while

p; is its transverse momentum. The parton cross sections
d&[n]/drjidpi ' ' deal„dp„contain 5 functions for
overall four-momentum conservation. The effect of these
delta functions is that the total transverse momentum of
the outgoing partons vanishes, while g„and g~ are
determined by conservation of longitudinal momentum
and energy. The "hat" on d & [n] indicates that infrared
sensitivity arising from the initial state is factored into
the parton distributions, as in the Drell-Yan cross sec-
tion, Eq. (7.1}.

The functions S„specify the measurement to be made
on the hadronic final state. In order that this measure-
ment not introduce any sensitivity to long-distance phys-
ics (in addition to the initial-state sensitivity contained in
the parton distribution functions), the measurement func-
tions should be "infrared safe." That is, they should
satisfy equations analogous to (4.10),

(8.3)

and

+1(P1 & ' ' ' &Pn ~~PA ) +n+i(P1 & ' ' &un &~A )

(8.4)

for 0~A, &1. The first equation says that two collinear
partons can be replaced by a single parton and that a
zero-momentum parton can simply be eliminated without
a6'ecting the measurement. The second equation says
that partons that are collinear with one of the beam mo-
menta do not affect the measurement.

3. Cone definition

Measurements of jet cross sections in hadron collisions
in recent years have concentrated on a cone definition of
jets [following the spirit of the original jet paper (Sterman
and Weinberg, 1977) and of the early calculations of jet
cross sections for hadron physics (Ellis, Furman, Haber,
and Hinchliffe, 1980; Furman, 1982}].The main features
of the algorithm are specified in an agreement reached at
the 1990 Snowmass Workshop (Huth et al. , 1990). The
idea was that this definition could provide a standard jet
cross section for the purpose of comparing results be-
tween di6'erent experiments —without restricting the de-
velopment of improved definitions in the future.

In the definition, one wants to maintain the invariance
appropriate for hadron colliders under azimuthal rota-
tions and longitudinal Lorentz boosts. Thus one de-
scribes the particles i using the absolute values pz-, of
their transverse momenta, their azimuthal angles P;, and
their rapidities g;. (We treat all particles as being mass-
less, so that the rapidities and the pseudorapidities are
not distinguished. )

The main feature of the cone definition is that a jet
consists of particles whose momentum vectors lie in an
q, P cone. The cone consists of the interior of a circle of

radius R in the (q, P) plane, centered on a cone axis
(itic, pc ). Thus particle i is in the jet if

(q; —g ) +(P, —Pc) (R (8.5)

A standard value for the cone radius is R =O.7. Next,
one defines the total transverse energy ET of the jet and a
jet axis (qz, pz) according to

Er= X JT„
i Econe

= 1
X s'T„n;

& i &cone

16=@ X ur, ;0;.
T i scone

(8.6)

Finally, the jet axis must coincide with the cone axis. If
it does not on a first attempt, one simply iterates until
stability is achieved.

This definition is quite simple and natural. However it
can happen that two jet cones produced by the definition
overlap. Thus a further specification (which is not con-
tained in the Snowmass agreement) is needed. Typically,
one merges jets with a very large overlap and splits par-
ticles between jets that have a smaller overlap. The
reader is referred to the experimental papers for the de-
tails.

2. Calculations

As with electron-positron collisions, one can charac-
terize an infrared-safe cross section as "X-jet like" if the
functions eV„are zero for n (N and nonzero for n ~N.
Cross sections that are two-jet like in this sense can
currently be calculated at the one-loop level using a com-
puter program described by Ellis, Kunszt, and Soper
(1989, 1990, 1992) and Kunszt and Soper (1992). The
program takes account of the cancellations of soft and
collinear singularities between graphs with three parton
final states and graphs with two parton final states and a
virtual loop. The virtual-loop graphs are taken from the
calculation of Ellis and Sexton (1986}. An independent
program that can calculate some two-jet-like cross sec-
tions at one-loop order is described by Aversa, Greco,
Chiappetta, and Guillet (1990, 1991).

The extension of the above ideas to include 8' or Z
plus n jets was initiated by Berends, Giele, and Kuijf
(1989; see also Berends, Kuijf, Tausk, and Giele, 1991).
At present the tree amplitudes for the reaction
@+@~8',Z+n jets, where n ~4, are available in the
program vEcsos. However the jets are massless partons,
which are not allowed to be soft or collinear. Using so-
phisticated techniques from string theory (Bern and Ko-
sower, 1991, 1992), Giele, Glover, and Kosower (1992)
have recently calculated the one-loop corrections to 8'or
Z plus one jet production. This program is especially im-
portant for top-quark analysis (Abe et a/. , 1994), since
m, )M~ implies that the top quark can decay into a W
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plus lighter-mass quarks. The background for detecting
the t quark therefore involves knowledge of the reaction
p+p~ 8',Z+n jets. Without a one-loop calculation,
the scales in these cross sections are not well determined.

3. Rapidity gaps in jet cross sections

Single-gluon exchange would be associated with copious
emission of soft gluons and a "filled" rapidity gap, while
singlet exchange (beginning at two gluons) would require
much less radiation (by analogy with QED). The search
for such events has now borne fruit (see below), although
it is still too early to attribute these observations
confidently to the mechanism described here.

It is important to emphasize that the jet cross sections
described above do not give very much information on
what is often referred to as "the underlying event, " in-

cluding relatively soft particles emitted between the jets
in rapidity, but not naturally associated with either jet in
a cone definition. An important example of this sort is
the cross section for events that involve little or no radia-
tion between the two jets in a rapidity plot. The cross
section for such "rapidity-gap" events would not satisfy
Eq. (8.3), because events with one or more soft particles
in the central region would not be counted [i.e.,
4„+,(. . . ,p„,O)AS„(. . . ,p„)]. The usual factorization
theorem therefore does not apply to such cross sections
(Collins, Frankfurt, and Strikman, 1993), and the formal-
ism we have developed so far requires new input or
analysis to supply a prediction for them.

At the same time, it has been known for some time
that rapidity-gap events are reasonably common at small-
and moderate-momentum transfers, best described as
"diffractive scattering" (Bonino et al. , 1988; Brandt
et al. , 1992) at very high energy. In fact, some very gen-
eral considerations (Dokshitzer, Khoze, and Troyan,
1987; Bjorken, 1992) allow us to suggest that such events
have an observable cross section even at quite large
momentum transfer, and might afford important insight
into QCD dynamics.

Both perturbative analysis and experiment agree that
rapidity-gap events cannot dominate the cross section,
because of soft "bremsstrahlung" radiation associated
with the scattering of charged particles in both QED and
QCD. In QCD, the tendency to radiate is even greater
than in QED, because the mere exchange of color be-
tween two quarks, even without the exchange of momen-
tum (i.e., soft-gluon exchange), produces bremsstrahlung.
Such a phenomenon is completely lacking in QED, where
the photon has no charge.

Now in QCD beyond the lowest order, we can ex-
change not only single gluons, which carry color, but also
color-singlet combinations of gluons. Therefore, at any
momentum transfer, we might expect to see two com-
ponents to the scattering, one associated with nonzero
color exchange ("nonsinglet"), and one with no exchange
of color ("singlet" ). In fact, explicit calculations show
that when t/s~0, the former involves much more soft-
gluon radiation than the latter (Sotiropoulos and Ster-
man, 1994), an effect related to the "reggeization" of
single-gluon exchange in QCD (Frankfurt and Sherman,
1976; Kuraev, Lipatov, and Fadin, 1976; Lo and Cheng,
1976).

Now consider the scattering of two quarks at substan-
tial momentum transfer, but much higher energy.

B. Jets in hadron-hadron collisions: experiment

Experimental evidence for the existence of jets at had-
ron colliders was first observed by using a single high-P,
particle to both trigger on and identify jets. This, howev-
er, results in a very biased experimental sample, and it
was first realized at the ISR at &s =62.3 GeV (Ellis and
Stroynowski, 1977) that one has to trigger in a more in-
clusive way, i.e., on the total amount of energy in a cer-
tain region of the detector. Cross sections were measured
with an inclusive trigger, and two-jet back-to-back struc-
ture (in the transverse plane to the beam) was observed
(Angelis et a/. , 1984). In addition, it was shown that the
transverse momentum of particles relative to the jet axis
is limited to about 500 MeV/c, independent of the
momentum parallel to the jet axis. The first studies with
a cone-based algorithm concluded that an opening angle
of 40 =0.7 rad includes nearly 100% of the jet energy, a
value which is identical to currently used values at much
higher energies. With the increase in the center-of-mass
energy at the CERN SppS collider to 540 GeV, the UA1
and UA2 experiments showed unambiguously the ex-
istence of jets in hadron-hadron collisions (Banner et al. ,
1983b; Dilella, 1985). They also enabled the measure-
ment of the jet cross section over a large region of trans-
verse energy, out to 170 GeV (Arnison et al. , 1983b,
1983c, 1986; Bagnaia et al. , 1984). Figure 43 shows the
UA1 and ISR jet cross section as measured initially in
the central rapidity region (y ( 1.0).

In Fig. 43, the experimental points are compared to (at
that time) known parton distributions. The rather good
agreement between theory (see also Horgan and Jacob,
1981) and experiment, in a quantity that varies over five
orders of magnitude, was considered a major success for
the predictive power of QCD. Note that the error on the
experimental cross sections is of order 100% and that the
experiments defined jets in different ways: at the ISR a
cone size of 30' was used, whereas UA1 was the first to
propose and use a fixed-cone-size algorithm, with a cone
size of 8 =0.7. This value of the cone size has now be-
come the default value, a specific example of a definition
of jets as described in the "Snowinass agreement" (Huth
et al. , 1990). Over the years, the accuracy of collider ex-
periments has improved, and now the most accurate
cross sections are available from UA2 (&s =630 GeV)
and CDF and DO (&s =1800 GeV) at Fermilab. These
experiments use a fixed-cone-size algorithm to define jets
and compute E, of the jet as the sum g; E, ;, where i
runs over all calorimeter cells inside the jet cone. We
shall discuss the experiments separately.
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The final UA2 jet inclusive cross section (Alitti et al. ,
1991a), measured with an upgraded detector with extend-
ed rapidity coverage, is shown in Fig. 44. Here the jet
was de6ned by using a fixed-cone algorithm and a cone
size R =1.3. The basic assumption is that this cone size
is 1arge enough so thai a 6nal-state parton, including all
its radiation and fragmentation, is described and its ener-

gy contained within the cone.
Corrections for energy Rowing out of the cone and

entering the cone from the underlying event (=remnants
due to the fragmentation of the incoming hadrons and to
color conservation) are estimated using the simulation
program HERwIG. The experimental errors obtained
have several sources. The overall scale error on the cross

section is 32%, in addition to the statistical accuracy of
each data point. The overall scale error of 32% includes
the uncertainties due to absolute energy scale (ll%%uo),

luminosity (5%), model dependence of acceptance correc-
tions (25%), analysis parameters and jet algorithm (15%).
The underlying event creates an uncertainty of 0.9 GeV
on the E, scale, resulting in an additional error of typical-
ly 10% at 60 GeV and 5% at 130 GeV in the cross sec-
tion. The obtained experimental cross sections are com-
pared to leading-order predictions based on parton distri-
butions of Eichten, guigg, Hinchliffe, and Lane (1984).
The agreement between theory and experiment is very
good in the central rapidity region. To illustrate this, in
Fig. 45 the ratio of experiment to theory is given for the
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FIG. 43. The jet cross section measured at the
ISR and the CERN SPS by experiment UA1 at
rapidity=O {Dilella, 1985). The dashed curve
represents the original prediction as given by
Horgan and Jacob (1981), and the solid curves
indicate the range of predictions.
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FIG. 44. The inclusive jet cross section measured by UA2 ex-
periment (Alitti et a/. , 1991a) for different pseudorapidities.
The systematic error of 32%%uo is not shown. The curves
represent a leading-order QCD calculation with scale of E, /2,
using the parton distributions of Eichten et a/. (1984).
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FIG. 45. The ratio of experimental to theoretical (based on
Eichten et a/. , 1984) jet cross sections at g &0.8S in the UA2
(Alitti et al. , 1991a) experiment (black dots). The curves
represent calculations for different parton distributions, relative
to the Eichten et al. distributions: MRSB, Martin, Roberts,
and Stirling (1990), version 8; DO, Duke and Owens (1984);
HMRSE, Harriman, Martin, Roberts, and Stirling (1990), ver-
sion E; MT, Morfin and Tung (1991);HMRSB, Harriman, Mar-
tin, Roberts, and Stirling (1990), version B; DFLM, Diemoz,
Ferroni, Longo, and Martinelli (1988). See Harriman et al.
(1990) for assumptions used in versions B and E.

central rapidity region, and indeed for several different
recent parton distributions the agreement is remarkable.
The UA2 collaboration also chose to do a leading-order
comparison only, and their results have not been com-
pared to a next-to-leading-order prediction. In fact, it
would not be a trivial task to compare these experimental
results to next-to-leading-order predictions. In order to
do so, one would want to reanalyze the data without the
corrections for energy Bowing into or out of the cone and
use a smaller cone size.

The CDF experiment has measured the jet cross sec-
tion at the Tevatron proton-antiproton collider at
&s = 1800 GeV. Their analysis of early runs is typical of
Tevatron jet results. In contrast to UA2, the CDF cross
section has been treated much more like a next-to-
leading-order quantity and has been measured as a func-
tion of the jet cone size. To de6ne a jet, a fixed-cone-size
algorithm (R =0.7) was used, along with other details of
the "Snowmass agreement" (Huth et al. , 1990) and Eq.
(8.6) was used to derive the jet quantities E„gz, and Pz.
The only deviation from the prescriptions of Huth et al.
(1990) is that E, was calculated by adding the energy of
calorimeter cells in the cone and then converting to E, by
using the rapidity of the jet, instead of using the scalar
sum of the E, of each cell. The data include a correction
for the energy inside the jet cone due to the underlying
event, but no corrections for energy Bowing into or out of
the cone. The underlying event transverse-energy correc-
tion is 1.2+0.3 GeV per unit area in ri, g space. Jets that
are close in direction have to be merged and large-
transverse-size jets have to be split according to some al-
gorithm. The algorithm used is similar to that used at
the parton level in the next-to-leading-order calculation
of the cross section. For a more detailed discussion of
the criteria used, we refer the reader to Abe et al.
(1992b). The experimental data (Abe et al. , 1992c,
1993a) are shown in Fig. 46, and they cover the rapidity
region 0. 1 & gz &0.7. The overall systematic uncertainty
in the measured cross section is 60%%uo (mainly due to ener-

gy resolution and unsmearing uncertainties) for E, & 80
GeV and 22% (dominated by knowledge of absolute en-

ergy scale) for E, ) 80 GeV. Also shown in Fig. 46 is the
absolute next-to-leading-order theoretical prediction for
the same cone size, using the parton distributions of Har-
riman, Martin, Roberts, and Stirling (1990) and Martin,
Roberts, and Stirling (1988). The agreement between
theory and experiment is remarkably good. Figure 47
shows the ratio of the measured cross section and theory
prediction (next-to-leading order) for different parton dis-
tributions. All parton distributions [Harriman et al.
(1990), MT-B, and MT-S] agree very well with the data,
except for HMRSE, which is inconsistent with the shape
of the mesaured cross section. CDF has also measured
the dependence of the cross section on the jet cone size
used. This dependence is predicted in the next-to-
leading-order parton-leve1 calculation of the cross sec-
tion, and it is informative to compare the parton-level
prediction with the measured behavior at the calorimeter
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jet level. In Fig. 48 the experimental cross section at
E, =100 GeV is determined for cone sizes 0.4, 0.7, and
1.0 and compared to the theoretical predictions for
diFerent choices of the scale used. Although there is
some scale dependence in the theoretical prediction, the
parton-level prediction and calorimetric jet-level mea-
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FIG. 47. The CDF (Collider Detector Facility) inclusive jet
cross section compared to theory as the ratio
(data —theory)/theory. The dashed lines indicate the systematic
uncertainty in the data, while the error bars include E, depen-
dence. The reference parton distribution used is that of Harri-
man et al. (1990), and predictions using other sets are also
shown: MTS, Morfj. n and Tung (1991)version S; MTB, Morfin
and Tung (1991), version B. The version names S, E, 8 signify
assumptions used in the analysis of the data. See Harriman
et al. (1990) and Morfin and Tung (1991) for descriptions of
these assumptions. From Abe et al. , 1992c.
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FIG. 46. The inclusive jet cross section measured by CDF (Abe
et al. , 1992c) for a cone size 8 =0.7 averaged over the pseu-
dorapidity interval 0. 1 & q &0.7. The curve represents the pre-
diction of a next-to-leading-order calculation using the parton
distributions of Harriman et al. (1990) and Martin, Roberts,
and Stirling (1988). The errors shown represent the statistical
and E,-dependent systematic errors. The overall normalization
uncertainty is also indicated separately.

FIG. 48. The cone size dependence of the jet cross section as
measured by CDF (data points) at E, = 100 GeV. Statistical er-
rors only are plotted on the data points. An overall systematic
uncertainty is indicated separately. The curves represent next-
to-leading-order predictions based on the parton distributions
of Martin, Roberts, and Stirling (1988) for di6'erent choices of
the renormalization scale. From Abe et al. , 1992c.

surement qualitatively show the same cone size depen-
dence for the jet cross section.

The agreement between theory and experiment, as il-
lustrated above, has generally improved, as luminosity
has built up for CDF and 00 at the Tevatron
(Kuhlmann, 1994). For example, studies of jet cross sec-
tions over a range in rapidity show strong evidence for
single-gluon exchange as the dominant source of very-
high-energy dijet events. In addition, however, a small
but intriguing set of events show that an admixture of
"color-singlet" exchange, which in pQCD begins at two
gluons, may also play an important role (see Sec.
VIII.A.3 above). These are the rapidity-gap events (Aba-
chi et al. , 1994; Kuhlmann, 1994), originally seen at UA8
(Bonino et al. , 1988; Brandt et a/. , 1992), and recently
detected as well in deeply inelastic scattering by the
ZEUS detector at HERA (ZEUS, 1993a).

Further results on rapidity gaps can be expected from
the Tevatron and HERA, hopefully shedding light on
whether the color-singlet exchange mechanism for their
generation is indeed the correct one. In addition, closer
examination of jet cross sections and their comparison
with theory will help elucidate the interplay of soft and
hard physics in QCD. Studies along these lines will in-
clude the following: (1) jet cross sections at large rapidi-
ty, (2) cone size dependence (Flaugher et al. , 1993), and
(3) comparison of cone algorithms with the successive
combination jet algorithms of I.EP (see Sec. V.D).

C. QCD corrections: heavy quarks

Another important area of research in pQCD is the
study of heavy-quark production. Precisely what is un-
derstood by the term heavy quark depends on the cir-
cumstances. However, there is general agreement that u,
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d, and s are light-mass quarks, while c, b, and t are
heavy-mass quarks. The obvious evidence for heavy
(confined) quarks is the existence of colorless spin-1
vector-meson states such as the J/P and f, which are
produced copiously in electron-positron collisions. These
physical particles contain charmed and bottom quarks
and have well-defined masses and lifetimes. Within the
context of pQCD there must be quantities that we can
designate as heavy quark masses m with values approxi-
mately one-half those of the vector-meson masses. Then
m, =1.5 GeV/c and m& =4.75 GeV/c have a phenom-
enological significance, even though they cannot be
identified as on-mass-shell objects like electrons or had-
rons. When mass effects are important, for example just
above the "threshold" for pair production, we cannot ig-
nore terms of order m /&s in a partonic reaction. Quark
masses have already been discussed in Sec. II.E.

The heavy quarks referred to above carry color and do
not have the proper quantum numbers to make colorless
hadrons. When they are produced in partonic collisions,
vacuum perturbations produce light quark-antiquark
pairs over the time scale AEht =h. The heavy quark
then combines with a light quark to form a physical had-
ron with well-defined mass, which subsequently decays
into a multitude of final states with well-defined branch-
ing ratios. The production of the heavy quark is only the
first stage of a complicated process, which involves both
pQCD and confinement. Here we assume that heavy
quarks are produced from light quarks in the hadrons
(extrinsic production). The presence of a heavy-quark
component in the hadron wave function (intrinsic pro-
duction) is discussed by Brodsky, Hoyer, Mueller, and
Tang (1992).

The theoretical description of heavy-quark production
and decay is usually split into several parts. One first cal-
culates the heavy-quark production cross section in the
parton model, at a scale set approximately by the heavy-
quark mass, including higher-order corrections if possi-
ble. Then the heavy quark becomes an on-mass-shell
meson or baryon by the nonperturbative process of
finding the appropriate light quark in the sea of quark-
antiquark pairs in the vacuum. There is a phenomeno-
logical description of this part (fragmentation function).
The heavy hadron then decays into light-mass hadrons
(on their mass shells), and the branching ratios can be
measured experimentally. The final decay involves the
transition of the heavy quark into a light quark according
to weak or electromagnetic interactions. The strong
corrections to the last process can again be calculated by
pQCD provided there is a heavy scale to make the run-
ning coupling constant small. If we limit ourselves here
to a discussion of the production of heavy quarks, then
there should be a kinematical region where the mass m
and the other invariants, such as &s, p„etc., are roughly
of the same magnitude and significantly larger than
A&co. Under such circumstances the scale parameter is
the heavy-quark mass, so we measure a cross section at a
coupling constant whose scale is m, using light-mass par-

tonic structure functions at a scale m. Outside these
ranges there will be large logarithms in ratios of invari-
ants, which can be controlled by an analysis of the
renormalization-group equation. The real proof of these
claims is the comparison between the theoretical predic-
tions and the experimental results.

Here we assume that the heavy quarks are detected
(via their decays). At higher values of &s, where
m/+s «1, the heavy quarks become efFectively mass-
less and must also be incorporated into the parton distri-
butions. The transition between these regions is still un-
der investigation.

Heavy-Savor production has been experimentally stud-
ied at electron-positron (Ali et al. , 1990), hadron-hadron
(Ali, Barreiro, de Troconiz, Schuler, and van der Bij,
1990; Quillet, Nason, and Plothow-Besch, 1990; Reya,
Zer was, Hollik, Khoze, Phillips, Berends, Rein, and
Zunft, 1990), and lepton-hadron (Ali, Ingelman, Schuler,
Barreiro, Garcia, de Troconiz, Eichler, and Kunszt,
1988; Schuler, 1988; Carboni et al. , 1990) facilities. For
review articles we refer the reader to Ellis and Kernan
(1990), Ellis and Stirling (1990), and Smith and Tung
(1993).

We shall now write down some Born reactions and dis-
cuss the general properties of the heavy-quark cross sec-
tions. For this we need the lowest-order matrix elements
for heavy-quark production in the reactions
q+q~Q+Q, y+g~Q+Q, g+g~Q+Q. The
differential and total cross sections for the reaction
e++e —+p +p, when mediated by a single virtual
photon, were given previously. One can use the pertur-
bation theory rules in Sec. II.4 to show that the corre-
sponding results for the reaction q +q ~Q + Q, where

q(q) are light (massless) quarks and Q(Q) are heavy
quarks with mass I, are

0
s

dt, du,

7Tcfs t 1 +u 1 2t7z 2

+ 5(s+t, +u, )
s s

(8.7)

8mo,',
o (s, m ) = —(s +2m )P .

27$
(8.8)

2

S &Rem &seHBQED5($ + tl + u 1 )
dt1du 1

where

We use the notation t1 =t —m, u1 =u —I where s, t,
and u are the standard invariants, p=(1 —4m /s)'~ is
the center-of-mass velocity, and a, =g /(4m. ). The re-
sults include a summation over final spins and colors and
an average over initial spins and colors.

Next consider the reaction y+g~Q+Q; the
differential cross section is
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t& u& 4m s m s
u «u tu (8.10)

is the same factor that appears in the QED result (i.e., in

the square of the amplitude for the reaction
y+y —+p++p ). Note that we have summed over final

spins and colors and averaged over initial spins and
colors. The total cross section is

a(s, m )= 2&cLemcKg
eIIs

8m 1+P 4m
1 —P s

(8.1 1)

Now consider the reaction g+g —+Q+Q. In this case the color structure is more complicated, and the diff'erential
cross section takes the form

CT

dt&du
&

&(X'
3 1—

a6

2«)u )

s 2

4ms ms
u& t& t&u& t&u&

5(s+t, +u, ), (8.12)

1+ 4m m
1

1+p
s s' 1 p— (8.13)

again summed over final spins and colors and averaged over initial spins and colors. Finally the total cross section is

VRX
2

31m
cr(s, m )= 7+

3$ s 4

The above results should be folded with the appropriate
distribution functions to calculate physical cross sections
and inclusive distributions in the Born approximation.

The evaluation of higher-order corrections in pQCD is
an involved issue, which has been the subject of much
theoretical investigation (Collins, Soper, and Sterman,
1986). The calculations fall into difFerent classes. First
of all there are next-to-leading-order @CD calculations of
inclusive cross sections and distributions, for example, by
Ellis and Kunszt (1988), Nason, Dawson, and Ellis (1988,
1989), Beenakker, Kuijf, van Neerven, and Smith (1989),
Ellis and Nason (1989), Beenakker, van Neerven, Meng,
Schuler, and Smith (1991), Smith and van Neerven
(1992), and Laenen, Riemersma, Smith, and van Neerven
(1993a, 1993b, 1993c). These calculations regularize all
singularities by extending the space-time to n dimensions,
so they can only yield information on a few inclusive dis-
tributions. Next there are applications of these calcula-
tions by various groups, of which we mention Gluck
(1987), Altarelli, Diemoz, Martinelli, and Nason (1988),
Gliick, Godbole, and Reya (1988), Meng, Schuler, Smith,
and van Neerven (1990), Berger, Meng, and Tung (1992),
Berger and Meng (1992), and Riemersma, Smith, and van
Neerven (1992). Then there are comparisons with Monte
Carlo packages, . by Kuebel, Pundurs, Yuan, Berger, and

Paige (1991) and by Marchesini and Webber (1990).
There are also papers on the resummation of the dom-
inant logarithms in the threshold region by Laenen,
Smith, and van Neerven (1992) and the region of large
energy by Ellis and Ross (1990), Collins and Ellis (1991),
and Catani, Ciafaloni, and Hautmann (1990, 1992). In
addition there are papers on fully exclusive calculations
in which the cancellation of the singularities is incor-
porated within the Monte Carlo program by van der Bij
and van Oldenborgh (1991)and by Mangano, Nason, and
Ridolphi (1992). Finally there are papers joining
diFerent approaches, by Aivazis, Olness, and Tung (1990,
1993). Nonperturbative eff'ects near threshold are studied
by Fadin, Khoze, and Sjostrand (1990).

A11 the theoretical inputs, such as the running coupling
constant, the reduced cross section &;~(s,m, Q ), and the
parton distribution functions E/'(x, Q ), are scheme
dependent.

First we have to choose the renormalization scheme.
Since the cross section is a renormalization-group invari-
ant, we can limit ourselves to mass and coupling-constant
renormalization. Usually mass renormalization is per-
formed in the on-mass-shell renormalization scheme.

Let us discuss the inhuence of heavy quarks on the
running coupling a, . For instance, the running coupling
constant should be continuous across heavy-quark pro-
duction thresholds, so it depends on nf. If we define the
two-loop corrected a, in the MS scheme, then

The calculations of the partonic cross sections given here
were first reported by Witten, 1976; Babcock and Sivers, 1978;
Babcock, Sivers, and Wolfram, 1978; Georgi, Glashow, Macha-
cek, and Nanopoulos, 1978; Gluck, Owens, and Reya, 1978;
Jones and Wyld, 1978; Shifman, Vainstein, and Zakharov, 1978,
1988; Combridge, 1979; Glijck and Reya, 1979; Hagiwara and
Yoshino, 1979; Leveille and Weiler, 1979; Mattiae, 1981.

bflnln(Q /A )

bfln(Q /A ) bfln(Q /A )

(8.14)

where bf and bf are given by [see Eq. (2.48)]
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We use this form for top-quark production with A=AS
and nf =5. For bottom and charm production we need

a, for four and three Qavors, respectively. So that there
is continuity across the b and c thresholds, we de6ne, fol-
lowing Altarelli, Diemoz, Martinelli, and Nason (1988)

a, &(Q') =a, (Q', 5),
a, 4'(Q )=a, '(Q, 4)+a, '(mb, 5)—a, '(mb, 4), (8.16)
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+a, 3(Q )8(m, —Q~) . (8.17)

IX. GLOBAL ANALYSIS OF PARTON DISTRIBUTIONS

Factorization theorems in perturbative QCD give a

justification for an improvement of parton-model predic-

This result may also be used in the calculation of the
lowest-order Born approximation, even though it is not
imperative to do so.

The best data for a test of pQCD heavy-quark produc-
tion are on b production in pp collisions. c production is
not so clean, because its mass is not heavy enough and
a, (m, ) is large. The relevant experimental data are
presented in Albajar et al. (1988, 1990, 1991), Abe et al.
(1990a, 1992a), Sinervo et al. (1990), and Mangano and
Nason (1992). Data from the SOS and Fermilab Tevat-
ron on inclusive b-quark production are shown in Fig. 49
together with the results of a pQCD calculation through
order a, [provided by R. Meng using the O(a, ) exact
calculations in Beenakker, van Neerven, Meng, Schuler,
and Smith, 1991]. The lower-energy data are fit quite
well. The higher-energy data are above the theoretical
predictions, so we probably need to include some part of
the 0 (a, ) contribution.

pT,~ [.«Vj

FIG. 49. QCD fit to b qua-rk production data. From R. Meng,
private communication.

tions. In the "QCD improved" parton model, physically
observed cross sections involving hadrons can be written
as convolutions of perturbatively calculable partonic
hard parts with parton distributions, which summarize
uncalculable nonperturbative effects (Owens and Tung,
1992; see Sec. IV above).

A. Evolution of parton distributions

The parton distributions are often presented as func-
tions of x and pf and are customarily interpreted as the
probability densities for ending a parton within a hadron,
with its momentum fraction between x and x+dx.
Below we denote the factorization scale by pf. Although
perturbative QCD cannot predict the absolute normaliza-
tion of these parton distributions, their evolution with
the factorization scale can be calculated (Sec. IV.B.3).
More precisely, the scale dependence is governed by a set
of coupled integro-di6'erential evolution equations, valid
to all orders in a, (Gribov and Lipatov, 1972a; Altarelli
and Parisi, 1977),

I I",,"(y)rtr, ,Pf +&"'(y)P ——,Pf +0(,')
(9.1)

+O(a, ),dug(+~Pf ) as(I f ) & dy (I) x
X „(~)4, I f +~„b)4, —

I f—X
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where t =in(pf/A ), and the subscript q denotes quark
fiavors. The kernels P,.~( z) have the physical interpreta-
tion of probability densities for obtaining a parton of type
i from one of type j with a fraction z of the parent
parton's momentum. At the leading order, the I';. are
given in Eq. (6.7) above. The next-to-leading-order (or
two-loop) expressions for P, (z) were calculated by
several groups. Up until recently, there had been an
unresolved minor discrepancy for Pss(z) between results
obtained in different gauges. This has now been clarified
(Hamberg and van Neerven, 1992).

This set of eqautions can be solved exactly in moment
space (Reya, 1981; Altarelli, 1982), once a set of input
distributions is specified at an initial value po. One can
then invert the moments to get the x and LMf-dependent

parton distributions. However, this method requires the
knowledge of initial parton distributions at all values of x
from 0 to 1, and no experimental measurements at fixed

pf can reach all the way to x =0. In current global
analysis of parton distributions, one solves this set of
equations numerically. Note that one needs input distri-
butions only for x greater than or equal to the smallest
momentum fraction at which parton distributions are
desir ed.

B. Global analysis

Global analysis of parton distributions involves mak-

ing use of experimental data from many physical process-
es and using the parton evolution equations to extract a
set of universal parton distributions which best fit the ex-
isting data. These distributions can then be used in pre-
dicting all other physical observables at energy scales far
beyond those presently achievable. Herein lies the wide-
ranging usefulness of the QCD improved parton model.
Beyond this, however, the very possibility of a global fit
tests the internal consistency of our fundamental theoret-
ical picture of hard scattering, based on factorization and
ihe universality of parton distributions.

A typical procedure for global analysis involves the
following necessary steps:

(1) Develop a program to solve the evolution equations
numerically —a set of coupled integro-differential equa-
tions;

(2) Make a choice of experimental data sets, such that
the data can give the best constraints on the parton dis-
tributions;

(3) Select the factorization scheme —the DIS or the

MS scheme —and make a consistent set of choices con-
cerning a factorization scale for all the processes;

(4) Choose the parametric form for the input parton
distributions at po, and then evolve the distributions to
any other values of pf,

(5) Use the evolved distributions to calculate y be-
tween theory and data, and choose an algorithm to mini-
mize the y by adjusting the parametrizations of the in-
put distributions;

(6) Parametrize the final parton distributions at
discrete values of x and pf by some analytical functions.

In all high-energy data, deeply inelastic scattering of
leptons on nucleon and nuclear targets remains the pri-
mary source of information on parton distributions, be-
cause of its high statistics. Such data are known to be
mostly sensitive to certain combinations of quark distri-
butions. Drell-Yan lepton pair production and direct
photons at large transverse momenta provide important
complementary information on antiquark and gluon dis-
tributions. Most data used in obtaining recent parton
distributions are at fixed-target energies. Collider results
have not reached the accuracy necessary to be included
in global fits, but they will eventually offer a signi6cant
opportunity to probe the small-x region (say x ~ 10 ).

Parton distributions defined in different factorization
schemes are different. The commonly used factorization
schemes in the literature are the DIS and MS schemes.
In principle, parton distributions obtained in one scheme
can be directly transformed into the other scheme. How-
ever, the transformation is not reliable in certain kine-
matic regions where the perturbation series expansion
has abnormal behavior (Owens and Tung, 1992). It is
preferable to perform independent analyses in these
schemes.

The truncation of the perturbation series invariably
leads to renormalization and factorization scale depen-
dence for QCD predictions. Consequently parton distri-
butions obtained from global analysis will depend on the
choice of scales. If significant scale dependence is found
to exist in a particular kinematic region for some process-
es, then the usefulness of such data is limited, until new
theoretical techniques are developed to reduce that
dependence.

There is considerable freedom in choosing the para-
metric form of the input parton distributions at scale po.
The parametrization must be general enough to accom-
modate all the possible x and quark-flavor dependence,
but it should not contain so many parameters that the
fitting procedure becomes very much underdetermined.
In practice, for each Aavor it is common to use a func-
tional form

P(x, po) = A ox '(1 x) 'P (x), — (9.2)

Floratos, Ross, and Sachrajda (1977), Gonzalez-Arroyo
et al. (1979), Gonzalez-Arroyo and Lopez (1979), Curci, Fur-
manski, and Petronzio (1980), Furmanski and Petronzio (1980),
Herrod and &ada (1980), Floratos, Lacaze, and Kounnas
(1981a, 1981b), and Herrod et al. (1981).

where P(x) is a smooth function. In the above expres-

sion, x dominates the small-x feature and ( 1 —x )
Ai A2

determines the large-x behavior.
When calculating the y for a given fit, both statistical

and systematic errors should be taken into account. The
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most expedient, and hence the most often used, method is
to combine these errors in quadrature (Morfin and Tung,
1991). However, real systematic errors are correlated;
they must eventually be incorporated in that way when
the analysis reaches a truly quantitative stage.

After minimizing the y (e.g. , using the MINUET pack-
age of CERN library), the resultant parton distributions
can be presented in two ways. One way is just to give the
relevant QCD parameters and the parametrization of in-

put parton distributions at scale po. The user can then
produce the parton distributions at another value of p&
by using this information as input to a reliable QCD evo-
lution program. The other, more commonly used, is to
approximate the outcome of a global fit over (x,pI ) by a
set of parametrized functions. Such parametrization
varies widely between the available distributions sets,
ranging from a simple interpolation formula over a large
three-dimensional array (x,p&, and flavor) to Chebeschev
polynomial expansions, to simple p&-dependent parame-
trizations of the form of the above equation with an ap-
propriately chosen smooth function P(x) It h.as been

A3
found that a logarithmic factor of the form log '(1/x) is
particularly effective in rendering the p& dependence of
the coefficient functions A; smooth for the QCD evolved
distributions.

Although, in principle, the form of the parametriza-
tion is arbitrary so long as the approximated distribu-
tions still fit the data, extrapolation of the distributions
out of the fitting region (e.g., into the small-x region) will

give very different predictions. It has been demonstrated
that good fits to data can be obtained with the coefFicient

A, (which controls the small-x behavior) varying, say,
from —0.5 to 0.2. Such uncertainty should be regarded
as evidence of our lack of knowledge of the uncharted re-
gion. It is not meaningful to take the extrapolation of
any particular set of parton distributions as "predic-
tions. " This uncertainty can be reduced either by new
experimental measurements or by theoretical advances
which allow true predictions extending to small x in the
same manner as the usual evolution equation does for the

p& variable.

C. Survey of recent parton distributions

The first-generation parton distribution sets, based on
leading-order evolution and data of the early 1980s, were
widely used in calculations of high-energy processes
(Gluck et al. , 1982; Duke and Owens, 1984; Eichten,
Quigg, Hinchliffe, and Lane, 1984). However, since then
experimental data have been dramatically improved (and
substantially changed, in some cases), and these distribu-
tions are no longer able to fit the new data.

Second-generation global analyses, based on next-to-
leading-order evolution and more recent data, have been
carried out by several groups in recent years. Some of
the groups perforxn specialized analyses focusing on some
specific issue or process, such as the gluon distributions
and direct-photon production (Aurenche, Baier, Fontan-

naz, Owens, and Werlen, 1989), neutrino scattering
(Diemoz et al. , 1988), etc.; and others study a wide range
of processes (Martin, Roberts, and Stirling, 1988; Martin
et a/. , 1989; Harriman, Martin, Roberts, and Stirling,
1990; Kwiecinski et al. , 1990; Morfin and Tung, 1991).
These analyses differ considerably on various issues, such
as the range of data used, the way experimental errors
are treated, the choice of schemes, assumptions on the in-

put distributions, and so on.
A compilation of currently available parton distribu-

tion sets, both old and new, has been made at CERN and
it has been distributed as a program package pDFLIB
(Plothow-Besch, 1991). Because most of the older distri-
butions are seriously inconsistent with current data, and
because of the differences mentioned above, indiscrim-
inate use of all the distributions in this collection can lead
to Ineaningless results.

For example, it is important to coxnpare only correctly
corresponding objects. Thus the leading-order, next-to-
leading-order DIS, and next-to-leading-order MS distri-
butions are difTerent objects, and should not be compared
or mixed. When calculating physical quantities (such as
cross sections or structure functions), one must convolute
leading-order, next-to-leading-order DIS, and next-to-
leading-order MS distributions with the corresponding
hard-scattering parts in order to yield meaningful predic-
tions.

%e are about to enter yet another era of precision in

Q CD global analysis. Recently released NMC data
(Amaudruz et al. , 1992) on Fi /F$, F~z Fz, and F—$"us-

ing a muon beam and CCFR data (Mishra et al. , 1992;
Leung et al. , 1993; Quintas et al. , 1993) on F2'3 using
(anti-) neutrinos should have a significant impact on
QCD global analyses because of their extended kinematic
coverage (particularly at small x), their high statistics,
and minimal systematic errors. The precision of the
current generation of DIS experiments (including the
previously published S LAC, BCD MS, and CDHSW
data) now far exceeds the size of next-to-leading-order
QCD contributions to these processes; thus they probe
the full complexity of QCD mixing effects between
quarks and gluons in a properly conducted QCD
analysis. At the same time, data being accumulated at
the Fermilab Tevatron on many hadron collider process-
es (such as 8'and Z production, lepton pair production,
direct-photon production, jet production, and heavy-
flavor production) are beginning to be quantitative
enough to provide complementary information and con-
straints on parton distributions. Finally, the HERA
electron-proton collider (Hl Collaboration; Abt et al. ,
1993, 1994; ZEUS Collaboration, Derrick et a/. , 1993b)
is now providing direct measurements of structure func-
tions at very small x.

The new DIS data have been incorporated into two re-
cent global analysis efForts (Botts et al. , 1993; Martin
et al. , 1993). The most notable result from each of these
new global analyses is the apparent extraordinary quanti-
tative agreement of the next-to-leading-order QCD par-
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ton framework with the very-high-statistics DIS experi-
ments over the entire kinematic range covered, and the
consistency of this framework with all available experi-
ments on lepton pair and direct-photon production as
well. The parton distributions are determined with much
more precision than before.

On the other hand, these analyses also are calling into
question, for the first time, the ultimate consistency of
the existing theoretical framework with all existing ex-
perimental measurements! (This can be regarded as tes-
timony to the progress made in both theory and
experiment —considering the fact that contradictions
come with precision, and they are a necessary condition
for discovering overlooked shortcomings and/or harb-
ingers of new physics. ) When all available total inclusive
DIS data and their associated errors are taken seriously
in the latest analysis, the CTEQ Collaboration (Botts
et al. , 1993) found a good global fit only if the strange
quark has a much softer distribution than the nonstrange
one and rises above the latter in the small-x region below
x =0.1. This result is unexpected, and it also appears to
be in conflict with the dedicated measurement of s(x)
done with dimuon final states in neutrino scattering (Ra-
binowitz er al , 1993.). (The latter is not available in a
form that can be included in any of the existing global
analyses. } Thus either there are unknown theoretical
Saws in the next-to-leading-order QCD analysis or some
of the experimental data sets need to be reexamined both
in their measured values and in the assessed systematic
errors. In the analysis of Martin, Roberts, and Stirling
(1993), the strange-quark content of the nucleon is as-
sumed to be consistent with the dimuon result; reason-
able fits are obtained only by letting the normalization of
the data sets vary freely, unconstrained by the stated ex-
perimental errors, and by increasing some experimental
errors attributed to other sources.

The emergence of ihe apparent contradictions has al-
ready spurred e6'orts by both theorists and experimental-
ists to examine the existing assumptions rigorously and
to institute new improvements in their respective analy-
ses. These efForts, aided by data, from the hadron collider
experiments and from HERA, herald an exciting new era
in global QCD analysis. We expect, on the one hand, vi-
gorous study of small-x behavior, and on the other hand,
much more stringent tests of the pQCD framework from
the many overlapping lepton-hadron and hadron-hadron
processes which can now be studied quantitatively.

ACKNGWLEDG MENTS

This work was supported in part by the National Sci-
ence Foundation and by the Department of Energy. We
also wish to thank the Texas National Research Labora-
tory Commission for support of the CTEQ Collaboration
and of the initial CTEQ Summer Schools on QCD
Analysis and Phenomenology, held at Mackinac Island,
Michigan, 27 May —3 June, 1992 and at Lake Monroe,
Indiana, July 15—August 3, 1993. These opportunities to

interact with students and postdocs had a strong
inhuence on the material presented here.

APPENDIX A: CGLGR MATRIX IDENTITIES
AND INVARIANTS

Only a few identities are necessary for the calculations
described in the text. In general, for representation R,
SU(N) generators can be picked to satisfy

Tr[Z'~'T'~'] = T(Z)S., (A 1)

with T(R) a number characteristic of the representation.
Also of special interest is the representation-dependent
invariant C2(R), defined by

a=1
(A2)

with I ihe identity matrix.
We encounter only two representations here, the X-

dimensional "defining" representation I' and the X —1-
dimensional adjoint representation A. The generators
T,' ' are a complete set of N XX traceless Hermitian ma-
trices, while the generators T,'"' are defined by the
SU(N) structure constants C,b, [Eq. (2.S)] as

(T(A)) .( (A3)

For these two representations, the relevant constants are

1 X —1T(I') =—, Ci(F)=2' 2X

T ( A ) =X, C2( A ) =i'' .
(A4)

with I the 3X3 identity and the d,&, real. Unlike the
previous equations, this and the following equation apply
only to SU(3). A numerical value that occurs in the
three-loop correction to the total e+e annihilation
cross section is

D =g d,q,
=40/3 .

abc

APPENDIX 8: CUT DIAGRAM NOTATION

A convenient technique for organizing calculations of
~JR~ in cross sections is through cut diagrams, which
combine contributions to A, and At* into a single dia-
gram for

~
JR

~
with slightly modified Feynman rules.

The form of cut diagrams is derived in Fig. 50, for the
annihilation of a fermion pair of momenta k, and k2 into
a set of n final-state lines, of which only a fermion with
momentum p& and an antifermion of momentum p„are
exhibited.

Another useful identity, special to the defining repre-
sentation, enables us to work with simple products of the
generators,

(AS)
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Vi

Q + IC

Vp

(a)

Vi

manner as spinor sums, because the color generators are
Hermitian.

Figure 50(c) exhibits the cut diagram notation, in
which the contribution of any final state is a modified
forward-scattering diagram. The final-state lines are in-
dicated by a vertical line (the "cut"). Cut lines are
represented in the integral corresponding to the cut dia-
gram by factors

(gf, +m;)(2m)5+(p; —m; ), (82)

Vi

& (zrr) ~.(p,

for fermons or antifermions, after a spin sum. For polar-
ized fermions or for vectors, the usual spin projections
replace (p';+m; ). The Feynman rules for Al, are the nor-
mal ones, and those for At differ only in the sign of expli
cit factors of i at vertices and in propagators. The three-
gluon vertex also changes sign in JR, because of the rever-
sal of momenta.

'gled (ztr)b (p~ )
APPENDIX C: DIMENSIONAL REGULARIZATION

FICx. 50. Cut diagram identities.

The underlying identity for these manipulations is

[w(y 'y ' o y"y, )w')'

=w'( y'y o P y 'y ')w, (Bl)

where w and u' are any two Dirac spinors.
Figure 50(a) shows a typical fermion propagator and

vertex in At and At*. Figure 50(b) shows the application
of Eq. (81) to Fig. 50(a). The diagram in At~ has been
Hipped over, all arrows on fermion lines have been re-
versed, and all momenta have been reversed in sign. This
leaves the sign of momenta in fermion propagators the
same, as shown. Color sums can be reversed in the same

In Sec. II, our description of renormalization was a bit
abstract, depending as it does on the substitution, Eq.
(2.25). For many purposes, it is useful to introduce an in-
termediate step in this replacement in which the diver-
gent integral is regulated, that is, modified to become a
finite integral. This will involve the introduction of a
new, unphysical, parameter. The replacement in Eq.
(2.25) will then appear as a "subtraction, " in which the
regulated integral is combined with a term that cancels
its dependence on the regularization parameter. At
present, far and away the most popular regularization
scheme is dimensional regularization, primarily because
of its calculational simplicity. It is diScult to follow
much of the theoretical literature of pQCD without at
least a passing acquaintance with dimensional regulariza-
tion.

Most of the essential features are contained in the sca-
lar one-loop self-energy, Fig. 2,

G(2)(p ) i+4 n-d "k 1

(2m. ) (k —m 2+i@)[(p k)2 m2+—i e]— (Cl)

where n is the number of dimensions, initially taken as an integer, n = 1,2, . . . . For n 4, the integral is UV divergent
as k —+ ao. The factor p ", with p an arbitrary mass, is included to keep 6' ' dimensionless for all n. To simplify fur-
ther, let us do the integral in "Euclidean" space, where k =ko+k . The process of relating Euclidean to Minkowski
integrals (Wick rotation) is independent of the regularization process and for our purposes consists of multiplying by a
factor i.

For n ~4, G' '(p, n) is ill defined, but for n (4 it is finite. The idea of dimensional regularization is to extend G to an
analytic function of n for all Re(n) &4, and then to use analytic continuation to extend it to the rest of the complex n

plane. When we recall that analytic continuation is a unique process, we begin to see the power of the method.
So, how are we to extend 6 to noninteger, let alone complex, values of n. Actually, it is quite a simple process: more

general integrals require more care, but the basic steps are the same for every Feynman diagram.
(i) First comes a technical step, called Feynman parametrization, which is a trick to rewrite the product of denomina-

tors as a single denominator,
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G' ~(pn)=i@ "f f dx[k —2' k+xp —m ]
d "k

(2~)"

(ii) Next, we complete the square in the single denominator, l =k —xp, to get

d "l
G' '(p, n)=i@ "f f dx[l +x(1—x)p —m ](2~)" o

Notice that the shift of integration variable is perfectly permissible for n & 4, where the integral is convergent.
(iii) In this form, we can trivially change variables to polar coordinates and do the (trivial) angular integrals

(2)( )
. 4 „Q(n) id ~ dl i"

(2m)" o o [I +x(l —x)p —m ]

(C2)

(C3)

(C4)

For integer n dimensions we easily find the following re-
cursion relation:

Q(m)= f d8 i sin (8,)Q(m —1)
0

I (1/2)r((m —1)/2)
Q

r(m/2) (C7)

(iv) At this stage, the n dependence is segregated into
the angular volume, Q(n), while the divergence at n =4
is entirely in the radial I integral. These two quantities
are quite easy to promote from integer to complex n.

So, we are left with two integrals to extend to the com-
plex "n plane. " Consider first the angular integral. %"e
are already familiar with one- and two-dimensional angu-
lar integrals,

Q(2)= f d8i

(C5)

Q(3)=f d82sin(82)Q(2)
0

=4m .

I'(z —1)= r(z)
(z —1)

(Cl 1)

Since I (z) is analytic for all z with positive real parts, it
is easy to deduce that it is analytic for all z, except at neg-
ative integers, where it has simple poles. It is precisely
this last property that makes dimensional regularization
such a convenient technique.

Now let us return to our basic one-loop integral, Eq.
(C3). The remaining, radial integral in Eq. (C4) can be
analytically continued, from a finite integral for n real
and less than 4, to a complex integral by using yet anoth-
er integral representation involving gamma functions,

+ 1) „, I (io)r(z)
y y y I (ic+z) (C12)

(This combination of gamma functions is often called a
"P function, " not to be confused with the P function in-
troduced in connection with renormalization. ) Combin-
ing these results, we find

4—n

G'2'(p, n) = i r(2 n /)2(p —)"
)n/2

where I (z) is the Euler gamma function defined by the
integral representation

I (z)= f dx x' 'e
0

l 1
+in(p /p )+

(4~)2 2 n/2—
(C13)

n/2

1 (n/2)
(C9)

We can use this result to give a meaning to the integral
Eq. (C4) for all values of n, and not just positive integers.
But let us first list a few basic properties of the gamma
function, which appears in the results of typical integrals
like Eq. (C4). It is defined by Eq. (C8) for Rez) 0 and by
analytic continuation for all other values of z. A little
algebra shows that, for integer z & 1,

r(z) =(z —1)! .

for Rez &0.
The recursion relation Eq. (C7) is trivially solved by

use of Eq. (C5) as an initial condition. We find

In this way, the superficially divergent integral becomes
the sum of a momentum-independent pole term plus
momentum-dependent finite parts. Minimal subtraction
(MS) schemes consist of subtracting the pole terms only
in dimensional regularization. The renormalization scale
enters automatically by modifying the Lagrange density,
as described below.

Let us now discuss how dimensional regularization is
introduced in @CD. As its name implies, dimensional
regularization involves treating the number of spacetime
dimensions as a parameter, n. The unregulated theory,
of course, is defined at n =4. It is often convenient to
parametrize the regularization in terms of the "small"
quantity

The gamma function obeys the recursion relation v=2 —n/2 . (C14)
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The rules that we shall need to implement dimensional
regularization may be summarized as follows:

(i) For QCD, the regulated theory is defined by a La-
grangian of the form Eq. (2.2), but with all couplings g
replaced as

(C15)

with e given by Eq. (C14), and with p an arbitrary mass
scale, which we shall refer to as the renormalization scale.

(ii) Vector indices run from 1, . . . , n and we make the
replacements

where we have used Eqs. (C9) and (C12). Similarly, we
have

I,"'(n) = d "i l"l
[l M—+i e]'

1(, i. „g2 I (s n—/2 —1)

pv(M2 1~)n/2 —s+1 (C22)

These forms are all that is necessary to derive the results
of Eqs. (5.19) and (5.20).

dk dk 4 n

4= g g"„~n = g g"„,
(2m ) (2n )" C16

APPENDIX D: KINEMATICS AND CROSS SECTIONS

in all momentum integrals (loop and phase space). We
shaH see below what we mean explicitly by d "k.

(iii) There are n Dirac matrices y", p= 1, . . . , n, and
the standard anticommutation relations

Tr[P1P2I 3I 4] 4[(pi 'p2)(p3 p4)

+(Pi P4)(P2 P3)—(Pi P3)(P2 P4)]

(C18)
which depend on the y& being 4X4 matrices. We should
emphasize that Eq. (C18) may be taken as a rule, because
the true e dependence due to the trace will not affect
physical answers at n =4, not because Eq. (C18) is really
correct in n dimensions. On the other hand, the anticom-
mutation relations, along with gi„' =n, lead to the follow-
ing easy-to-prove, n-dependent identities for Dirac ma-
trices:

yPy"=(2 —n)P

ygiP2y" =4pi p2 2~PiP»—
yiJ 1/ I 2y32I 3I 2I 1+2~XiI 2P3

(C19)

The basic one-loop integrals may now be evaluated in
terms of Eqs. (C9) and (C12) straightforwardly For in.-

stance, consider the Minkowski-space integral

d "I
I,(n)=

(/ M+i e)'—

where l =lo —I . Wick rotation, /0 —+ilo, gives

dl„d" 'l
I,(n) =( —1)'i

[lE+M ie]'—

(C20)

n(n —1)
~.

- diB(iE)"" '
=(—1)'i

2 o [lE2+M ie]'—

[y",y ]+=2g"', i'd=1, . . . , n,
are satisfied by all n of them. Fortunately, however, it is
not necessary to make the number of spinor components
n dependent. Thus we may retain Dirac trace identities
such as

In this appendix ' we discuss the kinematics and for-
mulas in frequently encountered cross sections. Upper-
case letters will be used to designate incoming and outgo-
ing hadrons h, as A +8~C+X, etc. Lower-case letters
will be used when referring to the hadron constituents
that are undergoing the hard scattering.

The cross sections below are described for the most
part in the language of the parton model, Sec. III, with
hard-scattering functions H,b [see Eq. (4.38)] approxi-
mated by Born cross sections. They serve as well, howev-
er, for leading-power pQCD, when factorization scale
dependence is introduced into the distribution and frag-
mentation functions. At lowest order, the hard-
scattering function reduces to the Born cross section, us-
ing a, (g ), with Q an appropriate momentum transfer
squared.

Let A and 8 be initial-state hadrons and C an observed
final-state hadron, with four-vectors p~, pz, and pc, re-
spectively. For these momenta, Mandelstam variables
are defined as

S (PA +PB ) s t (PA PC) ~ Q (PB PC )

With this definition,

s + r +Q =p„+pB +pc+ (p„+pB—pc )

(D 1)

(D2)

The variab1e s is the squared center-of-mass energy, while
t and u are the squares of the four-momentum transfers
from particles A and 8 to particle C. A similar set of
variables describes the partonic scattering, a +b —+c +d,
identified by "hats, "as s. Thus, by Eq. (D2), the Mandel-
stam variables for massless two-body elastic scattering
satisfy the constraint s + t +u =0.

A number of additional variables will be encountered
in discussions of large-transverse-momentum processes.
These describe momentum components that are trans-
verse or longitudinal with respect to the beam direction,
denoted by pT and p&, respectively. Reference will be

1)s ~ nn(M2 ~ )nn —s ~(s
I (s)

(C21)
3 This appendix closely follows a similar discussion by Owens

(1987).
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made to their scaled counterparts,

xT=2pT/V s, x+=2p&/V's (D3) x, V's Xb +S
p,"= — (1,0,0, 1), pg= (1,0,0, —1),

ing any parton transverse momenta, be written as

(D6)
With these definitions the kinematically allowed ranges
of xr and xF are (0,1) and ( —1,1), respectively, if the
masses of the hadrons are neglected. Another useful
variable, which is often used, is the rapidity y, which is
defined as

Z+p,
y =—ln

2 E —
ph

This expression, when evaluated for a massless particle,
has a much simpler form. In this case,

where the positive z axis is taken to be along the direction
of the incident hadron A. If the scattered parton c has
transverse momentum pz. and rapidity y„ then its four-
vector is just

pg=pT(coshy&, 1,0, sinhy, ) . '
(D7)

With these results it is easy to evaluate the Mandelstam
variable at the parton level:

s=x, xbs, t= —x,p &se "', u= —xbp &se ' .
8

y =lncot —,
2 ' (D5) (DS)

where 0 is the center-of-mass scattering angle. This
form, called the pseudorapidity when applied to physical
particles, is convenient experimentally, since one needs to
know only 8. For many high-energy processes the depen-
dence on the particle masses is negligible, and therefore
the rapidity and pseudorapidity become equivalent.

In the derivations that follow it will often be necessary
to work directly with the four-vectors of the interacting
partons. Suppose that parton a carries a fraction x, of
hadron A's longitudinal momentum and that a similar
definition for xb exists for parton b. Then in the overall
hadron-hadron center-of-mass system the four-vectors
for a and b can, assuming massless partons and neglect-

For the case of two-body scattering, the partonic Man-
delstam variables can also be written in terms of the
four-vector of the recoiling parton d, in the event that
correlations are being studied. Let

pd =pr(coshy2, —1,0, stnhyz) . (D9)

Then t and u may also be written as

t= —xbpT+se ' and u = —x,pTvse ' . (D10)

Starting with two-body scattering at the parton level,
we can write the partial cross section for the inclusive
production of two partons as (Sec. III.A)

3 3

d~(~& ~cd)= g p.gg(x. )dx. &bing(xb)dxb g IM(ab ~cd)
I (2~) ~ (p. +p'b p, pd )——=1 2

2$ gb (2n) 2E, (2~) 2Ed

(D 1 1)

3d Pd

2E
=d pd~(pd)

d
(D12)

to integrate over pd using the four-dimensional 5 func-
tion. In addition, with massless partons it is convenient
to make the replacement

Note that unpolarized parton distributions, as defined in
Sec. IV.D, say, include a sum over colors and spins.
These quantum numbers are therefore aueraged in the in-
itial state of the partonic cross section, and these aver-
ages are implicit in g,b in Eq. (Dll). At the level of
two-body scattering, one associates a jet with each of the
outgoing partons (Sec. III.C.3). However, when more
complicated final states are taken into account, e.g., 2—+3
processes, the jet must be carefully defined using energy
and angular size resolutions or a "JADE" algorithm, etc.
(Secs. V.D and VIII.B).

In order to convert Eq. (Dl1) into the invariant cross
section for inclusive single-jet production, it is easiest to
use

5(pd)~5(s+t+u) (massless partons) .

This results in

(D13)

0E ( AB —+jet+X) = g Idx, dxbp, z„(x, )pb&~(xb )
d p abed

X — (ah~cd)6(s+t+u ),s do

(D14)

where the di6'erential cross section for the two-body par-
ton scattering subprocesses is denoted by

do' (ah~cd)= g lM(ah~cd)l1 2

dt 16ms
(D15)

The argument of the 5 function in Eq. (D14) can be ex-
pressed in terms of x, and xb using the results given
above. The xb integration may then be done, giving the
final result
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where

d ct 1 2 xaxb do(&&~j«+X)=g . dx. p, »(x. )pb/&(xb) — (ab ~cd),
d 3p gbgd ~a ~ 2x, —xTe~ dt

X,xTe
xb =

2x, —xTe~
(D17)

and

min
Xg

XTe~

2 —x eT
(D18)

Equation (D16) is also applicable for the calculation of the direct-photon inclusive invariant cross section resulting from
the subprocesses qq —+yg and gq —+yq.

Next, in order to calculate single-particle inclusive invariant cross sections, we must include the fragmentation func-
tion Dc/, (z, ) (Sec. III.C.2). This function, when multiplied by dz„gives the probability for obtaining a hadron C from
parton c with the hadron carrying a fraction z, of the parton's momentum. Using d p /E =z, (d p, /E, ), we find the re-
sulting expression

0E
3

(AB~C+X)= g fdx, dxbdz, p, /„(x, )pb/~(xb)Dc/, (z, ) 2 (ah~cd)5(s+t+u) .
d p

(D19)

As in the previous case, the argument of the delta function may be expressed in terms of the parton kinematic variables,
and the z, integration may then be done. The final form for the cross section is

0' 1 1 1 do.E
3

(AB~h+X)= g f dx, f dxbda/~. (xa)kb/a(xb)Db/ (z, ) (ah~cd),
d p mzc

(D20)

where now

XT XT
z, = e "+ e~,

2xb 2xg

min
xb

X min
a

aXT

2x, —xTe"

XTe~

2 —x eT

(D21)

Equation (D20) is also applicable for the calculation of
the single-photon inclusive invariant cross section (Secs.
III.E and VII.D), when the photon results from the frag-
mentation from one of the scattered partons. In this case
one must replace D&&, by D&&, .

The above equations for the invariant cross sections in-
clude a summation over all of the possible two-body par-
ton scattering subprocesses. In addition, the summation
implies a symmetrization under t and u interchange, i.e.,
interchange of the beam and target. Note that for the
case of three quark flavors there are 127 terms contribut-
ing to the inclusive single-particle cross section.

The partial cross section in Eq. (Dl 1) can also be used
as a starting point for a two-jet inclusive cross section.
At lowest order, the transverse-momentum components
of the 5 function ensure that the jets are produced with
equal and opposite transverse momenta. The dijet cross
section can then be written in terms of the rapidities of
the two jets and the transverse momentum pT possessed
by each:

dO s der(~&~j«i+j«~+X)=g dx. dxb4"/~(x. )4b/B(xb ) (ab ~12)
dg1d+2dPT ab dt

Vs &sx6 x, +xb —pTcoshy, —pTcoshy2

&s &s
Xb

2 pT»» —pT h 2 (D22)

The two 5 functions in this expression are the energy and longitudinal parts of the original four-dimensional 5 function
appearing in Eq. (Dl 1). Together, they allow the integrations on both x, and xb to be carried out. The resulting two-
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jet cross section is

do dO
z ( AB ~jet, +jetz+X) =g x, P,&~(x, )xbPb&~(xb ) (ab ~12),

dp ) dg2dpr ab dt

where

(D23)

(D24)

Another variable that is often used in studies of jet production is the dijet invariant mass M". This is easily shown to
be given by

MJJ=2p T[1+ cosh(y, —y2)],
if the masses of the individual jets are neglected. The mass distribution is then given by

(D25)

do'

dg ) dp2dM~~

M--

1+cosh(y~ yp) dy&dy&dpr
(D26)

The dijet cross section in Eq. (D23) has no integrations remaining to be done. That is, knowledge of the four-vectors
of the two jets has completely determined the kinematics of the parton scattering process. Thus it is possible to use Eq.
(D23), or an equivalent expression, to determine the parton-parton scattering angular distribution, averaged over all of
the participating subprocesses. Let 0' be the parton-parton center-of-mass scattering angle. Then Eq. (D23) can be
rewritten as

d~ ~a dGg P,~„(x,)Pb)~(xb ) (ab —+12),
dxg dxbd cosO 2 ab dt

where x, and xs have the values given in Eq. (D24).

(D27)
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