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Many of the properties of orientationally disordered crystals are profoundly affected by the coupling
(known as translation-rotation coupling) between translation displacements and molecular orientation.
The consequences of translation-rotation coupling depend on molecular and crystal symmetry, and vary
throughout the Brillouin zone. One result is an indirect coupling between the orientations of different
molecules, which plays an important role in the order/disorder phase transition, especially in ionic orien-
tationally disordered crystals. Translation-rotation coupling also leads to softening of elastic constants
and affects phonon spectra. This article describes the theory of the coupling from the point of view of the
microscopic Hamiltonian and the resulting Landau free energy. Considerable emphasis is placed on the
restrictions due to symmetry as these are universal and can be used to help one's qualitative understanding
of experimental observations. The application of the theory to phase transitions is described. The soften-
ing of elastic constants is discussed and shown to be universal. However, anomalies associated with the
order/disorder phase transition are shown to be restricted to cases in which the symmetry of the order pa-
rameter satisfies certain conditions. Dynamic effects on phonon spectra are described and finally the re-
cently observed dielectric behavior of ammonium compounds is discussed. Throughout the article exam-
ples from published experiments are used to illustrate the application of the theory including well known
examples such as the alkali metal cyanides and more recently discovered orientationally disordered crys-
tals such as the fullerite, C60.

CONTENTS

List o

IV.

V.

VI.

f Symbols
Orientationally Disordered Crystals
Description of Molecular Orientation
A. Rotator functions for linear molecules
B. Nonlinear molecules
C. Molecular density functions
D. Collective rotator functions
E. The use of discrete variables
Microscopic Description of Translation-Rotation Cou-

pling
A. Orientation dependent potential
B. Displacement variables
C. Orientational interactions on a deformable lattice
D. The relative phases of the coupled displacement and

orientational waves
E. Coupling at low k values
F. Coupling to acoustic phonons
Cx. Coupling at larger k values

H. Pseudospin description of translation-rotation cou-

pling
I. Single-molecule description of translation-rotation

coupling
J. Form of the potential energy
Free Energies and Susceptibilities
A. The Landau free energy
B. Calculation of the Helmholtz free energy and the

susceptibilities from the microscopic Hamiltonian
C. Mean-field approximation
Phase Transitions
A. The alkali metal cyanides and superoxides
B. Ammonium halides and sodium nitrite
C. C60 and related systems

Softening of Elastic Constants
A. Symmetry of elastic constants

721
722
725
726
727
730
731
733

734
735
736
736

738
739
739
739

740

740
742
742
742

743
744
746
747
748
748
749
749

750
752
753
755
756
757
759
759

LIST OF SYMBOI S

c» (X«.)

CIj

g)mk
L

F (Q)

JJ with elements

J„„(k)

term in the expansion of V„„
in terms of rotator functions
[Eq. (3.2)]
in Sec. VI- — =lastic constant
elastic constant for strains of
symmetry I [Eq. (6.5)]
dressed dynamical matrix [Eq.
(6.6)]
signer rotation matrix element
molecular structure factor [Eq.
(2.50)]
molecular form factor for a
particular L value [Eq. (2.40)]
fictitious Geld used in deriving
expressions for the free energy
(Sec. III)
self-coupling matrix [Eq. (4.17)]
the matrix representing
the direct orientational coupling
between the collective rotator

B. Softening of elastic constants
C. Temperature dependence
D. Some examples
E. Mixed crystals

VII. Dynamic Effects and Phonons
VIII. Dielectric Behavior of Crystals with Deformable Ions

IX. Concluding Remarks
References

Reviews of Modern Physics, Vol. 66, No. 3, July 1994 0034-6861/94/66(3)/721 (42)/$09. 20 1994 The American Physical Society 721



722 R. M. Lynden-Bell and K. H. Michel: Translation-rotation coupling in molecular crystals

x~;(0)

R
a

—1—u~M -U

V,
yR ERR yTR yTRR

functions b,&(k)
orientational coupling matrix
including direct and indirect
coupling terms [Eq. (4.4)]
cubic harmonic [examples of
symmetry-adapted functions in
group 0„—Eqs. (2.4), (2.5)]
wave vector
dynamical matrix describing
phonon frequencies in the ab-
sence of translation-rotation
coupling [Eq. (3.48)]
mass of ith molecule or ion
label for an atom
scattering vector
symmetry-adapted function
made from a linear combina-
tion of L, spherical harmonics
with symmetry species ~
structure factor in x-ray or
neutron scattering
mass weighted displacement of
center of mass
translation-rotation coupling
matrix describing the coupling
between center-of-mass displace-
ments and rotator functions
[Eq. (3.21)]
coefticient in the expansion of
the orientational crystal field
potential in terms of totally
symmetric rotator functions 6,
[Eq. (3.9)]
indirect coupling matrix
volume of the unit cell
terms in the total potential en-
ergy that are linear or bilinear
in orientational variables 8 and
translation displacements T
an effective rotation-rotation
coupling matrix [Eq. (7.7)]
vector between centers of mass
of molecules n and n'

spherical harmonic function
coe%cient in the transformation
between spherical harmonics
and symmetry-adapted functions
These coefBcients form an
orthonormal set [Eq. (2.6)]
rotator function [Eq. (2.21)]
collective rotator function
elastic strain tensor (Sec. VI)
label for symmetry species in
the molecular point group of
rotator variables (Secs. II—V)
relaxation matrix for rotator
variables (Sec. VII)
composite label for a rotator or
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0
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a symmetry-adapted function,
usua11y containing information
about the symmetry species and
the I. value
average density of scattering
material around equivalent sites
density of scattering material in
a molecule referred to molecu-
lar axes
term in the expansion of p in
symmetry-adapted functions
label for symmetry species in
the site point group of rotator
variables (Secs. II—V)
element of the collective orien-
tational susceptibility matrix
[Eq. (2.48)]
single-particle orientational sus-
ceptibility in the absence of
any coupling (direct or indirect)
[Eq. (2.53)]
analogs of the rotator functions

and 6„ in a discrete orien-
tation description
polar angles in either
molecule-fixed (subscript M) or
site-fixed axes (subscript S)
Euler angles relating the orien-
tation of the molecular-fixed
axes to the site-fixed axes

I. ORIENTATIONALLY DISORDERED CRYSTALS

A crysta1 that contains molecules or molecular ions is
more complex than one containing only atoms or atomic
ions because the individual species have orientation as
well as position. This allows the existence of new types
of phases, liquid crystals and orientationally disordered
crystals. Orientationally disordered crystals are less well
known than liquid crystals, but are fairly common in na-
ture. Many of their properties are affected by
translation-rotation coupling, which is the subject of this
article.

What is an orientationally disordered crystal and when
do such phases occur? In a normal crystal both the posi-
tions and orientations of the molecules from which the
crystal is made are ordered. Instantaneous molecular po-
sitions are always close to those of some completely or-
dered ideal structure that corresponds to a loca1
minimum of the potential energy. The deviations are the
result of thermal excitation of phonon vibrational modes,
the amplitudes of which are small. In a liquid there is
neither translational nor orientational order. Between
the crystal and liquid phases it is possible to find partially
ordered phases, either liquid crystals in which most or all
the translational order is destroyed but orientational or-
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der remains, or orientationally disordered crystals in
which there is translational order with orientational dis-
order. Which (if either) of these intermediate phases
occurs depends on the shapes of the molecules concerned
and the relative importance of the isotropic and aniso-
tropic parts of the intermolecular potential. Frenkel and
Mulder (1985) investigated the phase diagram of hard
spheroids and showed how the appearance of these
phases of intermediate order depends on the axial ratio.
Their phase diagram shows that orientationally disor-
dered crystalline phases are to be expected when the mol-
ecules are nearly spherical. Often the disordered phase
has a simple structure such as face-centered-cubic, al-
though the lower symmetry of the polyatomic species is
generally not compatible with the high site symmetry.
This incompatibility is resolved by the presence of orien-
tational disorder, which may be accompanied by rapid
reorientations. A general account is given in a book by
Parsonage and Staveley (1978). Table I lists some exam-
ples of orientationally disordered phases. These fall into
two classes, molecular crystals such as methane and
sulphur hexaQuoride, which are sometimes known as
plastic crystals (Timmermans, 1961), and ionic crystals
such as the ammonium halides and alkali metal cyanides.
An example of current interest is solid C60 (Kratschmer
et al. , 1990), with almost spherical molecules of
icosahedral symmetry (Kroto et al. , 1985), which has an
orientationally disordered phase at room temperature.

It should be emphasized that in all examples of both
orientationally disordered crystals and liquid crystals the
phase is stabilized by the entropic contribution to the free
energy. At low enough temperatures when the internal
energy dominates the free energy, the stable phase is a
completely ordered crystal, and one property of particu-
lar interest is the phase transition from the orientational-
ly ordered to the disordered phase. As the temperature

of an orientationally disordered crystal is lowered, a
phase transition takes place to a more ordered phase that
is characterized by a lower symmetry crystal structure
and the presence of long range orientational order. Al-
though the transition is usually of first order, the struc-
tures of the two phases can be related by a continuous
path from the disordered phase to the ordered phase.
Sometimes there are several successive transitions, for ex-
ample sodium nitrite (NaNOz) transforms first into an in-
commensurate phase and then into a ferroelectric phase
(Sawada et a/. , 1958; Tanisaki, 1961); the alkali metal
cyanides (for a review see Liity, 1981) transform first into
a (ferroelastic) phase with "quadrupolar" order in which
there is still head-to-tail disorder of the CN ions, and
then at a considerably lower temperature into an antifer-
roelectric ordered phase.

Many properties of an orientationally disordered crys-
tal such as elastic constants and phono n dispersion
curves are affected by the nature and degree of disorder
present. In some materials one finds anomalous tempera-
ture dependences, while in others the temperature depen-
dence is normal, but the values are different from what
one would expect, while in yet other materials the same
property is completely normal. The elastic constants of a
crystal are a measure of its stiffness under different kinds
of stress (shear or elongation), and may be afFected by
changes in molecular orientations (Michel and Naudts,
1977a, 1977b). Figure 7 shows some of the elastic con-
stants of sodium and potassium cyanide as a function of
temperature (Haussiihl et al. , 1977). The values of the
bulk elastic constant (or compressibility), 8 =c» +2c

& z,
for both sodium and potassium cyanide behave normally
in the sense that they decrease as the temperature in-
creases. Their values at 300 K are comparable with those
for NaC1 and KBr. However, the other elastic constants
are lower than expected (especially the constant c44

TABLE I. Orientationally disordered crystals.

Substance

MCN
MO2

NH48r, I
NH4C1

NaNO3, CaCO3
NaNOq

Crystal structure

NaC1(fcc)
NaC1(fcc)

CsC1
CsC1

Rhombohedral
tetragonal

Position of transition
in k space

r
Z.B.'
M'
I
z'

4c

T-R coupling
involved

yes
yes
yes
no
no
yes

Order parameter

L =2; T2g
L =2;Eg

L =3;A2„
L =3;A2u
L =3;A2
I =1;8)„

CH4, CBr4
CC14

Adamantane
SF6

t butyl bromide
C6o

urea/paragon

fcc
fcc
fcc
fcc
fcc
fcc

hexagonal
honeycomb

Z.B.'
Z.B.'
Z.B.'
Z.B.'
Z.B.'
Z.B.'

Z.B.'

no

no
no
no
no
no

yes

L =3;T2„
L =3;T2„

L=4
L=4

L =3;T2„
L = 10,6; T2g

L =2;E2g

'Point on the Brillouin-zone boundary.
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which corresponds to shear deformations of T2 symme-
try) and decrease as the temperature is lowered. In both
materials the T2g component eventually reaches a value
close to zero, at which point the crystal becomes unstable
and there is a weak first order phase transition to an or-
dered phase. This temperature is just below the tempera-
ture of the phase change to the orientationally ordered
phase, and it is clear that the anomalous behavior of the
elastic constants is closely associated with this phase
change. It is not only the T2 elastic constant that
behaves anomalously; the E constant also decreases with
temperature in both these materials. It would seem that,
if one could avoid the T2 catastrophe on lowering the
temperature, the crystal would become unstable to an E
distortion at a somewhat lower temperature and change
to a di6'erent ordered phase (Michel and Naudts, 1977a,
1977b; Sahu and Mahanti, 1982). An example in which
the elastic constants decrease with increasing tempera-
ture in a normal way, but have anomalous values, are the
carbon tetrahalides and methane. In these materials it is
the E elastic constant that is lower than expected (Zuk
et al. , 1989, 1990; Rand and Stoicheff; 1982). We shall
see that this is due to translation-rotation coupling, but
that the coupling involved is unconnected with the phase
transition to the ordered state.

Another striking example of the inAuence of
translation-rotation coupling can be seen in the phonon
dispersion curves. The curves in Fig. 1 are for cyanides
(Rowe et al. , 1975) and superoxides (Wakabayashi et al. ,
1982), and the unusual feature is the upwards curvature
seen in some of the acoustic branches. This is the result
of a k-dependent softening of the phonons due to this
coupling. In these particular examples the softening is
greatest near the zone center and the branches curve up-
wards as the softening decreases.

Most of the anomalies in crystal properties can be un-
derstood in terms of translation-rotation coupling. What
is translation-rotation coupling? It is the interaction be-
tween center-of-mass displacements and large amplitude
orientational motion that may occur in molecular crys-
tals or crystals with molecular ions, which results in a
change of orientational order (Rowe et aI , 197S; Mi.chel
and Naudts, 1977a, 1977b; Press et QI. , 1979; Mahanti
and Sahu, 1982; Sahu and Mahanti, 1982). It arises from
terms in the Hamiltonian in which the orientation depen-
dence of the potential of a molecule changes as a result of
the relative displacement of the centers of mass of pairs
of molecules. All orientationally disordered crystals
show some degree of translation-rotation coupling for
some phonons, but the importance of the coupling varies.
We shall discuss the symmetry arguments that can be
used to determine which phonons are coupled to what
kind of order. This article describes the theory of this

coupling and the way in which it can be used to explain
elastic properties, phase transitions, phonon spectra, and
dielectric measurements in orientationally disordered
crystals. A particularly important aspect of the applica-
tion of the theory is the use of symmetry; we demonstrate

how symmetry arguments can be used to predict such
things as which orientationally disordered materials may
show anomalies in elastic constants and at what points in
the Brillouin zone phonons will be softened and phase
transitions encouraged. As always in physics and chem-
istry, symmetry alone cannot give the whole answer. The
possibility or impossibility of an interaction is determined
by symmetry, but the strength of the interaction, if al-
lowed, depends on the intermolecular potential. %'e shall
discuss how translation-rotation coupling parameters can
be related to the intermolecular potential.

The most interesting and dramatic of translation-
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FIG. 1. Phonon-dispersion curves for sodium cyanide (data
from Rowe et aI., 1975), sodium superoxide (data from Waka-
bashi et al. , 1982), and sodium chloride along the [100] direc-
tion. All these data are at room temperature. Open circles, the
longitudinal branch; filled circles, the transverse branch. No-
tice how the transverse acoustic branches of the orientationally
disordered crystals have an upward curvature at low wave vec-
tors, a shape that is not seen in normal crystals such as sodium
chloride, and that is a signature of translation-rotation cou-
pling.
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rotation coupling-phenomena occur at phase transitions.
If the orientational order parameter corresponding to the
ordered phase couples with a phonon, the result is a
mixed order-disorder/displacive phase transition in
which the molecules or ions of the lattice simultaneously
move and disorder. The corresponding mixed phonon-
orientation static and dynamic correlation functions are
accessible to experiment and to molecular-dynamics cal-
culations (Lynden-Bell et a/. , 1983, 1984). In Table I we
show for which of the substances translation-rotation
coupling is involved in the order-disorder transition. It is
noteworthy that most of the examples come from ionic
compounds rather than molecular crystals. %'e shall dis-
cuss the reasons for this later.

Translation-rotation coupling affects some phonons
directly, as can be observed in inelastic neutron
difFraction (Rowe et a/. , 1975; Loidl et a/. , 1980) or, in
the long wavelength limit, in Brillouin spectra (Bischofs-
berger and Courtens, 1975; Krasser et al. , 1976; Boissier
et al. , 1978). EfFects due to translation-rotation coupling
also appear in Raman scattering (Dultz, 1974; Fontaine
and Pick, 1979; Toupry et al. , 1983) and in ultrasonic ex-
periments (Haussiihl, 1973). Depending on the time scale
of molecular reorientation, theory predicts either soften-
ing and damping of phonons or the appearance of a re-
laxation response (centered at co=0) together with a pho-
non response at the "bare" frequency (Yamada et al. ,
1974b; Courtens, 1976; Michel and Naudts, 1978). These
effects have been confirmed experimentally (Yamada
et al. , 1974a; Rowe et al. , 1978).

In this paper we discuss the details of the symmetry of
orientational coordinates and order parameters, symme-
try restrictions on translation-rotation coupling, and ap-
ply this to phonons, elastic constants, and phase transi-
tions. Most of the examples that we use to illustrate the
principles involve cubic crystals, but we make a few re-
marks about sodium nitrite and nitrate, which are partic-
ularly interesting systems with noncubic lattices. For the
most part we restrict consideration to bilinear coupling
between translational and orientational coordinates.
Higher-order coupling terms have proved to be impar-
tant in some materials. For example, in compressible
inagnets (Wagner and Swift, 1970), there is a coupling
term that is quadratic in the disorder coordinate (spin)
and linear in displacements. Similar higher-order cou-
pling terms are found to be important in perovskites
(Slonczewski and Thomas, 1969) and in other minerals
(Salje, 1985; Carpenter, 1988). The role of the couplings
between order parameter fluctuations and lattice strains
in the theory of light scattering in crystals has been inves-
tigated by Csinzburg et al. (1980).

%'e are interested in phenomena associated with large
amplitude motion and shall not treat librational motion
specifically, which is known to be relevant in the ordered
phases of molecular crystals. In the rest of the paper we
use the term molecule to denote boih an uncharged
species such as CBr4 and molecular ions such as NH4+,

CN, etc.

II. DESCRIPTION OF MOLECULAR ORIENTATION

In this section we introduce two alternative sets of
variables with which to describe molecular orientation in
orientationally disordered crystals. These variables will
be used to describe both static and dynamic properties
and are needed to develop the theory of translation-
rotation coupling. Both sets of variables are symmetry
adapted in the sense that they are chosen to transform
according to the symmetry species of the relevant sym-
metry group. The two different kinds are rotator func-
tions 6, and pseudospin functions =. The pseudospin or
discrete functions arise from an extreme picture of an
orientationally disordered crystal with molecules hop-
ping between a small number of distinct but symmetrical-
1y equivalent orientations related by the symmetry opera-
tions of the crystal site group (for a review see Press,
1981). This is a good description if the crystal field is

very strong. For a derivation of the crystal field we refer
to Sec. III A. More usually, however, there is a wide dis-
tribution of orientations around certain preferred direc-
tions, and the probability function for molecular orienta-
tion must be described by a continuous function rather
than by a series of possible discrete orientations. X-ray
and neutron-diffraction studies, in particular, showed the
need to take into account the continuous nature of the
orientation distribution function (Atoji, 1958; Kurki-
Suonio, 1967; Seymour and Pryor, 1970; Press and
Hiiller, 1973a; Rowe et al. , 1973). For example, in CBr~,
although the preferred orientations are the six "D2&"
orientations shown in Fig. 2, there is a considerable prob-
ability of finding molecules at intermediate orientations
(Dolling et al. , 1979; More et al. , 1980, 1984). The

2d

FICz. 2. The Td and D2d orientations of tetrahedral moleculcs
in a cubic environment.
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/ +=NOCN 295K
KCN ISOK

FIG. 3. Orientational distribution function of CN in NaCN
from Rowe et al. (1973).

A. Rotator functions for linear molecules

The rotator functions for linear molecules are
symmetry-adapted linear combinations of spherical har-
monics. The orientation of a linear molecule, considered
as a rigid body, relative to crystal axes may be described
by two polar angles ( 8,P ) =Q. Any function of the
orientation of a linear molecule may be described by ex-
panding in terms of spherical harmonics FL (Q). For ex-

ample, the probability distribution function for molecular
orientation can be expanded in this way:

f(8,$)=1/4m. + g cl FL (0,$), LAO,
I., m

(2.1)

and, since the Yl form a complete orthonormal set, the
coe%cients are given by

cl =ff (Q)Yp *(Q)dQ . (2.2)

Here, and in the following, we adopt the notation and
conventions for YL used in standard books on angular
momentum in quantum mechanics (e.g., Edmonds, 1960;

orientational distribution in sodium and potassium
cyanide is far from corresponding to a series of discrete
sites, although it is by no means spherical. Figure 3 (tak-
en from Rowe et al. , 1973) shows orientational distribu-
tions determined by fitting neutron-scattering data to an
expansion in the first three cubic harmonics.

Rotator functions can describe continuous orientation-
al distributions and provide the basis of a more general
description of the theory of phenomena observed in
orientationally disordered crystals. For this description
we use symmetry-adapted rotator functions, A. These
were introduced by James and Keenan (1959) in the form
of tetrahedral rotator functions for the description of the
orientational phase transitions in solid heavy methane.

Brink and Satchler, 1968) and in Vol. C of the Interna-
tional Crystallographic Tables (1992). Bradley and
Cracknell (1972) use a difFerent convention in which the
signs of spherical harmonics with positive odd values of
m are reversed.

The advantages of these expansions are twofold: first,
if the orientation is fairly uniform (which is true if the an-
isotropy of the local environment is weak), a few terms
suKce, and secondly, the coe%cients are independent of
one another. Moreover, we can simplify the expansion
and reduce the number of terms necessary to describe the
orientational distribution function by using the symmetry
of the system. %'e shaH define rotator functions, S„,
which are linear combinations of spherical harmonics
that transform according to the various symmetry species
of the crystal site symmetry group. The thermally aver-
aged probability distribution function transforms accord-
ing to the symmetric representation of the symmetry
group of the site (Press and Hiiller, 1973a; Yvinec and
Pick, 1980) so that the only nonzero terms in the expan-
sion (2.1) are the coefficients of those symmetry-adapted
rotator functions which are unchanged by the symmetry
operations of the site group. For octahedral symmetry
these are just the "kubic harmonics" introduced by Bethe
(Bethe, 1929; Von der Lage and Bethe, 1947) for the
description of the crystal field due to valence electrons in
solids, and used by many others since. The first applica-
tions to molecular crystals goes back to Devonshire
(1936), who described the motion of a linear molecule in
a field of cubic symmetry by an expansion in terms of
surface harmonics of cubic symmetry.

In addition to providing a convenient and accurate
description of the orientational distribution in the disor-
dered phase, we shall show that rotator functions provide
order parameters to describe the transition to a more or-
dered and less symmetric phase as the temperature is
lowered. These order parameters are averages of rotator
functions that are not totally symmetric with respect to
the space group of the disordered phase, and we shall see
that the change in symmetry at the phase transition
determines which S„ functions provide the appropriate
order parameters.

Let us consider the example of linear molecules in an
octahedral environment such as one finds in the disor-
dered phases of alkali metal cyanides (Luty, 1981) and
sodium superoxides (Bosch and Ka,nzig, 1975; Zielinski
and Parlinski, 1984). The distribution function must be
unchanged under symmetry operations of the molecule
and under symmetry operations of the site. Considering
the molecule first, if it is centrosymmetric only
coefFicients of even-L, spherical harmonics exist, other-
wise all L, values are allowed by the molecular symmetry.
However, if the site symmetry is octahedral (01,—the
most common symmetry in orientationally disordered
crystal phases) only combinations of spherical harmonics
that transform as A

&
in 0& are allowed for linear mole-

cules. Thus expression (2.1) for the orientational distri-
bution function becomes

Rev. Mod. Phys. , Vol. 66, No. 3, July 1994
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f =1/4n+g cLSL, LAO,
L,a

(2.3)
Szg' (Q)=

1/2

(x2 y2) ( Y2+ Y
—2)/Q2

16m

1/2

E'z, (Q)= — (x +y +z —
—,),4 4 4 (2.4)

1/2

K6&(Q)= (x y z + —,', [K4&]—+»),
231 26

(2.5)

where the rotator functions SL for linear molecules are
combinations of spherical harmonics of order I., which
are invariant under the operations of the site group 0&.
They are the cubic harmonics mentioned earlier that are
the best known examples of symmetry-adapted functions.
They exist for all even-I. values except L, =2. For in-
stance, for I =4 and I.=6 we have the cubic harmonics
LL; of A, z symmetry, which can be written in terms of
Cartesian coordinates in the crystal axes x =sin8cosg,
y =sin8 sing, z =cos8 of a unit vector along the molecu-
lar axis (or direction cosines) as

(2.9)

and the three T2g =f functions are
1/2

sf'(Q) = 15
yz =i ( Yz+ Y2 ')/&2,

4m
(2.10)

1/2

sf'(Q) = 15
4m

zx =( —Y2+ Yz
' )/&2, (2.11)

sf 3(Q)= 15
4m

1/2

xy =i ( Yz —Yz )/&2 . (2.12)

In the case of an asymmetric linear molecule (a dipolar
molecule!), the lowest relevant value of L is 1 and we
have a triplet of functions with p=(OI„T&„,p, L =1),
p =1,2, 3:

L
Ymam~

m= —L
(2.6)

where the notation [IC4& ]= (x +y +z ——,') is used.
It is also possible to define symmetry-adapted func-

tions for symmetry species other than the totally sym-
metric representation, and we use the notation S„and
the name "symmetry adapted function" for a combina-
tion of spherical harmonics of order I.,

S"(Q)= 3

I 3S' (Q)=
4m

y =i(YI+ Y, ')/&2,

1/2

S' (Q)= 3

i4
z=Y

1

1/2

x =( —YI+ Yi ')/&2, (2.13)

(2.14)

(2.15)

Ym y Sw ( r)em (2.7)

Values of aL are tabulated for a selection of point groups
and L values by Bradley and Cracknell (1972). Un-
fortunately they use a different convention for the
spherical harmonics, which means that the signs of aL'
for positive odd values of m must be reversed. For
I.=2, we have 2L +1=5 symmetry-adapted functions,
a doublet that transforms with E =E symmetry,
p=(OI, ,Eg,p, L =2), p =1,2, and a triplet that trans-
forms with T2 symmetry so that p=(OI„Tzg,p, L =2)
with p =1,2, 3. A convenient way of writing these is in
terms of the Cartesian components x,y, z introduced
above. The two E symmetry-adapted functions are

1/2

S2' (Q)=E, 1
(3z —1)= Y2,16' (2.8)

which transforms according to the pth component of the
nth occurrence of irreducible representation I of the
point group I' under consideration. ~ is a composite label
for (P,I,p, n) and p for (r; L). The cubic harmonics It.L,.

are special cases of symmetry-adapted functions.
The symmetry-adapted functions S form a complete

set in the space spanned by Q = ( 8,P ) when all L and r
are included. For each I. the transformation described
by the coefficients, aL, is unitary. The inverse of Eq. (2.6)
reads

All these functions are real and have been normalized so
that the integral of their square over all directions is
equal to unity.

B. Nonlinear molecules

The situation for nonlinear molecules is similar, al-
though somewhat more complex, as three Euler angles
( co =a, P, y ) are needed to describe the orientation of a
nonlinear molecule relative to a fixed frame such as the
crystal axes. One solution for the description of the
orientational distribution function has been to use sums
of cubic harmonics for equivalent bonds (Klein et al. ,
1983). A more general method is to construct rotator
functions, which are functions of the Euler angles and
which transform in a definite way under the symmetry
operations of the site and the molecule.

First it is necessary to determine what the relevant
symmetry group is. It has three kinds of operations, ro-
tations of the molecule that leave it in equivalent posi-
tions, rotations of the si'te, and simultaneous improper ro-
tations (including refiections and inversions) of both site
and molecule, which leave the system in an equivalent
configuration (Pick and Yvinec, 1980; Yvinec and Pick,
1980). The resulting symmetry group, which we shall
term the true site-moIecule group, is discussed in more de-
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tail in the above papers and by Breymann and Pick
(1988). However, for most practical purposes, it is easier
to consider the group formed by taking the product site-
molecule group formed from the direct product of the site
and molecular point groups and to classify functions ac-
cording to their behavior in these two latter groups sepa-
rately. One must remember, however, that the reduction
in symmetry to the true site-molecule group (which is a
subgroup of the product site-molecule group) could in
principle cause additional mixing or splitting of degen-
eracies. We know of no such examples. The probability
distribution function for the orientation of the undistort-
ed molecule, for example, transforms as the totally sym-
metric representation of the true site-molecule group. As
long as we are considering undistorted molecules, all
properties are invariant under the symmetry operations
of the molecule group alone, and so the distribution func-
tion is also invariant under all the operations of the site
group. As a result it transforms according to the totally
symmetric representation of the product site-molecule
group. An exception to this would occur for optically ac-
tive molecules that have no rejections or inversion ele-
ments of symmetry. In this somewhat esoteric case the
distribution function is only invariant under the rotation
operations of the site group. However, as far as we are
aware there are no examples known of orientationally
disordered crystals with disordered optically active mole-
cules; moreover, the site symmetry in the disordered
phase is almost always centrosyrnrnetric. For. the rest of
this article we shall assume that the crystal has cen-
trosymmetric sites and the molecule has reAection or in-
version symmetry operations or both, and we shall use
the product site-molecule group to classify and construct
rotator functions.

We now construct rotator functions from linear corn-
binations of the Wigner rotation matrix elements 2)L"
(see Edmonds, 1960, or Brink and Satchler, 1968). The
functions 2)L" are the three-dimensional equivalents of
the spherical harmonics, and form a complete set of func-
tions in the space of the three Euler angles. The rotator
functions formed from them are analogous to the
symmetry-adapted S functions already introduced for
linear molecules, and we shall see the notation 6„ for
them. For an early use of rotator functions for the
description of tetrahedral molecules in a cubic crystal, we
refer to James and Keenan's work (1959) on CD4.

The Wigner matrices 2)1 form a (2L +1) dimensional
representation of the rotation group generated from a
basis of spherical harmonics by the rotation operators
P(co), which relate the molecule-fixed coordinate frame
to the site-Qxed frame. Suppose we start by orienting the
molecule in the "standard position, " in which its axis sys-
tem (X,Y,Z) coincides with the site axes (x,y, z), and
consider a function such as the spherical harmonic
YL, (HM, QM) in the molecule. Now we rotate the mole-
cule from this standard position. In the molecular frame
Yz is unchanged, but in the laboratory frame the func-
tion is changed to

2 (co) Yl"(QM ) = Yl"[N '(co)Q~]
L

YL (Qs)2)L "(co), (2.16)

where Q~ and Q& are polar angles in the molecular and
site frame, respectively. In Eq. (2.6) we defined
symmetry-adapted functions SL that were linear corn-
binations of spherical harmonics which transform as a
symmetry species ~ of the site group. We can now do the
same for the molecule, taking linear combinations of
spherical harmonics referred to the molecular axis sys-
tem which transform as the symmetry species A, of the
molecular point group:

(2.17)

P(~)Sk(Q ) g ST(Q )(~1tE1 )Ag)I1lk(~)~kA,

v;m, k
(2.19)

This equation shows how the symmetry-adapted func-
tions SL (QM) in the molecule-fixed axes (classified under
the molecular point group) are related to the symmetry-
adapted functions SL (Qz) in the site-fixed axes (classified
according to the site symmetry group). We can define
the transformation by

k(a))SL (Q~)=g Sl'(Qs)ELk(co) . (2.20)

The functions bL (co) are the rotator functions for non-
linear molecules, which we shall use to describe orienta-
tional properties and, in particular, translation-rotation
coupling. As they relate symmetry-adapted functions in
the molecule and in the site, they transform according to
the symmetry species w of the site point group and A, of
the molecular point group. The value of a rotator func-
tion of a particular molecule depends on the instantane-
ous orientation of that molecule relative to the site.
From the previous two equations we see

L L
~rn~e~mk( )~kA.

k= —L m= —L
(2.21)

where to simplify the notation we have introduced a
composite label IJ, =(L,r, A, ) for the order of spherical
harmonics I, the symmetry species under operations of
the site point group v., and the symmetry species under
operations of the molecular point group A, . We note that
the coefBcients a are usually the square roots of simple

When the molecule is rotated, these are changed:
L L

k(co)SL (QM ) = g g YL (Qs )2)L "(co)aL . (2.18)
k= —L m= —L

The resulting spherical harmonics YL (Qz) in the site
frame are now rewritten [using Eq. (2.7)] as linear com-
binations of site symmetry-adapted functions Sl'(Qz),
which transform according to the ~h representation of
the symmetry group of the site so that
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28m
"~ (2L+1) ' (2.22)

numbers. For example from Eqs. (2.8)—(2.15) for
symmetry-adapted functions in the octahedral group we
find values such as 1,+1/&2, +i /&2.

We shall need some properties of the rotator functions.
In all the examples that we shall consider, the point
groups of both the site and the molecule have symmetry
species with real characters. This means that both the
symmetry-adapted functions S„and the rotator functions
A„are real. The rotator functions form a complete set in
the space spanned by the Euler angles and are normal-
ized according to

FIG. 4. The geometry of the nitrite ion.

the various irreducible representations of the molecular
point group (C2, ). For L =1 and L =2 we have for A 1

symmetry

The set of (2L + 1) rotator functions for a given value of
I. form a unitary matrix relating the two sets of
symmetry-adapted SL functions. The inverse transfor-
mation (from the site frame to the molecular frame) is
given by

S '=YA

1 j.

S, ' =(Y,'+Y )/&Z,

(2.26)

'(co)SL (Q~)=g Sl (A~)(EL ') '

=g SL (Q~)b, L (co) . (2.23)

Rotator functions can be used to describe any angle-
dependent physical property of the molecule as seen from
crystal axes. For example, the orientational probability
distribution function may be written in terms of those 6
functions, hL', which are totally, symmetric in the site
molecule group (Press and Hiiller, 1973a; Yvinec and
Pick, 1980):

S ' =( —Y'+Y ')V2,

S2' =( —Y2+ Y2 ')/&2,

S ' =i ( Yi + Yi ' )/v'2,

S ' =i ( Y2+ Y2
'

) /v'2,

(2.27)

where there are two different combinations of I.=2 func-
tions that transform according to the totally symmetric
representation, which we have distinguished by the su-
perscripts 1 and 2.

The symmetry-adapted functions for the other three
symmetry species in the molecular point group are

f (co) =1/8m +g Agbl'(co) .
L,a

(2.24) S ' =i ( —Y + Y )/v'2 .

The sizes of the coeKcients can be determined using the
orthonormality condition [Eq. (2.22)]

(2L +1) f (co)hl" (co)de
8m

(2L+ 1)(pygmy) (2.25)

showing that the sizes of the coeScients AL describe the
nonuniformity of the distribution. This is entirely analo-
gous to the treatment of the orientational distribution
function of a linear molecule in terms of the symmetry-
adapted functions Sl' [Eqs. (2.1)—(2.3)], the difFerence be-

ing that now we need three angles to describe the orienta-
tion of a nonlinear molecule.

To illustrate the properties of rotator functions and the
way in which they are constructed we consider the hy-
pothetical example of a N02 ion in an octahedral envi-
ronment. The shape of the nitrite ion (Fig. 4) is an isos-
celes triangle with the N atom at the apex. It has C2,
symmetry. We start by considering spherical harmonics
in the molecule-fixed axis system (X, Y,Z) and construct
hnear combinations of these functions that transform as

h.= S ' -S"dQ
+F2 R co —F2+F2 ' Q, 228

which can be rewritten in terms of Wigner rotation ma-
trix elements as

~21 ~—21+gP —1+~—2—1] (2.29)

A11 these combinations are real, in agreement with the
properties already noted.

The relevant symmetry-adapted rotator functions for
the site symmetry group (01, ) have already been given in

Eqs. (2.8) —(2.15). The b, functions relate the two sets of
symmetry-adapted functions, the molecular set SL in the
molecular frame and SL in the site frame. They are con-
structed from the Wigner rotation matrices according to
Eq. (2.21). As an example we calculate the rotator func-
tion 6„, which relates the I. =2 functions that have

B, symmetry in the molecular frame to those that
transform in the site symmetry group as the second
row of E [i e., as S2', see Eq. (2 9)]. This has
p=[O Eh(2), C2„B„L=2] and is
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Expressions for the signer rotation functions in terms of
Euler angles are given in textbooks on angular momen-
tum theory (for exainple, Brink and Satchler, 1968), but
note that those given by Bradley and Cracknell (1972)
may have different signs and for consistency must be used
with their definition of spherical harmonics. Substituting
we obtain

6„=—,
' sin2P cos2a cosy —sinP sin2a siny . (2.30)

Quaternion parameters are often used in computer simu-
lations of molecules in liquids or crystals (Hiiller and
Kane, 1974; Allen and Tildesley, 1987) and provide a
convenient route to constructing rotator functions. Ex-
pressions relating these to Wigner rotation matrix ele-
ments are given by Lynden-Bell and Stone (1989).

In many ways the most instructive way of writing
these functions is in terms of direction cosines of the an-
gles between the molecule and site axes. Using the rela-
tionships between direction cosines and %'igner rotation
matrix elements given by Lynden-Bell and Stone (1989),
one 6nds for this example

h„=X Z„—X Z„, (2.31)

where X, is the direction -cosine between the molecule-
6xed X axis and the site-Axed z axis. One can see im-
rnediately that this function transforms in the same way
as the product XZ under the molecular symmetry opera-
tions and the same way as x —y under the site syrnme-
try operations. Inspection of character tables shows that,
as expected, XZ transforms as 8, in the molecular point
group C2„and x —y transforms as E under the sym-
rnetry operations of the site group 0&. The construction
of rotator functions in terms of direction cosines of
molecule-6xed axes relative to the laboratory axis system
has been used to calculate orientational order and
translation-rotation coupling in molecular-dynamics cal-
culations, which used the constraint method rather than
quaternions (Ferrario et a/. , 1987; Lynden-Bell et al. ,
1989).

In most of the applications discussed in this article we
are concerned only with undistorted molecules and so
with functions that are unchanged under the symmetry
operations of the molecule and that transform according
to the totally symmetric representation of the molecular
group. In our example of a nitrite ion, such functions
must transform according to 3, in the molecular point
group C2, . There is one such function for L =1, namely,
F,. This generates three rotator functions for L = 1 that
are identical with those for a linear molecule [Eqs.
(2.13)—(2.15)], if one identifies x, y, and z as the direction
cosines Z, Z, and Z, between the direction of the
molecular dipole and the site axes. For L =2, each of the
two A

& symmetry-adapted combinations of spherical
harmonics generates a set of rotator functions. The set
based on S2 ' = Fz is identical to those for a linear rnol-
ecule if the dipole direction is substituted for the direc-
tion of the molecular axis. For example, for

p=[Oi„&g(2), Cz„Ai, 1,L =2], where 1 labels the first
occurrence of symmetry A &,

h„=Z Z —ZZ (2.32)

This set of functions gives information about the orienta-
tion and properties of the molecular dipole. The second
set, labeled by 2, is based on S2 ' =( Yz+ Y2 )/+2 and
gives information about the orientation of the triangle of
atoms about the dipole direction. This gives rise to
a new set of rotator functions that show the effects
of the molecular shape. For example, for
p=[0„,E (2),C2„, A, ,2,L =2] we have

b, =(X„X —
AX@

—Y Y„+Yy Yy)/2, (2.33)

which transforms as x —y under the operations of the
site group and as X —F under the operations of the
molecular group.

The S functions previously defined in Eq. (2.6) for
linear molecules are special cases of these 6 functions for
molecular point groups C „and D &, and in the rest of
this article we shall not normally distinguish between
linear and nonlinear molecules. It should be noted that,
as a matter of convenience, the 6 functions for linear
molecules have been integrated over the redundant angle
y, which gives the factor of 2m difference between the
constant terms in Eq. (2.3) for linear molecules and in
(2.23) for nonlinear molecules.

One reason that these rotator functions are particular-
ly useful is that many molecular properties of interest
transform as a particular I value. For example, dipole
moments transform as L =1 so that all properties of
molecular dipole moments, irrespective of molecular
symmetry, are described by the subset of rotator func-
tions with L =1. Similarly, molecular quadrupole mo-
ments and the anisotropic part of molecular polarizabili-
ties are described by rotator functions with L =2.

C. Molecular density functions

Much information about molecular orientation in plas-
tic crystals is obtained from neutron and x-ray scattering.
These techniques do not recognize the presence of mole-
cules, but only the average distribution of scattering rna-
terial in the crystal. Consequently the rotator functions
are not determined directly but have to be reconstructed.
The data from neutrons (or x rays) can be interpreted in
terms of the average density of scattering material
around all equivalent sites in the crystal. The contribu-
tion from a molecule at a particular site depends on the
distribution of scattering material of the molecule in its
molecule-fixed axes (which we assume is constant) and
the instantaneous orientation of that particular molecule.
Thus the average scattering density p(r, Qs) at a set of
equivalent sites is

p(r, Qs)= JP(ro)k(ro)p «(r, QM)den, (2.34)

where P(co) is the temperature-dependent probability of
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finding a molecule at orientation co, and p, i(r, QM ) is the
distribution of scattering material of a molecule relative
to its axis system. For simplicity, we have assumed here
that the origins of both axis systems coincide with the
center of mass of the molecule. Both p( r, Qz ) and

p i(r, QM ) can be expanded in symmetry-adapted func-
tions. The site density is totally symmetric under the
symmetry operations of the site, and the molecular densi-
ty is totally symmetric under the symmetry operations of
the molecule. Hence (Seymour and Pryor, 1970; Rowe
et al. , 1973; Press and Hiiller, 1973a)

g 5(Q —Q )=ggt St"(Q), (2.39)

where we have introduced molecular form factors gL
(Michel and Parlinski, 1985) as coefficients in this expan-
sion. These are useful in many applications. Comparing
the last two equations we see that

metric icosahedral molecule C6O has L, =0,6, 10. . .
(Michel et al. , 1992).

We now write the orientational distribution of the nu-
clei in terms of the symmetry-adapted functions

p(r, Qz ) = g pz (r)SL (Qz ),
(2.35)

g y Akeck ySA(Q )
k v

(2.40)

p.(.)=«)p'...,(.), (2.36)

where the angular brackets denote the thermal average.
Thus if we know the scattering density of a particular
kind of molecule at a given site, the thermal averages of
the rotator functions can be found.

We shall now describe the way in which the molecular
scattering density can be constructed and introduce the
useful concept of the molecular form factors gL. Atoms
of a given kind, which are in equivalent positions, lie at a
constant distance from the center of mass of the mole-
cule. In order to keep the notation simple, we restrict
ourselves to one type of atom, for example, the Br atoms
of CBr4 or the carbon nuclei of C6o. The position of the
vth atom with respect to the center of mass is described
by the radius vector d, whose polar angles are
Q,=(8„,$, ) in a molecule-fixed frame. The first task is
to find the density distribution in the molecule-fixed axis
frame. The orientational distribution of the nuclei can be
written as the sum of delta functions

Q 5(Q —Q, )=g YL (Q) g YL(Q, )
L, k

(2.37)

It is convenient to define

CL =g YL"(Q„) . (2.38)

As a consequence of molecular symmetry, the only values
of I. that can occur in this expansion are those that con-
tain a totally symmetric symmetry species of the molecu-
lar point group. Only even I. values are allowed if the
molecule has a center of symmetry. We have already
seen this for symmetric linear molecules. If the molecule
is tetrahedral, only the values L =0,3,4. . . are allowed
by symmetry (Press, 1973b), while for SF6, an octahedral
molecule, one has I =0,4, 6. . . , and the centrosym-

P oi(r, QM)= g P oiL(r)SL(QM) .
L, A, = A)

Equation (2.20) shows that the symmetry-adapted func-
tions SL in the molecular frame are related to those in
the site frame (SL }by the rotator functions so kA k

CXL
—CL CkeCk

k

(2.41)

giving an alternative expression for gL,
' 1/2

g y ke k

k
(2.42)

The contribution of these nuclei to the scattering density

p „[Eq.(2.35)] is

p," .,(r) =g, b5(r d), — (2.43)

where b is the scattering length of the type of nucleus
concerned.

If there is more than one type of atom in the molecule,
a form factor gz(v) must be computed for each type of
atom v. There is no unique way of defining either the site
axis system or the molecular axis system. If the standard
orientation is not obvious (e.g., for tetrahedral mole-
cules), it should be specified, although the values of gL
are independent of the choice.

We are now in the position to write down the reorien-
tational contribution to the average scattering density.
Equations (2.36) and (2.43) give

(2.44)

Thermal fluctuations in the center of mass positions
smooth the delta functions into gaussian distributions
whose widths are given by the Debye-Wailer factors
(Press et al. , 1979).

D. Collective rotator functions

So far we have restricted ourselves to the description
of single-particle properties. In order to describe proper-
ties such as phase transitions, lattice vibrations, or elastic
constants, it is necessary to define collective orientational

where uL are the coefficients relating symmetry-adapted
functions to spherical harmonics defined in Eq. (2.6}. It
can be shown that, for the totally symmetric symmetry
species,

' 1/2
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functions that contain the translational symmetry of the
crystal as well as the site molecule symmetry. We intro-
duce Fourier transforms of the 6 functions

E„(k)=N ' Q b,„(co„)exp(—ik X„), (2.45)

b, '(k)=E„(—k) . (2.46)

Because the crystal is translationally invariant, the
functions that are totally symmetric in the complete crys-
tal space group are collective 6 functions for which k=0,
and which transform as the totally symmetric representa-
tion of the site molecule group. These are the only rota-
tor functions with nonzero averages. However, although
the average value of other 6 functions must be zero, Auc-

tuations in them may (and do) occur.
One may define an orientational susceptibility matrix

where the sum is over 5 functions of molecules n whose
ideal lattice positions are X„;X is the total number of
molecules. For convenience of notation, we restrict our-
selves here to crystals that contain only one molecular
unit per primitive unit cell in the orientationally disor-
dered phase, but the construction can readily be general-
ized. We use a tilde to denote functions such as these
that are defined in reciprocal space (k space) and the
same symbol without a tilde to refer to the corresponding
function in real space, and we note that the complex con-
jugate of a function in k space is the same as the function
evaluated at —k, for example, b„(k)=h„(—k). It is
convenient to introduce a vector notation for the mul-

ticomponent functions 5 . We define a column vector
E(k) with components b&(k). By taking the Hermitian

conjugate, we define a row vector, b, (k), with com-
ponents b,„(k). As the rotator functions are real, we
have

S(Q)=g g b,expiQ [X„+d„(v)]. (2.49)

Here irtQ is the momentum transferred in the scattering
process, d (v) specifies the position of the vth atom of the
molecule at the lattice site n, and b is the scattering
length of atoms of type v. We consider the thermal aver-
age of the molecular structure factor F„(Q) at this site,
and assume (for simplicity of notation) that all atoms are
of the same type, so that

(F (Q)&=+ b(expiQ d (v)& . (2.50)

Following the procedure of Pick and Yvinec (1980), we

expand the molecular structure factor in terms of rotator
functions to obtain

(F (Q)&=4 gb g ' j (Qd)(&'(& )&~'"( ),

der the site molecule group is lifted if k+0. We shall re-
turn to this point later. Diagonal susceptibilities are al-

ways nonzero, although if we restrict our attention to rig-
id rnolecules, we shall only be concerned with Auctua-
tions in which 6„ transforms as the totally symmetric
representation of the molecular point group. 6 functions
corresponding to other molecular point group sym-
metries correspond to fluctuations in which the mole-
cules are allowed to distort or vibrate. The orientational
order that occurs when the temperature is lowered
through a phase transition is described by an order pa-
rameter that is the average of one of the 6 functions that
is not totally symmetric with a particular value of k.

A basic quantity that enters the di8'erential cross sec-
tion for x-ray and neutron scattering is the structure fac-
tor S(Q). This can be related to the rotator functions,

y„„(k)= ( b,„*(k)E~(k}& /ks T, (2.47) (2.51}

y~„(k)= ( &~(k)&„(k)& /kT (2.48)

Mixed susceptibilities are zero unless p and p' have the
same symmetry in the space group. This means that they
must have the same value of k, and depending on the
direction of k there may be further restrictions. Howev-
er, the restrictions that the single-particle functions from
which they are composed transform in the same way un-

where kii is Boltzmann's constant and ( & denotes a
thermal average taken with the full Hamiltonian of the
system. This is the classical statistical-mechanics expres-
sion for the susceptibility. Since we are not treating
molecular crystals like H2 (Silvera, 1980; van Kranen-

donk, 1983), CH4 (Kataoka et al. , 1973; Kobashi et al. ,

1984), or any other molecular crystals such as Qz and Nz
(Briels et al. , 1986), where quantum effects are impor-

tant, but heavier molecules at reasonably high tempera-
tures, we are in the classical rotator regime
R /(Iktt T) & I, where I is the moment of inertia of the

molecule. There are also mixed susceptibilities y„„(k),

where jI is a spherical Bessel function, SL is a site sym-

metry adapted function, and Q& stands for the polar an-

gles of Q. For a set of equivalent lattice sites, the average
molecular structure factor (F„(Q)& is the same at all
sites n and the structure factor is

27r 3

&(Q)= g fi(Q —&)(F(Q)&,
V,

(2.52)

where G is a reciprocal lattice vector and V, is the
volume of the unit cell. By a suitable choice of the
scattering geometry it is often possible to select a specific
representation ~ and hence to measure the Bragg
rejections that correspond to a condensation of a partic-
ular order parameter ( b,L" &. As an example we refer to
CD4 (Press, 1973; Press and Hiiller, 1974).

In later parts of the paper we shall need the values of
g„„,the single particle susceptibilities in the absence of
any coupling (direct or indirect) of molecular orientation
in neighboring sites
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yo„.= ( b,„(co„)'h„,(a)„))0/k~ T, (2.53)
(2.56)

where the thermal average is taken with the crystal Geld
potential at site n. The thermal average is zero unless p
and p' transform as the same representation of the site
molecule group. In addition the periodicity of the crystal
implies that the expression is the same for all sites in the
crystal. We can therefore write

(2.54)

where the single-particle averages y„are usually only
weakly temperature dependent. It is often a fair approxi-
mation to take y„ to be a constant whose value depends
on a particular rotator function p, so that each y„„is in-
versely proportional to the temperature.

These functions are similar to the A„rotator functions,
but instead of an infinite set, there are two such functions
as there are only two possible orientations. The value of

is always equal to 1 while the discrete variable =~1g 2Q

is equal to +1 depending on which way the molecule is
oriented. :-& behaves like a spin variable, and is some-

2Q

times known as a pseudospin. Collective variables can
now be formed in an analogous way to that used to form
E(k) functions from the single-molecule functions b, (co„),
by summing over the function for each molecule n with
an appropriate phase, for example,

E. The use of discrete variables
(k)=N '~ g:-z (n)exp( —ik.X„) . (2.57)

Translation-rotation coupling may also be formulated
using collective discrete (pseudospin) variables. If the
disordered molecule occupies a discrete number of orien-
tations then one may associate a variable g with each
orientation. The value of each g is either one or zero ac-
cording to whether the orientation is occupied or not.
The sum of all the discrete variables at a given site is
equal to one. This is analogous to a Potts model in which
each molecule has a number of possible states corre-
sponding to the allowed orientations. Symmetry-adapted
combinations of the discrete variab1es are then construct-
ed using standard group theoretical projection techniques
to obtain

(2.55)

These are the analogs of the rotator functions 5„ intro-
duced earlier [Eq. (2.21)]. In this case the subscript p la-
bels the symmetry species of the site group.

The best way to illustrate the method for using
symmetry-adapted discrete variables is to consider
speciGc examples. At the same time we shall compare
the use of rotator functions for the same systems. The
main examples, which we shall use here and in subse-
quent sections, are alkali metal cyanides, carbon
tetrahalides, and ammonium halides.

First we consider NH48r. The disordered P phase
crystallizes in the CsCl structure with eight nearest
bromide ions and six ammonium molecular ions in the
next-nearest shell. There are only two distinct preferred
orientations of the ammonium ion, known as the "Td"
orientations, in which the protons point towards the
corners of the cube formed by the eight nearest-neighbor
bromide ions (Fig. 2). Hence the discrete description of
the orientations uses just two variables (or states in the
Potts model analogy) g, and gz. Either g&=1 and gz=O
or g', =0 and $2= 1, according to which way the molecule
is oriented. In the site group 0I, we have symmetry corn-
binations of these states

At equilibrium in the disordered phase all sites are oc-
cupied equally, and only =z (k=O) has a nonzero aver-

1g

age. The order parameter for an ordered phase in which
all the molecules are aligned in the same direction is the
average of the "z (k=O) coordinate. In fact the or-

2Q

dered phase that is reached from the disordered phase by
cooling, the y phase, is characterized by columns of
aligned ammonium molecular ions. Within each column
the molecules have the same orientation, and the
columns form a square array with adjacent columns con-
taining molecules opposite orientations. The transition
to this phase from the disordered phase is described by a
collective pseudospin order parameter "z (kM ) (Yama-

2Q

da et al. , 1972) where k~ (ml=ao, n. lao, O. ) is the wave
vector at the I point of the Bri11ouin-zone boundary,
and a0 is the cubic lattice constant. In the lowest-
temperature 5 phase all the molecules are oriented in the
same way, which can be described by a collective discrete
order parameter with A2„symmetry at k=O. Alterna-
tively order parameters for the two phases can be deGned
in terms of collective rotator functions of A 2„symmetry
with k=k~ and k=0, respectively. The principal order
parameter for either structure would have I. =3, the
lowest I. value allowed by the tetrahedral symmetry of
the molecule.

Other discrete coordinates can be used to describe Quc-
tuations in order and translation-rotation coupling, but
can never account for a continuous distribution of orien-
tations. In the rotator function description this is possi-
ble, and, in principle, all the b functions that are sym-
metric in the site molecule group should be included. As
the NH4 ion is tetrahedral, the lowest allowed rotator
functions that are symmetric under the operations of the
molecular group are the seven I =3 functions, which
were originally introduced by James and Keenan (1959)
for the theoretical study of phase transitions in solid
CD4. In 0& these transform as Az„, T,„,and T2„, the
next-lowest rotator functions are formed from the L =4
harmonics and transform as A, , E, T, , and T2g.
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Thus the probability distribution function [Eq. (2.24)]
contains A 1~ rotator functions with L =4, 6, 8, . . . ,
where the series may be terminated at a point depending
on the required accuracy. The phase transition to the P
phase is described by an order parameter formed from
the L =3 collective rotator functions with symmetry A 2„
at the zone boundary point kM, b,„(k~). There are suit-
able functions with L =3, 7, and higher odd L values. In
general the most relevant order parameter is the one with
the lowest symmetry-allowed value of L, and the higher
ones may be treated as subsidiary order parameters or ig-
nored. As already noted, there are exceptions to this, for
example, the cyanides and C6O, where the electronic
structure of the molecule makes them more symmetric
than they seem. However, interactions with the ammoni-
um ion feel the tetrahedral symmetry, and the appropri-
ate principal order parameters are the averages of
b,&(kM ) with p = (L =3, A 2„). Notice that the symmetry
of the order parameter is the same whether one uses the
symmetry-adapted rotator function approach or the
pseudospin function description, although the microscop-
ic picture is somewhat different.

As a second example we consider CBr4 (Dolling et al. ,
1979; More et al. , 1980; More and Fouret, 1980). The
disordered phase is face-centered cubic, each molecule
being in a site with 0& symmetry with twelve nearest
neighbors. Both the molecular symmetry (Td) and the
site symmetry (0& ) of the molecule are the same as those
of the ammonium ion in our previous example, so that
the rotator functions available to describe the molecular
orientations are the same. The first nonzero term in the
expansion of the orientational distribution function is a
b,(k=0) function with L, =4, and there are possible
L =3 order parameters based on the A 2„, T1„,and T2„
symmetry combinations. At the zone center the symme-
try of these order parameters in the full space group (Oz )

is the same as the site symmetry. The ordered monoclin-
ic phase has a larger unit cell corresponding to a conden-
sation away from the zone center.

The pseudospin model for CBr4 (Coulon and Des-
camps, 1980) has to be very difFerent from that for the
ammonium salt, as the CBr4 molecule has six, rather
than two, favored orientations. It is constructed from six
states gj, corresponding to the six "D2d" orientations il-

lustrated in Fig. 2. These six discrete states transform as

1g g 2u

6

j=1

E = [ (ki+k4) (kz+ks) (4+4)V+12

E [(42+us) (f3+f6)1~2
(2.58)

To obtain a pure orientational state, such as g„one must
superimpose E~ and T2„states, showing that both order
parameters are involved in the ordering process. Corn-
paring these results with the rotator function description,
we see that both L =3 ( Tz„) and L =4 ( E~ ) order pa-
rameters must be involved if complete order of individual
molecules is to be obtained.

Although CBr4 and NH48r have identical site sym-
metries and identical molecular symmetry, the nature of
the ordered phase is different. This illustrates one of the
limitations of group theory, namely, that it cannot pre-
dict which of many possible symmetries are important.
The answer to this question depends on the intermolecu-
lar forces that determine the details of the microscopic
Hamiltonian. The use of discrete variables is justified
only if the crystal field, which tends to localize the mole-
cules, is very strong.

III. MICROSCOPIC DESCRIPTION OF
TRANSLATION-ROTATION COUPLING

In this section we study the coupling of molecular
orientations with lattice displacements at the molecular
level. As we have seen, translation-rotation coupling is
caused by the changes in orientational potential felt by a
molecule when it or nearby molecules or atoms move.
The amount of this change depends on the actual
strength and form of the intermolecular potentials. We
shall establish a form for the microscopic Hamiltonian,
which will later be used to find the free energy of the
crystal and to discuss the effects of translation-rotation
coupling on phase transitions and elastic constants. In
this Harniltonian the orientations are described by the ro-
tator functions already introduced, and center-of-mass
displacements by variables that we shall shortly define.
There are bilinear terms in the Hamiltonian coupling
pairs of those variables that transform in the same way in
the crystal space group. We shall show how the
coefficients in this Harniltonian can be determined from
intermolecular potentials.

This section is somewhat more mathematical, and
should give the reader sufficient knowledge to carry out
calculations for specific systems. On the other hand, a
reader who wishes to understand the implications of
translation-rotation coupling may prefer to proceed
directly to Sec. IV at first reading.

The potential energy of the crystal depends on the po-
sitions and orientations of every molecule and atomic ion
and is invariant under the symmetry operations of the
crystal. The terms that we are interested in are fairly
short range in real space and describe the interaction be-
tween a molecule and its close neighbors. The orienta-
tional distribution function depends on the changes in
the average potential energy of a molecule in different
orientations, while translation-rotation coupling depends
on the changes in potential energy when both orientation
and displacement are varied, so that we need a micro-
scopic description of the intermolecular potential as a
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function of orientation and the way in which it varies
with center-of-mass displacernents.

r
VV

V

A. Orientation dependent potential

The interaction of a pair of molecules n, n' whose
centers of mass are separated by X„„,depends on X and
on the orientations of the molecules. It is useful to use
the crystal axes as a frame of reference for the two mole-
cules. Because the rotator functions form a complete set
in the orientational space of each molecule, this interac-
tion can be expanded in rotator functions as (Michel and
Parlinski, 1985)

V„„=gc» (X„„)glgl b.„(n)b,„.(n'),
PP

(3.1)

V„„,(r ~ ) =g c» (X„„.)S~(v)S„(v'),
PP

(3.2)

where we have written S„(v) for S„(Q,). The coefficient
c„„.is obtained by integrating the pairwise interaction
over all orientations of both radius vectors (r„) and
(r„):

c„„(X„„.)=f f Vp„,(r,. )S„(Q,)S„.(Q .)dQQQ, .

(3.3)

where gl and gI are the molecular form factors intro-
duced before, and the label p =I., ~, A &, where ~ is a sym-
metry species of the site group and A

&
is the totally sym-

metric symmetry species of the molecular point group.
The interactions of molecules and atomic ions (if present)
are also described by an equation of this form, but if
species n ' is spherically symmetrical then
the only contribution is from L, '=0 with 6=1 and
go =N, (4~) '~, where N, =g, 1 is the total number of
atoms or interaction centers in each molecule.

We shall now calculate the expansion coefFicients
c„„,(X„„),assuming that the intermolecular potential
V„„. is the sum of two-body atom-atom terms V „., be-
tween atoms in each molecule. The form of this potential
varies for interactions between different types of atom or
ion. For simplicity we first calculate the interaction be-
tween two molecules each containing atoms of one type
in symmetrically equivalent positions. The molecule is
not necessarily linear. The interatomic potential between
atoms v and v' on different molecules n and n', V~„,(r„)
depends on the type of atoms v and v' and on the dis-
tance (r, ~ ) between them. This distance can be re-
expressed as a function of the molecular center of mass
separation vector X„„.and the orientations of vectors
(r„) and (r„. .) connecting each atom with the center of
mass of its molecule (see Fig. 5). The orientation-
dependent terms can be expressed in terms of site-
symmetry-adapted functions S„[Eq. (2.6)] in which the
label p=(L, 7) describes the L value and the symmetry
species in the site group and one can rewrite the interac-
tion between the pair of atoms v and v' as

FIG. 5. The vectors used in the calculation of molecular in-
teractions.

To obtain the interaction between the pair of molecules n

and n' we now sum over the interactions between all
atoms in each molecule,

V„„=gc» g S„(v)
PP V

g S„(v')
V

(3.4)

The sum of S„over atoms in each molecule transforms as
the totally symmetric symmetry species of the molecular
point group. If the molecule is in its standard orienta-
tion, in which the molecular axis system coincides with
the site axis system, this sum is equal to the form factor
gl, defined in Eq. (2.40). If the molecule is at an arbi-
trary orientation co, then

g S„(v)=gl 6„(co„) (3.5)

V„„=gc».(X„„.)h„(n)b,„(n')gLgI
PP

(3.6)

where b,„.(n') =b,„(co„'). In the case of linear molecules
this expression is still valid with 5 replaced by S. The in-
teraction between a molecule and a spherical species is
treated in exactly the same way, but the only coefFicients
are c„o. If there are several different kinds of atoms or
interaction sites in each molecule one just adds the con-
tributions from the. different pair potentials when calcu-
latjng Vnn"

The total potential energy of the crystal is the sum of
such terms for all pairs of rno1ecules and atomic ions in
the lattice. The different terms in the expansion have
different interpretations. For example, the crystal field
potential V, which is the Geld on a molecule n when all
other rnolecules are at their lattice sites and spherically
averaged, is obtained from the L ' =0 terms in the expan-
sion, while the higher I. terms give rise to direct
rotation-rotation coupling terms in the Hamiltonian,
V+ . The integrals in Eq. (3.3) are conveniently evalu-
ated numerically. However, it is also possible to give
analytical expressions for the coefBcients c„„.for some
particular intermolecular potentials (Briels et al. , 1986).

As a particular case we calculate the crystal field po-

where b,
&

is a rotator function [Eq. (2.21)] with label
p, =(L,r, A&) defining an L value, a symmetry species r
in the site group, and symmetry species A

&
in the molec-

ular group. Hence the instantaneous interaction between
molecules with arbitrary orientation is

Rev. Mod. Phys. , Vot. 66, No. 3, July 1994



736 R. M. Lynden-Bell and K. H. Michel: Translation-rotation coupling in molecular crystals

tential from Eq. (3.6). Molecules n' are treated in spheri-
cal approximation, so that SI is replaced by

A)
So ' =(4m) ' . Since the field at site n' is totally sym-
metric under the site group operations, we need the ex-
pansion coeKcients

cules or ions in the unit cell, which we distinguish by la-
bels ~. We label the molecule or molecular ion that is
disordered by ~= j and take its equilibrium position to be
the origin of the unit cell (i.e., ri =0). We define N„=3s
mass-weighted collective variables by

c,o(X„„)= f J V~„,(r„„.)SL '"(v)dQQQ ~,
4m

uz(k) =g (m, /N)'~ u;(n)exp(ik. X„), (3.13)

(3.7)

where a stands for (I., A ig, A, ). Observing that
0=1, we obtain for the total crystal field potential at

site n

V"=g u, b, (n), (3.8)

where

n'
(3.9)

VRR

k
(3.10)

where the coupling matrix for the direct rotation-
rotation coupling has elements

The sum is taken over all species in the crystal, that is,
both coions and counterions in ionic crystals. Due to
translational invariance the crystal field is the same at
each site. In the case of a linear molecule the 6, are cu-
bic harmonics, while for nonlinear molecules they are cu-
bic rotator functions (Press and Hiiller, 1973a and
1973b). Crystal field potentials have been calculated for
several systems, including the alkali metal cyanide s
(Michel and Rowe, 1985b) and neopentane (Breyman and
Pick, 1989).

It is convenient to write the orientation-dependent in-
termolecular contributions to the potential energy of the
crystal in Fourier space (reciprocal space). Using the
definition of gL in Eq. (2.40) and making use of the
translational invariance of the lattice, we obtain from Eq.
(3.6)

where m =g„m is the mass per unit cell and 5 is the
Kronecker symbol. The acoustic coordinates are then
given by

' 1/2

u (k). (3.15)

If there is more than one atom of a given type in the
primitive unit cell, the definitions of collective coordi-
nates must be generalized and it is advantageous to
choose combinations that transform under a given repre-
sentation of the space group concerned. However, in
many orientationally disordered crystals there is only one
molecule of each type in the primitive unit cell, so we will
not consider this complication.

C. Orientational interactions on a deformable lattice

where p=(v, i) is a composite label denoting the type of
molecule by v (e.g., ammonium or bromide in ammonium
bromide) and the direction of displacement (x, y, or z) by
i. The sum over molecules n is over all molecules of the
type being considered (z) in the lattice, and m is the
mass of this type of molecule.

It is then again convenient to define column and row
vectors u(k) and u (k) each with 3s components u (k)
and u*(k) [=uz( —k)], respectively. It is sometimes
useful to take combinations corresponding to acoustic or
optic modes, which can also be subsumed into the label p.
Following Born and Huang (1956), we define three vec-
tors, e;, i =x,y, z in the 3s-dimensional space of mass-
weighted lattice displacements

e, =[5,„(m, /m)'~, 5, (m, /m)'~, . . . , 5,,(m, /m)'~ ],
(3.14)

J„„.(k) =g gI gL c„„(X„„.)exp. [ik X. „„].
n'

Similarly the crystal field potential may be written

V =vNgou, h, (k=0) .

B. Displacement variables

(3.11)

(3.12)

In order to determine the translation-rotation coupling
we need to extend the results of Sec. III.A by considering
a nonrigid lattice. We start again from the expression
(3.6) for the intermolecular potential of a pair of mole-
cules. The instantaneous molecular center-of-mass posi-
tions are now given by r„=X„+u.„. Expansion in terms
of the lattice displacements yields to first order

The dependence of the potential energy on the center-
of-mass coordinates is conveniently described using col-
lective mass-weighted phonon displacement coordinates
u(k). In order to set these up we consider the displace-
ment u;(n) of molecule n from its equilibrium position,
X„ in direction I,. Suppose that there are s di6'erent mole-

v=v +v"&,0 (3.16)

where V0 is the rigid lattice contribution that has been
studied in Sec. III.A, which includes the crystal field
term and the direct rotation-rotation coupling term. The
first-order contribution from a pair of molecules or from
a molecule and a spherical ion is the derivative of Eq.
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(3.6) with respect to changes in the intermolecular dis-
placement

V'"=g g gc». (X„„.)b,„(n)b,„.(n ')gL gL.

X [u;(n) —u;(n')], (3.17)

XS„(Q,)S„(Q )dQQQ, . (3.18)

Contributions to the first-order energy from different
values of L, have different consequences. The term with
I.,I.'=0 is zero as the lattice is stable. The terms arising
from L,L '%0 have no contributions from interactions
between molecules and atomic ions. They give a trilinear
interaction V ", which generalizes the corresponding
result for the well-known compressible Ising model
(Wagner and Swift, 1970) and may cause anomalies near
structural phase transitions (Ginzburg et al. , 1980).
Here we are mainly concerned with the translation-
rotation coupling term V, which is obtained by taking
all molecules except one (labeled n) in the spherical ap-
proximation, that is L'=O, LAO. This term contains
contributions from both molecule-molecule interactions
and from interactions of molecules with spherical ions.
It can be written

V "=g g c,'„(X„„.)h„(n)gLgo[u, .(n) —u, (n')],

where u;(n) is the displacement of molecule (ion) n in
direction i from its ideal position, the label p=(L, ~, A, ),
and c „„.(X„„,) is the derivative of c„(X„„.) with respect
to a change of intermolecular separation in the direction
i, I;„„.. This is calculated from Eq. (3.3). For practical
calculations it is best first to take the derivative of the
pair potential and then to do the integrals over orienta-
tions,

d V~„,(r ~ ) B(r„„)
c „„(X„„)= d ~ BX.

VV inn'

V =g u(k) u(k). b.(k), (3.21)

where the translation-rotation coupling is described by
an N„XX& matrix v with k-dependent elements that de-
scribe the strength of the coupling. %'e shall also define
an X& XN„matrix U that is related to U by transposition
and complex conjugation. The matrix u is obtained by
Fourier transforming Eq. (3.19) and adding the contribu-
tions from all pairs of molecules. %'e define Fourier
transforms of the coeKcients c' [Eq. (3.20)], describing
the interaction of the molecule n with species of type a by

c'„(k)= g c „(X„„.)exp[ik. X„„.],
n'6v

(3.22)

where the label p = (i,a ) describes the direction of the dis-
placement and the type of species concerned. In a molec-
ular crystal with only one type of molecule with mass
m &, the matrix elements of u are

v „(k)=gL go[c'„(k=O) —c'„(k)]/m I~ (3.23)

In an ionic crystal with molecules (label 1) and coun-
terions (label 2) the coupling with the molecules is

other hand, in nonionic crystals the direct interaction is
often more important, and the coupling V may also
play an important role. For instance, in solid C60 this
coupling (Lamoen and Michel, 1993) causes a discon-
tinuity of the cubic lattice constant (David et al. , 1992;
Heiney et al. , 1992) at the orientational phase transition
at T, =260 K. In the rest of this article we concentrate
on the bilinear translation-rotation coupling.

It is convenient to write the coupling V " in Fourier
space. Using the collective rotator functions defined in
Eq. (2.45) and the displacement variables defined in Eq.
(3.13) we obtain

n, n' p i

(3.19)

&p~(k) =gl.go g c'.q(k=0) —c'„(k) (3.24)

where we have written e,.'„ for c „o to simplify the nota-
tion. In this case the expression (3.18) becomes

where the sum over p' is over displacements in the i
direction of species of all types (molecule and coun-
terion). With the counterions there is no k=O contribu-
tion, and

U „(k)= —gl goV'„(k)/m2~ (3.25)

XS (Q, )dQQQ„. . (3.20)

The relative strengths of the translation-rotation interac-
tion c „(X„„)and the direct rotation-rotation interaction
c» (X„„)depend on the interatomic distance. Since in
ionic molecular crystals such as the alkali metal cyanides
or ammonium halides the distance between unlike ions is
less than the distance between like ions, the bilinear
translation-rotation coupling V, which includes in-
teractions between atomic ions and molecules, becomes
dominant in comparison to direct cyanide-cyanide or
ammonium-ammonium orientational coupling. On the

In these expressions the label p identifies the type of mol-
ecule (1 or 2) and the direction i =x, y, or z of the dis-
placement.

For linear molecules the situation is somewhat simpler.
Michel and Rowe (1985a) published calculations of the
translation-rotation interaction in alkali metal cyanides,
thereby generalizing and extending earlier work by
Michel and Naudts (1977a, 1977b), Mahanti and Sahu
(1982), and Sahu and Mahanti (1982). Each cyanide ion
is surrounded by a shell of six neighboring alkali ions ar-
ranged octahedrally at distance a, a second shell of
twelve cyanide ions at &2a, a third shell of alkali ions,
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and so on. v „ is the sum of terms from each of these
shells. The rotator functions with I. =2 comprise a dou-
blet of E~ symmetry and a triplet of T2 symmetry
defined in Eqs. (2.8)—(2.12). The contribution from each
shell to U is the product (or sums of products) of an in-
tegral over orientations of molecule n of the type shown
in Eq. (3.20) and a matrix that contains k-dependent ele-
ments. The value of the integral is independent of the
value of k, but depends on the symmetry of the rotator
function involved.

In the case of E symmetry, the coupling matrix v is a
6X2 matrix coupling the functions given in Eqs. (2.8)
and (2.9) to x, y, and z displacements of the alkali-metal
ion (mass m~) and the cyanide ion, respectively. The
contribution to this matrix from the shell of nearest
neighbors is

2iA
I /2Pl~

sink a

sink a
—2 sink, a

0
0
0

&3sink a
—&3 sink, a

0
0
0

(3.26)

The T2g coupling matrix is a 6 X 3 matrix and the contri-
bution from the first shell has the form

sink, a

slnkz Q s1Ilky Q

0 sink a

s1Ilky Q sink~ a
2EB

in ()mM 0
0
0

0
0
0

(3.27)

The constants 2 and B are integrals of the type shown in
Eq. (3.20). The only contribution to A comes from
changes in which an alkali atom is displaced towards the
cyanide, while 8 arises from displacements of alkali
atoms perpendicular to the direction of the central
cyanide. This can be deduced by considering the vibra-
tional normal modes of an octahedral complex
(Herzberg, 1945) where the Es vibrations involve radial
displacements while the T2g vibrations have tangential
displacements. The contributions from shells of ions that
are further away can be found in a similar way. The in-
tegrals over Inolecular orientations are smaller and the
matrix elements vary more rapidly with k.

site n transform in the same way as a linear combination
of spherical harmonics of order L, they are changed by a
factor (

—1) when the coordinates are inverted in the
site center of symmetry. For every molecule or atom n'
at position r=X~—X~. relative to the chosen one, there
is another molecule of the same type at the inverse posi-
tion —r. Since the displacements u„change sign under
inversion, molecule n and its inverse must move in oppo-
site directions to preserve the center of symmetry and in
the same direction to destroy it. Thus the coupling
coefficients are obtained from Eq. (3.22),

c';&(k)=i g c sin[k. X„„,], even L,
n'

c,'„(k)=g c,'„cos[k.X„„.], odd L .
n'

(3.28)

The phase difFerence between these expressions describes
the fact that orientational variables of even I couple
out-of-phase with displacements, while those of odd I.
couple with in-phase displacements. The coupling con-
stant matrices for alkali cyanides given in Eqs. (3.26) and
(3.27) provide an example of this property for even L

The distinction between in-phase and out-of-phase
coupling is illustrated in Fig. 6, which shows a transverse
phonon in a one-dimensional system, with nodes and an-
tinodes at successive molecules of type X. If the coupling
is in phase, maximum and minimum values of the orien-
tational coordinate occur at the antinodes (right-hand
side of the figure) so that the displacement wave is in
phase with the orientational order parameter. If the cou-
pling is out-of-phase, the preferred orientational order
will have maximum and minimum values at the nodes of
the displacement as in the left-hand side of the figure.
Thus an instantaneous Auctuation in the phonon coordi-
nate is accompanied by a fIuctuation in the orientational
order.

If k is in a general direction, there are no further sym-
metry requirements for translation-rotation coupling to

D. The relative phases of the coupled displacement
and orientational waves

The relative phase of the interacting collective orienta-
tional and displacement variables is determined by sym-
metry unless the crystal or the molecule is optically ac-
tive. We assume that the molecule is not optically active
and the site is at a center of symmetry. As the single-
particle rotator functions h„of the chosen molecule at

FIG. 6. Demonstration of in-phase coupling of an L =1 order
parameter, such as a dipole {on the right), and the out-of-phase
coupling of an L =2 order parameter, such as a quadrupole mo-
ment {on the left), with phonon displacements {center).
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exist, but in directions of higher symmetry (such as along
( 100) in cubic crystals) and at special points, such as the
I' point (zone center, k=O) and zone boundaries, there
are more restrictions on coupling. As the order parame-
ters for the ordered phases are commonly at points of
higher symmetry, these extra restrictions are important
and depend on the space group of the crystal structure
concerned (Michel and Parlinski, 1985).

E. Coupling at low k values

The determination of the coupling between translation-
al phonons and orientational variables at low k values is
fairly straightforward and can be based on the I point
symmetry. Let us consider coupling terms of order k and
k2

It can be seen from Fig. 6 that out-of-phase coupling at
long wavelengths occurs if the crystal field determining
the preferred orientation at a particular site depends on
the gradient of the displacement field, while in-phase cou-
pling results when the local crystal field depends on the
second derivative of the field. This result may also be
found by performing a Taylor expansion of the coupling
coefficients v (k) about k=O. Using the earlier result [Eq.
(3.28)] that for rotator functions with g (gerade) symme-
try (those with even L) v (k) is an odd function of k con-
taining sin(k. X) terms, we obtain

Bv (0)
v „(k ) =ik + (L even),

a
(3.29)

F. Coupling to acoustic phonons

Acoustic displacement coordinates were defined in Eq.
(3.15); from Eq. (3.21) we can write

yTR u ac(k)t. vac(k) g(k) (3.31)

where the coupling constants in the matrix U" are found
from Eqs. (3.24) and (3.25) to be

v,
"=m '~ g [c',,„(k=O)—c,'„„(k)]gLgo . (3.32)

The sum over K is over different types of molecule and
atomic ion in the crystal, and m is the sum of the masses
per unit cell. From this equation it can be seen that there
is no coupling of orientational order to the acoustic pho-
nons at the zone center, k=O. The physical reason for

which is the expected coupling to the crystal-field gra-
dient. The fact that U, is imaginary again implies that the
coupled orientational variable is out-of-phase with the
displacement wave. For odd-L, variables that have u

(ungerade) symmetry, on the other hand,

a'v, „(0)
v „(k)=v „(0)——,'k k&

" + (L odd) .
a P

(3.30)

this is that the k=O limit of an acoustic phonon is a uni-
form translation of the whole crystal lattice. At small
but nonzero values of k the coupling depends on the L,

value of the interaction. From the argument in the previ-
ous section we see that it is linear in k for I. even, while
for L odd the lowest-order terms are quadratic in k.

In the long wavelength limit we shall show (Sec. VI)
that any terms that are linear in k in the coupling of
orientational waves to acoustic phonons lead to a cou-
pling to lattice strains at k=O with a consequent soften-
ing of some of the elastic constants. The symmetry argu-
ments just given show that only orientational variables
with even values of I, can contribute to this.

G. Coupling at larger k values

Away from the neighborhood of the zone center the
possibility or not of coupling depends on the direction of
k relative to the crystal axes (or to the axes of the re-
ciprocal lattice). If k lies in a general direction there are
no symmetry restrictions on translation-rotation cou-
pling, although coupling to u type variables (odd L) will
be in-phase and even in k, while coupling to g variables
(even L) will be out-of-phase and odd in k. However, if k
is along a special direction of high symmetry, then there
are symmetry restrictions on coupling, which may
change at the zone boundary if the zone boundary point
has higher symmetry. Translation-rotation coupling can
only occur between displacement variables and rotator
functions, which transform in the same way under the
full space group.

The symmetry of wave functions in crystals with a
definite k vector was first considered by Bouckaert et al.
(1936). The examples that they used were cubic crystals.
As many orientationally disordered crystals are cubic, we
now consider these in greater detail. The axes of recipro-
cal space (containing the k vectors) are parallel to those
of the real crystal. Directions of high symmetry occur if
k is [$00] (the 6 directions), [g'0] (X) or the [g'g] direc-
tions (A). Note we use the notation that square brackets
denote the star of equivalent k vectors. Table II shows
the symmetries of collective variables in an fcc lattice
with Fm3m symmetry. In the column on the left-hand
side are the various side point-group symmetry species
(group Oh ), together with symmetries of possible single-
molecule rotator functions or displacement variables.
If one then constructs collective variables from linear
combinations of these single-molecule functions with
coefficients of the form exp[ —ik.X] as in Eq. (2.45), then
these collective variables transform according to some
symmetry species of the full space group. At the zone
center (k=O) the relevant symmetry species are denoted
by *I with appropriate subscripts and superscripts.
There is a one-to-one correspondence between the
single-molecule symmetry species and the zone-center
full group species. Away from the zone center the sym-
metry of the collective functions can be found from the
compatibility tables (Hoyle, 1990) for symmetries at
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TABLE II. Relation of symmetries of single molecules and collective variables in an fcc lattice.

Site
symmetry

Alg
A2g

Tl g

2g

A2Q

T1Q

2Q

Order
parameter

I.=2,4,"D2d99

I.=4

CCT
d

I. =1,3, T'
CCD 99

2d

[000]
iIC p+

1
Q p+

2
Qp+

3
Q p+4
)jC p+

5

)fC p—

[$00]

+ 5fCg

)fC g
SfC Q +

)le g

+

M40]

)fC y
)fey + 91Cy

91C y

)fC y
)fC y

)fC y
)fthm + )fCy

'Translational displacement of center of mass. LA phonons transform as 61, Xl', Al.

difFerent k values and are shown in Table II. To use this
table one identifies the symmetry of the single-molecule
displacement or orientational variable concerned in the
site group (left-hand column) and then finds the symme-

try of the collective variables for the value of k that one
is interested in. If the phonon and orientational variables
for this k value have the same symmetry, they may cou-
ple, otherwise not. For example, consider a collective
variable made from A2„orientational functions. At the
zone center such a variable transforms as 'P2 and does
not couple to any displacements that transform as *I

4 .
However, if k is in a X direction or in a A direction, cou-
pling to phonon modes is possible. One may also deduce
whether a particular orientational variable couples to
longitudinal or transverse phonons as the longitudinal
phonon mode always transforms as the most symmetric
irreducible representation of the space group. For exam-
ple, it can be seen from Table II that in the A direction a
collective rotator function made from L, =3 variables
(which transform as 22„ in Oi, ) transforms as *A, and so
couples with the longitudinal mode, but as the corre-
sponding function in the X direction transforms as *X3
rather than *X&, it couples with one of the transverse
modes rather than with the longitudinal mode.

H. Pseudospin description of translation-rotation coupling

Translation-rotation coupling may also be formulated
using the discrete or pseudospin variables =(k) intro-
duced in Sec. II.C. We consider as an example the ortho-
rhombic disordered phase of sodium nitrite (Heine et al. ,
1984). Since the crystal field exerted by the surrounding
Na+ ions is strong, the molecular dipole moment of each
nitrite molecule points in either the +1 or the —1 direc-
tion. The site symmetry is D2&. In analogy with the dis-
cussion in Sec. II.E we define variables g+ and g, which
have values 1 or 0 according to the direction of the ni-
trite dipole. Symmetry-adapted discrete variables,

=/++/ and:-ii =g+ —g', can be formed in e-
1g 1Q

actly the same way as described in Sec. II.C for ammoni-
urn bromide. The variable =~ has values +1 depending

1Q

on which way the molecule is oriented and behaves like a
spin variable. We can form collective variables, =~

1Q

from these [cf. Eq. (2.57)], and write the translation-
rotation coupling as

V =g u (k).v(k):-(k),
k

(3.33)

If it is facing in the other direction, a similar equation
with V for V+ obtains, so that we can write

V„=g g c,'(X„„):-ii [u, (n) —u;(n')] .
n' i

(3.35)

This equation has exactly the same form as Eq. (3.19),
which we derived for the rotator function treatment, if
we replace the rotator function 6 by the pseudospin vari-

where " is a column vector containing in this example
the single element =ii (k); u is a row vector containing

1Q

six elements, the x, y, and z displacements of NO& and
Na+ ions, respectively.

To determine the values of v(k) in terms of inter-
molecular interactions, it is necessary to follow the same
arguments in terms of orientational variables as in the
previous section (III.C). We can restrict ourselves to dis-
placements of the center of mass of the rnolecules and of
the sodium counterions in the y direction, parallel to the
1 axis. In the linear approximation we again consider
only the orientation of a particular nitrite n and average
all other nitrite ions over their two con6gurational states.
When this averaging has been performed, the energy of a
molecule in an ideal lattice does not depend on whether
the molecule is facing in the +1 direction, that is, which
of the discrete variables g+ or g is equal to one, but the
change in its energy with displacement does depend on
the direction in which it is oriented. The energy V+ of a
molecule facing in the +1 direction is, to first order in
the lattice displacements,

a V+(X„„,)
V„+=Vo+g g [u;(n) —u;(n')]+

i n' ~ inn'

(3.34)
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able ", and set all form factors equal to 1. In the pseu-
dospin treatment the coefficients c' are determined from
sums rather than integrals. In this example

1 8 V+
c (X„„}=-

inn'
(3.36)

The coupling matrix elements v (k) are determined from
the c' by Eqs. (3.23)—(3.25). The matrix v in this example
contains only two terms, a coupling of the B,„pseudo-
spin variable to both the nitrite displacements in the y
direction and the sodium y displacements. As the pseu-
dospin variable is odd under inversion, the coupling of
orientational order and phonon displacement is in phase,
and the exp term in the definition of c' [Eq. (3.22)] may
be replaced by a cosine. The matrix elements are for the
nitrite displacements

where p=m, m2/m is the reduced mass. The optical dis-
placements are given by

u'~'(k)=g w'P"u (k)
P

(3.42)

with p = ( NO&, y } and (Na, y). The coupling with NO2
orientations then reads

V =g u (k).v'g' .= (k) (3.43)

with

(3.44)

In particular, at the zone center we obtain by substitu-
tion in Eqs. (3.37) and (3.38)

vz~ (k) = »2, g c~(X«.)[1—cosk X~.]
1

~ NQ& n'=NO2
v opt (0 )

— i /2
l. u

1 c'(X„„.) .
n'=Na

(3.45)

+ g c'(X„„).
n'=Na

and for the sodium ion displacements

(3.37) We see that only counterions contribute to the
translation-rotation coupling at k=O. This is under-
standable since all the nitrites move in phase at k=0 and
therefore do not inhuence their relative orientations.

1(k) =—,/2 g c~(X«)cosk X«. .~ Na n'=Na
(3.38)

These expressions are more general than previous results
(Michel, 1981}as they take into account the interaction
of a central nitrite molecule at site (n) with all the ions in
the crystal, sodium and nitrite, rather than just the sur-
rounding sodium ions.

Coupling to the acoustic phonons is just

v~z =m '/ g c~(X«)[cosk.X„„—1], (3.39)

which in the long wavelength limit reduces to

(3.40)

(3.41)

The fact that this is of order k rather than k means that
the translation-rotation coupling does not facilitate the
zone-center phase transition to the ferroelectric phase. It
is sufficiently strong, however, to cause a transition from
the disordered phase to an incommensurate phase with a
6nite but small value of k that is stable for a few degrees
above the ferroelectric phase (Heine and McConnell,
1981;Heine et a/. , 1984; Lynden-Bell et al. , 1984).

Since NaN02 contains only two ions per primitive unit

cell, it is instructive to consider the coupling of optical
phonons to the pseudospin states at the zone center
(Ehrhardt and Michel, 1981a, 1981b). Restricting our-
selves again to displacements along the b axis, the optical
basis vector wz [compare with Eq. (3.14) for the acoustic
basis vector] has two nonzero components

' 1/2 ' 1/2
WOPt= 0, P,O, O*

P 0
m( Pl2

I. Single-molecule description
of translation-rotation coupling

In the last few sections we have concentrated on a col-
lective description of the translation-rotation coupling
process. This is the most appropriate description for
phenomena that depend on the crystal as a whole, such
as elastic constants, phase transitions, and phonon spec-
tra. However, the physical interactions causing the
translation-rotation coupling are local, and it is instruc-
tive at this point to return to a molecule-based descrip-
tion in order to discuss the e8'ects of symmetry on the
translation-rotation coupling at a particular site. Most
experimental methods probe collective rather than local
(single-molecule) properties, but there are some, such as
NMR, which measure averages of local properties. In
computer simulations one can measure the details of the
dynamics of a single molecule as well as averages of both
single-molecule and collective properties.

The translation-rotation coupling at a particular mole-
cule n is given by Eq. (3.19), which reads

V" =g gc„(X«)b„(n)gLgo[u;(n) —u;(n')] . (3.46)
I

n, n p i

If the molecule n is at a site with a center of symmetry,
then there are molecules at both +X and —X that in-
teract in the same way. It has already been argued in
Sec. III.D that molecule n' and its inverse must move by
equal amounts in opposite directions to preserve the
center of symmetry of the site. If they move by equal
amounts in the same direction the change in potential is
antisymmetric under the inversion of the site coordi-
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nates. As 4 functions with even values of L, are even,
and those of odd values of I. are odd under this opera-
tion, we see that a single-molecule rotator function with
an even-L, value couples with a local distortion that has a
node at the molecule concerned, while rotator functions
with odd-I. values couple with local distortions whose
maxima are at the molecule concerned. This behavior is
clear in Fig. 6 when viewed from a single-molecule point
of view and results in the fact that even-L rotator func-
tions of a particular molecule never couple to the dis-
placement of the same molecule. The argument may be
extended as, at least for small displacements, the dis-
placement field at a molecule transforms as I. = 1, its gra-
dient as L, =2, and its second derivative as I. =3, and
these terms can only couple to the rotator functions of
the same I. values.

J. Form of the potential energy

The result of this section can be summarized by saying
that the potential energy can be written

V VTT+ VR+ VTR+ VRR+ VRRT. . . (3.47)

where V describes the center-of-mass vibrational po-
tential energy, V describes the crystal field potential felt
by one molecule in a rigid ideal lattice with the orienta-
tions of all other molecules averaged over their distribu-
tion functions, V " is the translation-rotation coupling
describing the interaction between orientations and dis-
placements, and VR describes the direct interaction be-
tween the orientations of pairs of molecules, while the
final term is a trilinear term in orientations and displace-
rnents. This expansion can be extended to include
higher-order coupling terms if required. In the harmonic
or renormalized harmonic approximation (see, e.g. ,
Horner, 1974) the phonon term V is

V =g-,'u(k) .M(k) u(k),
k

(3.48)

where M is the dynamical matrix describing the phonon
frequencies in the absence of translation-rotation cou-
pling (the bare frequencies).

The total expression for the potential energy to second
order can be written

where the sum is over all k values and, to simplify the no-
tation, we have omitted the explicit k dependence of all
the terms in the square brackets. The values of the ma-
trices M, U, and J depend on the details of the intermolec-
ular forces in the crystal, and, if these are known, the ma-
trices U and J can be calculated using the techniques ex-
plained in this section. In the following section we will
use the potential V [Eq. (3.49)j as a starting point for a
derivation of the free energy and other thermodynamic

V= V +g —,'[u ~ M.u+u ~ v b, +b, .v .u+b, J 5],
k

(3.49)

quantities that describe the thermoelastic behavior of
orientationally disordered crystals.

IV. FREE ENERGIES AND SUSCEPTIBILITIES

A. The Landau free energy

The most important thermodynamic quantity for a sys-
tem is its free energy. It can be used to determine other

macroscopic thermodynamic properties and to investi-
gate phase transitions as these occur when two phases
with different structures attain the same free energy. The
Helmholtz free energy A is the free energy of a system at
equilibrium and is related to the partition function of the
system in a canonical ensemble. This corresponds to
macroscopic thermodynamic conditions of constant
volume and temperature T. The Landau free energy F is
the free energy of the system when it is constrained so
that the mean value of some order parameter Y is equal
to Y. The Landau theory of phase transitions, which can
be applied to the order-disorder phase transitions in
orientationally disordered crystals, is based on an expan-
sion of the free energy F in a power series in order pa-
rameters (Landau, 1937; Landau and Lifschitz, 1980)

F =Fo+ c4 Y +BY +CY (4.1)

The actual value of Y in an unconstrained system is the
value for which F is a minimum. In a disordered crystal
all other parameters are equal to zero, so that the condi-
tion for such a phase to be stable is that F is a minimum
at Y=O. In the expression (4.1) this is true if the
coefficient A is greater than or equal to zero. If the
coefficient B is identically zero and C & 0, the Landau ex-
pansion leads to a second-order phase transition at a tem-
perature T, where A changes sign. On the other hand, if
B is still zero but C (0, the phase transition is of first or-
der and the expansion has to be extended to sixth-order
terms. If 8%0, the phase transition is always of first or-
der. Whether B is different from zero or not depends on
the symmetry of the order parameter. When B =0, the

magnitude and sign of C can sometimes be tuned by
external pressure. This effect is due to a coupling that is
quadratic in the order-parameter Auctuations and linear
in the lattice displacements, i.e., terms of the form V
in the potential energy. These terms give a negative con-
tribution to the coefficient C. The mechanism is well
known in compressible magnetic lattices (Wagner and
Swift, 1970; Bergman and Halperin, 1976) and is also
relevant in molecular crystals (Michel and Theuns, 1989).
Here we shall restrict ourselves to a consideration of the
bilinear coupling V, which affects the value of the
coefficient A in the Landau expansion. Indeed, if this
coupling is sufficiently strong, it is dominant in driving
the structural phase transition irrespective of whether it
is first or second order. In orientationally disordered
crystals there are many possible order parameters, and
the Landau free energy is written as a power series in all
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the order parameters and includes cross terms between
them. Each term must be totally symmetric under the
symmetry operations of the crystal space group. It is
convenient to use the mean values of the phonon dis-
placement coordinates, u(k)=(u(k}), and the mean
values of the rotator coordinates, Z(k)= (E(k) ), as or-
der parameters. We shall show that, in a mean-field ap-
proximation,

F =Fo+$ —'[ut.M u+ut. v b, +At v .u2
k

+b, .(yo '+J+j ).b, ]+ (4.2)

where M and U are the k-dependent coupling-constant
matrices appearing in the Hamiltonian [Eq. (3.49)], j is a
self-energy matrix that is independent of k, and yo is a
single-particle susceptibility matrix. The criterion for
stability of the disordered phase is that I' is a minimum
when all the order parameters are zero. This can be
found by imposing the condition (BF/Bu)& r &=0 and

eliminating u from the equation for the Landau free ener-

gy to give

F =F0+/ —,'b. .(yo '+J+j —v .M ' v) 5, (4.3)
k

which shows that the disordered phase is stable provided
that all the eigenvalues of the matrix (yo '+J
+j —vtM 'v) for each k value are greater than zero.
We see from this that the effect of the translation-
rotation coupling term U is to replace the coupling matrix
Jby an effective coupling

J'=(J+j —v .M ' v) . (4.4)

Thus translation-rotation coupling provides an indirect
mechanism for coupling between the orientational order
parameters that acts in addition to the direct coupling
and may even be the dominant coupling term. The phys-
ical origin of this effect is the enhancement of orienta-
tional order in a lattice with a permanent distortion u
and is similar to the time-dependent ordering associated
with fluctuations in the phonon displacements discussed
in Sec. III. Instability sets in when J (or its largest ei-
genvalue) is more negative than go . While the direct
coupling J may have either sign, j is always positive, and
the indirect term u ~ M '.

U always reduces J', increasing
the tendency for instability.

In many respects the bilinear coupling of orientational
modes to lattice deformations in molecular crystals is
analogous to the coupling of electronic degrees of free-
dom of Jahn- Teller ions to lattice deformations
(Kanamori, 1960; Elliott et al. , 1972; Gehring and Gehr-
ing, 1975). In general, phase transitions where an order
parameter is coupled to strain components are known as
ferroelastic transitions. Their symmetry properties have
been extensively discussed by Toledano and Toledano
(1980).

Expressions for the Landau free energy have been de-

rived previously for an orientationally disordered crystal
with translation-rotation coupling (Michel and Courtens,
1981; Michel and Parlinski, 1985) using a Lagrange mul-
tiplier method. That procedure was inspired from earlier
work of Feder and Pytte (1973) on Jahn-Teller phonon
coupled systems. Here we will present an alternative
derivation of the free energy based on a variational
method. The final result of these two methods is the
same and gives an expression for the free energy as a
functional of the displacive and orientational variables.
Other derivations of expressions for the free energy in-
clude that of Sahu and Mahanti (1984},who started from
an effective rotational Hamiltonian in which the linear
coupling to the phonon variables had been removed by a
canonical transformation, and that of De Raedt et al.
(1981) from a series expansion of the partition function.
Earlier, Press and Hiiller (1973b) derived an expression
for the Landau free energy of CD4 on a rigid lattice.

B. Calculation of the Helmholtz free energy
and the susceptibilities from the microscopic Hamiltonian

The susceptibilities of the system provide a convenient
route for connecting the microscopic Hamiltonian with
the macroscopic Landau free energy. Susceptibilities are
also important as they can be measured from equilibrium
fluctuations either in computer simulations or by experi-
mental techniques such as diffuse x-ray and neutron
scattering.

Suppose that the system has a pair of order parameters
u and A. To determine the susceptibilities of the system,
we find the equilibrium Helmholtz free energy
A (G„,Gz ) in the presence of fictitious fields G„and Gz,
which interact with the phonon and rotator order param-
eters, respectively. The resulting Hamiltonian is

I=T+ V+/ ut. G„+$b. G~,
k k

(4.5)

where V, Eq. (3.49), is the potential energy of the crystal
in the absence of the fields and T is the kinetic energy.
G„(k) and Gz(k) are vectors in the same space as u and
5, respectively.

The Helmholtz free energy of a classical system is re-
lated to the Hamiltonian through the canonical partition
function, which has momentum- and position-dependent
parts. A11 position-dependent properties are determined
by the configuration integral Z, defined by an integral
over all position coordinates

Z =f exp( —V„,/k' T)d r, (4.6)

A = —k~TlogZ . (4.7)

The average value of any position-dependent quantity q is

where V„, is the potential energy term in the Hamiltoni-
an, including any field-dependent terms. In particular,
the configuration part of the Helmholtz free energy is
given by (Landau and Lifschitz, 1980)
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q =Z ' f q exp( —V„,/ks T)d r . (4.8)

From Eqs. (4.5) to (4.8) it can be seen that differentiating A with respect to the fields gives the order parameters, so that
diiTerentiating twice gives susceptibilities; thus,

8 A

~G (~)~G ( ~) =Egg=(~(&)&( —k))/k~T .

(4.9)

In order to evaluate A (G„,Gz ), we use the Hamiltonian of Eq. (4.5},which includes the fields to obtain

Z= f exp —V +$ —,'[u M u+u Ub, +b, .vt. u+E J b]+G„u+G~& E
k

kg T d (4.10)

We now eliminate the cross terms between phonon and orientational variables by defining a set of modified phonon vari-
ables forming a column vector U with k-dependent components

U=u+M 'u-6+M '6 (4.11)

Note that the quantities M, U, and G„, which appear in this equation, are k dependent. Substituting this in Eq. (4.10)
gives

U M-U 6'-M-'. 6
Z = — exp exp

Xexp — V"+—$ [b, (J uM 'U). b—, +(G~z Gt.M '.U} b—, ] . k~ Td~r . (4.12)

The integration over the 3X coordinates can be resolved into integrations over the center-of-mass positions and over
molecular orientations. Integrating over the center-of-mass coordinates is equivalent to integrating over the modified
phonon variables and results in the replacement of the first exponential term in the integral by products of terIns of the
form [2mks T/M(k)]'~, which are the same as one would obtain from the phonon term in the absence of translation-
rotation coupling. Thus the Hclmholtz free energy is the sum of an unmodified phonon term, a field-dependent term
and a rotational term

A = A~h
—

—,
' g G„M' G„—.k~T1.ogZ,« .

k

The rotational partition function is

(4.13)

Z„,=f exp V"+g—[ ,'bt (J —UtM 'u) b, +—Gt bi, ] . k~Td~m,
k

where 6, is a new ficld defined as

6 =6 —v M .6—I

(4.14)

(4.15)

To evaluate Z,«one must evaluate Eq. (4.14) by integrating over the orientation of each molecule.

C. Mean-Seld approximation

This rotational configuration integral cannot readily be evaluated, and we seek an approxiIDation to A. We shall use
a variational method equivalent to the mean-field approximation. First, we take the self-interaction, which is really a
single-particle term (cf. the discussion in Sec. III.A}, out of the term that is quadratic in the rotator functions and put it
into a new CRcctivc single-particle potential S
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W =V ——'b, (tu ) .(utM 'u) h(cu }

(4.16)

where j is a self-coupling matrix that is the average of the indirect-coupling matrix U -M .u over all 3Sk values

This gives

gu .M '.u .
k

(4.17)

Z«t =Iexp —W +g ( —,'E .J'.E+6 l
.b, )

k

(4.18)

where the e6'ective orientational coupling matrix J' is
given by Eq. (4.4) and contains the direct coupling, the
self-coupling, and the indirect contribution.

The rotational free energy is then estimated using the
Bogohubov inequality

~,.t= —& [-,'Gi Xo [I+~'Xoj '.Gi j
k

(4.26)

Minimizing this with respect to the variational parameter
62 gives

~(u~ rot — trial + ' rot trial ~ trial (4.19) so that our estimate of the total free energy is

with a trial Hamiltonian H„;,i=W +pi, Gz.b„where
Gz(k) are variational parameters to be determined. Ex-
panding the configuration integral, we obtain (to quadra-
tic order in Gz )

A =A —g [ —,'G„M '.6„
k

—,'Gi Xo.[1+J' Xol (4.27}

where

Z„,=Jexp —[W /k~T]d~ru .

The di6'erence in Hamiltonians is

(4.20)

(4.21)

h(k) and u(k) are determined from this expression by
differentiation with respect to 6&(k) and 6„(k}at fixed k
using Eq. (4.15) to relate Gl to these two fields. This
gives

b(k)=BG k
= —xo[1+J'xo] Gl

t}A —1

H„,—H„;,l=g [ —,'5 J'.4+(Gl —62).b, ], (4.22)
k

while the value of A„;,1 is

0~t..i= ~-» —X ~Gz Xo Gz
k

(4.23)

where A „,= —kz T logZ, „and yo is the susceptibility
matrix of the 6 rotator functions calculated with the
single-particle e6'ective Hamiltonian 8' . The average
values of the rotator functions are found by
differentiating Eq. (4.23) with respect to Gz

~ tIjg1

gG 0 2
——X G

2
(4.24)

which can be used to compute the second term in the Bo-
goliubov inequality (4.19) to give

~-t~ ~'.t+& [-,'62 (Xo+Xo ~' Xo} 62 —Gt.Xo 62j .
k

(4.25)

where the k-dependent quantities J', U, M, 61, and 6„
are evaluated at the chosen value of k. The k-dependent
collective susceptibilities are determined from the second
derivatives of A with respect to the fields [Eqs. (4.9)] to
be

X~~=Xo'[1+~' Xoj
'

Xq„=—[1+J'Xo] '.u .M

X„„=M '+M ' u.Xo[1+Xo.l'] '.u M

=M +M .U -g&& u M—1 —1 —1

(4.29)

(4.30)

(4.31)

It should be noted that there are no cross terms in sus-
ceptibilities between functions of di8'erent symmetry. In
this mean-field approximation the orientational suscepti-
bilities are well behaved unless (Xo '+J'} has a zero ei-

genvalue, the same criterion for the stability of the disor-
dered phase that we have already determined from the
Landau free energy (Sec. IV.A). It includes the effect of
translation-rotation terms in the e6'ective coupling con-
stant J'. When the orientational susceptibility diverges
at some value of k, Eqs. (4.29)—(4.31) show that x„„and
y„& diverge at the same value of k.
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Susceptibilities and mean-square Auctuations are a use-
ful way of Gnding precursor effects of the ordering phase
transition in computer simulations. One may look for an
anomalous temperature dependence or an abnormally
large susceptibility, but a particularly useful quantity
that is easy to compute is the correlation coefficient of
fluctuations in phonon and rotator variables

If there is only one rotator variable and one phonon coor-
dinate involved in the phase transition, then Eqs.
(4.29)—(4.31} can be used to show that the modulus of
this correlation coefficient is equal to unity at the phase
transition. The determination of the positions of the
maxima and minima of this function in k space and the
size of the correlation coefficients at these points com-
pared to unity have proved to be useful diagnostics of in-
cipient ordering (Lynden-Bell et a/. , 1983, 1989; Dove
and Lynden-Bell, 1986}.

To obtain the Landau free energy F from the
Helmholtz free energy A, one uses the fact that A can be
written as a power series in the fields, G„and Gz, togeth-
er with the thermodynamic relation

dA = SdT pd—V++—(udG„+3 dG~) . (4.33)

F is a function of the order parameters and has the
property that it is a minimum as a function of changes
in order parameter at constant temperature and vol-
ume. Consider the combination [ A —gz ( G„u +G J, Z ) ],
whose differential is given by

d A —g (G~tu+Gzb. ) = SdT —pdV—
k

—g (G„du+Gad', ) .

(4.34)

F=A —g(G„u+Ggb) .
k

(4.35)

F must now be expressed in terms of order parameters.
By inverting Eqs. (4.28), which relate the order parame-
ters to the 6elds, we obtain

F=FO+$ —[u M.u+u .u.Z+b, u u1

2
k

+b (yo '+J+j) Z]+ (4.36)

This expression for the Landau free energy as a bilinear
function of order parameters depending on the co-

In the absence of external fields this satisfies the Landau
free energy criterion that it is a minimum at constant T
and V when expressed as a function of the order parame-
ters. Thus we identify the Landau free energy as

efficients in the microscopic Hamiltonian is the goal of
this section.

V. PHASE TRANSITIONS

is expected when J' has a negative eigenvalue. The tran-
sition temperature T, is given by

T, =l.argest [
—yo J']

=Largest [yo (u M '.u —J—j)I, (5.2)

There are many examples in which the phase transition
from the disordered phase to the orientationally ordered
phase is affected by translation-rotation coupling. If the
order parameter for the ordered phase has the same sym-
metry as a phonon displacement coordinate, this cou-
pling will occur at least to some extent, and the transition
temperature will be raised. Another result of the involve-
ment of translation-rotation coupling in the phase transi-
tion is that the ordered structure differs from the disor-
dered structure by displacements of the centers of mass
in addition to having orientational order. The phase
transition may then be classified as a mixed displacive
and order-disorder transition.

The data in Table I show that it is common for
translation-rotation coupling to be involved in phase
transitions of ionic lattices and rare in phase transitions
of simple molecular crystals. This is because there is a
large direct interaction between molecular orientations in
m.olecular crystals, while in ionic compounds the molecu-
lar ions are separated by a lattice of counterions, so that
the direct interaction J is usually small and the indirect
interaction arising from translation-rotation coupling via
the counter ions becomes important. A similar situation
arises in urea inclusion compounds in which long chain
paraffins are con6ned in a honeycomb lattice made of
urea or thiourea (Chatani et al. , 1978; Forst et al. , 1986).
At high temperatures the relative orientations of the
paraffin molecules within the honeycomb are random; at
lower temperatures they order to a honeycomb structure
with a simultaneous distortion of the lattice. Again the
direct interaction between adjacent paraffin chains is
small, and the ordering is enhanced by an indirect cou-
pling via the distortion of the host lattice (Lynden-Bell,
1993).

From the discussion in Sec. IV.A, we recall that the
criterion for the disordered phase to be stable is that the
eigenvalues of the k-dependent matrix (1+go J') are
greater than zero at all 3X k values. As the temperature
is lowered the crystal undergoes a second-order phase
transition when one of these eigenvalues becomes equal
to zero. The structure of the ordered phase depends on
which k value and which A„correspond to this eigenval-
ue. The single-particle susceptibility matrix yo is diago-
nal and can be written as yo=yo/T where yo is a diago-
nal m.atrix that depends only weakly on temperature.
This means that Curie-Weiss behavior in which

(5.1)
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where Largest means the largest eigenvalue of the matrix.
The actual phase transition that occurs will be to the
phase with symmetry corresponding to the symmetry and
k value of the eigenvalue with the largest T, . For exam-
ple, in KCN the maximum eigenvalue of any of these ma-
trices is for T2~ symmetry at k=O, while for NH48r, the
maximum is at a zone boundary value of k, and for sodi-
um nitrite the maximum is an at incommensurate value
of k. Both the direct coupling J and the indirect cou-
pling v~-M ' v are k dependent. In molecular crystals
variations in the direct coupling tend to be the most im-
portant, while in ionic lattices the molecules are, to some
extent, isolated from each other by the lattice of coun-
terions so the indirect coupling tends to dominate. There
are some exceptions to this generalization, for example,
Na02 in which the transition occurs from an orientation-
ally disordered phase to a Pa3 ordered phase with no
translation-rotation coupling (see the discussion in Sec.
V.A), and the urea-paralfin inclusion compounds men-
tioned above in which translation-rotation coupling is
important.

The k dependence of the indirect coupling near the
zone center depends on whether the principal order pa-
rameter has an even or odd value of L. As k —+0, the in-
verse of the dynamical matrix for acoustic modes, M
tends to infinity as k at low k values. The translation-
rotation coupling matrix v increases with k. We have
seen that, for rotator functions with even L„v is linear in
k at small k, while for rotator functions with odd values
of L, v depends quadratically on k in this limit. Thus in
the low k limit, the indirect coupling matrix v -M 'v in
Eq. (5.2) vanishes if L is odd and tends to a constant if I.
is even. We deduce that rotation-translation coupling
cannot facilitate a phase transition at the zone center if
the principal order parameter concerned has an odd
value of L,. If L is even, a zone center phase transition
will occur if this is the point at which the indirect cou-
pling is a maximum. This depends on the crystal struc-
ture and, to some extent, on the details of the intermolec-
ular interactions. The indirect coupling is a maximum at
the zone center for coupling to the L =2 order parameter
in alkali metal cyanides, but is a maximum at the zone
boundary for the very different system of urea/alkane in-
clusion compounds even though the order parameter is
also I- =2 symmetry (Lynden-Bell, 1993). We should
emphasize that for even I the limiting value of the in-
direct coupling v M '.v at k=O depends on the direc-
tion from which the limit is approached. This is a conse-
quence of the fact that the elastic forces are long-ranged,
and suggests that there may be a shape dependence of
system properties in the low temperature phase for
monodomain samples, while in a real crystal there is a
breakup of the ordered phase in domains. For additional
discussion of this point the reader is referred to Cowley
(1976), Folk et al. (1976), and De Raedt et al. (1981).
Normally the principal order parameter is a rotator func-
tion with the lowest value of L that is totally symmetric
in the molecular point group. We have also seen that all

the order parameters of centrosymmetric molecules are
rotator functions with even L„while for other molecular
symmetries the lowest allowed value of L is odd. Thus
we expect in general that centrosymmetric molecules in
ionic lattices will order at the I point and that noncen-
trosymmetric molecules will order at some other point in
k space with a resulting enlargement of the unit cell on
ordering. In such cases the increase of v and v with k
outweighs the decrease in M ' and ordering takes place
elsewhere, often at a zone boundary point.

In some examples there is clear evidence for competing
order parameters. We shall see in the next section that in
the alkali cyanides, both E and T2 elastic constants
behave anomalously and there is a competition between
Eg and T2g ordering. Molecular-dynamics calculations
of sodium nitrate (Lyndell-Bell et a/. , 1989) show clear
evidence for competition between ordering at the zone
boundary Z point (which gives the observed R 3e struc-
ture) and a translation-rotation mediated process at the E
point, which would give a monoclinic structure. There is
experimental evidence to support monoclinic Auctuations
and one can interpret the anomalously small critical ex-
ponent in the ordered phase in terms of this competition.
For further discussion see Lynden-Bell et al. (1989).

Normand et al. (1990) have shown that materials with
multiwell potentials may show a second anomaly or
quasitransition (in addition to the order/disorder phase
transition) when the temperature is equal to the well
depth. This shows up in the speci6c heat and in spectra.
Most orientationally disordered crystals have a barrier
between preferred sites that is lower than, or comparable
to, the transition temperature for the order/disorder
phase transition, but where the crystal field is strong (as
in sodium nitrite, for example), one would expect to see
such an anomaly. It is a local phenomenon and not
affected by translation-rotation coupling.

A. The alkali metal cyanides and superoxides

In the alkali metal cyanides the disordered cubic phase
transforms initially into a phase in which the ions still
show head-to-tail disorder. The orientational probability
distribution function is sharply peaked in two directions
separated by 180', but is identical in these two directions.
Complete order can only occur if order parameters of the
lowest value of L, are involved. In the case of the
cyanides, the order parameter for the erst phase transi-
tion is a rotator function with L =2 rather than L, =1.
There is another transition at lower temperatures to a
completely ordered antiferroelectric state (Rowe et al. ,
1977; Fontaine, 1975). The higher-temperature phase
transition involves an even-L, rotator function, and as ex-
pected from the arguments given above, the intermediate
ordered phase occurs at k=O. The magnitude of the
translation-rotation coupling depends on the details of
the intermolecular forces, as follows from Sec. III. In
this case we wish to know which is the dominant cou-
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pling, that is, whether the coupling to the (1. =2, Tzg)
modes is larger or smaller than the coupling to the
(I. =2,E&) modes. The larger coupling will give the or-
dered structure. Often a guess can be made by consider-
ing the symmetries of the pseudospin variables based on
the preferred orientations in the disordered phase. How-
ever, the dangers of relying too much on pseudospin
states de6ned by preferred orientations in the disordered
state is illustrated by the alkali metal cyanides. In KCN
and RbCN the preferred orientations in the disordered
state are along [111] directions (Rowe et a/. , 1973;
Ehrhardt et a/. , 1983), giving four pseudospin states with

and T2~ symmetry. There is no pseudospin state
with E symmetry. This is consistent with the observa-
tion that order parameters of T2 are involved in the
phase transition. However, in NaCN the preferred direc-
tion of the cyanide ion is along the [100] directions (Fig.
3; see also Fontaine et a/. , 1977), suggesting that the
low-temperature structure should be monoclinic. This is
contrary to observation, and computations with model
potentials (Mahanti and Sahu, 1982; Sahu and Mahanti,
1982; Michel and Rowe, 1985b) show that translation-
rotation coupling to E and T2 modes depends on a deli-
cate balance of electrostatic and repulsive forces. It is
also true that in NaCN the orientational distribution
function shown in Fig. 3, as determined from neutron
difFraction data (Rowe et a/. , 1973), is fairly uniform,
with only weak maxima in the [100]directions so that the
pseudospin description is even less appropriate here than
in many other crystals. On the other hand, the direct
calculation of the couphng matrices U from microscopic
theory is a difBcult task. One has to calculate the single-
particle distribution in a deformed lattice in which collec-
tive properties play an important role (Michel and Rowe,
1985b). In addition, our knowledge of intermolecular po-
tentials is incomplete; for example, the electronic charge
distribution of the CN ion in the crystal depends on the
instantaneous orientation (Klein and McDonald, 1983).

The principal order parameter of the superoxide ion is
a rotator function with L, =2, so that one would expect
from the arguments given above that the ordered phase
would occur at k=0. In sodium superoxide the preferred
directions are along the [111] axes, giving pseudospin
variables of Tz symmetry. As one would predict from
this, the TA phonon dispersion curve in sodium superox-
ide (Wakabayashi et a/. , 1982) shown in Fig. 1 is softened
near the zone center. However, in spite of this, the phase
transition is at the zone boundary and does not involve
translation-rotation coupling. Mahanti and Kerneny
(1978) have emphasized the importance of the direct elec-
trostatic coupling of the quadrupole moments of the oxy-
gen ions in this phase transition.

B. Ammonium halides and sodium nitrite

In both these cases the principal order parameter is

odd and, as the previous arguments suggest, the ordering
transition does not occur at the zone center. A~moniu~

bromide has a phase transition from the disordered P
state into the ordered y state that involves the I. =3 ro-
tator function w~ih A z sy~~~t~y at k=kM, where kM
is the k vector at the M point of the simple cubic lattice.
The unit cell in the y phase is therefore twice the size as
that of the disordered phase. The involvement of
translation-rotation coupling in this transition is manifest
by a frozen-in distortion of the ionic lattice (Yamada
et a/. , 1972).

Sodium nitrite provides a particularly interesting ex-
ample as the phase transition from the disordered state
leads to an incommensurate phase. The site symmetry of
the nitrite ion is l)zI„which allows in-phase coupling of
the I, = 1 rotator function describing the dipole orienta-
tion to the acoustic mode. In the long-wavelength limit
this coupling is proportional to k [Eqs. (3.30), (3.40)], so
that the indirect orientational coupling matrix U~M 'u is
zero at k=0. However, it rises rapidly with k to reach a
maximum and then falls as the zone boundary is ap-
proached. The formation of an incommensurate phase
with a long wavelength [k=(m. /9a, 0,0)] corresponds to
the maximum of this function and leads to a freezing-in
of coupled displacement and u symmetry orientation
variables. The fact that the lowest-order term in this
coupling is proportional to k, and that there is no term
linear in k involving the relevant orientational variables,
is one of the reasons for the existence of an incommensu-
rate phase (Heine et a/. , 1984).

C. Ceo and related sfstems

The molecules in the fullerite C6p have the shape of a
truncated icosahedron (Kroto et a/. , 1985) with point
group II, . At ambient temperatures the crystal structure
is fcc (Fleming et a/. , 1991) with orientational disorder.
This disorder was first measured by NMR (Yannoni
et a/. , 1991; Tycko et a/. , 1991) and by neutron scatter-
ing (Neumann er a/. , 1991). At the unexpectedly high
temperature of about 250 K, a erst-order phase transition
occurs (Dworkin et a/. , 1991; Heiney et a/. , 1991) to an
orientationally ordered structure with space group Pa3
(David et a/. , 1991; Sachidanandam and Harris, 1991;
Harris and Sachidanandam, 1992). The Pa3 structure
corresponds to a zone boundary ordering at the X point
of the disordered fcc structure, rather than the I point
ordering that would arise from bilinear translation-
rotation coupling. The phase transition is driven by the
simultaneous condensation of the three components of a
T2 orientational mode, which is a linear combination of
rotator functions belonging to the L, =10 and L, =6 man-
ifolds. The mode with I.= 10 is dominant (Michel et a/. ,
1992). The contraction of the lattice at the phase transi-
tion (David et a/. , 1992; Heiney et a/. , 1992) can be ex-
plained by a V term describing the coupling of the
square of the zone boundary orientational order parame-
ter to longitudinal acoustic modes at the zone center
(I.amoen and Michel, 1993), a particular case of Eq.
(3.17). For a review of the structure and dynamics of
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solid C60, we refer the reader to the article by Axe et al.
(1994).

Bilinear coupling between orientational modes of T2~
and E~ symmetry and acoustic displacements does, of
course, occur. This coupling would lead to a ferroelastic
phase transition at the zone center as in the cyanides, but
the direct repulsive interaction is stronger and the phase
transition to the Pa3 structure intervenes. The situation
is, to a large extent, similar to that encountered in Na02.
There the quadrupole-quadrupole interaction between
the 02 ions is responsible for the transition to the Pa3
structure (Mahanti and Kemeny, 1979; Zielinski and Par-
linski, 1984). However, C60 has no quadrupole moment
and the relative importance of the direct and indirect in-
teractions depends on the details of the intermolecular
potential. Molecular-dynamics studies of this substance
have shown that an intermolecular potential that is built
up from a sum of atom-atom terms leads to an incorrect
tetragonal structure (Cheng and Klein, 1992). In order
to stabilize the Pa3 structure it is necessary to include in-
teraction centers in the double bonds as well as on the
atoms (Sprik et al. , 1992a). Preliminary work (Lamoen
and Michel, unpublished) suggests that the double bond
centers and atomic sites give contributions of opposite
sign to the bilinear translation-rotation coupling for rota-
tor functions belonging to the manifold I. =6, decreasing
the importance of this coupling.

In addition to C6p the doped alkali metal compounds
M C6Q, in which I is an alkali metal ion and x =0—6,
have attracted much attention (Zhou et al. , 1991), espe-
cially as some of these compounds are superconducting
(Hebard et al. , 1991; Stephens et al. , 1991). These sys-
tems form solid solutions and their stability depends on
the nature of the alkali metal, its concentration, and the
temperature. See, for instance, Stephens et al. (1992) for
Rb:C60, Weaver et al. (1993) for K:C60, and Yildirim
et al. (1993) for Na:C6O. Qf particular interest is the ex-
istence or absence of structural phase transitions (Zhu
et al. , 1993). The compounds M

& C60 have high-
temperature phases with rocksalt structure. In analogy
with the alkali-cyanides, we expect ferroelastic phase
transitions to occur at lower temperatures. Experimen-
tally the situation is not yet fully explored at the present
time. Some compounds, such as K,C60 (Winter and
Kuzmany, 1992), are only stable at high temperatures
and decompose to a mixture of C6Q and K3C6Q at low
temperatures, so that the temperature where a ferroelas-
tic phase transition would occur cannot be reached. In
K3C60, no transition has yet been seen (Christides et al. ,
1992), although the compound is stable at low tempera-
tures. The absence of a phase transition can be explained
by the very strong crystal Aeld, which is due to the cat-
ions. This crystal field tends to decrease the single-
particle expectation value yo(T) so that Eq. (5.2) for T,
has no solution (Lamoen and Michel, unpublished). Fi-
nally, we mention Rb&C6Q, in which recently the existence
of an orthorhombic phase below T =350 K has been re-
ported (Chauvet et al. , 1994). We recall that transitions

to orthorhombic phases occur in the alkali-cyanides as a
consequence of translation-rotation coupling. Given the
solid solution character of M„C6p, we expect that these
systems have analogies with mixed crystals (see Sec.
VI.E) and will show orientational glass phases for certain
concentrations.

In solid C7Q, which contains approximately spheroidal
molecules, there is evidence for a rhombohedral and a
monoclinic phase at temperatures below the fcc disor-
dered phase (Sprik et al. , 1992b; Christides et al. , 1993;
Van Tendeloo et al. , 1993; Vaughan et al. , 1993). We
expect that the phase transition is driven by a coupling of
acoustic phonons to the three components of an orienta-
tion mode of rz symmetry (see Sachidanandam and
Harris, 1994). The current status of research is reviewed
in a paper by Fischer and Heiney (1993).

Vl. SOFTENING OF ELASTIC CONSTANTS

Elastic constants in orientationally disordered crystals
are reduced (or softened) by the indirect coupling of rota-
tor functions u ~.M '.

U at the zone center resulting from
translation-rotation matrix U, coupling rotator functions
to long wavelength acoustic displacements. If this cou-
pling results in a phase transition to a more ordered state,
then the softening of the corresponding elastic constant is
strongly and anomalously temperature dependent, de-
creasing as the temperature is reduced towards T„but
even in orientationally disordered phases where the phase
transition does not occur at the zone center, elastic con-
stants may still be significantly softened by translation-
rotation coupling to rotator functions that are not in-
volved in the phase transition. In this case the tempera-
ture dependence is usually normal with small anomalies
at the phase transition due to higher-order coupling
terms such as V (see Sec. III). In this section we shall
discuss the elastic energy of a cubic crystal, taking into
account its symmetry. We investigate the e6'ects of bilin-
ear coupling translation-rotation coupling in these crys-
tals. The theory can readily be generalized to crystals of
lower symmetry. Higher-order coupling terms could be
included in a similar way, but are usually less important
causes of softening.

A. Symmetry of elastic constants

Elastic constants are used to describe the response of a
crystal to a small stress applied uniformly over the crys-
tal. They are defined as the ratio of the stress to the
strain, where the strain is a measure of the crystal distor-
tion. Elastic constants are softened if the free energy of
the crystal is lowered by a change in the orientational
probability function when the strain is applied. Such an
e6ect, which is an aspect of translation-rotation coupling,
may only occur with orientational variables of the
correct symmetry.

In the theory of elasticity (Eshelby, 1956; Landau and
Lifschitz, 1986) the strain tensor e is defined by
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r'=(1+ a).r, (6.1)

where r is the position of a point in the crystal before the
distortion, and r is the position of the displaced point. c
is a symmetric tensor. It is convenient to define six strain
components

6 6

Felas
i =1 j=1

(6.2)

Here we have used the conventional notation c» =—c„
c44 cxy xy etc. for the elastic constants. In principle
there are 36 such constants, but the number that are
nonzero and independent is restricted by crystal symme-
try as F,», is totally symmetric (Leibfried, 1955). The
elastic constants c; are numbers and so must be equal to
zero unless c.; and c transform as the same irreducible
representation of the crystal space group. As we are con-
sidering uniform distortions of the crystal, the strains
transform as the zone center symmetry species. In cubic
groups these are the representations of OI„ in which any
symmetric second-rank tensor has A,g Eg and T2g corn-
ponents, giving three independent nonzero elastic con-
stants. The elastic free energy is given by

1 2 3

F,t„=—Cq eq +C@ Q eE .+CT
a=1 a=1

(6.3)

In terms of the conventional labeling

c„=(e,+s2+e3)/&3,
1g

ez = (2e3 —e, —E2) /2&3,

eE =(e) Ep)/2
g, b

&T =&4 ~
2g, c

(6.4)

CT =E5,
2g, b

BT =86,
2g, c

and the elastic constants are

C~ =C»+2C, 2
—Cxx xx+2Cxx yy

=3B

Cz =(c» —c&z)/2=(c„„„„—c „)/2, (6.5)

=C44 =
Cxy, xy

where B is the bulk elastic modulus. In an isotropic
medium CE =CT

g 2g

One should note that there is a di6'erence between the
isothermal elastic constants, which are measured in an

~1=~xx ~ ~~ =
~yy ~ F-3 =~zz

4 yz+ zy ~ ~5 ~zx +~xz~ 6 ~xy +~yx

For small distortions the elastic free energy per unit
volume, F,1„,is given by

experiment in which the stressed crystal is in complete
thermal equilibrium with its surroundings, and adiabatic
elastic constants, which are measured at constant entro-
py, as measured in an experiment in which the time scale
of the change of stress is short compared with the rate of
thermal relaxation. This distinction is present in atomic
crystals in which the time scale for thermal relaxation de-
pends on the thermal conductivity of the crystal. In
orientationally disordered crystals there is an additional
relaxation process, namely the rate of change of molecu-
lar orientation. The constants in the free energy expres-
sion (6.3) are isothermal in the sense that they correspond
to an experiment that is performed slowly enough that
the molecular orientational probability distribution
changes with the distortion, rather than an experiment
that is performed more rapidly than the time scale for
molecular reorientation in which the orientational proba-
bility distribution remains the same as in an undistorted
crystal. Thus the observed consequences of translation-
rotation coupling on both phonons and elastic constants
depends on the time scale of the change of distortion
compared with the time scale of molecular reorientation.
No softening of elastic constant is observed in a dynamic
experiment in which the molecules reorient on a slower
time scale than the vibrational period. Values of elastic
constants are often measured from phonon dispersion
curves or Brillouin scattering and are often found to
show softening due to translation-rotation coupling, al-
though such measurements are usually termed adiabatic.
The time scale for molecular reorientation is usually
short compared to that for full thermal relaxation, so
that one must consider the regime in which only orienta-
tional order reaches thermal equilibrium. We shall re-
turn to this question of the time scale of orientational re-
laxation in the next section on phonon dynamics.

B. Softening of elastic constants

Softening of the isothermal elastic constants C„
1g

CT, and CE of a cubic crystal occurs if there is a
2g

significant change in the amount of the orientational or-
der of the corresponding symmetry when the crystal is
distorted. There are always orientational variables of the
correct symmetry as all rotator functions with even L
values have some components of Eg and T2g symmetries,
and those with L =4,6, . . . have A 1 components in ad-
dltlon. Thlls (c() c)p) and cgg ale softened hy changes
in the contribution of rotator functions of the corre-
sponding symmetry in the orientational distribution func-
tion as the crystal is distorted. Similarly, the bulk
modulus is reduced by changes in the 3 1 components of
L =4, 6, etc. variables. The points of interest are how
large the softening is, which elastic constant is softened
most, and what is the temperature dependence of the
softening. These questions may be addressed by consid-
ering the changes in the orientational distribution func-
tions as consequences of translation-rotation coupling to
long wavelength phonons.
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F(u, b, )=FO+$ ,'[ut M—u+.Fit. v 5+6.t ut u
k

+6 (yo '+J+j).Z] (6.6)

with respect to the orientational order parameters 5 at
constant displacements u in an analogous way to the
derivation of its dependence on the orientational order
parameters [Eq. (4.36)]. This gives

F=FO+$ ,'[u M—u. u.t u (y—o '+J+j) ' vt u]
k

=F0+g —,'u (k)t.D (k).u (k),
k

(6.7)

where the matrix D (k) is known as the dressed dynami-
cal matrix and is equal to

One can see that there is a close connection between
the elastic constants and the acoustic phonons by consid-
ering the distortion of a crystal caused by an acoustic
phonon displacement with a very long wavelength. If
such an acoustic phonon has k in direction a and atomic
displacements in direction P, the local strain in the crys-
tal has an aP component s &. To calculate the iso-
thermal elastic constants from microscopic considera-
tions we shall use the expression for the Landau free en-
ergy F(u(k), Z(k)) derived in Sec. IV [Eq. (4.2)]. We
first rewrite this in terms of the lattice-displacement or-
der parameters u(k), alone, and then equate the long-
wavelength limit of the resulting equation with Eq. (6.2)
for the free energy of the crystal under a uniform elastic
deformation.

To obtain an expression for the Landau free energy in
terms of the phonon displacement variables, we minimize
F(u, b, )

indices p and q, this solution is not trivial. It can be
achieved by choosing k in particular directions. For in-
stance, for the case of cubic crystals [compare with Eq.
(6.12) below], we have for k=(k„,0,0), the diagonal ele-
ments pD„„(k)=c„„„„k„,pD~ (k)=c„„„k„,etc. We
also remind the reader of the discussion of the k~0 limit
in the introductory part of Sec. V. In expression (6.8),
the bare dynamical matrix for the acoustic modes is
quadratic in k near k=0. The matrix [go '+J(k)+j]
is diagonal at k=0 in the space of rotator functions and
has eigenvalues [g„'+J&(0)+j&] ', which depend on
the symmetry and I. value of the rotator function 6„in-
volved. As k tends to zero, v is linear in k for coupling to
rotator functions with even-L, values and quadratic for
odd-I. values. The softening is quadratic in u and so will
be either quadratic or quartic in k. We are looking for
terms that are quadratic in k, so it follows that only
translation-rotation coupling to rotator functions with
even I. can soften the elastic constants. We have already
argued on general symmetry grounds that as strains can
only couple to rotator functions of the same symmetry
species, the elastic constant CI- is softened by
translation-rotation coupling to rotator functions of sym-
metry species I alone.

We shall now demonstrate this for a particular exam-
ple, the alkali metal cyanides. A microscopic calculation
of the elastic constants on the basis of these equations
was first carried out for the orientationally disordered
phase of KCN (Michel and Naudts, 1977a, 1977b;
Mahanti and Sahu, 1982). Since this example is a model
case for many of the concepts we are developing in the
present paper, we shall now derive the results.

We start by taking the long-wavelength limit of Eqs.
(3.26) and (3.27) for the coupling matrices for an alkali
metal cyanide. To first order in k one obtains for the E~
coupling matrix to the acoustic modes (using Eq. 3.14)

D (k) =M(k) —v (k).[yo '+J(k)+j] '.u (k) . (6.8) s a2A x ~y
—2k,

(6.10)

This shows that the e6'ect of the translation-rotation cou-
pling matrix v is to soften the dressed dynamical matrix
D relative to the bare dynamical matrix M. If the cou-
pling is sufBciently strong, an eigenvalue of D becomes
equal to zero, in which case there is no restoring force
and the crystal becomes unstable with respect to a distor-
tion along the corresponding eigenfunction u. It can be
shown after some algebraic manipulation that D:—y„„'
[Eq. (4.31)].

To obtain the elastic constants we now compare the
lang-wavelength limit of this with Eq. (6.2), to obtain

Lt„(D,J'(k)=p 'pc, k k
P~9

(6.9)

where p is the mass density. The reader is referred to
Ashcroft and Mermin (1976, Chap. 22) for more details
of this derivation. Next we have to solve Eq. (6.9) where
D(k) is given by Eq. (6.8). Due to the summation over

and for the T2g coupling matrix

u (k)t=—
0 k, k„

2i8a
m 1/2 X

k k 0.
(6.11)

If one includes only the nearest-neighbor interactions,
the integrals A and 8 are the same as those in Eqs. (3.26)
and (3.27); but even if longer-range interactions are add-
ed, the matrices have the same form with modified values
of 3 and 8. a is half the length of the side of the cubic
unit cell. In the case of a cubic crystal, the long-
wavelength limit of the bare dynamical matrix, M(k), for
coupling to acoustic modes is
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M(k}=p
k„cii + (k +k, )c44

k k (c,2+c44)

k, k (c,~+c~)

k„ky(c,2+c44 )

k c,i+(k, +k„)c44

k, k„(c,2+c44 )

k„k,(c,2+c44)

krak, (c )2+c44)

k, c „+(k„+ky)c44

(6.12)

where p=m/(2a ) is the mass density. The dressed dynamical matrix D has the same form but with the dressed elastic
constants c replacing the bare constants c . %"e now calculate the contribution to the softening of M due to coupling to
the I. =2,Eg rotator functions. For these functions the matrix [yo +J(k)+j] is a constant times the unit matrix, and
U and U are given by Eq. (6.10) and its conjugate transpose. Substituting this into Eq. (6.9) for the dressed dynamical
matrix, we obtain

4A aD —M=-
m [y@ +JE (0)+j@ ]

—2k„k„
—2k, k„

—2k„k

4k
—2k, k

—2k k,
—2k„k,

4k,

(6.13)

To determine the elastic constants, we use Eq. (6.9), and
after taking the k~0 limit and using p=m/(2a ), we
6nd

I

this is true, the elastic constant is reduced to zero when
the corresponding orientational susceptibility diverges,
that is, when (1+Jryr) is equal to zero (see Sec. IV.A).

0 8A
C11 C 11 a [yE'+JF. (0)+jx )

C. Temperatore dependence6.14

0 4A
C12 C12 +

a [yE '+Jx (0)+jE ]
(6.15)

and c44 is unchanged by this term. A similar calculation
for the T2g variables yields no further change in c» and

c12, and

0 28
a [yT'+Jr (0)—jT ]

(6.16)

c44 is the T2g elastic constant, which is, as expected,
softened by coupling to the T2g rotator variable. The E
elastic constant is softened,

while the A 1g combination c»+2c12 is unchanged.
Equation (6.8) shows that the eff'ects of coupling to

other rotator functions can just be added. In particular,
coupling to I. =4 variables, which includes a rotator
function of A, g symmetry, does give a small softening of
the bulk compressibility as well as additional softening of
CE and Cz due to I- =4 rotator functions of Eg and

g 2g

T2g symmetry, respectively.
In general, we have for an elastic constant for strains

of symmetry species I

(6.18)

where the sum is over all rotator functions of that sym-
rnetry species, and AL I- is a coupling coefBcient. Howev-
er, there is usually one dominant contribution. W'here

(cia —cia)/2=(c ii
—c iz )/2—

a [XE +JE (0)+jE ]
g g

(6.17)

The dominant temperature dependence of the elastic
constants arises from the single particle susceptibilities
introduced in Sec. II.D, which can be written yr =y r /T,
where yr is only weakly temperature dependent (Michel
and Naudts, 1977a, 1977b; Mahanti and Sahu, 1982). If
there is one dominant contribution to the softening, the
equation above may be rewritten as

C=C (T —T, )

(T —To)
(6.19}

with the transition temperature T, obtained from solu-
tion of the equation

T, = —(J+j—A /Cr)yr(T, ),
and the temperature T0 determined by

For the interpretation of experimental data on the tem-
perature behavior of elastic constants near phase transi-
tions, one sometimes uses a formula of the form of Eq.
(6.19) (Rehwald, 1973; Rehwald et al. , 1977; Ginzburg
et al. , 1980},interpreting T, as the phase transition tem-

perature and T0, known as the clamped crystal transition
temperature, as the temperature at which the orienta-
tional order would occur in the absence of translation-
rotation coupling. Although this has the same form as
the general expression derived above, there is no restric-
tion in the derivation that either T, or T0 need be posi-
tive. If T, is positive, then we agree that it should be in-

terpreted as a real transition temperature or, if negative,
as a virtual transition temperature. The usual interpreta-
tion of T0, however, is not quite correct in our opinion.
The conventional interpretation of T0 ignores the role of
the self-interaction j, which is a consequence of the
translation-rotation coupling. The self-term is always

Rev. Mod. Phys. , Vol. 66, No. 3, July 1994



R. M. Lynden-Bell and K. H. Michel: Translation-rotation coupling in molecular crystals

positive, while the strength and sign of J depends on the
structure of the crystal. For instance, in the cubic phase
of KCN, JE is negative at k=0, while Jz- is positive but

g 2g

smaller than j (Michel and Rowe, 1985b). Since y is al-
ways positive, one finds in both cases that To(0 in
agreement with experiment (Rehwald, 1973; Rehwald
et al. , 1977; Ginzburg et al. , 1980).

D. Some examples

KCN

102

O.S

0.4

C
Eg

0 ( l ( I

150 200 250 300 350 400 450
T/K

NaCN

C
Kg

0.5
CT

0
250 300 350 400 450

T/K
500

FIG. 7. Temperature dependence of the elastic constants of
NaCN and KCN in their orientationally disordered phases. 8
is the bulk compressibility and CE, Cz are the elastic con-

2g

stants for uniaxial and shear distortions, respectively (see text).
Values are in units of 10' Jm . The phase transitions are at
280 K and 168 K, respectively. Data from Haussuhl et al.
(1977).

In this section some examples of the effect of
translation-rotation coupling on elastic constants are dis-
cussed in order of the I. value concerned.

In all the alkali metal cyanides, the cyanide ions (sym-
metry C„„)behave in the high-temperature disordered
phase as if they were centrosymmetric (symmetry D
with a principal order parameter of L =2). The site sym-
metry is octahedral and the cubic disordered phase has
three independent elastic constants: the bulk compressi-
bility 8 (Ai~ syminetry), the shear constant c~ with

T2~ symmetry, and the uniaxial stress constant
CE =(cii —c,z)/2. Both the latter are smaller than for

the corresponding alkali halides and decrease as the tem-
perature is lowered as shown in Fig. 7. The bulk

compressibility behaves normally, decreasing slightly as
the temperature is raised. This shows the coupling of the
I =2 rotator functions to E and T2 strains, and the ab-
sence of significant coupling (which could only arise from
higher-L values) to 2 i~ strains. c44 tends to zero at the
phase transition temperature, while CE tends to zero at a

lowe~ temperature. This is because yE JE gT T so
g g &g 2g

that T, =yz. Jz- . The elastic behavior in the high-
2g 2g

temperature phase is similar for Rb (Ehrhardt, Press, and
Lefebvre, 1983), K, and Na cyanides (Rowe et al. , 1975).
The transition temperature, however, decreases with in-
creasing size of cation, the disordered phase in RbCN be-
ing most stable because the CN ion has the most room
for reorientation in this compound. In the theory that
has been outlined before, the inhuence of the cations
enters not only in the coeKcients of the bilinear coupling
matrix, but also in the expressions for the crystal field,
which determines the parameter yo in the expressions for
the orientational susceptibility [Eqs. (4.29) and (2.54)]
and transition temperature [Eq. (5.2)].

The role of cations is even more pronounced in the al-
kali metal nitrites MNO2. We have already seen (Sec.
III.H) that in NaNO2, the NO2 behaves as a pseudospin
with symmetry 8 &„, and that translation-rotation cou-
pling does not lead to softening of the elastic constants.
On the other hand, in the compounds with larger cations
(Richter and Pistorius, 1972; Hirotsu et al. , 1981;
Hohlwein et al. , 1986), the nitrite ion has much more
orientational freedom, and so has additional orientational
variables of even L, and the correct symmetry to soften
the elastic constants. For example, one can imagine that
rapid rotation of the NO2 around an axis parallel to the
O-O vector leads to an effective D I, symmetry, with
I =2 rotator variables. The coupling to acoustic lattice
modes would then be similar to the one already encoun-
tered in the alkali metal cyanides. Softening of the elastic
constant c44 with T2g symmetry has been observed in

RbNO2 by Hirotsu et al. (1981).
In the materials containing tetrahedral molecules, am-

monium halides, CH4, and the carbon tetrahalides, the
rotator functions with lowest-L, values have L =3, which
are the wrong parity to soften the elastic constants, al-
though they do form the order parameters for the phase
transition. Nevertheless, softening of the elastic con-
stants by rotation-translation coupling at the I point
may occur as a result of coupling to I. =4 rotator func-
tions. One anticipates that this should be comparatively
small due to the high value of L, involved. It should also
show no connection with the phase transition as it in-
volves a completely different set of rotator functions.
Earlier we have shown how the symmetry of pseudospin
states may be used to provide an indication of which
symmetry is most involved in translation-rotation cou-
pling. As already stated in Sec. II.E there are two pseu-
dospin variables in ammonium chloride and ammonium
bromide that have A,~ and A2„symmetry. This sug-
gests that any bilinear coupling effect on the elastic con-
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C

T2g

150 200 250 300

FIG. 8. Temperature dependence of the elastic constants of
NH4Cl above and below the order/disorder phase transition
that occurs at 240 K. B is the bulk compressibility and

CE,CT are the elastic constants for uniaxial and shear distor-
g

tions, respectively (see text). Values are in units of 10' Jm
Data from C'rarland and Renard (1966c).

stants will be very small as there are no pseudospin vari-
ables of the required symmetry. The anomalous behavior
of the elastic constants of ammonium chloride near T,
shown in Fig. 8 can be well explained (Garland and Re-
nard, 1966a, 1966b) by a theory in which the coupling is
quadratic in the orientational order parameters and
linear in the acoustic phonons. When we go to higher or-
der in the order parameter coupling, the conditions
governing the k values of the order parameters involved
are less restrictive. For example, pairs of zone-boundary
order parameters can couple to functions at the I point.
However, it is by no means always necessary to invoke
such higher-order coupling, and it was found that the
compressible Ising model used for ammonium chloride is
not su%cient to explain the temperature dependence of
the elastic constants in NH4Br (Garland and Yarnell,
1966). There is a small change at T, due to trilinear
terms, but, in addition, CE already shows a marked de-

g

crease at 15 above T, =230 K. This suggests the possi-
bility of a contribution from the bilinear coupling to
L =4 rotator functions with E symmetry. So far the
orientational distribution function has only been ana-
lyzed (Seymour and Pryor, 1970) for diff'raction data tak-
en at 296 K. In order to check our conjecture, one would
need dN'raction data close to T, .

In the plastic phase of CD4 the phase transition con-
cerns ordering of L =3 variables and occurs away from
the zone center (odd L), while the zone-center softening
of the elastic constants is due to the lowest even-I orien-
tational variable, that is, L =4. The coupling of L =4
rotator functions to acoustic displacements has been used
(Wonneberger and Hiiller, 1987) to explain the reduction
of the elastic constants. The theoretical results are in sa-
tisfactory agreement with experiment (Marx and Sim-
mons, 1984). Similar arguments have been used to ex-
plain the elastic constants in the carbon tetrahalides. In
the rotator-function description, the lowest-L rotator

6

5

T2g

0 I I

Eg

I I

200 220 240 260 280 300 320
T/K

FIG. 9. Temperature dependence of the elastic constants of
adamantane in the disordered phase. 8 is the bulk compressi-
bility and CE,CT are the elastic constants for uniaxial and

shear distortions, respectively (see text). Values are in units of
10 Jm . The order/disorder phase transition is at 208.6 K.
Data from Damien (1975).

functions have L =3, and it is primarily these that are in-
volved in the phase transition that occurs at a zone-
boundary point. However, in the discrete variable
description of these crystals (see Sec. II.E) pseudospin
variables of Eg symmetry are involved in addition to the
T2„ functions, suggesting that when the L =4 rotator
functions are considered, CE will be softened more than

g

CT . This has indeed been observed for CD4, CBr4, and
2g

CC14 (Zuk et al. , 1989, 1990). Although these constants
are softened compared with the values for argon, in
which there is no possibility of translation-rotation cou-
pling, their temperature dependence is normal and they
are not involved with the phase transition.

Adamantane provides another example in which the
e6'ective symmetry is higher than the true molecular sym-
metry. The molecule has symmetry Td so that the pri-
mary orientational order parameters would be expected
to have L =3. However, examination of a molecular
model shows that the symmetry is nearly octahedral, so
that L =4 variables are probably the most important.
The disordered phase has fcc symmetry and the tetrago-
nal ordered phase has a unit cell that is derived from the
fcc structure by an E distortion in the (100) direction. It
is not a zone-center transition, however, as the unit cell
contains two adamantane molecules (Donohue and
Goodman, 1965; Nordman and Schmitkons, 1967). The
importance of translation-rotation coupling to the L =4,
E variables is shown in the temperature dependence of
the elastic constants (Damien, 197S), which is shown in
Fig. 9. In the disordered phase the bulk compressibility
and c44 both behave normally, i.e., they increase as the
temperature is lowered towards the phase transition, but
(c» —c,2 ) /2 behaves anomalously, decreasing as the
temperature is lowered. However, the apparent limit of
stability T, is considerably lower than the phase transi-
tion temperature. We may interpret this as showing that
there is a strong zone-center coupling to the L =4, E
variables, which would lead to a zone-center ordering at
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a temperature about 30—50 K lower than the observed
zone-boundary phase transition if the latter could be
avoided.

Recent experiments on KPF6 (Knorr, 1992, private
communication) have shown that in this crystal a drastic
softening of the elastic constant c44 occurs near the tran-
sition from the disordered cubic phase to a low symmetry
structure. The octahedral symmetry of the PF6 ions im-

plies that the lowest-order rotator functions belong to the
L =4 manifold. Since these include a T2 representation
in the cubic site group, the softening of c44 is in full
agreement with our theoretical considerations. Sulphur
hexafluoride (SF6) possesses an orientationally disordered
phase above 96 K with a body-centered-cubic lattice
structure. The molecular symmetry is again octahedral,
but since there are no counterions, the coupling of the
I.=4 orientational modes to acoustic lattice displace-
ments, although symmetry allowed, is expected to be
weak. Measurements of the elastic constants have only
been published for temperatures above 187 K (Kiefte
et a/. , 1988). It would be desirable to extend these mea-
surements to lower temperatures to check whether there
is a softening of c44.

So far there are only a few experiments on the elastic
properties of solid C6p. Measurements of Young's
Modulus on single crystals of C60 (Shi et a/. , 1992) reveal
an upward jump in the sound velocity at T=260 K with
decreasing temperature and a sharp increase in the corre-
sponding sound attenuation. More recent experiments
(Schranz et a/. , 1993a, 1993b), performed at much lower
frequencies (0.1 Hz —50Hz), measure an effective elastic
constant C(co)=C'(co)+iC"(co) for sound waves propa-
gating in the [111]direction. These experiments can be
described qualitatively (Lamoen, 1993) on the basis of the
V coupling mentioned before. More complete infor-
mation exists about the acoustic phonons that have been
measured in inelastic neutron scattering from a single
crystal of C60 (Pintschovius et a/. , 1992). As already
mentioned in Sec. V.C, the direct repulsive interaction
between C60 molecules is dominant (Michel et a/. , 1992).
On the other hand, since we have seen that the existence
of a rhombohedral phase in C7Q and an orthorhombic
phase in RbC6p is a consequence of translation-rotation
coupling with condensation of the T2 variables at the
zone center, we expect softening of the elastic constant
CT =c44 in these latter compounds.

2g

In deriving expression (6.10) for the softening of elastic
constants, we have restricted ourselves to a cubic crystal.
However, the same approach may be extended to crystals
of other symmetries. For example, Sahu (1986) has cal-
culated the softening of the elastic constants in P-NaN3,
an orientationally disordered crystal with a rhom-
bohedral structure. A good fit to the experimental data
(Kushida and Terhune, 1984) can be obtained with a suit-
able intermolecular potential. Another example of a fer-
roelastic crystal is aniline hydrobromide (C6H5NH38r).
Here the elastic constant c55 is found to soften in the

high-temperature orthorhombic phase as the temperature
is lowered towards the transition point for the phase
change to the low temperature monoclinic structure
(Sawada et a/. , 1980).

E. Mixed crystals

So far we have considered the softening of elastic con-
stants due to translation-rotation coupling in ideal
periodic crystals. In mixed crystals with substitutional
disorder it is possible to vary the importance of
translation-rotation coupling by changing the substitu-
tional disorder. The most prominent examples of this
category of mixed crystals are the alkali metal halides-
cyanides M(CN)„X, „and the mixed alkali metal
cyanides (Mi ) (Mz)i „CN. Here X is a halogen and M
are alkali metal ions. Depending on the nature of the
substitutional ions and on the concentration, these sys-
tems exhibit very rich phase diagrams (Liity, 1981;
Elschner et a/. , 1985; Knorr and Loidl, 1985; Rowe
et a/. , 1986). A theoretical explanation in terms of
translation-rotation coupling has been given by Michel
and Theuns (1989). At a sufficiently large degree of sub-
stitutional disorder, the ferroelastic phase transition that
appears in the ideal compounds MCN is suppressed
(Liity, 1981). The temperature evolution of the elastic
constant c44 exhibits a characteristic minimum (Satija
and Wang, 1978). A similar behavior (softening and sub-
sequent hardening as a function of decreasing T) is found
in the transverse acoustic phonon frequencies of
K(CN)„Xi „near x =0.5 as measured by inelastic neu-
tron scattering (Rowe et a/. , 1979), and in addition the
neutron scattering law reveals a central peak. These phe-
nomena can be interpreted as being caused by the transi-
tion from a normal orientationally disordered crystal at
high temperatures to an orientational glass at low tem-
peratures. Substitutional disorder generates static ran-
dom strain fields that strongly inhuence the molecular
orientations (Michel, 1986; Fossum and Garland, 1988).
In the glassy phase the time scale for molecular reorien-
tation is very slow, so that only static e6ects of
translation-rotation coupling are important. As we have
seen earlier in this section, the softening of elastic con-
stants is only manifest if the time scale for molecular
orientation is fast compared with that of the measuring
technique; hence we see softening followed by hardening
as the temperature is lowered. We shall show in the next
section that a similar argument applies to the phonon
spectra. In the glass phase, the characteristic shape of
the elastic line in Q space, as shown by equal intensity
contours, is a direct consequence of bilinear translation-
rotation coupling (Michel and Rowe, 1980). These con-
cepts have also been found to be relevant for the under-
standing of di6'use x-ray scattering in new organic
conductors based on TMDTDSF (tetramethyldithia-
diselenafulvalene) molecules (Liu et a/. , 1993). Qrienta-
tional glasses are today the subject of intense research ac-
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tivity. For recent reviews, we refer the reader to Hochli
et al. (1990) and Binder and Reger (1992).

We expect that many concepts that have been intro-
duced and used for the characterization and description
of orientational glasses will be useful for our understand-
ing of mixed crystals of C60 and C70 and of fullerides

M„C6o and (M& )„(Mz )~C6o in which M, and M2 are two
difFerent alkali metals. There are experimental indica-
tions of orientational glass properties in solid C60 below
T=90 K (David et al. , 1992; Cxugenberger et al. , 1992).
Undoubtedly this will be a very active Geld of research in
ihe coming years.

VII. DYNAMIC EFFECTS AND PHQNQNS

f =—I g b, t(k)b, (k), (7.4)

where I is an orientational relaxation coeKcient. Using
the expression for the free energy from Eq. (4.36), Eq.
(7.3) gives

ii+M u+v. h=O,

v u+X.A= —I 6
(7.5)

(7.6)

where X is a matrix

the h(k), and f is a dissipative potential describing the
relaxation of the variables. The most important contri-
bution to relaxation arises from the orientational vari-
ables and is written

Since the elastic constants and the acoustic phonons
are determined by dynamic measurements, and the pho-
nons can be investigated in neutron scattering experi-
ments, it is important to investigate the frequency depen-
dence of the efFects of translation-rotation coupling. In
general the response of a many body system to a time-
dependent perturbation can be formulated in terms of
time- and space-dependent correlation functions. The
knowledge of the latter functions is equivalent to the
knowledge of dynamic equations for the relevant physical
quantities (Kadanoff and Martin, 1963). We first derive
the dynamical equations for the system of coupled dis-
placements and orientational variables. There are two
methods of deriving these equations: a direct one that
starts from the microscopic Hamiltonian and uses
Green's-function methods (Michel and Naudts, 1978),
and a second, more macroscopic one that starts with the
free energy (Yamada et al. , 1974b; Courtens, 1976). We
will use here the latter method, which goes back to On-
sager (1931a, 1931b) and Machlup and Onsager (1953).

We write the Lagrangian density X for the coupled
system in the form

(7.1)

(7.7)

These equations describe a system of oscillators u, which
are coupled to orientational variables with the same k
vector. If there were no coupling between the displace-
ment and orientational variables (U =0), then Eq. (7.5)
shows that the displacements would oscillate harmonical-
ly with frequencies given by the square roots of the eigen-
values of the dynamical matrix M, while the rotator vari-
ables would not oscillate, but would decay exponentially
with rates given by the eigenvalues of the matrix A,

defined by

6= —I -X 6= —A, .h—1 (7.8)

In order to solve Eqs. (7.5) and (7.6) and to describe the
relaxation behavior in a convenient way (Kadanoff and
Martin, 1963), we introduce the Laplace transforms of
the variables,

a, (k, z)= i j —e"'a, (k, t)dt, (7.9)
0

where z =~+i e with co being the frequency and a~0+.
With the boundary conditions a; =a; 0%0, and a; =0 at
t =0, we obtain for each value of k

where T is the kinetic energy of the displacernents

'F= —g ut(k)u(k),1
(7.2)

(z —M)u (z) —U. b, (z) =zuo,

(z+iA, )b(z)+iu AX 'u(z)=ho.

(7.10)

(7.11)

Ba;
(7.3)

and F =F[b„u ] is the Landau free energy of the crystal
[see Eq. (4.36)]. In this section we allow the order param-
eters, that is, the mean values of the rotator functions 6
and the phonon displacements u, to be time dependent.
In the remainder of this section we shall simplify the no-
tation by writing u for u. We recall that si stands for the
time derivative Bu/Bt. In Eq. (7.1) we only consider the
contribution of u to the kinetic energy as the orientation-
al contribution is usually overdamped (Courtens, 1976).
The equations of motion are

[z —D(k, z)]u (k,z)=I(k), (7.12)

~ A, XD(k, z)=M(k) —i
Z +1k

(7.13)

Here the Grst equation describes the oscillatory behavior
of the displacement field density u (the translational pho-
nons), while the second equation describes the relaxation
of the orientational density. These motions are coupled
by the translation-rotation coupling matrix v. Eliminat-
ing the rotator variables, we obtain an equation for the
displacements

where the set of variables la; ] include both the u (k)»d I(k) =uo(k)+U (k)60(k)/(z+i&) . (7.14)
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These solutions show the effects of translation-rotation
coupling on the phonon spectrum, which is described by
the displacement response function u (k,z). Peaks in the
spectrum occur when the real part of co D—(k, co) is
zero. One can distinguish two limiting regimes of
behavior (Yamada et al. , 1974b). In the fast-relaxation
regime when A, , the inverse of the relaxation time of the
rotator variables is much larger than co, the frequency of
the observation, Eq. (7.13), leads to the replacement
D( k, z)~ D( k), where D (k) is the dressed dynamical
matrix given in Eq. (6.8}. As we discussed in Sec. VI, the
effect of the translation-rotation coupling is to reduce the
values of the eigenvalues of this matrix, and hence to
soften the elastic constants. In the present context we
deduce that in the fast relaxation limit, the resonances
correspond to the eigenvalues of the dressed dynamical
matrix, so that the modes appear to be softened. Figure
10(b) shows the form of the resulting spectrum. In the
other limit of slow relaxation where A, ( co,

D(k, z)~M(k) and the phonon resonances are not shift-
ed by the translation-rotation coupling. In this limit the
scattering law exhibits a narrow central "relaxational"
peak [see Fig. 10(a)j in addition to the unshifted Brillouin
doublet. This is due to orientational relaxation and has
its origin in the z = —iA, pole of the second term on the
right hand side of Eq. (7.13). A given material may show
both regimes in different regions of k space as the bare

S(k,co)

S{k,m)

resonance frequencies change relative to A, . For a more
complete discussion of the frequency dependence of the
scattering law, the reader is referred to the previously
quoted papers. An extensive discussion of the frequency
dependence of ultrasonics and Brillouin scattering is
given in a recent review on structurally incommensurate
crystal phases (Cummins, 1990).

Inelastic neutron scattering (Yamada et al. , 1974a)
shows that NH48r exhibits the triple peak structure
characteristic of the slow relaxation regime. The narrow
central band is due to the slowly reorienting ammonium
ions that are coupled to the zone-boundary TA2 phonon
modes. These give the unsoftened outer pair of peaks.
Notice that the general theoretical considerations apply
to all parts of k space; in this case the zone-boundary
phonon mode is coupled to an orientational mode of the
same symmetry, which can be described as an antifer-
rorotational mode. NaNO2 is another example of an
order-disorder phase transition, in which the dynamics
are characterized by the presence of critical slowing
down of orientational motion (Hatta et al. , 1966; Sakurai
et al. , 1970) and the absence of phonon softening
(Durand et al. , 1982). For a derivation of orientational
and translational motion in the paraelectric and incom-
mensurate phases, we refer the reader to Fivez and
Michel (1983).

The fast relaxation regime has been seen in the alkali
cyanides, in which the inelastic neutron-scattering spec-
trum exhibits a soft phonon doublet (Rowe et al. , 1975;
Ehrhardt et al. , 1983). Here the orientational relaxation
is fast enough that no central peak is found in the inelas-
tic spectrum, and all the information on the orientational
dynamics is hidden in the details of the widths and
softening of the phonon peaks. It is possible to pass from
the fast relaxation regimes to the (almost) slow relaxation
limit in KCN by increasing the momentum transfer Q in
the neutron scattering (Rowe et al. , 1978}. Another ex-
perimental procedure for changing from the fast to the
slow relaxation regime has recently been used in the case
of ammonium deuterium oxalate hemihydrate
(ND&DC20&, 1/2D20). There the application of a pres-
sure of 5 kbar brings about a change in the relaxation re-
gime and consequently in the neutron scattering spec-
trum (Krauzman et a/. , 1992).

From the discussion in this section it is clear that the
measured phonon frequencies depend on the frequency
regime of the method of measurement. Phonon branches
that appear hard in neutron scattering may be soft when
measured by Brillouin scattering in which the condition
A. & co is more easily realized.

FICz. 10. Form of the phonon spectrum in the presence of
translation-rotation coupling: (a) the slow relaxation limit
where the Brillouin lines are unshifted, and a central relaxation
peak appears; (b) the fast relaxation limit where the phonon res-
onances are softened and the relaxation peak is too broad to be
seen.

VIII. DIELECTRIC BEHAVIOR OF
CRYSTALS WITH DEFORMABLE IONS

The anomalous dielectric behavior found in the orien-
tationally disordered a phase of ammonium iodide and in
solid solutions of ammonium and potassium iodide pro-
vides an interesting illustration of the way in which col-
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Ccw
X (8.1)

where Ccw and T, are constarits, is typical behavior of a
crystal with coupled rotator functions [Eq. (5.1)]. The
critical temperature T, is given by Eq. (5.2). If we use
these equations for coupling to the molecular dipole mo-
ment (a rotator function with L =1), T, and the Curie-
Weiss constant Ccw are given by

T, = —J'& p'&, ,

Ccw=~o=&V &oaks
(8.2)

Fehst et al. (1990) fitted their data with this expression
and obtained a value of the effective molecular dipole
moment p of 1.4D and a negative value for T„w'hich im-
plies a positive eff'ective coupling constant J'.

It is surprising that there is a molecular contribution of
this kind, as an ammonium ion has no intrinsic dipole
moment. The observed dipole moment is thought to
arise from distortions of the molecular framework, and
an induced electronic dipole caused by the crystal Geld.
An alternative possibility is that it is the result of dis-
placements of the ions from the center of their sites. We
think that this latter possibility is unlikely, although not
impossible, and we know of no examples in which ran-
dom off'-center displacements of ions are found in orien-
tationally disordered crystals.

If the molecule is in a "Td" orientation (Fig. 2) where
its planes of symmetry coincide with those of the site, no
dipole can be induced, but if it rotates about one bond by
60 into one of the "C3„"orientations, a dipole is induced
in the [111]direction in which the unique bond points.
In this orientation three bonds point near iodide atoms

lective rotator coordinates can be related to macroscopic
properties. This phase has the sodium chloride structure
with ammonium ions on sites with Oz symmetry. Neu-
tron scattering experiments on K, „(NH4)„I at low am-
monium ion concentration reveal that there is a large
orientation-dependent interaction between the NH4+ ions
(Bostoen et a/. , 1989). Since symmetry arguments indi-
cated that elastic interactions are negligible, these au-
thors suggested that the crystal Geld potential might in-
duce a dipole in the ammonium ion. Subsequently, Fehst
et al. (1990) measured the dielectric constants of these
materials as a function of temperature, composition, and
frequency. At room temperature the dielectric constant
~ of the pure compound is equal to 11+1,which is some-
what larger than that of sodium chloride (~=6.1) or po-
tassium iodide (lr=5. 1). Over the accessible temperature
range it increases as the temperature is lowered accord-
ing to a Curie-Weiss law. At a lower temperature the
substance undergoes a Grst-order phase transition to the
P phase similar to the P phase of ammonium bromide dis-
cussed earlier.

The dielectric constant of a material is a measure of
the dipole susceptibility at k =0. We have seen in Sec. IV
that Curie-Weiss behavior,

and one in a [111]direction. As the molecule rotates be-
tween different "C3," orientations, the direction of the
induced dipole rotates by a larger angle than the mole-
cule moves.

We write the induced dipole moment p of a molecule
(both electronic and due to distortions of the nuclear
framework), which is due to the perturbation of the mole-
cule by the crystal Geld V as

)M =a(to) V (8.3)

where a is a generalized polarizability that may be ex-
panded in terms of site-symmetry-adapted functions with
different L values. The instantaneous value of a depends
on the orientation of the molecule relative to the site axes
that may be expressed i.n terms of the Euler angles co. We
may write the polarizability in crystal axes in terms of
the polarizability in molecular axes using rotator func-
tions

a(to) =g h„(co)a (8.4)

where the molecular polarizabilities cx are constants for
a particular molecule that transform according to the to-
tally symmetric representation of the molecular group. .

The label p=L, ~, A
&

on the rotator function is a com-
posite label as used earlier [Eq. (2.21)], which shows the
symmetry species in both the site and molecular point
groups (v, A), and the L value). We note that the L
values of the polarizabilities concerned are restricted by
the rules for coupling angular momenta (Edmonds, 1960;
Brink and Satchler, 1968). As the resultant dipole mo-
ment has L, = 1, the Clebsch-Gordan series shows that a
term in the crystal Geld with L =L,, may only interact
with polarizabilities with L =L, +1,L„and L, —1. The
lowest possible L, value for the ammonium ion is L =3,
so that polarizabilities exist for this L value and higher
ones. The crystal-Geld potential in the 0& site group has
terms with L =4,6, . . . , each of which transforms as the
totally symmetric representation of the site group. When
the L =3 polarizability is coupled with the L =4 terms
in V, the resulting dipole moment does indeed trans-
form as L =1. In a dielectric experiment, the total di-
pole moment of the sample is observed. This is the k=0
function

p
—t( (1 —())a(3) y(4)

p (8.5)

Thus the constants in the Curie-Weiss temperature
dependence of the dielectric constant [Eqs. (8.1) and
(8.2)j are proportional to the susceptibility of these L =3
zone-center rotator functions. In the earlier part of this
article we saw that translation-rotation coupling does not
affect orientational coupling of rotator functions with
odd values of L at the zone center, so the value of J' in

The dielectric constant is determined by the mean-square
fluctuation in the quantity

&P'(k=O) & =(V"'a ")'&[~,=... „,(k=0)]'& . (8.6)
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Eq. (8.2) is solely due to direct coupling of the L = 3 rota-
tor functions as discussed in Sec. II, and is unaffected by
translation-rotation coupling.

The frequency dependence of the real and imaginary
parts of the dielectric constant is determined by the
Fourier transform of the time correlation function of the
total dipole moment p. In orientationally disordered
crystals this will be affected by molecular reorientation,
and although the dipole moment is a L = 1 property, it is
the effect of molecular reorientation on the rotator func-
tions in Eq. (8.4) that matters. Thus in the dielectric ex-
periment, one is monitoring the decay of the I =3
Legendre function (P3(cos8) ) rather than the more usu-
al &cose).

A similar effect should occur in the P phase with CsCl
structure, although the mean-square effective dipole mo-
ment is likely to be considerably lower as the preferred
orientations in this phase are "Td" in which there is no
induced dipole moment. Experimentally the dielectric
constant does seem to increase as the temperature is
lowered, but less rapidly than in the a phase. The magni-
tude of the dielectric constant, however, does not drop as
much as one might expect from this argument.

IX. CONCLUDING REMARKS

The aim of this article has been to show how
translation-rotation coupling in orientationally disor-
dered crystals can inhuence phase transitions, affect the
value of elastic constants, and change the appearance of
phonon spectra. We have shown how these effects can be
calculated quantitatively from a knowledge of inter-
molecular potentials, and we have demonstrated how the
use of symmetry arguments can lead to qualitative ex-
planations. Symmetry, however, only tells one whether a
coupling is allowed, not how large it is. For example, the
symmetry of the order parameter associated with the
phase transition from the disordered to the ordered phase
depends on the k value and the symmetry of the orienta-
tional order parameters corresponding to the maximum
value of the total coupling, direct and indirect (mediated
by translation-rotation coupling). Symmetry tells us
whether the latter is zero at particular points such as the
zone center and the zone boundary, but not where it is a
maximum. More detailed calculations are needed to pre-
dict which order parameter condenses at the phase tran-
sition. Once this is known (from experiment or calcula-
tion), one can use symmetry arguments to predict which,
if any, elastic constant tends to vanish near the transition
temperature.

We have shown how it is possible to establish a link be-
tween macroscopic thermodynamic quantities (elastic
constants, free energies) and microscopic intermolecular
potentials. The latter are not always well known, espe-
cially in ionic compounds. In the next few years it is like-
ly that ab initio calculations that take into account the
electronic structure of the molecule in the crystal and the
way in which it changes with molecular displacement

will improve our knowledge of intermolecular potentials.
The concepts and methods we have used are not restrict-
ed to potentials that are the sum of atom-atom terms but
can readily be generalized to other forms of potential. In
particular the expressions in terms of symmetry-adapted
rotator functions remain valid.

Although we have not discussed the trilinear coupling
terms between displacements and orientation variables in
detail, the treatment in Sec. III can readily be extended
to such terms. In particular we have mentioned some ex-
amples in which the V " terms between principal orien-
tation order parameters at zone-boundary points can
couple with elastic strains, giving anomalous expansion
(e.g., in C6o, sodium nitrate and calcium carbonate) and
changes in the lattice constants and elastic parameters at
the order/disorder phase transition.

We hope that our treatment has shown some universal
aspects —due to molecular symmetry —of translation-
rotation coupling. We have illustrated these features
with both linear and nonlinear molecules. As materials
of increasing complexity are synthesized Isuch as the ful-
lerites and related compounds, anisotropic organic con-
ductors (Moret et al. , 1982), etc.] in which translation ro-
tation is important, it is expected that the concepts that
have been developed in the present article will find fur-
ther useful applications in the near future. In particular
we believe that these concepts are essential to the under-
standing of the role of orientational degrees of freedom in
such materials.
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