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Most of our knowledge of the electronic structure of atoms and molecules is derived from excitation ener-
gies and transition probabilities. These observable quantities are related to the electronic wave functions

by integrals over unmeasured variables. Another observable more directly related to the wave function
than energy or transition probability is the single-electron momentum density, the probability that an
electron in a well-defined orbital has a given value of momentum. Over the last twenty years a technique
has been developed for measuring momentum densities in atoms and molecules. The technique, ( e, 2e)
spectroscopy, is based on electron-impact ionization with complete determination of the momentum of
both incoming and outgoing electrons. The conditions necessary to extract momentum-density informa-
tion from the ionization experiments are examined and related to general theories of electron scattering.
Diferent experimental arrangements are reviewed and momentum-density results from selected examples
are discussed.
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I. INTRODUCTION

A. General comments on (e, 2e) processes

(e, 2e) spectroscopy refers specifically to electron-
impact ionization experiments in which a fast projectile
electron is used to eject a bound electron from an atomic
or molecular target with the simultaneous detection of
the two out-going electrons. The experimental parame-
ters are adjusted to provide a reasonably straightforward
relation between the measured differential ionization
cross section and the momentum-density function of the
target electron. The momentum-density function p(q) is
the square modulus of the momentum-space wave func-
tion, which itself is the momentum-space transform of
the more familiar position-space wave function. By anal-
ogy with the charge density, the momentum density is
the probability that an electron has a particular momen-
tum per unit volume of momentum space. The integral
of this quantity when integrated over all momentum
space is unity.

The (e, 2e) reaction can be illustrated by a classical
model. Consider first a single electron, fixed in space,
that is struck by a second, projectile electron with kinetic
energy E0 and rnomenturn p0. Energy and momentum
are conserved in the collision so that if the energy (E, )

and momentum (p, ) of the scattered projectile are mea-
sured, the energy (Eb ) and momentum (pb ) of the ejected
electron are determined. The momentum transferred to
the target electron, p0

—p, is equal to pb. Now consider
the target electron to be one of a number of electrons in a
molecule, with binding energy IP, and suppose that at
the instant of collision it is moving in some arbitrary
direction with momentum q. Under these circumstances,
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FICy. 1. Two views of the kinematics of an (e,2e) reaction. The incident electron has momentum po. The scattered electron has
momentum p„and its direction with respect to the incident electron is defined by the polar angle 8, and out-of-plane angle P, . The
ejected electron has momentum pb, and its direction with respect to the incident electron is de6ned by the polar angle 0, and out-of-
plane angle Pb. The angle P is defined as ir (P,—+Pb ).

the momentum of the target electron after the collision is
the vector sum of the momentum transfeI'red to it by the
projectile and the momentum it had at the instant of the
collision. In order that momentum be conserved, the re-
sidual ion must recoil from the collision with momentum
equal and opposite to q. The geometry of this case is
shown in Fig. 1. Furthermore, the sum of the kinetic en-
ergies of the projectile and target electrons after the col-
lision is less than the kinetic energy of the incident elec-
tron by precisely the value of the binding energy of the
target electron. The implications of these facts are pro-
found. If one can establish the momentum of the in-
cident electron before and after the collision, along with
the momentum of the target electron after its ejection, it
is possible to calculate the momentum of the target elec-
tron at the instant of collision. Additionally, the deter-
mination of the kinetic energies of the electrons after the
collision is sufticient to establish the origin of the target
e1ectron. By its very nature, the experiment is a coin-
cidence experiment because it is necessary that the scat-
tclcd and cjcctcd clcctI'ons or1glnatc from thc same col-
lision event. By performing the experiment over and
over with a collection of identical atoms or molecules,
and accepting for analysis those coincident electrons with
a single ionization potential, one can obtain a
momentum-density function. This function is the square
of the momentum-space wave function for the system,
and in principle can be calculated by solving the
Schrodinger equation in momentum space or by taking
the Fourier transform of the position-space function.
The Inomentum-space wave function, and by extension,
the momentum density, retain the full symmetry proper-
ties of the position-space wave function. The ability to
measure momentum densit1es unambiguously, combined
with binding energy selectivity, is, from our perspective,
one of the most important and useful features of the
(e, 2e) experiment.

When attempting to undcl stand thc pI'opcI't1cs of
atoms and molecules one can choose between two ex-
treme points of view. On the one hand, there are simple
models that explain the properties of molecules in terms
of the arrangement of a small number of valence elec-
trons. These originated with the theories of Higgins
(1789) and Dalton (1808), who postulated the aggregation
of small numbers of atoms into molecular units, and cul-

minated in the electron-pair bond theory put forward by
Lewis (1916). These essentially static pictures have been
very efFective in organizing the large body of physical and
chemical experimental data on atoms and molecules and,
perhaps more importantly, have proved useful for pre-
dicting the properties of new molecules. By contrast,
there is the quantum-mechanical description that takes
into account the full complexity of many-electron atoms
and molecules, and allows for the calculation of certain
global properties, such as total energy, dipole moment,
and polarizability, but mostly fails to provide the simple
explanations of chemical and physical properties of
atoms and molecules necessary for predicting even such
fundamental properties as acidity, basicity, or reactivity.
Experimental momentum densities can provide the
bridge between the simple static view of electronic struc-
ture and the description provided by quantum mechan-
ics. Momentum densities contain a degree of detail
beyond the quantities that are routinely calculated with
quantum mechanics, and incorporate a measure of the
complexity inherent in the dynamics of electron motion.
The densities can also be interpreted in a way that is fully
compatible with well established qualitative models of
how electrons are arranged in atoms and molecules. '

With respect to the chemical and physical properties
of atoms and moleculcs, very small di6'erences in the elec-
tronic structure of the outer valence electrons are respon-
sible for profound di6'erences in properties. This is the
difhculty that quantum theorists face in calculating prop-
erties that can be measured experimentally. A wave
function that gives the total electronic energy of a mole-
cule to an accuracy of a small fraction of a percent can
give completely erroneous results when used to predict
bond strengths, dipole moments, or polarizabilities. Ex-
periments are equally challenging. Attempts to measure
the changes in electron density associated with the for-
mation of a bond between atoms have generally shown
the differences to be of the order of the uncertainties in

1For a further discussion of this see Julg, A., 1980, I.a I iason
t

Chimique, Collection Encyclopedique, Que Sais-Je? (Universi-
taires de France, Paris, France).
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FIG. 2. Calculated momentum densities for the 1s state of the
hydrogen atom and the 1so.

g state of the hydrogen molecule.
The two densities have been made equal at q=O.

the density measurements themselves. The (e,2e) experi-
ment was initially seen as a way of measuring, with high
precision, orbital-specific momentum densities that could
be directly related to quantum-mechanical calculations.
From these momentum densities a clearer picture of elec™
tronic structure was to emerge. To appreciate the experi-
mental and theoretical demands of this proposition, it is
worthwhile to estimate the precision and accuracy neces-
sary to recc; == the details of e1ectron momentum densi-
ties from an (e, 2e) experiment. Consider a comparison
of the hydrogen atom and the hydrogen molecule. Cal-
culated momentum densities for the 1s orbital of H and
the 1scr state of Hz are shown in Fig. 2, both spherically
averaged and scaled to 1 at the origin. For atomic hy-
drogen, the calculation is exact, while for H2 the calcula-
tion uses a wave function that gives a total electronic en-
ergy within a few percent of the experimental energy. As
can be seen from the figure, the di6'erences in the densi-
ties are of the order of ten percent even though in one
case we are considering an atom and in the other a two-
electron diatomic molecule. The general conclusion from
this simple example is that momentum-density measure-
ments require a combined precision and accuracy of a
few percent to distinguish between isolated atoms and
atoms bound to each other in a molecule. To further ela-
borate on this point, it is essential to recognize that the
precision of a momentum-density measurement depends
on the relative precision of (e, 2e) cross-section measure-

ments. Because (e, 2e) cross sections are small, high pre-
cision implies long counting times and frequent calibra-
tons of the detectors and scattering geometry. On the
other hand, the accuracy of a momentum-density mea-
surement depends on the very nature of electron-impact
ionization and the ability to experimentally isolate from
all the many kinds of electron collisions those that result
in the ejection of an electron from the target without in-
terfering interactions. In this regard we are fortunate in
being able to draw on the large body of experimental and
theoretical results on electron-impact ionization that
have identified many of the interactions that exist. From
an understanding of the interactions, it has been possible
to choose experimental conditions that give cross-section
data from which momentum densities can be derived
with the requisite accuracy of a few percent.

If only symmetry information is sought from the
momentum densities, the requirements on precision and
accuracy are considerably reduced. Because symmetries
can be obtained from a knowledge of the positions of the
momentum-density nodes, precision and accuracy from
several percent to as much as twenty percent is often
sufKicient.

B. The development of (e, 2e}spectroscopy

Ernest Rutherford's discovery of the atomic nucleus
using alpha particles marks the beginning of modern
scattering experiments. Rutherford (1911}realized that a
measurement of the angular distribution of scattered par-
ticles would give information about ihe internal structure
of the scatterer. Since 1911, many experimental varia-
tions on Rutherford's basis idea have been used for the
study of nuclei, atoms, molecules, and solids. (e, 2e) spec-
troscopy, at 20 years of age, is one of the younger scatter-
ing techniques in atomic physics.

The idea for an atomic (e, 2e) spectroscopic experiment
can be traced directly to the (p, 2p) experiment of Cham-
berlain and Segre (1952) in which bombardment of lithi-
um by 340 MeV protons was observed to produce pairs
of protons emitted approximately 90 to each other in the
laboratory frame. These proton pairs were identified to
be the result of binary collisions between the incident
proton and a proton within the nucleus. If the target
proton were initially at rest with zero binding energy, the
pair would be emitted at exactly 90'. However, the
inelasticity introduced by the finite binding energy causes
the mean included angle to be slightly less than 90 . The
initial momentum density of the target proton is refiected
in a distribution of angles about the mean. (p, 2p) experi-
ments were subsequently developed into a tool for the in-
vestigation of nuclear structure (Riou, 1965).

In a discussion of the (p, 2p) reaction, McCarthy (1965)
showed that in the Born approximation, the (p, 2p) reac-
tion matrix elements are separable into two factors: the
Fourier transform of the interaction potential and the
Fourier transform of the initial bound-state wave func-
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tion of the knocked-out proton, both with respect to the
momentum transferred from the projectile. Thus, in
principle, information about the initial wave function of
the proton within the nucleus could be obtained from ex-
periment.

Smirnov and Neudachin (1966) first suggested that an
equivalent experiment should be possible for atomic- and
molecular-orbital electrons. They pointed out that the
cross section for such an event should be proportional to
the square of the Fourier transform of the bound-state
wave function of the ejected electron. The first analysis
of such a hypothetical experiment was given by
Glassgold and Ialongo (1968) who showed that, by analo-

gy with the nuclear (ip, 2p) reaction, single ionization of
atoms by high-energy incident electrons should produce
an observable number of binary collisions between the in-
cident electron and one of the atomic electrons. If the
energies and momenta of these emitted electrons could be
measured in a coincidence experiment, it would be possi-
ble to determine experimentally the momentum density
of electrons from a single, known atomic orbital by deter-
mining the variation of cross section with angle.

The experimental feasibility of binary (e, 2e) experi-
ments was first demonstrated by Amaldi et al. (1969) on
carbon-film targets. Camilloni et al. (1972) performed
the first (e, 2e) momentum-density experiment on elec-
trons ejected from the E and L shells of carbon using a
carbon-foil target. The first (e, 2e) measurements on a
gas-phase target used argon (Weigold et a/. , 1973).
These developments led to a great deal of theoretical and
experimental work. Initially, the most important prob-
lem was to determine the range of validity of the theoret-
ical approximations necessary for the interpretation of
the experimental data. Once satisfactory agreement of
theory and experiment was obtained for simple atomic
systems, the (e,2e) experiment was applied to a wide
variety of more complicated atoms and molecules.

In the past 20 years (e, 2e) spectroscopy has evolved
from a way of confirming the results of routine
momentum-density calculations to a means for i.nvesti-
gating the details of electronic structure with a degree of
detail accessible only to the most advanced calculations.
The present review is organized to give a primarily exper-
imental view of (e, 2e) spectroscopy. We first discuss ion-
ization cross sections and kinematic regimes to locate
those conditions suitable for (e, 2e) spectroscopy among
the wide variety of electron-impact ionization processes.
Second, we discuss the theoretical basis of (e, 2e) mea-
surements. Third, we discuss experimental techniques.
Finally, we discuss the interpretation of the data and re-
view a selection of experimental results. As most work to
the present time has been carried out on gas-phase tar-
gets, we shall concentrate on gas-phase experiments. Our
presentation draws heavily on the many previous excel-
lent reviews of various aspects of (e, 2e) experiments, in-

cluding those of Weigold (1984), Ehrhardt et al. (1986),
Byron and Joachain (1989), McCarthy and Weigold
(1989),Lahmam-Bennani (1991),and Leung (1991).

II. IONIZATION CROSS SECTIONS
AND KINEMATIC REGIMES

A. Kinematics

Electron-impact ionization of a target atom or mole-
cule M, assumed to be initially in its ground state, can be
described completely by the reaction

ep(Ep, pp)+M ~M+(s;~, p)+e, (E„p,)+el, (Eb, pb ),
where the E are the electron kinetic energies (j =O, a, b)
with Eo the energy of the incident electron. Similarly,
the p's are the momenta of the products, and s; specifies
the final state of the ionized target. The subscript ia
specifies the ionized electron i and the final state cz of the
ion. If the outgoing electrons have very difrerent ener-
gies, it is common to assign the indices a to the "fast,"
"scattered, " or "scattered primary" electron and b to the
"slow" or "ejected" electron even though the electrons
are indistinguishable. Conservation of energy requires

Eo =E, +Eb+IP;

where IP,. is the target ionization potential for final state
s; . The kinetic energy available is Eo —IP, , and it can
be shared between the two outgoing electrons in any pro-
portion. When E, =Eb the energy sharing is symmetric.
For asymmetric events E,WEb.

If the target atom or molecule is at rest, it has no net
momentum. After subtraction of the momentum
transferred to the ejected electron by the incident elec-
tron, the momenta of the residual ion and ejected elec-
tron must also sum to zero, so that the momentum of the
residual ion p, the recoil momentum, is equal and oppo-
site to q, the momentum of the ejected electron at the in-
stant of ionization. The recoil energy of the residual ion,
p /2m, ,„, is small compared to that of the ejected elec-
tron and is neglected in the energy conservation equa-
tion. The conservation of momentum relation is

PO=Pa+Pb

Additionally, the momentum vectors of the outgoing
electrons are not necessarily coplanar with that of the in-

cident electron because q can have many di6'erent direc-
tions.

For the experimental determination of electron
momentum, it is necessary to know the velocities of the
electrons and their directions of motion. The velocities
are established from the kinetic energies and the direc-
tions of motion, generally specified by polar angles, 0,
and 8b, and azimuthal angles P, and Pb, with respect to
the direction of the incident electron (Fig. 1). In addition
to the relation between E, and Eb, collisions can also be
cophanar or nancop/ar depending on the azimuthal angles.
Successful (e, 2e) experiments have been carried out in all
geometries, with the symmetric noncoplanar the one
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most frequently used in momentum-density measure-
ments.

Next we consider the ranges of the energies and angles
that are typical of electron-impact ionization experi-
ments. It is convenient to divide the incident-electron ve-
locity into slow, intermediate, and fast regions with
respect to the orbital velocity of the target electron in the
atom or molecule. Likewise, the velocities of the ejected
electron can be divided into the same three regions.

Three of the kinematic combinations are sufficiently
common to be given specific designations. The thI"eshold
regime corresponds to incident-electron velocities just
sufficient to yield scattered and ejected electrons with
near-zero velocity. The dipole regime derives its name
from the close connection between photoabsorption and
small-angle electron scattering (Inokuti, 1971; Brion,
1975; Hamnett et al. , 1976). The binary regime corre-
sponds to close, billiard-ball-like collisions between the
incident and target electrons with a large amount of
momentum transferred from the incident electron to the
ejected electron.

B. Energy sharing

Ionizing collisions can also be classified according to
the relative magnitude of the momentum transferred to
the target. If Ako is the momentum of the incident elec-
tron before the collision and haik, its momentum after the
collision, the momentum transfer AK is defined as
(iriko —irik, ). Momentum transfer and scattering angle 8,
are related by

K =ko —2kok, cos8, +k, ,

where A has been suppressed to simplify the notation.
Small momentum transfer collisions correspond to small
angles of scatter. Ionizing collisions with momentum
transfers of the order of fi/ao (one unit of momentum in
atomic units) are more probable. For these collisions the
momentum transferred to the target is just sufficient to
knock out a valence electron. They have been investigat-
ed in great detail with atomic targets at both intermedi-
ate and fast incident-electron velocities (Ehrhardt et al. ,
1986).

High-velocity ionizing collisions in which the scattered
electron is deviated through a large angle correspond to
large values of momentum transfer. It is these collisions
that are the most useful for momentum-density measure-
ments by (e, 2e) spectroscopy. Unfortunately, they are
also the least probable of all ionizing collisions.

The Bethe surface is a particularly useful representa-
tion of the range of kinematics that apply to electron col-
lisions (Inokuti, 1971). The surface is derived from the
expression for the double-differential, electron-scattering
cross section using the Born approximation for the
incident- and scattered-electron wave function. The
cross section calculated in this way is a product of two
factors, a kinematic term that is a function of the

momentum transferred from the incident electron to the
target and a structure term, the generalized oscillator
strength (DOS). The CHAOS is analogous to the optical di-
pole oscillator strength, and is a function of the initial
and final states of the target.

where E„ is the excitation energy of the target, Q is the
energy transfer from the incident electron, and K is the
magnitude of the momentum-transfer wave vector.
s„(K) is defined by

E„(K)=(%'„xexp(/K r;) 4~),
i=1

where 4'„ is the wave function for the final state of the
target, %0 is the initial-state target wave function, and the
sum is over all of the X electrons of the target.

The general form of the surface adapted from Inokuti
(1971) is shown in Fig. 3, where the derivative of the gen-
eralized oscillator function with respect to E„ is plotted
as a function of excitation energy, (hE), and natural log-
arithm of the momentum transfer. At small momentum
transfer we have the dipole regime in which excitation of
the target atom or molecule is very similar to photoab-
sorption. As the momentum transfer increases, the gen-
eralized oscillator strength decreases with appreciable
values for excitation corresponding to ejection of an elec-
tron. This is the region of the Bethe ridge, the binary re-
gion where the collisions most nearly correspond to the
collision of two free electrons with the residual ion acting

FIG. 3. Bethe surface for a model one-electron atomic target
adapted from Inokuti (1971). The vertical axis is the derivative
of the generalized oscillator strength (GOS) with respect to the
excitation energy. Energy hE is in units of twice the ionization
potential of hydrogen (e /ao), and momentum transfer is in
units of A/ao. For small values of momentum transfer, birr, the
form of the surface resembles that for photoabsorption. At
large momentum transfer the only excitation that has apprecia-
ble probability is ionization. This region is dominated by the
Bethe ridge, marked by the solid curved line on the base plane.
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as a spectator.
The variation of the ionization cross section with ener-

gy, do/dE, can be obtained from integration over the
angle of the double-differential cross section,

(Beaty, 1975; Shyn and Sharp, 1991). The typical result
is a singly differential cross section that has maxima at
threshold and at (Eo II')—, and a minimum near
(Eo II')/—2. Binary collisions with equal energies for the
two outgoing electrons are therefore the least probable of
all ionizing collisions. Most ionizing collisions occur
with very asymmetric energy sharing. These collisions
have been studied in detail by Ehrhardt and co-workers
(e.g., Ehrhardt et al. , 1986) and others.

A. Scattering in a central potential

The Schrodinger equation for the motion of an elec-
tron of mass I in a central potential V(r) is

——V'+ V(r) X,' '=EX,'
2p

(3.1)

scattering exists. Our purpose here is not to review all of
them in detail, but rather to arrange them in such a way
that the underlying assumptions and the region of validi-
ty of each is clear. The final test of a theory is agreement
with experiment. Many (e, 2e) experiments have been
designed specifically to test theories. These experiments
will also be reviewed.

III. SCATTERING THEORY
FOR (e, 2e}SPECTROSCOPY

In this section we develop the theory of the (e, 2e) reac-
tion in order to establish the relation between the actual
experimental measurements of cross sections and
momentum densities. Once the relation is established it
will be possible to define the optimum set of experimental
conditions necessary to extract momentum densities from
the cross-section measurements. This is a particularly
important issue given the high degree of accuracy needed
to interpret the details of electronic structure in terms of
momentum densities. The (e, 2e) experiment involves a
measurement, for a given incident electron energy Eo, of
the probability that the incident electron is scattered with
energy E, into the solid angle Q„as specified by angles

8, and P„at the same time that the ejected electron,
with energy Eb, is found at solid angle Qb, specified by
angles Ob and pb. This probabihty per unit solid angle
and per unit energy is proportional to the target density
and the path length of the incident electrons through the
target gas. The constant of proportionality is the four-
fold difFerential cross section, d o ~, z, ~/d Q, dQbdE, dEb.
By convention, the solid angle Q is treated as a single
variable, not two independent variables 8 and P. In the
measurement of an orbital momentum density, the cross
section refers to a specific final state of the residual ion,
so E, and Eb are not independent. The reported cross
section is then triply differential: d cr~, 2,~/dQ, dQbdE,
or, alternatively, 1 o~, 2,~/dQ, dQbdEb. On the other
hand, the fourfold differential cross section can be used
to investigate branching ratios to excited states of the re-
sidual ion (Doering and Goembel, 1991; Goembel, 1992).
The threefold-difFerential cross section specifies the orbit-
al of the target atom or molecule from which the electron
has been removed as well as the final state of the ion, so it
is possible to identify the ejected electron uniquely from
the collision kinematics. This application is particularly
important in the measurement of "satellite" lines in the
(e, 2e) spectrum, a topic that will be discussed later.

A large number of theoretical treatments of electron

In the lixnit of large r, far from the scattering center, the
solution of the equation for X,' ' has the form

ik.r
X' ' = e ' +f' '(Q)

r
(3.2)

where ko is the wave vector describing the incident-
electron wave, and r is the magnitude of r. The first term
is the unscattered incident wave while the second term is
the scattered spherical wave of amplitude fk '(Q). The
differential cross section into the solid angle Q is the
square of the absolute value of the amplitude of the scat-
tered wave

do. /1Q= ifk '(Q)i (3.3)

As well as being the solution of the Schrodinger equa-
tion with appropriate boundary conditions, X,' ' is also
the solution of an integral equation. The form of the in-
tegral equation allows one to write X, as a series in
powers in V(r) and evaluate corrections to various ap-
proximations. The integral equation is

ik. /r —r'/I, V(r')X,' '(r')dr' . (3.4)
2vrfi'

( ) ikp r
a

Since lr —r'~ +r [1—(r r')/r +O—(r' /r )] for large r,
the wave function has the asymptotic form

X,' '(r) = e

Xe "'dr' (3.5)

where k, the scattered wave vector, equals kr/r. For this
case of elastic scattering by a central potential, the mag-
nitude of the scattered wave vector is equal to that of the
incident wave vector, only the direction is changed so
that lk~ = lko~. Solution of Eq. (3.5) by iteration consti-
tutes the Born series. The Born approximation, the
lowest-order solution, consists of taking X,' ~(r') to be

Lkp r
the plane wave e . Then X,' ' is given by

ik-r 1

2M

(3.6)
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The Born approximation is a high-energy approximation
most applicable when the potential V(r) is small com-
pared to the kinetic energies of the projectile electron
both before and after scattering.

The second-order approximation consists of using the
Born approximation for X,' '(r'). It has the form

X,' '(r)=. '""— ' f f.'""V(r )V(r")
2m'

(3.7)

where the potential appears to second order.
Returning to the integral equation (3.5) for the scatter-

ing amplitude in the potential V(r), the cross section for
the scattering of the incident electron with wave vector
k, into the differential solid angle d 0 can be written

In an analogous way we can de6ne the V matrix to be

V(k k') = (e'i "~ V~e'"'"
& (3.10)

In the Born approximation the T matrix and V matrix
are identical.

B. Electron-impact ionization

(e'"'
~ V~X,' ') is not a matrix of the operator V because

the two functions are not basis functions in the same rep-
resentation; however, it is possible to define a matrix,
called the T matrix, given by

T(k, k')=(e' '~ V~X,' ') =(e' 'lT~e' ' ) . (3.9)

ous way from the measurements. Figure 4 is a schematic
diagram of the initial and final states of an (e, 2e) col-
lision. The incident electron has momentum po. It in-
teracts with the two-electron target atom represented by
a nucleus and bound electrons b and c. The various in-
teractions, vi through v6, are also shown on the figure.
The interactions v „v2, and v4 are the electron-electron
interactions, while v3, v~, and v6 are electron-core in-
teractions. The Anal state consists of scattered electron a
with momentum p, and ejected electron b with momen-
turn pb along with the residual ion consisting of the nu-
cleus and electron c. The lightly shaded circles represent
the target atom (nucleus and orbital electrons 2 and 3)
and the residual ion (nucleus and orbital electron 3).

From considerations of electron velocities and momen-
tum transfer, we can establish in a qualitative way the na-
ture of the approximations that can be used in the calcu-
lation of (e, 2e) cross sections. At threshold, where the
incident electron has just sui5cient energy to eject an
electron from the target, there is little distinction be-
tween the incident and target electrons, and it is unrealis-
tic to separate the motions of the incident, scattered, and
ejected electrons from that of the target electrons in the
initial state. Wannier (1953) derived the energy depen-
dence of the electron-impact ionization cross section at
threshold using a classical treatment. The theory did not
provide a method for calculating the ionization cross sec-
tion. The Wannier threshold law was subsequently
confirmed by both semiclassical (Peterkop, 1971) and
quantum mechanical (Rau, 1971) derivations. Selles
et al. (1987) modified the Wannier model to include
waves beyond the 'S in a partial wave expansion of the
continuum functions. The Wannier-Peterkop-Rau

The simple introduction to electron scattering can be
modified for electron-impact ionization. While the
theory of scattering in a central potential is a two-body
theory, electron-impact ionization involves, at the very
least, three bodies: the incident electron, the target or
ejected electron, and the ion core to which the target
electron was bound before ionization. The cross section
for ionization is differential in the angles of the scattered
and ejected electrons and the energy of the ejected elec-
tron. For an X-electron atomic or molecular target the
Hamiltonian includes the kinetic-energy operators for the
N bound electrons, as well as the free incident electron
and the interaction potentials. The potential-energy
operators account for electron-core interactions as well
as electron-electron interactions. General solutions of
the Schrodinger equation for ionization involve the coor-
dinates of all the electrons. For an X-electron target
atom or molecule, this is computationally very dificult
for all but the simplest systems, and it is necessary to
seek approximate solutions.

For the purposes of (e, 2e) spectroscopy, we seek an ex-
perimental arrangement that allows us to extract
electron-momentum densities in a simple and unambigu-

V)

e, , y,

t~ iw~ + Vp

V)

eb, Qb

FIG. 4. Schematic diagram of the interactions between an in-
cident electron and an atomic 2-electron target. The top draw-
ing shows the initial state. The incident electron is labeled a
and has momentum po. The target electron is labeled b, and the
spectator electron is e. Interactions v I, v2, and v& are electron-
electron interactions, while v3, v5, and v6 are electron-nucleus
interactions. The final state shown in the bottom drawing
shows the scattered electron with momentum p, and the ejected
electron with momentum pb. The directions of p, and pb are
specified by 8„$„0b,and itpb.
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theory was first confirmed experimentally in 1974 by
Cvejanovic and Read. Experiments to test the threshold
law with ever-increasing precision have continued [see,
for example Hammond et al. (1985)]. Read (1985) has
reviewed near-threshold excitation and ionization. Re-
cently Rosel et al. (1992) have made absolute measure-
ments of the triple-differential cross section for ionization
of helium near threshold and have compared the results
with distorted-wave-Born-approximation calculations
that include a local approximation to take into account
the indistinguishability of electrons (exchange). The
measurements were also compared with the semiclassical
calculations of Crothers (1986) and a calculation by Pan
and Starace (1991) that used distorted waves for the con-
tinuum functions (see following Sec. C) and a nonlocal
treatment of exchange. This latter calculation gives the
best overall agreement with the experiment.

At intermediate and fast electron velocities for both
low and high momentum transfer, the many-body nature
of (e,2e) collisions remains. Mota-Furtado and
O'Mahony (1989) have performed a close-coupling calcu-
lation that treats the electron-electron interactions to all
orders, but the complexity of this approach limits it to
one- and- two-electron atomic targets. More appropriate
theories separate the motion of the incident, scattered,
and ejected electrons from that of the target electrons.
The initial state of the system is taken as a product of the
wave function of the free-incident electron and the
atomic- or molecular-target wave function, while the final
state is the product of the wave functions of the scattered
and ejected electrons and the residual ion. In Fig. 4, the
interactions v4, v5, and v6 are internal to the atom, while
v &, the interaction between the incident and target elec-
trons, is the interaction that gives rise to ionization. Be-
cause of the disparity between the speeds of the incident,
scattered, and ejected electrons and the orbital electrons
of the target atom and residual ion, a common approxi-
mation is to represent the initial state as the product of
the isolated target wave function and the continuum
wave function of the incident electron. Correspondingly,
the final state is the product of the wave function of the
residual ion and the continuum wave functions of the
scattered and ejected electrons. The T matrix then has
the form

(X~ (k„r, )X' ~(k„,r )@; V~X~+'(k, r )4), (3.11)

where X, , Xb, and Xo are the continuum wave
functions for the scattered, ejected, and incident elec-
trons, respectively. The wave function for the residual
ion is N;, and the wave function for the target atom is
4. We assume that the target atom is in its ground state.
The interaction V that couples the initial state to the final
state includes the interactions between the incident elec-
tron, target electrons, and nucleus.

C. Continuum wave functions and interactions

The representation of the continuum wave functions of
the incident, scattered, and ejected electrons is central to
the calculation of (e, 2e) cross sections. In decreasing or-
der of complexity are distorted waves, Coulomb waves,
and plane waves. With three continuum electrons there
is a variety of ways for them to be represented; however,
consideration of particular collision geometries and kine-
matic regimes narrows the range of choices. The interac-
tions that couple the initial state to the final state bear
directly on the form of the continuum wave functions.
Once again there are a number of choices, each appropri-
ate for a particular kinematic regime.

1. Distorted waves

It was noted by Bethe (1940) that, for the collision of a
nucleon with a nucleus, the many-body problem could be
reduced to an effective two-body problem through the in-
troduction of a complex potential of interaction that is
now generally called the optical potential. Optical poten-
tials have been used extensively in nuclear physics and
also for electron scattering by atoms. The real part of the
optical potential can be used to calculate the wave func-
tion for the incident electron. Referring to the initial
state in Fig. 4, a reasonable optical potential combines
the interactions v&, v2, and. v3 into an effective potential
in which the electron moves. For the final state there are
a number of choices for an effective potential depending
on the relative speeds of the scattered and ejected elec-
trons. If the ejected electron is moving slowly compared
to the speed of the scattered electron, the effective poten-
tial seen by electron a is that of the neutral target (nu-
cleus plus electrons b and c). On the other hand, if the
ejected electron speed is comparable to that of the scat-
tered electron, the efFective potential is essentially that
produced by the residual ion (nucleus plus electron c). If
the efFective potential is constructed to be spherically
symmetric it becomes mathematically possible to
separate the motion of the continuum electrons from the
orbital electrons of the target and residual ion. A
continuum-electron wave function calculated in any po-
tential is a distorted wave. Complex optical potentials are
used to account for inelastic processes, but the deter-
mination of an optical potential can be equivalent to the
solution of the full m.any-body problem. There are, how-
ever, a number of approaches to the practical calculation
of optical potentials. Furness and McCarthy (1973) ob-
tained semiempirical optical potentials for electron
scattering by hydrogen and argon atoms. This work was
subsequently improved by McCarthy et al. (1977) and
applied to the scattering of electrons by noble gas atoms
over a wide range of incident energies. Thirumalai et al.
(1987) have used dispersion relations to derive the gen-
eralized optical potentials for electron scattering from
noble gas atoms. Though rearrangement and ionization
were neglected, the approach can be generalized to in-
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elude such effects.
The most complete formulation of the distorted-wave

formalism used distorted waves for the incident, scat-
tered, and ejected electrons. It has been shown by
McCarthy and Weigold (1976) that the T matrix for the
(e,2e) process using distorted waves for all the continu-
um wave functions can be written as

(X.' '(k. ,r. )X,' '(k„r, )C, ~V, +V, ~X,'+'(k, ,r,)e),
(3.12)

where X,' ' and X&
' are distorted waves for the scat-

tered and ejected electrons calculated in optical poten-
tials of the target and residual ion, and Xo+

' is a distorted
wave for the incident electron. V, and V2 incorporate
the interactions of the scattered and ejected electrons
with the residual ion. The neutral-target wave function is
4' and the residual ion wave function is N; .

Zhang et al. (1992) have used distorted wave Born cal-
culations to calculate (e, 2e) cross sections for a variety of
targets and kinematic conditions. Using the notation of
Eq. (3.12), Xo+'(ko) was calculated in the static potential
of the neutral atom, ( V) =(%~u, +uz+u3~%). Ex-
change was taken into account in the calculation of ( V ),
and X,' '(k, ) and XtI '(kb ) were calculated in this static
exchange potential of the final ion state or of the neutral
atom according to the scattering geometry. Elastic
scattering of the incident electron by the neutral target
and the two final-state electrons by the residual ion were
also accounted. for. The calculations neglect the polariza-
tion of the neutral atom by the incident electron and the
effects of the ejected and scattered electrons on the resid-
ual ion. Polarization can, in principle, be incorporated
within the distorted-wave formalism but is not con-
sidered important at the present level of calculations.
Also missing from the calculations is the interaction be-
tween the ejected and scattered electrons. This post-
collision interaction (PCI) has been considered by Popov
et al. in a number of publications: Popov and Benayoun
(1981), Popov et al. (1981), Popov and Erokhin (1983),
and Avaldi et al. (1986). Within the distorted-wave for-
malism, post-collision interaction can be approximated
by using effective charges in the calculation of the final-
state distorted waves. Chant and Roos (1977) have
developed a nuclear-physics computer code based on the
distorted-wave impulse approximation that is appropri-
ate for relatively large momenta where the projectile-
target and projectile-residual ion interactions distort the
particle waves from plane waves. The code was modified
for electron-impact ionization of helium, and used to
shaw that, at relatively large values of 0, the trajectories
of the outgoing electrons are distorted to such a degree
that the derived momentum densities are unreliable
(Smith et al. , 1986). Recently this work has been extend-
ed to other energies and geometries (Dupre et al. , 1992;
Lahmam-Bennani et al. , 1992).

A simplified form of the distorted-wave appraximation
is the eikonal approximation. Here, the idea is to approx-

imate the potential felt by the incident electron by a con-
stant potential. When this is done, the incident-electron
wave function has the form of a plane wave, but with a
different wavelength from the completely free electron.
Experimentally, it has been found that representing the
magnitude of the incident-electron wave vector by
+2m (Eo IP—)/fi, in which IP is the ionization potential
of the target electron, provides an improvement over sim-
ple plane waves in describing the (e, 2e) cross-section
data in the symmetric-coplanar geometry (Camilloni
et al. , 1978). The simple form of the eikonal continuum
wave functions allows the (e,2e) cross section to be
separated into a part depending on the coordinates of the
incident electron and a part that depends only on the
coordinates of the electrons in the target, uide infra.

2. Coulomb waves

The next level of simplification uses Coulomb wave
functions for the continuum functions in the final state.
These functions are solutions of the Schrodinger equation
for an electron in a potential that varies as llr. The
justification for this choice is that, at large distances from
the residual ion, the field acting on the scattered and
ejected electrons is a pure Coulomb field. When one of
the final-state continuum electrons leaves the collision
center with velocity much less than the other, the further
simplification of using a Coulomb wave for only the slow
electron is used. This assumes that the fields of the slow
electron and the residual ion effectively cancel at the po-
sition of the fast electron.

A recent development of fundamental significance is
the derivation by Brauner, Briggs, and Klar (1989) of the
asymptotically-correct Coulomb three-body wave func-
tions for the ejected and scattered electrons in the field of
the residual ion. This is commonly referred to as the
BBK theory. The importance of having the correct form
of the electron wave functions at large distances from the
target has been discussed by Jetzke et al. (1989), but at
the same time the short range interactions must also be
treated correctly. The synthesis of short-range and
longer-range interactions to provide a complete descrip-
tion of scattering remains one of the principal theoretical
challenges.

Another way of incorporating three-body effects into a
two-body formalism is through the use of an eff'ective
charge. This approach was used by Peterkop (1963) and
reviewed by Rudge (1968). The Coulomb-projected Born
approximation (Geltman, 1974) is another approach to
this problem.

In this discussion of Coulomb waves, it is important to
note that they have not been used in any formulation of
the (e, 2e) cross section to extract momentum densities
from experimental measurements.
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3. Plane waves and the impulse approximation

The simplest approximation for a continuum wave
function is a plane wave; this approximation is equivalent
to ignoring all forces on the incident, scattered, and eject-
ed electrons. The interaction that couples the initial and
final states of the system may incorporate all the separate
interactions of the incident electron with the target elec-
tron and nucleus. If ionization can be considered to
proceed by a direct collision between the incident elec-
tron and target electron with all of the momentum lost
by the incident electron transferred to the ejected elec-
tron, we have the so-called binary regime. If, to go one
step further, it can be assumed the incident electron in-
teracts only with the ejected electron and neither affects
the target nor is affected by the target, we have the im-
pulse approximation. Under these circumstances the
wave function for the target is the isolated-target wave

function, and the final-residual-ion wave function is the
isolated wave function of the ion.

Combining plane waves with the impulse approxima-
tion we have the p/ave-wave impulse approximation
(PWIA) where incident, scattered, and ejected electrons
are all taken to be plane waves. We expect that this ap-
proximation will be a good one when the energies of all
the interactions are small compared to the kinetic ener-
gies of the incident, scattered, and ejected electrons. In
practice, this means that the binding energy of the eject-
ed electron is small compared to the kinetic energies of
the incident and outgoing electrons. Because the PWIA
is the approximation most often used in extracting
momentum-density information from electron-impact
ionization cross sections, it is useful to examine the cross
section formulas in some detail.

Consider the ionization of the two electron atom of
Fig. 4. The diff'erential (e, 2e) cross section for this pro-
cess is given by

2

d o~, 2,ildQ, dQ&dEI, = — (k, kt, lko)I(e ' e ' 'N; IV(r, rI, )I+e ' )I
4~ A

(3.13)

where r is the coordinate of the incident electron. Using the fact that the momentum transfer AK is the difference be-
tween momentum of the incident electron Ako and the scattered electron haik„ the cross section can be written

2 k r
2

d cr(, ~,)ldO. ,dA~= —
~ ~(k, k~lko) e' 'e ' '@;,(r, ) —,

~

W(r~, r~)I
4m A ~l Ib

(3.14)

where the Coulomb potential of interaction between the incident electron and electron b of the target is given explicitly.
It is most useful to perform the integration over the variable r using the relation (Bethe, 1930)

I Ir —r, I

'e'~'dr=4m. rC 'e' (3.15)

This leads to
2 4

d o~, 2,~ldQ, dQ&dE&= „(k,kI, /ko) (@; (r, )Ie ' %(ri„r, ))I
@4@4

(3.16)

where —q is the recoil momentum of the residual ion re-
sulting from the ejection of the target electron and is
equal to the difference between the momentum of the in-
cident electron and the Inomenta of the scattered and
ejected electrons. For momentum to be conserved, this
recoil momentum is equal in magnitude and opposite in
direction to the momentum of the ejected electron at the
instant of ejection. Returning to Eq. (3.16), we note that
the factor 4m e /A"K is the Rutherford cross section
for electron-electron scattering and has units of area.
The second factor k, kb/ko is a Aux term that accounts
for the different cruxes of the incident, scattered, and
ejected electrons and has units of momentum divided by
A. The last factor

I(@;.(, )I
"" I+(r„,r, )) I'

has the units of momentum density, or the reciprocal of

momentum cubed. In nuclear physics this factor is called
the form factor and is a measure of the deviation of the
target from a point. Taken together, the three factors
have units of area divided by momentum squared or area
over energy. Because of the indistinguishability of elec-
trons, Eq. (3.16) should be modified to take into account
exchange. This effect is largest for symmetric geometries
in which the energies of the scattered and ejected elec-
trons are identical. In the dipole region where momen-
tum transfer approaches zero, the Rutherford and ex-
change cross sections are nearly identical. It is also im-

portant to note that the first factor depends only on the
coordinates of the incident electron, while the momen-
tum density factor is only a function of the internal coor-
dinates of the target and residual ion. This separation
provides the operational basis of (e, 2e) spectroscopy be-
cause the part of the cross section that depends on the
properties of the target can be isolated from the part as-
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sociated with the collision. The separation is called fac-
torization and can be experimentally tested through the
measurement of momentum density for diferent values
of momentum transfer. Since momentum density is a
property of the target, it should be invariant with
momentum transfer if the factorization approximation is
valid.

The matrix element (3.16}has a particularly simple in-
terpretation if the initial-target wave function and
residual-ion wave functions can each be represented by a
single-orbital-product function. Let us consider the case
in which

The integrations over rb and r, in the expression for the
matrix element give the product of the overlap of P, (r, )

and f,r, and the Fourier transform of gi, (ri, ),

(P, (r, )ig, (r, )& f e' " Pb(rb)drb . (3.18)

The square of the absolute value of the first term is called
the spectroscopic factor, and the square of the absolute
value of the integral on the right is the square modulus of
the single-electron wave function in q space —the
momentum density p(q). The integral of p(q) over the
volume sin(0)cos(P)q d8dgdq is unity.

The frozen core app-roximation, a further simplification,
is based on treating the occupied orbitals of the ion as
identical to the corresponding orbitals in the neutral
atom. In this approximation, P, (r, )=f,(r, ), the spec-
troscopic factor is unity, and the matrix element equals
the momentum density directly. The frozen-core approx-
imation is also called the sudden approximation, the
name based on the assumption that the ejected electron
leaves the atom in a time much less than the time it takes
for the remaining electrons to adjust their motion to ab-
sence of the ejected electron.

It is often observed that the ejection of an electron by
an incident electron results in the simultaneous excitation
of a second electron, leaving the residual ion in a state
above the single-hole state. This phenomenon occurs
through the correlated motion of the electrons in the tar-
get and rejects the inadequacy of single-electron-product
wave functions that assume independent motion of the
bound electrons. One method for accounting for correla-
tion is to use a configuration interaction (CI) wave func-
tion. A CI wave function is written as a linear combina-
tion of single-electron-product wave functions. For the
residual ion, these functions include a representation of
the single-hole state arising from simple ejection of the
target electron as well as multiple-hole states arising from
the ejection of one electron and the simultaneous excita-
tion of one or more other electrons. For the target, the
CI wave function includes a representation of the ground
state as well as excited states of the same symmetry. For
the case of molecules, the target is almost always a
closed-shell system, and electron correlation is thus fre-
quently more important in the open-shell ion. In this
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FIG. 5. Coexistence diagram showing the allowed values of
momentum transfer A'K for a range of incident-electron ener-
gies. The energies are in units of twice the ionization potential
of hydrogen (e /ao). The energy loss is fixed at 27.2 eV. The
threshold, dipole, and binary regions are shown along with the
regions where the erst-Born, second-Born, distorted-wave im-
pulse (DWIA), and post-collision interaction (PCI) approxima-
tions are applied.

event, a CI wave function is only used to represent the
final states of the (e,2e) reaction, and the functional pro-
portionality between the cross section and the target-
electron momentum density can be retained.

The main features of the various theoretical scattering
treatments are summarized in Table I. Figure 5 is a
graphical representation of the kinematics of electron im-
pact and contains much of the information in Table I in a
diIterent form. The allowed values of momentum
transfer, fiIC'(in units of the electron momentum of the
first Bohr orbit) for a range of incident-electron energies
Eo (in units of twice the ionization potential of hydro-
gen}, at a single incident-electron energy loss of 27.2 eV,
are bounded by the single curved line. The upper half of
the curve corresponds to a scattering angle of 180, while
the lower half is for 0' scattering. The region around
AX=1 a.u. is the threshold region, where the energies of
the scattered and ejected electrons are small and the
Coulomb interactions between the scattered and ejected
electrons and the residual ion core dominate. Binary col-
lisions, in which energy lost by the incident electron is
complete'y transferred to a target electron, correspond to
the horizontal line at a AK value of 1 a.u. This is the re-
gion of the Bethe ridge shown in Fig. 3. At large values
of momentum transfer, the incident electron interacts
with the target core as well as with the target electron.
This interaction can be accounted for with the second
Born approximation. At su%ciently high incident-
electron energies where the incident and scattered elec-
trons can be represented by plane waves, and interaction
with the core is small, the 6rst Born approximation is the
appropriate theory The fi. rst Born app-roxim-ation region
overlaps the dipole region, where the incident electron
can be treated very much like a photon. At intermediate
values of incident energy and momentum transfer all of
the interactions between the electrons and core are of
comparable strength, and various distorted wave theories
are needed to accurately describe the scattering.
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D. Comparisons between theory and experiment

As we pointed out before, there are two distinct
branches of electron-impact ionization research. Both
were started at about the same time and continued up to
only a few years ago with comparatively little overlap.
This review is concerned with the determination of
momentum densities by electron-impact ionization, but
there is much to be learned from the experiments and
theories that are mostly concerned with the nature of
ionization. While the formalism is identical for the two
di6'erent lines of research, the kinematic regimes can. be

very di6'erent. Since we are still very far from a universal
theory of electron scattering, the kinematics of a particu-
lar experiment dictate the appropriate theory. In this
section we will bne6y review the research on ionization
and then concentrate on the theories and experiments
most often used for momentum-density determinations.

1. Ionization mechanism

The first electron-impact ionization experiments with
full determination of the angles and energies of the scat-

TABLE I. (e,2e) theoretical treatments.

Interaction

ep-e,

Projectile
electron

(ep)

Plane wave

Target
electron

(~, )

Ejected electron
(slow)

Scattered
electron

(Fast) Approximation

PWBA

Reference

Glassgold and
Ialongo (1968)

Plane wave Target state Coulomb wave Plane wave 1st Born Joachain and
Piraux (1986)

Asymptotic Plane wave
3-body
Coulomb

Target state Coupled asymptotic BBK Brauner et al.
(1989)

ep-e,
ep-target

Plane wave Target state X+, Second-order perturbation 2nd Born Byron, Joachain,
and Piraux (1986)

All orders Plane wave Target state X+ solution of close coupling
equations

Pseudostates
includes all
interations

Mota Furtado and
O'Mahony (1989)

ep-e, Plane wave Target state Coulomb wave Coulomb wave Coulomb
projected Born
with exchange

Geltman (1974)

ep-e, Wave in static
exchange
potential of
the atom

Target state Wave in static
exchange potential
of the ion

Wave in static
exchange potential
of the ion

DWBA
(Asymmetric)

Zhang et al.
(1992)

ep-e, Wave in static
exchange
potential of
the atom

Target state Wave in static
exchange potential
of the ion

Wave in static
exchange potential
of the ion

DWBA
(Symmetric)

Zhang et al.
(1990a)

ep-e, Wave in
optical
potential of
the atom

Target state Wave in optical
potential of the ion

Wave in optical
potential of the ion

DWIA McCarthy and
Weigold

(1976)

ep et Plane wave Target state Wave in the
Coulomb potential
of the scattered
electron

Wave in the
Coulomb potential
of the ejected
electron

PCI Popov and Erokhin
(1983)

ep-e, Wavelength
adjusted
plane wave

Target state Plane wave Plane wave Eikonal Camilloni et al.
(1978)
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0'

270' 90'

180'

FICx. 6. Schematic diagram of scattering at intermediate
momentum transfer. The direction of scattering of the incident
electron is shown along with the momentum-transfer direction.
The two lobes show the relative magnitude and direction of the
ejected electrons. The lobe in the forward direction is the
binary lobe. It is associated with the direct knockout of the tar-
get electron. The lobe in the backward direction is the recoil
lobe. It is a result of the collision of the ejected electron with
the residual-ion core.

tered and ejected electrons were done by Ehrhardt et al.
at an incident energy of 500 eV on helium (Ehrhardt
et al. , 1969, 1972a, 1972b, 1982a; Jung et al. , 1985). The
scattered electron was detected at a fixed, small angle
with respect to the incident direction, and the ejected
electrons were detected in coincidence with the scattered
electron over a wide angular range in the plane of the in-
cident and scattered electron. This is the asymmetric-
coplanar geometry. Under these conditions, the ejected
electrons were mostly concentrated in an angular range
about the momentum-transfer direction. Ejected elec-
trons were also detected over a range of angles in the
direction opposite to the momentum-transfer direction.
This is illustrated schematically in Fig. 6. The ejected
electrons in the forward direction were called binary elec-
trons, and those in the backward direction recoil elec-
trons. The general features of the experiments were ex-
plained by a model in which two different types of
scattering take place. The first is direct electron-electron
scattering giving rise to the binary lobe. The second is an
electron-electron collision followed by scattering of the
target electron from the ion core to produce the recoil
lobe. Once the basic nature of the collision was under-
stood, most of the theoretical effort was directed toward
calculating the details of the direction, shape, and magni-
tude of the binary and recoil lobes. The calculations have
been done at a variety of levels of approximation. The
simplest uses plane waves for the incident and scattered
electrons with a Coulomb wave for the ejected electrons
(Ehrhardt et al. , 1982b). More complex calculations
were based on the distorted-wave formalism (Madison
et aL, 1977; Bransden et al. , 1978) and the second Born

approximation (Byron ei a/ , .1980; 1982). Generally, the
more complex theories predict the position of the binary
peak and the ratio of binary to recoil peak intensities to
within 20% of the observations. There has been less suc-
cess calculating the position of the recoil peak. It was
not possible to ascertain from these results whether the
remaining discrepancies were due to inadequacies in the
formulation of the collision process or deficiencies in the
target wave function. To remove questions concerning
the target wave function, Ehrhardt et al. (1985) per-
formed a series of experiments on atomic hydrogen at in-
cident energies of 250, 150, and 54.4 eV.

The first series of (e, 2e) experiments have been fol-
lowed by experiments that cover an expanded range of
kinematic parameters. There are now also a number of
absolute (e, 2e) cross-section measurements in the
coplanar-asymmetric geometry in which the scattered
electron has lost only a small fraction of its incident ener-

gy and the ejected electrons have energies at most a few
times their binding energies. Avaldi et al. (1992) have
made measurements on helium for incident-electron en-
ergies of 300 eV and ejected-electron energies of 10 and
18.4 eV. At incident energies of 100 and 200 eV there are
also the absolute data of Cherid et al. (1992). At higher
energies there are the 8 keV measurements of Daoud
et al. (1985) on neon, the helium measurements of Aval-
di et al. (1987b) at 1024.6 eV, Duguet et al. (1987) at in-
cident energies of 4 and 8 keV, and the measurements of
Lahmam-Bennani et al. (1988) at 0.5, 1.5, and 8 keV.
Lahmam-Bennani has discussed the different procedures
for establishing an absolute scale for the higher-energy,
asymmetric experiments (Lahmam-Bennani et al. , 1987).
The methods depend essentially on the applicability of
the Born approximation and extrapolation to the optical
limit.

Early, absolute, nonsymmetric measurements were
made by Beaty et al. (1977) on helium and by Stefani
et al. (1978, 1979) on helium and neon. Van Wingerden
et al. (1979) measured the absolute value of the (e, 2e)
cross section at 45 in the symmetric-coplanar geometry.
More recently Pochat et al. (1987) have made absolute
measurements of the triply differential cross section in
the symmetric geometry over a range of angles at an in-
cident energy of 200 eV. The measurements were extend-
ed to large momentum transfer and large recoil momen-
ta. Improved measurements in this geometry at 200 eV
have been made by Frost et al. (1990) and Gelebart
et al. (1990). These have been followed by measurements
at 100 eV (Gelebart and Tweed, 1990). The absolute
scale for the measurements has been established by refer-
ence to absolute, elastic-scattering cross sections.

Absolute symmetric measurements have been com-
pared with a variety of calculations. McCarthy and
Roberts (1987) have compared plane-wave impulse ap-
proximation calculations with the data of van Wingerden
et al. (1979) and found good agreement. Data at 100 eV
(Gelebart and Tweed, 1990), and 200 eV (Gelebart et al. ,
1990) are not in agreement with the van Wingerden
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et al. (1979) data, but there is reasonable accord with
distorted-wave Born-approximation (DWBA) calcula-
tions (Zhang et al. 1990a; Cherid et al. , 1992).

Triple-difFerential cross section data have also been ex-
tended to hundreds of kilovolts in which relativistic
effects begin to be important (Schroter et al. , 1990;
Schiile and Nakel, 1982; Walters et al. , 1992). At the
higher energies, inner-shell ionization has been investi-
gated for silver and tantalum (Ruhoff and Nakel, 1987).

Though most experiments continue to use the coplanar
geometry, a series of experiments have been done in the
out-of-plane geometry, in which the ejected electron is
detected in a plane that lies at a large angle with respect
to the plane of the incident and scattered™electron wave
vectors. Gut-of-plane kinematics prefer entially select
ionizing collisions in which a strong electron-core in-
teraction has occurred. Cvejanovic and Read (1974) have
done out-of-plane experiments with the plane of the
detected electron at 150' and 180 to the plane of the in-
cident and scattered electrons. The energies of the
detected electrons were 0.2 to 0.3 eV above threshold.
Jones et al. (1990) have measured the angular distribu-
tion of 1 and 2 eV electrons as a function of the out-of-
plane angle and Rosel et al. (1982) have made absolute
measurements in the perpendicular plane at 2 eV above
the threshold for the ionization of helium. Distorted-
wave Born-approximation calculations for this geometry
have been remarkably successful in reproducing the ex-
perimental results (Zhang et a/. , 1990a).

Experiments with polarized targets (Frost et al. , 1990)
have been done, and there are calculations of (e, 2e) cross
sections in intense laser fields (Joachain et al. , 1988; Mar-
tin et al. , 1989).

2. Momentum densities

The practical determination of momentum densities re-
quires that there be a straightforward relation between
the (e,2e) cross section and momentum density. The
plane-wave impulse approximation (PWIA) meets this re-
quirement, but it is essential that the various assumptions
of the theory be tested experimentally if it is to be used to
get reliable results.

The approximation that the incident electron interacts
only with the target electron and that all other interac-
tions can be ignored (impulse approximation) is expected
to be valid for target electrons in the valence shell, and
can be tested by comparing the absolute cross-section
measurements with impulse approximation calculations.
As expected, the results show attenuation of the scattered
and ejected electrons at low incident-electron energies.
Generally, the impulse approximation is reliable for im-

pact energies ten to one hundred times the binding ener-

gy of the target electron. Correspondingly, the energies
of the scattered and ejected electrons should also be of
this order of magnitude for the impulse approximation to
be useful.

Factorization can be experimentally tested by rneasur-

ing the (e, 2e) cross section as a function of q for different
values of K. Since K is essentially a scale factor,
d o.

~, 2,~/dQ, d QbdEb should only depend on the square
of the magnitude of the matrix element

I (+;.(r, ) I

' " +(r, ,r, ) ) I', (3.19)

The degree of correctness of the electron-electron term in
the expression for the (e, 2e) cross section can be ascer-
tained through measurements in which q is held constant
and only K varied. Early tests of the validity of factori-
zation were done by Hood et al. (1973). These were fol-
lowed by detailed experiments in both coplanar and non-
coplanar geometries by Camilloni et al. (1978) and
Giardini-Guidoni et al. (1980). The results of the exper-
imental tests have shown that for symmetric kinematics
and large values of K, of the order of several times A/ao,
the shape of the (e, 2e) cross section is independent of K
so long as the magnitude of q does not exceed approxi-
mately two times A/ao.

It is important to note that a large-momentum-transfer
collision in which the incident electron loses most of its
energy is not equivalent to a collision with the same
momentum transfer in which the scattered and ejected
electrons leave the collision with substantial energies. In
the first case, the wave function of the low-energy scat-
tered electron cannot be accurately described by a plane
wave. For this reason (e, 2e) spectroscopy is best carried
out at large momentum transfer and large scattered and
ejected-electron energies. This can be achieved with sym-
rnetric kinematics in which the incident electron gives up
half of its momentum to the target electron and the scat-
tered and ejected electrons each have the same momen-
turn. The symmetric-noncoplanar geometry will be dis-
cussed in more detail in the experimental section. It
satisfies the conditions for the validity of the PODIA, but
is limited by the fact that the triple-difFerential cross sec-
tion is a minimum at the polar angles normally used. To
overcome this problem a number of other geometries
have been proposed. The potentially most useful is the
coplanar-asyrnrnetric geometry with incident-electron en-
ergies from one to several keV and ejected-electron ener-
gies as low as 100 eV (Lahmam-Bennani et al. , 1983;
Daoud et al. , 1985; Avaldi et al. , 1987a). Momentum
densities derived from the asymmetric measurements for
nitrogen are in good agreement with those obtained in
the symmetric-noncoplanar geometry, and there is the
advantage of shorter data collection times. This
geometry also allows for the rneasurernent of absolute
momentum densities.

which is independent of K. For the case of an X-electron
target and an (X—1)-electron residual ion, the simple
product wave functions have the form

N+=- —X aIA«I»
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Extensions of the PODIA have been tried in an efFort to
expand the region of applicability of the theory. The
eikonal approximation is very Inuch like the PODIA and
preserves the separation of collision and structure terms
(Stefani and Camilloni, 1985). The factorized, distorted-
wave approximation goes one step farther. In this exten-
sion of the plane-wave impulse approximation the
incident-, scattered-, and ejected-electron waves are cal-
culated in an optical potential that depends only on the
distance between the electrons and the core (Dixon et al. ,
1978; Fuss et al. , 1978, Weigold et a/. , 1979). A. conse-
quence of using distorted rather than plane waves is that
we no longer preserve the simple interpretation of the
structure factor as the square of the Fourier transform of
the one-electron wave function. Instead, the transform is
now a distorted-wave transform, a function that is more
dificult to interpret.

IV. EXPERIMENTAL METHODS

troscopy experiment: the momentum density as a func-
tion of momentum for a particular orbital (identified with
a particular ionization potential, IP), and the momentum
density at a fixed momentum value as a function of IP (a
binding-energy or separation-energy spectrum). The
former is scanned by sweeping the independent variable
identified in Table II; the latter is scanned by holding the
independent variable fixed and sweeping the incident en-
ergy. The binding-energy spectrum serves not only to
identify the energies of ionization processes in the target
atom or molecule (in a manner similar to photoelectron
spectroscopy), but, depending on the selection of momen-
tum, helps identify the symmetry of the orbital from
which an electron is ejected. For example, only orbitals
containing a totally symmetric component (i.e., atomic s
orbitals or molecular o orbitals) will have a significant
momentum density near q=O, whereas orbitals of lower
symmetry often have nodes at q=O with the largest
momentum densities near q =0.5R/ao.

A. General considerations
B. Source and detector configurations

Determination of momentum densities from (e, 2e)
processes requires an experimental regime in which the
scattering dynamics can be described quantitatively and
the ionization cross section is suKciently large to provide
an adequate signal-to-noise ratio. Current practice is to
work at high incident energies and large momentum
transfer so that the expression for the cross section can
be factored into the product of a term that depends on
the scattering geometry and a term containing the
momentum density of the target electron [Eq. (3.16)].
Scattering geometries are chosen so that the scattering
term is either constant or varies slowly, in a predictable
manner, with the independent variable. Unfortunately,
the requirement for an accurate theoretical description of
the scattering dynamics obliges experimenters to work
under conditions in which the ionization cross section is
at, or near, its minimum value.

The experiments are carried out in high vacuum using
standard cathode-ray-tube (CRT)-type electron guns with
thermionic cathodes as sources and (in most cases)
electrostatic-deflection

analyzers with electron multi-
pliers to detect the outgoing electrons. Nanosecond tim-
ing electronics are used and, since measurement of the
momentum density for a single orbital may require a day
or more, long-term stability in the entire system is essen-
tial. Electron trajectories must be measured with an ac-
curacy of a fraction of one degree; magnetic shielding is
required to reduce the ambient field to a milligauss or
less. The energy of the outgoing electrons is usually mea™
sured with a resolution consistent with the energy width
characteristic of the source, 0.5 to 1.0 eV [full width at
half maximum (FWHM)j, by using decelerating lens sys-
tems between the target volume and the energy analyzers
of the outgoing electrons.

Two types of data can be collected in an (e, 2e) spec-

The geometry of an (e, 2e) experiment can be described
in terms of the variables Eo, E„Eb,8„8b, and P defined
in Fig. 1. The various scattering apparatus geometries
are summarized in Table II. In the plane-wave impulse
approximation expression for the (e, 2e) cross section
(3.16), the scattering term is nearly constant if the
momentum transfer AK is fixed. This can be accom-
plished in a geometry in which the incident-electron en-
ergy, the scattering angle, and the energy loss do not
change, that is, where Eo, E„and 8, are fixed. The
PWIA is most accurate when K is large, a condition that
is best met with symmetric sharing of energy between the
outgoing electrons so that E, =Eb. Under these condi-
tions an initially stationary, unbound target electron
would be ejected in the plane defined by ko and k„with
6, =Oh =45 . For an actual target electron in a bound
orbital, the initial momentum adds to that of a stationary
target. The ejected electron may move out of the plane
defined by the incident and scattered directions so that
the azimuthal angle P is different from zero. The value of
P, or the derivation of 8b from 45', is a measure of the in-
itial momentum of the target electron.

The great inajority of (e, 2e) momentum-density deter-
minations have been carried out in the syrnmetric-
noncoplanar geometry wherein P is chosen as the in-
dependent variable. In this geometry the incident-
electron energy is fixed at an energy two to three orders
of magnitude greater than the binding energy of the tar-
get electron, and scattering events are selected in which
the available post-collision energy is symmetrically
shared between the outgoing electrons (E, =E„=E
=(Eo II')/2). The po—lar angles describing the trajec-
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tories of the scattered and ejected electrons are equal
(8, =8& =8) and set at 45 . The simple monotonic rela-
tion between P and the target electron momentum q in
the symmetric noncoplanar geometry is given in Table II.
It is worth noting that, since IP is always finite, zero on
the momentum scale is inaccessible when 0=45 .

Electron momentum densities have been derived from
experiments carried out in other geometries as indicated
in Table II. The first (e, 2e) spectroscopy experiment
(Camilloni et al. , 1972) employed a symmetric coplanar
arrangement in which the polar scattering angle
(8, =8b =8) was varied while the azimuthal angle P was
fixed at zero. This geometry provided experimental sim-
plicity; however, the interpretation of data is more
dificult than for the symmetric-noncoplanar case since
the (e, 2e) cross section in the former geometry is very
sensitive to the scattering approximation (Camilloni
et a/. , 1978). The accuracy of interpretation in these ex-
periments was improved by turning to an "out-of-plane"
symmetric geometry in which the detectors for the scat-
tered and ejected electrons remain stationary relative to
the scattering center so that the scattered and ejected-
electron trajectories define a plane, and the position of
the incident electron source was moved (Giardini-
Guidoni et al. , 1978; Fantoni et al. , 1980). The indepen-
dent variable was the angle of elevation, P', of the elec-
tron source relative to the plane defined by the two detec-
tors and the scattering source. In this geometry the
scattering angle O„and hence the momentum transfer,
are only weak functions of P', and, furthermore, the data
appear to be less sensitive to distortion efFects (Camilloni
et al. , 1980).

The (e,2e) cross section increases as the scattering
geometry becomes asymmetric; however, this increase
comes at the expense of a decrease in momentum transfer
for a fixed incident energy. Momentum densities have
been obtained in a highly asymmetric coplanar geometry
by using an incident energy greater than that used in
symmetric experiments to insure that the momentum
transfer was suKciently large to ensure the validity of the
plane-wave impulse approximation. So long as the kine-
matic conditions correspond to those of the Bethe ridge
(see Fig. 3), accurate momentum densities can be extract-
ed from the scattering data (Avaldi et al. , 1987a).

Recently (e, 2e) spectroscopy measurements have been
carried out using a geometry in which all the scattering
angles are held constant and the momentum spectrum is
scanned by varying the distribution of energy between
the two outgoing electrons (Lower et al. , 1991). This
geometry is nonsymmetric coplanar (8, =8b ), and the in-

dependent variable is hE =E, —Eb. The advantage of
such an experiment is that there are no moving parts.
The momentum density is scanned by varying electrical
potentials. The disadvantage is that the value of the
momentum transfer changes as the momentum spectrum
is scanned, and this variation must be accurately ac-
counted for when extracting a momentum density from
the measured cross sections.

C. Coincidence techniques
and signal-to-noise considerations

In an (e, 2e) experiment, pairs of electrons are detected
in such a way as to be certain that they both originated
from a single ionization event. This is accomplished
through a determination of the arrival times of the elec-
trons at the detectors. In principle, the arrivals of two
(e, 2e) electrons is precisely correlated in time (in a sym-
metric experiment there is a zero time difference between
the arrivals of the two electrons). Asymmetries in veloci-
ties and path lengths and delays in the measuring elec-
tronics introduce an unavoidable dispersion in the arrival
time. This dispersion establishes the time resolution A~
of the experiment. Figure 7 is an example of a time spec-
trum in which the number of two-electron detection
events is plotted as a function of the difference between
arrival times. For convenience, perfect coincidence, cor-
responding to zero time difference, is made to appear in
the center of the spectrum by inserting a delay into the
electronic path from one of the detectors. The coin-
cidence counts appear on a background that arises from
separate events that accidentally occur with the same
time correlation as true coincidences. The (e, 2e) signal is
therefore the total number of events in the coincidence
window (Nc+Nz ) minus the number of accidental coin-
cidences in the window (N„). This latter quantity can-
not be determined directly, but is inferred from the num-
ber of accidental coincidences adjacent to the coin-
cidence window. The relative statistical uncertainty in

(e,2e) Time Spectrum
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XAE, AEbhQ, AQb . (4.1)

The rate of accidental coincidences within a time win-
dow A~ is given by the product of the accidental count
rate at each detector (the singles rate) and br. The sin-
gles rate at each detector depends on the cross section for
ejection of an electron into the detector, the incident
current, the target density and length, and the energy
and angle resolution of each detector. Assuming the
electrons contributing to the singles counts originate only
in the scattering volume, these are the cross sections a,
and o.

b for the ejection of electrons of nominal energy E,
or Eb integrated over the energy and solid angle of the
scattered electron. The accidental coincidence rate is

R„=(Ionlcr, bE, bQ, )(Ionloi, bEt, bQI, )b.r . (4.2)

The accidental rate will be increased if singles that
originate from other processes, such as scattering from
electrode surfaces, enter the detectors. It is essential that
the detectors be shielded from stray electrons. Unwanted
stray electrons can be efFectively excluded by baSes be-
tween the scattering volume and the electron energy
analyzers, by isolating the electron gun in a separate,
difFerentially pumped chamber, and by surrounding the
entire apparatus with a positive-biased screen to collect
slow stray electrons (Goruganthu et al. , 1988).
Multiple-scattering efFects, endemic to transmission
(e, 2e) experiments on solid films, have been compensated
for by deconvolution techniques (Jones and Ritter, 1986).

For a total data collection time t, the number of true
coincidences will be Act and the number of accidental
coincidences will be Rzt. The relative statistical uncer-
tainty of an (e, 2e) measurement over a given period of
time (t) is

20verall energy resolution can be approximated by AE, AEI,
or more accurately by the sum in quadrature subject to energy
conservation as discussed by Lahmam-Bennani et al. I,'1985).

an (e, 2e) measurement can be estimated as
+Ac+2K„/Kc, where the uncertainties in the total
counts and accidental counts have been added in quadra-
ture.

In order to understand the limitations and advantages
of the coincidence technique, it is useful to obtain expres-
sions for the signal and the statistical uncertainty in
terms of the experimental parameters and relevant cross
sections. We begin with expressions for the true and ac-
cidental coincidence rates, Rc and E.~.

The true coincidence rate (Rc) depends upon the
cross section for electron-impact ionization (d cr~, z, i/
dQ, dQbdE, dEb), the incident electron current Io, the
target density n and length I, and the instrument parame-
ters that determine the resolution of the experiment
( bE„bEi„bQ„b.Qh ):

R,=I,nI (d'~„„,/d Q.d Q, dE.dE, )

QRc+2R „
Rct 1/2 (4.3)

This quantity can be decreased by increasing the in-
cident current or the target density; however, beyond a
certain point, the advantage of this approach diminishes
rapidly because the number of accidental coincidences in-
creases as the square of Ionl. Typical (e, 2e) experiments
are carried out in a regime where Rc/R~ approaches
unity. In this case the relative statistical uncertainty ap-
proaches Q—', of its value at the high-current/high-
density limit.

The precision of an (e, 2e) experiment is improved by
reducing the accidental coincidence rate. This is usually
accomplished by reducing the coincidence time window
(br). Schemes have recently been put forward to deal
with the variation in flight times of electrons through
electric-deflection energy analyzers (Volker and Sandner,
1983; Best and Zhu, 1985; Hayes et a/. , 1988; Lower and
Weigold, 1989). Fast rise-time amplifiers and constant-
fraction discriminators can be used to reduce electronic
time dispersion. The statistical uncertainty in the deter-
mination of X~ can be reduced by measuring the ac-
cidental rate over time windows that are much wider
than kt and scaling the results by the ratio of the window
width to At. The corresponding reduction in accidental
rate uncertainty is the square root of this ratio.

D. Momentum-space resolution

The resolution in momentum space is significantly lim-
ited by the experimental conditions necessary to give a
statistical uncertainty adequate to permit meaningful
comparisons between experimentally-obtained momen-
tum densities and theoretical calculations. Incident
currents are up to 10 pA, the maximum obtainable from
a well-collimated electron source without serious degra-
dation of the energy width. Gas-phase experiments are
carried out with a target pressure of about 1 mtorr; a
greater target pressure would result in a significant num-
ber of multiple-scattering events. The typical timing
resolution of 3—5 ns is established by the dispersion of
fIight times through the electron analyzers rather than by
the resolution of the timing electronics. The magnitude
of the cross sections that appear in the expressions for
Rc and R~ is determined by the choices of incident-
electron energy and scattering geometry needed to allow
accurate interpretation of the experimental data The en-

ergy resolution of the experiment is established by the en-

ergy width characteristic of the electron gun. Typical
data collection times for each point on the momentum
density are of the order of 1 to 10 h (see, however, Gao
et al. , 1988). Because of the weak dependence of &p on
I;, it is impractical to increase the data collection time in
order to improve the precision of the data significantly.
An increase in the angular acceptance of the detectors
(bQ) decreases &p; however, the resolution in momen-
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turn space is almost exclusively determined by the angu-
lar resolution. In the most recent experiments under the
conditions described in Table II a statistical uncertainty
of 3%%uj is obtained with angular resolution of about
3 X 10 sr. Under these conditions the momentum reso-
lution is 0.07—0.10 iri/an.

E. Multiplexed experiments

A number of innovations have led to significant im-
provements in both the precision and accuracy of (e, 2e)
spectroscopy. The most important are schemes that per-
mit many (e, 2e) measurements to be carried out simul-
taneously. Moore and co-workers (Moore et al. , 1978;
Goruganthu et al. , 1988) have developed a symmetric-
noncoplanar apparatus, illustrated in Fig. 8, that uses a
single spherical electrostatic energy analyzer to select the
energies of both outgoing electrons. An array of electron
multipliers in the exit plane of the analyzer are arranged
so that each pair of detectors corresponds to a di6'erent
azimuthal angle (P) and hence to a difFerent value of
momentum of the target electron. A multiplexed timing
circuit permits coincidences at every pair of detectors to
be monitored simultaneously (Skillman et al. , 1978;
Goruganthu et al. , 1988}. As many as 49 points on the
momentum density can be measured at once. Weigold
and co-workers (Cook, McCarthy, Stelbovics, and
Weigold, 1984; Cook, Mitroy, and Weigold, 1984; Lower
and Weigold, 1989; Weigold, 1990) and Williams and his
collaborators (Hayes et al. , 1988) have taken a different
approach by developing a multiplexed apparatus that
permits an entire binding energy spectrum to be observed
at a single value of momentum. This apparatus uses two
spherical, electrostatic-deflection-type energy analyzers
in a symmetric-noncoplanar geometry. Scattered elec-
trons are dispersed in energy across multichannel-plate
position-sensitive detectors at the output focal plane of
each analyzer.

F. Solids

In spite of the fact that the first experiments were per-
formed on the carbon K-shell electrons in carbon-

containing solid films (Amaldi er al. , 1969; Camilloni
et al. , 1972), (e, 2e) spectroscopy of solids has not pro-
gressed nearly so far as work on isolated gaseous atoms
and molecules. Daunting technical difhculties are no
doubt the reason for this lack of progress. Early work on
X- and L-shell electrons of carbon in evaporated carbon
and hydrocarbon films (Krasil'nikova et a/. , 1975) and of
aluminum in polycrystalline aluminum (or aluminum ox-
ide; Persiantseva et al. , 1979}was of such low resolution
in energy (16—140 eV) and inomentum (1.5 —2.0 iii/ao)
that no meaningful comparison with theory could be
made; however, these experiments did confirm the feasi-
bility of the technique. The first quantitative results on
solid films were obtained by Ritter and co-workers (Gao
et al. , 1988, 1989) who measured the spectral momentum
density for carbon in graphite (parallel and perpendicular
to the crystal c axis} and in amorphous carbon. These
measurements were carried out with an incident-electron
energy of 25 keV in order to reduce multiple-scattering
e6'ects, and employed Wien filter analyzers to obtain ade-
quate energy and angle resolution at this high incident
energy. In the intervening period other groups have un-
dertaken the design of apparatus to study solids. It is
evident that extraordinary measures must be taken to as-
sure long-term mechanical and electronic stability, and to
create and maintain cleanliness of the sample. The most
recent results suggest that in the near future it will be
possible to obtain binding energy spectra and perhaps
also momentum density profiles for solids with nearly the
same precision and resolution as currently possible with
gaseous samples (Lower et al. , 1991).

Experiments on solids o6'er the possibility of measur-
ing the momentum density profile in a direction relative
to the orientation of an atom or Inolecule; however, this
is not ordinarily possible in the gas phase where only a
spherically averaged momentum density can be obtained
owing to the rotational motion of the target. It is not
feasible to orient a collection of atoms or molecules, but
it is possible to select from all the atoms or molecules in a
sample those which possess a particular orientation.
Zheng et al. (1990) have recently demonstrated this pos-
sibility by measuring the momentum density for excited
sodium atoms in aligned states prepared by optical
pumping with polarized laser light.

4
5
6
7

FIG. 8. Symmetric-noncoplanar (e,2e) spec-
trometer based on a single spherical electro-
static analyzer. Only those scattered and eject-
ed electrons of the same energy are transmitted
by the analyzer to the detector plane where 14
separate channel-electron-multiplier 4,'CEM}
detectors are located. For the two electron
trajectories shown on the diagram, the relative
out-of-plane angle is $59.
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V. INTERPRETATION OF {e,2e) DATA
IN TERMS OF ELECTRONIC STRUCTURE

A. Atomic and molecular properties
related to the (e, 2e) cross section

In actual practice, (e, 2e) spectroscopy for the deter-
mination of electron momentum densities is always car-
ried out in a regime in which the incident- and ejected-
electron energies and the momentum transfer are
su%ciently large that the process is accurately described
by the plane-wave impulse approximation. As described
above, this results in the expression for the cross section
being separated into terms each of which depend ex-
clusively either upon the scattering dynamics or on the
electronic structure of the target. Generalizing Eq. (3.16)
to the case of a many-electron atom or molecule, this ex-
pression takes the form.

(e 2e) ~d +a d +b dEb

, ; (k.k, yk, )I&a,.Ie" Iq }I'

for the ejection of a target electron with coordinate r,. in
an atom or molecule with total electronic wave function
4 to create an ion with wave function @, (where the first
index identi6es the hole left by the knocked-out electron
and the second identifies the state of the ion). For the
case of molecules it is assumed that the nuclei are station-
ary at their equilibrium positions. In the usual sym-
metric noncoplanar geometry, the factors in front of the
absolute value sign are constant so that the (e, 2e) cross
section is simply proportional to the last term on the
right, which is equivalent to the square of the Fourier
transform of the ion-neutral overlap. This expression is
greatly simplified if correlation effects are not important
for the target electron, as is frequently the case for a
closed-shell molecular target. The target electron can
then be described by a single-electron wave function f;
(i.e., an orbital) representable by a single Hartree-Fock
determinant. Then, if electron correlation in the open-
shell ion is accounted for by the use of a CI wave func-
tion represented by a linear combination of Hartree-Fock
orbitals derived from the same basis set as used for the
neutral, the cross section becomes

~(„2,) =~(, ,)(k.kb&ko)I & @;.I+; & I'I &e""

(5.2)

8(r)= J)p*(r+s))p(r)ds . (5.3)

The analogous function in momentum space, E(q), is the
familiar x-ray form factor. The directional arrows are
important features of the Weyrich diagram, indicating,
for example, the impossibility of obtaining uniquely the
momentum-space wave function from the momentum
density because of the loss of phase information in the
square modulus.

The Weyrich diagram can be interpreted in two ways.
In the total-electron description, r implies r&r2 r„,
and q implies q&q2

. q„. Alternatively, the diagram ap-
plies to a single-electron description (r implies r;, q im-

plies q;). It is worth noting that for the latter case, the
(e, 2e) experiment provides the only means to observe
directly one of the functions described by the diagram.

FT
F(q)

AC

q(~) = = x(q)
FT

FT

most rudimentary interpretation of (e, 2e) data adopts the
frozen core approximation, equivalent to taking N; iden-
tical to III';. The spectroscopic factor is then unity and
the (e, 2e) cross section is directly proportional to the
target-electron momentum density.

A useful interpretation of measured momentum densi-
ties relies upon the relations between momentum-space
and position-space descriptions of atomic and molecular
electronic structure. These are described in Fig. 9 by a
diagram originally constructed by Weyrich et al. (1979).
Here we see that the position-space and momentum-
space wave functions are the Fourier transform (FT) of
one another. The square modulus (I I ) of each wave
function gives the density distribution in each spatial rep-
resentation. Furthermore, Fourier transformation of
each density function enables a transformation to the
complimentary coordinate space. The Fourier transform
of the momentum density yields a function in position
space, B(r), which is the autocorrelation function (AC)
of the position-space wave function:

where )Il;=4/g;. This is the target Hartree I'ock ap--
proximation (THFA), which forms the basis of most in-
terpretations of (e,2e) data. The term I(4, I%',. )I is
the spectroscopic factor, which gives the probability of
producing the a state of the ion upon ejection of the ith
electron from the neutral target. The last term on the
right, I(e' " IP;) I, the square modulus of the Fourier
transform of the single-electron wave function, is the
momentum density of the target electron, p(q, ). The

I I

2 m square modulus

FT —+ Fourier transform

Ap m autocorrelation

FIG. 9. Diagram showing the relation of the position-space
wave function, electron density, and autocorrelation function to
the corresponding functions in momentum space (Weyrich
et a/. , 1979).
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With respect to total electron properties, Compton
scattering and x-ray difFraction data are related to p(q)
and F(q), and hence to the total-electron wave function.
A further important distinction between (e, 2e) and
Compton scattering arises when sampling an isotropic
substance or unoriented molecules in the gas phase. In
this case the (e, 2e) signal intensity depends upon the
spherically aueraged momentum density p(q), defined by

p(q) = f f p(q)d (cos8)dg, (5.4)

whereas the Compton signal is a measure of the radial
probability distribution function, I (q) =p(q)q . The prob-
ability distribution function is insensitive to the
momentum-space wave function for small values of
momentum owing to the small volume of phase space
available for values of momentum near the momentum-
space origin. Physical phenomena such as polarization
and chemical phenomena such as bond formation change
primarily the behavior of electrons at low momentum.
As a consequence, the (e, 2e) technique is probably more
appropriate for investigating the connection between
such phenomena and the electronic wave function in
spite of the fact that Compton data is generally of higher
precision than (e, 2e} data.

B. Interpretation of (e, 2e) data

The interpretation of (e, 2e) data can proceed by one of
three routes:

(l) Models can be developed that relate physical and
chemical properties of materials to a momentum-space
description of electronic structure. These might take the
form of momentum-space orbitals and employ the
momentum-space analogs of interpretive schemes such as
the Woodward-HofFrnan rules.

(2) Familiar position-space models can be retained and
an attern. pt made to understand their implications for ob-
servations made in momentum space.

(3) The momentum-space data can be transformed to
position space in which familiar models can be more easi-
ly applied.

The first possibility is not very promising because of
the general reluctance of most physicists and essentiaHy
all chemists to think in momentum coordinates, as well
as the nearly insurmountable difficulties involved in solv-
ing the integral electronic equation of motion in momen-
tum coordinates (the momentum-space Schrodinger
equation). An advantage of the momentum-space repre-
sentation is that the wave function and the momentum
density have relatively large amplitudes at low momen-
turn. Thus they are sensitive in regions most obviously
related to physical and chemical phenomena. On the
other hand, the nuclei do not appear as points in the elec-
tron momentum space. Thus the familiar atomic center
or molecular backbone is missing.

The second route largely involves an attempt to under-
stand the e6'ect of the Fourier transformation on the

position-space wave function. This is the approach that
has received most attention.

The third possibility requires an understanding of the
relation between 8 (r) and p(r), since the familiar models
used by chemists and physicists relate atomic and molec-
ular properties to the electron-density distribution.

C. The Fourier transform of the wave function

3. Atomac orbitals

Almost all (e, 2e) experiments have been performed on
unoriented atoms or molecules in the gas phase. Inter-
pretation based upon the position-space orbital model of
electronic structure then requires a comparison of the
data with the spherical average of the square modulus of
the Fourier transform of the single-electron wave func-
tion. With this approach it is most important to under-
stand the e6'ect of the Fourier transformation on the
position-space wave function and, in particular, the spa-
tial inversion associated with this operation. It is the na-
ture of the Fourier transform that the amplitude at every
point in r space contributes to that at each point in q
space; however, the amplitude of the r-space wave func-
tion for large values of r is primarily responsible for the
momentum density at small values of momentum, and
vice versa. This also follows from the uncertainty princi-
ple. As a consequence, the momentum density near the
origin in q space is always relatively large since a very
large volume of position space is compressed into a very
small volume of momentum space. This eQ'ect makes the
momentum density especially sensitive to physical and
chemical phenomena, which are governed by the
behavior of the electro~ far from the nucleus where its
motion is described by the large-r "tail" of the wave
function.

Two other properties of the Fourier transform are use-
ful in the interpretation of the momentum density in
terms of the position-space orbital model. The Fourier
transform of a narrow function yields a broad function,
and vice versa. Thus the distribution of momentum den-
sity is broad for a localized orbital, and, conversely, a
disuse orbital yields a narrow momentum-density func-
tion. A second important property is that the nodal
character of a function is preserved by a Fourier trans-
forrn. A consequence is the distinctive di6'erence in ap-
pearance between an atomic s function and a p function.
An atomic p orbital has a nodal plane through the origin
in both position space and momentum space and must
thus yield a spherically averaged momentum density of
zero for q=0. On the other hand, the momentum densi-
ty for an atomic s orbital is a maximum at q=0. This is
illustrated in Fig. 10 for the case of hydrogenic 2s and 3s,
and 2p and 3p orbitals. The figure also illustrates the
e6'ect of localization in r space. It can be seen, for exam-
ple, that the 3p momentum-density function is more nar-
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FICr. IO. Momentum densities for the hydrogen atom.

row than the 2p, in accord with the 3p orbital being more
disuse than the 2p.

2. Molecular orbitals

It is dificult to derive a wave function for a molecule
from a momentum-space formulation of the problem.
With the single exception of H2+ (McWeeny, 1949),
momentum-space wave functions and momentum densi-
ties are always calculated by a Fourier transformation of
a solution derived in position space. As a further practi-
cal matter, the derivation of appropriate wave functions
for all but the simplest molecules is based upon the linear
combination of atomic orbitals, or LCAO, model in
which the molecular wave function is approximated by a
sum of terms each of which is an approximation of an
atomic wave function centered on an atom. in the mole-
cule. The selection of atomic orbitals included in the
LCAO is based upon the symmetry of the molecule,
physical intuition, and the computational power avail-
able; however, the essential features of the momentum
density predicted by transforming an I CAO orbital can
be understood by carrying out the process on the sim-
plest possible wave functions as illustrated by Coulson
and Duncanson in an elegant series of papers in 1940 and
1941 (Coulson, 1941a, 194lb; Coulson and Duncanson,
1941a, 1941b; Duncanson, 1941; Duncanson and Coul-
son, 1941).

The most elementary LCA(O wave function for a one-
electron homonuclear diatomic molecule has the form

where y., is an a~omic wave function; R is t e in'ernu-
clear vector, and the coordinate system is located on one
of the nuclear centers; and S is the overlap integral be-
tween 1t,o(r) and i/, 0(r —R). For purposes of illustra-
tion, we consider the case in which a plus sign gives the
bonding molecular wave function while a minus sign

gives the antibonding wave function for which there is a
nodal plane between the two atoms. Taking the Fourier
transform and squaring the result gives the momentum
density

1 cos qR

P(q) =
I k+(q) ~'= ~40(q) ~'

The erst term of the product on the right is the momen-
tum density of the atomic wave function. All informa-
tion about the bond between the atoms is contained in
the second term. Because of the cosinusoidal variation of
this term it is called the interference term or di+raction
factor. For the bonding combination, the interference
term vanishes for q R/iri=(2n + 1)~, and the momentum
density along the bond direction oscillates with a period
of 2~/R. Furthermore, the interference term is a max-
imum for q perpendicular to R, and thus for a given
magnitude of q there is a greater probability that the
momentum is oriented perpendicular to the bond than
that it is parallel. The opposite is true for the antibond-
ing combination. Thus, when electron density is concen-
trated along a bond, the momentum density is concen-
trated in the direction perpendicular to the bond, and
vice versa. The so-called bond oscillation associated with
the interference term is rarely observed in the spherically
averaged single-electron momentum density because the
atomic term damps the interference term nearly to zero
as q/iii=2~/R is approached. Experimental verification
of this has been done by Bharathi et al. (1991).

Many properties of the single-electron molecular
momentum density can be illustrated with the
minimum-basis-set LCAO wave function given above.
Atomic s-orbital basis functions give two molecular or-
bitals, o. and o.„,respectively bonding and antibonding.
The a is totally symmetric and, like the atomic s orbital,
gives an s-type spherically averaged momentum density
[Fig. 11(a)]. The o „has a nodal plane perpendicular to
and bisecting the internuclear axis, which, being also a
plane of symmetry, appears in momentum space as a no-
dal plane through the origin. The o.„momentum density
thus is similar to the atomic p-type density function [Fig.
11(b)]. In fact, since only the o g is totally symmetric, all
other molecular orbitals of a homonuclear give p-type
momentum-density functions.

The linear combination of atomic p orbitals may give cr

or vr molecular orbitals depending on the orientation of
the p function (that is, projection of the angular momen-
tum vector) with respect to the internuclear axis (conven-
tionally taken as the z direction). The m orbital wave
functions Inay be de6ned by

The bonding combination (~„) and antibonding com-
bination (ms ) both have a planar nodal surface coinciding
with a symmetry plane containing the internuclear axis
and thus yield p-type momentum-density functions [Figs.
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FIG. 11. Molecular momentum densities derived from
minimum-basis-set LCAO wave functions for a homonuclear
diatomic (see text for details).

11(c) and 11(d)]. The mg has an additional nodal plane
perpendicular to and bisecting the internuclear axis, re-
sulting in two nodal planes through the origin in q space.
This has the e6ect of reducing the volume of phase space

available to momentum density at small q. The result
[Fig. 11(d)] is a displacement of the maximum in the
momentum density function to higher q relative to the
corresponding, bonding m. orbital. This efFect for anti-
bonding interactions may also be understood from a con-
sideration of the momentum operator. The momentum
depends upon the gradient of the position-space wave
function. Rapid variation of the antibonding wave func-
tion in the internuclear region yields an increased proba-
bility of high momentum components compared to the
case for the bonding wave function. Note also the
difference in the width of the momentum-density func-
tion between the bonding and antibonding orbitals. The
antibonding wave function in r space is localized at the
nuclear centers, whereas the bonding function is more
di6'use, extending into the region of the bond. As a
consequence, the bonding momentum density is localized
and the antibonding density relatively more di6'use.

The inclusion of p, atomic orbitals in the representa-

tion of o. molecular orbitals provides one last illustrative
example:

gp (r)=%~ [(age (r)+btj'j, (r))

+(ag (r —R)—bP, (r —R))],
where the coeImcients a and b determine the relative p,
and s contributions. The corresponding rnomentum-
density function is

=2K+ a ig„(q)i 1+cos-

+b ig', (q)i 1+cos

The bonding o. has momentum density proportional to
b at q=O [Fig. 11(e)], whereas the antibonding o „with
a planar nodal surface between the atoms in position
space, and thus a nodal plane through the momentum-
space origin, yields a p-type spherically averaged
momentum-density function [Flg. 11(f)]. In addltlon to
the nodal plane associated with the antibonding cornbina-
tion, both o. and o.„have a nodal surface associated
with the nodal surface in the p basis functions. This no-
dal surface in r space is ellipsoidal and yields an ellip™
soidal nodal surface with its major axis in the perpendic-
ular direction in momentum space.

Classification of features in the rnomenturn density be-
cornes less clear as one proceeds from homonuclear dia-
tomics to heteronuclear diatomics to polyatomics. For
example, the nodal surface associated with antibonding
interactions in a heteronuclear molecule is not planar.
As a result the corresponding nodal surface in momen-
tum space does not pass through the origin, and thus the
antibonding momentum density will have both s charac-
ter (with nonzero amplitude at the origin) and p charac-
ter (with a local maximum at an intermediate value of q ).
Nevertheless, some useful observations can be made on
the basis of group theory.

Molecular orbitals are classified according to how they
transform under the operations of the group to which the
molecule belongs. An orbital is given the name of the
representation that transforms in the same manner as the
orbital (hence o.g, a„, and so on). The symmetry ele-
ments of the orbital are preserved under Fourier transfor-
mation. In addition, the requirement of zero net momen-
tum in the rest frame of the molecule introduces a center
of inversion to the momentum-space symmetry group
(unless one already existed in position space). Thus, for
example, the orbitals of a molecule such as H20, which
belong to the C2, group in r space, belong to D2I, in q
space. In momentum space, all orbitals except those that
transform as the totally symmetric representation of the
group will have a node at the origin. In H20, the a& or-
bitals may have nonzero (spherically averaged) momen-
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(in the case of the THFA) or overlap integrals (when
initial-state correlation effects are considered) must be
calculated. In the case of acetylene, large-basis-set
single-configuration wave functions, as well as CI wave
functions, have been used to accurately describe the
shape of the momentum-density functions of the valence
orbitals. Predictions of the amplitude of the (e, 2e) cross
section using CI wave functions have not been very satis-
factory; however, a recent Green's-function calculation
(Weigold et al. , 1991) gives excellent agreement with ex-
periment.

Dramatic evidence of the e6'ect of electron correlation
upon the momentum density is provided by the example
of the outermost valence orbital of 820 shown in Fig. 13
(Bawagan et al. , 1987). To model the experimentally ob-
served momentum density, THFA calculations using an
extreme range of theoretical wave functions have been
employed. The trend usually observed with expansion
and optimization of the wave functions are evident in the
figure. The minimum-basis-set function (MBS) fails to
account for a significant part of the density at low
momentum. A near-Hartree-Fock calculation (NHF)
yields an improvement but still falls short in the low-
momentum region. This can be attributed to the fact
that variational optimization, which in this case gives an
accurate energy, is insensitive to the diffuse (i.e., large-r)
parts of the wave function, which are important in
describing chemical phenomena. A calculation of the
momentum-density function using a greatly extended
basis set, the 109-GTO incorporating Gaussian-type
functions of s, p, d, and f symmetry, and, ultimately, a
calculation of the ion-neutral overlap [Eq. (5.2)] using CI
wave functions based upon the 109-GTO basis set for
both initial and final states results in even closer agree=
ment between theory and experiment. The remaining

discrepancy in the low-momentum region has been attri-
buted to the finite resolution of the experiment (Bawagan
and Brion, 1990).

E. Fourier transform of the momentum density

The Fourier transform of the momentum density,
8 (r), has been examined by a number of workers
(Benesch et a/. , 1971; Weyrich et al. , 1979; Thakkar
et al. , 1981), especially for the case of Compton profiles,
since the time of Coulson's original work (Coulson,
1941a, 1941b; Coulson and jouncanson, 1941a, 1941b;
Duncanson, 1941; Duncanson and Coulson, 1941). The
8 (r) function provides an alternative way of interpreting
momentum densities. This function, equivalent to the
autocorrelation function of the spatial wave function [Eq.
(5.3)], is given by

8 (r) =
3&2 fp(q)exp(iq r/iri)dq,

1

(2~)'"
where, as above, p(q) = ~g(q) ~, and

g(q) = J g(r)exp(iq. r/fi)dr .I
(2~)'"

(5.10)

For r=0, 8(r) is the normalization integral with a value
of unity. 8(r) functions have their maximum values at
r =0, and are generally small at r values beyond 1 a.u.

The usefulness of the 8 (r) function compared with the
momentum density can be illustrated with the simple ex-
ample of the one-electron homonuclear diatomic mole-
cule treated in the previous section. The 8 (r) function is
obtained by taking the Fourier transform of Eq. (5.6).
The result is

8,0(r)+—,
' [8,0(r+ R)+8,0(r —R) ]8(r)= (5.11)
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FIG. 13. (e, 2e) momentum density for the 1b& orbital of water
along with calculations in the target Hartree-Fock approxima-
tion based upon minimum-basis-set (MBS), near-Hartree-Fock
(NHF), and greatly extended basis set (109-GTQ) wave func-
tions, and a calculation of the Fourier transform of the ion-
neutral overlap using CI wave functions based upon the 109-
GTQ basis set (109-GTQ CI) (Bawagan et al. , 1987).

where 8,0(r) is the autocorrelation function of $,0(r).
The positive sign is for the bonding wave function and
the negative sign is for the antibonding wave function.
As discussed in the preceding section, the interference
term or diIII'raction factor is almost never seen in the
momentum density because of its modulation by the rap-
idly decreasing atomic momentum-density term. On the
other hand, the modulation in the 8 (r) function for the
antibonding wave function is observable. At r=R both
8,0(r) and 8,0(r+R) are small, while 8,0(r —R) has its
maximum value. The result is an extremum in the func-
tion in the region of the bond length. This simple exam-
ple can be extended to more complex wave functions and
polyatomic molecules. The interpretation of single-
electron momentum densities through the transformation
back to r space has been pursued primarily by Tossell
et al. (1981). The key to this approach was the realiza-
tion that the Fourier transform of the experimentally ac-
cessible, spherically averaged, single-electron momentum
density yields 8(r), the spherical average of the auto-
correlation of the position-space wave function (Weyrich
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et al. , 1979; Tossell et al. , 1981):

8 (r) = J J 8 (r)r d ( cosO) dg

0 qr/R

As might be expected, this one-dimensional autocorrela-
tion function is rather featureless, starting with a value of
identically 1 at r=0, and typically falling to Q. 1 within a
distance of the order of a bond length; however, success-
ful comparisons of 8 (r) functions have been made by ex-
amining the difFerence between two 8 ( r ) functions,
b,B (r). An assessment of a theoretical wave function can
be made by looking at the diIFerence between 8(r) de-
rived froln experimental data and 8(r) calculated from
theory. Details of the electron density associated with
chemical bonding have been delineated in comparisons of
8(r) for analogous orbitals in structurally related mole-
cules. For example, the role of the nitrogen 2p "lone
pair" in amines has been investigated by comparing 8 (r)
for this orbital in a substituted amine and to that for the
lone pair in ammonia (Tossell et a/. , 1984). Some caution
must be observed in the calculation of a difference func-
tion from experimental data; 58(r) seldom exceeds a
value of O. 1, so relatively precise and accurate data are
required.

An example of the b,B (r) approach is given in a recent
(e, 2e) study of bonding in a Lewis acid-base complex
(McMillan et al. , 1990). In this case the Lewis acid is bo-
ron trifiuoride BF3, and the Lewis base, the electron
donor, is trimethyl amine (CHz)zN. The donor-acceptor
complex, (CH&)zN:BF&, is bound by the donation of the
%2@ lone-pair electrons of the amine to the incompletely
filled valence shell of boron. The way in which the lone-
pair electrons of the amine were rearranged upon the for-
mation of the bond was examined through momentum™
density measurements of the highest occupied molecular
orbital of the amine, the "lone pair" identified as 6a&,
and the analogous orbital in the complex, identified as
11a&. These measurements are shown in Fig. 14. Both
orbitals transform as the totally symmetric representa-
tion (al ) in the group to which the molecules belong, and
there is no node at the momentum-space origin. It is
possible to associate features of the measured momentum
densities with the major atomic-orbital contributions to
the wav'e functions. In the momentum density for both
molecules the amplitude near the origin comes from the
methyl hydrogen 1s and the X2s atomic orbitals. For the
6a I orbital of the amine, the amplitude near q = 1.0 III/a0
is due to the %2@. For the analogous 11a, orbital in

(CHl)lN:BFs, the local IIlaxlIIlllln Ileal 0.5 III/00 coIIles
from the X2p as in the amine. The more complex shape
of the momentum density for the II 1a

&
orbital in

(CH3)lN:BF3 is a reilection of the complex nodal struc-
ture of this orbital. The nature of the interaction of the
important atomic contributions can be understood from
the 68 (r) plot in Fig. 15, which compares the acid-base

(CH3)3N
6a)

I I I I I I I

0.8 H C
CI H88~E 0.6

HSC
~& OA—

444444~44„,~
tX:

00 I I I I +el» ~~at
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

q (n/ao)

1.0

(CH3)3N-BF3

118,

H C
H88~

H3C

0.8

grrr

a 04
& l 4/44&4-' 44',

EC 0
0.0 I I I I 444ol ~~ I

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
q (ciao)

FIG. 14. (e,2e) data for the highest-occupied molecular orbital
of trimethyl amine, the 6a& "lone pair, " and for the analogous
orbital in the trimethyl amine-boron triAuoride complex. The
dashed line gives the momentum density calculated from
3 —216+ wave functions (McMillan et al. , 1990).

complex to the amine. A positive extremum in AB(r)
corresponds to a value of r equal to the distance between
the region of the %2@ lobe between the boron and nitro-
gen and the I'2p lobe of the same sign. The value of r at
which the negative extremum in b,B(r) occurs corre-
sponds to the distance between that same X2p lobe and

I I I I I I I I I I I I I I I

SO 03 06 09 12 15 18 21 24
q (%/ap)

FIQ. &5. A.utocorrelation difFerence function, 4B (r)
=B ( r)„&,„—B(r), ;„„derived from the data in Fig. 14
(McMillan et a/. , 1990).
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the oppositely signed I2p lobe. Since the negative ex-
tremum occurs at a smaller distance than the positive ex-
tremum, an antibonding %2p —F2p interaction is indi-
cated, suggesting a weakening of the boron-fluorine bond
in the BF3 moiety upon formation of the complex.

F. Current state of electronic structure
determination from (e, 2e) experiments

Experiments carried out nearly two decades ago
demonstrated the use of the (e, 2e) reaction for measuring
single-electron momentum densities for the outer elec-
trons in atoms and spherically averaged, single-electron
momentum densities for valence electrons in molecules.
Subsequent work defined the geometry and energy range
where the results of (e, 2e) experiments could most con-
veniently and reliably be interpreted in terms of the
target-electron momentum density. In practice this
amounted to experimental and theoretical con6rmation
of the regime in which the accuracy of the plane-wave
impulse approximation was consistent with the precision
of the experiments. During the 1970s the sensitivity of
the technique was developed to the point where experi-
mentally measured momentum densities could be used to
distinguish between theoretical predictions based upon
different approximations to the Hartree-Fock wave func-
tion. During the past decade, (e,2e) experiments on
small molecules have proven to be suKciently accu-
rate to distinguish between very-large-basis-set, single-
determinant methods and multicon6guration approxima-
tions. The (e, 2e) technique has been applied to large po-
lyatomic molecules and even to models of reacting sys-
tems. A bibliography compiled by Leung (1991) cites
measurements of momentum densities for the valence
electrons in at least 48 polyatomic molecules (triatomics
up to 40-atom species). Some progress has been made in
qualitatively analyzing momentum densities and their
Fourier transforms in terms of the familiar models of
electronic structure employed by chemists and physicists.
In favorable cases it has been possible to attribute
features in the single-electron, spherically averaged
molecular momentum density, as well as density
differences between related molecules, to well-defined
chemical effects.

Two decades of work on the experimental determina-
tion of atomic and molecular electron momentum densi-
ties have documented the value of the (e, 2e) technique as
well as some of its shortcomings, the most obvious being
practical limitations to precision and resolution and the
fact that only the spherically averaged momentum densi-
ty can be obtained in experiments on molecules in the gas
phase. In state-of-the-art (e, 2e) apparatus designed for
the investigation of momentum densities, using data col-
lection times of the order of one day, cross sections are
measured with a precision of 3 —5 % of the maximum
value. The best attainable angular and energy resolution
in these experiments corresponds to momentum resolu-
tion of 0.07—0. 15 iri/ao. In the region of target momenta

above about 0.5 irt/ao, this is adequate for the compar-
ison of experimental results and the predictions of high-
level calculations. In the low-momentum region most
sensitive to chemical phenomena, the 6nite resolution can
lead to differences between experiment and theory of a
factor of 2 or more, especially for p-type momentum den-
sities where the cross section increases rapidly as the
momentum increases from zero. Finite resolution in the
experimental apparatus also produces a distortion of the
momentum scale for low values of momentum. This is a
result of the fact that the experiment determines only the
absolute value of the momentum corresponding to a par-
ticular set of scattering angles (see Table II). The resolu-
tion function, which might reasonably be considered to
have a symmetric Gaussian shape, is folded back on itself
at the zero of momentum. This yields a skewed resolu-
tion function at low momentum so that with finite resolu-
tion the nominal momentum value being sampled is
different from the mean. These effects have been
modeled in Monte Carlo simulations of the experiments
in an effort to account for discrepancies between experi-
mental observations and theoretical calculations
(Bawagan and Brion, 1990).

A great deal of the information contained in the
single-electron momentum-density function is obscured
by the spherical averaging associated with a measure-
ment on a freely rotating molecule in the gas phase.
There have been proposals (Camilloni et al. , 1979) and
even experiments to measure directed momentum densi-
ties. Compton scattering on crystals gives directed
momentum densities averaged over all electrons. Zheng
et al. (1990) have performed (e, 2e) experiments on
laser-excited, oriented atoms; however, this approach will
not be applicable to molecules because the broad rota-
tional energy distribution in a molecular sample is incom-
patible with the narrow-band nature of laser light. The
early (e, 2e) measurements on carbon films (Amaldi
et al. , 1969; Camilloni et aI., 1972; Ritter, Dennison, and
Jones, 1984) and the recent success of Weigold et al. and
Lower et al. (1991)in obtaining spectral momentum den-
sities at high resolution in amorphous carbon suggest
that measurements on oriented molecules in condensed
phases may be possible in the near future; however, one
cannot expect that the precision of such experiments will
equal that obtained in current gas-phase experiments be-
cause of the intense background of electrons scattered
from. the substrate.
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