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An overview is presented of methods for time-dependent treatments of molecules as systems of electrons
and nuclei. The theoretical details of these methods are reviewed and contrasted in the light of a recently
developed time-dependent method called electron-nuclear dynamics. Electron-nuclear dynamics (END) is
a formulation of the complete dynamics of electrons and nuclei of a molecular system that eliminates the
necessity of constructing potential-energy surfaces. Because of its general formulation, it encompasses
many aspects found in other formulations and can serve as a didactic device for clarifying many of the
principles and approximations relevant in time-dependent treatments of molecular systems. The END
equations are derived from the time-dependent variational principle applied to a chosen family of
efficiently parametrized approximate state vectors. A detailed analysis of the END equations is given for
the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. The ap-
proach leads to a simple formulation of the fully nonlinear time-dependent Hartree-Fock theory including
nuclear dynamics. The nonlinear END equations with the ab initio Coulomb Hamiltonian have been im-
plemented at this level of theory in a computer program, ENDyne, and have been shown feasible for the
study of small molecular systems. Implementation of the Austin Model 1 semiempirical Hamiltonian is
discussed as a route to large molecular systems. The linearized END equations at this level of theory are
shown to lead to the random-phase approximation for the coupled system of electrons and nuclei. The
qualitative features of the general nonlinear solution are analyzed using the results of the linearized equa-
tions as a first approximation. Some specific applications of END are presented, and the comparison with

experiment and other theoretical approaches is discussed.
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I. INTRODUCTION

Dynamics of molecular systems has been of interest in
chemical physics and physical chemistry since the advent
of quantum mechanics. Over the years many theoretical
approaches have been formulated and implemented in
detail. Computational methods for efficient solution of
the resulting equations have been devised in many cases.
Although the basic equation of quantum mechanics is a
time-dependent equation, in the Schrodinger, Heisen-
berg, or interaction representation, the fact that separa-
tion of variables is possible and the intractability of the
equation for systems of any complexity have led to a situ-
ation in which several generations of scientists have been
trained to focus on the time-independent equation both
for bound-state and for scattering problems. In the last
decade, however, the time-dependent formulation has at-
tracted more attention. It has become clear that solving
the time-dependent equation directly is indeed possible
and sometimes computationally advantageous over first
finding all relevant stationary-state eigenfunctions for a
given problem.

Time-dependent descriptions have always appealed to
researchers’ intuition, as evidenced by the fact that ex-
periments are often discussed, both by experimenters and
by theorists, in a time-dependent language. One of the
more dramatic situations in this respect is provided by
the field of femtosecond spectroscopy (Zewail and Bern-
stein, 1988; Zewail, 1989) where the time evolution of nu-
clei and electrons in molecular systems can be followed in
detail. In the last decade, time-dependent theoretical
treatments have matured to the extent that detailed
theoretical descriptions matching experimental accom-
plishments are feasible. Another indicator of the grow-
ing importance of time-dependent descriptions is the
discovery, in the theory of measurement, that histories of
events as the basic concept, rather than the events them-
selves, lead to a consistent interpretation of quantum
mechanics. In an important review, Omnes (1992) shows
that consideration of consistent sequences of properties
in time is an essential ingredient and allows the
Copenhagen Interpretation to be extended to a consistent
interpretation of quantum mechanics. It is too early to
state that these developments will end the long debate on
the interpretation of quantum mechanics; but it is not-
able that explicit consideration of time is put forth as a
key element in that long debate, and that its introduction
actually strengthens and simplifies the original
Copenhagen Interpretation.

The aims of this paper are (1) to review the most prom-
inent of the time-dependent methods, analyzing and com-
paring the principles and approximations underlying
them as well as commenting on their computational im-
plementation; (2) to present most of these methods and
techniques from a general, unified, and didactic point of
view, which is provided by the time-dependent variation-
al principle; and (3) to outline in considerable detail one
method —electron-nuclear dynamics (END)—that is a
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rigorous application of the time-dependent variational
principle and is therefore a useful framework for explain-
ing the differences between various methods. The main
emphasis is on time-dependent methods; but because
potential-energy surfaces play such an important role in
the theory of molecular phenomena, some attention is
paid to the construction of approximations to eigenstates
of the electronic Hamiltonian. However, no attempt is
made to review the field of electronic structure theory.
Only those methods are mentioned that in some way can
be considered as special cases of time-dependent
methods.

Although we try to give a fair account of the state of
the field, our review is biased by our own experiences and
is not intended to be exhaustive. We apologize for any
omissions.

Atomic units will be used throughout this work; i.e.,
#i=1l,m,=1,and e =1.

A. Plan of presentation

To present an overview of the many theoretical
methods of time-dependent treatments of molecular pro-
cesses, (i) the time-dependent variational principle and (ii)
the concept of potential-energy surfaces are used.

The time-dependent variational principle (TDVP),
when the trial wave function is completely general and
not restricted in any form, yields the time-dependent
Schrodinger equation (Dirac, 1930), as shown in Sec.
II.D. On the other hand, any choice of a restricted form
of trial function in the TDVP results in time-dependent
equations that approximate the Schrodinger equation.
Based on this, one can discern three different classes of
methods. First, the time-dependent Schrodinger equa-
tion (in principle obtained from the completely unre-
stricted TDVP) can be studied and approximate solutions
found to obtain transition amplitudes and spectral infor-
mation in a variety of ways. Second, a separation of vari-
ables yields the time-independent Schrodinger equation,
which can be studied to find approximate stationary-state
solutions. The third class of methods are those, as stated
above, that directly restrict the TDVP trial function and
obtain dynamical equations that approximate the time-
dependent Schrodinger equation.

Alternative variational principles known as the Dirac-
Frenkel variational principle (Dirac, 1930; Frenkel, 1934)
and the McLachlan variational principle (McLachlan
and Ball, 1964) are equivalent to the TDVP as long as
complex wave functions analytic in the parameters are
used and the global phase of the wave function is retained
(Kudar et al., 1987; Broeckhove et al., 1988).

Earlier theoretical work related to the general ap-
proach of this review is that of Kerman and Koonin
(1976), who first showed that the TDVP applied to a
parametrized family of wave functions leads to a classical
Hamiltonian system of equations for the parameters.
Rowe and Basserman (1976) later introduced the theory
of coherent states to provide a general framework for
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parametrized wave functions, and Kramer and Saraceno
(1981) worked out the geometry of the TDVP.
Treatments of molecular systems often use the concept
of potential-energy surface obtained (at least in principle)
from solving the time-independent Schrédinger equation
with the electronic Hamiltonian for a large number of

fixed nuclear geometries. The widely used concept of a
potential-energy surface can serve to distinguish between
different approaches, in that it summarizes how the elec-
tronic subsystem is treated.

Methods that use a single potential-energy surface
adhere to the Born-Oppenheimer approximation, or the

TABLE I. Overview of theoretical molecular methods classified by the use of potential-energy surface and time dependence. The na-
ture of the treatment of the nuclei is indicated as classical, semiclassical, and quantum mechanical.

PES Nuclei

Time independent

Time dependent

Single Classical

Semiclassical

Quantum

Multiple Classical

Semiclassical
Quantum

Not used Classical

Semiclassical

Quantum

Energetics, equilibrium
geometries, transition

states, barrier heights,
reaction paths

Reaction rates from
transition-state theory
(Melissas et al., 1992)

Vibrational and rotation-
al eigenstates
(Lathouwers et al., 1987),
multichannel scattering
and reactive collisions
with or without con-

. strained geometries,

(variational) R-matrix
(Linderberg et al., 1989)
and S-matrix (Miller and
op de Haar, 1987) ap-
proaches, method of per-
turbed stationary states
(Mott and Massey, 1965;
Riera, 1992)

Reactive processes and
calculation of nonadia-
batic couplings (Lengfield
and Yarkony, 1992)

Diagonalization in a
basis of electronic and
vibrational states (Kolos
and Wolniewicz, 1964),
many-body scattering
calculations as basis for
molecular structure cal-
culations (Levin, 1978)
and for molecular reac-
tions (Micha, 1985)

Molecular dynamics us-
ing model forces or the
gradient of a fitted or
directly computed PES
(Carmer et al., 1993)
Semiclassical molecular
dynamics, time correla-
tion functions in eikonal
approximation (Micha
and Villalonga, 1993),
wave-packet dynamics
(Huber et al., 1988)
Quantum molecular dy-
namics with representa-
tion on a grid of points
or with a set of basis
functions (Feit and
Fleck, 1980; Kosloff and
Kosloff, 1983a; Tal-Ezer
and Kosloff, 1984;
Leforestier et al., 1991;
Manthe et al., 1992b),
single and
multiconfiguration time-
dependent self-consistent
field (Manthe et al.,
1992a)

Surface hopping model
(Tully and Preston, 1971)

Wave-packet dynamics
on vibronically coupled
surfaces (Coalson, 1989;
Manthe et al., 1991)
Time-dependent Hartree-
Fock (Dirac, 1930)
Car-Parrinello (1985),
electron-nuclear dynam-
ics (Deumens, Diz, Tay-
lor, and Ohrn, 1992),
close-coupling methods
(Delos, 1981)
Perturbed-stationary-
states and close-coupling
methods (Delos, 1981)
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adiabatic approximation if the diagonal correction term
to the nuclear kinetic energy {@(R)|Ag |@(R)) is includ-
ed in the potential-energy surface. The description of the
electrons is, in this case, limited to the single eigenstate
associated with the potential-energy surface; e.g., they
cannot have any momentum expectation value, since the
electronic eigenfunctions ¢(r,R) are always real. A
second group of methods employs several potential-
energy surfaces, most often two, and includes the nonadi-
abatic correction terms. Because several electronic
eigenstates, in principle a complete set, are involved, an
accurate description of the electrons is possible. A third
group avoids the construction of intermediate electronic
eigenstates and describes the electrons in some other
way.

In order to use a potential-energy surface as a potential
energy for the nuclear dynamics, its discrete representa-
tion is usually fitted (interpolated) with some analytical
representation. Such procedures are generally difficult
and may introduce errors that are hard to control. The
concept of a potential-energy surface traditionally plays
an important role in the interpretation of spectra and is
often also considered convenient for discussing dynami-
cal processes even when several surfaces have to be em-
ployed. The importance placed on the existence of
potential-energy surfaces, however, is somewhat limiting
in that high-quality potential-energy surfaces can be ob-
tained, so far, only for the low-lying states of simple sys-
tems.

With these principles a rough classification of the field
of ‘molecular theory is obtained which is presented in
Table I.

In this review, time-independent methods are not
treated at all, with the exception of those methods that
follow naturally from a time-dependent treatment by set-
ting the time derivatives equal to zero, as, for example, in
Sec. III.C. This review deals in detail only with time-
dependent methods that do not use potential-energy sur-
faces. Other approaches are discussed incompletely for
comparison in Sec. I.B.

In Sec. II the details of the physical and mathematical
aspects of the basic ingredients are discussed for several
time-dependent treatments. Such details include the elec-
tronic orbitals, which are fundamental to the description
of the electrons and constitute the ingredients of the elec-
tronic wave functions used for the calculation of the
potential-energy surface. The form of the electronic or-
bitals is also important for the explicit treatment of the
electron dynamics. Comments are made on treatments of
the nuclear dynamics, and the time-dependent variational
principle is introduced.

In Sec. IIT a rigorous and detailed treatment of the
simultaneous dynamics of electrons and nuclei is present-
ed. During this derivation, the opportunity arises to dis-
cuss how various choices lead to each of the most prom-
inent of the time-dependent treatments. Both ab initio
and semiempirical molecular Hamiltonians are treated,
as are the theoretical and computational implications of
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various assumptions for the dynamical equations. The
structure of the dynamical equations of the END is com-
pared to that of the equations obtained through other
methods, in particular the close-coupling approach.
Linearization of the dynamical equations is analyzed to
reveal the general structure of the solution. This leads to
the random-phase-approximation equations for coupled
electrons and nuclei. This is recognized as a scheme used
in several theoretical approaches to deal with the
different time scales of electronic and nuclear evolutions.

In Sec. IV some applications of END to collision prob-
lems are treated involving some one- and two-electron
systems (ion-atom and ion-molecule collisions). An in-
tramolecular electron-transfer problem for a simple mod-
el system is used to illustrate how the END theory is ap-
plied to such cases.

Section V, with a discussion of the methods with re-
gard to physical principles such as conservation laws and
time reversal, concludes this review.

Detailed working expressions for the END approach
are given in terms of both molecular and atomic spin-
orbitals using a single determinant for the electrons and a
classical treatment of the nuclei in Secs. 1 and 2 in the
Appendix. A brief definition of semiempirical Hamil-
tonians can be found in Sec. 3 in the Appendix.

B. Overview of methods

Recent years have seen increased efforts in the devel-
opment and application of explicitly time-dependent
methods to a great variety of chemical and physical prob-
lems on the molecular level. A brief overview is present-
ed of this activity in the last decade. This work has
intensified dramatically in the last five years, stimulated
both by the advent of high-accuracy time-resolved exper-
iments and the realization that a time-dependent descrip-
tion can offer valuable insights and accurate descriptions
of many processes.

The time-dependent methods are based on many
different levels of theory. Some have a phenomenological
basis, like the method of Car and Parrinello (1985) which
was recently reviewed by Remler and Madden (1990).
Other methods are derived from a variational principle,
such as the time-dependent Hartree-Fock, or are exact
solutions to the Schrodinger equation, such as the numer-
ical wave-packet propagation. Some techniques can only
provide qualitative insight into the time evolution, while
others provide accurate, predictive values for such physi-
cal properties as scattering cross sections and transition
probabilities. Some methods require modest computa-
tional efforts and can be applied to quite general systems,
while others are so computationally demanding that only
problems reducible to three degrees of freedom or less are
currently amenable to calculations.

1. Potential-energy surfaces

The study of molecular systems has traditionally pro-
ceeded by solving the electronic problem first to obtain a
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molecular potential-energy surface (PES) with an associ-
ated electronic eigenstate. The methods of construction
of reliable PES’s constitute an extensive field of study
(see, e.g., the review by Dunning and Harding, 1985, for
ab initio surfaces and the review by Kuntz, 1985, for sem-
iempirical ones). The dynamics of the molecule is then
reduced to the dynamics of the nuclei on that PES, at the
classical, semiclassical, or quantum level. This approach
raises the following issues that are addressed in different
ways by the various methods.

(1) Construction of the electronic eigenstates for one
geometry is a nontrivial problem in itself. In order to ob-
tain a useful representation of the surface for all
geometries needed for the relevant dynamics, one must
resort to solving the electronic problem at selected
geometries and perform an interpolation or fit using a
suitable analytic form for the surface to define its value at
other geometries.

(2) The process of constructing a faithful fit is also a
sizable task. Usually different analytic forms are needed
for different regions. And it has been found (Liu and
Murrell, 1991; Aguado and Paniagua, 1992) that small
errors in curvature of the fit can produce significantly
different dynamics. Accurate fits are available for some
triatomic systems and for a few four-atom molecules. It
is generally believed that fits for general polyatomic sys-
tems will be hard to come by.

(3) An electronic state associated with a PES is com-
pletely static. The errors introduced in the molecular dy-
namics are usually neglected by investigators looking for
low-energy and adiabatic rearrangement reactions and
infrared spectroscopy. However, for other situations,
such as charge-transfer reaction studies, some of the er-
rors cannot be neglected. To overcome that limitation,
methods such as perturbed stationary states use multiple
PES’s, and close-coupling or time-dependent Hartree-
Fock methods use electron translation factors (ETF’s).

The methods that rely on a single or multiple PES as-
sume that a surface is given in a numerically accessible
form. Sometimes this is accomplished with a global fit or
patches of local spline fits to a set of points obtained from
accurate electronic structure calculations. The best
methods for global surfaces are electronic
multiconfigurational self-consistent-field calculations (Ol-
sen et al., 1983; Jensen and Agren, 1986). Full
configuration interaction with a realistic basis is, of
course, feasible only for the smallest systems. A sys-
tematic procedure for generating model potential-energy
surfaces for general molecules is that of diatomics in mol-
ecules, with ab initio and semiempirical implementations
(Dunning and Harding, 1985).

Methods for constructing the PES at the sampling
points, which usually include critical points like local
minima, saddle points, and reaction paths, are not
covered by this review; neither are the techniques of in-
terpolation of PES data points. However, some of the
time-dependent methods, which do not rely on the PES,
possess a natural time-independent special case that can
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effectively be used to find eigenstates to the electronic
Hamiltonian and, thus, to construct PES’s (see Sec.
I11.C).

2. Quantum dynamics on a single surface

There is a growing literature of methods that can be
referred to as ‘“‘direct approaches.” Such numerical
methods have two key features. One is the representa-
tion of the wave function, either by expansion coefficients
in a basis set or by discretization on a grid of points.
This, in turn, determines how to evaluate the action of
the operators, in particular, the Hamiltonian HB=R+V
with its kinetic-energy operator K and its potential-
energy operator ¥, on the wave function. The other
feature is the actual time propagation algorithm, i.e.,
how the solution is marched over a time interval, given
its value at the initial time.

a. Exact wave-packet propagation

It is possible to solve exactly the Schrodinger equation
for the internal degrees of freedom of molecules with
three or four atoms by representing the wave function on
a numerical grid. These methods are known as the
discrete variable representation and the pseudospectral
approximation, depending on whether one prefers to
stress the numerical representation or the method of
solution. The pseudospectral Fourier approximation
(Gottlieb and Orszag, 1977) was introduced rather re-
cently into molecular dynamics, although for some time
it had been used in several areas of physics, for example,
fluid dynamics, optics, and electron microscopy. This
approach employs a grid representation of the wave func-
tion in coordinate space and applies the discrete Fourier
transform to obtain a momentum space representation.
Computer codes performing fast Fourier transform are
generally available, making it possible to switch from
coordinate space to momentum space and back so as to
allow for fast evaluation of the action of the kinetic-
energy and the potential-energy terms of the Hamiltoni-
an. Error analysis and collocating functions other than
plane waves are available within this technique. Ap-
propriate functions for radial (Bisseling and Kosloff,
1985) and angular coordinates (Quéré and Leforestier,
1990) have been implemented.

There are various time integration algorithms current-
ly in use with the pseudospectral method in molecular
dynamics. One can distinguish four, namely, the
second-order-difference method, the split-operator
method, the short-time iterative Lanczos method, and
the Chebyshev expansion method.

When the second-order difference (Kosloff and Kosloff,
1983a) is applied to the Schrodinger equation, the wave
function is computed at successive short time steps
through a combination of a forward and a backward
move, which eliminates the second-order terms; so the er-
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ror is of third order in the time step. The other three
methods focus on the propagator. In the split-operator
scheme (Feit and Fleck, 1980), one makes a symmetric
decomposition of the exact propagator

0(6)=exp(—iﬁ6) ,
We)=U(e)(0), (1.1)

U(e)~exp exp(—ieP exp

>

€ -~
__'.__K
)

€
)

introducing a third-order error term. This is a short-time
method that requires successive applications to propa-
gate over a finite time interval.

The short-time iterative Lanczos propagation formula
(Leforestier et al., 1991) is

Ule)~exp| —ieA(H,$(0))], (1.2)

where U is now a matrix operator in the Krylov subspace
generated by the Hamiltonian and the initial wave func-
tion. The matrix A is the tridiagonal Lanczos matrix
representing the Hamiltonian in the Krylov space (Cul-
lum and Willoughby, 1985). The exponentiation is usual-
ly performed by diagonalizing the Lanczos matrix and
working with the diagonal eigenvalue matrix. The length
of time dictates the size of the Krylov space needed for a
predefined accuracy (Park and Light, 1986). In general,
short time steps are used in order not to lose the advan-
tage of the Lanczos reduction; i.e., iterating the algo-
rithm is more efficient than using long time steps.

The Chebyshev expansion method (Tal-Ezer and
Kosloff, 1984) approximates the exact propagator by a
Chebyshev expansion,

N
O=3 a,(t)T,(—ifly), (1.3)

n=1

where the Hamiltonian needs to be renormalized so that
its spectrum coincides with the domain of the Chebyshev
polynomials 7T,. This is a long-time method. The con-
vergence requirement on the Chebyshev expansion is
such that the number of terms does not decrease
significantly for smaller ¢ values. Thus, for efficiency, ¢
should be large.

Should one want to consider time-dependent Hamil-
tonians, there are straightforward ways to extend the
split-operator, second-order-difference, and short-time
iterative Lanczos methods to such cases, while the Che-
byshev expansion method would seem not to have this
flexibility. For short-time methods, further approxima-
tions are usually implied, such as the use of short-time
averaged Hamiltonians and the disregard of time order-
ing.

The specific merits of various methods to evaluate the
action of the Hamiltonian on the wave function and to
propagate the solution in time have been reviewed by
Kosloff (1988). The computational effort involved in
these methods is presently such that applications involv-
ing at most a few degrees of freedom can be attempted.
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They are used to study quantum dynamics of nuclear
motion on a potential-energy surface or on a small num-
ber of coupled potential-energy surfaces. The split opera-
tor offers limited accuracy and has been used in studies of
reactions (Kosloff and Kosloff, 1983b) and absorption
spectra (Tang et al., 1990). The second-order difference
has been used extensively because of its ease of im-
plementation of eigenspectra (Feit et al., 1982), nonadia-
batically coupled systems (Alvarellos and Metiu, 1988;
Manthe and Koppel, 1990b), dissociation and predissoci-
ation processes (Manthe et al., 1991), photodetachment
spectra (Engel, 1991), and systems with time-dependent
Hamiltonians (Cheslowski et al., 1990). A significant
number of applications of the Chebyshev expansion
method have been made, among other problems, to
atom-diatom collisions (Sun et al., 1987), to a
multiconfigurational self-consistent-field approach (Ham-
merich et al., 1990), to photodissociation (Kulander
et al., 1991), and to the computation of energy levels
(Kosloff and Tal-Ezer, 1986; Neuhauser, 1990).

b. Time-dependent self-consistent field

This method explored by Kossloff and Ratner (Bissel-
ing et al., 1987), among others, reduces the many vari-
able Schrodinger equations for the nuclei to a set of cou-
pled equations for each nuclear coordinate moving in the
average field of the others. Wave packets are represented
on a grid and are products of packets, each in one inter-
val coordinate only. Since a single configuration state
cannot properly describe the division of probability over
two channels, the method was extended to allow for
multiconfigurational states. This permits a proper
description of reactions where two exit channels are pop-
ulated. The method is also known as the time-dependent
Hartree approximation. A variation on the method,
called time-dependent rotated Hartree, was developed by
Meyer and co-workers (Meyer et al., 1988).

3. Trajectories on a single surface

a. Fitted surface

Molecular dynamics as the Newtonian mechanics of
nuclei with effective two-, three-, and four-body forces
has been used with great success to study many molecu-
lar processes. For large molecules this is still the only
practical method, and it is in general use, especially in or-
ganic chemistry and biochemistry. It is used to investi-
gate reactions and to explore molecular geometries.
Often the dynamics is used as an efficient means to search
for minima of energy rather than to reveal time-
dependent effects.

Molecular dynamics on fitted surfaces is also used to
compute reaction rates using classical statistical methods.
Sometimes the trajectories are used in a semiclassical for-
mulation to obtain quantum-mechanical approximations.
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The so-called eikonal approximation (Mott and Massey,
1965) derives classical equations for nuclear positions and
momenta.

One semiclassical scheme is the wave-packet dynamics
of Heller (Huber and Heller, 1987). It is derived via the
time-dependent variational principle (TDVP) by consid-
ering all translated and Galilei-boosted Gaussian wave
packets for the nuclear coordinates as the manifold of al-
lowed wave functions. Requiring that the action be sta-
tionary then yields the familiar Euler-Lagrange equa-
tions. For translated and Galilei-boosted Gaussian wave
packets, these correspond to classical Hamiltonian equa-
tions for the variables R and P, which are the average nu-
clear positions and momenta in the Gaussian wave pack-
ets. The method can be easily extended to include a scal-
ing parameter, resulting in so-called thawed, as opposed
to frozen, Gaussians. The applications with this addi-
tional degree of freedom require careful interpretation, as
their results are sometimes misleading (Reimers and
Heller, 1988).

The wave-packet dynamics method has been extended,
by enlarging the set of allowed wave functions in the
TDVP, to describe more complex wave packets con-
structed as superpositions of time-dependent basis func-
tions (Kucéar and Meyer, 1989).

With time correlation functions these methods can
yield transition probabilities (Villalonga and Micha,
1992).

b. Computed surface

An increasing number of workers need more accessible
surfaces then those fitted from electronic structure calcu-
lations in order to study intermediate-size systems.
Molecular dynamics using gradients from a semiempiri-
cal Hamiltonian has been implemented by Stewart in
MOPAC (Stewart, 1990), by Dewar in AMPAC (Dewar
et al., 1985), and by Weiner (Carmer et al., 1993; Zhao
et al., 1993) and independently by Edwards (1992) in
ZINDO (Zerner, 1991). These researchers have imple-
mented Newtonian molecular-dynamics methods using
directly calculated gradients in semiempirical electronic
structure codes. This allows efficient time-dependent
studies of dynamics on a single surface. The forces for a
single-determinantal wave function are given in the Ap-
pendix by Eq. (A86). ’

4. Dynamics of electrons and nuclei

Some time-dependent methods include explicit elec-
tronic dynamics as opposed to an averaged electronic
description. Examples include (i) dynamics with
density-functional theory for electrons and nuclei in con-
densed phases as proposed by Car and Parrinello (1985);
(ii) the time-dependent Hartree-Fock (TDHF) method
and variational extensions by Gazdy and Micha (1986);
(iii) TDHF for electrons with classical nuclear dynamics
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on an average potential, developed by Micha and co-
workers (Runge et al., 1990; Micha and Runge, 1992;
Runge, 1993) for ab initio Hamiltonians, by Field (1992)
for semiempirical methods, and by Mikkelsen and Ratner
(1989) for electron transfer in solvents; (iv) dynamics on
an average surface obtained from several adiabatic elec-
tronic surfaces (Meyer and Miller, 1979; Olson and
Micha, 1984); and (v) close-coupling methods for atomic
collisions with one (Fritsch and Lin, 1991) or two elec-
trons treated explicitly (Kimura and Lane, 1990) in the
field of atomic collisions.

a. Wave-packet propagation on coupled potential surfaces

Some methods go beyond the restriction of nuclear dy-
namics on a PES by including one or more excited elec-
tronic surfaces. The same methods for exact propagation
of wave packets on a single surface have been implement-
ed for two coupled surfaces. The Heidelberg group has
made significant contributions in this field (Manthe and
Koppel, 1990b; Manthe et al.,, 1991; Koppel and
Manthe, 1992). A fourth-order-difference scheme has
been implemented (Manthe and Koppel, 1990a) and has
been found to be more efficient than a second-order
difference by a factor of 3, but less efficient than the
short-time iterative Lanczos formula (Koppel and
Manthe, 1992). Multiconfigurational time-dependent
Hartree methods with numerical wave-packet propaga-
tion on coupled surfaces have also been implemented by
Meyer, Cederbaum, and co-workers (Kucar et al., 1987;
Meyer et al., 1990; Manthe et al., 1992a, 1992b). These
formulations are derived from the TDVP.

A different approach to numerical wave-packet propa-
gation on several surfaces is the method of the wave-
packet perturbation theory of Coalson and co-workers,
explained in detail in the review of Coalson (1989). This
method is well suited for optical spectroscopy in areas
where the single-surface approaches break down. In the
full formulation, it treats the wave packets on the
different surfaces as independent entities. Perturbation
theory is used to treat the transfer of probability in space
and time between surfaces. This method is not variation-
al.

b. Trajectories on coupled potential surfaces

The method proposed by Meyer and Miller (1979) pro-
vides a general framework in which to employ multiple
electronic surfaces. It considers only one set of nuclear
coordinates moving on the average potential and action-
angle variables for electronic degrees of freedom. Olson
and Micha (1984), using this approach, employ the real
and imaginary parts of the electronic amplitudes as vari-
ables.
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c. Car-Parrinello method

The method of “parallel dynamics” proposed by Car
and Parrinello (1985) was first developed to make simu-
lated annealing more efficient. Later it became quite pop-
ular for dynamics simulations. This method was re-
viewed recently by Remler and Madden (1990) and by
Payne et al. (1992).

Car and Parrinello add fictitious kinetic-energy terms
to obtain dynamical equations for the variables describ-
ing the electronic state. This method has caused consid-
erable debate, and there appears to be no clear under-
standing of why it often works. It is defined by consider-
ing the basic parameters describing the electronic state of
the system to be the orbitals y; or their coefficients in
some appropriate basis. Car and Parrinello apply the
method using the density-functional description of ex-
tended systems, but, following Remler and Madden in
their exposition of the method, we explain the approach
in general terms. A Lagrangian for the system of the
electronic state and the nuclei is defined as

L=T—V+3A;{¢;l9;)—8;) (1.4)
ij

with Lagrange multipliers to ensure orthonormality of
the orbitals throughout the dynamics. The kinetic ener-

gy
T=2n3 Gl +5 3 MRS (1.5)
i k

has the usual terms for the nuclei, but it also has terms
for the electronic parameters. This energy is called ficti-
tious by Car and Parrinello and is a purely technical de-
vice to derive dynamical equations for the electronic pa-
rameters from the above Lagrangian. A system of cou-
pled equations for the nuclei is obtained, which are the
familiar molecular-dynamics equations. The approach
also gives a set of equations for the electronic parameters
which permit the propagation of the electronic state “in
parallel” with the nuclear motion. It turns out that this
is more efficient than trying to find the new optimal elec-
tronic parameters at each geometry; this approach also
yields electronic states that are very close to the optimal
states at all geometries along the trajectory. In Sec.
1.B.4.g, the requirements on parametrization for time-
dependent methods are explained in detail. Because Car
and Parrinello define their parameters for the electronic
state to be real, the only way to obtain equations is by
adding the ““fictitious” energy which introduces the
dependence on 1. The proper choice is to use complex
parameters. Then the imaginary part is the conjugate
variable, the quantum-mechanical electronic energy con-
tains the proper dependence on coordinates and momen-
ta, and the Lagrangian from the time-dependent varia-
tional principle gives correct equations without adding
terms. The advantage of introducing the fictitious
kinetic-energy terms is that one can give the electronic
variables a mass comparable to that of the nuclei, or even
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larger. The resulting dynamics will then have the same
time scale as the nuclear motion, which makes the pro-
cedure very efficient. As a result, however, the dynamics
of the electronic variables bears no relationship to any
approximation of the underlying quantum-mechanical
dynamics of the electrons.

Hartke and Carter (1992) develop an alternative way to
simulate dynamics on a PES along the same general lines
and apply it to atomic clusters.

d. Time-dependent Hartree-Fock

There is a large class of methods that are variants of
TDHEF for the dynamics of electrons and that employ a
semiclassical or classical description for the atomic nu-
clei. Examples are the work of Kulander and collabora-
tors (Kulander et al., 1982; Tiszauer and Kulander,
1984, 1991); of Micha, Feng, and Runge (Runge et al.,
1990; Micha and Runge, 1992; Runge, 1993); of Field
(1992); and of Mikkelsen and Ratner (1989). All these
methods consider an explicit dynamical description of
the electronic state. Sometimes the full ab initio Hamil-
tonian is considered (Runge and Micha); sometimes a
model Hamiltonian is set up to drive the dynamics (Field,
Mikkelsen, and Ratner). The coupling between the elec-
trons and the nuclei in these models is through the (aver-
age) potential-energy surface. The nuclei feel the surface
and the electrons feel the nuclei only through their in-
stantaneous positions in the Fock operator. As a result,
electron momenta are not treated correctly, a deficiency
which shows up mainly in higher, nonchemical energy
regimes. To remedy this problem, electron translation
factors (ETF’s) are sometimes introduced (Bates and
McCarroll, 1958; Delos, 1981; Fritsch and Lin, 1991;
Riera, 1992).

Field has applied TDHF at the semiempirical Austin
Model 1 (AM1) level for simulation of the dynamics of
LiH, H,0, and CH,0 molecules (Field, 1992). A brief
definition of the semiempirical Hamiltonian used by
Field is presented in Sec. 3 of the Appendix. One of the
main conclusions of these simulations is that the TDHF-
AMI1 method gives trajectories that display results for
various static and dynamical properties (when a self-
consistent-field wave function is chosen as a starting
point) that are equivalent to those calculated via trajec-
tories obtained with a method ensuring that the electron-
ic variables satisfy the time-independent variational prin-
ciple at each time step. Field claims, based on this result,
that the TDHF approach has few advantages for the dy-
namics of closed-shell systems with wave functions lying
on or very close to the Born-Oppenheimer surface. This
claim is addressed again in the applications section (Sec.
IV) after it is shown in Sec. III.A.3 that Field’s equations
omit the nonadiabatic coupling terms. He has also incor-
porated the radiation field and radiation-matter interac-
tion at the long-wavelength dipole approximation. As a
result, it is possible to study the detailed dynamics of the
electronic population in several states when a donor-
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acceptor molecule is excited by radiation of various
wavelengths.

Kulander and co- workers (Kulander et al.,, 1982;
Tiszauer and Kulander, 1984, 1991) describe the elec-
tronic orbitals numerically on a grid fixed in space and
propagate them together with the classical nuclear posi-
tions as a coupled system of difference equations. Their
study is restricted to collinear reactions in triatomic sys-
tems like H" +H,, for which the equation for the (dou-
bly occupied) orbital ® becomes

ii(b(r,t):h(D(r,t) ,

at
h =—51—V2+ V, (r,t)+V,(1,t),
(1.6)
V.(r,0)= ffir_t_
lr—r'|
. 1
V,o(r,t)= 2

= lr—2Z;(2)e,|

The equations used by Runge and Micha (Micha and
Runge, 1992; Runge, 1993) introduce an elegant solution
to the problem of largely differing time scales in the cou-
pled system of equations. Runge and Micha start from
the TDHF equation for the density matrix T,

ir=FIr—TF, (1.7)

where F is the Fock matrix. The Fock matrix depends
linearly on the density matrix and is described in more
detail in Eq. (3.23). The nuclei are treated classically and
alternatively follow prescribed trajectories, straight lines
or Coulomb trajectories, or they follow trajectories com-
puted from

MR, =Vg E(R,T), (1.8)

where the average potential E(R,T") is the expectation
value of the molecular Hamiltonian, including the nu-
clear repulsion terms and the electronic energy of the
state described by the density matrix I'. To avoid having
to integrate the fast electronic motion in Eq. (1.7), Micha
and Runge linearize the equation during time steps At,
long compared to the electronic time scale, but short for
the nuclei, with the assumption that the effect of the nu-
clei is a small perturbation on the evolution of the density
matrix. They write ['(¢)=T0%¢)+T(¢), where the refer-
ence density I'° is propagated assuming that the Fock
matrix remains the same as at time ¢,

iT0=F(t,)I°—T°F(t,) (1.9)

with F(ty)=F(R (t,),I'%t,)). The correction I'! then
gives the effect of the motion of the nuclei, linear in the

change of the Fock matrix, on the density
iT'=F(ty)I'—T'F(t,)+AFT°—TC°AF , (1.10)

where AF =F(R (1),I'%t))—F(t,). These equations are
integrated from ¢4 to t,-+ At by diagonalizing F(z,) and
writing T'° and T'! as a superposition of the eigenmodes.
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An efficient algorithm is used to increase or decrease At
during the evolution as needed. Runge and Micha write
their equations in the traveling atomic-orbital basis,
which is important for the quality of their results (Micha
and Runge, 1992; Runge, 1993). A more recent treat-
ment (Micha, 1994) using Liouville operators generalizes
these equations to all orders in AF.

e. Time-dependent density functional

Recently Theilhaber (1992) implemented the rigorous
time evolution used in the TDHF in the field of density-
functional theory for extended systems as an alternative
to the Car-Parrinello method. He describes the electron-
ic system by using Kohn-Sham orbitals and obtains the
dynamical equations

d _ 1
z—a—ttpj(r,t)— - —2;V2¢j(r,t)+veﬁ(r,t, [n] )1/Jj(r,(t1) 1,1)

dZ
ME'Rk(t)sz(t) »

where F,(?) is the total force on the kth ion and where,
with double occupancy, the density is given by
N,/2

n(r,t)=2 3 |¢(r,1)|?

i=1

(1.12)

These equations will be studied in detail in Sec. III for
the single-determinantal wave function [see Eqgs.
(3.22)—-(3.25)] and are derived from the TDVP in Sec. 1 of
the Appendix. More details can be found in Theilhaber’s
paper (Theilhaber, 1992). He points out that the time-
dependent density-functional (TDDF) approach has a
physical kinetic energy as opposed to the fictitious kinetic
energy of Car and Parrinello (1985). Furthermore, be-
cause of the rigorous relation to the Schrédinger equa-
tion for the full system, the TDDF equations conserve to-
tal momentum and total energy.

To avoid having to integrate the fast electronic motion
for long times, Theilhaber uses a procedure well known
in the field of plasma physics (Birdsall and Langdon,
1991); i.e., the computer simulations are run with the ion
masses equal to 10m,, which is small enough to allow for
picosecond simulations, but still large enough to ensure
approximate adiabaticity of electron motion in response
to ion displacements. The results are then rescaled to
mass ratios of interest.

f. Close coupling and perturbed stationary slate

Reviews of the semiclassical and quantum versions of
the close-coupling approach are given by Delos (1981),
Kimura and Lane (1990), and Fritsch and Lin (1991). It
is a method to describe charge-transfer processes in slow
(Delos, 1981) and, recently, also fast (Riera, 1992) atomic
collisions. One considers a target system originally at
rest at the origin and a projectile atom approaching the
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target with given impact parameters and velocity. The
method concentrates on describing one active electron,
the others being frozen in core orbitals or treated by
pseudopotentials. Some systems with two active elec-
trons have been studied (Fritsch and Lin, 1991). The
semiclassical form of the method is briefly discussed
below. Delos (1981) gives a detailed discussion of the ful-
ly quantum-mechanical form of the close-coupling
method.

The method has three ingredients: (i) a choice of nu-
clear trajectory, usually a prescribed trajectory, often a
straight line or Coulomb trajectory; (ii) a choice of basis
set for the electronic wave function; and (iii) the solution
of coupled differential equations in time for the
coefficients of the electronic wave function. The choice
of basis set in the close-coupling method has a rich histo-
ry reviewed in detail by Fritsch and Lin (1991). The
present consensus is to use molecular orbitals 1; depend-
ing on all nuclear coordinates R with electron translation
factors of the form (Kimura and Lane, 1990)

F/(R,r)=exp[i(mv-rf;(R,r)—mv*t/2)/%] (1.13)

with a switching function f, which has the asymptotic
values +1 for the limit where the two atoms are far
apart. The space-independent kinetic-energy term can be
left off and incorporated in the wave-function expansion
coefficients. The question of ETF’s is addressed in detail
in Sec. IL.A.

The total molecular wave function is then written as

\I/(R,r)ZZ)(,-(R)t/),-(R,r)F,-(R,r) . (1.14)
In the semiclassical approximation, this becomes
\I/(R,r)=2 a;(t)Y;[R (t),r]F;[R (t),r]exp(f) , (1.15)
where

r==i ['ER@dr— [’ (1.16)

Substituting Eq. (1.15) in the time-dependent Schrodinger
equation, projecting on the electronic basis, and expand-
ing to first order in v give the coupled equations

.oda

iS5 =[h+7-(P+ A)la (1.17)
with
S =Y, F; |4, F;)
Pji=<¢j|—i§VRk|¢i> ,
(1.18)

Aji=<¢ijl[hel7rfi(R’r)]|1/}iFi> ’
hji:<¢jlhell¢i> .
The total Hamiltonian is defined as H(R,r)=T +h,,

with 7 the appropriate nuclear kinetic-energy operator.
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The nonadiabatic coupling terms P are derived for a
single-determinant wave function in the Appendix, Sec.
2.c, Eq. (A67). A related term, Eq. (A68), that acts on
the nuclear motion, also is obtained there, but not con-
sidered in close-coupling treatments where the nuclei are
assumed to move on prescribed trajectories.

Note that the ETF’s are used to derive the terms A,
but are neglected in the evaluation of P and h. This is
because the term A is essential for obtaining the correct
asymptotic behavior of the equations, whereas the low
velocity makes the ETF almost equal to unity in the
volume over which the matrix elements P and h are eval-
uated. It is then a good approximation to omit the ETF
in that integration. See Riera (1992) and Fritsch and Lin
(1991) for a detailed discussion.

The perturbed-stationary-state (PSS) method (Mott
and Massey, 1965) was the first formulation (without
ETF’s) of the close-coupled equations for electronic dy-
namics in atomic collisions. Modern applications of the
PSS method do include proper treatment of the velocity
(Riera, 1992). The original PSS equations have only the
nonadiabatic coupling term P of Eq. (1.18) and rely on
the completeness of the basis to accurately represent the
other terms. The correct inclusion of ETF’s (Delos,
1981) essentially brings out all terms linear in the nuclear
velocities and is therefore less sensitive to the basis used.

g. Electron-nuclear dynamics

The theory of electron-nuclear dynamics (END; Deu-
mens and Ohrn, 1988; Deumens, Diz, Taylor, and Ohrn,
1992; Ohrn et al., 1992; Longo et al., 1993) has a more
elaborate and detailed mathematical foundation than
most time-dependent treatments of the dynamics of elec-
trons and nuclei in molecules. The payoff for the addi-
tional work is a deeper understanding of the structure of
the dynamical equations. For example, the END
analysis straightforwardly produces terms that have been
found to be essential in some atomic collision work for
describing higher-energy processes. These terms have an
extensive history and are related to the correct treatment
of the electron translation factors (Bates and McCarroll,
1958; Delos, 1981). In END these terms are obtained by
a straightforward coordinate transformation in the phase
space of the molecular-state parameters. This conceptual
simplification has practical and didactic advantages over
the conventional ETF derivation.

The mathematical tools for defining and analyzing the
phase space include the theory of Lie groups, coherent
states, and dynamical systems (Kramer and Saraceno,
1981; Klauder and Skagerstam, 1985; Perelomov, 1986).
The term ‘“‘coherent” comes from laser theory, where
Glauber used special wave functions to describe the
coherence of light. The mathematical generalizations of
the wave functions used by him are still called coherent
states, but they rarely have any physical property of
coherence. Rather, one can think of the term as referring
to the mathematical property of the resolution of the
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identity. Mathematically, coherent states are an over-
complete set with a resolution of the identity. The fact
that all states in the overcomplete set add up to unity
makes the set ‘“‘coherent.” The. understanding of the
theory of coherent states and Lie groups is in no way
essential to the understanding or use of the theory, or to
the derivation of the physical properties of the equations.
The theory of coherent states is inspiring and important
in order to find the optimal parametrization of the wave
function. It is also useful in proving the internal con-
sistency of the equations. Coherent states and Lie groups
are not introduced in this presentation of time-dependent
treatments, but their relevance is clarified in Sec. I1.B.2
for the interested reader.

The END theory can be considered as an extension of
the TDHF methods in the sense that electrons and nuclei
are allowed to interact without any restriction, as op-
posed to methods with a potential surface construction
and the associated averaging over electronic motion.
This implies, among other things, that neither the Born-
Oppenheimer nor the adiabatic approximation is en-
forced in END and that (even with classical nuclei) the
trajectories are truly dynamical and result from the ac-
tion of the instantaneous forces.

END differs from other time-dependent methods pro-
posed and developed in recent years in that it recognizes
that the electron-nuclear dynamics takes place in a gen-
eralized phase space. The detailed analysis of this phase
space and the explicit construction of its metric are im-
portant ingredients in the END approach. Other
methods assume, implicitly, that the phase space is
canonical, i.e., flat. In some cases, that may be correct;
in others, though, this requires further investigation. For
instance, when ETF’s are important, the correct forces
that have caused significant debate and that can be de-
rived from ETF’s by sometimes laborious schemes
(Delos, 1981) are actually contained in the phase-space
metric. The formulation of the dynamics in the proper
phase space greatly clarifies the dynamical origin of these
terms and simplifies their derivation.

The principles of END are few and simple.

(1) Parametrize a wave function for the molecule as a
whole, i.e., for electrons and nuclei. Make sure that (a)
the parameters are nonredundant; (b) the parameters are
divided into coordinates and their conjugate momenta;
and (c) the parameters generate a complete set of wave
functions.

(2) Make all parameters time dependent and derive
dynamical equations for them using the chosen
parametrized wave functions as the family of allowed
variations in the TDVP. Although several types of wave
functions have been considered (Deumens et al., 1987a,
1991; Deumens and Ohrn, 1989b; Weiner et al., 1991),
this review concentrates for several reasons on the sim-
plest possible choice, i.e., a single determinant—spin
unrestricted and with complex coefficients—for the elec-
trons and a classical treatment of the nuclei.

Among the reasons for this choice are the following:
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(i) It is general enough to exhibit most intricacies of
time-dependent treatments explicitly; (ii) the choice is
sufficiently rich to allow a meaningful comparison with
experiments for a large variety of physical and chemical
processes; (iii) the general framework generated by the
choice includes many of the most widely used methods as
special cases; and (iv) necessary generalizations can be
formulated as conceptually simple extensions, but would
be cumbersome to discuss for the purposes of a review.

The parameters should be such that each quantum-
mechanical state, i.e., each wave function up to a normal-
ization constant and global phase factor, is mapped one-
to-one on a set of parameter values. For TDHF, one
often uses molecular-orbital coefficients. Because of the
well-known invariance of a determinantal state under ar-
bitrary transformations of the occupied (and unoccupied)
orbitals among themselves, there are many parameter
values that represent the same state. Because the
Schrodinger equation determines the evolution of quan-
tum states, it is invariant under any transformation that
leaves states invariant. As a result, the equations for the
parameters derived from the TDVP will be invariant as
well. It follows that such equations will not determine
the evolution of redundant parameters. This leads to nu-
merical instabilities. These can be eliminated by ap-
propriate constraints. However, it is obvious that the
system with constraints will be less efficient than a
straightforward propagation of a set of nonredundant pa-
rameters. For a single determinant, the theory of
coherent states associated with the unitary group of the
single-particle space immediately yields the correct pa-
rameters (Kramer and Saraceno, 1981). These parame-
ters are known in nuclear physics as the Thouless repre-
sentation (Thouless, 1960) of a determinantal state and
are used in the classification of spin- and charge-density
waves in solid-state theory (Fukutome, 1981). Their con-
struction is presented in Sec. II.B, and in Sec. III.C.2 it is
proven that they can be interpreted as random-phase-
approximation (RPA) amplitudes (Linderberg and Ohrn,
1973).

The second requirement on the parameters is that they
be suitable to describe a dynamical system. The
Schrodinger equation in Hilbert space is an infinite-
dimensional, linear dynamical system, and the complex
nature of Hilbert space is essential. For the time-
dependent treatment to retain that essential feature, it is
necessary and sufficient that the parameters form a phase
space, which means they can be divided into a set of
coordinates and a set of conjugate momenta. Such a
division is called a symplectic structure and is the foun-
dation of the theory of dynamical systems (Goldstein,
1980). Imposition of such a structure ensures that the
time-dependent treatment, however approximate, will be
dynamically reasonable. The elements of the one-particle
density matrix provide a choice of parameters (coordi-
nates) for a single-determinantal wave function (Runge,
1993). However, no conjugate momenta exist and there-
fore some inconsistencies can be expected for such a
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choice. Because Runge and Micha use a linearized form
of the equations to propagate the electronic coordinates,
they implicitly use conjugate momenta that are, as for
any oscillator, 7 /2 out of phase; and no problems arise.
Were one to attempt a solution of the nonlinear equa-
tions, one must define conjugate momenta for the elec-
tronic degrees of freedom. When the theory of coherent
states and Lie groups is used, the existence of the sym-
plectic structure is guaranteed—another advantage of
using these mathematical tools.

The third requirement is that the parameters be such
that the wave functions for all possible parameter values,
in principle, form a complete set. It is formally overcom-
plete because of the continuity of the parameters.

In our case this means that the single-determinantal
wave function for the electrons is

det(x,(r,)) (1.19)

with

Xh(r)=¢h(r)+z lllp(l')zph , (1.20)
» .

where the ¢, (r), kK =p,h, are appropriate orthonormal
two-component spin-orbitals expressed in some (in prin-
ciple, complete) basis of spin-orbitals. This parametriza-
tion ensures that during the time evolution of the z pa-
rameters the system will be able to access all possible
determinantal wave functions in the given orbital basis.
Theoretically the most convenient orbital basis would be
a fixed orthonormal set. This leads to simple dynamical
equations. One choice would be harmonic-oscillator
eigenfunctions centered at the origin. They are complete,
orthonormal, and easy to work with. On the other hand,
from the point of view of computations, a description is
desired with physical quantities represented accurately
by a small number of terms. Since representations of or-
bitals on one center in a basis located at another center
converge poorly, electronic structure theory works with
atomic orbitals on all centers. The same idea works for
dynamical problems with appropriate adjustments of the
dynamical equations. Electron translation factors are a
similar convergence accelerating device. When used with
the correct dynamical equations, they are nothing more.
Details are discussed in Sec. IL.A.

With a given choice of the form of the wave function
and with a choice of parameters (including orbital basis),
all approximations are specified. The derivation and
solution of the equations involve no further approxima-
tions.

Il. PREPARATIONS

All treatments of molecular systems use quantum
mechanics to describe the electrons. Some methods only
look at the electrons through the electronic eigenstates
associated with the PES’s; others treat the electronic de-
grees of freedom dynamically. Although the methods
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that currently use fitted surfaces have integrated out all
detailed electronic information, the more exact ones, like
the pseudospectral Fourier approximation, are expected
to include eventually an explicit treatment of the elec-
trons as a way to overcome the limitations of the fitting
procedure. Furthermore, all methods that do include a
full treatment of the electrons need to be supplied with
an initial state for the evolution. This is often a molecu-
lar state including an electronic state on the PES. A
thorough understanding of how the electrons are de-
scribed is essential for all time-dependent methods. This
is the subject of Secs. II.A and II.B.

Next, the description of the nuclei is discussed in Sec.
I1.C, and finally, in Sec. IL.D, a detailed discussion of the
time-dependent variational principle (TDVP) is given.

A. Electronic spin-orbitals

1. Choice of basis and convergence

An approximate many-electron wave function can be
represented in a variety of ways. Both for the ease of in-
terpretation in terms of chemical and physical concepts
and for computational efficiency, it is convenient to build
many-electron wave functions from single-particle func-
tions or spin-orbitals. These orbitals are, in general,
chosen to be expressed in terms of a basis set of functions
of some analytic form that can be efficiently manipulated.
In principle, one could represent the many-electron func-
tions on a grid and obtain an “‘exact” numerical represen-
tation. However, the number of grid points increases so
rapidly with the number of electrons, that this technique
has never been applied successfully to more than one or
two electrons.

The choice of basis set in terms of which to represent
the spin-orbitals has been given much consideration in
quantum chemistry. Excluding electron scattering or
ionization processes, it is clear that electronic density
remains near the atomic nuclei throughout a process. If
one considers the number of basis functions of some type,
say, harmonic-oscillator-type functions centered at the
origin, needed to represent an orbital located on a nu-
cleus some distance removed, it becomes clear that it is
more efficient to analytically move the basis functions
over to the atomic nucleus. When one centers basis func-
tions on a number of different nuclei in that way, the re-
sulting total basis is no longer orthonormal and can in-
troduce annoying approximate linear dependencies; how-
ever, it is known in practice to work quite well for gen-
eral molecular systems. Thus using basis functions cen-
tered on the atomic nuclei rather than on fixed points in
space is an obvious choice that leads to better conver-
gence properties.

A similar observation holds with regard to conver-
gence of a basis for the velocity or momentum properties
of the electrons. Given the properly derived equations of
motion, convergence is accelerated by analytically mov-
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ing the basis function to the atomic nuclei in phase space,
rather than just in configuration space. This simplifies
and explains the role of electron translation factors, a
subject that has received considerable attention in the
time-dependent formulations (Delos, 1981).

2. Atomic spin-orbitals

The electronic wave function is ultimately defined in
terms of a set of K localized atomic spin-orbitals. These
spin-orbitals are given as linear superpositions of ex-
ponential or Gaussian functions, to describe the spatial
part, multiplied by an a or 8 spin function for the spin
part or a completely general two-component spinor func-
tion. In this paper a spin function is assumed always to be
included or a general two-component function is con-
sidered and the terms spin-orbital and orbital are used in-
terchangeably. An orbital is called a Slater-type orbital if
it has the form

x*ylzmrlexp(—ar) 2.1
and a Gaussian-type orbital if it is expressed as
xky ’z"’exp( —ar?), (2.2)

where r=(x,y,z) is the electron coordinate. The orbitals
are, in general, centered on one of the atomic nuclei and
are therefore referred to as atomic orbitals. But they can
be centered, in principle, anywhere in space, for example,
to describe bonds. These orbitals are nonorthogonal.

The choice of basis, Slater-type orbital or Gaussian-
type orbital, depends on which of their properties are
most valuable for a particular type of computation. Both

sets can, in principle, be extended to a complete basis for

a single-particle Hilbert space and are in that sense
equivalent. However, the following properties are
relevant to electronic structure and dynamics. The
Slater-type orbitals have (1) the correct asymptotic
behavior of r at large distances for appropriate choices of
a, namely, exponential decay; (2) the correct behavior at
the atomic nucleus if appropriate exponents a and linear
combinations have been chosen to satisfy the cusp condi-
tion; (3) analytic expressions for one- and two-center ma-
trix elements, including the Coulomb potential, but not
for elements involving more centers; and (4) no analytic
expressions for matrix elements that include an exponen-
tial plane-wave factor.

The Gaussian-type orbitals, on the other hand, have (1)
the wrong asymptotic behavior for molecules at large dis-
tances; (2) the wrong behavior at the atomic nucleus be-
cause their derivative is always zero; and (3) analytic ex-
pressions for all matrix elements of the electron-electron
Coulomb repulsion, even with inclusion of an exponential
plane-wave factor.

Slater-type orbitals have superior qualities for ap-
propriate choices of exponent factors a, but are computa-
tionally demanding for ab initio applications (because of
the three- and four-center matrix elements). They are
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used primarily for calculations on atomic and diatomic
systems. Slater-type orbitals are also employed in sem-
iempirical theories, which neglect all but one-center ma-
trix elements, such as the intermediate neglect of
differential overlap method, or all but one- or two-center
matrix elements, such as the neglect of diatomic
differential overlap method. The asymptotic behavior of
the orbitals is crucial for the computations of electron-
transfer-matrix elements which depend strongly on the
tail of the electronic wave functions. The necessary ma-
trix elements have been coded in parametrized schemes
as ZINDO (Zerner, 1991), AMPAC (Dewar et al., 1985),
and MOPAC (Stewart, 1990).

Ab initio calculations on general molecular systems em-
ploy Gaussian-type orbitals for efficient evaluation of all
matrix elements with small superpositions (contractions)
of a few primitive Gaussian-type orbitals. Matrix ele-
ments and associated integrals over Gaussian-type orbit-
als are evaluated with the algorithms of McMurchie and
]o)avidson (1978) in SIRIUS by Helgaker, Jensen, and
Agren (Helgaker et al., 1986) and in DISCO by Fey-
ereisen (Feyereisen and Kendall, 1993), and with the al-
gorithms of Obara and Saika (1988) in GAUSSIAN by
Pople and co-workers (Gill and Pople, 1991) and in other
quantum chemistry integral codes.

3. Molecular spin-orbitals

Most manipulations with wave functions for many
electrons are conveniently carried out in an orthonormal
basis {4}~ . k- Let {#;],—; i be a set of atomic
spin-orbitals. The orthonormal basis is sometimes re-
ferred to as the molecular-orbital basis because such or-
bitals are spread out over the system. In practice, ortho-
normal molecular orbitals are obtained by either a simple
orthonormalization procedure or some construction that
relates more closely to the physics of the problem, such
as the orbitals that diagonalize the Fock operator. The
use of orthonormal orbitals yields a clear and simple
derivation of the dynamical equations. However, compu-
tational efficiency demands that the dynamical equations
be transformed to the atomic-orbital basis for ab initio
Hamiltonians.

The relation between these two bases is

v=¢W,

where 1 and ¢ are row arrays of basis functions. Thus
the transformation is defined so that the columns of the
matrix W represent the new basis vectors. The transfor-
mation matrix W satisfies

(2.3)

wiaw=r, (2.4)
where the atomic overlap matrix A has the elements
A;={¢;1;,)= [ (0),(r)d’r ; 2.5)

ie, Wwi=a"1
The electron field operators
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K
F(r)=3 #,(r)b;=yb =¢WW'a

i=1

(2.6)

are introduced, and the basis field operators transform as
b=w'a, 2.7)

where the spin-orbitals and basis creation operators are
arranged in a row array. This means that the creators
transform as the spin-orbital basis. It then follows that
(Linderberg and Ohrn, 1973)

[b,b7]1,.=1,
(2.8)
[a,a’],=A .
Thus the anticommutation relations
[F(r),Fi(e") ] =v()[b,b 1, 9 (r")
=¢(r)A " [a,a], A7 ¢7(r)
=8(r—r') 2.9)

hold as they should for fermion field operators. The last
step is true only in a complete basis.
A single-determinantal state

W)=l b}))= i b/|vac)
0 1 N H plvac/ ,
h=1

(2.10)

where the product [[)-; b,f refers to an ordered set of
creation operators, has the wave function (Linderberg
and Ohrn, 1973)

N
L ry)=(vac| [ F(xr,)|¥y)

n=1

Wory, ..

N N
=(vac| [ F(r,) II &/Ivac)

n=1 h=1
=det{y,(r,)} (2.11)
for the case of the orthonormal spin-orbitals, and
N N
Wo(ry, ..., 1y)={vac| [] F(r,) [T a/lvac)
i=1 h=1
=det{¢,(r,)} (2.12)

for the case of the nonorthogonal basis. The chosen form
of the field operators, Eq. (2.6), in the nonorthogonal
basis ensures the parallel behavior to that of the orthogo-
nal basis in the manipulation of determinantal wave func-
tions.

The expectation value of the electronic position is
given by

J (W[ F(0)'eF (0)| W) d3r /(W |W,)

K
= 3 [er@ry;(0d3r{|bb;1W,) /(W |¥,)

ij=1

K
=3 rI;=Te(rT),
ij=1

(2.13)
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and similarly for the electronic momentum with the ma-
trix elements

pij=§f¢i(r)*vr¢j(r)d3r . (2.14)

4. Electron translation factors

In his review, Delos (1981) has explained in detail the
structure and role of electron translation factors (ETF’s).
When electronic wave functions, determined as eigen-
functions of the static electronic Hamiltonian, are used as
basis functions for a time-dependent treatment of the
molecule, it is necessary to take into account the proper
transformation of the electronic basis functions from be-
ing centered on a fixed point near a nucleus to moving
along with that nucleus. Since the problem, and the solu-
tion, is the same for a classical description of the nuclei
as it is for a quantum-mechanical treatment, only the
classical case is discussed here and the reader is referred
to Delos’s review for more details. An ETF is given by

exp[i(mv-t—mv?t/2)/#] . (2.15)

The term with the kinetic energy is just a time-dependent
phase factor and is important only when the ETF’s are
used to derive the correct dynamical equations. This as-
pect is not discussed further in this section. Multiplying
an atomic orbital with the ETF of the form

B=exp[imv-r/h] (2.16)
results in what is called a traveling atomic orbital.

The use of ETF’s for molecular orbitals has been the
subject of debate for some time (Kimura and Lane, 1990;
Fritsch and Lin, 1991; Riera, 1992) because the method
of implementation is not as obvious as it is for atomic or-
bitals. There is some consensus that the form of Eq.
(1.13) is adequate (Delos, 1981; Fritsch and Lin, 1991).
The physical role of the ETF is explained clearly by
Riera (1992) to be that it adds the necessary flux to the
static orbitals (atomic or molecular), which are usually
real, to make them suitable for the description of mole-
cules in motion.

Traveling Slater-type orbitals and Gaussian-type orbit-
als can be defined. However, only traveling Gaussian-
type orbitals are of any practical use, since it is possible
to evaluate the necessary matrix elements over them
analytically as shown by Obara and Saika (1988). It is
unfortunate that this aspect of their paper seems not to
have been implemented in any general-purpose code.
Most computations using ETF’s reported to date employ
them to get the correct equations, but neglect them in the
multicenter Coulomb integrals (Fritsch and Lin, 1991;
Riera, 1992). The main argument is that the de Broglie
wavelength is large compared to the size of the atomic
orbitals; so the ETF can be assumed constant over the
volume of integration where the integrand is significant.
The same argument also justifies using an expansion,
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explik-0)@y; (@, 1) =@y | (a, 1) +ikrpy ;. (a,0)+ - - -
:‘pk,l,m(a’r)+ikx(pk+l,l,m(a7r)+iky‘pk,1+1,m(a9r)+ikz‘pk,1,m +1((1,I')+ )

of the ETF. For small to moderate velocities, trunca-
tions of this expansion are adequate. This is basically the
assumption in the perturbed-stationary-states approach
(Riera, 1992).

The fact that Slater-type-orbital matrix elements with
ETF’s cannot be evaluated analytically makes this expan-
sion of the ETF the only feasible option in semiempirical
theories or ab initio methods using Slater-type orbitals.

B. Electronic wave function

The electronic wave function used to construct a PES
or to describe the electrons dynamically can be chosen in
many forms. The comparison of various choices encom-
passes the entire field of electronic structure theory. For
the purpose of time-dependent treatments of molecular
systems, only a few general observations need to be made.
As larger molecular systems are considered, it becomes
harder to find a usable fitted surface. Because of this, the
techniques that consider the nuclear dynamics on a PES
probably have to abandon the construction of the sur-
face. One might therefore expect that all time-dependent
dynamical approaches would eventually include an expli-
cit treatment of the electrons in some form or other. It is
important in such an approach to have a consistent, bal-
anced approximation for the electrons, i.e., one that
shows good relative energies such as barrier heights,
while it may be less important that the total energies be
accurate.

When electronic wave functions are employed, either
to produce the PES and its gradients or to provide expli-
cit electronic dynamics, their parametrization becomes
important. Because of its simplicity and its success in
practical applications, the case of a single spin-
unrestricted complex determinantal wave function is con-
sidered (Deumens and Ohrn, 1989b). Such a wave func-
tion is quite approximate, particularly if one is concerned
with total energies and correlation effects; however, for
many systems,  its qualitative features are right, and
therefore it is worthwhile to explore its use in this con-
text both for didactic purposes and for some nontrivial
applications. All basic ingredients needed for a proper
treatment of more general wave functions—such as the
multiconfigurational ones (Deumens et al., 1991), the
spin-projected Hartree-Fock (Weiner et al., 1991), and
the antisymmetrized geminal power ones (Deumens
et al., 1987a)—are present already in the single-
determinantal case (Deumens, Diz, Taylor, and Ohrn,
1992).

The concept of coherent states with the theory of Lie
groups exposes the properties of a determinant that seem
special, and it shows that these properties are quite gen-
eral and apply to other forms of wave functions as well.
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(2.17)

f

It is not essential for an understanding of the physics in
this paper to be familiar with the concept of coherent
states; hence Sec. I1.B.2 may be skipped at first reading.

Proper parametrization means the following: (1) The
parameters (or labels) of the electronic wave function
must be minimal or nonredundant; (2) in order to de-
scribe electron dynamics, the parameters must exhibit
the structure of a phase space with pairs of conjugate
coordinates and momenta; and (3) the parameter mani-
fold should be continuous and able to generate a com-
plete set of states, i.e., states that provide a resolution of
the identity.

1. Dynamic orbitals

In the context of a determinantal state, it is meaningful
to divide the set of K spin-orbitals into N occupied and
K-N unoccupied spin-orbitals. When a linear array g
refers to the set of all, of only occupied, or of only unoc-
cupied spin-orbitals, it is denoted by g, ¢®, and g°, re-
spectively.

Atomic spin-orbitals may also be partitioned into two
sets which may be called occupied and unoccupied. This
should be understood as a mere mathematical construct.
For the purpose of dynamics, the reference determinant
is simply made up of nonorthogonal atomic spin-orbitals
which are said to be “occupied.” The rest are “unoccu-
pied.” The reference determinant does not necessarily
have any physical meaning. It only provides a suitable
mathematical reference. With this in mind, the atomic
spin-orbitals can be partitioned as follows,

$=(4* ¢°).
Similarly, for matrices, four sub blocks are identified: the
occupied N XN and unoccupied (K-N)X(K-N) diagonal
blocks, and the upper and lower off-diagonal blocks. The

transformation to the molecular basis becomes, in block
form,

(2.18)

we w>

(¥ $2)=(¢* ¢°) | v WO (2.19)

A solid circle is used to denote the occupied part and an
empty circle to denote the unoccupied part. The super-
script > denotes the upper off-diagonal block, reminding
us of the horizontal rectangular shape with the number
of occupied orbitals (the number of rows of that block)
usually being smaller than the number of unoccupied or-
bitals (the number of columns). Similarly, the superscript
V denotes the lower off-diagonal block, which has a vert-
ical rectangular shape, where the opposite is true. With
this notation many messy index manipulations are avoid-
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ed. As a mnemonic device, p,q,r are reserved for indices

running over the particle or unoccupied range
N+1,...,K, and h,g, f for the hole or occupied range
1,...,N

Introducing a general unitary transformation U of the
orthonormal spin-orbital basis, one can write

N
W) =|c®")= [T c®flvac)
h=1

N N
=11 2 b U, + 2 by 'U | lvac)
h=1 = p=N-+1
N N T o‘r Vryre—1 )
=hH1 2 b+ %ﬂ kEIb Ui Ui | U,
= » -
N ¥ K N ¥
=a [l |62+ = 3 6,0 UG |lvac)
h=1 p=N+1 k=1
N K N
=a Il |1+ 3 3 o2TU U 'bp
h=1 p=N+1 k=1 =1

where the invariance, up to a constant «, of a deter-
minantal wave function under a linear transformation of

its occupled spin-orbitals is  used. Defining
SN_, U U kh  —Zpy, and the reference state
|, >—|b°T>— n b2 |vac) , (2.22)
one can write the un-normalized state
N K +
Z)=11 N1+ 3 bpO Zpby |1¥o)
h=1 pP=N+1
N K +
=11 II (+b, zphb,,’)llll())
h=1p=N+1
N K R
=TI II exp(zb,'6)[¥)
h=1p=N+1
=exp 2 2 2,202 W) (2.23)
h=1p=N-+1

In Eq. (2.23) the nilpotency of the operators b,’ T5® is ex-
ploited.

The determinantal wave function of this state is
det{x,(r,)} in terms of the occupied dynamical orbitals

K
Xn =¢h + 2 dlpzph . (2.24)

p=N+1
These orbitals are not orthogonal.

The parameters satisfy the stated conditions. By elim-
inating the transformation among occupied orbitals, one
makes sure that the z’s are nonredundant. This could
pose a problem if the dynamics wants to change orbitals
so that the original reference orbitals are no longer parti-
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N
I1 22 Ivac) ,

Dynamics of electrons and nuclei

v® u-
v u°
for the basis field operators and obtain, following Thou-

less (1960), for a determinantal state (Deumens and Ohrn,
1989b),

(c® coT)y=(p®" p°T) (2.20)

|vac)

(2.21)

f

cipating, which results in some of the z’s getting very
large. The problem is resolved in the computer code im-
plementation by switching to new reference orbitals.!
The numerical evolution is more stable and faster if the
z’s are kept small. For that reason coordinate charts are
switched when the norm of the z’s reaches about 100
rather than when they reach magnitudes that would in-
volve the machine precision (usually around 10'3).

It was shown by Broeckhove and co-workers (Broeck-
hove et al., 1988) that complex parameters always admit
a symplectic structure; hence the choice satisfies require-
ment number 2.

Since the reference is an arbitrary determinant, it fol-
lows that all determinants in the spin-orbital basis can be
represented in Thouless form. It is then possible to show,
as is done in the next section, that the Thouless parame-
ters can generate a complete set and thus satisfy the third
requirement.

In order to find a set of virtual dynamical orbitals that
are orthogonal to the occupied space, the following ma-
trix product is considered,

IThis can be viewed, in the language of differential geometry,
as moving from one coordinate chart to the next. This system
of charts is valid because the Thouless parameters, with respect
to one reference state, depend analytically on Thouless parame-
ters defined with respect to another reference state, provided
the two reference states have nonzero overlap. This is a simple
consequence of the SU(K) group composition law expressed in
Thouless parameters.
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* zt||r* —zf I°+z7z —z7427
—z I° ||z I1° | |—z4z I°4z'
I°+z'z 0
= 0 I°+zz" @.25)
This shows that the partitioned matrix
* —zf
, IO (2.26)

defines the coefficients of dynamic occupied and virtual
orbitals spanning mutually orthogonal spaces. It follows
that the projectors on these spaces add up to the unit
operator. One can then write

I _Pocc:Pvirt ’ (227)
explicitly
°
I— |, |a®+z2)7'a® 2"
_t
=10 (I°+zz") "=z I°)
I®—(I%+z'2)"0  —(1%+z7z)7 12T
T —za®+z'2)7t 19—z (1®%+z72)7 127
2o +zzNH"z —2f o +2z%H!
T =a°4zzhz (g +zzhH ! (2.28)

The unoccupied dynamical orbitals are consequently

written as
N

Xp =¢’p _hzl zp";xd}h ’
and, although mutually nonorthogonal, they are orthogo-
nal to the occupied space. This orthogonality and the re-
lations implied between the various blocks of the parti-
tioned matrices in Eq. (2.28) are often used in the follow-
ing to simplify various expressions.

(2.29)

2. Coherent states and Lie groups

In this section the determinantal wave function is
treated as a coherent state (Deumens and Ohrn, 1989b),
and the meaning of the wave-function parameters is stud-
ied. This identifies those properties of the single deter-
minantal wave function that are essential for the method,
thus providing the mathematical foundation for extend-
ing the method to more general cases like
multiconfigurational (Deumens et al., 1991) wave func-
tions and other groups (Deumens et al., 1987a, 1987b).
The general theory of coherent states can be found, for
example, in the works by Perelomov (1972, 1986) and
Kramer and Saraceno (1981), and in the review by
Klauder and Skagerstam (1985).

Coherent states were first used by Glauber (Klauder
and Skagerstam, 1985) to study the coherence of photons
in laser beams. The mathematical properties of the wave
functions used by Glauber were then generalized. The
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definition of a “generalized” coherent states is as follows:
Let |z ) be a state depending on one or more real or com-
plex parameters z such that (1) |z) is a continuous func-
tion of z, and (2) a measure du(z) exists on the parameter
space such that the identity operator in Hilbert space can
be represented as

I=f|z><z|d,u(z) .

The mathematical property that all projectors |z ) {z| add
up (coherently) to the unit operator is what distinguishes
coherent states from any overcomplete set of states with
a continuous label. It is by no means a simple matter to
show for a given parametrized set that the resolution of
the identity holds.

It was Perelomov (1972) who developed the systematic
theory for constructing coherent states. He shows that
given a Lie group G and a unitary representation T of
that group in Hilbert space, it is possible to construct a
family of states that have the properties required of
coherent states. Let H be a subgroup of G that leaves the
state |W,) invariant, i.e., for all elements & of H

(2.30)

T(h)|¥,)=|¥,) ; (2.31)
then the coherent state is
2)=T(g)¥) =T ()T (h)|¥)=T(c)|¥,) , (2.32)

where z is the element of the coset space G/H corre-
sponding to g of G.

The discussion of the single determinant as a coherent
state is presented in detail by Kramer and Saraceno
(1981) and by Perelomov in his book (Perelomov, 1986).
The coherent-state formulation of a determinantal wave
function is based on the Thouless representation (Thou-
less, 1960). The Lie group G is the unitary group U(K)
of single-particle transformations. In principle, one
should consider the infinite-dimensional single-particle
space, but K is assumed to be finite.

The reference state (2.22) is a lowest weight state for
the irreducible representation [1¥0'* “™] of the group
U(K) with generators b;rb ;» because the weight operators
b;b,- acting on the reference state have eigenvalue 1 for
i=1,...,N,and O for i=N +1,...,K. The stability
group of the reference state is U(N)XU(K —N). This
only expresses the well-known invariance of a deter-
minantal wave function to the transformation of the oc-
cupied spin-orbitals among themselves and the unoccu-
pied among themselves. A complex parametrization of
the coset space U(K)/U(N)XU(K —N) is introduced by
using the following decomposition of the elements of
U(K). Extending the group U(K) first to GL(K,C), one
obtains the right coset decomposition g =ch of an ele-
ment g of U(K) where c is a coset representative and
where h is an element of the stability group
U(N)XU(K —N).?

2The left coset decomposition is obtained in a similar way.
Kramer and Saraceno use it because they define the coherent
state in a nonstandard way.
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Next, the Gauss factorization of an arbitrary group
element is introduced,
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terms of the complex parameters z, with x and y deter-
mined as functions of z from the condition that ¢ be uni-
tary. Multiplying the matrix factors of ¢, one gets

I 0 ||x® o ||1®° T o o
c= 5 5 o (2.33) _|x x®
z I1°]|o x°||o 1 €= |k x®Tixo | (2.34)
This leads to a parametrization of the coset space in and hence the unitarity implies
J
t I°® 0
cle=|gy jo
x®(1%4272)x® x® (x O +2Tzx®T4+27x0)
T x® Hyx® 2T +x0T)x® px®Tx Oy T4 x0Tz Tzx @ T px @2 Tx O 4 xOTzx @ T+ xOTx O | (2.35)
[
This yields |‘I’)=T(ch)|‘l’o)=T(ch)|b°T>
[ s L t_y—1/2 (2.36) I®
x®=( z'z) —|bTeh o )
and
° ® ® T ®
yx.T:__xOTZ(I._,}_ZTZ)“l 2.37) =|bT I 0 X 0 I y I )
z I° 0 x© 0 I° 0
from the first column of the matrix equation. Using the 1 o ||r®
last equation for y, the upper diagonal equation gives =alb ©llo >
‘ N K
xO=(I°+zz")” (2.38) =a I |68+ 3 52"z, |lvac)
h=1 p=N+1
. N K
where Eq. (2.28) is used, and =aexp |3 > zphbpotbho |\I,0) ) 2.41)
h=1p=N+1
y=—I°+2z""2z(1%+272)7172. (2.39)

Let T be the appropriate unitary irreducible represen-
tation of U(K) in Fermi-Fock space. An arbitrary
single-determinantal state with occupied orbitals x® is
defined by selecting a set of occupied creators from the
general set given in Eq. (2.20),

I.
0

v® U~

co’r:(bo'r boT) UV po

The unitary representation is defined to act on the
coefficients, rather than on the basis functions or the field
operators b Tas

T(g)|¥)=TI(g)|c®)

I
y=|blgU ). (2.40)

0

+ I
=T(g)|b'U 0
This is in accordance with the active point of view of
coordinate transformations.

The coherent state is then defined, following Perelo-
mov (1972), as
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The second step uses the fact that 4 is in the stability
group of the reference state, and the next step that the
rightmost factor of ¢ in Eq. (2.33) modifies only the virtu-
al space and leaves the reference state unaffected while
the middle factor of ¢ only gives a constant a when act-
ing on the reference state. The constant a is determined
from the normalization of the coherent state. In the fol-
lowing the un-normalized coherent state

N K ¥
lz)=exp |3 3 zub, b2 |I¥)
h=1p=N+1
N K
=11 |67+ 3 52"z, [lvac) (2.42)
h=1 p=N+1

is used. This is recognized as the Thouless representation
(2.20) of a determinantal wave function with the elements
of the (K —N)XN matrix z as time-dependent parame-
ters.

Because this is a coherent state, Eq. (2.30) holds with
the measure given by

N(K —N)
dp(z) = det(1®+2z"z) K ( y | d(Rezy,)d (Imz ),
phi=
(2.43)
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where the results of Lemma 2 on p. 138 in Perelomov’s
(1986) book have been used.

C. Treatment of the nuclei

The two extremes for treatment of the nuclei are, on
the one hand, classical point particles and, on the other,
properly symmetrized many-nuclei wave functions
represented on a grid. Using a mixture of classical pa-
rameters and superpositions of nuclear wave packets, one
can construct a treatment that is general enough to en-
compass both and to permit some insight into nuclear dy-
namics. It provides a recipe for simplifying a given treat-
ment when less accuracy is desired or computational
resources are insufficient.

It can be shown that the eikonal approximation (Mott
and Massey, 1965) leads to classical trajectory equations
for the nuclei. Combining the eikonal approximation
with time correlation functions (Villalonga and Micha,
1992) makes it possible to readily calculate double-
differential cross sections. Heller (1975) also devices clas-
sical trajectory equations from the assumption of frozen
Gaussian wave packets. The additional degree of free-
dom of thawed Gaussian wave packets, which allows
their width to change dynamically, seems to cause more
problems than it solves (Reimers and Heller, 1988). A
more general approach is to introduce time-dependent
basis sets (Kucar and Meyer, 1989). There are certain
processes where it is essential to have the capability for
nuclear wave packets to split in a correlated way (Ham-
merich et al,, 1990). The general description with
multiconfigurational wave functions has been studied in
the framework of time-dependent treatments (Hammer-
ich et al.,, 1990; Meyer et al., 1990; Deumens et al.,
1991) and can be applied for electronic and nuclear de-
grees of freedom without fundamental problems. It is
beyond the scope of this review to explore the details, al-
though it should clearly be acknowledged that there are
problems, the very nature of which require a
multiconfigurational treatment.

In the derivation below, classical nuclei are used. This
description is sufficient for many problems and, together
with the single-determinantal representation of the elec-
trons, results in an attractively simple model. The nu-
clear parameters at this level of treatment are the posi-
tions R ={R;}; and momenta P={P,},. It is some-
times useful to think of classical nuclei as the limit of
narrow Gaussian wave packets. The nuclear one-particle
functions are given by (Deumens, Diz, Taylor, and Ohrn,
1992)

exp | —a(X—R, )+ ép,,x «exp[ —a(X—Z, )]

(2.44)

with expectation value R, for the nuclear position opera-
tor X, P, for the nuclear momentum operator —i#Vy,
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and Z, =(R, +iP, /2a#)/V2. The classical treatment
of the nuclei can be viewed as taking the limits
#i—0,a — o« with 2%ia — 1 of many-nuclei wave functions
constructed with Gaussian wave packets.

As pointed out by Delos (1981), the treatment with
semiclassical nuclei exhibits all characteristics of the full
quantum treatment. The discussion below can be extend-
ed to a fully quantum-mechanical treatment with
minimal theoretical—but significant computational—
effort, for example, by introducing a moving basis of nu-
clear functions as done by Kudéar and Meyer (1989).

D. The time-dependent variational principle

Given the parametrized state |£) with the appropriate
form of wave function, the time-dependent variational
principle (Kramer and Saraceno, 1981) is used to obtain
dynamical equations for the 2N (K —N)+2N,, complex
parameters §

{ga}a: {th’zik ]phik .

Here z are, for instance, the Thouless parameters for
electrons, and Z are complex nuclear parameters defined
in terms of nuclear coordinates R and momenta P as

Zkz‘/Li(Rk +lPk) .

(2.45)

(2.46)

Although any wave function dependent on a set of pa-
rameters can be used in the TDVP, the determinantal
state results in simple, well-structured equations, as can
be seen from the details in this paper.

It is not important for all applications that the overall
phase of the wave packet be correct. However, in some
cases, such as for autocorrelation functions, it is essential
(Lowdin and Mukherjee, 1972). The phase factor can be
obtained by including among the parameters a complex
factor a=N exp(iy) multiplying the wave function. The
TDVP employed here is norm independent, which leads
to a straightforward derivation of the dynamical equa-
tions.

The TDVP starts from the variation of the quantum-
mechanical action 4,
84=5

i d d
> <§|E(|§>)—E(<§l)|§>

—<§|H|§>l<§|§>‘1dt=o. (2.47)

Defining the “left acting derivative” as

d d

ar = s (2.48)
introducing the operator
i|ld _d
O=—|———|— .
> lar @ H, (2.49)

and then using integration by parts with the appropriate
boundary conditions, one can write
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84=5[(¢l®[£)(¢le) " dr=0

=[ [(8§Ii%l§>*(6§!Hl§>—({,‘f@)lé‘)(§|§)_1<8§|§)+c.c. (¢lg)tar . (2.50)

Considering first completely general variations, the time-
dependent state must satisfy

clole)
y="4a5010

This is the Schrodinger equation, provided the right-
hand side is zero. One can achieve this by explicitly con-
sidering the phase factor, i.e.,

(Ele"@ei?|E) =0,

(Cle " MLitip)—i(—ip))e'T|E) +(Ll®|E)=0,
(2.52)

—{&lg)y+glelg)=o,

S {glolo)
ce

Writing the quantum state |£) as a wave function,
¥(r,R,t)={r,R|{), and including the phase factor to
get ®(r,R,t)=e"W(r,R,t), recovers the Schrodinger
equation,

zﬁ~ —H (2.51)

(2.53)

i—a—-Hl(D(r,R,t):O
ot

4= af ;a—g——ga ag* InS —E |dt
3InS
= )
I3 eyt aéaagﬁ actag, "0 |
3%nS .
_fz ag*ag &x— 8§ 8t |i X

The second step in Eq. (2.56) involves a partial integra-
tion of some terms with respect to ¢. Since all the 8¢ and
their complex conjugates are independent variations, the
dynamical equations become

i 2 Caﬁgﬁ ag

JoFE
—i 2 C ﬁgﬂ ot ’

(2.57)

with the elements of the Hermitian metric matrix C
defined as
2
Cop=—21nS (2.58)
Tt TPl

Note that the phase factor does not influence the evolu-
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3InS
« 05,055 ° 3§B

[
where the total time derivative in the bra-ket formulation
is changed to a partial time derivative.

Introducing the notations

S(*,0=4l¢5),

(2.54)
E(&*,6)=(SlH|E) /(516D ,
one can write
S . 9InS(£*,8) dInS(£*, &) | *
D E(5*0)
(2.55)

[2 @—"%‘f—i ]—E(;*,@ .

This differential equation can be integrated with a simple
quadrature.

Next, consider only variations induced by parameter
changes in the approximate state vector. Because all
time dependence of the coherent state is through the pa-
rameters, Eq. (2.47) is equivalent to

Co— 84 |d (2.56)

[
tion of the other parameters, so it can be computed sepa-

rately. In practice, however, it is convenient to integrate
(2.55) along with Egs. (2.57) for the other parameters.
Equations (2.57) can be written in matrix form as

BE
|c o ¢ | |t
1 O _C* é;* - a_E . (2.59)
¢

Furthermore, a generalized Poisson bracket {,} is defined
for two functions f and g depending on § and £* as

dg
df  df —ic ™! 0 ag*
{f’g} aé_T agT ] 0 ic*—l ig_
3¢
(2.60)
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With the symplectic structure defined by this Poisson
bracket, the Schrodinger equation restricted to the set of
parametrized states becomes a classical Hamiltonian sys-
tem; i.e., the evolution equations (2.57) assume the stan-
dard form

§={5E}, £*={¢%E].

Parameters § and £* are conjugate variables, as illustrat-
ed by the relations

(2.61)

{6,61=0, {£*,£*}=0, {£&E*}=—iC™'. (2.62)
Defining real coordinates p and ¢ such that
&=(q +ip)/V2 and the symmetric matrix 4 =Im(C™!)

and the antisymmetric matrix B =Re(C ~!), we can write
the Poisson bracket in the more familiar real form,

9g
_ | ar of A B dq
ap
The matrices
—ic™! 0
= 0 iC *—1 (264)
and
A B
—B 4 (2.65)

define the symplectic structure of the phase space (Abra-
ham and Marsden, 1978). A transformation that leaves
the geometric structure of the phase space—the sym-
plectic structure—invariant is called a symplectic trans-
formation (Abraham and Marsden, 1978). In a flat phase
space it is always possible to find a global coordinate sys-
tem such that the symplectic form takes on the familiar
form (Goldstein, 1980)

0 I

—I1 0 (2.66)

All symplectic transformations form the familiar group
Sp(2N (K —N)+2N,,R) of matrix transformations that
leave J invariant. However, in a curved phase space the
transformation to the constant form J is possible only on
a local coordinate chart (see Darboux’s theorem in Abra-
ham and Marsden, 1978). It is generally not a trivial
matter to construct this transformation.

lll. ELECTRON-NUCLEAR DYNAMICS

A. Orthonormal representation

The dynamical equations in an orthonormal basis fixed
in space are derived in this section. Although this is an
ill-advised basis for computations, its mathematical sim-
plicity makes it a convenient starting point. It is then
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easy to derive the much more useful, and more familiar,
equations in an orthonormal basis built from the usual
atomic orbitals that follow the nuclei. It is our experi-
ence that the fixed basis is a worthwhile detour to make
in order to understand properly the structure of the equa-
tions. Furthermore, it is the physically meaningful basis
for applications in extended systems (Theilhaber, 1992).

Although the precise form of the orthonormal basis is
irrelevant for the derivation, it may be useful to think of
a definite basis. A good example is the three-dimensional
oscillator eigenfunctions. Another choice for which
completeness is harder to prove but that has more physi-
cal appeal would be a set of molecular orbitals built from
atomic orbitals centered at the initial positions of the nu-
clei. An appropriate definition of molecular orbitals is
the set of orbitals that diagonalizes the Fock matrix, be-
cause the single-determinantal wave function has a sim-
ple description in that basis. Obviously, as the nuclei
move, the description of the electronic wave function will
rely more and more on the completeness of the fixed
basis; but that presents no problem, in principle.

Next, the dynamical equations are developed in an
orthonormal basis built with traveling atomic orbitals. It
is noteworthy that this can be done by a phase-space
coordinate transformation of the equations developed for
a space-fixed basis to new independent dynamical vari-
ables. The resulting equations are a generalization of the
ones used by Field (1992).

1. Representation in an orthonormal basis fixed in space

The ab initio molecular Hamiltonian written in second
quantization in an orthonormal molecular basis is

N, P2 Ny ZkZleZ

k
H= -+
b 2M, ,@,2:'1 IR, —R,|
k<l

K
+zh,]b*b+% S Vbbb, .

Lj=1 ILj,k1=1

(3.1)

The symbols 4 and V denote the one-electron (Z, is here
the atomic number of nucleus k)

2

L Zye 3
hy= [y — oV z TR Y,(nd’r  (3.2)
and antisymmetrized two-electron integrals
Vijo = Cij ||kl )= Cijlkl ) —(ijlik ) (3.3)
with
Fr)YT ()Y ()Y, (1y)
(l]|k1> f '70 1 ¢_] 2 d’k 1 ¢1 I 3r1 3}"2 ,

_rzl

(3.4)

in the molecular two-component spin-orbital basis. The
one-electron integrals form a Hermitian matrix. The
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two-electron integrals have the following symmetries:
(ijlkl)={jillk)
=(kl|ij Y*=(Ik|ji)* . (3.5)

When real atomic orbitals are used, there are the addi-
tional symmetries

Sa(z*2)=(z'|z)

N N
=(vac| [T ¢®z") IT ¢?'(z)|vac)
g=1 r=1

=det

K
[(¢;+ > 05z

g=N+1

K
[Sgh + 2 ZI;;th ’ }
p=N+1 gh

=det(I®*+2"'z) .

p=N+1

=det

Note from this equation that the norm of a single-
determinantal wave function is not unity in the Thouless
parametrization. This is a direct consequence of requir-
ing that the state be an analytic function of the z parame-
ters.

To evaluate the energy and its derivatives, the one-
particle density matrix, or one-matrix, is needed, which is
defined as

L, ={zlz) " zlb]b;|z) (3.8)
and has the block form
r®e r>
= v ro (3.9)

The two-particle density matrix, or two-matrix, for a
single-determinantal wave function is a simple function
of the one-matrix (Linderberg and Ohrn, 1973)

]

E(z*,z,R,P)=E©Q+Tr(hT)+ %Tr( yr2)

K
Wt X Yz

Cijlkl )y =(jillk )
=(kl|ij)={lk|ji)
=(kjlil )= jk|li)

=(illkj)=(liljk ) . (3.6)
The overlap S, of two single-determinantal wave func-

tions of the form defined in Sec. IL.B is easily obtained,

).

ngz,)kl = <Z|Z > ~1<Z|bin]Tb1bk |Z > =I"k,~F1j _ijrh- .
(3.10)

The explicit forms of the matrix elements of the one-
matrix as functions of the z parameters are given by Eq.
(A21) and are derived in Sec. 1.b in the Appendix.
The molecular energy includes the classical nuclear
kinetic and internuclear repulsion energy
Ny Pp2 Nat ZkZIe2

+ .
=12M 2 IR R
k<l

E(O):

(3.11)

When the nuclei are treated quantum mechanically, this
term has to be replaced with the expectation value in the
appropriate nuclear state. The energy of the molecular
state can be expressed as

1
:E(O’—&-Tr(hl")—l-%Tr[Tr( Vavsap D)oL 1o = TrTr(Vop 00 DTl

=E(°)+Tr(hl‘)+%Tr[Tr( Vos.aoT)aT s

=E(0)+E(l)+E(2) ,

where the notation

Tr(Vap;aeM)a =3, Vi, n M
ij
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(3.12)

(3.13)
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is used for partial traces involving the four-index object ¥ of two-electron integrals.
The action for a classical dynamical system with a Hamiltonian function E (R, P) is varied to yield

54=3 %2 (PR, —P,-R,)—E |dt

= [ (18P, R, + 1P, -5R, — 18P, ‘R, — 1P, -8R, — Vg E-8R; —Vp E-5P, ldt

= [ SI(R—Vp E)-8P, —(P,+ Vg E)-6R; Jdt =

0, . (3.14)

where partial integration, as before, has been performed on some terms. This yields the well-known classical equations

of Hamilton.

The following properties of the complex form of the nuclear coordinates, using Eq. (2.46), are important in develop-
ing the system of coupled equations for a molecular system in which the nuclei are treated as classical particles,

1 . . ; . .
S (BeR, -—Pk-Rk)=é(Z,‘:-Zk —Z71Z,)

(Zk ‘Vzk “Zz 'VZ;C* lZ'=Z)

N~

N|-

The mathematical construct S is defined as

S (Z'*,Z)=exp (3.16)

2 Z;*'Zl
1

As for the electrons, this overlap is not normalized to 1.
The total overlap is defined as the product

S(&*,8)=8,4z"*,2)S(Z2'*,Z) ,
and the energy in Eq. (2.54) is expressed as
E(&*,6)=E(z*,z,R,P)=E'Z*,Z)+E (z*,Z*,2,Z) ,
(3.17)

where the electronic part of the energy Ey=EV+E®
depends on the real part of the nuclear parameters Z
through the electron-nuclear attraction term. With these
definitions the derivation of the dynamic equations for
classical nuclei and electrons described by a single deter-
minant is straightforward from the results of Sec. II.D
and Egs. (2.54)-(2.58). The system, Eq. (2.57), for z and
Z in matrix form becomes

iC 0 0 0 z OE /dz*
0 iI O 0 YA JE /3Z*
0 0 —ic* o ||| |0Esez | B1¥
0 0 0 —illl|z* dE /3Z

where the unit matrix comes from S. Using the real
form of the nuclear coordinates, we may express this as

ic o o o]z 3E Jaz*
0 —iC* 0 0 ||z* 3E /3z
o o o —I||g|T|sE/3R (3.19)
o o I ol|l|p 3E /P
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2 Z;*'Zz
1

(Zk-vzk—'z,*;-vz;:lZ,=Z)1nsd(Z'*,z> .

(3.15)
[
The corresponding phase equation (2.55) is
dlnS, (z*,z)
y=—Im |Tr é—T-
+%2(Pk'Rk—'Pk‘Rk)—E(Z*’Z’R’P) . (320)
k

The electronic part of the metric, which is given by
Eqgs. (2.58) and (3.7), becomes (see Sec. 1.a in the Appen-
dix for the derivation)

Copgg =1UI®+22)7 11, (1O +22N) 71, ,

g (3.21)

which can readily be inverted. The explicit expression of
the energy derivatives as a function of the z parameters is
given in Sec. l.c in the Appendix. Since the energy
derivative, Eq. (A29), contains the factors of C, the
metric can be eliminated and the dynamical equations
(3.19) become

I.
iz=(—z I°)[h +Tr(Vab;abI‘)a] ZI
°
=(—z I°)F 2 | (3.22)
where the Fock matrix F is defined as
F=h+Tr(Vy.p 1), » (3.23)
and
N ZkZIeZ(Rk—Rl)
P.=3 3 —Tr(Vg hT)
= IR —Ry] k
~Tr[Tr(VRk Vub;abr)ar] N (324)
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from Eq. (A30) and
(3.25)

Here again the partial trace notation of Eq. (3.13) has
been used. The total phase satisfies (3.20), which be-
comes, using Eq. (A1),

y=—Im Tr[z(I1®+2z'z)7127)

+%2 (PR, —P, R, )—E(z*zR,P).  (3.26)
k

Kulander and collaborators have implemented these
equations for ab initio Hamiltonians using a representa-
tion of the electronic orbitals on a grid fixed in space
(Tiszauer and Kulander, 1991). This form of the evolu-
tion equations is the Hartree-Fock-theory equivalent of
the TDDF equations (1.11) derived by Theilhaber (1992).
In TDDF one studies the dynamics of the nuclei in an ex-
tended system around equilibrium, and therefore it is
sufficient to represent the electronic Kohn-Sham orbitals
on a numerical grid fixed in space. The equations can be
used equally successfully for studies of molecular vibra-
tions.

2. Symplectic transformation to traveling atomic orbitals

The dynamical equations just obtained are convenient
for theoretical derivations and for gaining insight. How-
ever, as stated before, from a numerical point of view, the
use of molecular orbitals fixed in space leads to severe
convergence problems as soon as the nuclei move away
substantially from the region covered by the molecular
orbitals. In this section a transformation is introduced in
the generalized phase space of the dynamical system to
new dynamical coordinates that preserves the structure
of the dynamical equations. This transformation is a
symplectic transformation because it preserves the sym-
plectic structure of the phase space (Abraham and
Marsden, 1978). To see that it is an element of the sym-
plectic group Sp[2N(K —N)+2N,,R], ie., that it
preserves the symplectic form J of Eq. (2.66)—this is the
coordinate-dependent definition of a symplectic transfor-
mation (Goldstein, 1980)— one first transforms to a coor-
dinate system in which the symplectic structure takes on
the form J. This expresses the equations in an orthonor-
mal basis built with ordinary atomic orbitals that follows
the nuclei, as is customary in electronic structure calcula-
tions, or in terms of traveling atomic orbitals, if electron
translation factors are included.

First, the transformation from a nuclear basis built
with fixed atomic orbitals to one built with traveling or-
bitals is considered. The transformation to a molecular
basis built with the familiar atomic orbitals (AO’s) that
follow the nuclei but do not have electron translation fac-
tors (ETF’s) can be obtained as a special case. One just
deletes the P dependence and sets derivatives with
respect to P equal to zero.
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The transformation

z
V4

z
Z ’

—

(3.27)

or with the real form of the nuclear coordinates

z
R |—
p

(3.28)

R N

leads to new independent dynamical variables Z,R,P.
Such a transformation will have the desired properties if
the new nuclear coordinate axes are kept parallel to the
old ones, i.e., R=R and P=P, and the new electronic
coordinates are allowed to acquire components along the
original z, R, P.

When the parametrized states are expressed in terms of
the molecular orbitals built with atomic orbitals centered
on the nuclei, the calculation of the metric involves the
overlap of two states with different nuclear geometries.
If, furthermore, electron translation factors are included
in the orbitals, the overlap also depends on the momenta
of the nuclei, such that

Sel(zl*)R ’,P’,Z,R,P)

=det(A®+A”z +2TAV 4+2'TA%2) ,  (3.29)

where the overlap matrix of the atomic basis
A(R’,P',R,P) depends on the nuclear positions and mo-
menta. Note that the overlap matrix of two different
bases is not Hermitian. It does become the unit matrix
when the two nuclear configurations and momenta coin-
cide, because the basis is then orthonormal. Because the
TDVP is formulated with complex parameters and states
that depend analytically on them, the calculus automati-
cally keeps track of whether the derivative is taken with
respect to the dependence through the bra or the ket in
any expectation value. A more complex dependence on
the nuclear positions and momenta occurs through the
electronic orbitals. Indeed, since the orbitals depend on
R, and P, separately and not through the complex com-
bination Z,, the bra and ket both depend on Z; and Z}.
Because of this, one needs to keep track of the parameter
dependence by differentiating with respect to unprimed
and primed variables and setting them equal after
differentiation. In order to simplify the formulas, the
ket-gradient operators

VR (R'IR)Y=Vg (R'IR)|g=g (3.30)
are introduced with obvious analogs for the bra-gradient
and, similarly, for gradients with respect to nuclear mo-
menta. The conventional gradient symbol VRk denotes

differentiation with respect to the full dependence, which
can be made after the unprimed and primed variables
have been set equal. An immediate consequence of the
orthonormality of the basis is then
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VﬁIkA(R',R)+VQkA(R',R)=VRkA(R,R)=VRkI==O . ¢c* 000
0 ¢c0O
(3.31) r= r* r I 0]’ (3.33)
p* p 0 I
The transformation of the Poisson bracket uses the where ¢ =09z /92, r =9z /AR, and p =9z /9dP. Using the
matrix of partial derivatives, or the Jacobian, T fact that the inverse of a Jacobian is the Jacobian of the

inverse transformation on the Poisson bracket, Eq. (2.60),
yields the result

asaz* | [az*/ez* o 0 o] [5/82* {f,.g}=0a"fMlag
0/0z 0 9z/0z 0 0| | d/0z ={f.g}~
3/dR |~ |az*/0R dz/oR I 0| |3/6R | (332 31
9/9P dz*/dP 93z/dP 0O I |9/9P ¢
=3l rr'mr'Tog , (3.34)
so that the phase-space metric becomes M =TM T'. In
such that more detail, one can write
J
ic*CeT 0 ic*crT ic*CpT
_ 0 —icC*ct —icC*r' —icC*pJr
M= iprceT —irc*et  irrcrT—irc*t -1 +ir*CpT—irc*pt| - (3.33)

ip*CeT —ipC*ct I+ip*CrT—ipCc*rt  ip*CpT—ipC*p’

The dynamical equations in the new coordinates are then given by

iC 0 iCq iCp 3

oE /az*
0 —iC* —iCg —iCg S oE /37
iCl —iCT Cxx —I+Cgp||R|™ |9E/3R |- (3.36)
iC} —iCF I+Cpr  Cpp P 9E /3P
The matrices
‘a2 Sk ’ e
(Cxphie = 9°InS (Z :f ,P',Z,R,P) 53
02 5, 0X R'=RP'=P
and
2 >k " Doy
(CXY)ik,jlz_zlm 9°InS (Z ,Rj )P ,Z,R,P) (3.38)
09X, R'=R,P'=P

are defined with X and Y denoting R or P. The evolution equation for the overall phase becomes

3 dInS(z*,R',P',Z,R,P)
oz

Tr

y=—Im +3 (R;-VR InS +P,-V InS) | + %2 (PR, —P,-R,)—E(2*,Z,R,P) .
1 k

(3.39)

For simplicity, the tilde will be suppressed from now on, since the identity of the parameters used, with fixed or trav-
eling atomic orbitals, will always be clear from the context.

3. Representation in an orthonormal basis built with traveling atomic orbitals

Because the terms Ci and Cp, Eq. (A14), and the energy derivative equation (A29) contain the factors of the metric C
from Eq. (3.21), the dynamical equations (3.36) can again be simplified, i.e.,
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I.

iz~+i§(—z 10><R,-VIIQIA+1'>,-V‘P>1A> [Z

}=(—z I°)F

I® ]
. (3.40)
zZ

The nuclear part of Eq. (3.36) yields, with Egs. (A14), (A15), (A30), and (A31),

. N N o
Pk_? (CRkRIRI+CRkPIPl)+2 ImTr(CRkZ)_ _VRkE

and

R,+3 (—Cp g R;+Cpp P))—2Im Tr(C} 2)=Vp E
!

P
- A_;_ +Tr(Vp hT)+Tr[ Tr(4Vp, VapapT)aT 1y -

The total phase of the coherent state satisfies (3.39),
which becomes

7=—ImTr 2(I%+2z"2)7'2"+ 3 (R;-VR A+P,-vR A)T
1

+%2 (PR, —P,-R;,)—E(z*,z,R,P) (3.43)
k
for the determinantal state using Eqgs. (A1) and (A6).

Approximating by neglecting the diatomic differential
overlap effectively makes the atomic Slater-type-orbital
basis orthogonal; so Egs. (3.40)—(3.43) are valid for dy-
namics with semiempirical Hamiltonians that employ
Slater-type orbitals. A brief definition of this approxima-
tion is given in Sec. 3 of the Appendix.

Field has implemented this form of the time-dependent
Hartree-Fock equations with semiempirical Hamiltoni-
ans in his program DYNAMO (Field, 1992). However, he
omits the Cy and Cgy terms.

Researchers using perturbed-stationary-states, close-
coupling, and time-dependent Hartree-Fock methods for
atom-atom collision have known for some time that the
nonadiabatic coupling terms are very important and that
their neglect can result in serious errors.

The Cr and Cgry terms coupling electrons and nuclei
are also neglected in various formulations of dynamics on
a computed surface, whether computed with convention-
al self-consistent fields (Carmer et al., 1993; Zhao et al.,
1993) or with Car-Parrinello’s simultaneous dynamics
(Hartke and Carter, 1992). One could argue that in these
methods there is an artificial decoupling of the electronic
and nuclear motions during the dynamics. This has the
consequence that the wave function does not move away
from the Born-Oppenheimer surface. Including the
nonadiabatic coupling terms addresses this problem
properly, which is important for dynamical processes
such as electron transfer (Newton, 1980, 1991; Larsson,
1981; Deumens et al., 1987) and nuclear tunneling.
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—Tr(Vg hT)=Tr[Tr(3Vg, Vap;asT)aTly

(3.41)

(3.42)

B. Nonorthogonal representation

In this section a second symplectic transformation that
allows the description of the electronic state in terms of
atomic orbitals is discussed. As previously stated, the
theoretical derivations are transparent in an orthonormal
basis. For the numerical calculations with ab initio Ham-
iltonians, it is advantageous, however, to be able to work
in the atomic basis directly so that costly transformations
to an orthonormal reference basis are avoided. An ex-
plicitly constructed coordinate transformation keeps the
structure of the phase space and allows us to express the
electronic state in terms of nonorthogonal atomic spin-
orbitals. The dynamics is the same, but expressed in a
different phase-space coordinate system. This is the
framework used by the close-coupling, time-dcpendent
Hartree-Fock (TDHF), and electron-nuclear dynamics
(END) methods.

1. Symplectic transformation to raw atomic orbitals

The same notations as before are used for various
quantities. For instance, the one- and two-electron in-
tegrals in the atomic basis are denoted as in an orthonor-
mal basis. When confusion is possible, a tilde (~) is put
over the symbol of the transformed quantity, just as in
Sec. III.A.2. The ab initio Hamiltonian looks the same as
in Eq. (3.1) except that the creators/annihilators are now
associated with the atomic basis. The transformation be-
tween atomic and molecular bases for matrices, for exam-

ple, the one- and two-electron integrals, is
h=w'rw (3.44)

and
V=W (W) a W) W)y (3.45)

where the notation of this four-index transformation
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is using the contraction of a two-index matrix
and a four-index matrix twice, such that
{WVab.ca)adxp:cd=2a WraVab;ca- The transformed ex-
pressions refer only to quantities defined in the atomic
basis. The computationally demanding step of explicitly
transforming to an orthonormal molecular basis is then
avoided. This is important for ab initio methods, but not
relevant for the semiempirical approaches considered.

An appropriate set of parameters must be found so
that the dynamic orbitals can be expressed directly in
terms of the atomic basis. The parameters should be
such that all important quantities (overlap, one-density,
energy, metric, forces, etc.) can be expressed with only
(pieces of) the atomic basis overlap matrix A (2.5) occur-
ring and not the transformation matrix (2.19). The orbit-
als of the determinantal state are expressed in the atomic

basis as
( ] I.
z

we w>
wVv w°

(¢. ,!/}O) 2 :(¢. ¢O)
We+w>z

=(¢® ¢°) [WV+WOZ (3.46)

Conge =[(AT0T+A)AC () T (WA> +A°)],, [A%D) ],

Since the reference molecular basis is arbitrary except for
its orthonormality, one is free to choose it with the aim
of simplifying the expression of the dynamic molecular
orbitals in the atomic basis. The principal goal is to
maintain the same form of parametrization and keep all
the properties found useful in terms of an orthonormal
basis. It turns out that this can be accomplished. The
details can be found in Sec. 2.a of the Appendix. Because
the transformation preserves the form of the dynamical
equations and the structure of the phase space, it is a
symplectic transformation. In the next section the result-
ing dynamical equations are presented. Again, the tilde
is omitted from the quantities to avoid complicated nota-
tion.

2. Representation in the nonorthogonal basis of
traveling atomic orbitals

Starting with the metric Eq. (2.58) using Eq. (A66)
with definitions for A® Eq. (A57) and A° Eq. (A58), one
can write

(3.47)

The dynamical equations (3.36) become, with Egs. (A67) and (A835),

0
(AT T+ AO)AC ()" Uw I°){iA u+

i3 (R VR A+P - VY A)—F
1

A®(z)"1=0, (3.48)

where the ket gradients of the overlap matrix A(R',P’,R,P) act on the unprimed coordinates only. Because A is the
overlap matrix of a basis, its rank is maximal and so is that of the leftmost matrix. The A matrices are invertible, and
thus Eq. (3.48) can be satisfied if and only if

0 . ) X I® I®
i(v IO |, [+i3 (0 I°)R;VRA+PVPA) | |=( I°F|, (3.49)
]
For the nuclear coordinates, it follows, with Egs. (A67), (A68), (A86), and (A87), that
P —3 (Cg g, R;+Cg p P)+2Im Tr(Ch 2)=—Vg E
1
ZkZ,ez(Rk—Rl)
=3 ——— —Tr(Vg hT—Vg ATAT)
=« IRg—Ry] k k
—Tr[Tr(4 Vg, Vap;asT — Vi, AT Va0 T)aT 1, (3.50)
and
R, +3 (—Cp g, R;+Cp p P))—2Im Tr(C} 2)=Vp E
1
=M +Tr(Vp hT—Vp ATAT)
+Tr[Tr(%VPk Vab;abr—VpkAFVab;abF)aF]b . (3.51)
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Note that at R'=R, the equality AVT=A> holds. The global phase of the molecular state satisfies Eq. (3.39), which

with Eq. (A62) becomes

y=—ImTr [zA%2)"(A” +z'A°)+ 3 (R;-VR A+P,-V)A)T
1

This equation can be integrated along with the dynamical
equations (3.49)—(3.51).

The above dynamical equations have been implement-
ed in the program ENDyne (Deumens, Diz, and Taylor,
1992) for general molecular systems and ab initio Hamil-
tonians (Deumens, Diz, Taylor, and Ohrn, 1992; Digz,
1992; Ohrn et al., 1992; Longo, 1993).

C. Analysis

In this section different aspects of the equations for
electron-nuclear dynamics obtained in the previous sec-
tion are analyzed. Comparisons are made with the equa-
tions derived and implemented in various time-dependent
approaches.

1. Molecules in inertial motion

Integration of Eqgs. (3.40)-(3.42) or (3.49)—(3.51) with
the proper initial conditions determines the evolution of
the system. Proper initial conditions consist of positions
and momenta of all nuclei involved and a set of electronic
parameters. To describe an atomic or molecular collision
or a process of intramolecular charge transfer at this lev-
el of theory, one would select an initial state that can be
approximated by a single determinant. When a more
complicated initial state is needed, for example, a
multiconfigurational state (Deumens et al., 1991), the
electronic wave function has to be generalized from what
is assumed here; but the procedure remains essentially
the same.

The best single determinant for a given nuclear
geometry can be obtained via an ordinary electronic
structure self-consistent-field (SCF) calculation. Howev-
er, when the initial nuclear momenta are not zero, the
static electronic structure result is not a correct initial
condition; molecular-dynamics theories sometimes use
ETPF’s to address this problem. Another way is to con-
sider the nonstatic equations for electronic states, which
include the effect of the velocity of the nuclei in uniform
motion.

a. Using traveling atomic orbitals

For a molecular system moving rigidly with velocity V
and without acceleration, it is obvious that the parame-
ters describing the electronic structure with respect to or-
bitals moving with the molecular frame stay unchanged.
This is a result of the Galilei covariance of the
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+%2(PkRk"'l')kRk)—E(Z*,Z,R,P) . (3.52)
k

Schrodinger equation, which is retained in the approxi-
mate dynamical equations. To express that an electronic
state is a SCF solution moving with the molecule, one
puts Z=0 in Eq. (3.40) to find

(—z I°) 2 |70 (3.53)

F—iV-3 VR A
I

as the equation for the electronic structure of a molecule
in uniform motion. Here the Fock matrix is defined by
Eq. (3.23).

b. Using orbitals fixed in space

The static electronic SCF solution in terms of orbitals
fixed in space is the state that, for a given geometry, does
not change in time,

I.

iz=0=(—z I°)F (3.54)

z

This defines a set of parameters z for each geometry
z =zyp(R). The change in zyr(R) which is solely due to
changes in geometry 8R can be obtained by solving

I.
=(— — O
0 ( VRkZHF O)F Zyr +( ZYHfE I )F VRkZHF
I.
—_ o
+H(—zgp Iy, F|, (3.55)

for each nuclear coordinate R;. These are the coupled
perturbed Hartree-Fock (Dalgaard and Jdrgensen, 1978)
equations used in electronic structure theory to derive
the effect of external fields and geometry changes on SCF
solutions. Similar equations hold for the dependence on
nuclear momenta; but since the Fock operator does not
depend on the nuclear momenta, the effect is zero.

When an atom or molecule is rigidly moving in space
with uniform velocity V, the corresponding change in z
should reflect that the electronic state is following the nu-
clei with the same velocity but is otherwise unchanged;
ie.,

z(t +6t)=z(t)+2(t)b¢

=zur(R (1)) + 3 Vg zyr(R (1))-V8t (3.56)
k

and hence

Z(t)zz VRkZHF(R(t)).VEw . (3.57)
k
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The correct dynamic electronic state is therefore given by
solving the coupled system

I.
iw=(—z I°)F 2 |
(3.58)

I® 0

0=(—w O0)F +(—z I°)F w0
I.
+(—z IO)EVRkF 2 'V
k

for the matrices z and w. This is equivalent to solving
Eq. (3.53). ‘

In the representation using nonfollowing orbitals, the
basis has to be good enough to describe translation (solv-
ing for w), whereas the description in the representation
with traveling AO’s is manifestly Galilei covariant. The
generalization of this equation to the representation in
the atomic basis is obvious. The solution of Eq. (3.53) or
(3.58) allows one to set up the proper initial conditions
for most atomic and molecular collision processes.

2. Linearized equations

The linear approximation to the system of equations
derived from the TDVP can be obtained and yields the
generalizations for moving nuclei of the well-known
random-phase approximation or, equivalently, the cou-
pled Hartree-Fock equations. The random-phase ap-
proximation (RPA) is, in fact, sometimes referred to as
“linearized TDHF.” The z parameters can be identified
as RPA amplitudes, thereby clarifying their physical
meaning. The form of the solution gives valuable insight
as to how the z parameters evolve in time. The evolution
of an electronic state involves many high-frequency
modes. Because of their high frequency, they impose
small time steps in the differential equation solver. In
this way a lot of effort is spent to accomplish something
which is not really that informative. Ideally, one would
want to integrate the system with time steps characteris-
tic of the nuclear dynamics. Micha and collaborators
(Runge et al., 1990; Feng et al., 1991; Micha and Runge,
1992) linearize the electronic part of the equations and
solve that part analytically. This leaves the nuclear
motion for the numerical integration, which then
progresses with time steps determined by changes in the
electronic density, which are of the same order as the nu-
clear time steps except when a transition occurs. When
that is the case, one is, of course, interested in the details
of the process, whatever its time scale. Theilhaber (1992)
uses a procedure borrowed from simulations of plasma
oscillations, which involves scaled-down masses for the
nuclei during the evolution and extrapolation of the re-
sults to relevant time scales.

It is instructive to rewrite the dynamical equation for
the electrons explicitly in terms of the Thouless parame-
ters z as a linear array §. For example, in the space-fixed
basis, Eq. (3.22) looks very simple as it is written in terms
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of the rectangular matrix z. However, it is a highly non-
linear equation, which can be shown most clearly when it
is written in terms of the Thouless coefficients arranged
as a linear array § as defined in Eq. (2.45). The explicit
derivation, since it is tedious but straightforward, will
not be given here. It suffices to sketch the reasoning.
Each term is a multilinear function in § and £* of order
(n,m),ie.,

clmmigx | ere £

n m

(3.59)

The multilinear coefficients C always contain the normal-
ization factor

N(&*O=[I®+LT(* L], (3.60)

where z,, =L ({,),, is the mapping from the linear array
§ to the rectangular z. Using this information, we can
write Eq. (3.22) as

IE=F(E*,E)+ A(E*,E)E+B(E*, )¢
+C(0’2)(§*,€)§§+ C(l,l)(é*,é-)é—*é—
+C(O,B)(g*’g)é—é—g_i_C(I,Z)(gt,g)é-*é—g
+CER L

These are the nonlinear TDHF equations. They have up
to fourth-order multilinear terms which include a nor-
malization factor that is the inverse of a bilinear term in
the coefficients. The equation can be written with any
state |§,) as the reference leading to factors £-£, instead
of £ in Eq. (3.61).

The linearized TDHF are obtained by omitting all but
the first three terms on the right-hand side, and by set-
ting the normalization factor equal to the unit matrix.
The explicit expressions for the coefficients follow from
the derivation, but are not useful for practical computa-
tion of the linear equations. It is much simpler to obtain
the coefficients from a Taylor expansion of the energy.
The first (gradient) and second derivative (Hessian) of the
energy and of the logarithm of the overlap of the deter-
minantal state are needed with respect to the parameters
§ and the nuclear coordinates R and P at a given state
$0sR o, Py around which the linear approximation is con-
structed. The vectors (gradients)

(3.61)

_9E _3E _3E
f s’ ™R’ "“ap (3.62)
and matrices (Hessians)
2 2
4= PE o OE
ag*ag ag*os*
2 2
=—§—E—, G= E , (3.63)
9&*AR a&*opP
7= 3’E J= ’E _ JE
dRAR’ OPJP’ OROP

are the necessary quantities. The gradient vectors and
the Hessian matrices are given in Sec. 1.c of the Appen-
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dix for an orthonormal basis, Egs. (A29)-(A31) and
(A32)—(A37), and in Sec. 2.e for the atomic basis, Egs.
(A85)—(A87), (A32) and (A33), and (A88) and (A89).

With these definitions the equations, (3.36) or (3.61),
have the linearized form

—iCE=f+ A(E—E))+B(E*—EE)

) (3.64)
IC*Ee=f*+BH(E—E0)+ A% —L5)

where A is Hermitian and B is symmetric. These are the
well-known RPA equations, also known as Coupled
Hartree-Fock and linearized TDHF equations. Some-
times they are simply called TDHF equations. It is now
clear that the Thouless coefficients are the RPA ampli-
tudes. These equations are studied in detail by Deumens
and Ohrn (1989a), and the main points of the analysis are
repeated below. Let the total number of coordinates be
N. Defining the matrices

cC 0 A B
C=lo —c*] 27 |B* 4+
(3.65)
¢l s
z= g* 3 f_‘ f* ’
we can write the dynamical equation (3.64) as
—iCz=f+ A(z—z,) . (3.66)

This first-order differential equation is solved by intro-
ducing new coordinates

4
E*
the normal-mode amplitudes, and a constant vector g to
eliminate the inhomogeneous term,

z= , (3.67)

z=Te' Y2 +g , (3.68)
or in block form
¢ X Y || 0 ¢ g
é—* = Y* X* 0 e—iﬂt E* + g* (369)

The eigenvalues and eigenvectors of C~ ' A are the ele-
ments of the diagonal matrix () and the columns of T, re-
spectively. The vector g satisfies

Ag=—f+ Az, (3.70)
and is therefore given by
g=z,— A 'f . (3.71)
The eigenvectors satisfy the normalization condition
fer= ° 3.72
TCT= |5 _1|>; (3.72)
the solution to (3.66) therefore is
2(1)=eTT [2(0)—g]+g
=eiCT AZ(0)—g]+g
=eiCT A Z(0)— 2o+ A If]+zp— AT . (3.73)
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Note the generalization of the exponent iC ! A in
comparison to the solution of a simple oscillator prob-
lem. This is the first approximation to the full, nonlinear
evolution of the z’s and clearly shows that they can be
identified with the RPA amplitudes. When B =0 the
Tamm-Dancoff approximation is obtained or, equivalent-
ly, the configuration interaction with single excitations
(CIS). This corresponds to maintaining the reference
state as the ground state and obtaining approximate
eigenstates in terms of selected single orbital promotions
out of that state. Including the B yields the RPA. It can
be described as a perturbation-theory correction to CIS
or to the Tamm-Dancoff approximation, where some
effect of double excitations on the ground state is includ-
ed.

The linearized solution can be used in two different
ways. On the one hand, the locally linearized solution
can be used as the zero-order term in an expansion, as
done by Micha and co-workers (Runge et al., 1990; Feng
et al., 1991); the fast modes in the zero-order term can be
directly propagated during a long time step, providing a
consistent procedure for the time step to grow and shrink
during the evolution. This has been implemented by
Runge (1993) under the assumption that the nonlinear
corrections to the evolutions can be safely neglected.
The results obtained by Runge, indeed, indicate that to
be true for the cases studied.

On the other hand, the linearization can be used to
define a symplectic transformation from the Thouless pa-
rameters ¢ to the normal-mode amplitudes & [Eq. (3.68)].
This will transform the dynamical equations to an in-
teraction picture where the main effect of the fast modes
is explicitly eliminated without approximating the non-
linear equations. This transformation ensures that the
main behavior of the new variables Z‘ will be slow, i.e.,
change at nuclear time scales. The high-frequency
corrections to the slow motion will have small amplitudes
if, as found by Runge, the linearized equations are a good
approximation. The numerical integrator therefore
proceeds with large time steps when integrating the new
variables; and whenever the equations require smaller
time steps, it will automatically adjust. Implementing
the symplectic transformation, again with coordinate
charts in the spirit of differential geometry, results in an
efficient algorithm with the advantages of the methods
that linearize the fast modes, but without any approxima-
tion. One keeps using the same chart, i.e., the same nor-
mal modes, until the equations show the deviations to be
too large. Then new normal modes are constructed and a
new chart is entered.

3. Equation for the density

The evolution equation for the density matrix deserves

consideration. Let us use the notation
M=I%+z"2)"1. (3.74)

Then the expression for the one-density, Eq. (A21), yields
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a |I* f 0 t y t ¢ t 0 t
. a Y — Y .o _ .e _ Y
ldt z MI® z") i MI® z")+ 2 MO iz") 2 MO z'\I'—-I i MI® z')
0 z!
=(I—T) —, IO FT'—TF o I° (Ir—n), (3.75)

where Eq. (A10) for the derivative of the inverse of a ma-
trix is used. With the application of Eq. (2.28), Eq. (1.7)
yields
il=(I—T)FT—TF(I—-T)
=FI'—TIF . (3.76)

The linearization in the time evolution defined by
Runge and Micha is compared below with the usual
linearized TDHF or RPA or Coupled Hartree-Fock.
They use the Fock matrix F, at the reference state to
propagate the density for a time step according to

p=F,p—pF, . (3.77)

In terms of the basis of eigenvectors of the Fock matrix
with eigenvalue matrix €,, the solution is written as

p(t)=e"pge '=Up,U . (3.78)

Using the ground-state determinant at ¢, as the reference
state and expressing it in the Thouless representation
with Thouless parameters z, and with M as defined
above, one can write

vmMu®  v*Mm:lu°©
U°fz,MU® Uz Mz{UC
I. U.TZ (1:" UO
uetz,u® 0

p(t)=

> (3.79)

~
~

through terms linear in z,. Therefore the zero-order
linearization used by Runge and Micha is equivalent to a
time evolution of the Thouless coefficients expressed as

.o e
z(t)=e'€°tzoe ! s (3.80)
which means for the matrix elements that
i(gq, — )
Zy(t)=e g (3.81)

The solution for the (first-order) linearized TDHF or
RPA (Deumens and Ohrn, 1989a) is given by Eq. (3.73),

z(1)=Te'MT 1z, ,
; . (3.82)
é‘(t) =(XexﬂtXT_ Ye —1Q.tYT)C§0
+(XeMyT—Yye 'UXT)C*S
which for the simplest case of the Tamm-Dancoff ap-
proximation or CIS, where Y =0, becomes explicitly

iQ
th(t)=2 2 EXph,qgel qthq:;,rfCr ,seZOSe . (383)

qg rf se
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[

This equation has a sum of terms with the Tamm-
Dancoff approximation or CIS frequencies in the ex-
ponential factor, which is to be compared with a single
term with the orbital energy differences in the exponen-
tial in Eq. (3.81).

4. Velocity-dependent terms

In this section the terms in the dynamical equations
that depend on the velocity of the nuclei are discussed.
These terms have been the subject of discussions (Delos,
1981) among the proponents of the close-coupling
method and of the perturbed-stationary-state (PSS)
method. The close-coupling method claims (Delos, 1981)
to avoid an inconsistent treatment of terms linear in the
velocity present in the original PSS treatment. However,
the PSS method in its present form has overcome this
shortcoming (Riera, 1992). Equations (3.40)—(3.42), or in
the atomic basis, Egs. (3.49)-(3.51), derived in this re-
view can be viewed as a generalization of the perturbed-
stationary-state equations to include fully dynamical tra-
jectories when ordinary AQO’s are used and as a generali-
zation of the close-coupling equations when traveling
atomic orbitals (TAO’s) are employed.

The terms dependent on the nuclear velocities show
the same “inconsistency” as the PSS method does when
ordinary atomic orbitals are used. Equation (3.40) in-
cludes the terms that are dependent on the nuclear veloc-
ities R;, known as the nonadiabatic coupling terms and
appearing in the close-coupling form of the equations as
the term P in Eq. (1.18). But this equation has none of
the other terms in Eq. (1.18).

When traveling atomic orbitals are used, the equations
derived here include all terms. To be specific, we consid-
er the Hamiltonian (3.1), which does not include any
velocity-dependent terms such as spin-orbit coupling.
Let us now compare the equations in a given basis of or-
dinary AO’s ¢ with the equations obtained in the corre-
sponding basis of traveling AO’s B¢, the correspondence
being that the traveling AO’s are constructed from the
ordinary AO’s by multiplication with the electron
translation factor (ETF) 3 given by Eq. (2.16). The elec-
tronic kinetic-energy operator in the Fock operator part
of Eq. (3.40) acting on an atomic orbital at center / gives
three terms

D I Iy
S MV B—iBV-V.p— > ~BVi$ (3.84)

where atomic units are used, as before. The first term is a
shift of the energy. The second term comes from the
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motion of the electron with the center, as described by
the ETF, and is the important term. The third term is
the kinetic energy of the ordinary AO. The nonadiabatic
coupling term in Eq. (3.40) can be written as

iR, Vg (B$)=—iBV,"V.$ , (3.85)

where the property used is that the orbitals only depend
on the difference r—R;, such that derivatives with
respect to the electron coordinates are equal to the nega-
tive of the derivative with respect to the corresponding
nuclear ones. This term gives the cancellation between
the P and A terms in Eq. (1.18), which, as discussed by
Delos (1981), makes the close-coupling method much less
sensitive to basis-set size effects than the original formu-
lation of the PSS method.

All matrix elements, to first order in velocity, yield ex-
tra terms between derivative basis functions, as can be
seen most easily by expanding the ETF as in Eq. (2.17).
Most close-coupling applications do not evaluate the ma-
trix elements with the ETF, but approximate them by as-
suming the ETF to be constant over the volume of in-
tegration (Delos, 1981; Kimura and Lane, 1990; Fritsch
and Lin, 1991). Several groups have developed and im-
plemented algorithms to evaluate the multicenter in-
tegrals with Gaussian-type atomic-orbital basis sets
(Errea et al., 1979; Colle et al., 1988), but their codes do
not seem to be widely used.

The first PSS calculations used explicit molecular or-
bitals for diatomic systems, for which the derivatives
with respect to one atomic center are not simple.
Modern calculations tend to use linear combinations of
atomic orbitals as molecular basis functions, and the
AQ’s are usually chosen as a succession of s-, p-, and d-
shell orbitals. As a result, the gradients in the nonadia-
batic coupling terms P can be represented exactly in the
basis, leaving only the highest shell without a converged
representation of the derivatives, because derivatives,
with respect to the center of orbitals in one shell, can be
expressed as linear combinations in the same or the next
shell. This is the reason why the modern PSS calcula-
tions do not suffer (Riera, 1992) from the imbalance in-
troduced by considering only the nonadiabatic coupling
term and leaving all other terms to the completeness of
the basis. As a result, the differences between the close-
coupling and PSS methods in this respect, which were
sizable a decade ago (Delos, 1981), are not as important
anymore (Riera, 1992).

The results discussed in Sec. IV, which are all obtained
with ordinary AOQO?’s, i.e., without ETF’s, illustrate what
can be accomplished through the flexibility of using
linear combinations of atomic orbitals as the basis. In
those applications the basis achieves all that TAO’s can,
and only at high energies is the need for inclusion of
ETF’s necessary, either explicitly, as in the close-
coupling method,or implicitly, as in the PSS method.
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5. Acceleration-dependent terms

Much of the attention given ETF’s is centered on the
properties of a basis set with such functions at the
asymptotic limit. If basis functions with ETF’s are used,
then they not only depend on the nuclear position, but
also on the nuclear velocity through the velocity of the
nuclear center, e.g., v appearing in Eq. (2.16).

In an atomic or molecular collision, acceleration of the
nuclei will excite the electrons. When straight-line tra-
jectories with fixed nuclear velocities are used to approxi-
mate the nuclear motion in collisions, these excitations
are ignored. However, if the full dynamics of the system
is studied, or if curved (e.g., Coulomb) trajectories are
used, then the excitation due to acceleration in the in-
teraction region should be taken into account. These ex-
citations are accounted for by the terms coupling nuclear
accelerations to the electronic coefficients seen in Egs.
(3.40)—-(3.42) or (3.49)-(3.51).

With an ETF 3 as given by Eq. (2.16), the term Cp in
the metric, which couples the nuclear accelerations to z,
has contractions over elements

(B'Y|Vepg) by 37 (B9'Ix|B8) (3.86)
[see Eq. (A14)], where k is the nuclear center of orbital ¢,
and M, is the mass of the nucleus at center /. These ele-
ments are proportional to dipole couplings. Since a
derivative term with respect to P, is multiplied by P,,
division by M, has the effect of making the coupling pro-
portional to the nuclear acceleration.

These couplings are of greater importance for head-on
or near-head-on collisions, where greater accelerations
are expected. They may be crucial for obtaining correct
alignment and orientation properties of electrons in col-
lisions at energies below 1 keV per atomic mass unit,
where, for example, excitations to p states in a proton-
hydrogen collision will be important only at small impact
parameters. To the best of our knowledge, these cou-
plings have not yet been taken into account.

IV. APPLICATIONS

A. Implementation

The END equations have been implemented in the
computer code ENDyne’ (Deumens, Diz, and Taylor,
1992), which is presently at version 2, release 4. The
computational core of ENDyne consists of the routine that
computes the gradient of the energy with respect to the
Thouless parameters and the nuclear positions and mo-
menta (forces), Eq. (A85), and the Hessian of the overlap

3The program was originally called DYNAMO, but that name
conflicts with the name of the program created by Field (1992).
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matrix element (symplectic structure), Eq. (3.47). These
gradients are used to solve the time-dependent equations
for dynamics and for gradient-based optimization
methods to find both ground and excited stationary
states.

The TDVP produces an approximation to the time-
dependent Schrodinger equation in the form of a system
of coupled first-order ordinary differential equations
[(3.49) and (3.50)]. Methods for solving such systems
have been available for some time. Several methods ex-
ist, each with advantages and disadvantages. Because
some methods work better in some situations than oth-
ers, it is worthwhile to have the flexibility to use the one
best suited to each problem. A good introduction can be
found in Numerical Recipes, a classic by Press et al.
(1986).

Solving a first-order differential equation numerically is
basically very simple: one approximates the derivative
with the difference formula and finds a value for the vari-
able at the next time step. This is known as the Euler
method. Its major disadvantage is that, in order to
achieve high accuracy, very small time steps have to be
taken. Three of the major methods are as quoted from
Numerical Recipes:

(1) Runge-Kutta methods propagate a solution over an
interval by combining the information from several
Euler-style steps (each involving one evaluation of the
right-hand-side of the equation) and then using the infor-
mation obtained to match a Taylor series expansion up to
some higher order.

(2) Richardson extrapolation uses the powerful idea of
extrapolating a computed result to the value that would
have been obtained if the stepsize had been much smaller
than the one actually used. Extrapolation to zero step-
size is the goal. When combined with a particular way of
taking individual steps (the modified midpoint method)
and a particular kind of extrapolation (rational function
approximation) Richardson extrapolation produces the
Bulirsch-Stoer method.

(3) Predictor corrector methods store the solution along
the way, and use these results to extrapolate the solution
one step advanced. They then correct the extrapolation
using derivative information at the new point. These are
best for very smooth functions.

In the computer code three methods are implemented,
which represent these categories:

(1) DE is a modified divided difference form of the
Adams-Pece formulas and local extrapolation (Adams-
Bashforth method). It adjusts the order and step size to
control the local error. This method is fully explained in
the text by Shampine and Gordon (1975).

(2) DRIVEB is a variant of the GEAR package (Hind-
marsh, 1975). It also uses Adams methods or, optionally,
backward differentiation formulas, otherwise known as
the stiff methods of Gear. The package can use function-
al iteration (no partial derivatives needed), or the chord
method with an analytic Jacobian supplied by the user or
with the Jacobian constructed approximately by numeri-
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cal differentiation.

(3) ODEINT uses Richardson extrapolation with the
Bulirsch-Stoer method (Press et al., 1986). This method
is extremely accurate, but it requires many more points
than any of the previous methods. Therefore it is used
only to verify a part of the evolution, when one has
reason to doubt the accuracy of the faster, simpler
methods.

All the above methods adapt the step size to the scale
of the solution, starting from a small guess and gradually
increasing the step size if the estimated error indicates
that the predicted solution is accurate.

The Adams-Bashforth method is usually fastest.
Gear’s method with backwards differentiation is neces-
sary when the molecule has core orbitals that may ac-
quire energy and start oscillating strongly because of nu-
merical inaccuracies. The other methods will produce an
unstable solution in that case. The Bulirsch-Stoer
method is the most accurate, but requires the largest
number of function evaluations, which are the most
time-consuming part in an ENDyne simulation. It is
recommended for benchmarking use only.

A conjugate gradient method (Fletcher-Reeves and
Polak-Ribiere) and a method with Hessian matrix
(Davidon-Fletcher-Powell and Broyden-Fletcher-
Goldfarb-Shanno) have also been implemented (Press
et al., 1986). These routines have been modified to use
the basic linear algebra subroutines library for optimal
vectorization. The algorithms have been generalized to
work in curved spaces with non-Euclidean metric. This
way they can properly work in the space of electronic
variables and in the space of combined electronic and nu-
clear variables.

Either the optimization algorithm or a conventional
SCF algorithm can be used to determine the initial elec-
tronic state for a given initial geometry (Deumens, Diz,
Taylor, and Ohrn, 1992; Ohrn et al., 1992; Longo, 1993).
Initially ENDyne determines the optimal Thouless param-
etrization, one in which the z’s are as small as possible.
The code then proceeds to integrate the coupled
differential equations with a user-selected algorithm,
recording the history of the process in a file. This file is
used for restarting the program if it crashes and for visu-
alization of the dynamics. Several properties—such as
total electronic momentum, total momentum, electron
charge distribution as given by Mulliken population
analysis, and eigenvalues of the projected Fock matrix—
can also be computed, and these are written to the histo-
ry file. ENDyne continuously monitors the size of the
Thouless coefficients. If they become large compared to
unity, it is assumed that the determinant wave function
wants to move into a space orthogonal to the reference
state. Then the program is forced to restart with a flag
indicating that a new optimal reference state needs to be
chosen. This means ENDyne is switching to a new coordi-
nate chart. This procedure is completely automatic and
very stable. ENDyne also uses this chart switch when the
differential equation solver finds instabilities or sudden
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stiffness in the equations. This sometimes happens dur-
ing the most violent part of a reaction. Experience shows
that the switching of coordinate charts may happen only
once or twice during a trajectory. For most trajectories,
though, no chart switching is needed.

The implementation of the boosted SCF equations, Eq.
(3.53), has been completed recently, as has the coding of
the transformation, Eq. (3.68), to the interaction picture
defined by the RPA. Other features include the use of a
set of classical plane-wave electromagnetic pulses in-
teracting with the electrons and nuclei through the long-
wavelength approximation, and the inclusion of ETF’s to
first order in the nuclear velocity and for semiempirical
Hamiltonians.

B. lon-atom scattering

In this section some representative results obtained
with the ENDyne code are analyzed and compared with
experiment and other theoretical work.

1. Proton-hydrogen collisions

Proton-hydrogen collisions have been the subject of
abundant experimental studies in the last 20 years. Thus
they provide an excellent test for new time-dependent
theoretical approaches to electron-nuclear dynamics.

Most theoretical work on this system is performed at
collision energies above 1 keV in the lab frame. Calcula-
tions use either straight-line or Coulomb trajectories for
the nuclei. Such approaches yield electron-transfer and
excitation cross sections in agreement with experimental
results, even if strict conservation laws of energy and to-
tal momentum are violated. However, for lower energies
the motion of the proton is sufficiently slow that different
trajectories significantly alter the results. It is then neces-
sary to treat the electron-nuclear and nuclear-nuclear in-
teractions correctly throughout the collision process and
allow for fully dynamical trajectories.

Fritsch and Lin (1991), as well as Kimura and Lane
(1990), recently published reviews on the semiclassical
close-coupling method and examined proton-hydrogen
collisions, as well as some other systems, in some detail.
This method, and other methods they used as compar-
isons, use prescribed trajectories.

Fritsch and Lin employ the close-coupling scheme
with an extended basis which they call the AO ™ method
(Fritsch and Lin, 1982, 1983). It consists of a basis of 1s,
2s, 2p, and n =3 atomic orbitals corresponding to the
free hydrogen atom, as well as atomic orbitals corre-
sponding to the united atom (He). The He orbitals are
expected to be important for small impact parameters.
Their work explores the energy range 1-75 keV.

Runge, Micha, and Feng (1990) use the eikonal ap-
proximation to treat the nuclei and propagate the time-
dependent electronic density matrix in the linearized
TDHF approximation as described in Sec. 1.B.4.d. They
analyze proton-hydrogen collisions in the collisional en-
ergy range 10 eV—1 keV using only 1s states in the basis.
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They also investigate the effect of using straight-line tra-
jectories, Coulomb trajectories, and effective potentials.
They show the importance of using the correct trajectory
for energies below 1 keV. More recently, calculations
with larger basis sets have also been performed (Runge,
1993).

Few theoretical studies are done for energies below 1
keV. The most recent, by Hunter and Kuriyan (1977a,
1977b) for collision energies between 0.0001 eV and 10
eV, uses the time-independent perturbed-stationary-state
(PSS) method to separate the nuclear degrees of freedom
from the electronic ones. Davis and Thorson (1978) pub-
lished a similar study, but for an energy range going from
0 to 0.2 eV and correcting for some errors in the work of
Hunter and Kuriyan. The results for the two studies in
the overlapping energy range are very similar. Compar-
isons with Hunter and Kuriyan’s work are chosen, since
the information they report is in the form of tables, while
Davis and Thorson only publish low-precision graphs. In
both these studies the nuclei are treated quantum
mechanically, and only the molecular 1so and 2po states
are used. Twenty years earlier, Dalgarno and Yadav
(1953) also used the PSS approach to treat this problem
for energies starting as low as 0.25 eV and going up to
100 keV. Even before that, Bates and Dalgarno (1952)
studied this problem using the Born approximation, for
the energy range 0—-250 keV. Their results show that the
Born approximation works well for energies above 10
keV, but fails for lower energies by several orders of mag-
nitude.

The computer code ENDyne was used (Deumens, Diz,
Taylor, and Ohrn, 1992) to calculate several properties of
the proton-hydrogen collision as a first test of the general
method. An energy range of 0.02-4000 eV is selected,
which spans the very low energy regime investigated by
Hunter and Kuriyan and by Davis and Thorson (Hunter
and Kuriyan, 1977a, 1977b; Davis and Thorson, 1978), as
well as some higher energies. Transfer or excitation
probabilities to different orbitals are calculated by first
projecting the results on a hydrogenic basis with an ETF.
This can be done analytically with a Gaussian-type-
orbital basis (Sec. II.A.2).

Approximate hydrogenic 1s, 2s, and 2p functions are
expressed in terms of six Gaussians each. The 1s and 2p
functions are taken from Stewart (1970). The 2s function
was optimized to fit the hydrogenic 2s state. The
coefficients and exponents used can be found in Table II.

Figure 1 plots the experimental total transfer cross sec-
tions and our calculations. The results reproduce experi-
ments over five orders of magnitude in the kinetic energy
of the colliding proton. Total cross sections of the
scattering of H' on H are obtained by numerically in-
tegrating (Maitland et al., 1981; Murrell and Bosanac,
1992)

o(E)=2m [ “bP(b;E)db @.1)

for several energies E, where b is the impact parameter
and P (b;E) the transfer probability as a function of b for
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TABLE II. Contraction coefficients ¢ and exponents « for the
2s function used in the 6G basis.

2s function?
c a

—3.75318X 107" 1.21392X 1072
—7.61767X107! 2.67784 X 1072

3.22382X 1072 1.60950% 10!
1.77665X 107! 471398 X 107!
5.42463 %1072 1.68965
1.01853X 1072 9.22099

2Stewart (1970).

a given E obtained by projecting the evolved state on the
appropriate final state (e.g., eigenstates of the moving
proton for elastic processes, or various hydrogen-atom
states for charge-transfer or excitation processes). The
upper integration limit is chosen to be between 11.0 and
12.0 a.u. This choice is reasonable, since the transfer
probability in this interval is smaller than 10~".

Excitation and transfer cross sections for 2s and 2p -

states, as well as integral alignment for the relative exci-
tation of the various 2p target substates, have also been
calculated, showing good agreement with experiment
(Deumens, Diz, Taylor, and Ohrn, 1992).

Various basis sets have been tested, and in Table III
contraction coefficients and exponents are given for an
additional basis set used for proton on hydrogen, as well
as a basis set used for the proton-helium studies. The po-
larized valence double zeta (pVDZ) basis set for H is the
same as that of Dunning (1989), but with the s exponents
scaled by 1.22=1.44. The 6-31G* basis for He is not
available in the literature, but is contained in the GAUSS-
IAN (Frisch et al., 1988) and the GAMESS (Schmidt et al.,
1990) basis-set data banks. The contraction coefficients
and exponents are listed in Table III.

Table IV summarizes the total-cross-section results ob-
tained by the END method using two different sets of

primitive functions in the basis sets.

As seen from Table IV, the basis set does not have a
large effect in the calculated integral cross section for
electron transfer in the H +H collision. In addition, as
noted in several of our earlier studies (Deumens, Diz,
Taylor, and Ohrn, 1992; Diz, 1992; Longo, 1993), the
END method with classical nuclei (and single-
determinantal electronic wave function) provides excel-
lent results for electron-transfer cross sections when com-
pared with experimental data.

Since the integral cross section involves an integration,
much of the detailed behavior of a charge-exchange col-
lision is masked. Such details can be obtained from
state-to-state cross section, differential cross section, and
transfer probability as functions of the scattering angle
and consequently provide a useful basis for theoretical
model analysis. Below, results for the transfer probabili-
ty and the reduced differential cross section as functions
of the scattering angle are presented for the H* colliding
with H at 250 eV. Results for a number of collision ener-
gies up to 2000 eV show similar agreement with experi-
ments (Longo, 1993).

The equation for the differential cross section (o ;) at a
given collision energy E is (Maitland et al., 1981; Murrell
and Bosanac, 1992)

5 —4do(0) __ bP(b)
NPT sin6|d® /db| ’

where b, 0, P(b), ® dQ)=sin6dOd¢$ are the impact pa-
rameter, the scattering angle, the transfer probability, the
classical deflection function, and the solid angle, respec-
tively. The modulus of db /d 0 is used to ensure that the
differential cross section is always a positive quantity. In
addition, since the scattering angle by definition always
lies between zero and m, it holds that sin6 > 0.

The experimental procedure (Helbig and Everhart,
1965; Houver et al., 1974) consists of a mass-analyzed
H™' beam issued from a single discharge ion source

(4.2)

10" ——rrrrrmy
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2
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cm
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FIG. 1. Total transfer cross sec-
tions for H* +H at collision en-
] ergies ranging from 0.02 eV to
4000 eV, in a comparison of ex-
periment and END theory. The
END results are the open circles
joined by the solid line. Solid di-
] amonds are from Newman et al.
(1982); solid squares, Gealy and
Zyl (1987); solid triangles,
McClure (1966).
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TABLE III. Contraction coefficients ¢ and exponents « for the basis sets used in this work.

H /pVDZ? He/6-31G*®
c a c a
1s function 0.01969 18.7344 0.02377 38.4216
0.13798 2.82528 0.15468 5.77803
0.47815 0.64022 0.46930 1.24177
2s function 0.50124 0.17568 0.29796 1.00000
2p function 1.00000 0.72700 1.10000 1.00000

2Dunning (1989).
Frisch et al. (1988); Schmidt ez al. (1990).

crossed with a thermal H beam. Ions and atoms scat-
tered at a given angle are selected and analyzed. The
overall energy resolution varies from 0.8 eV up to 2 eV in
the 250 eV-2000 eV energy range. The uncertainties
affecting the experimental results arise from (i) the finite
angular resolution A@ (30.07° for small angles, up to
+0.2° for large angles), (ii) the errors in the dissociation
fraction determination (H/H, ratio in the collision re-
gion), and (iii) the accuracy of the relative calibrations of
the cross sections for the different processes (elastic,
charge transfer, and excitation). Because of the rapid
variation of the transfer probability and the differential
cross section with the angle, more particles arise from the
region 6—A@ than from the region 6+A6. Thus the
center angle is slightly larger than the one corresponding
to the most probable scattering. However, this error nev-
er exceeds 0.1° (Helbig and Everhart, 1965; Houver
et al., 1974). As can be seen in the comparison between
the experimental data and the END results, the finite an-
gular resolution can account for most of the damping in
the oscillatory behavior of the observed versus the calcu-
lated transfer probability and differential cross sections.
Problems with the measured direction of the incident
beam with respect to the detection system can be elim-
inated by studying the scattering on both sides of the
incident-beam direction and choosing the zero index
from the symmetry of the data curves. In addition to
these uncertainties, the experimental results are normal-
ized to theoretical results (Gaussorgues et al., 1975) for
the elastic differential cross section at small angles.

From the discussion of the experimental uncertainties
it seems clear that the measured transfer probability

versus the scattering angle is less susceptible to errors
than is the differential cross section. It is also indepen-
dent of scaling factors. Thus, in Fig. 2, results for the
transfer probability are presented calculated by the
ENDyne program and compared with experimental data.
The theoretical procedure is the same as described in the
calculation of the integral cross section. The only addi-
tional information needed is the asymptotic momentum
of the proton, which is used to compute the scattering
angle; that is,

Px _  Px 1
Prot p2+p? V'1+(p,/p, )

cosf= , (4.3)

where p, and p, are the x and y components of the
asymptotic proton momentum.

Both the qualitative and quantitative features (position
of maxima and minima) of the experimental data are very
well reproduced by the END theory at the level of classi-
cal nuclei. The quantitative agreement can be made
much better when an angular resolution window is ap-
plied to the theoretical data. This simulates the experi-
mental resolution, results in a damping of the results, and
explains why the oscillations in the transfer probability
do not extend from zero to unity. It also should be men-
tioned that the semiclassical treatment (Gaussorgues
et al., 1975) using a three-term molecular basis provides
results in perfect agreement with the experimental data.
This is puzzling, since the experimental data have a
damping of the oscillation due to the finite angular reso-
lution, and the theoretical work does not mention how
this damping is handled. Because of this the quantitative

TABLE IV. Total transfer cross section for H" colliding with a H ( X 10716 cm?).

Total transfer cross section

Collision END theory
Energy (eV) PVDZ basis Hydrogen-6G basis Experiment™®
10 35.93 36.37 37.0+5.7
100 24.31 25.60 23.7£3.5
500 17.94 19.44 18.9+3.2
1000 16.55 16.78 16.3+2.9

2Newman et al. (1982).
®Gealy and Zyl (1987).
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FIG. 2. Transfer probability vs
the scattering angle (in degrees).
The experimental and END re-
sults for the H* +H system are
compared. Energy: 250 eV.
Basis set: pVDZ. Experimental
angular resolution, +0.6°% -+,
END; *, from Houver et al.
(1974); X, from Helbig and
Everhart (1965).
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agreement between the semiclassical method and the ex-
perimental results seems to be fortuitous, or the true
meaning of the theoretical data is difficult to understand.
Such damping is not observed in other theoretical treat-
ments either (see, for example, Runge et al., 1990).

The experimental results available for the H" +H col-
lision are often presented as “‘reduced” differential cross
sections p, which are expressed as (Houver et al., 1974)

bOP(b)
|d®/db|

This shows less rapid variation with the scattering than
does the differential cross section. In Fig. 3 both elastic
and charge-transfer reduced cross sections calculated us-
ing the ENDyne program at 250 eV are presented and
compared with experimental data.

The same comments and conclusions about the
transfer probability hold for the reduced differential cross

p=o0,0sin0= (4.4)

section. One should only add that the agreement be-
tween the END numbers and experimental results for the
reduced cross section is worse than for the transfer prob-
ability. The reduced differential cross section is explicitly
dependent upon the scattering angle. The experimental
data are normalized and fitted to some particular avail-
able theoretical results based upon prescribed trajec-
tories. Thus one could argue that the experimental re-
sults for the reduced cross sections have been downgrad-
ed in quality by fitting to unsuitable theoretical results.
The importance of true dynamic trajectories at lower
collision energies (below 1 keV) can be illustrated by the
fact that differential cross sections involve derivatives of
the deflection function. As an illustration the scattering
angle as a function of impact parameter for
proton-hydrogen-atom collisions at 500 eV obtained
from fully dynamical END calculations is compared in
Fig. 4 with those obtained with two different prescribed

FIG. 3. Reduced differential
cross sections vs the scattering
angle. Experimental and END
— results for the H"+H system
are compared. Energy: 250 eV;
basis set: pVDZ; %, END
transfer; +, END elastic; and
- X, transfer, and O, elastic (from
Houver et al., 1974).
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FIG. 4. Scattering angle as a
function of impact parameter us-
ing END, bare nuclei, and
hydrogen-atom potential for
H* +H system. There is a small
impact-parameter region. Ener-
gy: 500 eV. Basis set: pVDZ.
Scattering angle in degrees and
impact parameter in a.u. Solid
line, END; dotted line, bare nu-
clei; dashed line, hydrogen-atom
potential.

0.0

Impact Parameter (a.u.)

trajectories. In several of the graphs the END results are
identified as END-SD-FGWP, which stand for Electron-
Nuclear Dynamics with a Single Determinant for the
electrons and a Frozen Gaussian Wave Packet for the nu-
clei taken in the limit of narrow width. This is the level
of END theory at which the numerical calculations have
been performed.

In Fig. 5 the differences in the scattering angles of the
bare nuclei and the hydrogen-atom potential relative to
the END results are shown.

It is clear from this figure (Fig. 5) that the errors due to
prescribed trajectories can be quite large for small impact
parameters. From Fig. 4 it can be seen that the dynami-
cal trajectory lies between the bare nuclear and the
hydrogen-atom potentials. This is due to the fact that, in
the H' +H system, charge transfer is expected; so the in-
teraction potential should be represented by a combina-
tion of the bare nuclei and the atomic potential. The
contribution of each extreme potential (bare nuclei and

30

atomic) is related to the amount of charge transfer during
the collision and cannot be predetermined. Consequent-
ly, the use of prescribed trajectories in calculating prop-
erties that depend upon the scattering angle becomes
doubtful for energies below 1 keV and for small impact
parameters.

2. Proton-helium collisions

The behavior of proton-helium scattering is different
from that of the proton-hydrogen collisions. The
H*+He system exhibits electron-electron interaction,
the charge transfer is nonresonant, and the interaction
potential has repulsive and attractive parts. These facts
make the scattering of a proton by a helium atom an im-
portant system to study with any new time-dependent
method that has demonstrated the ability to describe the
H* +H collision well.

25 ki

Bare Nuclei - END

20 -4

Hydrogen-Atom Potential - END

FIG. 5. Scattering-angle
differences as a function of im-
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pact parameter. Bare nuclei and

hydrogen-atom potential are rel-

ative to END results for H* +H

system. Energy: 500 eV. Basis
--------------------------------- set: pVDZ. Scattering-angle
differences in degrees and im-
pact parameter in a.u. Dotted
line, bare nuclei—-END; dashed
line, hydrogen-atom potential—
END.
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Since the early 1930s proton-helium scattering has
been studied by theoretical methods (Kimura, 1985b).
The accumulated theoretical data fall mostly in the ener-
gy range above 10 keV and are related mainly to total (in-
tegral) cross sections. Experimental and theoretical stud-
ies of differential cross sections for H* +He are more
scarce. However, it is possible to find several experimen-
tal studies for energies down to 5 keV and scattering an-
gles greater than 1° (Fitzwilson and Thomas, 1972).
These experiments are probing the repulsive part of the
interaction potential, and no structures are then ob-
served. Recent studies of angular differential scattering
at keV energies in ion-atom collisions have focused on
very small angles, in general, below 1° (Johnson et al.,
1989). These studies are motivated by the highly
forward-peaked character of the cross sections and by the
location of the classical rainbow angle within the 0°-1°
range (at keV energies). The fact that structures occur
for very small angles has been the main reason for the de-
lay in investigating this region, since high angular resolu-
tion is needed. From the theoretical point of view, the
oscillatory patterns seen in elastic and inelastic scattering
have been studied extensively using semiclassical theory
(McDowell and Coleman, 1970; Maitland et al., 1981;
Newton, 1982).

The appearance of classical rainbow scattering implies
that the classical deflection function has at least one ex-
tremum. This means that there are at least two impact
parameters that will yield the same scattering angle. A
proton colliding with a helium atom is an example of
when three dynamical trajectories can yield the same
scattering angle (see Fig. 6).

In general, the deflection function of an ion-atom sys-
tem has at least one extreme point. The exception is the
resonant collision of a proton with a hydrogen atom.
This behavior of the deflection function is due to the in-
teraction potential, which for the nonresonant case has
both repulsive and attractive parts. The deflection func-

140
120
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8.0 -

40
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20 |0 \L °
0.0 b, b, b

Deflection Function © (deg)

tion is presented for the H' +He system at 50.0 eV. At
this energy, the elastic scattering is the only important
process. Consequently, classical elastic-scattering theory
can be used to invert the deflection function to yield the
intermolecular potential. Although the results are not
shown here, this potential has been obtained from the
electron-nuclear dynamics (END) results and compared
to the dynamic potential and to the Born-Oppenheimer
potential-energy surface with essentially perfect fit
(Longo, 1993). The deflection function is shown in Fig.
6.

The classical differential cross section for H™ +He at
500 eV illustrates the power of the END approach. Cal-
culations have been performed with equally satisfactory
results for various collision energies up to 5 keV. Since
the differential cross section depends upon the deflection
function, the three regions of the deflection function are
given in Fig. 7. The regions are (I) {0,b,}, where b, cor-
responds to the value of the impact parameter for which
the deflection function vanishes, the so-called glory an-
gle, ®(by); (1) {by,b,}, where b, defines the rainbow an-
gle, that is, the extremum of the deflection function for
which d®(b)/db|b=b,=0$ and (IT1) {b,, «}, the attrac-

tive region.

As stated before, from the shape of the deflection func-
tion in Fig. 7 it can be seen that more than one impact
parameter leads to the same scattering angle . Thus, the
equation for the classical differential cross section be-
comes
b;P(b;)

do
_do _ 4.5
TR sin6|d®/dbl, -, ’ .

(]

i.e.,, a sum of contributions from these different trajec-
tories. The contributions of each one of the three regions
for the elastic and for the charge-transfer differential
cross sections are shown in detail in Figs. 8 and 9.

The value of the rainbow angle 6, can be determined

FIG. 6. Deflection function for
H*+He. END results are at
50.0 eV with a pVDZ basis set.
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TABLE V. Experimental and theoretical rainbow angles for
the H* +He system.

Rainbow angle Impact
Energy (deg) parameter (a.u.)
(eV) Experimental® END END
50.0 2.963 1.826
500 0.32 0.3015 1.778
1500 0.11 0.1013 1.772
5000 0.03 0.0302 1.772

2Johnson et al. (1989).

experimentally as the position of the inflection in o 4(8)
beyond the rainbow maximum. For the scattering of a
proton with a helium atom, the experimental determina-
tion of the rainbow angle is compared with the theoreti-
cal result in Table V. The agreement is excellent between
the END results and the experimental rainbow angles.

The range of 0.01°~1.0° and 0.04° < (kb) ! <0.29° for
H™ +He at 500 eV, i.e., the region of very small angles,
which means 6 <(kb)™'~0, is considered. A classical
elastic cross section will not yield correct results near the
rainbow angle. Semiclassical corrections to the classical
cross sections can be used (Berry, 1966; Smith, 1969;
Longo, 1993). The elastic differential cross section ob-
tained with ENDyne and semiclassical corrections is
shown in Fig. 10.

The results for 500 eV are presented, since at this ener-
gy the elastic process is several orders of magnitude
larger than the charge transfer. Thus the semiclassical
corrections to the classical elastic differential cross sec-
tion are adequate, as can be seen from the comparison be-
tween the theoretical and the experimental results. An
appropriate formalism within END that will yield quan-
tum interferences for inelastic processes remains to be
developed.
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C. lon-molecule scattering

There are surprisingly few rigorous theoretical investi-
gations of the dynamics of ion-molecule collisions in the
low- to intermediate-energy regime (50 eV < E <50 keV)
(Kimura, 1985a). There are likely several reasons for this
lack of theoretical treatment, not the least being the com-
plexity and cost of obtaining reasonably accurate adia-
batic potentials and eigenstates as functions of internu-
clear distances and molecular orientations. In addition,
for an ion-molecule system, the number of internal de-
grees of freedom that need a proper dynamical treatment
increases dramatically. The END theory in this context
fills a need, since it does not need adiabatic potentials and
treats properly all degrees of freedom.

The performance of the END theory for ion-molecule
collisions is examined in this section, as exemplified by
the system H' +H,. In these types of collisions not only
do the electrons play an important role (transfer and ex-
citation), but so do the nuclei, since vibrational and rota-
tional excitations take place.

The END results are discussed for the collision of a
proton with H, (in its electronic and vibrational ground
state) at a collision energy of 500 eV. Three molecular
orientations are studied, namely, (0°, 0°), (45°, 0°), and
(90°, 0°). These are representative of the effects of orien-
tation of the target molecule on the charge-transfer
mechanism, cross sections (charge transfer), and energy-
transfer mechanisms. The same notation as that of
Kimura (1985a) is used for the molecular orientation
(a,B). The first angle, a, is the angle between the scatter-
ing direction and the molecule axis, and 3 is the dihedral
angle between the scattering plane and the molecular
plane.

The nuclear motion of an ion-molecule collision is
quite a bit more complicated (and more interesting) than
that of ion-atom scattering, since, in ion-molecule col-
lisions, one expects vibrational and rotational excitations

FIG. 10. Elastic differential
cross section for H* +He. En-
ergy: 500 eV. Basis set: pVDZ.
The solid line corresponds to the
semiclassical corrections to the
END results. The circles are ex-
perimental data (Johnson et al.,
1989).
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to occur. The angular dependence of the vibrational pop-
ulations of the H, molecule after a collision with H* has
been studied by theoretical and experimental methods for
low (E <30 eV) and high energies (E > 10 keV). In the
intermediate-energy range (100 eV < E <10 keV) experi-
mental results for differential vibrationally resolved
H* +H, scattering have been obtained only recently and
are already challenging the theory (Dhuicq and Benoit,
1991). Our classical description of the nuclear motion
has to be augmented by some approximate vibrational
wave function in order to yield the angular dependence of
the vibrational populations of H,. Here only the vibra-
tional analysis of the classical motion of the nuclei is
presented.

The preferred way to obtain vibrational frequencies of
the H, target is to use the Prony method (Marple, 1987)
in the analysis of the interatomic distance of the H, mole-
cule as a function of time. The Prony method is an alter-
native to the discrete Fourier transform for spectral
analysis and is widely used in signal processing. It is a
technique for modeling sampled data as linear combina-
tions of (complex) exponentials with damping coefficients
€ and angular frequencies o, i.e.,

x(n)= i hle—(el+im1)n(8t) )
=1

(4.6)

where the number of terms p is called the order of the
method, and the equally spaced steps of the data sample
are n(8t). Details of the algorithm and its implementa-
tion can be found in the literature (Marple, 1987). Once
the parameters of the exponential model are determined,
the frequency spectrum can be obtained directly using
the infinite domain analytic Fourier transform
N—1
%(k)=N(8t) 3 x(n)e 2mkn/N

n=0

(4.7)

where N is the number of points in the data sample. In
order to enhance the signal, it is useful to use the relative
spectral densities (RSD) as a function of the frequency w
to obtain the spectrum. The RSD, expressed in decibel
(dB), is defined as

Deumens et al.: Dynamics of electrons and nuclei

2
RSD()[dB]=10log,, | —=(@° (4.8)

max|x (w)|?

In Table VI the vibrational frequencies are presented
for all trajectories of the (0°,0°), (45°,0°), and (90°,0°)
molecular orientations that lead to the same scattering
angle (namely, that of 0.29°). The differences in the vi-
brational states are basically due to differences in the
charge and energy transfer and, thus, the electronic state
of the H, target after the collision.

The range of vibrational frequencies in Table VI indi-
cates the difficulties in obtaining average properties like
differential vibrational populations from any state-to-
state procedure. With the present implementation of the
END theory, one could proceed by finding an appropri-
ate nuclear wave function to calculate the vibrational
populations and also average with respect to the molecu-
lar orientations. Table VI also shows that for each initial
condition (impact parameter and molecular orientation)
the resulting vibrational frequency of the H, target is dis-
tinct, which implies that it is in a different time-
dependent electronic state (or rather moving on a
different effective dynamical potential curve). These
different time-dependent electronic states result from the
differences in charge-transfer probabilities for each initial
condition, as is suggested by the correlation between the
transfer probabilities and the vibrational frequencies. In
general, when the H, molecule loses electron density, the
bond becomes weaker and the vibrational frequency de-
creases.

The charge transfer in the H' + H, scattering has been
studied theoretically by a close-coupling method (Kimu-
ra, 1985a) at energies ranging from 200 to 1000 eV. A
direct comparison between the ENDyne and the close-
coupling results is made for the weighted charge-transfer
probability and shown in Fig. 11 for the (0°,0°) molecular
orientation.

The two approaches do not agree. The total charge-
transfer cross section is 1.562X 107 % cm? for the close-
coupling method (Kimura, 1956a) and 1.287 X 10~ !7 cm?
for the END-SD-FGWP method. The differences might
be explained by the assumptions and approximations

TABLE VI. Vibrational frequencies (cm™!) of H, after collision with H™ at 500 eV as a function of the
initial conditions [impact parameter (a.u.) and molecular orientation (a°,8°)].

Charge transfer

Vibrational frequency

b (a.u.) (a, ) Probability (X 1072) (cm™1)
2.160 90,0 5.418 4425
1.251 0,0 3.209 4441
1.593 0,0 2.473 4467
1.516 45,0 2.925 4497
1.886 45,0 0.899 4547
3.449 90,0 0.689 4561
3.446 45,0 0.342 4599
3.420 0,0 0.289 4612
1.731 90,0 0.134 4642
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adopted by each method. In the case of close coupling,
the nuclear dynamics is described by a prescribed trajec-
tory, which limits its applicability for low collision ener-
gies. Moreover, the electronic wave function in the
close-coupling approach is obtained using the diatoms-
in-molecule method, which is less reliable at small to in-
termediate internuclear separations. The impulse ap-
proximation, which freezes the target nuclei during the
collision, obviously also introduces errors. This might
explain the lack of structure in the close-coupling results
at small impact parameters. This particular implementa-
tion of the close-coupling method (Kimura, 1985a) in-
cludes the effects of electron translation factors, which
are only treated approximately in the END formalism.
However, at 200 eV collision energy, such effects should
not be significant.

It should also be noted that the END method provides
results for the differential cross sections (elastic and
transfer) for the H* +H, collision at 500 eV in excellent
agreement with experimental data (Longo, 1993; Longo
et al., 1993).

D. Intramolecular electron transfer

The dynamics of inter- and intramolecular charge
transfer has been a very important subject in chemical
physics (Chance et al., 1979; DeVault, 1984; Hopfield
et al., 1988; Beratan et al., 1990; Newton, 1991). The
main reason is that charge transfer is the essence of many
fundamental biological and biochemical processes. In
addition, charge transfer is important in a variety of
fields, such as atomic physics, plasma physics, astro-
physics, semiconductor physics, organic and inorganic
chemistry, and many others.

In this section the charge-transfer system Li—H-
Lit=Li*-H—Li is studied as a simple model of in-
tramolecular charge transfer wusing time-dependent
methods. This molecular system represents a good pro-
totype for theoretical studies of charge-transfer dynam-
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ics, as it is small enough to be treated with some high-
level ab initio time-dependent and time-independent
methods.

Due to its conceptual simplicity, the formalism for
electron transfer proposed by Marcus (1956, 1965;
Marcus and Sutin, 1985; Newton, 1991) in the late *50s
has drawn much attention from both theoreticians and
experimentalists. This theory has been extensively re-
viewed, revised, and extended. However, two basic as-
sumptions are still being employed, namely, (a) that there
is a reaction coordinate that takes the reactants to the
products via nuclear motion, and (b) there is a coupling
(H,,) between two electronic states (donor and acceptor).
A typical electron-transfer reaction coordinate is shown
in Fig. 12.

Nondynamical-type approaches for electron transfer
assume that the transfer rate k is usually given by an
equation based on Fermi’s golden rule (Marcus and Su-
tin, 1985; Newton, 1991; Evenson and Karplus, 1992),

k =277TIH12|2(FC). 4.9)
The quantity (FC) is the Franck-Condon factor and is re-
lated to the vibrational spectrum of the donor-acceptor
system and its surroundings, if any. Analytical expres-
sions for (FC) derived from classical and semiclassical
theories exist and are discussed in the references (Marcus
and Sutin, 1985; Newton, 1991). The matrix element H,
represents the electronic coupling of the donor and ac-
ceptor (or reactant and product). This is the quantity
that has been challenging theoreticians and experimental-
ists. There are several approaches to computing the
electron-transfer-matrix element. Usually, for large sys-
tems such as proteins, the transfer dynamics is treated as
a one-electron problem (Beratan et al., 1990; Evenson
and Karplus, 1992). However, for small molecular sys-
tems, many-electron ab initio and semiempirical methods
have been used (Newton, 1991). In this case, the most
common approach to calculating H,, is to compute the
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FIG. 12. Diabatic and adiabatic potential curves for normal
electron transfer.

diabatic states, which in general are nonorthogonal, and
either use them as zero-order states in a perturbational
approach (Ohta et al., 1986; Newton, 1991) or use them
in a two-dimensional nonorthogonal configuration-
interaction problem (Jackels and Davidson, 1976; Broo
and Larsson, 1990). More specifically, the broken space
symmetry wave functions, |1) and |2), are used in the
following equation for the coupling element (Newton,

1980; Ohta et al., 1986; Broo and Larsson, 1990;
Newton, 1991),
1/H|1)+(2|H|2
H,2=————l 5 (1IHl2)——Slz< [H[1)+(2[H[2) ,
1""S12 2
(4.10)
S,=(1]2) .

Since the nuclear motion is responsible for electron
transfer (Newton, 1980, 1991), attempts have been made
to treat the motion of the nuclei explicitly. Most of these
dynamical approaches are also two-state models with a
coupling H,. One of these approaches uses an ab initio
method to calculate the coupling H, at each nuclear
configuration as the system is evolving in time (Mikkel-
sen et al., 1987; Mikkelsen and Ratner, 1989). Some
simpler approaches use a model potential function for the
electronic state, and the nuclear motion is treated explic-
itly either by the time-dependent variational principle
(Deumens et al., 1987a) or by the semiclassical approach
of Nikitin (Larsson, 1981). All these approaches for elec-
tron transfer require the calculation of the coupling ma-
trix element. In order to obtain H,, it is necessary to
know the reaction coordinate, and that might be very
difficult to determine for large systems.

Dynamics of electrons and nuclei

Another approach would be to use an extension of the
variational transition-state theory, with or without semi-
classical corrections for tunneling (Gonzalez-Lafont
et al., 1991; Melissas et al., 1992), to include the most
important electronic wave-function parameter as a reac-
tion coordinate. The minimum-energy path around
which the transition-state theory is formulated is then
defined in a configuration space that includes the elec-
tronic degrees of freedom. The END theory reviewed
here constructs dynamical paths in the phase space, in-
cluding electronic degrees of freedom, and computes the
transition probability from it. The main advantage is
that one does not need to break the transfer into two
separate steps, i.e., geometry change and electronic tran-
sition, but can describe the full evolution of the interac-
tion between both these aspects of the process. To ini-
tialize the electron transfer, one simply distorts the mole-
cule and lets the system evolve in time.

The basis set used is 3-21G+ for Li (Clark et al.,
1983) and 3-21G for H (Binkley et al., 1980). The time-
independent calculations are performed by ACES II pro-
gram system (Stanton et al., 1992). The time-dependent
results are obtained by the ENDyne program. The initial
conditions for the time-dependent calculations are ob-
tained as follows: (a) The longer Li—H bond is stretched
and the shorter Li-H bond compressed by the same per-
centage (%) amount; (b) a SCF time-independent calcula-
tion is performed on this new structure; and (c) the con-
verged SCF vectors are used as the initial electronic pa-
rameters z for the time-dependent calculation. The evo-
lution was propagated up to 10000 a.u. of time (=0.24
ps).

The global minimum of the LiHLi molecule is a bent
C,, structure. However, the linear structure presents an
unrestricted Hartree-Fock (UHF) broken-symmetry solu-
tion, with two charge localized structures: Li'‘”—H-
LitV=Lit*D.H—Li®. These linear charge-transfer
structures are considered, and the structure and energies
of the two symmetric minima are shown in Table VII.

As mentioned before, the initial conditions for the evo-
lution of the charge transfer are chosen by contracting
and stretching the Li-H bonds. Table VIII summarizes
the energetics of the initial conditions studied. The
Boltzmann factor (BF) in Table VIII is calculated as

BF = —AE/kT— , —503.22395AE /T (4.11)

with AE given in kcal/mol and T in K.
The value of 1450 K corresponds to the temperature at

TABLE VII. Linear LiHLi properties. UHF/3-21G + /Li//3-21G/H.

Li(1)-H=3.09017 a.u.
H-Li(2)=3.45561 a.u.

E(SCF)= —15.33537897 a.u.
Average multiplicity =2.0000660

Harmonic frequencies (cm™'): 98.9i (IT); 368.5 (=%); 1631.5 (%)
Zero-point vibrational energy=2.8592 kcal/mol
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TABLE VIII. Initial conditions for the time-dependent calculations.

Energy
Li(1)-H Li(2)-H" —15.0+ AE BF
Structure (a.u.) (a.u.) (a.u.) (kcal/mol) T =300 K T=1450 K

Equil. 3.090 3.455 —0.335379 0.0

5.6% 2917 3.649 —0.333829 0.973 0.1955 0.7134
10% 2.781 3.801 —0.330281 3.200 4.665(—3) 0.3294
13% 2.688 3.905 —0.326528 5.554 8.994(—5) 0.1455
15% 2.611 3.974 —0.322588 8.027 1.420(—6) 0.06168
18% 2.534 4.077 —0.317466 11.242 6.361(—9) 0.02021
20% 2.472 4.147 —0.312707 14.227 4.323(—11) 0.007172

which the thermal energy (k7T =2.9 kcal/mol) is the
same as the zero-point vibrational energy or half a vibra-
tional quantum. It is reasonable to assume that the elec-
tron transfer triggered by molecular vibrations should be
induced by thermal energy, and this temperature gives
some sense of the relation between temperature and vi-
brational excitation. At room temperature only small vi-
brational excitations of the system are expected.

A time-dependent calculation generates a lot of data,
since the whole history of the evolving system is record-
ed. Only some selected properties are presented here as
they evolve in time. The nuclear motion is shown evolv-
ing in time as a function of the distortion from the equi-
librium structure. These results give some idea of the
time scale of the nuclear motion which can be compared
to the time scale of some other properties. For clarity,
instead of the nuclear coordinates, Fig. 13 shows the time
evolution of the Li(1)-H and H—Li(2) bond distances for
5.6%, 10%, and 18% deformation.

The alpha and beta Mulliken populations (the alpha
spins are arbitrarily in excess in the chosen single-
determinant state) as a function of time are also present-
ed. The results for the 10% displacement are shown in
detail, since, among all the studied initial conditions, it
gives the greatest variation of the beta population. Fig-
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ures 14 and 15 contain the alpha and beta populations of
H, Li(1), and Li(2) atoms, respectively.

As can be seen from the figures, the variation of the
beta population is very small compared to the variation
of the alpha population on the lithium atoms. As a re-
sult, the system can be considered as being an effective
one-electron system. In Fig. 16 the alpha Mulliken popu-
lation (Szabo and Ostlund, 1989) is shown on Li(2) for all
initial conditions considered here.

To derive a transfer-rate constant from the quantum-
mechanical results, an ensemble of LiHLi molecules (in
the linear structure) is considered and a Boltzmann dis-
tribution is applied. For a given initial state n, the wave
function of the LiHLi (linear) molecule evolves in time (z)
with a probability for electron transfer given by P,(t).
As a result, assuming that at time zero (¢ =0) there is no
product present, the rate of consumption of the reactant
is given by

ax(t
di ) =——kETX(t) ’

where X (t) is the reactant concentration as a function of
time, and kg is the electron-transfer-rate constant for a
first-order kinetics. The connection between electron-
transfer probability and reactant concentration is made

4.12)

Li(1)-H: 5.6%
Li(2)-H: 5.6%

FIG. 13. Li(1)-H and Li(2)-H
bond distances (a.u.) as a func-
tion of time (a.u.) for 5.6%,
10%, and 18% displacements.

Li(1)-H and Li(2)-H Bond Distances (a.u.)

4.00
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via statistical mechanics using the Boltzmann distribu-
tion at a given temperature for all possible initial condi-
tions, i.e.,

—E, /kT

X(=3e P, (1) .

n

(4.13)

The integration of the first-order-kinetics equation gives

dX (1)
X (1)

so that the logarithm of the concentration should be
linear with time.

As mentioned before, the electron transfer in the
LiHLi molecule is effectively a one-electron event. Since,
for a one-electron system, the transfer probability and the
Mulliken population are identical, the probability for
electron transfer can be approximated by

P, (1)=2—2M, (1) /M™

(4.15)

where M, is the alpha Mulliken population on Li(2) for
initial condition n, and M"®* is the maximum value of
this population. This equation means that the Mulliken
population is normalized to maximum two full electrons
and the complement taken to get a number between O
and 1 as the probability that an electron will move from
Li(2) to Li(1), signifying a charge-transfer event. For this
study, which is only illustrative, the ensemble is restrict-
ed to include only the initial conditions (» =6) involving
the bond-length distortions of 5.6%, 10%, 13%, 15%,
18%, and 20%. The Boltzmann factors at room temper-
ature for each initial condition are presented in Table
VIII. In Fig. 17 the concentration is given as a function
of time within this simple model.

The small statistical sample leaves strong fluctuations
on the time scale of the nuclear vibrations. This is, of
course, what should be expected and is typical of any de-
tailed microscopic dynamics entered as data for a statisti-
cal treatment to reveal macroscopic quantities. Howev-

963

kinetics to the data can readily be fitted and gives a limit-
ing concentration of 0.005 and a rate constant of 0.0003
a.u., which is 1.25X 10" sec ™! at 300 K.

No experimental results exist for LiHLi; so this exam-
ple serves only to illustrate the theoretical approach to
obtain rate constants from detailed dynamical calcula-
tions.

V. DISCUSSION

In this section, some general aspects of time-dependent
treatments are discussed. The basic conservation laws
and symmetries of molecular quantum mechanics serve
as the starting point.

A. Invariance principles

Laboratory-fixed coordinate axes are employed and de-
scribe the nuclear degrees of freedom in Cartesian form.
This means that the dynamics includes the overall
translational and rotational motion, which then have to
be separated out whenever necessary. The time-
dependent variational principle (TDVP) has conservation
laws (Kerman and Koonin, 1976; Negcic and Orland,
1988; Broeckhove et al., 1988, 1989a, 1989b) associated
with it, somewhat like Noether’s theorem (Noether,
1981; Goldstein, 1980). It allows the derivation of the to-
tal linear and angular momentum as constants of the
motion, provided the manifold of states considered is in-
variant under the symmetry operations associated with
the conservation laws. Stated somewhat differently, the
TDVP equations have a rigorous conservation law when
the Poisson bracket of the expectation values of a con-
served operator and the energy equals the expectation
value of the commutator of that operator with the
quantum-mechanical Hamiltonian. The existence of the
conservation laws makes it possible to avoid all transfor-
mations to internal coordinates. All time-dependent for-

er, the simple exponential expected from first-order mulations that keep a strict connection to the
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Schrédinger equation or the underlying variational prin-
ciple like END (Deumens, Diz, Taylor, and Ohrn, 1992)
and Theilhaber’s time-dependent density-functional
(TDDF) theory (Theilhaber, 1992) have the correct con-
servation laws.

To avoid confusion in the derivatives, it is important to
understand what is meant by a function lying in the man-
ifold of TDVP variations. One says that |8 ) lies in the
manifold of TDVP variations if it is in the tangent plane
of the manifold. It may not be possible to write a varia-
tion of the wave function in terms of the basis set being
used, yet it belongs to the manifold of TDVP variations.
For example, consider the trivial case of a hydrogen atom
in translational motion, i.e., a single-electron state, using
a truncated basis with a single 1s function moving with
the nucleus. Then 8¢=¢, (r,R+86R)—¢, (r,R) is, in
the limit, a function with p symmetry and lies in the
tangent space of the manifold, but outside the manifold
derived from this limited basis.

The use of this property in derivations is common.
For instance, an expression such as {(8¢|i(d /dt)¢) may
be replaced by (8Z|H|E) if and only if |8£) lies in the
tangent plane (see Broeckhove et al., 1988, 1989a,
1989b).

1. Translation invariance in time

Let us first consider the (almost trivial) conservation of
energy. From the Hamiltonian structure of the TDVP
equations it follows that

dE
E-:{E,E}ZO . (5.1

Furthermore, it is obvious that the time derivative of the
wave function, by construction, lies in the manifold of
states over which the TDVP variations are carried out.
Therefore

%(glzﬂg) =((d /dt)E|H|E) + (E|H|(d /dt)E)

=(8¢IH|E) +(&IHISE)
=i#(8L|(d /dt) ) —i#{(d /dt)E|SE)

=i#{(d /dt)E|(d /dt)E)

—i#i{(d /dt)¢|(d /dt)¢)
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The same result is obtained for the energy viewed either
as the value of the Hamiltonian function in the general-
ized phase space or as the expectation value of the
quantum-mechanical Hamiltonian operator. Thus ener-
gy is conserved.

2. Translation invariance in space

Conservation of total linear momentum is satisfied for
a truncated basis set as long as the basis functions are
centered on the moving nuclei. If the basis functions are
fixed in space, then a complete set is needed before
momentum is conserved by the equations of motion.
This section analyzes in detail the case of a classical
description of the nuclei and the basis functions centered
on them without electron translation factors. Thus all
metric terms of the form Cp, Cpp, Cgp, and Cpg vanish
in Eq. (3.36).

Since the electronic basis functions depend on the nu-
clear and electronic positions, and do so in the form
r;—R,, one finds

nuc N
% [2 Ve, + 3V, |lz)=0. (5.3)
k=1 n=1
Thus
N Nnuc
SV 2)==3 Vg lz). (5.4)
n=1 k=1

The expectation value of the total momentum is

Ptot = 2 Pk + Pel
k

I

sz—F(zI%EVIn\z)/(z]z) , (5.5)
k n

and its time derivative is
l.)totzz Pk +f’e1
k
e d 1
—EPk‘Fz((ZITEV,"|z)/<z]z>). (5.6)
k n

The latter is expanded in terms of the parameters, in par-
ticular,
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<Zi En T, ——IZ>

Z (zlz) _2,.: ! (ZIZ)

+2

ka((z|)% SV, |2)

Z;

(z|z)
<z| - 2, Vi, Vr, lz)

+§Rk (z|z) +% (z|z) Ry
-— 2,.32*‘ Ty T2 <z|z> 4
Vg, ({z])lz) (z|Vg, Iz) |
SRy S oy R |- (5.7

Using the results of Eq. (5.4), ordering some terms and comparing with the metric matrix terms Cg in Eq. (3.37) and

Cyrgr in Eq. (3.38), one can write

<Z| zn l'n Nnuc T
il = C 'C .z
dt <Z|Z) 121 2(1 R;i 2; 1 RIIZ

H+ % Cr,r, R

N,

nuc

(5.8)

Then, since Eﬁv““ VR,E =0 because of the invariance of the energy with respect to a global translation of the nuclei

when using a basis centered on the nuclei, one obtains from the product of the third row in Eq. (3.36) that

Nnuc Nnuc N“uc
2 2 (lCR lz —ICR ,Z, )+ 2 CRIR Rk Pl = 2 VR’E =0 . (5.9)
I=1 i 1
Thus 1/)3 U(0,t;v,), (4) apply time inversion to the state
Y4=1v3j—on any state of the system result in the state
EPk+—(<Z| EV |z)/(z|z))=0 (5.10)  one starts from, i.e.,

An interesting result of this analysis is the physical
meaning in terms of the rate of change of the electronic
momentum that can be inferred for the Cg and Cgy
metric terms.

3. Rotational invariance

Rotational symmetry implies conservation of the ex-
pectation value of the total angular momentum
L. ERk XP,+1,+s, . (5.11)

The derivation is analogous to that for total linear
momentum and is not presented here.

4. Time-reversal invariance

Time reversibility is defined by Wigner (1959), on p.
325 of his book, as the requirement that the four-step
operation—(1) propagate the state 9 in time from time O
to time ¢, to ¥, =U(0,1;1,), (2) apply time inversion to
the state (complex conjugation), to get ¥,=1v7, (3) propa-
gate the state in time for the same period ¢ again
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Yo=v¢,= (5.12)

Because it holds for all states, this implies the (nonlinear)
operator identity

U(0,t;1,)* =U(0,t; U(0,t;9,)*)*

I=U(0,t;U(0,z;.)*)* . (5.13)

In the case of the Schrddinger equation i#iy=H4, for

which the evolution operator is linear U(O,z;)
=U(0,t)¢=exp[ — (i /#)Ht]y, this implies
Po=U(0,0'U (0,19, (5.14)

for all states; hence the evolutlon operator is unitary
U(1,0)0=U(0,1)"'=U(0,1)'. This latter condition is
called micro reversibility [see Messiah (1962), p. 674]. It
is only meaningful for linear evolution equations like the
exact Schrodinger equation. Equation (5.13) expresses
unitarity for general nonlinear evolution equations, in-
cluding nonlinear approximations such as the ones con-
sidered in this review.

The scattering operator is a linear operator only when
the evolution operator is linear, which in turn requires
that the equation be linear. Then, the more widely
known formulation of micro reversibility is obtained as
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[CFISlid | =I<ilSI O],

(5.15)
’Sﬁ| = |S[f| .

In this form micro reversibility is often referred to as the
principle of detailed balance.

It is easy to see, and it has been verified numerically
with the computer programs, that the END, TDHF, and
TDDF equations are time-reversal invariant. However,
because they are nonlinear approximations to the exact,
linear Schrodinger equation, they are not micro reversi-
ble. Hence scattering amplitudes and probabilities com-
puted with these methods do not satisfy Eq. (5.15). Dem-
kov (1963) has proposed a variational principle for the
scattering amplitude that does satisfy Eq. (5.15). Gazdy
and Micha (1986; Micha and Gazdy, 1987) have imple-
mented a modified version of Demkov’s variational prin-
ciple to obtain scattering amplitudes that are micro re-
versible. However, this method does not obtain a new,
linear, TDHF evolution operator for the system that pro-
duces a linear scattering operator, but rather constructs
scattering amplitudes from two different TDHF evolu-
tions, one from the initial state forward and the other
from the final state backward. The modified Demkov
variational principle then gives a scattering amplitude be-
tween the two states as an integral over the two trajec-
tories. The reader is referred to the original work (Gazdy
and Micha, 1986; Micha and Gazdy, 1987) and the recent
paper by Micha and Runge (1992) for details.

B. Conclusion

The TDVP is used to present a unified derivation of
the time-dependent methods for the dynamics of elec-
trons and nuclei that go beyond those employing a single
potential-energy surface (PES). In order to be specific,
the review focuses on a description employing a single-
determinantal wave function for the electrons and classi-
cal particles for the nuclei. The TDVP is applied to
derive dynamical equations for the wave-function param-
eters, which then become coordinates of a general
dynamical system. The physical properties of the param-
eters that are important for the procedure are em-
phasized. In addition, in a brief section, the general
mathematical theory is discussed that puts these physical
properties in the rigorous context of coherent states and
Lie groups and lays the foundation for more general im-
plementations.

The equations are first constructed in their simplest
mathematical form, which uses an orthonormal reference
basis built with nonfollowing atomic orbitals to describe
the determinantal wave function. This is the form used
by Theilhaber (1992). These are the equations that Car
and Parrinello might have formulated instead of intro-
ducing fictitious kinetic energies. Then a symplectic
transformation is applied to the dynamical equations, in
order to obtain a representation in an orthonormal basis
built with ordinary AQ’s, that follow the nuclei, or trav-
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eling AO’s, with electron translation factors (ETF’s).
This form of the equations is the natural form for a sem-
iempirical Hamiltonian. The equations introduced by
Field are then recovered (Field, 1992) by further assum-
ing that the metric terms coupling the electronic and nu-
clear degrees of freedom can be neglected.

Applying a second symplectic transformation yields a
representation of the equations in the nonorthogonal
atomic basis. This makes the method feasible for ab ini-
tio Hamiltonians, which would otherwise require a very
expensive four-index integral transformation of the two-
electron integrals each time the numerical integrator
takes a step. The nonlinear equations of the density ma-
trix and the close-coupling equations are also derived.

Finally, the solution of the linearized equations is ob-
tained and used to define a third symplectic transforma-
tion. This puts the equations in an interaction picture,
where the fast oscillations are transformed away. The in-
teraction picture allows the numerical integrator to
proceed with large steps, without losing the full non-
linearity of the original equations.

The structure of the equations is brought out and the
terms that have been the subject of some debate regard-
ing electron translation factors are analyzed. In order to
clarify the physical meaning of ETF’s and traveling
AQ’s, molecules in uniform motion are analyzed.

The implementation of the equations in the ENDyne
computer software are discussed, and some of the results
obtained with it are reviewed. The applications reviewed
here involve ion-atom and ion-molecule collisions, in-
cluding electron-transfer processes. These exemplify typ-
ical results that generally agree well with experiment and
provide new detailed insights into such phenomena. New
results for an intramolecular electron-transfer process are
reported here for the first time, too, using a simple but
realistic model system. One can conclude that time-
dependent treatments are able to attack a wide range of
applications. For instance, they can be used, like time-
independent ones, for separate electronic structure calcu-
lations, or for separate dynamics problems using precal-
culated PES’s.

Commonly, for most small molecular problems, it has
been logical to separate the electronic degrees of freedom
from the nuclear ones by using the Born-Oppenheimer or
the adiabatic approximation. Such a separation is op-
timal if one can efficiently obtain compact, preferably an-
alytic, representations for the PES’s at relevant nuclear
geometries for all relevant stationary states. When this is
so, this traditional approach offers a good alternative for
many problems. However, even for systems of moderate
complexity, the solutions of the electronic structure
problem are only available as the result of a separate,
rather demanding computational procedure. The neces-
sary fitting of numerical representations of potential-
energy surfaces to suitable analytical forms for use in
dynamical problems also presents great challenges. The
separate classical, semiclassical, or fully quantum-
mechanical scattering treatments on even a single fitted
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surface are also extremely demanding. From the results
obtained with the END theory implemented at the sim-
plest possible level in the ENDyne code, one can conclude
that in many cases consideration of the full problem as a
single task constitutes a balanced, sufficiently accurate,
and competitive approach for a variety of dynamical, and
even spectroscopic, problems.
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a _, O N .
In{z'|z )|, —,=(z]z) ! M_,, Minor(M)
9z, 9z, g§1 ¢ ¢

S t
= 21 zH(I%+z'2);,!
P

=[U*+z'2)71z"),,

In the first step the determinant is expanded in the
column g with M denoting the matrix
M=I%:z"z . (A2)

The next step uses the expression for the inverse of a ma-
trix in terms of its minors

Minor(M),,
MY =— 5 A3
( hg det(M) 4
and the fact that none of the elements z,, do occur in the
minor gh because it does not contain column A of M.
Similarly, one finds for the derivative, with respect to the

complex conjugate of the Thouless parameters, in matrix
form that

9

Z*

In{z'|z)|,_,=z(I®+z'z)" 1. (A4)

Equation (3.29) shows that the general overlap for
molecular orbitals built with TAO’s is
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APPENDIX

1. Derivation in an orthonormal basis

In this section the ingredients of the dynamical equa-
tions are constructed for the representation in an ortho-
normal basis built with traveling atomic orbitals. The re-
sults for the representation in an orthonormal basis built
with the nonfollowing AO’s or with ordinary, following,
AQO’s can be obtained easily by omitting all dependence
on nuclear coordinates R and momenta P or by omitting
all dependence on P, respectively. This implies that all
derivatives with respect to omitted variables must be set
equal to zero. In each formula the overlap and other
quantities are shown with only the relevant parameters
explicitly given.

a. Metric

From Eq. (3.7) the derivative with respect to the Thou-
less parameters is obtained as

z'=z

(M) {2l2)

(A1)
[
S.(z'*,R',P',z,R,P)
=(z'"*,R",P'|z,R,P)
=det(A®*+A>z +2z'TAV +2TA%2) | (A5)

from which the derivative with respect to the nuclear po-
sition can be evaluated. It is the purely imaginary quan-
tity

VRkln<Z,RI’P,lZ’R’P > ‘R'=R,P'=P

(]

=Tr [(I®+z72)71I® ZHVR A |,

] ,  (A6)

where the following property is used

dIndet(M) _ -1 ddet(M) OM;
ok det(M) 121 oM. M, “ax
—5 ), 2
—_,.Ej 7 dx

_ M

A7
O (A7)

=TrM
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One should note that the derivatives of the overlap ma-
trix in Eq. (A6) are to be taken with respect to the R
dependence of one side only. The derivatives with
respect to the nuclear momenta are given by an identical
expression, but with the gradients with respect to P.
They are not shown in the following unless they are real-
ly different.

This derivative gives the expectation value of the elec-
tronic momentum, provided all dependence of the atomic
orbitals on the electronic coordinates is of the form
r—R, for some center k. In that case,

For the second derivatives of the overlap, the deriva-
tives of the inverse of M are needed. From the relation

XX =1 (A9)

for any matrix X depending on a variable x, it follows
that

X! _ Xy

N
p=3 (zR,P| -—iV,n|z,R,P)/(z,R,P|z,R,P) o D. ¢ O (A10)
n=1
=i 3 Vg In{z,R",P|z,R,P) =g - (A8)
k=1 Therefore the derivatives of the inverse of M are
a* [I*+z")71,, =—[U®+z") 71, [za®+2TD) 71, . (A11)
azph
The second derivatives of the overlap with respect to the Thouless parameters are then given by
2 N
*n(z|z) =3 d [(I."'ZTZ)_I]hi(ZT)ip
02450z =1 024
=—[U®+z"2)7 12", [ +2T) 72T, (A12)
and
?nlzlz) _ X 2 ot \—1 t o T \—1
—=3 [(I®+z"2) 7], (zh), +[(T®+2"2)7 1,8
0z4,0z,, /=) Ozg ? e ®
=[I®+z"2)71], [1° —z(I®*+2"2)7 12",
=[I*+z"2) 1), [T +22D) 7Y, , (A13)

where the bottom-right block in Eq. (2.28) is used in the last step. The mixed second derivatives with respect to nuclear
positions (momenta), Eq. (3.37), involve the ket-gradient of the orbital overlap matrix A

I
’ ’ —_— O i)
PT Vg, In{z",R’|Z,R )|, =y pr=g =(0 I WVE A |,

I
=(I°+2zz")"(—z I°)VR A

(I®+z'z) '~z (1®+z%2) " 1(1® z"VR A

Z (I®+2z7z)~1

°
(A14)

) toyv—1—
2 (I®°+2z'z) CRk ,

where the bottom-left block in Eq. (2.28) is used. The second derivatives with respect to the nuclear positions (momen-

ta), Eq. (3.38), are

VRLVR11n<z”R '|Z,R >|z'=z,R’:R =Tr

I
—(I®%+z'z)"(1® z*)vgkA

which is a Hermitian matrix.

b. Density matrix

(I1®+z"2)71(1® "Vl VR A

z

z z

I.
a®+z'zy-1ue® ZT)V|R>IA| [ H , (A15)

The one-matrix, Eq. (3.8), has the block form, Eq. (3.9). For the occupied block, the following equation holds,
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N K ¥ N K
Iy, =(zlz) vac| |5 TT b+ S 27z, b I1 b+ S 527z, |Ivac)
=1 m=N+1 k=1 m=N-+1
K
:(ZIZ >_1(_)h +gdet [(8,]+ 2 z,:‘,,-zmj )ivﬁh,j#g l
m=N+1 ij

=det(M)~ lMinor(M)hg
=[I*+z"71,, . : (A16)

The unoccupied block has the form

+
K N K
o =(zlz) Wvac| | |z,,— [63'+ 3 b3%,., [0 |IT |62+ 3 bSz% ]
m=N+1 1=2 m=N+1
K ¥ N + K +
X (zj— |63+ 3 537z, by [T |62+ 3 53"z |lvac) . (A17)
m=N-+1 k=2 m=N-+1
Moving the annihilators further through yields
N N K
Lo =(z2) '3 3 zhzu(—) et 6, + 3 zkz,;
I=1 k=1 m=1 i#l,j#k Jij
N
=det(M)™! 3 z,Minor(M)yz}; (A18)
k=1
so that
_ =11
T, =[zUI%+z'2)7'z"],, . (A19)

The off-diagonal block is obtained with the help of the first derivatives of the logarithm of the overlap kernel from

Tir,=(zlz) " Xzlb b2z )

In{z|z)

azph

=[(I*+z%2)7'z"],, . (A20)

Therefore the full one-matrix is given by

I.

[(z*,z)= I*+z%z)"'a® 2% . (A21)

z

Note that this is the projector onto the nonorthogonal occupied orbitals (Lowdin, 1955).
The derivatives of the energy can be written much more elegantly in terms of the derivatives of the one-particle densi-
ty matrix. Equation (A 11) gives with the bottom-left block in Eq. (2.28) the first derivative with respect to z *,

(]
ar,j

(I®+z%2)7!
9z,

ih[(10+zz*)"1(—z 1°)],; , (A22)

and, by taking the adjoint, the first derivative with respect to z follows. Because the basis is orthonormal at each
geometry,-there are no total gradients with respect to the nuclear positions and momenta even if the molecular orbitals
change and the bra gradients and ket gradients are nonzero.

The second derivative with respect to z* and z then follows as
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I.
z
|
(A23)

This equation can be simplified by manipulating the 1X2 block matrices in the first two terms using the bottom-left
block in Eq. (2.28) to find

T,

*
0z,,0z,,

(I®+z'2) | ([T +2z")7 1], [(—1® 0)]y;— [T +2z") 7, (21T +22") " (—z 1°)]1,)

ih

[ ]
(I*+z'2) 712" [1®+zT7 1, +

z iq

[U+z'2)7, }[(10+zz*)‘1<—z I°)],; -

o
1”4,

[—I1%+zT T +zzN) "z =TI +2zzH) "= —a®+z72)"\a® 7). (A24)
Similarly, the 2 X 1 block matrices in the last two terms can be taken together, i.e.,
—(I%+zTz) 71T —z' (1o 421! —z' o 1
1°—2(1%+z%) 17" (o+zh~t |7 o I =D (A25)
Therefore
°T;; I®
- Y- z (I.+ZTZ)-1] [(IO+ZZT)_1]Pq[(I.+ZTZ)_1(I. ZT)]gj
0z,,,0z,, ih
_ZT
+ | o [T+ I+ T [0+ (=2 19, (A26)
iq

Note that this equation goes over into its complex conjugate when p, 4,i are interchanged with g, g, j, respectively. For
the second derivative with respect to z*, one gets, again using Eq. (2.28),

_82.1:1_]_=_| e (I._*_ZTZ)*l [Z(I.+ZTZ)_1] [(IO+ZZT)—1(__Z IO)] )
9z,, 8z, z ih g o
I.
=11, (I®+z%z)1 _ [z(I°+sz)_1]qh[(Io+zzT)"1(——z I°)],; . (A27)
ig

This equation is invariant with respect to interchange of p, 4 and g, g.

c. Energy

With Egs. (A21) and (3.10) for the densities, the total energy of the molecular state is given by Eq. (3.12). Using the
derivatives, Eq. (A22), of the one-density, we obtain the derivatives with respect to z* of the one-electron energy,

dE(z*,2,R, P) e

9z,

= |I%4zz")y" Y=z I (I%+z%2)"! (A28)

z

pn

Applying the same calculation to the double trace and using symmetries (3.5) and (3.6) of the antisymmetrized two-
electron integrals, we obtain the derivatives with respect to z* of the two-electron term. Combined with the one-
electron term, and since the zero-electron term (3.11) does not depend on z, the derivative of the total energy with
respect to the Thouless parameters is given as

.
0E (z*,z) _

I
P (I°+zz")"W(—z I°)F (I®+z7z)~!
th

2 : (A29)

ph

with the Fock operator (3.23).

The derivatives with respect to the nuclear positions R and momenta P are obtained by taking Eq. (3.12) with the
one- and two-electron integrals 2 and V replaced by the corresponding derivative-integrals. Because the full gradient is
considered, as opposed to the bra- or ket-gradient, there are no contributions from the orthonormal orbital overlap ma-
trix. Explicitly, one gets
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Na Z,Z,e(R;—R;)

VRkE(z*,z,R,P)=— > K. —R.[ +Tr(VRkhI‘)—l—%Tr[Tr(VRkVa,,;a,,l‘)al“],7 . (A30)
SR
The derivatives with respect to nuclear momenta are
P
VPkE(z*,z,R,P): XIL +Tr(VthF)+%Tr[Tr(VPk Vab:abT)aL 15 (A31)

k

assuming TAO’s are used for the electrons. The terms after the first are not present when ordinary AQO’s, without
ETF’s, are used.

With the derivatives of the one-particle density, the second derivatives of the energy defined in Eq. (3.63) become sim-
ple. The second derivatives with respect to the Thouless parameters are ( 4)

2 * 2 .
OEBELE) i [h +Te(Vyp D)y =2 — | +7Tr |Tr |7y, 20 | 21 (A32)
9z oz, ’ dz% oz 47 a9z oz
'ph ©4qg phO%qg |p ph |q a8 |p
and (B)
’E (z*,2) T ar ar
S =T [+ T W gy D)o | 4T T Vo | 5o (A33)
Zph OZ4g ZphOZqg | Zph g 9%gg |b

Note that as a consequence of the symmetries of the derivatives of I', the familiar properties of the random-phase-
approximation matrices are recognized; i.e., ( 4) is Hermitian and (B) is symmetric when p,h are replaced with g,g, re-
spectively. The mixed derivative involving nuclear positions is (F)

—é—a;—VRkE(z*,z,R,P)——-Tr [Ve,h +Tr(kaV,,,,;,,,,r)a]éaL* (A34)
th th

The matrix G is the same with the R gradient replaced by a P gradient. The second derivatives with respect to nuclear
positions are given by (I)

Z,Zie}[3(R, —R, (R, —R,)—|R; —R,[?]

VRkVRIE(Z*’Z,R7P)=_ |R —R |5
k 1
Yu Z,Z,e’[3(R,~R)(R,—R,)—[R, —R]’]
+ou 3 R —R,[°
n=1 n 1
n7*l

+Tr{[Vg, Vr,h +1Tr(Vg, VR Vs D)o IT} - (A35)

The second derivatives with respect to the nuclear momenta are just the kinetic-energy terms (J) plus terms coming
from ETF’s,

1 1
VPkVPIE (Z *’Z,R,P)= E—Skl +Tr{ [VPkVPIh + ?Tr( VPkVPl Vab;abr)a ]F} M (A36)
and the mixed derivatives are (K)
VRkVPzE (Z*,Z,R,P)=Tr{ [VRkVPlh +%Tr(VRkVP1 Vab;ab r), ]F} : (A37)

f

equal to zero. For didactic purposes, the transformation
is applied for some quantities, while for others the ex-
pressions are completely rederived with the new parame-

2. Derivation in the atomic-orbital basis

In this section the components of the evolution equa-

tions are derived for the representation in the nonorthog-
onal traveling atomic-orbital basis. The results for the
representation in the customary, i.e., following, atomic-
orbital basis can be obtained easily by omitting all depen-
dence on nuclear momenta P. This implies that all
derivatives with respect to omitted momenta must be set
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trization.

a. Definition of parameters

In this section, the transformation, Eq. (3.46) of Sec.
III.B.1, from Thouless parameters z in an orthonormal
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molecular basis to Thouless parameters z in the atomic
basis is constructed. One can always mix occupied orbit-
als among themselves and transform unoccupied orbitals
without changing the state. This freedom can be used to
keep the form of the parametrization the same. Given (1)
the transformation W (2.19) to an orthonormal reference
basis and (2) the parameters z for the determinantal state
with respect to that reference basis, one can suitably
define (1) a set of parameters Z for the determinantal state
with respect to the atomic basis of the same form as z and
(2) an auxiliary transformation matrix U, such that the
same state is defined in the atomic basis. One needs to
solve

we w>||I®* 0 I°* o ||U® U”>

wY w° ||z I° z I°||UY U°|”’
(A38)

we+w>z W> U® U’

wVY+wCz Ww° U+ UY zU'+U°

for U and Z. One solution that satisfies the above criteria
is easily found to be

U>=W> )

Ul=we+w>z ,

vV=wV, (A39)

F=WCz(We+WwW>z)"!,

UC=WC—WwWCz(We+w>z)"'U> .
Straightforwardly, the inverse follows,

z=(W°—zw>) lzwe . (A40)

Note that the first symplectic transformation, to TAO’s,
is linear in z, while this second symplectic transformation
is a conformal mapping in z.

The matrix U will have no effect on the determinantal
state if it mixes occupied orbitals among themselves, or
transforms unoccupied orbitals, while it will have an

J

effect if it mixes unoccupied orbitals into the occupied or-
bitals. Hence one must require UV =W"=0. This
means that the reference orthonormal basis that yields
the desired parametrization is given by

IIJ.:¢.W. ,

(A41)
¢O=¢.W> +¢OWO .
It is constructed by first orthonormalizing the occupied
atomic orbitals among themselves, and then orthonor-
malizing the unoccupied atomic orbitals to the occupied
space and among themselves. This has the effect that the
occupied space is the same space whether defined in the
nonorthogonal atomic or in this orthonormal molecular
basis.
The determinantal state, Eq. (2.21), is thus equal to

N ; K '
I\I/z)=|¢>2>=a II (2" + 3 b‘l,O Z,, [vac)
h=1 p=N+1
N K
=a [ e+ 3 apOTth [vac)
h= P=N+1
N
=a [] (& y®f|vac)
h=1
=alz), (A42)

where the constants a are different because of the extra
factor U arising from the transformation (A38) to atomic
parameters. As before, one considers the unnormalized
state

1Z)= [T (&,)* |vac)

(A43)

—= _T\_’:Iz

K
'+ 3 aOTth |vac) .

P
=1 p=N+1

I

The normalization (2.4) leads to some valuable rela-
tions for the blocks of W if WV =0. Now consider

W.T 0 A. A> W. W>
W>T WOT AV AO 0 WO
I® o
o r1°
we' o A®W® A°W> +A> WO
= W>f‘ WOT AVIW® AVW> +AO WO
WOTAQWQ WQTA0W>+WQTA> wo
= W>TA.W.+WOTAVWQ W>TAOW>+W>TA>WO+WOTAVW>+WOTAFOWO (A44)
and note that it follows, from the upper diagonal, that
wetaepe— e (A45)

and, from the upper off-diagonal, that
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W>=_A.—1A> WO (A46)
and, finally, from the lower diagonal, that
WOTAOWO+WOTAVW>+W>TA> WO+W>TAﬁw>=WOTAOWO_WOTAVA.——1A>WO
=WOT(AO_AVAO—1A>)WO

=J° . (A47)
From (A45)
A=W el (A48)
and (A47), it follows that
A°—AVA®TIA> =wol-lpo-1 (A49)

One explicit possibility for W that satisfies the requirements is

A.—I/Z _A.—1A>(AO__AVAO-1A>)*-1/2

W= 0 (AO_AVA.—1A>)—1/2

(A50)

It is also possible to obtain some equations for the blocks of the inverse X =W ~!, which are important for the trans-
formations back and forth between the atomic and molecular basis. From

we w> | |Xx® X> wexe+w>xV WeX>+w>Xx°
0 WwW°||xV x°| woxV Wwex©
I* o
=lo 10 (AS1)
and
X® x> | |\w® w>| | X°W® X°W>+X W°
xV xo° 0 W°| |xVw® XVW>+X°wW©°
I* o
=10 7°|° (A52)
one gets
. W._l _W.—1W>WO—1
wol=x=| wo-1 . (A53)

b. Dynamic orbitals

In the case of an orthonormal basis, Eq. (2.28) can be obtained by direct computation. In the atomic basis, the situa-
tion is different. One is then looking for a (K —N) X N matrix v, defining a set of virtual orbitals, such that the occupied
and unoccupied spaces are orthogonal

° | |r® ot A®+zTAV +A>z +2TA%2 A®%T+A> +2TAVYT+2TAC
v I° z I° vA®+oA”z+AV +A%z  ACHpA>+AVyT4pa®yt
A®+2zTAV +A>z +2TAC; 0]
- 0 A+ uA” +AVyT+pA%T | (A54)

This requires the off-diagonal blocks to be zero,

vA®+vA”z=—AV —A°z, , (AS5)
and hence

v=—(AY+A°z)(A®+A>2)"! . (A56)
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Now one can look at the equation for the projectors, (2.27), to derive the generalization of the relations (2.28) and note
that matrices of the projection operators are considered. The matrices

A%z)=A%+zTAV +A~z +27A°z (A57)
and
AC(W)=A°+vA> +AVoT+pa®? (A58)
naturally occur in many expressions. The generalization of Eq. (2.28) is
A®°+A”z
AAT'A= | \v g0, A®(z) " 1(A®+zTAY A +2TA0)

A®—(A®+A>2)A%z) 1(A®+zTAY)  A” —(A®+A>2)A®%z) (A> +2TA0)
AT —(AV+ACZ)A®%Z) (A% +2zTAY) AC—(AV+AC2)A%z) I(A> +2TA0)

A% THA>

AVyl 4 A© AC() N wA®+AY vA”+A°)

(A% THA>)AC () 1 wA®+AY) (A% T+A>)AC () H(vA> +A°)

(AVoT+A)AC () 1 A®+AY) (AVoT+AC)IAC ()~ (vA> +A°) (A59)

This expression makes it possible to obtain exactly the same form of the evolution equations in the atomic basis as in the
orthonormal basis.

Using definition (A56), the derivatives of the virtual orbital coefficients v with respect to the Thouless parameters z
become

dv
5;:%= —AD[(A®+A>z) 7], +[(AY +A°2)(A®+A”2) T'A™ ], [(A®+A72) 7],
=—(A°+vA~), [(A®+AZZ) 7], . (A60)
c. Metric

The derivatives of the logarithm of the overlap equation (3.29) have to be computed. Repeating the calculations in
Egs. (A1)-(A6), one obtains

N
aza In(z'[z),_,= 3 (A~ +zA0 )gp(A'+A>z —i*erA>T+zTAOz),:g1
ph g=1
=[A® (A> +2TA%)],, (A61)
and
°
Vg, In(z,R',P'|2,R,P) | gr—g pr=p=Tr | A®2)"'(I® z*)V‘R)kA (A62)
and also an identical expression for the derivatives with respect to nuclear momenta.
The derivatives of the inverse of the overlap matrix of the occupied dynamic orbitals are similar to Eq. (A11),
az [A%2) 71, =—[A%2) {(A> +2TA°)],,[A®%2)"1],, . (A63)
The second derivatives then are
2
%“—(gz‘—z— =—[A%2)"UA> +2TA°)], [A%2) "1 A> +2TA0)],, (A64)
and
n(zlz) X ¥ _
—_— [A®%(z) 1], (A +2TA®), +[A®%z)" 1], AD
02440z, ; az D p AT g Bap
=[A° —(A” T+ A%2)A%2) (A +2TA%) ], [A®%2) 1], (A65)
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or, using the virtual dynamic orbitals v given by Eq. (A56) and the relations (A59),

3In{z|z)
0z,,0z,,

=[(A> T +AC)AC (1) I (WA +A)], [A%Z) 1], -

(A66)

To obtain the phase-space metric components Eqgs. (3.37) and (3.38), the mixed derivatives are needed with the Thouless

parameters and the nuclear positions (momenta). They are

_ I
G & R R g =0 1O, |

I
=(AVpT+A)AC (W) TOWR A,

I
A%z) T —(AY +A°2)A%Z) THI® ZTVR A

]A.(z)—l

z

.
(A67)

A%(2)7'=Cg ,

where the relations (A59) are again used. The second derivatives with respect to the nuclear positions (momenta) are

given by

VR;VR11n<z,;R ’lZ,R > |z’=z,R’=R =Tr

I
—A%2)7'a® ZHvy A

d. Density matrix

The one-density of a determinant is the projector on its
occupied orbitals (Léwdin, 1955). Therefore

I®° 0
lOTI=1x) | 5 o |<X]
I° 0 -

=gy a|aXxl [y o|l04| 4Xxl

M

_|M of_

=|¢)W*lz[0 O’Z*W**l(lm
=|¢)A"'TAT (], (A69)

where the transformation matrix A4 is defined by [see Egs.
(2.33), (2.41), and (A38)]

X =Yg =yZXYh

=¢Wg =¢ZUXYh =YUXYh =7 A (A70)

and M is the inverse overlap matrix of the occu-
pied orbitals before and after the transformation:
M =(1%+z"z)"" and M=A%z)"". Then
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A%~ I® 2DV VR A

I.
z
( ] IO
, (A% a® ZhvRaA |, (A68)
[
- LM O_.
T=AZ|, ,|Z'a
* o ||am ol |r® =zt
=A1, rollo oflo 10|
M Mzt A
=A i st
I.
=Al, Mma® zhHa . (A71)

Hence the one-matrix (A16)—(A21) becomes, in the
atomic basis,

I.

z

r=A A%z)"1® zhHa=ATA . (A72)

Notice the overlap matrices on both sides as is typical for
projection operators in a nonorthogonal basis. ' is the
operator form of the one-matrix, whereas I is the matrix
element form. It is typical in nonorthogonal bases that
every linear operator has two matrices representing it.
Here the operator form of the matrix is used and the tilde
on the Thouless parameters omitted when no confusion is
possible.

Equation (A63) leads to the first derivatives with
respect to z*, again using Eq. (A59),

o
aru _

A®%(z)7!
az;;, ?)

ih

XAV +AC)AC W) v 1°)],,; . (A73)

Derivatives of the one-density with respect to the nuclear
positions (momenta) arise through the dependence on the
overlap matrix A
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I® I®
Ve, == |, |[A%)71I® zNvg A |, [A%2)7'T® 2T)
=—TVg AT . (A74)

Note that the total gradient is needed here, and not just through the bra or ket as for the metric components.
The second derivatives with respect to z* and z then follow, using Eq. (A60),

2 { ]
oTy

ao%a, A%(z)"!
02440z,

[(AYoT+AC)AC(0) (A +vA™)]
. qp

z ig

X[(A®+A%2)7"H(—T1® 0)],;+[(AVoT+A°)AC (W) "HA° +vA™)],
X[(A®+A>2)"HA> +A% A () v 1°)];)

ol

A%z)"HA> +2TA%) | [A%2)71],, + [A%2) 7,

P

AV +ACIAC(W) v I°)],; .

z IO

p

(A75)

This expression can be simplified. The 1X2 block matrices in the first two terms can be manipulated using the results
from (A59) with the right-hand side A replaced by an arbitrary matrix, say A4,

(—A®+(A” +A%HAC () HwA®+4Y) —A>+H(A>+A% A () W wAd >+ 4°))
=—((A”z+A®A%z) " (A®+2zT4Y) (Az+A®A%zZ)"N(A>+274°))
=—(A”z+A®A%z)"1(I® zT)4 . (A76)

Similarly, the 2 X 1 block matrices in the last two terms can be taken together,

(A% T+ 4>)A° () Y(wA> +A°)
(AVoT+ 4°)A°(w) W vA> +A°)

A>—( A%+ 4> 2)A%z)"H(A> +2TA0)
AC—(AV+ A°2)A%z)"(A> +2TA0)

+
v
=4 |0 AP() HvA™+A°) . (A77)
Therefore
3 ;; I®
== ||, A% | [(AVeT+A)AC ) A +vA™)],
azqgaz,,,, ig
uT
X[A%) I 2Ny + | {0 [A%()THAC+uA™)
ip

X[A%2) ", [(AVoT+ACAC W) " iw 19)],; . (A78)

And for the second derivative with respect to z*, one gets
9Ty I®
z

* * -
0z4, 0z,

A%z~ {—[AV(A®+zTAV)T1,
. q:
g
+[(AVoT+A)A ()T HAY +vA®A®+2TAY) 1AV T+AC)IAC W) i 19)],,
I®

2 A.(Z)*l

[AY +A°2)A%2) 1, [(AVoT+AD)AC () Hw IO)],; .  (AT9)
i
Again, with the relations from (A59), this simplifies to
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_az.ri__z_[‘l. A.(Z)_l [(Av‘*‘AOZ)A'(Z)_‘] [(AVvT+AO)AO(v)—1(U IO)] i
024,02, z ig ah P
I.
-1, A®%z)™! _h[(AV+A°z)A'(z)—1]pg[(AVu*+A0)Ao(v)—‘(u I°)], - (A80)

The mixed derivatives with respect to electronic parameters and nuclear positions (momenta) follow from (A73)

a—ZE}h—VRkFU=— IZO A®z)~\(I® ZT)VRkA z. A%2)"! ih[(Ava+Ao)Ao(v)-1(v 1°)],;+ ‘I; A.(Z)_ll,-;
I®
X[(Vg AVoT+Vg AOAW) v I9)],— | |, [A%2)7! .,
ot
X [(AVo"'+A%)ACW) M I9)Vg, A |6 [ACW) T 1°) y (A81)
The second derivatives with respect to nuclear positions (momenta) are obtained as
Vg, VR, [ =[Vg ATVy AT —T'Vg Vg AT +I'Vg AI'Vg AT . (A82)

e. Energy

The energy of the molecular state is given by Eq. (3.12) with the one-density f, Eq. (A72). Only the derivation on the
one-electron part is presented for the derivatives. The two-electron part is similar. With (A63), the derivatives of
Tr(hT) give

aE(l)(z*,Z)z b

* z
azph

A®%(z)™! ‘ . (A83)

[[—AV+AOZ)A’(Z)‘1(h‘+zThV h>+zThO)+ VYV h°)) )
D

Using relations (A59) with the rightmost A replaced by the one-electron integrals 4, one finds

aE(l)(Z* z) . ¥ + I®
—"= [hVAV+A°"‘z)A°(z)_1(h'+z hV) h°—(AV+A°2)A%z) " {h>+2z"h°) A®(z)!
9z, z ph
I.
= | [a¥T+A)ACW) R R Y) (AYoT+ACIAC W) k> +h) | [ A%
ph
°
= AV AN T IR | (AT (A84)
p
With a similar derivation for the two—electron part, the derivatives of the total energy become
°
*
BE(z52) _ |(AVeT+A%)A () v IOF |  |A%'| (A85)
9z, z ph

with v given by Eq. (A56) and the Fock operator by Eq. (3.23). The derivatives with respect to the nuclear positions
(momenta) now contain extra terms involving the gradients of the one-density, which are different from zero in the
atomic basis,
Nu Z,Z,eYR;—R))
Ve, E(z*,z,R,P)=— 3 k2l k 3 d
k =1 IR, —R,]
1#k

+%TT[TI‘( VRk Vab;abr)ar]b —-Tr[Tr( VRkAFVab;abP)aF]b (A86)

+Tr(Vg hT)—Tr(Vg, ATAT)

and
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Py
VPkE(Z*)z;R’P)=E_+Tr(Vthr)

Tr(Vp ATAT)+ S Tr[Tr( Ve, V.

Dynamics of electrons and nuclei

ab;ab T )a L]y = Tr[Tr(Vp, ATV 4,0 T), T ]y

(A87)

The expressions for parts 4 and B in Eq. (3.63) for the Hessian are the same as in an orthonormal basis, Egs. (A32)

and (A33), if Egs. (A72),

(A73), (A78), and (A80) are used for the one-particle density and its derivatives. The mixed

derivatives F (and G) in Eq. (3.63) have extra terms involving the gradients (A74) of the one-particle density

O Vr E(z*2,RP)=Tr |[Vg,h +Tr(Vg Vepap D)y + TV Va, Dy 10
azph k az,,,,

+Tr

The second derivatives I, J, and K with respect to nuclear positions (momenta) also have extra terms.

[h +Tr( ab; abF) ] 9 VR r
oz

ph

(A88)

k

For example, I

)“’Rn ——Rl|2]

becomes
Z,Z,e’[3(R, —R,)(R;, —R,)— R, —R;|?)
Vg Vg E(z*,2,R,P)=— kZe’l k ARy 51 k !
k 1 IRk_RI‘

Na 7,7,e’[3(R, —R, )R, —R,

+8k1 2 |R —R |5
n=1 n !
n#1

+Tr{[Vg, Vg h +1Tr(Vg Vg V.

+Tr{[VR h +Tr(Vg V.

3. Details of semiempirical approaches

The neglect of diatomic differential overlap (NDDO)
approach employs the following approximations (Pople
and Beveridge, 1970).

(1) Only the valence electrons are considered explicitly
in the calculations. The nucleus and inner-shell electrons
are replaced by a fixed-core function. This is the so-
called core approximation (Zerner, 1972).

(2) A minimal basis set is used; i.e., only atomic orbit-
als occupied in the atomic ground states are used. This
basis set is constructed with Slater-type orbitals. The ad-
vantage of using Slater-type orbitals is clarified below.
Slater-type orbitals are products of a radial function
R, (r) and a normalized real spherical harmonic
Y/™(6,9), with quantum numbers p=n,/,m,

R, (NY™6,9),

(2§n1 )" +1/2
[(21’1)!]1/2 r

Xnim =
(A90)

“gnlr
’

nl(r)z nl

with / <n and —/ <m =ZI. Here §,; is referred to as the
“orbital exponent” of the Slater-type orbital.
(3) The overlap integrals are neglected. In general, one

applies the following relation to all matrix elements,
XA xB1)—8 px Ay (1), (A91)

except in the one-electron resonance integrals (one-
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absab 1 )a JVR, T

absabl a ]F}+Tr{[VR h +T1'(VR absab ] )a ]VR I}

J+Tr{[A +1Tr(Vop,05T)y [Vg, Vi T} - (AB9)

—

electron, two-center integrals). Since only valence elec-
trons are considered and Slater-type orbitals are used,

A® A>
AV A°

I* 0

A= 0 I°

=I; (A92)

i.e., the atomic overlap matrix is approximated by the
identity matrix.

(4) The neglect of overlap is consistent with the ap-
proximation employed in the two-electron integrals.
However, it is important to keep the overlap in the one-
electron resonance integrals 3;“' (one-electron, two-center
integrals), since these integrals are responsible for the
bonding in molecules

z
Buv= XD —1Vi= S =2 [xX(D) 5 (A93)
414
they are treated in the so-called Mulliken approximation,
ie.,

B.,= %(BHA +/3VB By vy (A94)
(5) Two-electron integrals then become
(DX d2) I (1x 2(2))
=8 485 (X AXB2) XA (1xE(2)) . (A99)

The NDDO model (Pople et al., 1965; Pople and
Beveridge, 1970) is considered the lowest level of zero-
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differential-overlap (ZDO) approach for which there ex-
ists a basis set (Parr, 1952; Roby, 1971, 1972). It is prop-
erly invariant to local coordinate rotations; so it is not
necessary to perform any spherical averaging in integral
evaluations over atomic orbitals with angular momentum
larger than zero. As a result, unlike the other ZDO mod-
els, such as the complete neglect of differential overlap
and the intermediate neglect of differential overlap, the
NDDO model includes orbital anisotropies. In the
Hartree-Fock NDDO method, the computationally dom-
inant step is the diagonalization of the Fock matrix.

Some justifications for the NDDO approximations and
their advantages are listed below.

(1) The core approximation in the NDDO model is
reasonable because the inner electrons are tightly bound
and are, therefore, unlikely to be significantly perturbed
by changes in the valence shell. Consequently, most
low-energy processes can be accurately described by
valence electrons only. Moreover, there is a solid
theoretical foundation for the core approximation in
terms of an effective Hamiltonian (Freed, 1974).

(2) The use of Slater-type orbitals as building blocks
ensures that only short expansions for the molecular or-
bitals are necessary to give a good description of neutral
molecules or positive ions. This justifies the limitation to
a minimal basis set. Only in the cases of anions or hyper-
valent compounds must the atomic basis set be more flex-
ible to accommodate the extra charge density or extra
bond(s). Adding diffuse or polarization atomic orbitals is
one way of solving this problem. Another is to allow the
orbital exponents to vary with the atomic charge. This
provides an appropriate description for molecular anions
(Iffert and Jug, 1987) and also allows one to keep the
minimum basis-set formalism. The use of Slater-type or-
bitals is convenient in the gradient calculation, because
the differentiation of a Slater-type-orbital function with
respect to a nuclear coordinate can be expressed in terms
of Slater-type orbitals, except at the edges of the table of
quantum numbers

d - i1 i2
d anm_2Cnlan—l,l—l,m+2Cnlan—1,I+l,m
X; m m

+2Cri?an,H—I,m+2C:t.?an,l~l,m (A96)
m m
if X ,;,» =0 is defined for n <0 or / <0 and
Xnnm E)(n—f-l,nm/"OCrn“lynmeﬁgnnr' (A97)

Higher derivatives of Slater-type orbitals are again ex-
pressible in terms of Slater-type orbitals and additional
“edge” functions.

(3) It can be shown (Riidenberg, 1951; Lowdin, 1953)
that the approximation of the two-electron integrals by
the NDDO is correct up to second order in the overlap
expansion. It is also possible to evaluate the three- and
four-center integrals in terms of overlap and two-center
integrals (Lowdin, 1953). However, if the two-electron
integrals are parametrized with respect to experimental
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data, the errors caused by neglecting the three- and four-
center integrals can be minimized.

Caution must be exercised when considering the
derivatives of the atomic-orbital overlap A with respect
to the nuclear position. If the NDDO approximation is
made for the overlap, that is A=1I, then taking the
derivative yields no contribution. This does not mean
that Cp equation (3.37) and Cry equation (3.38) vanish,
since these involve bra-ket derivatives of the overlap and
depend on the basis changing, not just the overlap ma-
trix. This is consistent with the ab initio END equations,
as it must, since the NDDO approximation should not
affect the proper coupling between electrons and nuclei.
Consequently, the derivative of the nonapproximated
atomic-orbital overlap is first taken, and then the NDDO
approximation is performed on the resulting expression.

The Austin Model 1 (AM1) approach to the NDDO
approximation (Dewar et al., 1985) has been extensively
tested and has been shown to reproduce geometry, heats
of formation, dipole moments, and ionization potentials
very well (Dewar et al., 1985; Thiel, 1988; Stewart,
1990). In addition, the overall performance of the AM1
for computing molecular properties (excitation energies,
vibrational frequencies, and intensities) and quantities
relevant for chemical reactions (enthalpy of reaction and
activation energies) is quite satisfactory (Stewart, 1990).
Thus it seems appropriate to use the AM1 formulation of
the NDDO method in a time-dependent treatment. Re-
sults for dynamical properties like intra- and intermolec-
ular charge transfer, transition-state spectroscopy, photo-
dissociation, etc., can be used to check the performance
of the time-dependent AM1 method. Extensions of this
approach can be implemented, where the parametriza-
tion would also include experimental dynamical proper-
ties in the data base.

The definition of the Fock matrix elements in the AM1
model is (Dewar and Thiel, 1977; Dewar et al., 1985;
Stewart, 1990)

(1) diagonal terms

F#AILA = U”’AIU'A —‘BEA ZB(IU'AJU’A ISBSB)
+3 rvAvA[(.uAMA Vava) =3 avalpava)l
Va

+3 2 EFABUB(#ANAMBUB) ’
B+4 Ay op

(A98)

(2) off-diagonal terms on the same atom

Fuov,=— 2 Zplpyvy |spsp)
B#4

+%ryAvA[3(.UAVA lava)—(pattqlv4v )]

+3 X EFABUB(PAVAMBO'B) , (A99)

B#A4 Ap op
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(3) general terms on different atoms

F“"A}“B:%(B'”A +B}”3 )A#A}”B
32 EF,MAAB(IU'AA'BIVAUB) ) (A100)

Va %8B

where 1 4,v 4 (Ap,05) are atomic orbitals centered in A
(B), and I, is the one-density or “bond order” matrix.
In order to complete the definition of the AM1 model,
expressions or numbers are needed for each one of the
terms that go into the elements of the Fock matrix. That
is, (1) U w,u, ar€ one-center, one-electron terms and are

parametrized from spectroscopic data for valence states
of atom A and its ions; (2) Z , is the atomic number of
atom A minus the number of core electrons; (3) the nu-

© ) I min

(Lavqldgop)=3F 3 >

;=0 1,=0 m=—1_.

n

where
R;=R 5+ D{+0} D} +0/Dj +ni D3 (A103)
with p=...,%2,%1,0 depending upon the order of the

dipole, and p and D are derived parameters, that is,
D =D(g,) and p=p(U,,,D). In the case of a minimum
sp basis set, there are 22 distinct repulsion integrals. The
inclusion of d orbitals increases this number to 450,
which makes this type of approximation for the repulsion
integrals cumbersome when extended beyond the sp

basis.
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