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Theoretical ideas and experimental results concerning high-temperature superconductors are reviewed.
Special emphasis is given to calculations performed with the help of computers applied to models of
strongly correlated electrons proposed to describe the two-dimensional Cu02 planes. The review also in-

cludes results using several analytical techniques. The one- and three-band Hubbard models and the t-J
model are discussed, and their behavior compared against experiments when available. The author found,
among the conclusions of the review, that some experimentally observed unusual properties of the cu-
prates have a natural explanation through Hubbard-like models. In particular, abnormal features like the
mid-infrared band of the optical conductivity o(co), the new states observed in the gap in photoemission
experiments, the behavior of the spin correlations with doping, and the presence of phase separation in the
copper oxide superconductors may be explained, at least in part, by these models. Finally, the existence of
superconductivity in Hubbard-like models is analyzed. Some aspects of the recently proposed ideas to de-
scribe the cuprates as having a d 2 2 superconducting condensate at low temperatures are discussed. Nu-

m -y

merical results favor this scenario over others. It is concluded that computational techniques provide a
useful, unbiased tool for studying the diScult regime where electrons are strongly interacting, and that
considerable progress can be achieved by comparing numerical results against analytica1 predictions for
the properties of these models. Future directions of the active 6eld of computational studies of correlated
electrons are briefly discussed.
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I. INTRODUCTION AND EXPERIMENTAL RESULTS

More than seven years ago, J. G. Bednorz and K. A.
Miiller (1986) announced the discovery of superconduc-
tivity in a ceramic copper oxide material at a tempera-
ture of about 30 K. These compounds are poor conduc-
tors, and thus their result was unexpected and cautiously
considered. However, the con6rmation of these experi-
ments by Takagi et al. (1987) generated a frenetic race
for the preparation of materials with even higher critical
temperatures. Dozens of "high-T, " compounds have
been discovered in the last few years, and currently a
mercury-based. material has the highest con6rmed critical
temperature of about 133 K (Schilling et a/. , 1993).
Since 77 K is the boiling temperature of nitrogen, it, is
quite possible that new technologies may emerge from
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764 E. Dagotto: Correlated electrons in high-temperature superconductors

the fiel of high T„like SQUID (superconducting quan-
tum interference device) magnetometers and Josephson
integrated circuits (Simon, 1991),although exciting, early
promises of levitating trains seem unlikely. The critical
current densities are still not high enough for most tech-
nological applications, but progress is very rapid on this
front (Larbalestier, 1991).

Although the initial frenzy has subsided, the field still
remains very active and large, and it is rapidly evolving.
On the experimental side, results are being consolidated,
mainly due to a considerable improvement in the quality
of the samples compared with those used in the early
studies of the high-T, materials. In particular, high-
quality single crystals are currently available. Consider-
able work is being carried out at temperatures above I'„
since it is believed that the unusual normal-state proper-
ties of these materials may contain the key features for
understanding their superconductivity. Much work has
been devoted to some unexpected properties of the cu-
prates, like the linear behavior of the d.c. resistivity with
temperature, a Hall coe%cient that is temperature depen-
dent, the presence of short coherence lengths, and the en-
ergy dependence of the relaxation rate 1/~. These
unusual properties suggest that the normal state cannot
be described by a Fermi liquid, an issue currently under
much discussion. Actually, we know that organic super-
conductors, heavy fermion superconductors, Nb3Sn, and
other materials are not well described by the BCS model
(Bardeen, Cooper, and Schrieffer, 1957). However, the
BCS or pairing theory is a broader concept and describes
fermions in which an efFective attractive interaction pro-
duces a condensate, with large overlaps between pairs.
The source of the attraction is not crucial for this theory
to hold, and thus BCS ideas are not at all excluded as a
possible explanation of the behavior of the new supercon-
ductor s.

The search for new materials has been mainly empiri-
cal, since no predictive theory is currently known for the
high-T, compounds. The fact is that no one knows why
the cuprates behave as they do. However, several
theories have been proposed to describe them. One- and
three-band Hubbard models, as well as the t-J model, are
believed to represent the gross features of the electronic
behavior of the new materials. Unfortunately, most of
the available experimental data are not accurate enough
to convincingly con6rm or rule out most of the theories.
Antiferromagnetism, defects, phonons, and the strong
anisotropy of the materials complicate the interpretation
of the results, and they seem to conspire to hide the key
properties of the normal state. It is possible that theories
that combine the pairing ideas with the presence of
strong antiferromagnetic correlations may properly de-
scribe the high-T, superconductors. In this family, con-
sider, for example, the spin-bag theories (Schrieffer, Wen,
and Zhang, 1988, 1989; Kampf and SchriefFer, 1990;
Levin et al. , 1992), antiferromagnetic Fermi-liquid
theories (Millis, Monien, and Pines, 1990), and also the
recently developed d» theories that have attracted

considerable attention (Bickers, Scalapino, and White, .

1989; Monthoux, Balatsky, and Pines, 1991). The inter-
change of magnons may produce the attractive force
needed to pair the charge carriers (Miyake, Schmitt-
Rink, and Varma, 1986; Scalapino, Loh, and Hirsch,
1986; Bickers, Scalapino, and Scalettar, 1987; Monthoux
and Pines, 1993). Note that spin bags are very different
from Landau quasiparticles, since the overlap Z between
bare and dressed holes is very small [Z-O. 1, according
to some calculations (Dagotto and Schrieffer, 1991)].
This efFect produces considerable deviations from the
standard Fermi-liquid results, but these excitations still
correspond to those of a Fermi liquid. Among the
Fermi-liquid-based theories should be included also the
Van Hove singularity scenario (Markiewicz, 1991;
Newns, Pattnaik, and Tsuei, 1991; Pattnaik et al. , 1992;
and references therein), the so-called hole mechanisms
(Hirsch and Marsiglio, 1989), the nested Fermi liquid
(Virosztek and Ruvalds, 1990), and the recently proposed
antiferromagnetic van Hove scenario (Dagotto, Nazaren-
ko, Moreo, 1994).

Some other theorists strongly believe that the BCS
theory cannot work in these new superconductors (An-
derson, 1990b). Instead, scenarios in which the elementa-
ry excitations in the new materials are spinons (zero
charge, spin- —,') and holons (charge e, spin 0) have been

proposed. As a toy model, the one-dimensional Hubbard
model has been widely discussed (Anderson, 1990a).
However, it remains to be shown that one- and two-
dimensional models have a similar qualitative behavior.
Other non-Fermi-liquid theories that have attracted con-
siderable attention are anyon superconductivity (Laugh-
lin, 1988a, 1988b; Chen et al. , 1989; Wen, Wilczek, and
Zee, 1989), the marginal Fermi-liquid theories (Varma
et al. , 1989), gauge theories (Nagaosa and Lee, 1990),
and several others. Clearly, we are still a long way from
developing a predictive theory to describe the new materi-
als. %'e all expect that a triumphant theory should indi-
cate the direction for developing new superconductors
with even higher critical temperatures.

It is interesting to remember that before 1986 some
theorists believed that condensed-matter physics was a
mature field. Actually, few researches were trying to find
high-temperature superconductors at that time. The
discovery of the new superconductors has shown the
weaknesses of our area of research. After several years of
intense theoretical studies, it is clear that we still do not
have the proper skills and tools to deal with strongly
correlated electrons. The main problem is that real cal-
culations are not easy. Most of the models proposed for
the new superconductors contain interactions that are
strong, and thus perturbative calculations of bubble and
ladder diagrams are questionable. ' Other approxima-
tions are self-consistent (mainly mean-field-like), but it is

~Nevertheless, there are other analytical methods that seem to
be able to handle strong correlations. See, for example, Fulde
(1991)and Fulde and Unger (1993).

Rev. Mod. Phys. , Vol. 66, No. 3, July 1994



E. Dagoffo: Correlated electrons in high-temperature superconductors 765

dificult to judge how close to the actual properties of the
model these results are. It is interesting to observe that
theories that start with the same Hamiltonian may arrive
at completely di6'erent descriptions of their properties.
The subject is so complicated that we need as much help
as possible. The discovery of the new superconductors
has clearly shown the need for new, well-controlled ap-
proaches to the field of correlated electrons.

In an attempt to close the gap between a model, as
defined by its Hamiltonian, and, for example, the actual
properties of its ground state, a large number of theorists
have turned to the use of computers. High-T, physics
has strongly motivated theorists to work on correlated
electrons; but it may be claimed that, from a theorist's
point of view, the particular model or material is not as
crucial as the development of the tools to handle them.
Computational results can contribute to the acceptance
or rejection of mean-field-based theories, and can also in-
dicate directions in which new approaches should be
developed. Much progress has been made in this direc-
tion, with numerical calculations routinely being viewed
as impartial referees that may eventually select the prop-
er analytic description of a given model. Actually, the
cross-fertilization between computational and analytical
work in the area of correlated electrons is quickly grow-
ing.

As an additional motivation for carrying out computa-
tional work in the context of high-T, superconductors,
note that the new cuprate compounds differ markedly
from the more conventional superconductors by having a
very small coherence length g. This length is usually as-
sociated with the average size of a Cooper pair. For
conventional superconductors, g-500 A to 10000 A;
thus the size of the pair is larger than the average dis-
tance between pairs. This particular feature allows a
mean-field BCS-like treatment of the problem to be accu-
rate and reliable. However, the new superconductors

0 0
have g-12 A to 15 A, and thus standard mean-field ap-
proximations are clearly questionable. These results were
obtained mainly via H, 2 (all high-T, materials are type-II
superconductors). The cuprates are in the "clean" limit,

0
since the electron mean free path ( —150 A) is much
larger than g' [for more details, see Welp et al. (1989);
Batlogg (1990), p. 66; Batlogg (1991), p. 48; Burns
(1992)J. The coherence length in the c direction is only 2
to S A, i.e., even smaller than the interplane distance,
while g in-plane is only -3 to 4 lattice spacings (since the

0
distance between Cu ions in the plane is 3.8 A). Such
small Cooper pair sizes indicate that studies on finite
two-dimensional clusters, like those reported in this re-
view, may be relevant in describing the physics of the cu-
prates.

The field of high-T, superconductors has generated
several thousand publications. It would be quite dificult
to describe this field even if we restrict the description to
theoretical aspects. In this review, we shall concentrate
on the more modest goal of describing the progress
achieved in the study of models of correlated electrons

using computational techniques. However, several
analytica1 techniques will also be described and their re-
sults discussed. The review should be considered as a
"progress report" in which we have attempted to focus
on some basic aspects of this rapidly evolving field.
Another goal of the review is to provide a simple over-
view of the experimental situation in high-T, materials,
summarizing the basic agreements and discrepancies be-
tween theory and experiment. For additional literature,
the reader should consult other review articles or books,
like those by Fukuyama, Maekawa, and Malozemoff
(1989); Burns (1992); and Maekawa and Sato (1991). For
previous short reviews on theoretical work related to the
subject of this paper, see Dagotto (1991); Fukuyarna
(1991); Fulde and Horsch (1993); Lu, Zhao-Bin, and
Yan-Min (1993);and references therein. A recent review
article on Monte Carlo results that is complementary to
the present one was presented by W. von der Linden
(1992). In his review, more models are analyzed than in
the present paper, but with less emphasis on the compar-
ison between theory and experiment as done here. It is
also worth keeping in mind that the vast literature relat-
ed to this subject cannot be mentioned in a single review
article. We used our own judgment and prejudices to
select the subjects that we considered more relevant, and
apologize beforehand for any omission.

This review is organized as follows. In Sec. I, a brief
summary of the properties of some high-T, superconduc-
tors is given. Models that describe the behavior of elec-
trons in these materials are presented. In Sec. II, the
most important algorithms for studying correlated elec-
trons are described. Results for the particular cases of
half-filling and a few holes doped into an antiferromagnet
are discussed in Sec. III. A rough comparison of the nu-
merical results with experiments are discussed in Sec. IV.
Several observables —like the optical conductivity o (co),
photoemission spectra N(co), magnetic susceptibilities,
and others —are considered and contrasted, with theoret-
ical predictions coming mainly from numerical studies.
It is concluded that some "anomalous" properties of the
cuprates are not so unexpected once the electronic mod-
els of correlated electrons are properly analyzed with
powerful unbiased tools like computational techniques.
Regarding the final goal of finding superconductivity in
these models, we believe that d & 2 is the most likely

channel where such a condensate may exist when holes
are immersed in an antiferromagnetic background. Con-
clusions are presented in Sec. V.

A. Structure and phase diagram of the cuprates

This section provides a short overview of the lattice
structure and phase diagram of the most widely studied
high-T, compounds (a superconducting compound is said
to belong to the family of high-T, superconductors if it
has CuO2 planes). In general, the high-T, materials are
basically tetragonal, and all of them have one or more
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766 E. Dagotto: Correlated electrons in high-temperature superconductors

Cu02 planes in their structure, which are separated by
layers of other atoms (Ba, 0, La, . . . ). Most researchers
in this field strongly believe that superconductivity is re-
lated to processes occurring in the CuO2 planes, with the
other layers simply providing the carriers (and thus they
are called charge reservoirs). All high-T, materials have
such charge reservoirs. In the CuQ2 planes, each copper
ion is strongly bounded to four oxygen ions separated by

0
a distance of approximately 1.9 A. The critical T, seems
to depend on the number of CuO2 planes that are within
a short distance of each other in the structure. For ex-
ample, T12Ca2Ba2Cu3Q&0, which has a relatively large T,
of 125 K, has three adjacent CuO2 planes. The fact that
T, increases with the number of layers has led to some
theoretical proposals linking the number of CuO2 planes
with the critical temperature.

Another property common to these materials is the
presence of antiferromagnetic order at low temperatures
in the undoped regime, i.e., when no free carriers exist in
the planes. Upon doping, the long-range spin order is
destroyed, and the super conducting phase appears.
However, this does not mean that spin correlations are
unimportant for superconductivity. Even without strict
long-range order, the spin-correlation length can be large
in the superconducting phase, producing a local arrange-
ment of magnetic moments that at short distances differs
very little from that observed below the Neel temperature
in the insulating regimes. Actually, several ideas have
been discussed in the literature relating antiferromagne-
tism and superconductivity. For example, the inter-
change of magnons instead of phonons may be a possible
mechanism of pairing in these materials, as will be dis-
cussed in Sec. IV.E.

Material

Hg Ba2Ca2Cu308+ $

T12Ca2Ba2Cu3O10
YBa2Cu30~

Bi2Sr2CaCu2O8
La I 85S10 I 5CuO4

Nd&. 85Ceo. isCuO
RbCs2C60

N13Ge
Nb
Pb

UPt3

T, (K)

133
125
92
89
39
24
33
23.2
9.25
7.20
0.54

A large number of compounds with the characteristic
Cu02 planes have been synthesized. This is not too
surprising, since it is possible to modify the number of
planes per unit cell and the atoms separating the nearby
planes, as well as the structure, composition, and size of
the charge reservoir, producing a huge number of com-
binations. In the table, we present a short hst of the most
widely studied compounds in this field, with their critical
temperatures T, (for a more complete list, see Burns,
1992 and Harshman and Mills, 1992). For comparison

we also show the critical temperature of some "old" su-
perconductors like Nb, Pb, and Nb3Ge. The latter had
the highest critical temperature known before 1986 (see
Testardi, Wernick, and Roger, 1974). The T, of a super-
conducting heavy fermion material (UPt3) and a fullerene
are also given.

In the remainder of this section, we discuss the struc-
ture and phase diagram of some particular high-T, com-
pounds in more detail.

1. La2 „SrCu04

4E

41F

O()

)La, Sr

0
Oo

(3
CU

FIG. 1. Crystal structure of La2 Sr„Cu04 (T phase). Taken
from Almasan and Maple (1991).

This compound was among the first high-temperature
superconductors discovered. It crystallizes in a body-
centered-tetragonal structure (bct), which has been
known for several years from studies on K2NiF4. It is
usually called the I structure, and it is shown in Fig. 1

(to visualize the bct lattice, simply concentrate only on
the Cu atoms of the figure). In La2 „Sr„CuO„,the CuOz

0

planes are -6.6 A apart, separated by two LaO planes
which form the charge reservoir that captures electrons
from the conducting planes upon doping. The atomic
configurations of the elements forming this compound
are Cu:[Ar](3d)i (4s); La:[Xe](5d)(6s); 0:[He](2s) (2p);
and Sr:[Kr](5s) . In the crystal, oxygen is in a 0
valence state that completes the p shell. Lanthanum
loses three electrons and becomes La +, which is in a
stable closed-shell configuration. To conserve charge
neutrality, the copper atoms must be in a Cu + state,
which is obtained by losing the (4s) electron (weakly
bounded to the atom) and also one d electron. This
creates a hole in the d shell, and thus Cu + has a net spin
of —,

' in the crystal. Each copper atom in the conducting
planes has an oxygen (belonging to the charge reservoir)
above and below in the c direction. These are the so-
called apical 0 atoms or just 0,. Then, in this com-
pound, the copper ions are surrounded by octahedra of
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oxygens (shown in Fig. 1) as in a perovskite structure
(Ashcroft and Mermin, 1976, p. 557). However, the dis-
tance Cu—0, is -2.4 A, which is considerably larger
than the distance Cu—O in the planes ( —1.9 A). Then,
the Cu—0, bond is much weaker than the in-plane
Cu—0 bond, and thus considering the Cu atoms as im-
mersed in perfect octahedra of oxygens is somewhat
misleading. The dominant bonds are those on the plane,
and the importance of the apical oxygens is somewhat
questionable. %'e shall see below that many of the high-
T, materials have apical oxygens. Their distance to
coppers in the conducting planes is remarkably similar in

0
di6'erent compounds, being always about 2.4 A.

Upon doping, La + are randomly replaced by Sr +,
and thus fewer electrons are donated to the Cu02 planes.
It will be shown later that these electrons come from oxy-
gen ions, changing their configuration from 0 to O
(and thus creating one hole in their p shell). Metallic
behavior has already been observed for very small doping
concentrations, x ~0.04. The sign of the Hall coe%cient
shows that, indeed, the carriers are holes, as expected.
The actual phase diagram of this material is shown in
Fig. 2, according to results obtained by Keimer et al.
(1992) and Birgeneau (1990). Near half-filling, antiferro-
magnetic order is clearly observed, which theoretical
studies have shown; it is well described by a simple
Heisenberg antiferromagnetic Hamiltonian representing
the interactions between the spin- —,

' holes located on the
copper atoms (Chakravarty, 1990). [However, some au-
thors disagree. See, for example, Kaplan, Mahanti, and
Chang (1992) and Mahanti, Kaplan, Chang, and Har-
rison (1993).] Experimentally, Aeppli et aL (1989) and
Hayden, Aeppli, Osborn, et al. (1991) showed that spin-
wave theory with only first neighbor interactions ac-
counts for the spin dynamics of LazCu04. A small resid-

ual interaction between planes leads to a finite Neel criti-
cal temperature of about 300 K. The spin-glass phase of
Fig. 2 was considered by Harshman et al. (1988). For Sr
dopings between x -0.05 and -0.30, a superconducting
phase is found at low temperatures. The maximum value
of T, is observed at the "optimal" doping x-0.15. A
structural phase transition was also found in this com-
pound, as shown in Fig. 2. At high temperature the
structure is tetragonal, but at lower temperatures the
copper atoms and the six oxygens surrounding them
slightly deviate from their positions, forming an ortho-
rhombic structure [Burns (1992), p. 94]. This small dis-
tortion is usually neglected in most theoretical studies of
this compound. (For a description of the rest of the
phase diagram shown in Fig. 2, consult the original refer-
ences by Keimer et al. , 1992 and Birgeneau, 1990. This
phase diagram was also discussed by Torrance et al. ,
1989.)

2. YB82Cu306+„

Superconductivity in this material (which is sometimes
called YBCO) was discovered in early 1987 (Wu et al. ,
1987), soon after the lanthanum compound was reported
by Bednorz and Miiller. The (primitive tetragonal) struc-
ture of this compound is shown in Fig. 3, and it is clearly
more complicated than the structure of La2 Sr„Cu04.
In YBCO, there are two Cu02 planes per unit cell ap-

0
proximately -3.2 A apart, separated by yttrium ions.
The figure shows that these pairs of Cu02 planes are
themselves separated by layers of atoms containing bari-

Qo Og

600

I

5OO ~~

~~~ ~e~ r ~ ir xg 'r

Conduction
Layer

T

400— R

yO G 0
N

Q$ o ~ L
0) 300

200 +
M C

B

Neei State
1

100 ~
Insul- Metal

Spill Rtorglass-

0
Superccrtductcr~

0.1 0.2 0.3
Sr concentration, x

0.4

CuO
Chai

G

~L
~+&~~pa c j

~ Copper

Q oxygen

Q& Barium

Q yttrium

Charge
Reservoir

Layer

Cu02
Planes

FICx. 2. Phase diagram of La2 Sr CuO4. (from Keimer et al. ,
1992).

FICx. 3. Crystal structure of YBa2Cu3O6+„(taken from Jorgen-
sen, 1991).
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um, oxygen, and copper, which form the charge reser-
voir. As for the lanthanum compound, the number of
carriers in the conduction planes is controlled by the
amount of charge transferred between the conduction
layer and the charge reservoir. The distance between the

0
pairs of conducting planes is -8.2 A.

The atomic configurations of Y and Ba are
[Kr](5s) (4d) and [Xe](6s), respectively, while those of
Cu and 0 have been described before for the lanthanum
compound. In the crystal, yttrium is in the valence state
Y +, while barium is in Ba +. Copper on the planes is
Cu +, and oxygen is 0 . Note that in this compound
there are Cu atoms in the charge reservoir, contrary to
what occurs in La& Sr Cu04. In combination with ox-
ygen atoms, they form one-dimensional structures along
the b direction (shown in Fig. 3) which are called the
Cu-0 chains. Since not all cuprate superconductors have
chains, it is believed that this structure does not play a
key role in the superconducting mechanism. However,
their presence afFects other measurable properties of the
material, such as the optical conductivity, as will be dis-
cussed in Sec. IV.B. The distance Cu—0 in the chains is

0—1.9 A, as it is in the planes. The chains are well
defined for YBa2Cu307, but at other oxygen concentra-
tions they have defects. Actually, at the minimum oxy-
gen concentration (x =0), no Cu—0 chains exist.

How can we control the amount of doping in the
planes? This is achieved by modifying the chemistry of
the charge reservoir. In this material, the number of car-
riers depends on the oxygen content in the formula
YBa2Cu306+ In the case x = 1, the oxygen atoms are
structurally ordered and form the Cu—0 chains shown
in Fig. 3; when x is reduced, oxygen atoms are taken
from the chains. Adding oxygen to the compound is be-
lieved to be equivalent to adding holes to the planes.
However, this scenario is still not fully supported by
measurements of the sign of the Hall coeKcient, since
this quantity is appreciably temperature dependent for
this compound. The possibility of having holes on the
chains, rather than only in the planes, complicates this is-

sue even further. In this review we shall not discuss these
subtle details further, and we shall assume that increasing
the oxygen content is equivalent to adding holes to the
conducting planes (for more details see Burns, 1992 and
references therein).

In Fig. 4, the phase diagram of YBazCu306+ is
shown. The range of defect concentrations (oxygen ex-
cess) in this compound is large, allowing the properties to
change from insulating to superconducting. For x close
to 0, an antiferromagnetic phase is observed with a Neel
temperature over 500 K. This spin order is caused by the
spin- —,

' holes in the d shell of the in-plane coppers, as in

other compounds (the copper of the chains is not rnag-
netic). At x, -0.3 (5, -0.7 in the notation of the figure),
antiferromagnetic long-range order disappears and the
superconducting phase starts developing. The "optimal"
composition (i.e., the one that gives the largest T, ) is
slightly below x —1 (5-, 0.0). Unfortunately, it is not
possible to explore whether T, can be increased further
by adding oxygen beyond x = 1, since they have already
completed the Cu—0 chain structure at this composi-
tion. A structural phase transition occurs in this materi-
al near x, -0.3 from a tetragonal to an orthorhombic
phase, similar to that found for La2 Sr Cu04. In this
structural transition, the conduction planes Cu02 are
only slightly a6'ected.

3. Nd, Ce Cu04

The structure of this compound is body-centered
tetragonal (shown in Fig. 5), like that of La2 „Sr„Cu04.
The di6'erence between the two lies in the position of the
oxygen atoms of the charge reservoir. The structure cor-
responding to Nd2 Ce„Cu04 is usually called T' struc-
ture. It is interesting to note that the T structure can

500 YBa2Cu307 g—

~ 400
CD

~ 300—
C5

CD
CL
E 200—
CDI-

et. Orth.

AF

Metal gNd, Ce

300 TC ~~-
sc

1.0 0.8 0.6 0.4 0.2 0.0

FIG. 4. Phase diagram of YBa2Cu306+ (taken from Burns,
1992; Koike et al. , 1989).

FIG. 5. Crystal structure of Nd2 Ce„Cu04(I' phase). Taken
from Almasan and Maple (1991).
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only be easily hole doped, while the I' structure can be
easily electron doped, the reason for this asymmetry be-
ing unknown. The atomic configurations of the elements
forming the compound are Nd:[Xe](4f ) (6s) and
Ce:[Xe](4f)(5d)(6s), while Cu and 0 have been de-
scribed before. In the crystal, copper becomes Cu +, ox-
ygen is 0, and neodymium is in a state Nd +. After
doping, i.e., when a Nd ion is replaced by Ce +, the
Cu02 planes get an excess of electrons. This is confirmed
by the experimentally observed sign of the Hall
coefBcient. It is believed that an added electron occupies
a hole in the d shell of copper, producing a S =0 closed-
shell configuration.

The phase diagram of this material is compared in Fig.
6 with a hole-doped compound. The similarities between
the two diagrams are remarkable. Both present an anti-
ferromagnetic phase with a similar Neel temperature (al-
though for electron-doped materials, the antiferromag-
netic phase is more stable upon doping, since x )0. 12 is
necessary to destroy the spin long-range order). When x
is increased further, a superconducting phase appears
close to antiferromagnetism in both cases, with an "op-
timal" composition close to x =0.15. The electron-
doped phase diagram clearly illustrates that supercon-
ductivity is a relatively "small" effect compared with an-
tiferromagnetism; and thus in theoretical studies it is im-
portant to isolate the proper degrees of freedom and en-

ergy scales of the pairing mechanism responsible for su-
perconductivity, from those causing the bulk magnetic
properties. Otherwise, the existence of this phase can be
hidden in calculations that are dominated by other larger
scales related to the insulating state.

The family of high-T, superconductors is very large.
A more complete list of superconducting materials and
their critical temperatures can be found in a recent re-

view article (Harshman and Mills, 1992). In particular, it
is worth mentioning the layered copper oxide supercon-
ductors that include bismuth and thallium in the charge
reservoir layers. These are more complex compounds,
with the general formulas Bi~Sr2Ca„&Cu„02„++2
and Tl Ha@Ca„,Cu„02„++2 (where m and n are in-
tegers), and are typically identified by the shorthand no-
tation Bi (or Tl) m2(n —1 )n, e.g., Bi2212. In particular,
T12223 has one of the highest confirmed critical tempera-
tures, T, —125 K, of the high-T, family. [Recent results
(Putilin et al. , 1993; Schilling et a/. , 1993) suggest the
presence of superconductivity at 133 K in some copper
oxides that include Hg. ] It contains three Cu02 planes
per unit cell, which are separated by Ca atoms -3.2 A
apart, which is very similar to the distance between
planes in YBazCu3O6+„. The sets of three planes are
—11.6 A apart. Details about the structure of these ma-
terials can be found in a review article by Jorgensen
(1991;see also Burns, 1992).

B. Normal-state properties

It is widely believed that understanding the normal-
state properties of the high-T, cuprates will also shed
light on the superconducting mechanism. The basis for
this expectation resides in the unusual normal-state prop-
erties of these materials. For example, strong anisotro-
pies are observed, mainly caused by the two-dimensional
nature of the problem, and magnetic phases exist close to
the superconducting regions. In addition, there are prop-
erties of the cuprates that have raised the possibility of
observing deviations from a Fermi-liquid description of
the normal state. For example, we know that in a canon-
ical Fermi-liquid metal the magnetic susceptibility and
the Hali coeKcient are temperature independent, the
resistivity grows like T at low temperatures, and the
NMR relaxation is proportional to temperature
(1/T, —T). These behaviors have not been observed in
the cuprates, although a Fermi-liquid description is still
not ruled out (see, for example, Levin et al. , 1992).

In this section, we briefly describe the normal-state
property of the cuprates that is more frequently men-
tioned as indicative of an unusual normal state, namely,
the experimentally observed linear dependence of the
resistivity p with temperature (for a short review, see
Batlogg, 1990, 1991). In conventional low-temperature
( T) superconductors, it has been experimentally observed
that p=a+bT, at low T(but larger than T, ). This tem-
perature dependence arises from the scattering of elec-
trons with phonons. At higher temperatures, a linear
behavior is expected, and the interpolation between the
two regimes is given by the Gruneisen-Bloch formula
(Burns, 1992). The residual resistivity a at T=0 is
caused by scattering with magnetic impurities, point or
line defects, other electrons, etc. Several metals, such as
Cu, Al, Ni, and Na, obey this behavior accurately (Burns,
1992, Chap. 4). However, the behavior of p observed in
the high-T, superconductors is different. Single crystal
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(RII —T ' in YBCO compounds), and several others.
Many of them will be discussed in the following sections.
As an example, in Fig. 8(b), experimental results for RH
in YBCO at different oxygen concentrations are shown
(Harris, Yan, and Ong, 1992). While in simple models of
weakly interacting electrons it is expected that R~ would
be approximately constant, the experimental results for
the cuprates show a strong 1/T temperature dependence.
Finally, the presence of a "spin-gap" in YBCO is another
normal-state property that deserves considerable atten-
tion. For example, in the 60-K compounds of the YBCO
family, the spin-gap is observed at about 150 K and
seems to dominate the normal-state physics of the under-
doped materials. Ito, Takenaka, and Uchida (1993) and
Bucher et al. (1993) have recently measured the in-plane
resistivity and Hall coefFicient for YBCO, concluding
that the charge transport in the CuOz planes is deter-
mined by spin scattering.

G. Electronic models

1. Three-band model

After analyzing in some detail the structure and phase
diagram of the high-T, superconductors, the next step is
to write a Harniltonian to describe the behavior of elec-
trons in these materials. Due to the complexity of their
structure, it is important to make some simplifying as-
sumptions. To begin with, it is reasonable to construct a
Harniltonian restricted to electrons moving on the Cu02
planes. The very strong Cu—0 bonds on the planes
justifies this assumption. Of course, some features of the
phase diagram can only be explained by adding a cou-
pling between the planes (like the existence of a finite
Neel critical temperature), but it is expected that those
fine details can be studied after the physics of the planes
is understood. Even under these assumptions, the planar
CuOz problem is still very difBcult to analyze. The
copper ions Cu + have nine electrons in the five d orbit-
als, while 0 has the three p orbitals occupied. Howev-
er, this complicated problem can be further simplified.
All copper ions in the high-T, materials are surrounded
by oxygens. As explained in Sec. I.A. I, in
La2 Sr„Cu04,a Cu06 structure is formed around each
Cu +, which corresponds to an elongated octahedron.
For other compounds, like YBa2Cu3O6+, the copper
has five oxygens in its vicinity, while in the electron-
doped material Nd2 Ce Cu04, four oxygens form a
square around the copper ion (see Figs. 1, 3, 5). In all
these geometries, the degeneracy between the d orbitals
produced by the rotational invariance of isolated ions is
removed by the lattice structure. After some calcula-
tions, it can be shown that the copper and oxygen orbit-
als separate, as schematically shown in Fig. 9. The state
with the highest energy has mainly d» character, and

it carries the missing electron (i.e., the hole) that gives
the ion its spin —,. Thus in the absence of doping (i.e.,

2p

dx -y

(1)

3z2 2

(2)

dxy' dxz' yz
tp

(6)

(2)

Cu

(2)

FIG. 9. Bonding between a Cu + and two 0 ions. Only the d
electrons of Cu and the p and p~ orbitals of the oxygens are
considered. The numbers in parentheses indicate the occupa-
tions of the diFerent levels in the undoped compound (from
Fulde, 1991).

with one hole per unit cell on the plane), the material is
well described by a model of mostly localized spin- —,

'

states that give to these materials their antiferromagnetic
character. The other orbitals at lower energies are occu-
pied, and as a first approximation they will be neglected
in the construction of the Hamiltonian.

What occurs upon doping? As an example, let us con-
sider La2 Sr Cu04, where an additional electron is re-
rnoved from the Cu02 plane by the substitution of a La
atom by a Sr atom. The energy levels shown in Fig. 9
may suggest that we simply have to take out another
electron from the d» orbital to describe the physics of
the doped compounds. However, in this picture the
strong Coulornbic repulsion between holes in the same
orbital is not taken into account. Actually neglecting in-
teractions, one would have expected La2Cu04 to be me-
tallic with a half-filled conduction band. However, the
material is an insulator with antiferromagnetic properties
showing that correlations are very strong. Double occu-
pancy of the same orbital must be energetically un-
favored by the Coulombic interactions. Based on this
line of reasoning, it is possible to construct a Hamiltoni-
an for electrons in the copper oxide planes (see Emery,
1987; Littlewood, Varma, and Abraham. s, 1987; Varma,
Schmitt-Rink, and Abrahams, 1987; Emery and Reiter,
1988a). Using the hole notation, where the vacuum is
defined as all the orbitals shown in Fig. 9 occupied, the
Hamiltonian is

H = t„„gpt(d;+H—.c. ) t g pt(—p +H c )'. .
(ij ) (jj')

+6'd g n; +E& g nf+ Ud g n;tn;i

+U gn~&nji'~+Ud g n;"nf .
j &.ij &

pj are fermionic operators that destroy holes at the oxy-
gen ions labeled j, while d; corresponds to annihilation
operators at the copper ions i (ij ) refer. s to pairs of

Rev. Mod. Phys. , Vol. 66, No. 3, July 1994



772 E. l3agotto: Correlated electrons in high-temperature superconductors

E'p E'd tpd pp Ud U Ud

3.6 1.3 0.65 10.5 4

showing that indeed we are in the strong-coupling re-
gime. For a comparison between predictions for these
parameters obtained by different groups, see Mila (1988).

2. One-band models

The three-band model has several parameters, and it is
still somewhat complicated. It would be desirable to
reduce it to an even simpler model. Zhang and Rice
(1988) made progress in this direction by the following
argument. Consider one copper ion surrounded by four
oxygens. A hole at the oxygen can be in a symmetric or
antisymmetric state with respect to the central hole at
the copper ion. These states can be combined with the
Cu hole to form spin singlet or triplet states. To second
order in perturbation theory about the atomic limit,
Zhang and Rice showed that the spin singlet state has the
lowest energy, and assumed that it is possible to work in

nearest neighbors i (copper) and j (oxygen) sites. The
hopping terms correspond to the hybridization between
nearest neighbors Cu and O atoms, and are roughly pro-
portional to the overlap between orbitals. For complete-
ness, a direct O-O hopping term is also included with am-
plitude t . These hopping terms allow the movement of
the electrons on the lattice, providing their kinetic ener-

gy. Ud and Up are positive constants that represent the
repulsion between holes when they are at the same d and

p orbitals, respectively. Upd has a similar meaning; i.e., it
corresponds to the Coulombic repulsion when two holes
occupy adjacent Cu—Q. In principle, interactions at
larger distances should also be included in the Hamiltoni-
an, but they are presumed to be screened by the finite
density of electrons (unfortunately, the actual screening
correlation length is di%cult to calculate to support this
assumption}. The on-site energies ed and e~ represent the
difference in energy between the occupied orbitals of oxy-
gen and copper. In the strong™coupling limit, and with
one particle per unit cell, this model reduces to the spin
Heisenberg model with a superexchange antiferromag-
netic coupling (Emery and Reiter, 1988a; Fulde, 1991).

Hamiltonian (1.1) shows that for b, =e —ed )0, the
first hole added to the system will energetically prefer to
occupy the d orbital of the copper ions. As explained be-
fore, this is indeed the observed situation in the "un-
doped" materials which have one hole per unit cell.
When another hole is added to this unit cell, and working
in the regime where Ud is larger than b, the new hole
will mainly occupy oxygen orbitals. This is in agreement
with electron-energy-loss spectroscopy (EELS) experi-
ments (Niicker et al. , 1987). From a band-structure cal-
culation (Hybertsen et al. , 1989},we can estimate the ac-
tual values of the parameters in Hamiltonian (1.1). In
eV's they are

this singlet subspace without changing the "physics" of
the problem. Then, the hole originally located at the ox-
ygen has been replaced by a spin singlet state centered at
the copper. This is equivalent to removing one Cu spin- —,

'

from the square lattice of copper spins, and thus the
effective model corresponds to spins and holes (absence of
the spin) on a two-dimensional square lattice. The oxy-
gen ions are no longer explicitly present in the effective
model. After some calculations, Zhang and Rice con-
cluded that the effective Hamiltonian describing the
physics of the three-band model is the so-called t-J model
(which was previously introduced by Anderson, 1987),
defined as

t g—[c; (1—n; )(1 nj —
)c~ +H c ], . .

&ji&o

(1.2)

where 8; are spin- —,
' operators at the sites i of a two-

dimensional square lattice, and J is the antiferromagnetic
coupling between nearest neighbors sites (ij ). The hop-
ping term allows the movement of electrons without
causing a change in their spin, and explicitly excludes
double occupancy due to the presence of the projector
operators (1 n; ). T—hen, this model has only three
possible states per site, i.e., an electron with spin up or
down, or a hole. The rest of the notation is standard.

It is important to remark that the reduction of the
three-band model to the t-J model is still controversial.
Emery and Reiter (1988b) have argued that the resulting
quasiparticles of the three-band model have both charge
and spin, in contrast to the Cu-O singlets that form the
effective one-band t-J model. Their result was based on
the study of the exact solution in a ferromagnetic back-
ground, and their conclusion was that the t-J model is in-
complete for representing the low-energy physics of the
three-band model. Zhang and Rice (1990) and Emery
and Reiter (1990) continued their exchange of ideas on
this subject, and the issue is still unresolved [although
Chen, Schiittler, and Pedro (1990) and Schiittler and
Fedro (1992) have presented fairly convincing evidence
that the reduction to a one-band model is possible]. Oth-
er authors have also contributed to the discussion (see,
for example, Eskes and Sawatzky, 1988; Mila, 1988;
Stechel and Jennison, 1988; Zaanen and Oles, 1988; Ram-
sak and Prelovsek, 1989; Schuttler and Fedro, 1989; and
Belinicher and Chernyshev, 1993). Most of the results
shown in the rest of this review are for one-band models;
thus we shall assume that the reduction from the original
three-band Hamiltonian to a one-band is possible, al-
though certainly more work is needed to clarify this
point.

In addition to the t-J and three-band Cu-O models,
theorists have been extensively studying, since the early
days of high-T, superconductivity, the two-dimensional
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one ba-nd Hubbard model (Hubbard, 1963), mainly in the
strong-coupling limit. This model is defined as

Ug

3 bands

H= t —g (c;tc +c, c, )+Up(n, t
—,'—)(n,i ——,'),

(ij ),o.

(1.3)

where, as usual, c,.~ is a fermionic operator that creates
an electron at site r of a square lattice with spin o.. U is
the on-site repulsive interaction, and t the hopping ampli-
tude. Although we know that the a.ctual materials
present a band structure with three dominant bands (as
shown in Fig. 10), the one-band Hubbard model tries to
mimic the presence of the charge-transfer gap 6 by
means of an ejfectiue value of the Coulomb repulsion U,s.,
and thus it presents only two bands (see Zaanen,
Sawatzky, and Allen, 1985). The "oxygen" band be-
comes the lower Hubbard band of this model. Note also
that in the strong-coupling limit, it can be shown that the
Hubbard model reduces to the t Jmodel, E-q. (1.2), with
the addition of terms involving three sites. These terms
have not received much attention and are usually exclud-
ed from the numerical studies described in the rest of the
review. Their importance is unclear. Also note that the
term —

—,
' n; n - appears spontaneously in the strong-

coupling expansion of the Hubbard model. Again, its ac-
tual importance compared with the rest of the terms is
not obvious.

%'hy is this Hamiltonian so much studied? The dimen-
sionality of the problem is easy to understand, since the
model attempts to describe electrons in the Cu02 planes.
The restriction of working in strong coupling can also be
understood easily. For example, at half-filling this model

reduces to the Heisenberg model when the on-site
Coulomb interaction is large, and we know that the
Heisenberg model describes well the spin dynamics of the
undoped cuprates. However, the particular form of the
Hamiltonian, where the oxygens are not considered and
the interactions are restricted to an on-site term, is more
difficult to justify. The reader may find enlightening the
article by Anderson and Schrieffer (1991)where this issue
is discussed. There are also interesting calculations on
finite clusters by Hybertsen et al. (1990) and Bacci,
Gagliano, Martin, and Annett (1991},where it was shown
that the one-band Hubbard model (supplemented with a
small next-nearest-neighbor hopping term t'} can repro-
duce the low-energy spectrum of the three-band model.
Hybertsen et al. found that this is achieved by taking the
Hubbard model parameters as U =5.4 eV, t =0.43 eV,
and t'= —0.07 eV, i.e., U/t —12. These authors also
found that the t-t'-J model with J =0.128 eV, and the
same value of t and t' as for the one-band Hubbard mod-
el, also reproduces well the spectra of the more compli-
cated three-band Hamiltonian.

Of course, this is only a test of the short-distance prop-
erties of the models, and not of their long-range behavior.
Thus, in this author s opinion, there is no a orion clear
justification for the enormous e6'ort undertaken by hun-
dreds of theorists in studying this very particular model
(certainly including the author!). However, as we shall
see below, several normal-state properties of the model
qualitatively mimic those of the real materials; thus an a
posteriori justification for its use can be claimed. Unfor-
tunately, thus far there is no conclusive evidence of su-
perconductivity in the one-band Hubbard model, al-
though it is not clear whether that is a failure of the one-
band approximation or of the tools used to search for a
superconducting state (more details are given in Sec.
IV.E.1 and Appendix C). As with any simple model of a
complicated material, we can only justify its introduction
after its low-energy properties are known with some ac-
curacy. This is precisely the goal of most of the compu-
tational work described in the rest of the review.

LHB 02p = = UHB

II. ALGORITHMS

Uett

1 band

LHB UHB

FIG. 10. Schematic band structure of the CuO& planes. Uz is
the Coulombic repulsion at the copper ions, while 5 is the
difference in energy between copper and oxygen orbitals. The
lower part of the figure represents the one-band Hubbard model
that simulates the charge-transfer gap by a Hubbard gap using
an e8'ective U,~.

The study of models of strongly correlated electrons is
a difficult problem. There are no well-controlled analyti-
cal techniques to analyze them in two dimensions.
Mean-field and variational approximations are self-
consistent, but it is difficult to judge if they actually de-
scribe properties of the ground state of the system or of
an excited state. As explained in the introduction, these
difficulties have led numerous groups to study these mod-
els using computational techniques. In some sense the
situation is similar to that of particle physics in the
1970's when it became clear that an understanding of
strongly correlated quarks in quantum chromodynamics
(QCD) would be difficult to achieve by the standard one-
loop bubble summation. In those days, the field of lattice
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gauge theory was developed (for a review, see Kogut,
1979, 1983), and currently its predictions for the hadron
spectrum of QCD have reached a reasonable level of ac-
curacy. At present, we may be facing similar develop-
ments in condensed matter, since it is clear that consider-
able progress can be made with the help of computers in
the study of correlated electrons.

Many techniques are currently being used to study nu-
merically the models of correlated electrons presented in
Sec. I.C. However, the vast majority of the papers in the
literature can be grouped into those where exact diago-
nalization (or Lanczos) techniques were used, and those
produced with quantum Monte Carlo methods. Both al-
gorithms will be reviewed in this section. A large num-
ber of physical results obtained with these techniques will
be discussed in the rest of the review.

A. Lanczos technique

1. Method

The basic idea of the Lanczos method is that a special
basis can be constructed where the Hamiltonian has a tri-
diagonal representation. This is carried out iteratively as
shown below. First, it is necessary to select an arbitrary
vector i/0) in the Hilbert space of the model being stud-
ied. If the Lanczos method (Lanczos, 1950; Pettifor and
Weaire, 1985) is used to obtain the ground-state energy of
the model, then it is necessary that the overlap between
the actual ground state

i /0) and the initial state i/0) be
nonzero. If no a priori information about the ground
state is known, this requirement is usually easily satisfied
by selecting an initial state with randomly chosen
coefficients in the working basis that is being used. If
some other information about the ground state is known,
like its total momentum and spin, then it is convenient to
initiate the iterations with a state already belonging to
the subspace having those quantum numbers (and still
with random coefficients within this subspace).

After i/0) is selected, we can define a new vector by
applying the Hamiltonian H to the initial state. Sub-
tracting the projection over l Po ), we obtain

0 0
(2.1)

ly„,& =& ly„&—~„ly„)—b„'ly„,), (2.3)

which satisfies (Polg, ) =0. Now we can construct a new
state that is orthogonal to the previous two as

&y, ly, )
( l ) l&i& —

( l

)140&

It can be easily checked that (Polg2) =(P, i/2) =0. The
procedure can be generalized by defining an orthogonal
basis recursively as

where n =0, 1,2, . . . , and the coefFicients are given by

(y. ly. &
' (2.4)

supplemented by b0=0, lP i ) =0. In this basis, it can be
shown that the Hamiltonian matrix becomes

ao bl, 0 0

b, a, b~ 0
H= 0 b, a, b,

0 0 b3 a3

(2.5)

i.e., it is tridiagonal, as expected. Once in this form the
matrix can be diagonalized easily using standard library
subroutines. However, to diagonalize completely the
model being studied on a finite cluster, a number of itera-
tions equal to the size of the Hilbert space (or of the sub-
space under consideration) are needed. In practice, this
would demand a considerable amount of CPU time.
However, one of the advantages of this technique is that
accurate enough information about the ground state of
the problem can be obtained after a small number of
iterations (typically of the order of —100 or less). Thus
the method is suitable for the analysis of low-temperature
properties of the models of correlated electrons described
in Sec. I.C.

To understand the rapid convergence to the ground
state which is obtained using this algorithm, it is con-
venient to consider a variation of this technique known
as the modified Lanczos method (Dagotto and Moreo,
1985; Cragliano et al. , 1986). In this method, the diago-
nalization proceeds using "2X2 steps"; i.e., first the
Hamiltonian in the basis lPo) and i/i) (defined before) is
diagonalized. The lowest energy state is always a better
approximation to the actual ground state than lPo). This
new, improved state can be used as the initial state of
another 2 X 2 iteration, and the procedure is repeated as
many times as needed until enough accuracy has been
reached. It is then clear that the modified Lanczos
method, or the original Lanczos, can be described as a
systematic way to improve a given variational state that
is used to represent the ground state of the system
(Dagotto and Moreo, 1985; Heeb and Rice, 1993); thus it
is not surprising that ground-state properties can be ob-
tained accurately well before the rest of the matrix eigen-
values are evaluated.

In spite of these advantages, memory limitations im-
pose severe restrictions on the size of the clusters that
can be studied with this method. To understand this
point, note that although the lowest energy state can be
written in the I l P„)I basis as l $0) =g c

l P ), this
expression is of no practical use unless lP ) itself is ex-
pressed in a convenient basis to which the Hamiltonian
can be easily applied. For example, in spin- —, models it is
convenient to work in the basis where S, is defined at
every site, schematically represented as

l
n ) =

l t & T
. ).
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For the models described in Sec. I.C, the size of this type
of basis set grows exponentially with the system size. For
example, the dimension of the Hilbcrt space of a Hub-
bard model (four states per site) on an N-site cluster is, in
principle, 4, which for N = 16 corresponds to
-4.3X10 states. Such a memory requirement is beyond
the reach of present-day computers. In practice, this

problem can be considerably alleviated by the use of sym-
metries of the Hamiltonian that reduce the matrix to a
block-form. The most obvious symmetry is the number
of particles in the problem which is usually conserved, at
least for fermionic problems. The total projection of the
spin S'„„&may also be a good quantum number. For
translational invariant problems, the total momentum p
of the system is also conserved, introducing a reduction
of I/X in the number of states (this does not hold for
models with open boundary conditions or explicit disor-
der). In addition, several Hamiltonians have other sym-
metries, like spin inversion. On a square lattice, rotations
of m/2 about a given site, and rejections with respect to
the lattice axes, are good quantum numbers (although
care must be taken in their implementation, since some
of these operations are combinations of others and thus
not independent). Upon introduction of these sym-
metries, the linear size of the largest block that is neces-
sary to diagonalize for a Hubbard model on the 4X4
square cluster is —1 350 000 at half-filling and zero
momentum (Fano, Ortolani, and Semeria, 1990; Fano,
Ortolani, and Parola, 1992. In these papers, interesting
group theory tricks have been used to make the study of
this cluster possible in an CKcient way. See also Dagotto,
Moreo, Ortolani, Poilblanc, and Riera, 1992). It is then
clear that the use of symmetries is very important in per-
forming Lanczos calculations on large enough clusters.
Currently, the one-band Hubbard model can be studied
on clusters only slightly larger than the 4X4 lattice, at
least near half-filling, while at low electronic densities
larger systems can be dealt with. The three-band Hub-
bard model can be analyzed on the cluster Cu~Os (2X2
cells), but not much bigger. The r Jmodel has-been stud-
ied on clusters of up to 26 sites at low hole density (see
Sec. III.B), and perhaps lattices of 32 sites will be reach-
able soon. Note that this model reaches a maximum in
the dimension of its Hilbert space at an intermediate hole
density. At this point, it is also convenient to clarify that
it has become commonplace in the Lanczos literature to
diagonalize not only clusters with M XM sites, but also
other square clusters that completely cover the two-
dimensional square lattice, which have axes forming a
nonzero angle with the lattice axes. Examples can be
found in Oitmaa and Betts (1978). Some of the
"magic number" of sites that admit such a covering
of the bulk lattice with "tilted" squares are
X =8, 10, 16, 18,20, 26, 32, . . . . The general rule is
N=n +I, where the positive integers n, m are both
cvcrl Qr odd. Fol example, 10=1'+3, 20=2 +4,
50= 5 +5, etc. (for more details see Appendix A).

How can we obtain explicitly the actual ground state

of the problem'? Each element lP„) of the basis is
represented by a large set of coefBcients, when it is itself
expanded in the basis selected to carry out the problem
(like the S basis). Thus, in practice, it is not convenient
to store each one of the lP ) vectors individually, since
such a procedure would demand a memory requirement
equal to the size of the Hilbert space multiplied by the
number of Lanczos steps (typically —100). However,
there is a simple solution to this problem, and it consists
of running the Lanczos subroutine twice. In the first run,
the coefticients c are obtained, and in the second the
vectors ~P ) are systematically reconstructed one by one
and stored in the vector ~fo) An.other procedure to get
the ground state is to use the modified Lanczos method
described before. In the 2X2 steps, the ground state is
always explicitly at hand. While this technique con-
verges more slowly to the ground state than the standard
Lanczos method, the latter needs to be run twice to get
the ground. state explicitly. Thus in some cases it is
easier to use the modified Lanczos approach, which is
somewhat simpler to program. An even more pedestrian
technique is the power method, which consists of apply-
ing the Hamiltonian n-times to the initial state until all
excited states are filtered out and only the ground state
remains. This procedure is the slowest in speed of con-
vergence, but in simple problems is enough and easy to
program.

To end this section about the Lanczos method, we
shall describe a recent attempt to increase the size of the
clusters that this technique can reach. The idea is that,
for some particular cases, it may occur that the wave
function of the ground state, expanded in some working
basis that is selected for the problem (schematically
i/0) =g c ~m )), may contain states with very small
weight c . Then, it could be possible to neglect those
states in the basis and still get accurate enough results for
the ground-state properties. These types of ideas (that
we call the truncation method) have been recently used in
quantum chemistry by Wenzel and Wilson (1992}and, in
the context of correlated electrons, by Riera and Dagotto
(1993a, 1993b; see also Knowles and Handy, 1989; Ko-
varik, 1990; De Raedt and von der Linden, 1992; De
Raedt and Prick, 1993; Prelovsek and Zotos, 1993; and
references therein}. For the particular case of the t J, -

model, the approach works very well, and clusters of 50
sites can be easily studied keeping only a few hundred
thousand states in the basis (which is a negligible percen-
tage of the total basis set size). Physical results obtained
with this approach will be described elsewhere in this re-
view. However, when the method is applied to the t-J
model, its convergence to the ground-state energy be-
comes slow (logarithmic) when the size of the basis is in-
creased (Prelovsek and Zotos, 1993). To describe proper-
ly the strong quantum Quctuations of the spin back-
ground, most of the S' basis is needed. Then, the trunca-
tion technique is very accurate for particular Hamiltoni-
ans, while for others it only provides a rough estimation
of the ground-state properties. This approach should be
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seriously considered every time a new problem that needs
computational work appears. In particular, it seems suit-
able for problems with gaps in the spectrum (like a spin-
gap).

2. Dynamical properties

One of the most appealing features of the Lanczos
method is that it allows the calculation of dynamical
properties of a given Hamiltonian (Mori, 1965a, 1965b;
Haydock, Heine, and Kelly, 1972; Gagliano and Balseiro,
1987). As shown below, the quantum Monte Carlo tech-
nique is, unfortunately, not suitable for extracting this in-
formation, since the simulations are carried out in imagi-
nary time. Currently the Lanczos approach is the only
reliable technique for evaluating dynamical responses in
a controlled way (of course, with the restriction of work-
ing on small clusters). Here, we shall set up the main for-
malisrn. In general, we are interested in calculating
quantities such as

clear soon. Following Fulde (1991), consider the matrix
(z 8—) and the identity (z —8)(z —8) '=I, where
z =co+ED+i e D. ecoinposed in the basis lP„)defined in
Eq. (2.3), with lPo) as given by Eq. (2.8), we arrive at
g„(z—+ )~„(z—8 )„z'=5 ~. For the special case

p =0, we obtain g„(z—8) „x„=50, where
x„=(z—A') O'. This represents a system of equations for
the unknown xo. The particular case of n =0 corre-
sponds to

which is the quantity we want to study. We need, then,
to solve this linear system of equations.

For this purpose we use Cramer's rule, i.e.,

detBoxo-
det(z 8)—

where the matrices in the I l P„)I basis are given by

(2.6)
z —ao —b) 0

where 0 is the operator that we are analyzing (which de-
pends on the actual experimental setup under considera-
tion), i/0) is the ground state of the Hamiltonian A'

whose ground-state energy is Eo, co is the frequency, and
e is a small (real) number introduced in the calculation to
shift the poles of the Green's function into the complex
plane. Introducing a complete basis, g„l P„)& f„l = 1,
and using the well-known identity

z —H=
—b z —a —b1 1 2

0

0

1 —bj

0 z —a)

0

—b z —a —b2 2 3

b3 z —a 3
~ ~ ~

(2.9)

1 1=I'
x+ie x

i n5(x ),— .
Bo= 0 ~ ~ 0

0 0 b3 z —a 3
~ ~ ~

—b z —a —b2 2 3 (2.10)

valid when e~O (where x is real, and P denotes the prin-
cipal part), we arrive at

1(~)=g l & p„lolit, ) I'5(~ —(z„—E,)}, (2.7)

which is another way to express the spectral decomposi-
tion of a given operator. lg„)can be selected as eigen-
vectors of the Hamiltonian with eigenvalues E„.In prac-
tice, the 5 functions are smeared by a finite e; i.e., they
are replaced by Lorentzians according to

(2.8)

as the initial configuration for reasons that will become

e5(x)—+-
x +E

In order to evaluate numerically Eq. (2.7), it is con-
venient to write the Hamiltonian matrix in a special
basis. As before, we shall apply the Lanczos method to
write A" in a tridiagonal form; but, instead of starting the
iterations with a random state, we choose

xo—
detD2

z —ao —b2i
detD,

(2.11)

The ratio of determinants on the right-hand side of Eq.
(2.11) can also be expanded as

detD2

detD, detD3
z —a, —b,'

detD2

(2.12)

and the procedure can be repeated until a full continued
fraction is constructed. Recalling the definition of the
spectral intensity I (co), we can show that

where the coeScients a„,b„were defined earlier
when the Lanczos method was introduced. The determi-
nants of these matrices are expanded as det(z 8)—
=(z —ao)detD, —b idetD2 and detBo=detDi, where, in
general, the matrix D„is obtained from Eq. (2.9) by re-
moving the first n rows and columns. Then, it can be
easily shown that
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1I (co)= ——Im
(y, lo'o Iy, )

b2

higher moments of the distribution are needed, the fol-
lowing relation holds,

z —ap—
Q2

z Qi z —a 2

(2.13)

which establishes the relation between Eq. (2.6) and a
continued fraction expansion. Recalling that
z =cu+Ep+ie and knowing the ground-state energy of
the system, we can, for any value of the frequency co and
the width e, obtain the spectral function. From the ei-
genvalues of the Hamiltonian in the special Lanczos basis
obtained by iterating with the initial state Eq. (2.8), we
can get very accurately the positions of the poles in the
spectral function.

In practice, the best way to proceed in order to get the
dynamical response of a finite cluster is in two steps.
First, run the Lanczos subroutine using Eq. (2.8) as the
initial state. It is clear that, with this procedure, we are
testing the subspace of the Hilbert space in which we are
interested, and thus all the states found in the Lanczos
step will contribute to the spectral function (there will be
as many poles as iterations carried out, assuming that
this number is smaller than the total size of the subspace
being explored). Secondly, in order to find the intensity
of each pole, it is useful to recall that any energy eigen-
uector

I 1(„)of the tridiagonal representation of the Ham-
iltonian can be written as lg„)=g c" IP ), where

) are the orthonormalized vectors defined in the
Lanczos procedure, with

I /0) given by Eq. (2.8). Then, it
can be easily shown that

I & @„lo I@,& I'= Ic," I'& 1(,fo'o I@,&, (2.14)

and thus the intensity can be written in terms of the first
component of each eigenvector obtained when the tridi-
agonal Hamiltonian matrix is diagonalized. In summary,
the whole process simply amounts to a Lanczos run with
a very particular initial state. To test the convergence of
the procedure, it is generally enough to plot the spectral
function with a particular e, and to test by eye how the
results evolve with the number of iterations. Other more
sophisticated methods to terminate the iterations can be
implemented (Pettifor and Weaire, 1985; Viswanath and
Miiller, 1990, 1991).

Sometimes it is necessary to calculate moments of the
distribution I(co). This can be done very easily. For ex-
ample, the integral over frequency of the spectral func-
tion gives

f dcoI(co)=g I&y„lolq,&l'=(@,lo'ol@, ), (2.15)
n

where we have assumed that the eigenvectors of the
Hamiltonian are normalized to 1, i.e., g„lco I

=1.
Equation (2.15) is a generic expression for some of the
sum rules frequently mentioned in the literature for vari-
ous operators 0 (as will be shown in later examples). If

co I CO =
p 0 0 p Cp En Ep 2.16

p

where all the necessary information to calculate it was
obtained earlier when the spectral function was evaluated
(poles and intensities).

B. Quantum Monte Carlo technique

The Monte Carlo method is well known in the context
of statistical mechanics and condensed-matter physics
(for a recent review see Binder and Heermann, 1992).
here, we shall briefly describe an application of this gen-
eral algorithm to the quantum-mechanical many-body
problem of interacting electrons on a lattice, working in
the grand-canonical ensemble. The basic idea of this ap-
proach was presented some time ago by Blankenbecler,
Scalapino, and Sugar (1981). Suppose we want to evalu-
ate the expectation value of a physical observable 0, at
some finite temperature T = 1/P. If 8 is the Hamiltoni-
an of the model, this expectation value is defined as

pP&o)="" (2.17)
Tr(e ~ )

where the notation is the standard. From now on, let us
concentrate on the particular case of the one-band Hub-
bard model, which was defined in Eq. (1.3). The Hamil-
tonian of this model, with the addition of a chemical po-
tential, can be naturally separated into two terms as

t g —(c; cj +c~ c; ) pg (n—;t+n;~),
(2.18)

P=UQ(n;t —
—,')(n, g

—
—,') .

Discretizing the inverse temperature interval as fj=b rL,
where A~ is a small number and I. is the total number of
time slices, we can apply the well-known Trotter's formu-
la to rewrite the partition function as

Z —Tr( e 61Lu) Tr( e k1 Pe ATE)1 (2.19)

where a systeinatic error of order (hr) has been intro-
duced, since [2,P']%0. In order to integrate out the fer-
mionic fields, the interaction term chas to b'e made
quadratic in the fermionic creation and annihilation
operators by introducing a decoupling Hubbard-
Stratonovich transformation. At this stage, we can select
from a wide variety of possibilities to carry out this
decoupling, i.e., we can choose continuous or discrete,
real or complex fields, belonging to difFerent groups. In
particular, and for illustration purposes, here we use a
simple transformation using a discrete spinlike field
(Hirsch, 1985),

—6~U( n,.1
—1/2)( n, 1

—1/2)
—h~U/4 —h~s, IA(n, —n, )

s,

(2.20)
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Z = g detM+(s)detM (s),
Is;, =+ i I

where

(2.21)

which is carried out at each lattice site i and for each
temperature (or imaginary-time) slice l. The constant A,

is defined through the relation cosh(brA, ) =exp(hrU/2).
Transformation (2.20) reduces the four-fermion self-
interaction of the Hubbard model to a quadratic term in
the fermions coupled to the new spinlike Geld s,. 1. Thus
in this formalism the interactions between electrons are
mediated by the spin field. Now we can carry out the in-
tegration of the fermions. While this is conceptually
straightforward and, for a 6nite lattice of XXX sites,
gives determinants of well-defined matrices, arriving at
the actual form of these matrices is somewhat involved
and beyond the scope of this review. We shall simply
present the result of the integration (more details can be
found in Gubernatis et a/. , 1985 and White, Scalapino,
Sugar, Loh, et al. , 1989). The partition function can be
exactly written as

are finally expressed in terms of the spin fields, which are
treated using a Metropolis algorithm (for details see
White, Scalapino, Sugar, Loh, et a/. , 1989 and Imada
and Hatsugai, 1989). Results obtained using these tech-
niques, as well as other modifications of these methods,
will be discussed in several sections of the present review.
Finally, it is interesting to notice that there are numerical
methods of the Monte Carlo family that are closely relat-
ed to mean-field approximations to Hubbard-like models.
These are the variational Monte Carlo methods, where
the Monte Carlo algorithm is used to evaluate expecta-
tion values for a variational wave function (which typi-
cally satisfies the local constraint of no double occupancy
if the large U/r limit is analyzed). As in any other varia-
tional approach, the results are sensitive to short-distance
correlations, and it is not clear if they are a good test of
the long-range-order properties of the system. However,
interesting investigations of antiferromagnetisrn and su-
perconductivity have already been carried out with this
technique (Gros, 1988, 1989; Yokoyama and Shiba, 1988;
G. J. Chen et al. , 1990).

M =I+8 8 . . 8L L —1 1 C Sign problems

For the one-band Hubbard model, the quantum Monte
Carlo simulations described earlier can be carried out at
half-filling with no difficulty, since the product
detM+detM is positive [it can be shown that
detM+ = A X detM for any con6guration of the
Hubbard-Stratonovich spin Gelds, where A ls a posltlve
number (Hirsch, 1985)]. Results at half-filling will be dis-
cussed in Sec. III.A. However, in the case of an arbitrary
density ( n )%1, this is no longer true for the repulsive
Hubbard model (other models like the attractive Hub-
bard model do not have this problem, and they can be
simulated at all densities). Then, the "probability" of a
given spin configuration is no longer positive definite. In
this situation, to obtain results using this technique, it is
convenient to separate the product of the determinants
into its absolute value and its sign, i.e., detM detM
=sgn X ~detM+detM

~

for each spin configuration. Us-
ing this trick, the expectation value of any operator 0
can be written as

+ 5~v(1) —A~Ir:—e

I is the unit matrix, v(l);~ =5,j.s, &, and K is the matrix
A.

representation of the operator K. Usually the physical
observable 0 can be expressed in terms of Green's func-
tions for the electrons moving in the spin field. Then, ex-
pressions similar to Eqs. (2.21)—(2.23) can be derived for
Eq. (2.17). Once the partition function is written only in
terms of the spin fields, we can use standard Monte Carlo
techniques (such as Metropolis or heat bath methods) to
perform a simulation of the complicated sums over s, 1

that remain to be done. The probability distribution of a
given spin configuration is given, in principle, by
(1/Z)detM+detM (unless it becomes negative; see the
next section).

A simple modification of the Blankenbecler, Scalapino,
and Sugar algorithm allows the calculation of ground-
state properties in the canonical ensemble, i.e., with a
fixed number of electrons. This approach is called Pro-
jector Monte Carlo. Consider the ground state ~$0) of a
system, and denote by ~Po) a trial state with a nonzero
overlap with the actual ground state. The expectation
value of a physical observable 0 can be exactly written as

((& sgn))
((sgn ))

(2.25)

where (( . )) denotes an expectation value obtained us-
ing a probability proportional to ~detM+detM ~. Simi-
lar tricks can be applied to cases where the determinant
becomes complex as it occurs in problems of lattice
gauge theory in the context of particle physics (Barbour
et a/. , 1986). Although Eq. (2.25) is an exact identity, in
practice the denominator can become very small if the
number of spin configurations with positive and negative
determinants is similar. Unfortunately, this is the case
for the Hubbard model in some regime of couplings and
densities, and at low temperatures. For example, in Fig.
11, ((sgn)) is shown as a function of the density (n ),

(2.24)

The steps necessary to simulate Eq. (2.24) using the
Monte Carlo method are very similar to those discussed
in deriving Eq. (2.21). First, A, +A, is discretized in a
finite number of slices; then the Trotter approximation,
as well as the Hubbard-Stratonovich decoupling, are
used. Ferrnions are integrated out, and all observables

(@ ~g ~@ ) (y ~

—i'BO ilPt@)—
lim(pip)
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working at Ult =4 and two temperatures, on a 4X4
cluster (from White, Scalapino, Sugar, Loh et al. , 1989).
The qualitative behavior is clear, i.e., the sign is decreas-
ing rapidly when the temperature is reduced, especially
at densities close to half-filling. Similar trends have been
observed for larger clusters and couplings. Actually, it
has been shown that (( sgn )) converges exponentially to
zero as the temperature decreases (Hamann and Fahy,
1990; Loh et al. , 1990). This effect imposes severe con-
straints on the temperatures that can be reached using
Monte Carlo techniques in simulations of the Hubbard
model away from half-filling. This is the well-known
"sign problem. "

How does this complication affect the accuracy of the
results? In Fig. 12, the expectation value of the energy
E = (8 ) for the Hubbard model is plotted as a function
of temperature T, on a 4X4 cluster working at Ult =4
and density (n ) =0.87S (from Moreo, 1993b), using the
same number of Monte Carlo sweeps at all temperatures.
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0.85
I
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FICi. 12. Quantum Monte Carlo mean value of the energy E for
the one-band Hubbard model as a function of temperature T, on
a 4X4 cluster working at Ult =4 and density (n) =0.875
(from Moreo, 1993a). The square at T =0 is obtained with ex-
act diagonalization techniques.

FIG. 11. Mean value of the sign as a function of the density for
the one-band Hubbard model on a 4 X4 cluster at U/t =4. Re-
sults for two temperatures are shown (from White, Scalapino,
Sugar, Loh et al. , 1989).

note the rapid increase of the error bars as the tempera-
ture decreases. For comparison, the exact result at zero
temperature for the case of two holes on a 4 X4 cluster is
also shown (Dagotto, Moreo, Ortolani, Poilblanc, and
Riera, 1992). It would have been somewhat difficult to
accurately obtain this zero-temperature energy from the
Monte Carlo data alone. Of course, increasing consider-
ably the number of sweeps in Fig. 12 and reducing h~
will obtain better results; thus this figure serves simply as
a rough illustration of the trends in the sign problem.
Actually, with some effort, the energy of the ground state
can be obtained with small error bars even away from
half-filling (remember also that the Monte Carlo results
need additional corrections to take into account the sys-
tematic b,r errors). However, results for other quantities
like spin-spin correlations show a similar qualitative
behavior, but typically with larger error bars than in the
case of the energy; and it is dificult to improve these re-
sults even with long Monte Carlo runs.

The study of the sign problem, and the possibility of
finding a cure for it, is a very important subject in the
context of simulations of correlated electrons. Some time
ago, considerable excitement was generated by a paper by
Sorella et al. (1988, 1989) in which it was claimed that
using a projector Monte Carlo algorithm, and an ap-
propriate trial wave function ~$0), would result in the
mean value of the sign converging to a nonzero constant
as @~ao. In such a case, it was argued, some physical
quantities could be calculated simply by neglecting the
signs of the determinants. Unfortunately, these con-
clusions were somewhat premature, as discussed later by
Loh et al. (1990) and Sorella (1991),who showed that the
expectation value of the sign actually decreases exponen-
tially with P. Then, neglecting the signs of the deter-
minants leads to an uncontrolled approximation. Loh
et al. (1990) showed that some physical quantities related
to superconducting correlations present a qua/itatioely
different behavior with and without the signs included in
the averages.

It is also important to clarify that the sign problem is
caused not only by the signs that appear due to fermionic
anticommutations. For example, consider the case of the
spin- —,

' Heisenberg model with nearest- and next-nearest-
neighbor interactions, which can be simulated using
random-walk Monte Carlo methods (Barnes, 1991; see
also Dagotto, 1991). In this technique, matrix elements
of the interactions are used as probability in the Monte
Carlo algorithm. Unfortunately, it is not possible to
write these matrix elements in a positive-definite way for
an arbitrary value of the couplings in the Hamiltonian.
Then, the sign problem is a widely extended plague that
affects several areas of quantum simulations, not only
strongly correlated electrons. The study of the sign prob-
lem continues attracting considerable attention. Some
recent attempts to fight the problem can be found in As-
saad and De Forcrand, 1990; Batrouni and Scalettar,
1990; Dagotto, Moreo, Sugar, and Toussaint, 1990;
Hamann and Fahy, 1990; Fahy and Hamann, 1991;
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Furukawa and Imada, 1991a; Zhang and Kalos, 1991;
Muramatsu, Zumbach, and Zotos, 1993; Vekic and
White, 1993;and references therein.

Finally, we shall brieAy describe a recently proposed
technique for alleviating the sign problem. The method
is based on the possibility that the operators used to de-
scribe, for example, hole excitations in Hubbard and I;-J
models are "poor, " in the sense that they are bad approx-
imations to the actual "dressed" quasiparticle operators
that create real holes in these models. Having proper
quasiparticle operators alleviates the sign problem, since
in projector or Green's-function Monte Carlo methods
an initial state is selected upon which e acts repeat-
edly until convergence is reached (b,r being a small num-
ber); thus if the initial Ansatz is very good, the sign prob-
lem may destroy the statistics only after a good conver-
gence is observed (at least in the ground-state energy). A
method to systematically construct better operators was
discussed by Dagotto and Schrieifer (1991), Boninsegni
and Manousakis (1991), and Furukawa and Imada
(199lb), and implemented by Boninsegni and Manousakis
(1991, 1993) and Furukawa and Imada (1991b), with
good results for the cases of one and two holes in the t-J
model, and the weak-coupling Hubbard model [Monte
Carlo results for one hole were also obtained by Barnes
and Kovarik (1993)]. In this technique, the information
gathered using Lanczos methods is very useful for guid-
ing the construction of the variational states.

We should also like to mention a class of numerical
work that is closely allied with traditional diagrammatic
calculations and so takes a rather diferent approach than
the Monte Carlo and exact diagonalization methods on
which we shall focus. Pioneered by Bickers, Scalapino,
and White (1989) and further developed by Serene and
Hess (1991), these techniques rely on a numerical solu-
tion of self-consistent equations for the one- and two-
particle interacting electron Green s fun, ctions and in™
teraction vertices. These approaches are able to study
the competition between particle-hole and particle-
particle instabilities and to estimate transition tempera-
tures. Unfortunately, an adequate treatment of this tech-
nique is beyond the scope of this review.

Ill. CGRRELATED ELECTRONS AT LGW HGLE l3GPING

A. Resolts at half-filling

As explained before, in the one-band Hubbard model
at half-filling (n ) =1, particle-hole symmetry arguments
can be used (Hirsch, 1985) to show that
detM+ = A X detM ( A )0) for any configuration of
the Hubbard-Stratonovich spin field in the quantum
Monte Carlo [see Eq. (2.21)]. Then, the product of deter-
minants cannot be negative, and a simulation in which
the probability of the spin configuration [s;i l is propor-
tional to detM+detM can proceed without problems.
For this particular density, strong numerical evidence

suggests that the ground state has long-range spin order
for any nonzero value of the coupling. For example, in
the strong-coupling limit U/t »1, the Hubbard model is
equivalent to the spin- —,

' Heisenberg model defined by the
Hamiltonian

M=J g (S S ——')
(ij )

(3.1)

where 7 =4t /U, and the rest of the notation is standard.
This model has been extensively studied using several
difFerent analytical and numerical methods. According
to these results, the ground state has antiferromagnetic
long-range order at zero temperature (for details see Oit-
maa and Betts, 1978; Reger and Young, 1988; Chakra-
varty, 1990; Barnes, 1991; Manousakis, 1991; and refer-
ences therein). Exotic scenarios like those described by
the resonant valence bond (RVB) states or fiux phases do
not seem to be realized in this model [at least from the
point of view of computational studies; the fIux phases do
not seem stable in the t Jmodel ei-ther (Bonesteel and
Wilkins, 1991; Dagotto, Moreo, Ortolani, Poilblanc, and
Riera, 1992), and thus they will not be addressed in this
review]. Even with the inclusion of next-nearest-
neighbor spin-spin interactions, no indications of such
states have been found numerically (Dagotto, 1991;Poil-
blanc et al. , 1991;and references therein).

At small and intermediate coupling Ult in the one-
band Hubbard model, quantum Monte Carlo (QMC)
simulations and Lanczos results suggest that antiferro-
magnetic spin order is still present in the ground state,
even though double occupancy is allowed. Among the
first studies to show these results were those of Hirsch
and Tang (1989) and White, Scalapino, Sugar, Loh, et al
(1989). The actual value of the local moment decreases
from —,

' as the coupling is reduced. This state is usually
called spin-density wave (SDW) and is analytically con-
nected to the Neel-like ground state at large U/t. As a
recent example of these types of studies, and also to show
a case in which Lanczos and QMC techniques give re-
sults in excellent agreement, we show in Fig. 13
the exact spin-spin correlation function defined as C(r)i„+i+j +j=C(i j)=—,'( —1) " ' " —((n;& n;&)(n t n~i) ) —in-
the ground state of the Hubbard model as a function of
distance on a 4X4 cluster and at Ult=4 (we used the
notation i =(i,i» ), and the sign was introduced to make
the correlations positive if staggered order exists). This
result was obtained with the Lanczos technique (Pano,
Ortolani, and Parola, 1992). The I point corresponds to
a site (2,0) lattice spacings from the origin, while M is
(2,2) from the origin. Indications of long-range order are
clear in this figure. For comparison, we also include in
Fig. 13 results obtained using quantum Monte Carlo
techniques applied to the same cluster. It is interesting
to note the convergence of the QMC results to the Lanc-
zos results as the temperature is reduced. Even working
at high temperatures, it would have been possible to infer
the tendency towards spin long-range order from the re-
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for all nonzero values of U/t.
These results obtained at half-filling can be described

intuitively by a mean-field approximation to the one-band
Hubbard model (Schrieffer, Wen, and Zhang, 1989).
These types of approximations are self-consistent, and it
is difBcult to judge their accuracy unless contrasted
against results obtained using unbiased techniques, like
the numerical methods described in this section. For the
particular case of half-filling, the agreement between
numerics and mean-field results is very good,
and thus the analytic approximation seems to have
captured the important physics of the problem. Let us
write the number operator at a given site i as
n; =(n; )+(n; (n—; )), where (n; ) is the expecta-
tion value in the ground state, and the second term will
be assumed to be "small. " Within this approximation,
the on-site Coulombic interaction becomes

FIG. 13. Spin-spin correlation C(r), de6ned in the text, corre-
sponding to the one-band Hubbard model for different values of
the distance r on a 4X4 cluster, at U/t =4. The solid squares
are exact results at zero temperature obtained using the Lanc-
zos technique (Fano, Ortolani, and Parola, 1992). The open
squares are results obtained with the quantum Monte Carlo ap-
proach (Moreo, 1993a) at different temperatures (starting from
below P=4, 6, and 12). C(r)

0.50

U/t=4, IIt=8

~ 4x4

6x6

~ 8x8

n; & n; t = —( n; t ) ( n; & ) +n; t ( n; t ) +n; t ( n; t ) . (3.2)

As an ansatz for the mean value of the number operators,
we select a SOW state; i.e., we choose

suits of this small cluster. This effect may be caused by
the rapid growth of the spin-correlation length g, when
the temperature is decreased, since in the regime where g
is larger than the lattice size, the results are qualitatively
similar to those at zero temperature. This example
shows that convergence to zero-temperature results for a
Pnite cluster can be reached at relatively high tempera-
tures, depending on the physics of the problem.

In Fig. 14(a), results for the spin-spin correlations on
larger clusters obtained using QMC are shown (Moreo,
1993b). The presence of spin long-range order is clear in
these studies, and the finite-size effects are very small.
Temperature effects do not alter significantly the qualita-
tive behavior of the correlations. Figure 14(b) shows an
alternative method to search for long-range order.
S(m, n. ) is the structure factor at momentum Q=(m, ~),
which corresponds to the sum of the correlation C (i —j)
over all distances. If there is long-range order, this quan-
tity has to increase and diverge with the size of the clus-
ter. Such an effect is clearly observed in Fig. 14(b) at
U/t =4, showing the presence of antiferromagnetic spin
order in this model. Actually, spin-wave theory makes
specific predictions for the finite-size corrections to
S(m, m). Corrections of these forms have been observed
by quantum Monte Carlo and Lanczos methods, clearly
showing that the lattice is ordered in the thermodynamic
limit. For what value of U/t does long-range order ex-
ist? Hirsch and Tang (1989) showed numerically that
spin-density-wave order exists even for U/t as small as 2,
and it is widely believed that the ground state is ordered

0.25

0.00
I I I I I I I I I I I I

0 1 2 3 4 5
I'

U=4, &n&=1

30

0 I I I I I I I I I I I I I I I I I I I I I I

0 5 10 15 20

FIG. 14. (a) Spin-spin correlation C(r) for the one-band Hub-
bard model at half-filling using quantum Monte Carlo tech-
niques at U/t =4, P=8/t, and several cluster sizes (from
Moreo, 1993b; see also Moreo, 1992b); (b) antiferromagnetic
structure factor S (vr, m ) as a function of P (inverse temperature)
for a variety of lattice sizes. These results were obtained with a
quantum Monte Carlo algorithm (White, Scalapino, Sugar,
Loh, et al. , 1989).
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(n &
=

—,'[1+8(—1) '
] and (n &

=—'[1—5( —1)"]
where S is a variational parameter to be fixed by minimi-
zation of the mean-field energy, and ~i~ =i +i~, where
i =(i„,i~). In the limit U/t =0, the parameter S van-

ishes, and we correctly reproduce the result that, at any
site, ( n;t &

= ( n; & &
=

—,
' if the particles are noninteracting.

At large U jt, S converges to 1 and the Ansatz becomes a
spin staggered Neel state. This state is a good qualitative
approximation to the ground state of the Heisenberg
model (which is the eff'ective model at large Coulombic
repulsion and half-filling), although spin fiuctuations are
not included. Then, both the limits of large and small
U/t are properly described by the mean-field state. To
obtain results at intermediate values of the coupling,
we have to solve the mean-field Hamiltonian, which
is now quadratic in the fermionic fields. After some
algebra and working in momentum space using
c; =( I/&X )g~ e '~'c&, we arrive at the Hamiltonian

MF g epci, i g [ci+&t i t cz+&ici & ]
po' p

+—SX,U
(3.3)

where e&= —2t (cosy +cosy» ), Q=(n, vr), and the chem-
ical potential p is zero at half-filling if the Coulombic in-
teraction is written in a particle-hole symmetric form as
in Eq. (1.3). Note that in the mean-field Hamiltonian
(3.3) the spin index is diagonal, and the operators with
momentum p only interact with those of momentum
p+Q (since p+2Q=p). Thus the diagonalization of
HMF amounts to solving just a 2 X 2 matrix problem for
each spin and momentum (restricted to only half the Bril-
louin zone). The eigenvectors can be easily obtained fol-
lowing steps very similar to those used in textbooks to
study the BCS model (i.e., attractive Hubbard model).
They are given by

Ix&l
~ le~I V &@+&sDw

(3.6)

where the sum over momenta is restricted to half the
Brillouin zone (pF is the momentum at the noninteract-
ing Fermi surface and at half-filling). In this mean-field
approximation, the ground state is obtained by populat-
ing all the "quasiparticle" states with negative energy, as
shown in Fig. 15(a); i.e.,

IP'MF&=11lpl Ip, l()'pt') ()'pi') ~0& (3.7)

where 0& is the empty state. Solving gap equation (3.6),
we obtain the result shown in Fig. 15(b). The gap is finite
for all nonzero values of U/t. At large coupling, it grows
proportional to U/t, while in the very weak coupling re-
gion U/t & 1 it follows an exponential behavior
Asow- e . Then, in this approximation, spin-
density-wave order exists for all values of the coupling, in
qualitative agreeinent with the numerical studies (for ad-
ditional details, see Schrieff'er, Wen, and Zhang, 1989).
Note that in two-dimensional problems, the Mermin-
Wagner theorem prevents the existence of long-range or-
der at finite temperature if the spontaneously broken
symmetry is continuous. Actually, the spin-correlation
length becomes infinite only at zero temperature. In the
actual cuprate superconductors, a small residual interac-
tion in the c direction (i.e., between Cu02 planes) induces
a Pnite critical Neel temperature, as was shown in the
phase diagrams of several compounds (Figs. 2, 4, 6). Spin
long-range order has been found numerically not only in
the one-band Hubbard model but also in the three-band
case (Scalettar, 1989; Dopf, Muramatsu, and Hanke,
1990; Scalettar et al. , 1991). Calculations similar to
those described here but made explicitly for the YBCO
material have been reported by Furukawa and Imada
(1992).

It is believed that the "physics" of the half-filled limit
(+)—

Ppf QPCpf UPCP+gp

(+)—
Ppg =@pep) +Upcp+qg

( —)—
spy

=vpcpy +Qpcp+qt

( —)—
~p& =Ur cp& "pep+a&

(3 4) (a)

tes
PtY

ksDw/t

I
'

I
'

I
'

I

where the upper index indicates that there are two eigen-
vectors per spin and momentum p in the reduced Bril-
louin zone. y'+ ' has eigenvalue A, =E, while for y' ' it

is A, = —R, where E&=+@ +A&Dw, and the spin-
density-wave gap is given by hsDw'= U 5 /4. The func-
tions used in the definition of the eigenvectors are

-n/2

2~sow 2~sow

ates
Ulated

Kx=Ky

0
0 2 4 6 8 10

U/t.

z l ~p
u =—1+P

P

2
v = 19 p

P

(3.5)

The self-consistent equation for the mean-field parameter
Sis

FIG. 15. (a) Spectrum of quasiparticles in the mean-field ap-
proximation used to describe the SDW state at half-611ing (see
Schrieffer, Wen, and Zhang, 1988). The lower band of negative
energy states is populated, while the upper band is empty. (b)
Mean-field SDW gap as a function of the coupling U/t (provid-
ed by A. Nazarenko, 1993, unpublished).
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is mostly understood in models of correlated electrons
with repulsive interactions. Then, the bulk of this review
is devoted to the more challenging and interesting, but
considerably less understood, situation where carriers are
added to the planes.

hole initial

B. Properties of holes in antiferromagnets W % W IH W W W W W W W I

In this section we describe the present status of studies
of a few holes in an antiferromagnetic background.
These studies were carried out mainly using numerical
methods, but also with the help of some rough analytical
techniques, as shown below. The models we shall use are
the I;-J and Hubbard models. In the early days of these
studies, it was suggested that the effect of doping could
be mimicked by adding frustration to the spin- —, Heisen-

berg model (Inui, Doniach, and Gabay, 1988). This issue
was studied by Nori, Gagliano, and Bacci (1992); Bacci,
Gagliano, and Nori (1991);and Nori and Zimanyi (1991).
These authors found that the effects of doping and frus-
tration are quite difFerent in models of correlated elec-
trons. Therefore, the original proposal mapping doping
to frustration has been discarded. Our investigations
here wi11 be carried out directly using Hubbard-like mod-
els.

FKJ. 16. Example of a hole moving in a Neel background to il-
lustrate the concept of strings: "initial" denotes the site where
the hole is initially injected; the circle is the hole in its actual
position after the hopping term acts 3 times; and the dashed line
is the path followed by the hole. The double lines indicate links
that are "ferromagnetic, " i.e., where magnetic energy is paid.
The number of ferromagnetic links grows like the length of the
path.

1. String picture

To gain some intuition on the behavior of holes doped
into an antiferromagnet, we shall start with the study of
just one hole. In spite of its apparent simplicity, this
problem is highly nontrivial, and a considerable effort has
been devoted to its analysis. The physics of a hole arises
from a competition between the superexchange energy
lost near the hole and its kinetic energy. It is reasonable
to expect that the antiferromagnetic order parameter will
reduce its magnitude near the hole, increasing the mobili-
ty of the carrier inside such a spin bag (Kampf and
Schrieffer, 1990). In the regime of strong coupling, where
double occupancy is suppressed, an interesting picture
emerges. Consider a hole added to an antiferromagnet at
a given site. As this initial state evolves in time, the hole
can move some distance l away from its original position
by the action of the hopping term. However, in such ex-
cursions the spins along the path of the hole are in-
correctly aligned with respect to the Neel background, as
shown in Fig. 16. Then, if the hole is moved a distance I
from the origin, the energy spent is proportional to I;
thus over the hole acts an effective "confining" linear po-
tential that tends to localize it. Such a confinement is not
strict. For example, complicated paths have been found
that avoid the problem of having an energy that grows
with / and thus give mobility to the hole (Trugman,
1988); but, in general, the effects of this so-called string
linear potential strongly inhuence the physics of holes in
antiferromagnets.

More formally, let us consider the problem of one hole

moving in a staggered spin background (Shraiman and
Siggia, 1988a, and references therein; see also Brinkman
and Rice, 1970; Eder, Becker, and Stephan, 1990;
Prelovsek, Sega, and Bonca, 1990; and Eder, 1992). To
simplify the problem, we take into account only the Ising
part of the spin interaction, i.e., we consider the so-called
t-J, Hamiltonian defined as

H=J, Q S Sf t g (c;—c~ +cj c; ),
(ij) &ij),o

(3.8)

H'10) =Z, io) —21» . (3.9)

The first term appears due to the four antiferromagnetic
links that were missing once the hole was created. The
new state ~l) is defined as ~1)= —,

' g, ~r, ), where I~i]
denote unit vectors in the directions +x, +y. The state
~~, ) represents a "string" of length 1, which has been
created from the state without strings by moving the hole
one lattice spacing in the direction v.&. In general, we can
define states lr„rz,~3, . . . , v'i ), which are obtained after 1

where no transverse spin fluctuations are included, and

c~ =c (1—nj ). The rest of the notation was already
introduced in the definition of the t Jmodel [Eq. (1.2)]-.

The ground state in the absence of holes is a perfect Neel
state with energy EOI, = —

—,'J,2X, where 2X is the num-

ber of links of a two-dimensional square lattice with X
sites. The state obtained by removing one arbitrary spin
from the cluster will be denoted as l0). This state is like
a strong of zero length; i.e., all the links, but the four
around the hole, are antiferr orna gnetic. Applying
H'=H —Eoz (with t =1)on ~0), we obtain
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applications of the hopping term starting from the no
string state l0 &. The hole position is obtained by adding
as vectors ~i+~2+ . +~I. Now, let us apply the Ham-
iltonian to

l
1 &. The result is

has been omitted; to derive Eq. (3.13), it is useful to for-
mally expand in powers of the lattice spacing, which is
achieved using

H'l l &
=—J.l

1 &
—2lo& —&3l2& .

The diagonal term arises from a simple calculation of the
energy of a state with a string of length 1 (there are four
missing links surrounding the hole, plus three links that
have become ferromagnetic due to the movement of the
hole one lattice spacing). The second term corresponds
to moving the hole back to the origin. The new state in
the third term is defined as

This problem can be solved exactly, and the result is ex-
pressed in terms of Airy function eigenvalues. Actually,
through the change of variables //a=(J, /t) '~ x (x is
dimensionless), the coupling dependence can be extracted
explicitly, and Eq. (3.13) can be written as

(3.14)

1

T),12+ T)

where the sum represents the 12 states that can be ob-
tained by moving a hole two lattice spacings from the ori-
gin (2+3 is its normalization).

These ideas can be generalized to I applications of the
hopping term by defining an orthonormal "string" basis
as

(ht)rl0
2

(3.11)

3
I +I I

where &3 is the normalization of the three newly created
states. On the other hand, the application of h retraces
the path of the hole in one lattice spacing. It can be
shown that the hopping term in the original Hamiltonian
is equal to &3(h +h t), and that hh t= 1. Then,

where the operator h ~, acting over a state with a hole at a
given position, creates three new states where the hole
has moved one more lattice spacing (at least for / larger
than one lattice spacing; Shraiman and Siggia, 1988a).
More formally,

This result clearly shows that the energy levels of a hole
in a Neel background without spin fluctuations behaves
as (J, /t) . This characteristic dependence is not re-
stricted to the t J, mod-el; it is also found (below) in nu-
merical studies of the t-J model that take into account all
the hole paths, and the transverse spin fluctuations.
Thus the string description of holes in antiferromagnets
seems to have captured many of the important features of
this complicated problem.

Finally, by dimensional analysis we can estimate the
characteristic "size" of the hole ground-state wave func-
tion in real space. Suppose this wave function decays at
large distances as exp( / /L ), wher—e L is the typical
scale we are looking for (the results below are indepen-
dent of the actual functional form of the wave function).
Changing variables in the exponent as before, we obtain
(//L) =[(ax)/L] (t/J, )

~ . In the dimensionless vari-
able x, the size of the wave function is also a dimension-
less number b, and thus we conclude that
(a/L) (t/J, ) =b, which implies L/a (t!J,-)'~ .
Thus the hole is able to explore a larger lattice when J, is
reduced, which is reasonable, since the attractive poten-
tial is weaker. This also tells us that finite cluster calcula-
tions will have stronger finite-size efFects as the superex-
change coupling is reduced.

H' =J.( ,' + /)I/ & &3(l—/ —1 & +—l/ + 1 & ), (3.12)

H l/&= —a'&3t +J,— l/&,a
(3.13)

where a is the lattice spacing, and a constant energy term

which is valid for / ~ 2 (note that some paths are neglect-
ed in this approximation; i.e., we are implicitly working
on a Bethe lattice). This problem can be solved numeri-
cally with great accuracy. According to Shraiman and
Siggia (1988a), the ground-state energy of H' is

eir, = —2&3+2.74J, , which is very similar to the re-
sult obtained numerically in the fully interacting problem
on finite clusters, as we shall show in Sec. III.B.2. Equa-
tion (3.12) corresponds to a discretized version of the
problem of a Schrodinger particle in a linear potential,
which in the continuum limit becomes

2. Energy and momentum of a hole

Let us now consider numerical results for the actual t-J
model in two dimensions, obtained without the approxi-
mations employed in the string picture. The energy of
one hole in the t-J model, ei&, measured with respect to
the energy of the undoped system, is shown in Fig. 17.
This result was obtained using a 4X4 cluster and exact
diagonalization techniques in the subspace of one hole.
In the same figure, we also show the energy of one hole in
the t J, model [defined in Eq. -(3.8)] on an 8X8 cluster
(Barnes et a/. , 1989). For this particular case in which
the transverse spin fluctuations are switched ofF, and if
only one hole is studied, it can be shown, using the guid-
ed random-walk approach developed by Barnes and
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FIG. 17. Energy of one hole with respect to the undoped sys-
tem e&q, as a function of the coupling J at t =1. Results are
shown for the t-J model on a 4X4 cluster (from Dagotto et al. ,
1990b), and for the t-J, model on a 8X8 cluster (from Barnes
et al. , 1989).

Daniell (1988), that there are no sign problems. Thus the
study of one hole in the t-J, model can be carried out on
relatively large clusters. Figure 17 implies that the ener-

gy of one hole is proportional to J, with high
accuracy. Actually, the best Monte Carlo fit e» /t
= —3.66+2.96(J, /r) is in excellent agreement with
the string picture explained previously. More recently,
the most accurate results available for the one hole ener-

gy in the t-J, model have been obtained with the
"truncation" Lanczos algorithm described in Sec. II.A
(Dagotto and Riera, 1993). The reported result is
e&h = —3.620+2.924(J,/t), obtained using clusters
with up to 50 sites and five-digit-accuracy ground-state
energies. The string picture is clearly very robust for the
t-J, model.

However, in the t-J model it is not obvious that the
string picture should work. In principle, the spin Auctua-
tions could "cut" the strings, restoring the Neel spin or-
der. For some time it was assumed that this formalism
was not suitable for the more realistic t-J model. Howev-
er, numerical results on small clusters showed that the
ground-state energy of one hole in the interval
0.2~ J/t ~ 1.0 could be fit very accurately as
e&1, /r = —3. 17+2.83(J/r), which had an exponent
close to the —', power law. It is possible that in some re-

gion of parameter space, the string typical time scale
could be much faster than that of' the spin Auctuations,
and thus the strings could not be easily erased (for a dis-
cussion s'ee Dagotto, Joynt, et ah. , 1990 and Dagotto,

Unfortunately, the occurrence of any finite transverse cou-
pling or the addition of more holes induces matrix elements that
can become negative. Thus this Monte Carlo approach cannot
be applied to more realistic cases without finding sign problems.

Moreo, Joynt, et a/. , 1990). In other words, the hole
might "emit" a string and retrace it back in a time pro-
portional to 1/t, while the Heisenberg term would need a
1/J time to cut the string. Similar. conclusions can be ob-
tained by studying excited states of the hole through the
dynamical spectral function, as shown in Sec. III.B.4.
Then, the string picture seems to work even in the pres-
ence of spin fluctuations.

It is interesting to note that for the t-J model the
momentum of the hole ground state seems to be
p=(m. /2, m/2). The evidence for this result comes from
a combination of spin-wave, variational, and numerical
methods carried out by several di6'erent groups
(Schmitt-Rink, Varma, and Ruckenstein, 1988; Shraiman
and Siggia, 1988a; Trugman, 1988; Dagotto, Moreo, and
Barnes, 1989; Sachdev, 1989; Poilblanc, Schulz, and Zi-
man, 1992; and references therein). These results are not
surprising, since, in the one-band Hubbard model at
U/t =0, the Fermi surface is defined by the equation
cosp„+cosy =0; thus p=(m. /2, m/2) belongs to this sur-
face. In addition, we expect a smooth connection be-
tween weak and strong coupling for one hole. Although
for a nonzero coupling there is no symmetry argument
requiring that all points on the original Fermi surface
remain degenerate, it is reasonable to expect that it is one
of those points that will be emptied upon doping of a
hole. For the t-J model the selected momentum seems to
be p=(m/2, m. /2). However, note that the states with
momentum p=(O, n), (m., O) are very close in energy (as
discussed below); thus small perturbations (like a t' hop-
ping at a distance of two lattice spacings) may change the
hole momentum (see Gagliano, Bacci, and Dagotto,
1990). The study of this near degeneracy deserves more
attention. Actually, recent analysis by Dagotto, Na-
zarenko, and Boninsegni (1994) has shown that the small
energy di6'erence between p=(O, m) and (~/2, m. /2) may
explain the anomalous behavior of the Hall coe%cient in
the cuprates, as well as the presence of a large Fermi sur-
face.

For the particular case of one hole in an antiferromag-
net, an analytical approach has been developed that gives
results in good agreement with the exact diagonalization
predictions. The basic idea was introduced by Schmitt-
Rink, Varma, and Ruckenstein (1988) and is based on (i)
the analysis of the Heisenberg term of the t-J Hamiltoni-
an using the Holstein-PrimakofII' transformation and the
1/S expansion; and on (ii) the replacement of the fer-
mionic operators by the composition of spin-wave and
spinless hole operators. The approach was used by Kane,
Lee, and Read (1989) in the "dominant pole approxima-
tion" to study the single-particle Green's function of one
hole, assuming that the weight beyond the first pole was
incoherent. This additional approximation may be ques-
tionable, since the arguments based on the string picture
suggest the presence of sharp peaks at finite frequencies
related to the excited states of a particle moving in a
linear confining potential. More recently, Marsiglio
et al. (1991), Martinez and Horsch (1991), and Liu and
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Manousakis (1991) have studied the self-consistent Born
approximation to this reformulated problem (see also
Mattis, Dzierzawa, and Zotos, 1990 and Mattis and
Chen, 1991). This is equivalent to the rainbow approxi-
mation for the holon propagator, where the spinon lines
are noncrossing. A remarkable agreement with the exact
diagonalization results was found for small J/t T.he in-
clusion of vertex corrections does not change the zero-
order results appreciably for the t-J model at small J/t
(Liu and Manousakis, 1991;Martinez and Horsch, 1991).
Unfortunately, an extension of this approach to a finite
density of holes is difficult.

What is the shape of the hole ground-state wave func-
tion in real space? Hartree-Pock calculations in the con-
text of the spin-bag approach suggest that the hole
ground state has a cigarlike shape (Su, 1988), elongated
along a diagonal of the lattice (see also Lorenzana et al. ,
1993). This result was also numerically observed using
Lanczos techniques (Dagotto, Moreo, and Barnes, 1989),
showing that this peculiar shape is a consequence of the
fiinite momentum p=(~/2, m/2) along the lattice diago-
nal. The size of this "spin polaron" is proportional to
1/J'~ (Barnes et al. , 1989), in agreement with the string
picture, and thus it increases as J/t decreases. This ex-
plains the observed feature that f][nite-size efFects become
more severe on finite clusters as the superexchange is re-
duced. Inside the spin polaron the antiferromagnetic or-
der param. eter is depleted, but there is no evidence that
the spins are ferromagnetically aligned [unless a very
small regime of J/t is reached where the Nagaoka
"phase" is realized (Nagaoka, 1966; Dagotto, Moreo, and
Barnes, 1989)]. At reasonable values of J/r, this is not a
ferromagnetic polaron. Note also that there are no con-
ceptual differences between holes in strong coupling
trapped in a "string" potential created by the antiferro-
magnetic background, and the spin-bag excitations intro-
duced by Schrieffer, Wen, and Zhang (1988) in a spin-
density-wave background. In strong coupling the
e6'ective con6ning potential is mostly linear, while in
weak coupling it may have some other form; but one
evolves smoothly into the other with a change in the cou-
pling U/t.
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energy provides information about anisotropies in the
system. In Fig. 18(a), early results for the dispersion rela-
tion of one hole are shown. They were obtained numeri-
cally on a 4 X4 cluster by 6xing the momentum p in the
initial state used in the Lanczos approach {the subsequent
iterations preserve the quantum numbers of the original
state). W is defined as the difFerence between the energy
of the state with the minimum energy [typically corre-
sponding to momentum p = (vr/2, m /2) ] and of the state
with the highest energy, which seems to correspond to
p=(0, 0) in Fig. 18(a) [which becomes degenerate with
p=(m, m) in an antiferromagnetic background]. 8' can
also be obtained from the position of the first pole in the
hole spectral functions. It can be observed that the total
width is considerably smaller than the bandwidth of a
free electron which is 8' =St, and decreases as the cou-
pling J/t decreases. The bandwidth W seems propor-
tional to J/t, at least for small J/t (Dagotto, Joynt,
et a/. , 1990). This result is in agreement with other cal-
culations by Kane, Lee, and Read (1989), PrelovKek,
Sega, and Bonca (1990), and Trugman (1990b) [it is also
interesting to note that studies for the three-band model
at strong coupling reveal a dispersion relation similar to
that found for one-band models (Ding, Lang, and God-
dard, 1992)]. According to the string picture discussed in

3. Dispersion relation of a hole

It is instructive to calculate the dispersion relation of
one hole in an antiferromagnetic background. Its total
bandwidth 8' provides information about the renormal-
ization efFects caused by the spin waves that are created
and absorbed while the hole propagates (although, in a
semilocalized spin polaron problem like this one, the
language of spin waves is somewhat misleading). More-
over, if the normal state is assumed to be formed by a gas
of noninteracting (but spin-wave-renormalized) holes,
then some observables can be calculated (Trugman,
1990a; Dagotto, Nazarenko, and Boninsegni, 1994) and
compared with experiments, once the dispersion relation
is known. In addition, the specific p dependence of the

1.0—

0.5—

0.0
0.0

i i ( I I i I t I i I I I I I I I I I I

0.2 0.4 0.6 0.8. 1.0

FIG. 18. Energy of a hole with momentum p with respect to
the one-hole ground-state energy (hE), for several values of the
coupling J!t. The open circles correspond to J/t =0.2, the tri-
angles to J/t =0.4, and the solid circles to J/t =1.0 (from
Dagotto, Joynt, Moreo, Bacci, and Cjragliano, 1990). (b) Band-
width 8' of the t-J model as a function of J (with t =1) for
di6'erent cluster sizes (from Poilblanc, Ziman, et al. , 1993).
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e(k )= —1.255+0.34cosk„cosk

+0.13(cos2k +cos2k» }, (3.15)

showing that holes prefer to move among sites belonging
to the same sublattice to avoid distorting the antiferro-
magnetic background. This dispersion relation shows
that the difference in energy b, between p=(~/2, m. /2)
and p=(O, m), (m, O) is a small fraction of the total band-
width. One of the implications of this result is that nu-
merical studies that search for "pockets" of holes near
p=(m. /2, m. /2) (Schrieffer, Wen, and Zhang, 1988) should
be carried out at temperatures smaller than 6, to avoid
mixing with other states. This detail has been remarked
upon recently by Dagotto, Nazarenko, and Boninsegni
(1994), and it is the basis for a possible explanation of the

Sec.III.B.1, a hole needs a considerable energy to move in
the background of antiferromagnetically aligned spins.
Due to this effect, the hole acquires a large effective mass
m *, which is rejected in a bandwidth smaller than its
bare value (the proper definition of the effective mass in-
volves the dispersion-relation energy vs momentum only
near the bottom of the band, and relating m* with 8' is
not strictly correct). In Fig. 18(b), a study of W for
different cluster sizes using the Lanczos algorithm is
reproduced from Poilblanc, Ziman, et a/. (1993). Finite-
size effects are small. S'is approximately linear in the in-
terval 0. 1 ~ J/t ~ 0.5 for all the clusters considered. On
the other hand, in the Born approximation it was found
that 8'-1.5J ' (Martinez and Horsch, 1991), and the
difference may be due to the diagrams neglected in this
approach.

An interesting feature of Fig. 18(a) is the degeneracy
between inomenta p = (m /2, m/2) and p = (0,~), (m, 0).
This is an artifact of the 4 X 4 cluster, which has a hidden
symmetry making it isomorphic to a 2 hypercubic lattice
(Dagotto, Joynt, et a/. , 1990). However, it has been
shown repeatedly that results obtained with this cluster
size are usually qualitatively accurate when they are com-
pared against predictions obtained on larger clusters or
forecasted through other techniques (as will be discussed
extensively in this review}. Then, the 4X4 cluster results
may be telling us that in the bulk limit the energies of
those momenta are indeed very close to each other. Ana-
lyzed from the point of view of the Hubbard model, this
is not surprising, since in the noninteracting limit
U/t =0 both momenta belong to the Fermi surface; thus,
at least at weak coupling, only a tiny splitting in energy is
expected. Information about this feature can be obtained
in the strong-coupling limit from the Born approxima-
tion results of Liu and Manousakis (1991, 1992) at
J/t =0.2 on a 32 cluster. The results are shown in Fig.
19 (see also Marsiglio et a/. , 1991,Fig. 6). Numerical re-
sults using a Green's-function Monte Carlo method on a
12X 12 cluster are in good agreement with the Born ap-
proximation (Boninsegni, 1993; Dagotto, Nazarenko, and
Boninsegni, 1994). A good fit to the numerical results at
J/t =0.4 is given by

I I I I i I I I I ( I I I I ( I I I I I I I I I
I
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FIG. 19. Hole dispersion curve plotted along the direction
I MXI in the Brillouin zone (see inset), for a 32 lattice, for
J=0.2 (taken from Liu and Manousakis, 1991, 1992).

behavior of the Hall coeKcient with temperature in the
cuprates (see also Trugman, 1990a). Quantum Monte
Carlo results by Moreo and Duffy (1994) have confirmed
these predictions.

4. Dynamical properties of one hole

A (p, m ) =g ~ ( P„~cp ~ PI%),
' ) ~

5(co (E„—Eo )), —(3.16)

where the hole operator c creates a hole with momen-
tum p, and spin o. ~PIwh' ) is the ground state of the un-
doped system, and ~I()„)are eigenstates of the problem in
the subspace of one hole with momentum p and spin o.

One of the main advantages of exact diagonalization
algorithms is that they provide information about
dynamical properties of the model under consideration
{as explained in Sec. II.A). This is very important, since
most of the experimentally available information on su-
perconductors is obtained from dynamical response Inea-
surements as a function of frequency co. Thus Lanczos
techniques provide theoretical results that can be com-
pared directly with experiments. In the particular case of
carriers in an antiferromagnetic background, the spectral
function of one hole A (p, co) can be evaluated. In the ap-
proximation where holes behave like independent parti-
cles in the normal state of the superconductors, this spec-
tral function can be contrasted against photoemission
spectroscopy (PES) experiments. Of particular impor-
tance is whether a quasiparticle-like excitation exists in
the spectrum (i.e., a pole in the Green's function of the
hole with a finite residue). This issue will be studied in
more detail in Sec. III.B.6. It is fair to point out that
there is an alternative picture to that of strings in the
description of holes in antiferromagnets which we may
call the polaron picture and which was elaborated by Su
et a/. (1989) and Chen and Schiittler (1990).

The spectral function of one hole in the t-J model is
de6ned as
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FIG. 20. Spectral function of
one hole in the t-J model at
p=(~/2, m/2): a, b, c, and d
correspond to J/t equal to 1.0,
0.4, 0.2, and 0.0, respectively
(from Dagotto, Joynt, Moreo,
Bacci, and Gagliano, 1990).
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Their energies are Eo and E„,respectively. The Lanczos
approach can be used straightforwardly to calculate this
spectral function (Sec. II.A). In Fig. 20, A (p, co) is
shown at momentum p=(~/2, n/2) on a 4X4 cluster at
several couplings J/t (from Dagotto, Joynt, et al. , 1990;
see also von Szczepanski et al. , 1990). The 5 functions of
Eq. (3.16) were plotted with a (arbitrary) width @=0.1t.
The number of iterations in the continued fraction neces-
sary to reach convergence is coupling dependent, but typ-
ically only —100 iterations are enough to get results with
high accuracy (this number is much smaller than the ac-
tual size of the one-hole Hilbert space). Note that the
energies are measured with respect to the ground-state
energy of the undoped (no holes) system, with energies
co=E„Eogrowing —from left to right (this is not the
standard way to plot a photoemission spectrum in the ex-
perimental literature, but in this case we shall simply fol-
low the convention used in most of the papers on one-
hole results).

At a relatively large coupling, like J/I = 1, the spectral
function has a simple structure; i.e., a dominant peak at
the bottom of the spectrum is clearly observed, and a
couple of spikes are present at higher energies. Extensive
studies (Dagotto, Joynt, et al. , 1990) have shown that the
dominant peak at J/r & 1 corresponds to a hole almost
localized at a given site with a large mass, while the
higher energy excitations correspond to short string
states of lengths 1 and 2, respectively. The momentum
dependence of the energy of the lowest pole shows that
the hole quasiparticle is mobile, but has a large mass. It

Results like those shown in Fig. 20 contain hundreds of poles,
although to the eye only a few peaks can be observed. To ob-
serve the individual poles, Dagotto, Joynt, et ah. (1990}provid-
ed an example in which the 5 functions have a small width
@=0.01t.

is natural to relate this state to a "quasiparticle" state
corresponding to a hole dressed by spin excitations. If
the coupling is reduced to more realistic values, the
amount of spectral weight at the bottom of the spectrum
will also be reduced but remain finite. Reciprocally,
more spectral weight will appear at higher energies. Let
us consider the case of J/r =0.2, shown in Fig. 20(c).
2 (p, co) still contains a large peak at the bottom of the
spectrum (quasiparticle), but now it is followed by a lump
of spectral weight with some internal structure. In turn,
this is followed by a pseudogap and a second lump at
higher energies. In this type of numerical study, it has
been found empirically that low-energy structures are
less affected by finite-size effects than the high-energy
ones, and thus the pseudogap and second band may
disappear as the lattice size is increased. However, the
large quasiparticle peak and the low-energy satellite
peaks may survive the bulk limit, as discussed below. Fi-
nally, at J/t =0, the spectrum at p=(~/2, vr/2) becomes
symmetric with respect to ~=0, and it contains two
bands separated by a pseudogap. As stressed before, the
region of small coupling is the one where finite-size
effects are more severe (since the hole wave-function size
increases when J/r is reduced). Thus Fig. 20(d) may be
strongly afFected by size eff'ects.

It has been shown that peaks denoted by I, II, and III
in Fig. 20(c), corresponding to J/t =0.2, can be
identified as the ground state and two next excited states
of the string problem described in Sec. III.B.1 (Dagotto,
Joynt, et al. , 1990). The main support for this statement
is that the energies of the three states have a (J!t)
power-law dependence with the coupling similar to that
predicted by the string picture. This result has been nice-
ly confirmed by Liu and Manousakis (1991, 1992) in the
self-consistent Born approximation discussed in Sec.
III.B.2. These authors have shown that, for a 4X4 clus-
ter, they can reproduce very well the numerical results,
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FIG. 21. A(p, co) with p=(m/2, m/2) for J=0.1 and a=0.01
(width of the 5 functions) and several lattice sizes (from I.iu and
Manousakis, 1991, 1992), using the rainbow approximation.

FICx. 22. Single-hole spectral function for the t-J model at the
ground-state momentum, for various cluster sizes and
J/t =0.3. The actual values of the momenta are p=(m. /2, m/2)
for the cluster of 16 sites; p = (m, m/3) for 18 sites;
p=(4m/5, 2m/5) for 20 sites; and p=(9m/13, 7m/13) for 26
sites (from Poilblanc, Ziman, et al. , 1993).

at least for small J /t [see Fig. 21(a), obtained at
J/t =0.1]. With this approximation it is possible to
study larger clusters and check whether the string excita-
tions survive the bulk limit. The results on a 32 cluster
[Fig. 21(d}]have already converged to the bulk limit, and
the main structure predicted by the string picture and the
small cluster approach is still observed, namely, a large
quasiparticle peak at the bottom of the spectrum (carry-
ing a finite percentage of the total spectral weight), fol-
lowed by satellite peaks at higher energies. The pseudo-

gap of the small cluster is filled and becomes only a soft
depression in the spectral weight. While both methods
(exact diagonalization on small clusters and the rainbow
technique on large clusters) are approximations to the
thermodynamic problem, the good agreement in their
predictions suggests that the results may indeed describe
the bulk limit behavior of a hole in the t-J model. We
then arrive at the conclusion that a quasiparticle exists in
this model with ground-state and excited-state energies
well described by the string picture. More on this issue
will be discussed in Sec. III.B.6. It is also interesting to
notice that lattice distortions can have an important
efFect over the physics of carriers in the cuprates. See,
for example, Yonemitsu, Bishop, and Lorenzana (1992,
1993a, 1993b); Roder, Bishop, and Gammel (1993);
Roder, Fehske, and Biittner (1993); Fehske et al. (1993);
and by Dobry et al. (1994).

To check for finite-size efFects in the results shown in
Fig. 20, Poilblanc, Ziman, et al. (1993) recently carried
out an exact diagonalization study on square clusters
with up to N =26 sites. Results are shown in Fig. 22
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corresponding to J/t =0.3, i.e., in the physically realistic
regime. The general trend observed in these results is
that (i) the quasiparticle peak is robust and does not
change much with the lattice size; and (ii) the structure at
larger energies is more afFected by the size of the clusters.
However, care must be taken in this study, since the
momentum at which the calculation has been performed
is not the same for the four clusters. Actually, only the
4X4 cluster contains momentum p=(m/2, m/2), while
the rest have momenta close to, but never at, this same
value. Then, such a systematic error may distort the
higher energy features of the spectrum. In spite of this
problem, it is reassuring that the low-energy quasiparticle
seems quite robust and may well survive the bulk limit.

An interesting issue to discuss is the momentum
dependence of A (p, co}. In Fig. 23, the spectral functions
at several momenta are shown at J/t =0.2 on the 4X4
cluster (Dagotto, Joynt, et al. , 1990). Unfortunately, the

0
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4 ~6 0
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2 4 ~6
4Present-day supercomputers still do not allow an analysis of

the next interesting clusters, which have N =32 and 36 sites, for
the case of one hole in the t-J model.

FIG. 23. Spectral function of one hole in the t-J model at
J=0.2 for different values of p on a 4X4 cluster (Dagotto,
Joynt, Moreo, Bacci, and Cxagliano, 1990).
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small size of the cluster does not allow us to obtain a
high-resolution result in p space. However, some quali-
tative conclusions can be made. For example, the shape
of the spectrum for p=(0, m. /2) and (~,m/2) is qualita-
tively similar to p= (m/2, vr/2), which corresponds to the
actual hole ground state. On the other hand, at momenta
p=(0, 0) and (m. , n. ), there are substantial qualitative
changes, since most of the weight is concentrated at high
energies. An analysis of different cluster sizes (Poilblanc,
Ziman, et al. , 1993) showed that this is not a peculiarity
of the 4X4 cluster; but, indeed, these two momenta
seem to have a large spectral weight at high energies.
The only effect of increasing the cluster size is to provide
a 6nite width to the peaks, while the total amount of
spectral weight in its vicinity remains approximately con-
stant. This result is also in good agreement with the
self-consistent rainbow approximation (Martinez and
Horsch, 1991).

5. Binding of holes
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FICi. 24. (a) Average hole-hole distance in the ground state of
two holes as a function of the coupling constant for several clus-
ters (from Poilblanc, Riera, and Dagotto, 1994); (b) binding en-

ergy 5& of two holes in the t-J model as a function of the cou-
pling. Open triangles denote results for 16 sites, open squares
for 18 sites, solid triangles for 20 sites, and solid squares for 26
sites (taken from Poilblanc, Riera, and Dagotto, 1994). The
points with the error bars joined by a dashed line are Green s-

function Monte Carlo results from Boninsegni and Manousakis
(1993).

The ground-state energy of two holes has been studied

by several groups (Kaxiras and Manousakis, 1988;
Bonca, Prelovsek, and Sega, 1989a; Hasegawa and Poil-
blanc, 1989; Riera and Young, 1989; Dagotto, Riera, and

Young, 1990; Fehske et al. , 1991; Poilblanc, Riera, and
Dagotto, 1993; and references therein). For clusters of
different sizes, some of these authors found that the
ground state belongs to the 8& irreducible representa-
tion of the C4, point group of the square lattice (i.e.,
d» symmetry). In Fig. 24(a), the average distance be-

tween the two holes, obtained from a study of hole-hole
correlations in the exact ground-state wave functions, is
plotted as a function of J/t for different cluster sizes
(Barnes et a/. , 1992; Poilblanc, Riera, and Dagotto,
1994). At least in the region J/t ~ 0.5, it is clear that the
distance between holes is small (less than two lattice
spacings), suggesting the formation of a bound state. Al-
though such a bound state of two holes in an antifer-
romagnet is not sufhcient evidence for the formation of a
condensate, it is nevertheless suggestive that attractive
effective forces are operative (at least in the r Jmode-l).
Thus it is important to carry out a detailed study of this
two-hole problem, and in this section we review the
status of this subject.

Intuitively, it is clear that a bound state of two holes in
an otherwise undoped antiferromagnet will be formed at
large values of J/t. The reason is that each individual
hole "breaks" four antiferromagnetic (AF) links, which
costs an energy of the order of the superexchange cou-
pling. At least in the small t limit (low mobility), two
holes minimize the lost energy by sharing a common link.
In this way they reduce the number of broken AF links
from eight to seven. When the coupling J/t is reduced to
more rea1istic values, this attraction may survive until
some "critical" coupling is reached where holes unbind.
Of course, the picture of "minimization of the number of
broken AF links" as the origin of binding is very crude
and probably wrong at small J/t, but no better intuitive
picture is available. In Fig. 24(b) the "binding energy" of
two holes is plotted based on results obtained using the
Lanczos approach on clusters of X =16, 18, 20, and 26
sites (Poilblanc, Riera, and Dagotto, 1994). The binding
energy is defined as Az=e2 —2e&, where e„=E„—E0,
and E„is the ground-state energy of the t-J model in the
subspace of n holes. If two holes minimize their energy
by producing a bound state, then Az becomes negative.
Note that in the bulk limit we expect Az to vanish if the
holes do not form a bound state, since e2 =2e

&
for two in-

dependent holes. However, on a finite cluster, it can be
positive due to hole repulsion.

As shown in Fig. 24(b), our expectation of finding a
bound state of holes is correct. b.~ becomes negative (im-

plying binding) very rapidly starting at small values of
J/t. However, the convergence of the results increasing
the lattice size is erratic. The reason is that Az is consid-
erably affected by 6nite-size effects, since it is defined as a
difference between large numbers. In addition, the ener-

gy of one hole enters in the definition of h~ and, as dis-
cussed before, this quantity carries an additional sys-
tematic error due to the absence of momentum

p =(n./2, m/2) in the discrete set of momenta of the clus-
ters with X =18, 20, and 26 sites. In spite of these prob-
lems, qualitative information can be obtained from Fig.

In the continuum, Az corresponds to the second derivative of
the energy with respect to the number of particles.
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FIG. 25. Binding energy 6& as a function of J, /t for the t-J,
model and several cluster sizes. Starting from above, the open
squares denote results for %=16, 20, 26, 36, and 50 sites, re-
spectively. The solid line is the binding energy extrapolated to
the bulk limit, which is almost identical to the results in the 50-
site cluster. These results were obtained with the "truncation"
method described by Riera and Dagotto (1993a}.

24(b) with some confidence. The "critical" coupling,
J/t~„where two holes reduce their energy by forming a
bound state, slowly grows with increasing lattice size,
suggesting that it may converge to a finite value in the
bulk limit, since we know that at large couplings there
must be binding. In Fig. 24(b), Green's-function Monte
Carlo results on 8X8 clusters obtained by Boninsegni
and Manousakis (1992a, 1992b) are also shown. With
this approach, supplemented by the use of appropriate
variational guiding states obtained from the exact
analysis of smaller clusters, it has been possible to study
hz for couplings J/t as small as 0.4, on large clusters.
The dashed line in the figure shows an educated extrapo-
lation suggesting that binding starts at J/t~, -0.3, in
qualitative agreement with the exact results on smaller
clusters. Then, it seems quite possible that, indeed, a
critical value of the coupling J/t exists beyond which
two holes form a bound state in an antiferromagnetic
background. Note that near the critical value the size of
the pairs may well be very large, while for a larger J/t
their size is small. If these pairs condense at zero tem-
perature, the region of large-size pairs may resemble the
BCS regime of the attractive Hubbard model, while the
small-size-pairs region may behave like a Bose conden-
sate of pairs.

Note that calculations on clusters of up to 50 sites in
the t J, model, Eq. (-3.8), where transverse spin fiuctua-
tions are switched ofF, have also shown that a critical
coupling exists for hole pair formation (Fig. 2S). The
technique used to study such a large cluster is based on

the selective truncation of the Hilbert space of the prob-
lem (Sec. II.A; Riera and Dagotto, 1993 and references
therein; see also Inoue and Maekawa, 1992). In this
model, the critical coupling is J, /t~, -0.18, in qualitative
agreement with the results for the t-J model, since, in the
absence of spin Auctuations, a stronger tendency to pair-
ing would be expected.

The analysis of A~ for Hubbard-like models is more
difBcult. Studies of the three-band case have been re-
stricted to very small systems, where the presence of hole
binding has been reported (Balseiro et a/. , 1988; Hirsch
et al. , 1988, 1989). Unfortunately, a finite-size analysis
of hz is not possible in this model. With respect to the
one-band Hubbard model, an analysis based on exact di-
agonalization and Monte Carlo simulations for 4 X4 clus-
ters shows that there is binding. However, A~ is consid-
erably smaller than the binding energy reported for the
t-J model, and thus finite-size efects may be more impor-
tant (Dagotto, Moreo, Sugar, and Toussaint, 1990; Fano,
Ortolani, and Parola, 1990). Actually, studies of one-
dimensional Hubbard chains on finite clusters show also
a negative h~ comparable in magnitude to that of the
two-dimensional case. However, with an increase in the
size of the chain, A~ seems to converge to zero in the
bulk limit (Fye, Martins, and Scalettar, 1990). Similar
negative conclusions for binding were found by Ding and
Goddard (1993) in the one-dimensional three-band Hub-
bard model. Currently there is no convincing numerical
evidence that the two-dimensional Hubbard model has
hole binding near half-filling in the bulk limit. More
work is necessary to clarify this issue.

6. Quasiparticles in models of correlated electrons

One of the most controversial issues in the context of
models of correlated electrons proposed to describe the
new superconductors is whether a hole injected in the un-
doped ground state behaves like a quasiparticle. While it
is clear that spin-wave excitations will heavily dress the
hole, increasing substantially its mass, the central point is
whether this renormalization is so strong that the wave-
function renormalization Z at the Fermi surface van-
ishes. This scenario has been proposed by Anderson
(1990a) mainly based on results obtained in the one-
dimensional Hubbard model where, indeed, Z vanishes in
the bulk limit. However, this is a very particular situa-
tion caused by the dimensionality of the problem, and
what occurs in two dimensions is unclear. In Fig. 26, we
show a hole injected in an antiferromagnetic chain (e.g.,
large U/t Hubbard model) that propagates due to the
hopping term in the Hamiltonian. As shown in the
figure, the "ferromagnetic" link and the hole quickly be-
come separated. The velocity corresponding to charge
and spin degrees of freedom are di6'erent in this model;
even if a wave packet is constructed at time t =0 with
spin and charge localized near the same site, the time
evolution of the packet will make charge and spin decou-
ple (see, for example, Jagla, Hallberg, and Balseiro, 1993;
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(3.17)

FIG. 26. Rough interpretation of the spin-charge separation in
one-dimensional problems. The upper chain represents a hole
injected in a staggered spin background. The lower chain is the
state obtained after the hole hops three lattice spacings to the
left. The ferromagnetic link is still at the original position of
the hole, and thus the hole is not confined as in two-dimensional
problems (contrast these results with Fig. 16).

see also Song and Annett, 1992). It is natural, then, that
the overlap between the initial state and the ground state
is zero in the bulk limit. Of course, there is no reason for
this mechanism to work in two dimensions (2D). In 2D
the hole propagation costs an energy proportional to the
length of the walk, contrary to what occurs in 10
(remember the string ex citations described in Sec.
III.B.1). Spin-charge separation is not obvious in the di-
mension of interest.

Other more conservative approaches, like the spin-bag
or string ideas, describe the hole as being surrounded by
a region where the antiferromagnetic order parameter is
reduced. The combination of charge plus the depleted
antiferromagnetic background moves coherently and
behaves like a particle with charge Q =e and with spin —,';
i.e., Z is nonzero in this approach. Then, since different
theories drastically disagree on the nature of quasiparti-
cles in strongly correlated electrons, the important issue
that needs to be clari6ed numerically is the following:
Suppose we consider a large but finite cluster of X (even)
sites, with N —1 spins and one hole. The ground state of
the system has spin —,

' (unless ferromagnetism is favored,
which occurs only in special cases). Where is this spin —,

localized? Is it near the hole or spread over the entire
lattice? In the 6rst case, we are forming a spin polaron
and the hole is a dressed quasiparticle with a finite Z
weight. In the second case, this quasiparticle is unstable,
and it basically decays into a holon and a spinon. Semi-
classical calculations by Shraiman and Siggia (1988b)
support the assumption that Z vanishes in the bulk limit
in two dimensions. The main idea is that an infinite
range 1/r distortion in the spin background occurs when
a hole is injected in an antiferromagnet. However, these
calculations have been reanalyzed recently by Reiter
(1992), taking into account quantum fluctuations, and it
was found that Z remains finite. Similar conclusions
were reached by Auerbach and Larson (1991),suggesting
that the hole is, in fact, a small polaron, as was found nu-
merically.

The study of Z can be explicitly addressed using nu-
merical techniques. In particular, Lanczos methods that
provide the hole spectral function are especially suitable
for this purpose. Z is simply given by the weight at the
lowest pole in the spectrum, i.e.,

where Irish' ) is the ground state in the subspace of n
holes, and the rest of the notation is standard. With the
normalization used in Eq. (3.17), it can be shown that
O~Z ~ 1. Results obtained for the t-J model using two-
dimensional clusters of 16, 18, 20„and 26 sites are shown
in Fig. 27(a). The behavior of Z suggests that the quasi-
particle weight remains finite in the bulk limit for all the
explored values of J/t, although work on larger lattices
is necessary to confirm this result. A fit in the interval
0. 1~J/t~0. 4 suggests that Z-J, which vanishes
only at J/t =O. However, care must be taken in the use
of these clusters for calculations in the one-hole subspace,
since, due to the geometry of the clusters, the momentum
p=(ir/2, ir/2) exists only for N =16. In the other clus-
ters the ground state has a momentum p=(m, 7r/3),
(4m/5, 2'/5), and (9ir/13, 7m/13) for the %=18, 20,
and 26 sites, respectively. In spite of this difficulty, there
are no major finite-size effects in Fig. 27(a). Nevertheless,
it would be very important to study clusters slightly
larger than those currently available (like N = 32 sites) to
carry out a finite-size scaling study with the proper
momentum p=(ir/2, ir/2) It wou. ld also be important
to study numerically the separation between spin and
charge in two dimensions. In the spin —, of N-1 spins on
an X-site lattice (N even) localized near the hole or
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FIG. 27. (a) Wave-function renormalization Z of one hole in
the t Jmodel [for the ac-tual definition see Eq. {3.16)]. The solid
squares denote results for a 16-site cluster (Dagotto and
SchrieFer, 1991). Open squares are results for 18 sites, solid tri-
angles are for 20 sites, and the open triangle corresponds to 26
sites (Poilblanc, Schulz, and Ziman, 1993). The open circles
joined by the dot-dashed line correspond to results for the one-
band Hubbard model using J=4t /U and. t =1 (from Fano,
Ortolani, and Parola, 1992). The definition of Z by these au-
thors is Z =

I (/fan Ic~ Il(I%h' ) I, i.e., different from that used in
Eq. (3.16). With their definition, Z is restricted to the interval
[0,1/2]. (b) Zih as defined in the text for the t Jmodel asa-
function of the coupling. The notation is the same as that in
Fig. 27{a). From Poilblanc, Riera, and Dagotto (1994).
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spread over the entire cluster? More work should be de-
voted to this issue.

The Born approximation to the spin-wave holon refor-
mulation of the t-J model can also be used to calculate
the quasiparticle weight (Martinez and Horsch, 1991;Liu
and Manousakis, 1992). Within this approximation there
is a well-de6ned quasiparticle peak in the spectrum carry-
ing a finite percentage of the total weight, in good agree-
ment with the Lanczos calculations. The Born approxi-
mation predicts Z =0.63J ' in the interval
0.01~J~0.5, for p=(m. /2, n./2) on a 16X16 cluster
(- bulk limit). The results are actually very close to
those shown in Fig. 27(a), in spite of the different optimal
power-law fit. This is an excellent example of how
analytical and numerical techniques can complement
each other ef5ciently in the study of a given problem.
The results obtained in the Born approximation are ap-
preciably closer to the numerical results than the dom-
inant pole approximation, which instead predicts Z- J
(Kane, Lee, and Read, 1989). The remaining small
discrepancy between numerics and the Born approxima-
tion may be due to higher-order corrections in the form-
er, or to Qnite-size efFects in the cluster results. We con-
clude, then that the evidence gathered in these studies
favors a picture where, at a finite coupling J/t, Z is
nonzero.

Similar issues have been addressed for the one-band
Hubbard model, but the results are not as clear. The
wave-function renormalization for one less particle than
half-611ing on a 4X4 cluster has been obtained by Fano,
Ortolani, and Parola (1992). The results are also shown
in Fig. 27(a), and they qualitatively resemble those ob-
tained for the t Jmodel a-t large U/t, using the relation
J=4t /U [however, the definition of Z of these authors
is difFerent from that used in Eq. (3.17)]. Both in the tJ-
and in the Hubbard model, the weight of the quasiparti-
cle decreases as the strong-coupling limit is approached,
and seems to converge to zero only as U/t ~ ao. Unfor-
tunately, clusters appreciably larger than those with
X = 16 sites are unreachable using exact diagonalization
techniques, for the Hubbard model with one less particle
than half-6lling. Thus the finite-size study performed for
the t-J model has not been carried out for this model.
However, Z can also be obtained by studying n (p). The
"jump" in this quantity at the Fermi surface is propor-
tional to Z. Moreo, Scalapino, et al. (1990) studied n (p)
using Monte Carlo techniques and found a finite jump at
the Fermi surface (see Sec. IV.C.3). On the other hand,
projector Monte Carlo calculations by Sorella (1992)
seem to suggest the vanishing of Z as the cluster size is
increased working at U jt =4. However, in the last cal-
culation a small magnetic 6eld was introduced to work
with closed-shell configurations in order to alleviate the
sign problem. How Z is infiuenced by this small magnet-
ic field is unclear, and thus we believe that more work
should be done in the one-band Hubbard model to clarify
these issues.

It is also instructive to obtain the weight of the lowest

energy peak in the spectral decomposition of the opera-
tor that creates a pair of holes over an undoped spin
background. As we discussed in Sec. III.B.5, there is a
wide region of parameter space in the t-J model where
holes tend to bind in pairs, and thus isolated holes are un-
stable against pair formation. In other words, using a
grand-canonical ensemble where the fermionic density
( n ) is regulated with a chemical potential p, the state of
one hole can never be reached in that binding region.
Then, the actual "quasiparticles" in this regime are the
hole pairs. They carry charge Q =2e, total spin 0 (if
bound in a singlet), and internal quantum numbers relat-
ed to the symmetry of the pair (d», according to the
results discussed in Sec. III.B.5). These arguments are
suggestive; however, to verify the picture that associates
the bound state with a quasiparticle, it is necessary to
show that the spectral decomposition of the pair operator
that produces this state out of the undoped system con-
tains a sharp 5 function at the bottom of the spectrum.
By complete analogy to the case of one hole, it is possible
to de6ne the spectral function of the operator 5 that
creates a pair of holes from the "vacuum" (antiferromag-
netic state) as

We have defined b, =c,&(c,+,~+c, & c, + &+c,. &),
where a=s(d) corresponds to the + ( —) signs and
represents a pair with extended s-wave symmetry (d,
symmetry). t ~$2h ) I are states of the two-hole subspace
with energy Ez&, and the rest of the notation is stan-
dard. The results for a 4X4 cluster are shown in Fig. 28
for J/t =0.4 and both symmetries (Dagotto, Riera, and
Young, 1990; see also Chernyshev, Dotsenko, and Sush-
kov, 1993 and Poilblanc, Riera, and Dagotto, 1994). Let
us consider the first case: Clearly, for a d-wave operator,
there is a sharp 5 peak at the bottom of the spectrum
containing an appreciable amount of the total spectral
weight. The rest of the spectrum seems incoherent. This
result supports the picture that the two holes form a d-
wave bound state that behaves like a quasiparticle. On
the other hand, the spectral function corresponding to an
extended s-wave operator is drastically dift'erent. The
weight at the bottom of the spectrum is negligible, and
most of the spectral weight is concentrated at high ener-
gy. The s-wave spectrum clearly does not present a
quasiparticle.

The operator used to create the pair is not strictly a spin
singlet, but a combination of singlet and triplet. Nevertheless,
it is supposed to have an overlap with the ground state of two
holes (which is a singlet) if the quantum numbers under rota-
tions and reAexions are properly selected. Adding the pairing
correlation functions over all distances removes the contribu-
tion of the triplets, and thus the superconducting susceptibility
is a pure singlet.
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Currently available numerical results for the t-J model
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A. Magnetic properties in the presence of carriers
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FIG. 28. Spectral decomposition of the operator that creates a
pair of holes out of the undoped ground state (see text). Results
are presented for d» symmetry (a), and extended s symmetryx -y

(b), on a 4X4 cluster at J/t =0.4 (from Dagotto, Riera, and
Young, 1990}. Similar results were obtained by Poilblanc,
Riera, and Dagotto (1994), on larger clusters.

In this section, the magnetic behavior of models of
strongly correlated electrons (away from half-filling) is
compared against experiments. The main conclusion of
this analysis is that some of the "unusual" magnetic
properties of the cuprate materials can be qualitatively
reproduced by simple one-band electronic models. Ra-
man scattering will not be reviewed in this paper, since
not much computational work has been carried out at
finite hole doping. The reader should consult Dagotto
and Poilblanc (1990), Gagliano and Bacci (1990), and
Haas et al. (1994) for an attempt to address this issue
and for experimental references on this important sub-
ject.

1. Magnetic susceptibility

Poilblanc, Riera, and Dagotto (1994) recently studied
the two-hole "quasiparticle weight Zzh defined as

(3.19)

on several cluster sizes. Their results are shown in Fig.
27(b). In agreement with the one-hole study, no major
difFerences are observed between the currently available
clusters, suggesting that Zzh remains finite in the bulk
limit (unless J/r vanishes). Note that this self-consistent
picture of bound states behaving as quasiparticles can be
wrong if a multibody condensate is formed when addi-
tional holes are added to the system. In other words, the
formation of a superconducting condensate (through a
possible Bose condensation of two-hole bound states), or
the possibility of phase separation for small values of J/r,
will break down the picture of independent pairs of holes

7The ground state of two holes has zero momentum for all the
clusters and couplings that Poilblanc, Riera, and Dagotto con-
sidered; thus the systematic problem found in the one-hole sub-
space related to the change in the ground-state momentum from
cluster to cluster is absent in this subspace.

Here, we shall review experimental and theoretical re-
sults for the magnetic susceptibility y~ of doped com-
pounds. Figure 29 shows y~, as reported by Johnston
and co-workers (Johnston et al. , 1988; Johnston, 1989),
obtained in powder Laz Sr Cu04 and YBazCu3O6+
(see also I.ee, Klemm, and Johnston, 1989 and Torrance
et a/. , 1989). Common to both materials is the pro-
nounced S-shaped curve for the samples close to or in
the insulating regime. At half-filling, such a behavior is
not surprising, since the appearance of a maximum in yM
at temperatures of the order of the superexchange J
( —1500 K for the cuprates) is known to occur in the
two-dimensional spin- —, Heisenberg antiferromagnet on a
square lattice (Gomez-Santos, Joannopoulos, and Negele,
1989; Gagliano, Bacci, and Dagotto, 1991;and references
therein). Unfortunately, the temperature at which the
maximum occurs is higher than the measurement limit,
and thus this theoretical prediction has not been verified
for the undoped cuprates. However, with increased dop-
ing, the results for Laz „SrCu04 show that this max-
imum becomes observable in the experimentally accessi-
ble temperature range, and it was found to shift towards
lower temperatures with increasing Sr concentration. A
qualitatively similar trend seems to occur in
YBazCu306+ with increasing amounts of oxygen. In
particular, for the samples with the highest T, (i.e., hav-
ing 06 96), the susceptibility g~ is almost fiat. The same
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FIG. 29. Uniform magnetic susceptibility of La2 Sr„Cu04
and Yaa2Cu306+„as a function of temperature (from Johnston
et al. , 1988 and Johnston, 1989). In the upper figure, (I) and (II)
refer to different oxygen compositions, namely, y =0.0 and
0.04, respectively. 2.0 2.0

et al. , 1990; Lu et al. , 1990). With this approach, the
susceptibility is maximum at half-filling; i.e., it does not
reproduce the experimental behavior of the cuprates. Is
this a problem of the approximation or of the Hubbard
model? To clarify this issue, the magnetic susceptibility
of the one-band Hubbard model has recently been stud-
ied using quantum Monte Carlo techniques (Moreo,
1993a). The results are shown in Figs. 30(a) and 30(b).
Since the sign problem is especially severe at large U/t
and finite hole density, the temperature of this study is
relatively high, T = t/4 (although smaller than J, at large
couplings!). However, even at this high temperature a
qualitatively different behavior is observed between
U/t =4 and U/t =10. In weak coupling, yM is max-

imum at half-filling, as predicted by the RPA, while at
large couplings the maximum is reached at (n ) -0.85,
in qualitative agreement with experiments. Similar re-
sults in the strong-coupling regime have been obtained
using high-temperature expansions for the t-J model
[Singh and Glenister, 1992a; Fig. 30(c)]. The series-
expansion results are valid directly in the bulk limit, but
are restricted to couplings J/t & 0.5 and to temperatures
T&J/2-t/4 due to uncertainties in the analytic con-
tinuations (involving Pade approximants) necessary to ex-
trapolate the results from high to low temperatures

: U/t=4 U/t = 10 (b)

figures show that working at fixed temperature but
changing the amount of doping increases the magnetic
susceptibility when the hole concentration is increased
from the insulating regime.

These results can be qualitatively understood. When
the antiferromagnetic parent compounds are doped, the
effective Cu-Cu superexchange interaction J is reduced in
average due to the presence of hole carriers. As a conse-
quence, the temperature at which the maximum of the
magnetic susceptibility is located should also decrease
with increasing doping, as observed experimentally. To
understand the doping dependence at a fixed and low
temperature, simply remember that for an antiferromag-
net the susceptibility at zero temperature is inversely pro-
portional to the spin superexchange, i.e., yM —1/J.
Thus, if J is reduced by doping, the zero-temperature sus-
ceptibility should increase as observed experimentally.
Although the qualitative argument based on a smaller
effective superexchange seems correct, in practice it is
dificult to map yM to a universal curve by a rescaling of
the energy scale, especially since y~ is not known over a
wide enough temperature range (Johnston et al. , 1988);
thus this argument should only be considered as a first
approximation to the problem.

Now, let us consider more elaborate theoretical predic-
tions for magnetic properties of models of the cuprates.
An analysis of y~ using weak-coupling resummation
methods [mainly random-phase approximation (RPA)] in
the one-band Hubbard model has been carried out (Bulut
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FIG. 30. (a) Uniform magnetic susceptibility as a function of
density for the one-band Hubbard model on a 4X4 cluster ob-
tained using quantum Monte Carlo techniques, at temperature
T = t/4, and U/t =4 (from Moreo, 1993a); (b) same as (a), but
obtained at U/t =10; (c) temperature dependence of the uni-

form susceptibility obtained with high-temperature expansions
(Singh and Glenister, 1992a) using the t-J model at J/t =0.5

and several dopings.
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(smaller couplings can be studied, but the results are reli-
able only for even larger temperatures). In spite of the
limitations of the numerical and analytical results, it is
reassuring to find a nice qualitative agreement among
them, and also when they are compared with experi-
ments.

In the regime of large U/r, the simple argument used
to explain the behavior of y~ based on a reduction of the
effective J should be operative, and the numerical results
of Moreo (1993a) confirm it. In the weak-coupling re-
gime, the numerical simulation might not reach tempera-
tures low enough to allow observation of the growth of
the magnetic susceptibility away from half-filling, or a
genuine qualitative difference might exist between strong
and weak coupling. Nevertheless, it is interesting to ob-
serve that the regime of U/t —10 of the one-band Hub-
bard model is able to reproduce qualitatively the
behavior of the experimentally observed magnetic sus-
ceptibility. Later we shall explain that, for this same re-
gime of coupling, infrared experiments for the optical
conductivity, as well as photoemission results, are also
qualitatively reproduced. The intermediate-to-large re-
gime of U/t seems the most promising for describing the
cuprate materials using one-band electronic models.

2. Antiferromagnetisrn at finite doping

One of the most distinctive features of the cuprate su-
perconductors is the presence of antiferromagnetism in
the undoped compounds. The experimental evidence for
this behavior has been widely discussed in the literature,
and it is not the purpose of the present review to further
analyze this issue. Instead, we shall center our attention
on the more interesting, and less understood, study of an-
tiferromagnetism in doped materials. Figure 31(a) shows
single-crystal neutron-scattering results for the antiferro-
magnetic spin-correlation length as a function of Sr con-
centration in La2 Sr CuO„at low temperatures (Bir-
geneau et a/. , 1988). The solid line is the function
3.8/+x A, which roughly reproduces the data. This
function corresponds to the average separation distance
between holes (assuming them to be static). Since the
Cu-Cu distance in the plane is about 3.8 A, Fig. 31(a)
shows that, at the optimal concentration x -0.15 for this
compound, the spin correlation is approximately 2.6
times the Cu-Cu distance. Then, antiferromagnetism is
still strong in this regime and for this compound (while,
for YBazCu3G7, it may be weaker). However, the pres-
ence of incommensurate correlations in these compounds
(to be discussed below) somewhat alters the results of Fig.
31(a). Actually, the correlation length, with the spin in-
commensurability taken into account, is shown in Fig.
31(b) (from Aeppli, 1992b). This correlation is larger
than what was previously found by Birgeneau et aI.
(1988).

Several theoretical works have studied the degree of
suppression of antiferromagnetism by the addition of
holes to the t-J or Hubbard models at half-filling. For ex-
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ture in La2 Sr CuO4 (from Birgeneau et al. , 1988); (b) similar
results with the presence of incommensurate correlations taken
into account. The solid line is the fit, and the dashed line the
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ample, consider the dynamical spin structure function
S(Q, co) calculated for the t-J model on a 4X4 cluster at
J/r =0.4, and several dopings (see Fig. 32, which was
taken from Dagotto, Moreo, Ortolani, Poilblanc, and
Riera, 1992; see also Bonca et a/. , 1989b). The momen-
tum is Q=(m, m. ). The sharp peak at low frequencies and
doping corresponds to the spin-wave excitation which, at
half-filling and in the bulk limit, becomes massless. The
finite size of the cluster, plus the effect of doping, opens a
gap in the spectrum corresponding to this momentum.
For doing x =0.25, a considerable amount of spectral
weight is transferred to large energies. For the quarter-
filled system, ( n ) =0.50, the spin-wave peak has virtual-
ly disappeared. Then, these rough numerical results ob-
tained on a small cluster show that the rapid reduction of
antiferromagnetism with doping can be mimicked by
simple models of spins and holes; and it is not at all
surprising. The same result is expected for most models
of high- T, superconductors.

To make this discussion more quantitative, let us con-
sider the results shown in Fig. 33, which were obtained
by Furukawa and Imada (1992) using the projector
Monte Carlo technique. The inverse of the static struc-
ture factor S (Q) at Q = (m., m. ) is shown as a function of
the hole density (denoted by 5 in the figure) for the one-
band Hubbard model at U!t =4, on clusters with up to
10X10 sites. Let us assume that the mean value of the
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function of frequency at J/t =0.4 for different

doping fractions on a 4X4 cluster. The hole
doping is (a) x =0.125; (b) x =0.25; (c)
x =0.375; and (d) x =0.50. The units in the
vertical axis are arbitrary. Results are taken
from Dagotto, Moreo, Ortolani, Poilblanc, and
Riera (1992).
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FIG. 33. Inverse of the static spin structure factor as a function
of doping 5 for a one-band Hubbard model at U/t =4 and
several clusters. The technique used is the projector Monte
Carlo. Results are taken from Furukawa and Imada (1992).

spin correlation between spins located at the origin o and
at site r is given by (S,.S,) -e'~'e " ~, where g is the
spin-correlation length. Under this approximation,
S '(g) should be roughly proportional to g in two di-
mensions, and it should vanish in the bulk limit if there is
long-range order. The Monte Carlo results of Fig. 33
suggest that as soon as doping is introduced, the long-
range order disappears, and the spin-correlation length
becomes finite. The approximate linear dependence ob-
served in Fig. 33 implies that g-1/&x, in good agree-
ment with experiments (Fig. 31). It would be interesting
to verify these results using a larger value of the coupling
U/t in order to work in a regime closer to that of the cu-
prate superconductors, namely, U/t = [[—10. Unfor-
tunately, Monte Carlo techniques at finite doping and on
large clusters are not able to reach low temperatures,
mainly due to the sign problem.

Finally, it is interesting to note that the inhuence of
doping in the antiferromagnetic correlations is
nonuniversal between hole- and electron-doped materials.

Single-crystal neutron-scattering measurements on
Ndz „Ce„CuOzby Thurston et al. (1990) have shown
that the 30 antiferromagnetic order persists even with x
as high as 0.14, while on La2 Sr Cu04 a doping of
x -0.02 is enough to destroy the long-range order. This
difference can be attributed to several factors, but there is
one that is very important: carriers in electron-doped
materials seem to reside in Cu ions, while carriers in
hole-doped materials reside on oxygen ions. As shown by
Manousakis (1992), a study of the Heisenberg model with
static randomly distributed holes shows a dependence of
the antiferromagnetic spin-correlation function that
reproduces better the results for Nd2 „Ce„Cu04than
those for La2 Sr Cu04, suggesting that the former
loses antiferromagnetism through a dilution process (see
also Gooding and Mailhot, 1991;Paul and Mattis, 1991).

3. Incommensurate spin order in doped materials

Neutron-scattering experiments have shown that
La& „SrCu04 with x =0.075 and x =0.14 presents in-
commensurate spin fluctuations. Figure 34 shows the re-
sults reported by Cheong et al. (1991}as a function of
momentum for the two concentrations mentioned before
(for a review, see Aeppli, 1992b). The splitting of the
peak at (n, n ) indicates the presence of incommensurabil-
ity. It is important to note that the splitting was ob-
served along the line joining momentum (m, m) with

(O, vr), (n, O) in a notation corresponding to a two-
dimensional square lattice. Cheong et al. (1991) also re-
ported a finite (although large) spin-correlation length,
suggesting that the incommensurate correlations in this
material are of short range (while recent studies of the
three-dimensional Mott-Hubbard system V2 03 show
the presence of a static incommensurate order}. Mason,
Aeppli, and Mook (1992) showed that the incommensu-
rate peaks in the cuprates are suppressed below T, . Is
the presence of these incommensurable correlations a
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FIG. 34. Neutron-scattering experiment results for
La& „SrCu04 at two different Sr concentrations. For details,
see Cheong et al. {1991).

duces the experimental results. Psaltakis and Papan-
icolaou (1993) found a spiral phase in the t J-model using
a 1/X expansion.

%'hile Hartree-Fock results are suggestive, it is impor-
'tant to verify whether they correspond to the solution of
minimum energy of the models under study using more
powerful and unbiased techniques. In Fig. 35, results are
shown for the one-band Hubbard model using quantum
Monte Carlo as discussed by Moreo, Scalapino, et al.
(1990). The static spin structure factor S(Q) is presented
for several fermionic densities (with (n ) = 1 correspond-
ing to half-filling) on an 8 X 8 cluster, U/t =4 and
T=t/6. The Monte Carlo results suggest that com-
mensurate antiferromagnetism is suppressed when the
fermionic density is reduced away from half-61ling, and
that weak short-range incommensurate correlations de-
velop as the doping increases. Similar results were also
obtained independently by Imada and Hatsugai (1989)
and by Furukawa and Imada (1992) using a projector
Monte Carlo method. Their results for S(Q) are shown
in Fig. 36(a), which was obtained at U/t =4 and

universal feature of all high-T, compounds'? Tranquada
et al. (1992) recently reported results for YBa2Cu306+
The claim is that separate peaks cannot be resolved, but
the data are consistent with four unresolved incommens-
urate peaks similar to those reported in the lanthanum
compounds. On the other hand, electron-doped materi-
als N12 Ce„Cu04 analyzed by Thurston et al. (1990)
showed no indications of incommensurability, adding
more evidence against universality between hole- and
electron-doped materials, at least with respect to their
magnetic properties.

Can we understand the presence of these incommensu-
rate correlations with simple electronic models?
Hartree-Pock calculations have been presented for the
one-band Hubbard model at large (Poilblanc and Rice,
1989) and small (Schulz, 1990a) coupling U/t These.
studies predict the existence of locally stable solutions of
the self-consistent equations consisting of line defects
(solitons) in the antiferromagnetic order parameter.
These solutions provide low-energy modes for the holes
which are trapped in the solitons. For small U/t, the
"charged" lines of defects are aligned along the crystal
axes, while for large U/t they align along the diagonal
(1,1) directions (contrary to experiments). Then, weak-
coupling Hartree-Fock calculations seem in agreement
with experiments. A "spiral" state has also been dis-
cussed by Shraiman and Siggia (1988b), which has incom-
mensurate correlations produced by the movement of the
holes (see also Frenkel et a/. , 1990; Gooding, 1991;
Gooding and Mailhot, 1993; Klee and Muramatsu, 1993;
Kubert and Muramatsu, 1993). Furukawa and Imada
(1992) argue that perturba, tion theory can explain the
presence of incommensurability in the Hubbard model.
Tanarnoto, Kohno, and Fukuyama (1992, 1993a, 1993b)
have developed a mean field for the t-J model that repro-
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FIG. 35. Spin structure factor on an 8X 8 cluster with U/t =4,
P=6/t, and several densities. The solid line is there to guide
the eyes. Results taken from Moreo, Scalapino et al. {1990).
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(n ) =0.82. The incommensurability is clearly observed
in the figure. It would be desirable to obtain results at
larger couplings U/t, but Monte Carlo methods have nu-
merical instabilities in this regime. Unfortunately, t-J
model calculations on large clusters are not available ei-
ther, since a good Monte Carlo technique for this model
has not been developed. However, the Lanczos algo-
rithm can be applied to this model. Figure 36(b) shows
S(Q) calculated by Moreo, Dagotto, et al. (1990) on a
4X4 cluster at zero temperature and at a realistic value
of the coupling J/t =0.2. Again, a shift from momen-
tum (m, rr) is observed as a function of the number of
holes. Then, we conclude that the presence of incom-
mensurate (short-range) correlations seems a general
feature of several models of correlated electrons, al-
though we still do not have a clear, intuitive understand-
ing of its origin.

B. Optical conductivity

Since the early days of high-T, superconductors, at-
tempts have been made to identify the superconducting
gap and other special features responsible for the pairing
mechanism, using the same infrared spectroscopy tech-
niques that were successful in the analysis of classical
low-temperature superconductors. However, it became
clear, also from the beginning, that the infrared proper-
ties of the new superconductors were extremely compli-
cated. Actually, it is not even clear if the superconduct-
ing gap has been properly identified using these tech-
niques. This section consists of two parts. First, we shall
attempt to summarize the vast experimental literature on
infrared experiments closely following the excellent re-
views on this subject by Timusk and Tanner (1989;
Tanner and Timusk, 1992). Since different plots will be
presented in different units, it is convenient to remember
that

1 eV =8063 cm ' = 11 600 K . (4.1)

0.4
0.
0.

0.

2.0

s(q)

1.2—

0.8—

The main conclusions of this first part will be the follow-
ing: (i) Upon doping, weight appears inside the charge-
transfer gap of the undoped compoun. ds, defining the so-
called midinfrared band; and (ii) the conductivity decays
as —1/co at low energies instead of the behavior expected
for free carriers, namely, 1/co . The origin of the midin-
frared band is still unclear. Some experimental authors
attribute it in part to trapped holes near dopant atoms,
while others claim that the Cu-0 chains of the
YBa2Cu306+ family originate most of this weight, at
least for these particular compounds.

After the experimental results are summarized, we
shall describe the present status of numerical studies of
the optical conductivity in electronic models that may be
of relevance for high-T, materials. It is claimed that
after a considerable effort by several groups, a consistent
picture is emerging which suggests that the midinfrared
band may be caused, at least in part, by the spin excita-
tions that surround (i.e., renormalize) the hole carriers.
The anomalous 1/co behavior can be mimicked by a per-
verse combination of the oscillator strength at the far-
infrared co-0 and the spectral weight located at midin-
frared energies, as some examples show. Finally, it is
concluded that the unusual behavior of o.(co) may not be
correlated with the presence of superconductivity in a
given material or model, and should be a general feature
of strongly interacting electronic systems.

0.0
{0,0) (n'2, 0) (z,0) (z,x/2) (z,z) (xl2, x/2)

FIG. 36. (a) Equal-time spin correlation in momentum space on
10X10 lattices for 41 up- and down-spin fermions each (from
Furukawa and Imada, 1992); (b) spin structure factor as a func-
tion of momentum for the 4 X4 cluster and different numbers of
holes (2, 4, 7, and 11;from Moreo, Dagotto, et ar. , 1990).

1. Experimental results

As described in Sec. I.A. 1, Laz Sr Cu04 is perhaps
the simplest of the cuprate superconductors, since it has
only one Cu-O plane per unit cell. Its carrier concentra-
tion can be varied over a wide range, 0(x (0.3, allow-
ing a systematic study of the transitions from an antifer-
romagnetic insulator to a superconductor, and then, in-
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creasing further the doping, to an "anomalous" metallic
state. While the many early experimental studies of opti-
cal properties of this material were carried out on ceram-
ic samples (Doll et al. , 1988, and references therein),
good quality crystals (large and homogeneously doped)
have recently been grown. In particular, Uchida et al.
(1991) have measured the refiectance of La& „Sr„CuO~
for several dopings between x =0 and x =0.34, at room
temperature (see also Shimada, Shimizu, et aI., 1992).
The optical conductivity can be obtained after a
Kramers-Kronig analysis of the reflectance. Their main
result for the real part of the optical conductivity 0 i(co)
is shown in Fig. 37(a), which was obtained at 300 K. The
undoped crystal in the figure (x =0) shows a negligible
conductivity below 1 eV, in rough agreement with the ex-
pectation of a charge-transfer gap of about 2 eV for this
insulating compound. With hole doping, the intensity
above the gap is reduced and new features appear in the
region around and below 1.5 eV; i.e., a transfer of weight
from above the gap to lower energies seems to occur. In
the lightly doped case (say, x =0.02), a clear feature cen-
tered about co-0.5 eV appears. This is the famous mid-
infrared (MIR) band, which has been observed in several
other cuprate superconductors and was discovered in the
early days of high T, in polycrystalline samples (Herr
et al. , 1987; Orenstein et al. , 1987). At this doping, the

far-infrared signal near co-0 is small and difficult to see
in the graph, suggesting that the MIR and free-carrier
absorptions are independent features in this material.
With increased doping, the far infrared conductivity
quickly grows, and at dopings larger than x -0.20, it en-
tirely masks the MIR band, which does not change as
rapidly with doping. At small frequencies the conduc-
tivity decays much more slowly than the Drude-type
1/co behavior expected for free carriers.

What happens in other materials'? We have already
discussed that electron-doped materials, like
Nd2 „CeCu04, are structurally very similar to
La2 Sr Cu04. It has been found that their optical con-
ductivities are also qualitatively similar [see Fig. 37(b),
which is taken from Uchida et al. , 1991]. A MIR struc-
ture is clearly present near co-0.4 eV for the x =0.10
sample. With increased doping, the MIR absorption
merges with the low-frequency free-carrier absorption, as
it occurs in the lanthanum compounds. Again, below 1

eV, the results for o i(co) cannot be fit with a free-carrier
law 1/co . Other compounds of the same family can be
obtained by replacing Nd with Pr. The optical properties
of Pr2 Ce„CuO4 have been investigated (Cooper et al. ,
1990) and the reported results are very similar to those of
Ndz Ce Cu04.

Let us now consider YBazCu306+ . This material has
been widely analyzed experimentally, since good crystals
with a very sharp superconducting transition at T, can
be prepared. However, it presents complications that are
absent in simpler compounds like La2 Sr Cu04. In
particular, YBa2Cu306+„has Cu-O chains, which con-
tribute substantially to o,(co), and two Cu-0 planes per
unit cell. These features have to be taken into account
when a theoretical description of this particular material
is attempted. Figure 38(a) shows o &(co) for the
stoichiometric compound YBa2Cu307 as measured by
Kamaras et al. (1990) at several temperatures. The far
infrared region depends strongly on temperature, espe-
cially below T„while the region above —800 cm ' is
temperature independent. There is a clear minimum at
-400—500 cm ' that can be easily seen at low tempera-
tures but also exists above T, . It has been argued that it
may be caused by the coupling between the midinfrared
carriers and phonons (Timusk and Tanner, 1989). Figure
38(b) shows the conductivity at a fixed temperature of
100 K for different oxygen compositions (and thus for
samples with different values of T, ), taken from Oren-
stein et aj. (1990). The 30-K material has a weak midin-
frared and an onset of charge-transfer absorption at

0
0

I

hm (ev)
FIG. 37. (a) Optical conductivity of La2 „Sr„CuO4at 300 K vs
energy. Data are shown parametric with the Sr concentration
x, in the interval O~x ~0.34 (from Uchida et al. , 1991). (b)
Optical conductivity of Nd2 „CeCu04 ~ (at room tempera-
ture) vs energy, parametric with Ce concentrations between 0.0
and 0.20 (from Uchida et al. , 1991).

For theorists it is interesting to notice that the d.c. resistivity

pd, and the far-infrared resistivity pf;„=o. (~~0) obtained
from the optical conductivity difL'er in this material by about a
factor of 2, perhaps due to the experimental uncertainties of
both methods. Care must then be taken when detailed quantita-
tive comparisons between theory and experiment are attempted.

Rev. Mod. Phys. , Vol. 66, No. 3, July 1994



E. Dagotto: Correlated electrons in high-temperature superconductors 801

5000

Photon energy (meV)
20 40 60 80 100 120 140

I )I I I I I I I I I I I I I

YBa2CU307

co-12000 cm '. With an increase in the content of oxy-
gen, the MIR absorption increases and shifts to lower en-
ergies. The minimum at -400 cm ' mentioned before
can also be seen in these crystals.

What is the behavior of the optical conductivity in oth-
er cuprate superconductors? Let us now consider the
so-called BISCCO family. 0.&(co) for Bi2SrzCaCu20s has
been reported by Romero et al. (1992) using transmission
measurements and a Kramers-Kronig analysis. This is a
material of two Cu-0 layers, similar to YBCO but
without the one-dimensional chains. The results are
shown in Fig. 39(a). In this material it was observed that
(1) above —300 cm ' the decrease in the conductivity
above T, is closer to I/co than the 1/ro expected from
free carriers, and (2) at high frequencies the temperature
dependence is much weaker than at small frequencies.
Then, this compound also seems to display the same
non-Drude behavior as the other high- T, materials.
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FKx. 39. (a) Optical conductivity of Bi2Sr2CaCu&08 between 20
and 300 K (from Romero et al. , 1993); (b) frequency-dependent
conductivity of Bi2Sr2Cu06 between 10 and 300 K (from
Romero et al. , 1993).
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FICx. 38. (a) Optical conductivity as a function of frequency of
a Tc =91 K 61m of YBa2Cu307 q at several temperatures (from
Kamaras et al., 1990); (b) optical conductivity of four crystals
of YBa2Cu307 q at 100 K. 5 ranges from -0.8 for the lowest
curve to -0 for the highest one (from Orenstein et al. , 1990;
see also Thomas et al. , 1988).

Compounds of the same Bi family, but which are not
high-T, superconductors, like Bi2Sr2Cu06 (T, less than 5
K), also present a behavior qualitatively similar to that of
BISCCO above T, [Fig. 39(b)]. From this study it can
be inferred that the non-Drude optical behavior is mainly
produced by holes in the Cu02 planes, and it is not neces-
sarily related to the appearance of a superconducting
transition. Several other materials present an analogous
behavior. For example, the compound T12Ba2CaCu208
has been analyzed (Foster et al. , 1990; Shimada, Mizuno,
et al. , 1992), as well as Pb2Sr2LCu30s, with L being a
rare earth (Reedyk et al. , 1992). Both present a robust
MIR band absorption.

Photoinduced absorption experiments have also shown
the presence of a midinfrared band in the cuprate super-
conductors. Kim et al (1987) repo. rted results for
La@ Sr Cu04, while NdzCu04 was analyzed by Yu
et al. (1992), and YBa2Cu306+„by Nieva et al. (1993).
In all of them, the presence of spectral weight in the MIR
region was observed. There is, then, a qualitative agree-
ment between experiments carried out by adding holes
chemically, or by photoexcitation.

How can we understand the presence of the MIR band
in these compounds'? A detailed study by Thomas (1991)
and co-workers (Thomas er al. , 1992) on some insulating
materials with vacancies suggests that this band may be
caused in part by trapped holes near dopant sites [see
Fig. 40(a)]. Let us concentrate on the electron-doped
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Nd2CuQ4 compound. Since no Ce atoms have been
added, there are no carriers and the system is insulating.
However, the removal of oxygen induces vacancies which
seem to produce an interesting structure in cr, (co). There
are two clear, broad peaks in the experimental results.
Thomas et al. (1992) argued that the lower energy peak
Ez may be produced by the interaction with light of an
electron captured in a bound state by the vacancy. Its
movement costs energy because it disturbs the antiferro-
magnetic background of spins in a picture very similar to
that of the "string" excitations described in Sec. III.B.1.
Then, the peak EJ is associated with an excited state of a
trapped hole. The second peak, EI, may be produced by
the ionization energy of this trapped electron (perhaps
there are other bound states between EJ and EI that are
difficult to resolve). This analysis suggests that the

midinfrared absorption can be partially accounted for by
bound-state processes, and is not all due. to free carriers
(however, see Millis and Shraiman, 1992). Recent work
by Cooper et al. (1993) supports these claims. However,
it is not clear whether 100% of the MIR weight is caused
by trapped holes. In the case of the YBa2Cu306+„com-
pounds, it has been argued that chains produce a sub-
stantial contribution to the MIR band (Schlesinger et al. ,
1990). Actually, Cooper et al. (1993) have recently
shown that the MIR band can no longer be resolved in
YBa2Cu306+ with x =0.6 and 1.0, once the chain con-
tribution has been subtracted [see Fig. 40(b)]. Again, it is
not clear that 100% of the MIR band is actually caused
by the chains.

Finally, in this short summary of experimental results
for the optical conductivity of the cuprate materials, we
shall not discuss the important issue of whether the su-
perconducting gap has been observed using infrared tech-
niques. The reason is that experimentally the answer is
not clear. It is believed that, due to the small coherence
length of the cuprates below T„the materials are in the
extreme clean limit, and thus the gap feature in the con-
ductivity should be di%cult to observe. It has also been
argued that the signal may be lost in the strong midin-
frared conductivity region. Actually, the conductivity
seems finite down to 1SO cm ', and thus no definite
answer to the presence of a superconducting gap in the
high-T, materials has been reported thus far (Tanner and
Timusk, 1992).
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FIG. 40. (a) Optical conductivity in the midinfrared region of
semi-insulating YBa&Cu306+~ (upper panel), Nd2CuO& ~
(center panel), and La~Cu04+~ (lower panel). E& and EI are
peaks discussed in the text (from Thomas et gl. , 1991). (b) Real
part of the optical conductivity below 1 eV in the CuO2 planes
[=a axis] of single-domain YBa2Cu306+„(solid lines), com-
pared with an estimate of the conductivity associated with the
CuO chains [=err, —o, ] (dotted lines). The dashed-dotted line
is the conductivity of BizSr2CaCuzO8 (from Cooper et a/. , 1993).

2. Theoretical analysis of o(co)

Here, we shall review the status of some theoretical
studies of optical properties of models related to high-T,
superconductors. In particular, we shall concentrate on
the response to an external 6eld of an interacting system
of electrons evaluated using numerical methods. A
closed formula for the intensity of the Drude peak in
o(co) will be derived as a special case of a more general
equation. This derivation follows closely that given by
Shastry and Sutherland (1990) and by Scalapino, White,
and Zhang (1992). Most of the results for o(co), dis-
cussed in Sec. IV.B.3, have been obtained using computa-
tional techniques, due to the difhculty in obtaining
analytical information on models of correlated electrons
when the interactions are strong.

As an example, we shall consider electrons described
by the Hubbard model coupled to an external classical
vector potential AI(r, t), where r denotes a site of the
two-dimensional lattice, t is time, and l s are unit vectors
in the lattice axes directions. The gauge-invariant way to
couple particles on a lattice with a U(1) gauge field is by

The help of Fabio Ortolani in some subtle parts of the calcu-
lation is acknowledged.
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introducing phase factors in the kinetic-energy hopping
term, i.e.,

ie
A I (r, t) g

—ie AI (r, t)t g—[c, c,+t e
' +c,+t c, e ' '

]
r, 1,o.

where the "paramagnetic" current-density operator in
the I direction is defined as j&(r)
=it g~(c,~c,+t~ —c,+t~c,~), and the operator kt(r) is
the kinetic-energy density also in the l direction,
i.e., Et(r)= t g—(c, c,+t +c,+t c, ). The linear-
response current is thus given by

+Urn, tn, i, (4.2) Jt(r, t) = — =~j/(r)+e'+t(r)A/(r, t)+
BAt r, t

where we have set fi=c =a =1 (a is the lattice spacing)
and the rest of the notation is standard. The phase fac-
tors "live" on the links of the lattice defined by sites r
and r+l. 80 is defined as the Hubbard Hamiltonian in
the absence of a vector field but including the electron-
electron interactions, while f' contains the field depen-
dence, and it vanishes when At(r, t)=0. Expanding in
powers of the electric charge e, it can be easily shown
that

20'= —e g J't(r)At(r, t) — g kt(r) At (r, t)+
r, l r, l

(4.3)
I

(4.4)

where the first term is the paramagnetic current density,
and the second corresponds to the diamagnetic contribu-
tion.

The next step in the calculation of o.(co) for the Hub-
bard model is to evaluate the mean value of the total
current operator Jt(r, t) in the ground state of the Hamil-
tonian. As a starting point, let us derive the expectation
value of an arbitrary time-dependent operator 0 ( t) in the
ground state of a given system. Following well-known
steps described in several textbooks (see, for example,
Fetter and Walecka, 1971) and working at first order in
the external field contained in 0, it is 'possible to show
that the following approximation holds,

&@(t)IO(t)l@(t)&=&pololyo&+i f' dti[e' "" "&yolk'e
' "" "oly &

e' "' —"'&yoloe
' "' "'Pleo&]+

(4.5)

In the derivation of Eq. (4.5), we made explicit use of the definition of an operator in the interaction representation, i.e.,
l'Pot w —

grotO(t) =e ' Oe ', and the time evolution of a state which is given by

I g( t) &
= f' exp i f ' —dt i 0(t,)'

(where f'is the time-ordering operator, and lgo & is the ground state of the fully interesting system in the absence of the

external field, which has an energy Eo ).
Let us now specialize Eq. (4.5) to our problem; i.e., consider O(t)=Jt(r, t). Defining the Fourier transformation of

the vector field as At(r, t)= I de At(r, co)e ' ' [with a similar definition for the transformation of the current

& Jt (r, co ) & ], and after tedious but straightforward algebra, it can be shown that

& J„(r,co) & =e &2 & A (r, co)+ie g f d &Prl[jo„(r)e ' ' j„(r')—j„(r')e ' ' j„(r)]I/0&A„(r',co),
0

(4.6)

where (1) the gauge field has been specialized to the x direction [At(r, t)=St A„(r,t)]; (2) the paramagnetic current in

the ground state without external fields is assumed to vanish (&POIJ't(r)lgo&=0); (3) the change of variables

t t, —+ r, t ~—t was carried out—; and (4) the notation & k„&=
& Polk„(r)I go& was introduced, since this mean value is

site independent in the ground state of the Hubbard model defined on a cluster with periodic boundary conditions.
Equation (4.6) can be further simplified by working in momentum space. Defining the spatial Fourier transformed as

A„(r,co)=—g A„(q,co)e'q'1

q

and applying the operatorial identity f o dx e' '"=i /(a+i e) (where e is a constant, and & an arbitrary operator), we

arrive at a general equation for the response of the total current to an arbitrary, but small, vector field in the x direction,
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& J„(q,co)) =e &E ) A (q, co)+e —&polj ( —q) J (q)lpo)
0 E—o+co+ie

+—
&gaol j.(q)

0 Eo co i e
(4.7)

6 is a small parameter introduced to regularize the poles that w111 appear at particular values of the frequency
Now, let us study the special case of the response to an electric field defined by A„(q=O,co) =E (q=O, ni)/(iei —5),

where 5 is a small number. ~e consider zero momentum, since we are interested in a uniform electric field (a pure mag-
netic field will be analyzed in Sec. IV.E.4 when superfiuidity is discussed). In linear-response theory the conductivity is
defined through the relation & J (q=0 co) ) =o „„(co)E(q =0 co). It can be shown by using Eq. (47) that the rea1 part of
the conductivity for ~ & 0 is equal to

I & gaolj„lp„&I'
o i(co) =Reo (co) =D5(co)+ g 5(co (E„——Eo)),E„—Eo

(4.8)

where the so-called Drude weight D is given by

2~e 2 4X

cr, (co)= 5(co),ne m

m
(4.10)

(4.9)

and & f') ( =2K&k„)) is the total kinetic energy of the
problem in two dimensions. To derive Eq. (4.8), we in-
troduced a complete basis I =g„lg„)& P„I, and we also
used the well-known identity 1/(u +i e) =P (1/u)

i7r5(u)—, valid in the limit of small e, where P denotes
the principal part, and u is a real number. Note the im-
portant detail that the real part of the conductivity con-
tains a delta function at zero frequency, which is pro-
duced by the "free" acceleration of the quasiparticles.
For a system with periodic boundary conditions, Kohn
(1964) showed that D can be used as an order parameter
for metal-insulator transitions. Actually, it can be shown
that for an insulator, D converges exponentially to zero
with increasing lattice size, while for a metal it converges
to a nonzero constant, which implies zero resistance in
the ground state. This is not surprising, since in the
Hubbard model there is no dissipative mechanism (unless
disorder is introduced). A model where DAO can corre-
spond to a perfect metal or a superconductor, showing
that the vanishing of the resistivity in the ground state is
only a necessary condition for achieving superconductivi-
ty, but is not sufBcient. This point will be discussed in
more detail in Sec. IV.E.4. It is also interesting to note
that only interacting fermions on a lattice can have a
metal-insulator transition, signaled by the vanishing of
the Drude weight. In the continuum or for lattice free
fermions, [j„,P]=0, and thus all the weight of the con-
ductivity is concentrated at zero frequency. Actually, for
noninteracting carriers in the continuum, the well-known
Drude formula is recovered from Eq. (4.9), namely,

Eq. (4.10), we have assumed a low density of particles,
each carrying an energy approximately given by ( 4t) a—s
it occurs in the noninteracting Hubbard model at the
bottom of the band.

By integrating in co both terms of Eq. (4.8), we can
easily arrive at the well-known sum rule (Maldague,
1977) relating the total weight of cr, (co) with the mean
value of the kinetic energy in the ground state, '

I dc' 0'i(co) —
& f ) (4.11)

At a given coupling, &
—f') is in principle a function of

the fermionic density, but near half-filling it changes
smoothly with &n ). Then, in several cases it is a good
approximation to assume that the spectral weight in
o (co) is conserved upon doping, and thus it can only be
redistributed [however, the larger the coupling U/t, the
worse is this approximation, as shown below in Fig.
44(a)].

3. Numerical results

After setting up the formalism to calculate cr(co) in
models of correlated electrons, it is necessary to find a re-
liable technique to evaluate the complicated matrix ele-
ments appearing in Eq. (4.8). In this review we shall
mainly describe calculations performed with the help of
computers, since they can provide unbiased and fairly ac-
curate estimates of several physical quantities. Unfor-
tunately, the computational analysis of cri(co) is by no
means simple. Quantum Monte Carlo methods cannot
handle the evaluation of dynamical co-dependent quanti-
ties, since in this technique calculations are performed in
imaginary time. Analytic continuations from imaginary
to real time have been attempted, but this approach,
while promising, is not yet fully developed for two-
dimensional problems (see Silver et al. , 1990; Jarrell

where n =X, /% is the density of carriers, X, is the num-
ber of particles, and m =1/(2t) their mass. In deriving i In deriving Eq. (4.11),remember that f dc05(c0) = 1/2.
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et al. , 1991). The Lanczos method applied to small clus-
ters is then one of the few available tools for calculating
the optical conductivity of correlated electrons. Several
groups around the world have actively worked on o.(co)
using this technique. To apply the Lanczos formalism to
the evaluation of dynamical quantities as discussed in
Sec. II.A.2, it is convenient to rewrite Eq. (4.8) as

Reo „„(co)=D5(co)

020 li s i i
i

& s

0.15

(4.12)

which is precisely the form of Eq. (2.6). The second term
on the right-hand side (sometimes called the incoherent
or regular part of the conductivity) can be obtained using
the Lanczos formalism of Sec. II.A.2. Typically, a cou-
ple hundred Lanczos iterations provide the incoherent
part with high accuracy. Thus it is not necessary to ex-
plicitly obtain all the excited states to calculate the regu-
lar part of Eq. (4.8), as would have been naively required.
The Drude contribution is calculated using Eq. (4.9),
since with the Lanczos approach it is also possible to ob-
tain the mean value of the kinetic-energy operator very
accurately. The effects of electronic interactions are fully
taken into account with this technique, and the approach
works equally well for any coupling and doping fraction.
Of course, the intrinsic problem of this method is the
constraint to working on relatively small clusters, since,
in the calculations, vectors of the size of the dimension of
the Hilbert space of the cluster need to be used. Howev-
er, in recent years the availability of supercomputers with
large amounts of memory, like the Cray-2, have allowed
calculations in cluster sizes that are expected to capture
at least qualitatively the physics of models of correlated
electrons.

In Fig. 41, o &(co) is shown for the one-band Hubbard
model at U/t =10, evaluated on a 4X4 cluster. The re-
sults are parametric with the hole-doping fraction in the
interval 0.0~x ~0.375. The results of Fig. 41 have re-
cently been discussed in the literature (Dagotto, Moreo,
Ortolani, Riera, and Scalapino, 1992), but in this refer-
ence they were presented with a very high resolution,
@=0.01t, to distinguish between the individual 5 func-
tions in the spectrum. On the contrary, here in Fig. 41,
we give to the 5 functions a large width e=t to simulate
the several effects not considered in our idealized Hamil-
tonian that contribute to the broadening of the peaks.
The results are very interesting (Fig. 41). Selecting ap-
propriately the coupling constant in the Hubbard Hamil-
tonian, and without providing additional information, a
o, (co) that resembles the experimental results for hole-
and electron-doped materials is obtained [compare Fig.
41 against Figs. 37(a), 37(b)]. At half-filling (x =0), the
weight is accumulated above a gap which is about 6t for
this coupling. If t takes the value suggested in some cal-
culations (Hybertsen et al , 1990; Bacci, Cr. agliano, Mar-
tin, and Annett, 1991), i.e., t -0.3—0.4 eV, then the gap

0.05

0.00
0 10

FIG. 41. Real part of the optical conductivity of the one band
Hubbard model at U/t =10 on a 4X4 cluster. The results are
parametric with hole doping x. D denotes the Drude peak at
zero frequency, while MIR indicates the midinfrared band that
is observed for doping x =0.125. The 5 functions appearing in
the continued fraction expansion have been given a large width
e= t.

is similar to that observed in the high-T, materials,

namely, about 2 eV. As explained earlier, with the Hub-
bard model we can mimic the charge-transfer gap of the
real materials by means of the Hubbard gap. The weight
in cr, (co) above the gap is produced by charge excitations,
and it is basically related to the upper Hubbard band of
the model. The small weight below the gap at x =0 is
produced by the "tails" of the smeared 5 functions above
the gap.

The more interesting results occur upon doping, since
a redistribution of the spectral weight takes place. Since
the kinetic energy in sum rule (4.11}is not strongly dop-
ing dependent, this basically amounts to a transfer of
weight from the charge excitations band down to lower
energies. Consider x =0.125, which corresponds to two
holes on the 4X4 cluster. Figure 41 shows, in the in-
frared region below the gap, two main features dominat-
ing: (i) a sharp peak at co=0, which is precisely the
Drude peak with damping, and (ii) considerable weight
centered near the rniddle of the gap, which hereinafter we
shall call the midinfrared (MIR) band in analogy with the
weight observed experimentally located inside the
charge-transfer gap upon doping. Increasing the hole
doping, we observe that the Drude peak grows rapidly
with x, while the weight at the rnidinfrared band is only
weakly doping dependent. In the scale of the plot, results
for x =0.25 and 0.375 are virtually identical. 'Even the
appearance of what Uchida et al. (1991} called an
"isosbestic" point (the point around co-5t where conduc-
tivities for difFerent densities cross) is neatly reproduced!
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Results such as these shown in Fig. 41 can be obtained if
U/t is selected in the intermediate region of couplings,
namely, when U is of the order of the bare bandwidth St.
If the coupling U/t is larger, then it can be shown that
between the MIR region and the charge excitations there
is an empty region with no spectral weight. On the other
hand, if U/t is too small, then, upon doping, the MIR
band and charge excitations merge; they are diKcult to
distinguish. The same "optimal" region in parameter
space necessary to mimic experiments on cuprates also
appears in studies of photoemission (see Sec. IV.C) and
for the magnetic susceptibility (Sec. IV.A. 1).

%'hat is the origin of the MIR band in these numerical
studies' We know that this band also appears in the t-J
model, and thus it is not related to charge excitations. It
is tempting to associate the MIR band with the consider-
able amount of spectral weight found above the quasipar-
ticle peak in the study of the spectral function of a hole
A (p, co) (Secs. III.B.4 and IV.C), since both appear at
similar energies. That weight was caused by spin Auctua-
tions around the hole; i.e., the hole is a dressed quasipar-
ticle that carries a "bag" of reduced antiferromagnetism
in its neighborhood. At large U jt, the properties of this
spin polaron are dominated by the string excitations (Sec.
III.B.1). These claims are supported in part by the fact
that the presence of the MIR band is a two-dimensional
efFect. Actually, o, (co) has also been calculated on a 16-
site t-J model chain (Stephan and Horsch, 1990). o, (co)

has a robust Drude peak but, contrary to its two-
dimensional counterpart, negligible weight at finite fre-
quencies. This result supports the previous interpreta-
tion that the dressing of the hole by spin excitations is a
key ingredient in the explanation of the origin of the
MIR band. In 1D, spin and charge separation takes
place (there are no "string" excitations in one dimen-

sion), while in two dimensions the cloud of distorted anti-
ferromagnetic background seems to follow the holes.
This example also shows that it is dangerous to naively
relate 1D and 2D results.

To complete the analysis of the numerical results,
cr&(co) of Fig. 41 with x =0.25 and 0.375 in the range
It ~co~5t was fit with a power law, o, (m) —2/co . It is

remarkable that the best fit was obtained for
u-(1.00+0.05), again in excellent agreement with ex-
perirnents that consistently suggest a I/co decay of the
conductivity at intermediate energies. However, for this
finite cluster, we know exactly that there is a Drude peak
that has to decay as I/co at small enough frequencies (in

practice, co &0.1 eV or less). This peak carries a consid-
erable amount of the total spectral weight at x =0.25,
and it has been given the same large damping e= t as the
rest of the 5 functions. Then, the observed I/co decay of
the numerical results is caused by a perverse combination
of the oscillator strength of the free carriers, and that of
the MIR band. This may be a possible explanation for
the puzzling experimental results observed in the cu-

p rates.
At this point, it is convenient to clarify that the pur-
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FIG. 42. (a) Optical conductivity of the t-J model on a 4X4
cluster evaluated by Stephan and Horsch (1990), for the case of
one hole, open boundary conditions, and several couplings J/t.
The width of the deltas is a=0. 1t. The inset shows results for
J=0.5 with a higher resolution m=0. 02t. (b) Same as (a}, but
using periodic boundary conditions. These results were ob-
tained by Moreo and Dagotto (1990). The Drude peak is not
shown, only the "incoherent" part of the conductivity.

pose of this theoretical exercise of analyzing in detail
o(co) of Fig. 41 is not to claim that the Hubbard model
contains all the key ingredients to describe the supercon-
ductors. %'e only want to remark that once a calculation
can be performed under some controlled approximations
(in this case with the help of computational techniques),
and if enough damping is provided to the otherwise sharp
5 functions, then some of the intriguing "anomalous"
features of the experimentally observed optical conduc-
tivity can be qualitatively reproduced using models of
strongly correlated electrons. To produce a band at
mid-infrared energies with electronic models, we only
seem to need strongly dressed quasiparticles, and thus its
presence may well be a generic feature of several theories.
Of course, other processes may substantially contribute
to the MIR band observed experimentally. As men-
tioned before, studies by several groups have shown that
holes trapped near dopant atoms, as well as chain contri-
butions in the YBCQ family, can account for a large per-
centage of this weight. Thus we expect that these effects
plus that created by the heavily dressed quasiparticles
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will be operative in the cuprates. It would be quite
difBcult to distinguish among them experimentally. Note
also that the relation between these unusual features and
the superconducting mechanism remains obscure, since
measurements of pairing correlations in the same cluster
that presents a robust MIR band do not show signals of
superconductivity (as will be discussed in more detail in
Sec. IV.E).

The MIR band in cr &(co) was first observed numerically
in the t-J model independently by Sega and Prelovsek
(1990); Moreo and Dagotto (1990); Stephan and Horsch
(1990); and Chen and Schiittler (1991). For additional in-
formation, see Rice and Zhang (1989). Figure 42 shows
some of those results which were obtained on 4 X4 clus-
ters with one hole. In both cases considerable weight is
observed at intermediate energies. It is interesting to
note that the results of Fig. 42(a) were obtained using
open boundary conditions (OBC). What happens with
the Drude peak for a perfect metal if the numerical study
is carried out on a finite cluster with OBC? In this case
we do not expect to find a Drude peak at zero frequency,
since no current can propagate with OBC. However, in
the thermodynamic limit, open and periodic conditions
should give the same result. The way in which this
"paradox" is resolved is by the appearance of a Drude
precursor peak at very small frequencies when open
boundary conditions are used as shown in the inset of
Fig. 42(a). The position of this peak converges to zero,
increasing the size of the cluster, as was discussed by
Moreo and Dagotto (1990) and Fye et al. (1991). Figure
42(b) shows o&(co), obtained using periodic boundary
conditions instead. The Drude peak is not shown, and
the large weight between 0.5t and 2.0t is the MIR band. "

Studies of cr &(co) using the three-band Hubbard model
have also been carried out. Wagner, Hanke, and Scalapi-
no (1991)obtained the result shown in Fig. 43(a), using a
cluster with four copper atoms and ten oxygen atoms
with periodic boundary conditions. The structure at A
indicates charge-transfer excitations. Note the appear-
ance of the spectral weight 8 at intermediate energies
upon doping. In this lot the Drude peak is not shown ex-
plicitly. Results for the three-band model have also been
reported by Tohyama and Maekawa (1991). Finally, on
Fig. 43(b), results are presented for the so-called Kondo-
Heisenberg model with the particular values of parame-
ters shown in the caption (Chen and Schiittler, 1991).
The Drude peak is not shown, and the large peak near
co-2 should be considered part of the MIR band. Then,

In the first studies of o.(co) with periodic boundary condi-
tions (Moreo and Dagotto, 1990; and others), it was claimed
that sum rule (4.11) was not satisfied. This is not correct, and
the reason for this confusion is that the Drude peak does not
come out automatically from the numerical calculations, which
only provide the incoherent part. The weight at zero frequency
needs to be calculated separately from Eq. (4.9), as it is current-
ly done in the literature.
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FIG. 43. (a) v&{co) vs frequency for the three-band Hubbard
model on a 2X2 copper cluster (14 atoms total) with diferent
numbers of holes. The parameters in the Hamiltonian are
5=4, Ud=6, U~=3, and t =1. Periodic boundary conditions
were used. The Drude peak is not shown (from Wagner,
Hanke, and Scalapino, 1991). (b) Optical conductivity of the
Kondo-Heisenberg model on a 4X4 cluster with one hole. The
Kondo spin-exchange coupling is F=8, and the nearest-
neighbor oxygen-oxygen hole transfer t»=4. cI, is 1/16, and
the width of the delta functions is 0.2t (for more details, see
Chen and Schuttler, 1991).

all the models of correlated electrons that have been
studied in two dimensions present spectral weight inside
the insulator gap of the undoped system. The existence
of the "electronic" MIR band seems a generic feature of
these models.

To complete this study, in Figs. 44 and 45 we show the
expectation value of the kinetic-energy operator, as well
as the Drude weight D, as a function of doping obtained
on a 4X4 cluster at several coupling, for the one-band
Hubbard and t-J models (Dagotto, Moreo, Ortolani, Poil-
blanc, and Riera, 1992). In both cases the Drude weight
seems to increase with the number of holes at small hole
doping (with the only exception of the noninteracting
Ult =0 limit in the Hubbard model). The doping depen-
dence is approximately linear, and thus the finite-cluster
approach roughly predicts D-x. In the other limit of
small electronic density, D —1 —x = (n ), as in the case
of a gas of weakly interacting electrons. Similar results
were obtained in the one-dimensional Hubbard model by
Schulz, 1990b; Zotos, Prelovsek, and Sega, 1990; Fye
et ah. , 1991, 1992; and Kawakami and Yang, 1991. Al-
though the behavior of both models is roughly similar, it
is surprising that in the t-J model the results are almost J
independent. This e6'ect can be traced back to the three-
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site terms left aside in the derivation of the t-J model
from the Hubbard model, as recently discussed by
Stephan and Horsch (1992). The approximate J indepen-
dence of the t-J model results has also been addressed re-
cently by Poilblanc, Ziman, et al. (1993) in a finite-size
scaling analysis of the optical conductivity using clusters
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FIG. 45. (a) Kinetic energy per site of the t-J model
K =(Pal( —f')~go)/N on a 4X4 cluster as a function of hole
density x for J/t =0.1 (open squares), J/t =0.4 (solid trian-
gles), and J/t =1 {open triangles). From Dagotto, Moreo, Qr-
tolani, Poilblanc, and Riera (1992). (b) D„=D/(2me ) vs densi-
ty for various couplings J/t. The notation is the same as that
used in (a).

FIG. 44. (a) Kinetic energy per site of the Hubbard model
& =

&

gaol(

—&)ly, ) /X on a 4X4 cluster as a function of density
(n ) for U/t =4 (solid triangles), U/t = 8 (solid squares), and
U/t =20 (solid pentagons). We also show results for a 10-site
cluster at U/t =100 (solid hexagons). The solid line without
points corresponds to results for Ujt =0 in the bulk limit (from
Dagotto, Moreo, Qrtolani, Poilblanc, and Riera, 1992). (b)
D„=D/(2m.e ) vs density for various couplings U/t. Solid tri-
angles, squares, and pentagons denote results for U/t =4, 8,
and 20, respectively, on a 4X4 cluster. Qpen squares, penta-
gons, and hexagons indicate results for a 10-site cluster at
U/t =8, 20, and 100, respectively. The solid lines are exact re-
sults at U/t =0 in the bulk limit.

of up to 26 sites.
The Drude weight D has a maximum located near

quarter-filling for both the t-J and large-U ft models.
The maximum slowly moves towards half-filling when
the interaction strength U/t is decreased in the one-band
case. Its position may be used as a rough estimator of
the doping fraction at which the carriers turn from hole-
like to electronlike (Dagotto, Moreo, Orto)ani, Poilblanc,
and Riera, 1992). Figure 44(a) also shows some of the
weaknesses of the calculation. The Drude weight of the
Hubbard model at half-filling obtained using Eq. (4.9) can
actually become negative on a finite system (Moreo, 1990;
Fye et al. , 1991; StafFord, Millis, and Shastry, 1991).
This unphysical result is a finite-size efFect that has been
studied extensively in one-dimensional rings, where it
was shown that lDl converges to zero at half-filling, as
expected for an insulator, but with alternating signs de-
pending on the number of sites of the chain (for more de-
tails about one-dimensional calculations of the optical
conductivity, see Giamarchi and Millis, 1992 and
Sta)ford and Millis, 1993). A comparison between varia-
tional Monte Carlo techniques and exact diagonalization
was presented by Millis and Coppersmith (1990). Their
conclusion was that finite-size efFects were important.
However, considerably better numerical results have
been produced since the publication of that paper (see,
for example, Dagotto, Moreo, Ortolani, Poilblanc, and
Riera, 1992), and thus their conclusions need revision.
An attempt to study numerically the optical conductivity
of the Hubbard model in a three-dimensional cubic lat-
tice was presented by Tan and Callaway (1992).

Some recent developments in the context of studies of
o (co) are worth mentioning.

(1} Poilblanc and Dagotto (1991; see also Poilblanc,
1991) have claimed that by introducing difFerent bound-
ary conditions on the clusters (through a phase factor)
and averaging over them, results closer to the bulk limit
can be obtained. They have also studied the dependence
of the energy levels with an external Inux in two dimen-
sions. The Drude weight can be obtained as the second
derivative of the ground-state energy with respect to that
fIux.

(2) The Drude weight can be evaluated by quantum
Monte Carlo techniques (Scalapino, White, and Zhang,
1992) for the Hubbard model at those densities where the
sign problem allows calculations at low temperatures.
The Drude weight obtained by quantum Monte Carlo is
approximately 0.3 on an 8X8 cluster at quarter-filling
( n ) =

—,', and U/t =4, in good agreement with the Lanc-
zos result shown in Fig. 44(b) for the same parameters.
Finite-size efFects seem to afFect only weakly the Drude
weight, at least at that density.

(3) Recently, interesting results were obtained by
Tikofsky, Laughlin, and Zou (1992). These authors used
the anyon superconductivity formalism to calculate the
optical conductivity and total kinetic energy of the t-J
model. They observed an excellent quantitative agree-
ment with the exact diagonalization results discussed in
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FIG. 47. Schematic efFect of doping for a charge transfer CuQ2
plane. Hole doping is expected to move the Fermi level into the
charge-transfer band, while electron doping is expected to move

it into the upper Hubbard band. This would give an energy
difference of the Fermi levels of approximately 2 eV (from Des-
sau, 1992).

observed, while for electron doping, only one peak is ex-
pected.

In this section, experimental and theoretical results
will be discussed. They systematically show that the
naive rigid-band picture is not correct for the high-T, cu-
prates. An apparent disagreement between PES and.
XAS experiments that were supposed to probe the same
electronic density of states will be discussed. The experi-
mental summary given in this section closely follows re-
view articles by Allen (199la, 199lb) and Dessau (1992).
See also Fink et al. (1993) for a review on electron energy
loss and XAS spectroscopy.

1. Density of states (experiments)

Photoemission spectroscopy experiments on single
crystals and ceramic samples for La2 Sr Cu04+& have
produced interesting, and somewhat surprising, results
(Shen et al. , 1987; Matsuyama et al. , 1989; Allen et al. ,
1990; Takahashi et al. , 1990). We would have expected,
based on the rigid-band picture, that the Fermi energy
EF would move into the insulator valence band as x in-

creases. However, metallic samples with x =0.1S pro-
duce (weak) PES intensity in the region of the gap of the
insulator; i.e., EF lies in new states inside the insulator
gap. On the other hand, XAS experiments on ceramic
samples suggest a different picture for the density of
states of this material (Romberg et al. , 1990; Chen et al. ,
1991). By exciting core electrons into unoccupied states
near the Fermi energy, XAS provides information about
the empty multibody states of the problem. X-ray ab-
sorption spectroscopy experiments on La& „Sr„Cu04+&
show the presence of states in the gap, as in PES, but also
two peaks: one with weak intensity at low energies
which is associated with empty states at the top of the
valence band for the Sr-doped system, and a peak at
higher energies with a larger intensity which is associated

e ~ ~ ~ ~ ~ ~ ~ I
I I I I I I I I I I i i i i t

-0.5 0.0 0.5
Energy relative to EF (eV)

FIG. 48. Photoemission spectra of Nd2 Ce Cu04 single crys-
tals at three difFerent dopings. The position of EF is about 0.5
eV above the top of the valence band, which implies that the
spectral weight induced by doping lies in the insulating gap
(from Anderson et al. , 1993).

However, recent results by King et al. (1993) on
Nd2 „Ce„Cu04show a shift of the chemical potential with
electron doping, as expected by band-611ing scenarios, and no
double-peak structure in the results. Then, the experimental
situation is not quite clear.

with the upper Hubbard band. Then, XAS results seem
approximately in agreement with the naive rigid-band
picture described before, and in disagreement with PES
experiments.

A similar discrepancy was observed in electron-doped
compounds. The naive rigid-band picture discussed
above would predict that PES experiments in these ma-
terials should show a two-peak structure, one corre-
sponding to the electrons added to the system at the bot-
tom of the conduction band, and a larger structure relat-
ed to the 02p band (or the lower Hubbard band in a
one-band description of the material). However, actual
PES studies of Ndz Ce Cu04 consistently show that
there is a steady growth of spectral weight at energies in-
side the insulator gap (Fukuda et al. , 1989; Allen et al. ,
1990; Namatame et al. , 1990; Suzuki et al. , 1990), as if
electrons added to the system would occupy new states
created in the gap. For example, consider the recent ex-
perimental results obtained by Anderson et al. (1993),
which are shown in Fig. 48 for single crystals with
x =0.0, 0.10, and 0.1S. The x =0 insulator spectrum has
been positioned on the energy axis relative to those for
nonzero x, by aligning the higher energy main band and
satellite features. These results suggest that the Fermi
energy EF does not appear to change appreciably with Ce
concentration, and in doped metals it lies in states that
fill in the gap of the insulator. ' In other words, EF does
not move into states present in the insulator and does not
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jump across the gap if the doping is changed from holes
to electrons, but has roughly the same position relative to
the valence-band maximum for both holes and electrons.
Such results are indeed unexpected. In contrast to PES
data, the XAS experiments for electron-doped materials
seem to suggest that Ez lies near the bottom of the upper
Hubbard band upon electron doping (Alexander et al. ,
1991). In these experiments, only one peak is observed,
which is assigned to the upper Hubbard band. This re-
sult is consistent with the naive rigid-band picture and in-
consistent with PES experiments. The fact that p is ob-
served directly in photoemission but must be inferred
after data interpretation in XAS favors the PES result on
this question. However, the greater surface sensitivity of
photoemission relative to XAS can be mentioned as a
reason against PES data.

What occurs in other materials? Results for
BizSr2CaCu20s (Olson et al. , 1989, 1990; Shen et al. ,

1991;Dessau, 1992) and YBazCu306+„(Liu, Veal, et al. ,

1992; Liu et al. , 1992) studied with angle-resolved photo-
emission suggest that in these compounds the hole dop-
ing causes a shift of Ez together with a non-rigid-band
variation in the intensity of the emission. Inverse-
photoemission studies of Bi2Sr2CaCu208 also support
these claims (Takahashi et al. , 1991; Watanabe et al. ,
1991). Dessau (1992) claims that Bi2Sr2CaCuzOs samples
may be in a doping regime where some aspects of the
Fermi-liquid description are recovered (while the previ-
ously described materials La2 Sr Cu04 and
Nd2 Ce Cu04 may lie much closer to the insulating re-
gime, disturbing their regular behavior). Thus Bi2212
and YBCO do not now seem to be as paradoxical as the
single plane compounds.

Summarizing, there is an important feature in the ex-
perimental PES and XAS results for several high-T,
compounds that is novel and puzzling. A discrepancy
seems to exist between PES and XAS experiments re-
garding the behavior of the chemical potential as a func-
tion of doping: the potential does not seem to move in
PES results, while XAS data suggest that p crosses the
insulator gap when changing froxn hole to electron dop-
ing. Actually, recent results by Anderson et al. (1993)
have shown that PES and XAS data obtained from the
same sample of Ndz Ce CuO4 at the same time still
show the same discrepancy. An interesting feature that
is not controversial is the appearance of weight in the in-
sulator gap upon doping. This result is also in agreement
with the theoretical analysis of models of strongly corre-
lated electrons (shown below), and in disagreement with a
rigid-band picture of the problem. However, as recently
remarked by Fujimori et al. (1992; see also Fujimori,
1992a, 1992b), the formation of these gap states is a very
general phenomenon that appears in several strongly
correlated (but non-high-T, ) compounds, and thus it
might not be essential in understanding the mechanism of
superconductivity in the cuprates. A very interesting ex-
ample is presented in Fig. 49, where the inverse PES
spectra of La2 „SrNi04 is shown. This material is a

0 5 10
Energy Relative to EF

FICx. 49. BIS spectrum (inverse photoemission) of
La2 Sr, Ni04 (from Fujimori, 1992 and Eisaki et a/. , 1992).

hole-doped charge-transfer insulator. As seen in the
figure, upon doping, new states appear in the gap. This
material is not even metallic for small x, and the holes
may be localized. Then, gap states may not be crucial for
superconductivity; nevertheless, it is a poorly understood
general phenomenon of strongly correlated materials that
should be carefully analyzed.

2. Density of states (theory)

Can the experimental results for the cuprates be under-
stood using models of strongly correlated electrons? As
shown below, the answer is that the presence of gap
states is very natural in these models, at least in some re-
gion of parameter space. On the other hand, the chemi-
cal potential p moves across the gap when hole doping is
changed into electron doping in all the purely electronic
models of high T, considered in the literature (of course,
without explicit impurities). Thus the paradoxical
behavior of p still needs a theoretical explanation.

Let us consider the PES results in more detail. In or-
der to analyze the presence of gap states in the one-band
Hubbard model, it is necessary to perform a reliable cal-
culation of the density of states N(co). This quantity can
be evaluated using Lanczos methods following the same
approach that was described in detail in Sec. II.A.2. We
use the definition of the density of states as
X(ro)=g~ A (p, co), where the spectral function corre-
sponding to a given momentum p and energies m is given
by

g (p ~)—y ~(yN ~ct ~y ) ~2g(~ EN+1+Ex)

& (p, ~)=+ I(P„'~cp,~go) ~'5(co E„'+Zo)—
(co(p) .
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~Pc) is the ground state in the subspace of N particles
(with energy Eri ). ~p„+—') are eigenstates in the subspace
of %+1 particles with energy E„—'. The fermionic
operator c, destroys a fermion with a given momentum

p and spin s. The results for co)p correspond to IPES,
while co &p with energy equal to ~co

—
Itt~ determines the

PES spectrum, when integrated over all momenta. The
results for N(co) are shown in Fig. 50. They were ob-
tained on 4X4 cluster at Pit =8 and for different fer-
mionic densities (n ). The 5 functions in the figure have
been given an (arbitrary) width e=0.2t to plot the re-
sults. Figure 50(a) corresponds to half-filling. A clear
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FICz. 50. (a) Density of states X(co) obtained using the one-
band Hubbard model on a 4X4 cluster at density (n ) = 1 (i.e.,
half-filling) and U/t =8. The technique used is the Lanczos
method. (b) Same as (a), but at density (n )=0.875. Both.
figures taken from Dagotto, Ortolani, and Scalapino (1992).
The solid lines are the IPES spectrum, while the dot-dashed
lines denote PES results. (c) Density of states obtained with a
recently developed technique to produce real-frequency results
from the quantum Monte Carlo data using a 4X4 cluster,
U jt =8, densities ( n ) =0.88 (dashed line) aud ( n ) = l (solid
line), and temperature T=t/4 (from Bulut, Scalapino, and
White, 1994; see also Scalapino, 1991).

gap exists in N(co) which is caused by the antiferrornag-
netic order (or, equivalently, by the spin-density-wave or-
der) in the ground state. The large dominant structures
at energy ~ro~-2 —3t correspond to the "quasiparticle"
band produced when one electron is added (co) 0) or re-
moved (co & 0) from half-filling. ILt is located at co=0, and
the symmetry under a reAection co~ —co is caused by the
particle-hole symmetry of the one-band problem at half-
filling. The rest of the structure in N(co) at larger ~co~ has
the same origin as the "incoherent" part of the hole spec-
tral function discussed in Sec. III.B.4; namely, the state
c~ ~Po) obtained by the sudden annihilation of an elec-
tron is not an exact eigenstate of the interacting problem.
Decomposed in a complete basis of eigenstates, it has a
projection in virtually all of the states with the same
quantum numbers, and thus only a fraction of the total
weight resides on the quasiparticle peak. The rest of the
weight is distributed at higher energies.

What occurs at finite doping' For example, consider
(n ) =0.875, which corresponds to two holes on the 16-
site cluster [Fig. 50(b)j. The PES spectrum (dashed line)
resembles that obtained at half-fi1ling, but it is shifted to-
wards smaller energies. Naturally, its total weight is re-
duced, since the integral of the density of states up to the
chemical potential (or E~) has to be equal to the number
of particles. p is now near m- —2.4t, as shown in the
figure. We now consider the IPES spectrum. At an ener-

gy co-4t or larger, a considerable amount of weight is 1o-
cated, which corresponds to the upper Hubbard band
(that also exists in the IPES spectrum at half-filling). The
interesting new feature is that, immediately after p, a
considerable amount of weight is observed which peaks
near the chemical potential and then slowly decreases,
covering the whole original antiferromagnetic gap of the
half-filled case and extending into the upper Hubbard
band. In this respect, the result is qualitatively similar to
that found experimentaljky, namely, that states appear in
the gap upon doping. However, contrary to PES experi-
ments, the chemical potential moves to the top of the
valence band upon hole doping. Reciprocally, for elec-
tron doping, it moves to the bottom of the conduction
band. This last result is obvious from the particle-hole
symmetry of this model, and thus an explicit calculation
is not needed. As with the optical conductivity cr(c0)
(Sec. IV.B), it is important to remark that other nonelect-
ronic processes may well be contributing substantially to
the spectral weight in the gap. For example, impurities
can produce localized gap states. Then, the numerical
study of purely electronic models without impurities only
suggests that part of the weight may have electronic ori-
gin, but does not claim to explain entirely the experimen-
tally observed spectrum. Finally, and for completeness,
it is useful to compare the results obtained using the ex-
act Lanczos approach [Figs. 50(a) and 50(b)] with those
obtained using a recently developed technique to produce
real-frequency results from the quantum Monte Carlo
data (Silver et al. , 1990; White, 1990; Jarrell et al. , 1991)
using the same cluster, coupling and density, and temper-
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ature T=t/4 (which cannot be lowered further due to
the sign problem). Results are shown in Fig. 50(c) (from
Bulut, Scalapino, and White, 1994; see also Scalapino,
1991). lV(co) at half-filling is qualitatively correct; i.e.,
the gap appears in the spectrum with a magnitude similar
to that of Fig. 50(a). The structure of the lower and
upper Hubbard bands is washed out, showing that this
technique cannot reproduce the fine details of X(co), but
the main physics of the problem has been captured by the
approximation. Similar conclusions are reached at finite
doping. In the opinion of the author, the analytic con-
tinuation technique applied in combination with Lanczos
diagonalization on small clusters is a promising algo-
rithm.

In the numerical result shown in Fig. 50(b), the origin
of the states in the gap is easy to understand (Dagotto
et al. , 1991;Eskes, Meinders, and Sawatzky, 1991). Con-
sider a "snapshot" of the doped ground state at large
U/t, as shown in Fig. 51(a). Double occupancy is strong-
ly suppressed. The PES spectral weight is obtained by
destroying one electron, and that process does not re-
quire much energy. On the other hand, the IPES spec-
trum must necessarily consist of two parts. The new
electron added to the system can either occupy an al-
ready occupied state (with opposite spin), and thus ex-
pend a large energy U/t, or be created in an empty site,
which requires less energy. The former corresponds to

the upper Hubbard band structure, while the latter is the
origin of the gap states. Adding suddenly a new electron
to an empty site does not correspond to an eigenstate of
the problem. Decomposed into a complete basis, it has a
projection over several other states in the subspace
without double occupancy; thus its spectral function has
a typical finite width of order W-8t, as has the spectral
function of one added hole in the t Jmod-el (Sec. III.B.4).
This width is enough to fill the entire gap at U/t =8.
Needless to say, this behavior cannot be reproduced by a
rigid-band approximation.

The explanation, then, for the presence of weight in
the antiferromagnetic gap is fairly simple in electronic
models. Note that such reasoning also predicts that at
large values of U/t, where the gap is larger than the typi-
cal total width of the spectrum of one added particle (of
order t), the gap cannot then be filled completely. This
prediction can be easily verified by studying the results
obtained at U/t =20. EQ'ectively it was found that the
gap is not filled in this case (Dagotto et al. , 1991;Dagot-
to, Moreo, Ortolani, Poilblanc, and Riera, 1992). In the
other limit of small U/t, where the antiferromagnetic
gap is much smaller than 8t, a small doping fraction will
wash out the details of the gap entirely. This result has
also been verified numerically. Then, there is a window
in parameter space, roughly centered near U —8t in two
dimensions, where the experimental results are qualita-
tively reproduced by a one-band Hubbard model; i.e., the
gap is filled entirely, but a "pseudogap" remains (here
defined as a region with small spectral weight). In previ-
ous sections of this review, we also found that a coupling
U in the neighborhood of St to 10t systematically repro-
duces several features of the experiments (see Secs.
IV.A. 1 and IV.B.3). For completeness, in Fig. 51(b) the
density of states of the t-J model is shown at x =0.125
and J =0.4t obtained on a 4 X 4 cluster (Dagotto, Moreo,
Ortolani, Poilblanc, and Riera, 1992). Note the similari-
ty between this figure and the spectrum of the one-band
Hubbard model at the same doping for energies below
the pseudogap. Also note that results for the attractive
Hubbard model have been presented by Dagotto et al.
(1991; see also Dagotto, Moreo, Ortolani, Riera, and
Scalapino, 1992). In this case the chemical potential
remains inside the superconducting gap upon doping.

Thus far we have observed the appearance of spectral
weight in the insulator gap using one-band models. What
happens with the more realistic (and complicated) three-
band Hamiltonian defined in Sec. I.C.17 To gain some
intuitive understanding of this problem, it is convenient
to study first the limit of zero hybridization (i.e., all hop-
ping amplitudes equal to zero). Consider the Hamiltoni-
an of the model written in this limit as

FIG. S1. (a) Snapshot of the ground state of Hubbard-like mod-
els on a square lattice at large U/t and low hole doping. (b)
Density of states of the t-J model at J/t =0.4 and density
(n ) =0.875 (i.e., two holes on a 4X4 cluster). Results taken
from Dagotto, Moreo, Ortolani, Poilblanc, and Riera (1992).
See also Stephan and Horsch (1991).

H = ( Ed —p ) g n; + ( e~
—p ) g n ~t

+ Ud g n;tn,"~ + U~ g n~i&n~&&,
I J

(4.14)
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where p and d denote oxygen and copper sites, respec-
tively, and the rest of the notation was introduced in Eq.
(1.1) (we use hole operators; the special case where the
nearest-neighbor density-density interaction Ud is zero
is studied). Assume that e~ )ed. Then the ground-state
energy of one hole is E =ed —p, and in the large Ud 1&mit

the ground-state energy of two holes corresponds to hav-
ing one hole in a copper and another in an oxygen, and it
has an energy E =ed +e —2p. Then, in order to make
stable the state of one hole, we need to tune the chemical
potential such that it lies in the interval ed p e~. A.s
an example, let us consider one of the extremes of the in-
terval, i.e., p =ed. In this case the energy of zero and one
hole are zero; the energy of two holes (one in copper and
one in oxygen) is A=e —ed', and two holes on a copper
(oxygen) ion have an energy Ud ( U +26 ).

Then, in the PES and IPES spectrum of a Cu02 Ham-
iltonian in the atomic limit and in the case of one hole in
the ground state, we expect to observe weight at the ener-
gies mentioned before, namely, 0, 5, Ud, and U +25, all
referred to the chemical potential. When the hopping
amplitudes are turned on, each of these sharp energies
will acquire a width that grows with t d. The results of a
numerical exact-diag onalization study carried out by
Tohyama and Maekawa (1992) on a cluster with four
copper atoms and 13 oxygen atoms are shown in Fig. 52,
for both hole and electron doping (see also Horsch et al. ,
1989 and Ohta et al. , 1992). As parameters these au-
thors considered Ud=8. 5 eV, U =4. 1 eV, t d=0. 966
eV, and 6=3.255 eV. A direct oxygen-oxygen hopping
was also included, t =0.395 eV. Let us concentrate on
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FIG. 52. Qne-particle excitation spectra for Cu and Q orbitals
in the middle of a Cu4Q&3 cluster. (a) corresponds to x =0.0,
and (b) to x =0.25 for La2 Sr CuQ4. The solid and dashed
lines denote results for Cu and Q, respectively. The broadening
of the Lorentzians is 0.4 eV. The results were obtained using
exact-diagonalization techniques by Tohyama and Maekawa
(1992).

the results at the top of the figure. The inverse photo-
emission structure (HIS) corresponds to the states with no
holes (in the electronlike language, this is the upper Hub-
bard band corresponding to the copper atoms; i.e., it is
obtained by adding one more electron to the system).
Reciprocally, at large and positive energy, we can ob-
serve the lower Hubbard band that corresponds to two
holes (four electrons) distributed such that two holes are
on the same copper site (d ~d ). Near EF a gap of
charge-transfer origin exists (but it is difficult to see in
Fig. 52, since the 5 functions have been given a finite
width to present the results). The arrow indicates the po-
sition of 6, i.e., the place where weight related to the case
of two independent holes located one in copper and the
other in oxygen should start. We clearly see a consider-
able spectral weight in that regime, in nice agreement
with the atomic limit.

However, note that in addition to these features an ap-
preciable amount of spectral weight exists at much lower
energies, making the actual gap at half-filling consider-
ably smaller than A. These states are the Zhang and Rice
singlets (Zhang and Rice, 1988), which correspond to a
spin singlet combination between the hole at the copper
with a hole at the surrounding oxygen ions (thus Fig. 47
is actually incomplete!). The energy of this correlated
state is reduced by the formation of such a singlet, and,
according to Zhang and Rice, in the strong-coupling lim-
it this energy becomes E„„s&„=b, 8t~& [ I /6, —
+ 1/( Ud

—6)J. For the same reason there is a triplet in
the spectrum whose energy is equal to 6 in this limit.
Upon doping, the chemical potential shifts into the
Zhang-Rice band, and states fill the insulator gap, in a
manner very similar to that observed in the one-band
Hubbard model (see also Sa de Melo and Doniach, 1990;
Wagner, Hanke, and Scalapino, 1991;and Dickinson and
Doniach, 1993).

We have seen that one of the unconventional features
of X(co), i.e., the presence of the states in the gap, has a
possible explanation in the context of simple electronic
models of the superconductors. However, the second
paradoxical feature, namely, the behavior of the chemical
potential with doping, cannot be explained using these
models. This conclusion can be inferred from the results
for X(co) discussed earlier, or in more detail by consider-
ing the behavior of the electronic density (n ), of the
one-band Hubbard model as a function of the chemical
potential p, as reported by Moreo, Dagotto, and Scalapi-
no (1991). In the regime of small and intermediate U/t,
quantum Monte Carlo techniques are able to study large
clusters, and the results are shown in Fig. 53(a), where
Lanczos results on a smaller cluster are also shown. It is
clear that in order to change the density from hole doped
((n ) (1) to electron doped ((n ) ) 1), the chemical po-
tential has to cross a gap that corresponds to the "anti-
ferromagnetic" gap observed in the density of states.
Similar conclusions were reached by Furukawa and Ima-
da (1992). A quantum Monte Carlo study of the three-
band Hubbard model by Dopf, Muramatsu, and Hanke
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FICi. 53. (a) Density ( n ) vs p for the one-band Hubbard model
at U/t =4 using quantum Monte Carlo on clusters of different
sizes (dots), and exact Lanczos results for the 4 X4 cluster (solid
line). T denotes temperature. Results taken from Moreo,
Dagotto, and Scalapino (1991). See also Dagotto, Moreo, Orto-
lani, Poilblanc, and Riera {1992). (b) Total hole occupation
number per elementary cell as a function of the chemical poten-
tial p, for the parameters of the three-band Hamiltonian shown
in the figure. Sixteen CuO2 cells are considered at two tempera-
tures (P=3 and 10). The charge-transfer gap is clearly ob-
served. Taken from Dopf, Muramatsu, and Hanke (1990). See
also Scalettar et al. {1991).

(1990) on a 4X4 Cu-0 cluster (16 cells) at the particular
couplings shown in Fig. 53(b) (i.e., in the proper charge-
transfer regime) arrived at similar conclusions, i.e., the
chemical potential needs to cross a gap to change the
density from hole to electron doping (see also Scalettar,
1989 and Scalettar et a/. , 1991). Thus it is clear that
purely electronic models of strongly correlated electrons
cannot explain the strange pinning of the chemical poten-
tial observed in PES experiments. We do not think that
this qualitative conclusion would change as a function of
the couplings of the model as long as we have an antifer-
romagnetic gap in the one-band Hubbard model (or
charge-transfer gap in the three-band model). No work
has been carried out including phonons and disorder to
explore their inAuence on p.

Summarizing, we have seen that the study of N(co) and
( n ) vs p shows that models of strongly correlated elec-
trons predict the presence of new states in the insulator
gap when doping is added to the half-filled ground state.
This is in agreement with several experimental results for
the cuprate superconductors and other nonsuperconduct-

ing materials. On the other hand, the behavior of the
chemical potential with doping observed experimentally
using PES techniques remains a mystery, since all
theoretical models consistently support the notion that p
needs to cross the insulator gap when hole doping is
changed into electron doping. The presence of phase
separation in the Sr- and Ce-doped compounds may be
an explanation for this problem (Moreo, 1994). The solu-
tion of this paradox may well be very important for our
understanding of correlated electrons and high-T, super-
conductors.

3. Angle-resolved photoemission

The photoemission data discussed in the previous sec-
tion provide information about the integral over all mo-
menta p of the spectral function A (p, co) of electrons
ejected from the materials in the photoemission process.
However, it is experimentally possible to obtain explicitly
A(p, co) as a function of p. This technique is called
angle-resolved photoemission spectroscopy (ARPES).
For example, ARPES results have been obtained for sin-
gle crystals of YBazCu306+ at several different dopings
in the interval 0.2~x ~0.9. According to Campuzano
et al. (1990, 1991), Liu et al. (1992; see also Liu, Veal,
et al. , 1992), and Veal et al. (1993), several features of
the fermiology of this material have been established us-
ing this method. In particular, band dispersions and a
Fermi surface have been observed. These authors claim
that predictions of band theory appear to be quite reli-
able near the Fermi energy Ez, at least in the oxygen
range x ~ 0.5, where the material shows metallic
behavior. They also interpret their results as giving sup-
port to a Fermi-liquid picture of this particular com-
pound, although they clarify that no general agreement
has been reached on what theoretical framework pro-
vides the best description of their results. Recently King
et al. (1993) studied the electronic structure of
Nd2 Ce Cu04 & using ARPES techniques, with
x =0.15 and 0.22. They concluded that a Fermi surface
is observed that agrees very well with band-structure cal-
culations and appears to shift with electron doping, as ex-
pected by a band-filling scenario.

Bi2Sr2CaCuz08+& has also been carefully studied using
ARPES techniques. Olson et al. (1990; see also Dessau,
1992) concluded that a Fermi surface exists in this ma-
terial. Actually, a band along the I —Y direction in the
Bi2212 notation was observed to cross the Fermi surface,
in rough agreement with predictions from band theory
calculations (see Fig. 54). These authors also found that
the spectra show correlation effects in the form of an in-
creased effective mass, but the essence of the single-
particle band structure is retained. It may be convenient
at this point to remind the reader that the standard nota-
tion for p points of the Brillouin zone of a Cu-G plane is
that the I point is at the center, the M point is at the
corner, and the I(F) points are midway along the edges.
However, Bi2212 has a different notation with the map-
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On the theoretical side, the study of A (p, co) has been
carried out only for simple one- and three-band models of
correlated. electrons. A comparison between theory and.
experiments is difFicult, even at a qualitative level, be-
cause Bi2212 and YBCO have a complicated structure
with two Cu02 planes close to each other plus other
bands produced by charge reservoir ions. Then, only
rough qualitative details can be theoretically addressed,
such as the presence of dispersive bands in the spectrum
and the existence of a Fermi surface in the models under
consideration. These two issues will be briefly discussed
in this section. Let us first consider the undoped case. In
the study of spin-density waves at half-filling in the one-
band Hubbard model, we found in Sec. III.A that a sim-
ple mean-field approximation was enough to describe
qualitatively the physics of the model. By using this ap-
proximation, it can be easily shown (Dagotto, Ortolani,
and Scalapino, 1992) that the spectral weight is given by

I I I I I i I

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

binding energy (eV)

FIG. 54. ARPES obtained by Olson et al. (1990) in the normal
state of Bi2212 along the I —Y edge [equivalent to scanning be-
tween p=(0, 0) and (rr, rr) in the notation of the square lattice].
The solid lines are fits assuming a marginal Fermi-liquid
behavior, i.e., inverse hole lifetimes proportional to IE —&Fl.
However, note the large background in the figures.

ping I —+I, M —+X(Y'), and X(F)—+M. Figure 55(a)
clarifies this relation. In Fig. 55(b), the experimentally
observed band structure along various high-symmetry
directions is shown (taken from Dessau, 1992).

Olson et al. (1990) claimed that a good fit of their
Bi2212 results can be obtained using a quasiparticle life-
time linear in IE EFI as p—redicted in the marginal
Fermi-liquid (MFL) theory of Varma et al. (1989), in-
stead of being proportional to (E Ez) as in a—Fermi-
liquid (FL) theory. Additional support for the MFL hy-
pothesis came from neutron-scattering measurements by
Hayden et al. (Hayden, Aeppli, Mook et al. , 1991; see
also Aeppli, 1992a and Benard, Chen, and Tremblay,
1993). However, Liu, Anderson, and Allen (1991) have
recently shown that once the difFicult issue of the back-
ground in the ARPES spectra is handled carefully, MFL
and FL fits will be equally good. Systematic studies of
ARPES experiments in materials with a well-known
many-body ground state are necessary before extracting
conclusions from these experiments for the high-T, su-
perconductors (see, for example, Claessen et al. , 1992).
Current ARPES experiments have not been able to solve
the important issue of whether there are quasiparticles in
he cuprates (i.e., whether the quasiparticle weight Z is a
finite number). Actually, difFerent theorists extract quite
di6'erent conclusions from exactly the same ARPES data!
More work remains to be done on the experimental side
to reach a consensus about the correct description of the
normal-state line shape of the cuprates.

6'p
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FIG. 55. (a) Momentum notation used for Bi2212. The solid
lines denote the standard convention for the square lattice with
I =(0,0), M=(m, m), X=(~,0), and so on. The dashed line
and the characters in open letters denote the convention fol-
lowed in Bi2212, caused by the presence of the BiO planes. (b)
The ARPES experimental band structure along various high-
symmetry directions in Bi2212 (from Dessau, 1992). The
momentum notation is that of Bi2212; i.e., the F (M) point in
the figure corresponds to p=(n. , ~) [p=(m. ,0)] in the notation
of the square lattice.
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FICx. 56. Mean-field spectral weight vs co in units of t. (a) corre-
sponds to momentum (m., O), while (b) is (0,0). Lanczos calcula-
tions of 2 (p, co) at (n ) = I, using a 4X4 cluster and U/t =8.
(c) has momentum (m, O); and (d), (0,0).

Sec. III.B.4 (in other words, in these models, Z (1 as dis-
cussed earlier). The density of states N(co) can be ob-
tained by summing over p.

Away from half-611ing, there is no universally accepted
mean-6eld approximation to describe models of correlat-
ed electrons. In that case, we turn to computational
studies for some guidance. In Fig. 57, A (p, co) is shown
for the one-band Hubbard model at U/t = 8 and
(n ) =0.875. The chemical potential is located approxi-
mately at IM= —2.4t. Note the presence of a dominant
peak for p=(n. , O) located right after the chemical poten-
tial on the IPES side of the spectrum [Fig. 57(a)]. This
peak is followed by spectral weight that fills the original
antiferromagnetic (AF) gap. At higher energies the rem-
nants of the upper Hubbard band can be observed. The
effect of doping is to remove weight from the lower and
upper Hubbard bands and to create states in the gap, as
we discussed in the previous section. Moving in momen-
tum space away from the noninteracting Fermi surface,
in the direction of the I point, the PES weight increases,
while IPES weight decreases. On the contrary, increas-
ing the momentum towards the (a,n)point. , the situation
is reversed. For momentum p=(n. /2, rr/2), the dom-

where E =(e +b,sDw)', e = 2t(c—os'„+cosy ), and
the spin-density-wave gap hsow is given by the solution
of the equation

0.6—
A (p, co)

0.4—
(a)

(it,0)
(b)

(K/2, 0)

U 1

N 2E

The mean-field results are shown in Fig. 56 for two
diFerent momenta and at a coupling U/t =8. At
p=(O, vr) or (m/2, m/2), the spectral function has sharp
peaks with a gap in between, ' and it is symmetric
around co=0 [Fig. 56(a)]. On the other hand, Fig. 56(b)
corresponds to zero momentum; i.e., in the PES spec-
trum an electron well below the Fermi surface is de-
stroyed. As expected, considerable spectral weight is ob-
served in the PES spectrum, while that corresponding to
the IPES is small. The situation is reversed if a momen-
tum p=(m, m) is used (not shown in the figure). These
mean-6eld results are in good agreement with numerical
results obtained on 4 X4 clusters using exact-
diagonalization methods, which are shown in Figs. 56(c)
and 56(d) (taken from Dagotto, Qrtolani, and Scalapino,
1992; see also Feng and White, 1992 and Leung et al. ,
1992). They are also in good agreement with QMC-
maximum entropy calculations (White, 1991). The struc-
ture away from the dominant peaks in the numerical re-
sults shows that an important percentage of the spectral
weight is not in the quasiparticle peak, as explained in

The small weight inside the gap is caused by the tail of the
Lorentzians of width @=0.2t used to plot the 5 functions in Fig.
56.
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FICi. 57. A (p, co) obtained on a 4X4 cluster with U/t =8 and
(n ) =0.875. The chemical potential is at p- 2 4t The IPES— . .
weight is shown as a solid line, and the PES as dot-dashed. (a)
corresponds to momentum (~,0); (b), to (m/2, 0); (c), to (0,0);
(d), to (m/2, m/2); (e), to (m, m/2); and, finally, (f) is (m, m). The
arrows mark the peaks that can be labeled as "quasiparticles"
(results taken from Dagotto, Grtolani, and Scalapino, 1992).
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4. Fermi surface in models of correlated electrons

The study of (nz ) in the one-band Hubbard model us-

ing quantum Monte Carlo techniques (Moreo, Scalapino,
et al. , 1990) shows that, working on a 16X16 cluster at
doping (n ) =0.87 and coupling U/t =4, the locus of
points where (n ) =0.5 is close to that of a noninteract-

-P

ing system at the same 611ing. These results are shown in
Fig. 58(a). Although this simulation was carried out at a
finite temperature (due to sign problems), the conclusions
are similar to those reached by exact-diagonalization
studies on 4X4 clusters (Dagotto, Ortolani, and Scalapi-
no, 1992) at zero temperature [schematically shown in
Fig. 58(b), based on the results shown in Fig. 57]. The
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FIG. 58. Fermi surface of models of correlated electrons ac-
cording to different studies: (a) corresponds to the one-band
Hubbard model on a 16X 16 cluster using quantum Monte Car-
lo (from Moreo, Scalapino, et aI., 1990); (b) results of Dagotto,
Ortolani, and Scalapino (1992) on a 4X4 cluster using exact di-
agonalization (one-band 'Hubbard model); (c) results obtained
by Stephan and Horsch (1991)using Lanczos techniques applied
to the t-J model on a 20-site cluster; (d) results by Ding (1993)
for the t Jmodel based on (n-~). The Fermi surfaces are
sketched in all of the plots.

inant peak seems split, and thus this momentum may be
close to the new Fermi surface of the doped system [Fig.
57(d)]. Coming back to the comparison between theory
and experiment, we can conclude that the existence of
dispersive features is observed both in ARPES results
and in studies of simple models of correlated electrons.
Similar conclusions have been obtained in the t-J model
(Stephan and Horsch, 1991; Dagotto, Moreo, Ortolani,
Poilblanc, and Riera, 1992) and in the three-band Hub-
bard model (Dopf et al. , 1992). A more quantitative
comparison would be very difBcult with the numerical
methods currently available for studying these models.

p = ( rr, 0), (0, m ) states do not seem populated, while

p = (+m/2, +n /2) are close to the Fermi surface. Studies
of the t-J model using exact-diagonalization techniques at
a doping of approximately —10% holes on a 20-site lat-
tice are consistent with a large electronic Fermi surface
[see Fig. 58(c), taken from Stephan and Horsch, 1991].
High-temperature expansion calculations reached similar
conclusions (Singh and Glenister, 1992b), i.e., the pres-
ence of a Fermi surface in these models (note that a Fer-
mi surface does not inevitably imply a Fermi liquid as
remarked by Anderson, 1990a). A Lanczos study of
(np) (Ding, 1992) has produced a Fermi surface very
similar to that observed in Hubbard model calculations,
showing that holes doped into an antiferromagnet may
actually prefer to be located in the vicinity of momenta
p = (0, m ), (m, 0) rather than at the p = (+m /2, +sr/2)
[Fig. 58(d)]. A similar "nonstandard" result was dis-
cussed by Poilblanc and Dagotto (1990). The claim is
based on the following argument: If, indeed, two holes in
an antiferromagnet form a d-wave state (as argued earlier
in this review), then the contribution of hole states at
p=(+m/2, +n/2) cancels, since f (k) =cosk„—cosk~
vanishes, while p=(+0, +m) makes f (k)=2 maximum.
Note that all these results seem in contradiction with the
picture that would have emerged from studies of single
holes in antiferromag nets. In this case, holes have
momentum p=(+rr/2, +m. /2) in the ground state, and
thus, assuming a rigid-band picture, hole pockets should
appear in the neighborhood of these points in momentum
space. Then, once interactions have been taken into ac-
count, the rigid-band approach naively does not seem a
good approximation to the present problem (for a
di6'erent point of view, see Eder and Wrobel, 1992; Eder
and Ohta, 1994). Unfortunately, with currently available
numerical techniques, it is difficult to study very low den-
sity of holes and temperatures to search for indications of
hole pockets (for recent results on this issue predicting
the presence of hole pockets at very low temperature, see
Dagotto, Nazarenko, and Boninsegni, 1994). Indications
of hole pockets using QMC have been recently reported
(Moreo and Dutt'y, 1994). Thus, hole pockets may be
there after all)

D. Phase separation

1. Experimental results

There is considerable experimental evidence that
La2Cu04+& has a regime in which phase separation
occurs (Jorgensen et al. , 1988; see also Harshman et al. ,
1989). Using La NMR, Hammel et al. (1992) have
shown that the temperature at which phase separation
takes place is T, -250 K (see also Hammel, Reyes,
et al. , 1990; Hammel, Ahrens, et al. , 1991; and refer-
ences therein). The separation occurs between a phase
with a stoichiometry very close to LazCuO4 and a phase
rich in oxygen that becomes superconducting at about 40
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FICx. 59. Phase diagram of LazCu04+z. The oxygen-poor
phase is described by the left set of data. Circles and diamonds
are results from two samples. The second phase having higher
doping is metallic and, at low temperatures, superconducting
(not shown in the plot). The region bounded by the two curves
and below T~, is inaccessible (from Reyes et al. , 1993; see also
Hammel et al. , 1992).

K. In Fig. 59 the phase diagram temperature 5 is shown
(Hammel et al. , 1992; Reyes et al. , 1993). The regime of
doping fractions between 5-0.01 and -0.06 is not ther-
modynamically stable; i.e., if a sample is prepared with
this nominal composition, it will spontaneously separate
into two regions with the densities shown in the figure.
The oxygen-poor phase exhibits long-range antiferromag-
netic order, which is reasonable since 5 is very small in
this phase, and we know La2Cu04 is an antiferromagnet.
Then, phase separation may well be driven by the energy
gained by forming a magnetically ordered phase (Ham-
mel et al. , 1992). The more widely analyzed
La2 Sr Cu04 compound does not seem to phase
separate, although a more careful work should be carried
out for this compound.

Given these experimental results, we may try to blame
oxygen "chemistry" for the existence of phase separation.
The dopant oxygen atoms may cluster together for
reasons that are unrelated to the physics of electrons in
the Cu02 planes. If this be the case, then phase separa-
tion would just become one more curiosity of the cuprate
superconductors. However, it has been claimed that the
mobility of the oxygens is exceptionally large at T,
(Hammel et al. , 1992). In addition, it is quite remarkable
that T, is very close to the Neel temperature of the ma-
terial where 3D antiferromagnetism develops. These
features open the possibility, recently addressed by Em-
ery and Kivelson (1993), that the effect is actually pro-
duced by the physics of electrons in the planes and is due
to phase separation into hole-rich and hole-poor regions.
In this scenario, the excess oxygens would simply follow
the holes of the plane in their search for the minimum-
energy configuration. The important physics would be
contained in the planes. Recently, other challenging con-
cepts have been introduced (Cho et al. , 1992, 1993). In a

study of La2 Sr Cu04+&, with both x and 5 changed, it
has been claimed that the oxygen-poor phase has a novel
segregation of doped holes into walls of hole-rich materi-
al separating undoped domains. This implies that the
so-called spin-glass phase of the [214] material may actu-
ally be formed by walls of holes that disrupt the long-
range AF order, constraining the spin-correlation length
to a maximum value given by the distance between walls.
In short, the presence of phase separation may be an im-
portant issue in understanding the physics of the cu-
prates, and it certainly deserves a careful theoretical
analysis.

2. Theoretical results

Initially, the study of phase separation in models of
strongly correlated electrons did not receive as much at-
tention as the search for superconductivity. However,
after some effort, it was clear that even the mere ex-
istence of a superconducting phase in these models was a
subject considerably more subtle than expected. Then, to
gain more insight about the behavior of correlated elec-
trons, it became important to understand the full phase
diagram of some popular models of the cuprates, includ-
ing regimes where the phenomenon of phase separation
takes place.

In the t-J model, it was rapidly realized that at large
J/r the model phase separated (Riera and Young, 1989;
Emery, Kivelson, and Lin, 1990; Marder, Papanicolaou,
and Psaltakis, 1990; Nori, Abrahams, and Zimanyi, 1990;
and references therein). As explained in Sec. III.B.5,
adding a low mobility hole to the undo ped system
amounts to removing four antiferromagnetic links, thus
increasing the energy of the system. Then, in order to
minimize the number of "broken" AF links, an addition-
al hole added to the system will prefer to be located at a
distance of one lattice spacing from the first one. In this
way, the number of broken AF links is minimized. When
more (low mobility) holes are added to the system, the
configuration that minimizes the energy is the one where
they form a compact cluster. Then, at large J/t the
ground state of the t-J model clearly separates into hole-
rich and hole-poor regions. Of course, the regime of
large J/t is not physically realized in the high-'r, com-
pounds (Sec. I.C.2), and this problem seems only of
academic interest. However, phase separation may sur-
vive a reduction of J/t. Then, it becomes important to
study whether the regime of phase separation at large J/t
exists also for small values of this coupling near half-
filling, i.e., in the physically interesting regime.

Unfortunately, the answer to this problem is still con-
troversial. Emery, Kivelson, and Lin (1990) claimed that
the boundary of phase separation in the t-J model is
schematically given by the diamonds shown in Fig. 60(a).
Their result is based on variational arguments and exact-
diagonalization studies of the 4X4 cluster. Note that
their phase-separation boundary seems to converge to
J/t =0 as the undoped limit (n ) =1 is approached.
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FIG. 60. (a) Line of phase separation in the two-dimensional t-J
model based on the high-temperature expansions (Putikka, Lu-
chini, and Rice {1992;solid line) and on the analysis of Emery,
Kivelson, and Lin (1990; points). The major difference between
these authors occurs near half-filling. (b) For completeness,
here we also show the results for the same model in one dimen-
sion. The solid line denotes the high-temperature-series result,
while the dashed one shows finite cluster exact-diagonalization
results by Ogata et al. (1991). Note the nice agreement between
the two techniques for the 1D chain.

However, precisely this behavior near half-filling is the
subject of controversy between different groups. The
boundary of phase separation in the same model has been
studied by Putikka, Luchini, and Rice (1992), using a
high-temperature series expansion up to tenth order in
P= 1/T. The series has a finite radius of convergence,
and, in order to get results at small temperatures, an ana-
lytic continuation based on Pade and integrals approxi-
mants is needed. At Jjt-0. 3 and density (n ) -0.9,
temperatures T-t/5 were reached by this procedure.
The result of the high-temperature expansion method is
also shown in Fig. 60(a) with a solid line. Note that the
phase boundary touches the half-filled axis at a 6nite cou-
pling Jjr —1.2, contrary to the results of Emery, Kivel-
son, and Lin (1990). Other numerical studies have also
addressed this issue. For example, Dagotto, Moreo, Or-
tolani, Poilblanc, and Riera (1992) carried out an analysis
similar to that discussed by Emery, Kivelson, and Lin,
i.e., exact diagonalization on 4X4 clusters. Dagotto
et al. arrived at different conclusions, since they inter-
preted the diamonds of Fig. 60(a) as indicating the region
where binding of holes takes place, i.e., where individual
holes are unstable towards pair formation, but not neces-
sarily towards phase separation which starts at a larger
couphng similar to that given by the high-temperature
expansions (and it is roughly signaled by the tendency of
four holes to form a bound state which roughly starts at
J/t —1). Similar conclusions based on the use of larger
clusters were obtained by Fehske et al. (1991), Roder
et al. (1991), and Prelovsek and Zotos (1993; in the last
reference it is argued that a "striped phase, " namely,

holes forming domain walls, exists before the onset of
hole clustering). If phase separation would indeed start
at a coupling Jjt ) 1, then it may only be of academic in-
terest. Different would be the situation if, in the realistic
regime of J/t-0. 2—0.4, phase separation exists near
half-611ing. In short, the gist of the disagreement be-
tween numerical studies and the results of Emery et al. is
whether small J/t and large Jjt physics are related.
While Emery et aI. claim that the simplest assumption is
phase separation for all values of the coupling near half-
611ing, the numerical results suggest that phase separa-
tion starts at a coupling J/t of order one, and that an in-
termediate regime (approximately 0.3 ~Jjr ~ 1.0) exists
where binding of holes prevails without phase separation.
In this region, a superAuid may be formed if these pairs
condense at zero temperature (Dagotto, Marco, Ortolani,
Poilblanc, and Riera, 1992). See Sec. IV.E for more de-
tails.

What occurs in the one-band Hubbard models At
large U/t this model should be qualitatively equivalent to
the t Jmodel at -small Jjt. Then, it is worth studying the
issue of phase separation directly in the Hubbard model,
where quantum Monte Carlo techniques are available for
its analysis. Unfortunately, with this method it is
dificult to study large couplings; thus results at low tem-
perature have been obtained only in the intermediate re-
gion U/t =4. In Fig. 53(a), results given by Moreo,
Dagotto, and Scalapino (1991)were discussed in order to
compare theoretical results with those observed experi-
mentally in PES experiments. But the same data can be
used to address the issue of phase separation in these
models. The results of Fig. 53(a) show a study of the den-
sity (n ) as a function of the chemical potential p. This
criterion is based on the following idea: if a discontinuity
is observed in ( n ) vs p, then the densities inside the gap
are unstable; i.e., if a system is initially prepared with
such nominal densities, it will evolve in time into a
phase-separated state, with the two regions having the
densities corresponding to the extremes of the gap. How-
ever, the results of Fig. 53(a) do not show signs of discon-
tinuity. The simulations have been carried out on clus-
ters with up to 8XS sites, and thus finite-size effects are
not expected to change the results drastically. However,
it is possible that the finite temperature at which the
simulations have been carried out may have some
inhuence on the results (due to the sign problem, it is not
possible to work at temperatures as low as those obtained
at half-filling). The temperatures reached by quantum
Monte Carlo at IIinite density are approximately similar
to those reached by the high-temperature expansions.
However, Lanczos (Dagotto, Moreo, Ortolani, Poilblanc,
and Riera, 1992) and perturbative results (Catalan and
Verges, 1991) support the results of Moreo, Dagotto, and
Scalapino (1991).

The conclusions of Moreo et al. are also in agreement
with a projector Monte Carlo simulation carried out by
Furukawa and Imada (1992). With the use of this algo-
rithm there is no 6nite temperature contamination.
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FIG. 61. Projector Monte Carlo results for the two-
dimensional one-band Hubbard model at U/t =4, obtained by
Furukawa and Imada (1992). 8= 1 —( n ), and p, is the chemical
potential. Results are obtained for clusters of different sizes.
They show that there are no apparent discontinuities in the
curve, and thus no phase separation, in agreement with the pre-
vious results by Moreo, Dagotto, and Scalapino (1991).

However, the method is based on applying the operator
e to an initial ansatz for the ground state. To obtain
ground-state properties, it is necessary to study the limit
~~ao, which can be obtained numerically only up to
some accuracy. Then, finite temperature errors are trad-
ed for 6nite ~ errors in this method. The dependence of
the chemical potential with hole doping in their simula-
tion is shown in Fig. 61, where U/t =4 and clusters of
up to 12X 12 have been used. After the chemical poten-
tial crosses the antiferromagnetic gap at half-filling,
Furukawa and Imada (1992) concluded, the electronic
density will vary continuously as (n )-Qp, —p. This
result is in agreement with the conclusions of Moreo
et al. and with the behavior of the one-dimensional Hub-
bard model. Then, Monte Carlo studies suggest that the
Hubbard model at intermediate couplings does not phase
separate. The behavior at larger couplings is unknown.

The numerical results described in this section are con-
sidered by Emery and Kivelson (1993) to be inconclusive.
They argue that the high-temperature series are not reli-
able for temperatures much below J, since they are based
on a Pade analysis, which is difficult to control. Actually
Singh and Glenister (1992) claim that various Pade ap-
proximants diverge from each other for temperatures
below J/2, and the uncertainty increases with decreasing
J/t [however, the analytic continuation techniques used
by Putikka, Luchini, and Rice (1992) based on integral
approxirnants allowed them to reach temperatures -t/5
for the free energy. These approximants have more
analytical information incorporated than Fade extrapola-
tions]. The Monte Carlo simulations have also been criti-
cized, since they are carried out at a 6nite temperature
T-t/8; while the Lanczos calculations on small clusters
can only work at a 6nite number of densities, and they
may miss small discontinuities in the ( n ) versus p curve.
Then, more work is necessary to further clarify the pres-
ence of phase separation near half-filling at small J/t

The efFect of the long-range Coulomb interactions that
tend to destroy phase separation also deserves more
theoretical work [for preliininary work in this direction,
see Troyer et al. (1993); Riera and Dagotto (1994)]. Re-
cently, Haas et al. (1994) observed that I/r interactions
induce a competition between superconductivity and
charge-density-wave states.

E. Superconductivity in models of strongly correlated
electrons

1. Superconductivity in the one- and three-band
Hubbard models

After our long journey through the several physical
quantities that characterize the normal state of the cu-
prates, we have finally arrived at the study of the super-
conducting phase. Leaving this subject to the end of the
review is not an accident. In spite of the considerable
efFort that has been devoted to the search for supercon-
ducting long-range correlations in models of strongly in-
teracting electrons, no clear indications of their existence
have been found in the realistic regime of parameter
space. What became clear over the years is that the pres-
ence of superconductivity in Hubbard-like models is a
subtle issue, much more than originally believed. Never-
theless, recent results discussed below still leave open the
possibility for the existence of a superconducting phase in
these models.

Early results by White, Scalapino, Sugar, Bickers, and
Scalettar (1989) suggested that in the d & 2 mode, the
pair-Geld susceptibility of the one-band Hubbard model
was enhanced at low temperatures with respect to the un-
correlated pair-field susceptibility (Fig. 62). Small finite-
size e6'ects were observed in these studies between clus-
ters with 4X4 and 8X8 sites. These results were con-
sistent with the attractive d 2 & channel observed in thex -y

strong-coupling limit (t-J model) for the case of two holes
in an antiferromagnetic background (as was shown in
Sec. III.B.5) and led to considerable excitement. Howev-
er, we know that in a superconducting state in the bulk
limit, the expectation value of the pair operator (6)
should be nonzero. Although for any finite system (b, )
is identically zero, the pair-pair correlation functions
should indicate the presence of superconductivity (if it
exists in the ground state) by converging to a finite num-
ber when the separation of the pairs is sent to inanity.
Do we see this efFect in the one-band Hubbard model?
Unfortunately, studies carried out by several groups
showed that at the temperatures and lattice sizes current-
ly accessible to Monte Carlo simulations, there are no
signals of superconductivity in the ground state, as we
shall see below.

In Fig. 63 the dependence with distance of the equal-
time pair-pair correlation function is shown for the d 2x -y

and extended-s waves (Moreo, 1992b). The operator that
destroys a pair is defined as c;t(c;+„t+c;„t+c;+~i
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FIG. 62. Pair-field susceptibility (solid lines) and the uncorre-
lated pair-field susceptibility (dashed lines} vs temperature for
( n ) =0.875, and diff'erent channels. The noninteracting
( Ult =0) d» susceptibility is also in the upper right box for

comparison (from White, Scalapino, Sugar, Bickers, and Scalet-
tar, 1989).

+c; &), where the (+) sign corresponds to extended s-
wave, and the ( —) to d» wave (see footnote 6). The
pair-pair correlation is defined as P(r)= (b, (0)b.(r) ),
where 0 and r are sites of the lattice, and the susceptibili-
ty is given by g,„~=+,P(r). For both waves, the sign
problem prevents the simulation from being carried out
at temperatures smaller than T=t/6; but this is the
same temperature at which enhancement in the pair-field
susceptibility was observed by White, Scalapino, Sugar,
Bickers, and Scalettar (1989), and thus indications of su-
perconductivity should be observed if they exist in the
ground state. Unfortunately, Fig. 63 clearly shows that
already at distances of two lattice spacings or larger, the
pairs are not correlated in any of the two channels, with
a minimal finite-size effect. Similar conclusions have
been formed by Imada and Hatsugai (1989; see also Ima-
da, 1991b). Actually, Hirsch (1993)has claimed for some
time that the Hubbard does not superconduct. The
reason for the apparent contradiction between the results
of Figs. 62 and 63 is simple. A pair-field susceptibility
contains information about the pair-pair correlations at
all distances. Thus a susceptibility may be robust and ac-
tually increase with decreasing temperatures, if the
short-distance correlations are enhanced as the tempera-
ture is reduced. Such an enhancement is not related to
long-range order, and, if that occurs, the susceptibility
should not increase like the number of sites when the
cluster size is increased. For the one-band Hubbard
model, it has been shown (Scalapino, 1993) that the on-
site d & 2 pair correlation (i.e., r =0) can be written ex-

X

actly as a linear function of the spin-spin correlations at a
distance of one lattice spacing. With a decrease in tem-
perature, the presence of antiferromagnetic correlations
induces an enhancement in this spin correlation, and thus
the pair susceptibility is also enhanced; but this effect is
unfortunately unrelated to superconductivity. In the
one-band Hubbard model, then, there are currently no
indications of strong pairing correlations for the clusters
and temperatures available to numerical studies. This re-
sult has to be contrasted with those obtained for the at-
traetiue Hubbard model. Using the same cluster sizes,
temperatures, and algorithm, clear numerical indications
of superconductivity were observed in this model. There
is no doubt then that numerical methods can indeed
detect this type of long-range order if present in the
ground state (Scalettar et |21., 1989; Moreo and Scalapi-
no, 1991;Randeria, Trivedi, Moreo, and Scalettar, 1992).
Another important issue is how we can know when a
cluster is large enough to rule out the presence of super-
conductivity in a given model. The only way is to com-
pare the lattice size with a typical correlation length g in
the problem as predicted by other studies (typically based
on self-consistent approximations), at the temperature at
which the simulation was carried out. Unfortunately,
this is a dificult task in many of the proposed theories of
the cuprates, and thus such a comparison is difBcult.
Some recent calculations by Monthoux (1993) show that,
using self-consistent diagrammatic techniques, the criti-
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(1990).

cal temperature of the one-band Hubbard model is

T, -0.02t, i.e., not reachable by Monte Carlo simula-
tions. Then, it may be that the one-band Hubbard model
superconducts, although at very small temperatures.
This remains an issue.

Results similar to those observed for the one-band case
have been obtained for the three-band Hubbard model.
In Fig. 64, the equal-time pair-correlation function is
shown for several channels as described in the caption
(Frick et al. , 1990). The correlation is normalized such
that superconductivity is signaled by the convergence of
this quantity to a nonzero value in the bulk limit. Since
the pair-correlation function actually converges to zero
as X increases, no indications of superconductivity in this
model were detected in the parameter region analyzed by
Frick et al. (1990; for a similar study, see Dopf, Mu-
ramatsu, and Hanke, 1990). Scalettar (1989) found that
in the three-band model the pairing susceptibility indicat-
ed that the extended s-wave channel was competitive
with the d-wave, and, indeed, Scalettar et al. (1991)
showed that the addition of an intersite copper-oxygen
Coulomb repulsion stabilized the s-pairing further. How-
ever, as in studies of the single-band model, the equal-
time correlations do not show long-range order.

2. Superconductivity in the t-J model

The results shown in the previous section suggest that
the one- and three-band Hubbard models do not super-
conduct, at least in the range of temperatures and cluster
sizes that are accessible to present-day numerical studies.
Then, the natural question is, do any of the models of
correlated electrons that are currently widely studied
present a superconducting phase in some region of pa-
rameter space~ In trying to answer this question, let us
consider the t-J model in more detail. Lanczos studies of
this model near half-filling and J/t ( 1 by several groups
do not show enhancement of the pairing correlations.

This is not surprising, since, e.g., a hole density of
x =0.125 corresponds to only one hole pair on a 16-site
lattice, and just one pair cannot produce long-range or-
der. However, the Monte Carlo results for the Hubbard
model shown in the previous section on larger clusters
(and thus with more holes) also do not show indications
of long-range pairing correlations, and we would expect
some qualitative relation between the Hubbard model
and the t Jm-odel at small J/t. Then, the tentative con-
clusion is that the t-J model does not superconduct at
small J/t and hole density.

However, we know that the t-J model presents hole
binding near half-filling approximately in the region
J/r )0.3 (as was observed in Sec. III.B.5). In addition,
at large J/t, it is well established that there is phase sepa-
ration (Sec. IV.D), and thus it is clear that efFective at-
tractive forces are operative in this model. The pairs
formed near half-filling at J/r ~0.3 may actually con-
dense at low temperatures or, in other words, it can be
argued that the attraction that leads to phase separation
may create mobile pairs, before that regime is reached.
Actually, this phenomenon explicitly occurs in the oppo-
site regime of low electronic density (rather than hole
density). Emery, Kivelson, and Lin (1990) have shown
that a pair of electrons in an otherwise empty lattice are
bound in a spin singlet in the region J/t & 2, while phase
separation seems to occur at larger couplings. It is ex-
pected that these pairs will condense at low temperature
into a superfluid phase. If the pairs are small in size com-
pared with the mean distance between pairs, then a Bose
condensation will occur (i.e., in the "normal" state above
T„preformed pairs will exist). The appearance of super-
conductivity near phase separation was also addressed
using large-N techniques by Grilli et al. (1991). These
authors found an instability in the A, g and B2g channels.
Di Castro and Cxrilli (1992) studied the relation between
phase separation and superconductivity using slave bo-
sons. A study of the spectrum of the t-J model by Moreo
(1992a) also suggested that superconductivity may exist
near phase separation.

Then, according to these arguments, a numerical
analysis of the two-dimensional t-J model near phase sep-
aration may finally show the elusive indications of super-
conductivity that we are looking for. What doping frac-
tion is the most favorable? As explained earlier, near
half-filling (and also in the other extreme of small elec-
tronic density) very few pairs are available to contribute
to the pairing correlations. Then, (n ) =

—,
' seems op-

timal, since in this regime the maximum number of pairs
that can be formed grows like N/4, where N is the num-
ber of sites of the cluster. An analysis in this region of
parameter space has been carried out recently by Dagot-
to and Riera (1992, 1993) and Dagotto et al. (1993). In-
dications of superconductivity in the ground state have
been observed by these authors. To discuss their results,
we introduce the pairing correlation function
C(m) =(1/N) gt (6t~b;+ ) (where the operator 6 was
defined in the previous section) and the pairing "suscepti-
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bility" g,„=g~C(m), as indicators of the presence of
long-range superconductivity in the model. Results ob-
tained on a 4X4 cluster at density (n ) =1/2 are shown
in Fig. 65(a). The susceptibility has a large peak in the
vicinity of J/t =3, suggesting strong pairing correla-
tions. The sharp decay for larger values of the coupling
is caused by the transition to the phase-separation regime
as explained by Dagotto and Riera (1993). However,
from our discussion for the one-band Hubbard model, it
is im.portant to study the explicit distance dependence of
the pair correlations where the susceptibility is enhanced.
In Fig. 65(b) the correlations are shown for the extended
s-wave and d» symmetries. The d» channel seemsx -y X

enhanced and appreciably large at the largest distance
available on this small cluster. Finally, Fig. 65(c) shows
the coupling dependence of the results. The pairing
correlations have maximum strength at J/t-3, as sug-
gested by Fig. 65(a). Qf course, these results are not final,
since a proper finite-size study of these correlations has
not been mrried out thus far. However, they are very
suggestive that, indeed, the argument expressed above re-
lating phase separation and superconductivity may be
operative (see also Dagotto et al. , 1994).

To gain further insight into the superconducting re-
gion detected in the t-J model, it is convenient to enlarge
the Hamiltonian to include a repulsive density-density in-
teraction Vg&; &

n;n This t. -J-V model was studied
near the atomic limit, t -0, by Kivelson, Emery, and Lin
(1990). In the intermediate regime where J—V, a "liquid
of spin dimers" was reported, and the possibility of s-
wave superconductivity through a condensate of these
spin dimers was discussed. Recently, their results were
confirmed by Dagotto and Riera (1992) using exact-
diagonalization techniques on a 4X4 cluster at large J
and V couplings and for a density ( n ) = 1/2. These nu-

merical results are shown in Fig. 66. Three regimes were
detected: (i) At small superexchange, the system forms a
charge-density wave; (ii) at intermediate couplings, spin
singlets are formed in a regular array [shown in Fig.
66(a)]; and (iii) at large J/V there is phase separation.
These results can be obtained either by a simple minimi-
zation of the energy at t =0, or by the use of numerical
techniques on a finite cluster in the large-couplings re-
gime. At strictly t =0, the spin singlets of the intermedi-
ate phase are not mobile; but, including corrections in
powers of t, Kivelson, Emery, and Lin (1990) argued that
the system would become superAuid. Similar conclusions
were reached in the numeriml study by Dagotto and
Riera (1992), where, in addition, it was observed that the
pairing correlations are maximized at intermediate values
of the new coupling V/t, as it is shown in Fig. 66(b). The
regions of superconductivity observed at large Vjt and
for the pure r Jmodel ( -V =0) seem analytically connect-
ed, and speculations linking their properties with those of
the attractive Hubbard model have been presented
(Dagotto and Riera, 1992). An interesting feature of the
t-J-V model is that a spin gap appears in the spectrum.
This is natural, since in the large V,J limit the ground
state is formed by short-range dimers, and thus an energy
as large as J/t is needed to create a triplet. (However,
note that the presence of the spin gap suggests that su-
perconductivity should appear in the s-wave channel at
Gnite V, contrary to the previously described claims at
V=0 that the d 2 2 channel is dominant. An interesting

X

crossover may exist between the two regimes in the su-
perconducting phase. ) Recent studies by Troyer et al.
(1993) in the one-dimensional version of this model have
shown that the spin gap opens very rapidly when V/t is
increased, starting from the t Jlimit (Fi-g. 67). Actually,
the physics of the one-dimensional chain t-J-V is very
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FIG. 65. (a) d» superconducting suscepti-

bility as a function of J/t, at density
( n ) =0.5. (b) Pairing correlation function
C(m) as a function of distance, at (n ) =0.5,
and J/t =3. The solid squares denote d 2

correlations, while the open triangles are ex-
tended s correlations. (c) Pairing-pairing
correlation function C(m) vs distance at densi-

ty ( n ) =0.5. The open triangles, solid
squares, and open squares denote results for
J/t =1.0, 3.0, and 4.0, respectively. All the
results were obtained on a 4X4 cluster using
exact-diagonalization techniques (Dagotto and
Riera, 1993).
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FIG. 68. (a) Superconducting susceptibility of the one-
dimensional t-J-V model as a function of J/t for various values
of V/t. Open circles, solid squares, open squares, solid trian-
gles, and open triangles denote results for V/t =0.0, 1.0, 3.0,
5.0, and 10.0, respectively. The peaks are located immediately
before the region of phase separation is reached. (b) Pairing
correlation function C(m) vs distance for various values of V/t
[same convention as in (a)], and at the value of J/t correspond-
ing to the maximum in the susceptibility.

similar to that of its two-dimensional counterpart, with
analogous behavior of the pairing correlations and super-
conducting susceptibilities [see Figs. 68(a) and 68(b)).
Troyer et al. (1993) also studied the influence of long-
range interactions, noticing that the superconducting re-
gion is not enhanced by suppressing phase separation.
Instead it seems to follow phase separation, forming a
narrow strip in its neighborhood. A charge-density-wave
state may compete with superconductivity in the region
where phase separation becomes unstable due to the
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FIG. 67. Phase diagram of the one-dimensional t-J-V model ob-
tained by exact-diagonalization techniques at (n ) =0.5. Con-
tour lines of constant X and constant spin gap 6 are shown.

Kp & 1 implies that the superconducting correlations dominate
in the ground state, although they cannot develop long-range
order in this dimension (taken from Troyer et al. , 1993).

long-range forces. For other studies including 1/r in-
teractions, see Barnes and Kovarik (1990); Riera and
Dagotto (1993);and Haas er al. (1994).

Before addressing other issues related to superconduc-
tivity, we note that some of the usual models of correlat-
ed electrons defined on particular geometries are also
candidates to show superconductivity. In particular, it is
interesting to study "ladders" (i.e., two coupled chains)
and two coupled planes. The former have been explored
to address questions concerning the stability of t.uttinger
liquids (Anderson, 1990a; Schulz, 1991), the existence of
a spin gap (Dagotto and Moreo, 1988; Hida, 1991, 1992;
Barnes et al. , 1993; Bose and Cxayen, 1993), and super-
conductivity (Emery, 1986; Dagotto, Riera, and Scalapi-
no, 1992). Barnes et aI (1993) sho. wed that at half-filling
a spin gap appears in the spectrum as soon as an ex-
change coupling along the rungs is turned on. In this
respect, the physics at half-filling resembles a dimeriza-
tion process. There are real materials such as (VO)2P207
that consist of weakly coupled arrays of one-dimensional
metal oxide ladders (Johnston, 1987). Rice, Cxopalan,
and Sigrist (1993; see also Gopalan, Rice, and Sigrist,
1993) also remarked recently on the importance of study-
ing ladder systems for a possible description of
Sr„&Cu„+&02„compounds. The study of coupled
planes is also interesting, since the structures of some of
the high-T, superconductors, like YBCO and Bi2212,
have Cu-O planes at short distance in the unit cell
(Dagotto, 1992; Dagotto, Riera, and Scalapino, 1992;
Millis and Monien, 1993. See also Morgenstern et al. ,
1993). Numerical studies of superconductivity have been
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carried out in both the ladder t-J and Hubbard models.
In the former, there is a simple argument that guarantees
the presence of superconductivity in a particular region
of parameter space. Consider the limit of large superex-
change coupling along the rungs. In this limit, the un-

doped ground state is formed by spin singlets along these
rungs. If two holes are added to the system, energetically
it is favorable to break only one spin singlet, and thus
they will share the same rung, leading to short-range
pairing. It can be shown that residual interactions will
favor a superconducting state in this limit, as was
e6'ectively observed in a numerical study by Dagotto,
Riera, and Scalapino (1992). Actually, this mechanism is

very similar to that proposed earlier by Imada (1991a) in
a dimerized t-J model. Unfortunately, for the realistic re-
gime where J/t & 1 and where there is no asymmetry be-
tween the couplings along the chains and rungs, there are
no numerical indications of superconductivity (Dagotto,
Riera, and Scalapino, 1992). The Hubbard model has
also been studied numerically on a ladder geometry.
Some (weak) indications of long-range superconducting
order have been detected in the ground state (Bulut,
Scalapino, and Scalettar, 1992; Noack et al. , 1992}. The
analysis of these models deserves further study.

3. Phase diagram of the hvo-dimensional t-J model

phase
separation

40
phase

3.0.:-

2.0 —.

AF
PM

1.0—

0 i I i I i l 0.0
0.00 0.25 0.50 0.75 l.00 1.0

X
0.5 0.0

FIG. 69. (a) Schematic phase diagram of the two-dimensional
t Jmodel at zero temperature'-. x =1—(n ) is the hole density.
The meaning of the di6'erent phases is explained in the text
(from Dagotto et al., 1993). (b) Phase diagram of the one-
dimensional t-J model, taken from Ogata et al. (1991). n is the
electronic density, and the contours correspond to lines of con-
stant X~. In the region K~ & 1, superconductivity dominates.

Based on several calculations reviewed in the previous
section and others, it is possible to make an educated
guess for the phase diagram of the two-dimensional t-J
model. The result is shown in Fig. 69(a). At large J/t,
there is a well-established region of phase separation. At
low electronic density (x —1 in the figure), phase separa-
tion starts near J/t -4 (Kivelson, Emery, and Lin, 1990;

Putikka, Luchini, and Rice, 1992). In the other limit,
i.e., near half-filling, computational and high-
temperature expansion results suggest that phase separa-
tion starts at a finite coupling J/t —1 (see Sec. IV.D).
However, since these results are still controversial (Em-
ery, Kivelson, and Lin, 1990), we prefer to leave that re-
gion undefined in Fig. 69(a). Near half-filling, strong an-
tiferromagnetic correlations (AF) are present, perhaps
with some slight modulation into an incommensurate
state (Sec. IV.A.3). For very small J/t and close to half-
filling, ferromagnetism (FM) exists. We have not dis-
cussed this phase in detail in the present review, since it
is not of obvious relevance to the understanding of the
cuprates. For more details, see the vast literature on this
subject (of which a small sample is Kanamori, 1963;
Mattis, 1981; Doucot and %'en, 1989; Fang et a/. , 1989;
Barbieri, Riera, and Young, 1990; Trugman, 1990c; Pu-
tikka, Luchini, and Ogata, 1992; Long and Zotos, 1993).
At small electronic densities and couplings, the system
numerically looks like a weakly interacting gas of elec-
trons (PM). It is likely that this regime can be described
by a Fermi liquid, but this issue is still under study. In
the low electronic density region, it is well established
that electrons form bound states starting at J/2=2, but
phase separation occurs at a larger coupling (Kivelson,
Emery, and Lin, 1990}. It is natural to assume that these
pairs may condense into a superconducting regime at low
temperatures. Actually, variational calculations per-
formed at ( n ) « 1 support this idea (Dagotto et al. ,
1993). In this case the symmetry of the condensate is s
wave, as shown in Fig. 69(a). With an increase in the
density towards quarter-filling, the d-wave region dis-
cussed in the previous section appears (Dagotto and
Riera, 1994). More work is necessary to quantitatively
find the boundaries of these phases.

Qf particular importance is the study of the supercon-
ducting regime away from (n )-—,

' and closer to half-

filling. Does this phase follow the phase-separation re-
gime all the way to small hole density? In the one-
dimensional t Jmodel, Ogat-a et al. (1991) have shown
that indeed there is a region where superconducting
correlations are dominant near phase separation, and for
densities as close to half-filling as (n ) =0.87 (for results
at low electronic density, see Chen and I.ee, 1993;
Hellberg and Mele, 1993; and Waas, Fehske, and
Biittner, 1993). Actually, in Fig. 69(b) the regime where
the parameter X is larger than 1 indicates that the su-

per conducting correlations decay the slowest in the
ground state (for details about the definition of this pa-
rameter, see Ogata et a/. , 1991; Troyer et al. , 1993; and
references therein). For additional information about the
one-dimensional case, see Assaad and Wiirtz (1991);Ima-
da and Hatsugai (1989); Imada (1990); Bonca et al.
(1992); and Prelovsek et al. (1993). Then, the one-
dimensional results support the idea that superconduc-
tivity appears in electronic models near the regime of
phase separation even close to half-filling. If these results
can be extended to two dimensions, then the t-J model
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would superconduct in the realistic regime of couplings
and densities, becoming a strong candidate to describe
the cuprates. It may simply occur that in two-
dimensional numerical studies near half-filling we would
not have a strong signal of superconductivity due to the
small number of pairs in the system. Then, we may still
have a chance of describing high-T, superconductors
with purely electronic models' However, thus far these
are speculations that clearly need (and deserve) more
work and thinking.

4. Meissner eftect and flux quantization

In addition to the pairing correlation functions, it
would be important to develop a formalism to explore
numerically the Meissner effect and the superQuid densi-
ty. This issue can be addressed following steps similar to
those that led us to Eq. (4.9) for the Drude weight. In
other words, it is possible to express the "superAuid
weight" D, in terms of suitable current-current correla-
tions. First, let us recall the well-known basic ideas of
London's theory. In this approach the superQuid current
is proportional to the transverse gauge field,

(4.16)

where n, is the carrier density of the superAuid, e the unit
of charge, and m the mass of the particles. This equation
can be derived from the assumption that the carriers in
the superAuid do not collide: Let us define the super-

current as J, = —en, v„where v, is the velocity of the
carriers in the superAuid. Taking time derivatives on
both sides and replacing the acceleration by
a=F/m = —eE/m (where E is an external electric field),
we arrive at

dJ,
dt

(4.17)

In the absence of external scalar potentials P, we can
derive Eq. (4.16) by a time integration of Eq. (4.17).
Now, we define D, through the proportionality constant
between the superAuid current and the gauge field, i.e.,

J, = —e D, A, (4.18)

and thus D, =n, / m. It can also be shown easily that
D, = 1/(e A, ), where A, is the London's penetration
depth, defined by the exponential decay of the magnetic
field inside a superconductor [8 (x)=8(0)e, where
x is perpendicular to the surface. For details see
Schrieffer, 1988].

Having set up these simple ideas and definitions, we
now need to evaluate the expectation value of the current
operator in the ground state of the many-body problem
under consideration in order to get D, (Scalapino, White,
and Zhang, 1992). Using linear-response theory in Sec.
IV.B.2, we arrived at a general relation between the
current in the many-body interacting ground state and an
external gauge field in the x direction; i.e., we showed
that & J (q, co)&=K(q, co)A„(q,co), where the function
K (q, co) is given by

«q ~)=e'&&. &+e' —
& Polj.( —q) . j.(q)I4'o&+ —&4olj (q) . j.( —q)lpo&

N o Eo+co+ i e- go —Eo —~—ie

(4.19)

and the notation was explained in Sec. IV.B.2. To study
the particular case of the Meissner effect, let us consider
the limit of a uniform static transverse gauge potential
that produces a magnetic field. Then, we need to work at
co =0 and with q —+0. This is nontrivial, and care must be
taken in the way in which the uniform limit is ap-
proached. To understand how subtle this limit is, note
that the condition of trans versality tells us that
K(q, O)=(1—

q /q )K(q ) where K(q ) depends only on
q [Schrieff'er (1988), Sec. 8.3]. Then, if the uniform limit
is obtained following the path q =O, q ~0, the kernel
K (q, O) cancels even though K (q ) may be nonzero.
Then, it is clearly more convenient to take first q„=0and
then q ~0 as the limiting process. With this approach,
and following the same steps that allowed us to derive
Eq. (4.9) for the Drude weight, we can express the
superQuid weight as

l &polj (q. =O, q, ~O)lp. &I'

4& &.~0 E„—Eo

(4.20)

where the notation is the same as that used in Sec.
IV.B.2. Then, in order to study D„or,equivalently, the
presence of a Meissner effect in the problem, we need to
analyze numerically the correlation between currents at a
nonzero (but vanishingly small) momentum (while for the
Drude weight it was necessary to study the particular
case where q was strictly zero). In practice, the computa-
tional effort to get both quantities is basically the same.
This approach, introduced by Scalapino, White, and
Zhang (1992), has recently been applied to numerical
studies of both the one-band Hubbard and the t-J models.
In the case of the t-J model, the superAuid weight has
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been evaluated in the region where indications of super-
conductivity were found (Figs. 65 and 66), i.e., density
(n ) —1/2, and close to phase separation. A large peak
was observed in D, on a 4X4 cluster (Dagotto and Riera,
1993), in the same region where the pairing correlation
functions suggested the presence of superconductivity in
the ground state. Unfortunately, the minimum nonzero
value of the momentum in the y direction on this small
cluster is q~ =n /2, and thus the limit of q —+0 is difficult
to approach smoothly. '

Both the Drude and the superAuid weights can also be
evaluated using quantum Monte Carlo methods. Al-
though this algorithm does not allow the calculation of
co-dependent quantities, the particular case of co=0 can
be studied in the imaginary time formalism using a
Matsubara frequency co =2~T. Then, the main limita-
tion of the method comes from the standard sign problem
and finite temperature effects. In Fig. 70, results are
shown for an 8X8 cluster, working at U/t =4, density
(n ) =0.72, and temperature T =t/6. The result indi-
cates that the Drude weight is nonzero, in good agree-
ment with the exact-diagonalization predictions of Sec.
IV.B.3 [Fig. 44(b)]. Actually„ there is even quantitative
agreement between the results obtained with both
methods. Figure 44(b), corresponding to a 4X4 cluster
at zero temperature, predicted that D/(2~e )-0.28 at
U/t =4, while from Fig. 70(b) we found A (q=O, co )

between 0.0 and 0.10, which, in combination with the
kinetic energy, makes a Monte Carlo prediction of
D/(2me )-0.26—0.31. Thus the Drude weight is only
weakly affected by finite-size effects (see also Denteneer,
1994). Finally, Fig. 70(b) shows that the superfluid densi-
ty seems to vanish in this model. This result is in agree-
ment with the negative conclusions about superconduc-
tivity obtained studying pairing correlation functions in
Sec. IV.E.1.

Another criterion to search for super conducting
phases is the "Aux quantization. " In a normal state, the
ground-state energy is a periodic function of the flux P
with period Pa=bc/e, and it is minimized at
P/$0=0, +1,+2, . . . . In a superconducting phase, new
stable states appear at p/$0=+ —,', +—,', . . . . The new
unit of flux is $0/2, due to the presence of pairs in the
ground state ("anomalous" flux quantization). The actu-
al Aux dependence of the energy can be studied on finite
clusters using exact-diagonalization and quantum Monte
Carlo methods. The t-J model near phase separation
shows anomalous flux quantization, in agreement with
the conclusions based on pairing correlations and a study
of D, (Dagotto and Riera, 1993). The one-dimensional
two-band Cu-0 model near phase separation also sho~s
flux quantization on a ring (Sudbo et al. , 1993; see also

In the same region of parameter space the Drude peak was
very large, suggesting that the resistivity in the ground state
near phase separation is zero for the t-J model.

8x8, U=4, &n& = 0.72, P=.6

0.6—
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0.0—

2 3
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II
E 1 0
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II

x 0.5

sx8, U=4, (n) = 0.72, (=6

0.0 I

2
qyx Ny/27t;

FICx. 70. (a) Quantum Monte Carlo results for the one-band
Hubbard model obtained at the parameters in the figure. The
solid circle denotes —(k„),which is the mean value of the
kinetic energy per site divided by the dimension. 6„„is the
current-current correlation function in the notation of Scalapi-
no, White, and Zhang, 1993. The Drude peak is obtained from
these results as D/(me ) = ( —k„)—4„„(q=O,co ~0). (b)
Quantum Monte Carlo results at the same parameters as (a), but
now measuring the superfiuid weight D„which is obtained as
D, /(ere )= ( —k„)—b,„„(q„=O,q~~0, co=0) (also from Scala-
pino, White, and Zhang, 1993). The near cancellation of D,
suggests that the one-band Hubbard model does not supercon-
duct for these parameters.

5. d 2 2 superconductivity

We close this review of properties of strongly correlat-
ed electrons by describing recent ideas that have induced
considerable excitement among experimentalists and
theorists working on high-T, superconductors. It has
been proposed, and supported by several calculations,
that the superconducting state of the cuprates has d 2

symmetry, instead of the standard s-wave of the BCS
theory (see Bulut and Scalapino, 1991;Monthoux, Balat-

Fig. 71). The Hubbard model has also been studied (As-
saad and Hanke, 1992; Ferretti et al. , 1992). However,
care must be taken with this type of analysis, since some
nonsuperconducting systems also show the presence of
minima at Pl/0=+ —,', +—'„.. . . Consider, for example,
two holes in the t Jmodel (Poi-lblanc, 1991) and CDW
states on rings (Bogachek et al. , 1990).
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FIG. 71. Energy as a function of an external Aux: (a) For the
two-band Hubbard model in one dimension at di6'erent values
of the density-density interaction V. For more details see Sudbo
et al. (1993). {b) Energy of the ground state as a function of an
external magnetic fiux P, for the two-dimensional t Jmodel on a-

4X4 cluster at density (n ) =0.5. Results are presented with
respect to the energy at zero Aux. The solid squares are results
for J/t =3.0, while the open squares denote results for
J/t =4.0, i.e., inside the phase-separation region (Dagotto and
Riera, 1993).

sky, and Pines, 1991; and references therein). The calcu-
lations are based on pairing mechanisms that involve an-
tiferromagnetic spin fluctuations. Although early experi-
ments seemed consistent with s-wave pairing, recent re-
sults suggest that the pairing state is indeed highly aniso-
tropic, giving support to these theoretical ideas. The evi-
dence comes from several sources, in particular from
NMR studies, penetration depth measurements, and
ARPES experiments [in addition, recent experiments by
Wollman et al. (1993) measuring the phase coherence of
YBCO-Pb dc SQUIDs have also reported evidence in
favor of d-wave superconductivity]:

(i) NMR experiments probe the local magnetic fields
around an atom and allow measurements of the copper
relaxation rates. Recent results by Martindale et al.
(1993) observed that this relaxation rate varies as T
below the critical temperature, in agreement with the
predictions of some d 2 2 models.x -y

(ii} In an s-wave superconductor the penetration depth
A, (Sec. IV.E.4) varies exponentially with temperature at
small temperatures. This is a direct consequence of the
presence of a gap in the spectrum. However, when nodes
are present in the energy gap, and thus pairs can be bro-
ken more easily, k is expected to change linearly with
temperature if the symmetry of the superconducting state
is d». Hardy et al. (1994) have recently reported such

a linear variation in experiments carried out on clean
YBazCu306 95 crystals in support of d-wave pairing.
However, note that previous experiments in Bi2212 and
thin films of YBCO found a T dependence of the
penetration depth (see Beasley, 1993}, and thus more

work is needed to clarify these experimental results. Lee
(1993) claimed that this behavior is compatible with a
dirty d-wave superconductor. Note also that Wu et al.
(1993) reported that, for Ndz „Ce„Cu04,A, follows an
exponential temperature behavior as in an s-wave super-
conductor. This is in agreement with some remarks
made in this review about the differences between
electron- and hole-doped materials in the behavior of the
resistivity p with temperature (Sec. I.B}, and the spin
correlations (Sec. IV.A). In spite of what the one-band
Hubbard model may suggest, electron- and hole-doped
compounds seem to behave differently from the experi-
mental point of view.

(iii) Shen et aL (1993) recently reported the presence of
a strong anisotropy in the superconducting gap of
BizSr2CaCu208+& crystals measured with ARPES tech-
niques. In some directions the gap is zero (within the ex-
perimental accuracy of about 4 meV), compatible with
d» superconductivity.

However, note that there are neutron-scattering exper-
iments (Mason et al. , 1993) that urge caution about the
existence of a d-wave condensate in the cuprates. These
authors observed that superconductivity does not induce
anisotropy in the magnetic scattering of La2 „SrCu04,
as would be expected from such a condensate [although,
in a recent preprint, Bulut and Scalapino (1993) claim
that the neutron-scattering experiments are not incon-
sistent with d-wave symmetry].

Before these recent developments, the presence of an
attractive interaction in the d & 2 channel appeared fre-

quently in the theoretical analysis of holes in antiferro-
magnetic backgrounds (Miyake, Schmitt-Rink, and Var-
ma, 1986; Scalapino, Loh, and Hirsch, 1987; Gros, 1988;
Chen et al. , 1990). In previous sections of this review,
we have also found the presence of hole attraction in the
d 2 2 channel, both close to half-filling (Poilblanc, Riera,
and Dagotto, 1994, and references therein) and at density
(n ) =1/2 (Dagotto and Riera, 1993). Although the cal-
culations used to obtain these results are approximate
(finite clusters and self-consistent equations), their com-
mon conclusions suggest that, indeed, d» is a concretex -y

possibility in models of correlated electrons presumed to
describe the actual high-T, materials. In spite of these
experimental and theoretical results, some theorists
remain skeptical. It is believed that impurities can easily
reduce the critical temperature of a d 2 2 superconduc-

X -y

tor. However, in the high-T, cuprates such a sensitivity
has not been observed. Actually, the materials can be
easily prepared even by nonexperts, under considerably
less than perfect conditions. Thus the study of the role of
impurities in a d-wave superconductor is an important is-
sue to be addressed (Hirschfeld and Cxoldenfeld, 1993;
Lee, 1993). Needless to say, the physical properties of
d» superconducting condensates are currently being

investigated by several experimental and theoretical
groups around the world, and a more detailed compar-
ison with experiments will clarify whether the high-T,
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superconductors are indeed d & 2 superconductors.

Surely, we shall hear more about these interesting ideas
in the near future!

V. CONCLUSIONS

In this review, we have attempted to summarize some
of the results obtained in the rapidly growing field of
computational techniques applied to models of strongly
correlated electrons. Some purely analytical methods
and their predictions have also been addressed. In addi-
tion, we presented an overview of the current experimen-
tal situation in high-T, superconductors to provide a
summary of the main results, and its comparison with
computational calculations. In the last few years, a re-
markable level of maturity has been reached in the com-
putational studies of interacting electrons, with several
groups independently arriving at similar conclusions, as
was shown in several sections of this review. It is becom-
ing common practice to study models from as many
points of view as possible, including computational tech-
niques, perturbative or self-consistent calculations,
mean-field, and variational approaches. It is clear that
the complexity of the problems requires as much help as
we can get, and thus the use of numerical techniques is
likely to keep on growing fast in all areas of condensed-
matter theory. The computational results are widely
used as benchmarks to test analytical approximations,
especially in the very dificult regime of strong correla-
tions where there are no obvious small parameters in the
problem (for a good example, see Sec. III.B.3). One can-
not help but think of this branch of theoretical physics as
having common features with experimental physics. It
naturally provides a link between abstract theoretical
ideas and the actual properties of a given model.

The main conclusions of this review are the following.
(a) Regarding normal-state properties, a qualitative

comparison between computational results and experi-
ments for the high-temperature superconducting materi-
als was carried out. RemarkaMe agreements between
theory and experiments have been observed, showing
that some of the "anomalous" properties of the copper
oxides may have a simple explanation through purely
electronic models. In particular, the magnetic suscepti-
bility in the t-J model and in the real cuprates behave
similarly, both showing deviations from a canonical
Fermi-liquid behavior which is caused by the presence of
antiferromagnetic correlations. The presence of a rnid-
infrared band in the optical conductivity cr(co) in
Hubbard-like models is quite natural and related to the
presence of an incoherent part in the hole spectral func-
tion (although it is likely that holes trapped near Sr, or
the chains in the YBCO materials, also appreciably con-
tribute to this feature in the experiments). In the density
of states N(co), new states are observed in the gap upon
doping in the models of correlated electrons that have
been analyzed, in agreement with experiments (again,
other possibilities, like the presence of impurity bands,

may also contribute to the spectral weight in the gap). In
general, one gets the feeling that the standard pairing
theory (perhaps in an unusual non-s-wave channel) and
Fermi-liquid descriptions of the normal state may explain
the features of the cuprates, once the presence of antifer-
romagnetic correlations is taken into account, as well as
the two dimensionality of the problem. We are simply
not used to working with a material having competing
orders. The analytical tools are not well developed for
this purpose; thus the help of computational techniques
is crucial to obtaining qualitative information about the
properties of a given model, and to checking the accura-
cy of the various mean-field and perturbative approaches
described in the literature, ' saving resources and time to
the condensed-rnatter-theory community.

(b) New, exciting ideas about the possible description
of the cuprates as d 2 2 superconductors were briefly re-

viewed. It is reassuring that the existence of hole attrac-
tion in this same channel has been computationally ob-
served since the early numerical studies of the t-J and
Hubbard models, providing a nice first-principles
confirmation of the recently proposed ideas based on
self-consistent approximations. Precisely, one of the
main advantages of numerical methods is that they allow
a comparison between abstract "theories" and the actual
properties of the model under consideration.

(c) Thus far numerical studies are consistent with a
quasiparticle (Fermi-liquid) description of holes in anti-
ferromagnetic backgrounds, in the sense that the wave-
function renormalization Z is nonzero. Then, the use of
one-dimensional problems (where Z =0) as paradigms of
their two-dimensional counterparts seems questionable.
Unfortunately, for this particular problem, numerical
techniques have not yet reached a high enough level of
accuracy to completely rule out non-Fermi-liquid
scenarios. More work is necessary to clarify this impor-
tant issue.

(d) The development of better algorithms is crucial to
improve the accuracy of the numerical predictions for
Inodels of correlated electrons. In the context of Lanczos
or exact-diagonalization techniques, where the main con-
straints come from the rapid growth of the Hilbert space
with lattice size, the use of reduced basis sets, as in quan-
tum chemistry problems, is a possible direction for ex-
ploring large clusters, keeping the advantages of this
method, especially the possibility of studying response
functions in real time. With Monte Carlo algorithms,
e6'orts should be concentrated on the alleviation of the
sign problem and the development of reliable algorithms
to study real-time dynamics. The development of a
Monte Carlo algorithm for the two-dimensional t-J mod-
el is also highly desirable.

In this respect computer studies of correlated electrons play
a role similar to that of lattice gauge theory in the study of
quantum chromodynamics (which is a theory of strongly in-
teracting quarks).
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(e) It is important to explore other "unusual" proper-
ties of the cuprates, like the behavior of the Hall
coefficient, and the resistivity as a function of tempera-
ture. Not much work has been done on this front. Also,
the paradoxical behavior of the chemical potential with
doping (Sec. IV.C.1) does not seem to have an explana-
tion within two-dimensional models of correlated elec-
trons. It is important to devote some effort to analyze
the strange behavior of p in the cuprates.

The author strongly believes that in the near future the
use of computational techniques to study the behavior of
correlated electrons will become common practice in
several areas of condensed-matter physics, not only in
high-T, superconductors. These methods provide un-
biased information and can accelerate the process of ac-
ceptance or rejection of models of a given material saving
a huge amount of time for the physics community. It is
encouraging that the new generations of physicists know
how to deal with computers, and they are realizing that
numerical information about a given model is crucial in
problem. s where perturbative calculations following the
traditional RPA or ladder-summing diagrams are not re-
liable. With the rapid development of supercomputers
and algorithms, the analysis of 3D systems will also be
possible soon. Perhaps some day materials could be
designed and tested in a computer environment before
they are actually synthesized in the laboratory. The fu-
ture of computational studies of models of materials is
indeed bright.
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APPENDIX A: CLUSTER SHAPES

In Sec. II.A the Lanczos method was described and a
general rule was given to construct "tilted" squares that
cover the bulk lattice. In Fig. 72 we explicitly provide
the actual shape of some of these clusters, which may be
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FICx. 72. Shapes of some popular tilted clusters used in the
Lanczos literature. X is the total number of sites.

useful for the implementation of the Lanczos technique
in 2D systems. Each of these clusters can be cir-
cumscribed by a square. Note that some of these clusters
do not have all the symmetry properties of the bulk
(rejections with respect to the axis are particularly sub-
tle). But the reader should not be confused by the exotic
shapes of these clusters. For example, rotations in 90 de-
grees exist in the X =32 sites cluster and in many others,
although it may not seem obvious.

APPENDIX B: FLAT QUASIPARTICLE BANDS

Recent ARPES experiments by the Argonne (Abriko-
sov, Campuzano, and Gofron, 1993; Gofron et al. , 1993)
and Stanford groups (Dessau et al. , 1993) have shown
the presence of "Hat bands" in the hole-doped cuprates.
As a typical example, consider the results of Fig. 73
which were obtained by Dessau et al. (1993) for Bi2212.
Using the notation of the 2D square lattice, the ARPES
results show that near the I point [i.e., p=(m. ,O)] the
quasiparticle dispersion observed in photoemission is
momentum independent (i.e., "fiat"). The Fermi energy
is only slightly above this Oat region. It is difBcult to ex-
plain this effect using band-structure calculations, be™
cause it would require that all hole-doped high-T, com-
pounds present the same abnormal fiat region near the
Fermi level. An alternative explanation was recently
provided by Dagotto, Nazarenko, and Boninsegni (1994)
and by Bulut, Scalapino, and White (1994), who proposed
that the Aat bands have a many-body origin. Consider,
for example, the 2D t-J model for a realistic coupling
J/t =0.4. If one hole is studied in an antiferromagnetic
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FIG. 73. Quasiparticle dispersion for Bi2212 (open circles) ob-
tained using ARPES techniques by Dessau et al. (1993). The
solid squares are results obtained in the context of the 2D t-J
model by Dagotto, Nazarenko, and Boninsegni (1994). The
dots are a fit of the data produced by Dessau et al. (1993). The
momentum notation is the standard for a 2D square lattice.

background, its energy vs momentum may represent a
good approximation to the quasiparticle dispersion ob-
served experimentally, as long as antiferromagnetism is
robust in the normal state of the cuprates. In other
words, the normal state was approximated by Dagotto,
Nazarenko, and Boninsegni (1994) by a noninteracting
gas of dressed quasiparticles. In Fig. 73 the dispersion
calculated numerically on a 12 X 12 cluster is shown and
compared with the ARPES experiments. There is a good
agreement with experiments.

Why is this region Aat? It was observed numerically
that the hole-energy difFerence b, between p=(vr, 0) and

p =(rr/2, n/2) is small compared to the total bandwidth
(itself drastically reduced compared with the noninteract-
ing U/t =0 Hubbard limit as discussed in Sec. III.B.3).
This small energy difFerence is natural, since in the Hub-
bard model, from which the t-J model can be considered
to be derived, at small and very large coupling the one-
hole states become degenerate. Thus, for intermediate
couplings, they are similar in energy. In addition, the
saddle point of the dispersion was found close to the I
point, adding to the fatness of the region. For more de-
tails, see Dagotto, Nazarenko, and Boninsegni (1994).
Bulut, Scalapino, and White (1994) arrived at similar nu-
merical conclusions using a Monte Carlo simulation.

This additional small scale 6 in the problem has in-
teresting consequences at room temperature, especially
regarding the shape of the Fermi surface and the Hall
coefficient (Trugman, 1990a; Dagotto, Nazarenko, and
Boninsegni, 1994). The actual shape of the quasi-
particle dispersion can be fj.t using e /t = —1.255
+0.34 cosy„cosy~+0.13(cos2p, +cos2p~ ). This disper-
sion allows quasiparticles to move within the same sub-
lattice, since they have an efFective up- or down-spin
(remember that the background is assumed to be antifer-
romagnetic). Thus the normal state may be modeled by a
simple Hamiltonian of quasiparticles roughly distributed
as half in one sublattice (spin up) and the other half in the
other (spin down), moving according to the dispersion
e /t given above.

APPENDIX C: IS THERE SUPERCONDUCTIVITY IN THE
HUBBARD AND t-J MODELS IN THE REALISTIC
REGIME'P

Our study of Sec. IV.E may have led one to the con-
clusion that the Hubbard model in 2D is not supercon-
ducting, at least according to Monte Carlo simulations at
presently accessible temperatures. As described in that
section, the analysis by Dagotto and Riera (1993) sug-
gested a more optimistic scenario. These authors found
superconductivity at large J/t in the 2D t Jm-odel, and
this presents the possibility that pair formation may exist
in the realistic regime of the cuprates, i.e., small J/t
(large U/t) and densities close to half-filling. The reason
why numerically it is difficult to observe superconductivi-
ty may be either that the number of pairs in the small
clusters that can be diagonalized exactly are not enough
to provide a large signal, or that temperatures are still
too high in the Monte Carlo simulations. While these ar-
guments are, of course, only speculative, it is gratifying
that recent results support this point of view. The pur-
pose of this appendix is to discuss these new results.

Some time ago, in the context of the Hubbard model,
Bickers, Scalapino, and White (1989) suggested that the
critical temperature of this model is T, =0.015t —0.020t
at U/t =4 and densities close to half-filling (this temper-
ature is too small to be reached by Monte Carlo simula-
tions). This result was obtained in the so-called fluctua-
tion exchange approximation. Recently, Pao and Bickers
(1994) and Monthoux and Scalapino (1994) improved this
approximation in a self-consistent treatment of the Hub-
bard model. For example, with the aid of a
renormalization-group approach, Pao and Bickers (1994)
found a d» instability at temperatures between 0.020t
and 0.030t, with a small U/t dependence at density
( n ) =0.875 as shown in Fig. 74(a). Pao and Bickers ob-
served that clusters of 16X 16 sites in momentum space
are enough to obtain accurate results. The maximum
value of the gap as a function of temperature, as well as
the results of Monthoux and Scalapino (1994), is shown
in Fig. 75. Both techniques provide similar information.
Note the surprisingly large ratio 2b, /kT, at zero temper-
ature, obtained in this approximation. Actually, the
mere fact that there is a phase transition with a non-
zero-order parameter is surprising, since in two dimen-
sions the Mermin-Wagner theorem forbids such transi-
tions (only Kosterlitz-Thouless transitions are allowed as
those found in the attractive Hubbard model by Scalettar
et al. , 1989). Nevertheless, it is expected that the transi-
tion described by Pao and Bickers and by Monthoux and
Scalapino can be stabilized by a coupling between planes,
like that in the actual high-T, cuprates.

More recently, a very similar critical temperature was
found in an approximate treatment of the 2D t-J model
by Dagotto, Nazarenko, and Moreo (1994). The ap-
proach of these authors is based on the quasiparticle
dispersion discussed in Appendix B, supplemented by in-
formation of the two-holes problem in an antiferromag-
net. In particular, the simple and rough argument dis-
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