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The authors present an overview of ongoing studies of the rich dynamical behavior of the uniform, deter-
ministic Burridge-Knopoff model of an earthquake fault, discussing the model s behavior in the context of
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I. INTRODUCTION: THE DYNAMICAL
RICHNESS OF SEISMIC PHENOMENA

Two trends that have characterized much of modern
theoretical physics are an increased capability for dealing
with complex systems and an increased interest in topics
that traditionally have been the property of other disci-
plines. Investigations that fall into the latter category
can be especially rewarding, but it is necessary to "take
stock" every so often to make sure that one is really
working along lines that are meaningful. The present ar-
ticle is a "stock-taking" with regard to our recent investi-
gations of the dynamics of a simple model of an earth-
quake fault.

The earthquake problem certainly satisfies our criteria
for trendiness both in complexity and interdisciplinarity.
A wide variety of points of view have been taken in re-
cent years by geologists, seismologists, mechanical en-

gineers, mathematicians, and physicists. Ours has been a
comparatively narrow one. We have focused on what we
believe to be the simplest nontrivial model of a single seg-
ment of an earthquake fault and have examined its dy-

namic properties. As we describe below, our results have
been interesting enough to encourage us to extend our in-

vestigations to more practical applications of the model.
Before outlining these results, however, we shall provide
a broader context for them by devoting a few paragraphs
to some general aspects of the earthquake problem. For
a more complete discussion see, for example, Scholz
(1990).

One spectacular feature of earthquakes is the enor-
mous range of scales over which they occur. The distri-
bution of sizes of seismic events is observed to be a power
law over more than ten orders of magnitude (though the
exponent may vary somewhat across this range). This
power-law distribution of event sizes, known as the
Gutenberg-Richter law (Gutenberg and Richter, 1954), is

one of the most fundamental observations in seismology.
Its explanation remains an outstanding question in the
earth sciences. Two possibilities have been the topic of
much debate recently. One point of view is that
geometric and material irregularities in the earth dom-
inate the behavior, and it is therefore "quenched disor-
der" which underlies the answer. An alternative point of
view is one in which complexity arises primarily as a
consequence of dynamical instabilities. In this case,
nonuniformities evolve as the system evolves, with no a
priori Axed inhomogeneities or stochastic forcing.
Whether the earth is operating in one regime or another
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or in some combination remains an open and fundamen-
tal question.

Typically, earthquakes occur in the upper ten kilome-
ters or so of the earth's crust. They arise as a conse-
quence of frictional instabilities that cause stress, accu-
mulated by large-scale plate motions over periods of hun-
dreds of years, to be relieved in sudden stick-slip events.
In other cases, deep in the crust, for example, frictional
properties may allow stable sliding, so that strain is re-
lieved smoothly and aseismically. A different class of
events, known as "deep earthquakes, " occurs along sub-
ducting plates, at depths of hundreds of kilometers. The
basic physical processes that are responsible for deep
earthquakes are not well understood, but these events are
suspected to be caused by the plates undergoing phase
changes at the high temperatures and pressures associat-
ed with large depths.

The motions of tectonic plates are driven by large-scale
convective Aows in the mantle. These fiows take place on
length scales of thousands of kilometers with turnover
times of hundreds of millions of years; thus characteristic
speeds are of the order of centimeters per year. Under-
standing these inner motions of the earth is yet another
important object of research, carried out these days pri-
marily by geophysicists and ffuid dynamicists (see, for ex-
ample, Glatzmaier et al. , 1990). These inner motions
may be intrinsically chaotic; for example, material from
the earth's core may be brought to the surface by inter-
mittent plumes that rise through the mantle. Neverthe-
less, the large-scale convection is so slow and powerful
that it may be thought of as providing a constant exter-
nal driving force for seismological purposes.

Of more direct seismological interest is the manner in
which the inner Aows couple to the brittle outer layers,
thereby driving relative motions of the plates and pro-
ducing the intricate patterns of cracks that we know as
earthquake faults. One of the main themes of modern
seismology is the use of basic principles of fracture
mechanics for understanding the way in which stresses
applied to the crust have produced the various kinds of
faults that are known to exist (see, for example, Scholz,
1990). A. recent trend has been to ascribe fractal proper-
ties to the complex arrays of fault segments that occur in

the regions where major plates come into contact with
each other (Kagan, 1982; Barriere and Turcotte 1991;
Knopoff; 1993; Sahimi et al. , 1993). Why these patterns
have the geometric properties that are observed, and
what may be the implications of these geometries for pre-
dicting the frequencies and sizes of seismic events are
outstanding research questions. It may be, for example,
that each segment of a complex pattern of faults under-

goes its own characteristic cycle of earthquakes with only
relatively weak coupling to its neighbors. If so, then the
statistical distribution of earthquake magnitudes will be
determined primarily by the statistics of fault
segments —the disorder is quenched into the system-
and the most important concepts in theoretical seismolo-

gy will be geometric in nature.
A hypothesis that attempts to explain the observed

geometric irregularities within a dynamical framework is
known as "self-organized criticality" (Bak et al. , 1987;
Chen et al. , 1991). The idea is that many systems in na-
ture, the earth's crust, for example, are driven by exter-
nal forces in such a way that they are always at or near a
threshold of instability. Tectonic plates retain their in-
tegrity or remain locked to one another until the stresses
that are imposed upon them are partially relieved by
events such as fault formation or earthquakes, but the
stresses begin to rise toward threshold again as soon as
an event is over. It seems possible that systems that
operate persis:ently near a threshold of instability are in
some way like thermodynamic systems near critical
points. If, as in critical phenomena, some length or time
scale is diverging near threshold, then fluctuations may
occur over anomalously broad ranges of size or duration.
So far as we know, there does not yet exist a systematic
mathematical definition of a state of self-organized criti-
cality. The hypothesis remains an intriguing conjecture
that has served to stimulate a variety of theoretical inves-
tigations including our own. As we shall see, the earth-
quake model that we have studied does exhibit some
features of a critical system, but there are other respects
in which it differs markedly from the hypothetical ideal.

The principal result of our studies is tha( a spatially
uniform block and spring model —the one-dimensional
"Burridge-Knopoff model" (Burridge and Knopoff, 1967)
without built-in irregularities or external noise —is a
deterministically chaotic dynamical system whose
behavior is similar in some important ways to the
behavior of real earthquake faults. In particular, the
model exhibits a broad spectrum of small to moderately
large, spatially localized, earthquakelike events, which
move stress from one location to another but do very lit-
tle to relieve stress in the system as a whole (Carlson and
Langer, 1989a,1989b; Carlson et al , 1991).. It also exhib-
its spatially extended "great events" in which strong slip-

ping pulses arise at "epicenters" and propagate along the
fault, thereby unloading the stress on large segments of
the system. The sizes of the smaller events obey a
power-law distribution much like the Gutenberg-Richter
law. The great events recur irregularly on roughly a
loading period —the time necessary for the tectonic
forces to build stress up to the breaking point —and their
frequency as a function of magnitude is not generally a
simple extension of the power-law distribution for the
smaller events (Carlson, 1991a). This rich pattern of ap-
parently realistic behavior emerges from a model with
essentially only one adjustable, material-dependent pa-
rameter, and with no externally imposed spatial or tem-
poral structure.

We have used the term "apparently" here because this
is, at best, a model of a single isolated fault or fault seg-
ment. The intrinsic dynamic properties of single faults
are not known with precision, and many aspects of the
subject remain controversial. The catalogs of seismic
events on which the Gutenberg-Richter law is based al-
most always pertain to large regions containing many
faults; and the statistics of large characteristic events on
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single faults are necessarily very poor because the re-
currence times for such events are usually centuries or
longer (Nishenko and Buland, 1987). The manner in
which slip propagates in this model (Langer and Tang,
1991; Langer, 1992; Langer, 1993; Langer and Nakan-
ishi, 1993; Myers and Langer 1993a) looks very much
like the conjectured "Heaton pulse" (Heaton, 1990).
However, much work remains to be done before we know
whether this pulse is actually the normal mechanism for
slip in large earthquakes and, if so, whether the pulse
that occurs in the Burridge-Knopoff model has anything
in common with the real one.

Thus there are large uncertainties in our understanding
of seismic phenomena in the earth, and the uniform
Burridge-Knopoff model is far from being an accurate
representation of even the simplest faults. (It does not
even contain a mechanism for aftershocks. ) What, then,
can we say about meaningful accomplishments and fu-
ture prospects for research along these lines? In large
part, this article is devoted to answering that question.
As in any theoretical project, much of the answer is that
the insight gained from modelistic studies can be helpful
in interpreting real data and in developing more realistic
models. After a brief introduction to the simplest version
of this model in Sec. II, we describe several such interpre-
tations and extensions that we believe are particularly
promising: the distinction between localized and delocal-
ized events, pulse propagation, and some higher-
dimensional models, which include either patterns of slip
on the fault p1ane or elastic deformations normal to that
plane. These topics are discussed in Secs. III—V.

We conclude in Sec. VI with an introduction to what
is—for physicists, at least —an unconventional use of
physical models. The idea is to use this model as a tool
for developing objective techniques for earthquake pre-
diction. As mentioned above, the Burridge-Knopoff
model is highly idealized, but it has two especially impor-
tant features: it is intrinsically and deterministically
chaotic —and therefore technically "unpredictable"; and
it produces a clear distinction between frequent small
events and the rare large ones about which we would like
to be warned in advance. Thus this model and its more
realistic extensions ought to provide practical, quantita-
tive tests for the validity of prediction schemes.

Fl:Q. 1. Schematic representation of a lateral fault embedded in
an elastic medium. Shear and normal stresses, applied far from
the interface between the homogeneous elastic plates, and are
relieved by sudden slipping motions, which occur when the fric-
tion threshold is exceeded.

(1) A mechanism for loading the system, i.e., for apply-
ing the shear stress.

(2) Mechanisms for storing the elastic energy associat-
ed with both the compressive and the shear stresses.

(3) Stick-slip friction action between the plates along
the fault line. It is essential that this be a velocity-
weakening friction. That is, once slipping begins, the
frictional force decreases with increasing slipping speed.
The resulting dynamic instability is responsible for al-
most all of the interesting properties of this class of mod-
els.

We also insist that this be a fully deterministic, dynam-
ical model. The benefit of studying a dynamical system
as opposed to, say, a cellular automaton is that we can
more easily identify characteristic length and time scales
with the corresponding parameters in the laboratory or
the earth. Moreover, our physical intuition leads us to
believe that deterministic inertial dynamics is an essential
ingredient of a theory of earthquakes.

All of these ingredients are contained in the uniform
Burridge-Knopoff model, which is illustrated in Fig. 2.
The model consists of a one-dimensional chain of blocks
and springs that is pulled slowly across a rough surface.
Comparing this simple mechanical model with the ideal-
ized fault illustrated in Fig. 1, we see that the blocks
represent a discretization of one side of the fault in which
the fault line is the contact surface between the blocks
and the fixed rough surface on which they slide, and the

II. THE MODEL: COMPLEX BEHAVIOR
FROM A SIMPLE DYNAMICS ~~((F()7(lit(~(F C(Ff&( i &z()()z(z zw

We start by considering the simple model of an earth-
quake fault illustrated schern. atically in Fig. 1. Here, two
adjoining elastic plates are being pushed together and
forced to move in opposite directions along their line of
contact. The corresponding compressive and shear
stresses are applied at some distance from this "fault"
line. The plates are "stuck" to each other at the fault
but, whenever the threshold for sticking friction is ex-
ceeded by the local shear stress, the plates move in an
earthquakelike slipping event.

This model contains three essential ingredients:

FIG. 2. The one-dimensional uniform Burridge-Knopoff model
represents the IIinite-difference approximation to Eq. (1). The
system consists of a uniform chain of elastically coupled masses,
located at positions U(x, t) along the x axis, which we imagine
to be the axis of a lateral fault. Each block is connected to its
two neighbors by harmonic coil springs and is pulled individu-

ally forward through an elastic leaf spring that moves at con-
stant velocity v. The ratio of the coil spring strength to the leaf
spring strength is (g/a), where a is the equilibrium block spac-
ing. The key nonlinearity leading to complex behavior is the
friction law P illustrated in Fig. 3.
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coil springs and leaf springs, respectively, represent the
linear elastic response of the plates to compression and
shear. If the blocks were able to slide without friction on
the lower plate, disturbances would propagate
indefinitely like waves with a speed determined by the
masses and spring constants.

However, the velocity-weakening stick-slip friction at
the interface between the blocks and the rough surface
changes the character of the motion dramatically. The
system is driven by pulling the upper surface slowly for-
ward at some constant velocity. At most times, the
blocks remain stationary on the rough lower surface,
held there by the sticking friction while the leaf springs
are stretched by the driving force. Note that we have

placed the middle block in Fig. 2 slightly to the left of
center so that the forces pulling it to the right are slightly
greater than those acting on its neighbors. As a result,
the forces acting on this block will be the first to reach
the threshold for sticking friction. When this happens,
the block will slip forward, increasing the forces
on the neighboring blocks and possibly causing them to
move as well. In this way, the motion triggered by the
instability of a single block may induce an event —an
"earthquake" —in which many blocks move forward in a
complex slipping pattern.

The continuum limit of the one-dimensional Burridge-
Knopoff model is defined by the partial differential equa-
tion

8 UU=g —U —P(U)+vt .
Bx

Conversely, the blocks and springs in Fig. 2 represent the
elementary finite-difference approximation to Eq. (1).
Equation (1), or its discretized version, is Newton s law of
motion in an almost dimensionless form. The function
U(x, t) is the time-dependent displacement of the materi-
al at position x along the fault. The inertial term is on
the left-hand side. The first two terms on the right are
the (linear) compressional and shear forces, respectively,
and P( U) is the velocity-dependent friction. Finally, vt is
the driving force; that is, v is the dimensionless loading
rate. Note that, in contrast to the original work by Bur-
ridge and Knopoff and many subsequent investigators,
our version of the model is completely uniform. All of
the physical elements —masses, springs, friction
forces —are identical to one another, and we shall intro-
duce no external noise or other stochastic ingredients.

We have scaled Eq. (1) in such a way that the largest
possible earthquake, in which the system slips forward
uniformly through one half period of the simple harmon-
ic motion determined by the shear force, has a duration
ht =m and a corresponding slip distance D U=2. In oth-
er words, our time t is measured in units of a characteris-
tic slip time (sometimes called the "rise time"), which, in
the earth, is of the order of seconds. Our displacements
U are measured in units of a characteristic slip distance,
which usually is of the order of meters.

The dimensionless loading rate v is measured in units
of the characteristic slipping speed. Because the latter is

of the order of meters per second, and geological loading
rates are of the order of centimeters per year, v is of or-
der 10 or less. An equivalent way of saying this is that
geological loading periods —the times required for the
tectonic forces to build back up to the slipping threshold
after a very large event —are generally of the order of
centuries in real time, and are of the order v '=10 in
our dimensionless units. This very large difference be-
tween rise times and loading periods means that earth-
quakes, both in the earth and in our model, are sharply
defined events that can be observed and catalogued
unambiguously.

In order to avoid confusion between displacement U
and position x (which both have the dimensions of length
but which scale quite difFerently), we have chosen to
leave x in dimensional units rather than further simplify-
ing Eq. (1) by writing x in units of g. The length g is the
distance traveled by a sound wave in a slipping time, and
thus is of the order of ten kilometers. This length neces-
sarily is the same as the thickness of the seismogenic lay-
er of the earth's crust; it is the only length available for
setting the frequency of the slowest harmonic mode in
the system, that is, for determining the coeflicient (unity
in our notation) of —U in Eq. (1). Because time is dimen-
sionless, we shall also speak of g' as a velocity. The one
remaining length scale in the problem is the block spac-
ing a, which is shown in Fig. 2, but which disappears in
the continuum limit implicit in Eq. (1). We shall see that
a plays a crucial role as a short-distance or, equivalently,
high-frequency cutoff; that is, Eq. (1) is not by itself a
mathematically well posed differential equation.

The only nonlinearity in Eq. (1) is contained in the
slip-stick friction law P( U), which we show schematical-
ly in Fig. 3. An elementary mass point along the fault—
that is, a "block" in Fig. 2—remains stuck at U=O until
the force on it exceeds some threshold, which we have
scaled to unity. When a block starts to slide, the friction-
al resistance to its motion decreases at a rate 2a. The
quantity a is (very nearly) the only dimensionless param-
eter that contains information about the constitutive
properties of the material; it is the ratio of the charac-

I
—c)

2Q

FIG. 3. The velocity-weakening slip-stick friction law P(U).
Sticking friction satisfies P(0) 0, while slipping friction decays
monotonically to zero from the initial value P(0+ ) =1—cr, with
initial slope equal to —2a. This initially negative slope gives
rise to the intrinsic instability, which ultimately leads to com-

plex behavior. Note that the form of Eq. {1)is invariant (upon
resetting the zero of displacement) with respect to addition of a
constant to the high-speed friction.
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teristic slipping speed (meters per second) to a speed that
characterizes the velocity-weakening property of the fric-
tion law. Thus, if a is large, the fault quickly becomes
"slippery" once motion begins, and this motion is strong-
ly unstable. Conversely, if o, is small, the fault remains
relatively "sticky" during motion, and the instability is
weak. It is important to note that, because the elastic
forces in Eq. (1) are all linear, we can reset the zero of
P( U) simply by shifting the zero of U; thus, without loss
of generality, we have let P(U) vanish for large U, and
we also have let the multivalued quantity P(0) be as large
and negative as is necessary to prevent backsliding. That
is, we constrain the motion so that U ~ 0.

For the numerical calculations reported here, we have
chosen

P(U)= .

The "onset parameter" o. is the acceleration of a block at
the instant when slipping begins. We have introduced o.

primarily as a technical device that allows us to study the
limit v —+0. In the absence of o., events begin indefinitely
slowly in that limit, which obviously is inconvenient for
numerical purposes. Further, it seems improbable that
the order of magnitude of the very small driving rate v
should inhuence the dynamics of events on a completely
different scale. In fact, if there is a separate nucleation
process leading up to an event, then a finite 0., which pro-
vides an initial "kick," may be a realistic effect. With
nonzero cr and vanishingly small v we need not carry out
explicit time integrations between slipping events, and
thus we are able both to use a geologically realistic load-
ing rate and to study the system for very large numbers
of loading cycles. Accordingly, we have used sma11
values of o., usually 10, for generating large artificial
earthquake catalogs.

In summary, the uniform Burridge-Knopoff model is
fully determined by only the following dimensionless,
system-dependent parameters. Principally, there is the
friction parameter a, which determines all of the most
important features of earthquakes, especially the qualita-
tive features of their frequency distribution as a function
of magnitude. In addition, there is the ratio g/a, which
diverges in the continuum limit and determines the range
of sizes over which different behaviors are seen. As
might be expected, g/a determines the small-magnitude
cutoff of the frequency distribution. Interestingly, it also
determines the upper cutoff for great events in very large
systems and, in addition, determines the propagation
speeds and widths of rupture pulses in such events. The
loading rate v and the onset parameter o. may both be
thought of as being arbitrarily small. (They do, however,
play roles in distinguishing localized from delocalized
events. ) The only other parameter that plays any role is
the size of the system, that is, the number of "blocks."
There are some situations in which it is useful to consider

small systems; for example, it may be interesting to simu-
late the behavior of short fault segments. For present
purposes, however, we shall consider only systems that
are indefinitely large; then, because there is a finite cutofF

p for the largest events, in large enough systems, the
system size is irrelevant.

III. PROPERTIES OF THE UNIFORM BURRIDGE-
KNOPOFF MODEL: SMALL AND LARGE EVENTS

In our earliest investigations of the uniform Burridge-
Knopoff model, we have taken advantage of the ease with
which Eq. (1) can be integrated numerically to generate
long and accurate artificial catalogs of seismic events.
Using only a modest workstation, we have been able to
obtain the geological equivalent of tens of thousands of
years of data, which, unlike real seismological data, are
free of observational errors or uncertainties. Our initial
goal in this effect was simply to find out whether so ele-
mentary a model might behave in a way that is at all
similar to the behavior of a real earthquake fault. We
shall describe a more ambitious and speculative use of
these artificial catalogs in Sec. VI.

We generally have carried out our numerical solutions

100 200 300
POSITION. x

400 500

FIG. 4. The displacement U(x, t) for a typical sequence of
events, plotted immediately after each event as a function of po-
sition x along the fault. The lowest contour corresponds to the
earliest configuration, taken after the initial transient period has
passed and the system has reached a statistically steady state.
Subsequent curves correspond to the sequence of stuck
configurations observed as Eq. (1) is integrated forward in time.
The seismic moment of each event corresponds to the area
swept out between adjacent curves. In spite of the underlying
homogeneity of the system, the behavior is quite complex.
While the system is technically chaotic, it also displays short-
term "patterns, "which can be used for predictive purposes. In
particular, the smaller events tend to cluster in the roughly par-
abolic minima, preparing a nucleation zone for the triggering of
a future large event. Here we have taken o.=0.01, a=1.2,
g/a=2. 0, and %=500. In the more generic case of a) 2 the
small events account for even less of the net displacement than
for the parameter values taken here.
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of Eq. (1) by choosing some small inhomogeneity in the
initial displacements and then allowing the system to
evolve until it reaches a statistically steady state. A typi-
cal evolution of the system, beginning after the initial
transient has passed, is illustrated in Fig. 4. Here, we
plot a sequence of "stuck" configurations U(x, t) as func-
tions of position x. A new curve is drawn after each
event, which begins when the force on some block
exceeds the static friction threshold and concludes when
the entire system comes to rest. Clearly, the motion
shown here is very complex. Indeed, it is technically
chaotic in the sense that nearby configurations move
apart, on average, exponentially fast. Events occur over
a wide range of sizes and, while the eye can discern cer-
tain patterns, the system is not behaving in a periodic or
quasiperiodic manner.

The most striking feature of Fig. 4 is the distinction be-
tween small and large events. The smaller events are by
far the most numerous. They tend to occur in clusters
and to fill in local minima in the displacement curve
U(x, t) where many blocks are close to their slipping
thresholds. The large events are much less frequent but
dominate ihe net motion of the system; they cover most
of the area in Fig. 4.

In analogy to the seismological convention, we define
the seismic moment M to be the integrated slip, that is,
the area swept out by an event in Fig. 4. We further
define the magnitude" of an event' to be p= —lnM, and
we denote the differential magnitude vs frequency distri-
bution by R (p). A typical frequency distribution R (p)
is shown in Fig. 5 for a sequence of events like that
shown in Fig. 4, but for a much larger system (over 8000
blocks), a much larger number of loading cycles (over
100), and slightly different values of the parameters.
Here we see that the sharp distinction between small and
large events that is visible in Fig. 4 is also manifest in the
statistical properties of the system. The small events,
with magnitudes between some lower bound p, deter-
mined by the block size and a crossover value p, are dis-
tributed according to our analog of the classic
Gutenberg-Richter law:

R (p)= Ae

with b very nearly to unity for large enough a. [For
"stickier" faults with o, less than about 2, smaller values
of b are obtained (Carlson and Langer, 1989b; Vascon-

The usual Richter magnitude is measured on a log&o scale and
for historical reasons is defined in terms of the response of a
specific instrument to ground motion. The magnitude p, which
we use, is most clearly related to a quantity referred to as the
moment magnitude (Hanks and Kanamori, 1979), which is
based on estimates of the total slip. The wide range of sizes of
seismic events and the necessarily remote means by which
events are detected have led to the development of numerous
magnitude scales.

I I I I I I I I I I I I I I I

0—

—15
—10 —5 0 5

MAGNITUDE p,
10

FIG. 5. Magnitude vs frequency distribution for the uniform
Burridge-Knopoff model. Here we have taken o.=0.01, a=2.5,
g/a=6, and %=1500. The most striking feature is the statisti-
cal distinction between small and large events, marked by the
crossover p, , which corresponds to an upper bound on the size
of the small clustering events in Fig. 4. A more detailed numer-
ical study of the scaling of this distribution reveals an interest-
ing sensitivity of the magnitude of the largest events to the pres-
ence of the short-wavelength cutoff a (Carlson et aI., 1991). In
particular, for N sufficiently large, both the magnitude of the
crossover p and largest event p* are independent of N. Howev-

er, while p, is independent of a, we find that p* increases as the
mesh becomes finer, scaling roughly as IM*- ln(g' /a).

celos er aI., 1992)]. The large events, with magnitudes

greater than p, , occur at a rate that is higher than the ex-

trapolated "b=1" law, and their distribution cuts off
sharply at a magnitude p*, which, for large enough sys-

tems, is independent of the system size.
All of the above features of Fig. 5 are qualitatively

similar to behavior that is often —but not always—
observed seismologically. The similarity pertains only to
data taken for a single fault system and not to catalogs
that combine data from many different faults with quali-
tatively different characteristics (see, for example, Scholz,
1990). The interpretation of earthquake catalogs remains
somewhat controversial, and we shall not try to discuss
in any detail the current state of those debates. In brief,
it appears that smaller events on real faults, with Richter
magnitudes roughly in the range 1 —6, are in some sense
self-similar and obey some scaling distribution, but prob-
ably with b values (as defined here) appreciably smaller
than unity (Pacheco et al. , 1992). The overabundance of
large events for single faults is difBcult to observe directly
because repeat times are of the order of hundreds of
years. However, the distribution of smaller events, even
if extrapolated to Richter magnitudes 8 or 9, appears to
account for only a small fraction of the total slip on indi-
vidual faults. Thus there is indirect geological evidence
that most of the displacement and energy release occurs
during very large "characteristic" earthquakes whose re-
currence frequency lies well above the extrapolated scal-
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ing distribution (Schwartz and Coppersrnith, 1984; Dav-
ison and Scholz, 1985; Wesnousky, 1993; for a different
interpretation see Hanks, 1992).

The distinction between large and small —or delocal-
ized and localized —events is probably the most
significant new physical insight to emerge from this
study. We can understand what is happening, roughly,
as follows. Consider a zone along the fault of width Ax
in which all of the blocks are at or very near their slip-
ping thresholds; that is, in Eq. (1) g t) U/Bx —U= 1.
When we linearize Eq. (1) about a configuration of this
kind, we find that an initially sharp slipping pulse propa-
gates at speed g and grows like e ' as it picks up stored
elastic energy within the zone. If triggered by the natural
evolution of the system, the initial amplitude of such a
pulse would be proportional to the onset parameter o..
The delocalization criterion is simply the condition that,
when this growing pulse reaches the edge of the zone
where the blocks are further away from their slipping
thresholds, its strength has become su%cient to dislodge
those blocks and thus sustain its motion. Because the
pulse propagates for a time of order b,x/g within the
zone, the width of the smallest slipping zone that can nu-
cleate a delocalized event must be proportional to
(g/a)ln(1/o ).

A more careful analysis (Carlson and Langer, 1989b;
Carlson, et al. , 1991)yields the delocalization length:

r

2g
oa

(4)

Integrating the displacernent associated with an event of
size g', we obtain the crossover magnitude

We have confirmed numerically that the delocalization length

g is proportional to g. However, the a dependence appears to
be less strong than Eq. (4) would suggest. Tests of the weak log-
arithmic dependence on the additional parameters have not
been carried out due to the limited ranges over which these pa-
rameters can be adjusted while maintaining good statistics.

which is consistent with the minimum in Fig. 5.
For realistic values of the parameters, the crossover

length g is of the order of tens of kilometers. Because g
scales like g, it will generally be of the same order of
magnitude as the thickness of the seismogenic layer, even
in this one-dimensional model where earthquakes have
no structure in the fault plane. The length g can be
viewed as a correlation length for the model because it
defines an upper bound on the length scale over which
small events tend to cluster. Events that occur on length
scales smaller than g tend to smooth the system, thereby
preparing an increasingly large triggering zone for a
corning large event. On the other hand, because of the

stick-slip instability, events that occur on length scales
larger than g tend to roughen the system, leading to later
sequences of smaller events. This interplay between
small and large events implies that an understanding of
the dynamics of the large events will be necessary in or-
der to calculate the scaling distribution for the smaller
events. As yet, we have found no convincing derivation
of the "b= 1" law for the uniform Burridge-Knopoff
model.

Note that the block spacing a appears explicitly on the
right-hand side of Eq. (4); this is our first indication that
the short-wavelength cutoff is playing an important role
in the dynamics of this system. Interestingly, our numer-
ical simulations indicate that a plays a role in determin-
ing the size of the largest event p* as well (see Fig. 5).
We shall see in the following section that a shows up
again in the pulse-propagation problem.

'

IV. RUPTURES: NUMERICAL OBSERVATIONS
AND ANALYTICAL SOLUTIONS

Two unavoidable facts make direct observation of
earthquake ruptures nearly impossible. First, most
earthquakes occur well below the surface of the earth,
and, second, earthquakes occur suddenly, at irregular
time intervals, making it dificult for the observer to be at
the right place at the right time. Thus, instead of direct
measurements, seismologists measure the shaking pro-
duced at the earth's surface at remote stations, and try to
invert the signal to infer the motions at the source. How-
ever, the inversion problem is intrinsically complicated.
For example, the effects of inhomogeneities in the crust
on the attenuation of radiated waves are not fully under-
stood, making it dificult to separate the effects that are
due to the source from those due to the path. In addi-
tion, the problem of inverting an array of seisrnograms to
deduce the source motion is underdetermined, since it in-
volves reconstruction of motions in two space dimensions
and one time dimension using a finite number of one-
dimensional time series collected at different stations.
Theoretical models thus play a crucial role in the inver-
sion process.

In the Burridge-Knopoff model we can use our ability
to follow the motion directly to take a closer look at the
dynamics of individual events. A very large delocalized
event is illustrated in Fig. 6. Here we show a sequence of
configurations at equally spaced time intervals during the
period in which slipping is actually taking place. The
motion begins at the point labeled "epicenter" and looks
initially like a localized event in which the blocks in a
zone roughly of width g slip forward irregularly. As the
motion reaches the edges of the zone, it becomes a pair of
smooth pulses that propagate outward at almost constant
speed. Each nearly vertical line in Fig. 6 is a slipping re-
gion in which the blocks are jumping forward from one
stuck configuration (the bottom curve) to another (the
top). The right-moving pulse dies out quickly because it
encounters a nearby region in which the blocks are firmly
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FICx. 6. The dynamics of an individual large event consist of
narrow slipping pulses, which propagate at a speed of roughly

New curves are drawn at equal time intervals during the
event and represent the configuration at various stages between
the initial configuration (bottom curve) and final configuration
(top curve). The spatial variation of the pulse speed is apparent
in the variation in spacing of the nearly vertical lines, which
mark the slipping blocks. Lines that are relatively farther apart
correspond to fast-moving pulses, which propagate through re-
gions that are close to threshold, while the lines that are closer
indicate a relatively slower speed, which occurs when the pulses
pass through regions that are more stuck. It is interesting to
note that, as a consequence of the large event, the configuration
is nearly inverted: regions that were initially close to threshold
slip further than regions that were initially far from threshold.
Here we have taken g/a= 3, a = 1.2, and a =0.01.

stuck. The left-moving pulse, on the other hand, moves
much farther, slowing slightly and then accelerating
again as it passes through stuck regions, and finally com-
ing to rest only after relieving the stress over a large por-
tion of the fault.

Numerically we can follow the net motion forward as a
function of time and, taking the Fourier transform of
this, obtain the moment spectrum, a quantity that
seismologists can measure. The spectra produced by the
model exhibit power laws and are similar to spectra tak-
en from the earth. Interestingly, g is again relevant. The
model spectra for large events exhibit a bend at a fre-
quency proportional to the inverse time required for a
pulse to propagate a distance g (Shaw, 1993a).

Even more powerfully, analytic calculations have been
made of the speed and shape of pulses propagating into a
uniformly stuck state. The shape of slip pulses in the
earth remains an open question, but one that is an impor-
tant ingredient in the inversion process. Some simple
considerations make it clear that even in our simple mod-
el this problem is nontrivial; indeed, just posing the prob-
lem leads us to explore some previously untouched but
fundamental issues in fracture dynamics (Langer, 1992,
1993; Langer and Nakanishi, 1993). In the brief remarks
that follow, we can provide only a very qualitative and
nonrigorous summary of our ongoing investigations in
this area. More details can be found in Langer and Tang
(1991)and Myers and Langer (1993a).

Without loss of generality for these purposes, we can
set vt=O in Eq. (1) and, for simplicity, consider a pulse
propagating into a system that is uniformly at, say,
U = —1+@. Because the slipping threshold occurs at
/= 1, e is our measure of distance from threshold; that is,
it is the degree to which the system is stuck. Our prob-
lem is to find steady-state propagating solutions of the
form U(x, t)= U(x —vt) with U(x »Ut) = —1+a, and
to compute the speed v as a function of e.

The simplest and most naive approach to this problem
is to assume that the slipping friction P( U & 0) drops
quickly t~ zero, in which case solutions of Eq. (1) have
the form

x vt
U(x, t) = —(1—e)sin

&v' —g'

—1+a,

x —vt

&U' —g'

x vt vT

2 QU2 —g2 2

x —vt &+—
2 g2

Despite the fact that the slipping friction cannot be com-
pletely negligible at the onset of motion and at the re-
sticking paint, and despite the fact that we have written
Eq. (6) without proper consideration of the boundary
conditions at these points, this result turns out to be re-
markably close to the actual behavior of the model. For-
mal steady-state solutions of properly posed interpreta-
tions of Eq. (1) can be shown to exist for a continuous
range of supersonic speeds v & g and the slipping
motion, to a good approximation, is a free-slipping pulse

much like Eq. (6), whose width is proportional to
+U2 —g2. The numerical experiments, however, imply
not a family of values of v, but precise selection indepen-
dent of initial conditions.

The crucial, physically important fact about the
velocity-selection problem is that its solution requires the
introduction of a new length scale or, equivalently, a
short-wavelength cutoff. We have dealt with this situa-
tion in two different ways. In our earliest work on this
problem, we used the fact that the finite-difference ap-

Rev. Mod. Phys. , Vol. 66, No. 2, April 1994



Carlson, Langer, and Shaw: Dynamics of earthquake faults 665

(7)

and the width of the pulse is
1/3

bx=+v —
g =g2 2 3CKa

2
(8)

proximation to Eq. (1), that is, the uniform block and
spring model of Burridge and Knopoff, is perfectly well
posed mathematically. For small block spacing a, a
sufficiently accurate finite-difference correction can be
obtained by adding the term (g a /12)B U/Bx to the
right-hand side of Eq. (1). In recent investigations, we
have preferred to add a viscous damping of the form
gB U/Bx on the grounds that such a term has a more
natural physical interpretation. This viscous term be-
comes —

yves U/Bx when we look only for steady-state
solutions. The relevant new length in this case is V'g.
Both techniques amount to adding a comparatively high
derivative to the equation of motion, and thus introduc-
ing a singular perturbation that does in fact make the
equation mathematically well defined. For simplicity, we
shall refer here only to the finite-difference method, al-
though it is the viscous model that has proved to be most
interesting in a number of physical contexts.

With the addition of the singular perturbation and the
associated new length scale, velocity selection in this sys-
tem becomes a nonstandard version of an especially in-
teresting class of dynamic phenomena. The history of
work in this area goes back to the classic paper of Kol-
mogorov, Petrovskii, and Piscounov (1937) on front
propagation in a nonlinear diffusion equation. In this
case, we are dealing with a wave equation with a linear
singular perturbation and an especially ferocious non-
linearity in the stick-slip friction. Nevertheless, the sim-
plest version of the selection mechanism seems to be ex-
actly correct for this system: the selected state is the one
for which the steady-state solution is just on the margin
of being unstable. While there remain some technical
questions regarding the literal interpretation of this state-
ment, its practical implementation has been checked by
careful computations and found to be correct even, for
example, for large block spacings in which the fourth-
derivative approximation would be entirely inaccurate.

The results of this analysis are indicative of the in-
teresting structure of the selection problem. We quote
them only in the limit of small a and small "stuckness"
parameter e. The velocity is

' 2/3
U 1 3cxa 7r'——1+— 1—

2 2g ln (2e/3)

falls below g. The pulses fail to propagate —the selected
velocities vanish —at a-dependent values of e that are al-
ways somewhat less than unity.

An especially interesting feature of the results reported
in Myers and Langer (1993a) is that the selected pulses
invariably probe the strongly nonlinear portion of the
friction law (2). That is, the blocks slip as much as possi-
ble at speeds large enough that the friction is small.

The idea that the motion in very large earthquakes
consists of narrow propagating slipping pulses has been
advanced on the basis of observational data by Heaton
(1990). Heaton's conjecture remains a basic open ques-
tion and is the subject of considerable debate. Heaton's
picture is supported robustly by our analytic and numeri-
cal studies. Our pulses are narrow in the sense that their
thicknesses Ax are appreciably smaller than the "crust
depth" g. Most remarkably, once they get started, our
model pulses move steadily along the irregularly stressed
fault, amplifying irregularities as they pass, but with no
noticeable backscattering.

V. HIGHER DIMENSIONS: MOVING
TOWARDS MORE REALISTIC MODELS

Certain intrinsic limitations of the one-dimensional
Burridge-Knopoff model can be overcome by extending it
to higher dimensions. For example, in the one-
dimensional model, there are no elastic interactions be-
tween distant points on the fault, and there is no mecha-
nism for radiative transport of elastic energy. In addi-
tion, real earthquakes have structure in the two-
dimensional fault plane and, therefore, the scaling laws
and exponents that we find in one dimension may not be
the same as those in higher dimensions. Of course, the
earth is three dimensional, but fully three-dimensional
calculations analogous to those we have carried out for
the one-dimensional model are still beyond the range of
our computational capabilities. For this reason, our
study of higher-dimensional models has begun with the
consideration of two different two-dimensional models
representing two orthogonal cross sections of the seismo-

genic zone.
First we consider a two-dimensional fault-plane model

(Carlson, 1991b) in which the variable x, as before, de-

scribes position along the fault, and z is the depth below
the surface. For simplicity, we consider displacements
U(x, z, t) only in the x direction. The equation of motion
is

Note the following. In the continuum limit a ~0, the ve-
locity approaches the sound speed g from above and thus
remains well behaved. The width Ax vanishes in this
limit, but the number of blocks in it becomes infinite:
bx/a=(g/a) ~ ~oo. According to Eq. (7), the pulse
slows with increasing e. This is qualitatively consistent
with the behavior seen in Fig. 6, where there is a clear de-
celeration as the pulse passes through regions where the
original values of U(x) are relatively large. At larger
values of e, where Eqs. (7) and (8) are no longer valid, v

U = g' V' U —U —P( U, z) +vt, (9)

which differs from Eq. (1) in the higher-dimensional gra-
dient term, representing a two-dimensional lattice of cou-
pling springs, and the depth dependence of the friction.
In the simplest case, we have taken the friction to be in-
dependent of z. A more realistic option is to allow the
friction to change with depth to account for the fact that
friction in the earth depends on pressure and tempera-
ture.
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Figure 7 is a typical magnitude vs frequency distribu-
tion for the fault-plane model. Comparing this with the
corresponding results for the one-dimensional model
(Fig. 5), we see that the scaling law describing small to
moderately large events is remarkably unchanged; that is,
the exponent b= 1 in the Gutenberg-Richter relation (3)
continues to hold. The most striking difFerence between
the results in one and two dimensions is that, in two di-
mensions, the bump associated with large events is re-
placed by a relatively fiat shoulder (which gives a some-
what better fit to the data). This occurs both with and
without depth-dependent friction for systems that are
sufnciently large. The bump reemerges, however, for
faults that are sufficiently shallow (roughly for fault
depths less than g). In fact, because the earth's crust is
thin in comparison to the typical propagation length of a
great earthquake, it is likely that the most realistic case is
the relatively shallow two-dimensional fault with a depth
of order g. In our simulations for both deep and shallow
two-dimensional faults, there continues to be an excess of
large events relative to the projected rate of smaller
events. Of course, in two dimensions the crossover p will
be modified because, according to dimensional analysis, it
must scale like g rather than g.

Results from the fault-plane model are qualitatively
comparable to seismic reconstructions (Archuleta et al. ,
1982) and depth-dependent measurements (Sibson, 1982).
Figure 8 is an illustration of a moderately large event in
the x-z plane. In Fig. 8(a) we show the blocks that are

slipping at equal time intervals. As in the one-
dimensional model, we observe narrow propagating
fronts. In this particular case, the event starts near the
bottom of the fault and propagates both horizontally and
vertically, sweeping out a slipping zone that is not at all
radially symmetric or spatially uniform, as illustrated in
the slip distribution shown in Fig. 8(b). In fact, in some
cases we observe that the propagating fronts split and
pass around regions that are firmly stuck. In the
shallow-fault model, this splitting tends not to be ob-
served and, instead, the slipping front spreads from bot-
tom to top and then propagates unilaterally or bilaterally
along the fault, again producing an irregular slip distri-
bution.

Next we consider our second two-dimensional cross
section of the earth, namely a crustal-plane model in
which a one-dimensional fault (the x axis) is embedded in
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FIG. 7. Magnitude vs frequency distribution in the two-
dimensional fault-plane model. Here we have taken o.=0.01,
a=2.5, /la=3, N„=200, and X,=100. The results shown
here are for depth-dependent friction. The corresponding dis-
tribution obtained when friction does not depend on depth is
essentially identical. Interestingly, the exponent b in the
Crutenberg-Richter law [Eq. (3)], which characterizes the distri-
bution of smaller events, is the same here as it is in Fig. 5 for the
one-dimensional model. In both cases we observe an excess of
large events, though in sufficiently large two-dimensional sys-
tems it appears as a shoulder in the distribution (as in the case
illustrated here) rather than as a bump.

FIG. 8. A typical delocalized event in the two-dimensional
fault-plane model (parameters as in Fig. 7). This event has
@=6, which on the corresponding magnitude vs frequency dis-
tribution lies a little more than half of the way between p, and
the largest event p*. In this event 3522 of the 20000 blocks
were involved. The top figure illustrates the slip distribution
during the particular event. Black corresponds to no slip, while
the grey-to-white scale ranges linearly up to the maximum dis-
placement during the event. The bottom figure illustrates the
slipping blocks at equal intervals of time, grey corresponding to
early times and white corresponding to the latest times during
the event. As in one dimension, large events consist of narrow
propagating fronts. However, by studying the two-dimensional
model, more direct comparisons can be made with seismic
reconstructions of actual events. These reconstructions suggest
that complex rupture patterns, similar to that shown here, are
generated by real earthquakes.
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a two-dimensional elastic medium (the x-y plane
(Langer, 1993; Langer and Nakanishi, 1993; Myers and
Langer, 1993b). Again, for simplicity, we consider on y a
one-component displacement field U(x, y, t, and we as-
sume that U satisfies a wave equation with a linear driv-
ing force:

U=g V U —U+vt . (10)

In analogy to Eqs. (1) and (9), the term (
—U+ vt) in Eq.

(10) describes elastic coupling of a seismogenic layer o
thickness g to a stable lower region of the crust. The
stick-slip friction between the two sides of the fault is
part of the boundary condition that specifies the stress
BU/By at y=O:

B U=P( U) —g
By y =0 B& y =0

N t th t e have included the viscous damping men-
tioned in Sec. IV as the second part of the traction on e
right-hand side of Eq. (11). This term has the effect o
smoot ing t e sys emh th stem at the smallest length scales an

11 are well osedthus assuring that Eqs. (10) and (11) are well pose
mathematically.

Some recent studies of models of this kind have fo-
cused on the case in which the stick-slip fraction P( U in

Eq. (11) is replaced by a cohesive stress that depen s
upon displacement rather than slipping speed. The re-
sulting model describes ordinary crack propagation with
a nonzero fracture energy rather than unstable rupture
on an existing auf lt It has some extremely interesting
properties, in par icut' ular a dissipation-dependent thresh-
old for the onset of rapid motion. The important com-

mon feature of both versions of the model is that they ac-
curately include stress concentration at the crack tip or
rupture front. This feature is completely absent in the
one-dimensional models, and there is every reason to ex-
pect that it should have a qualitative effect on the dynam-
ics of the system. Indeed, it is the combination of two-
dimensional stress concentration and viscous dissipation
on the crack face that produces the interesting properties
of the fracture model.

So far, studies of this crustal-plane model in earth-
quake mode (primarily by C. Myers) have focused on is-
sues related to pulse propagation in analogy to the one-
dimensional studies described in Sec. IV. Myers has ob-
tained convincing numerical evidence that large-scale
s ipping occu1' '

ccurs in this model via a mechanism ostensibly
identical to the Heaton pulse; the system resticks behind
the rupture front, and the width of the slipping zone is
relatively narrow (Myers and Langer, 1993b). A picture
of one of these pulses is shown in Fig. 9. The major out-
stan ing ques iond tion is whether this model is intrinsically
chaotic and, if so, whether the earthquakelike events
have magnitudes that are distributed according to some-
thing like the Gutenberg-Richter law.

Vl. PREOICTABILITY: FORECASTING
THE NEXT LARGE EARTHQUAKE

One of the main goals of seismology is to develop
better algorithms and more sensitive probes to aid in pre-
dictin large earthquakes. The problem of earthquakeic ing a

rediction is extremely complex. Our now e ge o e
detailed structure of subsurface fault zones remains re-
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markably incomplete, and we have been collecting accu-
rate information about seisn1ic activity only for a few
decades —much less than a single loading period for
most fault segments. In addition, earthquakes show
symptoms of being intrinsically chaotic phenomena.

The study of dynamical models may be particularly
useful in a situation of this kind. Models are not limited
by geological time scales; for example, our con1puter
sin1ulations span the equivalent of hundreds of loading
periods with perfect detection of events. Furthermore,
the uniform Burridge-KnopofF' n1odel that we study is a
particularly good candidate for such investigations be-
cause it is deterministically chaotic, n1aking it impossible
to predict detailed behavior far into the future. Yet this
model, realistically, possesses a characteristic loading
time, a distinction between small and large events, and a
tendency —quite apparent in Figs. 4 and 10—for clusters
of small events to be correlated with the onset of large
ones. Thus it seems interesting to inquire about the ex-
tent to which it is possible, using only the analogs of
techniques that are available in the real world, to predict
the times and locations of large events in this model.

The seismological literature refers to three categories
of earthquake hazard assessments: long-term,
intermediate-term, and short-term predictions. Long-
term predictions are estimates of earthquake probability
made roughly on the scale of tens of years (WGCEP,
1988). Such assessments are used in establishing building
codes and, especially, in siting sensitive facilities such as
nuclear reactors. They generally are based on estimates
of recurrence times for the large events on major active
faults and on whatever other geological information
might be available.

In contrast, intermediate-term predictions are n1ade on
tin1e scales of years, and short-term predictions on scales
of days. The hope is that some more detailed informa-
tion regarding the local state of the system, perhaps
based on patterns of small events, may ultimately be used
to provide early warnings of imminent large events.
Thus there is much interest in learning how to make
intermediate- and short-term predictions in a reliable
way. One major contribution in the area of
intermediate-term prediction has been made by Keilis-
Borok et al. (1990), Keilis-Borok and Kossobokov
(1990), and Keilis-Borok and Rotwain (1990), who have
developed a set of prediction algorithms using relatively
simple pattern recognition techniques. However, because
of the sparsity of real seismic data, it has been difficult to
evaluate the quality of these algorithms. One purpose of
our work has been to estimate the intrinsic uncertainties
and the prospects for more accurate results by finding
out how well such algorithms can be made to work for
uniform Burridge-Knopoff models (Pepke et al. , 1993).

The goal of intermediate-term earthquake prediction
as formulated by Keilis-Borok et al. is considerably more
limited than the term might seem to imply. One is not
actually trying to predict earthquakes ten years in ad-
vance. Rather, the idea is simply to recognize patterns of
se1smic act1V1ty that n11ght 1Ildlc ate tln1es of 1IlcI'eased

probability —the so-called TIPs—for major earthquakes.
The goal is to make these alarn1s as accurate as possible.
The times during which these are "on" should be short
and the geographical regions to which they apply should
be small, and yet they should "capture" aln1ost all of the
-major seisn1ic events with few, if any, false alarms.
Given this statement of the problem, it is relatively easy
to define mathematically significant measures of success
and to use those measures to test various algorithms, that
is, to evaluate various criteria for turning on the TIPs.

In the pattern recognition algorithms of Keilis-Borok
et al. , TIPs are determined by keeping track of as many
as eighteen difFerent seismicity-based precursors, such as
an increase in activity or an increase in the rate of
aftershocks. The strategy is to use computer-based pat-
tern recognition techniques to identify various combina-
tions of precursory behavior that, with high probability,
indicate that a major event is imminent. In the real
world, no single precursor appears to be capable of fore-
casting all large events. The best single precursors can
capture roughly half of the large events but need to turn
on alarms at least 20% of the recurrence interval in order
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FIG. 10. A sample catalog illustrating the events that take
place as a function of position and time. Similar to the se-
quence of events illustrated in Fig. 4, there the lowest contour (a
line segment} marks the first event, and subsequent curves cor-
respond to integration of Eq. (1) forward in time. In this case
we forego illustrating the displacement, and instead explicitly
plot time on the vertical axis, measured relative to the inverse
loading speed, so that values on that axis represent tv=5 U, i.e.,
the net displacement of initially adjacent points on opposite
sides of the fault. A line segment is drawn through all of the
blocks that slip during an event, and a cross marks the position
of the epicenter of each large event. The clustering of small
events in the local minima in Fig. 4 corresponds here to the
trails of short line segments, which end at the longer segments,
i.e., large events. The box corresponds to a space-time window
within which the precursory measures, such as activity or active
zone size, which are used in the intermediate-term prediction
algorithms are evaluated. The data are taken from a simulation
in which cr =0.01, a = 3, g'/a = 10, and X=8192, though only a
fraction of the system is shown.
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to do so. When combinations of seven or more precur-
sors are used, the success rate goes to about 80%, but
with the same, relatively poor, time resolution.

The patterns of activity that precede large events in
the uniform Burridge-KnopofF model are much simpler
than in the real world; thus we expect the pattern recog-
nition algorithms to be comparatively more successful.
In particular, almost every large event in the model is
preceded by a marked increase in activity, i.e., the rate of
small events, in the neighborhood of the future epicenter
(Shaw et al. , 1992). This is illustrated in Fig. 10, which,
like Fig. 4, illustrates a typical sequence of events. In
this case, the time of occurrence of each event appears
explicitly, and each event is marked by a line drawn
through the blocks that slip. For large events, a cross
marks the position of the epicenter, which is clearly
correlated with precursory activity. However, the dura-
tion of this activity is relatively long —about one third of
the entire repeat time on average. Moreover, there is
large variability in the overall amplitude of the precurso-
ry activity and in the time prior to the large event at
which it starts. Thus the question remains: to what ex-
tent is this precursory activity useful for making predic-
tions on the time scales (a small fraction of the mean re-
peat time) that are useful for intermediate-term. forecasts?

To answer this question, we have considered the sim-
plest versions of the pattern recognition algorithms, that
is, algorithms based on single precursors. We find that
with most precursors, such as the total activity, we can
predict roughly 90% of the events with alarm times of
the order of 15%—25% of the seismic cycle This .is
somewhat better than Keilis-Borok et al. 's real-world ex-
perience, but not dramatically so. Interestingly, there is
one exception to this. We have found a new precursor,
not previously used by seismologists, that leads to
significantly more accurate predictions in the Burridge-
Knopo6' model. The definition of this new precursor,
which we call "active zone size, " is related to the concept
of the delocalization length g. With it we can predict
90% of the large events with TIPs that are "on" only
during 5% of the recurrence interval.

"Active zone size" is the spatial extent of small-scale
seismicity. In a space-time window such as that illustrat-
ed in Fig. 10, the active zone size is defined to be the total
number of blocks that have slipped, regardless of how
many times. As the time of a large event approaches, the
active zone grows, leading to the development of a
triggering region of size g for the nucleation of a large
event, as described in Sec. IV. Since nearly all of the ac-
cumulated stresses are relieved in the large events, the
small events serve primarily as indicators that the system
is locally poised near the threshold of instability. While
the total number of events (i.e., activity) is clearly not an
independent measure of the status of the system, it is a
much less sensitive probe than active zone size of the size
of the region that is close to threshold. It remains to be
seen whether or not this new measure will aid in e8'orts

to predict large events in the earth.
Many questions pertaining to the use of models in the

development and testing of earthquake prediction algo-
rithms are still unanswered. One of these is the extent to
which algorithms may be improved by combining multi-
ple precursors as is done by Keilis-Borok and colleagues.
We currently are studying this question and, so far, find
that such techniques do not lead to substantial grains in
the Burridge-KnopoF m.odel. In fact, it is not immedi-
ately clear to what extent even comparatively sophisticat-
ed techniques might be successful if based only on infor-
mation contained in our catalogs of seismic events. More
accurate predictions may require information about oth-
er phenomena, such as aftershocks, which are very com-
mon for crustal earthquakes, but which do not occur in
our current version of the model. We hope to add
aftershocks to a more realistic, future version of the mod-
el (Shaw, 1993b). Because the uniform Burridge-Knopoff
model is fully deterministic, arbitrarily accurate predic-
tions would be possible if more detailed information
about the configuration of the system could somehow be
obtained. For example, we would like to test the possibil-
ities of combining seismicity data with the analog in the
model of geological information about local displace-
ments or stresses. It is this kind of investigation that we
suspect may lead to the most significant practical appli-
cations of the work done in this project.
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