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Quantal physics is established as a manifestation of symmetry more far-reaching than hitherto appears to
have been recognized. In this primary manifestation, the coordinate transformations of spacetime invari-
ance are themselves the elementary variables, which define their own properties without appeal to an as-

sumed quantal formalism. In irreducible representations, the symmetry variables are inherently indeter-
minate, and the probabilistic laws invoked in the interpretation of traditional quantum physics are found
to originate in geometric relations between these variables. Completeness is, therefore, not an issue, and
the quantum of action is not part of the theory of symmetry variables. Quantal physics thus emerges as
but an implication of relativistic invariance, liberated from a substance to be quantized and a formalism to
be interpreted. A symmetry variable appears in a measurement with one of its eigenvalues, but does not
have a value (cannot be represented by a number) in an irreducible representation, which combines sets of
eigenvalues. It is this generalized significance of a measurement that allows for correlations that cannot
arise for classical variables. The observation of symmetry variables is illustrated by an interferometer ex-
periment measuring reAection symmetry and by the equivalent coincidence experiment registering the po-
larization of two quanta. The measurement process becomes a matter of fo1lowing the state of affairs of
the symmetry variables in their unitary evolution. For the resolution of the dilemmas that quantal phe-
nomena have been felt to pose, it appears crucial to recognize that indeterminacy, as an inherent property
of a symmetry variable in a multidimensional representation, is not affected by subsequent observations.
A position variable and the canonical commutator with momentum, which are basic elements of nonrela-
tivistic quantum mechanics, emerge from spacetime symmetry, but require the link between space and
time of relativistic invariance. The transition to the classical regime is analyzed in terms of a quenching of
nonlocality in the state of affairs of the multidimensiona1 symmetry variables. %'hile the elementary vari-
ables constitute individual quanta in irreducible representations, product representations of spacetime
symmetry describe systems of bosons and fermions, which form local fields with canonical properties. The
discussion is focused on spacetime invariance (noninteracting quanta), but gauge invariance is itself a pri-
mary manifestation of symmetry and is as such encompassed by the theory of symmetry variables.
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I. INTRODUCTION

A. Background

Quantum mechanics was created, in a brilliant stroke,
as a generalization of classical mechanics in which conju-
gate variables obey canonical commutation relations, in a
formalism that found its interpretation within the frame-
work of complementarity. By the incorporation of rela-
tivistic invariance into the formalism, in terms of quan-
tized fields with gauge symmetry, quantal physics has
been successful in accounting for an ever wider range of
phenomena. Nevertheless, the novel character of in-
determinacy and complementarity, whose origin has
remained an issue, together with the symbolic character
of the formalism, which requires an interpretation with
prescriptions for extracting the results of the theory, has
led to a continuing debate concerning the adequacy of
the foundation for quantal physics.

A clue to a more compelling basis for quantal physics
is provided by the extended role of spacetime invariance
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in the quantal description. Classical applications of
spacetime symmetry encompassed by special relativity
deal with the transformation of physical quantities under
a change of the coordinate system, and this role of sym-
metry carries over into quantal physics. However, in the
quantal formalism, based on the superposition principle,
spacetime symmetry acquires an extended role, since it is
also carried by the states of the system, in their linear
transformations. '

Thus quantal states with the same properties relative
to different reference frames are connected by unitary
transformations in Hilbert space, and the states can,
therefore, be classified in terms of the irreducible repre-
sentations of the group of coordinate transformations.
For example, for a rotation, specified by a vector g, the
associated unitary transformation is of the form

%(X)=exp j
—iX.3 I,

and the generator j represents the angular momentum
vector, in units of A. Similarly, in relativistic quantal
physics, the states of a particle carry a representation of
Poincare symmetry.

as the physics of these elementary variables, is liberated
from the concept of quantization and the need for inter-
preting a formalism. It is, therefore, but an implication
of spacetime invariance, with complementarity originat-
ing in the non-Abelian spacetime symmetry.

C. Two manifestations of symmetry

The manifestation of symmetry that yields the basic
variables will be referred to as the primary, in contrast to
the secondary dealing with the transformation of physi-
cal quantities. Since symmetry variables, as members of
the group of coordinate transformations, have built-in
prescriptions for how they are affected by a change of
reference frame, the secondary manifestation of symme-

try is a corollary of the more far-reaching primary. Clas-
sical physics emerges as a limit in which symmetry is
only recognized in the subordinate role of connecting
quantities in different reference systems (secondary mani-

festation), because the origin of the variables (primary
manifestation) is not apparent with the low resolution
characterizing this regime.

B. Symmetry as basis for quantal physics D. Elementary substance

In the manner indicated, the extended role of symme-
try in quantal physics is seen as a consequence of the
framework of the formalism (superposition of states with
observables as linear operators in Hilbert space, or
equivalent formulations such as path integrals). It would

appear, however, that the role of symmetry in relation to
quantal physics has, so to speak, been turned upside
down, and it is the purpose of the present article to show
that quantal physics itself emerges, when the coordinate
transformations (the elements of spacetime symmetry)
are recognized as the basic variables.

As we shall attempt to demonstrate, the physics of
these "symmetry variables" develops without involving a
symbolic formalism and with indeterminacy and com-
plementarity constituting inherent features of the elemen-
tary variables. The probabilistic interpretation that is in-
voked in quantal physics thereby finds its basis in the
geometric relations between the symmetry variables, and
the notion of state offers itself merely as a convenient tool
for handling these variables. Thus the analysis of the
measurement process, on which much debate has fo-
cused, becomes a matter of directly following the state of
affairs of the symmetry variables under the specialized
conditions of an experiment. Hence quantum mechanics,

See the classic works by Wigner, 1931 and by Weyl, 1928.
Perhaps Hermann Weyl (see the forewords to the editions of his
book) was the most prepared in the older generation to perceive
the primary manifestation of symmetry, in which case he might
have issued a new edition of his classic earlier book with the
new title "Raum-Zeit, als Materie. "

In its primary manifestation, symmetry, traditionally
describing patterns in the configurations of matter, thus
acquires an existence of its own and constitutes the ele-

mentary substance (matter, including radiation). Indeed,
a quantum will be a designation for a group of symmetry
variables, the full specification of which generally in-

volves an extension of spacetime invariance to include
the invariance under gauge transformations.

The changed perspective in which quantal physics is
seen may perhaps be elucidated by reference to the role
of the aether in the unravelling of spacetime symmetry,
culminating in the establishment of special relativity.
Thus Maxwell's equations were conceived as describing
vibrations in the aether, but the notion of an aether was
eliminated as superAuous when the equations for the elec-
tromagnetic field appeared in new perspective, as ex-
pressing the invariance of spacetime (equivalence of the
reference frames of special relativity) together with gauge
invariance. In the resulting development, classical rela-
tivistic physics could be seen as dealing with a substance
carrying spacetime and gauge symmetry, with particle
and field as the elementary degrees of freedom, and quan-
tal physics was created in this mold by the introduction
of quantization conditions, supplemented by an interpre-
tation of the symbolic formalism. However, the notion of
a substance to be quantized becomes superfiuous when

symmetry is recognized in its primary manifestation and

2As far as we are aware, this apperception of symmetry in rela-

tion to quantal physics differs qualitatively from prevailing
views presented in the literature.
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itself becomes the elementary substance, with inborn
complementarity.

E. Symmetry originating in aesthetics

The theory of symmetry variab1es may be seen as a line
of evolution originating in aesthetic considerations and
obtaining a quantitative (mathematical) basis in group
theory. This line is distinct from, though it has strongly
interacted with, the development of traditional physics,
with its roots in antiquity, evolving through mechanics,
thermodynamics, statistical physics of atoms and mole-
cules, electromagnetisrn, and culminating in relativity
theory. The attempt to pursue this classic line into quan-
tal physics led to a formalism requiring an interpretation.

F. Synopsis

Coordinate transformations as variables that are regis-
tered with a value in a measurement are introduced in
Sec. II. These variables are subject to multiplicative con-
straints as elements in a group, and the resulting relation-
ship between the variables is embodied in the matrix rep-
resentations of the symmetry group. In a multidirnen-
sional irreducible representation, which, for each symme-

try, inextricably combines sets of eigenvalues, the vari-
ables are indeterminate in a complete description. In-
determinacy is, therefore, unafFected by subsequent ob-
servations, in contrast to uncertainties in classical proba-
bility distributions (Sec. II.C).

The complementarity of symmetry variables in the
form of probability distributions are recognized as
geometric relations, expressed by additive constraints be-
tween the variables in a representation. The probabihties
can be seen as pairwise correlations between symmetry
variables, and irreducibility implies patterns of these
correlations that cannot occur for variables that have
values. Hence these correlations are beyond reach of
probability distributions for classical variables (Sec.
II.D).

The "state of afFairs" of symmetry variables will be
seen to be specified by a vector in the space carrying the
symmetry, and superposition of states, as vectors, is
thereby part of the analysis. More general state of afFairs
involve quenched states (mixtures of pure states). The
notions of states and probability amplitudes thus enter
merely as convenient tools for handling symmetry vari-
ables (Sec. II.E).

In the manner indicated, the physics of symmetry vari-
ables develops without appeal to the framework of quan-
tal physics, and Planck's constant is not part of the
description of symmetry variables, since these involve
only dimensions based on space and time. As discussed
in connection with variables that have correspondence to
classical physics, the quantum of action appears as a scal-
ing factor introducing the dimension of mass, by which
generators of the symmetry variables obtain dimensions

of classical dynamical variables (Secs. IV.C.2 and
IV.C.3).

In suitable situations, including measurements, a sym-

metry variable appears with one of its eigenvalues, but
for variables that are inherently indeterminate, a rnea-

surement has a generalized significance. In fact, such a
variable does not have a value (cannot be represented by
a number), and, from an experiment yielding one of the
eigenvalues for a symmetry variable, it therefore cannot
be inferred that the variable, though it was present (part
of reality), had this value prior to the measurement (Sec.
II.C.4). This point seems to be crucial to the dilemma
that has been seen as involved in quantal phenomena (see,
for example, Secs. III.B and III.D.4).

The appearance of symmetry variables is illustrated by
an interferometer experiment, which measures reAection
and translation variables of a quantum (Sec. III.A). In
the detection process, the incident quantum interacts
with a large number of constituents of the detector in the
production of the signal, and the measurement process,
by which an indeterminate variable appears with a value,
can be analyzed in terms of the evolution of the state of
afFairs of the symmetry variables (Sec. III.A.3).

In the experiment, the quantum is produced with one
symmetry, while another symmetry is registered in the
measurement, and the result of the experiment can be
seen as a correlation between the two symmetry vari-
ables. The observed pairwise correlation, which
expresses geometric relations between the variables of
spacetime symmetry in an irreducible representation, ex-
hibits a pattern that cannot be reproduced by classical
variables (Sec. III.B), in accordance with the considera-
tions in Sec. II.D.4.

The analysis of the experiment in terms of symmetry
variables with their unambiguous terminology defines the
limitations in the use of concepts originating in the devel-

opment of classical physics. Thus the path of the quan-
turn through the interferometer is a two-dimensional
variable, which is indeterminate, in a complete descrip-
tion (Sec. III.C.3). The attribution of a value to this vari-
able in the interferometer (or two-slit) experiment is,
therefore, self-contradictory, in a mathematical sense.
The correlation between variables of a single quantum
can be transferred to a correlation between the variables
of two quanta in an overall invariant state, as observed in
the experiment measuring the correlation between the
polarizations of two photons emitted in coincidence from
an excited atom (Sec. III.D).

The primary manifestation of symmetry puts focus on
time reversal as absent from the group of symmetry vari-

ables. Indeed, it is a basic feature of the description in

space and time that the time axis has a direction. A re-
versal of time is, therefore, not an available coordinate
transformation, and time reversal, in contrast to space
reAection, is not a symmetry variable and does not ap-

pear with a value. The reversibility of motion derives
from the symmetry of the representations of spacetime
invariance under complex conjugation (neutrality of
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geometry), and time reversal connecting variables at op-
posite epochs thereby enters as an anti-unitary transfor-
mation (Sec. II.G).

Local symmetry variables will be seen to stem from
spacetime rotations (Lorentz transformations), which sin-
gle out a point in space and time that is left invariant by
the transformation (Sec. IV.A). While the individual
quantum is not sharply localized (Sec. IV.B), a position
variable emerges when the representation of spacetime
symmetry i~ viewed with a resolution that is low com-
pared with its intrinsic scale (nonrelativistic regime). The
canonical commutator [p,xj= iR —thereby arises from
the geometric interplay of translations with Galilean
transformations, recognized as limits of rotations in
spacetime. Thus the notion of location (position at a
given time) and the resulting complementarity between
the conjugate variables require the link between space
and time introduced by relativity (Sec. IV.C). The
analysis leading to this conclusion is summarized in the
self-contained Sec. IV.Q.

The state of affairs of the multidimensional variables of
a quantum, in the weakly relativistic regime, is fully
specified by the distribution of nonlocality, constituting
the mean values of products of translations and Galilean
transformations. In a quenched state of affairs of the
symmetry variables involving unconnected states contrib-
uting additively to the mean values (mixtures), the nonlo-
cality is reduced, and the resolution with which the sym-
metry variables are observed is correspondingly lowered
(as distinct from the lowering of resolution that charac-
terizes the Galilean corner). Such a quenching of nonlo-
cality is produced by interactions with other quanta that
are subsequently irrelevant. For sufBciently strong
quenching, all the visible symmetry variables commute,
and classical physics emerges. This theme is touched
upon in Sec. IV.C.4 and is further dealt with in the sup-
plementary Sec. IV.E.

While irreducible representations of the symmetry give
the variables of individual quanta, new dimensions of
symmetry variables are associated with product represen-
tations, which describe systems of quanta in an occupa-
tion number space for bosons and fermions (Sec. V.A).
Local fields thereby appear in the primary manifestation
of spacetime symmetry, without any reference to an as-
sumed notion of a field, in an underlying framework of
quantal physics (Sec. V.B).

The present discussion focuses on spacetime invari-
ance, which yields the framework for the physics of sym-
metry variables. However, gauge invariance, from which
interactions arise, is itself a primary manifestation of
symmetry and as such encompassed by the physics of
symmetry variables.

The analysis of symmetry variables exploits concepts
from the theory of group representation, but, in the fol-
lowing, an attempt is made to present the physics of sym-
metry variables in a form that makes the discussion ac-
cessible to readers who are not familiar with the abstract
theory of group representation. More technical points

are referred to in supplementary sections, footnotes, or
parentheses. The discussion is intended as a self-
contained presentation of the physics that derives from
the primary manifestation of symmetry, but avoids ela-
borations that are not deemed necessary for an assess-
ment of the main issues. The authors hope, in another
context, to give a broader presentation of themes in the
theory of symmetry variables.

II. PRIMARY MANIFESTATION OF SYMMETRY

The notion of spatial symmetry has roots in the
aesthetic appeal of figures and patterns that can be traced
to very early human expressions of art. Symmetry in
time has an even longer evolutionary history in the form
of rhythms, tones, songs, etc. that developed into music,
as well as through the sense of colors that became ele-
ments of art.

Eventually, spacetime symmetry could be expressed as
invariance under transformations of the coordinate sys-
tem (rejections, translations, and rotations)„and the idea
of invariance under groups of coordinate transformations
received an expanded content in the theory of representa-
tions of symmetry groups. Groups comprising noncom-
muting elements (non-Abelian groups) are thereby
characterized by having irreducible multidimensional
matrix representations. As will be seen below, this con-
ceptual framework directly provides a basis for quantal
physics, in which the irreducible representations of the
symmetry are the elementary physical variables.

This framework for physics is associated with a line of
development quite different from that pursued in the es-
tablishment of classical physics, from its cradle in An-
cient Greece to the modern conception of classical rela-
tivistic physics, which went hand in hand with the
creation of the theory of functions of continuous vari-
ables. In this classical development of physics, symmetry
also became an increasingly important guidance, in par-
ticular in the characterization of the equations of motion
of matter (particles and fields) by their invariance under a
change of the coordinate frame. This manifestation of
symmetry is referred to as the secondary, because it is
subordinate to the comprehensive primary manifestation,
in which the elements of the group not only perform
transformations but are themselves the elementary physi-
cal variables.

The development through art of the concept of spatial invari-
ance (as distinct from representations of the symmetry), is im-

pressively described in the classic work of Weyl, 1952, aiming at
clarifying the "philosophico-mathematical significance of the
idea of symmetry. "

4The potentiality of the symmetry under time displacement
and time reversal, as a skeleton around which music can devel-

op, is exhibited by Johann Sebastian Bach in "Die Kunst der
Fuge. "
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The basic elements in the theory of symmetry variables
are developed in Secs. II.C. and II.D. As a prelude, some
elementary features of symmetry and its representation
that will be needed in the following sections are intro-
duced in Secs. II.A and II.B. The relations are illustrated
by the group of reAections and translations in one dimen-
sion, which exhibits the concept of irreducibility in its
simplest form. Moreover, the interplay between transla-
tion symmetry, which expresses homogeneity, and sym-
metries such as reAections that are linked to points, is a
recurring theme in the analysis of spacetime invariance
(see Sec. IV).

A. Group of reflections and translations

3. Reflection and its values

A refiection S in the yz plane (x ~x'= —x) is a trans-
formation obeying

2=1

and this constraint is satisfied by the values s =+1. In
this manner, each symmetry element is associated with a
set of values that characterize its geometry.

2. Translations and their values

all distances invariant. Together they constitute the ele-
ments Vl of a non-Abelian symmetry group defined by
the algebraic relations (2), (3), and (5). The representa-
tions of the group are considered in Sec. II.B.

4. Equivalent transformations

The relation (6) can be seen as an equivalence between
the reflections S(a) and S. In fact, the transformation
S'=S(a), described in the coordinate system %', is the
transformation S, in a translated reference frame%" with
origin at x =a. In this manner, for each change V of
reference frame from A to A' (itself an element of the
group), every element 6' has its equivalent VF, which is
seen as 'M, in the transformed system A',

'O'=VVV ', (Vl) =(6")

(The transformation 6' in %' can be carried out by first
going back to A, next performing 'M in A, and finally
returning to A.) Thus translations in opposite direc-
tions are equivalent under a reflection [9'(a)
=SV(a)S '=V( —a); see Eq. (5)j, and the reflections S
and S(a) are equivalent under the transformation P(a);
see Eq. (6). The mapping (7) of the group onto itself
expresses the invariance under change of reference frame.

Translations P(a) along the x axis (x~x'=x+a)
commute among themselves and are additive

V(az)V(a, )=P(ai+az) . (3)

This constraint is satisfied by the set of values

V(a) =exp t
—iak I (4)

depending on a continuous parameters k, with the di-
mension of a wave number, and the set of values (4), for
fixed k, is said to constitute a one-dimensional represen-
tation of the Abelian group of translations.

5. Classes and invariant subgroup. (Supplement)

The equivalence relations referred to above imply that
each pair of translations V(a) and V( —a), the reflections
taken together, and the identity, constitute the classes.
Thus the translations with all values of a constitute an in-

variant subgroup (normal divisor).

B. Irreducible multidimensional representation

3. Interplay of reflections and translations

A reAection and a translation do not commute, as
coordinate transformations. Thus it is part of geometry
that a reAection inverts the direction of a translation

SV(a) = V( —a)S . (5)

that are reAections with respect to shifted planes x =a.
(In fact, the combination of the three transformations
yields x ~x —a —+ —x +a —+ —x +2a, which leaves
x =a invariant. )

The transformations S(a) and V(a) are seen to form
the closed set of=transformations of the x axis that leave

Moreover, the combination of reAections and translations
leads to new symmetry elements

S(a)=V(a)SV '(a), S(a =0)=S

The representations of a symmetry group is the em-
bodiment of the algebra of its elements, and, for an Abeli-
an group, all linear representations can be expressed by
assigning a value u to each element Vl, such as in the re-
lations (2) and (4). The more intimate interweaving of the
elements in a non-Abelian group finds expression in mul-
tidimensional representations that are irreducible.

In a multidimensional representation of a symmetry
group, the elements VE can be expressed as matrices that
satisfy the group algebra. For each element Vl, the ma-
trix combines a set of values u of this symmetry, as eigen-
values of the matrix, and the representation is irreducible
when the sets of eigenvalues of the matrices cannot be di-
vided into subsets each of which defines a representation.
The discussion in the following section focuses on unitary
representations in which B' is a unitary matrix, with ei-
genvalues u of unit modulus. (The role played by nonuni-
tary representations is discussed in Sec. II.F.4.)

Rev. Mod. Phys. , Vol. 67, No. 1, January 1995
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1. Two-dimensional representation
of translations and reflections

(8)

For example, the group of translations and reAections,
in addition to special one-dimensional representations
with k=0 and s(a)=1 (or —1) for all a, has a two-
dimensional irreducible representation for each value of
ko =

~
k~ %0, which can be expressed by the matrices

—ikoa —2ikoa
e ' 0 0 e

P(a)= '
k,.0 e

hence, by all the equivalent forms of the representation).
Clearly, relation (9) cannot be fulfilled for any combina-
tion of the eigenvalues +1 for the reAections, except
when a is a multiple of ao, and thus directly exhibits the
irreducibility of the representation. [The relation (9)
expresses the vectorial symmetry carried by the
rellections under translation; see Sec. II.F.6.] More gen-

erally, equalities such as Eq. (9) are part of a comprehen-
sive set of additive relations characterizing an irreducible
representation of a group (see supplementary Sec. II.E.3).

that satisfy the algebraic relations exhibited in Sec. II.A.
The representation (8) combines two values for each sym-
metry element [k =+ko and s(a)=+1], and it is seen
that no combination of subsets k and s (a) fulfil the rela-
tions (5) that link reflections and translations. Only to-
gether, does the pair of values represent the symmetry
group, and hence the representation is irreducible.

4. Representation in which 8 is diagonal. (Suppiement)

coskoa

asm oa

—i sinkoa

coskoa

The matrices of the two-dimensional representation of
translations and reAections, in which S[=S(a =0)] is di-

agonal and real, are

2. Equivalent representations.
Eigenvalues as intrinsic property S(a)= '

cos2koa i sin2koa
—i sin2koa —cos2koa (10)

Multidimensional representations can be expressed in
different, equivalent forms related by unitary transforma-
tions of the matrices, since such a transformation leaves
the algebraic relations invariant. In the particular form
(8) of the representation of translations and reflections,
the matrix P(a) is chosen to be diagonal, and by a uni-
tary transformation any other element can be brought to
diagonal form. (The representation in which S is diago-
nal and real is exhibited in the supplementary Sec.
II.B.4.) A representation refers to a coordinate system
A, and the same representation seen from A' is obtained
by the unitary transformation (7).

The set of values u of an element B' that are combined
in a representation of a symmetry group, as the eigenval-
ues of the matrix, is invariant under unitary transforma-
tions and, therefore, constitutes the intrinsic property of
the representation of the symmetry. (External properties
of the matrix representation are considered in Sec.
II.D.1.) In particular, the set of eigenvalues is indepen-
dent of the coordinate system in which this symmetry is
seen. For example, translations in opposite directions
have the same pair of eigenvalues, and so do reflections
that are translated with respect to each other.

Pt(a) = V( —a), St(a) =S(a) .

The form (10) of the matrices can be obtained from Eq.
(8) by the unitary transformation 6 given by Eq. (43),
which it not itself a member of the group, but is a linear
combination of two symmetry matrices. The hermiticity
relations are seen to be unaffected by unitary transforma-
tions.

C. Symmetry variables. Indeterminacy

1. Constraints

In the primary manifestation of symmetry, the coordi-
nate transformations, as physical variables, satisfy the
geometric relations that give the result of combining suc-
cessive transformations. Thus the variables belong to-
gether as elements in a symmetry group (in a mathemati-
cal sense), and the algebraic relations between the ele-
ments provide constraints among the variables that are
expressed in the matrix representations of the group.

2. Quantum

3. Additive relations characterizing
irreducible representation

An irreducible representation of the multiplicative re-
lations between the elements of the group is character-
ized by additive relations between the matrices. Thus
any three reliection matrices (8) are linearly dependent,
as expressed, for example, by the relation

$(a)=cos2koa4+sin2koaS(ao), koao=a/4, (9)

which is seen to be satisfied by the matrices (8) (and,

As physical variables, the symmetry elements acquire
an existence of their own, and the variables of a group to-
gether constitute an object that will be referred to as a
quantum (=quantal object). A full specification of the
quantum in general involves the extension of spacetime

~The term variable is used, as is customary in physics, to desig-
nate a quantity that can appear with di6'erent values, but only
one at a time.
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invariance to include variables associated with gauge
transformations. The resulting interactions arising from
the incorporation of local gauge invariance imply that a
quantum may be a composite, such as a bound state of
other quanta (or composites involving indefinite numbers
of quanta). The present discussion focusses on spacetime
symmetry of the quantum, which gives the framework
for the physics of symmetry variables.

3. Symmetry appearing with a value

Since the intrinsic property of a symmetry is the set of
(eigen)values, the recognition of a symmetry as a variable
is taken to imply that, in suitable situations, the symme-
try variable can appear with (any) one of its eigenvalues.
This appearance can take place as a result of interactions
between quanta, as occur ubiquitously and, under very
specialized conditions, in a measurement. The
specification of the conditions under which a symmetry
variable appears with a value in a measurement is not a
requirement for the recognition of the primary manifesta-
tion of symmetry and is, therefore, only brieAy dealt with
in the present paper (see Sec. III.A.3).

4. Generalized significance of measurement

The distinction between appear with a value and have a
value is crucial for a variable in an irreducible multidi-
mensional representation. Indeed, the variable cannot be
represented by a number and, therefore, does not have a
value, when several eigenvalues are inextricably in-
terwoven in the multidimensional representation. From
a measurement, in which the symmetry variable appears
with a value, it, therefore, cannot be inferred that the
variable had (possessed) the observed value prior to the
measurement, although the variable was present (part of
reality).

For a multidimensional variable, the significance of a
measurement thus differs from that of a variable in a
one-dimensional representation, which is a number,
whose value prior to the measurement is established in
the experiment, as in classical physics. It is this general-
ized significance of a measurement, rather than the pro-
cess by which the measurement is accomplished, that

constitutes the novel feature of a multidimensional vari-
able, to be pursued in the following.

5. Symmetry produced

For an individual symmetry %, it follows, from the
possibility of distinguishing between the eigenvalues u in
a measurement, that experiments can be designed so as to
select any one of the eigenvalues u and thus to produce
quanta that with certainty will appear with this value, in
a subsequent measurement. In fact, a device that distin-
guishes between the eigenvalues can be used to monitor
the experimental setup so as to produce quanta that all
appear with a particular value of the symmetry (see the
example in Sec. III.A. 1). A symmetry % produced with
the value u will also be referred to as appearing with this
value. This terminology is motivated by the equivalence
between production and observation, as exhibited in the
basic relation (12).

6. Symmetry observed. Indeterminacy

For a group of symmetry variables in an irreducible
multidimensional representation, indeterminacy is seen
to be an inherent property. Indeed, one can design an ex-
perimental situation in which a variable V/ with certainty
appears with a particular eigenvalue u, while the observa-
tion of other variables V has several diff'erent outcomes U.

In fact, if each of the variables would always appear with
a definite value, these values would have to obey the con-
straints and, hence, would constitute a one-dimensional
representation. However, it is a property of an irreduc-
ible multidimensional representation that R and u may
be so chosen that u does not occur in any one-
dimensional representation of the total group (exem-
plified by 'M= V(a) and u =exp[ iako])—. It follows that
the result of an individual observation of V is not pre-
dictable, with certainty, and the variable is, therefore, re-
ferred to as indeterminate.

Indeterminacy is thus an immediate consequence of
the multiplicative constraints for symmetry variables in
an irreducible multidimensional representation. The in-

born indeterminacy of these variables is also exhibited by
the additive constraints that characterize an irreducible
representation, as will be seen in connection with the
quantitative analysis of indeterminacy in Sec. II.D.2.

Words like observation, experiment, detector, etc. are not
necessary in the basic theory of symmetry variables, and are
only introduced in the present paper in connection with the
testing of the theory by experiments.

7Finding a way of talking about the variables that emerge from
empty (flat} space, stripped of an assumed formalism, involves
the challenge of evolving a language that does not invoke asso-
ciations belonging to classical variables. To appear with a value
has much of the flavor of to exhibit a value, or to show up with a
value, while to take on a value might convey the idea that the
variable then possesses a value.

7. Indeterminacy contrasted with statistical uncertainty.
Completeness

An irreducible multidimensional representation is a
complete specification of the symmetry variables in the
group. Indeterminacy, therefore, has a content basically
difterent from the uncertainty of one-dimensional (classi-
cal) variables in a statistical probability distribution.
Such a distribution provides an incomplete description of
the variables at a given time, in the sense that subsequent
observations can lead to a more detailed specification of
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the variables at the (earlier) time considered. In contrast,
indeterminacy is a property of the variables themselves in
an irreducible representation, and, accordingly, indeter-
minacy of variables belonging to a given time is not
a+ected by subsequent observations

The occurrence of indeterminacy in a complete
description is thus a hallmark of multidimensional vari-
ables, outside the scope of classical physics, which deals
with variables that have values. The basic distinction be-
tween incompleteness in a statistical distribution of one-
dimensional variables, and indeterminacy associated with
the irreducibility of multidimensional variables, is seen to
be linked to the different conclusions that can be drawn
from a measurement of the two types of variables, as re-
ferred to above. Examples of the generalized significance
of a measurement of a symmetry variable are discussed in
Secs. III.C.3. and III.C.4.

D. Probabilities

Indeterminacy implies that individual observations of a
symmetry variable are, in general, fortuitous events.
Large numbers of such events occurring under identical
circumstances define the conditional probability W(u;v)
that the symmetry V will appear with the eigenvalue U in
a situation, where Vl exhibits the value u. This probabili-
ty distribution expresses a relationship between the vari-
ables Vl and V, in a representation of the symmetry
group to which they belong.

1. Relative orientation of matrix variables

Relations between symmetry variables can be de-
scribed in terms of the eigenvectors of the matrices seen
as linear operators in a vector space carrying the repre-
sentation of the symmetry. Thus a unitary matrix S' has
a set of orthogonal eigenvectors, denoted by ~

u ),

%luau ) =urdu &, 'M= g iu )u(ui,

which are taken to be normalized to unit length, but
which are only defined up to a phase factor, in the com-
plex space. The discussion focuses on representations for
which the eigenvectors have no degeneracy. The set of
orthogonal eigenvectors for a symmetry element defines
the orientation of the variable with respect to a chosen
(external) basis in vector space. Correspondingly, the rel-
ative orientation of two symmetry variables Vl and V is
specified by the scalar products (v~u ) of their eigenvec-
tors. These products are independent of the external
basis in vector space (invariance with respect to unitary
transformations, which include the coordinate transfor-
mations in the group) and are, therefore, like the eigen-
values of the individual matrices, intrinsic properties of

For compactness and flexibility, the abbreviated notation u

specifies the symmetry as well as its eigenvalue and the repre-
sentation.

2. Probabilities from additive geometric constraints

The expression for the probabilities 8'(u;v) is deter-
mined by the additive constraints that characterize the
variables in a specified irreducible representation [as il-
lustrated by Eq. (9) and discussed more generally in Sec.
II.E.3]. In the first place, these constraints, like the mul-

tiplicative constraints, imply that individual observations
of the variables, in successive observations in the same
experimental situation, are fortuitous events. In fact, if
the observations could be repeated with each variable al-

ways appearing with the same eigenvalue, these values
would constitute a one-dimensional representation, as ex-
ploited in Sec. II.C.6. The orthogonality of different irre-
ducible representations [see remarks following the rela-
tion (22)] implies, however, that no one-dimensional rep-
resentation satisfies all the additive constraints charac-
teristic of the multidimensional irreducible representa-
tion. These constraints would, therefore, be violated.

The reproducible results of the experiments are the
patterns of mean values built up by large numbers of for-
tuitous events. Hence, in these patterns of mean values
{including mean fiuctuations), the constraints, as
geometric relations between the variables, reveal them-
selves. The validity of the constraints for the mean
values is fulfilled if, and only if, the conditional probabili-
ties have the distribution

8'(u;v) = ((v)u ) )

= W(v;u),

g 8'(u;v) = g W(u;v) =1
(12)

(where the sum rules express the orthonormality of the
eigenvectors). It is immediately seen that the expression
(12) for the probabilities guarantees that the mean values
satisfy the additive constraints in a situation where 'M is
produced with the value u. The mean value of the vari-
able V is then, according to Eq. (12),

g vW(u;v)=(uiViu ), (13)

which is the diagonal element of the matrix V (product
of the vectors V~u ) and ~u, ) ). The linearity of Eq. (13)
implies that any additive constraint between variables
V, %, . . . is satisfied as a mean value. Conversely, the
form (12) for the conditional probabilities is a necessary
condition for the constraints to be valid for the mean
values, as shown in the supplementary Sec. II.E.3.

The additivity of mean values for any set of operators in Hil-
bert space is often invoked as a basis for the form (12) of the
probabilities, in )he interpretation of quantal physics. For sym-
metry variables, the additivity is enforced by the linear con-
straints, which are geometric relations to be fulfilled for any
reproducible result of experiments.

spacetime, completely specified by the representation of
the symmetry, apart from the undefined phase.
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3. Correlation between variables

The probability distribution (12) expresses the com-
plementarity between the variables 'M and V that results
from their interweaving as elements in a group. ' As
constituents of the quantum, both variables are present
together, without having values. The probabilities (12)
describe events in which the two variables 6' and V both
appear with values, in an experiment that produces VE

with the value u and observes the value U of V or vice
versa.

The symmetry of the conditional probabilities (12) un-
der exchange of u and v implies that these complementa-
ry relations can be viewed as joint probabilities in a situa-
tion that does not single out any direction in vector
space. In this invariant situation, each symmetry is pro-
duced and observed with equal probability p for every ei-
genvalue,

4. Example exhibiting the generalized character
of pair correiations. (Supplement)

6 =all+/3V+ y%'=0,

au +Pv+yw%0,
(17)

implies that it is not possible to derive the pairwise corre-
lations iv ( u, v ), iv ( v, w), and p ( w, v ) from a more com-
prehensive probability distribution p (u, v, w) involving all
three variables. Such a distribution would have to satisfy

gp(u, v, w)=p(u, v) and cyclic (18)

Distinguishing features of the correlation between
pairs of symmetry variables are exhibited by linear con-
straints [as exemplified by Eq. (9)j that cannot be fulfilled
for eigenvalues. Such a constraint between three vari-
ables R, V, and t'ai

p(u)=d ', p(v)= gp(u)W(u; v)= d (14) and, hence, from Eq. (16) follows

p(u, v)=d 'W(u;v), gp(u, v)=1, (15)

where d is the dimension of the representation. The joint
probability is, therefore,

eau +f3v +ywi p(u, v, w)
Q~U, W

=aa'%S'"+aP" %V +

which contains no reference to an orientation with
respect to external axes in vector space. The intrinsic re-
lation between the symmetry variables % and V, ex-
pressed as the joint distribution (15), is referred to as a
pair correlation.

The pair correlation (15) can be characterized by its
moments

'9"V' = g u "v'iv (u, v)
Q, U

which are mean values of products of powers of Vl and V
in the probability distribution p(u, v). By Eqs. (12) and
(15) for p(u, v), these mean values, which are generaliza-
tions of the moments (13), can be expressed as traces of
the matrices and are thus independent of basis, in accor-
dance with the invariance of the situation in which the
variables occur.

The moments (16), for all values of r (and s)
=0,1,2, . . . , d —1, together uniquely determine the pair
correlation p(u, v). In fact, the set of equations (16) for

p (u, v) has the determinant ii; &
. (u; —u,. )"(v;—v~ ),

which is nonvanishing, when there is no degeneracy of
the eigenvalues.

For symmetry variables, complementarity specifically desig-
nates the relationship that springs from their belonging together
in a group with multidimensional irreducible representations.

which cannot be fulfilled for a positive definite distribu-
tion p (u, v, w ). [More generally, the conclusion is seen to
hold if, for some value u (or v, or w), the constraint can-
not be fulfilled for any choice of eigenvalues for the two
other variables. j

The absence of more comprehensive probability dis-
tributions distinguishes multidimensional variables.
Indeed, in any statistical distribution of variables that
have values (such as in a classical ensemble), the pair
correlations can always be expressed as a sum over prob-
ability distributions involving additional variables. Ex-
periments testing correlations between symmetry vari-
aMes that are incompatible with the notion that the vari-
ables have values are discussed in Secs. III.A and III.B.
The correlations between variables of an individual quan-
tum are also revealed in correlations between variables
belonging to different quanta (see Sec. III.D)."

In summary, the primary manifestation of symmetry,
which recognizes the coordinate transformations of

iThe inability of correlations that can occur in classical en-

sembles to reproduce the correlations between the variables of
two quanta was brought into focus by Bell, 1964. As exhibited

above, and further discussed in Sec. III.B, the complementary
relations that are beyond reach of classical probability distribu-

tions originate in the constraints between the variables of a sin-

gle quantum {see in this connection footnote 20).

Rev. Mod. Phys. , Vol. 67, No. 1, January 1995



A. Bohr and O. Ulfbeck: Primary manifestation of symmetry

spacetime invariance as the elementary physical vari-
ables, leads in a few steps to the basic correlations
governing observations of these variables. It is the point
of departure that a symmetry variable, under suitable cir-
cumstances, appears with one of the values that are in-
trinsic to the symmetry, although in a multidimensional
irreducible representation it does not have a value. It fol-
lows immediately that the variables are indeterminate, al-
though completely specified by the representation [except
for the (trivial) external orientation in vector space].

The probability distribution for the observation of the
indeterminate variables follows from the additive con-
straints characterizing the variables in a multidimension-
al representation. These constraints express geometric
relations between the variables and are, therefore,
satisfied by the reproducible results of the observations,
which are the mean values. The individual events are
fortuE tous, a's a consequence of the constraint itself. In
this manner, the probabilistic laws that are invoked in
the interpretation of traditional quantum mechanics are
recognized as intrinsic relations among the symmetry
variables.

6. Unfolding of physics of symmetry variables. Outlook

From the spectrum of eigenvalues of the symmetries
and the expression (12) for the probabilities, the physics
of symmetry variables unfolds. Complementary relations
between such variables are illustrated in Sec. III by the
testing of the interplay between translations and
rejections, as well as isomorphic relations between polar-
ization variables. Local variables of a quantum (position
at specified time) are seen in Sec. IV to emerge from the
interplay of translations and spacetime rotations in the
weakly relativistic regime, while field variables arise from
the product representations of symmetry that describe
systems of quanta in terms of bosons and fermions (Sec.
V). The transition to the classical regime involves a
quenching of the nonlocality in the state of affairs of the
symmetry variables (as indicated in Sec. IV.C.4 and the
supplementary Sec. IV.E).

The properties of symmetry variables thus follow
directly from their geometrical content as embodied in
the representations of the group, without appeal to
quantization in an assumed symbolic formalism and
without reference to Planck's constant. (Indeed, the en-
tire argumentation could have been addressed to a 19th
century physicist versed in the symmetry embodied in
Maxwell's equations. )

In particular, indeterminacy and complementarity are
seen to be inherent features of syrnrnetry variables, root-
ed in the existence of multidimensional irreducible repre-
sentations of the group of spacetirne invariance. Indeed,
irreducibility is the mathematical term for the impossibil-
ity of circumventing the indeterminacy of symmetry vari-
ables and, therefore, gives an expanded content to the
concept of completeness. The wholeness characterizing
cornplernentary phenomena thereby appears as an ex-

pression for the interweaving of symmetry variables in a
non-Abelian group.

In the traditional development of quantal physics by a
metamorphosis of classical variables into quantal opera-
tors through a quantization procedure, the variables ac-
quire properties, which are completely alien to their clas-
sical precursors, and which find their interpretation
within the framework of complementarity. However,
while indeterminacy is thereby incorporated into the
description, its origin has remained an issue that has
given rise to doubts as to the completeness of quantal
physics. ' These questions do not arise for symmetry
variables, which are not representatives of physical quan-
tities in a symbolic formalism, but are themselves the ele-
mentary variables, whose indeterminacy springs from the
invariance of (fiat) spacetime.

E. State vector. Superposition

1. State of affairs of quantum. Vector

Since the set of eigenvectors of a symmetry matrix
form an orthogonal basis in vector space, the eigenvector

~
u & of a symmetry % can be expressed ak a superposition

of eigenvectors of any other symmetry V,

(20)

The coefFicients are the scalar products of the eigenvec-
tors, which are amplitudes whose squares have been seen
to give the probability for observing V with its different
eigenvalues u, in a situation where V/ with certainty ex-
hibits the value u [see Eq. (12)].

The components of the vector
~
u & in the various bases

(20) thus yield all predictions that can be made concern-
ing the quantum, in a situation in which the symmetry %
is produced with the value u, while another symmetry V
in the group is observed. The vector ~u &, therefore,
offers itself as a means of specifying the "state of aff'airs"
of the symmetry variables (probability distributions) in a
given situation and, consequently, is referred to as a
state, more specifically an eigenstate of VL. The state is
thus a vector, and superposition, which is the defining
property of a vector, hence carries over to states. It is
seen that the notions of state and probability amplitude
(wave function) are but expedient tools for describing the
behavior of syrnrnetry variables, rather than novel con-
cepts (principles) requiring their own interpretation.

The superposition (20) is illustrated by the relation be-
tween eigenstates for translation and refIlection in the rep-
resentation (8)

=coskoa~s =-+1 & i sinkoa~s =—+ 1 &, (21)

Warum der liebe Gott wiirfelt.
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which gives the eigenstates of the reliection S(a) in the
translation symmetric basis as well as in the basis of
reliection symmetry 4 about the origin (a=0). The
phase relations between the components in the superposi-
tions (20) and (21), which are decisive for N[=S(a)] to
appear with a definite value, are irrelevant for predictions
concerning V[ = V( a ) or 4].

The vector space that carries the symmetry in general
contains vectors that are not eigenstates of a symmetry
element (such as superpositions of ko & and l

—ko & with
different intensities). However, the possible situations, al-
lowed by the constraints between the mean values of the
symmetry variables (see Sec. II.E.3.d), comprise states
~i & associated with any vector, and the probability ampH-
tudes are given by the expansion of the vector in the basis
of the observed symmetry, as in Eq. (20).

2. General state of affairs

The most general state of affairs of a quantum involves
a situation in which the mean value of a symmetry vari-
able is the sum of contributions, each associated with a
state ~ii &, occurring with weight p; (see Sec. II.E.3.d). In
such a mixed state of affairs, to be referred to as a
quenched state, ' the nondiagonality of the symmetry
variables is seen with reduced resolution. The
significance of quenched states for a transition to a classi-
cal limit and for the measurement process is brieAy con-
sidered in Sec. IV.C.4 (see also the supplementary Sec.
IV.E) and in Sec. III.A.3, respectively.

Quenched states occur in the description of mean
values of a subset of variables even though the total state
for all the variables is a superposition. (Mean values are
equivalent to moments of probability distributions, as
discussed in Sec. II.D.3.) Examples of such substitute
state of affairs for a subset of symmetry variables are dis-

cussed in the supplementary Sec. II.E.4.
In summary of Secs. II.E.1 and II.E.2, the generalized

signi6cance of a measurement of symmetry variables, as-

sociated with their indeterminacy, introduces an expand-
ed notion of state for these variables. Only in ihe trivial
case of a one-dimensional representation, the state is

speci6ed, as in classical physics, by the values of all the
variables. In irreducible multidimensional representa-
tions, the state of affairs of the variables, with their com-
plementary relations, is speci6ed by a vector, as in Eq.
(20} or, more generally, by a quenched state. Superposi-
tion of states thus emerges as an inherent feature of sym. -

metry variables in their multidimensional representa-
tions, and the linearity involved in the superposition is
seen to have its roots in the representation of symmetry.

3. Uniqueness ot probabilities. (Suppiement}

a. Additi ve constraintsinirreducible representation

In an irreducible representation of dimension d, the
matrices satisfy the additive constraints

8'= —g VTr'MV ', TrÃV '= Tr(VIV '), (22)

where the coefIIicients in the sum over all g elements in
the group are traces (or characters), which are the invari-
ants specifying the representation. For V/= 1, the sum in

Eq. (22) is seen to commute with all symmetry elements,
since equivalent elements have the same trace, and is,
therefore, a multiple of the unit matrix, expressing the
orthonormality of matrix elements integrated over the
group. From this result, the relation (22) follows by mul-

tiplication with Vl and a reordering of the terms. [The
orthonormality extends to orthogonality for different ir-
reducible representations, and the sum in Eq. (22), there-
fore, vanishes, if the matrices and characters belong to
different irreducible representations. ]

For example, for the two-dimensional representation
ko of reAections and translations, the reAection variables

[Vl =S(a ) ] satisfy

1 2~S(a)=—I dkob cos2ko(a b)$(b)—, (23)

b. Reproducibleresults. Mean values

In a specified situation, the observation of a variable 0'
yields one of its eigenvalues u, with probability p (u), ob-
tained from a large number of events, and the resulting
mean value of % is denoted by

&Vl&—:pup(u) . (24)

While the individual events are fortuitous, the mean
values (24) are the reproducible results of the experi-
ments, which satisfy the geometric relations (22), thereby
yielding the set of g linear equations

since the only nonvanishing characters are
TrS(a)$(b) =Try[2(a —b)] =2 cos2ko(a b) F—or .the
continuous group, the sum over elements is replaced by
the integral J 0 dkob over translations as well as

retlections. The relation (23) describes the translation
symmetry of reAections and is seen to be equivalent to
Eq. (9). Correspondingly, for the group of rotations, the
constraints (22) describe the rotational symmetry of rota-
tions, which can be expressed in terms of a finite number
of irreducible spherical tensors, whose components refer-
ring to coordinate systems rotated with respect to each
other are linearly related, as in Eq. (9); see Sec. II.F.7.

The notations "state" and "state of

affairs"

are used
synonymously.

(25)
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which gives the mean value of each symmetry variable Vl
as a linear combination of its matrix elements, with
coefficients that form a matrix p specifying the state of
afFairs of the quantum.

The matrix p is itself specified by the mean values of all
the symmetries, and self-consistency is assured, for any
matrix p, by the relation (22). In fact, the self-
consistency condition, by which p equals the term in
parenthesis in Eq. (26), is of the form (22), with n re-
placed by p. Since this condition is linear, it is satisfied
for any linear combination of symmetry matrices in the
irreducible representation and, hence, for any matrix p.
However, the unitarity of the symmetry variables imply-
ing & V)*=& V ) requires p to be Hermitian. More-
over, the trace of p is seen to be unity, since & n ) = 1, for
'M= 1.

c. Derivation ofprobabilities

From the relation (26) for & n), the expression (12) for
the conditional probabilities W(u; u) follows. Thus the
matrix p =

l u ) & u
l

describes a situation, in which the
variable S' with certainty appears with the value u, as
follows from the relations

& n") =Trpn"=u" (27)

holding for all values of r ( =0, 1,2, . . . , d —1).
For p =

l
u ) & u l, the mean value of powers V' of anoth-

er symmetry V can, therefore, be expressed in terms of
conditional probabilities W(u; u),

& V') = g u'8'(u; u),
(28)

where the second line follows from Eq. (26). The set of
equations (28) for W(u;u), valid for s =0, 1,2, . . . , d —1,
has a unique solution [see comment after Eq. (16)], and is
seen to be fulfilled for the values (12).

d. Characterization of general state of affairs

An Hermitian matrix p can be formed from an arbi-
trary (normalized, but not necessarily orthogonal) set of
states li ), with weights p;, leading to the mean values
(26) in the form

(29)

with all mean values referring to the same situation. The
constraints (25) between the mean values can be ex-
pressed in the form

&n) =Trnp,

p = "—y—&v&v '-= —"y v 'T.-v, ,

by which the observations decompose into a sum of un-
connected series (mixed state). For example, any p can
be expanded in terms of its eigenvectors. (The results of
unconnected observations can be freely combined, and
negative weights can thereby be introduced. )

The characterization of possible situations thus intro-
duces states li ) that are not eigenstates of a symmetry
variable. For each state li ), the mean values (29) imply
that the probability for observing n with the value u is
W (i; u ) =

l & u li ) l, as a generalization of Eq. (12).
The matrix p can be expressed as a special form of Eq.

(29) in terms of its eigenvalues and eigenvectors, which
form an orthonormal set. However, the states in Eq. (29)
are not required to be orthogonal, and, for a given p (and
mean values &n) ), the decomposition (29) is, therefore,
not unique. The matrix p is recognized as the density
matrix of the quantal description.

4. Substitute state of affairs for subset
of symmetry variables. (Supplement)

For a subset of all the variables, the mean values can
be described by a substitute state of affairs referring only
to these variables. It is a distinctive feature of multidi-
mensional variables that, even though the total state of
affairs for all the variables is a vector (pure state), the
substitute state of affairs can be a mixture of states, as il-
lustrated by the following examples.

(a) A quantum interacts with another quantum, which
subsequently escapes. The remaining (first) quantum is
described by a substitute state of afFairs, which is a mix-
ture of components associated with the mutually orthog-
onal components of the second quantum, which has es-
caped. The description of the remaining first quantum by
the substitute state of affairs, which ignores its correla-
tion with the second, is the more exhaustive, the more
the second quantum has become inaccessible. Such a
transition to a substitute state of affairs takes place in the
quenching of nonlocality of a quantum through interac-
tions with other quanta; see Sec. IV.E.5.

(b) In a measurement, the incident quantum, after its
interaction with a large number of detector constituents,
can be disregarded, as discussed in Sec. III.A.3. The sig-
nal can, therefore, be described by the substitute state of
affairs of the detector constituents, which is a mixture,
even though the total state of affairs is a superposition
(see Sec. III.A.3).

(c) For a single quantum, the mean values of variables
of a subgroup can be described by a substitute state of
affairs which, in general, is a mixture. An example is
provided by the translations, which constitute a subgroup
of reAections combined with translations. Thus, for the
superposition (21), the mean values for the translations
can be described by a mixture of the two states l+ko)
and l

—ko), with equal weight. However, this substitute
state of affairs, of course, does not describe the behavior
of the quantum in situations, where refIections can occur
(see Sec. III.C.3).
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F. Two manifestations of symmetry

The matrices representing coordinate transformations
in a sym. metry group were originally introduced to
characterize the transformations of physical quantities
under a change of reference frame. A basic tool in such
an analysis is the identification of sets of quantities that
transform irreducibly among each other, the standard ex-
ample being a vector. This role of the symmetry matrices
is illustrated by the following situations referring to a sin-
gle quantum.

1. Irreducible transformation of states. Coefficient matrix

Irreducible transformation occurs in its most elementa-
ry form for a set of eigenvectors l u ) of a symmetry vari-
able V/ in a specified irreducible representation of the
group. Under a coordinate transformation V between
two reference frames JV and A", the symmetry 'M goes
into the equivalent symmetry Vl'=VVLV ' [see Eq. (7)].
Correspondingly, the eigenvector

l
u ) goes into the eigen-

vector of Vl',

lu'&=Vlu &, (lu'&~= lu &~ ), (30)

Q2 Qp Q) (31)

where the sum extends over all the eigenvalues of Vl, la-
beled u2, in order to distinguish the summation index
from the eigenvalue u

&
of the state that is transformed.

The relation (31), by which the set of states l u ) of the
quantum carry symmetry, exhibits the matrix elements
( u 2 l

V l u, ) in the irreducible representation as the

coefficients in the transformation of the states from one
coordinate system to another. An example is provided
by the superposition (21) by which the states lu ) = ls)
are translated to l u') = ls (a) ). [The coefficients are seen
to be the matrix elements of V(a) in the s basis, which are
given by Eq. (10)].

where lu') described from A, is the same state as lu )
seen from%". The two states, therefore, have the same
eigenvalue for the equivalent symmetries. The relation
(30) defines the phases of the states

l
u ' ) relative to those

of lu ), in terms of the chosen representation of V. The
transformed state Vlu ) can be expanded in eigenstates
of 'M to give

= y T |,'w, lvlw, &, (T„)~=(T )~, ,
w2

(32)

where the variable T ~ described from A is the same as
T seen from A'. As usual, the symbol w labels a basis
as well as the representation, and the sum extends over
the eigenvalues in the chosen basis. Tensorial variables
are illustrated in the supplementary Secs. II.F.6 and
II.F.7, for the representation ko of rejections and
translations and for representations of rotations in three-
dimensional space (spherical tensors), respectively.

In the tensorial relation (32), as in the Eq. (31) for the
state, the matrix elements of the coordinate transforma-
tion V are coefficients in the linear relation between the
tensor components referring to the two diQ'erent refer-
ence frames. While the first relation (32) refers to sym-
metry variables (see examples in Secs. II.F.6 and II.F.7),
the second is the same for the transformation of tensor
components in classical physics. [The comparison of the
two expressions for T„ in Eq. (32) shows the tensor as
coupling the representations u and u ' to a representation
w, as illustrated by the examples in Sec. II.F.6.]

3. Primary versus secondary manifestation of symmetry

The two basically different roles of a symmetry matrix,
as a variable that can appear with an eigenvalue, dis-
cussed in Sec II.C a.nd II.D, and as a set of coefficients in
a coordinate transformation, illustrated by the relations
(31) and (32), are referred to as the primary and the
secondary manifestation of symmetry, respectively.
Indeed, the manifestation referred to as primary is the
origin of the basic variables, and these variables, as ele-
ments in the group, define their own transformation
properties in a secondary manifestation of the symme-
try. '4

In the primary manifestation, the vectors in the space
carrying the symmetry, in the role of states, provide pre-
dictions concerning observations of symmetry variables.
In the secondary manifestation, the vector components
are quantities transforming irreducibly under a change of
reference frame. Ultimately, any such quantity derives
from the symmetry variables or from states describing
these variables. The two manifestations of symmetry are
compared in Table I.

2. Irreducible tensors. CoeNcientmatrix

The transformation of symmetry variables under the
changes of the reference frame is part of the algebra of
the group, as given by Eq. (7). In a representation labeled
u, the symmetry variables combine to form tensors T
that transform irreducibly, according to a representation
w. In analogy to Eq. (31) for states, the tensorial proper-
ty is defined by the relation

~4As variables, symmetries are genuine, as opposed to ray, rep-
resentations of the group. In a ray representation, which ad-

mits phase factors modifying the geometric relations between

the symmetry elements, the eigenvalues of the matrices are

changed, as, for example, by insertion of a phase factor in Eq.
(5). However, symmetry variables have properties completely

determined by geometry and, therefore, do not have ray repre-

sentations.
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Matrix representing
symmetry

Vector carrying
symmetry

Primary

Variable

State

Secondary

Transformation
coe%cients

Variable
State

4. Nonunitary representations

The symmetries associated with spacetime and gauge
invariance have unitary representations that the elemen-

tary variables exploit, in the primary manifestation. '

From these unitary variables, particles and fields derive
(by sums and products), as shown in Secs. IV and V. In
the secondary manifestation, however, the tensors may
carry nonunitary representations. Thus, for the invari-
ance in Minkowski space, all finite-dimensional represen-
tations are nonunitary, such as the symmetry carried by
four-vectors [see also Sec. IV.B.4]. These nonunitary ma-

trix representations connect variables of a quantum in

diferent reference systems, while the variables them-
selves are infinite dimensional matrices in a unitary rep-
resentation of Poincare symmetry, as described in Sec.
IV.A..3.

TABLE I. The two manifestations of symmetry. In any linear
representation of symmetry, the elements are matrices with an
associated vector space, which is said to carry the symmetry,
but the matrices have a fundamentally diferent function in the
two manifestations. Thus, in the primary manifestation, a sym-
metry matrix is a variable that can appear with an eigenvalue,
for example, in a measurement, while the vector is a state
describing complementary relationships governing the observa-
tions of symmetry variables. In the secondary manifestation, in
which the theory of symmetry originated, the vector is a quanti-
ty (variable or state) transforming irreducibly under a change of
reference frame, and the matrix is the set of coeKcients in this
transformation. The primary manifestation exploits the unitary
representations of the symmetry groups, characterized by
orthonormal basis states, while also nonunitary matrices
represent the symmetry, in its secondary manifestation.

metry variables, as described in Sec. IV.C.4 and in the
supplementary Sec. IV.E.)

The secondary manifestation of symmetry carries over
to the classical variables in terms of the linear relations
between components of tensors described from different
reference frames [see second line in Eq. (32)]. Indeed, it
was this manifestation of symmetry, which led to the
discovery of spacetime invariance, even though the origin
of the variables (in spacetime symmetry) could not be
seen within the framework of classical physics.

In the classical limit, the matrix transformation
VT V ' of the Uariab1e T [see first line of Eq. (32)] can
be expressed as a canonical transformation performing
the change of variables associated with the shift V of the
coordinate system. For an infinitesimal transformation,
the commutator between T~ and the generator of V (in

units of i'), is thereby identified with the Poisson bracket
between these two variables [see Eq. (97)]. In this
Inanner, the framework of classical mechanics based on
canonical variables is a remnant of the underlying com-
plementarity (see the further discussion in Sec. IV.E.6).

The notions of space and time are based on everyday
experience, and the in variance of spacetime was

discovered in classical physics by means of macroscopic
instruments. However, this insight gained concerns a
feature of nature that is independent of observations and
is recognized as the primary manifestation of symmetry.
Classical physics is itself encompassed as a limit in which
the primary manifestation of symmetry is no longer visi-

ble (see Sec. IV.C.4 and the supplementary Sec. IV.E).

6. Unit tensors formed by translations and reflections,
in two-dimensional representation. (Supplement)

In the vector space carrying the two-dimensional rep-
resentation of translations and reAections, the rejections
S and i S(ao) form components of a two-dimensional ten-

sor

5. Low resolution. Classical physics

s=1,
"o' iS(a ), s= —1,

7T
k a0 0

The variables of classical physics originate in syrnme-

try variables (as outlined for particles and fields in Secs.
IV and V). However, in the classical regime, the matrix
variables are seen with such a low resolution that their
indeterminacy and complem'entarity are hidden, and the
primary manifestation of the symmetry is, therefore, not
apparent. (The low resolution is associated with a
quenching of nonlocality in the state of affairs of the sym-

with transformation coefficients (s2 ~V~si ) given by the

matrix representing the symmetry V[ = V(a) or S(a)], in
the reflection symmetric basis (10), with ko replaced by

2k0.
The tensor T2k, thus has the transformations

T~k ~'
—ST2ko s) S —sl Tpko ~) ( —T2ko ~) ), s, —'

1
—1

~~See footnote 32 on the role of imaginary eigenvalues of the
generators. under rejections, and the transformation
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S(a)=cos2koaS+sin2koaS(ao), s, =l,T, =V(a)T 9 '(a)= '.
&ko, s) ~"o ] iS(a +ao)= i—sin2koaS+i cos2koaS(ao), s&

= —I (3S)

under translations. The translation of Tzk, is seen to0' l

be identical to the linear relation (9).
Any variable built out the symmetry variables V(a)

and S(a) in the representation ko can be expressed as
linear combinations of the two-dimensional tensor T2k,0'
and the two one-dimensional tensors (scalars)

I

itself is characterized by its homogeneity, which is ex-
pressed by the invariance under a time displacement P(r)
of the coordinate system (r'=r +r) Th. e symmetry vari-
able V(r) is thus a counterpart to a spatial translation
P(a) and, in analogy to the representation (4) of transla-
tions, the additive group of time displacements has the
unitary representation

and
V(r) =exp I ivor] (39)

To =V(2ao)= iko —'k . (37)

The tensorial symmetry is seen to be the product of two
representations ko.

7. Spherical tensors. (Supplement)

These tensorial relations express constraints between
the rotational variables of the general form (22), in terms
of a finite number of tensor components constituting a
complete set. The relations, which are familiar from vec-
tor and spherical tensor analysis, form a set of linear con-
straints that cannot be fulfilled by inserting individual ei-
genvalues for each of the tensorial variables [in analogy
to the relation (9)]. In fact, the eigenvalues for the com-
ponents e&„+e& are discrete and independent of the
coordinate system to w'hich they refer, while the con-
straints involve continuous functions of the rotation g
that connects the two coordinate systems, and hence can-
not be fulfilled for nonvanishing eigenvalues.

G. Time reversal. Symmetry
under complex conjugation

1. Directedness of time. Absence of time reversal
as symmetry variable

The theory of symmetry variables, based solely on
geometry, puts time reversal in a special category. Time

The rotational variables (l) in an irreducible represen-
tation j can be decomposed into unit spherical tensors
carrying the representations X=0, 1, . . . , 2j that are con-
tained in the product of the representation j with itself,

Tx„=ex„(=T ),
( )

(jm, ~e~„~jm, & =(gm, kp~gm, &,

where the matrix element of e&„ is a vector-addition
coefficient.

The tensors e&„are polynomials in the components of
the generators j, of order A, ; for example, e& i„ is pro-
portional to the spherical components of the vector j.
Under a rotation of the coordinate system, the tensors
e&„ transform as in Eq. (32), with coe%cients forming the
rotational matrix (Ap2~%(g)~Ap, & in the representation

characterized by a real frequency co. [The symmetry
variable 9'(r) as part of total spacetime symmetry is con-
sidered in Sec. IV.]

Spatial translation is inverted by a reAection of the spa-
tial coordinate axis [see Eq. (5)]. However, a reversal of
the time axis is not an available coordinate transforma-
tion, since it is an empirical fact that time has a direction.
%'hile the time axis can be shifted, its direction, there-
fore, does not leave a choice. Hence there is no symme-
try variable that takes 9'(r) into V( —r), and, in the pri-
mary manifestation of symmetry, the sign of the frequen-
cy is, therefore, an invariant that may be taken to be pos-
itive. (The invariance of the time ordering of events at a
specified point in space is incorporated into Minkowski
metric. In this geometry, rotations in space and time can
invert the wave number, but not the frequency. )

2. Symmetry under complex conjugation

Relations between symmetry variables at inverse
epochs +t, referring to the same time axis, arise from the
symmetry of the representations of spacetime invariance
under complex conjugation. This symmetry stems from
the neutrality with respect to complex conjugation of the
algebraic relations for compounding spacetime transfor-
mations. Hence, to each representation 'M of a group of
transformations, there corresponds a representation '9*,
in which the matrices are replaced by their complex con-
jugates.

The transformations of the spatial coordinate axes
(translations, rotations, and reflections) have spectra of
eigenvalues that are invariant under complex conjuga-
tion. Moreover, for the spatial symmetries, complex con-
jugate eigenvalues are always connected by a transforma-
tion in the group, as illustrated by the reAection 4 taking
V(a) into its complex conjugate V( —a) [see Eq. (5)].
Hence the conjugate representations Vl and 'M contain
the same eigenvalues and, if irreducible, are therefore
identical, up to a unitary transformation. For example,
translations and reAections, represented by the matrices
(8), in the k basis with real S, transform into their com-
plex conjugates under space reflection (%/*=SOS ').
Complex conjugation of rotation matrices is performed
by a rotation of m; see supplementary Sec. II.G.5.
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3. Reversibility

Complex conjugation of the time displacement (39)

9'*(r)=expI i—cow] = V( —r) (40)

4. Time reversal as anti-unitary transformation

The time-reversal invariance, which derives from the
symmetry under complex conjugation, can be expressed
in terms of- a transformation T, which inverts the time
displacement ~,

V( —r) = 5'V(r)T (41)

inverts the direction in which the time coordinate is shift-
ed. [It is assumed in Eq. (40) that the variable co is a real
matrix, as in the k basis; see Eq. (59).] Thus time dis-
placements in opposite directions, though not connected
by a change of reference frame, as for spatial translations,
are related by complex conjugation. This relationship
carries over to variables that are functions of time (space-
time rotations; see Sec. IV.A) and thereby connects vari-
ables at opposite epochs referring to a fixed time axis. In
this manner, as illustrated by the spacetime coordinate
transformations in Eq. (63), reversibility of motion is part
of the representation of symmetry variables, with a fixed
sign of the frequency. (Microscopic reversibility carries
over into classical physics, and the neutrality of geometry
under complex conjugation thus provides a basis for the
empirically established symmetry of the classical equa-
tions of motion under time reversal. )

6. Complex conjugation of rotation matrices. Rotations of 2~
as square of time reversal. (Suppiement)

The rotation matrices in three-dimensional space have
sets of eigenvalues expI im—y] that are invariant under
complex conjugation, and complex conjugation of an ir-
reducible representation, therefore, amounts to a unitary
transformation, depending on the basis. This transfor-
mation can be expressed as a rotation of m about an axis,
for which rotation is chosen to be a real matrix, and time
reversal, therefore, involves a rotation of m. Hence a re-
petition of time reversal, which is a unitary operation,
equals a rotation of 2m (about any axis) and is, therefore,
not an additional variable [ "T =%(2m. )]. For an eigen-
state of V; the eigenvalue is a phase factor, and the anti-
unitarity of '7 thus implies 5' =1 and, consequently, in-

tegral values for the angular momentum.

I I I. PRODUCTION AND APPEARANCE
OF SYMMETRY VARIABLES. EXAMPLES

The production and appearance of a symmetry vari-
able is illustrated by an experiment, which analyzes
reflection symmetries of individual quanta by means of
an interferometer. ' The quantum is seen to manifest it-
self entirely in terms of its symmetry variables (transla-
tions and rejections) with complementary classical pic-
tures (particles and waves) emerging in outline. The ex-
periment establishes a correlation between two symmetry
variables of a quantum, which is unique to variables that
appear with values in a measurement, but do not have
values. The same correlation occurs in coincidence ex-
periments with two quanta.

by performing a complex conjugation (anti-unitary
operation). A time-reversal operation 'T that commutes
with the spatial symmetries is obtained by combining
complex conjugation with the unitary transformation
that reperforms complex conjugation for the spatial vari-
ables (such as space reflection 4 for the matrices (8), and
a rotation of m for rotation matrices).

As an anti-unitary operation, time reversal T cannot
be represented by a matrix, but has eigenstates in vector
space (for integral spin; see supplementary Sec. II.G.5).
However, time reversal, in contrast to a symmetry vari-
able, does not appear with a value, since the eigenvalues
of V' are seen to depend on the undefined phase of the
state.

A. Interferometer experiment

An instrument, by which refl.ection symmetry for indi-
vidual quanta can be studied, is shown schematically in
Fig. 1. The essential ingredient in the instrument is a
partially rejecting Inirror, which is so constructed that it
transmits and refIects the individual quanta with equal
probability. Such a device makes it possible to turn a
translation symmetric state of a quantum into a reflection
symmetric state.

1. Symmetry produced

5. Summary

A beam of quanta reaches the apparatus from the
source S with wave number component k„=ko, which
may, for example, be selected by rejections in a transla-

In summary, the directedness of time implies that time
reversal is not a symmetry variable. However, the neu-
trality of geometry under complex conjugation provides
relations between symmetry variables at opposite epochs
and is thus the basis for the reversibility of motion, ex-
pressed by an anti-unitary transformation.

6The interferometer experiment can be compared with the
two-slit experiment, which has played a prominent role in the
elucidation of complementarity in quantal physics (see Bohr,
1949).
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FIG. 1. Schematic illustration of interferometer. The interferometer consists of partially rejecting mirrors A and C (described in
more detail below) and a set of totally rejecting mirrors 8. Between A and C, the quantum is in a reAection symmetric state, and the
plane of reQection symmetry can be varied by means of a phase plate P consisting of a material, in which the quantum has a wave
number k di6'ering from the vacuum value k (index of refraction n =k /k). The transmission through the plate thus adds a phase
(n —1)kd proportional to the length d of the path through the plate. This path can, for example, be varied by a small rotation of the
direction of the phase plate. To simplify the analysis of the detection process, the experiment employs only a single detector inter-
cepting one of the components of the state. Interferometers of the type illustrated were developed in classical optics in the last centu-
ry, and the observed interference e8'ect could later be ascribed to photons acting individually (incoherently). A neutron interferome-
ter based on the same principles has been constructed from a single crystal, which performs all the operations A, 8, and C with the
accuracy required by the small wavelength (ko ' —10 ' cm) of the neutrons (Rauch et al. , 1974). The interference was studied for a
beam intensity corresponding to an average distance between the neutrons large compared with the dimensions of the apparatus.

tion invariant crystal. The only variables of the quantum
that are affected by the instrument are translations P(a)
in the x direction and reflections S(a) in planes x =a per-
pendicular to this direction. The incident quanta en-
counter the partially reflecting mirror A, which trans-
forms the translation symmetric state ~k =ko) into a
reflection symmetric state (see supplementary Sec.
III.A.5). On account of the finite size of the reflector, the
components ~k =+ko) in the reflection symmetric state
separate and, after a reAection by symmetrically placed
mirrors 8, are brought together at C, remaining in a
reflection symmetric state. (The spatial separation of the
components +kp implies a small departure from transla-
tion symmetry, but the e6'ect on the state at C is negligi-
ble, if the dimensions of the apparatus are large com-
pared with ko '. )

The relative phase of the components ~+ko ) is shifted

by a translation P(a), and this operation, which could be
performed by bodily displacing parts of the apparatus, is
accomplished in the experiment by a phase plate P,
placed in one of the pathways (see caption to Fig. 1). The
processes taking place in the apparatus can, therefore,
produce any reflection symmetric state

~
u ) =

~
s ( a ) = 1 )

belonging to the two-dimensional representation of
translations and reflections [see Eq. (21)].

2. Symmetry observed

The state ~s(a)=1) is analyzed by another partially
reflecting mirror at C, which takes states ~s =+1) with
reflection symmetry 4=4( a =0) into translation sym-
metric states ~+ko) that separate. The quantum is regis-
tered by a detector D, by which the reflection symmetry
4 appears with the value s=+1 (signal) or s = —1 (ab-
sence of signal). The analyzer C (together with the detec-

tor}, therefore, measures the reflection symmetry S of the
individual quantum. The detection process is further
characterized below, and the state of the quantum at the
diff'erent stages of transmission through the interferome-
ter is given in the supplementary Sec. III.A.5.

The interferometer is thus seen to produce the eigen-
state ~u ) = ~s(a) =1) of the symmetry O'=S(a), which is

subsequently analyzed in terms of the symmetry V=/,
as in the general situation considered in Secs. II.C and
II.D. The probability for the occurrence of a signal in
the detector, and its absence is, therefore, given by the
conditional probabilities (12), which yield

cos kpa, s —1, signal,
8' s(a)=1;s = ' . zsin koa, s = —1, absence of signal,

(42)

from the products ( U
~
u ) = (s~s (a) = 1 ) given by Eq. (21).

The pattern (42) of probabilities, which characterizes the
complementarity between the variables 4 and S(a) in the
irreducible two-dimensional representation of reQections
and translations, has been observed in experiments with
neutrons as well as with photons (see figure caption). The
set of conditional probabilities (42) also applies to the
linear polarization variables of a photon, which are
reflections in planes containing the direction of propaga-
tion of the photon (see supplementary Sec. III.A.6).

The reAection variables in the two-dimensional repre-
sentation satisfy additive constraints, such as Eq. (9),
which are geometric relations between the variables. As
discussed in Sec. II.D, the irreducibility opens the possi-
bility for constraints of this type that cannot be fulfilled
in individual observations of the variables in a given situ-
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ation. Accordingly, the individual events in the inter-
ferometer experiment are observed to be fortuitous, but
the constraints reveal themselves in the probabilities and
the equivalent mean values, which are the reproducible
results of the experiments. Thus the observed probabili-
ties (42) yield, by translational invariance, ( s (a

&
)

=1~/(a2)~s(a, )=1)=cos2ko(a, —a2), and these mean
values are seen to fulfill the constraint (9) in the state
~s(a, )=1). [As discussed in Sec. II.D.2, the require-
ment that the constraints, as geometrical relations, be
fulfilled for the mean values, leads uniquely to the expres-
sion (42) for the probabilities. ]

The analysis of the experiment illustrated in Fig. 1

shows how the instrument observes the symmetry of the
quantum by -performing operations on the symmetry
variables that are equivalent to the coordinate transfor-
mations themselves (reflections and translations) and fur-
ther include linear combinations of such transformations
(partial reflections). The instrument is thereby capable of
performing any operation in the vector space carrying
the symmetry.

The interferometer thus makes possible a complete
analysis of the symmetry variables belonging to the two-
dimensional representation of translations and
rejections. The measurements described concern the
reflection variables S(a), but can trivially be extended to
include the analysis of translation variables in a reAection
symmetric state, or vice versa, by the removal of one of
the partially refIecting mirrors. Each set of experiments
produces and observes selected symmetries, and the mea-
sured probabilities W(u;v) determine the relations be-
tween the variables.

3. Detection of quantum

The detection of the quantum involves an amplification
process, in which the variables of the quantum interact
with a large number of constituents (symmetry variables)
of the detector, thereby releasing a signal by which the
quantum appears with a value of the observed symmetry.
For example, a neutron detector may involve nuclei that
absorb neutrons with the emission of charged particles,
which in turn produce an avalanche of ions.

The functioning of the detector, like the other com-
ponents of the interferometer, is fully amenable to
theoretical analysis in terms of the state of affairs of the
symmetry variables. The time evolution of these vari-
ables is governed by the unitary time displacement P(r),
incorporating interactions between the quanta (gauge
symmetry, as well as external fields), in addition to the
time evolution of the free quanta (Poincare symmetry).
The crucial point in the appearance of a symmetry vari-
able with a value, in a measurement, is the transfer of in-
determinacy of the observed variable into statistical un-
certainty (either/or) of a signal, as can be simply exhibit-

ed in the experiment considered. '

The state of affairs comprising the incident quantum
and the constituents of the detector is initially a product
of the state of the quantum and the state of the detector
constituents. The latter may be in a mixed state with a
vast number of components, but it suffices to consider a
single component of this mixture.

The detection process in the experiment illustrated in
Fig. 1 is described by a total state, for the quantum and
the detector constituents, which is a superposition of two
components deriving from the two components in the su-

perposition coskoa ~ko)+i sinkoa
~

—ko) of the quan-
tum passing from the analyzer C to the detector'D. [This
form of the superposition is a consequence of Eq. (21),
since the partial reflector C transforms the state ~s =+1)
into +~+ko); see Eq. (44).]

The signal, as a variable, is only a function of the
detector constituents, which is evident for a neutral in-
cident quantum producing an electric current, and which
applies with arbitrary accuracy for a charged quantum,
when sufficiently many detector constituents are in-
volved. The signal, and all the consequences that follow
from it (resulting dynamical processes, registration, etc.)

is, therefore, fully described by the substitute state of
affairs, which comprises the detector constituents, but
not the incident quantum (see supplementary Sec. II.E.4,
example b).

This substitute, final state of affairs of the detector con-
stituents with the incident quantum ignored is a mixture
(quenched state) of two components resulting from either
one or the other of the components ~+ko) or

~

—ko) in
the incident state, with probabilities cos koa and sin koa,
respectively (statistical uncertainty). In fact, any link
(matrix element) between the two components in the su-

perposition for the total final state must involve variables
of the incident quantum that connect the region occupied
by the detector to the reflected region with the detector
absent. It follows that the entire detection process is in-
dependent of the phase in the incident superposition. In
other words, the detector does not distinguish between a
quantum arriving in a superposition and in the corre-

The measurement process has received considerable atten-
tion in connection with the interpretation of the probability am-

plitude (collapse of the wave function). For symmetry vari-

ables, interpretative problems do not arise since, as emphasized
in Sec. II.E.1, the probability amplitude is but a tool that offers
itself for following the state of affairs of these variables. Thus
indeterminacy is an inborn feature of the symmetry variables
that shows up in the measurement (and is not introduced by the
measurement process). In the following, the measurement is an-

alyzed in terms of the effects produced by the quantum. In con-
trast, much of the discussion of the quantal measurement pro-
cess has focused on the state of the observed object after the in-

teraction with the detector (see references in footnote 27).
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sponding mixture.
In conclusion, a quantum arriving in a superposition

coskoa l+ko&+isinkoa l

—ko& to the detector gives a
signal with probability cos koa. In the individual fortui-
tous event, announced by a signal, or its absence (with
probability sin koa), the reflection variable 4 appears
with the value + 1 or —1, respectively.

In the total state, the superposition between the two
components continues indefinitely, but is only relevant in
situations that involve not only the incident quantum,
but also all the other variables that have been a6'ected by
the interaction. Such a state of affairs would, therefore,
have a complexity comparable to that involved in a re-
versal of the detection process as well as all the subse-
quent processes to which the signal has given rise. The
phase in the continuing superposition is, therefore, the
more irrelevant, the more irreversible is the chain of
events initiated by the detection process.

4. Evanescence of quantization. Fortuitousness

The experiment is seen to deal directly with the syrn-
metries, as the variables of a quantum, without any refer-
ence to a quantization within a symbolic formalism (wave
function) or to variables of classical origin (and, hence,
without introduction of the quantum of action). The ob-
served conditional probabilities establish geometric rela-
tions between translations and reAections in the two-
dimensional representation of the symmetry.

The indeterminacy seen in the experiment, in the for-
tuitous character of the individual events, is an integral
part of the properties of the symmetry variables, which is
rooted in the irreducibility of their representation (in a
mathematical sense). The state of afFairs of these vari-
ables specifies the probabilities (equivalent to mean
values), which constitute the reproducible results of the
experiment, but can make no statement about the indivi-
dual event, which is unpredictable in an absolute sense.

5. Partial reflection as operation in vector space.
(Supplement)

The partial reAection as a superposition of transmis-
sion and reAection can be expressed as a unitary matrix

Q= —[1 i 0'(ao)], —koao =m/4,1

'Q= 1,
where the reAection is taken in a plane shifted from the
origin by an eighth of a wavelength. A shift of the sym-
metry plane amounts to a translation and can, therefore,

The "observation of a definite value" expresses a consensus
within the substitute state of affairs between the observers,
bookkeepers, etc. , agreeing on the fortuitous value that has been
registered.

6. Polarization variables of a photon. (Supplement)

The linear polarization of a photon, together with its
helicity, are symmetry variables that are isomorphic to
the reAection and translation variables, in the two-
dimensional representation. Thus linear polarization
S(P) in a plane containing the wave vector of the photon
and characterized by an azimuthal angle P is represented
by the matrices (8), with P=koa, in a basis in which the
helicity h =k/ko is diagonal. Photons with linear polar-
ization s(P)=1 or s(P)= —1 can be produced and ob-
served by a polarimeter, and the correlation between two
linear polarization variables can thus be analyzed by a
combination of two polarimeters.

B. Impossibility of reproducing observed correlation
for individual quantum in terms of classical
substitute variables

1. Correlation between translated reflection variables
of a quantum

The probabilities (42) measured in the interferometer
experiment amount to a correlation p(s(a, ),s(az)) be-
tween pairs of two-dimensional reflection variables [see
Eq. (15)], which can be characterized by its moments
(16), such as

S(a, )S(a, ) =— s(~i)~(a, )p(s(~i), s(ap))
s(a& ),s(a&)

=cos2ko(a, —az), (47)

which are mean values in the distribution

p (s (a i ),s (a z ) ). The value of the moment (47) follows

from the probabilities (42), in combination with transla-

be accomplished by adding a phase plate to the partial
reflector.

The variable Q, derived from the symmetry elements,
takes a translation symmetric state into an eigenstate of
the reflection 1 [see, for example, Eqs. (8) and (21)],

Ql+k, &=+ls=+1& . (44)

Thus the passage of the quantum through the interferom-
eter is described by the sequence

6 9'(a)

lko& ~ l~ =1& ~ ls =1& ~ ls(~)=1& (4&)

leading to the state produced at C. Between 3 and C,
the reAection symmetric state consists of components
+ko that are separated in space (superposition of k
values over a range arbitrarily small compared with ko)
with a separation that varies with z. The state ls(a)=1&
at C is analyzed by the partial reflection Q [see Eq. (21)],

Q"ls =+1&=+l+k, &,
(46)

Qtls(a)=1& =c os koal ko& +i sinkoal —ko &,

which makes it possible to determine the reAection sym-

metry 4 of a quantum by transforming s into k. The re-
gistration of k ( =+ko) by the detector thereby yields the
probabilities

l
(sl s (a ) = 1 &

l
.
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tional invariance [or from the trace of S(a, )S(az )

=9'(2a, —2az); see Eqs. (8) and (16)]. For the two-
dimensional representation, the second-order moment
(47), together with the first-order moment S(a)=0, com-
pletely specify the pair correlation p(s(a, ),s (az)).

This result is seen to be an example of the general con-
clusion arrived at in Sec. II.D.4 concerning the correla-
tion between multidimensional variables in an irreducible
representation that satisfy linear constraints of the form
(17), which cannot be fulfilled for any combination of the
eigenvalues, such as the relation (9),

2. Incompatibility of observed correlations
with the implicit assumption that the variables have values

b, =S(a)—4 cos2koa —S(ac )sin2kca =0 (51)

The correlation function p(s(a, ),s(az)) is specific to
two-dimensional variables and, in particular, clearly can-
not describe an ensemble of classical substitute' vari-
ables s,i(a) that have values +1 or —1. In fact, the
quantity

b,,i
—=s,i(a )

—s„cos2kca —s,i(ac ) sin2kca,

s,i=—s,i(a =0)
would then have to vanish identically, since its square

b,,i=2 —2s,i(a) s„cos2kca —2s„(a)s„(ac)sin2koa

+2s,is,i(ac ) cos2kca sin2kca

(48)

(49)

has the mean value

b,,i=2 —2cos2kca g s,i(a) s,i@(s„(a),s„,, ;. )—.. .
]( )

=2—2cos 2kca —2 sin 2kca =0 (cos2kcac=0),
(50)

where the sum, with a change of summation indices, is
the same as in Eq. (47). Thus b,,&

vanishes for the ob-
served pair correlations, and hence 6,&

would have to
have the value zero for each member of the ensemble
while, in fact, b,,i is positive, since A,i&0, except when a
is. a multiple of ap. It can, therefore, be concluded that
the observed correlation (47) is incompatible with the
very notion that the variables have values.

for the reAection variables. The existence of such a con-
straint implies that the pair-wise correlations cannot be
derived from a more comprehensive probability distribu-
tion of the eigenvalues s (a),s, and s (a&&), as would be the
case for variables that have values [see Eqs. (18) and (19)].
The correlations are, therefore, outside reach of classical
ensembles, in accordance with the conclusion drawn
from the explicit analysis of 5,&

formed from the substi-

tute variables s,i(a).

3. Failure of classical ensemble to carry
translation symmetry. (Supplement)

The constraint (51) expresses the translational symme-

try carried by the refiections, as tensorial variables. [For
the isomorphic polarization variables of a photon, the
constraint exhibits S(P) as a component of a vector un-

der rotations, $(P)=cosPS(/=0)+sing/(P=m/2); see
Sec. III.A.6.] In contrast, it is beyond the capacity of
classical variables substituting for rejections to carry
translational symmetry. [The substitute variables s„(P)
having discrete values +1 clearly cannot be components
of a vector. ] The failure of any classical ensemble to
reproduce the correlation between the reQection variables
can, therefore, be traced to the inability of the ensemble
to incorporate translational invariance, which is an in-
herent feature of the symmetry variables (see also foot-
note 20).

This use of "substitute" has no relation to "substitute state
of affairs. "

An ensemble of classical variables yielding all mean values in
a state in a two-dimensional vector space has been exhibited by
Bell, 1966. However, it is a corollary of the above that the pair
correlations evaluated from this ensemble differ from those of
the two-dimensional symmetry variables. The difference can be
exhibited by explicit evaluation of the mean value of the prod-
uct of the variables s,&(a& ) and s,&(az) in the ensemble mimick-

ing the s= 1 state. This mean value is found to be
1 —~cos2koa, —cos2koaz~, which reduces to Eq. (47) for a, =0
(or a2 =0), but is not a function of a& —a2 ~ Hence the correla-
tion in the ensemble violates translational invariance, which is
an inborn feature of Eq. (47) for the correlation between sym-
metry variables. (This failure of classical ensembles to incorpo-
rate symmetry for a single quantum directly carries over to the
correlations between the variables of two quanta in the invari-
ant state; see Sec. III.D.) The experiments are seen to test the
mean value (47) of the products S(a& )$(a2), by producing one
symmetry a. observing another, in individual events.

C. Connection to classical physics

The variables of the quantum in the interferometer ex-
periment are the translation and reflection symmetries in
the two-dimensional representation kp. Already in this

simple representation, the symmetry variables show
correspondence to classical variables associated with
waves and particles, and complementary classical pic-
tures thereby emerge as expressions for the interplay be-
tween translation and reAection symmetry.

1. Correspondence to waves

Thus the two-dimensional representation of transla-
tions and reflections carried by the quantal state is also
carried, as tensorial symmetry, by classical waves involv-

ing superpositions of traveling and standing modes, with
translation symmetry k =+k-p and reflection symmetry
s(a)=+1. An interferometer can therefore be used to
analyze classical waves, in which case the operations in
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vector space performed by the components A, 8, C, and
P (see Fig. 1) carry over to the amplitude of the classical
wave. An incident classical wave, with k„=kp thus aI-
rives in the exit channels with amplitudes that have the
same relative values as the components of the quantal
state. Hence the observation of intensities for a large
number of quanta is in correspondence with the intensity
distribution for the classical wave. However, while the
individual quantum is registered in either one or the oth-
er exit, the classical amplitudes have values in both exit
channels.

2. Correspondence to particles

The notion of quanta, each observed as an entity in one
or the other detector, contains an element of the classical
particle concept. Moreover, in the interferometer experi-
ment, a trajectory emerges in crude outline, since the (ap-
proximate) eigenstates of translation are spatially
separated, during the transmission of the quantum, as an
experimental device for producing the reflection sym-
metric state at C. A path of the particle through the in-
strument, therefore, appears as a variable with two
values, taken to be the sign of the wave number. Howev-
er, in the irreducible two-dimensional representation, this
symmetry variable does not have a value (is indeter-
minate) since reffection symmetry combines both values
of the path (upper and lower components).

3. Terminology. Answer to tenacious question: "Did the
particle pass along one of the paths'P"

The links to the complementary classical pictures are
part of the flavor of the phenomena, but the elementary
variables are the symmetries themselves. The unambigu-
ous terminology appropriate to the symmetry variables,
therefore, defines the limitations in the use of classical
notions. Thus the particle cannot be said to "pass along
one of the trajectories, " as would be suggested by the no-
tion of the path as a one-dimensional (classical) variable
having either one or the other of its two possible values
(statistical uncertainty). However, the two dimensionali-

ty of the variable gives an unambiguous content to the
path of the quantum through the interferometer.

If the translation symmetry is observed (by removing
the analyzer at C; see Sec. III.A.2), the measurement
gives one of the values +kp associated with the lower or
upper path. However, the image of the particle as having
been in this beam component during the passage of the
apparatus, prior to the measurement, is not warranted,
since, as a multidimensional variable, the path did not
have a value. Indeed, in the state of the quantum be-
tween A and C, the wave number is indeterminate, and
this state of a6'airs, which is part of a complete descrip-
tion, is unaff'ected by the subsequent observations (as dis-
cussed in Sec. II.C.7, and further illustrated in the sup-
plementary Sec. III.C.4). Thus the quest for attributing a

value (upper or lower) to the path of the particle in the
interferometer experiment translates into an attempt to
circumvent the irreducibility of the two-dimensional rep-
resentation of translations and reQections.

4. Emission of photon from source. Cornplementarity
of translations and rotations. (Supplement)

An additional simple example of the terminology ap-
propriate to symmetry variables in a multidimensional
representation is provided by the observation of the an-

gular distribution of photons emitted from an excited
atom, which involves the interplay between rotation and
translation (specifying the direction of the photon). In
this experiment, the photon is produced in a state charac-
terized by rotational symmetry, and the complementary
relation between rotation and translation gives the condi-
tional probability for registering the photon in a given
direction. However, from the observation of an individu-
al photon by a detector at distance r from the source (lo-
cated at the origin), by which the wave-number vector
k =r appears with a definite value, it cannot be inferred
that in the decay process, the photon was emitted in this
direction. In fact, as a multidimensional variable in an
irreducible representation of rotations and translations,
the direction of the photon did not have a value, and its
indeterminacy cannot be removed by subsequent observa-
tions. The multidimensionality of the directional vari-
able of the emitted photon before interception can be
exhibited as in the interferometer, by inserting two
reflectors 8 at distances smaller than r from the source
that produce, at a location C, a superposition of states
with two difterent directions (reffection symmetry). The
excited atom thus replaces the source and the partially
rejecting mirror at A in Fig. 1.

D. Correlation of two quanta in invariant state

The correlation between variables of an individual

quantum, as analyzed in the interferometer experiment,
also finds expression in the correlation between variables
belonging to two or more quanta (in product representa-
tions of the symmetry; see Sec. V). In particular, the en-

tire correlation pattern for the variables of a single quan-
tum reveals itself in coincidences between the variables of
two quanta that are locked together in an overall invari-
ant state. (The product of a representation with its com-
plex conjugate contains the invariant representation. )

1. invariant state as superposition of products

The invariant state of two quanta has the eigenvalue
unity for al1 symmetry transformations acting on both
quanta, Vl= VE&Vlz, and in any basis, the invariant state is

a superposition of components, with equal weight, in
which the quanta appear with complex conjugate eigen-
values. In the situation described by this state, the obser-
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vation of the symmetry Q, of one quantum, with eigen-
value u „therefore, implies that an observation of the
same symmetry 'Mz for the other quantum yields the ei-
genvalue u2=u &.

2. Coincidence experiment

It follows that, in an experiment designed to measure
another symmetry V2 for the second quantum together
with N, for the first, the conditional probability
W, 2(u„'U2) for the outcome U2 reduces to a conditional
probability W(u;U) for an experiment with a single
quantum,

8',2(u, ;U2)=8'(u =u, ;U =U2) . (S2)

The correlation between two symmetries observed in
coincidence, for two quanta, is thus identical to the
correlation between produced and observed symmetries,
for a single quantum, as a direct result of the interlocking
of the symmetry variables in the invariant state of the
two quanta ('M2 =R, ). Hence the coincidence experi-
ment can be seen as an appearance of two variables of a
single quantum, and the arguments in Sec. III.B, there-
fore, imply that the correlation between the two quanta is
beyond reach of classical ensembles.

The identification (S2) can be expressed in terms of the
moments of the correlations. Thus, for the reAection
variables, the joint moment for the two quanta is

$1(a1)$2(a2) =
S'](&] ),&2(&2)

~1(a 1 ) ~2(a2) p(s1(a i ),~2(a2))

=S(a, )S(a2) =cos2ko(a, —a2),
I2( 1~U2) 2 12( 1~ 2) ~

(S3)

which equals the moment for the variables of a single
quantum and hence has the value (47), unique to multidi-
mensional variables.

3. Conditions for observing correlations between quanta
that have separated after interaction

Correlations between symmetry variables occur in
bound states, as well as in collision and decay processes.
Thus the invariant state can be produced in a collision or
decay, after which the two quanta separate with each
pair of symmetry variables locked into definite reIative
orientations (O', '92=1, for each '9). The correlation
(joint probabilities) can, therefore, be observed by mea-
surements of the quanta at diIterent locations. For exam-
ple, an invariant state of two quanta, each in the two-
dimensional representation of reflections and translations
studied by the interferometer, could be produced in a col-
liding beam experiment, in which the collision domain is
viewed at right angles to the beam by two oppositely
placed sets of reflectors, as 8 in Fig. 1. After the
reAection, the quanta could be observed in coincidence,
each by a combination of a phase plate and analyzer.

4. Experimental tests verifying that the quanta do not carry
values from source to detectors

Experiments testing the correlations in the invariant
state of two qoanta that have separated from each other
have been performed for the polarization variables of two
photons emitted in opposite directions in successive de-
cays of an atomic state (Aspect et al. , 1981). The com-
ponents S(P) of linear polarization in a plane with orien-
tation P containing the direction of propagation of the
photons are refiection variables isomorphic to S(a) (see
Sec. III.A.6), and the correlation between the polariza-
tion components is, therefore, given by Eq. (S3) with P re-
placing koa. This correlation between the polarization
components of the two photons is a constant of the
motion for freely propagating photons, and is thus, at the
points of observation, identical to that produced at the
source by the excited atom (considered as part of the ap-
paratus).

The predicted correlation between the polarization of
the two photons has been verified in the experiments re-
ferred to, and the observations thus confirm that the po-
larization components are multidimensional variables.
Accordingly, the photons cannot be said to carry values
of the polarization components from source to detector,
as would be the case, if these components were one-
dimensional variables. ' Instead, the polarizations car-
ried by the photons are generalized variables that, al-
though all present in the experimental situation, do not
have values and are thereby capable of correlations that
are beyond reach of classical variables.

In summary, the experiments discussed in the present
section III are seen as studies of symmetry variables,
whose properties stem directly from spacetime invari-
ance, without the mantle of quantization conditions or an-
assumed formalism of quantal physics. The observed
correlations thus express geometric relations between ele-
mentary variables in a multidimensional irreducible rep-
resentation. These variables are inherently indeter-
minate, but completely specified by the representation.

IV. POSITION OF QUANTUM

The invariance of spacetime embodied in special rela-
tivity comprises the continuous transformations that ex-
press homogeneity and isotropy. The coordinate trans-
formations are global, but rotations in spacetime, in con-
trast to translations, single out sets of points (the axis of
rotation) that are left invariant by the transformation.
Rotational symmetries can therefore supply local vari-
ables, which include the position of a particle in nonrela-
tivistic quantum mechanics and the relativistic invariant

The notion that the photons carry values of the polarization
variables from source to detector appears to be at the root of
the dilemma, which the experiment has been felt to pose.
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fields. As a prelude, the representation of translations
and rotations in spacetime is briefly outlined in Sec.
IV.A, which can be seen as a counterpart to the analysis
of translations and reflections in Secs. II.A and II.B.

where the coordinates x ', t' are obtained from x, t by the
transformation (54). By the same rotation, the locus x, t
of a spacetime rotation is shifted to x ', t',

(57)

A. Translations and rotations in spacetime
(1+1 dimensions)

1. Composition of transformations

A Lorentz transformation (or boost) in the x direction
with velocity u and associated rapidity g„, is defined by

X(g„)—:X(g„;x = t =0), tanhg„= u /c,
x'=x cosh(„+ct sinhg„,

ct'=x si hng„+ct cosh/„,

(54)

which constitutes a rotation in the xt plane through the
imaginary angle of magnitude g„about the origin, taking
the point x, t into the corresponding point x', t'. The
transformations (54) are adchtive in the rapidity
[X(g„)X(g„)=X(g„+g„, ) ].

The spacetime rotation (54) takes place about the ori-
gin x =t =0, which is left invariant by the transforma-
tion. It is a consequence of the homogeneity of space-
time that a rotation X(g„;x,t) about a point x, t is ob-
tained from X(g„)by the transformation

X(g„;x,r ) =P(x, t)X(g„)7 '(x, t),
where 9'(x, t) is a translation in space and time (as intro-
duced in Secs. II.A and II.G, with x =a and t =~).
Translations in difFerent directions commute. In Eq. (55),
the point x, t is first shifted to the origin that is invariant
under X(g„), and then shifted back to x, t, which is,
therefore, left invariant under the rotation X(g„;x,t).
The transformation (55) exhibits rotations with the same
rapidity as equivalent elements of the group of transla-
tions and rotations, in analogy to the relation (6) for
reflections.

The isotropy of spacetime implies that a translation,
under a spacetime rotation, is carried into a translation
with a rotated displacement,

(56)

in accordance with Eqs. (55) and (56). [Since a transla-
tion is not linked to a spacetime point, the relation (56) is
independent of the origin of the boost, in contrast to the
transformation (57)].

Translations and rotations, together with their corn-
binations, form the elements of the Poincare group. In
1+ 1 dimensions, the elements of the group constitute the
displacements of the xt plane in which all relative dis-
tances are conserved. Any such transformation of the
plane is characterized by a fixed point x, t and an angle of
rotation g„. [For an infinitely remote fixed point and a
vanishingly small angle of rotation, the displacement of
the plane develops into a translation. ] The angle of rota-
tion (the rapidity) is a property that is independent of the
reference frame, as explicitly shown by the equivalence
transformations (55) and (57).

2. Generators

The additivity of the Lorentz transformations X(g„) in

g„, as well as the translations in x and t, imply that the
transformations can be expressed in the form

X(g„;x,t) =exp I if„g(x,r)],

V(x, t) =expI —ikx +inst]
(58)

in terms of the generators g, k, and co, which are matrices
in the representation of the symmetry.

The relation (56) implies that the generators k, co of
translations transform as the components of a two-
vector, whose length is, therefore, invariant under aH

transformations in the group,

c k ~o~ ~o=cko (59)

The invariant defines a frequency mo or, equivalently, a
wave number ko [both of which are numbers (multiplying
the unit matrix)]. The value of F00 is required to be posi-
tive; see below. The two-vector symmetry of k, co is ex-
hibited by the commutators with the generator g of
Lorentz transformation,

[k, g(x, t)]= icoc ', —[m, g(x, t)]= ikc—(60)
Sections IV and V contain a certain amount of technicality,

but we have felt it necessary, in order to fully make the case, to
explicitly show how local variables with correspondence to clas-
sical physics derive from the spacetime symmetries. For our-
selves, an important point that had for long been an obstacle,
was the realization that the position of a particle, which is a
basic element of nonrelativistic quantum mechanics, requires
the link between space and time of relativistic invariance.

2 To simplify notation, the same label (x, t) is used for the
fixed point in Eq. (55) and the running point in Eq. (54).

that follow from Eq. (56). The relations (60) between the
generators can be combined into

[g(x, t), g]=i,
k:—k 0sinhg, co =—coocoshg

(61)

by expressing k and co in terms of a rapidity variable g,
which is an angular variable conjugate to the generator
of rotations in spacetime.
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3. Representation of Poincard symmetry

The invariant ko characterizes the irreducible repre-
sentations of the group of spacetime translations and ro-
tations (in 1+1 dimensions). The (infinite) set of eigen-
values k, co of the translations lie on one of the branches
of the hyperbola (59) and, in the k basis, the symmetries
are represented by the matrices

&k, (V(x, t)/k, & =exp[ —i(k)x — t) j &k Ik &,
(62)

where k
&

is the wave number resulting from kI by the
boost g„. The matrix X(g„;x,t) is obtained by the
translation (55) of X(g„) and, therefore, has the phase
(k

&

—k2 )x —(co, co2)—t T.he representation (62) of
translations and rotations is thus seen to be the analog of
the representation (8) of translations and refiections. For

both groups, the scale of the representation is character-
ized by an invariant wave number ko. For infinitesimal
transformations, the matrices (62) give the representation
of the generators.

The primary manifestation of spacetime symmetry is
confined to positive values of co (see Sec. II.G.1). The
sign of co is thus required to be a I.orentz invariant, as is
the case for a representation with positive value of the in-
variant mo, in Eq. (59). Representations of Poincare sym-

metry with opposite signs of the frequency are related to
each other by complex conjugation and occur together in
the secondary manifestation of the symmetry (see Sec.
V.B.2).

4. Complex conjugation as spacetime reflection

Complex conjugation of the matrices (62) in the k basis
is seen to be equivalent to a change of sign of x and t,

V*(x,t)=V( —x, t), X'(g„—; xt)=X(g„;—x, t), k b—asis,

V'(x, t) =4"TV(x, t)($ T) ', X'(g„;x,t) =SVX(g„;x,t)(SV)' (63)

which can be expressed as a spacetime reflection. In fact,
refiections invert the direction of translations [see Eqs. (5)
and (41)], while a rotation about the origin is invariant
under reflections of both axes. The anti-unitary time re-
versal operation Y thereby combines complex conjuga-
tion with a unitary operation 4', which reperforms the
complex conjugation associated with the space axis; see
Sec. II.G.4. [The constraints between the symmetry vari-
ables are expressed by algebraic relations between the
matrices, such as Vl, Qz='M3, which are invariant under
complex conjugation and hence, according to Eq. (63),
under the inversion of x and t. The relations between
variables, therefore, do not distinguish between opposite
directions in spacetime. In particular, no direction of the
time displacements is singled out (reversibility of
motion). ]

5. States carrying Lorentz symmetry

The state ~g(x, t)=g) carrying Lorentz symmetry
about the point x, t, with eigenvalue g, is given in the
translation symmetric basis'by

~g(x, t)=g) =V(x, r)~ f(0,0)=f),
(64)

~g(0, 0)=g'& =(2') '~ c'~ f e '&~~k
&

dk

I

B. Localization from spacetime rotation

1. Variables with invariant association
with spacetime point

A spacetime rotation X(g„;x,t) singles out a spacetime
point x, t that remains fixed under the rotation, and under
any of the transformations of the coordinate system the
rotation goes into the equivalent rotation (same g„) about
the corresponding point x', t' The vari. able L(g„;x,t)
and its generator g(x, t) are, therefore, invariantly tied to
a spacetime point,

g(x', r') =V/(x, t)V

X(g„;x,t)=exp[if„g(x, t) j,
where V is any element of the Poincare group, and where
x', t' is the point into which x, t is taken by the transfor-
mation V.

The generators g(x, t) at different spacetime points are
constrained variables. Thus the relation (65), together
with the commutators (60) between g and the generators
of translation, yields

g(x, t)=V(x, t)g(0, 0)V '(x, t)

1=g(0, 0)——cox +kct,
C

(66)

since a I orentz transformation shifts the rapidity by the
amount g„[see Eq. (61)] and hence multiplies the state
(64) by the phase factor exp [ ig„gj . The states
~g(x, t)=g'), with g taking all real values, form a com-
plete orthonormal basis, for each x, t.

connecting g' at two different spacetime points. The addi-
tive constraint (66) between the Poincare generators in
the representation ko expresses the translational symme-
try of the rotational variable g(x, t) [as a tensorial rela-
tion analogous to Eq. (9); see supplementary Sec. IV.B.4].
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For large values of x, an infinitesimal rotation is seen to
give a time displacement, and for large t, a spatial
translation. The translation from g(0,0) to g(x, t) is of the
same form as for rotations in a spatial y, z plane,

j(y, z)=j(0,0)—k,y+k z,
which gives the symmetry of rotation under the transla-
tion 9'(y, z) (from which the orbital angular momentum
emerges; see supplementary Sec. V.B.7).

2. Impossibility of exact distinction between here and there,
at a fixed time

The invariant association of the generator g(x, t) of
spacetime rotations with the locus x, t about which the
rotation takes place is the point of departure for a locali-
zation of a quantum. However, the notion of localization
further implies that the quantum, if produced here, is
definitely not observed there, at the instant considered,
and this feature cannot be expressed in terms of the vari-
ables g(x, t) In fa.ct, rotational variables referring to
different x, at equal times, do not commute [see, for ex-
ample, Eqs. (60) and (66)], and the eigenstate (64) for ro-
tation about the origin is, therefore, not orthogonal to
the displaced state ~g(x, t)=0~ =/& with the same eigen-
value g. The overlap has a range in x of order ko ',
which characterizes the scale of the representation.
Thus, in an eigenstate of g(0,0) with eigenvalue g, the
variable g'(x, O), belonging to another point in space at
the same time, is indeterminate and may appear with the
same value g, for ~x~ (ko '. Hence it is not possible by a
measurement of the variable g(x, t), to single out sharply
a location of the quantum.

3. Limitations to localization of reflections. (Supplement)

The distinction between localization and invariant con-
nection to a point, which characterizes Poincare syrnme-
try, also applies to rejections about diA'erent planes, as
considered in Sec. II.A.3. Thus a spatial reflection S(x)
singles out a point x that remains fixed under the
reAection. Moreover, under any transformation V
(translation or reflection), S(x) goes into a reflection
4'(x') in the corresponding point [S(x')=VS(x)V
where V takes x into x']. However, the eigenvalues +1
of the reAection symmetry, as a property of a quantum,
does not single out a plane, since states ~s(x)=1 &, with
difFerent x, have an overlap with a range ko ' [see the
probability distribution (42), with a =x]. The width of
this distribution is comparable to its periodicity, and a lo-
cation is, therefore, barely definable, corresponding to
the fact that the reAection only connects two wave num-
bers. In contrast, the Lorentz transformations bring to-
gether all wave numbers, and the degree of localization is
only limited by the reduced contribution of wave num-
bers k ko, in the invariant state (64), as implied by the
factor co

4. Translation symmetry as tensorial relation. (Supplement)

The connection (66) between spacetirne rotations about
di6'erent points can be seen( as a tensonal relation of the
form (32) by which the Lorentz invariant g=('(0, 0)]
and the two-vector k, co combine to form a three-
dimensional irreducible Poincare tensor, in a nonunitary
representation, formed by a product of two infinite-
dimensional complex-conjugate unitary representations
ko [see remark in parenthesis following Eq. (32)]. The
translation symmetry (66) for the rotation variables can
thus be compared with the tensorial relation (9), by
which reflections carry translation symmetry (see Sec.
II.F.6).

C. Nonrelativistic qoantum mechanics

I. Position variable

g(x, r) =g(0, 1)—kox (69)

by which the averaged rotation variables at equal times
are linked together, di6'ering only by a number propor-
tional to x. (This link reflects the merging of the rapidity

g, which shifts the value g of a rotational variable at a
fixed point [see Eq. (61)], with the wave number k =kog,
which translates the variable. )

It follows from the relation (69) that the eigenstate

~ g(0, t) =g &, with rotational symmetry g about the origin,
can be identified with the state ~g(x, t) =0& that is in-
variant with respect to rotations about x =ko
This identification implies that the invariant states
~g(x, r) =0&, belonging to different values of x at the time
t, form an orthonormal basis, since the eigenstates of
g(O, t) with different eigenvalues g( =kox) are orthonor-
Inal. Hence the eigenstates of the averaged rotational
variables single out points in space, at a given time, and
thereby de6ne a location of the quantum,

x(t):—ko 'g(x, t)+x=ko 'g(O, t),
~x (r) =x & =k,'"~g(x, t) =0&,

(70)

in terms of rotational invariance about the spacetime
point x, t The position v.ariable x (t) thus defined is seen
to bc equal to g(0 r ) 111 t11c scale k 0 of the representa-
tion. [As the notation indicates, x (r) is a variable, and its
eigenvalue is a space point x.]

An approximate position of the quantum emerges
when the representation of spacetime symmetry is viewed
with a spatial resolution that is low on the scale ko . By
such an averaging, the translation matrices (62), for
~k~ ~ko, are extinguished, and the representation is,
therefore, confined to

ski ((ko (co=coo) .

In this regime, the relation (66) for the spatial translation
symmetry carried by g(x, t) reduces to
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The variable x (t) is conjugate to the wave number k,
as follows from Eq. (60), for co =coo,

[k,x(t)]= i— (71)

d kv=— x(t)= c,
dt ko

(72)

where the velocity U is seen to be nonrelativistic, in the
regime k &(ko.

2. Canonical commutator. Quantum of action

A description of the quantum with correspondence to
classical physics of a particle is obtained by rescaling the
two vector k, m by the factor mc/ko involving a rest mass
for the particle,

kp=— mc, E=
ko No

mc =mc + (p «mc), (73)
Zm

which gives translational variables with dimension of
momentum and energy (see Sec. IV.C.3). The commuta-
tor between momentum p and position x [=x (t)], which
follows from Eq. (71), obtains the canonical form

[p,x]= i A', A':—mc—/ko (74)

when the scaling factor is denoted by iii (quantum of ac-
tion). This action is seen to enter when the symmetry
variables, defined in terms of coordinate transformations
and, therefore, of dimension reciprocal length, time, or
angle, are expressed as momentum, energy, and position
variables,

p =6k, E =fico, x (t) = g(x, t)+x,
mc

(75)

which have correspondence to the classical description of
a particle. (The scaling factor iri must be taken to be a
universal constant, if conservation laws for the symmetry
variables k and cu of the quanta are to carry over into a
description of particles with conserved momentum and
energy. )

3. Dimension of mass

The need for the concept of mass in classical physics is
thus seen to arise from the low resolution, which hides
the wave number and frequency, of dimensions I. ' and
T ' that lie behind the conserved dynamical quantities

as an expression for the interplay between a spatial
translation and a small spacetime rotation [which leaves
the two-vector (k, co) approximately in the direction of
the cv axis (co=coo)]. The variation of the matrix x(t)
with time follows from the time dependence (66) of
g(x, t),

x(t)=x(t =0)+vt,

denoted by momentum and energy. These quantities
were, therefore, given dimensions MI.T ' and MI. T
in terms of a dimension M apparently not reducible to
spacetime. With the discovery of the underlying quantal
structure, the two scales could be identified as having the
universal ratio A'. The choice of units with A'=1 thus
eliminates the need for a dimension of mass.

4. Nonlocality and its invisibility in the classical limit'4

A translation connects two eigenvalues of the position
variable x(t), while a I.orentz transformation, in its
weakly relativistic limit (Galilean transformation), con-
nects eigenvalues of the momentum k (Sec. IV.E.1). The
nondiagonality of these symmetry variables, which
expresses properties of the variables foreign to classical
physics, therefore, amounts to a nonlocality in the state
of afFairs of a quantum. The nonlocality, defined by the
mean values of the coordinate transformations, fully
specifies the state of affairs (Sec. IV.E.2).

While the complementarity between the symmetry
variables imply a minimum amount of nonlocality as an
inherent feature of a quantal state (Sec. IV.E.3), nonlocal-
ity is reduced in a quenched state of affairs involving un-
connected coinponents (mixtures), and the resolution
with which the quantum is observed is correspondingly
lowered (Sec. IV.E.4). Such a quenching of nonlocality
is produced by interactions with other quanta that subse-
quently become inaccessible (Sec. IV.E.5). When the
quenching is so strong that nonlocality is confined to
ranges of coordinate shifts so sma11 that a11 the visible
symmetry variables commute, classical physics emerges
(Sec. IV.E.6). The analysis thus exhibits the pertinence
of symmetry variables for the lowering of resolution that
characterizes the transition to the classical regime.

24This section is a summary of the supplementary Sec. EV.E.
25It seems appropriate and in line with terminology used in the

literature to characterize the state of afFairs of multidimensional
variables in terms of a nonlocality, in contrast to the locality of
a classical state of aftairs. For variables, the word locality has
been reserved for the singling out of a point in space and time
by the spacetime rotations [the position x (t) as well as the field
P(x, t) that is considered in Sec. V.B).

26The lowering of resolution caused by quenching towards the
classical regime is distinct from the lowering of resolution asso-
ciated with the restriction of the symmetry variables to the
Cxalilean corner (k && ko, see introduction to Sec. IV.C.1).

27The emergence of classical situations, as well as the analysis
of measurements (see in this connection Sec. III.A.3), has been
extensively discussed in recent years in the context of the
decoherence resulting from interactions with the environment

(see, for example, the review in Physics Today by Zurek, 1991).
%'ith coordinate transformations as the elementary variables,
the decoherence takes the form of a quenching of the nonlocali-

ty in the state of affairs of these variables.
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D. Galilean transformations as symmetry variables.
Summary28

1. Translations and Galilean transforrnations
in the weakly relativistic regime

Translations and Galilean transformations about the
fixed point x, t are defined as coordinate transformations
taking the spacetime point x",t" into

V(a), x "~x"+a, t"~t",

Q(u;x, t), x"~x"+u (t" t), t"—~t"+u(x" —x)/c

u (&c,
where the Galilean transformation is recognized as a lim-
it of a Lorentz transformation, and hence, to leading or-
der in u, includes the departure from simultaneity, which
is part of relativistic invariance. The Galilean transfor-
mation thereby acquires the character of a rotation in
spacetime about the point x, t [conserving (x"—x)—c (t"—t), to first order in u], and this link between
space and time is crucial for the interplay of the symme-
try variables V(a) and Q(u;x, t).

In fact, without the difference in time coordination for
the two reference systems, the Galilean transformation
no longer singles out a space point x and thereby be-
comes a (time dependent) spatial translation u(t" t), —
rather than a spacetime rotation. The notion of a univer-
sal time completely separated. from the space coordina-
tion, therefore, implies that the Galilean transformation
commutes with spatial translations and hence does not
yield a position variable. Indeed, a location of the quan-
tum at a given time requires a symmetry variable that
defines a point in space as well as in time, as does the
transformation (76), which singles out a point x, t that is
left invariant.

2. Products of translations and Galilean transformations

The product of the coordinate transformations (76)
taken in opposite order are seen to diQ'er by a time dis-
placement r= u a /c,

0(u;x, t)9(a) =P(a)0(u;x, t)9(r =ua/c )

Qa=P(a) Q( u;x, t)exp i coo
C

V(r) =expI indoor] .

Since translations are not linked to a spacetime point, the
relation (77) is independent of the location x, t of the axis
of the spacetime rotation (and is most easily evaluated for
x =t=O). The generator co of time displacement V(r)

SThis section, which focuses on the canonical commutator as
a constraint between the symmetry variables, is formulated
{with a certain amount of repetition) so as to be accessible to
readers who have not gone through the preceding parts of Sec.
IV.

[see Eq. (39)], together with the generator k of spatial
translations [see Eq. (4)], form a two-vector and, in the
nonrelativistic regime (ck ((co), the frequency co is, to
lowest order, approximated by the rest frequency
coo=co(k =0).

3. Generators of Galilean transforrnations

The Galilean transformations (76) are additive in the
velocity u and can, therefore, be expressed in the form

. Q
Q(u x t)=exp ~ i g—(x t) u ((c

C

[=g(x +a, t)], (79)

where the eÃect of a translation on g(x, t) [as expressed
by the first line of Eq. (79)] is seen to derive from the link
between space and time in the Galilean transformation
(76). A translation can also be viewed as shifting the
spacetime point about which the rotation takes place, as
exhibited by the second line in Eq. (79).

4. Position variable and canonical commutator

The relation (79) shows that the generator g'(x, t) of a
Galilean transformation is shifted in a translation V(a)
by an amount proportional to a and, therefore, defines a
position coordinate

x(t)=—ko 'g(x, t)+x =ko 'g(O, t)

with the transformation

P(a)x(t)V '(a)=x(t) a, —

[k,x (t)]= i . — (81)

The second form of x(t) in Eq. (80) follows from the
translation of j(x, t) in the second relation (79) and im-
plies that the difFerent eigenstates of x (t) are orthogonal,
as eigenstates of g(0, t).

The definition (80) is seen to imply that a state with
x (t) =x has g(x, t) =0. A quantum located at the space-
time point x, t is, therefore, characterized by rotational
invariance about this point.

5. Symmetry variables in scale involving rest mass

The translational variables obtain the dimension of
momentum and energy by a change of scale involving a
rest mass, as described in Sec. IV.C.2 (see also Sec.
IV.C.3). The commutator (81) then takes the canonical
form (74). When coo is expressed in terms of the rest mass
(iicoo=mc ), the basic relation (77) governing the inter-

play of translations and Galilean transformations be-
comes

in terms of the dimensionless generator g(x, t) of space-
time rotations about the point x, t. For infinitesimal
values of u /c, the relation (77) thus yields

9'(a)g(x, t)9' '(a ) =g(x, t) koa,—cko =—coo
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Q(u;x, t)V(a) =9'(a)Q(u;x, t)exp ~ —mua . ,
l

cop =mc /i6 (82)

l lV(a) =exp ——ap ., g(u;O, t) =exp —mux (r)

[For a Galilean transformation at time t and xAO, the
variable x (t) is replaced by x (t) x; s—ee Eq. (80).] It is
seen that the departure from commutation in Eq. (82)
arises from the small time shift ua/c [see Eq. (77)],
which is multiplied by the large frequency cop proportion-
al to the rest energy mc, to give a phase factor of zero
order in c. The occurrence of the rest mass is a reminis-
cence of the origin of the phase in relativistic invari-
ance.

the origin, in its weakly relativistic limit (Galilean trans-
formation), is the translation in k space [as may, for ex-
ample, be seen from Eq. (82)],

u mu
Q( q)= expIiqx(t)], q =ko —='c (83)

e(a, q) =expI iak—+iqx (t) ]

=V(a)Q(q)exp i
2

connecting two wave numbers separated by q. More gen-
erally, any continuous coordinate transformation in the
Galilean corner of Poincare symmetry (in 1+1 dimen-
sions), at a fixed time, can be expressed as a product of
translations along the k and x axes.

A complete set of symmetry variables is thus

6. Irrelevance of the time shift in secondary manifestation
of the symmetry

ef(a, q)=e( —a, —q),
(84)

While the phase factor in Eq. (82) is essential to the
primary manifestation of the symmetry, it is without
eQ'ect for the secondary. In fact, the transformations
V=V(a)Q(u) and 'iV=9(u)V(a) that only differ by a
phase factor perform the same transformation
VeV '=%'e%' ' of any variable e. In this secon-
dary manifestation of Galilean symmetry, therefore, the
time shift in the transformation (76) can be ignored.

In summary of Sec. IV.D, the emergence of conjugate
variables x and p, with the canonical commutation rela-
tion, which is at the basis of nonrelativistic quantum
mechanics, is seen to hinge on the recognition of the
Galilean transformation as a rotation in spacetime.
Hence the complementarity of these variables, as a pri-
mary manifestation of spacetime symmetry, requires the
link between space and time that special relativity intro-
duces.

each of which is a single translation in a skew direction in
the k, x plane. The Galilean transformation (83) is a rota-
tion about the origin (x =0), while a Galilean transfor-
mation about the point x involves an additional phase
factor exp { iqx] [see—Eq. (80)]. Thus the variable
e(a„q) can be viewed as a translation preceded by a
Galilean transformation about the midpoint x = —a /2.

The complementarity (82) implies that the variable
e(a, q) has the transformations

p(a, )e(a2, q~)V '(a])=expI ia]q~—]e(a 2q~),
(85)

Q(q$ )e(a2, q2)0 '(q] ) =exp I +iq, a~ ] e(a~, q2),

by which it carries translational and Lorentz symmetry
in the Galilean corner.

E. Quenching of nonlocality. Emergence
of classical variables. (Supplement)

1. Symmetry variable 'M(a, q) at a specified time

2. State of affairs in terms of mean values of M(a, q}

The mean value of the symmetry variable e(a, q) in
any state of aftairs of a quantum can be expressed by

While the translational variable V(a) connects posi-
tions at a distance a, the Lorentz transformation about

&e(a, q))= gp;&ile(a, q)li), gp;=1,
(86)

2 Galilean symmetry is usually incorporated into nonrelativis-
tic quantum mechanics in terms of its generator, which is
identified with the position variable, assumed to satisfy the
canonical commutator with momentum. The resulting relation
(82) is then interpreted as a representation of the inhomogene-
ous Galilean group up to a phase factor (ray representation).
However, when the symmetries are recognized as the basic vari-
ables that determine their own properties, their representations
are genuine (see footnote 14). The phase factor in Eq. (82) is,
therefore, a symmetry variable (in a limiting form), which is
seen to represent a time displacement [see Eq. (77)].

&e(a,q)&=Tr(e(a, q)p), p= g i &p, &il, Trp=l,

where li ) is an arbitrary set of unconnected states with
weights p;. The quenched (or mixed) state of affairs can
be represented by a Hermitian matrix p (density matrix)
and, as discussed in Sec. II.E.3.d, such a matrix describes
the most general state of a6'airs of the symmetry vari-
ables. The states li ) in Eq. (86) need not be orthogonal,
and the decomposition of a given matrix p is, therefore,
not unique.

Any matrix, such as p, can be expressed as a linear
combination of the complete set of matrices e(a, q),
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= 1p= dadqc*(a, q)S'(a, q), c'(a, q) =c ( —a, —q),
(87)

c (a, q) =Tr('M( aq)p) = ( Vl(a, q) ), c (0,0) =Trp = 1,
where use has been made of the algebraic relations

+ (a 1 'ql )+( 2 q2) +(a2 a 1 q2 'q l )

(i/2)( —
q }ay+ q2a ] )Xe

TrÃ(a, q) =2m 5(a)5(q)

that derive from Eqs. (84); see also Eq. (82). It, therefore,
follows that the state of aff'airs is completely (and unique-
ly) specified by the mean values c (a, q).

While c(0,0) = 1 [see Eq. (87)], the derivatives of c (a, q)
at the origin are seen to give the mean values x=(x)
and k=—(k),

ac(a q)~, o= ik,— c(a q)~, o=+ix

(89)

of the position and momentum variables in the state of
affairs of the quantum. Correspondingly, the higher
derivatives give the mean values of powers of x and k.

3. Nonlocality of quantal state

The mean values c(a,q)=(i~'M(a, q)~i ) for a quantal
state give the overlap of a state with the state produced
by the displacements a, q and thereby provide a measure
of the nonlocality in the state of affairs of the quantum.
The nonlocality distribution c(a, q) expresses the extent
to which the nondiagonal matrix elements of the symme-
try variables are visible in the experimental situation and
thus puts focus on features that are specific to multidi-
mensional variables and hence outside the scope of classi-
cal physics.

For a pure state, the nonlocality obeys the sum rule

Trp'= f dadq~c(a, q)~'=Trp=1,2= 1

2'

which follows from Eqs. (87) and (88), together with the
relation p =p that characterizes a quantal state. Since
~c(a, q)~ ~1 for the mean value of a unitary variable, it
follows that c(a, q) extends over an area that is of order
unity, or greater. Extreme examples of the reciprocity
between a and q implied by Eq. (90) are the eigenstates
~k ) and ~x ), for which c (a, q) extends over the entire a
or q axis, respectively, but vanishes outside the axis.

An intermediate situation is provided by a wave packet
with a Gaussian distribution

c (a, q) =exp — — .exp [ iak +iqx —],a q

«o 4qo

~here the phase factor involves the mean values k and x
for wave number and position of the packet [see Eq. (85)
or Eq. (89)]. The widths ao and qo in Eq. (91) are the
mean values of a and q in the density distribution
(2m) '~c (a, q) ~

and are related to the mean-square devi-
ations Ako and hxo

2 1 2 1 1(Ak)=0
2 2 0

2 2 0 0(hx)= b,xhk=-
ao qo

(92)

for the variables k and x around their mean values. (An
example of a distribution of nonlocality involving
separate regions in a, q space is associated with the quan-
tum in the interferometer experiment. )

4. Reduction of nonlocality in quenched state.
Lowering of resolution

Q qc'(a, q) =exp . —
2

— exp[ iak, +iqx,—],
4q&

1

2Q i

1 2 12+k
2ao

1 +0, Qoqo = 1
2q0

(94)

exhibiting the reduction in the range of nonlocality. The
resulting widths a &, q& are seen to depend partly on the
indeterminacy ao, qo of the quantal states and partly on
the statistical uncertainty o.„,o.

k of the ensemble. The

A reduction of nonlocality takes place by quenching,
in which unconnected components in the state of affairs
are combined. Such quenched states describe combina-
tions of results from separate situations (see Sec. II.E.2),
and may arise, when the correlations of the quantum
with other quanta, as contained in the comprehensive
state of all the quanta, are no longer accessible after the
interaction has taken place [see Sec. II.E.4, example (a)].

For a quenched state (with positive weights p,. ), the
trace of p is less than unity, and the integral (90), there-
fore, has a value less than unity. This quenching of non-
locality is associated with the fact that a phase attaches
to the mean value c (a, q) of a unitary variable. A reduc-
tion of ~c(a, q)~, therefore, results when two or more
components with different phases and total weight unity
are added. For example, for a mixture of two distribu-
tions (91), with opposite mean values x, k and —x, —k
and equal weight, the phase factor in Eq. (91) is replaced
by cos(ak —qx), which decreases the magnitude of the
nonlocality.

The cumulative quenching produced by many (non-
orthogonal) states is illustrated by a statistical ensemble
of distributions (91) in which each element is character-
ized by mean values x and k, with weight p (x, k ), giving

c'(a, q)= jdxdk p(x, k) c(a,q;x, k)

for the distribution c (a, q) in the resulting state of aft'airs.
For a Gaussian weight factor p (x,k ) centered on x „k,
and having widths cr„and ak, the folding in Eq. (93)
gives
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restriction in the visibility of the symmetry variables by
the quenching of nonlocality, exemplified by the distribu-
tion (94), amounts to a lowering of the resolution with
which these symmetry variables are observed (see foot-
note 26). Nonlocality in regions of a, q space separated
from the origin can be completely quenched.

5. Quenching by interactions

The reduction of nonlocality (lowering of resolution)
by the transformation of a quantal state into a mixture of
components takes place through interactions with a
second quantum by which the variables of the two quanta
become entangled. If the second quantum, after the in-
teraction, escapes or becomes inaccessible, the state of
affairs of the original quantum is a quenched substitute
state of affairs (see Secs. II.E.4 and III.A.3). The
quenched state can be expressed in terms of an expansion
of the total state of the two quanta in sets of orthogonal
components of the second quantum.

In this manner, the distribution of nonlocality can be
strongly quenched, when the quantum sufFers a large
number of collisions with other quanta that subsequently
become inaccessible (interaction with the environment;
see footnote 27). The distribution (94) is obtained if the
collisions produce a random (Gaussian) distribution of in-
crements of the mean momentum and position.

While the quenching restricts the visibility of the sym-
metry variables, the variables themselves remain present
in the quenched state of affairs, and the nonlocahty can
reappear under suitable conditions. For example, the
quenching in the state of affairs of the quantum can be
undone by Bragg reAection in a crystal.

6. Limit of small nonlocality. Classical regime

The classical regime emerges when the statistical un-
certainty is large compared with the indeterminacy
(o„))ao and ok ))qo), in which case the quenching of
nonlocality satisfies the conditions

a&q& «1, 0. 0k &)1 . (95)

p(x, k)= J dadq c'(a, q)e"1

4m

a ) 20k, g) 20~
—2 2 —2 2

(96)

In this situation, the quenched state of afFairs is fully
characterized by the distribution p(x, k) (phase-space

In this regime, the distribution (94) is independent of the
parameters ao, qo of the wave packets out of which the
quenched state of affairs is built, and the distribution
c(a,q;x, k ) in Eq. (93) can be replaced by the phase fac-
tor expI iak+iqx] th—at identifies the mean values of x
and k [see Eq. (89)]. Under these circumstances p (x,k )
and c'(a, q) are equivalent descriptions of the state of
affairs, being related by a double Fourier transformation,

Xt) 8'(a2, q2) —I+-+2I,

'M(a, q) =exp( —iak +iqx ), (97)

where the quantities 'M in the Poisson bracket are func-
tions of the classical variables x and p. The linearity of
Eq. (97) in Vl(a„q, ) as well as in %(a2, q2) implies the
validity of this relation between commutator and Poisson
bracket for arbitrary variables that are functions of x
and p.

In the transition to the classical regime, semiclassical
features in individual quantal states (such as described by
the WKB approximation) are distinct from phenomena
(such as fluctuations, dissipation, etc.) associated with the
quenching of nonlocality. The individual quantum state
has bxbp -iii, while in the classical state of afFairs (mix-
ture), the phase-space density is small compared to fi

More generally, the double Fourier transformation of the
symmetry variable S'(a, q) gives the %'igner transform, which is
a global symmetry m 'S'(x, k), where the spatial reQection
S'(x, k) is obtained from a reAection at the origin by a transla-
tion x and a Galilean transformation k (see, for example, Royer,
1977). Thus the Wigner transform has the eigenvalues +m
and is, therefore, not a density, except for such strong quench-
ing that the phase-space density is everywhere small compared
to unity [o„ok))1; see Eq. (95)]. In this classical regime, the
remains of the reAection S(x,k) as a variable (primary manifes-
tation of symmetry) is thus the local variable
~5[x (t)—x]5[k (t}—k].

density).
In the regime (95), in which the only visible symmetry

variables Vl(a, q) have aq « I, all the coordinate trans-
formations within this range of parameters commute
[see, for example, Eq. (88)], and the symmetry variables
no longer exhibit their multidimensionality. The visible
symmetry variables 'M(a, q) then behave as one-
dimensional variables that can be assigned values, and
the generators can be identified with the position x and
momentum p ( =erik) of a classical particle. Moreover,
any function of x and p can be formed by a linear com-
bination of the variables Vl(a, q). However, within the
classical regime with its low resolution that hides corn-
plementarity, the origin of the variables in the primary
manifestation of symmetry is not apparent. Symmetry is
seen in classical physics only in its secondary manifesta-
tion (x ~x —a,p~@ in a translation, and x ~x ut, —
p ~p —mu in a Galilean transformation).

While in the classical regime (strong quenching), the
commutator of two symmetry variables R(a„q, ) and
8'(a2, qz ) is zero, to lowest order, the leading nonvanish-
ing contribution is bilinear in a and q [see Eq. (85) or
(88)],

[n(a„q] ), e(ap, qg)]= i (aiq2 ——a2qi )

i fi j t) VE( a—„q, )
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at any point, corresponding to an uncertainty in the
canonical variables with o „o ))iii; see Eq. (95).

V. PRODUCT REPRESENTATIONS. FIELD VARIABLES

In the primary manifestation of symmetry, the elemen-
tary variables are the irreducible representations consti-
tuting individual quanta. A new dimension is associated
with product representations of the symmetry, which de-
scribe systems of quanta in an occupation number space.
The number- of quanta of a specified symmetry thereby
becomes a physical variable, and the elementary opera-
tors in this new dimension add a quantum and thus carry
the same irreducible symmetry as the states of individual
quanta. For spacetime symmetry, these operators are the
components of local boson and fermion fields. The steps
by which field variables with canonical properties in this
manner emerge from the primary manifestation of sym-
metry are briefly outlined below. In the framework of
the present discussion, the individual quanta are indepen-
dent entities (no interactions). '

A. Occupation number. Bosons and fermions

The representations of a symmetry group comprise
products of irreducible factors giving a Inultitude of re-
ducible representations of the group. Thus the direct
product

"M='M, Q2 . Vl~

of the matrices for individual quanta are seen to be repre-
sentations of the symmetry group and to give the vari-
ables of N quanta. In Eq. (98), each factor is an irreduc-
ible representation of the same symmetry O'. When the
constituent representations difFer, the representation (98)
describes uncorrelated quanta in product states specify-
ing the symmetry of the individual quanta.

For identical representations, the product (98) can be
classified in terms of permutation symmetry and is car-
ried by basis vectors ~u i, . . . , u~ ) that are direct prod-
ucts of eigenvectors for the individual quanta, in a chosen
basis u (for simplicity taken to be without degeneracy).
The permutations act on the ordering of the eigenvalues,
and the vector space can therefore be decomposed into
parts that transform irreducibly under permutations.
The symmetry variables (98) that are products of identi-
cal matrices only connect states with the same permuta-
tion symmetry.

The identification of a quantum with its symmetry (see
Sec. II.C.2) implies a restriction in the permutation sym-
metry that can be carried by a system of quanta. In fact,
when the symmetry of the quantum is fully specified by

Thus, for example, the possibility of quanta that obtain an
arbitrary phase under exchange as a consequence of gauge in-
teractions are not considered.

the label u, the ordering of the quanta, within the system
is undefined, and the state is therefore invariant, up to a
phase, under permutations. Hence the states are either
totally symmetric, or totally antisymmetric. (The mixed
permutation symmetries, which are multidimensional, in-
volve a numbering of the quanta, which would have to
refer to attributes beyond the symmetry Vl. )

States with the one-dimensional permutation sym-
metries are completely specified by the set of eigenvalues
u„u2, . . . , uz (with no ordering), or, equivalently, by
the occupation numbers n(u), giving the number of
quanta for the difFerent values of u. The eigenvalues of
these variables are

0, 1,2, . . . bosons

0, 1 fermions (99)

for the symmetric and antisymmetric states.
The product representations, with di6'erent values

N =0, 1,2, . . . for the total number of quanta (bosons or
fermions), can be combined in a vector space spanned by
the eigenstates of the occupation numbers n (u), which
thereby appear as independent variables, for the di6'erent
eigenvalues u. The operators a (u) that add a quantum
with symmetry u,

[n (u), a t(u)] =a t(u) (100)

(101)

with commutators (
—

) and anticommutators (+ ) for bo-
sons and fermions, respectively, expressing links between
the quanta arising from their indistinguishability. The
commutator between a and a in Eq. (101) involves the
normalization n (u) =a (u)a(u) of these variables.

The creation operator a (u) adds the symmetry, which
the quantum possesses, and the transformation (31) of the
basis states

~
u ) for an irreducible representation, there-

fore, carries over to the transformation of the variables
a (u). Hence these variables are components of irreduc-
ible tensors [see Eq. (32)],

at(u', ) =Vat(u, )V

(102)

with tensorial symmetry [denoted by w in Eq. (32)] equal
to the symmetry u carried by the individual quantum.
The variables at(u) themselves, as well as the transfor-
mation V in the first line of Eq. (102), are matrices in oc-
cupation number space, which carries the symmetric or
antisymmetric components of the product representa-
tions for the system of quanta.

and the Hermitian conjugates a (u) that remove a quan-
tum oA'er themselves as building blocks in terms of which
all the operations in the total vector space can be per-
formed. The creation and annihilation operators obey
the algebras

[a (u&), at(u2)]+=0, [a(u, ), a (u )]—=5(u„u2),
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The annihilation operators a(u), as Hermitian conju-
gates to a (u), are tensor components transforming with
the complex conjugate matrices (uz~V~u, ) . Together,
the variables a (u) and a (u) are the elementary tensors
for the system of quanta, from which other tensorial vari-
ables are formed by products decomposed into irreduc-
ible parts [as in the one-quantum tensors discussed in
Secs. II.F.6 and II.F.7, which are bilinear expressions in
the products a (u')a (u)].

B. Local fields. Imaginary Lorentz symmetry

The product representations, in the primary manifesta-
tion of spacetime symmetry, describe field variables with
causal commutation relations, in terms of systems of
quanta. The field is identified by its Lorentz symmetry
and constitutes independent local degrees of freedom
(that form the ingredients for expressing gauge invari-
ance at each spacetime point). No appeal is made to a
quantization of a classical field within an underlying
framework of quantal physics.

1. Variables carrying Lorentz symmetry in 1+1 dimensions

In Poincare symmetry, the tensorial variables a (u)
and a(u) add and remove a quantum in an irreducible
representation kp. In the translation symmetric basis,
the variables at(k) transform as in Eq. (102) with the ma-
trices ( k2 ~

V~ k
&
) given by Eq. (62) with positive frequen-

cies, while the Hermitian conjugate variables a (k) trans-
form with the complex conjugate representation, with
negative frequencies. Thus the description in occupation
number space involves variables transforming with both
signs of the frequency, in the secondary manifestation of
the symmetry.

Variables that are linked to a spacetime point x, t carry
symmetry with respect to Lorentz transformations
(spacetime rotations) about this point, with the generator
g(x, t) (see Sec. IV.B.1). The states (64) of a quantum car-
ry the symmetry g(x, t)=g, and the Lore'ntz symmetric
variables a (g;x, t) that create these states, with the same
symmetry g' at each spacetime point, are

' 1/2

numbers, depending on the distance between the space
points. The range is of order kp ', as given by the super-
position (103).

2. Disentangling of local degrees of freedom

The disentangling of the variables into independent lo-
cal degrees of freedom is achieved by a combination of
the variables with negative and positive frequencies, as
exhibited in a sim. pie form by Hermitian fields. Since
a (g;x, t), as the Hermitian conjugate of the superposition
(103), carries the Lorentz symmetry —g*, a Hermitian
field with Lorentz symmetry has a value for g that is

imaginary,

P(gx, t)= —[at(g;x, t)+a(g;x, t)], Ref=0,
(104)

[The Hermitian field (104) describes neutral particles, as
well as particles with gauge symmetry, in a basis of eigen-
states of particle-antiparticle conjugation. ]

By a spacetime derivation, the Lorentz symmetry of
the field is changed by an imaginary unit [see Eq. (103)],

~+ck=~pe &,

l COp
—[a (/+i;x, t) a(/+i—;x, t)],
2

(105)

e
—i (,kx —cot) c ~P6

which is seen to vanish for equal times (t =0) and hence,
as a consequence of Lorentz invariance, for any spacelike
separation. Correspondingly, for fermions with /=i/2,
the anticommutator vanishes for different x at equal t,

since the components cu+ck of the two-vector k, co carry
Lorentz symmetry +i. In the derivative fields (105), the
phase between the components with positive and negative
frequencies is opposite to that in the field (104).

For bosons, a field with /=0 has the commutator [see
Eqs. (101) and (103)]

[P(g'=0;0, 0),P(g'=0;x, t)]

a (g;x, t)=
2m

—ldk —i(kx n)t) —ig' t(k)— [P(/=i/2;0, 0),P(/=i/2;x, O)]+

X(g„;x,t)a (g;x, t)X '(g„;x,t)=e " a "(g;x, t)

(103) c dk
e '""(e~+e ~)=ko '5(x),

4& CO

(107)

expressed as a superposition of momentum components
at(k).

While the variables a (k) for different k (and similarly
the variables with different g, at the same point x, t) con-
stitute independent degrees of freedom describing bosons
or fermions [see Eq. (101)], the variables a (g;x, t) at
different x, for equal time, are interrelated, as are the cor-
responding states of a quantum (see Sec. IV.B.2). The
commutators (or anticomrnutators) expressing the con-
straints between the boson (or fermion) variables are

where, in the second term in the parenthesis, the sign of

32The states (64), with g =ig, are not normalizable, but can be
expanded in components with real Lorentz symmetry g, with
relative probabilities W(ig;g)= ~g~/m(i) +g ). Similarly,
states with complex wave number and frequency (decaying
states) are contained in the vector space based on translations
with real generators belonging to unitary representations.
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the integration variable has been inverted. [A fermion
Geld carrying reAection symmetry involves two com-
ponents with /=+i/2 see supplementary Sec. V.B.5.]
By the derivatives (105), the causal commutators (106)
and (107) are extended to fields with arbitrary integer or
half-integer values of Imp.

3. Imaginary Lorentz symmetry for bosons and fermions

Thus, for boson fields with /=0 and fermion fields
with /=i /2, the degrees of freedom disentangle into lo-
cal variables, even though the quanta created and annihi-
lated by the fields are not localized. It is seen that the
disentangling only occurs for bosons with integer values
of Imp and for fermions with half-integer values of Imp.
This link between imaginary Lorentz symmetry and
statistics is expressed by

1 boson,
X($„=2 ) = (108)

in terms of a Lorentz transformation with rapidity 2~i.

4. Fields in 3+1 dimensions. Connection
between spin and statistics

The extension of spacetime invariance to four dimen-
sions brings in the spatial rotations, which have unitary
representations for half-integer as well as integer values
of the rotational quantum number j, distinguished by
%(2')= + 1, for a rotation of 2~ about any axis [see Eq.
(1)]. The occurrence of rotation variables with
W(2~) = —1 reveals the double connectivity of the rota-
tion group, as a global property of space (see also supple-
mentary Sec. V.B.6). In four-dimensional spacetime, the
finite-dimensional (nonunitary) representations of the
Lorentz group, which characterize the symmetry of the
field, identify %(2') with X(2mi) (as in the identity of all
rotations of 2~ in an Euclidean space) and thereby,
through the relation (108), establishes the connection be-
tween spin and statistics.

5. Reflection symmetry of fermions. (Supplement)

Space reAection 4 inverts g and is seen from Eq. (105)
to take the fermion field p(/=i /2;x, r) into its derivative

coo '(r), +cB,)p((=i/2;x, r), with g= —i/2, if the fer-
mion is assigned imaginary intrinsic parity

3A field with real Lorentz symmetry is not Hermitian, and

the commutator of the field with itself, carrying the symmetry

2$, does not vanish at spacelike distances. The nonlocality of
the field is clearly seen in the nonrelativistic limit, where a
change of g is equivalent to a shift of the position of the quan-

tum [see Eq. (70)]. The field P at x, therefore, creates quanta at
the position x +k 0

'
g and annihilates quanta at x —k o

[Sa"(k)S '=ia ( —k), implying s = —1 for the fer-
mion]. The two-component fermion field, with /=+i/2,
connected by the first order derivatives (Dirac equation),
thus carries Lorentz and reAection symmetry. The imag-
inary intrinsic parity applies to a space reAection that
commutes with particle-antiparticle conjugation, thereby
leaving the fermion Gelds with a minimum number of
components. For a space reAection that inverts the ei-
genvalue of particle-antiparticle conjugation, the local
fermion Gelds carrying reAection symmetry have real, op-
posite values of the intrinsic parities for particle and an-
tiparticle (s =1).

6. Rotations of 2~. Secondary manifestation. (Supplement)

The double connectivity of the rotation group is seen
in its secondary manifestation in the transformation of
spinor fields. Thus, in the interference experiment (see
Sec. III.A), with polarized neutrons, a rotation of 2m of
one of the components can be accomplished by a magnet-
ic Geld and is observed to invert the phase of this com-
ponent, thereby shifting the interference pattern by
a =sr/2ko (Rauch et al. , 1975). In the corresponding
experiment with photons, a rotation of 2~, which can, for
example, be produced by an optically active material, is
an invariance. In the hypothetical case that spinor waves
had been discovered by their interference before the
quanta had been found, these waves would have appeared
as a classical field analogous to the electromagnetic field
describing classical optical interference phenomena,
which were later seen to represent incoherent eFects of
individual photons (Hepp and Jensen, 1971). Polariza-
tion experiments with such a classical spinor Geld would
have revealed that a rotation of 2~ is not the identity.

7. Four-dimensional Lorentz symmetry
in nonrelativistic limit. (Supplement)

In 3+1 dimensions, the Lorentz symmetry of a quan-
tum about a point r, t is described by the rotational vari-
ables j(r, r) and g(r, t), in a finite-dimensional representa-
tion with eigenvalues that are real for the components of
j, and imaginary for the components of g (as for the field

in 1+1 dimensions). The translational symmetry giving
the dependence of the vectors j and g' on the spacetime
point is exhibited by Eqs. (67) and (66), for the x com-
ponents.

In the nonrelativistic regime, where the quantum is
viewed with a spatial resolution that is low on the scale of
ko '%see Sec. IV.C), the resulting latitude in a component

g, is large compared to unity [see Eq. (69)]. Hence, in

this regime, the imaginary Lorentz symmetry, if of order
unity, can be ignored, and the quantum is produced by
the field in a state with g(r, t) =0, as in Eq. (70). In this
manner, the emergence of the position variable is accom-
panied by the fading away of the imaginary Lorentz sym-

metry. [Moreover, the components of the vector g', and
thereby of r(t), become commutable. ]
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In contrast, the latitude in a component j resulting
from the limited spatial resolution can be small compared
to unity, for ~k~ ((ko [see Eq. (67)j. In nonrelativistic
quantum mechanics, the intrinsic rotation s=j(r=O)
—r(t)Xk, therefore, clearly separates from the orbital
part I=r(t)Xk, where r(t) is the position variable
defined in terms of the spacetime rotations. With the fur-
ther loss of resolution that leads to the classical regime
(see Sec. IV.C.4 and the supplementary Sec. IV.E), the la-
titude in the orbital angular momentum A/ becomes large
compared with R, and the intrinsic rotational symmetry
is no longer visible.

Vl. SUMMARIZING REMARKS

The role of symmetry in relation to quantal physics is
turned upside down. The starting point for quantal phys-
ics is thus no longer an assumed symbolic formalism with
states and operators in Hilbert space, into which symme-
try is incorporated. Instead, the coordinate transforma-
tions of spacetime invariance are recognized as the ele-
mentary variables, and quantal physics itself emerges as
the primary manifestation of symmetry, with no sub-
stance to be quantized.

The symmetry variables define their own relationships
as irreducible matrix representations of a group and are
shown to be inherently indeterminate. Individual events
are, therefore, fortuitous (in an absolute sense), and com-
pleteness is not an issue.

The probabilistic laws, which are invoked in the inter-
pretation of traditional quantum mechanics, are derived
from geometric constraints among the symmetry vari-
ables. The probability distributions constitute correla-
tions that distinguish these generalized variables.

The state vector offers itself as an expedient tool for
describing the state of affairs of the symmetry matrices.
Hence, state and wave function require no interpretation.
Accordingly, a measurement of a symmetry variable is a
unitary time evolution under specialized conditions.

It is crucial for establishing quantal physics as the pri-
mary manifestation of symmetry that space and time are
linked together (by relativistic invariance). Even nonrela-
tivistic quantum mechanics hinges on this link.

The spacetime symmetry variables comprise Poincare
invariance including spatial rejections. Time reversal is
not a symmetry variable, but the neutrality of geometry
under complex conjugation leads to reversibility of
motion.

Quanta, as a direct implication of relativistic invari-

ance, become the foremost manifestation of fj.at space-
time. It remains to be seen how the primary manifesta-
tion of symmetry and curved spacetime can coexist.
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