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Various experimental methods based on positron annihilation have evolved into important tools for
researching the structure and properties of condensed matter. In particular, positron techniques are use-
ful for the investigation of defects in solids and for the investigation of solid surfaces. Experimental
methods need a comprehensive theory for a deep, quantitative understanding of the results. In the case of
positron annihilation, the relevant theory includes models needed to describe the positron states as well as
the different interaction processes in matter. In this review the present status of the theory of positrons in
solids and on solid surfaces is given. The review consists of three main parts describing (a) the interaction
processes, {b) the theory and methods for calculating positron states, and {c)selected recent results of posi-
tron studies of condensed matter.
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I. INTRODUCTION

During the last two decades experimental techniques
based on positron annihilation were established among
the important methods for probing the electronic and
atomic structure of solids (see Hautojarvi, 1979; Brandt
and Dupasquier, 1983; Schultz and Lynn, 1988; Ishii,
1992; Dupasquier, 1993; ICPA85, ICPA88, ICPA91,
SLO90, SLO92). Much as in the case of other methods,
the theory underlying positron annihilation has
developed from simple models describing the positron-
solid interaction to "first-principles" methods predicting
the annihilation characteristics for different environ-
ments and conditions. This development has paralleled
the development of electronic structure calculations,
which in turn has leaned heavily on the progress in com-
putational techniques. The conceptual basis of electronic
structure calculations lies in density-functional theory
(for reviews, see Lundqvist and March, 1983 and Jones
and Gunnarsson, 1989), and this theory can be general-
ized to include the positron states (Nieminen et al. , 1985;
Boronski and Nieminen, 1986). The density-functional
theory itself has been the subject of many investigations.
Essential is the approximation of the so-called exchange-
correlation energy. The most important practical ap-
proximation is the local-density approximation (LDA).
It constitutes the basis of most positron-state calculations
as well.

A brief history of an annihilating positron is as follows.
After its introduction into the solid, the energetic posi-
tron loses energy in the interactions with the material.
With decreasing energy, the interactions scan various
ionization processes, creation of electron-hole pairs, and
positron-phonon interactions. Thereafter the positron
lives in thermal equilibrium with the environment, and
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its state develops in real space as a diffusion process, in
which the positron interactions with phonons are quasi-
elastic; i.e., the positron momentum distribution is con-
served. During diffusion the positron interacts with de-
fects in the solid, and trapping of the positron into a lo-
calized state may happen. Eventually, the positron an-
nihilates an electron, resulting in the emission of gamma
rays, which convey the experimental information.

The thermalization and diffusion processes can be de-
scribed as the evolution of the positron distribution func-
tion in the momentum and real spaces. The distribution
function can be obtained in principle, by solving the
Boltzmann equation, which includes the drift effects due
to the distribution gradients and possible external fields
as well as the effects due to various types of scattering.
The Monte Carlo methods suit the simulation of the ear-
ly stages of the slowing-down process. In this region the
approach using the Boltzmann equation is hindered by
the narrowness of the distribution functions. The evolu-
tion of the real-space positron distribution after thermali-

zation is conventionally described by the diffusion equa-
tion, for which the source term, the implantation profile,
is generated by, for example, the Monte Carlo method.
The character of the trapping process depends on the
competition between transport and capture. Its theoreti-
cal analysis requires the solving of the diffusion problem
and jor the calculation of the transition rates, using, for
example, Fermi's golden rule.

The description of the state of a thermalized positron
in a perfect bulk crystal or that of a positron trapped at a
defect requires the solution of the Schrodinger equation.
As a matter of fact, the erst requirement for a valid
theory is that it give a realistic description of the positron
distribution and energetics in the solid. Apart from. its
depletion near the repulsive ion cores, a nearly uniform
density can be a starting approximation for the positron
in a perfect metal lattice. However, the crystal structures
of materials with covalent bonds usually contain an alter-
nation of open and atom-bond regions, leading to a very
nonuniform positron distribution. This can be clearly
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FIG. 1. Positron wave functions in perfect solids: (a) fcc Ni; (b) Si with diamond structure; {c)graphite; (d) solid C«. The calcula-
tions were performed using the superimposed-atom method (Puska and Nieminen, 1983a). The contour spacing is one-sixth of the
maximum value. The wave function is vanishingly small inside the ion-core regions and inside the C6o molecules, which show in
white in the figure. The darker shading indicates larger values of the wave function.
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seen from Fig. 1, which shows the calculated positron
wave functions in a few representative cases for perfect
lattices. At open-volume defects in solids, there exist lo-
calized bound states for positrons. As shown in Fig. 2,
the degree of localization and isotropy vary from case to
case.

The second important requirement is that the theory
provide predictions for the positron annihilation charac-
teristics. These include the positron lifetimes, momen-
tum distributions of the annihilating electron-positron
pairs, the energy levels of free and trapped positrons, and
the trapping rates. The goal is that these characteristics
be calculated from first principles without any adjustable
parameters. This can be done, for example, on the basis
of density-functional formalism. Therefore the results
are real predictions independent of any empirical input
and are therefore valuable in interpreting experimental
results.

The aim of this review is to update the series of earlier
general summaries of positron theory (Nieminen and
Manninen, 1979; Nieminen, 1983},which are now about
ten years old. There have been important developments
since then in both bulk and surface applications of the
positron techniques. We use a chronological order from
the positron perspective and discuss first the models and
results of detailed calculations for positron slowing down,
diffusion, and trapping in Sec. II. The theoretical basis
for the calculation of positron states in solids and on sur-
faces is presented in Sec. III. Finally, in Sec. IV, the re-
sults and ideas emerging from selected recent positron
studies of condensed matter are reviewed.

0
0 3 6

[110]DIRECTION (A)

II. POSITRON-SOLID INTERACTION

(c)

oQ

0
I-
CJ
lU
K
O

C)
C)

0
3 6

[110]DIRECTION (A)

FIG. 2. Positron wave functions for vacancy-type defects in
solids: (a) vacancy in fcc Ni; (b) vacancy in Si with diamond
structure; (c) divacancy in Si. The calculations were performed
using the superimposed-atom method (Puska and Nieminen,
1983a). See the caption of Fig. 1. The figure planes correspond
to those for the perfect crystals in Figs. 1(a) and 1(b).

Positrons emanating from a radioactive source have a
continuous energy spectrum characteristic of a beta de-
cay, with end-point energies of the order of MeV's.
There are now techniques available (see, e.g., Schultz and
Lynn, 1988) where high-energy positrons from radioac-
tive sources or pair production can be moderated to a
monochromatic beam with controllable kinetic energies
from a few eV up to the keV region. In either case, posi-
trons rapidly lose their energy in condensed matter. At
highest positron energies the most important process is
ionization; i.e., the positron excites core electrons in col-
lisions with the host atoms (Perkins and Carbotte, 1970).
In the case of metals, the excitations of conduction elec-
trons dominate at lower energies (Perkins and Carbotte,
1970). Above the plasmon threshold collective excita-
tions can occur (Oliva, 1980). At lower energies the
electron-hole excitations take over. Finally, when the
positron energy has degraded to a fraction of an eV,
scattering off phonons dominates (Perkins and Carbotte,
1970). Eventually positrons reach thermal equilibrium
with the host, with phonon emission and absorption
maintaining the equilibrium.
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In the high-energy region the rate of energy transfer is
very high. As a matter of fact, most of the time before
thermalization is spent in the energy region just above
thermal energies. Anyway, the thermalization process
takes usually a rather short time compared to the posi-
tron lifetime in solids, which is of the order of a few hun-
dred picoseconds. For example, it is estimated that a 1-
keV positron entering aluminum will thermalize within
-3 ps at 600 K and within -60 ps at 10 K (Nieminen
and Oliva, 1980). The rapidity of the thermalization is
proven experimentally by angular correlation of annihila-
tion radiation (ACAR) measurements (Kubica and
Stewart, 1083; Hyodo et a/. , 1986), which show that the
distribution of the annihilating positrons is thermal even
at the temperature of 10 K. Incomplete thermalization
is, however, an important possibility if the positron can
escape through a surface prior to equilibration. This is
the case in low-energy positron beam experiments
(Huomo et a/. , 1987).

When the. positron has reached thermal equilibrium
with the medium, its scattering is overwhelmingly dom-
inated by phonons. This scattering is usually quasielastic
and does not a6'ect the average positron momentum dis-
tribution. Scattering by electrons is much less important,
and impurity scattering starts to dominate only at very
low temperatures (Bergersen et a/. , 1974). In a classical
picture the movement of the positron is a nearly isotropic
random walk (Nieminen and Oliva, 1980).

A practical way of describing the positron's slowing
down and di8'using in solids is to regard the position r
and the momentum p of the positron as stochastic vari-
aMes and to calculate their probability density or distri-
bution function f(r, p, t) as a function of time t. The
equation determining the distribution function is the
famous Boltzmann equation, which can be written for
positrons as

8 (r, p, t} +v(p) V',f(r, p, t }+F Vg(r, p, t )

Bf(r,p, t)
at

S

—(Ab+~)f(r, p, t)+f, (r, p. , t) .

Above, v(p) is the positron velocity; F, the force acting
on the positron due to external fields; A, b, the positron an-
nihilation rate in the delocalized (bulk) state; ~, the posi-
tron trapping rate at defects; and f;(r,p, t), the source
term. [Bf(r,p, t)/dt], denotes the total positron-
scattering rate and can be written as

Bf(r,p, t)
Bt

S

= J dq[R( qp)f(r, qt)

—R(p, q)f(r, p, t)],
where the 6rst term in the integral describes the scatter-
ing from all states q to the state p, and the second term
describes the scattering from the state p to all other
states q. Here, it is assumed that there is only one posi-
tron in the sample at a given time; so the Pauli exclusion
principle need not be obeyed, and the distribution func-
tion f(r, p, t) denotes merely the probability of finding
the positron in the given state. The transition rate
R(p, q) has to be determined for the different processes
by calculating the relevant matrix elements of the in-
teraction and taking the conservation laws into account.
We illustrate this, in the following, with equations for the
transition rates in a few important cases.

The transition rate for the conduction-electron excita-
tions can be calculated using the positron-electron in-
teraction screened in the random-phase approximation
(RPA) in the low-momentum limit as (Woll and Car-
botte, 1967; Jensen and Walker, 1990)

2
1 e ao

Jdk&
iri (k+p —q) + R q&pq

2me 2m

Ak Ap
2m 2m +

o iii (k+p q) o iri k

where ao is the Bohr radius; kz, the Fermi wave vector; m„the free-electron mass; and m, the positron e6'ective mass.

fF(E, T)= [exp[(E Ez)/k~ T]+1]— is the equilibrium Fermi distribution with the Fermi energy EF and tempera-
ture T. The use of this approximation for the positron-electron scattering limits the applications to below the core ion-
ization energies, i.e., to the energy region typically below —10 eV. The high-energy excitations are discussed in Sec.
II.A. 1.

Longitudinal-acoustic phonons usually dominate the scattering rate near thermal energies. In the Debye approxima-
tion (Perkins and Carbotte, 1970; Nieminen and Oliva, 1980; Jensen and Walker, 1990),

Y 0 Q2 2 f2p 2

&,h(p, q)=, lq —pl [fg(~lq —pl, T)+I]& q, —,—ir lq
—pl

4m. 2m 2m

f2 2 f2 2

+f~(i' lq
—pl, T}/~, — P, —~lq+pl O(~D —~lq —pl),

2m 2m
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E E s'"dsy=
)1/2 (PII( ) )i/2 (5)

where p is the mass density and (c;; ) is the elastic con-
stant associated with longitudinal waves and averaged
over the directions of sound propagation. Ed is the de-

where s is the sound velocity, co~ is the Debye frequency,
f~(E, T)=[exp(E/ksT) 1—]

' is the equilibrium Hose
distribution, and 0 is the step function. The positron-
phonon coupling constant y can be calculated for the
longitudinal-acoustic phonons in the deformation-
potential approximation as

formation potential de6ned as

E+Ed= V

where E+ is the total energy of the crystal with the posi-
tron in its lowest state (Bloch state at k=0), and V is the
crystal volume. In practice the deformation potential
can be calculated from the volume derivatives of the elec-
tron and positron chemical potentials (Sec. IV.A).

The scattering rate due to neutral substitutional im-
purities can be calculated from the matrix element of the
potential difference Vt(r) —VII(r) between the impurity
and the host atoms (Bergersen et al. , 1974),

=2& 2 P2q 2 P2p 2

&; ~(p, q) = Idr%+*(r)[ VI(r) —VH(r)]it/+(r) 5
2m 2m

(7)

E —E~, &E&E (8)

Above, fz (r) is the positron Bloch-state wave function,
and %'~+(r) is the positron wave function in the presence
of the impurity.

In semiconductors, the scattering of electrons and
holes by charged impurities is an important effect at low
temperatures. The scattering of positrons by ionized im-
purities has been studied in the case of phosphorus-doped
silicon (Soininen et al. , 1992). In this scattering process,
a charged impurity causes a long-range Cou1ombic per-
turbation. This leads to long-range distortion of positron
wave function, and the low-energy scattering cross sec-
tion can become very large. In reality, there are effects,
such as screening or uncertainty broadening, that lower
the scattering cross section for charged impurities (see,
for example, Ridley, 1988).

In semiconductors and insulators, electron-hole excita-
tions with an energy less than the energy of the band gap
are impossible. However, in the case of semiconductors
with a narrow gap, this does not hinder thermalization
appreciably; i.e., the thermalization time is of the same
order as in metals (Jorch et al. , 1984). In the case of
wide-band-gap insulators, electron-hole excitations are
no longer possible when the positron energy reaches the
region of a few eV's. Gne-phonon processes degrade the
energy inefFiciently, and the probability of multiphonon
scattering is very small. Positrons in insulators may
therefore not have enough time to reach thermal equilib-
rium before annihilation, trapping into defects, or reemis-
sion into vacuum (Mills and Crane, 1985; Gullikson and
Mills, 1986; Lynn and Nielsen, 1987). In a wide-gap in-
sulator a positron with kinetic energy less than the band
gap can also lose energy in positronium (Ps) formation.
In this process, it is energetically possible to excite an
electron from the valence band because, in the final state,
the Ps binding energy (6.8 eV in vacuum) is gained. Thus
the positron energy region where Ps formation is most
likely to occur is the so-called Ore gap (Ore, 1949),

where E and Ep, are the band gap and the Ps binding
energy, respectively.

The various scattering channels, including those men-
tioned above, are discussed in more detail below. We
shall describe the difFerent stages of the positron-solid in-
teraction and the methods for modeling them quantita-
tively. The thermalization and diffusion stages are
separated and, 6nally, the trapping into defects is dea1t
with.

A. Before thermal equilibrium

The penetration of high-energy positrons emitted from
a radioactive source into a solid can be described by an
empirical law first established for electrons (Gleason
et al. , 1951)and later shown to be valid also for positrons
(Brandt and Paulin, 1977; Paulin, 1979). It states that
the positron intensity I(z) decays exponentially with the
depth z as

I(z) =Ioexp( —a+z ), a+ =17, 3 (cm ),p(g/cnl )

E',„(MeV)

(9)

where E,
„

is the maximum energy of the emitted posi-
trons. Thus positrons from a nuclear P emitter annihilate
in the solid within a depth of the order of a millimeter,
and therefore they probe bulk properties.

The above approximation for the penetration depth is
an important planning parameter for the samples in posi-
tron lifetime spectroscopy. In investigations of near-
surface properties of solids using monoenergetic positron
beams, a more quantitative description of positron
penetration is needed for the starting point of the data
analysis —namely, the positron implantation profile; i.e.,
the positron spatial distribution after thermalization but
before the difFusion stage is needed for different materials
and for different incident positron energies. These im-
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plantation profiles have been studied both theoretically
and experimentally.

1. High-energy region

In the Monte Carlo (MC) methods the slowing-down
histories of a large number of individual positrons are
simulated. The initial conditions and the scattering
events for each positron are generated from the relevant
cross sections. Collecting the results of all the simulated
positron histories generates the distribution functions
desired. The individual positrons are usually followed
down to energies of about 10—20 eV, where the core ion-
ization processes stop. The resulting real-space distribu-
tion is then the positron implantation profile. Recently,
the inelastic-scattering processes with valence electrons
have also been taken into account (Coleman et al. , 1992;
Massoumi et a/. , 1992, 1993). This is done using dielec-
tric formalism, the benefit of which is that it accounts for
scattering off both core and valence electrons, including
electron-hole-pair and plasmon excitations.

Valkealahti and Nieminen (1983, 1984) have made a
comprehensive set of MC simulations for positrons.
They (1984) treated the elastic scattering from the atoms
by calculating exact cross sections for effective potentials
of the atom in the crystalline environment. They treated
the ionization part of inelastic scattering using
Gryzinski s (1965) semiempirical expression, in which
each bound-electron level is treated separately. Further-
more, Valkealahti, and Nieminen (1984) approximated
those excitation processes that do not lead to ionization.
The threshold energy for excitation was used as a pararn-
eter, which was fitted to give the Bethe formula (Bethe

e+- beam

and Ashkin, 1953) for the stopping cross section at high
energies. The computer code by Valkealahti and Niem-
inen is available in a software server (SOFTWARE,
1993).

Figure 3 shows the differential elastic-scattering cross
sections obtained by Valkealahti and Nieminen (1984) for
positrons and electrons in Cu when the kinetic energy of
the particle is 1 keV. The important difference between
positrons and electrons is that the cross section for elec-
trons is much larger than that for positrons. Moreover,
especially at low particle energies, electrons have a
higher probability of scattering to large angles ()30')
than have positrons. These differences are due to the fact
that the electron feels an attractive interaction with the
atom, whereas the interaction between the positron and
the atom is repulsive. The interaction for electrons also
contains an exchange part, whereas for positrons it does
not.

The MC simulations (Valkealahti and Nieminen, 1984)
predict quantities that can be directly compared with ex-
periments. The agreement between simulations and ex-
periments is usually very good. For example, the simu-
lated and measured transmission probabilities for posi-
trans and electrons through thin aluminum films at
different incident energies are shown in Fig. 4 as a func-
tion of film thickness. Figure 5 gives the backscattering
probabilities from a semi-infinite aluminum as a function
of particle energy. The transmission probabilities for
positrons are higher than those for electrons. Corre-
spondingly, backscattering for positrons is lower than
that for electrons. These differences originate from the
larger differential elastic-scattering cross section for elec-
trons and from the fact that electrons have a higher prob-
ability of scattering to large angles.

The positron backscattering probabilities from solid
surfaces have been measured and simulated recently by

G
dQ

sr ')

2
FILM THICKNESS (1000A)

FIG. 3. Polar plots of the di8'erential elastic-scattering cross
section of 1-keV positrons and electrons o6' a copper atom in a
crystalline environment (from Valkealahti and Nieminen, 1984).

FIG. 4. Transmission probabilities for positrons and electrons
with different kinetic energies through thin aluminum films as a
function of film thickness. The circles and triangles are simulat-
ed results for electrons and positrons, respectively. The solid
and dashed lines are the experimental probabilities for positrons
and electrons, respectively (from Valkealahti and Nieminen,
1984).
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from semi-infinite aluminum as a function of the projectile ener-

gy. The crosses and pluses are experimental results for elec-
trons, whereas the circles and triangles are simulated results for
electrons and positrons, respectively. The lines are guides for
the eye (from Valkealahti and Nieminen, 1984).

several groups (Massoumi et al. , 1991, 1992, 1993; Cole-
man et al. , 1992; Makinen, Palko, et al. , 1992). Mas-
soumi et al. (1991, 1992, 1993) have measured the energy
and angle-resolved probabilities for several elemental
solids. Massoumi et al. (1992, 1993) and Coleman et al.
(1992) have performed Monte Carlo simulations that
differ from those by Valkealahti and Nieininen (1984) in
the treatment of the inelastic electron scattering. In their
simulations the inelastic electron-scattering probability is
proportional to Im[1/e(q, co)], where A'q and fico are the
momentum and energy transfers, respectively. e(q, co) is
the dielectric function for which the form by Penn (1987)
is used. Penn's dielectric function is a weighted average
of I.indhard functions for different electron-gas densities.
The weights are derived from experimental optical data,
which include excitations from low energies of the order
of 0.1 eV up to high energies of the order of several
keV's. Thus the formalism includes both the core and
valence-electron processes and both the one-particle exci-
tations and collective plasmon modes. The method is de-
scribed in detail in the recent article by Jensen and Walk-
er (1993).

Makinen, Palko, et al. (1992) compared the measured
backscattering probabilities with Monte Carlo results ob-
tained using the original approach by Valkealahti and
Nieminen (1984). Figure 6 shows their results for the en-
ergy dependence for C, Si, Ge, and Au. The agreement
between experiment and theory is fairly good for both the
light Si and the heavy Au targets.

Among the useful results from the MC simulations are
the positron implantation profiles. Valkealahti and
Nieminen (1984) determined them for various solid hosts
and incident positron energies by simulating the slowing
of about 2000 positrons down to the energy of 20 eV and
then recording their trajectory end points. The profiles
are not very sensitive to moderate changes in the final en-
ergy (e.g., the energy of 100 eV gives essentially the same

FIG. 6. Backscattering probabilities for positrons from graph-
ite, Si, Ge, and Au: left, measured results; right, Monte Carlo
simulations (from Makinen, Palko, et al. , 1992).
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FIG. 7. Distribution of simulated trajectory end points for 5-
keV positrons hitting the A1 surface perpendicularly. The ar-
row indicates the entrance point of positrons (from Valkealahti
and Nieminen, 1984).

results as 20 eV; Valkealahti and Nieminen, 1984). As an
example of the distribution of the trajectory end points,
Fig. 7 shows the case of 5-keV positrons hitting perpen-
dicularly an aluminum surface. The distribution has cy-
lindrical syrnrnetry and resembles deeper in bulk a hemi-
sphere. Figure 8 shows the corresponding stopping or
implantation profiles as a function of the distance from
the surface. In the figure the simulated curves are also
compared with experiments (Mills and Wilson, 1982).
The experimental values are above the simulated ones
near the surface, and because the areas below the curves
are the same by normalization, the maxima of the simu-
lated profiles are higher than the experimental ones. The
discrepancy arises because the experimental results are
deduced by differentiating the transmission probabilities
through thin films, whereas the simulation uses the
correct semi-finite geometry. The experimental results
are afFected by the increase of the backscattering with in-
creasing film thickness and by the fact that the positrons
that have penetrated through the film cannot return to it,
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FIG. 8. Simulated stopping profiles for 3.1- (triangles) and 5-
keV (circles) positrons in semi-infinite aluminum. These profiles
were obtained by reducing two-dimensional data similar to Fig.
7 to one dimension. The solid lines are the corresponding fits to
the Makhovian function [Eq. (11)]. The dashed lines were ob-
tained as derivatives of the experimental transmission probabili-
ties for thin aluminum films. The area below each curve is the
same constant by normalization (from Valkealahti and Niem-
inen, 1984).

il T(z) =exp
zo

m

(10)

and the implantation profile is then obtained by deriva-
tion as

whereas in the semi-infinite geometry positrons can al-

ways return to a given depth, which they have passed.
The simulated implantation profiles (Valkealahti and

Nieminen, 1984) obey well the form originally suggested
by Makhov (1961) for electrons. The transmission proba-
bility qT for the projectile particles as a function of the
distance z can be approximated as

TABLE I. Parameters of the Makhovian function [Eq. {11)]fits
to simulated implantation profiles.

Material n mA(pg/cm keV ")

can depend somewhat on the material and the energy
range.

A collection of the Makhovian fit parameters A, n, and
m accrued during the last decade is demonstrated in
Table I. First, the values obtained by Valkealahti and
Nieminen (1984) for gaseous Xz and metals Al, Cu, and
Au are given. The results by Soininen et al. (1992) for
Al, Si, Ge, and Au obtained using similar simulations are
also shown in Table I. Soininen et al. (1992) found that
the values of these parameters are independent of the in-
cident energy in the range 3 —30 keV. Finally, the param-
eters of the Makhovian fits calculated by Jensen and
Walker (1993) from the data obtained by using the Penn
dielectric loss function are shown for Al, Cu, Ag, and
Au. The parameters A, n, and m determine the implan-
tation profiles uniquely.

Mills and Wilson (1982) tried to estimate the stopping
profiles directly with thin metal foils. They determined
the mean penetration depths and obtained, correspond-
ing to the positron energies between 1 and 6 keV, the
values of 1.60+Q'Q8 and 1.43+Q» for n in the case of Al
and Cu, respectively. Vehanen et al. (1987) measured the
annihilation line-shape parameter in multilayer struc-
tures like A1203/ZnS/A120& as a function of positron im-

plantation energy. The annihilation shape parameter has
a different value for each different substrate layer, and it
turned out that the measured effective parameter is very
sensitive to the form of the implantation profile.
Vehanen et al. (1987) concluded that the implantation
profile is close to the derivative of a Gaussian
( m =2.0+0. 1 ). The other parameters from their
analysis, i.e., A =4.0+0.3 pg/cm and n=1.62+0.05,

m —1

P(z) =
z Q

z
exp

ZQ

'm N2
Al
Cu
Au

3.3
3.7
5.0

10.6

1.71
1.67
1.54
1.32

2.05
1.92
1.83
1.72

z
I [(1/m)+1 ]

(12)

Here m is a dimensionless parameter and zQ is related to
the mean stopping depth z by Al

Si
Ge
Au

3.4
3.3
4.3
7.4

1.69
1.69
1.60
1.48

1.94
1.91
1.78
1.70

z=AE" . (13)

According to simulations, the n values lie around 1.6, but

where I (x) is the gamma function. If one sets m =2, a
derivative of a Cxaussian is obtained, while m = 1 gives an
exponential profile.

The solid curves shown in Fig. 8 are just fits with the
Makhov function (11). In the case of metals the fitted m

values are slightly below 2. Moreover, the mean penetra-
tion depth depends on the incident positron energy rath-
er accurately as the power law (suggested by Mills and
Wilson, 1982)

Al
Cu
Ag
Au

2.64
3.78
3.98
6.58

3.3
5.6
9.2

'Valkealahti and Nieminen, 1984.
"Soininen et al. , 1992.
'Jensen and Walker, 1993.
Ritley et al. , 1993.

1.74
1.61
1.57
1.49

1.55
1.52
1.31

1.97
1.78
1.76
1.71
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P(z)= — exp, —
dZ

1+
Zp Zp

(14)

One of the benefits of this form is that it can describe
finite positron densities at the surface (Ritley et al. ,
1993}. Jensen and Walker (1993) found that for a given
material the fitting parameters m * and zo /z depend only
slightly on the energy within the range 5 —30 keV. More-
over, they found that the modified Makhovian provides a
better fit for the light materials like Al than the original
one, whereas for the heavier materials like noble metals,
the opposite is true.

Baker et al. later made more measurements for Al
(Baker, Chilton, and Coleman, 1991) and for Au, with
Monte Carlo simulations using the Penn model (Baker
et al. , 1991b). They concluded that the Makhov function
gives reasonable fits provided that the power law (13) for
the penetration depth is replaced by an energy depen-
dence fitted (o experiments or simulations. They found
that m =2 gives a reasonable fit for Al, whereas Au re-
quires m =1.7. These numbers should be compared to
those in Table I.

are in fair agreement with the simulated ones given in
Table I.

Baker et al. (1991a) determined the implantation
profiles experimentally and by Monte Carlo simulations.
They measured the Doppler broadening line shape for
the annihilation radiation as a function of implantation
energy and the thickness of an Al overlayer on a glass
substrate. From the diffusion-corrected data, the implan-
tation profile was directly obtained. Their Monte Carlo
simulation differed from the Valkealahti-Nieminen work
(1983, 1984) in that it utilized the conduction-electron
cross section calculated in the dielectric random-phase
approximation. Thus the simulation is based on theoreti-
cal first-principles data without any adjustable parame-
ters. The simulated profiles are in good agreement with
the measured ones, but Baker et al. found that the Ma-
khov profiles do not accurately describe all the details of
the profiles. Baker et al. (1991a) as well as Jensen and
Walker (1993) and Ritley et al. (1993) later, suggested
modifying the Makhovian fit. The adapted form is

m

and Walker applied the Boltzmann equation for a homo-
geneous medium; i.e., their positron distribution function
depended on the positron momentum and time, only.
Thus the second term in the Boltzmann equation (1) van-
ishes and, because they did not consider the effects of
external fields, the third term in Eq. (1) equals zero.

Figure 9 shows the mean positron energy E as a func-
tion of time, calculated by Jensen and Walker (1990}.
The initial positron momentum distribution [f;(r,p, t ) in
Eq. (1)] is a narrow Gaussian corresponding to a mean
energy of 10 eV, and the time dependence has been re-
placed by a delta function. At first the slowing down is
similar at each temperature shown, down to the mean en-
ergy of -0.3 eV. Thereafter the curves approach asymp-
totically the thermal energies —,kz T. It is interesting that
the early results by Lee-Whiting (1955) are in good agree-
ment with those shown in Fig. 9. Lee-Whiting (1955) cal-
culated the time-dependent positron energy by consider-
ing only the electron-hole excitation processes. The
energy-loss rate (dE /dt )(E=E ) corresponding to the
300-K curve in Fig. 9 is shown in Fig. 10. This rate is
compared with the energy-loss rate (dE /dt )

(E=p /2m, ) obtained when the positron has a fixed
momentum p. The rate (dE/dt) (E=p /2m, ) assumes
that the positron momentum distribution is a delta func-
tion at each time during the thermalization process,
whereas in the case of (dE/dt) (E=E) the positron
momentum distribution is calculated from the
Boltzmann equation. Jensen and Walker pointed out
that the latter is the correct physical quantity to be used
in accurate calculations of positron thermalization
effects. Note that rate dE/dt goes to zero at the correct
thermal energy ( —'kz T), whereas dE/dt vanishes at the
higher energy of 2k& T.

Steady-state momentum distributions from which posi-
trons annihilate are shown in Fig. 11. Distributions ob-
tained by Jensen and Walker (1990), with the above-
mentioned approximations, and by Hyodo et al. (1984)
for the temperatures of 300 and 10 K are shown. The

10 ~ ~ ~ ~ ~ ~ ~Ii ~ ~ ~ ~ ~ ~ ~Ii ~ ~ ~ ~ ~ ~ ~ ~
/

~ ~ ~ ~ ~ ~ ~ \i ~ ~ ~ ~ ~ ~ ~ Ii ~ ~ ~

2. Low-energy region

Jensen and Walker (1990) have studied the late stages
of the slowing down of positrons by applying the
Boltzrnann equation. They included electron scattering
within the low-energy and low-momentum limit of the
random-phase approximation [RPA; Eq. (3)], which lim-
its the application to the energy region below —10 eV.
They included acoustic-phonon scattering in the Debye
model [Eq. (4)]. The model parameters were chosen to
correspond to aluminum. The approximations made in
the electron scattering were argued not to be severe, be-
cause most of the time during thermalization is spent at
low energies, where phonon scattering dominates. Jensen

U
K
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0.01
LQ
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0.001 0.01 0.1 1
~ ~ ~
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FIG. 9. Positron mean energy E as a function of time after im-
plantation in Al at different temperatures. The dotted lines
connect points corresponding to E=1.1E,h, E=1.01E,h, and
E=1.001Eth, where E,h is the thermal energy 2k' T (from Jen-
sen and Walker, 1990).
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FKJ. 10. Time derivative of the positron mean energy dE/dt as
a function of the mean energy E, and the average energy-loss
rate dE/dt for positrons with energy E=p /2m, . The temper-
ature is 300 K (from Jensen and Walker, 1990).

distributions consist of a Maxwell-Boltzmann-like part
and a low intensity tail. In the calculation by Jensen and
Walker (1990), the tail is due to the positrons that annihi-
late before thermalization, whereas in Hyodo et al. a p
tail is due to the dressing of positrons by phonons, with
nonthermal effects neglected altogether. It is seen that
the nonthermal effects are more important at low temper-
atures, whereas at high temperatures the p tail dom-
inates.

Recently, Ritley et al. (1993) made Monte Carlo simu-
lations for the low-positron-energy region. They started
from the stopping profiles obtained by using the positron
end-point energy of 25 eV (Asoka-Kumar and Lynn,
1990; Ritley et a/. , 1990; Ghosh et al. , 1992, 1993). In
the simulations, they took into account the inelastic
scattering with valence electrons and with longitudinal-
acoustic phonons. The former were modeled by the Penn
mean free path and RPA approach and the latter with
the deformation-potential approach. Moreover, Ritley
et al. (1993) included the energy step at the surface (the
positron work function). As a matter of fact, these
Monte Carlo simulations represent a direct and efficient
way to integrate the Boltzmann equation discussed in the
context of the work by Jensen and Walker (1990). Ritley
et al. (1993) were able to distinguish the transition from

the thermalization regime to the diffusion regime, and
the diffusion coe%cients determined are in reasonable
agreement with experiments. They show that for low ini-
tial positron energies (less than approximately 10 keV),
the positron distributions broaden remarkably before
thermalization when the processes below 25 eV are taken
into account. The positive work function leads in this en-
ergy region to a nonvanishing positron density at the sur-
face, when the thermalized positrons have no energy to
escape into the vacuum. Ritley et al. showed that the
modified Makhovian function [Eq. (14)] gives a good
description of the positron distribution after full thermal-
ization. Moreover, they showed that the power law of
Eq. (13) is not valid for low incident positron energies,
but energy dependence should be used for the A parame-
ter.

Huttunen et al. (1989) have extracted the positron
mean free paths for elastic- and inelastic-scattering pro-
cesses by analyzing the experimental data of Gidley and
Frieze (1988). In the experiment, thermalized positrons
from bulk Ni enter a Cu overlayer. Because of the
difference in positron energy levels between the substrate
and the overlayer (positron affinity difference, Sec.
IV.A. 1), the positrons entering the overlayer have a
kinetic energy much larger than the thermal energy:
they are "hot" positrons in the overlayer. These hot pos-
itrons can suffer both inelastic- and elastic-scattering pro-
cesses before emission into vacuum. In the experiment
(Gidley and Frieze, 1988), the fraction of the positrons
transmitted elastically through the overlayer is moni-
tored as a function of the overlayer thickness. Huttunen
et al. (1989) made a two-flux approximation (positrons
moving inwards or outwards in the overlayer) for the
Boltzmann equation and obtained for the fraction of the
elastically transmitted positrons a form, in which the
most important parameters are the inelastic and elastic
mean free paths. Fitting this form to the experimental
data, Huttunen et al. (1989) obtained for the hot posi-
trons with 0.5 eV the values of 300+100 A and 20+5 A
for the inelastic and elastic mean free paths, respectively.
These values are in good agreement with the theoretical
predictions (Nieminen and Oliva, 1980) of 350 A and 35
0
A for the electron-hole-pair excitations and acoustic-
phonon scattering, respectively.
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FICx. 11. Steady-state positron momentum dis-
tributions at 300 K (a) and 10 K (b). Results
by Jensen and Walker (1990; solid line) and
Hyodo et al. (1986; dotted line) are shown.
The thermal Maxwell-Boltzmann distributions
(dashed line) are shown for comparison. The
curves in each panel are normalized to have
the same total area (from Jensen and Walker,
1990).
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B. During thermal eqoilibrium

3. Positron diffusion equation

opment of the distribution f(r, t) obeys the diff'usion-
annihilation equation (15) with source term f, (r, t)=0.
Equation (18) is then obtained by integrating over time
using the initial condition

For positrons in thermal equilibrium with the host, the
momentum distribution has reached the time-
independent form. The evolution of the positron spatial
distribution is then conventionally described by the
difFusion-annihilation equation

f(r, t =0)=f, (r)

and denoting (the steady-state positron distribution)

dt rt = r

(19)

=D+V f(r, t) —[Lb+a(r)]f(r, t)

V[v—d(r)f(r, t)]+f;(r, t ), (15)

The sum of the positron annihilation rate A,b and the
trapping rate a. define the effective positron lifetime r, tie, r )

in the delocalized state. Thus

where D+ is the difFusion coeKcient and vd is the posi-
tron drift velocity due to external fields. The trapping
rate is now generalized to have a possible spatial depen-
dence. The diffusion equation can be obtained from the
Boltzmann equation (1) by integrating over the positron
momentum and replacing the microscopic positron
current density j with the expression for Pick's law, i.e.,

V', .f dp f(r, p, t)

=V j

( 2) 1/21 ( 2)D+= (17)

where ( u ) is the average of the square of the positron
thermal velocity ((U ) =3k&T/m'), 1 is the positron
mean free path between scattering events, and ~ is the
corresponding relaxation time. The relaxation time
should now be determined from the microscopic scatter-
ing rates, e.g. , from Eqs. (3)—(5). Equation (17) thus as-
sumes that the relaxation-time approximation in the
Boltzmann equation is valid. This is true for elastic
scattering, i.e., scattering off impurities; for quasielastic
scattering off acoustic phonons; and for velocity-
randomizing scattering off optical phonons and electrons
(McMullen, 1985). Furthermore, the diffusion equation
is usually solved at the time-independent steady-state
limit, which reads

D+ V f(r) [Ab+a(r)]f(r)—
The time-independent diff'usion equation (18) can be

obtained in an alternative picture, which follows the fate
of a single positron. At t =0 a single positron is intro-
duced into the system and the positron spatial probability
distribution is the implantation profile f, (r). The devel-

=V, [ D+V',f(r, t)—+vd(r)f(r, t)] . (16)

The diffusion coefticient can, in principle, be calculated
from the microscopic quantum-mechanical theory when
the scattering processes are known (Forster, 1975). The
semiclassical random-walk theory gives, however, a more
transparent equation,

(21)

The positron bulk lifetime ~b = 1/kb refers to the defect-
free lattice and is constant for the given material. The
trapping rate a(r) depends on the types of defects in the
sample and is proportional to the defect concentration.
The defect concentration may vary over the sample.

The diffusion picture is classical and applies only if cer-
tain conditions have been fulfilled (Brandt and Arista,
1979). Firstly, it is assumed that the positron momentum
distribution has to obey Maxwell-Boltzmann statistics.
Secondly, the scattering of positrons has to be quasielas-
tic and isotropic. Thirdly, the length scales, e.g. , the
thickness of a material layer or a defect zone (Huttunen
et al. , 1989), or the penetration depth for monoenergetic
positrons, have to be large enough. The validity of the
random-walk theory (relaxation-time approximation) re-
quires that the sample length scales be longer than the
mean free path for scattering. If these conditions are not
fulfilled, one has to fall back to the solution of the
Boltzmann equation, in the most stringent case without
making the relaxation-time approximation by, for exam-
ple, MC methods. At room temperature the positron
mean free path in metals is typically of the order of 10

O

A, whereas the total diffusion length before annihilation,
I.+ =QD+ /(Ab+a), is of the order of 10 A. The posi-
tron wave character defines another length scale for lo-
calization. The positron thermal wavelength is

A+ =h /+3m kii T =50''300 K/T A (22)

In describing the slow-positron-beam experiments, the
diffusion equation simplifies further. If the material
properties, such as the defect density, depend only on the
distance from the surface, one obtains a one-dimensional
equation with the distance z from the entrance surface as
the variable. Moreover, in metals the macroscopic elec-
tric fields vanish due to a perfect screening, and therefore
the drift term in Eqs. (15) and (18) is required only for in-
sulators and semiconductors. In the case of slow-
positron experiments, the time-independent source term
f;(r) is equal to the implantation profile P(z ), which de-
pends on the initial positron beam energy (cf. Sec.
II.A. 1).

The solutions f(z) to the difFusion equation (18) have
to obey certain boundary conditions. Firstly, the posi-
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Bf(z)
az

+Ud(z) f(z) = vf(—zo),
(z=zo

where v is the escape rate through the interface. If the

tron density has to vanish in the material far away from
the surface of incidence. Secondly, the positron current

D—+ df(z ) /dz +Ud (z)f(z) has to be continuous every-
where, especially through interfaces of different materials
or through the sample surface. The positron current
through an interface at z =z0 and the positron density at
that interface are related as

f(z, t)= I G(z)x, t)P(x)dx,
0

where G (z ~x, t ) is the Green's function

(24)

interface is totally absorbing, i.e., v= Do, the boundary
condition is that the positron density has to vanish at the
surface: f(zo ) =0.

In order to model the time-resolued slow-positron-
beam experiments (Lynn et al. , 1984; Schodlbauer et al. ,
1988), the diffusion equation has to be solved in the
time-dependent form. For a system with a homogeneous
defect profile, an analytic solution can be found by the
Czreen's-function method (Britton, 1991). It reads

1 —(x —z) /4D+t —(x+z) /4D+t
G(z x, t)=e

(/'4~D+ t

(v/D+ )(x+z+vt) ~ +z
e

/2 +
D+ (4D+ t ) D+

1/2

(25)

Britton (1991) used the appropriate Green's function
and solved for the time-dependent distribution f(z, t ).
Then he determined the bulk positron fraction fb(t) by
integration over z. Furthermore, the fraction f, (t) of
positrons at a surface state and the parapositronium frac-
tion f~, (t ) were obtained using rate equations (similar to
those for trapping into vacancies in bulk; see Sec. II.C. l)
in which the different branching ratios and lifetimes were
as parameters. Thereafter Britton calculated the annihi-
lation rate as

one tries to find estimates for the actual defect profile.
Simple functions such as a piecewise constant profile or a
sum of a few Gaussian functions have often been used.
The diffusion equation is solved, after which a theoretical
spectrum is constructed. The parameters of the model
defect profile are varied until the best fit with the mea-
sured spectrum is obtained. For this kind of analysis it is
also important that one be able to determine indepen-
dently the positron diffusion coeEcient D+.

N(t)=A, ,f, ( )+tA,,f, (t) +X„f„(t), (26) 2. Positron diffusion coefficient

where A,i„l,„andI, , are the annihilation rates for bulk,
surface state, and parapositronium, respectively. Britton
found that the resulting annihilation rates X(t) could be
described by a sum of two exponential components. The
longer component corresponds to the absence of thermal
desorption from the surface state (see Secs. II.C.6 and
III.C), whereas the shorter one is due to the combined
effects of positron annihilation in bulk and the fast para-
positronium annihilation. Britton also studied the effects
due to epithermal positrons and concluded that their role
was not very important.

The diffusion-equation approach is frequently used in
analyzing the results from the slow-positron-beam experi-
ments (van Veen et al. , 1990). The measured spectrum
can be the fraction of reemitted positrons or Ps atoms.
These fractions are proportional to the back-diffusion
current on the surface. An alternative method is to mea-
sure the Doppler line-shape parameter (S) of the positron
annihilatior. , radiation as a function of implantation ener-
gy. The S parameter depends on the stationary positron
distribution f(z, E; ), on the defect profile, and on the an-
nihilation rates in defect-free bulk, at defects, and at the
surface. The annihilation rates reQect, in turn, the elec-
tronic structure at the annihilation site. In the analysis,

and [cf. Eq. (4) for the positron-acoustic-phonon coupling
constant]

k~T 8~
D+ +ph

Pl

1/2 ~4( )
(

e )S/2(k T)1/2E2 (28)

The theoretical T ' temperature dependence of the
diffusion coei5cient has also been observed with small de-
viations in slow-positron-beam experiments for several
metals (Soininen et al. , 1990). The reasons for these de-
viations are somewhat unclear. There may also be con-
tributions from scattering mechanisms other than
longitudinal-acoustic phonons, or the effective positron
mass or the elastic constants may have a temperature

The theoretical determination of the positron diffusion
coe%cient can be based on the relaxation-time approxi-
mation in Eq. (17). For the metals the acoustic longitudi-
nal phonon scattering dominates, and its contribution
can be calculated using the deformation-potential ap-
proximation (Bardeen and Shockley, 1950) in which the
relaxation time is

' 1/2

(27)
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dependence, which affects the results. For example, in
the case of semiconductors and polar materials, one ex-
pects ixnportant contributions from optical phonons
(Soininen et al. , 1992).

The effective positron mass I* is usually larger than
the free-positron mass. Typical estimates are of the order
of 1.3—1.7m, (see, e.g., Schultz and Lynn, 1988). Three
phenomena affect the magnitude of the efFective mass.
The largest contribution is due to phonon scattering
(Mikeska, 1967), which results in an asymmetric
broadening of the positron moxnentum distribution.
Secondly, the screening of positrons by electrons in-
creases the effective mass. The third source is the normal
effect due to the periodic lattice, i.e., the band mass. The
efFect of phonons on the positron diffusion coeKcient
thus comes through two routes. Firstly, they induce the
scattering among difFerent positron Bloch states, and,
secondly, they increase the positron effective mass. The
second point means that the unit, which performs
scattering, is a quasiparticle in an interacting many-body
system, rather than a single, bare positron.

G. Positron trapping into defects

At open-volume defects (such as monovacancies and
larger vacancy clusters, possibly decorated by impurity
atoms) in solids, the potential sensed by the positron is
lowered due to the reduction in the repulsion by the
positive-ion cores. As a result, a localized positron state
at the defect can have a lower energy eigenvalue than a
state delocalized over the lattice. The transition from the
delocalized state to the localized one is called positron
trapping. In this transition the energy difference between
the initial and anal positron states, the trapping energy,
is transferred to the host solid. Besides the vacancy-type
defects, other defects capable of trapping positrons in-
clude such open-volume defects as dislocations
(Hakkinen et al. , 1989},in the core regions of which the
ion density is reduced, and negatively charged defects in
semiconductors or insulators such as negative impurity
ions (Saarinen et al. , 1990). The binding energies of posi-
trons to these latter kinds of defects, so-called shallow
traps, are relatively small. Therefore these traps are im-
portant only at low temperatures in which the thermally
activated escape, called detrapping, from the shallow
traps is not possible. In experiments the trapping of posi-
trons into defects is monitored through the changes in
the annihilation parameters, such as the positron lifetime
or the width of the annihilation radiation line. The
theoretical estimation of the annihilation parameters is
discussed in Sec. III. In this section we discuss the kinet-
ic and thermodynamic aspects of positron trapping.

background corrections, to a sum of exponentially decay-
ing components. Due to difhculties of statistical origin, it
is usually possible to use only two coxnponents, although
the physical situation (number of difFerent types of traps)
would justify the use of more components. In the two-
component Gt, the model function is the derivative of the
number of positrons with respect to the time the posi-
trons have lived in the sample, i.e.,

dN(t)
&o e '+ e

dt
(29)

convoluted with a function describing the resolution of
the spectrometer. Here, %0 is the integral of the model
function over time, i.e., the total nuxnber of counts in the
source- and background-corrected spectrum, ~, and ~2
are the apparent lifetimes, and I& and I2 are the corre-
sponding relative intensities.

The decomposition of the positron lifetime spectrum is
explained by the trapping model (Bertolaccini et al. ,
1971; Brandt, 1974), which gives the rate equations for
the positrons annihilating in delocalized states (as free
positrons) and in localized states (as trapped positrons}.
If there is only one type of defect in the sample, the
kinetic equations are written as

dfb
Abfb X—fb+ f;, — (30)

df,
,f, +Irfb, ,

where fb(f, ) is the probability that the positron will be
free (trapped) at time t. A, b and A, , are the annihilation
rates for free and trapped positrons, respectively. f; is
the source term, i.e., the number of positrons entering the
system per unit time. In the kinetic trapping mode1, the
positron trapping rate K is proportional to the defect con-
centration e, in the saxnple,

K VCE (32)

This defines the trapping coefficient v (the trapping rate
for a unit atomic concentration of defects; [v]=s '). It
is the defect analog of the escape rate through a (planar)
surface in Eq. (23). Equation (30) is directly obtained
from the time-dependent diffusion equation (15}by omit-
ting the spatial dependence of the positron distribution
and assuming a constant source term. Equation (31) is
then the corresponding equation for the trapped posi-
trons.

The trapping rate K, the positron bulk lifetime
rb = 1/A, b, and the lifetime at the defect r, = 1/A, , defined
through the trapping model are related to the two-
component fitting parameters in Eq. (29) as (West, 1979)

1. Positron trapping model Ti Tb

In the positron lifetime spectroscopy for defects in
solids, the lifetime spectra are fitted, after source and (34)
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2. Positron trapping coefficient

It is easy to generalize the trapping model, Eqs. (30}and
(31), to include several types of traps and detrapping.

The experimental determination of the trapping
coe%cient is difIIicult, because the absolute defect concen-
trations are usually not well known. The experimental
determination is possible by the simultaneous measure-
ment of the two-component positron lifetime spectrum
and the vacancy concentration. An example of this
would be the differential-dilatometric method as a func-
tion of temperature (Kluin and Hehenkamp, 1991;
Hehenkamp et al. , 1992).

It is generally accepted that the trapping coe%cients
for vacancies in metals are of the order of 10' —10' s
(Nieminen and Manninen, 1979; West, 1979). The mag-
nitude of the trapping coeKcient is about five orders of
magnitude larger than the typical positron annihilation
rates (A.b =5 X 10 s '). This makes it possible to detect
vacancy concentrations of the order of 10 —10 . The
upper limit is due to the saturation of the trapping: the
lifetime spectrum is totally dominated by the defect com-
ponent ~„andit is not possible to determine the trapping
fraction. The experimental and theoretical estimations of
the values of the trapping coefFicient are important be-
cause they are needed to extract defect formation ener-
gies and concentrations from the positron lifetime mea-
surements. Moreover, in the case of defects in semicon-
ductors, the temperature dependence of the trapping rate
can be used to identify the charge state of the defect.

An important goal of the theoretical work on the posi-
tron trapping process has been the estimation of the trap-
ping coeKcient. Of special interest has been the depen-
dence of the trapping coefFicient on the electronic and
atomic structure of the defect, on the host temperature
(which determines the energy distribution of the thermal-
ized positrons in the initial state), and on the positron en-
ergy in the initial, delocalized (nonthermalized) state (res-
onance trapping). In the case of vacancies or small va-
cancy clusters, positron trapping is transition limited.
This means, in a semiclassical picture, that the positron
diffusion to the defects does not limit the trapping rate,
but that the rate is determined by the quantum-
mechanical probability of the transition from the delocal-
ized state to the localized one. This is manifest in the
kinetic trapping model of Eqs. (30) and (31). In the
transition-limited regime, the positron trapping
coefFicient is directly the transition rate between the delo-
calized and localized states is given by Fermi's golden
rule. The golden rule was first used in the context of pos-
itron trapping by Hodges (1970).

The transition rate depends not only on the initial- and
final-state positron wave functions, but also on the nature
of the process by which the trapping energy is transferred
to the host. For vacancy-type defects in metals,
electron-hole excitation is the most important. In this
case the golden rule reads (Hodges, 1970)

A' kvV)=
~ gg IM(p q)l'f~

k q 2'
~o

A' (k+q) ~ )
m~

Above, M(p, q) is the matrix element between the initial
(P; ) and the final (g&) electron-positron states,

M(p, q)= fdr f dr'g (r, r') V(r —r')g~(r, r'), (37)

where r and r' refer to the positron and electron coordi-
nates, respectively. V is the screened Coulomb interac-
tion between the electron and positron. In Eq. (36) the
terms on the right-hand side of the matrix element take
care of the momentum and energy conservations in the
process. More specifically, p is the momentum of the ini-
tial positron state, k is that of the electron before the ex-
citation, and q is the momentum transfer. e,. and e& refer
to the initial- and final-state energies, respectively. If the
initial and final electron states are approximated as plane
waves, the matrix element reduces by a Fourier trans-
form to

M(p, q) =—V(q) fdr(f,+~)*(r)g& (r)e' 'q,1

where f,+~ and P& are the initial and final positron states,
respectively, and Q is the normalization volume for the

l

electron states (plane waves). This equation for the trap-
ping rate corresponds to Eq. (3) for the positron scatter-
ing off conduction electrons. Because the momentum
and energy transfers may be large in the trapping pro-
cess, the low-momentum limit cannot be taken. There-
fore the screened Coulomb interaction must be calculat-
ed, for example, in the Thomas-Fermi approximation

24~e
Q' +qyF

(39)

where q„zis the Thomas-Fermi screening length. On the
other hand, the zero-temperature Fermi distribution can
be used.

If the positron binding energy Eb to the defect is small,
of the order of 0.1 eV or less, a trapping process in which
the energy is transferred to a single phonon becomes im-
portant. For higher energies, one-phonon processes are
not possible, due to the Debye cutoff, and the probabili-
ties for multiphonon processes are very small. In the
case of longitudinal-acoustic phonons, the formula for
the trapping coefFicient is
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with

v(p)= g~ ~M(p, q)~ 5 +Eb fi—sq [fs(fisq, T)+1],"q 2m

(5 /0)'~2
M(p, q) = fdr g,+'(r)g+(r)e'q', y =

2/ 2 '«P f '
(2 s )1/2

(41)

v(T)=, f dE v(p =+2m*E )

Xe
EIk~ T~—

(42)

Here Thomas-Fermi screening and the deforxnation-
potential approximation are used, and the positron-
phonon coupling constant y is as in Eq. (5). The above
equation corresponds to Eq. (4) for positron scattering off
phonons, but here the low momentum limit is not taken.

The temperature dependence of the positron trapping
coefficient is, especially in the case of semiconductors, an
important issue in experimental defect studies. The tem-
perature dependence gives information about the charac-
ter of the defects, such as the charge state of the defect.
The temperature dependence of the trapping coefficient
arises mainly from the temperature dependence of the en-
ergy distribution of the thermalized positrons before
trapping, because in many cases the transition rate de-
pends strongly on the positron energy in the initial state.
In the case of phonon excitations, the transition rate also
depends on temperature through the thermal distribution
of the phonons. In order to obtain the temperature
dependence of the trapping coefficient, the initial posi-
tron momentum- (or energy-) dependent coefficient in
Eqs. (36) and (40) has to be averaged over the energy dis-
tribution of the thermalized positrons. The Maxwell-
Boltzmann distribution gives the trapping coefficient for
temperature T,

g,+. z(r)= gi'e 'YI '(p)YP (r)R&~(r),
o, ,

where Y& are spherical harmonics and RI are radial
wave functions, which are solved for the trapping poten-
tial in question. The crucial property of the true scatter-
ing states is the appearance of the resonances for nonzero
l components of P,+z at certain energies. At the reso-
nance the delocalized positron wave function is strongly
enhanced at the defect, which can increase the positron
trapping coefficient by orders of magnitude.

According to calculations by Nieminen and Laak-
konen (1979), the positron trapping coefficien for small
vacancy clusters in Al are of the order of 10' —10' s
This is in accordance with experimental estimations (for
reviews, see Nieminen and Manninen, 1979 or West,
1979). The trapping coefficient increases with the size of
the vacancy cluster until the electron phase space (simul-
taneous conservation of the momentum and energy in the
electron-hole process) sets an upper limit. According to
the model by Nieminen and Laakkonen (1979), the trap-
ping coefficient for the vacancies and small vacancy clus-
ters is temperature independent. In the case of large va-
cancy clusters, the trapping coefficient decreases with in-
creasing temperature. This is because the positron
thermal wavelength A+ becomes similar in size to the
spatial extent of the defect. Mathematically, this means
that the function in the integral for the matrix element
[Eq. (41)] becomes oscillating for typical thermal ener-
gies.

In the calculations for the positron trapping
coefFicients, the initial and final electron-positron states
have been described as products of independent electron
and positron wave functions. Moreover, it has been
necessary to approximate the electron and positron states
using rather simple models. As assumed also in Eq. (41),
plane waves have usually been used for the initial and
final electron states in the electron-hole excitation pro-
cesses. The positron wave functions used have also been
approximate. For example, Nieminen and Laakkonen
(1979) described the trapped state by a spherically sym-
metric Gaussian function, and the delocalized state by a
plane wave orthogonalized against the trapped state. Re-
cently, McMullen and Stott (1986) used a model in which
they solved the exact initial- and final-state positron wave
functions for a spherical square-well potential describing
a vacancy in metal. The delocalized positron wave func-
tions in the spherical symmetry are scattering states

3. Resonance trapping

The picture arising from the model of McMullen and
Stott (1986) for positron trapping into small vacancy
clusters is due to scattering resonances more complicated
than those by Nieminen and Laakkonen (1979). Figure
12 shows the positron trapping coefficient calculated as a
function of the energy of the delocalized positron. The
radius of the square well corresponds to the Wigner-Seitz
radius of Al, and the depth of the well is varied. A very
strong p-type resonance is pushed to lower energies when

the depth of the well is increased. Puska and Manninen
(1987) studied (among other things) the temperature
dependence of the trapping coefficient in this model.
They showed that, although the temperature dependence
is usually weak, a resonance close to thermal energies
may cause a very strong increase in the trapping

Rev. Mod. Phys. , Vol. 66, No. 3, July 1994



856 M. J. Puska and R. M. Nieminen: Positrons in solids and on solid surfaces

80

70

60

40

30

20

10

0.1 6.2 0.3 0.4 0.5
Ek (Ryd)

FICi. 12. Positron trapping coefficient for a vacancy as a func-
tion of the initial positron energy. The potential sensed by the
positron at the vacancy is modeled by a spherical square well,
the radius of which, 2.99ao, corresponds to Al. The depth of
the well is varied from 0.6 to 0.9 Ry (from McMullen and Stott,
1986).

coefficient as a function of temperature. The relevance of
this so-called resonance trapping to the measurable pa-
rameters has been discussed in several works (for more
references, see Jensen and Walker, 1990). The model was
used to explain the slow-positron-beam experiments by
Nielsen et al. (1986), who reported an intensity depletion
of epithermal (energy less than 1 eV) positrons reemitted
from an Al sample containing defects. The calculations
by Lynn et al. (1987) argue that resonance trapping can
even explain quantitatively the experimental results. Qn
the other hand, Jensen and Walker (1990) studied the
effects of the prethermal trapping by solving the
Boltzmann equation for the positron momentum during
the thermalization process. They concluded that trap-
ping at resonance energies is only a small fraction of the
total trapping which occurs mainly at thermal energies.
This is because a positron slowing down through the res-
onance region takes a short time compared to the time
that a positron spends at thermal energies before trap-
ping. Jensen and Walker (1990) argued further that pre-
thermal trapping has then only a minor effect on the in-
tensities of the different components in positron lifetime
measurements.

(44)

where

13.6 a 0

Negative
vacancy

4.8 ao

0.1 eV

3.5 eV V+(r) =— 1

Q r

' V (r) Neutral
vacancy

the model calculations by Puska et al. (1990). In the fol-
lowing we shall discuss in detail the results and the mod-
els for positron trapping in semiconductors arising from
these calculations.

Puska et al. (1990) used positron wave functions calcu-
lated for a spherical well potential mimicking a vacancy
in Si. The charged states were described by adding to the
defect potential well a long-range Coulomb tail Qler, '

where e is the zero-frequency dielectric constant and Q is
the charge of the defect (see Fig. 13). The Coulomb tail
has to be cut off when it approaches the vacancy in order
to mimic the weak localization of the extra charge. This
results in a potential shift of Q X (0. 1 eV) near the vacan-
cy. For neutral vacancies in semiconductors, the results
are also similar to those for metals in the sense that the
trapping coefFicient is nearly independent of temperature.
The behavior of the trapping coefficient for the charged
vacancies is, however, quite difFerent. This is because (a)
the initial positron states far away from the defect are
now Coulomb waves instead of spherical waves, and be-
cause (b) the long-range Coulomb potential induces (in
principle an infinite number of) bound Rydberg states.
The square of the amplitude of the Coulomb wave has a
maximum at the center of the vacancy, and it behaves as
(Mott and Massey, 1987)

4. Positron trapping in semiconductors

Electron-hole excitation in insulators or in semicon-
ductors is essentially hindered by the forbidden energy
gap between the valence and conduction bands. Howev-
er, if the positron binding energy to the defect is larger
than the band gap, or if there are defect-induced local-
ized deep states lying in the band gap, electron-hole exci-
tation is possible. The trapping coefficient may in these
cases be of the same order as in metals, as was shown in

V (r) Positive
vacancy

V (r) =

FIG. 13. Positron-model potentials for singly negative, neutral,
and singly positive Si vacancy (from Puska et aI., 1990).
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m+Q
(45)

and p is the positron momentum. For a negative charge
state Q &0, the square of the matrix element [Eq. (37) or
(41)] and the ensuing positron trapping coefficient are in-
versely proportional to the square root of the positron
energy. When the average over the positron initial ener-
gies is calculated, the integral in Eq. (42) becomes pro-
portional to temperature and, consequently, due to the
prefactor proportional at T, the resulting trapping
coefBcient depends on temperature as T ' . Equations
(44) and (45) explain the behavior of the trapping
coefBcient in the case of neutral and positively charged
vacancies, too. Neutral vacancies do not produce a trap-
ping coefticient diverging at 1ow temperatures because,
for a values close to zero, the amplitude in Eq. (44) ap-
proaches a constant value and the wave function becomes
a plane wave. For a positively charged vacancy, the
square of the initial positron wave function is due to the
exponential function s being vanishingly small, and there-
fore the trapping coefBcient becomes orders of magnitude
smaller than for neutral or negatively charged vacancies.

The picture based on Eq. (44) is reproduced in the re-
sults of numerical model calculations (Puska et al. ,
1990). The positron trapping rates obtained for singly
positive, for neutral, and for singly and doubly negative
vacancies are shown in Fig. 14 as a function of tempera-
ture. In these results, the process liberating the positron
binding energy is the excitation of an electron from a
deep level to the conduction band. The trapping
coefBcient for the positively charged vacancy increases as
temperature arises, because the probability of tunneling
through the Coulomb barrier increases. However, even
for the highest temperatures shown, the ensuing trapping
rate is small compared to the positron annihilation rate,
and trapping to positive vacancies is not important. Ac-
cording to Fig. 14 the trapping coefFicient for a singly
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FIG. 14. Temperature dependence of the positron trapping
coeKcient for singly positive ( V+ ), neutral ( V ), singly negative
(V ), and doubly negative (V ) vacancies. The process of
electron excitation from a deep level to the conduction band
was used (from Puska et al. , 1990).

negative vacancy is, at room temperature, about an order
of magnitude larger than that for the neutral vacancy.
The difference between the results for the singly and dou-
bly negative vacancies can be explained by the charge-
state (Q) dependence in Eq. (44) and by the number of
electrons in the initial localized state.

The predicted T ' dependence of the positron trap-
ping coefficient v was recently seen in experiments. The
trapping rate sc to vacancy-type defects obtained by
analyzing the positron lifetime spectra from proton-
irradiated Si obeyed this power law over a wide tempera-
ture region from 15 to 150 K (S. Makinen et al. , 1990).
Electron-irradiated pure Si and P-doped Si also showed
this dependence below the temperature of 50 K
(Makinen, Hautojarvi, and Corbel, 1992). Very recently,
the capture of holes at acceptors in Ge was explained
with a cross section that is inversely proportional to tem-
perature (Darken, 1992). This corresponds to a trapping
rate proportional to the inverse square root of tempera-
ture [see Eq. (54)]. Thus the T '~ dependence seems to
be a general result for the capture of charge carriers in
semiconductors.

The long-range Coulomb potential sensed by the posi-
tron at negatively charged defects in semiconductors in-
duces Rydberg states, which are weakly bound and there-
fore spatially relatively extended. The existence of the
Rydberg states affects the positron trapping
phenomenon. This was also shown by the model calcula-
tions for vacancies in Si (Puska et al. , 1990). Because of
the large extension, the transition rates for positrons
from the delocalized (Coulomb) states to the Rydberg
states may be rather high. The calculations also show
that the transition from a Rydberg state to the ground
state at the vacancy is usually fast enough (faster than the
positron annihilation rate) so that the total trapping rate
sc monitored in the measurements can be determined by
the trapping coefficient to the Rydberg state. Therefore
the total trapping rate can be essentially higher than that
for metal vacancies. Because the binding energies at
Rydberg states are small, of the order of 0.1 eV, the tran-
sition from delocalized states to the Rydberg states
proceeds mainly via phonon emission. The following
transition to the ground state may take place as an exci-
tation of an electron from the deep levels or from the
valence band. The model calculations show that transi-
tions between the Rydberg states are so slow that they
cannot effectively take place within the positron lifetime.
Therefore the cascade model (Lax, 1960), in which the
charged particle relaxes down in energy following succes-
sive Rydberg states, and which had been used earlier for
the recombination of the charge carriers, cannot be
adapted for positrons. Recently, the cascade process was
also shown to be doubtful for hole capture at acceptors in
Ge (Darken, 1992).

In order to describe the temperature dependence of the
positron trapping rate in the presence of the Rydberg
states, one needs a dynamic model, because thermal de-
trapping from the shallow Rydberg states is important
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(46)
K

where E~ is the positron binding energy in the Rydberg
state.

The above dynamic model for the positron trapping to
vacancy-type defects in semiconductors is analogous to
the model presented by Smedskjaer et a/. (1980) for posi-
tron trapping into jogs or kinks at dislocation lines in
metals. In that model the weakly bound positron state
delocalized along the dislocation line is the precursor
state, and the open volume at a point defect serves as the
6nal trap. The occupations of the difFerent states in both
models (here nI„n„,and f, ) can be obtained from
steady-state rate equations (Smedskjaer et a/. , 1980). The
parameters of the model in Fig. 15(a) can be related to
the trapping rate (below a') of the two-state trapping
model shown in Fig. 15(b) and used in analyzing the posi-
tron lifetim. e spectra. If one replaces the series of Ryd-
berg states with one e6'ective state and assumes that

pic ))A, b and a. ((A,b, one obtains (Puska et a/. , 1990)

r/zc, +aR(m+k~T/2m% ) e
(47)

According to this equation the temperature dependence

even at relatively low temperatures. The situation is de-
picted in Fig. 15(a). The annihilation rates for the delo-
calized state and the shallow Rydberg states are essential-
ly equal (A,b ), and that for the ground state at the vacan-
cy is k, (Xb. For a given vacancy concentration c„tran-
sitions from the delocalized states to a Rydberg state take
place with the trapping rate Kz, from the Rydberg state
to the final trap state with the rate g~, and from the delo-
calized state directly to the ground state with the trap-
ping rate K. The positrons escape due to thermal activa-
tion from the Rydberg state with the rate 5&, but do not
escape from the tightly bound ground state. %'hen the
populations of the delocalized and localized states are in
thermal equilibrium, the detrapping rate 5~ and the trap-
ping rate az into the Rydberg state are related as (Man-
ninen and Nieminen, 1981)

3/2
6 1 ~+kg T —E /k T

2mj52

of K' arises from two e8'ects:
(a) The positron trapping coefficient a. into a Rydberg

state depends on temperature. The dependence is close
to the "T ' law" because the initial state is a Coulomb
wave; but K also has a weaker temperature dependence
because the binding energy is of the same order as the
positron thermal energy (Puska et a/. , 1990). The tem-
perature dependence due to K dominates at very low tem-
peratures.

(b) When temperature increases, detrapping from the
Rydberg state (the exponential function in the denomina-
tor) becomes important. This results in a trapping rate a'
which decreases Inore rapidly as T . As an example,
Fig. 16 shows the trapping rate deduced from positron
lifetime measurements of electron-irradiated pure and P-
doped Si (Makinen, Hautojarvi, and Corbel, 1992). The
experimental results are fitted to the model of Eq. (47),
and good agreement is obtained with reasonable values of
the fitting parameters Kz, gc„and E~. Below -50 K,
K'=K and a simple T dependence is assumed with a
slightly less than 0.5. Above 50 K the behavior switches
to the exponential decay due to detrapping. The same
temperature dependence of K is used at both low and high
temperatures.

5. Positron trapping at voids in metals

In the case of spatially large defects, such as voids in
metals, the positron trapping coefBcient may become so
large (due to the large density of the final states) that the
positron mobility (diff'usion to the defect) starts to limit
the total trapping rate. The switching from transition-
limited to difFusion-limited trapping was 6rst studied by
McMullen (1977, 1978) using a quantum-mechanical
theory based on positron-phonon scattering. In the case
of spatially extended defects, the difFusion theory can be
employed in describing the behavior of the trapping rate
(Brandt, 1974; Nieminen et a/. , 1979). According to the
resulting picture, the trapping rate is decreased because
the positron density is depleted near the defect due to the
trapping phenomenon itself.

Nieminen et a/. (1979) have presented a comprehen-

n b Delocalized
state

Delocalized
state

nR Rydberg
states

n
&

Ground
state

Ground
state

FIG. 1S. Positron trapping into
a negative vacancy in a semicon-
ductor. (a) general schematic
view; (b) two-state positron trap-
ping model (from Puska et al. ,
1990).

(a)
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where A.b and X, are the annihilation rates for free and
trapped positrons, respectively. v is the trapping rate per
unit concentration of voids ( [v] =cm s ' ). In the
difFusion equation (49) the source and trapping terms ap-
pearing in Eq. (15) are replaced with the following
boundary and initial conditions for the positron distribu-
tion fb(r, t},

afb(r, t)
D+ 4mr„

Br
vfb(r, —t)~„ (52)

10 30 60 100 200 300

TEMPERATURE T (K)

FIG. 16. Temperature dependence of the positron trapping rate
in electron-irradiated Si. The defects are identified as the isolat-
ed negative vacancy and the negative phosphorus-vacancy pair
in high-resistivity and P-doped Si, respectively. The dashed
lines correspond to the T dependence for sc, and the solid line
is the 6t using the functional form of Eq. (47). From Makinen,
Hautojarvi, and Corbel, 1992.

3

4m'„
(48)

Concentric with this sphere is a void sphere with radius
r~.

The density of free positrons fb(r, t) (in the region
r, ~ r ~ R, } is a function of time and distance from the
common center of the spheres. The spatial dependence
of the trapped positrons is not necessary to the model,
and therefore only the number f, (t) of trapped positrons
at time t is used. The model employs the picture in
which the fate of a single positron is followed, and the
positron distributions are then obtained from the
diffusion-annihilation equations

Bfb(r, t)
=&+V fb(r, t) Abfb(r, t)—at

(49)

sive semiempirical theory for positrons in a metal con-
taining a finite concentration of voids. A similar ap-
proach for positron trapping at grain boundaries in met-
als was recently adopted by Dupasquier et al. (1993).
The theory by Nieminen et al. (1979) gives, among other
things, the intensity I2 of the void component in the
two-component trapping model. This can be directly
used in the analysis of the lifetime spectra measured as a
function of temperature. Firstly, Nieminen et al. (1979)
make the Wigner-Seitz approximation; i.e., they define a
Wigner-Seitz sphere, the radius R, of which is deter-
mined by the void concentration c, :

' 1/3

fb(r, O)=no when r, ~r ~R„,
fb(r, O)=0 otherwise .

Moreover, the distribution of the trapped positrons obeys
the initial condition

f,(0)=0 . (54)

n=1

After a short time from t =0 (typically (5 ps), only the
longest living of the eigenfunctions for the positron den-
sity fb (r, t ) survives. The so-called quasiequilibrium
state, in which the form of the positron density stops
changing (but the magnitude decays), has been reached.
Figure 17 gives typical quasiequilibrium positron densi-
ties at different temperatures. It can be seen that at low
temperatures the positron density is rather uniform,

rejecting the large positron mobility (or difFusion
coefficient). Towards higher temperatures, the positron
diffusion coeKcient decreases due to phonon scattering,
and the free positron density becomes strongly depressed
at the void surface due to the trapping. It is said that the
positron trapping is then diffusion limited.

The fraction of trapped positrons is obtained from the
solution fb(r, t) via the flux [Eq. (52)] at the void surface

The first of the conditions for free positrons [Eq. (51)],
the Wigner-Seitz condition, means that the positron den-

sity "Aows" in the trapping process with an equal proba-
bility to all voids, the concentration of which is c, . The
next equation (52) gives the flux of positrons through the
void surface.

The solution (Carslaw and Jaeger, 1959) of Eq. (49) can
be expressed as a sum of r-dependent eigenfunctions
f„(r),each of which decays with a characteristic time
constant D+a„+A, b

..
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FIG. 17. Quasiequilibrium positron densities near a void in a
metal (from Nieminen et ah. , 1979).

and final wave functions and for the energy release mech-
anism (electron-hole pairs). The last form in Eq. (59) as-
sumes that g is limited by the wave absorption (transmis-
sion) on the surface of the void. This term corresponds
to the quantum reQection, which is discussed in Sec.
II.C.6. In the case of small defects, r, «A+, v becom. es
temperature independent, because p «P for relevant ini-
tial positron momenta and depths of the defect potential.
For large voids, r„&&A+,v becomes directly proportion-
al to temperature, and, at zero temperature, it vanishes
due to the quantum reAection. This argument is based on
the reAection of the coming positron at the potential step.
One can argue that, at the low initial positron momen-
turn (very low temperatures), another inelastic channel
becomes available for trapping. Phenomenologically, the
trapping coefncient v behaves at low temperatures as

V=Vp+ AT (60)

R, vc,F=
3 3 f dtfb(r„t)

R, —r„np
R, vc„~ f„(r„)

R, —r„~p p A~+B+a„
(56)

Above, R„/(R, —r, ) is a geometrical factor which enters
because the free positrons are initially confined within
the "interstitial" region r„~r~R, . The parameter I2
corresponding to the two-component analysis of the posi-
tron lifetime spectra can be obtained by using Eq. (50).
The result is

R„' vc, f„(r,)
P np p gb Et+8+A

(57)

1/2
3kTv=U+ c7 = (58)

where U+ and p are the thermal velocity and momentum
of positrons, respectively. o. is a positron capture cross
section of the void. It can be approximated by the s-wave
part only (Nieminen et al. , 1979):

u =m (r„+A+ ) g'= m (r„+A+ )
2 4pI'

(@+I')
(59)

where A+ is the positron thermal wavelength [Eq. (22)].
Above, g is related to the trapping coefficient discussed in
Sec. II.C.2, and it accounts for the overlap of the initial

The temperature dependence of the fraction I" of
trapped positrons and the intensity I2 arises through the
diffusion coefFicient D+ and through the trapping rate v.
If the diffusion is limited by scattering from
longitudinal-acoustic phonons, D+ decreases as T
when temperature increases [Eq. (28)]. Nieminen et al.
(1979) describe the temperature dependence of v semi-
classically. The trapping rate per unit concentration of
voids is written as ([v]=cm s ')

A as well as vp can be used as fitting parameters of the
model. Actually, the term vp should vanish due to the
quantum refiection, but the form of Eq. (60) with a finite

vp corresponds better to the experimental situation
(Nieminen et al. , 1979).

The temperature dependence of the fraction F of
trapped positrons and the intensity I2 can be discussed in
terms of different regimes. At low temperatures, the pos-
itron mobility is high, i.e., the ratio

4m.r,B+P= »1.
V

(61)

In this case only the longest-living component in fb(r, t )

contributes in the sum of Eq. (57), leading to this familiar
expression for I2 [cf. Eq. (35)],

VC„

VC +~b ~t
(62)

where c„'=3/4n(R„r„)is a. n "—efFective" void density.
The result is that at low temperatures I2 rises like v, ap-
proximately linearly as a function of temperature. At
high temperatures the positron mobility is low, P((1,
and one obtains

4mc„'B+
I2 ——

4mc,'D+ +X,—Xt
(63)

The intensity I2 has become independent of the trapping
coefficient v. It is determined through the depletion of
the positron density at the void surface (see Fig. 17).
%'hen temperature rises, the intensity I2 first saturates
and finally, due to the temperature dependence of the
diffusion coefFicient, starts to decrease proportional to
T—1/2

Trumpy and Bentzon (1992) suggest for positron trap-
ping at voids a semiclassical model that is valid for all
void sizes and temperatures. In the model, positrons can
be trapped either directly to the ground state or via a
"volume state" at the void. Using old quantum-
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tr =n.(r„+A+ g' (64)

instead of Eq. (59). This form is consistent with the
linear temperature dependence of the trapping rate in Eq.
(60), which they write in the form

mechanical calculations (Blatt and Weisskopf, 1952) as a
base, they suggest that the positron-capture cross section
can be approximated as

ments (Soininen et al. , 1990). This may re6ect effects due
to shallow traps, which, for simplicity, are not included
in our analysis. The computer code used in our analysis
is available in a software server (SOFTWARE, 1993).
The data shown in Fig. 18 were also recently analyzed by
Trumpy and Bentzon (1992) using the model described
above.

v=vo(1+aT) . (65)
6. Positron trapping at surfaces

6.0

c 5.5-

~ 5.0-
z
E
C4

4.5—
CC N-decorated voids in Mo

4.0 I I I

100 200 300 400

TEMPERATURE (K)

FIG. 18. Temperature dependence of positron trapping at
voids decorated with nitrogen. The experimental points
(Bentzon and Evans, 1990), denoted by solid circles, were ob-
tained in a three-component analysis of positron lifetime spec-
tra. The solid line is the theoretical 6t using the model by
Nieminen et al. (1979), Eq. (57), for I2 and the two-stage
trapping-model result (35) for a.

Trumpy and Sentzon show that a depends on the void
radius. It had previously been found (Bentzon and
Evans, 1990) nearly independent of the void decoration
by gas atoms or molecules.

A typical behavior of the temperature dependence of
the trapping rate ~ is shown in Fig. 18. The figure corn-
pares the trapping rate measured by Bentzon and Evans
(1990) for N-decorated voids in a Mo sample and a
theoretical ftt using the Nieminen et al. (1979) model. In
the experimental work the mean void radius and density
were determined by transmission electron microscope to
be 13.3 A and 5.3X10' cm, respectively. The mea-
sured positron bulk and void lifetimes were ~b =120 ps
and v„=630ps, respectively. The experimental trapping
rates result from a three-component lifetime spectrum
analysis, with positron annihilation in shallow traps tak-
en into account. The theoretical ftt (made by us for this
review) is calculated, however, within the two-stage trap-
ping model, in which the trapping rate is related to the
intensity I2 via Eq. (35). The theoretical fit corresponds
to the parameter values of po =8.75 X 10 cm /s,
A =6.5X10 cm /sK, and D+(300 K)=0.85 cm /s.
The trapping parameters po and A are in good agreement
with the simpler analysis made originally by Bentzon and
Evans (1990). The positron diffusion coefficient is some-
what too low in comparison with its value of a=1.1

cm /s determined from slow-positron-beam measure-

The image-induced potential well sensed by a positron
at a solid surface can support bound states (see Sec.
III.C). The trapping (sticking) of positrons into the sur-
face state is an important issue in the slow-positron-beam
experiments. Theoretically, the problem has been ap-
proached, for example, using Fermi-golden-rule calcula-
tions analogous to those for positron trapping into vacan-
cies and voids. Neilson et al. (1986) calculated the trap-
ping of thermalized positrons to the surface state using a
model in which the electron states correspond to an
infinite potential barrier at the surface, and in which the
initial and final positron states are calculated approxi-
mating the potential by an asymmetric well at the sur-
face. The energy lost is given to an electron-hole pair.
The main interest of Neilson et al. (1986) was, however,
the calculation of the energy losses of positrons reemitted
from solids to vacuum.

Kong et al. (1990) studied the temperature dependence
of positron trapping on Ag(111) and Ag(100) surfaces
both experimentally and theoretically. The positrons are
implanted in the solid and part of them diffuse back to
the surface, where they can be trapped or emitted as free
positrons or as positronium atoms. From the measured
positronium yields Kong et al. (1990) concluded that the
positron trapping rate is strongly enhanced for Ag(111)
towards low temperatures, whereas for the Ag(100) it in-
creases only moderately as temperature decreases. Kong
et al. (1990) explained the result for Ag(111) using a
model in which a positron is first trapped by a mirror-
potential-induced Rydberg state in a phonon-excitation
process. The positron then makes the transition to the
ground state via an electron-hole creation process. The
phonon process leads to a trapping rate which increases
strongly as the temperature decreases. This two-step
model is analogous to that used for explaining positron
trapping into negatively charged vacancies in semicon-
ductors. According to Kong et al. (1990), the two-step
model is possible for Ag(111), because its work function
for positrons is negative. The work function for Ag(100)
is positive, and Kong et al. (1990) explains that trapping
via Rydberg states is not possible because the Rydberg
states are higher in energy than the initial positron state
in the bulk Ag. In this case only the direct trapping via
an electron-hole process to the ground state is possible,
and Kong et al. (1990) showed that this process results in
a weak temperature dependence.

Recently, Walker et al. (1992) calculated the surface-
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state trapping rates using Fermi's golden rule. They ex-
tended the calculations by Neilson et al. (1986) to surface
trapping. Walker et al. (1992) considered the trapping to
occur either before or after positron implantation in the
solid. They also modeled besides metal-vacuum surfaces,
trapping into clean and He-611ed voids. Walker et al.
(1992) calculated the trapping rate as a function of the in-
itial positron energy and showed that the Fermi-golden-
rule formalism always leads to a vanishing trapping rate
when temperature decreases towards absolute zero. This
is because of the total reAection of the initial positron
wave function when the positron kinetic energy vanishes.
This result agrees with the measurements by Britton
et al. (1989), but this kind of temperature dependence is
not clear from the results of Kong et al. (1990). More-
over, Walker et al. (1992) found that surface resonances
have no efFect on the trapping process, but that the trap-
ping rate is very sensitive to the positron work function,
and, in the case of He bubbles, to the He density. Walker
et al. (1992) concluded, on the basis of the agreement be-
tween experiments and their results, that the assumption
of weak positron-surface coupling is valid. A suSciently
strong coupling (a positron trapped at the surface de-
forms the potential well) is argued to result in a sticking
probability approaching unity as temperature decreases
(Martin et al. , 1991;Mills et al. , 1991).

Finally, it is interesting to note that Brenig and Russ
(1992) found that for the long-range Coulomb potential
the sticking probability of a quantum-mechanical particle
always has a nonzero limit when the energy of the in-
cident particle approaches zero. In contrast, the sticking
probability for a short-range potential (such as the van
der Waals potential) vanishes in this limit. The latter
theoretical result contradicts the experimental 6nding of
Mills et al. (1991) that Ps atoms are not perfectly
rejected from a surface at zero temperature.

III. PGSITRGN STATES IN SQLII3S: MGDELS

A. Two-component density-functional theory

1. Generalized Kohn-Sham method

The foundation for modern electronic structure calcu-
lations for solids is the density-functional theory based on

=F[n ]+F[n+]+fdr V,„,(r)[n (r) —n+(r)]

n (r)n+ (r')
drf dr I,

I

+E; ~[n+, n ],
(66)

where F[n] denotes the following one-component func-
tional for electrons or positrons,

F[n]=T[n]+—fdr fdr', +E„[n].1 , n(r)n(r')
2

(67)

T[n] is the kinetic energy of noninteracting electrons or
positrons, and E„,[n] is the exchange-correlation energy
between indistinguishable particles. Finally,
E,' ~[n+, n ] in Eq. (66) is the electron-positron
correlation-energy functional.

The ground-state electron and positron densities
minimizing E[n, n+ ] can be calculated using a general-
ized Kohn-Sham method, which requires the solving of
the following set of one-particle Schrodinger equations
for electrons and positrons,

the work by Hohenberg and Kahn (1964) and by Kohn
and Sham (1965). During the last decade the ab initio
electronic-structure-calculation methods developed rap-
idly, and nowadays most of the important basic proper-
ties of solids, such as the structural and cohesive proper-
ties, can be calculated without any adjustment to the ex-
perimental results (Jones and Gunnarsson, 1989). In this
article, we are interested in how to calculate the positron
states in solids and how to determine positron energy lev-
els and annihilation characteristics, which are the experi-
mental signals giving information about the electronic
structure of the solid. It turns out that the ab initio
determination of positron states in solids is possible on
the basis of the two-component generalization of the
density-functional theory (Chakraborty and Siegel, 1983;
Lundqvist and March, 1983; Nieminen et al. , 1985;
Boronski and Nieminen, 1986).

In two-component density-functional theory, the
ground-state energy of a system of electrons and posi-
trons in an externa1 potential V,„,is written as a func-
tional of the electron (n ) and positron (n+) densities
(Boronski and Nieminen, 1986),

E[n, n ~ ]

5E„,[n ] 5E; J'[n+, n ]
— —P(r)+ g, (r)=e, g, (r), (68)

——V g,+(r)+ +P(r)+ '
g,+(r) = fe,+(r),

5n+ (r) 5n+ (r) (69)

where

n(r')+—n+ (r')+no(r')
P(r)= dr'

Ir —r'I

is the total Coulomb potential and no(r) denotes the (pos-
itive) charge density providing the external potential
V,„,. The electron and positron densities are calculated
by summing over the occupied states (eF is the electron
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Fermi energy and N+ is the number of positrons), component formalism within LDA the equation reads

n (r)= g ~@;(r)~, n+(r)=g ~@,+(r)~
E'. EF

(71) A, =nroc Idr n+(r)n (r)g(0;n+, n ), (74)

Equations (68)—(71) have to be solved self-consistently
and simultaneously for electron and positron states, using
an iterative scheme.

2. I ocal-density approximation

E,[n]= Jn(r)e, (n(r))dr, (72)

where E„,(n ) is the exchange-correlation energy per par-
ticle in a homogeneous one-component electron gas. In
Eqs. (68) and (69), the functional derivatives of E„,[n] be-
come a function of density. This function is called the
exchange-correlation potential,

5E„,[n]p, (n)=
5n(r)

B[ne, (n)]
87l

The exchange-correlation energy e„,(n) for a homo-
geneous electron gas is well known from the quantum
Monte Carlo simulations by Ceperley and Alder (1980).
(Practical parametrizations of their local exchange-
correlation functional are given, for example, by Perdew
and Zunger, 1981 and by Perdew and Wang, 1992.) The
electron-positron correlation energy E; [in+, n ] is
best known in the case of the vanishing positron density
in a homogeneous electron gas (see, for example, the
works by Arponen and Pajanne, 1979a, 1979b, 1985).
For finite positron densities, there exist results for some
ratios of the positron and electron densities calculated by
Lantto (1987). Using this data, Boronski and Nieminen
(1986) studied the form of the electron-positron correla-
tion energy and potential as a function of electron and
positron densities. Requiring that the electron-positron
correlation energy be symmetric with respect to the elec-
tron and positron densities, they ended up with interpola-
tion formulas giving the energy function E; ~(n+, n )

defined per unit volume. This function can be used
within LDA in practical calculations.

The positron annihilation rate is proportional to the
overlap of positron and electron densities. In the two-

The above method [Eqs. (68)—(71)] would be exact if
the exchange-correlation energy functional E, [ n] and
the electron-positron correlation-energy functional
E; ~[n+, n ] were known. Unfortunately, this is not
the case. In electronic structure calculations the most
popular way to continue is to make the local-density ap-
proximation (LDA) for exchange-correlation effects.
Local-density approximation means that the exchange-
correlation energy is approximated as

where g(0;n +, n ) is the electron-positron pair-
correlation function evaluated at the positron in a homo-
geneous two-component plasma with positron density n+
and electron density n . ro is the classical electron ra-
dius, and e is the speed of light. The prefactor is the
independent-particle model (IPM) or Sommerfeld result
for the positron annihilation in a homogeneous electron
gas with density n

A,o=mr Ocn
2 (75)

Boronski and Nieminen (1986) presented a practical in-
terpolation formula for the pair-correlation function

g( On+, n ), based on Lantto's (1987) many-body calcu-
lations. It has the correct high-density (i.e., the random-
phase approximation) and low-density (i.e., the positroni-
um atom) limits.

3. Delocalized positron states

,u(rir)= P(r)+u„,(—n (r)) . (76)

The potential sensed by the positron is constructed as the
sum of the Coulomb potential P (from the electronic
structure calculation) and the correlation potential V„„,

V+(r)=P(r)+ V„„(n(r)) . (77)

The correlation potential V„„is the zero-positron-
density limit of the electron-positron correlation poten-
tial 5E; i'[n+, n ]/5n+(r). V„„is equal to the (corre-
lation) energy for a delocalized positron in a homogene-
ous electron gas. A practical form for it is the parame-
trization by Boronski and Nieminen (1986), based on the
data by Arponen and Pajanne (1979a, 1979b). For high
electron density r, ~0.302 (n =3/(4rrr, )), the RPA re-
sult is valid:

For a delocalized positron in a perfect crystal lattice,
the two-component density-functional theory simplifies
essentially. Because the positron density in this case is
vanishingly small at every point of the (infinite) lattice, it
cannot inhuence the electronic structure. The electronic
structure of the perfect lattice is therefore first solved by
some standard self-consistent band-structure code. This
code solves the Kohn-Sham equations obtained from Eqs.
(68), (70), and (71) by omitting the positron density n+
and the electron-positron correlation potential
5E; ~[n +n ]/5n (r). For example, the effective elec-
tron potential is

V„„(r,) [Ry] = —1.56/+r, +(0.051 lnr, —0.081)lnr, +1.14 .

For 0.302~ r, ~0.56,

(78)
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V„~(r,) [Ry]= —0.923 05—Q. 054 59

"s

for 0.56~r, &8.0,

( ) [R ] 0 6298
13.151 11 + 2. 8655

(r, +2.5)2 (;+2.5) '

and for the low electron densities r, ~ 8.0,

(79)

(80)

V„„(n ) [Ry] = —0.524 —179 856.2768n + 186.4207' (81)

This correlation energy is shown in Fig. jI9 as a function
of the electron-density parameter r, . Over the density re-
gion r, =2, . . . , 4, which corresponds to typical electron
densities in the interstitial regions of metal lattices, varia-
tions in the correlation energy are rather moderate, al-
though positrons have a tendency to favor high-electron-
density regions as far as the correlation energy is con-
cerned. At low electron densities the correlation energy
approaches the total energy —0.524 Ry of the negative
positronium ion Ps

When the potential sensed by a positron is obtained,
the corresponding Schrodinger equation can be solved
using the same band-structure code as that used for elec-
trons. The solution of the positron wave function is
needed only for a single delocalized positron in the sys-
tem. Usually one is interested only in the positron wave
function and the energy eigenvalue in the lowest energy
state, i.e., at the bottom of the lowest positron energy
band. This corresponds to the positron momentum p=0,
and the positron wave function for this state is s-type
with respect to the nuclear positrons in the lattice.

When the positron and electron densities are known,
the positron annihilation rate can be calculated accord-
ing to Eq. (74). In the case of a positron delocalized in a
perfect crystal lattice, one must use the zero-positron-
density limit of the pair-correlation function g (0;n+, n )

at the positron site. This limit is denoted y(n ) and is
called the enhancement factor of the electron density at
the positron. Thus

0.8

0.7—

A. =proc fdr n+(r)n (r)y(n )

=fdrn+(r)l (n (r}), (82)

where I (n ) is the positron annihilation rate in a homo-
geneous electron gas with density n . Boronski and
Nieminen (1986) give for I (n ) the following interpola-
tion formula based on the many-body calculations by Ar-
ponen and Pajanne (1979),

I'(n) =n rocn(1+ 1.23r, +0.8295r3~ —1.26r2

+0.3286r, ~ +—'r } (83)

500

400

The behavior of I (n ) is shown in Fig. 20 as a function
of the electron-density parameter r, . The enhancement
over the independent-particle results A,o [Eq. (75)] is sub-
stantial. For instance, the enhancement factor for a
high-density electron gas corresponding to the density
parameter r, =2 is -4 and increases rapidly to the value
of -40 when the electron density decreases to r, =6. As
a matter of fact, at low electron densities, the annihila-
tion rate approaches the value of 2 ns ', which corre-
sponds to the annihilation rate of Ps

This picture for a delocalized positron in a perfect
crystal lattice can be described another way. The elec-
tron density in the infinite lattice is not disturbed due to
the positron, despite the short-range pileup (enhance-
ment) at the positron site. Therefore the average electron
density can be calculated first without any influences due
to the positron. The positron state is calculated by tak-

g 0.6-

0.5—
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E
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0.4
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4 5

r, (a )
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'0

FIG. 19. Electron-positron correlation energy as a function of
the electron-gas-density parameter (Arponen and Pajanne,
1979a, 1979b; Boronski and Nieminen, 1986). The correlation
energy is the energy gained when a single positron is inserted
into a homogeneous electron gas.

r, {a)

FIG. 20. Positron lifetime in a homogeneous electron gas as a
function of the electron-gas-density parameter according to
Boronski and Nieminen (1986).
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ing the electron pileup into account as a lowering of the
energy (correlation energy), which in a given point de-
pends on the electron density at that point only (LDA).
Finally, the positron annihilation rate is calculated as an
integral over the local enhanced annihilation rate weight-
ed by the positron probability function.

4. Localized positron states

In the case of a positron localized at a lattice defect,
the situation is more complicated because the positron
attracts electrons, and the average electron density in-
creases near the defect. In this case the electron and pos-
itron densities have to be solved simultaneously in a self-
consistent way. The short-range screening effects have to
be taken into account by correlation functionals (correla-
tion energy and pair-correlation function) which depend
on both the electron and the positron densities. These
functionals are somewhat poorly known, as there exist
many-body calculations for only a small set of electron
and positron densities. Moreover, the self-interaction
effects for a localized positron inherent in the LDA two-
component theory call for a careful treatment (see
below). Thus far, in most applications for positron states
at defects, the full scheme is simplified by using the same
procedure as that for delocalized positrons. This means
that the electron density is calculated without the posi-
tron in6uence, and the zero-positron-density correlation
energy and enhancement factors are used. The simplified
scheme can be justified by arguing that the positron, to-
gether with its screening cloud, forms a neutral quasipar-
ticle that enters the system without changing the average
electron density. This picture clearly breaks when the
extent of the localized positron state decreases close to
the extent of the short-range positron screening cloud.
On the other hand, the two-component calculations per-
formed (Nieminen et al. , 1985; Boronski and Nieminen,
1986) support the use of the "conventional" scheme be-
cause the annihilation rates in these two methods are
very similar. This similarity is due to the fact that the
larger short-range enhancement compensates the smaller
average electron density in the conventional scheme rela-
tive to the two-component calculation.

The two-component formalism just presented describes
a single localized positron also as positive charge plasma.
This raises the question, do the Coulomb self-interaction
and exchange-correlation contributions for the positron
plasma cancel each other properly? This cancellation re-
quirement can be taken into account explicitly by making
the self-interaction correction, i.e., by subtracting these
contributions from the effective positron potential in Eq.
(69). Hence

n (r') —no(r')——7 — dr
2 )r—r'/

5E; ~[n+, n ]+ '
g (r)=e+g (r) (84)

5n+(r)

is the self-interaction-corrected Schrodinger equation for
the positron. See also Sec. IV.B.1.

B. Positron states in semiconductors and insulators

The above formulas for the electron-positron correla-
tion potential and the electron enhancement work well
only in the case of (simple) metals, because they are based
on the calculations for a positron in a homogeneous elec-
tron gas. In semiconductors or insulators, the screening
of the positron by electrons is not perfect due to the ex-
istence of the band gap. This must be taken into account
in the electron-positron correlation energy when calculat-
ing the positron potential. It is also important to modify
the expression for the electron contact density at the pos-
itron when calculating the annihilation rate. Puska,
Makinen, et al. (1989) have presented two models that
include reduction of the positron screening in semicon-
ductors and insulators, respectively.

The model (Puska, Mikinen, et al. , 1989) for semicon-
ductors is semiempirical and is based on the results for a
positron in a homogeneous electron gas. In the model
the annihilation rate [Eq. (82)] is replaced by

I (n )=m r Ocn [1+1.23r, +0.8295r, ~

—1.26r +0.3286r,

+-,'(1—1/e„)r,'], (85)

where e„is the high-frequency dielectric constant. The
form of this equation can be justified by two constraints
for the screening cloud of the positron (Puska, Mikinen,
et al. , 1989). Firstly, at the positron (r=0) the electron
density n (r ) obeys the cusp condition

(86)

Secondly, the screening cloud hn (r) induced by the
positron has to contain (1—1/e ) electrons, i.e.,

(87)

This guarantees that the Coulomb potential due to the
positron is the long-range potential proportional to
1/e r The efFect. s due to the reduced screening on the
correlation potential are less pronounced, and they can
be taken into account by noting that the correlation po-
tential scales as —(A, —Ao)'~ (Nieminen, 1983), where A,

is the actual annihilation rate and A,0 is the annihilation
rate when the enhancement is not taken into account.
This semiempirical formulation has been shown to give
for group-IV semiconductors as well as for III-V and
II-IV compound semiconductors positron bulk lifetimes
that are in good agreement with experiment (Puska,
1991a). This is remarkable because the LDA approach
used does not contain any adjustable parameters (see Sec.
IV.A.3).

In the case of insulators the screening eKciency of the
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where 0 is the unit-cell volume. Puska et al. assume
that the enhancement factor depends directly on the po-
larizability and write

I (n )=nrocn 1+A+BQ 6~+2 (89)

A =0.684 and 8 =0.0240ap are parameters, the values
of which are obtained by 6tting the calculated positron
lifetimes of several insulators to the experimental ones.
Thus the enhancement factor in this model is a constant
depending on the insulator in question. However, Puska
et al. show that both in open-structure semiconductors
and in insulators the unit-cell volume Q is, to a good ac-
curacy, inversely proportional to the effective electron
density seen by the positron.

C. Positron states on solid surfaces

When the positron resides inside the solid, the local ap-
proximation [Eq. (77)] for the positron correlation poten-
tial is reasonable. This is because the unperturbed elec-
tron density is quite isotropic around the positron in its
typical interstitial positions, and therefore the screening
cloud is also isotropic. Moreover, the screening cloud
can be approximated in the same manner as that in a
homogeneous electron gas with the electron density equal
to that at the position. However, when the positron
leaves the solid through the surface to the vacuum, the
screening cloud is left behind in the solid. The situation
becomes anisotropic and LDA breaks. Far from the sur-
face the correlation potential approaches the classical im-
age potential

V„„(z~co )~—6p 1

@0+1 4(z —zo }

valence electrons is reduced even more, due to the band
gaps being larger, than those in the case of semiconduc-
tors. Therefore the starting point of the semiempirical
formulation of Eq. (85), a positron in a free-electron gas,
is no longer adequate. In their model for insulators Pus-
ka, Makinen, et al. (1989) correlate the electron enhance-
ment with the (atomic) polarizability of the insulator,
which in 'turn is related to the dielectric constant via the
Clausius-Mossotti relation

where ep is the static dielectric constant of the material, z
is the coordinate perpendicular to the surface, and zp
de5nes the position of the image plane. The resulting to-
tal potential develops a well just outside the surface.
This well may bind the positron in the direction perpen-
dicular to the surface: the positron is said to be trapped
in a surface state.

The problem in the actual calculations for positron
states is the joining of the two regions: the bulk region
where the LDA is valid and the region of the image
potential. Nieminen and Puska (1983) used the
superimposed-atom method (see Sec. III.D) in construct-
ing the potential in the LDA and replaced this potential
by the image potential outside the surface in the region
where the image potential was higher. The image posi-
tion zp was adjusted to give the experimental binding en-

ergy for the positron on one of the high-symmetry sur-
faces of the metal in question. For the perfect surfaces, a
single value of zp was found su%cient, and the image po-
tential did not show any corrugations. This model is
called the smooth-mirror model. In order to study the
possibility of positron trapping into vacancy-type defects
on surfaces, the so-called corrugated-mirror model was
found more realistic. In this model the mirror image po-
tential shows the same corrugations as the electron densi-
ty.

The calculation of the positron lifetime for the surface
state must also be performed beyond the LDA. The
method (Nieminen et a/. , 1984) consistent with the above
correlation-potential description is to use the LDA for
the annihilation rate in the solid and near the surface,
where the LDA is also used for the correlation potential.
In the region of the image potential, the positron is a
bare particle, and therefore the annihilation rate is sharp-
ly reduced in this region.

Jensen and Walker (1988) have introduced a theory
that goes beyond the LDA in the electron-positron corre-
lation and thereby is able to join smoothly the LDA re-
gion inside the solid to the mirror image region far out-
side the surface. This theory is based on the weighted
density approximation (WDA) by Gunnarsson et al.
(1979}. In the Jensen-Walker theory the total-energy
functional [Eq. (66)] of the electron-positron system is
used with the electron density no (r) of the system calcu-
lated without taking into account the in6uence of the
positron. The electron-positron correlation-energy func-
tional is given as

(91}

where zg(r, r', n +n, A, ) is the displaced charge pair-
correlation function and A, scales the positron-electron in-
teraction from the vanishing interaction A, =0 to the full,
actual interaction A, = l. The screening cloud (induced
electron density) around the positron at r' is given by

n, (r, r', l, l=n (r)[ g(dr, r', n +n, k) —1] . (92)

The overall neutrality of the system leads then to the sum
rule

f dA, f1m (r)[gd(r, r', n+, n, A) —1]=1 . (93)
0
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a(n ) =(1+41.87K ) (95)

The potential sensed by the positron consists of the
Coulomb and correlation parts [Eq. (77)]. The correla-
tion potential is calculated from the correlation energy as
a functional derivative 6E; ~[rt ]/5n+(r), where the
electron density is obtained by requiring that the sum
rule [Eq. (93)] be satisfied. The positron annihilation rate
is calculated as in Eq. (74) using the pair-correlation
function gd(Ir —r'I =0;n, A. =1), which is obtained
from the sum rule (93) with A, = 1, i.e., omitting the in-
tegration over A, .

Rubaszek (1989, 1991) has also made a WDA theory
for positrons. Her theory di8'ers from that by Jensen and
Walker in two main points. First, Rubaszek uses in the
pair-correlation function a screening length independent
of the parameter A, [in Eq. (94) the screening length is
a(E )/1,]. Secondly, she uses the sum rule

f«no-(r)[gd(r r' n+ n ~) il=—~ (96)

instead of that of Eq. (93).
There is an alternative model for the positron-surface

interaction. Platzman and Tzoar (1986) suggested that a
positronium atom could be physisorbed on a metal sur-
face. This model was constructed to explain the long
positron lifetimes on surfaces and the insensitivity of the
surface-state desorption energy to Ps to the changes of
the electron work function. On the other hand, the mod-
el gives 20-ACAR momentum distributions resembling
those for free positronium, being thus too narrow com-
pared to the measured distributions. Recently, the ad-
sorption of positronium on metal surfaces was studied
both experimentally (Mills et al. , 1991) and theoretically
(Martin et al. , 1991) from the viewpoint of proving that
the positronium sticking coefficient would not vanish
when temperature was lowered towards absolute zero.

D. Methods for positron states in solids

In the WDA by Jensen and Walker (1988), the exact
pair-correlation function gd(r, r', n+, n, A, ) is replaced
by gd( Ir r'I;r7, A, ), which is the pair-correlation func-
tion for a homogeneous system in the zero-posiiron-
density limit. In practice, they use the scaled positroni-
um approximation

A, exp[ k—r la(it )]
gd(Ir r—'I;r7, A, )= +1, (94)

8~[a(S )] n

where the scaling length a(8' ) is given by the interpola-
tion formula (Jensen and Walker, 1988)

n (r)=g n" (Ir —RI),
R

(97)

where R summation runs over ihe positions of the host
nuclei. The potential sensed by the positron is construct-
ed in a similar way,

V+ (r) =g Vc,„,( Ir —RI )+V„„(n(r)),

which one first solves for the self-consistent electron den-
sity, then calculates the positron wave function, and
finally determines the positron annihilation rate. (There
are difhculties with the pseudopotential methods because
they do not treat the electron density inside the ion cores
accurately. ) The positron-defect interactions can be easi-
ly studied in the "conventional" scheme (omitting the full
two-component calculation) by using either a Careen's-

function or a supercell method. The positron states at
defects in solids can also be calculated using the supercell
method. However, at least as far as the positron distribu-
tion and annihilation rates are considered, a non-self-
consistent electron density is often sufhcient in the con-
ventional scheme.

One of the more approximate methods is the so-called
Stott's pseudopotential scheme (Kubica and Stott, 1974;
Stott and Kubica, 1975). It employs the fact that the
positron wave function is isotropic around the nuclei in
the solid and that the behavior of the wave function over
the whole crystal can be described by a slowly varying
envelope function. One need therefore solve the spheri-
cal Schrodinger equation inside a Wigner-Seitz sphere for
a potentia1 which can be obtained from free-atom calcu-
lations. The envelope function is then obtained from a
Schrodinger-like equation with a weak "pseudopoten-
tial. " Moreover, in practice the envelope function is a
plane wave corrected by a low-order perturbation theory.
The details of Stott's pseudopotential scheme have been
reviewed in several articles (see, e.g. , Nieminen and Man-
ninen, 1979 and Nieminen, 1983). The scheme has been
used successfully, for example, to calculate such positron
properties as ground-state wave functions, energies, and
band masses in metals (Kubica and Stott, 1974; Stott and
Kubica, 1975; Stott and West, 1978), in insulators (Niem-
inen, 1975), and in disordered alloys (Kubica et al. ,
1975). Moreover, it has been applied to positrons and Ps
in 6uids in the context of cluster or bubble formation, re-
spectively (Nieminen et al. , 1980; Rytsola et a/. , 1984;
Tuomisaari et al. , 1986).

In the method developed by Puska and Nieminen
(1983a), the electron density of the solid is approximated
by the superposition of free-atom densities n" (r ),

In principle, all the standard methods of electronic
structure calculations for bulk solids, such as the aug-
mented plane wave (APW; Loucks, 1966), the KKR
CJreen's function (Korringa, 1947; Kohn and Rostoker,
1947), and the linear muon-tin orbital (LMTQ; Ander-
sen, 1975), can be adapted for positron calculations, in

where Vc,„& is the Coulomb potential for a free atom.
The electron density and the positron potential are calcu-
lated in the node points of a three-dimensional mesh,
which forms the smallest polyhedron capable by symme-
try to describe the potential and wave functions in the
whole lattice. The Schrodinger equation is then solved
by a numerical relaxation technique (Kimball and Short-
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ley, 1934; Puska and Nieminen, 1984) for the positron
eigenenergy and for the positron wave function at the
node points. The relaxation technique is based on the
discretization of the Schrodinger equation. In particular,
the Laplace operator 7 at a given point is written using
the values of the function at the six neighboring points.
The positron wave function and the energy eigenvalue
are determined in an iterative process. For example, in a
one-dimensional case the equations to be solved are as
follows.

(a) During the nth iteration cycle, the energy eigenval-
ue e("' corresponding to the wave function l((") deter-
mined at the mesh points indexed by j is calculated as

(n)

y(n) [@(n) 2@(n)+@(n) j+ y
~

q(n)
~

2

2h~ J J+

y ~y(n)(2

where h is the constant distance between the mesh points.
(b) The wave function is then improved by the follow-

ing step derived directly from the discretized Schrodinger
equation,

(100)

Delocalized states are obtained by using boundary condi-
tions, which continue the wave function through the po-
lyhedron surfaces. Normally, only the k =0 state is need-
ed; but by using proper boundary conditions, it is possi-
ble to calculate states corresponding to nonzero k vec-
tors. For localized states, the wave function is required
to vanish on the polyhedron surface far enough from the
center of the trap site. It is also possible to obtain (excit-
ed) states belonging to diff'erent symmetry representa-
tions (Puska and Nieminen, 1984). The binding energy at
a defect is obtained as the difFerence between the
delocalized- and localized-state energy eigenvalues. The
method converges usually "safely" towards the lowest
energy state consistent with the boundary conditions irn-

posed for the wave function. The convergence may, how-
ever, be rather slow, especially if the number of the node
points is large.

When the positron wave function and the electron den-
sity are known, the annihilation rate can be calculated
according to Eqs. (82), (83), and (85) by a numerical in-

tegration in the three-dimensional mesh. In the original
work by Puska and Nieminen (1983a) and in many suc-
cessive works, the total annihilation rate was calculated
as a sum of the contributions with valence, core, and pos-
sibly with the outermost d electrons. DifFerent enhance-
ment factors were used with the difFerent contributions,
and the enhancement factor for d electrons was even used
as an adjustable parameter. Jensen (1989) realized that
this division was not necessary, but that one could use
the total electron density in calculating the enhancement
and the total annihilation rate. Thus the electron density

15

'0
Mg

2 2

DISTANCE (a.u.)

FICz. 21. Radial electron density [4mr~n (r)] aud positron.
density [4m.r ~g+(r)~ ] around the Mg aud O nuclei in MgO.
The positron density has been arbitrarily scaled for the figure.
The self-consistent electron density as well as the positron den-
sities were obtained using the LMTO-ASA method. The non-
self-consistent electron density was obtained by superimposing
free-atom densities and averaging spherically the three-
dimensional density around the nuclei. The densities corre-
sponding to self-consistent and non-self-consistent calculations
are denoted by solid and dashed curves, respectively (from Pus-
ka, 1992).

appearing in Eqs. (83) and (85) has to be understood as
the total electron density. This LDA approach for the
total annihilation rate is related to the local-density ap-
proximation for calculating the momentum densities of
the annihilating positron-electron pairs (Daniuk et al. ,
1987; Jarlborg and Singh, 1987). The former I.DA can
be obtained from the latter by integrating over all the
momenta. The LDA formulation using the total electron
density as the only input is in accordance with the
density-functiona1 theory, which states that the total den-
sity is the physical quantity and, in principle, a division
to difFerent density contributions is not justified. More-
over, this LDA formulation is a pure ab initio method
with no adjustable parameters.

The superimposed-atom method by Puska and Niem-
inen (1983a) is fast compared to the methods that deter-
mine the self-consistent electron density first. This is true
especially for defects in solids. The superimposed-atom
method can handle defects with low symmetry, which is
important for cases in which the in6uence of the actual
defect geometry determines to a large extent the positron
annihilation characteristics.

The comparisons (Puska et a/. , 1986; Puska, 1991a)be-
tween the results obtained by using superimposed atom
method and by using self-consistent electronic structures
have shown that the positron annihilation rate is rather
insensitive to the details of the self-consistency of the
electronic structure. This is because the positron lifetime
depends on the integra1 over the product of positron and
electron densities. The positron density relaxes fo11owing
electron charge transfer, tending to conserve the value of
the overlap integral. These efFects are clearly demon-
strated in Fig. 21 for the perfect MgO lattice (Puska,
1992), in which there is a strong charge transfer from Mg
atoms to G atoms. The self-consistent electron density
and the positron states are calculated with the linear-
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muffin-tin-orbital method (LMTO) within the atomic-
spheres approxiination (ASA) (Andersen, 1975; Skriver,
1984; Andersen et al. , 1985, 1987). First a non-self-
consistent electron density (dashed line) is constructed by
superposing free Mg and 0 atoms and calculating the
spherical averages around the nuclei. The radii of the
space-filling (and therefore slightly overlapping) Mg and
0 spheres are equal. Figure 22 shows the radial electron
densities [4mr n (r)]. The total charges (electrons and
nuclei) inside the Mg and 0 spheres are about +0.5 and
—0.5 electrons, respectively. When the electron density
is relaxed to the self-consistent one (solid line), electron
charge is shifted from the Mg sphere to the 0 sphere; so
the Gnal total charges of the Mg and 0 spheres are about
+1.0 and —1.0 electrons. The positron potentials corre-
sponding to the electron densities are calculated within
the LDA [Eq. (77)]. For the non-self-consistent electron
density, there are a total of 0.476 and 0.523 positrons in-
side the Mg and 0 spheres, respectively, whereas for the
self-consistent electron density the corresponding num-
bers are 0.454 and 0.546. The nearly equal distribution
of the positron density between the Mg and 0 spheres is
due to the fact that the positron density, especially the
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FIG. 22. Electron and positron potentials and energy levels
near a metal surface. The vertical scale corresponds to the case
of Al. 6 is the dipole potential at the surface, U„,(no) is the
exchange-correlation potential in the interstitial region, and P
and P+ denote the electron and positron work functions, re-
spectively. p and p+ are the electron and positron chemical
potentials, respectively. Arrows pointing upwards and down-
wards denote positive and negative quantities, respectively
(from Puska, Lanki, and Nieminen, 1989).

radial density, is peaked around the interstitial regions.
Because the positron density follows the electron density,
the positron lifetimes calculated within the semiconduc-
tor model of screening for the non-self-consistent and
self-consistent electron densities are nearly equal, i.e., 123
and 122 ps, respectively. The superimposed atom
method with the full three-dimensional treatment of the
non-self-consistent electron density and positron wave
function gives a somewhat longer lifetime of 130 ps. This
reflects the difficulty of the ASA (with equal sphere radii)
in describing the sodium chloride structure. For fcc and
bcc metals, as well as for the diamond and zinc-blende
structure semiconductors (which are treated in ASA with
the so-called empty, interstitial spheres), the differences
in the positron lifetimes calculated by the LMTO-ASA
and superimposed atom method a"e of the order of 1 ps.

The positron energetics, on the other hand, is much
more sensitive to the self-consistency of the electronic
structure than the positron lifetime. For example, in the
atomic superposition method, the positron energy eigen-
value in a perfect bulk should be the negative of the posi-
tron work function. This result is related to the notion
that, in a similar construction of the electron potential,
the so-called Mattheiss construct (Mattheiss, 1964), the
electron work function is directly the negative of the Fer-
mi energy of the electron bands (Weinert and Watson,
1984). However, the superimposed-atom calculations
(Puska and Nieminen, 1983a) give eigenenergies that are
much too high (too negative positron work functions).
This means that the superimposed electron density at the
surface spills too much to the vacuum. One way to im-
prove the energetics in this case is through the use of
contracted atomic densities. These have been used in cal-
culating electron work functions (Weinert and Watson,
1984) and total energies of solids (Finnis, 1990; Polato-
glou and Methfessel, 1990) by using superimposed atomic
densities. This trick indeed improves the positron work
functions from the superimposed-atom calculations (Pus-
ka, 1992).

In addition to the above method for calculating posi-
tron states, the superposition of free-atom densities has
been used in various solid-state problems. Mattheiss
(1964) constructed crystal potentials for use in band-
structure calculations. The Mattheiss construction has
commonly been used for the starting potentials in self-
consistent electronic structure calculations. The super-
position idea has been used as the basis for approximate
methods for calculating the total energies of systems of
interacting particles. For example, it has been used in
the so-called efFective-medium theory (Ndrskov, 1982;
Jacobsen et al. , 1987), in which the energetics is calculat-
ed by using the immersion energies of free atoms into a
homogeneous electron gas (Puska et al. , 1981; Stott and
Zaremba, 1982). In the recent method by Harris (1985)
and Foulkes and Haydock (1989), the superimposed elec-
tron density and the corresponding e8'ective potential are
used in the calculation of the total energy of the many-
atom systeni [small molecules (Harris, 1985; Foulkes and
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Haydock, 1989), solids (Methfessel et al. , 1989; Polato-
glou and Methfessel, 1990), surfaces and defects in solids
(Finnis, 1990)]. The viability of the superimposed-atom
method was recently systematically studied in the case of
the total-energy calculations (Chetty et al. , 1991;Robert-
son et al. , 1991).

The use of the superposition of the spherical atomic
densities might at 6rst sound unsuitable for covalent
semiconductors which have directed bonds. However,
both the approximate total-energy calculations (Polato-
glou and Methfessel, 1990) and the positron lifetime cal-
culation with the method of Puska and Nieminen (1983a)
give very good results in the comparison with self-
consistent methods. In the case of positron-state calcula-
tions, this means that the atomic superposition is able to
describe well, in an average sense, both the electron den-
sity in the interstitial region and the shape of the repul-
sive potential near the ion core, thus giving the extent of
the efFective open volume available for the positron.

The relaxation method for solving the positron wave
function is not restricted to use with atomic superposi-
tion. The electron density and the Coulomb potential
can be determined on a point mesh using self-consistent
electronic structure calculations. Because the positron
wave function is relatively smooth and resides mainly in
the open regions of the lattice, an already quite sparse
mesh gives accurate results for the positron energy and
annihilation rate. This kind of approach has been used,
for example, with the LCAO (linear combination of
atomic orbitals) band-structure method (Bharathi et al. ,
1990) and the pseudopotential plane-wave approach (Ala-
talo et al. , 1993).

E. The momentum distribution of electron-positron pairs

In addition to the two-component density-functional
theory (and its approximation for localized states), a
difFerent picture can be used to describe the positron in-
teraction with its electronic environment in a solid (see,
e.g., Daniuk et al. , 1991). This picture may provide a
more elegant basis for the calculation of the momentum
distribution of the annihilating electron-positron pairs
than the two-component density-functional theory. The
reason is that, in these calculations, the single-electron
wave functions are needed; in density-functional theory,
in principle only the total densities, not the wave func-
tions, are the physical quantities. On the other hand, it
may be difBcult to fIInd "true" one-particle wave func-
tions for electrons in solids; the only practical electronic
structure calculations employ density-functional theory.
The calculated momentum distributions are compared
with the measurements of angular correlation of annihi-
lation radiation (ACAR).

In the alternative approach the positron wave function
is solved for the potential, which consists only of the
Coulomb potential due to the nuclei and the electron
density, which is not perturbed by the positron. The
positron-electron correlation efFects are taken into ac-

count only when calculating the annihilation characteris-
tics, the momentum distribution of the annihilating
electron-positron pairs and its integral, and the total an-
nihilation rate. Thus one writes for the momentum dis-
tribution

p(P) =g I f«e "'y (r, r) I', (101)

where P is the total momentum of the annihilating pair.
f;&(r, r') is the two-particle wave function approximated
as

1l;.~(r, r') =P+(r)g;(r')Qg;(r), (102)

where f+(r) and g, (r') are the positron and electron
wave functions calculated without positron-electron
correlation efFects. The i summation in Eq. (101) is over
all occupied electron states. The correlations are includ-
ed via the function g;(r), which describes the distortion
of the positron wave function from g+(r) as well as the
enhancement of the electron density at the positron for
the electron state i. The total annihilation rate can be ob-
tained by integrating over all momenta,

3 fdPp(P)
(2m )

(103)

The correlation function g;(r) in Eq. (102) should be
calculated using many-body techniques. The simplest ap-
proximation is the IPM, in which correlations are omit-
ted altogether: g;(r)=1. As a matter of fact, the IPM
gives a rather good description for the momentum distri-
bution p(P) for valence electrons in simple metals. This
is because the momentum dependence of p(P) due to
electron-positron correlation is not very strong for the
valence electrons (Kahana, 1960, 1963). The electron-
positron correlations cancel, in part, the efFects due to
electron-electron interactions. A simple step beyond the
IPM is to use the momentum-dependent enhancement
function e(P, r, ) (Kahana, 1960, 1963) for the homogene-
ous electron gas as the correlation function (Mijnarends
and Singru, 1979)

gg; (r )=e( Q eg; IEFkF, r~ ), ' (104)

g„;(r)=e(Qe„;Iezk„,r, (r)), (105)

where r, (r)=[4m.n (r)/3] '~ depends on the electron

where e&; is the energy of the electron in state i and
momentum k, and ez is the Fermi energy. Both of these
energies are measured from the bottom of the conduction
band. Above, r, corresponds to the average electron den-

sity of the solid, and thus there is no r dependence in the
correlation function. The r dependence can be reintro-
duced by using a position-dependent r, parameter
(Daniuk et al. , 1987; Jarlborg and Singh, 1987). One
then obtains the following equation in LDA,
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p(P ) =2 g f(&,k) I ~.(k, p) I'
n, k

A„(k,p) =5(P—k —K)

(106)

density at point r. This LDA correlation function has
also been used in the case of core states that lie below the
bottom of the conduction band by substituting zero for
the electron momentum (Daniuk et al. , 1989, 1991).
Thus g&;(r) =e(0, r, (r) ) for core states.

Taking the periodicity of the perfect crystal lattice into
account, the momentum distribution of Eq. (101) can be
written as

for comparison with experiments, are related to the
three-dimensional momentum distribution through par-
tial integrations. The one-dimensional ACAR curve is
obtained as

p(O, )-f dP fdP p(P„,P,O, m, c), (108)

where 0, corresponds to the deviation of the angle be-
tween two annihilation gamma from 18O . For the free-
electron gas, for which the density of states is constant in
the momentum space and the electron states are occupied
up to the Fermi level, the one-dimensional ACAR curve
in the IPM is an inverted parabola,

X f dre ' 'f+(r)@„z(r)Qg„z(r), (107) p(8, )-[kF—(8, m, c) ] . (109)

where f(n, k) is the Fermi function (the factor 2 is due to
the spin degeneracy), @„&(r)is the electron Bloch state
with band index n and wave vector k, Q is the volume of
the primitive unit cell, and K denotes a reciprocal-lattice
vector such that P —k lies in the first Brillouin zone. The
parts of the ACAR spectra, for which K is nonzero, are
called umklapp components. The practical importance
of the umklapp components lies, for example, in the no-
tion (Haghigli et al. , 1991a, 1991b) that Fermi breaks in
Eq. (106) may be seen more clearly in the region of a cer-
tain umklapp component than near the central peak cor™
responding to K=O. Moreover, calculations show that
the umklapp components of the ACAR spectra are more
sensitive to the approximations of the theory than the
K=O component, and therefore they are good test ma-
terial for diferent theoretical approaches. For example,
Sorman and Sob (1990) have studied the eff'ects due to the
approximations in the positron potential. Sorman (1991)
has demonstrated the sensitivity of the positron wave
function to the anisotropy. Sorman and Sob (1990) have
also shown that the enhancement for the umklapp com-
ponents may be smaller than for the K=O component.
Moreover, Singh and Jarlborg (1985) have developed a
method to correct efFectively the e6'ects of the ASA in the
LMTO calculations for the umklapp components.

The one- or two-dimensional ACAR curves, relevant
I

In addition to the conduction-electron contribution,
which is described reasonably well by the above parabola
in the case of simple metals, there is a broad Gaussian-
type contribution in the ACAR curves. This contribu-
tion results from the annihilation with core electrons and
from higher momentum (umklapp) components of the
conduction electrons. The core and umklapp com-
ponents can be partially separated using the Lock, Crisp,
and West construction (Lock et al. , 1973; Lock and
West, 1975), but their unambiguous determination is, in
practice, difBcult.

There are two earlier approximations in which the
momentum distribution was determined directly from the
electron density so that individual electron wave func-
tions were not needed. Brandt (1967) suggested that the
one-dimensional ACAR curve be calculated in a local ap-
proximation in which a free-electron parabola corre-
sponds to the electron density at every point,

p(O, )-fdrIP+(r)I A[n (r)][k~(r) —(O, m, c) ] .

(110)

In the so-called mixed-density approximation (Arponen
et a/. , 1973), the nonlocal character of the momentum
distribution is partly taken into account by writing for
the partial annihilation rate at momentum P

A(P)- fdr fdr'e' " "g+(r)g+(r')g [kz[(r —r')/2]Ir —r'I I QA[n (r)]A[n (r')],

where g is related to the electron-electron pair-
correlation function

IV. POSITRON STATES IN SOLIDS:
RESULTS AND DISCUSSION

3g(z)= [sin(z) —zcos(z)] .
Z3

The mixed-density approximation has recently been used
in the superimposed-atom method, and ACAR curves for
positrons trapped at Al surfaces have been calculated
(Brown et al. , 1988).

A. Deiocaiized positron states in perfect solids

As discussed earlier, the two-component density-
functional theory for electron and positron densities in
solids simplifies considerably if the positron wave func-
tion is delocalized over the whole crystal lattice. Calcu-
lations obeying exactly the principles of the two-
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component theory are therefore easy to perform with
some standard electron band-structure codes. In the case
of metals, one obtains for the positron properties fi'rst

principe/es results, which are a8'ected only by the LDA ex-
change and correlation functionals calculated for a posi-
tron in a homogeneous electron gas. In the case of semi-
conductors, one can use the model by Puska, Makinen,
et al. (1989), but the results are semiempirical in the
sense that the screening model relies on the measured
dielectric constants of the solids. In Secs. IV.A. jl and
IV.A.2, we shall discuss the erst pri-nciples results for the
positron energetics and thereafter, in Sec. IV.A.3, those
for the annihilation rates in perfect solids. Comparisons
with experiments serve as good tests for the approxima-
tion made, especially for the main approximation, LDA.

1. Positron and electron energy levels in solids

The positron energetics in perfect solids can be charac-
terized by two measurable quantities, the positron work
function and the positronium formation potential (see,
e.g., Schultz and Lynn, 1988). A useful theoretical con-
cept which arises in this context is the positron amenity.
The positron work function depends on the properties of
the surface, whereas the positronium formation potential
is a pure bulk property. A related quantity is the posi-
tron deformation potential, which was encountered in
Sec. II.B dealing with positron difFusion in solids. The
relations of the work functions and the positronium for-
mation potential with the more theoretical concepts of
the electron and positron energetics are discussed in the
next paragraphs, after which results of actual calcula-
tions are reviewed. The positron deformation potential is
dealt with in Sec. IV.A.2.

It is important in the discussion of absolute electron
and positron energy levels that a common reference level
be uniquely defined for both electrons and positrons. The
band-structure calculations refer to perfect inIIinite lat-
tices without a surface. Therefore the energy levels in
the calculations are measured relative to an internal
quantity, the so-called crystal zero. For instance, the
electron (p ) chenucal potential is defined (see Fig. 22)
as the distance of the Fermi level from the crystal zero.
Similarly, the distance of the lowest positron energy level
(ltt, +) from the crystal zero is the positron chemical po-
tential (p+). The crystal zero is related to the Coulomb
potential and it can be defined, for example, as the aver-
age electrostatic potential in the in6nite lattice, or the
average value of the electrostatic potential on the surface
of the Wigner-Seitz cell. In the atomic spheres approxi-
mation (ASA), the results of which are reviewed below,
the crystal zero is the Coulomb potential far away from a
single atomic sphere (for neutral spheres, which are used,
for example, for fcc and bcc metals, the Coulomb poten-
tial vanishes at their boundaries).

When the solid is considered to have a surface facing
the vacuum, the distance from the electrostatic potential
level, which a test charge feels in the vacuum (the vacu-

gEAB EA EB A B+ A B (113)

This equation describing the behavior of the positron
energy level in diIIFerent regions of an inhomogeneous

Electrons
Q~

Crystal zero

Fermi level

cn -5—
d3

LLI -10—

V
„

(r) = V
,
(r) + V (r)

5

Positrons

I 0-
Crystal zero

-10—
Bottom of

Lovrest band

V, (r) = -V,„,(r) + V„„„(r)

FIG. 23. Electron and positron potentials and energy levels
near a junction of two metals. The vertical scale corresponds to
an Al-Zn junction. See also the caption of Fig. 22 (from Puska,
Lanki, and Nielninen, 1989).

uin level), to the crystal zero is the surface dipole 6 (see
Fig. 22). An electron and a positron feel the same surface
dipole, but the effects to the energy positions are opposite
due to the opposite positron and electron charges. The
surface dipole depends on the electronic structure of the
surface, especially on the spilling of the electron density
into the vacuum. It also depends on the presence of ad-
sorbates. The electron work function P is the distance
between the absolute Fermi level and the vacuum level.

In the case of positrons, one need solve only the lowest
energy state. The position of this energy level relative to
vacuum defines the positron work function P+. The
magnitudes of the surface dipole and the chemical poten-
tials are linked to the definition of the crystal zero. How-
ever, the electron and positron work functions are calcu-
lated as P =6—p and P+= —5—p+ and do not de-

pend on the position of the crystal zero.
Figure 23 shows the electron and positron energy lev-

els in the case of two metals in contact. The Fermi levels
equalize themselves over the interface as a result of the
formation of an interface dipole with a potential
difFerence of 5=IM" —p . The positron feels this poten-
tial; therefore the difFerence between the lowest positron
energies on the di8'erent sides of the interface is given by
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solid shows that it is useful to de6ne the following quanti-
ty, which is a bulk property of a given homogeneous ma-
terial (not related to the interface between two materials),

(114)

This sum is called the positron affinity. The sign conven-
tion here is such that the more negative the positron
amenity is, the deeper will be the positron energy level in
the solid. According to this definition, the difFerence [Eq.
(113)] of the positron energies between two materials in
contact is

gEAB g A gB+ + +

The positronium formation potential Pp, is the nega-
tive of the maximum kinetic energy of Ps atoms ejected
from the solid into the vacuum (see, e.g., Schultz and
Lynn, 1988). The positronium formation potential is re-
lated to the positron amenity. Ps is not stable in bulk met-
als or semiconductors, but is formed near the surface
when a delocalized positron leaves the solid. The extrac-
tion of a thermalized positron and a Fermi-level electron
costs the sum of the two work functions. When forming
Ps outside the surface, the binding energy of Ep, =6.8 eV
is gained. The energy balance gives for the Ps formation
potential

ep.=k-+0+ —Ep.
= —A+ —Ep, . (116)

In order to obtain the positron (or electron) work func-
tion, one should be able to calculate the surface dipole b, .
On the other hand, 6 can be eliminated when calculating
the positron work function by using the experimental
electron work function P

(117)

Thus the positron work function can also be expressed in
terms of the positron aKnity A +.

Calculated positron afBnities for several elemental met-
als and semiconductors are shown in Fig. 24 (Puska, Lan-

ki, and Nieminen, 1989). The results were obtained by
using the LMTO-ASA method. The lattice structures
and lattice constants used in the calculations are given in
reference (Puska, Lanki, and Nieminen, 1989). The posi-
tron amenities were calculated for a smaller set of metals
by Boev et al. (1987) using the LMTO-ASA method and
by Farjam and Shore (1987) using the spherical cellular
model. The positron afFinity is also a useful quantity for
compounds, such as composite semiconductors, interme-
tallics, carbides, and nitrides (Brauer et al. , 1992; Puska
et al. , 1993).

The positron amenity for the elemental metals is a nega-
tive quantity, and its magnitude rises from the center of
the transition-metal series towards left and right. In the
case of alkali metals (bcc lattices), the distances between
the positive ions are relatively large, and the small
Coulomb repulsion felt by positrons in the interstitial re-
gion results in strong (large negative) positron affinities.
In the group-IV semiconductors Si, Ge, and u-Sn, the
bond distances are short; but due to the diamond struc-
ture there are large open interstitial regions where the
positron resides (see Fig. 1) and, as a consequence, the
afBnities are also strong. Alkali metals and diamond-
structure semiconductors are therefore predicted to be
materials from which free-positron or Ps-atom escape is
not possible. Around the middle of the transition-meta1
series the bonding d-electron states are filled and the anti-
bonding states are unoccupied. Therefore the lattice con-
stants [bcc (left) or fcc (right) lattices] of these metals are
relatively small. The positron chemical potential there-
fore has a high value. Because the electron chemical po-
tential is due to the filling of the d states also at a high
position, the magnitude of the positron afBnity is small.
Thus these transition metals have a large negative posi-
tron work function, which implies that they are eIIBcient
positron moderators for the slow-positron beams.

The positron amenities have been measured directly by
reemitted-positron spectroscopy (Gidley and Frieze,
1988). Moreover, the positron affinities can be deduced
from the measured positronium formation potentials via
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FIG. 24. Calculated positron affinities A+ (eV) for elemental metals and group-IV semiconductors (from Puska, Lanki, and Niem-
inen, 1989).
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Eq. (116). The experimental positron affinities are com-
pared with the measured ones in Fig. 2S. This gives an
idea of the reliability of the theoretical approach. The
experimental and theoretical amenities obey the same
trends, and the quantitative agreement is very satisfacto-
ry, considering the fact that the calculation contains no
adjustable parameters. A general feature seems to be
that for the bcc metals on the left-hand side of the
Periodic Table the experimental affinities are slightly
larger than the theoretical ones, whereas for the fcc met-
als on the right-hand side of the Periodic Table the situa-
tion is reversed. From the calculated positron amenities

the positron work functions for different metal surfaces
can be determined, with the help of Eq. (117), using ex-
perimental electron work functions. This was done by
Boev et al. (1987); the results are reasonably good when
compared with measured positron work functions. A
more consistent way to determine the positron work
functions from the calculated afFinities would be the use
of theoretical (Skriver and Rosengaard, 1991) values for
the electron work functions.

4~
~~
~gg

C0
IIII

lO
Q

CL

Experiment
— Theory

ij&?,,

Experiment
Theory

FIG. 2S. Comparison of theoretical and experimental positron
afBnities: (a) The experifnental values were measured directly
using reemitted-positron spectroscopy (Gidley and Frieze,
1988). {',b) The experimental values were deduced from the mea-
sured (Wilson, 1983; Wilson and Mills, 1983; Howell et aI.,
1987a, 1987b) positronium formulation potentials by Eq. (116).
From Puska, Lanki, and Nieminen (1989).

V„„(r)=,'al(r +r—, )— (118)

where a is the atomic polarizability. At large distances,
this equation coincides with the exact result for a point
charge and a polarizable atom. At short distances, the
correlation potential differs slightly from that suggested
by Schrader (1979), the main improvement of Eq. (118)
being the continuity of the derivative with respect to the
distance. The parameter r& is 6tted to give the measured
(Csullikson et a/. , 1988) positron energy-band gaps at the
L, point of the Brillouin zone. It turns out that a single
value p ] 1 ~ 7Q 0, can 6t the band gaps within the experi-
mental uncertainties. The correlation potential (118) is
also successful in reproducing (using experimental elec-
tron work functions) the observed (Gullikson et al. ,
1988) trends for positron work functions for rare-gas
solids.

The calculated positron affinities can be used to predict
whether difFerent types of precipitates in (dilute) alloys
will trap positrons. In a simpli6ed model the aIIFinity

difference between the precipitate and the host matrix
gives the depth of a potential well sensed by the positron.
%Then the radius of this well, i.e., that of the precipitate,
exceeds the critical radius (known from basic quantum
mechanics), there is a bound state for the positron at the
well. There are, however, some practical difhculties in
applying this scheme. The precipitates are usually not
formed purely by one type of atom, but they are at least
binary alloys. In order to determine the positron afBnity
for this alloy, one should calculate its self-consistent elec-
tronic structure and solve for the corresponding positron
state (Brauer et al. , 1992; Puska et al. , 1993). On the
other hand, if the lattice structures and lattice constants
of two metals forming the precipitate alloy are not very
different, a simple interpolation of the positron afBnity
from those of the constituents is justified (Puska, Lanki,
and Nieminen, 1989). The superimposed-atom method
has also been used in the context of positron trapping by
precipitates or small impurity clusters in metals
(Bharathi and Chakraborty, 1988). The drawback of this
method is that the atomic superposition cannot describe
corxectly the electric dipole potential over the interface

In the case of insulating rare-gas solids, the LDA fails
drastically to predict the positions of electron and posi-
tron energy levels. The electron band gap is underes-
timated in the LDA by approximately S0%, and the posi-
tron correlation energy cannot be described as a local
effect in an electron gas. It is rather due to the
polarization-type deformation of the charge density of
the inert-gas atoms. Recently, Puska and Nieminen
(1992a) made LMTO-ASA calculations for the rare-gas
solids. They solved the energy-gap problem by making a
self-interaction correction (SIC; Perdew and Zunger,
1981). This means that the valence bands ar'e shifted
downwards by the same amount as the SIC lowers the
valence-electron energy levels for the free atom in a LDA
calculation. For the positron correlation potential, Pus-
ka and Nieminen (1992a) used the form
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2. Positron deformation potential

The positron-acoustic-phonon interaction coupling
constant y can be calculated in the deformation-potential
approximation [Eq. (6)]. One need consider only longitu-
dinal phonons because scattering off transverse modes
vanishes due to symmetry. A longitudinal-acoustic pho-
non can be considered as successive regions with slightly
larger and smaller ion densities than the equilibrium den-
sity. The derivative in the definition [Eq. (6)] of the de-
formation potential is calculated from the change in the
(lowest) positron energy eigenvalue between two regions
of different density. This energy change is affected also
by the long-range Coulomb potential, which is due to
electron charge transfers between different density re-
gions and which maintains the constant chemical poten-
tial for the electrons in the sample. Therefore, in order
to calculate the positron deformation potential, one needs
the volume derivatives of the positron and the electron
chemical potentials in a perfect, infinite crystal:

(119)

In terms of the positron afBnity, this is given simply as

B(A+ )
(120)

The volume derivatives of the electron and positron
chemical potentials and the ensuing positron deformation
potential have been calculated by Boev et al. (1987) and
by Farjam and Shore (1987) using modern electron
band-structure methods. In the case of simple metals,
the results agree qualitatively with early estimates based
on the concepts of screened pseudoions (Bergersen et al. ,
1974). According to the simplest estimate, the deforma-
tion potential in a metal is given as Ed = ——', ez, where E'p

is the free-electron Fermi energy.
Soininen et al. (1990) deduced the deformation poten-

tial for several metals from diffusion coe%cients mea-
sured by the slow-positron method. They used Eq. (28)
with the positron effective mass of 1.5. Their measured
values for Al, Cu, Ag, and Mo are compared with those
calculated by Boev et al. (1987) in Table II. The agree-
ment is fairly good. In addition, the measured positron
diffusion coefficients for Si, 3.0+0.25 cm /s (J. Makinen
et al. , 1990, 1991) and 2.70+0.2 cm /s (Schultz et al. ,
1988) at 300 K, are in good agreement with the theoreti-
cal one of 3.05 cm2/s (Boev. et al. , 1987). The good
agreement between experimental and theoretical values
gives credence to the use of the LDA in calculating posi-
tron states and energetics in solids.

of the two phases. This potential can be essential for the
trapping properties. On the other hand, the approach of
using the positron af5nities calculated for infinite bulk
systems breaks clearly in the limit of small impurity clus-
ters.

Host

A1
Cu
Ag
Mo

Eexp
d

—6.7
—94

—11
—16

Etheor
d

—7.70
—9.45
—9.48

—14.3

3. Positron bulk lifetimes

Figure 26 (Puska, 1991a) shows the positron bulk life-
times calculated for elemental metals and group-IV semi-
conductors, using the LDA described in Eqs. (83) and
(85). For the metals, these are first-principles results,
whereas the positron lifetimes for semiconductors are
semiempirical because of the use of the experimental
dielectric constants as parameters [Eq. (85)]. The self-
consistent electronic structures and the positron states
are calculated using the LMTO-ASA method. In this
sense these lifetimes are consistent with the positron
afFinities given in Fig. 24. For the simple metals, the
agreement with measured lifetimes (experimental posi-
tron bulk lifetimes have been collected, for example, by
Seeger et al. , 1989) is very good, whereas the theoretical
positron lifetimes for transition metals are consistently
too low. The local-density approximation overestimates
the enhancement of d electrons. This seems to be the sit-
uation also in the case of II—VI compound semiconduc-
tors (Puska, 1991a) in which the cation d band is close to
the valence band.

The total annihilation rate [A,; Eq. (82)] calculated in
the LDA can be partitioned into core (A,, ) and valence
(A,, ) annihilation rates as suggested by Jensen (1989):

n, (r)
A,,=fdr n+(r)I (n (r))

n r

n„(r)
A, , = fdr n+(r)I (n (r))

n r (121)

where n, and n„are the core and valence electron densi-
ties. As a matter of fact, the division of the total electron
density into components with physical meaning is not, in
principle, possible in the density-functional theory, but
this kind of division is common practice. Further, Jensen
(1989) defined the enhancement factors for the core and
valence annihilations as

(122)

where A,, and A.„arethe core and valence annihila-

TABLE II. Experimental (Ez"p) (Soininen et al. , 1990) and
theoretical (Ed"'") (Boev et al. , 1987) positron deformation po-
tentials. All energies are in eV.
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FKs. 26. Calculated positron bulk lifetimes ~ (ps) for elemental metals and group-IV semiconductors (from Puska, 1991a).

tion rates in the IPM; i.e., they are calculated as in Eq.
(82), but I (n) is taken without enhancement as
I ' (n)=mrocn. I.n these definitions it is assumed that
the enhancement factors do not depend on the energy of
the electron participating in the annihilation. However,
according to theory and experiments the enhancement
increases as a function of the electron energy (Arponen
and Pajanne, 1985). Therefore the enhancement factors
[Eq. (122)] are average quantities, and, in particular, the
core enhancement factors obtained in the LDA are upper
estimates of the true factors. Similarly, the true core an-
nihilation rates would be lower than those calculated
from Eq. (121). Moreover, in the above equations, one
should calculate the IPM annihilation rates using a posi-
tron wave function, which corresponds to the Coulomb
potential only (see Sec. III.E). Bonderup et al. (1979)
have presented arguments that the deep core enhance-
ment factor should be close to unity; i.e., the IPM result
holds.

For the transition metals, the core enhancement fac-
tors are typically between 2 and 3. The valence enhance-
ment factors are between 3 and 4 and, for the early tran-
sition metals like Sc, even larger. For the alkali metals,
the enhancement factors are due to the low electron den-
sity, xnuch larger, up to the value 25, for valence elec-
trons in Cs. The division into core and valence annihila-
tion rates and enhancement factors is important for the
analysis of ACAR curves. Unfortunately, the ratio be-
tween the core and valence annihilation rates cannot be
found from the ACAR curves simply by fitting with a
Gaussian and an inverted parabola function, because
both the high-moxnentum components of the valence-
electron annihilation and the core annihilation contribute
to the Gaussian part of the spectrum.

Jensen (1989) performed the first full I.DA calculations
for positron lifetimes in metals. He used non-self-
consistent electron densities and the spherical approxi-
mation. Except for the alkali metals, this does not cause
large difFerences between his results and those shown in
Fig. 26. The use of the non-self-consistent electron densi-
ties underestimates the core repulsion, increasing the

core and also the va1ence annihilation rates. The result-
ing decrease in positron lifetime in alkali metals is be-
tween 10 (I.i) and 25 ps (Cs). Daniuk et al. (1991) also
calculated positron hfetimes from Srst-principles using
non-self-consistent electron densities. They used for the
core enhancement the zero-momentum limit of Eq. (105),
whereas the valence annihilation rate was calculated ac-
cording to Eqs. (82) and (83). Their lifetimes are con-
sistently a few percent longer than those presented in Fig.
26. Sterne and Kaiser (1991) also realized the efficiency
of the LDA approach in calculating positron lifetimes.
However, they recommended the use of the IPM for the
calculation of the core annihilation rates. The IPM gives
slightly longer lifetimes for transition xnetals, which is in
better agreement with experiments, because the too large
annihilation rates with d electrons are compensated by
decreasing the core annihilation rate. However, this ap-
proach is hard to justify with physical arguments and can
lead to practical difhculties, because it requires a sharp
distinction between core and valence levels. Finally, Bar-
biellini, Cienoud, and Jarlborg (1991) made first-
principles calculations for positron lifetimes in solids us-
ing self-consistent electron densities. Their approach
difFers from the previous ones in that they do not have
the correlation part in the positron potential. Moreover,
they calculate the enhancement in the LDA using the ap-
proach by Jarlborg and Singh (1987; see Sec. III.E). The
positron lifetimes obtained for the transition metals are
longer than those shown in Fig. 26, and thereby perhaps
in slightly better agreement with experiment. On the
other hand, their positron lifetimes for alkali metals are
much shorter than those in Fig. 26 and the experimental

B. Localized positron states at vacancy-type
defects in solids

The important application of positron annihilation
methods in condensed matter are the numerous studies of
various vacancy-type defects. The relative insensitivity
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of positrons to interstitial or substitutional defects re-
stricts the types of defects observed. On the other hand,
this often makes the analysis of the measured results
much easier than that corresponding to other defect-
sensitive experiments, such as residual resistivity or inter-
nal friction measurements used for metals and deep-level
transient spectroscopy and electron-paramagnetic-
resonance measurements for semiconductors. However,
in the case of semiconductors, negative ions at interstitial
or substitutional sites can trap positrons at low tempera-
tures (Saarinen et al. , 1990). These so-called shallow
traps may have considerable efFects on positron annihila-
tion characteristics. The theoretical predictions of an-
nihilation characteristics for the defects are essential for
the analysis of positron annihilation experiments, i.e., the
identi6cation of the defects. In these studies the lifetimes
calculated for positrons trapped at defects are the most
valuable predictions.

Most of the calculations for localized positron states at
defects in solids have been based on the "conventional"
scheme in which the positron does not afFect the average
electron density around the defect (see Sec. III.A). The
full two-coInponent description has been applied in the
model system of a vacancy in jellium (spherical hole
made in the rigid positive background charge for electron
gas; Nieminen et al. , 1985; Boronski and Nieminen,
1986), and recently in a more realistic model in which the
atomic structure around the vacancy in Al is taken into
account (Wang and Zhang, 1990). Calculations beyond
the LDA have been performed in the case of spherical
holes in jellium in order to mimic large voids in metals
(Dunn et al. , 1991).

1. Results of two-component density-functional theory:
vacancies in metals

The results obtained by Boronski and Nieminen (1986)
in the two-component theory for a positron trapped by a
jellium vacancy are shown in Figs. 27 and 28. The jelli-
um density and the hole radius correspond to aluminum.
The positron potential and density are shown in Fig. 27
and the electron density in Fig. 28. The two-component
results are compared with the functions obtained in the
conventional scheme. The depth of the potential well in-
side the vacancy is, in both schemes, nearly the same. As
a matter of fact, the potential inside the vacancy contains
a constant negative component compensating the efFects

of the positron kinetic energy due to the ion cores which
are missing in the pure jellium model. Outside the vacan-
cy the two-component potential has a strong, long-range
tail, whereas the conventional potential decays rapidly to
the asymptotic value. This long-range behavior results
from the cancellation of the positron self-exchange-
correlation potential and the strong electron-positron
correlation contributions inside the vacancy in the two-
component theory, whereas outside the vacancy the self-
contribution dominates. Due to the long-range potential,
the positron is, in the two-component theory, slightly less
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localized than in the conventional scheme. Figure 28
shows that the average electron density increases essen-
tially in the presence of the positron. However, the im-
portant conclusion from the work of Boronski and Niem-
inen (1986) is that the relevant annihilation characteris-
tics can be estimated reliably by the conventional
scheme. For example, in the case of the aluminum va-
cancy, the positron binding energies are 1.87 eV and 1.59
eV for the conventional and two-component schemes, re-
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FIG. 28. Electron density at an Al vacancy in the jellium mod-
el. The results of the two-component density-functional theory
in the presence of a trapped positron (solid curve) and without a
positron (dashed curve) are shown (from Boronski and Niem-
inen, I986).

FICr. 27. Positron density ~Q+(r)
~

and the potential sensed by
the positron in the jellium-vacancy model. The parameters of
the model correspond to A1. The results of the two-component
density-functional theory (solid curves) and those of the conven-
tional scheme (dashed curves) are shown (from Boronski and
Nieminen, 1986).
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spectively. The corresponding positron lifetimes are 250
ps and 240 ps, respectively. Thus the differences are
rather small. The insensitivity of the positron lifetime is
a result of the cancellation of two effects: the average
electron density increases due to the positron, but the
local-contact-density-enhancement factor g (0;n+, n )

(short-range screening) for a finite positron density is less
than the n+ ~0 limit used in the conventional scheme.

The positron annihilation characteristics for the vacan-
cy in aluminum have also been calculated in two-
component theory with a model that treats the ion cores
and the lattice structure realistically (Wang and Zhang,
1990). In this calculation the embedded-cluster model
(Ellis, 1979; Umrigar and Ellis, 1980) is employed within
the framework of the discrete variational method (DVM;
Ellis and Painter, 1970; Rosen et a/. , 1976; Delley and .

Ellis, 1982). The results obtained for the positron density
and potential are very similar to those obtained in the jel-
lium vacancy model (shown in Fig. 27). Therefore the
positron binding energies and lifetimes also show the
same trends as the values quoted above: the more realis-
tic model gives the binding energies of 2.11 eV and 1.93
eV for the conventional and two-component schemes, re-
spectively (Wang and Zhang, 1990). The positron life-
times are 244 ps and 242 ps, respectively. However,
there is a big difference in the behavior of the electron
density inside the vacancy. The jellium model predicts
an increase in the average electron density due to the
positron trapped into the vacancy (see Fig. 28), whereas
in the discrete-ion model this increase is vanishingly
small. As a matter of fact, the jellium model overesti-
mates the electron density inside the vacancy even when
there is no positron in the vacancy. The effects of the
self-interaction corrections [cf. Eq. (84)] have been stud-
ied in both models. It is found that these corrections in-
crease the positron density inside the vacancy, but the
effects on the positron lifetime and binding energy are
relatively small.

2. Beyond the local-density approximation:
Clean vacancies and vacancy clusters

One of the important tasks of the positron theories for
solids has been the prediction of the positron lifetimes for
vacancy clusters as a function of the cluster size and pos-
sible decoration by impurities. This information has a
direct bearing on the interpretation of lifetime measure-
ments when the evolution of defect structures is investi-
gated, for example, during annealing after particle irradi-
ation or plastic deformation. The positron technique is
most useful due to its sensitivity to vacancies and small
clusters that cannot be detected by other methods, such
as electron microscopy.

Positron lifetime as a function of void size was first cal-
culated in the jellium-cavity model by Hautojarvi et al.
(1977). This work was later extended by Dunn et al.
(1991),who used the WDA theory of Jensen and Walker
(1988; see Sec. III.C). The model parameters in both of
these calculations correspond to Al. The superimposed-

600—

200 I I s I I I I I I I

6 2 4 6 8. 10
CAVITY RADIUS (A)

FIG. 29. Positron lifetime for voids in aluminum as a function
of void radius. The solid and dashed curves correspond to the
jellium-cavity model. The solid curve is a spline fit to the WDA
results by Dunn et al. (1991), and the dashed curve was calcu-
lated by Hautojarvi et al. (1977) using the LDA. The squares
were obtained using the superimposed-atom method in the
LDA by Puska and Nieminen (1983a). The nu'mber of vacan-
cies in the cluster is shown for the superimposed-atom results.

atom model (see Sec. III.D) has also been used to calcu-
late (within the LDA) positron lifetimes for vacancy clus-
ters in Al (Puska and Nieminen, 1983a). The results
from the three calculations are compared in Fig. 29. The
LDA results approach the value of 500 ps as the void ra-
dius increases. The atomic superposition gives, in the
case of very nonspherical clusters (2 and 6 vacancies),
clearly shorter positron lifetimes than the spherical
jellium-cavity model; but for the more spherical clusters
(1, 4, and 13), the results are in good agreement. In the
WDA an image-like potential term appears inside the
cavity for the larger clusters, similarly to the case of a
plane surface (Jensen and Walker, 1988). The positron is
trapped into a surface state; but because the screening
cloud of the positron is always situated near the surface
of the cavity, the positron lifetime approaches the longer
value of 56S ps. According to Fig. 29 the LDA results

0
are valid up to the void radius of about 3 A, which corre-
sponds to about seven vacancies in the cluster. The
WDA results indicate that the saturation of the positron
lifetime is complete when the void radius has grown to a
value of about 9 A.

3. Vacancies and vacancy clusters decorated with impurities

Impurity-decorated vacancies and vacancy aggregates
and gas-filled voids in metals have attracted a lot of in-
terest as systems from which new information can be
gained by the positron annihilation method. Examples of
the former are the carbon-vacancy pair in iron (Puska
and Nieminen, 1982; Vehanen et al. , 1982), nitrogen-
vacancy pairs in molybdenum (Nielsen et al. , 1982; Han-
sen et al. , 1984), and hydrogen-vacancy complexes in Al
and in transition metals (Hautojarvi et al. , 1985; Lin-
deroth et al. , 1987; Hansen et al. , 1988; Rajainmaki
et al. , 1988). The important feature of these defects is
that the impurity is located off-center in the vacancy so
that there is open space in which the positron may be-
come trapped. The positron lifetime in the vacancy-
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impurity complex is, however, shorter than that for a
clean vacancy; therefore these two different defects can
be separately identified. (Of course, if the two types of
defects coexist in the sample, the separation of the corre-
sponding components in the lifetime spectra may be im-
possible due to the small lifetime difference. ) As an ex-
ample, the lifetimes for a clean vacancy and for a
carbon-vacancy pair in iron are 175 ps and 160 ps, re-
spectively (Vehanen et a/. , 1982). Using particle irradia-
tion followed by isochronal annealing with positron life-
time measurements, it is possible to gain information
about the migration and dissociation temperatures of
different defect complexes. More quantitatively, it is pos-
sible to determine from the results the impurity-vacancy
binding energies. For example, the positron lifetime
measurements (Rajainmaki et al. , 1988) have given for
hydrogen the binding energies of 0.53, 0.57, and 1.6 eV
for vacancies in Al, Ni, and Mo, respectively. These
values are in good agreement with theoretical estima-
tions. It is also possible to analyze the actual geometry of
the impurity-vacancy defects by calculating the positron
lifetime for different atomic configurations using, for ex-
ample, the superimposed-atom method and comparing
the theoretical predictions with the measured data (Pus-
ka and Nieminen, 1982; Hansen et al. , 1984).

4. Rare-gas bubbles in metals

Among the larger defects studied by positrons, the
rare-gas bubbles in metals are the most carefully ana-
lyzed (for a review, see Nieminen, 1989). Rare-gas atoms
are introduced into a metal by, for example, neutron-
induced nuclear reactions. The rare-gas atoms preserve
their chemically inert nature also in a metallic environ-
ment. The repulsive interaction results in the segregation
of the rare-gas atoms into open volumes inside metal va-
cancies, voids, and grain boundaries. Especially at high
concentrations the rare-gas atoms play an active role.
Mobile rare-gas atoms are trapped by voids. Beyond a
critical size of the agglomerate, it is energetically favor-
able for the precipitate to start growing (Wilson et al. ,
1981). This results in the appearance of rare-gas bubbles
of different sizes. Within these bubbles the pressure may
rise to such a high value that even heavy rare gases like
Kr are in the solid state, even at room temperature. The
rare-gas bubbles can be a serious problem for fission and
fusion reactor materials, as they degrade the mechanical
properties of those materials. The materials eventually
show swelling, and their surfaces show blistering. The
important parameters required for characterizing the
rare-gas bubbles are their average size, concentration,
and the gas pressure inside the bubble. As will be dis-
cussed below, positron lifetime measurements supported
by theoretical predictions can give valuable information.

Jensen and Nieminen (1987a, 1987b) have made a care-
ful theoretical analysis of the structure of rare-gas bub-
bles in metals and the positron states and annihilation
characteristics in them. They simplified the geometry of

the problem by considering a low-index surface of the
metal faceting the rare-gas precipitate. This
simplification is justified because the positron is in a sur-
face state near the metal —rare-gas interface. The rare-
gas density profiles outside the surface were 6rst deter-
mined by molecular dynamics using proper pair poten-
tials between two rare-gas atoms (Lennard-Jones-type
pair potentials), between a rare gas and a metal atom
[effective-medium theory (Manninen et al. , 1984)j, and
between two metal atoms (semiempirical pair potentials).
Figure 30 shows an example of the He density pro61es
outside the Al(100) surface at the temperature of 300 K
and for two different average He densities. There is a
clear peak near the metal surface, giving an average
closest separation between the metal surface and the He
atoms. At the higher density, especially, there are clear
secondary peaks in the gas phase, signaling an incipient
ordering. There is, however, no solidi6cation of the He
gas. In the case of Kr, Jensen and Nieminen found that
at high densities the Kr atoms order themselves to a fcc
solid.

The average metal —rare-gas-atom distances obtained
from molecular dynamics were used by Jensen and Niem-
inen (1987a, 1987b) in the subsequent positron-state cal-
culations employing the superimposed-atom method (Sec.
III.D). Figure 31 shows for comparison the resulting
positron wave function at an Al(100) surface with an or-
dered monolayer of He atoms and the state on a clean
surface. The small He atoms make only a local distur-
bance in the positron wave function. Moreover, the cal-
culations show that through the polarization interaction
the He atoms increase the positron binding energy and
thereby stabilize the surface state. The positron-
annihilation-rate calculations shows that the gas atoms
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FICx. 30. He density profiles perpendicular to an Al(100) sur-
face at 300 K, calculated by using molecular dynamics. The
surface Al atoms are at z=0. The profiles are shown for two
different average He densities (from Jensen and Nieminen,
1987b).
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the sample is in the bubbles, the bubble concentration is

3X
c, =

4&r nb
(123)

FKx. 31. Positron wave function at (a) a clean A1(100} surface
and at (b) an A1{100)surface with an ordered monolayer of He.
The adsorbed atoms sit above the fourfold hollo~ sites. The
cross sections shown are through a fourfold hollow site (from
Jensen and NieIninen, 1987a, 1987b).

where Xg is the number of gas atoms introduced divided
by the volume of the sample, r is the bubble radius, and
nb is the gas density inside the bubbles. The bubble con-
centration can be eliminated via ~=vc, [Eq. (32)] if the
speci6c trapping rate v is known. For example, Eldrup
and Jensen (1987) used the semiempirical relation for
large voids (r ) 5 A),

v=(l/Mr+1/Br ) (124)

contribute additively to the total annihilation rate.
Therefore, for a given density, the annihilation rate cor-
responding to the actual positions of the atoms at the in-
terface can, to a good accuracy, be obtained by interpo-
lating from the results for ordered stre. ctures. The result
is a linear dependence of the positron lifetime on the
rare-gas density inside the bubble. This is shown in Fig.
32 and compared with experimental results (Jensen,
Eldrup, Pedersen, and Evans, 1988) in the case of Kr
bubbles in Cu. The Kr densities for the experimental re-
sults are obtained by measuring the bubb1e radii with a
transmission electron microscope and using the equilibri-
um bubble pressure (p=2y/r, see below) and the equa-
tion of state for the different annealing temperatures.
The agreement between the theoretical and experimental
results is very good.

The positron lifetime results for rare-gas bubbles in
metals can be analyzed to give the average bubble size
and concentration. This can be done in two difFerent
ways depending on the sample conditions for positrons.
In the erst case the trapping into bubbles is not saturat-
ed, and both the positron lifetime at the trapped state zb
and the trapping rate a. can be determined (see Sec.
II.C.1). Assuming that all the rare gas introduced into
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FIG. 32. Positron lifetime in a Kr bubble in Cu as a function of
Kr density at 300 K. The solid circles and line are the theoreti-
cal values and a fit to them, respectively (Jensen and Nieminen,
1987b) ~ The crosses are the experimental values (Jensen,
Eldrup, Pedersen, and Evans, 1988).

where 3 and B are constants. Substituting the concen-
tration c, in Eq. (123) and calculating the density nI, from
the measured positron lifetime v.

b using the linear
theoretical dependence (e.g., that in Fig. 32), one can
solve for the bubble radius. The radius then gives the
bubble concentration via Eq. (123).

In the second case the trapping into the gas bubbles is
saturated and one needs additional assumptions in the
analysis. If the bubbles are in thermal equilibrium with
the metal matrix, the following macroscopic relation
holds between the bubble radius and the internal pressure
p&

where y is the surface energy of the metal. The pressure
can be replaced by the gas density using the equation of
state. Employing again the linear theoretical dependence
between the gas density and the positron lifetime, one ob-
tains directly the bubble radius and concentration.

In the case of small bubbles (or vacancy-impurity com-
plexes), the positron lifetime in the trap depends both on
the gas density in the trap and on the radius of the trap.
The trapping coe%cient is also expected to depend on
these two parameters and not only on the radius. Be-
cause these functions are not well known, the analysis of
the small bubbles is dificult.

This type of analysis has been performed for He in Al
(Jensen, Eldrup, Singh, and Victoria, 1988) and in Ni
(Amarendra et al. , 1992), as well as for Kr in Cu and Ni
(Jensen, Eldrup, Pedersen, and Evans, 1988). As an ex-
ample, Fig. 33 shows the radii and concentration of He
bubbles in Al as a function of the annealing temperature
of the sample (Jensen, Eldrup, Singh, and Victoria, 1988).
The positron lifetime results are compared to those ob-
tained using transmission electron microscopy. The re-
sults are in good agreement. Thus positron lifetime mea-
surements provide a powerful method for characteriza-
tion of gas bubbles over a wide range of bubble radii and
concentrations.

Dunn et al. (1990) have calculated positron lifetime in
rare-gas bubbles, preserving the spherical shape of the
bubbles. This was done by using the positron pseudopo-
tentia1 technique for gas atoms and the jellium model for
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FICx. 33. Radii and concentrations of He bubbles in Al for
different experimental conditions. The values correspond to
bubbles annealed at T,„„afterthe introduction of He at lower
temperatures. The solid symbols denote values from positron
lifetime analysis, and the open symbols correspond to transmis-
sion electron microscope data (from Jensen, Eldrup, Singh, and
Victoria, 1988).

the metal matrix. The calculations reproduce the linear
dependence of the positron lifetime on the rare-gas densi-
ty, in agreement with the results by Jensen and Nieminen
(1987a, 1987b) for planar metal-gas interfaces.

5. Defects in semiconductors:
electronic and ionic structures

The electronic structure of vacancy-type defects in
semiconductors is much more complicated than that in
metals (for reviews, see Bourgoin and Lannoo, 1983; Pan-
telides, 1986). A characteristic feature is the strong cou-
pling between the electronic structure, which depends on
the charge state, and the ionic configuration around the
defect. For example, the strong lattice relaxation around
a vacancy in silicon results in an "Anderson negative U"
system; i.e., the vacancy does not bind a single localized
electron, but the occupancy of the deep level can change
from zero to 2 (Baraff' et a/. , 1980). Another example is
served by the metastable EL2 defect in GaAs. In most of
the models for EI.2, atomic displacements occur as a re-
sult of electronic excitation. This is true, for example, for
the model presented by Chadi and Chang (1988a) and
Dabrowski and SchefHer (1989).

According to current understanding (for reviews, see
Bourgoin and Lannoo, 1983; Pantelides, 1986), the relax-
ation of a vacancy in a semiconductor depends on the
charge state of the vacancy through the number of local-
ized electrons in the deep levels in the band gap. The
deep levels in the band gap correspond to p-type wave
functions formed by the hybridization of the four dan-
gling bonds at the vacancy. The occupation of the deep
levels depends on the position of the Fermi level. The
Fermi-level positions at which the occupation changes
are called the ionization levels. %'hen there are no elec-
trons in the deep levels, the relaxation is symmetry con-

serving; i.e., there is only a breathing component in the
relaxation. If there is one electron in a deep level, a
tetragonal relaxation connected with the Jahn- Teller
effect lowers the symmetry so that the atoms nearest to
the vacancy move closer to each other: there is a pairing
component in the relaxation. The second electron added
can, due to the spin degeneracy, occupy the same spatial
state as the first one. Therefore the symmetry does not
change, but the magnitude of the relaxation is usually
larger. Figure 34 shows the displacements of the atoms
nearest to the vacancy in this case. The total displace-
ment is divided into a breathing (b) and a pairing (p)
component. The third bound electron has to occupy a
spatially different state as the two previous ones, and it
causes a further lowering of symmetry. The relaxation is
a mixture of tetragonal and trigonal relaxations, and the
displacements can no longer be described by the two-
cornponent vector scheme of Fig. 34.

In the interpretation of the positron annihilation re-
sults for defects in semiconductors, the most important
electronic and atomic structure parameters are the posi-
tions of the ionization levels in the band gap, the forma-
tion energies of the different native defects, and the posi-
tions of the atoms near the defect. These parameters are
difficult to determine experimentally. However, there are
several works in which the ionization levels have been
determined from first-principles electronic structure cal-
culations employing several different practical techniques
and different levels of approximations. For example, the
ionization levels have been calculated for vacancies, an-
tisite defects, and self-interstitials with Green s-function
methods using pseudopotentials (Baraff and Schliiter,
1985) or LMTO basis (Puska, 1989); with the tight-
binding recursion method (Xu, 1990; Xu and Lindefelt,
1990); or with the pseudopotential supercell method (Jan-
sen and Sankey, 1989; Jansen, 1990). All these calcula-
tions assume ideal defects; i..e., the lattice relaxation
around the defect is not taken into account. Only very
recently have the ionization levels been calculated allow-
ing for lattice relaxation (Zhang and Northrup, 1991).

FICx. 34. Nearest-neighbor relaxations associated with a tetrag-
onally relaxed vacancy in a semiconductor. The components of
one relaxation vector are shown; b denotes the breathing mode
and p the pairing mode. They both lie in the (110)plane shown.
The directions of the vectors correspond to the negative As va-
cancy calculated by Laasonen et al. (1992), but the lengths are
scaled by a factor of 2.5.
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The different calculations are in qualitative agreement,
but there exist some discrepancies which are important
with respect to the interpolation of the positron annihila-
tion results. For example, according to some calculations
(Baraif and Schliiter, 1985; Zhang and Northrup, 1991)
the As vacancy in GaAs exists only in the positive charge
state, whereas other calculations (Jansen and Sankey,
1989; Puska, 1989; Xu and Lindefelt, 1990) also show the
neutral and negative charge states. This is an important
problem because the positive vacancy cannot bind a posi-
tron. As a matter of fact, the positron lifetime measure-
ments have been used in a quantitative determination of
the ionization levels for the As vacancy in GaAs (Corbel
et a/. , 1988; Saarinen et a/. , 1991).

In order to find the equilibrium defect concentrations
at finite temperatures, the defect formation energies are
needed. Unfortunately, the calculation of the defect for-
mation energies has been until recently a very diff'][cult

problem for the density-functional theory. This is be-
cause these energies are determined as small differences
between the total energies of the different systems, and
the total energy is sensitive to the difFerent approxima-
tions made in the calculation of the electronic structure
(Drittler et a/. , 1991). In the case of semiconductors, the
lattice relaxation around the defect is important and
should be taken into account, as is done, for example, by
Zhang and Northrup (1991).

The calculation of the ionic positions, i.e., the relaxa-
tions, for a given state of the defect is a demanding task,
and only very recently have these kinds of calculations
been performed fully self-consistently without any point-
symmetry requirements around the defect. For example,
Antonelli and Bernholc (1989) calculated the electronic
and ionic structure of the vacancy in Si using pseudopo-
tentials and a 32-atom supercell. They found that the
nearest neighbors of the vacancy relax inwards towards
the center of the vacancy, and the radial component of
the relaxation is 2.8% of the bond length. Wang «&/.
(1991)also found inward relaxation for the Si vacancy us-

ing tight-binding molecular dynamics: the relaxation
occurs in pairs approximately along [110] directions, as
in Fig. 34, and the magnitude is very large, about 21% of
the bond length. The effects of the change of the charge
state were not considered in these recent studies. The in-
ward relaxation is in disagreement with earlier theoreti-
cal predictions (Baraff et a/. , 1980; Scheffler «a/. , 1985)
and with experimental results for vacancy-P pairs in Si
(Samara, 1988, 1989). The large scatter in the theoretical
results reflects the difFiculties in these kinds of calcula-
tions. Approximations in the potential and in the wave-
function basis sets, as well as in the finite size of the su-
perceH, may cause large errors in the relaxations.

Recently, Laasonen et a/ (1992) studi. ed the electronic
properties and the corresponding ionic relaxations of va-
cancies in GaAs using the so-called Car-Parrinello
method (Car and Parrinello, 1985). They showed that
the relaxation of the vacancy may change considerably
between difFerent charge states. The results of this work

are reviewed below in the context of positron lifetime cal-
culations (Laasonen et a/. , 1991), which were performed
on the basis of the atomic positions obtained.

6. Defects in semiconductors: positron states

Before reviewing the results of positron-state calcula-
tions for defects in semiconductors, let us discuss a fun-
damental effect that may affect the positron annihilation
in these systems (Alatalo et a/. , 1993). This eff'ect is
based on the fact that at the defects in semiconductors
there are localized electron states which, depending on
the charge state, may be partly occupied. If the occupa-
tion is an odd number, there is a localized unpaired elec-
tron and the defect has a net spin. When a positron is
trapped by this kind of defect, a system resembling the Ps
atom is formed. The positron and the unpaired electron
may have their spins parallel (ortho state) or antiparallel
(para state). Because the selection rules of quantum elec-
trodynarnics forbid the two-gamma annihilation in the
ortho state, the positron annihilation in the ortho state
may occur only with the spin-compensated electron den-
sity ("pickoff" annihilation). For the para state, annihila-
tion also occurs with the unpaired electron. As a result
the positron trapping at this kind of "paramagnetic" de-
fect should lead to two lifetime components. Alatalo
et a/. (1993)estimated, using the electron structures from
the Car-Parrinello and the LMTO-ASA Green's-function
methods, the size of the effect in the case of the negative-
ly charged vacancy in Si and in the case of the neutral As
and doubly negative Ga vacancies in GaAs. The
difFerence in the positron lifetime between the ortho and
para states is of the order of 20—30 ps. This splitting is
so small that the two lifetime components are expected to
be mixed (averaged) in the present positron lifetime mea-
surements. The mixing of the ortho and para com-
ponents also means that the theoretical counterpart is the
usual LDA annihilation rate.

The positron states in ideal vacancies in semiconduc-
tors have been calculated using both self-consistent elec-
tron densities (Puska et a/. , 1986; Puska, 1991a, 1991b)
and the superimposed-atom method (Puska and Corbel,
1988; Puska, Makinen, et a/. , 1989; Puska, 1991a,
199lb). All these calculations employ the conventional
scheme; i.e., the localized positron does not afFect the
average electron density. As an example of the wave
functions, Fig. 2(b) shows the state in the Si vacancy.
The wave function is rather delocalized as compared to
similar plots for metal vacancies: there is a clear tend'en-

cy for the wave function to leak into the interstitial re-
gions. The rather weak localization is rejected in the
small positron binding energies and small lifetime in-
crease from the bulk value in semiconductors relative to
metals. The lifetimes and binding energies are shown in
Table III for vacancies in Si and GaAs as obtained by us-
ing the local-density approximation with the reduced-
screening model [Eq. (85)]. The values (Puska, 1991a,
1991b) in the column rsc were obtained by using self-
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TABLE III. Positron lifetimes for vacancies in Si and GaAs.
The theoretical results (from Puska, 1991a}for ideal vacancies
obtained by using self-consistent (~sc) and non-self-consistent
( 1"Nsc ) electron structures are compared with experimental
(~'"p} lifetimes. The self-consistent calculations were performed
using the LMTO-ASA Green's-function method, whereas the
non-self-consistent results were obtained using the three-
dimensional superimposed-atom method. The experimental re-
sults for the Si vacancies actually refer to Si vacancy-P pairs.

Vacancy

Bulk Si
V;
y

—1

Bulk GaAs
0VG,

y —1

~A.
~A.'

pc
(ps)

221
249
251
230
262
263
263
265

Esc
b

(eV)

0.81
1.08

1.08
1.26
0.75
1.00

+SC

(ps)

218
250

224
254

256

ENSC
b

(eV)

0.36

0.44

0.24

exp

220'
268b
250b
232'
260'

295'
260'

Experimental lifetimes quoted by Puska, Makinen, et al. , 1989.
Makinen, Hautojarvi, and Corbel, 1992.

'Hautojarvi et al. , 1986.
dCorbel et al. , 1990, 1992.
'Corbel et al. , 1988.
Saarinen et al. , 1991.

consistent electronic structures calculated by the
LMTO-ASA Green's-function method (Puska et al. ,
1986), whereas the values (Puska, 1991a, 1991b) denoted
by ~Nsc were obtained by using non-self-consistent elec-
tron structures in the superimposed-atom method (Puska
and Nieminen, 1983a).

Table III shows that in the case of GaAs the self-
consistent electron structures lead to somewhat longer
positron lifetimes in bulk and in vacancies than the non-
self-consistent ones, whereas for Si both methods give
very similar results. This di8'erence between GaAs and Si
is due to the charge transfer from Ga atoms to As atoms.
The dependence of the positron lifetime on the charge
state is weak in the LMTO-ASA Green's-function model.
This is because the changes in the lattice relaxation are
ignored and because the total electron density does not
change radically between the diferent charge states. The
positron state follows the small changes in the electron
density, so that the total annihilation rate is nearly unal-
tered. In contrast to the lifetime, the positron binding
energy to the defect depends on the charge state and the
self-consistency of the electron density (see Table III).
According to the LMTO-ASA Green's-function calcula-
tions (Puska et al. , 1986), the binding energy depends
nearly linearly on the number of the bound electrons in
the deep levels. The binding energies obtained with the
self-consistent electron densities are larger (by a factor of
more than 2) than those from the atomic superposition
method. This reAects the charge transfer from the inter-
stitial regions to the bonds between the atoms (Puska,
1991a).

The theoretical positron lifetime for the ideal Ga va-

cancy in GaAs agrees well with the measured one
(Hautoja, rvi et al. , 1986; Corbel et al. , 1990, 1992). In
the case of the Si vacancy and the As vacancy in GaAs,
the theoretical values for the ideal vacancies are close to
the shorter of the experimental lifetimes, which are con-
nected with the more negative charge states of these va-
cancies. Actually, the shorter Si vacancy lifetime of 250
ps has been found only for the vacancy-P pair (Makinen
et al. , 1989; Makinen, Hautojarvi, and Corbel, 1992).
This is not crucial, because calculations have shown
(Makinen and Puska, 1989) that the substitution of a Si
atom neighboring the vacancy by a P atom (ignoring the
changes in relaxation) increases the positron lifetime by
only 1 ps.

To reproduce the longer experimental positron life-
times for Si and As vacancies in Table III in the conven-
tional LDA model for positron annihilation requires that
the vacancies relax outwards. The e8'ects of the relaxa-
tion on the positron lifetime have been studied in the
superimposed-atom model (Puska and Corbel, 1988;
Makinen and Puska, 1989). The results show that only
the changes in the breathing-mode component a6'ect the
lifetime appreciably (Puska and Corbel, 1988). As a rule
of thumb, one can say that in Si and GaAs the outward
breathing relaxation of 1% of bond distance means an in-
crease of —3.5 ps in the positron lifetime. In the case of
the phosphorus-vacancy (P-V) pair in Si, this means that
the breathing-mode relaxation should increase from
0—5. 1 % of the Si bond length in the charge-state transi-
tion from (P-V) to (P-V) . This is in reasonable agree-
ment with the results of the DLTS measurements per-
formed under hydrostatic pressure (Samara, 1988, 1989).
They indicate that the amplitude of the relaxation in-
creases from 3.2—6. 1 %. Even the absolute numbers are
in good agreement, especially if one takes into account
the fact that the deep-level transient spectroscopy mea-
surement systematically overestimates the amplitude of
the breathing-type relaxation (Samara, 1988, 1989).

The systematics of the positron annihilation charac-
teristics has also been studied for larger vacancy clusters
in Si (Puska and Corbel, 1988) and for vacancies in
diFerent III-V compound semiconductors (Puska,
Makinen et al. , 1989). In the Si divacancy the positron
wave function is localized in a fashion similar to vacan-
cies in metals. This is illustrated in Fig. 2(c). The posi-
tron lifetime for the Si divacancy is then, by a factor of
1.4, larger than the bulk lifetime. This is close to the typ-
ical ratios of 1.4—1.6 for the vacancy and bulk lifetimes
in metals. The calculations for ideal vacancies and diva-
cancies in III-V semiconductors indicate that the posi-
tron lifetime measures mainly the extent of the open
volume seen by the positron, and this open volume is
more or less directly proportional to the unit-cell volume
of the compound in question.

Laasonen et al. (1991, 1992) have studied the positron
states and lifetimes for vacancies in GaAs using the cal-
culated relaxed positions of ions around the defects.
First, the electronic and ionic structures were obtained
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by the first-principles molecular-dynamics method of Car
and Parrinello (1985). Laasonen et a/. found that the
ionic relaxation can change strongly as the charge state
of the vacancy changes. The Ga vacancy relaxes, in both
the neutral and the different negative charge states,
slightly inwards (Laasonen et a/. , 1992). The neutral As
vacancy has a small outward. relaxation, whereas, in the
case of the negative and the doubly negative As vacan-
cies, the four nearest-neighbor Ga atoms move strongly
towards the center of the vacancy, with a large pairing
component. The rather modest relaxations for the Ga
vacancies are connected. with the fact that the wave func-
tions corresponding to the deep levels (for a neutral Ga
vacancy, there are three electrons in the deep levels) are
relatively close to the valence band and have a strongly
delocalized character. In the case of the neutral As va-
cancy, there is only one electron in the deep level, at a
rather high energy. Therefore its wave function is also
relatively delocalized, and, correspondingly, the relaxa-
tions are small. In the negative As vacancy, the common
energy level of the two deep electrons lies approximately
at the midgap, and the wave function forms clear bonds
between the Ga atoms in two pairs around the vacancy.
The states are well localized and drive a large Jahn-Teller
effect. The electron densities corresponding to the deep
levels in neutral Ga and singly negative As vacancies are
shown in Fig. 35.

Using the atomic positions from the Car-Parrinello
calculations, Laasonen et a/. (1991) determined the posi-
tron states and lifetimes w ith the help of the
superimposed-atom method. Laasonen et al. showed
that the positron energy eigenvalue lowers more than the
(elastic} electron-ion system energy rises when the
breathing-mode relaxation increases from the result ob-
tained by minimizing only the latter energy term. There
is a minimum of the sum of these two energies, meaning
that the localized positron can eventually push the atoms
slightly outwards. It is difFicult to take this effect fully
self-consistently into account. It could, in principle, be
done by adapting the positron state into the Car-
Parrinello method within the two-component density-
functional theory. Laasonen et a/. modeled the self-

trapping effects by increasing the positron mass by a fac-
tor of 1.5. The increase in the mass leads to a better lo-
calization of the positron wave function and thereby
works in the same direction as the relaxation induced by
the positron. With this "effective" positron mass, the
calculated positron lifetimes for the Ga vacancy and for
the neutral and negative As vacancies are 264, 287, and
247 ps, respectively. These numbers are in fair agree-
ment with the experimental ones shown in Table III.

Laasonen et a/. (1991) calculated, using this same
description, the positron lifetime for the As antisite de-
fect in an excited state, in which the As atom is moved
from the Ga site towards the neighboring interstitial site.
In one (Chadi and Chang, 1988a; Dabrowski and
SchefHer, 1989) of the several models for the EL2 defect,
this state is considered to be the Inetastable state to

FIG. 35. Electronic density corresponding to the highest state
of (a) the neutral Ga vacancy and (b) the singly negative As va-
cancy in GaAs. The densities are given for a (110) surface. The
contour spacing is one-tenth of the maximum value. The solid
circles are the Ga atoms, and the open ones are the As atoms.
The vacancy is marked by a solid square (from Laasonen et aI.,
1992).

which the As antisite (Aso, ) relaxes in an electronic exci-
tation. In the me(, astable state the defect has an open re-
gion which is, however, smaller than a "clean" Ga vacan-
cy. The lifetime predicted was 250 ps, which is close to
the 255 ps estimated from the measurements (Krause
et a/. , 1990). Figure 36 shows the positron density in the
case of the metastable As antisite and the different vacan-
cies in GaAs. With the exception of the negative As va-
cancy, the positron states are strongly localized at the de-
fects.

Saito et a/. (1991}have calculated the momentum dis-
tribution of annihilation radiation for the perfect Si and
GaAs lattices and for vacancies in Si using first-principles
electronic structure Inethods. These distributions differ
from the usual 20 ACAR spectra because the integration
perpendicular to the plane of observation is not per-
formed. In good agreement with experiments, the calcu-
lated distributions for perfect lattices show maxima in
the [110]directions leading to valleys in the [100] direc-
tions and a dip at the k=0 point. Moreover, Saito et aI.
show, for the positrons trapped by vacancies, that the
momentum distribution is isotropic with the maximum at
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0
As (b) As

0

0
Ga

0
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FIG. 36. Positron densities for
different vacancy-type defects in
GaAs: (a) neutral As vacancy,
(b) singly negative As vacancy,
(c) Ga vacancy, and (d) As an-

tisite in the metastable relaxed
state. The results correspond to
the positron effective mass of 1.5
times the free-positron mass. A
region of the (110) plane is limit-
ed by the boundaries of the su-
percell. The contour spacing is
one-sixth of the maximum value.
The solid circles are the As
atoms and the open ones are the
Ga atoms (from Laasonen et al. ,
1991).

the k=0 point.
The combination of positron lifetime or Doppler-

broadening measurements with the controlled optical ex-
citation opens new possibilities for the study of defects in
semiconductors. One example of this kind of work is the
detection (Krause et al. , 1990; Saarinen et al. , 1994) of
the vacancy-type defect in the metastable state of the
EL2 defect in GaAs discussed above. A similar system is
the DX center in AlGaAs compounds. According to a
theoretical model (Chadi and Chang, 1988b), in the stable
state of the DX center a donor atom, such as Si, is in an
interstitial site next to a Ga vacancy. When the center is
excited, the donor atom becomes substitutional. The ex-
istence of a Ga vacancy in the stable state and its disap-
pearance after the optical ionization process have been
seen recently in positron measurements (Makinen et al. ,
1993). Moreover, in a recent work, Saarinen et al. (1993)
used the illumination in order to ionize As vacancies in
semi-insulating GaAs to the negative charge state and
observed the ionization process by positron lifetime mea-
surements. The detailed description of the electronic and
ionic structures as well as the trapped-positron states for
the defect complexes studied by these new techniques is a
challenge for future theoretical work.

C. Positron states on solid surfaces

1. Properties of the positron surface state

Nieminen and Puska (1983) used the superimposed-
atorn method to describe the positron states on metal sur-

faces. The image potential in the vacuum was joined to
the LDA potential in the metal, using either the smooth
or the corrugated mirror models as described in Sec.
III.C. The calculations (Nieminen and Puska, 1983; Pus-
ka and Nieminen, 1983b) reproduce the trends in the
binding energy for the different low-index surfaces, and
the effects on the positron state due to surface contam-
ination by gas atoms can be predicted. According to the
model, the trapping of positrons by surface vacancies is
weak; there is no clear potential well parallel to the sur-
face, and the positron is therefore relatively free in two
dimensions also in the presence of surface vacancies in
the outermost layer. If the cutoff of the annihilation rate
in the mirror image region is used, the calculation gives,
for Al surfaces, positron lifetimes of about 650 ps (Niem-
inen et al. , 1984), whereas the lifetimes without cutofF are
of the order of 400 ps. The first direct measurement of
the positron lifetime for the surface states was by Lynn
et al. (1984). It gives the value of 580 ps. This measure-
ment, however, should be contrasted with those for cavi-
ties in metals, where the long positron lifetimes are of the
order of 500 ps (Nienunen er al. , 1979; Eldrup and Jen-
sen, 1987). This corresponds to the negative positromum
ion limit of the annihilation rate. More recently, Steindl
et al. (1992) measured the positron lifetime on several
metal surfaces using pulsed positron beam. They found
in all cases two lifetime components, a short one of —100
ps and a longer one of -400 ps. When comparing the
experimental and theoretical surface-state lifetimes, one
should also bear in mind that the theoretical lifetime is
quite sensitive to the position of the mirror plane (Brown
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et al. , 1987). Lou et al. (1988) introduced a similar
cutoff model for the annihilation rate, but they defined
the place of the cutoff' directly in terms of the electron
density. An additional source of uncertainty is the possi-
ble impurity concentration at the surface.

Jensen and Walker (1988) applied their WDA theory
in the jellium surface model. The homogeneous positive
background charge occupies the half space below the sur-
face plane. The background density was chosen to mimic
Al. The unperturbed electron density calculated in the
LDA (Lang and Kohn, 1970) was fitted to give the exper-
imental electron work function (Brown et al. , 1987) for
Al. The potential sensed by a positron was also adjusted
by a step potential at the surface so that the calculations
could give the experimental positron work function. The
positron potential and the corresponding wave function
are shown in Fig. 37. The WDA theory is able to join
smoothly the I DA region inside to the mirror image re-
gion outside the metal, and a positron surface state well
localized perpendicular to the surface is obtained. How-
ever, the WDA gives an incorrect asymptotic image po-
tential, decaying as —1/3z. The binding energy, 2.66 eV,
and the positron lifetime, 599 ps, agree well with the ex-
perimental findings (Mills, 1983; Lynn et al. ,
1984). The form of the screening cloud
(n (r) [gd"( ~r —r'I; n *,A, = 1)—1]) for dift'erent posi-
tron-surface separations is shown in Fig. 38. In the met-
al the screening cloud is isotropic around the positron,
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FIG. 38. Screening cloud for a positron located near the Al
surface according to the jellium-edge WDA model by Jensen
and Walker (1988). The diFerent panels correspond to diFerent
positron locations. The jellium edge is at z =0 (from Jensen and
Walker, 1988).

whereas for a positron far in the vacuum the screening
cloud is left spread over a large region close to the jellium
edge.

The positron state on metal surfaces has also been
characterized by the 20 ACAR rneasurernents. Figure
39(a) shows the measured (Cohen et al. , 1987) momen-
tum distribution as a contour plot with the axes along the
momentum perpendicular and parallel to the surface.
The distribution is nearly isotropic, which at first seems
somewhat surprising. Namely, one would expect that the
localization of the positron state perpendicular to the
surface should weight the larger momentum components
in the perpendicular directions, leaving the perpendicular
distribution broader than the parallel one. This kind of
anisotropic situation has indeed been found in the calcu-
lation by Brown et al (1987), a. s shown in Fig. 39(b).
Brown et al. used the niixed-density approximation (Sec.
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FIG. 37. Positron wave function and potential V+ for an Al
surface in the jelliurn-edge model treated in the WDA by Jensen
and Walker (1988). The correlation part V„„ofthe potential is
also shown and compared with VLDA, which was obtained by
joining the I.DA correlation potential to the —1/4z image po-
tential. The jellium edge is at z=0 (from Jensen and Walker,
1988}.
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FIG. 39. Momentum distribution of the annihilating electron-
positron pair for the positron state on an Al(100) surface: (a)
experiment by Chen et al. (1987); (1) theory by Brown et al.
(1987).
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III.E) with a cutoF in the local annihilation rate in the
mirror image region (Sec. III.C). For the electron densi-
ty, the jellium-edge model was used. The positron poten-
tial was equal to the negative of the positron work func-
tion inside the metal, but decreased smoothly, forming
the potential well outside the surface, until it was re-
placed by the image potential. The IPM calculations by
Brown et al. (1987} using the single-particle electron
functions for the model potential give a more isotropic
momentum distribution, but this model cannot correctly
describe the positron lifetime. Brown et al. (1988) tried
to remove the anisotropy by also considering the positron
state localized at a vacancy on the surface in the
superimposed-atom model. However, the resulting
momentum distributions were still clearly anisotropic.
Lou et al. (1988, 1989}have predicted a fairly isotropic
momentum distribution for the electron-positron pairs
annihilating on a metal surface. They used in the calcu-
lation the IPM, solved the one-particle electron wave
functions for a simple model potential, and used a
parametrized positron wave function. Lou et al. con-
cluded that the most important ingredient in reproducing
the experimental isotropic momentum distribution is the
description of the electron distribution and work func-
tion. In their model the total electron density calculated
from the wave functions shows the Friedel oscillations
near the surface.

Rubaszek et al. (1985, 1991; see also Rubaszek et al. ,
1993) have applied the WDA and the jellium model to
calculate the 2D ACAR spectra for positrons annihilat-
ing from the surface state. The WDA used differs slight-
ly from the theory by Jensen and Walker (1988) explained
in Sec. III.C. Rubaszek et al. (1993) show that the prop-
er inclusion of positron-electron correlation effects in the
calculation of the ACAR spectra is essential. They find
that, in contrast to positron annihilation in bulk solids,
the enhancement factor for the surface state is a decreas-
ing function of the momentum. The resulting ACAR
curves are quite isotropic and in fair agreement with ex-
periments. Rubaszek et al. (1993) have also calculated
the positron lifetimes for the surface states on several
simple metals. In the case of Al, they obtain a lifetime of
580-590 ps, in good agreement with the experimental
one of 580 ps (Lynn et al. , 1984).

2. Positron-annihilation-induced Auger spectroscop Y

A positron trapped in the surface state on the solid has
a finite probability of annihilating with a core electron of
a surface atom. The created core hole can be filled by an
electron from outer atomic shells, and the liberated ener-

gy may result in the ejection of an electron, the kinetic
energy of which is measured. This process is exploited in
the positron-annihilation-induced Auger spectroscopy
(PAES) introduced by Weiss et al. (1988). The advan-
tages of PAES over electron-, ion-, or x-ray-induced
Auger spectroscopies are the lack of secondary electrons
at the energy range of the emitted Auger electron (low

background}, the lack of damage caused by the exciting
radiation, and the high surface sensitivity. The surface
sensitivity is due to the fact that the core annihilation
takes place with positrons that are trapped in the surface
state and see in practice only the topmost atomic layer.
In comparison, high-energy electron-excited Auger spec-
troscopy contains information from several atomic lay-
ers.

The central quantity for PAES is the annihilation
probability with specified core electrons and the ensuing
probability of the Auger process. Jensen and Weiss
(1990) calculated these probabilities using the
superimposed-atom method and. corrugated-mirror mod-
el for the image potential. According to these calcula-
tions, which were confirmed by experiments (Mehl et al. ,
1990), the Auger-emission fractions are 1 —5%% of the an-
nihilations on the surface. Jensen and Weiss (1990) also
showed that the probabilities are very sensitive to any ad-
sorbate coverage, enabling the use of PAES in quantita-
tive surface chemical analysis. Moreover, the probabili-
ties depend on the position of the adsorbate atoms, e.g.,
whether they reside at a certain distance above the sur-
face or whether they penetrate into a subsurface position.
In this way PAES can also be used for structural studies
of surfaces.

D. Exotic systems

During the last few years positron annihilation
methods have been used in the characterization of novel
materials soon after their invention. These cases cover
the high-temperature superconductors and solid C60, the
new phase of carbon. In the research of these new ma-
terials, theoretical methods have played a vital role. This
is certainly true of electronic structure calculations in
general. The theoretical analyses of positron states and
annihilation characteristics have also been essential in
the interpretation of the experimental data.

i. High-T, superconductors

The ability of the 2D ACAR measurements to give the
electron momentum density with high precision has
motivated the positron studies of high-temperature su-
perconductors. The detailed momentum densities are
useful in differentiating between different theoretical
models for superconductivity. In the case of
YBazCu307 s (6=0, . . . , 1), for example, self-consistent
electronic structure calculations (Singh et al. , 1990; Ban-
sil et al. , 1991;Barbiellini, Cxenoud, Henry, et al. , 1991)
show that there exists a Fermi surface. However, experi-
mental confirmation of the Fermi-liquid nature through
the observation of the Fermi surface by the 2D ACAR
measurements has been a very difficult task. Only the
very recent measurements show traces of the Fermi sur-
face Haghigli et al. , 1991a, 1991b; Smedskjaer et ah. ,
1991, 1992; Barbiellini et al. , 1993). The difficulty lies in
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FICr. 42. Experimental [(a) and (b)] and calculated [(c)—(f)]
LCW-folded distributions for YBa&Cu307 z {from Barbiellini,
Genoud, Henry, et al. , 1991).

most prominent (Haghigli et al. , 1991a, 1991b). For the
insulating system in Fig. 44, the ridge is absent. The
theoretical results shown in Figs. 43 and 44 confirm the
experimental findings.

The difIiculties in seeing Fermi-surface-related features
in 2D ACAR spectra have been traced to the poor quali-
ty of the samples with respect to positron states: vacan-
cies, twin boundaries, dislocations, and grain boundaries
can trap positrons and thereby change the environment
and the properties of annihilation from that for the per-
fect bulk. The positron lifetime measurements can
characterize the quality of the samples. In many cases
the interpretation of the lifetime results can be based on
theoretical calculations.

Jensen et al. (1989) calculated the positron states and
lifetimes for YBa2Cu307 & with 5=0, 0.5, and 1 using
the superimposed-atom method. The positron density
favors, especially in the case of 5= 1, the regions near the
Cu-O chains (see Fig. 41). The positron lifetime is shown
in Fig. 45 as a function of the oxygen concentration and
is compared with a few experimental results. The
theoretical values are systematically below the experi-
mental ones, but the results all show the same decreasing
trend when the oxygen concentration increases. The in-
set of Fig. 45 shows that the positron affinity [the sign
convention here is opposite to that in Eq. (114); i.e., a
more positive afBnity means stronger binding of a posi-
tron to the substance in question] decreases strongly in
the same direction. This means that in samples with
nonuniform stoichiometry, positrons have a strong ten-

dency to localize in the oxygen-deficient zones.
According to superimposed-atom calculations (Jensen

et al. , 1989; McMullen et a/. , 1991), single oxygen va-
cancies in copper oxide superconductors are at best only
weak traps for positrons. The binding energies are low,
and the positron lifetime for oxygen vacancies exceeds
only slightly the positron bulk lifetime. This kind of
weak trapping, associated with detrapping, may lead to
temperature dependence of lifetime spectra at low tem-
peratures. The metal vacancies are essentially stronger
traps for positrons than the oxygen vacancies. The posi-
tron lifetimes are then also substantially longer than the
bulk lifetime. The picture arising from the calculations
of the bulk and defect states is that the measured lifetime
data reQect the competition between localization in
oxygen-deficient regions and the trapping to metal vacan-
cies. In the samples there will be, depending on the qual-
ity of the preparation, a varying but usually large number
of weak traps, which lead to temperature dependences at
low temperatures where they can compete as positron
traps. For example, the twin boundaries from weak traps
which are described in a model by McMullen et al.
(1991)as oxygen vacancy-oxygen impurity pairs.

The positron-state calculations have also been per-
formed for other copper oxide superconductors (Singh
et al. , 1989; Sundar et al. , 1990; McMullen et al. , 1991).
In all materials the positron density in the delocalized
state is highly nonuniform (cf. the assumptions of the
LCW theorem), and in some systems the positron state
may overlap more in the Cu-0 planes than in other
systems. Examples of this kind of system are
Hg2 „Ba„CuO~ (Singh, 1993) and Ndz „Ce„Cu04
(Blandin et al. , 1992). According to McMullen et al.
(1991), in Laz „SrCu04 the vacancies are only weak
positron traps, and therefore the material should be a
good candidate for 2D ACAR studies.

Thus far we have not discussed the effects of the super-
conducting state on positron annihilation. If the super-
conductor is BCS-like, the effects are expected to be
small. The annihilation rate depends on the Thomas-
Fermi screening wave vector qTF as ~ q TF where d is
the dimensionality of the system. Using the BCS theory,
we see that the enhancement factor is proportional to the
ratio between the superconducting gap 5 and the Fermi
energy. This ratio is vanishingly small for regular super-
conductors, and the transition to the superconducting
state does not affect the positron lifetime. The effects of
the superconducting transition have been sought through
ACAR measurements, but no evidence has been found
(Barbiellini, Genoud, Henry, et al. , 1991). Besides the
BCS theory, other theories for high-temperature super-
conductivity have been considered in the context of the
positron response (McMullen, 1990; Chakraborty, 1991).
The results are, however, not conclusive.

2. Fullerenes and related materials

The innovation by Kratschmer et al. (1990) in produc-
ing the very stable C60 molecules in macroscopic quanti-
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ties has inspired a large number of experimental and
theoretical studies in a short time span. In addition, pos-
itron lifetime measurements (Hasegawa et al. , 1992; Jean
et al. , 1992; Schaefer et al. , 1992a, 1992b) have been per-
formed in order to characterize the new bulk material

In a C6o molecule, 60 carbon atoms make a soccerball
cage with the atoms at vertices of 20 hexagons and 12

tween 1.40 A and 1.45 A, similar to the bond length in
graphite. At room temperature the C60 molecules form a

7.50»

gQO

2.5

&
&g» l'0

g» l&

70

FIG. 43. Part of the 2D ACAR anisotropy for
YBa2Cu307 q.. (a) measurement at 300 K on a
sample with T, =86 K; (b) band-structure cal-
culation, orthorhombic structure, 5=0 (from
Barbiellini et al. , 1993).
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FIG. 45. Positron lifetime and a%nity (with respect to the 5=0
system, in the inset) for YBa2Cu30& q. The solid curves denote
the theoretical results by Jensen et al. (1989); the markers
denote experimental results: open circles, Smedskjaer et al.
(1988); solid circles, Nyberg et al. (1989); open squares, Tang
et al. (1990); solid squares, Barbiellini, Genoud, Henry, et al.
(1991).

et al. , 1992; Jean et a/. , 1992; Schaefer et al. , 1992a,
1992b). Puska and Nieminen (1992b) calculated the posi-
tron state and lifetime in fullerene using the atomic su-
perposition method. Similar calculations with similar re-
sults were also performed by Ishibashi et al. (1992), Jean
et al. (1992), and Lou et al (1.992). The positron wave
function (Puska and Nieminen, 1992b), shown in Fig.
1(d), is distributed throughout the interstitial regions be-
tween the balls, the maximum density being at the octa-
hedral sites. The corresponding calculated positron life-
time is 370 ps, in fair agreement with the measured one.
For comparison, the positron lifetimes calculated with
the same method for the two more common phases of
carbon, i.e., diamond and graphite, are 92 and 192 ps, re-
spectively. Furthermore, these theoretical estimations
are somewhat shorter than the measured lifetimes of 110
and 212 ps, respectively (Schaefer et al. , 1992a, 1992b).
The calculations thus clearly show that the positron sam-
ples the interstitial regions in the fullerene.

Puska and Nieminen (1992b) also showed that the ad-
dition of a small concentration of dopants or interstitial
impurities does not a6'ect the positron lifetime. This is
because the positron is in a highly delocalized state in ful-
lerene and can therefore find unoccupied interstitial sites.
Only when all the interstitial sites are occupied is the
positron density shifted strongly toward the centers of
the C6o molecules and the positron lifetime decreases.
This was predicted, for example, for the superconductive
K3C6O compound, in which all the octahedral and
tetrahedral sites of the fcc lattice were occupied by potas-
sium atoms.

V. FINAL REMARKS

FIG. 46. Structure of a fullerene. Four C«molecules belong-
ing to the (001) plane of the fcc lattice are shown. The carbon
atoms are at the vertices of hexagons and pentagons forming
the surface of the rnolecules. The interatomic and intermolecu-
lar lengths are in the same scale, demonstrating the relatively
large open volumes around the octahedral sites between the C6O
molecule s.

Positron studies of condensed matter constitute an ac-
tive area of research. In particular, positron-based tech-
niques are indispensable for characterization of defects in
metals and semiconductors. Positron lifetime spectrosco-
py is a highly sensitive technique for fingerprinting de-
fects. Momentum density measurements, especially the
2D ACAR technique, give detailed information of the
annihilating electrons. The advent of variable-energy
positron beams has opened several interesting avenues in
surface science. Defect prowling can be based on
Doppler-broadening and Ps emission studies. Among the
most interesting new methods are the positron-
annihilation-induced Auger spectroscopy (PAES; Weiss
et al. , 1988), high-resolution low-energy positron
diffraction (LEPD; Horsky et al. , 1992), positron micros-
copy (Brandes et al. , 1988; Van House and Rich, 1988)
and beam-based lifetime techniques (Schodlbauer et al. ,
1988).

We have summarized the basic physics of positron in-
teraction with condensed matter. %'e have sketched the
theoretical outline for the relevant processes and dis-
cussed the techniques applicable for quantitative calcula-
tions. Reliable calculations are required not only for un-
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derstanding the trends and qualitative features, but also
for interpreting and analyzing the experimental results.
Many-of the experimental positron techniques, although
unique and exceedingly accurate, give convoluted and in-
direct information and need strong input from theory to
pin down the key parameters.
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