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The capacity C of a communication channel is the maximum rate at which information can be
transmitted without error from the channel's input to its output. The authors review quantum
limits on the capacity that can be achieved with linear bosonic communication channels that have
input power P. The limits arise ultimately from the Einstein relation that a field quantum at
frequency f has energy E = hf. A single linear bosonic channel corresponds to a single trans-
verse mode of the bosonic field —i.e., to a particular spatial dependence in the plane orthogonal
to the propagation direction and to a particular spin state or polarization. For a single channel
the maximum communication rate is C~B = (s'/ ln 2) $2P/3h bits/s. This maximum rate can be
achieved by a "number-state channel, " in which information is encoded in the nuxnber of quanta
in the bosonic field and in which this information is recovered at the output by counting quanta.
Derivations of the optimum capacity C~B are reviewed. Until quite recently all derivations as-
suxned, explicitly or implicitly, a number-state channel. They thus left open the possibility that
other techniques for encoding information on the bosonic field, together with other ways of de-
tecting the field at the output, might lead to a greater communication rate. The authors present
their own general derivation of the single-channel capacity upper bound, which applies to any
physically realizable technique for encoding information on the bosonic Geld and to any physically
realizable detection schexne at the output. They also review the capacities of coherent communi-
cation channels that encode information in coherent states and in quadrature-squeezed states. A
three-dimensional bosonic channel can employ many transverse modes as parallel single channels.
An upper bound on the information Qux that can be transferred down parallel bosonic channels
is derived.
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I. INTRODUCTION

A. Optimum capacity of a single linear bosonic channel

The capacity (Shannon, 1948) of a communication
channel is the maximum rate, usually measured in bits
per second, at which information can be transmitted re-
liably &om the channel's input to its output. The capac-
ity C is defined formally as the maximum mutual infor-
mation per second that can fIow from input to output,
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where mutual information (see Gallager, 1968, for a gen-
eral treatment of information theory and its application
to communication) is a particular entropic measure of
information content, of the sort introduced by Shannon.
The suitability of this deGnition comes from Shannon's
fundamental result (Shannon, 1948; Gallager, 1968) that,
with suitable coding and decoding, information can be
transmitted without error at any rate up to and including
capacity, but that any attempt to transmit information
at a rate beyond capacity inevitably introduces errors.

Although capacity is an important measure of a chan-
nel's performance, it is by no means the only measure and
is often not the most important practical measure. To
achieve an information transfer rate approaching capac-
ity generally requires complicated coding and decoding
algorithms, in order to match the input and output data
to the channel's properties and to overcome errors in-
troduced by channel noise. There is a trade-off between
channel noise and coding complexity. Given two chan-
nels with the same capacity but with diferent bit-error
rates, one prefers the channel with lower bit-error rate,
because it requires less complex error-correcting codes to
overcome channel noise.

Despite this caveat, an important physical question
in communication theory concerns the channel capacity
that can be obtained with a given input power P. This
review focuses exclusively on a restricted, but still im-
portant, version of this question: a@hat is the maximum
communication rate that can be achieved when informa
tion is carried by a linear bosonic field, such as the elec-
tromagnetic field propagating in vacuum or in a linear
dielectric medium 7

To address the question of the capacity of a single lin-
ear bosonic channel, it is essential Grst to relate the physi-
cist's description of a bosonic Geld to the communication
theorist's concept of a channel. To do so, we must distin-
guish transverse and longitudinal "modes" of the bosonic
Geld: a transverse mode is deGned by a particular spatial
dependence perpendicular to the propagation direction
and by a particular spin state or polarization; a given
transverse mode supports many longitudinal modes, each
deGned by its spatial dependence along the direction of
propagation or, equivalently, by its temporal dependence.

Since orthogonal transverse modes can be separated
unambiguously at the channel output, at least in princi-
ple, information can be transmitted independently down
each transverse mode. Thus each transverse mode is an
independent communication channel. This leads us to
the following correspondence: a single transverse mode
of a linear bosonic field corresponds to a single commu-
nication channeL A good example of a single channel
is a transverse mode of an electromagnetic transmission
line; throughout a good part of this article we couch our
discussion in terms of this example. In analyzing single-
channel capacities, the transverse properties of the chan-
nel are unimportant; what is important are the longitudi-
nal properties, bandwidth and duration, which determine
the number of distinguishable longitudinal modes.

There are many di8'erent kinds of channels that can

be accommodated within a particular transverse mode
and a bandwidth for that mode. Each kind of channel
corresponds to a technique for encoding information on
the Geld mode and to a scheme for detecting the infor-
mation at the channel output. The encoding technique
amounts to choosing a set of quantum states to be trans-
mitted down the channel, and the detection scheme is
some kind of measurement to be performed on the Geld at
the output. The capacity of a particular kind of channel
is the maximum communication rate that can be achieved
with the given encoding technique and detection scheme,
where the maximum is taken over the probabilities of the
input quantum states. Vfe reserve the term optimum ca-
pacity for the maximum communication rate that can be
achieved by further maximizing over all possible encoding
techniques and detection schemes.

Classical physics imposes no limitations on channel ca-
pacity. Quantum-mechanical capacity limitations arise
ultimately from the Einstein relation that a quantum at
frequency f carries energy E = hf, where h is Planck's
constant. Indeed, the optimum capacity of a single chan-
nel can be obtained Rom what amounts to dimensional
analysis. There are three rates, or frequencies, associ-
ated with a single channel: (i) fo, the channel's "car-
rier" frequency; (ii) P/hfo, the rate at which quanta are
transmitted down the channel; and (iii) C, the informa-
tion rate. Setting these three rates approximately equal
yields the optimum capacity:

The left-hand relation means that it is optimal to use
about one quantum per bit of information, and the right-
hand relation means that it is optimal to transmit about
one bit per period. Since this requires that the Geld be
modulated on the time scale of a period, achieving the
optimum capacity requires wideband radiation —i.e., ra-
diation whose bandwidth approaches its maximum fre-
quency.

Eliminating fo yields a physically sensible relation be-
tween power and the optimum single-channel capacity,

P hC

Throughout the bulk of this article we rewrite this rela-
tion as an upper bound on single-channel capacity (Gor-
don, 1961; I.ebedev and Levitin, 1963, 1966; Marko,
1965; Bowen, 1967; Pendry, 1983; Bekenstein, 1988;
Bekenstein and Schiffer, 1990; Yuen and Ozawa, 1992):

C & C p, - QP/h .

This simple dimensional analysis gives approximately
the correct quantum limit on single-channel capacity. De-
spite this success, the two relations in Eq. (1.1) should be
treated with caution, because neither by itself gives an
upper bound on capacity. The capacity can be greater
than P/hfo —i.e. , there can be more than one bit per
quantum —but only at a cost of having far less than one
bit per period. The capacity can also be greater than
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fs—i.e. , there can be more than one bit per period —but
only at a cost of having far less than one bit per quantum.
The optimal strategy, which leads to the optimum wide-
band capacity, is to satisfy both relations in Eq. (1.1).

This optimal strategy introduces a theme that perme-
ates this article. One can modulate the 6eld once a period
by transmitting a sequence of longitudinal modes, each of
which lasts roughly a period. The optimal strategy then
corresponds to using about one quantum for each bit and
to transmitting about one bit for each longitudinal mode.
This optimal strategy transcends the example of a single
wideband channel. Quite generally, it is true that one
can transmit more than one bit per quantum, but only
at a cost of having far less than one bit per mode, and
that one can transmit more than one bit per mode, but
only at a cost of having far less than one bit per quan-
tum. The optimal strategy for transmitting information
within a power constraint never departs very far from
using about one quantum for each bit and transmitting
about one bit per mode —a strategy that we capture in
the slogan "one quantum —one bit —one mode. "

Throughout this article we deal with lossless channels,
on the grounds that losses introduce noise that degrades
performance. We further assume that the channels have
no gain, on the grounds that power arising from gain
should be included in the input power P. In most cases
we also ignore thermal or other nonquantum noise, which
can only reduce communication rates relative to the ideal
quantum-limited cases in which we are interested.

We emphasize at the outset that the single-channel
upper bound (1.3) does not imply an unavoidable energy
cost for transmitting information. First and foremost, P
is only the power transmitted down the channel. There is
no reason, in principle, why this power must be consumed
(Landauer, 1987, 1988, 1989), and thus it does not im-
pose an in-principle cost on communication. Second, the
limit (1.3) applies only to a single channel, as is evident
(Landauer and Woo, 1973; Levitin, 1982; Pendry, 1983;
Bekenstein and Schiffer, 1990) from applying Eq. (1.3)
separately to each of several parallel channels, which to-
gether have input power P. (We consider parallel bosonic
channels —i.e., multiple transverse modes of a bosonic
field —in Sec. VI.) Third, it is possible that a nonlinear
bosonic channel, perhaps by making use of solitons, can
beat the capacity maximum (1.3). Although we have no
indication that this is so, Landauer's (1987, 1988, 1989)
work on limits to communication suggests that linearity
is the most important assumption in this article and is
the assumption that should be lifted in further investiga-
tions of quantum limits on capacity.

Numerous workers (Stern, 1960; Gordon, 1961, 1962;
Lebedev and Levitin, 1963, 1966; Marko, 1965; Takahasi. ,
1965; Bowen, 1967; She, 1968; Helstrom et al. , 1970; Hel-
strom, 1974; Yuen et a/. , 1975; Kabanov, 1978; Pierce,
1978; Davis, 1980; Pierce et al. , 1981; Pendry, 1983; Ya-
mamoto and Haus, 1986; Saleh and Teich, 1987, 1992;
Bekenstein, 1988; Bekenstein and Schiffer, 1990; Slusher
and Yurke, 1990; Yamamoto, 1990; Yamamoto et al. ,
1990; Schiffer, 199], 1992; Yuen and Ozawa, 1992; Hall,

1993; Hall and O' Rourke, 1993) over the past 30 years
have considered quantum limitations on the capacity of
linear bosoxuc channels. A part of this work (Gordon,
1961; Lebedev and Levitin, 1963, 1966; Marko, 1965;
Bowen, 1967; Helstrom, 1974; Yuen et a/. , 1974; Pierce
et al. , 1981; Pendry, 1983; Bekenstein, 1988; Bekenstein
and Schiffer, 1990; Schiffer, 1991, 1992; Yuen and Ozawa,
1992) has considered wideband coxnmunication rates.

Despite this large body of work, there had been, un-
til recently (Yuen and Ozawa, 1992), no general proof
of the capacity upper bound for a single linear bosonic
channel. The reason is that previous investigators as-
sumed, explicitly or implicitly, what we call a number-
state channel, in which information is encoded in the
number of quanta in the bosonic 6eld and is read out by
counting quanta. This work thus left open the possibility
that other transmission/detection techniques might lead
to greater capacity. Indeed, although most investigators
supported the existence of a capacity upper bound, there
were claims (Helstrom, 1974; Yuen et aL, 1975; Pierce et
al. , 1981) that quantum mechanics ixnposes no limits on
the wideband capacity of a bosonic channel.

In this review we draw attention to important con-
tributions in the large body of previous work, and we
comment critically on some of it. Our main aims, how-
ever, are threefold. First, we familiarize physicists with
the information-theoretic description of a communication
channel, thereby providing a physicist's formulation of
quantum communication theory. In particular, we re-
late the physicist's description of a bosonic field to the
communication theorist's description of a communication
channel. Second, we introduce to physicists a theorem
proved by Holevo (1973), which deserves to be called the
fundamental theorem of quantum communication theory
Holevo's theorem establishes an upper bound on trans-
mitted information in terms of quantum entropy, thereby
making it possible to apply quantum statistical physics
to the question of quantum capacity limits. Third, we
present our own general proof, based on Holevo's theo-
rem, of the single-channel capacity upper bound. Our
proof aims to keep the relevant physical considerations
prominently on display. Along the way we develop the
theme encapsulated in our slogan, "one quantum —one
bit —one mode, " and use i.t to estimate optimum capaci-
ties.

A recent review (Bekenstein and Schiffer, 1990) of
quantum limits on information rates differs &om this re-
view in two important respects: although it considers a
more general set of questions, it does not provide the
tools to prove capacity upper bounds.

To ensure that readers are not left behind as we pur-
sue our three aims, we are deliberately pedagogical, at
the risk of being tedious. For readers who may not
want to wade through the entire result, however, we
provide in the next subsection a set of guideposts for
reading the paper. We indicate which parts are essential
for the development of quantum communication theory,
which parts provide heuristic and intuitive arguments,
and which parts are mainly of specialized interest.
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B. Guideposts: What can be found where

The core of this review is contained in Secs. II—IV,
where we introduce the tools to derive and prove the
optimum wideband single-channel capacity

2P
t wB = bits/s.

ln2 3h
(1.4)

The development is interrupted by heuristic arguments
and special cases, which are intended to provide insight
into the sterile general considerations necessary for a gen-
eral proof. Section II begins by formulating the gen-
eral information-theoretic description of a single bosonic
channel and then proceeds to use the barest minimum
of this description to develop a heuristic argument for
the optimum single-channel capacity. Section III illus-
trates the general formulation by specializing to the most
studied example, the number-state channel, and derives
the wideband capacity of a number-state channel, which
turns out to be the optimum wideband capacity (1.4).
Section IV returns to the general formulation, introduces
Holevo's theorem, and gives our general derivation of the
optimum wideband single-channel capacity.

Section II.A reviews the information-theoretic formula-
tion for the capacity of a single channel. This formulation
speciGes a channel by giving input and output alphabets
and statistical descriptions for transmission of the input
letters and reception of the output letters. We introduce
the notion of mutual information as the appropriate sta-
tistical measure of information successfully transmitted
from input to output and thus develop the deGnition of
capacity in terms of the maximum value of the mutual
information, where the maximum is taken over the prob-
abihties of the input letters, subject to any channel con-
straints. The information-theoretic formulation is then
mapped onto the physical description of a single trans-
verse mode of a linear bosonic field. The input alphabet
becoxnes a collection of quantum states, transmitted with
various probabilities. The output alphabet becomes the
possible results of a measurement on the bosonic zeld-
a detection scheme —with the statistical description of
the output given by the quantum-statistical description
of the measurement. Section II.A is essential reading for
anyone not familiar with quantum communication the-
ory.

The general development is interrupted in Sec. II.B,
where we use the bare minimum of inforxnation theory
to develop heuristic arguxnents for the optimum wide-
band capacity. We first review Shannon's theorem (Shan-
non, 1948; Gallager, 1968) for the capacity of a channel
with additive, white, Gaussian noise. Shannon's theorem
is the fundamental theorem of classical communication
theory and gives the capacity in terms of the signal-to-
noise ratio and the channel bandwidth. By itself it can-
not limit the capacity, because there is no bound on the
signal-to-noise ratio of a classical signal. When Shan-
non's theorem is combined with a plausible estimate for
the level of quantum noise, however, an approximate

bound P & hC emerges. We use these considerations
as a springboard to develop two heuristic arguments for
a capacity upper bound, one of which applies to wave-
like channels, where the wave aspect of the Geld pre-
dominates, and the other of which applies to particle-like
channels, where the particle aspect predominates. These
heuristic arguments clarify the relation of the capacity
upper bound to the Heisenberg uncertainty principle and
to the Einstein relation E =. h f, and they reveal why the
two relations in Eq. (1.1) lead approximately to the op-
timum capacity.

Valuable —indeed, essential —though these heuristic
arguments are, they cannot be regarded as proofs of a
capacity upper bound. Prior to the work of Yuen and
Ozawa (1992), all derivations of the exact single-channel
upper bound (1.4) (Lebedev and Levitin, 1963, 1966;
Bowen, 1967; Pendry, 1983; Bekenstein, 1988; Beken-
stein and Schiffer, 1990) fail as proofs, because they ex-
plicitly or implicitly assume a special case—what we call
a &equency-multiplexed number-state channel. The in-
put states to a nuxnber-state channel are particle-number
eigenstates (Fock states), which we call number states for
short. Information is transmitted as a sequence of num-
bers of quanta and is detected. by counting quanta. Fre-
quency multiplexing is a convenient, but by no means
general, way of encoding information on a wideband
channel by breaking it up into many narrowband chan-
nels.

In Sec. III we focus on number-state channels, be-
cause they illustrate the general description given in
Sec. II.A and because they achieve the optimum ca-
pacity. Section III.A reviews previous work on the ca-
pacity of a narrowband number-state channel (Stern,
1960; Gordon, 1962; Marko, 1965; Takahasi, 1965; Lebe-
dev and Levitin, 1966; Bowen, 1967; Yamamoto and
Haus, 1986; Bekenstein and SchifFer, 1990; Slusher and
Yurke, 1990; Yamamoto, 1990; Yamamoto et aL, 1990;
Hall, 1993), and Sec. III.B generalizes to a wideband
&equency-multiplexed channel. The result of the wide-
band considerations is the capacity (1.4) of a single wide-
band frequency-multiplexed number-state channel (Lebe-
dev and Levitin, 1963, 1966; Bowexi, 1967; Pendry, 1983;
Bekenstein, 1988; Bekenstein and Schiffer, 1990). This
capacity is often cited as the single-channel capacity up-
per bound; but as long as its derivation is tied to num-
ber states, quantum counting, and frequency multiplex-
ing, there remains the possibility that other transmis-
sion/detection schemes could exceed this capacity. The
need to deal with this possibility is particularly acute
given the claims (Helstrom, 1974; Yuen et aL, 1975;
Pierce et al. , 1981) of infinite wideband capacity in the
literature.

The optimum single-channel capacity (1.4) is identical
to the entropy Qux of one-dimensional blackbody radia-
tion. Previous derivations of this capacity, with the ex-
ception of the work of Yuen and Ozawa (1992), assume
a direct connection between information transport and
quantum entropy —tr(plog2 p). With this assumption,
C~B emerges as a general upper bound on the capacity
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of any single linear bosonic channel. In Sec. IV, we prove
this key result by appealing to Holevo's (1973) theorem,
which establishes a connection between mutual informa-
tion and quantum entropy. Speci6cally, we use Holevo's
theorem to show that C~g is a universal upper bound on
the wideband capacity of any physically realizable single
linear bosonic channel. The results in Sec. IV &ee the
upper bound (1.4) from dependence on frequency multi-
plexing or the use of number states and show that it is
a general entropy-based upper limit that applies to any
input quantum states and to any detection scheme at the
output.

Sections IV.A and IV.B are essential reading, because
they lay the groundwork for proving the single-channel
capacity upper bound. Section IV.A, continuing the de-
velopment begun in Sec. II.A, forxnulates in more de-
tail the general quantum-mechanical description of a sin-
gle linear bosonic channel. Since any proof of the ca-
pacity upper bound must cover all possible detection
schexnes, we introduce in Sec. IV.A the formalism of gen-
eralized measurements, which encompasses all measure-
ments that are consistent with the rules of quantum me-
chanics. Section IV.B states Holevo's theorem, which
we view as the fundamental theorem of quantum com-
munication theory, and draws attention to restrictive as-
sumptions xnade in Holevo's proof of the theorem. These
assumptions limit our proof to finite input and output
alphabets and to a finite-dimensional Hilbert space.

The next three subsections (Secs. IV.C—IV.E) present
proofs of the single-channel capacity upper bound for
three different ways of implementing the power constraint
on a long but finite transmission time 7: (i) a constraint
that fixes the energy transmitted during 7 to be a par-
ticular value (Sec. IV.C); (ii) a constraint that places
an upper bound on the energy transmitted during 7
(Sec. IV.D); and (iii) a constraint on the average energy
transmitted during 7 (Sec. IV.E). The first two ways of
implementing the power constraint lead to species of the
microcanonical ensemble of statistical physics, whereas
the third way leads to the canonical ensemble. Read-
ers interested in connections to statistical physics will
want to digest all three proofs, but readers interested
in the shortest route to the optimum wideband capac-
ity can safely consult just the first (and shortest) proof.
Indeed, the reader who wants only to see a proof of the
optimum wideband single-channel capacity (1.4) can read
Secs. II.A and IV.A—IV.C and ignore everything else.

Section IV.F addresses the limitations on our proof
that arise &om the 6niteness assumptions made in
Holevo's proof of his theorem. We argue that physical
realizability imposes these finiteness assumptions on real
coxnxnunication channels and thus that our proof applies
to any physically realizable channel. We also mention the
recent work of Yuen and Ozawa (1992), which points out
that results already in the mathematical physics litera-
ture can be used to remove the 6niteness assumptions
made in Holevo's original proof, thus xnaking appeals to
physical realizability unnecessary. We consider briefIy
the claixns of infinite wideband capacity (Helstroxn, 1974;

Yuen et al. , 1975; Pierce et aL, 1981), but defer a critical
discussion of them to Appendix E.

Recent laboratory work on the generation of "nonclas-
sical light" provides a reason to consider capacity upper
bounds. For example, the direct observation of sub-shot-
noise intensity fIuctuations —sometimes called number
squeezing —in light from a semiconductor laser [Machida
et aL (1987); for discussion and references, see Ya-
mamoto et aL (1991) or Saleh and Teich (1992)] demon-
strates a potential for using number states in a commu-
nication system. Another possible source of number-
squeezed light is photon twinning in a nondegenerate
parametric oscillator, with feedback or feedforward &om
one twin [Heidxnann et al. (1987); Reynaud et aL (1987);
for discussion and references, see Saleh and Teich (1992)].
The parametric oscillator produces pairs of photons in
two beams. By observing photocounts in one beam, one
can control via feedback the rate of emission of the para-
metric oscillator or adjust directly via feedforward the
intensity of the unobserved beam. In either case, one
can stabilize the intensity fIuctuations in the unobserved
beam and thus produce a near number state in that
beam.

Another example of nonclassical light that has
been generated in the laboratory employs "quadrature-
squeezed states. " Advances in the production of quad-
rature squeezing stexn from the pioneering work of
Slusher et aL (1985), who first generated and detected
quadrature-squeezed light with noise below the vacuum
noise level. Quadrature-squeezed light has now been gen-
erated and detected in a number of laboratories around
the world [for reviews see Kimble and Walls (1987),
I oudon and Knight (1987), Teich and Saleh (1989, 1990),
and Zaheer and Zubairy (1991)]. Motivated partly by
these laboratory developments and partly by a desire to
have examples to contrast with number-state channels,
we consider, in Sec. V, two kinds of coherent commu-
nication channels, which we call coherent-state channels
and quadrature-squeezed channels.

The input states to a coherent-state channel are co-
herent states of the bosonic field. Information is trans-
mitted in the complex amplitude of the field —i.e., in
both the (real) amplitude and the phase. At the out-
put, information is retrieved by measuring both real and
imaginary parts —often called quadrature components-
of the complex amplitude, i.e., by measuring both the
real amplitude and the phase. Although such a mea-
surement involves noncommuting observables, it can be
described in quantum mechanics. Its realization by op-
tical heterodyne detection provides a concrete example
of the generalized-measurement forxnalism introduced in
Sec. IV.A. The example illustrates an important re-
sult: measurements of noncommuting observables are in-
evitably degraded by quantum noise over and above the
conventional quantum uncertainties of the observables.

The input states to a quadrature-squeezed channel are
quadrature-squeezed states. Relative to a coherent state,
a quadrature-squeezed state has reduced quantum uncer-
tainty in one quadrature component, called the squeezed
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quadrature. Information is transmitted in the coherent
excitation of the squeezed quadrature and is read out
at the output by measuring the squeezed. quadrature. At
optical frequencies, measurement of one quadrature com-
ponent can be realized by optical homodyne detection.

Section V.A gives a brief review of the de6nitions and
pertinent properties of coherent states and quadrature-
squeezed states. In Sec. V.B we review the capaci-
ties of a narrowband coherent-state channel (Gordon,
1962; She, 1968; Yamamoto and Haus, 1986) and a
narrowband quadrature-squeezed channel (Yamamoto
and Hans, 1986). In Sec. V.C we consider wideband
channels, 6nding the capacity of a single wideband
&equency-multiplexed coherent-state channel (Gordon,
1961; Marko, 1965),

1
&cs =

ln2
2P

bits/s, (1.5)

and the capacity of a single wideband frequency-
multiplexed quadrature-squeezed channel,

2
&gs =

ln2
bits/s. (1.6)

The latter result shows that coherent quadrature commu-
nication can achieve ~6/vr 78% of the capacity maxi-
mum (1.4).

The recent advances in production of quadrature-
squeezed states, together with the development of high-
T superconductors, might make it feasible to approach
the gP jh limit. In Sec. V.C we mention briefly
the possibility that a high-T superconducting wave-

guide, excited with microwave quadrature-squeezed
states, could meet the physical conditions for approach-
ing the wideband capacity (1.6). In this regard the report
(Movshovich et al. , 1990) of microwave-frequency squeez-
ing by a Josephson parametric ampli6er is a promising
start.

As has already been noted, parallel channels can give
a higher communication rate for a given input power P
than can a single channel (Landauer and Woo, 1973;
Levitin, 1982 Pendry, 1983; Bekenstein and Schi8'er,
1990). We give the first detailed analysis of this ques-
tion in Sec. VI, which generalizes the single-channel re-
sults to multichannel bosonic communication. The mul-

tiple parallel channels are the many transverse modes of
a three-dimensional linear bosonic field. The important
quantum-mechanical limit is now a limit on information
flux.

What survives into the multichannel results is the op-
timal strategy embodied in our slogan, "one quantum-
one bit —one mode. " To apply the slogan, let A be
the area of the aperture through which the channel
is transmitted; go, the number of spin states or po-
larizations for each spatially transverse mode; and c,
the 6eld's propagation speed. We can then introduce
three fluxes: (i) gp fp/(c jfp), the maximum flux of field
"modes" —maximal because these "modes" last only a
period (i.e. , they are transmitted at rate fp) and occupy

a square wavelength (c/fp) in the transverse dimen-
sions; (ii) P/Ah fp, the 6ux of field quanta; and (iii) C/A,
the information flux. Setting these three fluxes approxi-
mately equal yields the optimum information flux:

&opt; eofo
Ahfp A (c/fp)

(1.7)

Eliminating fp yields the upper bound on information
flux,

C C.„gp il4 r'P/Al"
A A c2 .( h

(1.8)

We show in Sec. VI that this is approximately the cor-
rect upper bound on information flux for a linear bosonic
6eld. Just as is true for single channels, neither relation
in Eq. (1.7) sets an upper bound on information flux by
itself, but the two relations are approximately valid for
an optimal channel.

The discussion of multiple parallel channels in Sec. VI
proceeds in parallel with the previous discussions of sin-
gle channels. Section VI.A considers narrowband paral-
lel bosonic channels, using number-state, coherent-state,
and quadrature-squeezed channels as speci6c examples.
Section VI.B generalizes to wideband channels and re-
places the heuristic bound (1.8) by an exact upper bound
on the information flux that can be carried through a
roughly circular aperture of area A by any linear bosonic
field that has an isotropic dispersion relation:

i(4 P 3/4

A 3ln2 15c2 h

(BPC stands for "bosonic parallel channels" ). In this up-
per bound c is the 6eld's minimum phase velocity. The
upper bound is attained by a dispersionless frequency-
multiplexed number-state channel. We also give analo-
gous capacities for frequency-multiplexed coherent-state
and quadrature-squeezed channels. We indicate how the
P ~ dependence of Eq. (1.9) goes over to a P ~2 depen-
dence when A is small enough that the channel accom-
modates only a single spatially transverse mode.

Five appendixes deal with matters that would inter-
rupt the flow of the main text. Appendix A summarizes
crucial properties of Shannon information and quantum
entropy. Appendix B assesses a distinction between her-
alded and self-heralding signals, which was introduced
by Bekenstein (1988) and by Bekenstein and Schiffer
(1990). Appendix C argues that dispersion does not af-
fect the description of a single bosonic channel developed
in Sec. IV.A. Appendix D.l outlines the formalism of
generalized measurements, and Appendix D.2 analyzes
a speci6c example of a generalized measurement, the si-
multaneous measurement of two quadrature components
by optical heterodyne detection. Appendix E examines
critically the claims (Helstrom, 1974; Yuen et al. , 1975;
Pierce et al. , 1981) of infinite wideband capacity and de-
scribes how each of these claims arises from ignoring the
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Einstein relation E = hf—specifically, from assuming
that the energy of a quantum is a constant, independent
of &equency.

II. SINGLE LINEAR BOSONIC CHANNEL

A. General description

To d.escribe and. analyze a single bosonic communi-
cation channel requires us to develop the information-
theoretic formulation of channel capacity and to map this
formulation onto the physical d.escription of a bosonic
field. This subsection begins the task, which is completed
in Sec. IV.A. Our aim is to give a pedagogical, but nec-
essarily brief, introduction to the relevant elements of
information theory.

A communication theorist views a communication
channel abstractly as having an input and an output. A
message is transmitted down the channel as a stream of
letters selected from an input alphabet A. We label the
letters of the input alphabet by an index a = 1, . . . , A,
where A is the number of input letters. From the channel
output pours another stream of letters that come &om
an output alphabet B. We label the output letters by
an index b = 1, . . . , 8, where 8 is the number of output
letters. Each transmission of an input letter and receipt
of a corresponding output letter is called a "use" of the
channel.

Perfect fidelity in transmitting messages &om input to
output —i.e., a noise-&ee channel —xneans that the input
can be reconstructed unaxnbiguously &om the output.
By grouping and relabeling output letters, perfect fidelity
can always be reduced to the case of identical input and
output alphabets, with transmission of an input letter
leading to reception of precisely the same letter. More
generally —for example, if there is noise —the properties
of a channel are described by a set of conditional prob-
abilities p~~~(b~a), where p~~~(b~a) is the probability to
receive output letter b, given transmission of input letter
a. A noise-&ee channel can always be reduced to the case
»)~(bla) = bs .

What remains is to provide a measure of the quantity
of information carried by a letter or a xnessage. Shan-
non's (1948) genius was to realize that the required mea-
sure has to do with the statistic8 of the letters. The prim-
itive notion of information is that a string of N binary
digits (0's and 1's) carries N bits of information. Shan-
non's statistical measure of information generalizes this
prj.mitive notion and can be constructed in two steps. We
take the first step by noting that the number of N-digit
binary strings is JV = 2; thus the information carried
by a string can be written as N = log2 A = log2 (number
of N-digit binary strings). The first step generalizes
the prixnitive notion of information by saying that the
information carried by a message, measured in bits, is
the base-2 logarithm of the nuxnber of possible messages.
With this generalization, one already realizes that infor-
mation content is not a property of a particular message,

but rather a property of the set of possibilities &om which
a message is drawn.

Applying this first generalization to our input alphabet
leads to the conclusion that the information carried by a
letter is logz A. Suppose, however, that one of the input
letters is very likely to be transmitted and that another
letter is transmitted only rarely. One's gut feeling is that
receipt of the rare letter provides much more information
than receipt of the likely letter. Thus one realizes, first,
that the generalization of the first step assumes implic-
itly that all possibilities are equally likely and, second,
that information content is determined not just by the
set of possibilities, but also by the probabilities of the
various possibilities. The second step in generalizing the
primitive notion of information allows for unequal prob-
abilities of the input letters. Fortunately, the first step is
sufhcient to develop the proper generalization.

Suppose that input letter a is transmitted with proba-
bility p&(a). Consider a message consisting of N letters.
In the limit of a very long message, the only messages
with nonvanishing probability are those in which the &e-
quency of occurrence of each letter is equal to its proba-
bility. A multinomial coeKcient gives the number of such
xnessages,

[Np~(a)]!
(2.1)

all of which are equally likely, with probability

(2.2)

where Stirling's formula relates Eqs. (2.1) and (2.2) for
large ¹ Hence the information carried by each long
message is

log2 JV = NH(A), (2.3)

H(A) = —) p~(a) log, p„(a), (2.4)

Shannon's statistical measure of information (Shannon,
1948; Gallager, 1968), quantifies the average information
per letter of input, measured in bits. Notice that H(A)
agrees with the above considerations. If the input letters
are equally likely, i.e., p~(a) = 1/A, then H(A)= log2A.
reduces to the base-2 logarithm of the number of possi-
bilities. At the other extreme, if one letter is transmitted
with unity probability, then H(A) = 0 refiects the fact
that there is no information in a message whose content
is known in advance. For probabilities between these
extreme cases, H(A) lies between zero and log2 A. Im-
portant properties of Shannon inforxnation are gathered
together in Appendix A.

At this point we can summarize the ingredients of a
communication theorist's description of a communication
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»,~( ab) = p~i~(bla)p~(a) = p&~~(alb)»(b) (2.5)

where

»(b) = ):»,~(a b) = ) p~~~(bla)p~(a) (2 6)

is the unconditioned probability for receiving output let-
ter 6, and where

»i~(bla)»(a)
PA(B a

(b)
(2.7)

is the conditional probability that input letter a was
transmitted, given receipt of output letter b. Equa-
tion (2.7), which inverts the order of conditioning, is
sometimes called Bayes's theorem.

The Shannon information H(A) of Eq. (2.4) is the in-
formation (in bits) transmitted down the channel at each
use. It is worth emphasizing how to think of this infor-
mation: if one knows only the transmission probabili-
ties p~(a), H(A) is the average amount of information
one obtains when one determines which input letter was
transmitted. Although H(A) is the information trans-
mitted down the channel, generally only a part of this
information is successfully transmitted from input to out-
put, because channel noise prevents one &om determin-
ing the input letter &om the output letter. Another im-
portant Shannon information is the information available
at the output at each use,

H(B) = —) p~ (b) log2 p~ (b) . (2.8)

Again it is worth emphasizing that H(B) is the average

channel (Gallager, 1968): (i) an input alphabet, the let
ters of ivhich are labeled by an index a = 1, . . . , A, and a
set of probabilities p~(a) for transmitting input letter a
at each "use" of the channel; (ii) an output alphabet, la-
beled by b = 1, . . . , 8, and a set of conditional probabilities

p~~~(bla) for receiving output letter b, given transmission
of input letter a.

These ingredients are suKcient to give a complete sta-
tistical description of the channel. The joint probability
for transmitting input letter a and receiving output letter
6 is given by

amount of information one obtains when, knowing only
the reception probabilities p~(b), one determines which
output letter was received. Like H(A), H(B) cannot
be regarded as the information successfully transmitted
from input to output: H(B) can be artificially large sim-

ply because the output alphabet is much bigger than the
input alphabet, or more importantly, it can contain un-
wanted contributions from channel noise.

To find a measure of information transmitted &om in-

put to output, consider the Shannon information

H(Bla) = —) p~[~(bla) log2 p~(/ (bla), (2.9)

H(BIA) = ) p~(a) H(Bla)
a

= —).p~~A(bla) p~(a) log. »(&(bla)
a, b

(2.10)

which is the average information available at the output
at each use, given that one knows which input letter was
transmitted, where the average is taken over both inputs
and outputs. For the bosonic channels considered in this
article, the conditional information H(BlA) characterizes
channel noise —either intrinsicaOy quantum-mechanical
noise or noise from some other source.

Subtracting the conditional information (2.10) &om
the total information at the output yields what is called
the mutual information (Gallager, 1968) between output
and input,

which is the information available at the output at each
use, given that one knows that input letter a was trans-
mitted. Since one knows which input letter was transmit-
ted, H(Bla) is clearly not useful information concerning
which input letter was transmitted; instead it is infor-
mation about the channel properties, embodied in the
conditional probabilities p~~A(bla), that de-correlate the
outputs from input letter a. To get a measure of informa-
tion transmitted &om input to output, the information
H(Bla) should be subtracted from the total information
at the output; but since the inputs are actually unknown,
H(Bla) must first be averaged over the input letters.

The result of this argument is a conditional Shannon
information

H(B; A) = H(B) —H(BlA) = ) p~[/(bla)p/(a) log2 l

&pa~~(bla) &

ii(b) )
(2.11)

Mutual information is the appropriate measure of information successfully transmitted &om input to output at each
use. That mutual information is non-negative, as implied by the inequality in Eq (2.11), follows immediately &om
the Gibbs inequality (A3). The mutual information is zero if and only if A and B are statistically independent, i.e. ,

p~, a(a, b) = p~(a)pa(b)
Bayes's theorem (2.7) implies that mutual information is symmetric in A and B and thus can also be written as

H(B; A) = ) p~(~(alb)p~(b) log2
l

(p~~a(alb) l
p~(a) l

= H(A) —H(AlB) = H(A; B), (2.12)
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where

H(AIB) = —) p~~~(a[b)p~(b) logy p~~~(aIb)
a,b

is a conditional input information. The mutual information can be thought of as the average information about the
input that is obtained &om determining the output or as the average inforxnation about the output that is obtained
&om determining the input.

The zoo of statistical informations is completed by de6ning the joint information

H(A, B) = H(B, A) = —) p/, +(o, &) log2p+, + (o b).
a,b

= H(A) + H(BIA) = H(B) +. H(AIB), (2.14)

which is the average information one obtains &om deter-
mining both the input letter and the output letter. The
relationships among the several information measures are
summarized in Fig. 1.

A noise-&ee channel, in which the input can be re-
constructed unambiguously &om the output, is one for
which the inverted conditional probabilities p~~~ (a[b) are
sharp: for each b, there is a unique a that is certain, i.e.,
has unity probability p~~~(uIb) = 1. This is equivalent
to the condition H(A~B) = 0 and thus to

H(B; A) = H(A) (noise-free channel);

i.e., all the input information is successfully transmit-

ted to the output. A noise-&ee channel does not require
that the measurement conditional probabilities p~~~(bIa)
be sharp —i.e. , it does not require that H(BIA) = 0 or,
equivalently, that H(B; A) = H(B)—because in a noise-
&ee channel, there can be several output letters for each
input letter. Given a noise-&ee channel, however, one
can take the output letters that correspond to a partic-
ular input letter, group them into a single output letter
with the same label as the corresponding input, and thus
obtain a channel for which p~~A(b[a) = hs .

The channel capacity per use, C (Gallager, 1968), is
the maximum mutual information, where the maximum
is taken over the input probabilities p~(a), subject to any
constraints on the channel:

H(A, B) C = max H(B;A) .
(~~(~))

(2.16)

If one can identify the duration 7 of each use, then one
can convert to capacity C as an information rate:

H(A IB) H(B;A) H(B IA)

H(B)
H(A) + H(BIA) = H(A, B) = H(B,A) = H(B) + H(AIB)

H(A) —H(AIB) = H(A;B) = H(B;A) = H(B) —H(BIA)

FIG. 1. Relationships among information measures, conve-
niently summarized in a diagram where quantity of informa-
tion is represented by area. The joint information H(A, B)=.
H(B, A) [Eq. (2.14)] quantifies the combined information
available at the input apd the output and is represented by
the area inside both circles. The input information H(A)
[Eq. (2.4)] is represented by the area of the left circle, and the
output information H(B) [Eq. (2.8)] is represented by the
area of the right circle. The conditional informations H(A~B)
[Eq. (2.13)] and H(B[A) [Eq. (2.10)] and the mutual infor-
mation H(A; B) = H(B; A) [Eqs. (2.11) and (2.12)] are rep-
resented by the three labeled areas, which together add up to
the joint information. The diagram portrays correctly that
mutual information is the information held in common by the
input and the output.

The suitability of mutual information as a measure of
information transmitted successfully down the channel is
confirmed by Shannon's fundamental theorein (Shannon,
1948; Gallager, 1968), which states that the capacity,
de6ned as the maximum mutual information rate, is the
maximum rate at which information can be transmitted
without error &om input to output.

Having developed the information-theoretic descrip-
tion of a communication channel, we must now map
it onto the physical description of a single bosonic
channel —i.e, a single transverse mode of a bosonic field.
This requires us to give physical realizations for the in-
put and output letters and to specify how the channel
statistics arise. This task is accomplished by the follow-
ing correspondences: (i) the input letters a correspond
to quantum states (density operators) p, one of uthich
is trnnsmitted during each use time 7, the probability
for transmission of state p being p~(a); (ii) the output
letters b correspond to the possible results of a measure-
ment on the bosonic field at the channel output —i.e., the
results of a detection scheme ot the output —and the con
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ditional probabilities p~~~(b~a) come from the quantum-
statistical probabilities for the detection scheme and from
the properties of any additional channel noise. It should
be emphasized that a complete description of a channel
requires specifying both the quantum states used —how is
the information transmitted —and the measurement used
at the output —how is the information detected.

Throughout most of this article, we restrict ourselves
to quantum-limited channels; thus, throughout the bulk
of the article, we consider only the intrinsically quantum-
mechanical noise that arises &om the quantum-statistical
description of the output measurement acting on the in-

put quantum states. The general physical description
of a linear bosonic channel is depicted schematically in
Fig. 2; we develop this description further and apply it to
a general analysis of single bosonic channels in Sec. IV.

Practical techniques for encoding information on a
transverse mode of the electromagnetic Geld all corre-
spond to a particular way of specifying input quantum

states, which, though not completely general, is impor-
tant enough to warrant some attention. These practical
techniques decompose the speciGcation of input quan-
tum states into two steps (see Fig. 2). In the first step,
one chooses a set of orthogonal longitudinal Geld modes;
and in the second step, one speciGes quantum states for
each mode. The overall quantum states p for time 7 are
then products of states for the chosen longitudinal modes.
These two steps neatly divorce the spatio-temporal prop-
erties of the Geld &om the quantum-mechanical descrip-
tion of states. The spatio-temporal properties of the
field along the propagation direction are contained in the
choice of Geld modes. Each Geld mode can be regarded as
a harmonic oscillator, and the relatively simple language
and formalism of a quantum harmonic oscillator can be
used to specify the input quantum states.

This two-step decoxnposition makes contact with prac-
tical techniques for encoding information on a transverse
mode of the electromagnetic Geld. Specifically, a choice of

INPUT

Input alphabet

consists of

quantum states,

p ~ a 1 s ~ ~ ~ s eRa'
transmitted with

probabilities

CHANNEL

B

OUTPUT
Output alphabet

consists of results,

b=1, ... , e,
of a measurement

(detection scheme),

with conditional

detection probabilities

Pgl P(bl a)

f Choice of orthogonal longitudinal'

modes {modulation technique)

choice of quantum states forP
the longitudinal modes

B or B or

Pulse position
modulation

Frequency
multiplexing

'T

Arbitrary
modulation
technique

FIG. 2. Schematic physical description of a single linear bosonic channel. The input to the channel is a quantum state p,
selected with probability p&(a) from an alphabet of quantum states. The channel itself is described by a transmission time 7
and a bandwidth B and is depicted as a box in time-frequency space. The channel output is a result b of a measurement (a
detection scheme); channel noise and the quantum mechanics of the detection scheme are described. by conditional probabilities

pir~~(b~a) The midd. le box illustrates a conventional, practical (but not completely general) way of decomposing the choice of
input quantum states into two steps: (i) a choice of orthogonal longitudinal field modes within the allowed time-frequency box
(this choice corresponds to a modulation technique for the bosonic field) and (ii) a choice of quantum states for the chosen

modes, each of which is a harmonic oscillator. The total quantum state p is then a product of states for each of the longitudinal
modes. The bottom box depicts modulation techniques schematically as ways of filling the time-frequency box with longitudinal
modes: pulse position modulation uses short pulses, each of which 6lls the available bandwidth, whereas frequency multiplexing
uses narrow frequency bins, each of which occupies the entire duration.
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orthogonal longitudinal field modes corresponds to some
technique for "modulating" the Beld to carry informa-
tion (see Fig. 2). For example, a technique called pulse
position modulation corresponds to choosing longitudi-
nal field modes that are successive short pulses, each
of vrhich (in the simplest realization) can have one of
two states, excited or unexcited. A contrasting modula-
tion technique, called &equency multiplexing, divides the
available bandwidth into narrow &equency bins, each of
which corresponds to a longitudinal mode. Pulse posi-
tion modulation and &equency multiplexing are extreme
examples of allocating longitudinal modes between time
and &equency. There is a potentially infinite number of
modulation techniques, each corresponding to a choice
for the longitudinal modes; a typical choice, of course,
does not have such a simple description in terms of time
and &equency.

General though this two-step decomposition is, it does
not encompass all possibilities for specifying input quan-
tum states, for two reasons. First, many quantum states
cannot be written as product states for any choice of
longitudinal modes, there being intrinsic entanglement
among modes. Second, difFerent input states might
be product states for difFerent choices of longitudinal
modes; for example, one can easily imagine a channel-
not necessarily a good one—in which one transmits some-
times pulse-position-modulated states and sometimes
&equency-multiplexed states. We often use the two-step
decomposition to describe particular kinds of channels,
so it is worth emphasizing that our general analysis in
Sec. IV is not in any way restricted to input quantum
states specified by the two-step decomposition.

In the remainder of this article we introduce three
kinds of channels as specific examples of quantum com-
munication channels. The first of these, which we call a
number-state channel, is considered in Sec. III. The in-
puts to a number-state channel are Fock states of the cho-
sen orthogonal field modes —i.e., eigenstates of the num-
ber of quanta, which we call number states for short. In-
formation is carried in the pattern of numbers of quanta
among the various field modes. At the output the in-
formation is retrieved by counting the number of quanta
in each field mode. For an optical-&equency electromag-
netic channel, the counting could be done by a photode-
tector, a detection scheme called direct detection. ~

In Sec. V we consider two kinds of coherent com-
munication channels, which we call coherent-state chan-
nels and quadrature-squeezed channels. The inputs to

We assume that a photodetector is able to distinguish or-
thogonal longitudinal modes and thus to count separately the
photons in each mode. For real photodetectors there is an
obvious difFiculty with this assumption, even for sequences of
wave-packet modes, because the longitudinal modes generally
overlap in time, even though they are orthogonal (the modes
must overlap in time if they have a strictly finite bandividth).
Since orthogonal modes can be distinguished in principle,
however, we ignore this diffjLculty throughout our analysis.

B. Heuristic arguments for single-channel capacity
maximum

We now interrupt our development of the general for-
mal description of a single bosonic channel, so that in this
subsection we can apply physical intuition to the barest
minimum of this description. The goal is to develop a
physical understanding of the optimum single-channel ca-
pacities before proceeding with the formal development.
The only information theory we need is that the Shannon
information is the logarithm of the number of approxi-
mately equally likely possibilities.

We can gain a quick entry into thinking about
quantum-limited capacities by recalling Shannon's theo-
rem (Shannon, 1948; Gallager, 1968) for a single channel
that has additive, white, Gaussian noise. Such a channel
has capacity

C = Blog2
~
1+

~

bits/s, (2.18)

a coherent-state channel are coherent states of the cho-
sen field modes —i.e., eigenstates of the modal anni-
hilation operators. Information is carried in the pat-
tern of complex-amplitude excitations of the various field
modes. At the output information is recovered by -mea-
suring both real and imaginary parts —often called quad-
rature components —of the complex amplitude of each
field mode, i.e., by measuring both the real amplitude
and the phase of each mode. Although such a measure-
ment requires measuring two noncommuting observables,
it can be described in quantum mechanics; and for an
optical-&equency electromagnetic channel, it can be re-
alized by a detection scheme called heterodyne detection
(Yuen and Shapiro, 1978, 1980; Shapiro et al. , 1979).

The input states for a quadrature-squeezed channel are
quadrature-squeezed states of the chosen field modes [for
reviews of quadrature-squeezed states, see Kimble and
Walls (1987),Loudon and Knight (1987), Teich and Saleh
(1989, 1990), and Zaheer and Zubairy (1991)j. Relative
to a coherent state, a quadrature-squeezed state has re-
duced quantum uncertainty in one quadrature compo-
nent, called the squeezed quadrature. There is a cor-
responding increase in the uncertainty in the orthogo-
nal quadrature component, called the amplified quadra-
ture. One takes advantage of the reduced uncertainty
by encoding information in the pattern of excitations
of the squeezed quadratures of the various Geld modes.
At the output information is retrieved by measuring the
squeezed quadrature of each of the field modes. For
an optical-&equency electromagnetic channel, measure-
ment of one quadrature component can be realized by
a detection scheme called homodyne detection (Yuen
and Shapiro, 1978, 1980; Shapiro et a/. , 1979; Yuen
and Chan, 1983; Schumaker, 1984; Shapiro and Wagner,
1984; Shapiro, 1985; Yurke, 1985; Caves and Schumaker,
1986).
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where P is the signal power, B is the channel bandwidth
(in Hz), and S is the (white) power spectrum of chan-
nel noise (i.e., the noise power per Hz). Classical-wave
channels typically have additive, white, Gaussian noise,
so Shannon's theorem is a fundamental tool in classi-
cal communication theory. For a channel operating at
frequency f, one might guess that quantum mechanics
places a lower bound 8 + hf on the noise power spec-
trum. With this supposition Shannon's theorem yields a
quantum-limited capacity

P
C = Blogz

~

1+
~

bits/s. (2.19)

A coherent-state channel is the closest thing to a
classical-wave channel. As we discuss in Sec. V.B, the
quantum-mechanical Shannon capacity (2.19) gives ex-
actly the capacity of a single narrowband (B « f)
coherent-state channel. Despite this success, Shannon's
theorem is far too narrow a framework for a general
analysis of quantum channel capacities, for two reasons:
(i) quantum noise, even for narrowband channels, is gen-
erally neither additive nor Gaussian; (ii) quantum noise
for wideband channels is never white —witness the non-
white-noise power spectrum S = hf for a coherent-
state channel —because of the Einstein relation E = hf.
The wider &amework required for analyzing quantum-
mechanical channels is provided by Holevo's (1973) the-
orem (see Sec. IV.B).

Nonetheless, we can gain considerable insight kom the
Shannon capacity (2.19) by putting it on a more gen-
eral but admittedly heuristic footing. The dimensionless
quantity P/h fB is the number of signal quanta transmit-
ted down the channel per second per Hz. During a long
transmission time 7, one can transmit at most B7 or-
thogonal longitudinal modes (Gallager, 1968; Yamamoto
and Haus, 1986). Thus P/h, fB can also be regarded as
the number of signal quanta per longitudinal mode. In
this subsection we 6nd it convenient to think of the lon-
gitudinal modes as successive pulses, which we call wave-
packet modes, but the reader should keep in mind that
the argument is not restricted to this particular choice.
With this way of thinking, however, the bandwidth B
becomes the transmission rate of wave-packet modes. In
describing the bosonic Geld, one distinguishes a wave-
like regime P/h, fB )) 1, where there are many signal
quanta per mode, and a particle-like regime P/h fB « 1,
where there are many modes per signal quantum (Ya-
mamoto and Haus, 1986; Yamamoto, 1990; Yamamoto
et aL, 1990). Recalling that Shannon's theorem arises
&om a classical-wave analysis, one might guess that the
Shannon capacity (2.19) has general, but approximate,
validity as the optimum capacity for narrowband chan-
nels in the wave-like regime.

This guess is supported. by the following heuristic ar-
gument. For each wave-packet mode, construct a phase
plane whose axes are scaled so that squared d.istance from
the origin measures number of quanta. Then the power
constraint means, crudely speaking, that the signals must

be chosen from within a circle of radius gP/hfB,
centered at the origin. Since each quantum state occu-
pies a phase-plane area vr, the maximum number of
distinguishable quantum states that can be transmitted
in each mode is pP/hfB, where p is a constant of or-
der unity. The maximum information per wave-packet
mode is log&(maximum number of distinguishable quan-
tum states per mode) = log~(pP/hfB). The result-
ing optimum narrowband single-channel capacity in the
wave-like regime is

rate of
C =

I transmission log&
of modes

= Bl go~~ ~
bits/s.

(

I' maximum number of )
distinguishable states

per mode )
(2.20)

t'pP ) pP hf' f pP )C'-flog.
l » I

=
& P»gal ~., )l

2

eln2
7P

bits/s, (2.21)

where the maximum on the right occurs for f
e gpP/h, , just within the wave-like regime. This anal-
ysis indicates that in the wave-like regime the Einstein
relation E = hf is responsible for the gP/h form of the
capacity maximum (1.3).

A diferent heuristic argument yields an optimum nar-
rowband capacity in the particle-like regime P/hfB «
l. Quanta are transmitted at a rate P/hf, and each

The argument here is valid only in the wave-like
regime, as is evident &om the fact that the capacity (2.20)
goes negative when P/h fB & p . The argument shows
that quantum mechanics —i.e., the nonzero value of h,—
limits narrowband capacities in the wave-like regime in
a manner reminiscent of the Shannon capacity (2.19).
Furthermore, it reveals how to interpret the limitation:
the Heisenberg uncertainty principle restricts the num-
ber of quantum-mechanical phase-space cells that can be
crammed into a region of phase space whose size is lixn-

ited by an energy constraint.
What about wideband capacities in the wave-like

regiment One cannot just take the limit B ~ oo be-
cause it takes one outside the wave-like regime. Indeed,
taking the limit in the capacity (2.20) yields nonsense for
just this reason. The Shannon capacity (2.19) does have
a sensible limit C ~ P/6 f ln 2 as B + oo, but this limit
cannot be trusted for the same reason. Missing in tak-
ing the limit B ~ oo is the &equency dependence of the
energy of a quantuxn, which must be taken into account
when the bandwidth becoxnes comparable to the channel
kequency. For present purposes it is sufBcient to esti-
mate the wideband capacity by letting B f—i.e. , by
letting the bandwidth be as large as possible consistent,
at least crudely, with energy hf for a quantum. The re-
sulting optimum wideband single-channel capacity in the
wave-like regime is
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quantum can occupy one of at most hfB/P )) 1
wave-packet modes. The information per quantum is

log2 (maximum number of distinguishable modes per
quantum) = log2(h fB/P). The resulting optixnum
narrowband single-channel capacity in the particle-like
regime is

I' rate of ) (
C =,' transmission log2

'

of quanta )
P (hfB)

log2
~ ~

bits/s.
h 'q P

maximum number of )
distinguishable modes

per quantum

(2.22)

This argument is clearly valid only in the particle-like
regime, as is evident from the fact that the capacity (2.22)
goes negative when P/hfB ) l. Quantum mechanics
limits narrowband capacities in the particle-like regime in
the sense that the capacity (2.22) increases as h decreases
(so long as P/hfB ( e i). It is more to the point, how-

ever, to say that the particle-like regime is intrinsically
quantum mechanical: if 6 —+ 0, the particle-like regime
disappears, leaving only a classical-wave regime that has
no capacity restrictions.

What about wideband capacities in the particle-like
regime. The limit B ~ oo in Eq. (2.22) yields infinite
capacity, but just as for the wave-like regime, this limit
is unphysical because it neglects the Einstein relation
E = hf We can. again take the Einstein relation into
account crudely by letting B f, thus finding an op-
timum wideband single-channel capacity in the particle-
like regime,

(hf21
C - log, (EPr

2

eln2

P t'hf25

bits/s, (2.23)

where the maximum on the right occurs for f = e+P/h,
just within the particle-like regime. This analysis indi-
cates that in the particle-like regime the Einstein relation
E = hf is responsible for the gP/h capacity maximum
of Eq. (1.3).

These heuristic arguments capture the essence of the
optimum single-channel capacities. It is useful to sum-
marize the lessons they teach. For narrowband channels
the dimensionless quantity P/h fB, the number of quanta
per longitudinal mode, plays a crucial role: it delineates
wave-like and particle-like regimes, and it determines the
behavior of the capacity in both regimes [Eqs. (2.20) and
(2.22)j. The nonzero value of Planck's constant limits di-
rectly the capacity in the wave-like regime and is respon-
sible for the very existence of the particle-like regime.

For wideband channels, where B f, the Einstein re-
lation E = hf leads, in both the wave-like and particle-
like regimes, to an optimum capacity C ~q gP/h. This
optimum wideband capacity is achieved in the transition
zone between the wave-like and particle-like regimes, by
adjusting the frequency so that P/hf2 1, which implies

1 C/f .The optimum wideband capacities thus reveal
the origin of the two relations in Eq. (1.1), which we cap-
ture in our slogan, "one quantum —one bit —one mode. " In
the wideband wave-like capacity (2.21), the linear depen-
dence on f outside the logarithm, which comes from the
transmission rate of wave-packet modes, swamps the log-
arithmic dependence on f, which coxnes from the number
of quanta per mode. This dictates choosing f nearly as
large as is consistent with a wave-like channel, an optimal
strategy described roughly by "one quantum —one bit —one
mode. " In the wideband particle-like capacity (2.23), the
linear dependence on 1/f outside the logarithm, which
comes from the transmission rate of quanta, swamps the
logarithmic dependence on f, which coxnes &om the num-
ber of modes per quantum. This dictates choosing f
nearly as small as is consistent with a particle-like chan-
nel, again an optimal strategy described roughly by "one
quantum —one bit —one mode. "

III. CAPACITIES OF SINGLE NUMBER-STATE
CHANNEL

P ) h(f/2)(Nb/2) = 4hfC & 4hC (3.1)

We turn now to an analysis of a single number-state
channel. This analysis is important for two reasons: it
illustrates the general formalism begun in Sec. II.A, and
it yields the optimum capacity proved in Sec. IV.

Consider then a single linear bosonic communication
channel. A good example is a single transverse mode of
an electromagnetic transmission line; throughout the re-
maining discussion of single channels (Secs. III—V), we
use language appropriate to this example. We define
a number-state channel as one in which information is
transmitted as a pattern of precise numbers of photons in
the various orthogonal Geld modes —i.e., the input states
are number states of the field modes —and information
is retrieved at the output using perfectly eKcient direct
photodetection of the number of photons in each orthog-
onal mode (see footnote 1).

We begin this section with yet another heuristic argu-
ment, which captures the essence of the quantum limit
on wideband capacity. Suppose we transmit photons
of maximum frequency f The chan. nel can be divided
into N nonoverlapping bins of difFerent frequency (fre-
quency multiplexing), each with bandwidth b & f/K
Suppose further that we transmit binary (on-ofF) infor-
mation down each frequency bin, the bits of information
spaced in time by 1/b. The capacity (in bits/s) of each
frequency bin is b; so the capacity of the entire channel
becomes C = bN & f. Several photons might be used
for the "on" state in each bin; but to minimize the input
power, it is clearly desirable to use only one photon for
the "on" state, in which case each bin has average photon
intensity b/2 (corresponding to 2 bits per photon). Since
the average frequency is ) f/2, the average input power
P to the entire channel satisGes
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Gordon (1961) posited this inequality by counting the
number of ways of populating energy-time cells whose
size is determined by the energy-time uncertainty prin-
ciple. The essence of the inequality (3.1) is that bigger
capacity ultimately entails higher &equencies, where a
photon requires more energy.

sequence of integers. The input is described statistically
by probabilities p~(n) to transmit n photons down the
channel at each use. We let

(3.2)

A. Narrowband number-state channel

1. Channel mode) and channel capacity

We proceed now to a rigorous analysis of a single
number-state channel. We consider in this subsection
a narrowband number-state channel that operates at &e-
quency f within a bandwidth B « f, generalizing in
Sec. III.B to the wideband case. It is convenient in the
narrowband analysis to think of the channel as being
excited by successive pulses of duration B . The
pulses, emitted at a rate B (Gallager, 1968; Yamamoto
and Haus, 1986), make up a particular set of orthogonal
longitudinal modes, which we call wave-packet modes.
We can regard each wave packet as constituting a "use"
of the channel (in the communication-theory jargon in-
troduced in Sec. II.A); so the inverse bandwidth B i be-
comes the "use duration, " and the bandwidth B becomes
the "use rate" (number of uses per second). It should be
emphasized that nothing in our analysis depends on the
wave-packet choice of longitudinal modes. All that mat-
ters is that there are B7 orthogonal longitudinal modes
within a long transmission time 'T. We indicate below
how things work out for a general choice of longitudinal
modes.

A description of the input is the first ingredient in
the channel description. The inputs to the channel are
photon-number eigenstates ln) —number states —of the
wave-packet modes; thus the input alphabet is the set
of non-negative integers, and a transmitted message is a

P = Bh,fn. (3.3)

The average number of photons per use, n = P/Ii fB, is
the crucial dimensionless quantity identified in Sec. II.B.
For a narrowband channel with fixed'&equency and band-
width, we can implement the power constraint as the con-
straint that the probabilities p~(n) have the well-defined
mean A.

A description of the output is the second ingredient. At
the channel output the photons are counted by an ideal
photodetector (see footnote 1). Thus the output alpha-
bet is also the set of non-negative integers, and a received
message is a sequence of integers. Channel noise, should
there be any, is characterized by a conditional probabil-
ity pM~~(min), the probability to count m photons at
the output when n photons are transmitted at the input.
The unconditioned probability to count m photons at the
output is

pM(m) = ) pM~p7(min)piV(n) . (3 4)

The information transmitted per use &om input to out-
put is quantified by the mutual information (Gallager,
1968),

denote the average number of signal photons transmit-
ted per use (or per mode) —i.e. , the average number of
photons per second per Hz. The average photon trans-
mission rate is Bn, and hence the average input power
to the channel is given by

H(M ~) = H(M) —H(MI~) = ) .&Min(min)p~(n) log21
fpM

~
~ (min) 'l

pM m
(3.5)

[cf. Eq. (2.11)],where

H(M) = —) pM(m) log, pM(m) (3.6)

[cf. Eq. (2.8)] is the total information available at the
output and

H(MI&) = —).

sM)N(min)slav(n)

log. pM)iv(min)

(3 7)

[cf. Eq. (2.10)] is a conditional output information that
characterizes the channel noise (see Fig. 1).

Bekenstein (1988) and Bekenstein and Schiffer (1990)
distinguish what they call heralded and self-heralding sig-

nals. A number-state channel provides an excellent forum
for illustrating and assessing this distinction, but we rel-
egate the discussion to Appendix B so as not to interrupt
the capacity analysis.

The channel capacity per use (Gallager, 1968) or, more
generally, per longitudinal mode, C, is the maximum mu-
tual information, where the maximum is taken over the
possible input probabilities pN(n), subject to the con-
straint on average photon number n (i.e., subject to the
constraint on average input power P = Bhfn); in sym-
bols, C is defined by

C = max H(M; N),
(» ~(~))

(3.8)

where the maximum is taken subject to the normalization
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constraint,

) p~(n) = 1, (3 9)

H(MlN) = —) q(k) log2 q(k)

= nT log2(1 + n& ) + logz(1 + nT ),
(3.14)

C=BC. (3.10)

Notice that for an arbitrary choice of orthogonal longitu-
dinal modes occupying a transmission time 7, we would
write the information transmitted over time 7 as B7 C
and thus find a capacity C = B7C/7 = BC, just as in
Eq. (3.10).

Suppose now that the channel is contaminated by
"thermal noise" in the following way: before the sig-
nal photons are deposited in each wave-packet mode, the
mode is already excited by a thermal radiator at temper-
ature T. At each channel use the thermal radiator has
probability

and to the constraint (3.2) on the average number of
photons per use (or per mode). Conversion from capacity
per use to capacity in bits/s is accomplished by

1 f n+nT
( ) = 1+„-+„- l~i+ „-+ (3.15)

which leads to maximum output information

H(M) = (n+nT) log2l 1+ 1

n+nT y

+log, (i+ n+ nT) . (3.i6)

independent of the input probabilities. Thus, to max-
imize the mutual information H(M;N), we need only
maximize the output information H(M). Indeed, in this
case, we can find the maximum by maximizing H(M)
with respect to the output probabilities p~(m), subject
to the constraints that the output distribution be normal-
ized and that its mean be n + nT. This problem is the
same as 6nding the canonical distribution for a harmonic
oscillator and has the standard result,

q(k) = 1+nr (1+nT )

to emit A: photons, where

1
~h f/Ic~T ]

(3.11)

(3.12)

Generally, maximizing with respect to the output prob-
abilities yields only an upper bound on capacity, because
inversion of the linear equations (3.4) does not yield non-
negative input probabilities p~(n). In this case, however,
it does, and the input probabilities were found by Lebe-
dev and Levitin (1966; for a derivation, see Bekenstein
and Schiffer, 1990):

is the mean number of thermal photons emitted at each
use. The addition of n signal photons simply shifts the
thermal distribution (3.11) so that k = 0 corresponds
to n photons. Since the photons, signal or thermal, are
counted with unit eKciency at the output, we model the
channel by a conditional probability (Lebedev and Lev-
itin, 1966; Bekenstein and Schiffer, 1990),

0, m &n)
pM(iv(min) =

( „) )„ (3.i3)

to count m photons at the output, given transmission of
n signal photons.

Hall (1993) has recently developed a quantum-
mechanical description of Gaussian channel noise, which
clari6es the physical interpretation of the above model
of thermal noise. In particular, Hall's work prompted
us to realize that the model corresponds to the scenario
of initial thermal noise, to which the signal photons are
added. Hall analyzes the capacity in a diferent scenario
in which the ordering of noise and signal are reversed:
the signal photons are 6rst added to each mode, after
which Gaussian noise is added, perhaps as the radiation
propagates down the channel.

For the madel of thermal noise embodied in Eq. (3.13),
the conditional output information (3.7) reduces to the
entropy of the thermal radiation (in bits),

' pcs(0) 1+ nT

q(0) 1+n+nT '

piv(n) =
&

pM(n),+ n) 0.
(3.17)

( 1 l r' n
CT = (n+nT)log, l

1+ I+log~I 1+
n+nT ) ( 1+nT')

(
nY log~

i
1+

I nT)
(3.is)

Hall (1993)analyzes the capacity of a number-state chan-
nel contaminated by his (different) xnadel of Gaussian

This input distribution is not a thermal distribution (un-
less nT = 0), but it can be obtained from a thermal
distribution with mean number of photons n+ nT in the
following way: remove a &action nT /(n+nT ) of the ther-
mal probability &om each possibility n & 0, and add the
total probability removed, nT /(1+n+nT ), to the thermal
probability, 1/(1 + n + nz ), for no photons.

Combining Eqs. (3.8), (3.5), (3.16), and (3.14) yields
the capacity per use of a single narrowband number-
state channel at temperature T (Gordon, 1962; Marko,
1965; Lebedev and Levitin, 1966; Yamamoto and Haus,
1986; Bekenstein and Schiffer, 1990; Yamamoto, 1990;
Yainamoto et at. , 1990; Hall, 1993):
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noise, and Hall and O' Rourke (1993), using that model,
have calculated bit-error rates for a number-state channel
contaminated by Gaussian noise.

We review the nonzero-temperature capacity here to
indicate the T g 0 corrections. Our main interest, how-

ever, is the T = 0 limit, where the capacity is largest.
Specializing to T = 0, one finds the capacity per use
(or per mode) of a single narrowband zero-temperature
number-state channel:

~o &o = log2(l+ n ) +. n log~(l y n) = Fi(n) .
n Bn

(3.22)

Notice that the information per use (or per mode) is Cp ——

C p/B = Ei(n ').

2. Maximum channel capacity

Cp ——n log2 (1 + n ) + log2 (1 + n) . (3.19)

Converting to bits/s [Eq. (3.10)] yields the corresponding
capacity (Stern, 1960; Gordon, 1962; Marko, 1965; Taka-
hasi, 1965; Lebedev and Levitin, 1966; Bowen, 1967; Ya-
mamoto and Haus, 1986; Bekenstein and Schi8er, 1990;
Slusher and Yurke, 1990):

Cp ——BCp = B[nlog2(1+ n ') + log2(1+ n)] . (3.20)

( n

This capacity is a combination of the wave-like and.
particle-like capacities (2.20) and (2.22). We emphasize
that even though Co is derived here as the capacity of a
number-state channel, the approach developed in Sec. IV
shows that it is an upper bound on the capacity of any
single narrowband linear bosonic channel.

Notice that at T = 0 capacity is achieved for thermal
input probabilities

P = Bhfn = rIhf n. (3.23)

Noting that

(3.24)

Suppose now that we have additional &eedom to vary
the &equency and bandwidth of the channel in order to
increase its capacity. For a real transmitting medium
there are limits to how much the frequency f and the
bandwidth B can be varied —limits set by absorption,
dispersion, or other physical limitations of the medium.
As a rough rule, however, the bandwidth can increase as
the &equency increases. To model this relation between
bandwidth and &equency, we assume that the channel
has a fixed fractional bandwidth q = B/f « 1, and we
maximize the capacity Cp by varying f (or n), subject to
the constraints of 6xed g and 6xed input power

At capacity the information per photon (in bits) is
is Axed by the constraints on fractional bandwidth g and
input power P, we introduce a dimensionless capacity

——n log2(1+ n ) + n log2(1+ n)—:P2(n), (3.25)

which can be maximized easily as a function of n.
The dimensionless functions Pq(n) and Fq(n), defined
in Eqs. (3.22) and (3.25), are plotted in Fig. 3. Since
P2(n) is symmetric under the exchange n ++ n, it ev-

idently has a maximum at exactly n = 1, corresponding
to &equency

(3.26)

marized in Table I. If we regard &equency, rather than
power, as the independent variable, we can write C
and P in terms of ratios of &actional bandwidth and &e-
quency to "typical" values for optical communication:

C „=2qf 6.0 Gbits/s
( f

10-' q3 x 10"Hz)

(3.28a)

and to maximum single-channel capacity

C „=2B = 2rIf = 2 bits/s.gP
6 (3.27)

At maximum the information per photon is C „/Bn =
Ei(1) = 2 bits, as in our heuristic argument, although
this rigorous analysis shows that it is optimal to use all
possible photon numbers, with an average of one photon
per channel use, instead of the half photon per use that is

optimal for binary signaling. The above results are sum-

2

P = 0bf 0.00nW ( ) ~ ~

. (0.28b)

Yamamoto and Haus (1986) point out that the infor-
mation per photon, Cp/Bn = Cp/n = Ei(n) [Eq. (3.22)],
goes as log2 n for small n and thus diverges. To maxi-
mize the information per photon in a single narrowband
channel, one lets n go to zero (as f goes to infinity) . For
a given transxnission period 7, however, there is a nat-
ural minimum value of n corresponding to making the
frequency high enough that on average just one photon
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TABLE I. Narrowband and wideband single-channel maximum capacities for three types of channels: number-state (NS)
channels, quadrature-squeezed (QS) channels, and coherent-state (CS) channels. For each type of narrowband channel, the
table lists the following quantities at maximum capacity: (i) the average number of' photons per mode, n; (ii) the dimensionless

frequency, f/gP/rlh = n; (iii) the information per mode, C „/H = C; (iv) the dimensionless capacity, C /ggP/h =
C/n; and (v) the information per photon, C „/Bn = C/n. The first, third, and fifth of these quantities illustrate our slogan,
"one photon —one bit —one mode. " For each type of wideband channel, the table lists the dimensionless capacity, C/gP/h, and
the information per photon, I/P. The information per photon is zero, because the low-frequency 1/ f dependence of the photon-
number spectra (3.35) and (5.48) leads to a logarithmic divergence in photon transmission rate; a low-frequency cutoff renders
the information per photon finite, as in Eqs. (3.42) and (5.53).

Type

NS
QS
CS

1.000 0
1.960 8
3.921 6

1.000 0
0.714 14
0.504 98

Narrowband
&xnax

B

2.000 0
2.299 1
2.299 1

&max

QilP/h
C

ai/'&

2.000 0
1.641 9
1.1610

&max

Bn
C

2.000 0
1.172 6
0.586 28

Wideband

3.700 7
2.885 4
2.040 3

I P

is transmitted during 7; the information can be encoded,
for example, in the photon's arrival time (pulse posi-
tion modulation), which is defined with resolution B
Pierce (1978) and Pierce, Posner, and Rodemich (1981)
have also drawn attention to the fact that a single pho-
ton can carry an arbitrarily large amount of information,
encoded in its arrival time. The above considerations
show, however, that sending just one photon during the

transmission period is not the best strategy for using the
photon's energy.

Suppose one transmits on average one photon at &e-
quency fi within bandwidth Bi during a long transmis-
sion time 7 )) Bi (P = hf1/7), with the information
encoded in the photon's arrival time; this gives an aver-

age number of photons per use ni ——1/B17 « 1 and
thus yields, from Eq. (3.20), a capacity

C1 —B»n» log2 n»
og2 A» (B 7) 1 ( Xlllillbel' Of

2 ' = —log 2 distinguishable
arrival times

(3.29)

C2 ——2B2 ——2B»n»
—1/2 2V B17

&& C». (3.30)

The capacity at the lower &equency is larger even though
the bandwidth is smaller.

One gets the same capacity if one encodes information
in the photon's &equency (Yaxnamoto, 1990; Yamamoto
et aL, 1990), because the &equency can be defined with
resolution 7, thus yielding B17 distinguishable fre-
quencies within bandwidth B». Indeed, one can transmit
the information in the photon's occupation of any one of
a set of orthogonal longitudinal modes, of which there
are B17 within a bandwidth Bi and a duration 7 . The
information log2(B17 ) is "placement information" (Lan-
dauer, 1989) arising &om the B17 = hfiB1/P possible
modes that the photon can occupy (cf. the discussion of
the particle-like regime in Sec. II.B).

Suppose now that one transmits the same energy hf1
in the same time 7 at a lower &equency f2 within a
bandwidth B2, w'here f2 and B2 are chosen to keep the
&actional bandwidth fixed and to yield an average of one
photon per channel use—i.e., n2 ——1. Since B»n »/2

QUIP/h = B2n2 = B2 [Eq. (3.24)j, these choices give a»/2

bandwidth B2 ——Bin', ' = Bi//B17 « Bi and, &om»/2

Eq. (3.27), a corresponding capacity

F) 'g

3--

-10
lOg2 n

6 8 10

FIG. 3. Semilog plots of the dimensionless capacity functions
Fi(n) (short-dashed line), F2(n) (solid line), and Fs(n) (long-
dashed line) for number-state channels. The function Fi(n)
is the information per photon, defined for a single channel by
Eq. (3.22) and for multiple parallel channels by Eq. (6.16).
The function F2(n) is a dimensionless capacity, defined for a
single channel by Eq. (3.25) and for multiple parallel chan-
nels by Eq. (6.25). The function Fs(n) is a dxmensionless
information aux, defined for multiple parallel channels by
Eq. (6.32). The functions F2(n) and Fs(n) both tend to zero
as log2n ~ +oo; Fi(n) goes to zero as log2n -+ oo, but
Fi(n) -+ —log2n+ 1/ln2 as logzn —&

—oo.
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This simple analysis illuminates the question of how
much information a single photon can carry down a sin-
gle narrowband channel. It is certainly possible to trans-
mit an arbitrarily large amount of information on a single
photon, the information transmitted as placement infor-
mation, but doing so is not the most efBcient way to use
the photon's energy. One could send more information
by using the same amount of energy to transmit many
photons at a lower frequency. The optimal strategy for
using the available energy, as Eq. (3.27) shows, is to use
a &equency such that each photon carries on average 2
bits of information.

The Hip side of this argument is that the information
per mode, Co, can be made as large as desired by letting n
go to infinity (as f goes to zero). Suppose, for example,
that one works at frequency fi within bandwidth Bi,
transmitting on average ni = P/hfiBi )) 1 photons per
mode. The corresponding capacity, from Eq. (3.20), is

Cg Bg log2 ng (3.31)

(cf. the discussion of the wave-like regime in Sec. II.B).
If, instead, one has available the same power at a higher
frequency f2 within a bandwidth B2, where f2 and B2
are chosen to keep the fractional bandwidth fixed and
to yield an average of one photon per channel use, i.e. ,

n2 ——1, then the new bandwidth is B2 ——Bqn~ and,1/2

from Eq. (3.27), the capacity at the higher frequency,

C, = 2B, = 2B,n, && Ci,1/2 (3.32)

is larger. It is certainly possible to transmit an arbitrar-
ily large amount of information in a single mode, but
one could send more information by transmitting fewer
photons at a higher frequency.

The lesson of both these arguments is summarized by
our slogan, "one photon —one bit —one mode": the optimal
strategy for using available power is to transmit about
one photon in each mode, carrying about one bit of in-
formation.

The maximum capacity C „[Eq. (3.27)] increases
with increasing &actional bandwidth. Pushing the above
derivation beyond its region of validity and setting g = 1
yields the capacity limit (3.1). To deal with such a wide-
band channel properly, however, it is mandatory to take
into account the variation of photon energy with fre-
quency.

capacity of each frequency bin are given by Eqs. (3.3)
and (3.20). The total input power

P=b) hfdf,

and the overall information rate

6C = ) [n, ln(1+ n, ) + ln(1+n;)] (3.34)

1
~Phf; 1

(3.35)

The Lagrange multiplier P has nothing to do with phys-
ical temperature T, which is here assumed to be zero;
what P does do is to characterize, in a way identical to
"inverse physical temperature, " the optimal distribution
of power and information among &equencies.

Replacing the sums (3.33) and (3.34) by integrals over
all positive frequencies, one finds the standard results
that

P= "0' fn c —1
((2) sr 2

hp2 6hp2 ' (3.36)

where g(2) = vr2/6 is a value of the Riemann zeta func-
tion, and

C= dx
~

—ln(1 —e ) ~h ln2 0 (e —1

2/3P vr

ln2 3hP in 2
(3.37)

Eliminating P between these two relations leads to the
wideband capacity

are evaluated by summing over the &equency bins.
For each frequency bin, the information rate is already

maximized, subject to a constraint on the mean num-
ber of photons per mode, n, . What remains to 6nd
the wideband capacity is to maximize the overall infor-
mation rate (3.34) by varying the distribution of power
among frequencies —i.e., by varying n; as a function of
frequency, with P held constant. This process is pre-
cisely equivalent to maximizing the entropy in a channel
of photons with positive momentum, and the resulting
photon-number distribution is that of a one-dimensional
blackbody,

B. Wideband frequency-multiplexed number-state channel

7r 2P
Cwa = bits/s

ln 2 Sh
(3.38)

Consider a single zero-temperature frequency-
multip/exed channel, in which each frequency bin is a
narrowband number-state channel of the sort just con-
sidered; i.e., the inputs to each bin are number states
which are detected at the output by an ideal photodetec-
tor. Let 6 be the bandwidth of each frequency bin; f, ,
the &equency of the ith bin; and bn, , the average photon
transmission rate in the ith bin. The input power and

of Eq. (1.4) (Lebedev and Levitin, 1963, 1966; Bowen,
1967; Pendry, 1983; Bekenstein, 1988; Bekenstein and
Schiffer, 1990; see Table I). The generalization of
C~B to the capacity of a single wideband &equency-
multiplexed nonzero-temperature number-state channel
has been given by Lebedev and Levitin (1963, 1966) and
is reviewed by Bekenstein and Schiffer (1990).

We emphasize that the wideband capacity C~~ is inde-
pendent of propagation speed along the channel (Pendry,
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1983; Bekenstein and SchifFer, 1990). Indeed, since the
above derivation of C~B is carried out in the frequency
domain, it is valid even in the presence of dispersion;
the propagation (group) velocity along the channel at
frequency f simply scales all spatial dixnensions along
the channel at that &equency and thus does not appear
in the result. To achieve the capacity C~B, however,
there must be no gaps in the frequency spectrum, since
the presence of a gap means that information must be
transmitted at higher &equencies, where the energy per
photon is larger. Pendry (1983) gives a particularly neat
derivation, which shows explicitly that C~B is indepen-
dent of dispersion and that C~B decreases if there are
gaps in the &equency spectrum. Pendry uses the same
technique to derive an upper bound on the capacity of a
single fermionic channel.

It is easy to estimate the effect of cutofFs in the &e-
quency spectrum at very high and very low frequencies.
There is a characteristic &equency

is of order unity for any reasonable value oF f
Except for the work of Yuen and Ozawa (1992), pre-

vious derivations of the wideband capacity (1.4) apply
only to a &equency-multiplexed number-state channel
(Lebedev and Levitin, 1963, 1966; Bowen, 1967) or as-
8ume a connection between information and quantum
entropy —tr(plog2 p) (Pendry, 1983; Bekenstein, 1988;
Bekenstein and SchifFer, 1990)—a connection that is im-
plemented in effect by assuming a &equency-multiplexed
number-state channel. The upper bound C~B is inde-
pendent of the medium used and clearly has a general en-
tropic origin. It should be possible to demonstrate that
it is an upper bound on the capacity of any single lin-
ear bosonic channel, regardless of the technique used to
modulate information onto the bosonic field, regardless
of the input quantum states, and regardless of the detec-
tion scheme used at the output. To that demonstration
we turn in Sec. IV.

2Pf,h = = CwB ln 2 = vr
3hP 3h ' (3.39)

IV. CAPACITY UPPER BOUNDS FOR
SINGLE WIDEBAND LINEAR BOSONIC CHANNEL

f ' I,( 3ef.h
l~n

feb '( ~ fmin )
(3.40)

due to the elimination of &equencies below f;„;the &ac-
tional reduction due to the high-&equency cutofF f „ is
smaller than (f „/f,x,) exp( —a f~~„/3f, x,).

Notice that in the absence of a low-&equency cutofF,
the average photon intensity is infI.nite —hence the in-
formation per photon is formally zero—because of the
1/f divergence in n, at low &equencies. Given a low-
&equency cutofF at f;„((f,x„however, the average
photon transmission rate becomes

The corresponding information per photon,

7r2

3 ln 2 ln(3 f,x, /vr 2f;„) ' (3.42)

For electromagnetic woes propagating in a linear dielectric
medium, causality applied to the relation between polariza-
tion and electric field implies that dispersion must be accom-
panied by loss at some frequencies. Our wideband analysis
applies strictly only if the loss occurs at frequencies much
larger than' the characteristic frequency (3.39). Since loss in-
troduces noise, however, it always degrades performance and
thus leads to a lower capacity.

near which most of the energy is carried. If there are
low- and high-&equency cutofFs at frequencies f;„and
f „,such that f;„«f,x, « f „, the capacity is little
affected. The main effect is a fractional reduction in the
capacity (3.38) by an amount

In this section we consider again a single linear bosonic
communication channel, which we think of as a single
transverse mode of an electromagnetic transmission line.
Our objective is to demonstrate that the capacity C~B of
a wideband &equency-multiplexed number-state channel
is an upper bound on the capacity of any single linear
bosonic channel. To that end, we return in Sec. IV.A
to the general description of a single channel begun in
Sec. II.A, extending that description and introducing the
formalism of generalized measurements, which is required
for analyzing general detection schemes at the channel
output. To derive the optimum wideband capacity, we

rely on a theorem due to Holevo (1973), introduced in
Sec. IV.B, which establishe8 a connection between mu-
tual information and quantum entropy. In Secs. IV.C—
IV.E we derive, using methods from quantum statistical
physics, the optimum wideband capacity for three differ-
ent ways of imposing the constraint on input power P.
For 6nite transmission times, the capacity limit depends
on how the power constraint is imposed, but the capacity
C~B emerges in the limit of long transmission times. No
restriction is placed on the coxnrnunication method, ex-
cept that the method be physically realizable in a sense
that we discuss and justify in Sec. IV.F.

The reader interested in the minimal route to a
proof of the optimum wideband capacity should consult
Secs. IV.A and IV.B for essential background And then
read just the first proof in Sec. IV.C, skipping the rest of
the section. Readers interested in more detail will want
to pick among the remaining subsections, choosing for
careful reading those of most interest.

A. Quantum description of channel

In this section we assume a finite transmission time
T. We make this assumption because it is the first step
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toward a finite-dimensional channel Hilbert space, which
is needed to apply Holevo's theorem as originally proved.
by Holevo. We are not interested here in small values
of 7, and we assume explicitly that 7 is large compared
to all other relevant times. For the Gxed-energy channel
considered in Sec. IV.C and the maximum-energy chan-
nel considered in Sec. IV.D, we derive exact expressions
for the optimum capacity, we show that the 7 ~ oo limit
of these expressions yields the optimum capacity C~B of
Eq. (1.4), and we derive the largest finite-7 corrections
to the 7 m oo limit.

For the average-energy channel considered in Sec.
IV.E, we derive carefully the largest finite-7 corrections
to the 7 + oo capacity upper bound (1.4). Bekenstein
and SchiKer (1990) have dealt with these same finite-
7 corrections. Unlike us, however, they are interested
primarily in the regime where 7 becomes as small as
1/gP/h, the inverse of the channel's characteristic fre-
quency. For the average-energy channel, they derive the
same leading-order corrections, plus one further term in
the asymptotic expansion, which allows them to explore
the regime gP/h7 l.

If the channel is dispersionless, then the assumption of
a finite transmission time allows us to use the standard
procedure of quantizing in terms of discrete &equency-
doxnain longitudinal modes de6ned by periodic boundary
conditions on a length 2 = c7 of the channel, where c
is the propagation speed down the channel. 3 This proce-
dure yields one &equency-domain longitudinal mode at
each of a set of allowed &equencies

f~ =i/7 i =1» (4.1)

which are multiples of a minimum frequency 1/7 . (There
are actually two modes at each &equency, propagating in
opposite directions; we use the mode that propagates in
the direction of interest. )

It might seem that our work in this section is restricted
to dispersionless channels, but we argue to the contrary
in Appendix C. By considering the quantization of a
channel with dispersion, that argument leads to the con-
clusion that the mode frequencies (4.1) apply even to a
channel with dispersion. Here we stress the conclusion: a
single channel of duration 7 can be defined operationally
by saying that there is one longitudinal frequency-domain
mode at each of the frequencies (g.1). The further results
of this section use only this set of mode &equencies, with-
out reference to dispersion or propagation speed along
the channel, and thus are independent of dispersion and
propagation speed.

The Hilbert space for the channel is spanned
by photon-number eigenstates (Fock states) of the

&equency-domain longitudinal modes,

A1)A2) ~ ~ +A) (4 2)

where n~ is the number of photons in mode j. The Fock
state ~(n~ j) is an energy eigenstate with energy

h . . Nh
E~ = ) hen~ = —) jn,. =

2 2

(4.3)

All the energy eigenvalues E~ are multiples of the quan-
tum h/7 for the lowest mode and can be labeled by the
integer

(4.4)

For N large the energy eigenstates are highly degen-
erate. If we let JV~ denote the number of states with
energy E~, then JV~ is the number of ways of writing
the positive integer N as a sum (4.4). Determining JViv
is precisely the number-theoretic problem of partitioning
N—i.e., of determining the number of ways that up to
N positive integers j can be added together to give ¹

Conventionally one chooses Ap ——1, which corresponds
in our physical example to counting the vacuum state.
The first few values of JViv are JVi ——1, JV2 ——2, JV3 —3,
N4 = 5, N. = 7, and Ns =

Our task now is to describe in more detail the two in-
gredients in a channel description: the input quantum
states, together with their statistics, and the output de-
tection scheme, together with its quantum statistics. The
general description of a linear bosonic channel is depicted
schematically in Fig. 2.

The input to the channel is one of the quantum states
(density operators) p, drawn from states labeled by
a = 1, . . . , A. We emphasize that we are not talking
about transmitting a sequence of the states p during
time 7; each state p constitutes the entire message
transmitted during time 7 . We nonetheless refer to the
set of input states as the input alphabet; a message con-
sists of a single "letter" &om the input alphabet. In
communication-theory jargon the transmission time 7
becomes here a single "use" of the channel. If we ap-
plied the present description to the number-state channel
analyzed in Sec. III.A, the input states p would be di-
rect products of number states for successive wave-packet
modes. The input is described statistically by probabil-
ities p~(a) to transmit state p . If one does not know
which quantum state is transmitted, then one attributes
to the channel an unconditioned density operator

p=):s~( )po (4 5)

Periodic boundary conditions on the length 6 = c'T provide
a convenient way to count orthogonal longitudinal modes.
The counting is equivalent to that obtained using physical
modes that vanish outside of 8, except at the lowest frequen-
cies near 7

We further emphasize that even though we build up
the channel Hilbert space in terms of Fock states of
&equency-domain modes, nothing restricts our analysis
to &equency multiplexing or to number states. The mode
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frequencies (4.1) are just a way to count the number
of orthogonal longitudinal modes per unit bandwidth,
and the Fock states are just a fancy way to describe the
channel Hilbert space as a direct product of harmonic-
oscillator Hilbert spaces. If one thought in terms of the
two-step procedure for specifying input quantum states
(Sec. II.A)—first choose orthogonal longitudinal modes
and then specify input quantum states for the chosen
modes —then one would say that our analysis applies to
arbitrary modulation techniques and to arbitrary choices
of input quantum states for the modes. In fact, how-
ever, the present description of a linear bosonic channel
is more general: not relying on the two-step procedure,
it applies to completely general choices of input quan-
tum states that cannot be described within the two-step
procedure.

At the output one attempts to retrieve the transmit-
ted information by using some kind of detection scheme,
i.e., by making some sort of measurement. To prove gen-
eral capacity upper bounds, we must somehow include in
our analysis all possible measurements allowed by quan-
tum mechanics. The most general quantum-mechanical
measurement can be described in terms of a complete
set of (bounded) non-negative Hermitian operators Eg,
where b = 1, . . . , 8. These operators are called effects.
[For a brief discussion of effects and generalized measure-
ments, see Appendix D; for more extensive discussions,
see Davies (1976), Holevo (1982), or Kraus (1983)]. The
efFects must be complete in the sense that they provide
a resolution of the unit operator 1 as

) Pg= i.
b

(4.6)

Such a generalized measurement can be regarded as
a measurement of a quantity B, a "generalized observ-
able, " whose possible values are labeled for convenience
by 6 = 1, . . . , 8. |A'e call this set of values the output
alphabet. Just as for the input, we emphasize that the
output for time 7 consists of a single "letter" &om the
output alphabet. If we applied this description to the
number-state channel analyzed in Sec. III.A, each letter
in the output alphabet would be a sequence of detected
photon numbers, and each effect would describe a se-
quence of measurements of photon number.

To describe the output statistically, we need the con-
ditional probability to obtain output 6, given that state
p was transmitted (Davies, 1967; Holevo, 1982; Kraus,
1983):

»(~(bla) = tr(p. &b) . (4.7)

These probabilities are real and. non-negative because of
the Hermiticity and non-negativity of the efFects, and
they are normalized to unity because of the completeness
property (4.6). Indeed, the requirements that the prob-
abilities (4.7) be real, non-negative, and normalized to
unity for all quantum states p determine the required
properties of the efFects; thus it should not be surpris-
ing that effects can describe the most general quantum-
mechanical measurement, because they are the most gen-

eral way to generate probabilities Rom quantum states.
If one does not know which quantum state was trans-
mitted, then the probability for output b is the uncondi-
tioned probability

»(b) = )»~„(bla)p&(a) = tr(PE~), (4.8)

which depend. s only on the unconditioned channel density
operator p.

A generalized measurement reduces to a conventional
quantum measurement if the effects are a complete set
of orthogona/ projection operators IIb, in which case the
measurement probabilities (4.7) become

»~&(bla) = tr(p. lib) . (4.9)

We call a conventional quantum measurement ideal if,
in addition to being orthogonal, the projection opera-
tors are one-dimensional. For ideal conventional mea-
surements the projection operators have the form

IIs = II~~
l = lb) {bl, (4.1O)

where the vectors lb) make up a complete, orthonormal
basis, and the measurement probabilities reduce to the
familiar formula

»(&(bla) = tr(p. llI, ) = {blp-lb) (4.11)

The use of "ideal" conveys the notion that ideal con-
ventional measurements have sufBcient resolution to dis-
tinguish all the eigenvalues 6—resolution that is sacri-
6ced if the orthogonal projection operators are multi-
dimensional.

Although important, conventional quantum measure-
ments are by no means the most general. The effects
can be multiples of nonorthogonal projection operators,
which make up an (over)complete set; the coherent-state
projectors of a single 6eld mode provide an example, the
measurement of which can be realized at optical frequen-
cies by heterodyne detection (Yuen and Shapiro, 1978,
1980; Shapiro et al. , 1979; Shapiro and %agner, 1984;
Shapiro, 1985). Moreover, the effects need not be pro-
jection operators at all. We discuss effects and general-
ized measurements in Appendix D.l, where we also show,
in Appendix D.2, that heterodyne detection is described
by coherent-state projectors; readers unfamiliar with for-
malism of generalized measurements will Gnd it useful to
consult Appendix D.1 before proceeding.

Channel noise is characterized by the conditional prob-
abilities»~~(bla). Again it is interesting to contrast the
situation here with the analysis of a number-state chan-
nel in Sec. III.A. There, at zero temperature, there was
no channel noise, because ideal photocounting of number
states has perfect fidelity, i.e., p~~~(min) = b „;chan-
nel noise was introduced by a Gnite-temperature thermal
radiator. Here there is no source of noise such as a ther-
mal radiator, yet the detection scheme generally has in-
trinsically quantum-mechanical noise, described by the
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quantum-statistical conditional probabilities p~~~(bla).
A noise-&ee channel like a number-state channel can be
obtained as follows: choose a complete set of orthogonal
projection operators II, and then choose input states
p = II /tr(II ) and effects I'i, = IIq, in which case
»i~(blu) = ~~-.

B. Holevo's theorem

Holevo (1973) has proved the fundamental theorem of
quantum communication theory. Before stating and dis-
cussing Holevo's theorem, it is useful to recall the infor-
mation measures introduced in Sec. II.A. The informa-
tion successfully transmitted from input to output of a
communication channel is quantified by the mutual in-
formation

H {B;A) = H(B) —H(B
l A)

S(p) = —tr(plog2 p) (4.14)

p- = ):q(blu)lb)(bl. (4.15)

If we now choose effects Fg = lb)(bl, it follows that
p&

~

& (bl ) = q(b la) and, hence, that

is the quantum entropy (in bits) of a density operator p.
Important properties of quantum entropy are surveyed
in Appendix A. Holevo's theorem was apparently 6rst
conjectured by Gordon (1964).

Equality holds in Eq. (4.13) if and only if all the input
states coinmute, i.e. , [p, p ] = 0 for all a and a'. One
direction —commutation implies equality —of this if-and-
only-if statement can be demonstrated easily. If all the
input states commute, then they can all be made diagonal
in the same orthonormal basis lb), i.e.,

) p~i~(bl&)p~(~) log2 I

(pa~~(bl&) l
p~ b

p = ) .p~(~) p = ):»(b)lb) {bl . {4.16)

Holevo '8 theorem:

maxH(B;A) ( S(p) —) p~(o)S(p ), (4.13)

where the maximum of the mutual information H(B; A)
is taken over all complete sets of e8'ects Eg and where

of Eq. (2.11), where H(B) [Eq. (2.8)] is the total infor-
mation available at the output and H(BlA) [Eq. (2.10)]
is a conditional output information that characterizes
channel noise. The mutual information is symmetric in
A and B and thus can also be written as H(B; A)
H(A) —H(AlB) [Eq. (2.12)], where H(A) [Eq. (2.4)] is
the total input information and H{AlB) [Eq. (2.13)] is a
conditional input information. The relationships among
these information measures are summarized in Fig. 1.
Since the conditional informations H(A. lB) and H(BlA)
are non-negative, one has immediately that the mutual
information is bounded above by the input information-
i.e. , H(B; A) ( H(A) —and by the output information-
i.e. , H(B;A) ( H(B)

Consider now a set of input quantum states p and
probabilities p~(a). For any detection scheme at the
output, described by a complete set of eKects Fb, one
has available the channel statistics embodied in the con-
ditional probabilities p~~~(bla). These ingredients lead
to the mutual information H(B; A), which quantifies the
amount of information successfully transmitted Rom in-
put to output. Holevo's theorem establishes an upper
bound on the mutual information over a/l possible gen-
eralized measurements at the output. The bound is in
terms of the entropy of the unconditioned channel den-
sity operator and the entropies of the input states. In
symbols the theorem reads

Since the density operators (4.16) and (4.15) are written
in terms of a diagonal decomposition in an orthonormal
basis, one has immediately that

S(p) = —) p~(b) log2p~(b) = H(B) (4.17)

and that

).»(u)S(p-) = ).p~(~) l

—):q(bl~)»g2q(bid)
a

= H(BlA), (4.18)

which together give equality in Eq. (4.13). It is worth
emphasizing the opposite direction —equality implies
commutation —of the if-and-only-if statement: if the in-
put quantum states do not coxnmute, then no generalized
measurement can achieve the upper bound in Eq. (4.13).

Holevo's theorem is of fundamental importance be-
cause it bounds the mutual information even in situa-
tions where one tries to transmit information H(A) or to'
retrieve information H(B) in excess of the quantum en-
tropy S(p). Physical intuition suggests that the quantum
entropy S(p) is the logarithm of the number of "distin-
guishable" quantum-mechanical states that can be ac-
commodated within an unconditioned density operator
p. Should one try to transmit and detect information
in excess of S(p), this intuition holds that the channel
must become noisy enough to prevent it. Holevo's theo-
rem makes this physical intuition precise and establishes
it for general inputs and outputs. For this reason it de-
serves to be called the fundamental theorem of quantum
communication theory.

The same physical intuition allows one to interpret
the second term, —P p~(a)S(p ), in the upper bound
of Holevo's theorem (4.13). The quantum entropy S(p)
characterizes the number of distinguishable pure states
that can be accommodated within density operator p.
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p = ) .»(a)la)&al (4.19)

is a diagonal decomposition in an orthonormal basis, so
one has immediately that

When input quantum state p is not pure and thus has
nonzero quantum entropy S(p ), it lumps together in a
single input more than one distinguishable pure state.
The resulting reduction in the availability of distinguish-
able states is taken care of by the second term in Holevo's
upper bound.

It is instructive to consider an extended example that
illustrates the significance of Holevo's theorem. Suppose
that all the input states are one-dimensional projectors
p = ia)(ai (pure states), so that the second term in
Holevo's upper bound (4.13) is zero. If, in addition, these
input states are orthogonal one-dimensional projectors
(orthogonal pure states), then

S(p) = log2+, (4.24)

although maximal for a J'-dimensional Hilbert space, is
smaller than the input information by an amount, log2 K,
that can be made as large as desired. The input informa-
tion can thus be made arbitrarily large compared to the
quantum entropy S(p), in which case the information-
theoretic inequality H(B; A) & H(A) is of no help in
relating mutual information to quantum entropy.

Similar considerations hold for the measurement at the
output. One can measure an (over)complete set of ef-
fects [for example, single-mode coherent states measured
by heterodyne detection (Yuen and Shapiro, 1978, 1980;
Shapiro et aL. , 1979; Shapiro and Wagner, 1984; Shapiro,
1985), an example that we consider in Sec. Vj in an at-
tempt to retrieve information H(B) &) S(p). To see this,
consider l. different complete, orthonormal bases, this
time denoted by ib, I), where I = 1, . . . , 8, and let the
effects be

S(p) = )»(a) I go»2( )aH(A) . (4.20) (4.25)

p = p(- i, )
=

i ka)( kai, (4.21)

where the index a, equivalent to the pair (a, k), runs
over all A = QK basis states; suppose further that these
states are used with equal probabilities»(a) = 1/A.
The input information for such equally likely inputs is

H(A) = log2 A = log2 J' + log2 K . (4.22)

In this case, Holevo's upper bound is a trivial conse-
quence of the information-theoretic inequality that the
mutual information cannot exceed the input information:
H(B; A) & H(A) = S(p).

What makes Holevo's theorem nontrivial and inter-
esting is that it applies even when the input states are
an (over)complete set of one-dimensional nonorthogonal
projectors (nonorthogonal pure states, of which coher-
ent states are an example that we consider in Sec. V),
in which case one can attempt to transmit informa-
tion H(A) )) S(p). To see this, consider, for exain-
ple, K different complete, orthonormal bases within a
g-dimensional Hilbert space. Let the basis vectors be
denoted by ia, k), where the index k = 1, . . . , K specifies
which basis and the index a = 1, . . . , g specifies which
vector within a basis. Suppose that all these basis vectors
are used as input quantum states

(4.26)

Applying these effects to the nonorthogonal input pure
states (4.21), one finds an unconditioned output proba-
bility that is uniform in b:

pB(b) = tr(p+g) = —(b, &l1lb, t) = —. (4.27)

This leads to an output information

H(B) = log2 8 = log2 J + log2 8 (4.28)

that exceeds the quantum entropy (4.24) by an amount,
log2l'. , that can be made arbitrarily large. In this sit-
uation the information-theoretic inequality H(B; A)
H(B) is of no help in relating mutual information to
quantum entropy.

Physically, what happens in this extended example is
that the conditional detection probabilities

where the index b, equivalent to the pair (b, l), runs over
all 8 = +l: basis states. By virtue of the completeness
of each orthonormal basis, these effects satisfy the com-
pleteness property (4.6):

Using the completeness of each basis, one finds that the
unconditioned density operator, pB~~(bl ) = t (p~Ii) = —l(b ll k)I' (4.29)

p = )»(a)p = ——) ) la, k)(a, ki
a K„ I

' '
)

(4.23)

cannot be sharp —i.e., there cannot be a uniquely deter-
mined b for each a (see Appendix D)—and, hence, the
inverted conditional probabilities

is a multiple of the unit operator 1 and thus is diagonal
in any complete, orthonormal basis, with equal probabil-
ities 1/g on the diagonal. The corresponding quantum
entropy

»~B(alb) =
b

= —l(b ~la k)I'
PB

(4.SO)

also cannot be sharp. The channel is inevitably noisy
due to the quantum-mechanical indistinguishability of
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H(A) & S(p) —) p~(a)S(p ), (4.31)

in which equality holds if and only if all the input states
p are orthogonal, i.e., tr(p p ) = 0 for all a g a' (which
is equivalent to p p = 0 for all a g a ). Putting this in-
equality together with Holevo's theorem, one can reach
the following conclusions: (i) For noncommuting input
states, which are necessarily nonorthogonal, the channel
is always noisy, with H(B; A) ( S(p) —P p~(a)S(p ) (
H(A) for all choices of detection schemes at the out-
put; (ii) for nonorthogonal, but commuting, input states,
which cannot be pure states, the channel is always noisy,
but there is a detection scheme at the output (sketched
abave) for which H(B; A) = S(p) —P p~(a) S(p ) (
H(A); and (iii) for orthogonal input states, which are
necessarily commuting, the channel can be noise-&ee,
there being a detection scheme (sketched above) for

nonorthogonal states. This example uses a particu-
lar way of decomposing the density operator p = 1/Q
in terms of nonorthogonal one-dimensional projectors
and a particular set of effects that are proportional
to nonorthogonal one-dimensional projectors. Hugh-
ston, Jozsa, and Wootters (1993) have given the gen-
eral decomposition of any density operator in terms of
nonorthogonal one-dimensional projectors and the gen-
eral decomposition of the unit operator into effects that
are proportional to nonorthogonal one-dimensional pro-
jectors.

We can be both more precise and. more general about
the use of nonorthogonal input states by appealing to the
inequality (I evitin, 1969; Balian, 1991; see Appendix A)

which H(B;A) = S(p) —Q p~(a)S(p ) = H(A). In-
deed, one may further assert that a channel can be made
noise-&ee if and. only if the input states are orthogonal.

Jozsa, Robb, and Wootters (1993) have recently found
a loner bound on the maximum mutual information, in
the case that the input states p are pure:

Here the p~ are the eigenvalues of the unconditioned den-
sity operator p. What the lower bound means is that no
matter how p is made of pure input states, there is a
d.etection scheme for which the mutual information is at
least as big as Q(p). Moreover, the lower bound is shown
to be the tightest such bound. that involves only proper-
ties of the unconditioned density operator.

For a given set of input states and a given detection
scheme at the output, the channel capacity is obtained by
maximizing the mutual information over the input prob-
abilities p~(a), subject to any constraints on the channel,
as in Eq. (2.16), and then dividing by 7 to get an infor-
mation rate:

1
C = —max H(B;A) .

Ip~(~) j (4.33)

A further maximization over generalized measurements
at the output and over input states yields the optimum
capacity of the channel:

maxH(B;A) & Q(p) = —) p~logp~ .
pg (i;~ pj pk )

(4.32)

& optimum 1 Smax
l
= maxmaxC = —max max maxH(B;A) ( —max max S(p) =

capacity ) Ip j Ip& j (p j Ip~(a) j Ip& j Ip» j Ipw(a) j
(4.34)

Holevo's theorem (4.13) establishes the inequality here,
which leads to a capacity upper bound. in terms of the
maximum entropy of the channel density operator,

S „=max max S(p) = max S(p),
(~-) (J ~(~)}

(4.35)

p = ) ~(a)la)(al (4.36)

and then choose p = la){al = I' and p~(a) = q(a). This
choice uses an ideal conventional quantum measurement

where the maximum is taken over all density operators,
subject to any channel constraints.

Although the upper bound in Holevo's theorem can-
not generally be achieved, the upper bound (4.34) on
the optimum capacity can. To see this, Bnd a complete,
orthonormal set of basis states la) in which the density
operator p that maximizes S(p) = Sm „ is diagonal, i.e. ,

to achieve a noise-free channel with H(A) = H(B)
H(B; A) = S „. The equality condition for Holevo's
theorem shows that such a choice of input states and in-
put probabilities is the only way to achieve the optimum
capacity. These considerations allow us to conclude that
the maximum entropy, rather than just setting an upper
bound, actually gives the optimum capacity:

l( optimum ) Sma, x
capacity ) 7

(4.37)

Holevo (1973) proved his theorem for a finite-
d.imensional channel Hilbert space, a 6nite input alpha-
bet (A finite), and a finite output alphabet (8 finite).
Yuen and Ozawa (1992) have recently appealed to re-
sults in the mathematical physics literature to remove
these 6niteness assumptions from the proof. In this arti-
cle, however, we work within the restrictions of Holevo's
original proof in considering the optimum capacity of a
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C. Channel with fixed energy

One way to capture the power constraint is to say that
over the very long transmission time 7, the energy trans-
mitted is identically equal to

NhP7 =E~= (4.38)

where the integer

linear bosonic channel. We do this partly because this pa-
per was written before Yuen and Ozawa's work appeared,
but more importantly, because we believe the physical
origins of the optimum capacity for bosonic channels are
more apparent when the problem is formulated within
the 6niteness assumptions of Holevo's original proof.

The 6rst step toward a 6nite Hilbert space comes with
our assumption of a large but 6nite transmission time,
which leads to the discrete set (4.1) of &equency-domain
modes. The second step is to use the average-power con-
straint to restrict the Hilbert space to 6nite dimension;
we implement this second step in three different ways
in the next three subsections. We emphasize that even
though the alphabet sizes are 6nite, they can be arbitrar-
ily large —in particular, arbitrarily large compared to the
dimension of the Hilbert space. %'e return to the finite-
ness assumptions in Sec. IV.F and argue that they are
satis6ed by physically realizable channels.

fmax

I
gP/a 7- (4.4S)

hf2 „
P

"=f .„7 =N»1, (4.44)

demonstrates the potential for large fluctuations in in-
stantaneous power. Despite this potential, the fixed-
energy assumption might be thought too restrictive; so
we relax it progressively in the next two subsections, to
allow fluctuations in time-averaged power. The relaxed
assumptions yield the same optimum capacity in the limit
7 M 00.

The 6xed-energy assumption restricts the channel
Hilbert space to the finite-dimensional 6xed-energy sub-
space spanned by Fock states with energy eigenvalue E~.
We can apply Holevo's theorem directly to that subspace,
which has dimension JUN, as we discuss in Sec. IV.A. We
denote the optimum capacity for this 6xed-energy chan-
nel by

For long times 7 the fixed-energy assumption permits
large fluctuations in instantaneous power, but insists that
the tim, e-averaged power be precisely equal to P. Indeed,
the peak instantaneous power permitted by the 6xed-
energy assumption is, roughly speaking, hf~ „, corre-
sponding to a single photon at the maximum &equency
whose duration is a single period. The ratio of this peak
instantaneous power to the time-averaged power P,

P72
h

(4.39)
Smax

1 (4.45)

is the number of photons, at the minimum channel &e-
quency 1/7, that would be required to make up the en-
tire energy P7 . Our assumption of a long transmission
time means that N )& I. We stress that the 6xed-energy
assumption means that the input states must be energy
eigenstates with energy eigenvalue E~ or incoherent mix-
tures of such eigenstates.

With the assumption of 6xed energy there is a maxi-
mum photon frequency

px = (4.46)

and thus the maximum entropy is given exactly by

where S „ is the maximum entropy within the 6xed-
energy subspace. There being no other constraints within
the subspace, the density operator that maximizes the
entropy is a multiple of the unit operator l~ in the fixed-
energy subspace,

P7
(4.40)

~max = log2 &N ~ (4.47)

corresponding to a single photon carrying the entire en-
ergy P7 . The ratio of maximum to minimum frequencies
is another way of writing ¹

An exact expression for the maximum capacity follows
from Eq. (4.45).

We are interested in large N, where there is an asymp-
totic expansion for JV~ (Hardy and Ramanujan, 1918;
Rademacher, 1937; Abramowitz and Stegun, 1964):

max

1/7 (4.41)

The geometric mean of maximum and minimum frequen-
cies,

JV~ = exp~~ ~
4 3N

+0 exp') &' ')
(4.48)

v'f--/7 = v'PII (4.42)

is the characteristic &equency at which most of the en-
ergy is carried. Our optimum capacity is an asymptotic
expansion in the small parameter

The correction on the right yields exponentially small
corrections in C~ and in the capacity bounds derived
below; so we ignore it in what follows. The result is
an asymptotic expression for the optimum capacity of a
6xed-energy channel,
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2P
ln2 3h

(4~SP7-' &——log2
I h )

(4.49)

In the limit 7 ~ oo, Ci goes to the optimum capacity
C~B of Eq. (1.4); for finite 7, Ci is smaller by a log-
arithmic correction that expresses a reduction, relative
to the limit, in the available number of distinguishable
input states.

To achieve the optimum capacity (4.49), one can use
as input states any complete, orthonormal set of pure
states within the fixed-energy subspace and transmit
these states with equal probabilities. Though these states
are, of course, energy eigenstates with energy EN, they
need not be Fock states of the frequency-domain modes.

than PT. We consider the average-energy constraint in
the next subsection.

The maximum-energy constraint restricts the Hilbert
space to the finite-dimensional bounded-energy subspace
spanned by all the states with energy eigenvalue E
EN, i.e., n = 0, 1, . . . , ¹ We can apply Holevo's theorem
directly to this subspace. We let

(4.50)

denote the optimum capacity for this maximum-energy
channel. The entropy within the bounded-energy sub-
space is maximized by the density operator

O. Channel with energy maximum
(4.51)

It is perhaps more reasonable to implement the power
constraint by saying that there is a maximum energy bud-
get E~ = P7" = Nh/7 (we introduce no restriction by
assuming that N is an integer, since we can take % to
be the integer part of P7 /h). During the transmis-
sion time one is willing to transmit any energy up to and
including EN, but no energy higher than EN. Such a
maximum-energy constraint allows Buctuations in time-
averaged power and somewhat greater Quctuations in in-
stantaneous power than does a fixed-energy constraint.
We emphasize that the maximum-energy constraint is
more restrictive than a constraint that the average en-

ergy be P7, which allows transmission of energies larger

which leads to an exact expression for the maximum en-
tropy,

(4.52)

The sum over JV„ is the dimension of the bounded-energy
subspace. An exact expression for the maximum capacity
follows from Eq. (4.50).

An asymptotic expansion of the sum in Eq. (4.52) is
known, but we derive the leading correction here to il-
lustrate how it arises. The number of states A rises so
rapidly with n that the sum is dominated by the last few
terms, and thus we write it as

) JV„=) AN

1+ O~ —
~

4~3N ). Pl(-~6N~)l '+&l&N) +O&N") (4.53)

The final sum in Eq. (4.53) gives

&6N
(4.54)

the dimension of the bounded-energy subspace becomes

vr 2P
ln2 3h

( gP/h7 )

(8~'P7 ' l

(4.56)

exp
/8vr2N

/1)1+0
&v~)

(4.55)

The resulting asymptotic expression for the optimum ca-
pacity of a maximum-energy channel is

Again the 7 ~ oo limit gives the optimum capacity CwB
of Eq. (1.4).

The logarithmic correction to C2 is roughly half as
large as for a fixed-energy channel [Eq. (4.49)j, refiecting
the availability of more states. The additional contribu-
tion to S~ „, z log2(6N/vr ), comes, crudely speaking,
from states that lie within 8N /6N/7r below ¹

No-
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tice that

gP/h r (4.57)

E. Channel with average-energy constraint

To achieve the optimum capacity (4.56), one can use as
input states any complete, orthonormal set of pure states
within the bounded energy subspace, transmitting these
states with equal probabilities. This allows linear com-
binations of states with difFerent energies, but Eq. (4.57)
indicates that essentially all the states have mean energy
very close to E~.

is the partition function, and P is a Lagrange multiplier—
"inverse temperature" —chosen so that the average-
energy constraint (4.58) is satisfied.

The analysis in Sec III.B suggests that P 1/hP2
and that most of the energy Qows at a characteristic &e-
quency gP/h 1/hP. Thus we seek an asymptotic
expansion in the small parameter

1 Ph

gP/h 7
(4.64)

which is a dimensionless version of P. The maximum
entropy is given by

Sma„= (lnZ+PE) =
~

lnZ+ n
1 1 ( P7')

ln2 ln2 ( h j
To implement the power constraint in a way most

closely related to the analysis in Sec. III.B, one should
impose a constraint on the average energy E transmitted
over time 7, i.e.,

(4.58)

where

OlnZ7 OlnZ
OP h On

P72
h

(4.65)

(4.66)

To work within the original proof of Holevo's theorem,
we need to make the Hilbert space finite-dimensional; so
we assume that there is a maximum energy

&max h
@max = hfmax = (4.59)

which is much larger than the average energy, i.e.,

E ..»&=P7. (4.60)

As noted in the previous subsection, the assumption of a
maximum energy makes the Hilbert space finite-dimen-
sional. We can get at the finite dimensionality in a difer-
ent way: there are a finite number of &equency-domain
modes j = 1, . . . , N „,the jth of which can have a max-
imum number of photons given by the largest integer less
than or equal to N „/j. As we show below, the energy
maximum has negligible impact on the optimum capacity
as long as it satisfies Eq. (4.60).

We denote the optimum capacity for this average-
energy channel by

One method for evaluating the partition function Z
of Eq. (4.63) is to rewrite it as a product of partition
functions Z~ for the &equency-domain modes j—i.e., to
write ln Z = g. ln Z~. One shows that the energy max-
imum E is irrelevant and can be taken to infinity,
and one then derives the leading finite-7 correction to
ln Z by considering carefully the contributions from low-
frequency modes. Bekenstein and SchifFer (1990) have
used this method to evaluate ln Z when E „~oo; they
use the Euler-Maclaurin summation formula to write the
sum for lnZ as an integral plus correction terms that
are an asymptotic expansion in a.. We emphasize that
this same method, applied to a narrow band of frequen-
cies (where subtleties due to low-frequency modes do
not arise), shows immediately that the capacity Co of
Eq. (3.20) is, in fact, the optimum capacity of any single
narrowband linear bosonic channel.

Here we use a different method to evaluate Z, more in
the spirit of the preceding two subsections. The method
is a standard statistical physics trick: write (with negli-
gible error) the partition function as an integral,

~max
3 = ) (4.61)

N'max

Z = dnJV„e
0

(4.67)

&max

Z n=O
(4.62)

for the canonical ensemble, where

where 8 „ is the maximum entropy within the finite-
dimensional subspace, given the average-energy con-
straint (4.58). This is a standard statistical physics prob-
lem: the entropy is maximized by the density operator ln(JV„e ") = vr +2n/3 —1n(4~3n) —nn

[Eq. (4.48)j to second order about its maximum at

(4.68)

7r 2

n=n=
6O.2

2——+ O(1), (4.69)

then, since the integrand JV e " is highly peaked, eval-
uate the integral by the method of steepest descent. If
we expand

+max ) +max

Z = tr ) e ~~-i„= ) A'„—e-~~-
n=O

(4.63)
the integrand in Eq. (4.67) becomes a Gaussian. It is then
clear that N „can be taken to infinity with negligible
error in evaluating Z and S „(we are not making the
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Z = lV„-e " 2vro.„' [1+ O(a)], (4.70)

where

Hilbert space infinite-dimensional; we are only evaluating
Z with negligible error). The resulting Gaussian integral
for the partition function yields vr 2P

ln 2 3h
t'24P7

( QP/h7 )

average-energy channel in terms of P:

(4.76)

t' g2 ln(A/ e nn)

To the required accuracy, we 6nd

(4.72)

lnZ = m/2n/3 —ln(4~3n) —nn+ 21n(2vro. „-) + O(n)
1 /2n)——ln! —

! + O(o.),6a 2 (o,') 2 &6P7-'& '
—log2(2vrcr„-) = —log2 (4.77)

Again the 7 ~ oo limit gives the optimum capacity CwB
of Eq. (1.4).

The logarithmic correction to C3 is roughly half as
large as for a maximum-energy channel [Eq. (4.56)], re-
flecting the availability of even more states. Compared
to a fixed-energy channel, the additional contribution to
Smax &s

which gives

P7 1 + O(l) (4.73)

[cf. Eq. (4.72)], which comes, crudely speaking, from
states that lie within 0„- (P7 /h) ~ of n P7 /h.
Notice that

and which leads to maximum entropy

1 1 6P 3 ( 1

o. x h 2~'
I gp/h7-~

(4.75)

which allows us to solve for the optimum capacity of an

1 m2 1 F2~ 1——ln! ———+ O(n) . (4.74)
ln2 3o. 2 ( n 2

Using the method described above, Bekenstein and Schif-
fer (1990) have derived Eqs. (4.72) and (4.74) for ln Z and
S „and, in addition, have evaluated the O(o;) correc-
tions, which are —&4o. for ln Z and 0 for S „.Inverting
Eq. (4.73) gives

P7 2/h (4P/h 7 )" (4.78)

F. Discussion of optimum capacity

The previous three subsections derive the optimum ca-
pacity of a linear bosonic channel for three different ways
of implementing the constraint on mean power:

[cf. Eq. (4.57)]. To achieve the optimum capacity (4.76),
one must use as input states a complete, orthonormal set
of pure states formed by choosing separate orthonormal
bases for each of the 6xed-energy subspaces, transmitting
the states that have energy E„with probability e ~ "/Z.

7r 2P 1 ( 4~3P7Sec. IV.C. Fixed-energy channel: Cq —— ——log2ln2 3h 7 ( h
(4.79)

vr 2PSec. IV.D. Maximum-energy channel: C2 ——
ln 2 3h

1 f'8vr2P7 2l 1 ( 1
(4.80)

2PSec. IV.E. Average-energy channel: C3 ——
ln2 3h

(24P~ l
h ) 7 i gP/h7

(4.81)

All three of these optimum capacities limit to the opti-
mum capacity

2P
O'QTB = bits/S

ln 2 3h
(4.82)

of Eq. (1.4) as 7 m oo. The finite-7 logarithmic dif-
ferences between the three bounds can be readily under-
stood on statistical physics grounds. The optimum ca-

pacities for the 6xed-energy and maximum-energy chan-
nels arise from density opera'tors [Eqs. (4.46) and (4.51)]
that one recognizes as species of the microcanonical en-
semble, and the optimum capacity for the average-energy
channel comes from the density operator (4.62) for the
canonical ensemble. The finite-7 logarithmic corrections
are an expression of the typical 1n(E/hE) differences be-
tween the entropies of microcanonical and canonical en-
sembles.

Rev. Mod. Phys. , Vol. 66, No. 2, April 1994



C. M. Caves and P. D. Drummond: Quantum limits on bosonic communication rates 509

That gaps in the &equency spectrum reduce the ca-
pacity can be understood immediately in terms of the
approach used in this section. If there are gaps, the di-
mension )Vitae of the subspace with fixed energy E~ is
inevitably reduced, because, in number-theoretic terms,
some of the integers are unavailable for partitioning N.
Reducing the dimensions of the 6xed-energy subspaces

obviously reduces the optimuxn capacities obtained in the
preceding three subsections.

The key to our work on wideband capacities is, of
course, Holevo's theorem. As we mention in Sec. IV.B,
Holevo proved his theorem for a channel that has a 6nite-
dimensional Hilbert space and that uses finite input and
output alphabets. By assuming a finite transmission time

I2 = E(-)E(+)
2 2 2

A A A

Id = It — I2

photodetector~ ~

g(+) 2
—t&&(g(+) g(+))

)L
2

I", = E~-)E(+)image
sideband 50-50 beamsplitter

E(+) ~ ~ lGt + a ~lF1
1~

A

(&Lo+ & l) +photodetector

local oscillator
A A . A
E&+) =.gg'~ + b g '~ + b g'

LO +

differenced photocurrent

Id ——Be ''(a e ' +a e')+(h. c.)

FIG. 4. Balanced heterodyne detection of an optical-frequency signal. The signal to be detected, at frequency 0 + e, is
combined at a 50-50 beam splitter with a much more powerful, coherent beam at frequency O. This powerful beam, produced
by a laser, is called the local oscillator (LO). The two outputs of the beam splitter are directed onto photodetectors, whose
output photocurrents are differenced. The differenced photocurrent I& contains a contribution at the difference frequency e,
due to beats between the LO and the signal; it necessarily contains another contribution at the same frequency, due to beats
between the LO and the "image sideband, " which accompanies the signal into the detector, but which has frequency 0 —e. The
two inputs to the detector are labeled by positive-frequency field operators Et+ (signal direction) and Ez~o (LO direction).
These 6eld operators have the common optical-frequency oscillation at frequency 0 removed. The two inputs are followed
through the detector, and their contributions to the differenced photocurrent are calculated in the limit of a very powerful LO
(LO amplitude B -+ oo; terms smaller than linear in B are neglected in Iq) If the differen. ced photocurrent is filtered to pick
out the beat terms at frequency e, the result is detection of the quantity a+e ' + at e', where a+ is the modal annihilation

operator for the signal mode, a is the modal creation operator for the image sideband, and 8 is the LO phase. Since the
image sideband is in vacuum, heterodyne detection realizes a measurement of a+—i.e., a simultaneous measurement of both
quadrature components of the signal (the real and imaginary parts of a+). The vacuum noise introduced by the image sideband
represents the noise that must be added when both quadrature components are measured simultaneously. This version of
heterodyne detection is called balanced because it uses the symmetry between the two outputs of the beam splitter to eliminate

J\

vacuum and excess noise that accompanies the LO at frequencies Oke (annihilation operators b+). Homodyne detection occurs
if the differenced photocurrent is filtered to pick out the dc component (e = D); then the signal and image sideband are the
same, so homodyne detection realizes a ineasurement of the signal quadrature component z (ae ' + ate' ), which depends on
the LO phase.
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and by appropriate use of the power constraint, we are
able to formulate the question of wideband capacities (iii
three difFerent ways) in terms of a channel with a finite-
dimensional Hilbert space. The input and output alpha-
bets, though Gnite, can be arbitrarily large compared to
the dimension of the Hilbert space.

The question of infinite input and output alphabets-
either countably infinite or continuously infinite —is more
diKcult. The idealized coherent-state and quadrature-
squeezed channels considered in Sec. V are examples
of channels that require an infinite-dimensional Hilbert
space and that use continuously infinite input and output
alphabets. Nonetheless, we argue that our analysis is al-
ready sufEcient to cover all physically realizable channels.

Our argument is based on the simple fact that real de-
vices for transmission and detection have finite resolution
and Gnite dynamic range. Thus, in practice, the number
of possibilities for transmission or detection is always a
finite set. We illustrate this argument by taking a closer
look at the heterodyne and homodyne detection that are
used in coherent-state and quadrature-squeezed channels.
At optical &equencies both heterodyne and homodyne
detection use powerful lasers as local oscillators —much
more powerful than the signal to be detected —with the
ultimate detection by photodetection (see Fig. 4). For
finite local-oscillator power the dynamic range is limited
by the local-oscillator power, and the resolution is set by
single-photon events in the photodetectors. In the limit
of infinite local-oscillator power, both the dynamic range
and the resolution become infinite: heterodyne detection
then realizes a measurement of both field quadratures
(Yuen and Shapiro, 1978, 1980; Shapiro et al. , 1979;
Shapiro and Wagner, 1984; Shapiro, 1985), and homo-
dyne detection realizes a measurement of one quadra-
ture (Yuen and Shapiro, 1978,1980; Shapiro et al. , 1979;
Yuen and Chan, 1983; Schumaker, 1984; Shapiro and
Wagner, 1984; Shapiro, 1985; Yurke, 1985; Caves and
Schumaker, 1986). For finite local-oscillator power, how-
ever, heterodyne and homodyne detection measure, over
a finite range, discrete approximations to the continuous
quantities (Collett et al. , 1987; Braunstein, 1990). In
both cases the physical output alphabet is Gnite.

The assumed finite resolution and finite dynamic range
of the input and output do not appear in the opti-
mum capacity (4.82). This is a tip-off that nothing goes
wrong in the limit of infinite input and output alphabets.
Nonetheless, it is of considerable mathematical interest
that Yuen and Ozawa have recently used results &om the
mathematical physics literature to extend Holevo's the-
orem to apply to infinite-dimensional Hilbert spaces and
to infinite input and output alphabets. This allows them
to derive the optimum capacity (4.82) without any finite-
ness assumptions. Their work makes appeals to physical
realizability unnecessary.

The capacity t wB of Eq. (4.82) is thus a universal
upper bound on the capacity of any single linear bosonic
channel. It applies to any technique whatsoever for mod-
ulating a bosonic field —for example, pulse position mod-
ulation or any other kind of correlation between frequen-

cies; moreover, it applies to any input quantum states
and to any detection scheme —i.e., any kind of general-
ized measurement at the output. In particular, the opti-
mum capacity C~B is independent of the use of &equency
multiplexing or of number states, although a &equency-
multiplexed number-state channel overs one possibility
for achieving the upper bound.

There are several claims (Helstrom, 1974; Yuen et al. ,
1975; Pierce et aL, 1981) of infinite wideband capacity
in the literature. Here it is sufhcient to note that these
claims arise from ignoring the Einstein relation E = hf,
specifically, from assuming that the energy of a quantum
is a constant, independent of &equency. There then being
no increasing energy cost of a quantum with frequency,
it is not surprising that infinite bandwidth yields infinite
capacity, despite the power constraint. In Appendix E we
examine the claims of infinite capacity carefully, showing
how they can be repaired to be consistent with the opti-
mum wideband capacity (4.82).

Because of their importance, both as examples to con-
trast with number-state channels and as potentially real-
izable channels, we consider separately, in the next sec-
tion, wideband &equency-multiplexed coherent-state and
quadrature-squeezed channels in the idealized limit of in-
Gnite local-oscillator power, and we show explicitly that
such channels obey the capacity upper bound t ~B of
Eq. (4.82).

V. CAPACITIES OF SINGLE COHERENT-STATE

ANO QUAORATURE-SQUEEZEO CHANNELS

In this section we develop the description of
coherent-state and quadrature-squeezed channels, and
we show explicitly that the capacities of single wide-
band frequency-multiplexed zero-temperature coherent-
state and quadrature-squeezed channels lie below the ca-
pacity bound CwB of Eq. (1.4). In addition, we point out
that the development of high-T superconductors might
make accessible the physical conditions for approach-
ing the wideband quadrature-squeezed capacity Cps of
Eq. (1.6). Before turiung to these tasks, however, we re-
view briefly the properties of single-mode coherent and
quadrature-squeezed states.

A. Coherent states and quadrature-squeezed states

Consider a single Geld mode that has &equency u. The
modal annihilation operator a and the modal creation
operator at obey the canonical commutation relation

[a, atj = 1.

If we remove &om a the oscillation at &equency u, then
it is a constant non-Hermitian operator that represents
the complex amplitude of the mode's oscillation (in units
of number of quanta).

It is convenient to decompose a into Hermitian real

Rev. Mod. Phys. , Vol. 66, No. 2, April 1994



C. M. Caves and P. D. Drummond: Quantum limits on bosonic communication rates 511

and imaginary parts, x1 and x2.. for the quadrature components,

G = X1+ZX2 (5.2) X1, X2 ———a, a (5.3)

The operators x1 and x2 are called quadrature compo-
nents. Classically, x1 and x2 label the axes of a complex-
amplitude diagram (or phase plane) in which the mode's
oscillation is represented by a vector extending &om the
origin (see Fig. 5). The length of the vector is the real
amplitude of oscillation (in units of number of quanta),
and the angle the vector makes with the real axis is the
phase of oscillation.

The canonical commutator (5.1) implies a commutator

which, in turn, implies an uncertainty principle

((&-.)') ((~*.)') & —„ (5 4)

The quadrature components are essentially identical to
position and momentum operators, except that they are
de6ned in natural units of number of quanta and they
have the oscillation at ~ removed.

Coherent states are de6ned in terms of a displacement
operator (Glauber, 1963b, 1965)

D(a, n) = exp(na —n'a) = e ~ ~ ~ e e

(nJ /2 —cx a mat

(5.5)

The 6rst form is symmetrically ordered in a and at; the
second and third forms are normally and antinormally
ordered, respectively, and are obtained from the 6rst by
using the Baker-Campbell-HausdorfF identity. The most
important property of the displacement operator is that
it displaces the annihilation operator:

I

e'/2 X2
il [D(a, n)]taD(a, n) = a + n . (5.6)

The only other property we need is the product of two
displacement operators,

[D(a, P)]tD(a) n) = D(a, P)D(a, n)—
—e(~P' ~ P)l2D(a n P) (5.7)

(c)
FIG. 5. Complex-amplitude diagrams. Axes are labeled by
the quadrature components xi snd 2:z [Eq. (5.2)]; the dia-
gram is a phase plane with both axes scaled to be in units
of number of quanta. (s) The coherent state ln) [Eq. (5.8)]
is represented by a quantum "error circle" that lies at the
tip of an arrow that represents the mean complex amplitude
cx. The radius of the error circle is chosen to correspond to
the quadrature uncertainties ((Axi) ) = ((Axg) )
The diagram gives a pictorial representation of the opera-
tor equation (5.8) that generates s coherent state from vac-
uum: the vacuum-state error circle, centered at the origin,
is displaced by n in the complex-amplitude plane. (b) The
quadrature-squeezed state ln)( o~ [Eq. (5.18) with P = 0] is
represented by an "error ellipse" that lies at the tip of an
arrow that represents the mean complex amplitude o,. The
principal radii of the error ellipse are chosen to correspond
to the quadrature uncertainties ((Axi) ) = —e snd
((Aug) ) ~ = —e". The diagram gives s pictorial representa-
tion (for P = 0) of the operator equation (5.18) that generates
a quadrature-squeezed state from vacuum: the vacuum-state
error circle is first "squeezed" to form an ellipse, which is then
displaced by n in the complex-amplitude plane. (c) A typ-
ical quadrature-squeezed state ]ni)(„ol (nz = 0) used in s
quadrature-squeezed channel.

which follows &om another application of the Baker-
Campbell-Hausdorff identity.

A coherent state,

ln) = D(a n)I0) (5 8)

is obtained by applying the displacement operator to
the vacuum (ground) state [0). The displacement prop-
erty (5.6) implies that a coherent state is an eigenstate
of the annihilation operator:

CLA = (1 0! (5.9)

) = ~(a )"10) (5.10)

A classical current source radiates a coherent state of
the electromagnetic field (Glauber, 1963b, 1965). The
phased dipoles in an ideal laser operated far above thresh-
old approximate very closely a classical current source,
except for a slow difFusion in phase; thus, for times short
compared to the phase-difFusion time, a laser produces a
close approximation. to a coherent state.

Using the normally ordered form of the displacement
operator (5.5) and the definition
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of a number state, one can derive the number-state ex-
pansion of a coherent state,

1971, 1972; Yuen, 1976b; Hollenhorst, 1979; Caves,
1981; Caves and Schumaker, 1985; Schumaker and Caves,
1985),

(5.11) in)(„@) = D(u, n) S(r, P) iO), (5.18)

which shows that the probability distribution of number
of quanta is a Poisson distribution. For our analysis of
coherent-state channels, we need the inner product of two
coherent states,

(5.12)

which follows from Eqs. (5.8) and (5.7) and the normally
ordered form of the displacement operator (5.5). Equa-
tion (5.12) shows that the coherent states are not an or-
thonormal set. Nonetheless, one can demonstrate that
they satisfy an (over)completeness property (Glauber,
1963b, 1965)

(5.13)

where the integration measure is d o. = dnqdn2 (nq and
n2 are the real and imaginary parts of n). The complete-
ness property can be proved by considering the number-
state matrix elements of the integral on the left.

The mean complex amplitude of the coherent state in)
is given by

(a) = n = ag + io.2 ——(xg) + i(z2); (5.14)

the quadrature components are uncorrelated and have
variances

(5.15)

Coherent states are thus the quadrature minimum-
uncertainty states that have equal quadrature uncertain-
ties. The coherent-state variances (5.15) are often re-
ferred to as the "vacuum" or "zero-point" noise level; one
can think of each quadrature component as carrying half
of the half-quantum of zero-point noise. A coherent state
can be represented in a complex-amplitude diagram by
a quantum "error circle, " representing the vacuum noise,
which lies at the tip of a classical arrow that represents
the mean complex amplitude n [see Fig. 5(a)].

To define quadrature-squeezed states, we need to intro-
duce the squeeze operator (Stoler, 1970, 1971; Lu, 1971,
1972)

is obtained by Grst squeezing the vacuum state and then
displacing it. A squeezed state is generated in processes
where several Geld modes, some pumped by an external
laser, interact within a nonlinear medium [for reviews of
quadrature-squeezed states, see Kimble and Walls (1987),
Loudon and Knight (1987), Teich and Saleh (1989, 1990),
and Zaheer and Zubairy (1991)]. By a rotation in the
complex-amplitude plane (a -+ ae'~, o; —+ ne'4'), which
for an optical-frequency Geld amounts to choosing an
otherwise arbitrary phase, we can always arrange to set
Q = 0, which we do henceforth.

The mean complex amplitude of the quadrature-
squeezed state ia)~„ol is n, just as for a coherent state
[Eq. (5.14)]; the quadrature components are uncorrelated
and have variances

(5.19)

The quadrature-squeezed states with P = 0 thus consti-
tute the entire class of quadrature minimum-uncertainty
states. If r ) 0, the Grst quadrature will have a vari-
ance reduced below the vacuum level (5.15) by a factor
e 2", whereas the second quadrature will have a vari-
ance amplified above the vacuum level by e2"; one usu-
ally says that xz is the "squeezed quadrature" and that
x2 is the "ampliGed quadrature. " A quadrature-squeezed
state can be represented in a complex-amplitude diagram
in much the same way as a coherent state, except that
the error circle is replaced by an "error ellipse" that de-
picts the reduction in zz uncertainty and the increase in
x2 uncertainty [see Fig. 5(b)].

To analyze quadrature-squeezed channels, we need the
zq wave function of a quadrature-squeezed state (Schu-
maker, 1986):

(5.20)

Here b is a phase factor which can be calculated, but
which is irrelevant to our discussion.

(5.16)

where r is called the squeeze parameter and P determines
the phase of the squeezing. The squeeze operator trans-
forms the annihilation operator according to

B. Narromband coherent-state and quadrature-squeezed
channels

1. Channel models and channel capacities

+(r, P)o[+(r, P)]t = o. cosh' + a.te"~ sinhr . (5.17)

A quadrature-squeezed state (Stoler, 1970, 1971; Lu,

As a preliminary, we consider narrowband channels,
for which we use the language developed in Sec. III.A.
We describe brie8y both coherent-state and quadrature-
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squeezed channels, partly to illustrate the formalism of
generalized measurements introduced in Sec. IV.A.

Shapiro, 1978, 1980; Shapiro et al. , 1979; Shapiro and
Wagner, 1984; Shapiro, 1985)

a. Coherent-state channel

We use "coherent-state channel" as a shorthand for the
following: at each use the transmitter emits a coherent
state, which is read out at the output by heterodyne de-
tection (see Fig. 4 and. Appendix D.2)—i.e., by detection
of both 6eld quadratures. In other words, one is trans-
mitting information in both quadrature components of
each wave-packet mode —or, alternatively, in both the
real amplitude and the phase of each mode —and one is
attempting to read out the transmitted information by
measuring both quadrature components at the output.

The input is described statistically by the probabilities
p~(n)d a at each use to transmit a coherent state

(5.21)

where o. lies within d o.. The two-dimensional probability
density J)~(o.) turns out to be the Glauber-Sudarshan P
function (Glauber, 1963a; Sudarshan, 1963), as is evident
Rom writing the unconditioned channel density operator
(per use),

The operators Ep are multiples of coherent-state projec-
tion operators; completeness of the efFect density is sim-
ply completeness of the coherent states [Eq. (5.13)]. The
measure I'p d2P is sometimes called an efFect-valued mea-
sure. The efFect density gives the conditional probability
density to read out P = Pi + iP2 at the output, given
that o. was transmitted:

(5.25)

[cf. Eq. (5.12)].
Since the channel noise described by Eq. (5.25) is addi-

tive and Gaussian, we cari invoke Shannori's theorem to
find the capacity (Shannon, 1948; Gallager, 1968). The
mutual information per use is maximized by a Gaussian
input probability density

(5.26)

p = d 0!p~ cl p~ (5.22)
which makes the unconditioned channel density opera-
tor (5.22) a thermal state, and which, together with the
conditional probability density (5.25), leads to an output
probability density

The average-power constraint becomes a constraint on
the mean number of photons per use, 1a(P) = f P'agafya(P]o)ie(o)

o = tr(pie1g) = f deo Io]eaa(o) . (5.23) ~(1+a) ~ 1+m) (5.27)

As we demonstrate in Appendix D.2, ideal heterodyne
detection is described by an effect density (Yuen and

If one calculates an output information and a conditional
output information with respect to the measures d2o. and
d2P, one finds

H(B) = —f d*Paa(P) 1ogeaa(P) = loge]ea(1 + o)], (5.28)

P(&l&) = f ~'oae(o)
I f &'Paa]e(P]o)»—geaa)a(P]o) I

= »g. ('a) (5.29)

[Eqs (2.8) and (2.10)]. Although neither H(B)
nor H(BIA) is invariant under changes in integration
variable —thus both are ambiguous —their difFerence, the
mutual information (2.11), is invariant, as it must be,
since it gives the capacity per use of a coherent-state
channel (Gordon, 1962; She, 1968; Yamamoto and Haus,
1986):

C = H(B; A) = H(B) —H(BIA) = log2(l + n) . (5.30)

Hall (1993) has generalized this capacity to a coherent-
state channel degraded by additive Gaussian noise.

The mathematical description of a coherent-state
channel has a compelling physical interpretation. Com-
parison of Eqs. (5.26) and (5.25) shows that the condi-
tional probability density p~~~(Pla) describes one quan-
tum's worth of channel noise, half of which is the vacuum
noise intrinsic to a coherent state [the noise depicted by
the error circle in Fig. 5(a)] and the other half of which
is additional noise that arises in any attempt to mea-
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sure both field quadratures simultaneously (Arthurs and
Kelly, 1965; Caves, 1982; Yamamoto and Haus, 1986;
Arthurs and Goodman, 1988, 1991; Braunstein et al. ,
1991; Ozawa, 1991; Stenholm, 1992).

The output information H(H) is ambiguous because
any continuous variable, viewed as a limit of a discrete
variable, carries an infinite amount of information. How
much of this infinity remains in the finite value of H(B)
depends on how the limit is taken, i.e., on which inte-
gration variable is introduced in taking the limit. The
quantum-mechanical noise, however, sets a scale for dis-
tinguishing nearby coherent states, thus making the mu-
tual information (5.30) finite and perfectly well defined.
This scale is, in fact, the area of a quantum phase-space
cell, which we invoked in our heuristic argument for wave-
like channels in Sec. II.B.

Bekenstein and Schiffer (1990) have derived a coherent-
state channel capacity logz(en). Their derivation is
Qawed because they ignore channel noise. Their capac-
ity approximates the correct capacity for n && 1, because
they use a sensible, if ad hoc, integration measure; but
their capacity goes badly wrong for n & 1, becoming
negative, as they note, for n & e

b Quadr. ature squeeze-d channel

By a "quadrature-squeezed channel" we mean the
following: at each use the channel is excited into a
quadrature-squeezed state Ini)(, o), which is read out
at the output by homodyne detection of the quadrature
component xq. In other words, one is transmitting and
reading out information on the quadrature component xz
and reducing its noise below the vacuum level by mak-
ing it the squeezed quadrature [see Fig. 5(c)]. We choose
the squeeze parameter to be the same for all the trans-
mitted states, and we choose the expectation value of
the amplified quadrature xz to be zero (nz ——0), be-
cause unnecessary coherent excitation of the amplified
quadrature wastes energy. By squeezing the 6rst quad-
rature, however, one unavoidably excites the amplified
quadrature incoherently [this is the amplified noise de-
picted in Fig. 5(b)], and this unavoidable excitation lim-

its, through the power constraint, the amount of squeez-
1ng.

We denote the input density operators by

»-, = lni)(-, o) (-,o)(nil (5.81)

p = do!y p~ o.'y p~ (5.32)

and the average-power constraint becomes

A = tr(pG G) = 0' + sliili P
q (5.88)

where

cr = dni n, p~, (ni)2 2 (5.84)

is the second moment of nq with respect to the input
probability density p~, (ni). The sinh r contribution to
n represents the unavoidable excitation of the amplified
quadrature, which through the power constraint limits
the degree of squeezing.

As we show in Fig. 4, ideal homodyne detection mea-
sures a quadrature component (Yuen and Shapiro, 1978,
1980; Shapiro et al. , 1979; Yuen and Chan, 1983; Schu-
maker, 1984; Shapiro and Wagner, 1984; Shapiro, 1985;
Yurke, 1985; Caves and Schumaker, 1986) and thus is
described by an eEect density

&-. = I&i)(~il . (5.35)

The operators F, are projection operators onto the b-
function-normalized eigenstates I2:i) of quadrature com-
ponent xq, completeness of the eKect density is the stan-
dard completeness property for b-function-normalized
eigenstates. The eKect density gives the conditional prob-
ability density to read out value xq, given that n~ was
transmitted,

and describe the input statistically by a probability den-
sity pz, (ni) (defined with respect to the standard mea-
sure dni) at each use to transmit the state p, (see foot-
note 4). The unconditioned channel density operator
(per use) is

sx, )~, (*ilni) = tr(»-, &*,) = I(»lni)(. ,o) I' =
2z-(-'e-2")

(xi —ni) ) )exp I—
2(4e ") )

(5.S6)

[cf. Eq. (5.20)].
Again the channel noise is additive and Gaussian,

so Shannon's theorem (Shannon, 1948; Gallager, 1968),
modi6ed for a channel where only one quadrature is de-

»' n,' 5
p~, (n, ) = exp I—

2vroz ( 2o )
(5.37)

tected, tells us that the mutual information is maximized
by a Gaussian iriput probability density,

A more general quadrature-squeezed channel would not as-
sume a constant squeeze parameter r, but rather would allow
r to be a function of xq. Such a channel might have a slightly
larger capacity, but it would be difBcult to analyze because,
as Eq. (5.36) shows, it would not have Gaussian noise.

and that the capacity per use is given by

1 ( o' l 1
C = —logzl 1+ i I

= —logz[1+4e (n —sinh r)] .
2 ( —e z) 2

(5.88)
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A further maximization with respect to the squeeze pa-
rameter r yields the capacity per use of a quadrature-
squeezed channel (Yamamoto and Haus, 1986),

G)

C = log2(1+ 2n), (5.39)

which is achieved when (Yuen, 1976a; Yuen and Shapiro,
1978, 1980; Shapiro et al. , 1979)

=2n+1. (5.40)

Hall (1993) has generalized the capacity (5.39) to
a quadrature-squeezed channel degraded by additive
Gaussian noise. Slusher and Yurke (1990) and Ohya and
Suyari (1991) have gone beyond consideration of capac-
ities and compared the bit-error rates attainable with
coherent-state and quadrature-squeezed channels.

The coherent;-state and quadrature-squeezed capac-
ities (5.30) and (5.39) are examples of the narrow-
band wave-like capacity (2.20). Although a quadrature-
squeezed channel does a bit better than a coherent-state
channel (literally 1 bit better per use when n )) 1), it
cannot do much better, because, as noted in Sec. II.B,
quantum mechanics limits both these capacities by re-
stricting the number of phase-space cells that are con-
sistent with the power constraint. The 2 in Eq. (5.39)
means that quadrature-squeezed states are twice as ef-
6cient as coherent states at tiling the phase plane, yet
the logarithm converts this 2 to just a bit of increased
capacity.

Iog& yn
8 10

FIG. 6. Semi-log plots of the dimensionless capacity func-
tions Gi (pn) (short-dashed line), G2(7n) (solid line), and
Gs(pn, ) (long-dashed line) for coherent-state (p = 1) and
quadrature-squeezed (7 = 2) channels Th.e function pG&(pn)
is the information per photon, de6ned for a single channel by
Eq. (5.42) and for multiple parallel channels by Eq. (6.16).
The function p ~ Gz(7n) is a dimensionless capacity, defined
for a single channel by Eq. (5.43) and for multiple parallel
channels by Eq. (6.25). The function p ~ Gs(pn) is a dimen-
sionless information Sux, de6ned for multiple parallel chan-
nels by Eq. (6.32). The functions Gz(pn) and Gs(7n) both
tend to zero as logs(pn) ~ +oo; Gi(pn) goes to zero as
logs(pn) -+ oo, but Gi(pn) -+ 1/ln2 as logs(pn) ~ —co.

2. Maximum channel capacities
P pP= 0.50498

ghn gh
(5.44)

The capacities (in bits/s) of zero-temperature narrow-
band coherent-state and quadrature-squeezed channels
can be summarized by

to maximum capacity

C „=2.2991B = 1.1610 bits/s,
h

(5.45)

C = BC = Blogs(1 + pn), (5.41)

C
Bn

= n log2(l + pn) —= pGi(pn, ) . (5.42)

where p = 1 applies to a coherent-state channel and p =
2 applies to a quadrature-squeezed channel. At capacity
the information per photon is

and to C „/Bn = 0.58628' bits per photon. These
results are summarized in Table I.

Setting ri = 1 in Eq. (5.45) gives an estimate of
the capacity of wideband coherent-state and quadrature-
squeezed channels, but a proper treatment of a wideband
channel must include the &equency dependence of pho-
ton energy.

If we now allow &eedom to vary the &equency and band-
width with fixed &actional bandwidth rI = B/f (( 1, as
in Sec. III.A.2, we write

(5.43)

C. Wideband frequency-multiplexed coherent-state
and quadrature-squeezed channels

Consider then a single zero-temperature &equency-
multiplexed channel, in which each kequency bin is a
narrowband coherent-state or quadrature-squeezed chan-
nel of the sort just considered. Just as in Sec. III.B, the
total input power is given by Eq. (3.33) and the capacity
by

The functions Gi (pn) and Gz (pn) are plotted in Fig. 6.
The dimensionless capacity Gz(pn) has a maximum at
pn = 3.9216, corresponding to frequency

bC = ) ln(1+pn;) . (5.46)
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2pP
h

(5.47)

The maximum capacity is obtained by varying n,; as a
function of frequency, with P held constant. Carrying
out this procedure and replacing sums by integrals, one
6nds that there is a natural upper cutofF frequency

1
ln 2 ln( f / fm;„)

' (5.53)

[cf. Eq. (3.41)], which means that the dominant contri-
bution to the information per photon,

beyond which communication is too ineKcient to be use-
ful. The optimal photon-number distribution is nonther-
mal,

——1, 0&f&f, ,

f&f.
(5.48)

and the channel capacity for wideband frequency-
multiplexed coherent-state and quadrature-squeezed
channels is given by

f, 1
&cg =

ln2 ln2
2pP

bits/s, (5.49)

2pP + fmin ) (5.50)

and the capacity is reduced to

Ccq = f, —f;„1+ ln
i

1 ( (f. )
min) )

7 f 1
i

f
ln2

E
~ (fmin) )

(5.51)

To keep the kactional reduction in capacity less than 10%
requires f;„&0.028 f, . The average photon transmis-
sion rate takes on the finite value

f. i„it'f &i f'
'Y ( fmin) fc

' i-1+ '"
i i (52)

&fmin) p &fmin)

where the subscript CQ reminds one that this ca-
pacity applies both to Coherent-state channels and to
Quadrature-squeezed channels (see Table I) . For a
coherent-state channel (p = 1) the results (5.47)—(5.49)
were obtained by Gordon (1961) and by Marko (1965).
For a quadrature-squeezed channel (p = 2) the capac-
ity (5.49) reduces to the capacity Cps given in Eq. (1.6).
Just as for a number-state channel, the photon intensity
for the distribution. (5.48) is infinite, and the information
per photon is zero.

In this case we can evaluate explicitly the efFect of a
low-&equency cutofF at a frequency f;„:the upper cutofF
frequency is shifted upward to

has the same logarithmic behavior as for a number-state
channel [cf. Eq. (3.42)].

Comparing the capacities of Eqs. (1.4) and (5.49),
we 6nd that the quadrature-squeezed. channel achieves
nearly 78'%%uo of the capacity of a number-state channel,
whereas a coherent-state channel achieves just over 55'%%up.

Thus quadrature-squeezed inputs are an improvement
over coherent inputs, especially when the practical ad-
vantages of higher signal-to-noise ratio —such as lower
bit-error rate (Slusher and Yurke, 1990)—are taken into
account. The quadrature-squeezed and coherent-state
channels are ideally suited to a medium with an up-
per cutofF Frequency, as all inputs have f & f„while
a number-state channel has no sharp upper cutofF fre-
quency.

The required transmitting medium must be nearly loss-
less over a wide bandwidth From f;„to f . As we wish
to neglect thermal e6'ects, we must require kT « h f
so that the thermal occupation number ri &( 1 even
at the minimum frequency. A superconducting wave-
guide [see, for example, SchrieiFer (1983)] is an excel-
lent example of this type of wideband medium, when it
is operated at a temperature well below its transition
temperature T . Such operation is necessary so that the
cutofF Frequency f, remains below the absorption edge at
f = 2A/h, where 2b, is the energy at which electrons
are excited over the superconducting band gap and the
waveguide is no longer lossless [2A = 3.5 kT, in a BCS
superconductor; see, for example, Schrieffer (1983)].

The ad.vantage of the recently developed high-T, su-
perconductors (Bednorz and Miiller, 1986; Chu et aL,
1987) would be that much higher photon energies can
be used than in low-T, superconductors. The band gap
is larger, mainly due to the larger T, but also because
2b, 8kT, in these materials (Schlesinger, 1987). Sup-
pose one chooses f;„= 0.028 f„as in the example
mentioned above. With the readily obtainable transi-
tion temperature T 90 K, an upper cutofF frequency
f, 5 THz is still a Factor of 3 below the absorption edge.
For T 1'K the thermal occupation number at f
is nT 0.001. The channel capacity with quadrature-
squeezed inputs would then be C 6 Tbits/s, with
input power P 4 nW. Thin-61m experiments have
shown very high reBectivities and low infrared absorption
in Y-Ba-Cu-0 films (Bozovic et al. , 1987). We suggest
that microwave squeezed states (Movshovich et al. , 1990)
propagating down cryogenic waveguides, with Josephson
junctions (Bozovic et a/. , 1987) or picosecond pulse sam-
pling techniques (Sobolewski et al. , 1986), might meet
the physical requirements for quantum-limited wideband
communication.
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Vl. UPPER BOUNDS ON INFORMATION FLUX
FOR MULTIPLE PARALLEL LINEAR BOSGNIC
CHANNELS

f = f(k), (6.1)

where k is the magnitude of the wave vector k. This
dispersion relation corresponds to the isotropic group ve-
locity

cs(f) = 2vr-

and to an isotropic phase velocity

(6.2)

We turn now to upper bounds on the information
Qux—i.e., capacity per area—of channels that consist of
many parallel single channels. That this is an important
situation, where it is clearly possible to violate the gP/h
single-channel capacity bound, has been recognized by
several authors (Landauer and Woo, 1973; Levitin, 1982;
Pendry, 1983; Bekenstein, 1988; Bekenstein and Schiffer,
1990). To investigate this question, we adopt a specific
channel model: a linear bosonic field with an isotopic
(three-dimensional) dispersion relation,

modes, we let g & 1 denote the number of polarization
modes per wave vector that are actually used to trans-
mit information. Thus the effective density of modes in
wave-vector space is

ZA
k (2~)s

' (6.4)

We let ng . be the mean number of photons in the mode
t2

specified by wave vector k and polarization index j. We
can deal simultaneously with several different kinds of
channels by writing the capacity of this mode as

Cg . = Dna . log2 (1 + n )+ log2 .(1 + png, .), (6 5)

where h = p = 1 applies to a number-state channel
[Eq. (3.20)], h = 0 and p = 1 apply to a coherent-state
channel [Eq. (5.30)], and b = 0 and p = 2 apply to a
quadrature-squeezed channel [Eq. (5.39)]. An extension
of the arguments given in Sec. IV shows that the informa-
tion Buxes derived in this section for number-state chan-
nels are actually upper bounds on the information Qux of
any linear bosonic channel with an isotropic dispersion
relation.

cp(f) = 2m f/k = fA, (6.3) A. MultipIe narrowband channels

where A = 2z'/k is the wavelength at &equency f The.
bosonic field is used to transmit information in a partic-
ular direction, which we call the +z direction, through
a roughly circular aperture of area A (regarded as fixed
throughout this section) that is transverse to the propa-
gation direction. (By roughly circular, we mean that the
linear extent of the aperture is roughly the same in all
directions. ) The multiple parallel channels are the many
transverse modes, both spatially transverse modes (char-
acterized by orthogonal transverse spatial dependences)
and polarization modes, that can be fitted into the area
A. As in previous sections, we refer to the field quanta
as photons, even though the analysis applies equally well
to other bosonic fields, such as phonons in a crystal.

We quantize the field in terms of periodic boundary
conditions on a volume that has length 8 along the prop-
agation direction and has square cross section of area A
transverse to the propagation direction. The periodic
boundary conditions lead to a uniform density dA/(2z )

s

of allowed wave vectors. For each allowed wave vector
there are go distinct modes, corresponding to different
spin states or to different polarizations. A particular
mode is specified by giving its wave vector k and a po-
larization index j. To allow for the possibility that the
channel may not make use of all the available polarization

Periodic boundary conditions on a square transverse area
provide a convenient may of counting orthogonal transverse
modes. The counting is equivalent to that obtained using
physical modes that vanish outside the actual roughly circular
area, except at the longest transverse wavelengths near ~A.

1. Channe! madel and channel capacities

We consider first a narrowband channel that operates
at &equency f = c„(f) / A within bandwidth B, with
&actional bandwidth g = B/f (( 1. We let A~ & A

be the smallest transverse wavelength used for the spa-
tia/Ly transverse modes. This minimum transverse wave-
length corresponds to a maximum transverse wave num-
ber k~ = 2z'/A~ or to a maximum polar angle 8 „ in
wave-vector space, defined by

slil Hms~: k~ /k A/A~ & 1 (6.6)

In order to count modes accurately using the mode den-
sity (6.4), we must assume that (see footnote 5)

&~«vA, (6.7)

a condition equivalent to saying that the channel uses
many spatially transverse modes.

It is important to note that there are other ways of get-
ting many parallel channels, besides using the many spa-
tially transverse modes that are available within a three-
dimensional, isotropic medium. For instance, a bosonic
field can have many "polarization" modes for each spa-
tially transverse mode. In this case the parallel channels
can be the polarization modes corresponding to a sin-
gle spatially transverse mode; a trivial extension of our
results for a single channel shows that the optimum ca-
pacity of such a channel increases as the square root of
the number of "polarization" modes (Landauer and Woo,
1973; Levitin, 1982; Pendry 1983). A more important
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practical possibility comes from the ability to con6ne a
aingte (degenerate) spatially transverse mode within an
area a smaller than a square wavelength. A good example
is the TEM mode of a co-axial cable, where the field it-
self can be con6ned to an arbitrarily small area a between
two conducting surfaces, which in principle can have neg-
ligible cross section. An extension of the single-channel
results shows that by putting n = A/a such channels
within an area A, each carrying mean power P, one can
achieve a capacity

P/nC=n
6 (6.s)

We return brieHy to this "co-ax capacity" at the end of
Sec. VI.B.

A mode whose wave vector has z component k & 0
propagates with speed 2vr (df /dk, ) = cg (f) (k, /k)
cg(f) cos8 in the +z direction. Thus the power and in-
formation rate of the channel can be written as the sums

becomes the number of photons per mode. This allows
us to write a capacity per mode,

C = hnlog2(1+ n ) + log2(1+ pn) . (6.11)

Converting the power sum (6.9) to an integral over
solid angle in wave-vector space yields

(6.12)

where the integral is restricted to polar angle 0 & 8
[«- Eq. (6-6)l Equation (6.12) shows that (gcoseP ')n
is the speci6c photon intensity —i.e., the mean number of
photons per second per Hz per square meter per stera-
dian. Equivalently, we can identify g cos 8/A~ as the num-
ber of modes per second per Hz per square meter per
steradian. Doi.ng the integral over solid angle leads to an
energy Aux

(6.9) —=B
2 hfn,

A~~
(6.13)

(6.io)

where we can identify erg/Az as the number of modes per
second per Hz per square meter.

We can now write expressions for the information Hux,

where the prime denotes a suxn over allowed wave vectors
A: which have positive z component k & 0, whose magni-
tude lies within a range Ek = (Ek/6, f)B = [2a/c~ (f)]B
about k = 2m f/c„(f), and whose transverse magnitude
satisfies (k +k„) ~ & k~. The first task is to maximize
C within the constraint of 6xed power P by varying the
mean photon numbers of the various modes. This max-
imization is trivial, the result being that all the modes
should have the same mean number of photons, n, which

C mg

A A2~
(6.14)

and for the photon Hux,

erg

A A~~
(6.15)

These lead to familiar expressions for the information per
photon:

C/A C= —= h log2(1+ n ) + n log~(l + pn)—: E,(n), b = p = 1,
N n '7 i (6.16)

[cf. Eqs. (3.22) and (5.42)].
It is useful to introduce a (dimensionless) multiplicity

factor

(6.i7)

spatially transverse mode by letting A& A, or p, g,
in which case p reduces to the number of polarization
states employed by the channel.

In terms of p„ the power (6.13) and the capacity (6.14)
become

p sr A

g A~~
(6.is)

We can investigate approximately the case of a single

which, as the number of modes per second per Hz, quan-
tifies the number of parallel channels. Since p/g is the
number of spatial/y transverse mades (per second per
Hz), the requirement (6.7) for many spatially transverse
modes can be written as

P = Bphfn = rjphf n, (6.i9)

C = BpC = rjpfC . (6.2o)

These forms highlight the role . of the dimensionless
bandwidth-channel product rjp. Levitin (1982) has given
Eqs. (6.19) and (6.20) far a number-state channel in the
limit n && 1. It is also convenient to introduce a maxi-
muxn multiplicity factor
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z'go ego fz
[c~(f)l' ' (6.21)

a. Case 1: varying multiplicity

which counts the number of available parallel channels,
and a fractional xnultiplicity,

= —sin 8 &1,p g (Al g

po go E~z j go
(6.22)

which gives the fraction of the available channels that are
actually used.

2. Maximum channel capacities

We now investigate, in three difFerent cases, how the
capacity of Eq. (6.14) behaves when one or more proper-
ties of the channel are allowed to vary.

As the first case, suppose that the number of parallel
channels —i.e., the multiplicity factor p, of Eq. (6.17)—is
allowed to vary, while the frequency and bandwidth are
held constant. The power constraint implies that pn is
fixed or, equivalently, that the photon Qux is constant.
Thus, in this case, maximizing the capacity means max-
imizing the information per photon (6.16). For all three
kinds of channels we are considering, the information per
photon is a decreasing function of n [see plots of Eq(n)
and Gq(pn) in Figs. 3 and 6]; hence the capacity is max-
imized by letting n be as small as possible —i.e., by let-
ting the multiplicity factor go to its maximum value po of
Eq. (6.21). This means choosing the number of photons
per mode to be

P/hf s (10 sl ( 2l ( P l (10 m l ( c„) (3x10'4Hz)
Bpo i rl j &go j &1mWj ( A j &3 x 10sm/sj ( f (6.23)

The lesson of case 1 is that if you are stuck with a
particular frequency, then it always pays to divide up the
available photons among as xnany channels as possible.
The payofF changes radically, however, at n 1, as is
apparent &om the plots of Eq(n) and Gq(n) in Figs. 3
and 6. If one starts with n && 1 photons per mode and
goes to one photon per mode by increasing the number
of channels by a factor of n, the capacity increases by
a factor n/logz n for all three kinds of channels. In
contrast, if one starts with one photon per mode and goes
to n (& 1 photons per mode by increasing the number of
channels by a factor of n, the capacity increases only
by a logarithmic factor 2 log2 n ~ for a number-state
channel and at most by a factor p/ ln(1+7) for coherent-
state and quadrature-squeezed channels.

assuming that the channel is dispersionless over soxne
range of frequencies. Thus, throughout the remainder
of this subsection, we assume that the propagation speed
c = c„=cz is independent of frequency. We return to
the question of dispersion in Sec. VI.B.

In our second case we keep the number of parallel
channels, p„constant, while allowing the frequency f
and bandwidth B to vary, with the fractional bandwidth
g = B/f held constant. Equations (6.19) and (6.20)
show, not surprisingly, that this case is precisely equiva-
lent to the single-channel maximization problems consid-
ered in Sec. III.A.2 for a single number-state channel and
in Sec. V.B.2 for single coherent-state and quadrature-
squeezed channels, provided that .one has made the re-
placement g -+ gp.

In particular, noting that

b. Case 2: varying frequency

The remaining two cases involve varying the chan-
nel frequency; they can be handled in general only by

= gpfn i' = Bpn'j',gpP

one can write a dimensionless capacity

(6.24)

C C = hn log2(1+ n ) + n 1ogz(1+ pn)—:——1 ——1/2 E,(e),
rip, P/h

(6.25)

[cf. Eqs. (3.25) and (5.43)]. The dimensionless capac-
ity functions Ez(n) and Gz(pn, ) are plotted in Figs. 3
and 6. Notice that the maximum capacities for this case
[Eqs. (3.27) and (5.45) with g ~ rly] are proportional to

the square root of p, the number of parallel channels, just
as for a channel that uses a single transverse mode and
many polarization modes. There is one important dif-
ference between the single-channel and multiple-channel
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results: whereas the fractional bandwidth g must satisfy
g & 1, the bandwidth-channel product gp can be much
larger than 1.

where

~go qvrg f' A )
(p~) (6.28)

c. Case 3: varying frequency and mu)tiplicity

In case 1 we aHow the multiplicity to vary, while hold-
ing the &equency constant, and find that it is optimal to
take advantage of all the available channels. In case 2
we allow the &equency to vary, while holding the multi-
plicity fixed, and find results that are a simple extension
of single-channel results. Our third case is intermedi-
ate between the first two: it allows both the frequency
f and the number of channels p, to vary. A reasonable
way to proceed, which makes the probIem explicit, is
to assume that both the f'ractional bandwidth g = B/f
and the fractional multiplicity ( = p/po of Eq. (6.22)
are held constant. With these assumptions it is conve-
iiient to write the energy flux (6.13) and the information
Hux (6.14) in the forms

is a characteristic quantity with dimensions of s2/m2,
which is held fixed as the capacity is maximized. Notice
that the bandwidth-channel product can be written as

(6.29)

It is useful to introduce the maximum value of the char-
acteristic quantity,

X'g00—
C2

(6.30)

which applies to a wideband (g = 1) channel that uses
all the available transverse modes (( = 1).

Noting that

—=Qhf n,P 4 (6.26) Q /(P/Ah) / =Qf n/4 (6.31)

(6.27)
is fixed by the constraints, we introduce a dimensionless
information Aux

C/A C,/4, s/4 +s(n),
Q/(P/Ah) / =;/ ='" '"'+" '+" '"'+'"'= '/'G'( =)

(6.32)

The dimensionless capacity functions Es(n) and Gs(pn) are plotted in Figs. 3 and 6.
Consider first a number-state channel (b = p = 1). The dimensionless information Hux Es(n) of Eq. (6.32) is

maximized at n = 0.057166, corresponding to frequency

f =
i i

=2.0451'(P/Ai ' ' r'P/A)r' '
hn) g h) (6.33)

to maximum information Qux

C g 3/4" = 0.32081Qf = 2.7440Q'
~ h (

b't / (6.34)

and to C „/N = C/n = 5.6119 bits per photon. These results are suinmarized in Table II. If we regard frequency,
rather than energy Qux, as the independent variable, we can write the information Aux and energy Aux in terms of
ratios to "typical" values for optical communication:

" = 0.32 "~ g' f' = 6.0 Pb t./.c2 10 (10 ) 2 ( c ) E3x10i Hz)
(6.35a)

2

(6.35b)
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TABLE II. Narrowband and wideband multiple-parallel-channel maximum capacities for three types of channels: number-
state (NS) channels, quadrature-squeezed (QS) channels, and coherent-state (CS) channels. For each type of narrowband
channel, the table lists the following quantities at maximum capacity: (i) the average number of photons per mode, n; (ii) the
dimensionless frequency, f/(P/QAh) = n; (iii) the information per mode, C „/QAf = C; (iv) the dimensionless
capacity, C „/(QA)'/ (P/Ii) / = C/n /; and (v) the information per photon, C „/N = C/n T. he first, third, and fifth
of these quantities illustrate our slogan "one photon —one bit —one mode. " For each type of wideband channel, the table lists
the dimensionless capacity, C/(QOA) / (P/Ii) /, and the information per photon, C/N. The information per photon provides
further illustration of our slogan. In the table 'P = P/AIi.

Type

NS
QS
CS

0.057 166
0.416 41
0.832 83

2.045 1
1.244 9
1.046 8

Narrowband
Cmax /A

Qf'

0.320 81
0.874 07
0.874 07

Cmax/A
Q1/4'P3/4

C
3/4
2.744 0
1.686 2
1.002 6

Cmax/A
N/A

C

5.6119
2.099 0
1.049 5

Wideband
C/A

Qi/4P3/4

3.070 7
1.738 2
1.033 5

C/A
N/A

5.1960
1.923 6
0.961 80

It is instructive to write the maximum capacity of
Eq. (6.34) approximately as

(QAP i (P i rlpP
max

& )
(6.36)

The P / dependence of C „ for a channel with many
spatially transverse modes arises in the following way: a
P / contribution &om the optimum capacity of a single
transverse mode and a P / contribution, contained in
the bandwidth-channel product (6.29), from the number
of spatially transverse modes. In contrast, in the limit
of only a single spatially transverse mode, where p g
[Eq. (6.18)], C „has the Pi/2 dependence of a single
spatially transverse mode with g polarization channels.

Case 3 is a compromise between the first two cases—a
compromise that is readily apparent in the plots in Figs. 3
and 6. Comparing case 3 to case 1, where the frequency
and bandwidth are axed, one sees that it is clearly fa-
vorable for a number-state channel to operate at a lower
&equency with more photons per mode, as case 3 allows
it to do. Comparing case 3 to case 2, where the number
of channels is 6xed, one sees that it is clearly favorable for
a number-state channel to operate at a higher &equency
with fewer photons per mode, provided that one can take
advantage of the larger number of channels available at
the higher frequency, as case 3 allows it to do.

In case 2 it is optimal to operate with n = 1 mode
per photon, whereas in case 3 it is optimal to operate
with n 17 inodes per photon. Since case 2 already
uses the longitudinal modes most efhciently, we can sen-
sibly regard this ratio of 17 to 1 as measuring the opti-
mum number of transverse modes per photon —i.e., the
optimal degree of parallelisxn for a number-state channel.
Though this ratio makes clear the substantial advantages
of parallelism, the really important point is that the ratio
is not much bigger than 1: it is not optimal to use, say,
a thousand transverse modes per photon. These com-
parisons provide further illustrations of our slogan, "one
photon —one bit —one mode. "

This same prejudice in favor of parallelism is evident in

--1 1
+1 —Biglril logz Ai — logz (piB17 )

1 ( number= ~'"~,.f .d..)~
(6.37)

the dependence of the maximum information Hux (6.34)
on the propagation speed c: as c gets smaller, the maxi-
mum information Qux gets larger, even though individual
bits of information transit the channel more slowly. This
result can be readily understood. Our work on single
channels and on case 2 shows that as far as the longitu-
dinal properties of a channel are concerned, the propa-
gation speed has no impact on the information rate. As
was discussed in Sec. III, longitudinal wave-packet Inodes
arrive at a rate B i, independent of propagation speed
c; changing c scales lengths along the channel without
afFecting the arrival rate of modes. When one considers
transverse properties of the channel, however, a smaller
propagation speed leads to smaller wavelength, thus to
more spatially transverse modes within a given area at a
particular &equency, and hence to more capacity for the
same power.

The advantages of parallelism, most apparent in case 1,
where the &equency is held 6xed, show up in case 3 as
a prejudice in favor of higher frequencies and fewer pho-
tons per mode, relative to case 2. Still, case 3 shows
that it is not an optimal use of energy, even for many
parallel channels, to send an arbitrarily large amount
of inforInation on a single photon. Suppose, as we did
in Sec. III.A.2, that one transmits on average a sin-
gle photon at frequency fi within a bandwidth Bi dur-
ing a long transmission time 7 &) Bi (P = hfi/7),
and suppose further that one uses a multiplicity factor
p, i ——(A(vrgo fi/c ) )& 1 [Eqs. (6.21) and (6.22)]. The in-
formation is encoded in the photon's arrival time and in
which of the transverse modes it occupies —a more gen-
eral version Gf the placement information considered in
Sec. III.A.2. The number of modes available to the single
photon is /41B17, thus giving a number of photons per
mode ni ——1//J, iB17 (( 1, which yields, from Eqs. (6.11)
and (6.20), a capacity
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Suppose that instead one transmits the same energy
hfdf in the same time 7 at a lower frequency f2 within
a bandwidth B2 and with a multiplicity factor p2
(A(vrgo f2/c ), and suppose that f2, B2, and p2 are cho
sen, 6rst, to keep the &actional bandwidth and the &ac-
tional multiplicity the same and, second, to give the op-
timum n2 0.057 photons per mode. These choices give
a frequency f2 ——fq(nq/n 2)

/ [Eq. (6.31)] and, from
Eqs. (6.20) and (6.34), a capacity

/ p ) s/4 —1/4
C 2.7 (QA) l

—
l

= 2.7
gh)

(6.38)

The capacity at the lower frequency is larger even though
the bandwidth is smaller and the number of transverse
modes is smaller. The capacity gain in going to the lower
frequency f2 is not as great as in the comparable single-
channel example in Sec. III.A.2—or as in case 2—because
here going to a lower frequency entails a reduction in the
number of transverse modes.

We can also consider case 3 for coherent-state and
quadrature-squeezed channels (b = 0). The dimen-
sionless information flux (6.32) is maximized at pn
0.83283, corresponding to &equency

This estimate, which agrees with that obtained &om our
slogan, "one photon —one bit —one mode, " in Eq. (1.8),
is right on the mark; but a proper treatment requires
us to con&ont two issues: first and obvious, &equency-
dependent photon energy and, second, dispersion.

B. Multiple wideband channels

p, = A(~go/A2) = A(~go/c2)f, ' (6.42)

[i.e. , g; = go and (A~); = A;; cf. Eq. (6.21)]. Using
Eqs. (6.13) and (6.14), we can write the total-energy Hux
and total information Aux as

(6.43)

Consider then a &equency-multiplexed channel, in
which each &equency bin is a narrowband channel con-
sisting of many parallel channels, just like the narrow-
band channel in the preceding subsection. We now allow
dispersion, so that the phase velocity varies &om one &e-
quency bin to another. Let 6 be the bandwidth of each
frequency bin, and let f; and A, = c;/f; be the frequency
and wavelength of the ith bin, where c; = c~(f;) is the
phase velocity for the ith bin. We assume that each bin
uses all available parallel channels, so the multiplicity
factor of the ith bin is

f = l&P/Ail = 0468 1(~P/Ai
«hn)

to maximum information Qux

" = 0.87407Qf

(6.39)

) 2 f; [hn;in(1+n, ) +ln(1+pn;)] .
ln2 - c2

(6.44)

= 1.0026 Q /
l l

bits/s m2,
h )

(6.40)

C g/4 (P/Ai (6.41)

and to C „/N = C/n = 1.0495' bits per photon. These
results are summarized in Table II. Parallelism is not as
advantageous here as for a number-state channel. Just as
for a number-state channel, we can quantify the optimal
degree of parallelism by taking the ratio of the number of
modes per photon in case 3, n ~ p/0. 83, to the number
of modes per photon in case 2, n ~ p/3. 9; this ratio
gives about five transverse modes per photon.

We can estimate an upper bound on wideband informa-
tion Hux by taking the maximum information Hux (6.34)
for a number-state channel and setting g = 1, to ap-
proximate a wideband channel, and ( = 1, to describe
a channel that uses all the available transverse modes.
Under these circumstances the quantity Q of Eq. (6.28)
takes on its maximum value Qo ——zgo/cz [Eq. (6.30)],
and the resulting upper bound on wideband information
Aux is

One must now maximize the information Hux C/A by
varying both n, and c; as functions of &equency, with
P/A held constant. The result for the photon-number
distribution is familiar: For a number-state channel, the
optimal photon-number distribution is the thermal dis-
tribution

(6.45)

pA;=g
——1, 0(f;(f, ,

(6.46)

0, f' & f.
of Eq. (5.48), where f, is an upper cutofF frequency.

When one varies the phase velocity, one 6nds that the
information Aux increases monotonically as c; decreases.
This is the wideband version of our narrowband conclu-
sion (in case 3 of Sec. VI.A.2) that the information Hux

of Eq. (3.35), where P is a Lagrange multiplier that
characterizes the optimal distribution of power and in-
formation among &equencies. For coherent-state and
quadrature-squeezed channels, the optimal distribution
is the nonthermal distribution
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P Qo x
8x

A hsP4 p e* —1
Qo ~' Qo

hsp4
"("—

1S hsp4

(6.47)

+BPC dxx
i

—ln(1 —e ) i

Qo, (
hs sln2 o (e —1 )
—',PP/A 4~'

ln 2 45 ln 2 hsPs (6.48)

Here the subscript BPC stands for "bosonic parallel chan-
nels, "

Qo ——7rgp/c2 is the maximum characteristic factor
of Eq. (6.30), and g(4) = m /90 is a value of the Riemann
zeta function. Combining Eqs. (6.47) and (6.48) yields
an upper bound on information flux,

&BPC
A

1/4 p q
s/4

[cf. Eqs. (1.9) and (6.41); see Table II). As derived here,
the upper bound (6.49) applies to a wideband frequency-
multiplexed number-state channel; but to repeat, the ar-
guments given in Sec. IV can be extended to show that
Cnpc/A is an upper bound on the information flux of
any linear bosonic channel that has an isotropic disper-
sion relation.

One can also use Eq. (6.15) to derive the standard
result for the photon flux of blackbody radiation,

N vrgp 2 Qo—=5) f n; = ch

C(3) sps (6.50)

is larger for smaller phase velocities. What it means here
is the following: if c is the minimum phase velocity for
a particular bosonic Geld, we can establish upper bounds
on that Geld's information flux by considering a disper-
sionless field whose phase velocity is c at all &equen-
cies. Of course, for any particular dispersion relation,
one could find a tighter upper bound, but the point is
that we can proceed here without detailed knowledge of
the dispersion relation and derive upper bounds assum-
ing a dispersionless field.

One other issue, the question of gaps in the &equency
spectrum, deserves mention. As we discuss in Secs. III.B
and IV.F, gaps mean that information has to be transmit-
ted at higher frequencies, where it requires more energy;
thus we can Gnd an upper bound on information flux by
assuming, as we do here, that there are no gaps.

Focus now on a number-state channel. Converting
the sums (6.43) and (6.44) to integrals over positive fre-
quencies, one Gnds the standard results for the energy
flux and information (entropy) Hux of three-dimensional
blackbody radiation,

CBpc/A 2m

N 45 3 ln2
= 5.1960 bits/photon, (6.51)

&12~P/Ai "
) (6.52)

and then derive an upper bound on the information flux,

&PC@ I 3
91 2Qof.

3/4

91n2 q h )
(1o8Q bits/s-m'

(6.s3)

[cf. Eq. (6.41); see Table II], where the subscript PC@
reminds'one that this upper bound applies to parallel
coherent-state channels or quadrature-squeezed channels.
A quadrature-squeezed channel can achieve nearly 57%
of the parallel-channel upper bound (6.49), whereas a
coherent-state channel can achieve nearly 34%. Calcu-
lating the photon flux for coherent-state and quadrature-
squeezed channels,

N 1
Qof.'—A 6p

one Gnds an information per photon,

(6.s4)

Cpcq A
p = 0.96180' bits/photon, (6.55)

N/A 31n 2

again very close to the information per photon found for
comparable narrowband channels in case 3 of Sec. VI.A.2
(see Table II).

For a number-state channel, one can identify the peak
of the blackbody spectrum as a characteristic &equency,

/'CBpc/A~ '/ CP/Al '
(6.56)

near which most of the energy flows. This characteristic
frequency is approximately the same as the upper cut-
off frequency (6.52) for coherent-state and quadrature-
squeezed channels. For all three kinds of channels, sat-
isfying the requirement (6.18) for many spatially trans-
verse modes means satisfying it near the characteristic
frequency. Thus we can write an explicit many-modes
requirement for a wideband channel,

which is very close to the information per photon for the
narrowband number-state channel considered in case 3 of
Sec. VI.A.2 (see Table II).

Turn now to coherent-state and quadrature-squeezed
channels. Converting the sums (6.43) and (6.44) to in-
tegrals, one can first write the upper cutoK &equency in
terms of the energy flux,

where g(3) = 1.2021 is a value of the Riemann zeta func-
tion. Thus, in contrast to a single wideband number-
state channel, the information per photon here is finite,
with the value

ph 1 /QpAPi
1 ((

go go ( h
(6.s7)
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where Vll. CONCLUSION

vrgp 2
t' QpAP t

Pch —
2 ch-c

(6.58)

is the maximuin multiplicity factor (6.21) at the charac-
teristic frequency [cf. Eq. (6.29) with i7 = 1].

It is instructive to write the maximum capacities (6.49)
and (6.53) approximately as

(QpAP) '~ f'P& '~ p, i,P
h ) phd h

which shows, as in Eq. (6.36), that the Ps~4 dependence
of the multichannel wideband capacity arises IIrom the
Pi~2 dependence for a single transverse mode combined
with a Pi~4 dependence, contained in gp, ,i„ from the
number of spatially transverse modes.

The wideband many-modes requirement (6.57) tells us
how big p,,i„ i.e., A, must be so that we can count modes
accurately using the mode density (6.4). For any finite
value of A, there are corrections to this counting, due
to the discretization of the spatially transverse modes,
particularly those with transverse wavelengths ~ ~A.
We can argue, in a way familiar Rom our discussion of
narrowband channels, that these corrections do not be-
come terribly large, even in the limit p,g gp —i.e.,

cjf,i, ~A—when there is only about one spatially
transverse mode at the characteristic &equency. In this
limit the wideband capacity (6.59) becomes

(6.59)

gpP
h

(6.6O)

A
Pch

1 (c)'
'irgp (fch j (6.61)

Co-axial cables are, of course, limited by Ohmic losses
associated with Beld penetration into the confining con-
ductors, especially at high &equencies; even if the co-ax
uses superconductors, losses near or above the band gap
limit the bandwidth as in the discussion at the end of
Sec. V.C.

which again shows how the P3~4 dependence for many
spatially transverse Inodes goes over to a P~~~ depen-
dence for a single spatially transverse mode, here with

gp polarization channels. Of course, we assume in mak-
ing this argument that the aperture remains roughly
circular —i.e., remains two dimensional —as its area de-
creases to A (c/f, h) . Should one dimension get small
much faster than the other, so that the aperture becomes
electively one dimensional, then the capacity would as-
sume a P ~ dependence.

The maximum multiplicity factor (6.58) at the char-
acteristic frequency also arises in the ratio of the "co-ax
capacity" (6.8) to the wideband capacity (6.59). Indeed,
the co-ax capacity is bigger if the area per co-ax, a, sat-
isfies

In our conversations with other physicists, we often
find an intense interest in information theory combined
with a lack of familiarity with information-theoretic con-
cepts. In this article, by concentrating on a particular
question —how much information can be communicated
via a linear bosoiuc field? —we aim to familiarize physi-
cists with basic concepts and tools of information theory.

To this end we develop the communication theorist's
description of a communication channel and relate it to
the quantum-mechanical description of a linear bosonic
Geld. The quantum-mechanical description requires two
ingredients: a description of how inforxnation is encoded
onto the Geld and a description of how information is
"read ofF" the Geld by a quantum detection scheme. To
address the question of optimum communication rates,
one must be able to formulate both these ingredients in
complete generality. Many physicists can benefit, in par-
ticular, from our discussion of the theory of generalized
quantum measurements, which permits us to include all
detection schemes that are consistent with the rules of
quantum mechanics.

We highlight the role played by Holevo's theorem, the
fundamental theorem of quantum communication theory,
which establishes the connection between information,
as measured by Shannon's statistical measure of infor-
mation, and quantum entropy. Without Holevo's theo-
rem the connection between information and quantum
entropy, though tantalizing, is incomplete.

We give a general proof of the maximum communica-
tion rate of a single linear bosonic channel that has Gnite
power P. Our proof uses techniques drawn from quan-
tum statistical physics and thus emphasizes the connec-
tions between information theory and physics. We also
draw attention to the recent proof of Yuen and Ozawa
(1992), which removes the finiteness assumptions that
are required for our proof.

The theme that permeates this article is that maxi-
mum communication rates for bosonic Gelds are encap-
sulated in the slogan "one quantum —one bit —one mode. "
Although it is possible to send far more than a bit on a
single quantum or far more than a bit in a single Geld
mode, doing either is not the most efBcient use of energy.
EKcient use of energy involves a compromise between the
particle-like aspects of the Beld, embodied in the number
of bits per photon, and the wave-like aspects, embod-
ied in the number of bits per mode. The cornproxnise is
captured, at least approximately, in our slogan.

Efficient transmission of information at the wideband
quantum limit is an extremely ambitious goal. It is char-
acterized by a wideband spectrum, similar to blackbody
radiation, making it necessary to detect quanta on time
scales of their period. In fact, this can be regarded as
defining eKcient communication &om a quantum per-
spective. In this wideband limit, virtual quantum efFects
are extremely important (Drummond, 1987, 1988). This
article serves as an introduction to and a motivation for
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further work on ultra-wideband quantum noise, a virtu-
ally unexplored area of quantum noise theory and quan-
tum measurement.
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0 & H(p) & log J', (A2)

where equality on the left-hand. side is equivalent to prob-
abilities for which one alternative is certain and equality
on the right-hand. side is equivalent to uniform probabil-
ities p~ = 1/ J'.

An important inequality satisfied by Shannon informa-
tion, sometimes called the Gibbs inequality, involves the
relative information of probability distribution p with re-
spect to probability distribution q:

H(p/q) = —) p~ log —& 0 (Gibbs inequality). (A3)
q~

This inequality can be demonstrated by using a property
of the logarithm,

to show that

H(p/q) = ) p, log —'

lnx x —1
log~x = equality if and only if x = 1,

lnd lnd

(A4)

APPENDIX A: PROPERTIES OF SHANNON
INFORMATION AND QUANTUM ENTROPY = ).I

p'log „—' — ' (A5)

H(p) = —) p, log~7,. (Al)

where p, standing for the entire probability distribution,
can be thought of as a vector consisting of the probabil-

In this appendix we denote the Shannon information
for probabilities p~ by

Equality holds here if and only if every term in the sec-
ond sum vanishes. Thus relative information is zero if
and only if p and g are identical, i.e., p~ = q~ for all
alternatives j.

The Gibbs inequality shows immediately that the mu-
tual information (2.11) is non-negative,

H(B; A) = H(B) —H(B~A) = ) p~(a) ) p~~~(b(a) log2
~

& (b)
(A6)

The mutual information is zero if and only if p~~~(b~a) =
p~(b) for all b and for all a for which p~(a) g 0. This
condition is equivalent to A and B being statistically
independent, i.e., p~, ~(a, b) = p~(a)p~(b).

Shannon information has a concavity property: if pq
and p2 are two probability distributions, then

H(Api + (1 —A)p2) & AH(pi) + (1 —A)H(p2),

Equality holds here if and only if pq and p2 are identical.
In words, this property means that averaging two prob-
ability distributions increases the Shannon information.
Equation (A6) is an example of property (A7). The prop-
erty is an immediate consequence of the Gibbs inequality,
since, letting p = Api + (1 —A)p2,

H(p) —AH(pi) —(1 —A) H(p2)

for 0&A&1. (A7) = —AH(P1/P) —(1 —A) H(P2/P) & o (A8)
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The quantum entropy of a density operator is de6ned
by

Demonstration of the property (A14) goes as follows
(Peres, 1993):

S(p) = tr(plog p) . (A9)

One can always write the density operator in terms of a
diagonal decomposition in a complete, orthonormal basis
of vectors

Ij):

H(p) —H(q) = ) .1&jlk) I'p& log —"

j,k J2

= ) I &jlk& I'
I p, log —"— " "'

I

& o .

p = ):p, lj&&jl. (A1o)
(A16)

S(p) = —) p,. logp, = H(p) . (A11)

Hence the quantum entropy is bounded by

The quantum entropy is the Shannon information of the
probability distribution p along the diagonal of this de-
composition:

Double stochasticity is used to insert the sum over qg —p~,
and the inequality follows f'rom property (A4). Equality
holds in Eq. (A16) if and only if every term in the second
sum vanishes, i.e., p~ = qg or (jlk) = 0 for all j and
k. This necessary and sufBcient condition for equality is
equivalent to (p~ —qg)(jlk& = 0 for all j and k, which in
turn is equivalent to

0 ( S(p) ( log J', (A12) 0 = ) (p, —qg)lj)(jlk) = (p —qs)lk&, for all k.

where Q is the dimension of Hilbert space. Equality on
the left-hand side is equivalent to p being a pure state
(a one-dimensional projection operator), and equality on
the right-hand side is equivalent to p being a multiple of
the unit operator 1, i.e., p = 1/ J'.

Given a different complete, orthonormal basis of vec-
tors lk), one can generate from p a different set of prob-
abilities

Thus equality holds in Eq. (A14) if and only if p is diag-
onal in the lk)-basis, i.e. , p = g& qq 1k& &kl.

The quantum analogue of the relative information (A3)
is a relative entropy of density operator p with respect to
density operator p'.

q~ = tr(PIk&&kl) = &klplk) = ).1(jlk)l'p, (A») S(p/p') = —tr (p log p) + tr(p log p') ( 0 . (A18)

H(q) ) H(p) = S(p) . (A14)

The Shannon information of these new probabilities is
not smaller than the quantum entropy:

The inequality asserts that, like relative information, rel-
ative entropy is not positive. To prove the inequality,
write p and p' in terms of diagonal decompositions in
complete, orthonormal bases

Ij) and lk),

This property is a consequence of a special property,
called double stochasticity, of the quantum-mechanical
conditional probabilities 1(jlk)12. Double stochasticity is
the property that these conditional probabilities sum to
unity not only on k, as any conditional probabilities must,
but also on j:

p = ).p'lj)&jl

p' = ) rglk&&kl .

(A19)

(A2o)

) .1&jlk&l' = 1 = ) .1&jlk&l' . (A15)
By introducing the probabilities qI, associated with p in
the lk) basis [Eq. (A13)j, the relative entropy can be writ-
ten as

S(p/p') = ).IUIk& I'p)»g —= —) .qI l« —„+) I &jlk& I'p~ l« —= H(q/r) + H(p) —H(q) & o .
2t A: A: I27

P2
(A21)

The relative entropy is zero if and only if p = p'.
Quantum entropy shares the concavity property of

Shannon information: if pi and p2 are two density oper-
ators, then

S(&pz + (1 —A) p2) & AS(pq) + (1 —A)S(pg),

for 0 ( A ( l. (A22)
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Equality holds here if and only if p1 ——p~. The proof is
the same as for Shannon information, with relative en-

tropy replacing relative information. In words, concavity
means that averaging two density operators increases the
quantum entropy.

Our final property of quantum entropy concerns
bounds on the entropy of an average density operator.
Suppose that density operators p;, i = 1, . . . , X, occur
with probabilities qi, giving an average density operator

p; =) r, ~, l&, ')(l, tl. (A25)

The eigenvalues r~Ii are written deliberately as condi-
tional probabilities for / given i; by omitting zero eigen-
values &om the sum, we may assume that all these con-
ditional probabilities are positive. Th~ quantum entropy
of p; becomes

Z'

p = gipi ~ (A23) S(p~) = —) r~~~ log r~~~ .
l=1

(A26)

One can show that We can introduce a normalized "joint probability" for
i and/,

0 & ~(p) —) .~'~(p') & ~(q) (A24) Qw = Qi, l = rl)i' ~ (A27)

Notice that the quantity bounded here is the same as
the one that appears in Holevo's theorem (4.13). The
lower bound on the left-hand side is a simple extension
of the concavity property (A22) of quantum entropy, but
the upper bound on the right-hand side (Levitin, 1969;s
Balian, 1991) requires some work. Equality holds in the
upper bound if and only if all the density operators p;
are orthogonal.

To prove the upper bound, we generalize slightly a
proof given by Hughston, Jozsa, and Wootters (1993).
First write each density operator p; in terms of its diag-
onal decomposition in a complete, orthonormal basis:

where the index p stands for both i and /. By construc-
tion, all the probabilities Q„are nonzero. The average
density operator can be decomposed in terms of the states

Z'

p =).p' ).r~['I& t)(~ tl '
= ).Q~lp&(pl (A28)

i =1 k l= 1 ) p=1

where JH is the number of states Ip). The Shannon in-
formation of the joint distribution Q is

T

II(Q) = —) Q logQ = —) $»gS+) S —).rl~;»gal~, = ~(q)+).%~(P') (A29)

[cf. Eq. (2.14)j.
The average density operator can also be written in

terms of a diagonal decomposition in a complete, or-
thonormal basis

Ij),

If p has any zero eigenvalues, we can omit those terms
&om the sum. To formalize this omission, suppose that
there are J' nonzero eigenvalues, labeled by j = 1, . . . , Q,
so that p~ = 0 for j ) J'. Then we can write the quantum
entropy of the average density operator as

P = ):p~lj)(jl (A30)
~(p) = ~(p) = —) .p. »g p' . (A32)

where J' is the dimension of Hilbert space. The quantum
entropy of the average density operator is

as
The upper bound we wish to prove can now be written

S(p) = —) p logp = H(p) . (A31) H(Q) & H(p) . (A33)

We proceed by showing that q is related to p by a doubly
stochastic matrix. First expand the states Ip) in terms
of the complete, orthonormal basis

Ij):
This article was translated for the authors by A. Bezinger

and S. L. Braunstein; it has been essentially reprinted as part
of two longer articles (Levitin, 1991 and Levitin, 1993).

ls) = ).Ij)(jls) . (A.34)
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By noting that

(A35) ) M»M„', =
).Q~I~) 41 i )'

)
jPj'

we can conclude that if j ) J' (in which case p~ = 0),
(jig) = 0 for all p, . Thus we can rewrite the expan-
sion (A34) as

v'Q~l&) = ).M»v&'I&)

= ~jj ~

Pjpj'
(A38)

Now, by adding columns, extend M„j to be an M x ~
unitary matrix U». Taking the magnitude of Eq. (A36)
yield. s

where the JH x Q matrix M» is defined by
Qu, = ).IM»I pq = ).IU»l'pq

"(jls),

(A37)

where the probabilities p~ for j ) + are chosen to be
zero.

Since U» is unitary, the transition matrix IU»l is
doubly stochastic,

It is easy to demonstrate that the J' columns of M»
are orthogonal M-dimensional vectors (which requires
that M & g): so we can repeat the proof in Eq. (A16):

(A40)

H(p) —H(&) =).):IU I'p'log "=):):IU»l'I@~log
j=1 ps=1 2 j=1~=1 4 2

Q
lnd ) (A41)

Equality holds here if and only if (pz —Q~)U» ——0 for all j and p. This condition requires that U» ——0 for j ) Q,
which, since U» is unitary, means that M = Q. Hence we can restate the necessary and sufficient conditions for
equality as M = J and

0 = ) .(p2 —Qp)l~)M» ' = ).(p2
—Qp)lj)(jlp) = (~- Qp)l~) (A42)

Thus equality holds in the upper bound of Eq. (A24) if
and only if the states

I p) provide an orthogonal decompo-
sition of p, with no state appearing more than once in the
decoxnposition. This condition, in turn, is equivalent to
the above-stated requirement that the d.ensity operators
p,. be orthogonal.

A more complete discussion of quantum entropy can
be found in Balian (1991).

APPENDIX B: HERALDED AND SELF-HERALDING
SIGNALS

Bekenstein (1988) and Bekenstein and Schiffer (1990)
distinguish what they call heralded and self-heralding sig-
nals. To illustrate and assess this d.istinction, we return
to the narrowband number-state channel introduced in
Sec. III.A.1, which we now assume to be noise-&ee-
pM~~(min) = h „—and we focus on the information
carried by a particular wave-packet mode —a particular

channel use—which lasts a time B 1. This informa-
tion is quanti6ed by the Shannon information

H(M; N) = H(M) = H(N) = —) p~(n) log2 p~(n) .
n=0

Bekenstein and SchiKer argue that if the receiver knows
in advance —"anticipates" in their language —that the
mode of interest carries a signal —for example, knows
that it has been manipulated to carry a signal or knows
that it is part of an information-bearing sequence of wave
packets —then the vacuum state should be included as a
signaling state. They call such an anticipated signal a
heralded signal because the signal's existence is known
in advance. In contrast, they argue that if the receiver
does not know in advance —does not "anticipate" —that
the mode of interest carries a signal, then one should not
include the vacuum state as a signaling state, because

Rev. Mod. Phys. , Vol. 66, No. 2, April 1994



C. M. Caves and P. D. Drummond: Quantum limits on bosonic communication rates 529

H(N) = Hb;„+ qH„gp, (82)

where q = 1 —p~(0) is the probability that the mode is
not in vacuum. In Eq. (82)

there is no way to distinguish receipt of the vacuum from
the persistent vacuum that arrives in the absence of sig-
naling. Should an unanticipated signal —i.e., a nonzero
number of photons —happen to be received in this mode,
they call that signal a self-heralding signal, because it
informs the receiver of its own existence.

The distinction can be displayed forxnally by writing
the total information (81) in the form

of the vacuum provides no information when the receiver
has an overwhelming expectation to receive the vacuum.
Whatever the receiver's expectation, however, it must be
incorporated in the probability q. If the receiver does
not expect to receive a nonzero number of photons, then
q is very small —exactly how small depending on the re-
ceiver's precise expectation. In accord with one's intu-
ition, the binary information Hbj„—qlog2 q does be-
come very small, but not zero. There is no justification
for neglecting it.

APPENDIX C: SINGLE-CHANNEL DISPERSION

Hbi~ = —qlog2 q —(1 —q) log2(l —q) (83)

quantifies the binary information that the receiver gets
from determining whether the mode is in vacuum [this is
the only information if p~(1) = q = n is the only nonzero
probability for n & 1, as in the discussion of placement
information for a single photon at the end of Sec. III.A.2],
and

)-& ()l, (&& ()I (84)

quantifies the further information that the receiver gets
&om determining the photon number, once it knows that
the mode is not in vacuum. In the total information,
H ~p is properly weighted by q. Notice that H„~p does
not include any contribution &om the vacuum state. In
accord with their argument, Bekenstein and Schiffer use
the total information H(N) for heralded signals, but toss
out the binary information Hb;„and use only H ~p to
quantify the information carried by a self-heralding sig-
nal.

There is nothing wrong with the decomposition (82) or
with its interpretation. If one is interested. in the binary
information Hb;„or in the further information H„gp,
then by all means one should deal with those quanti-
ties. We are unconvinced, however, that it is justified
to neglect the binary information in calculating the total
information. The diKculty, we believe, lies in the very
concept of a signal and, specifically, in what it means to
"anticipate" a signal.

A noise-&ee channel such as we are considering is spec-
ified by giving the input alphabet and the input proba-
bilities for each use. Whatever the receiver knows or "an-
ticipates" about the channel —about a particular use or a
set of uses —xnust be incorporated in the input probabil-
ities; there is no other place to express such knowledge.
In contrast to the assumption made throughout this arti-
cle, the input probabilities could change from use to use,
reBecting a change in one's expectations based on results
of previous uses. Given the input probabilities, however,
the Shannon information (82) quanti6es the (average)
information available at reception; there is no justifica-
tion for neglecting a part of the Shannon inforxnation.

Bekenstein and Schiffer are really arguing that receipt

In this appendix we argue that even in the presence
of dispersion, a single bosonic channel of duration 7 has
one longitudinal &equency-domain mode at each of the
allowed &equencies

f, =j/7, j =1,2, . . . , (C1)

of Eq. (4.1). The easy way to argue is that in the presence
of dispersion, we use periodic boundary conditions on
the time 7 . This leads directly to the mode sequence of
Eq. (Cl). The mode at frequency f~ extends along the
channel a length cg( f~)7, where

d
cs(f) = 2vr— (C2)

is the group velocity at frequency f. In order to use the
group-velocity approximation, the mode spreading dur-
ing time 7, b,cg7 = dcs/df, should be negligible com-
pared to the mode's length; this imposes the requirement

1 dcg
7 ))— (C3)

L/cg(f)7 2m

p& c,(f)7 ' (C4)

corresponding to a separation between &equencies of the
wave-packet modes,

~f ~f ~k "(f)~k 1
bk 2vr 7

(G5)

The allowed wave-packet-mode frequencies are thus the

Since periodic boundary conditions in time are not a
standard quantization procedure, however, we also argue
&om a standard procedure.

In the presence of dispersion we can quantize by using
periodic boundary conditions on a length I, chosen to be
much bigger than cs(f)7 for all frequencies f The result.
is a constant density of longitudinal modes in wave num-

ber, p~ = L/2m. . We are only interested in modes with
positive wave number, which propagate in the desired
direction. From these modes we construct wave-packet
modes that have duration 7 . At frequency f there are

L/cg(f)7 )) 1 successive wave-packet modes within the
length L. These modes occupy a wave-number interval
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same as in Eq. (Cl).
At each allowed &equency one should imagine the

L/cg( f)7 wave-packet modes lined up along the channel
from output to input, each occupying a length cg(f)7
and having duration 7. To construct arbitrary signals
within the duration 7 nearest the channel output, one
needs one wave-packet mode at each allowed 6.equency,
the one lying nearest the channel output. The bottom
line is that there is one longitudinal mode at each of
the allowed frequencies (Cl), just as for a dispersionless
channel.

A A

IlgIIt, = IIg Ilq = bye Ilg (orthogonality), (D6)

) IIg = 1 (completeness).
b

(D7)

The probability for outcome b is given by

tion operators obviously commute; moreover, commuting
one-dimensional projection operators are either identical
or orthogonal.

A conventional quantum measurement is described by
a complete set of orthogonal projection operators IIb.

APPENDIX D: GENERALIZED MEASUREMENTS pgy~&(bio') = tr(~-II~) (Ds)

In this appendix we discuss generalized measurements
and their relation to conventional quantum measure-
ments, and we demonstrate how the efFect density of
coherent-state projectors applies to heterodyne detec-
tion. II, = II,"= lb)(bl. (D9)

We call a conventional quantum measurement "ideal"
if the projectors are not only orthogonal, but also one-
dimensional, i.e.,

1. Conventional measurements versus generalized
measurements

II = II.
The projection operator II projects state vectors onto
a subspace 8(II) spanned by the eigenvectors that have
eigenvalue 1. The dimension d = tr(II) of the projection
operator is the dimension of this associated subspace.

Two projection operators II and II' are said to be or-
thogonal if

tr(IIII') = 0, (D2)

which is equivalent to the condition

IIII' = II'II = 0 (D3)

that the associated subspaces 8(II) and 8(II') be orthog-
onal. A one-dimensional projector can be written as

(D4)

Consider a quantum system with Hilbert space &.
Conventional quantum measurements on this system are
described by projection operators on 'R. A projection op-
erator II is a Hermitian operator all of whose eigenvalues
are 0 or 1, a requirement equivalent to

PE[A(bl )o= tr(p IIII ) = (blp lb) (Dlo)

If not all the orthogonal projectors IIb are one-
dimensional, they can still be diagonalized in a
(nonunique) complete, orthonormal basis lb),

bqSb b&Sb

(Dl 1)

where the sets Sb are exhaustive and disjoint. The vec-
tors lb) such that b E Ss span the subspace 8(lip). The
measurement described by the projectors Hb can be in-
terpreted as a measurement of the nondegenerate observ-
able that has eigenvectors lb) (since the vectors lb) are
not unique, neither is this observable), but a measure-
ment that is nonideal because it has insufFicient resolu-
tion to distinguish all the eigenvalues. Alternatively, the
measurement can be interpreted as a measurement of an
observable that is degenerate in each of the subspaces
8(II~). The probability for outcome b is an obvious gen-
eralization of Eq. (D10):

The state vectors lb), which form a complete, orthonor-
mal basis in 'R, can be regarded as the eigenvectors of
a nondegenerate observable (or complete set of observ-
ables). The ideal measurement is interpreted as a mea-
surement of that observable, with the probability of out-
come b given by the standard formula

where l@) is a normalized state vector (pure state) in 'R.
A d-dimensional projection operator can be written as a
sum of d orthogonal one-dimensional projectors,

bqSb bySg

(D12)

p~i~(bl~) = tr(s-ll~) = ).&a(~(bl~) = ):(bl~-Ib) .

(D5)

where the state vectors lg;) are any complete, orthonor-
mal basis within the subspace 8(II). Orthogonal projec-

An efFect E is a Hermitian operator all of whose eigen-
values lie between 0 and 1, inclusive (formally, 0 ( I" &
1). Thus a projection operator is a special effect. When
written in diagonal form, E is a linear combination of
orthogonal one-dimensional projectors,
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I = ) z;11,'."= ) +;ly;) (@,l,

where the eigenvalues F; satisfy

O&F, &S.

(D13)

(D14)

pB!A(bla) = tr(» -+s) = ) .pB(B(bib)pa!~(bla)
b

) pB!B (b
I b) (bl» - lb) .

The eigenvalues in Eq. (D21), which satisfy

(D22)

A generalized quantum measurement is described by a
complete set of effects Fb. 0 (p~!~(bib) (1, (D23)

) P s = 1 (completeness)
b

The probability for outcome b is given by

p~!~(bla) = tr(»-.P, ) . (D16)

Ss =
& a

l pa~~(bla) = 1 j (D17)

that are exhaustive and disjoint. Let Sb be the subspace
spanned by the vectors la) such that a C Ss, the sub-
spaces Ss are, of course, orthogonal. Since p~!~(bla) =
(alPsla) = 0 if a g Ss and since any effect has a Hermi-
tian square root, we can conclude that

I'sla) = 0, for a g Ss, (D18)

i.e., Fb operates only within the subspace Sb. Thus the
efFects operate in mutually orthogonal subspaces, and
completeness implies that they are projectors onto those
subspaces, i.e.,

+s = ) . Ia)(al = »
aySg

(D19)

The theorem says that if the effects are not orthogonal
projectors, then the measurements are necessarily' impre-
cise in the sense that it is impossible to find a complete
set of states such that the measurement outcomes are
completely predictable. An essentially trivial version of
this imprecision occurs when all the effects commute—
1.e.)

[Eg, I"s ] = 0, for all b and b' (D20)

—because then one can diagonalize all the effects in a
common basis lb):

What distinguishes conventional quantum measure-
ments Rom generalized ones? The answer is provided
by the following theorem: if there exists a complete, or-
thonormal set of pure states p = la)(al such that all
the measurement probabilities are sharp, i.e., for each a,
there is a unique b such that p~!~(bla) = (alEqla) = 1,
then the effects are orthogonal projectors. The proof
begins by noting that the set of all a values can be par-
titioned into sets

are clearly the conditional probabilities for outcome 6,
given that the system is in state lb). These conditional
probabilities are normalized to unity by the completeness
condition (D15).

Measurements described by commuting efFects are eas-
ily understood generalizations of orthogonal-projector
measurements. An ideal conventional quantum measure-
ment, as in Eq. (D10), is a measurement of a nonde-
generate observable. The orthogonal-projector measure-
ment of Eq. (D12) can be regarded as a measurement of
a nondegenerate observable that has eigenvectors lb), but
a measurement with insuKcient resolution to distinguish
all the eigenvalues. The commuting-effects measurement
of Eq. (D22) can also be regarded as a measurement of a
nondegenerate observable that has eigenvectors lb), but
a measurement with reduced resolution plus imprecision
that makes the outcome unpredictable even when the sys-
tem state is an eigenstate lb) of the measured observable.

The situation is more interesting, but less amenable
to general interpretation, if the effects do not commute.
There being then no complete, orthonormal basis that
diagonalizes all the effects simultaneously, there is no
way to interpret the measurement in terms of a sin-
gle conventional observable. The intrinsic imprecision
of the measurement arises because one is really measur-
ing two or more noncommuting observables simultane-
ously. The noncommuting observables are, in general,
not unique; more discouraging is that, given the effects,
there is no general prescription for identifying candidates
for the noncommuting observables. For this reason a
measurement described by noncommuting effects is usu-
ally referred to as a measurement of a generalized ob-
servable. Nonetheless, it is useful to keep in mind the
potential interpretation in terms of noncommuting con-
ventional observables; in the next subsection we con-
sider a measurement that can be naturally interpreted
as a simultaneous measurement of two quadrature com-
ponents (equivalent to a simultaneous —but necessarily
imprecise! —measurement of position and momentum).

We can categorize measurements of generalized observ-
ables in the same way we categorized measurements of
single conventional observables. An "ideal" measurement
of a generalized observable —one with all the resolution
allowed by quantum mechanics —is described by effects
that are proportional to nonorthogonal one-dimensional
projectors,

Is = ) p~!~(bib)II- = ) p~!g(bib)lb)(bl . (D21)
+s = F~' = fslb)(bl (D24)

The probability for outcome b becomes [cf. Eq. (D9)], where 0 & fq & 1. The corresponding
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probability for outcome b is

p++(bla) = tr(p Ps ) = fb(blp lb) (D25)

is described by a complete set of orthogonal meter projec-
tion operators IIb . The probability for result b is given
by the standard formula

Ideal measurements of generalized observables-
and the associated multiples of nonorthogonal one-
dimensional projectors —are the building blocks that one
uses to construct other measurements of generalized ob-
servables. For example, we can introduce a straightfor-
ward reduction in resolution by adding ideal effects,

pQ~Q(bla) = tr& &(UpaoeU II s ) = trt &(p& &U II& U)

(D31)

where trt t denotes a trace over the system, the me-
ter, and the environment. One can write the probabil-
ity (D31) in terms of a system trace,

~ = ):~-,"= ):f-lb)(bl,
b&Ss

(D26) pa~~(bla) = tr(p-A)

where the system operator

(D32)

where the sets Sb are exhaustive and disjoint [cf.
Eq. (Dll)]. The probability for outcome b becomes Eb = trME(pMEU II& U) (D33)

pa(x(bla) = tr(p Pg) = ) pa[&(b]a) = )"fs(hip~lb) .

(D27)

Finally, we can introduce a reduction in resolution plus
additional imprecision by taking appropriate linear com-
binations of the ideal effects,

) pB(B(bib)+-,'" = ).pB)B(bib) foal»(bl (»8)

where p~~&(b]b) is the conditional probability for out-
come b, given outcome b in the corresponding ideal mea-
surement [cf. Eq. (D21)]. The probability for outcome b

is given by

pa~~(bla) = tr(p-+~) = ).pa~a(bib)pa[A(bla)
b

) PB(B(bib)fs(blp-Ib& (»9)

An arbitrary complete set of effects can be written
(nonuniquely) in the form (D28).

is de6ned in terms of a meter-environment trace. It
should be obvious that Fb is an effect for the system;
completeness follows &om the completeness of the meter
projection operators IIb . It should also be clear that
one would generate a complete set of system effects if
the meter measurement were instead a generalized mea-
surement, i.e., if the meter projection operators IIb were
replaced by a complete set of meter effects.

More important than this simple demonstration that
measurement models lead to effects is the converse
(Holevo, 1982; Kraus, 1983; Ozawa, 1984; Peres, 1990):
any complete set of system effects can be realized in an
appropriate measurement model, i.e., by a conventional
measurement on an extended Hilbert space.

A good example of how effects arise &om measurement
models is provided by heterodyne detection (see Fig. 4).
This example has the added virtue of illustrating how
a complete set of effects is replaced by a complete effect
density in the case of continuous measurement outcomes.
The analysis in the caption of Fig. 4 shows that hetero-
dyne detection measures the complex quantity

a+e ' +a~ e'

2. Heterodyne detection and coherent-state projectors

It is easy to show how effects arise out of very general
quantum measurement models. Suppose, for example,
that a quantum system, thp object to be measured, in-
teracts with a meter, the object that is to display the
result of the measurement. In addition to the system
and the meter, let there be a surrounding environment
that interacts with both. Before the system and the me-
ter interact, suppose that the total density operator can
be written as

where a+ is the annihilation operator of the signal mode,
a is the annihilation operator of the image sideband,
and 8 is the phase of the local oscillator. The state of
the signal mode is the density operator p, and the state
of the image sideband is assumed to be the vacuum state
lo-)

By rephasing the quantity (D34) and absorbing an ir-
relevant phase into a, we can always bring the measured
quantity into the forxn

p= p. +~p. =a++a-t

A A

ptot = pa pME ) (D30) It is easy to verify that the Hermitian operators Pq and
p2 commute:

where p is a system density operator and pME is the
density operator of the meter and the environment. The
system, meter, and environment interact for some time,
their joint evolution described by a unitary operator U.

Suppose now that after the interaction, one makes a
conventional quantum measurement on the meter, which

[p. , p.] = , [p, p] =o— (D36)

Hence they have a genuine quantum-mechanical joint
probability density p(Pq, P2) = p(P), which is determined
by the states of the signal and the image sideband.
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(~«a' —«'p) J d«p&(p)~«p «p- (D37)

The second form here is a Fourier transform in disguise,
with inverse

Perhaps the easiest way to get at the probability d.en-
sity p(P) is through its characteristic function

if the input quantum state is a position or momentum
eigenstate.

Homodyne detection is considerably easier, because
the analysis in the caption of Fig. 4 shows that it mea-
sures a quadrature component

2(ae ' + ate' ),

(D38)

VA can now manipulate the characteristic function
through the following steps:

@(~) = t V-D( + ~)](0-ID( — —~')lo-)
=tr(p e ~ e~ )=tr(e~ p e ~ ).

(D39)

The first equality follows Rom factoring the expectation
value in Eq. (D37) into separate expectation values of
displacexnent operators for the signal and the image side-
band; the second equality follows 6.om writing the sig-
nal displacement operator in antinormal order and the
image-sideband displacement operator in normal order
[Eq. {5.5)]; and the third equality follows from the cyclic
property of the trace. There remaining no explicit refer-
ence to the image sideband, we dispense with the + that
distinguishes the signal mode in the last two equalities.

By using the coherent-state completeness prop-
erty (5.13) to perform the trace in the coherent-state
basis, we can put the characteristic function in the form

d2
@(~) = (pl" p-e ' Ip)

d2 p e~P -~P (D40)

Comparison with Eq. (D37) shows that

p(P) = —(Plp IP) = tr{p I"i )
1

(D41)

where Fp is the coherent-state effect density of Eq. (5.24).
The probability density (D41), formed Rom the diagonal
matrix elements of the density operator in the coherent-
state basis, is called the q function in quantum optics
(Husimi, 1940).

The q function (Plp lP)/m' can never be as sharply
peaked as a b function. Moreover, it cannot be sharply
peaked in either Pi or P2 separately; this imprecision
can be thought of as a consequence of noise that is
added during any attempt to measure simultaneously
both quadrature components —or both position and mo-
mentum (Arthurs and Kelly, 1965; Caves, 1982; Ya-
mamoto and. Haus, 1986; Arthurs and Goodman, 1988,
1991; Braunstein et al. , 1991; Ozawa, 1991; Stenholm,
1992). The Heisenberg uncertainty principle states that
position and momentum obey a fund. amental uncertainty
product, which prevents both &om having zero variance.
In a simultaneous measurement of x and p, the situation
is even worse: both z and. p have finite variance, even

which is determined by the phase 8 of the local oscillator.
If 8 = 0, homodyne detection measures the quadrature
component xi of Eq. {5.2).

APPENDIX E: CLAIMS OF INFINITE WIDEBANG
CAPACITY

There are several claims (Helstrom, 1974; Yuen et al. ,
1975; Pierce et aL, 1981) of infinite wideband capac-
ity in the literature. It is important to examine these
claims critically. Before doing so, however, it is useful to
note a difFerence between communication theorists and
physicists —a difference that in our experience can make
the channel capacity go to zero when the two groups
try to communicate. A communication theorist defines a
channel by specifying input and output alphabets and by
giving conditional probabilities that characterize channel
noise; he or she then puts primary emphasis on deriving
rigorous mathematical consequences, which are both im-
portant and useful whether or not the channel has a phys-
ical realization. A physicist, while acknowledging the
mathematical importance of such results, puts primary
emphasis on a physical realization, because a physicist is
interested in how physical law aKects the performance of
communication systems.

With this preface we turn to the claims (Helstrom,
1974; Yuen et al. , 1975; Pierce et al. , 1981) of infinite
wideband capacity. Prom a communication theorist's
point of view, these claims are rigorous consequences of
assuming a channel where photon energy is independent
of frequency. From a physicist's point of view, the ne-
glect of the Einstein relation E = h f means that these
information-theoretic analyses are physically applicable
only to narrowband channels, in which case it is widely
accepted that quantum channels have a finite capac-
ity. Technically, these analyses find infinite wideband
capacity because they constrain the average photon in-
tensity, whereas the relevant physical constraint involves
energy —i.e., a power constraint —instead of photon num-
ber. Beyond just concluding that these infinite-capacity
claims are physically irrelevant, however, we can clothe
the channel models in physical garb and, estimate wide-
band capacities by letting the bandwidth approach the
&equency.

Helstrom (1974) considers a finite transmission time
7. He imagines constructing M orthogonal longitudinal
modes on the time interval 7 and signaling by excit-
ing one of these modes into a coherent state that has a
mean number N, of photons, while leaving the rest of
the modes in the vacuum state. For M &) 1 Helstrom
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finds a capacity very close to 7 log2 M. He concludes
that "the coherent pure-state channel must have infinite
capacity, " because M can be made arbitrarily large. He
further remarks that "the quantum-mechanical nature of
the signals themselves does not. . . limit the information-
carrying capacity of a coherent optical channel. " These
conclusions are apparently meant to apply even to nar-
rowband channels.

To evaluate these claims, we give the channel some
physical properties. Assume that the channel operates at
&equency f within bandwidth B; the input power is then
P = N, hf/7 Sinc. e there are M = B7 = N, hfB/P
orthogonal longitudinal modes, Helstrom's capacity be-
comes

P (N, hfBi
CH = 7 log2(B7) = log2~

~

. (El)

Helstrom s channel is just like the particle-like channel
discussed in Sec. II.B, except that N, h replaces h [cf.
Eq. (2.22)]. A study of Helstrom's Fig. 1 and the last
equation of his paper shows that to approach the capac-
ity (El) requires N, )& 1. Thus Helstrom's channel is
considerably suboptimal, because one could achieve the
capacity (El) with N, = 1 by using one-photon num-
ber states instead of coherent states (cf. the discussion of
placement information in Sec. III.A.2).

For narrow bandwidths Helstrom's capacity (El) is
clearly limited. To say that quantum mechanics does
not limit the narrowband capacity is misleading, because
the channel is intrinsically quantum mechanical: letting
h -+ 0 with B and P fixed violates the assumption
that 1 &( B7 = N, hfB/P. Moreover, if the channel
is allowed to become wideband so that M = B7 be-
comes large, then one must take into account the &e-
quency dependence of photon energy. The argument
given for the particle-like regime in Sec. II.B shows that
the wideband capacity of Helstrom's channel is bounded
by C~ + QP/N, h [cf. Eq. (2.23)].

Yuen, Kennedy, and Lax (1975) consider a channel
similar to Helstrom's and conclude that "reliable com-
munication is possible at an arbitrarily high rate for
any given fixed power, if an arbitrarily large amount of
bandwidth is available. " They note, however, that "the
narrowband or constant &equency (f white) condition
breaks down for large bandwidth, " thus acknowledging
that their conclusion does not apply to physical chan-
nels.

The most prominent and explicit claim of infinite wide-
band capacity has been advanced by Pierce, Posner, and
Rodemich (1981; referred to as PPR in the following).
PPR give a detailed physical description of their chan-
nel; to relate their work to ours, we use a mixture of
their notation and ours. PPR consider a binary (on-off)
Poisson photon channel, which operates at &equency f
(with photon energy hf) and which is contaminated by
thermal radiation at temperature T. In the "on" state
the transmitter emits a pulse of photons that lasts a time
t = B,where B is the bandwidth of the pulse (PPR

assume that Bt = 2, which contributes to an error that
we correct below). The photon-nuinber distribution in
each signal pulse is assumed to be a Poisson distribution
with mean n, = mo ——u. In the "ofF" state the transmit-
ter emits no photons. The "on" state is transmitted with
probability o. and the "ofF" state with probability 1 —o, .
Hence the mean number of signal photons per pulse du-
ration, i.e., per channel use, is n = o.n„and the average
signal power is P = hfdf = hfBn = hfnn, /t. The mean
number of thermal photons per channel use, n~, is given
by Eq. (3.12); PPR also introduce a dimensionless field
quadrature variance o02 ——

2 nT [because they assuine that
Bt = 2, PPR use oo = 4nT, but the 2 is dictated by
their Eq. (29)].

PPR consider both peak-power and average-power
constraints. Our interest here is the Poisson channel
with an average-power constraint, which PPR treat in
their Sec. IV and for which they derive a capacity

P'= kTInT p kTln2 (E2)

[PPR's Eqs. (100), (108), and (40)]. The rightmost form
of this capacity is an exact consequence of PPR's work,
but it agrees with the "approximate" form they give in
Eq. (2) instead of with the "exact" form they give in
Eq. (3), the reasons being, first, that their Eq. (3) uses
the erroneous relation o02 ——4in~ and, second, that it
uses an approximate low-temperature form for n7- intro-
duced in PPR's Eq. (13). The PPR result (E2) yields
infinite capacity in the zero-temperature limit. In addi-
tion to their derivation, PPR give a heuristic argument
to "explain why it is reasonable that the capacity with
an average power constraint be asymptotic to [Eq. (E2)]
as T —+ 0." A careful examination of the derivation in
PPR's Sec. IV shows, however, that the capacity (E2)
emerges in the simultaneous limits o. —+ 0, n, ~ oo, and
t + 0 (B -+ oo), with p = P/hf = nn, /t held constant
and hence with

n=nn, =pt~0. (E3)

Thus the PPR capacity (E2) must be viewed with can-
siderable caution, because in these limits it is mandatory
to take into account the &equency dependence of photon
energy, which PPR did not do.

The procedure used by PPR to find the capacity is
Hawed, because it maximizes with respect to bandwidth
B (or pulse duration t) without constraining the band-
width to be consistent with assumption of &equency-
independent photon energy. Technically, the PPR proce-
dure amounts to varying the bandwidth and maximizing
the information per photon. Another way to treat varying
channel bandwidth would be to allow the &equency (pho-
ton energy) and the bandwidth to vary at the same time,
perhaps with fixed &actional bandwidth, which would
lead to a maximization problem like that in Sec. III.A.2.

Despite these diKculties, we can estimate the wide-
band capacity of PPR's channel, at least in the low-
temperature case nz (& 1, which is PPR's primary con-
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cern and for which PPR provide sufBccient data. Our es-
timate comes &om applying the appropriate bandwidth
constraint, B & f, to PPR's work. We are able to show
that the capacity of PPR's channel is consistent with the
capacity upper bound (1.4); moreover, we find a condi-
tion for validity of the PPR capacity (E2) and show that
it prohibits taking the zero-temperature limit. .

We proceed by noting that the data in PPR's Table II
indicate that to approach the capacity (E2) requires that
n & nz . Fiirthermore, in their Eq. (109) PPR note that

H(n) —n log2 n —(1 —n) log2(1 —n)
+PPR +

t t

H(cx)n=pt&—
log, (1+n~')

o. log2 o.
] T

log2 n
(E5)

Although it might seem odd that the PPR capacity re-
quires n « 1 [cf. Eq. (E3)], this is a consequence of using
a procedure that maximizes the information per photon
(see discussion in Sec. III.A.2). Equation (E5) is our con-
dition for the validity of the PPR capacity. Rewriting this
validity condition in a form that allows us to impose the
bandwidth constraint, we find.

nT & n = P/hfB & P/h. f', (E6)

which forbids letting T —+ 0 unless P + 0 at the same
time.

We can use the validity condition n nz to bound the
PPR capacity in the case nT && 1,

CppR —p log2 n
P v'Bn log2 n,~

which is the sensible statement that the capacity per use,
CppRt, cannot exceed the statistical information H(a)
corresponding to the on-oK probabilities. In the case of
interest, a & nT « 1, Eqs. (E2) and (E4) imply that

Bnlog2n, n & e
B/eln2, e &n&1 (E8)

(cf. the discussion of particle-like channels in Sec. II.B).
The n &( 1 limit of this capacity has been given by Stern
(1960), Gordon (1962), and Yamamoto and Haus (1986).
One can maximize the capacity (E8) further by assum-
ing a fixed &actional bandwidth q = B/f « 1, as in
Sec. III.A.2. The resulting maximum,

2 2
&max =

e21n2 eln2
gP

bits/s, (F9)

is achieved at n = e, corresponding to &equency
f = e+P/r/h and to C „/Bn = 2/ln2 = 2.8854 bits
per photon. Comparison with Eq. (3.27) shows that the
capacity of a narrowband Poisson channel is smaller than
the capacity of a narrowband number-state channel by
the factor 1/eln2 0.53. Setting r/ = 1 yields an es-
timate for the capacity of a wideband Poisson channel,
which lies below the upper bound CwB of Eq. (1.4).

Poisson process for counting photons at the output. The
rate At is bounded above by a maximum rate B. (Davis
also includes a background dark-noise contribution to the
rate, which we ignore here. ) With a constraint on the av-
erage power P, which must satisfy P & Bhf, Kabanov
(1978) and Davis (1980) find the channel capacity and
show that it is achieved when Aq takes on only two val-
ues, 0 (for the "off" state) and B (for the "on" state).
In such a Poisson channel the information is encoded in
arrival times of individual photons (pulse position mod-
ulation); to distinguish successive photons, the channel
bandwidth must be the maximum rate B, as is implied
by our notation. For comparison with our work, it is con-
venient to introduce the number of photons per channel
use, n = P/Bhf, which must satisfy n & 1 for this kind
of intrinsically quantum-mechanical channel.

Written in terms of n, the Poisson channel capacity
found by Kabanov and Davis becomes

PB——v nT log2n
/i f

PB
Iif '

(E7)
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