Recent progress in the field of electron correlation

G. Senatore
Dipartimento di Fisica Teorica, Universita di Trieste, I1-34014 Grignano (TS), Italy

N. H. March
Department of Theoretical Chemistry, University of Oxford, Oxford, OX13UB, England

Electron correlation plays an important role in determining the properties of physical systems, from
atoms and molecules to condensed phases. Recent theoretical progress in the field has proven possible us-
ing both analytical methods and numerical many-body treatments, for realistic systems as well as for
simplified models. Within the models, one may mention the jellium and the Hubbard. The jellium model,
while providing a simple, rough approximation to conduction electrons in metals, also constitutes a key
ingredient in the treatment of electrons in condensed phases within density-functional formalism. The
Hubbard- and the related Heisenberg-model Hamiltonians, on the other hand, are designed to treat situa-
tions in which very strong correlations tend to bring about site localization of electrons. The character of
the interactions in these lattice models allows for a local treatment of correlations. This is achieved by the
use of projection techniques that were first proposed by Gutzwiller for the multicenter problem, being the
natural extension of the Coulson-Fischer treatment of the H, molecule. Much work in this area is analyt-
ic or semianalytic and requires approximations. However, a full many-body treatment of both realistic
and simplified models is possible by resorting to numerical simulations, i.e., to the so-called quantum
Monte Carlo method. This method, which can be implemented in a number of ways, has been applied to
atoms, molecules, and solids. In spite of continuing progress, technical problems still remain. Thus one
may mention the fermion sign problem and the increase in computational time with the nuclear charge in
atomic and related situations. Still, this method provides, to date, one of the most accurate ways to calcu-

late correlation energies, both in atomic and in multicenter problems.
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the electron gas (Singwi and Tosi, 1981; Ichimaru, 1982)
and on the so-called density-functional theory (Bamzai
and Deb, 1981; Ghosh and Deb, 1982; Lundqvist and
March, 1983; Callaway and March, 1984; Jones and
Gunnarsson, 1989; Parr and Yang, 1989). Thus we shall
keep this discussion relatively short, focusing on the way
Wigner electron crystallization can be treated within the
density-functional framework. It is relevant in this con-
text to stress at the outset that, while density-functional
theory reveals the way in which electron correlation
enters the calculation of the single-particle density, there
is no means within the formal framework for calculating
the required functional describing correlation.

Section III is concerned with the multicenter problems
of molecules and solids, and the qualitative aspects of
electron correlation are first stressed by summarizing the
idea behind the Coulson-Fischer (1949) wave function for
the ground state of the H, molecule. This idea is then
taken up in relation to the work of Gutzwiller (1963,
1964, 1965) on strongly correlated electrons in narrow
energy bands. In this treatment, electron interactions are
treated by means of the Hubbard U, which, by definition,
is the energy required to place two electrons with anti-
parallel spin on the same site. As in the Coulson-Fischer
treatment, one reduces the weight of the ionic
configurations that are obtained by expanding out a sin-
gle Slater determinant of Bloch wave functions.

Because of the current excitement concerning super-
conductivity, the relevance of the Hubbard Hamiltonian
in providing a quantitative basis for the development of
Pauling’s ideas on the resonant valence-bond theory of
metals is briefly summarized also within the context of
Gutzwiller’s method.

To this stage in the article, the main theoretical devel-
opment is via largely analytical methods. However, as
mentioned already, important progress in the calculation
of correlation energy in multicenter problems has result-
ed from the development of quantum computer simula-
tion, pioneered in general terms by Anderson (1975,
1976, 1980) and applied to jellium by Ceperley and Alder
(1980). Important here is to input a trial wave function,
transcending wherever possible a single Slater deter-
minant. Briefly, one form of the QMC method starts
from the time-dependent Schrodinger equation or the
equivalent Bloch equation in imaginary time, in contrast
to the methods used elsewhere in the article. The alter-
native approach works directly with the many-particle
Green’s function, depending on all electronic coordinates
and on an energy parameter. The strengths and the
weaknesses of these methods are assessed. As well as the
jellium results already mentioned, the parallel develop-
ment in calculating correlation energies in small mole-
cules will also be described. At the time of writing,
though there are still some technical problems, this com-
puter simulation approach provides a very accurate way
of calculating electronic correlation energies in multi-
center problems. Some promising directions for future
work are suggested in concluding the article.
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Il. HOMOGENEOUS ELECTRON ASSEMBLY

We now turn to the discussion of correlation in a mod-
el appropriate to simple metals. It will be useful to focus
first on the electron assembly formed by the conduction
electrons in a metal like Na or K. In these cases, there is
a whole body of evidence that demonstrates the weakness
of the electron-ion interaction. Therefore the jellium
model, introduced initially by Sommerfeld long ago,
where the ionic lattice is smeared out into a uniform neu-
tralizing background of positive charge in which the
correlated electronic motion takes place, affords a valu-
able starting point.

Electron correlation can be treated quantitatively in
this jellium model by numerical means (see, e.g., Sec.
IV.D) at all densities, including metallic ones. Approxi-
mate treatments, on the other hand, are simpler in the
two limiting cases of very high and very low densities.
Though at first the problem looks totally different from
the molecular case (see especially Sec. III.A), there is, in
fact, a close parallel in the sense that in the high-density
limit a delocalized picture (cf. molecular orbitals) is
correct while, in the low-density limit, electron localiza-
tion (cf. valence bond theory) is again induced by strong
Coulomb repulsion between electrons.

In the following we shall focus especially on the regime
of extreme low densities, where the effects of correlation
are dominant, leaving aside the range of high and metal-
lic densities (see, e.g., Singwi and Tosi, 1981). Here we
shall just recall that at high densities, i.e., for r,—0, the
kinetic energy dominates the potential energy and an
independent-particle description provides a reasonable
starting point to describe the electron assembly. In fact,
a single plane-wave determinant of spin orbitals is a
Hartree-Fock solution for the jellium model, yielding a
homogeneous density distribution (see, e.g., March et al.,
1967) and an energy

EHF

N

2.21 _ 0.916

2
= rg

Ry . (2.1)

Many-body perturbation on such a state, in which elec-
trons are fully delocalized, yields an approximate esti-
mate of the correlation energy E, (Gell-Mann and
Brueckner, 1957), defined as the difference between the
true ground-state energy E, and its Hartree-Fock ap-
proximation Eyg, i.e., E,=E,—Eyg.

A. Low-density Wigner electron crystal

Turning to the extreme low-density limit r;— oo,
Wigner (1934, 1938) pointed out that the above delocal-
ized picture broke down completely, and once the poten-
tial energy became large compared with the kinetic ener-
gy, the electrons would then want to avoid each other
maximally. He stressed that this situation would be
achieved by electrons becoming localized on the sites of a
lattice. He argued that one must find the stable lattice by
minimizing the Madelung energy. Of the lattices so far
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examined, the bcc lattice has the lowest Madelung term.
This yields, for the electron bcc Wigner crystal, the ener-

gy

E _  1.792
r—»ooN rs

Ry, (2.2)

which shows, by comparison with the Hartree-Fock
plane-wave result (2.1), that this latter approximation is
no longer of any physical utility, the energy being too
high by a factor of about 2.

As the repulsive coupling between the electrons is re-
laxed, that is, r; reduced below the range of validity of
Eq. (2.2), the electrons will vibrate about the bcc lattice
sites. Since the bcc lattice has a Wigner-Seitz cell of high
symmetry, it is a useful first approximation to neglect the
(multipole) fields of the other cells in considering the vi-
bration of an electron in its own cell. Then the potential
energy V(r), in which the electron vibrates, is created
solely by the uniform positive background in its own cell,
which, in the spherical approximation, gives

e2r?

3.3
rsao

V(r)= +const (2.3)
with the ground-state isotropic harmonic-oscillator wave
function as
3/4

exp(—1lar?), a=(rya,)"**. (2.4)

= |&
Plr)= lﬂ

This Wigner oscillator leads to a kinetic energy per elec-
tron in the low-density limit as

. T 3

rslflw N 232 Ry @:3)
This is qualitatively different from the independent elec-
tron result (2.21/r2)Ry. In fact, an obvious effect of
switching on the electron-electron interaction away from
the 7, —0 limit is to promote electrons outside the Fermi
sphere of radius kj, leaving holes inside (cf. Fig. 3). This
creation of electron-hole pairs obviously increases the
kinetic energy. Thus, if one writes T/N =K /r2, the in-
crease in kinetic energy appears as an increase in K (7).
In the limit »,— oo, the creation of particle-hole pairs is
so prolific that K diverges as r!’? and the Fermi sphere
picture breaks down completely. The calculation yield-
ing Eq. (2.5) is an Einstein-type model, whereas one
should, of course, treat the vibrational modes of the bcc
Wigner crystal by collective phonon theory. The
coefficient 3 in Eq. (2.5) is then reduced to 2.66 (Carr,
1961; Coldwell-Horsfall and Maradudin, 1963).

The Fermi distribution is then profoundly altered by
the creation of particle-hole pairs, and another way of
seeing this is to take the Fourier transform of the Gauss-
ian orbital (2.4), which, of course, yields also a Gaussian
momentum distribution. At most, remnants of a Fermi
surface remain in the low-density limit [in one dimension,
this statement is made quantitative by Holas and March
(1991)].
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FIG. 1. Pair-correlation function g(r) vs x =r/r.a,, for
different densities: (i) Wigner form for r, = 100; (ii) Wigner form
for r,=10; (iii) Fermi hole, correct in the limit r, —0.

A measure of the order present in a many-body system
is afforded by the so-called pair-correlation function g (7).
This gives the probability of finding pairs of electrons at
distance r. In the Wigner-crystal regime, and within the
approximate framework of electrons behaving like Ein-
stein oscillators, it is a straightforward matter to con-
struct g(r). Results for different values of 7, are shown
in Fig. 1, taken from the work of March and Young
(1959). The tendency of electrons to avoid each other
with increasing r; is apparent, as well as the greater
amount of order present in the state in which the elec-
trons are localized in Gaussian orbitals in contrast to
that in which they are in plane waves.

B. Density-functional theory of many-electron system

One approach to incorporate, approximately, of
course, electron correlation is afforded by the density-
functional theory. However, because of related recent re-
views (Lundqvist and March, 1983; Callaway and March,
1984; Jones and Gunnarsson, 1989) and books (see, e.g.,
Parr and Yang, 1989), our treatment will be very brief,
merely to establish the notation and recall a few facts.

The theory has developed from the pioneering work of
Thomas (1926) and Fermi (1928) and Dirac (1930), with a
later paper by Slater (1951) also being very important in
developing the present form of the density-functional
theory. The step that was lacking, namely, the proof that
the ground-state energy of a many-electron system is
indeed a unique functional of the electron density, was
taken by Hohenberg and Kohn (1964), who supplied the
proof for a nondegenerate ground state.

It has proven helpful in developing the theory to
separate the energy functional into a number of parts,
closely paralleling the energy principle of the original
Thomas-Fermi theory (cf. March, 1975).
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Thus one writes the total energy E [p] as a sum of an
independent-particle kinetic-energy functional T [p],
electrostatic potential-energy terms, and then a contribu-
tion E,.[p] from exchange and correlation which are use-
fully considered together. Explicitly, we write

E[p]= T,[p)+ [ p(r)v (r)dr

f M—drdr "+E,[p], (2.6)

where v (r) is the external potential acting on the elec-
trons (—Ze?/rin an atom).

According to Hohenberg and Kohn (1964), E [p] is a
minimum at the equilibrium density distribution in the
given external potential v(r). Thus one minimizes this
total energy with respect to the ground-state electron
density p(r), subject only to the condition that the elec-
tron density satisfy the normalization condition

[ptndr=N, @7

for a system with N electrons.

With the introduction of a Lagrange multipler u,
which has the significance of the chemical potential of
the electron cloud of the atom, molecule, or solid being
considered, the Euler equation of the variational problem
reads

T, 2 p(r') ’ aExc

u= Sp(r )+v(r )t+e f [r—r’Idr+8p(r) ,  (2.8)
which evidently expresses the constant chemical poten-
tial p throughout the charge distribution as a sum of
various contributions which vary from point to point,
arising from Kkinetic, electrostatic, and exchange-plus-
correlation contributions. In this form, as Kohn and
Sham (1965) emphasized, thereby formally completing
the treatment of Slater (1951), one can interpret the prob-
lem as posed in terms of equivalent independent-particle
equations, which then bypasses the fact that even the
independent-particle kinetic-energy functional is still not
known in closed form [as a functional of p(r)]. Thus by
solving single-particle Schrodinger equations, with a total
one-body potential energy given by

8E
p(r , xc 2.9
vep(r)=v(r)+e? [ BT o 2.9)

one can avoid any approximation in the independent-
particle kinetic energy. Furthermore, the above argu-
ment suggests that, in principle, the exact many-electron
problem of calculating the ground-state electron density
p(r) can be reduced to a one-body problem (but see Parr
and Yang, 1989, for a discussion of the subtleties of the
so-called v rtepresentability). Naturally, the many-
electron effects in the correlation energy functional are
now subsumed in the one-body potential energy v .g(r),
through the functional derivative 8E,  /8p(r). Of course,
exact knowledge of this quantity would require exact
solution of the many-electron problem, which is current-
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ly not feasible. Extraction of the potential v 4(r) directly
from the ground-state density has proved possible for the
Be atom, however (Hunter and March, 1989).

C. Local-density approximations to
exchange and correlation

As the simplest example of the use of Eq. (2.9), let us
derive the so-called Dirac-Slater exchange potential.
Here one neglects correlation and approximates the ex-
change energy density by its value in a uniform electron
gas with its local density inserted at the point in question.
This leads to the result that the total exchange energy, 4,
say, in Dirac-Slater approximation is given by

1/3
3e2 |3

A =—cefp(r)4/3dr, =" |—

4 |7 (2.10)

Taking the functional derivative required by Eq. (2.9)
leads immediately to the Dirac-Slater exchange potential

—4e,p()!7 . 2.11)

v Dirac-Slater( r)=

This local-density approximation (LDA) has proved very
valuable. In fact, one can extend it to treat the full
exchange-correlation functional by setting

EPAp]= [ e, (p(r)dr .

(2.12)
Above, €,.(p,) is the exchange-correlation energy per
particle of the electron fluid at uniform density py, which
is accurately known (cf., Sec. IV.D) and suitably
parametrized (Vosko et al., 1980; Perdew and Zunger,
1981).

It turns out that in the few examples that can be solved
for the exchange energy, the Dirac-Slater form is a very
useful approximation (see, however, Overhauser, 1985).
For example, Miglio et al. (1981) have shown, in the case
of the infinite barrier model of a metal surface, that al-
though the electron density varies strongly at the surface,
nevertheless the local-exchange theory discussed above
remains a remarkably useful approximation.

The local-density approximation and its local spin-
density extension have been widely applied, going all the
way from atoms.and molecules to clusters and solids.
There are successes (many) and failures (not negligible
ones), depending both on the physical quantity under
consideration and on the class of systems. An up-to-date
survey of the overall situation was given recently by
Jones and Gunnarsson (1989). Modifications of the LDA
schemes that go beyond the local dependence in Eq.
(2.12), seek to include in the exchange and correlation
functional additional information on the behavior of the
single-particle density and/or to enforce exact limiting
behaviors of the resulting exchange-correlation potential
(see, e.g., Becke, 1992 and Johnson et al., 1993). Of the
many situations where the above theory, based as it is on
using uniform electron-gas relations locally, is too crude,
the electron Wigner crystal at zero temperature, i.e., in
the fully degenerate limit, constitutes a good example.
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D. Density-functional treatment of Wigner crystallization

Underlying the LDA of Eq. (2.12) is the assumption
that one is concerned with systems with modulations of
the electronic density which are neither too large nor too
rapidly varying. In fact, LDA is commonly used in situa-
tions where the density is far from satisfying such re-
quirements. Nonetheless, it is not surprising that LDA
should perform poorly, especially in the treatment of the
Wigner crystal mentioned in Sec. IL.A, since this is
characterized by both a strongly localized density and a
crucial role of correlations. Below, we summarize in
some detail the application to the study of the Wigner
crystal of an approximation scheme that transcends
LDA. However, before doing so, we anticipate that the
most accurate assessment of the freezing density in jelli-
um, r,=100%20, comes from quantum Monte Carlo

|

1 , - , - , '
E.lp,)=E.lpol+ [ [drdr[—x =) +x5 (r—1)]pg(r)po(r) ,

with x(r) and xy(r) being, respectively, the static
response function of the homogeneous liquid and the
response function of the noninteracting electrons (i.e., the
Lindhard function). One of the motivations for using
such a quadratic approximation is that, for classical
liquids, it is known to work surprisingly well (for a recent
review, see Baus, 1990).

As we mentioned in Sec. II.B, the Euler-Lagrange
problem for the ground-state energy functional of in-
teracting particles can be conveniently recast into the so-
called Kohn-Sham problem (i.e., the self-consistent prob-
lem of noninteracting particles in a density-dependent
one-body potential). Once the exchange-correlation
functional is known, it is a simple matter to obtain at
once the density-dependent Kohn-Sham potential. From
Eqgs. (2.9) and (2.13) one gets, in Fourier transform,

ver(@)=po@)[—x @) +x5 ()] . 2.14)

It may be worth stressing at this point that, whereas the
LDA borrows only a thermodynamic property of the
homogeneous liquid (i.e., the exchange-correlation
energy), the quadratic approximation involves-—in
principle—structural information of the liquid at all the
wave vectors which are relevant in the modulated phase.
Thus, for a regular solid, one finds that such a region of
wave vectors extends from about 2q onward.

To perform calculations, one needs the response func-
tion of the homogeneous interacting-electron liquid.
This quantity, however, is not exactly known. Senatore
and Pastore have therefore employed the so-called STLS
(Singwi, Tosi, Land, Sjolander) decoupling scheme
(Singwi et al., 1968) to construct ¥~ !(g) from the struc-
ture factor S (k) obtained from the QMC simulations.

The calculation of the ground-state energy of the
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simulations (cf. Sec. IV.D), which also establish that the
transition to a bcc regular structure takes place from a
fully spin-polarized liquid, this phase being lower in ener-
gy with respect to the unpolarized liquid for »,>75.
Therefore in the following we shall content ourselves
with a discussion of the coexistence between the spin-
polarized liquid and a regular crystalline phase.

Senatore and Pastore (1990) find that the application of
the LDA to the freezing of the spin-polarized electron
fluid into a bcce crystal yields an exceedingly low value for
the freezing density, r,=22. Hence they propose an ap-
proximation for exchange and correlation in which, rath-
er than on the full functional E, [p], one focuses on the
difference A=E, [p;]—E,.[p;] between the solid and
the liquid phase and then resorts to an expansion of A
about the liquid, in powers of the density difference
Po(r)=p,(r)—p,. To second order, such an expansion
yields

(2.13)

[

Wigner crystal requires the self-consistent solution of
Kohn-Sham equations for the Bloch orbitals of a single
fully occupied energy band, since there is one electron
per unit cell and one is considering the spin-polarized
state. This can be accomplished by using standard com-
putational techniques for band-structure calculations.
The results that are obtained can be summarized as fol-
lows.

The quadratic approximation predicts freezing into the
bec lattice at »,=102, a value which compares extremely
well with the QMC prediction of »,=100£20. In addi-
tion, a Lindemann ratio ¥ (rms deviation about the lat-
tice site divided by the nearest-neighbor distance) of 0.34
is obtained, whereas QMC suggests ¥ =0.30%0.02 for all
quantum systems studied to date. The calculated density
still turns out to be well localized, even if considerably
less so than in classical freezing. This, together with the
high symmetry of the periodic structure, suggests the
possibility of a tight-binding approximation in which
Bloch orbitals are built from one Gaussian orbital per
site with a variational width. Using this approximation,
calculations simplify considerably, whereas the results for
the freezing r, and ¥ change only slightly. In fact, one
gets r, =107 and y =0.29.

Senatore and Pastore have also investigated the stabili-
ty of the fcc electron crystal. They find, within the fuller
calculations, that the fcc solid is, in fact, the stable phase
between r, =97 and r, =108, being in this range lower in
energy than the bce crystal (and, of course, also lower in
energy than the homogeneous liquid). For higher values
of the coupling r,, the bcc remains the stable phase, in
agreement with the findings of harmonic lattice calcula-
tions (see, e.g., Foldy, 1971).

An investigation of the importance of higher-order
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terms in the expansion of Eq. (2.13), when applied to the
study of Wigner crystallization, was subsequently con-
ducted by Moroni and Senatore (1991), who resorted to
density-functional-theory schemes of the weighted-
density type. While there are quantitative changes in the
details of the freezing transition, the agreement with the
QMC results remains very good. One should note that
the freezing theory summarized above crucially relies on
the knowledge of the static response function of the
quantum liquid. The sensitivity of the results to the ac-
curacy with which Y(q) is known is thus an important is-
sue. At present there is little knowledge about the pre-
cise form of static response in quantum fluids. However,
some progress has recently been made for the two-
dimensional electron gas and for “He (Moroni et al.,
1992), using QMC techniques, and, in fact, work using
similar means is in progress on the three-dimensional
electron fluid (Moroni et al., 1993).

lll. LOCALIZED VERSUS MOLECULAR-ORBITAL
THEORIES OF ELECTRONS IN MULTICENTER
PROBLEMS: GUTZWILLER VARIATIONAL METHOD

We begin by stressing that one-center (i.e., atomic)
correlation effects have to be treated by quantitative ex-
amination of the problem, except for isolated instances of
collective effects within specific shells (see, for example,
Wendin, 1986). In contrast, as already mentioned, we
have qualitative consequences in multicenter problems,
which are worthy of full consideration. Let us start by
reviewing the situation in the H, molecule, going back to
the pioneering work on the chemical bond by Heitler and
London (1927).

This Heitler-London description merely asserted that a
useful ground-state symmetric space wave function could
be built up from the atomic orbitals (1s functions) cen-
tered on nuclei a and b, namely, ¢, and ¢,. After sym-
metrization, one is led to the wave function

Wi (1,2)=¢,(1)¢,(2)+¢,(1)¢,(2) . 3.1)

The first term on the right-hand side of Eq. (3.1) evident-
ly corresponds to electron 1 on nucleus a and electron 2
on nucleus . The second part is added because of the in-
distinguishability of electrons.

Turning to the delocalized description, one introduces
a molecular orbital ¥yo, and, in the singlet ground state,
one puts two electrons into it with opposed spins. Then
the MO total space wave function is written in the form

Yo 1,2) = ol 1po(2) (3.2)

and, in terms of the 1s atomic orbitals, in the approxima-
tion in which the molecular orbital is built up as a linear
combination of atomic orbitals,

¥rcao-mol1,2)=[84(1)+6,(1)][¢.(2)+¢,(2)]
=Wyr(1,2)+6,(1)6,(2)+¢,(1)$,(2) .
(3.3)
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In the second part of Eq. (3.3), we have noted explicitly
that the LCAO-MO wave function can be viewed as a
linear superposition of the Heitler-London covalent
terms and an equally weighted admixture of ionic terms,
¢,(1)¢,(2) evidently representing both electrons on nu-
cleus a, etc. That Eq. (3.3) is incorrect as the internu-
clear distance R gets large compared with the size a, of
the 1s hydrogen orbitals is quite clear; the molecule dis-
sociates into two neutral H atoms, just as described by
the original Heitler-London wave function (3.1).

A. Coulson-Fischer wave function
with asymmetric orbitals, for H, molecule

An important clarification of the role of electron corre-
lation in molecules came with the work of Coulson and
Fischer (1949) on H,. They asked the question as to what
was the best admixture of covalent and ionic states at
each internuclear distance R, by contemplating asym-
metric molecular orbitals ¢, +Ad,, A=1, and ¢, +Ad,,
the former representing, with A <1, the electron primari-
ly but not wholly belonging to nucleus a, etc. Then they
formed the (unsymmetrized) variational wave function

W coutson-Fischer = [$a(1) A, (1)]1[45(2)+2A6,(2)] .
(3.4)

Determining A as a function of R by minimization of
(H ) with respect to the wave function (3.4), H being the
total Hamiltonian of the H, molecule, they found the fol-
lowing situation: (a) for R <1.6R .gyijibrium> A=1; (b) for
R > 1.6R . giiibrium» A falls quite rapidly to zero as R is in-
creased. R.giiprium Deing the equilibrium internuclear
separation. For A=1, Eq. (3.4) becomes identical with
Eq. (3.3), whereas for R > 1.6R . ijibrium We See that elec-
trons quickly “go back on to their own atoms.”

This idea, that one decreases the weight of the ionic
configurations in a molecular-orbital treatment, has been
taken up in the work of Gutzwiller (1963, 1964, 1965) for
treating strong correlations in narrow energy bands, and
we shall discuss the results of his method in some detail
below.

The important point to be stressed from the above is
that electron correlations can have the qualitative effect
of driving electrons back on to their own atoms when the
internuclear spacing becomes substantially larger than
the size of the atomic orbitals involved.

It is convenient at this point to follow Falicov and
Harris (1969) and refer to a model for a two-electron
homopolar molecule. These workers discuss the eigen-
states of the one-band Hamiltonian for such a two-
electron system, and their results are summarized in Ap-
pendix A. They then use the exact solution for the
ground state as a standard to assess the validity of the
MO, Heitler-London and other states having either spin-
or charge-density waves. )

By definition, of course, the MO approximation is un-
dercorrelated, the Heitler-London states being always
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overcorrelated. The spin-density and charge-density
waves are less easily classified, with the question of
under- or overcorrelated depending on the strength of
the interaction.

Falicov and Harris construct from spin- and charge-
density-wave states, which have broken symmetry, sym-
metrized versions. These symmetrical states were always
found in their work to be slightly undercorrelated. This
work has been extended by Huang et al. (1976).

B. Gutzwiller’s variational method

As mentioned above, a possible way to account for
correlation of antiparallel electrons in a multicenter
problem is to partly project out from a given uncorrelat-
ed wave function those components corresponding to
double occupied (ionic) sites. In the simple case of H,,
this was most simply done by Coulson and Fischer (1949)
as set out in Sec. III.A. The generalization of such an ap-
proach to situations with an arbitrary number of centers
is due to Gutzwiller (1963, 1965). Here we shall just out-
line the key points of Gutzwiller’s approach, which has
been reviewed by Vollhardt (1984). In the next two sec-
tions, we shall discuss in some detail the application of
the Gutzwiller variational method to treat the correlation
in molecules, on the one hand, and the Hubbard Hamil-
tonian, on the other. The latter has received renewed at-
tention in connection with the exciting discovery of
high-T, superconductivity (Bednorz and Miiller, 1986).

The starting point of Gutzwiller’s variational approach
is the uncorrelated wave function, for the problem under
consideration. This is constructed, for a regular lattice
with N sites and one Wannier orbital ¢ per site, from the
Bloch waves ¥, (r),

wk<r)=%N S exp(ikR,)$(r—R;) . (3.5)

Using the second-quantization formalism, the uncorrelat-
ed ground-state wave function can be written as

|®o)= [T af; IT alil0), (3.6)
keK qEQ

where aL, is the creation operator of an electron in the
Bloch wave ¥, and with spin projection o, |0) is the vac-
uum state, and K and Q are sets of points in reciprocal
space, which in general may be delimited by different
Fermi surfaces. If one denotes the creation operator of
an electron in the Wannier orbital ¢ at the site i by a;f(,,

al —= exp(—ikR; )af:(7 , 3.7

and the corresponding number operator by n;,, the
Gutzwiller wave function can be written as

@) =TT [1—(1—g)n;yn; ]|®y) =g P|Dy) . (3.8)
i
Above, D=3, n;;n;, is the operator that counts the
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number of double occupied sites. Clearly, in the wave
function @, the components containing double occupied
sites are reduced by a fractional amount 1—g (0<g <1)
with respect to their value in the uncorrelated wave func-
tion ®,, thus reducing the repulsive interaction energy
among antiparallel electrons. For a given Hamiltonian
H, the variational parameter g has to be determined by
minimizing the ground-state energy
_{(®|H|®)
E\(g) (olo) (3.9)
To fix ideas, let us briefly consider the case originally
investigated by Gutzwiller, that of the so-called Hubbard
Hamiltonian,

H=3 S t;ala;,+U3 nn;, , (3.10)
ij o i

which is designed to describe fermions on a lattice in a
narrow-band system. The first term on the right-hand
side of Eq. (3.10) is the kinetic energy due to the hopping
of electrons between sites, and the second one crudely de-
scribes the on-site repulsion of antiparallel-spin electrons.
It is straightforward to show that for g =1 one simply re-
gains the uncorrelated state, which of course is the exact
ground state for zero on-site repulsion, U =0. In this
case D =Dy=N;N ,/N. On the other hand, g =0 corre-
sponds to a fully correlated wave function in which the
components containing double occupied sites are
suppressed and D =0. This is the exact ground state for
U= . Therefore, for finite repulsion, one will have
0<g <1 and 0<D <Dy, since the effect of correlation is
precisely to reduce the number of doubly occupied sites
present in the uncorrelated wave function.

Thus far, even for the Hubbard Hamiltonian, the eval-
uation of the averages in Eq. (3.9) has proved too difficult
to carry out analytically in the general case, with the not-
able exception of the one-dimensional lattice (Gebhard
and Vollhardt, 1987; Metzner and Vollhardt, 1987).
Hence one has either to employ numerical methods
(Horsch and Kaplan, 1983; Gros et al., 1987a, 1987b;
Yokoyama and Shiba, 1987a, 1987b) or to resort to ap-
proximate treatments, as originally done by Gutzwiller
(1963, 1965). It has subsequently been shown that the ap-
proximations originally introduced by Gutzwiller to
evaluate the averages in Eq. (3.9) are just equivalent to
the neglect of the spin-configuration dependence of the
various terms appearing in the expansion of both
(¢|H|p) and (d|d) (Ogawa et al., 1975; see also
Vollhardt, 1984). While the interested reader is urged to
consult the original papers for the details of Gutzwiller’s
approximation (GA), it is convenient to report here at
least the main results of GA as applied to the Hubbard
Hamiltonian.

Within the GA, the average of Eq. (3.9) with the Ham-
iltonian given in (3.10) can be written as

EO/N=anT€T+nlql€l+Ud . (3.11)

Here, n,=N, /N, q, is the discontinuity of the momen-
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tum distribution n,, at the Fermi surface; d =D /N,
with D the average number of double occupied sites; and

__ 1
&=7— 3

o |kl <kp,

e(k) . (3.12)

In Eq. (3.12), e(k) is the energy eigenvalue of the Bloch
)

wave ¥,

e(k)=%2 t,expl —ik(R, —R,)] , (3.13)
ij

and the zero of energy has been chosen so that
S e(k)=0;1i.e., t; =0. The GA simply yields

{[(ng—d) 1—n,—n_,+d)]"2+[(n_, —d)d]/?}?

9= n,(l—n_,)

where g has been eliminated in favor of d, and d has to be
determined variationally, by minimizing the ground-state
energy E,(d) as given in Eq. (3.11). In the special case of
a paramagnetic half-filled band, for which n;=n;=1/2,
q91=4q|=q, and €, =€ =€;<0, one obtains, after minim-
ization,

1 U
d=—[1——|, _
4 U. (3.15)
2
—— | U
q=1 U | (3.16)
2
U,

with U,=8|g,|. This shows that, within the GA, at a
finite critical value of the interaction U =U,, d, q, and
E, all vanish. The vanishing of the discontinuity in the
momentum distribution at the Fermi surface, and conse-
quently of the kinetic energy, would signal a metal-
insulator transition (Brinkman and Rice, 1970; see also
March et al., 1979 and March and Parrinello, 1982). In
fact, at the critical strength U, all sites would be singly
occupied and the particles fully localized. We shall re-
turn to this point below.

Before turning to the discussion of how the Gutzwiller
variational method has been generalized to treat inter-
atomic and intra-atomic correlation in molecules, we
have to mention more recent work by Kotliar and Ruck-
enstein (1986). These authors have proposed a new treat-
ment of the Hubbard Hamiltonian that makes use of aux-
iliary boson fields, in analogy with the so-called slave-
boson approach first proposed by Barnes (1976). They
have shown that, within the functional-integral formal-
ism, a particular choice of the auxiliary fields yields ex-
actly the result of GA, as a mean-field or, more precisely,
a saddle-point approximation to the exact functional in-
tegral. The merit of such an approach is that in principle
it would allow for systematic improvement upon GA, in
that one could study the effect of Gaussian fluctuations
about the saddle point. However, nothing has been done
in this direction, to our knowledge, at the time of writing.

C. Local approach to correlation in molecules

As we have discussed above, the local approach to
correlation was introduced by Coulson and Fischer in the
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) (3.14)

[
qualitative treatment of the H, molecule. Subsequently,
Gutzwiller extended such an idea to solids to deal with
strong correlation in narrow bands originating from very
localized orbitals such as d orbitals, within the model
description afforded by the Hubbard Hamiltonian. Start-
ing from Gutzwiller’s systematic scheme, a further step
toward the quantitative treatment of correlation in small
molecules was taken by Stollhoff and Fulde (1977, 1978).
Their main point is as follows. One still wants to set
up a variational scheme in which those components of
the wave functions that correspond to two electrons be-
ing too close are reduced. To this end, the wave function
may be described, for instance, by assigning its value on
the points of a spatial mesh (the grid) in which the system
of interest, say, the molecule, is embedded. In practice,
one may as well give at such points the amplitudes of
basis-set functions, in terms of which the uncorrelated
wave function is expanded. Within this picture, the wave
function of Eq. (3.8) corresponds to a grid whose points
coincide with the locations of atoms in the molecule. A
quantitative treatment clearly requires that one improve
upon the ansatz of Eq. (3.8) in at least two ways. One
should (a) choose a finer grid, and (b) correlate the elec-
tronic motion not only on-site but also between different
sites. The latter point can be easily realized by generaliz-
ing the variational wave function to read (Stollhoff and
Fulde, 1977)

I
@) =11 P:|®o) , (3.18)
i=0
where the P;’s are projection operators defined by
Pi=H(1~77iotj)’ (3.19)
j
and
Ooj =nj1154 (3.20)
0, =23 njohjtior - (3.21)
ago’

For I =0, Eq. (3.18) yields the original Gutzwiller ansatz.
However, for nonzero I, density correlations between
different grid points are also taken into account, up to the
Ith neighboring points. Notice that, in the latter case,
one is correlating also the motion of parallel-spin elec-
trons on different grid points. The reason for this is that,
though the uncorrelated wave function |®,) is antisym-
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metrized, the Pauli exclusion principle is completely
effective only at very short distances.

The problem of a finer grid can also be dealt with in
quite a simple way (Stollhoff and Fulde, 1978). Instead of
directly making the grid finer, one can alternatively
choose to keep as grid points the atomic position in the
molecule, while using at each site a number of basis-set
functions with varying degrees of localization, possibly
also off-center. Thus the operator a,-Ta creates an electron
in the basis-set function i rather than in one of the self-
consistent one-particle orbitals in terms of which |®,) is
constructed. Here, the index i labeling the creation
operator stands, in fact, for the pair (i,a), where a indi-
cates either one of the original basis-set functions or a
suitable new combination; it might be, for instance, an s-p
hybrid.

The effect of taking into account off-site correlation
through the use of the variational wave function given in
Eq. (3.18) with I70 has been investigated by Stollhoff
and Fulde (1977) by studying the Hy; model of Mattheiss
(1961). This model has the advantage that one knows the
exact solution, which was obtained numerically. The
model assumes six sites equally spaced on a ring, with
one s atomic orbital at each site. From these, one con-
structs a Wannier orbital, in terms of which the Hamil-
tonian reads

- t t gt
H=3 10,00+ 3 Viji19i0a5815 s -
ijo ijki

oo’

(3.22)

Bloch waves are then built from the Wannier orbital, and
from these the uncorrelated Hartree-Fock ground state
|<I>0) is obtained. The correlation energy of the system
was studied by Stollhoff and Fulde for various values of
the first-neighbor distance R, with the variational wave
function of Eq. (3.18). They found that the simpler
Gutzwiller ansatz, i.e., I =/0, only yields about 50% of
the exact correlation energy at the exact equilibrium dis-
tance, R =1.8 a.u. On the other hand, the situation im-
proves substantially by going to I =1, and even more for
I =2. In the latter case, one recovers more than 95% of
the correlation energy for any distance. The situation is
illustrated in some detail in Fig. 2. It should also be no-
ticed that a further increase of I from 2 to 3 does not pro-
duce anything new, since I =3 corresponds to the largest
distance of the atoms in the ring.

Stollhoff and Fulde also investigated the accuracy of a
simplified version of Eq. (3.18) obtained by linearization,

(Do) , (3.23)

@)= ‘l_é 7; X 05

i=0

in order to reduce computational complexity. With this
simplified variational ansatz, they found that at the equi-
librium distance about 90% of the correlation energy was
still recovered with I =2. However, the agreement with
the exact results becomes worse at larger distances, in
contrast with the systematic improvement found with the
full variational wave function of Eq. (3.18).
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FIG. 2. Gain in  correlation energy A=(Eyg
—EGutz. )/(Egr — E xaet) for the Hg model by using the ansatz
of Eq. (3.18) to evaluate the ground-state energy E ., . Results
are shown for 7 =0 to 2. The dashed line is the approximation
given by Eq. (3.23). From Stollhoff and Fulde (1977).

It should be mentioned that, in general, using the
linearized wave function of Eq. (3.23) to variationally cal-
culate the correlation energy yields the so-called size-
consistency problem. In practice the correlation energy
does not turn out to be proportional to the electron num-
ber; i.e., it is not extensive as it should be in the limit of a
large system. A way to restore the correct number
dependence is to expand the variational ground-state en-
ergy of Eq. (3.9) to a given order in the variational pa-
rameters, say, the second, starting from the full wave
function of Eq. (3.18). In the case of small molecules, the
difference that one finds in correlation energy, with
respect to the use of the linearized wave function (3.23),
is only of a few percent (Stollhoff and Fulde, 1980).
Another possible way to tackle the size-consistency prob-
lem begins with the rewriting of the product of projection
operators appearing in Eq. (3.18) in an exponential form.
This makes it possible to prove a linked-cluster theorem
(see, for instance, Horsch and Fulde, 1979), which in turn
allows a systematic expansion of the correlation energy in
terms of connected diagrams. Again, the correct number
dependence of the energy is automatically preserved to
any order in the expansion in powers of the variational
parameters. It should also be mentioned that spin-spin
correlation can be dealt with as well, within the local ap-
proach. To this purpose one can just enlarge the class of
projection operators appearing in Eq. (3.18) by defining
further operators 0;;=s;-s;, where s; is the spin operator
at the site i (Stollhoff and Fulde, 1978).

Clearly, in the study of the Hy model only interatomic
correlations could be taken into account, and admittedly
within an oversimplified model. Therefore, for a more
stringent test, Stollhoff and Fulde (1978, 1980) studied,
within the simplified variational ansatz of Eq. (3.23),
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some small atoms and molecules, taking into account
intra-atomic correlations as well. To this end, the radial
correlation was treated by considering basis-set functions
of s type with different degrees of localization. On the
other hand, angular correlations were introduced by us-
ing appropriate hybrid functions. In particular, s-p mix-
ing was used to get sets of tetragonal hybrids, and d and
f functions were used to obtain hybrids with hexagonal
and octagonal symmetry, respectively. Within their sim-
ple scheme they were able to recover 93% of the experi-
mental correlation energy for He and 90% for H,. Thus,
starting from the Hartree-Fock uncorrelated ground
state, in both cases the results of the local approach
based on a Gutzwiller-like ansatz yielded a fraction of the
correlation energy, very close (a few percent of difference)
to the one obtained in configuration-interaction (CI) cal-
culations with the same basis sets. Similar results were
also obtained for He, and Be.

A very detailed study of Ne and CH, along these lines
(Stollhoff and Fulde, 1980) shows that also in more com-
plex situations the local approach is capable of account-
ing for the correlation energy obtainable with CI calcula-
tions, within a few percent. One should notice, though,
that the agreement with experiment of the correlation en-
ergy yielded by CI calculations with reasonable basis sets
tends to worsen with increasing complexity of the system
studied.

More recently, Oles et al. (1986) proposed another
computational scheme for the treatment of correlations
in more complex molecules containing C, N, and H
atoms. While the interatomic correlations are still treat-
ed within a local approach based on semiempirical self-
consistent-field calculations, intra-atomic correlations are
dealt with by means of a different and simpler scheme.
Good agreement is found with experimental results,
discrepancies being within a few percent. They have also
shown that simple algebraic parametrizations are possi-
ble for the various contributions to the correlation ener-
gy. In particular, interatomic correlations are found to
depend only on bond lengths, whereas intra-atomic
correlations are found to be determined for a given atom
by its total charge and fraction of p electrons. A further
study, on the determination of optimal local functions for
the calculation of the correlation energy within the local
approach, has also recently appeared (Dieterich and
Fulde, 1987).

In the foregoing, we have been concerned with the ap-
plication of a local approach to the calculation of correla-
tion in molecules. Yet we should like to mention here an
important development along these lines concerning ex-
tended systems. The above local approach, in fact, has
been suitably modified (Horsch and Fulde, 1979) to treat
also short-range and long-range correlation in the ground
state of solids. A first attempt to calculate in this manner
the correlation contribution to the ground-state energy of
diamond (Kiel ez al., 1982) suffered the limitation of a
poorly converged uncorrelated ground state. When an
uncorrelated ground state of good quality is used, howev-

Rev. Mod. Phys., Vol. 66, No. 2, April 1994

er, the local approach performs remarkably well, repro-
ducing the electronic contribution to the binding energy
of diamond with an accuracy of about 2% (Stollhoff and
Bohnen, 1988).

D. Gutzwiller’s variational treatment of the
Hubbard model

As we have mentioned above, the Gutzwiller variation-
al method was originally applied to the study of the so-
called Hubbard model, characterized by the Hamiltonian
of Eq. (3.10). In spite of the apparent simplicity of such a
Hamiltonian, the relevant variational calculation is of
considerable difficulty. Therefore Gutzwiller solved the
problem in an approximate manner. It has been only re-
cently, after some decades, that a renewed interest in this
problem has brought about a certain amount of work
leading to the exact solution of the variational problem,
by direct numerical evaluation, by analytical means, or
by.the Monte Carlo method.

Kaplan, Horsch, and Fulde began a study in 1982 to
assess the accuracy of the Gutzwiller variational wave
function (GVW) in describing the ground state of the
single-band Hubbard model with only nearest-neighbor
hopping, in the atomic limit, i.e., the limit in which
U —> 0. In this case there is no variation to be taken. In
fact, g =0, and the Gutzwiller wave function reads

1@, ) =TI[1—n;1n;, 1| ®y) . (3.24)
1
They were able to perform, for the half-filled-band situa-
tion, the direct numerical evaluation of the spin-spin
correlation function,

q={s?s) , (3.25)

for a number of small regular rings. The actual calcula-
tions were done for rings of 6, 10, 14, and 18 sites. By ex-
trapolating from the results for finite rings, they found
that in the thermodynamic limit (number of sites N going
to infinity) g, = —0.1474, thus being within 0.2% from
the exact result, i.e., within the error bars of their calcu-
lation. For gq,, instead, the discrepancy with the exact re-
sult was of about 7%. They also noticed that the spin-
spin correlations that they obtained reproduced as well
qualitative features of the exact ones. Hence for large U,
at least in one dimension, Gutzwiller’s wave function de-
scribes the short-range spin-spin correlations in an accu-
rate manner. We should notice here that, in the atomic
limit and for the half-filled-band case, the exact ground
state of the 1D Hubbard model is known to be the same
as for the antiferromagnetic Heisenberg chain, for which
g, was exactly evaluated by Bonner and Fisher (1964),
and g, by Takahashi (1977). In fact, in the large-U limit,
the Hubbard Hamiltonian goes, to leading order in ¢ /U,
into the Heisenberg Hamiltonian with antiferromagnetic
coupling,

H:J 2 (S,-'Sj—-i—) ’
(ij)

(3.26)
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where J is proportional to t2/U and ¢ is the hopping en-
ergy. We shall return to this point in some detail.

Kaplan, Horsch, and Fulde also studied the energy for
large but finite U. In this case one has to start from the
full variational wave function (3.8) and consider an ex-
pansion of the energy in powers of the parameter g, to be
determined variationally. They found that the leading
term of such an expansion was of the form
E =—Nat?/U, with a depending on the kinetic-energy
operator and on the zero- and first-order wave functions
obtained from the expansion of the variational wave
function (3.8) in powers of g. Note that the zero-order
wave function, which was given in Eq. (3.24), has no sites
with double occupancy, as is clear by inspection. Simi-
larly, the first-order one has on average only one site dou-
bly occupied. They found that, at variance with the
spin-spin correlations, the coefficient a yielded by the
GVW was in gross disagreement with the known exact
value. It is now known, from the exact solution of the
Hubbard model in one dimension with the GVW
(Metzner and Vollhardt, 1987), that «a is not a constant,
but vanishes as 1/In(U /t) in the limit considered by Ka-
plan, Horsch, and Fulde. These authors argued that the
unsatisfactory result for the energy yielded by the GVW
was due to the incorrect description of correlations be-
tween doubly occupied sites and empty sites, or holes, as
we shall call them in the present context. Therefore they
considered a modification of the GVW containing a
second variational parameter to improve the treatment of
such correlations. In this manner they were able to
reproduce the exact value of a within 1%.

A further step toward the assessment of the reliability
of the GVW was then taken by Horsch and Kaplan
(1983). They extended the calculation for finite rings to
other values of N, corresponding to open-shell systems,
and also performed calculations for much larger systems
with N up to 100 by using the Monte Carlo method to
evaluate the relevant averages. This second step was par-
ticularly important. First, it fully confirmed the con-
clusions previously obtained from the exact calculations
for small rings. Secondly, it was the first application of
the Monte Carlo method to this problem. Before turning
to the presentation of more recent studies on the Hub-
bard model, with a variational Monte Carlo technique
based on the GVW, we shall summarize below the exact
results that have been recently obtained in one dimension
for arbitrary band filling and interaction strengths.

1. Exact analytic results in one dimension

Analytic results for the ground-state energy and
momentum distribution function for the Hubbard model
with on-site repulsion have been recently obtained by
Metzner and Vollhardt (1987) for the paramagnetic situa-
tion. The key point of their attack on the problem at
hand lies in a new approach to the calculation of the ex-
pectation values of relevant operators on the GVW.

The calculation of the ground-state energy appears to
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require the evaluation of the expectation values of both
kinetic and potential energy for arbitrary values of the
variational parameter g, 0<g <1. Let us start from the
potential energy. It is clear from Eq. (3.10) that, apart
from the proportionality constant U, the potential-energy
operator is the same as the operator D that counts the
number of doubly occupied sites. Thus one has to calcu-
late (D) on the wave function of Eq. (3.8). Let us indi-
cate the product n;;n;, by D;. It is then not difficult to
show that

(D) _ »

d=——~—=g

N (g*—1"7l¢, ,

1

(3.27)

M

m

where N is the number of sites, and the coefficients
¢,=x,/N(m—1)! are suitable expectation values,
which, if one puts x,, =y,, /{®|®), are explicitly given
by

Im= 3

Fireorkm

(q)o‘Df] "'Dfm|q>o), m=<N ’ (3-28)

with f;7f; (prime-on sum). The expectation value ap-
pearing above can be transformed into the sum over all
the possible pairs of contractions, P;; = (a,-t,a o Yo using
Wick’s theorem. We shall indicate such a sum by
{ -+-}o- The important point to realize is that, because
of the prime on thé sum in Eq. (3.28), one can choose to
put (a,.aa;o )= — Py, since in this second kind of con-
traction one has always i7j and therefore there is no §;;
contribution. Equation (3.28) can then be rewritten as

ym= 2’ {Df] "'Dfm}o. (3.29)
f,

1erdm

One can show that the sum { - - - }, appearing above is,
in fact, the determinant of a matrix having the P;; as ele-
ments. Hence, for any f;=f;, the sum { - - - }, vanishes,
since the relative determinant has two identical rows. As
a result, one has the freedom to remove the prime from
the sum in Eq. (3.29). Having done so, one can next ob-
serve that in a diagrammatic analysis of x,, with lines
corresponding to the P;;, the contributions to { -},
arising from disconnected diagrams just cancel the norm
(®|®). Therefore one is left with

Xn= 23X {Ds "Dy }5.
Firoistm

(3.30)

We notice that thus far no reference was made to interac-
tion strength or to dimensionality.

While in the above the analysis was quite general, to
date further progress has proved possible only in one di-
mension. In particular, in one dimension and for zero to-
tal spin (n, =n =n/2), it is possible to show that c,, is
proportional to n™*!. One can restrict attention to
0<n <=1, since, due to particle-hole symmetry for
1<n <2, the relation d(n)=d(2—n)+n —1 holds. By
using the dependence of d on n and imposing the con-
tinuity of its first derivative, the proportionality constant
in c,, can be calculated. One obtains
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Cn =H=1)" " 1 /(m +1) . (3.31)

With the above equation for the coefficients c,,, the series
in Eq. (3.27) is exactly summed to

—& | lnL 4621
1-G

7 , (3.32)

=N
2

with G?=1—n +ng2. We stress that, as is clear from
Eq. (3.32), for the half-filled band—for which n =1—the
correlation energy Ud is found to be nonanalytic in g, be-
cause of the presence of the term In(1/g). For strong
correlations (g —0), one finds d =g2In(1/g). Moreover,
the double occupancy d is never vanishing for finite
correlations, in contrast with the GA result of Eq. (3.15).
This seems to be the case also in two and three dimen-
sions when the GVW is exactly handled (Yokoyama and
Shiba, 1987a).

A similar, though more complicated, analysis allows
the calculation of the momentum distribution function
for the same situation considered immediately above, i.e.,
ny=n,=n/2. We shall content ourselves here with
quoting just the result for the discontinuity g in the
momentum distribution function n,,

g=G (G+g)/(1+g)]*. (3.33)

The overall shape of n,, for half filling and at different
values of g is illustrated in Fig. 3. It should be noted that
for n =1 the above equation reduces to ¢ =4g /(1+g)?,
which is the result of Gutzwiller’s approximation (GA).
This, however, does not imply that, for this particular
value of filling, the kinetic energy coincides with that of
GA, since g has to be determined by minimizing the total
energy, and the equations for the potential energy are
different in the two cases.

By combining Eq. (3.32) with the result for the
momentum distribution function, one may calculate
Ey(g) in one dimension for the paramagnetic ground
state. Minimization with respect to g yields the energy
for given values of ¢, U, n. For n =1, the comparison

")
g=1
M —_———— g=07
- -_— — g=03
- — —_—— — g=0
o5 — - — - —  — ] — s — . —
- - —_—
o === Ikl
Kg 2Kg

FIG. 3. Momentum distribution {#n, ) for the one-dimensional
Hubbard model. The results obtained by using the Gutzwiller
variational wave function are shown for several values of the
correlation parameter g in the case of a half-filled band
(ny=n;=1). From Metzner and Vollhardt (1987).
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with the result of Gutzwiller’s approximate treatment
and the exact result of Lieb and Wu (1968) shows that
the GVW, when exactly handled, gives an energy that is
intermediate between the other two. This is illustrated in
Fig. 4. In particular, specializing to the case n =1 and
U/t — oo, with only nearest-neighbor hopping, one finds
€= —4t/m, and

E/N=—(4/m)*(t*/U)(InT)" !, (3.34)

where U=U/|g,|. We note, with reference to the nu-
merical results of Kaplan et al. discussed earlier, that the
energy is certainly proportional to ¢2/U, but the propor-
tionality factor goes logarithmically to zero with U /t.
Thus, for the half-filled-band case, the GVW gives a re-
sult that is qualitatively different from the exact result.
From Eq. (3.33) it is clear that a discontinuity in the
momentum distribution remains at any finite U, whereas
the exact solution of the Hubbard model of Lieb and Wu
(1968) gives an insulating system for any nonzero U (see
also Ferraz et al., 1978). It would seem from these con-
siderations that the GVW is not a particularly good an-
satz for the ground state of the Hubbard model. Howev-
er, we have already seen from the results of Kaplan et al.
that it performs much better in the calculation of spin-
spin correlations than for the energy.

Using techniques similar to those employed in the en-
ergy calculations, Gebhard and Vollhardt (1987) have
calculated, for the paramagnetic ground state, a number
of correlation functions,

CH'=N"'3(X,Y,;;)—(X)Y), (3.35)
i

where X;,Y;=S{,n;,D;,H;. Here n;=n;;+n;, and

H;=(1—n;;(1—n;,) is the number operator for the

holes. In addition, X=N"!3,X;, and the Fourier

transforms of the functions defined in Eq. (3.35) are sim-

exact
GV W 4
GVW +GA

FIG. 4. Ground-state energy E for the one-dimensional Hub-
bard model with ny =n =1 as a function of U. The results for
E, as calculated with the Gutzwiller variational wave function
(GVW), are compared with the result of the Gutzwiller approxi-
mation (GA). From Metzner and Vollhardt (1987).
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ply denoted by C*¥(g). The results for the spin-spin
correlation function g; =C;*S obtained by Gebhardt and
Vollhardt fully confirm the numerical calculations of g,
by Kaplan et al. However, with the analytical solution it
is possible to establish that there is, in fact, a difference of
0.2% between the exact and the GVW results in the
atomic limit, and that such a difference is not due to nu-
merical uncertainties. In addition, the features of the ex-
act g; found in numerical investigation (Betsuyaku and
Yokota, 1986; Kaplan et al., 1987) on the Heisenberg an-
tiferromagnetic chain are reasonably reproduced, though
the agreement worsens at larger distances, as already sug-
gested by Kaplan et al. (1982). The comparison between
the GVW result and the exact result for the hole-hole
correlation function C##(g) in the atomic limit also
shows an overall agreement, which tends to improve as
the number of holes tends to zero. Finally, we notice
that Gebhardt and Vollhardt also comment on the corre-
lations between holes and doubly occupied sites. Their
conclusion is that these kinds of correlations are not de-
scribed particularly well by the GYVW and that this might
well be the reason for the logarithmic singularity found
in the energy for g —0.

2. Numerical results

Recently, a number of numerical investigations on the
Hubbard model with the GYW were conducted with the
help of the Monte Carlo method. One should distinguish
between two kinds of investigations. In one case the
original Gutzwiller program is implemented; i.e.,
ground-state properties of the Hubbard Hamiltonian are
variationally calculated with the wave function of Eq.
(3.8), for arbitrary n,t, U and dimensionality. In the oth-
er case, following the observation of Kaplan et al. (1982)
that the GVW for g =0 gives an accurate description of
spin correlation in the Heisenberg antiferromagnetic
chain, one works on the effective Hamiltonian to which
the Hubbard one reduces in the limit U— o, thus re-
stricting one to the strong-coupling situation.

Yokoyama and Shiba (1987a) have systematically stud-
ied the Hubbard model, following the first of the above-
mentioned approaches. Thus they have performed cal-
culations in one, two, and three dimensions over the full
range of coupling U/t and for both half-filled and non-
half-filled bands. Here we shall not enter into the techni-
cal details of their variational Monte Carlo technique,
with which they performed calculations with up to 216
sites (6 X 62X 6 in three dimensions). We shall merely give
a brief review of their main results.

In one dimension and for n =1, they have calculated
E,/t and d =E /U as functions of g between O and 1.
For a given value of U, one can then construct from such
functions the total energy as a function of g and find its
minimum by inspection. They have also calculated the
momentum distribution. We merely note that in this
case the exact solution is available and that according to
Metzner and Vollhardt (1987) the agreement with their
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analytic results is excellent. In the limit in which
U — «, however, they have not been able to isolate the
logarithmic correction to the quadratic dependence t2/U
of the energy, but it would have been surprising other-
wise. Similar calculations were performed for the test
case n =0.84, taken as representative of a band less than
half filled. The results for the energy are in fair agree-
ment with the exact result, even if they observe that im-
provements upon the GVW are called for if one wishes to
obtain better agreement. The need to take into account
intersite correlation is also mentioned, a point that has
already been stressed by Stollhoff and Fulde (1977), as we
discussed at some length earlier.

In two dimensions only the case n =1 on a square lat-
tice was considered. They found, for the total energy,
that the variational results and those of the Gutzwiller
approximation are much closer than they were in one di-
mension, as can be seen by comparing the 2D case re-
ported in Fig. 5 with the 1D case in Fig. 4. This is in ac-
cord with the expectation that the GA should become
more accurate in higher dimensions. However, compar-
ison with the Hartree-Fock antiferromagnetic energy
shows that the discrepancies with this are sizable for
large U, whereas they were much smaller in one dimen-
sion.

The calculations in three dimensions were performed
for a cubic lattice and again for a half-filled band. The
results for the total energy as a function of the interac-
tion strength U/t are similar to those found in two di-
mensions. Furthermore, in going from two to three di-
mensions, changes qualitatively similar to those observed
in going from one to two dimensions are apparent. Thus
the agreement between variational and approximate
treatments, i.e., with the GA, improve further, while for
large U the discrepancy with the antiferromagnetic
Hartree-Fock energy, which is lower, remains sizable.

u/t Ug=1297
0 ? 1‘0

VMC (N==)
—-— HF
———GA

-0.5 4

E/ [Eol

=1.0

2D

FIG. 5. Normalized ground-state energy for the two-
dimensional Hubbard model as a function of U: VMC, varia-
tional Monte Carlo with the Gutzwiller variational wave func-
tion (extrapolated at an infinite number of sites, N =« ); HF,
antiferromagnetic Hartree-Fock; GA, Gutzwiller approxima-
tion. The half-filled-band case (ny=n;=1) is shown. From
Yokoyama and Shiba (1987a).
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This suggests that, in two and three dimensions, one
should perform the variational calculations using a GVW
based on the Hartree-Fock ground state of the antiferro-
magnetic system, rather than on that of the paramagnetic
one.

To introduce the second of the approaches mentioned
above, we shall briefly summarize the derivation of the
effective Hamiltonian which can be obtained from the
Hubbard one for strong couplings U /t. We shall follow
the very straightforward method given by Gros et al.
(1987a), but reference should also be made to Castellani
et al. (1979) and to Hirsch (1985). One can start from
the Hubbard Hamiltonian given in Eq. (3.10) and rear-
range the kinetic energy 7, specializing to the case of
nearest-neighbor hopping, to read

H=T,+T;+T,+V, (3.36)
with
T,=—t 3 (l-niv_a)a,-t,aja(l—njy_a), (3.37)
(ij),o
T,=—t 3, ni'_oa;aaj(,nj‘_a, (3.38)
(ij),o
Tmixv:—t 2 ni,—aazj;raja'(l_nj,—a)
(ij),o
-t 3 (l—ni,_a)a,):,ajanjy_a, (3.39)
(ij),o

where T, and T, are the kinetic energies describing the
propagation of holes and doubly occupied sites, respec-
tively, in their Hubbard bands, and T, is clearly a mix-
ing term that couples such bands. V is, of course, the
usual on-site repulsion energy, V=U 3, n;;n;,. The
next step is to apply to the Hamiltonian a suitable uni-
tary transformation,

Hg=eSHe S=H+i[S,H]+ -, (3.40)

such that, in lowest order in t/U, T;, vanishes on the
right-hand side of Eq. (3.40). This can be accomplished
by choosing S such that i [S, T, + T, +V]=—T,.,,ie.,

(| T lm?
ile,—€,,)

{(m|, (3.41)

§S=3In)
n,m
with |n) and |m) being eigenstates of T, +T,+V.
Even if these eigenstates are not known in the general
case, for very large U it must be €, —¢,, =+U+0(1).
Thus one gets

S=-I_(t] 2 ni,—aai.tfaja(l—nj,—g)
(ij),o
it +
+;(2} (1=n,_,)a5,a51; —, - (3.42)
ij),o

If, as is the case here, one is interested in taking matrix
elements of H s between states with no doubly occupied
sites, such as the infinite-U Gutzwiller wave function of
Eq. (3.24), it can be easily shown that H . can be written
as
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He =T, +i[S, T ] +SVS

2 2
=Th+%2 S [(al,sa;, ) (alsa;)

i 7T

—%(aiT+Tai+1J)'(a:ai)] . (3.43)

Above, a;8¢;=3,, ait,(S),,,,'ajg' and ¢;a;=3, aiyaja»
with the vector s being the spin operator, and the indices
7 and 7’ running over the first neighbors of i. We should
note two things. In Eq. (3.43) we have also considered
the term SVS, which would appear as of higher order in
S. But the expansion parameter is ¢ /U, and such a term
turns out to be of the same order of i [S, T, ]. In addi-
tion, if three-site terms (i.e., 7%-7') can be neglected, then
Eq. (3.43) simplifies to
2t2

Heﬁ=Th+—IT > (s;s;—4nin;) (3.44)
(ij)

with n;=n;;+n;, being the site number operator. This
is exactly true for the half-filled-band case, for which one
also has n;=1. However, for n51, three-site contribu-
tions may become important, as has recently been dis-
cussed by Yokoyama and Shiba (1987b). It should be
noted that calculating averages of H on |®_) is
equivalent to calculating averages of H on a modified
wave function |®_)=(1—iS)|® ), that is,
(|®, |Hgl®,)=(|® |H|D,), provided terms of or-
der t2/U? have been neglected. In particular, the num-
ber of doubly occupied sites is nonzero on this wave func-
tion, or, more precisely, of order t2/U?%. For the half-
filled band, if one puts H =T, + V,,, then

D=($m|iUV|<§w)=—$(d>w|chl¢w). (3.45)

Before turning to the numerical results that have recently
been obtained by employing the strong-coupling Hamil-
tonian of Eq. (3.43) or (3.44), we should like to stress one
point. As observed first by Kaplan et al. (1982), |®_, ),
while giving a good description of the spin-spin correla-
tions, yields poor results, if used to calculate the energy
directly from the Hubbard Hamiltonian. One should
have clearly in mind therefore that |®_) is a good
ground state for H ., but not for H. Thus the combined
use of H and |®,, ) is equivalent, as we have already
noted, to working with the Hubbard Hamiltonian, but
using an improved Gutzwiller-like wave function.

Using the approach mentioned above, i.e., working in
terms of H.s and |®,, ), Gros et al. (1987a) have con-
ducted an extensive Monte Carlo study of the Hubbard
model for strong coupling. They restrict their investiga-
tion to one dimension to obtain good numerical accura-
cy, even if their interest is, of course, in the three-
dimensional situation. On the other hand, they consider
variable band filling, magnetization, and degeneracy N £
of the local state. Their results for the spin-spin correla-
tion function g, at half-filling have established, before the
exact solution with the GVW appeared (Gebhard and
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Vollhardt, 1987), that the small difference between the
exact result for this quantity and that obtained from the
infinite-U Gutzwiller wave function is beyond the numer-
ical uncertainty of the Monte Carlo calculation. The in-
vestigation of the kinetic energy as a function of the
filling, on the other hand, shows good agreement with the
exact result of both Monte Carlo and GA results. Gros,
Joynt, and Rice also discuss the fact that for large U the
hole-hole correlation function can be put into correspon-
dence with that of a system of spinless noninteracting fer-
mions. This allows for an assessment of the quality of
their results. They find fair agreement, even if some qual-
itative features of the exact result, related to the presence
of a sharp Fermi surface, are missing. Moreover, an
enhancement with respect to the exact result of correla-
tions at short distances is found. Regarding the total en-
ergy, for large U and values of the filling very close to 1,
the accuracy of the Monte Carlo result is dominated by
the kinetic-energy contribution, with an accuracy of
about 6%. In fact, the potential energy, being deter-
mined by g, has a much better accuracy, i.e., 0.2%. Fi-
nally, they find that when excited-state Gutzwiller wave
functions are considered, the accuracy of GA is much re-
duced. For the cases in which direct comparison with
the analytical results of Metzner and Vollhardt (1987)
and Gebhard and Vollhardt (1987) was possible, excellent
agreement was found.

One of the reasons for the revived interest in the Hub-
bard Hamiltonian is its possible relevance in the under-
standing of the mechanism underlying high-temperature
superconductivity, as suggested by Anderson (1987). In
particular, investigations in the strong correlation regime
are called for. The importance of the scheme, briefly out-
lined above, for dealing with the large coupling situation
is then apparent. An investigation in this direction was
made recently by Yokoyama and Shima (1987b), within
the effective Hamiltonian approach. They used the
effective Hamiltonian of Eq. (3.39) and considered both a
paramagnetic and an antiferromagnetic ground state.
This can be done by simply changing the type of uncorre-
lated wave function |®,), from which the Gutzwiller
wave function of Eq. (3.24) is built. One and two dimen-
sions were considered. The purpose of the study was to
characterize the competition between the two types of
ground states. Before briefly summarizing their findings,
it should be mentioned that they have also shown that
the simple infinite-U Gutzwiller wave function consti-
tutes one of the many possible realizations of Anderson’s
resonating valence-bond state or singlet state. In one di-
mension, they find that for both half-filled and non-half-
filled bands, the singlet state is stable against the Néel
(antiferromagnetic) state. The situation is quite different
in two dimensions. For the half-filled case the singlet
state is found to be unstable against the Néel state.
Whereas the results for the energy and magnetization are
in reasonable accord with estimates obtained with
different approaches, they question whether the same sit-
uation would be found if next-nearest hopping were to be
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FIG. 6. Phase diagram of the two-dimensional square-lattice
Hubbard model, as inferred from variational Monte Carlo using
a Gutzwiller-type wave function (Yokoyama and Shiba, 1987b).
Here n, =ny +n is the band filling.

included. Moving from the half-filled band (n =1), at
very large U, the ferromagnetic state becomes favorable
in energy. However, by decreasing n at some point
(n==0.61) the singlet state takes over again. On the oth-
er hand, if U is decreased, the Néel state appears to again
decrease in energy. From these results they draw a quali-
tative phase diagram as shown in Fig. 6. This should be
considered meaningful only in the small /U region,
where the effective Hamiltonian approach is appropriate.

Finally, we should mention here the work of Gros,
Joynt, and Rice (1987b). Using the effective Hamiltonian
approach, they investigate the stability of generalized
Gutzwiller wave functions against Cooper pairing, in the
large-U limit and in two dimensions. This is done by
evaluating the binding energy of two holes in the varia-
tional wave function. As-they note, no real attempt was
made to optimize their wave function. They find that the
paramagnetic or singlet state is stable against s-wave
pairing but unstable against d-wave pairing. On the oth-
er hand, the antiferromagnetic state is stable against both
kinds of pairings. They discuss a possible pairing mecha-
nism and the relevance of their results for high-T, super-
conductors.

E. Resonating valence-bond states

In the foregoing we have seen how the Hubbard
Hamiltonian—for large values of the coupling U —can
be transformed into an antiferromagnetic Heisenberg
Hamiltonian by means of a suitable unitary transforma-
tion. In this connection and also in relation to the high-
T, superconductivity, it seems appropriate here to briefly
review the mathematical formulation due to Anderson
(1973) of the concept of the resonating valence-bond
(RVB) states first put forward by Pauling (1949).
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In discussing the ground-state properties of the tri-
angular two-dimensional Heisenberg antiferromagnet for
§ =1, Anderson (1973; see, also, Fazekas and Anderson,
1974) proposed that at least for this system, and perhaps
also in other cases, the ground state might be the analog
of the precise singlet in the Bethe (1931) solution of the
linear antiferromagnetic chain. In fact, the zero-order
energy of a state consisting purely of nearest-neighbor
singlet pairs is more nearly realistic than that of the Néel
state.

For electrons on a lattice, one can think of a singlet
bond or pair as the state formed when two electrons with
opposite spin are localized on two distinct sites. A
resonating valence-bond state is a coherent superposition
of such singlet bonds; its energy is further lowered as a
result of the matrix elements connecting the different
valence-bond configurations.

Heuristically, valence bonds can be viewed as real-
space Cooper pairs that repel one another, a joint effect
of the Pauli principle and the Coulomb interaction.
When there is one electron per site, charge fluctuations
are suppressed, leading to an insulating state. However,
as one moves away from half filling, current can flow; the
system becomes superconducting as the valence bonds
Bose condense.

Anderson (1987), while stressing the difficulty of mak-
ing quantitative calculations with RVB states, in fact
gives a suggestive representation of them by exploiting
the Gutzwiller-type projection technique.

Clearly, a delocalized or mobile valence bond can be
written as

1
bi|¢o>=7—ﬁ S ahalis |10)
= [Selalyemiten |00, G40
k

where bi is the creation operator for a valence-bond
-state with lattice vector T; a,I,, the single-electron
creation operator; and N, the total number of sites. A
distribution of bond lengths can be obtained by summing
bI over 7 with appropriate weights. One then gets a new
creation operator,

b'=3 ciafiat,, (3.47)
k

with the restriction

2 e=0, (3.48)
k
if double occupancy is to be avoided.

Anderson proceeds by (a) Bose condensating such

mobile valence bonds,
lo)=b"H""20) , (3.49)

and by (b) projecting out the double occupancy —which
would otherwise be present—with an infinite-U
Gutzwiller projection operator P;=T[; (1—n;n;),
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|®gvp) =P, (6T)V"?|0) . (3.50)
One can then show that the RVB state written above can
be obtained with simple manipulations from a standard
BCS state by projecting on the state with NV particles and
projecting out, at the same time, the double occupancy:

C
k T o1 |0> .

Id)RVB>=PN/2Pd \/1+C‘k A1 k)

1
Vil+e,
(3.51)

Baskaran et al. (1987) have subsequently shown that
by treating the large-U Hamiltonian of Eq. (3.44) with a
mean-field (Hartree-Fock) approximation, one obtains
precisely a BCS-type Hamiltonian which—for half
filling—yields the RVB state heuristically introduced
above. In fact, one also finds that 3 ;c, =0, le,|=1 and
the ¢, change sign across what they call a pseudo-Fermi
surface. We shall not deal here with the nature of excita-
tions from such a RVB state, referring the reader instead
to the original papers.

IV. QUANTUM MONTE CARLO CALCULATION
OF CORRELATION ENERGY

Until quite recently, two systematic methods have pro-
vided the main routes to the calculation of correlation
energies for many-electron systems at zero temperature,
namely, configuration interaction (CI) and many-body
perturbation theory. Relatively recent overviews of these
two approaches are available [see, e.g., Shavitt et al.
(1977) and Wilson (1981)], and therefore we shall not go
over that ground in the present article. In the last ten
years, however, progress in the calculation of electronic
correlation has also been made by using a completely
different approach, the so-called quantum Monte Carlo
(QMC) method.

The goal of QMC [see, e.g., Ceperley (1981), Reynolds
et al. (1982), Ceperley and Alder (1984), and Kalos
(1984)] is to obtain the exact ground-state wave function
of a many-body system by numerically solving the
Schrodinger equation in one of its equivalent forms. In
practice, this is achieved by means of iterative algo-
rithms, which propagate the wave function from a suit-
able starting guess to the exact ground-state value. Thus,
in the diffusion Monte Carlo (DMC) method, one is con-
cerned directly with the evolution in imaginary time of
the wave function, which corresponds to a diffusion pro-
cess in configuration space. In the Green’s-function
Monte Carlo (GFMC) technique, on the other hand, a
time-integrated form of the Green’s function or resolvent
is used to propagate the wave function. In fact, in either
case the sampling of an appropriate Green’s function is
required, and this is accomplished by means of suitable
random-walk algorithms.

Another implementation of the QMC (Blankenbecler
et al., 1981; Scalapino and Sugar, 1981; Koonin et al.,
1982) emphasizes the role of the imaginary-time propaga-
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tor e “#H more directly. For long times 3 (small tempera-
tures T =1/p), the imaginary-time propagator is dom-
inated by the ground-state energy E,. Thus E, can be
suitably . extracted from the knowledge of the partition
function Z =Tre PH or, equally well, from that of the
expectation value of the imaginary-time propagator on a
state which is not orthogonal to the ground state. In ei-
ther case, the key simplification in the calculations comes
from the mapping of the problem of interacting particles
onto that of independent particles. This is accomplished
at the expense of introducing auxiliary external fields
(Koonin et al., 1982; Hirsch, 1983; Sugiyama and Koo-
nin, 1986) having their own probability density.

In the following, we first review the main features of
the QMC method for a many-body system in the DMC
and GFMC implementations, discussing also the compli-
cations that arise from antisymmetry when dealing with
systems of fermions, which is the case of interest here.
Some applications of the QMC method—to the study of
the homogeneous electron assembly and small
molecules—are then briefly summarized. Finally, we
give the basic ideas underlying the auxiliary external field
technique and review some of the recent results on the
two-dimensional Hubbard model.

A. Diffusion Monte Carlo method

The Schrodinger equation in imaginary time for an as-
sembly of & identical particles of mass m interacting with
a potential V' (R) reads

_ 3(R,1)

ot =(H —Er)¢(R,?)

=[—DV*+V(R)—E;]¢(R,t), (4.1

where D =#/2m, R is the 3N-dimensional vector speci-
fying the coordinates of the particles, ¢ is the imaginary
time in units of #, and the constant E; represents a suit-
able shift of the zero of energy. The (imaginary) time
evolution of an arbitrary trial wave function is easily ob-
tained from its expansion in terms of the eigenfunctions
¢;(R) of the Hamiltonian H as

#(R,1)= N,exp[ —(E,—E)t]$;(R) . 4.2)

Here, E; is the energy eigenvalue corresponding to ¢;(R),
and the coefficients N; are fixed by the initial conditions,
i.e., by the chosen trial wave function. Clearly, for long
times one finds

#(R,t)=Nyexp[ —(Ey—E)t]py(R) , 4.3)

provided Ny#0. Moreover, if E is adjusted to be the
true ground-state energy E|, asymptotically one obtains
a steady-state solution, corresponding to the ground-state
wave function ¢, Thus the problem of determining the
ground-state eigenfunction of the Hamiltonian H is
equivalent to that of solving Eq. (4.1) with the appropri-
ate boundary conditions.
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It is not difficult to recognize in Eq. (4.1) two equations
that are well known in physics, though combined togeth-
er. In fact, if only the term with the Laplacian were
present on the right-hand side of Eq. (4.1), one would
have a diffusion equation, such as the equation describing
Brownian motion (see, for instance, van Kampen, 1981).
On the other hand, by retaining only the term
[V(R)—E;]¢(R,t), one would obtain a rate equation,
that is, an equation describing branching processes such
as radioactive decay or birth and death processes in a
population.

A convenient manner of simulating Eq. (4.1) is as fol-
lows.. Let ¥(R) be the wave function at ¢ =0. One can
generate an ensemble of systems (points in the 3N-
dimensional space representing electronic configuration)
distributed with density ¥,(R). Hence the time evolu-
tion of the wave function will correspond to the motion
in configuration space of such systems or walkers, as
determined by Eq. (4.1). In particular, the Laplacian and
energy terms in Eq. (4.1) will cause, respectively, random
diffusion and branching (deletion or duplication) of the
walkers describing the wave function. This schematiza-
tion of the Schrddinger equation is particularly appealing
from the practical point of view. However, a density is
non-negative. Thus the same should hold for the wave
function. This would seem to limit the applicability of
such a scheme to the ground state of a bosonic system.
For the sake of simplicity, we shall accept this restriction
for a while and deal with the complications associated
with Fermi statistics later.

Solving the Schrddinger equation in its form (4.1) by
random-walk processes with branching is not particularly
efficient. In fact, the branching term can become very
large whenever the interaction potential V(R) does so,
causing large fluctuations in the number of walkers. This
slows down the convergence toward the ground state. A
more efficient computational scheme is obtained by intro-
ducing the so-called importance sampling. This amounts
to considering the evolution equation for the probability
distribution f(R,?)=¢(R,t)¢¥(R), rather than directly
for the wave function ¢. By using Eq. (4.1) and the
definition of f (R, ), one obtains with a little algebra

_Of(R,t) _

or —DV*f +[E (R)—E;]1f +DV[fFy(R)] .

(4.4)

Above, E; (R)=HvY /Y defines the local energy associ-
ated with the trial wave function, and

Fo(R)=VIn|¢(R)>=2Vy(R)/¢7(R) (4.5)

is the quantum trial force, which drifts the walkers away
from regions where ¥(R) is small. Obviously, when deal-
ing with Eq. (4.4), the walkers are to be drawn from the
probability distribution f. With a judicious choice of ¥/,
one can make E;(R) a smooth function close to E;
throughout the configuration space and thus reduce
branching. In this respect it is essential that ¥,(R)
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reproduce the correct cusp behavior as any two particles
approach each other, so as to exactly cancel the infinities
originating from V(R). That Fy(R) is a force acting on
the walkers becomes clear by comparing Eq. (4.4) with
the Fokker-Planck (FP) equation (see, e.g., van Kampen,
1981). It turns out, with the rate term neglected, that the
term containing F,, has to be identified with the so-called
drift term of the FP equation, and consequently F, o must
be identified with the external force acting on the walk-
ers. We stress again that an important feature of this
force is to drift the walkers away from regions of low
probability. In fact, from its definition it is apparent that
the force becomes highly repulsive in regions where the
trial wave function becomes small, diverging where the
latter vanishes. Thus the trial wave function determines
the probability with which different regions of
configuration space are sampled. Therefore it is impor-
tant that i be a good approximation to ¢, in order to
keep the walkers mainly in regions of configuration space
which are really significant in the statistical averages.
We finally observe that the asymptotic solution of Eq.
(4.4)is

F(R, D=9, (R)py(R)exp[ —(Eq—E)t],  (4.6)

which becomes a steady-state solution when E; is adjust-
edto E,.

The differential equation (4.4) for the probability distri-
bution f(R,¢) can be recast in integral form as

S(R,t +t’)=de’f(R’,t')K(R’,R,t) , 4.7)

where the Green’s function K(R',R,¢) is a solution of
Eq. (4.4) with the boundary condition K (R’,R,0)
=8(R—R’) and is simply related to the Green’s
function G(R',R,t) for Eq. 4.1, K(R',R,?)
=¢(R')G(R',R,t )7 (R). The advantage of the above
equation is that for short times ¢ it is possible to write ap-
proximate simple expressions for K (R’,R,t) (Moskowitz
et al., 1982b; Reynolds et al., 1982). The time evolution
of f(R,?) for finite ¢ can then be obtained by successive
iterations of Eq. (4.7), starting from the initial distribu-
tion f(R,0) and using a small time step. In each time
iteration, advantage can be taken of the positivity of K
for short times so as to interpret it as a transition density.
A suitable modified random-walk algorithm can then be
devised, which allows the integration of Eq. (4.7) during a
small time interval. The essential steps of such an algo-
rithm are as follows. The walkers representing the initial
distribution are allowed to diffuse randomly and drift un-
der the action of the quantum force F,. After the new
positions have been reached, each walker is deleted or
placed in the new generation in an appropriate number of
copies, depending on the size of the local energy at the
old and at the new position relative to the reference ener-
gy Er. Finally, the number of walkers in the new genera-
tion is renormalized to the initial population. The in-
terested reader may find a detailed description of such a
random-walk algorithm in Reynolds et al. (1982).
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Once the long-time probability distribution has been
obtained and made stationary by a suitable shift of the
constant E;, one can estimate equilibrium quantities.
For the ground-state energy E,, in particular, by using
the fact that H is Hermitian, one finds

o Juris_ [Eg ZERD
Vo Jurse [r b

i

(4.8)

The sum on the right-hand side of the above equation
runs over the positions of all the walkers representing the
equilibrium probability distribution.

It should be stressed that the short-time approximation
to the Green’s function introduces a systematic error in
the computations. However, this error should decrease
with a decrease in the time step. Moreover, in the calcu-
lation by Reynolds et al. (1982), an acceptance/rejection
step was used which, within the calculational scheme
outlined above, should correct for the approximate na-
ture of G.

B. Green’s-function Monte Carlo technique

We have seen that in the diffusion Monte Carlo
method one starts from the Schrddinger equation in
imaginary time in order to construct an integral equation
which can then be solved iteratively. Such an equation
contains a time-dependent Green’s function. In the
Green’s-function Monte Carlo technique, one proceeds in
a similar fashion, starting, however, from the
Schrodinger eigenvalue equation. The resulting integral
equation, as we shall see, differs from Eq. (4.7) mainly
through the absence of time. In fact, it could be directly
obtained from Eq. (4.7) by a straightforward time in-
tegration (Ceperley and Alder, 1984). Here, however, we
choose to follow another route (Ceperley and Kalos,
1979; Kalos, 1984) which in the present context is some-
what more instructive.

The Schrddinger eigenvalue equation for an N-body
system, described by the Hamiltonian H introduced in
Eq. (4.1), is

H$(R)=E$R) . 4.9)

Let us assume that the potential ¥ (R) appearing in H is
such that the spectrum of H is bounded from below, E,
being the lowest eigenvalue, i.e., the ground-state energy.
This is a natural assumption for a physical system in the
nonrelativistic limit. One can choose a positive constant

Vo such that Ey+ ¥V, >0, and rewrite Eq. (4.9) as
(H+V,)¢(R)=(E +Vy)p(R) . (4.10)

The resolvent G (R,R’), i.e., the Green’s function for Eq.

(4.10), is then defined by
(H+V,)G(R,R')=8(R—R’) . (4.11)

Due to the manner in which ¥V, has been chosen, it is
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clear that the operator H + V, is positive definite. This is
immediate in the energy representation. The same, of
course, holds for the inverse operator G =1/(H + V).
Actually, a much more strict inequality involving G can
be established, namely,

G (R,R')=(R|G|R") =0 for all R,R’, (4.12)

which is of central importance for the calculational
scheme that we are about to describe. A brief sketch of
how one can prove the inequality (4.12) is given in Ap-
pendix B. Here, we merely note for future reference that
G is integrable. Therefore, because of the above inequali-
ty, it can be regarded as a probability, or more precisely
as a transition density.

A space integration of Eq. (4.10), after multiplying by
G(R,R’) and utilizing Eq. (4.11), yields the desired in-
tegral equation,

$(R)=(E +V,) [ dR'G(R,R)$(R’) . (4.13)

In the above equation one has to solve simultaneously for
E and ¢(R). However, if one has a trial wave function
¥r(R) and, consequently, a trial energy E, it is tempt-
ing to try solving Eq. (4.13) by iteration. One would gen-
erate a sequence of wave functions, according to

®,(R)=(Er+V,) [ dR'G(R,R)®,_,(R) (4.14)

and with ®y(R)=9yr(R). In fact, this series converges
precisely to the ground-state wave function, and it does
so exponentially fast. This can be easily seen by expand-
ing both G (R,R’) and ®,(R) in eigenfunctions of H,

i(R)¢;(R")
G(R,R’)=}i‘,%, 4.15)
¢0(R)=2ci¢i(R) . 4.16)

One immediately finds
?,(R)=3 ErtVo nc,-qS,-(R) . 4.17)
~ | E,+V,

So, provided ¢;,70, one obtains

(4.18)

lim ®y(R) < codo(R) ,
- n— 00

which is the desired result.

As in the case of the diffusion Monte Carlo method,
one has cast the problem of finding the ground-state wave
function and energy of a given Hamiltonian in integral
form, suitable for iterative techniques. For the sake of
simplicity, we shall temporarily restrict the discussion to
bosonic systems, for which both G(R,R’) and the
ground-state wave function are non-negative. If one as-
sumes for a while that G(R,R’) is known, a random-
walk algorithm similar to the one described for the
diffusion Monte Carlo technique is readily constructed.
One can proceed as follows. First, at random, an initial
population of walkers is drawn from the probability
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distribution ®y(R), say, at the positions {R;}. Then,
a new set of configurations {R]} is generated at ran-
dom, with each one having a conditional density
3 (E+V,)G(R;,R}). This density determines the
number of walkers corresponding to each new
configuration. Finally, a renormalization of the new
walker population to the initial size yields the new gen-
eration. The above series of steps corresponds to the first
iteration of Eq. (4.14). The successive iterations can be
performed in the same manner, by only changing the first
step. In the nth iteration, in fact, one has to take as the
initial population of walkers the new generation of the
previous iteration.

It is clear from Eq. (4.17) that the change in size of the
walker population is determined by the trial energy E;.
Depending on whether this is larger or smaller than the
true ground-state energy E,, the population will asymp-
totically grow or decline. This suggests a way of estimat-
ing the ground-state energy (Ceperley and Kalos, 1979).
In fact, from the space integration of Eq. (4.17) it follows
that asymptotically

n

E,=E;+V, -1, 4.19)

n+1

with N, the initial walker population in the nth iteration
and N, ., the new walker population but before size re-
normalization. The above energy estimator, known as
the growth estimator, is unfortunately biased even in the
limit in which ®, is converging to ¢, as discussed by
Ceperley and Kalos (1979). A better energy estimator is
the one introduced with Eq. (4.8), when describing the
diffusion Monte Carlo method. However, in order to use
that estimator one has to work with the density
f(R)=¢(R)Yr(R) rather than directly with the wave
function. This can be easily arranged by multiplying Eq.
(4.13) by ¥1(R) on either side, so as to obtain the new in-
tegral equation

FR)=(E+V,) [dRK(RR)f(R"), (4.20)
where

f(R)=¢(R)Y(R) 4.21)
and

K (R,R)=9¢4(R)G(R,R W7 (R') . (4.22)

Clearly, Eq. (4.20) can still be simulated by means of the
random-walk algorithm already described, with f(R)
and K (R,R’) replacing, respectively, ¢(R) and G (R,R’).
Within such a calculation scheme, successive iteration of
Eq. (4.20) will produce a walker population that will
asymptotically tend to be distributed with density
f =¢o¥r. Consequently, the local energy estimator of
Eq. (4.8) will also tend to the exact ground-state energy.
In the foregoing we have assumed knowledge of
G (R,R’). In practice, for a system of interacting parti-
cles, G is not known and must also be sampled by means
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of suitable techniques. This can be achieved by relating
the exact Green’s function G to some trial or reference
Green’s function G, which is known analytically or is
numerically calculable. In the domain Green’s-Function
method of Kalos et al. (1974; see also Ceperley and
Kalos, 1979 and Moskowitz and Schmidt, 1986), the trial
Green’s function is taken to be that appropriate to in-
dependent particles in a constant potential, with the
motion restricted to a subdomain of the whole space. In
another implementation of GFMC due to Ceperley
(1983; see also Ceperley and Alder, 1984), a better trial
Green’s function is introduced, which is much closer to
the exact one and is defined over the whole space. In ei-
ther case, the integral equation relating G, to G is such
that a random-walk algorithm, somehow similar to the
one outlined above for the calculation of f, can be used.
In fact, a global random-walk algorithm can be devised
that combines the iterations of Eq. (4.20) with those
needed to correct for the difference between G and G.
Details as to how this is done in practice are to be found
in the references quoted above. Here, we shall simply ob-
serve again that, in the approach due to Ceperley and
Alder (1984), Eq. (4.20) is obtained as a time average or
Laplace transform of Eq. (4.7). In addition, the sampling
of the time-integrated Green’s function [K (R,R’) in the
present notation] is obtained also in practical calculations
by summing its time-dependent counterpart. This makes
such an approach very similar to the diffusion Monte
Carlo method, while removing the truncation error due
to the use of a finite time step.

C. Quantum Monte Carlo technique with fermions:
Fixed-node approximation and nodal relaxation

"Here we shall discuss the modifications that one can
make to the calculational schemes described above when
the restriction of a non-negative wave function is relaxed.
Of course, this is necessary if one is to be able at all to
deal with Fermi systems and, in general, with excited
states of the many-body Hamiltonian H, introduced in
Eq. 4.1).

For the sake of clarity, let us briefly recall the relation
between the eigenfunctions of H and those of a many-
body system described by H but also obeying Bose or
Fermi statistics. For bosons (with zero spin), only those
wave functions of H that are symmetric under the ex-
change of any two particle coordinates are admissible
solutions. On the other hand, the ground-state wave
function of H is completely symmetric, since the
ground-state energy is nondegenerate and H commutes
with any particle permutation. So, the ground state of H,
which of course is characterized by a non-negative wave
function, is also the bosonic ground state. Needless to
say, the bosonic excited states will have wave functions
with positive and negative regions. For fermions, the
symmetry of the wave functions is- determined by the
chosen spin configuration that we shall denote here by s.
In general, for many fermions it will always be true that a
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certain number of particles, say, M, will have the same
spin projection. The admissible wave functions of H will
then be only those which are antisymmetric with respect
to the permutation of any two particle coordinates,
within the group of particles having the same spin projec-
tions. This is equivalent to saying that only excited states
of H can be considered, since, as we have already ob-
served, its ground-state wave function is completely sym-
metric. It follows at once that the fermionic wave func-
tions must have positive and negative regions, separated
by nodal surfaces in the 3N-dimensional space of the par-
ticle coordinates.

The need for dealing with wave functions ¢(R) that

‘change sign would seem to preclude the use of random-

walk algorithms such as those discussed above, in that
they require a positive wave function. In fact, if one
knew the location of the nodal surfaces and consequently
of the connected domains in which they break the whole
space, the problem would not be a real one. Since the
equations involved in the evolution of the wave function
are linear, one could just consider in each domain the
evolution of the modulus of ¢. However, such nodal sur-
faces are not known in more than one dimension, and the
problem remains. A simple way of remedying it is to
take as nodal surfaces those of the trial wave function
¥r(R), assumed to be a good approximation to the exact
wave function at least in the location of such surfaces.
This approximation corresponds to a solution of the
Schrodinger equation within a restricted class of func-
tions, and so it should have a variational character. As
such it should yield energies that are upper bounds to the
exact ones, in the absence of other approximations or
sources of error.

A practical way of realizing this so-called fixed-node
approximation, within calculations based on random-
walk algorithms, is to delete those walkers that, during
the calculation, cross a nodal surface of the trial wave
function (see, for instance, Reynolds et al., 1982). An al-
ternative and better choice, however, is merely to reject
those moves which correspond to such crossings (see the
recent discussion on this point by Umrigar et al., 1991).
These are simple procedures for enforcing the vanishing
of the wave function at the nodal surfaces. In fact, both
procedures correspond to solving the Schrodinger equa-
tion separately in each domain, the evolution of the walk-
ers in one domain having become independent from that
in the other domains. More precisely, if {V,}] denotes
the domains bounded by the nodal surfaces of ¥+, one is
solving for the ground state of the Hamiltonian H in each
domain ¥V, according to

H¢,(R,s)=¢,$,R,s), (4.23)
and

o (R, s)Yr(R,s)>0, REV,, (4.24)

$(R,5)=0, REV, . (4.25)

Above, we have also indicated the spin configuration s.
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It should be clear that within the random-walk approach,
the asymptotic stationarity of the walker population can
only be attained if Er=¢,,, with g,, being the minimum
among all the e, corresponding to volumes V, which
were populated at the beginning of the random walk.
Therefore, if the trial energy E is suitably adjusted so as
to yield stationarity, the asymptotic walker population
will be distributed with density

Fo(R)=F(R,t—o)=c, b, (R,s)Pr(R,s) . (4.26)

We wish now to make our statement about the varia-
tional nature of the fixed-node approximation more pre-
cise. First of all, we notice that since H is completely
symmetric under the exchange of any two particle coor-
dinates, the symmetry of wave functions is preserved dur-
ing the evolution, i.e., the random walk. Thus from any
one of the ¢,, which is defined in a given domain, a wave
function with the antisymmetry dictated by the chosen
spin configuration can be formally constructed by sum-
ming the given ¢, over all the permutations P of the elec-
trons, according to

P(R,5)=T (—)P,(PR,s) .
P

(4.27)

From the variational principle applied to the Hamiltoni-
an H it follows that the variational energy associated
with the above wave function satisfies

JdR$:HS,

[ dar§:4,

where E is the minimum eigenvalue among those rela-
tive to the eigenfunctions of H with the given symmetry,
i.e., is the exact energy of the fermionic ground state, for
the given spin configuration. On the other hand, from
Eq. (4.26) and the Hermiticity of H it also follows that
the local energy estimator, which was explicitly given in
Eq. (4.8), tends asymptotically to €,,. This completes the
proof that the fixed-node approximation yields a varia-
tional upper bound to the exact ground-state energy of a
fermionic system.

Before discussing to what extent it is possible to im-
prove on the fixed-node approximation, it is worth noting
a detail which may appear technical at this point, but will
prove useful in what follows. In applying the above
scheme, one is solving the Schrodinger equation by
means of random walks separately in each of the domains
fixed by the trial antisymmetric function ;. In practice,
the sign of 1 is needed so as to delete those walkers that
change domains, or, better, to reject those moves that im-
ply such crossings. It should be clear to the reader that,
with regard to importance sampling, nothing changes if
one defines a guidance function 5 to be positive every-
where and takes as distribution f =¢vy;, provided that
the sign of v/ is still used to locate the nodal surfaces. In
fact, the fixed-node approximation, as presented above,
corresponds to taking ¥g=|¥;|. However, nothing
changes in the foregoing discussion if one makes a

=¢,>E,, (4.28)
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different choice for ¥;. We stress that, to yield an
efficient sampling, ¥; should, in any case, be a good ap-
proximation to the modulus of the exact ground state.
This is equivalent to saying that 1 should not differ too
much from |¢7], since ¥, was assumed from the start to
be a good approximation to the exact ground state.

It was mentioned that the difficulties in applying a
random-walk algorithm to the calculation of the Fer-
mionic ground state arise from the fact that the corre-
sponding wave function possesses positive and negative
regions and therefore cannot be regarded as a walker’s
density. However, this difficulty is easily remedied, at
least formally. The manner in which this can be done is
as follows. One can simply regard positive and negative
regions of the trial wave function as determining the pos-
itive densities of different objects, the white and black
walkers. In fact, an antisymmetric wave function can al-
ways be written as the difference between two positive
functions. The partitioning in white and black walkers
mentioned above corresponds to a particular choice of
such functions. It is clear from the linearity of Egs. (4.1)
and (4.14) that one can consider the evolution of each one
of these functions separately. At each step of the itera-
tion process yielding the evolution, the difference be-
tween the two functions will give an antisymmetric wave
function (Kalos, 1984).

The approach outlined above to the problem of Fermi
statistics is the essence of the so-called nodal relaxation
method (Ceperley and Alder, 1980, 1984; Ceperley,
1981). However, while it seems relatively simple and
straightforward, such a method turns out to be unstable
when numerically implemented. The reason for this is
clear. The two positive functions into which the an-
tisymmetric wave function is divided are no longer an-
tisymmetric. As such, they acquire a projection onto the
symmetric Bose ground state, which has a lower energy
than the Fermi ground state. As the evolution proceeds,
the Bose component of each one of the functions grows
exponentially with respect to the antisymmetric com-
ponent. Thus, in principle, in taking the difference be-
tween the two functions, the Bose component should can-
cel out, leaving the antisymmetric Fermi component. In
practice, because of the finite numerical precision, after a
sufficient number of iterations the latter component is
completely lost, and the difference between the two func-
tions is just noise. This is a manifestation of the so-called
Sfermion sign problem. In order to avoid the loss of the
fermionic signal, one has to suitably restrict the evolution
time. Therefore it is important that the trial wave func-
tion be very close to the exact Fermi ground state, since
the closer it is the shorter the evolution time can be
made. For the above reasons, the estimates of the Fermi
ground state based on the nodal relaxation method have
also been termed ““transient estimates” (Kalos, 1984).

Before closing this necessarily incomplete presentation
of the quantum Monte Carlo technique, we intend to give
a very brief idea of the way the nodal relaxation method
has been practically implemented (see, for instance,
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Ceperley and Alder, 1984). To fix ideas, we shall consid-
er the application of the method within the Green’s-
function formalism with importance sampling. Thus the
starting point is Eq. (4.20), which gives the evolution of
the distribution f(R)=¢(R)¢¥(R). We shall, however,
distinguish between a trial wave function, which provides
the initial nodal surfaces, and a positive guidance func-
tion, to be used in the importance sampling. In this
manner one can deal with the evolution of a positive dis-
tribution, for which a random-walk algorithm can still be
used, and attach to each walker the appropriate sign at
the end, in a way which depends on the number of cross-
ings of the walker through the nodal surfaces of .

Since the importance sampling is made according to
¥g, it is useful to introduce a corresponding Green’s
function,

D (R,R")=¢45(R)G(R,R)Y;(R'), (4.29)
and an appropriate weight function,
W(R)=¢(R)Yg(R) . (4.30)

The relation between the above Green’s function and the
one defined in Eq. (4.22) is

K(R,R)=W(R)D (R,ROWR') . (4.31)

If we maintain for f the definition f =¢y and introduce
correspondingly a new distribution g =¢v, relative to
the guidance wave function, one can rewrite Eq. (4.20) as

g(R)=(E +V,) [dR'D(R,R')g(R) (4.32)
and, of course,
FR)=W(R)g(R) . (4.33)

Equation (4.32) must be iterated, starting from a suitable
initial distribution. The best that one can choose is to
start from the fixed-node distribution gry =dpy1Ps, ob-
tained, for instance, from a previous calculation with gui-
dance function ¥. To this fixed-node distribution corre-
sponds an initial g,

go(R)=00(R)|gFN(R)|EUO(R)Ig(R)I 4.34)
where
o R)=W(R)/|W(R)|=sgn[¢(R)] . (4.35)

From the computational point of view, one can just begin
iterating Eq. (4.32) starting from g =g, and assigning
to each new walker a counter in which is stored the sign
o, of the initial fixed-node parent. In this manner, only
positive distributions enter the random walk. The final
distribution f =¢1, is then easily obtained from the
walker population corresponding to the final g by assign-
ing to each walker a weight and a sign according to
W(R)o,, where R is the position of the walker and o is
the sign associated with the position of the initial fixed-
node parent, at the beginning of the random walk. This
immediately follows from Egs. (4.32)—(4.34).
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Once the nodal relaxation has been performed, the fer-
mionic ground-state energy can be evaluated via the local
energy estimator, introduced with Eq. (4.8), which in the
present case can be written as

S W(R,;)0,EL(R;)

E,= (4.36)

2 W(R;)oy

We stress once again that, in applying the nodal relaxa-
tion method to practical calculation, it is essential to
start from a very good guess for the fermionic ground
state, in order to minimize the length of the random walk
associated with the relaxation of the nodes. In fact, dur-
ing the evolution of the modulus of the wave function,
the fermionic signal decreases in favor of the bosonic
component. This leads, for instance, to an exponential
growth in the variance of the energy with respect to its
average value, as can be seen from the definition of aver-
age implied by the local energy estimator of Eq. (4.36)
(Kalos, 1984; Schmidt and Kalos, 1984).

Finally, we wish to comment on the choice of the gui-
dance wave function. ¥ should be sufficiently close to
|#r| to ensure an efficient sampling of configuration
space, ¥ having been chosen so as to be a good approxi-
mation to the exact ground state. However, in the case
in which nodal relaxation is performed, other considera-
tions come into play. In particular, within the frame-
work of the diffusion Monte Carlo method, it appears
from Egs. (4.4) and (4.5) that a zero of the guidance func-
tion corresponds to an infinitely repulsive force acting on
the walkers. This means that the walkers are pushed
away from the nodal surfaces of ¥y and cannot cross
them. In other words, the statistical system associated
with the walkers is nonergodic, in that the walkers can-
not redistribute themselves among the various domains
determined by the nodal surfaces. On the other hand,
within the Green’s-function Monte Carlo procedure, the
vanishing of 1, yields an excessive branching in the
walker generation (Ceperley and Alder, 1984). In either
case, a simple way to remedy this inconvenience is to
take g(R)=|p(R)|[1+s(R)], where s(R) is a non-
negative function which is very small away from nodal
surfaces and vanishes at infinity. Near a nodal surface,
however, s (R) behaves in such a way as to make ¢¥5(R)
small but finite. A reasonable choice of s (R) is obtained
by compromising between reduction of branching and
efficiency of the sampling (Ceperley and Alder, 1984).

D. Monte Carlo computer experiments on phase
transitions in uniform interacting-electron assembly

The ground-state energy of a uniform interacting-
electron assembly has been computed by Ceperley and
Alder (1980) with the diffusion Monte Carlo method de-
scribed in Sec. IV.A. In particular, these authors have
calculated the ground-state energy for four distinct
phases of this system of charged particles, at various den-
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sities. They have considered (a) the unpolarized Fermi
fluid, (b) the fully polarized Fermi fluid, (c) the Bose fluid,
and (d) the Bose crystal on a bcc lattice. With this infor-
mation, which can be regarded as the most accurate to
date, they were able to predict the transitions between
the various phases with reasonable accuracy.

For each phase, the calculations were performed by
first generating fixed-node wave functions, or more pre-
cisely the corresponding random-walker populations, and
then applying to such fixed-node distributions the nodal
relaxation scheme discussed in Sec. IV.C. The trial wave
functions for the Fermi phases were chosen as a product
of Slater determinants, one for each spin-projection pop-
ulation, times a Jastrow factor ensuring the cusp condi-
tion as any two electrons approach each other. The
Slater determinants were constructed from plane waves
with the wave vector lying within the Fermi sphere. Of
course, at given density the Fermi wave vector of the ful-
ly polarized electron fluid is 2!/3 larger than that of the
unpolarized system. For the crystalline phase, the one-
particle orbitals were chosen as Gaussians centered on
the lattice sites with a width chosen variationally.

The analysis of the convergence of the nodal relaxation
shows that in the present case the Hartree-Fock nodes,
which were employed in the calculations, constitute a
good approximation to the nodes of the exact wave func-
tion. In fact, it was found that the convergence of the re-
laxation process was relatively quick. The effect of the
finite number of particles and finite time step on the re-
sults of the calculations was also systematically studied,
and extrapolations to infinite number of particles and
zero time step were performed. The systematic error
originating from the finiteness of the sample was found to
be one order of magnitude larger than the statistical er-
ror, in spite of the fact that the interactions between the
particles and their images in the periodically extended
space were taken into account with an Ewald summation
procedure (see, e.g., Ceperley, 1978) to eliminate the ma-
jor surface effect.

The results of Ceperley and Alder for the charged Fer-
mi and Bose systems are fully summarized in Table I. A
more direct interpretation of their findings is obtained

2.5 4
2.0} \t 1
—~ \
9 \ T Polarized Fermi fluid
15k -
w A
w Metastable
. B
~ 0 1.0F Unpolarized ose fluid d
Fermi fluid
0.5+ -

Wigner crystal

1 1 1 1 1 1 1 1
% 40 80 120 160 200

s

FIG. 7. Energy of the four phases studied relative to that of the
lowest boson state times r2 in rydbergs vs 7, in Bohr radii.
Below 7, =160, the Bose fluid is the most stable phase; above,
the Wigner crystal is most stable. The energies of the polarized
and unpolarized Fermi fluid are seen to intersect at 7,=75. The
polarized (ferromagnetic) Fermi fluid is stable between r;, =75
and 7, =100, the Fermi Wigner crystal above r, =100, and the
normal paramagnetic Fermi fluid below r,=75. From Ceperley
and Alder (1980).

from Fig. 7 where the quantity r2(E —Ep,,) is plotted
against ;. Thus the energy of each phase is referred to
the Bose ground state. The two curves corresponding,
respectively, to the paramagnetic ground state and to the
Wigner crystal intersect when r,~80 Bohr radii. In-
terest in the fully polarized or ferromagnetic state was in-
dicated by Bloch’s work within the Hartree-Fock ap-
proximation (Bloch, 1928). Bloch’s theory represents the
simplest example of spin-density-functional theory. Of
course, it is now well known that Hartree-Fock theory
predicts too readily the existence of ferromagnetism.
This is because it correlates parallel-spin electrons essen-
tially correctly through the Fermi hole, whereas
antiparallel-spin electrons are uncorrelated. Thus the en-
ergy of the fully ferromagnetic state is predicted more ac-
curately than that of the paramagnetic state. In particu-
lar, Bloch’s theory leads to ferromagnetism for r > 6.
This is only a slightly larger r; than for metallic cesium,

TABLE 1. Ground-state energy of the charged Fermi and Bose systems. r; is the Wigner-sphere radius
in units of Bohr radii. Energies are in rydbergs, and the digits in parentheses represent the error bar in
the last decimal place. The four phases are the paramagnetic or unpolarized Fermi fluid (PMF); the
ferromagnetic or polarized Fermi fluid (FMF); the Bose fluid (BF); and the Bose crystal with a bcc lat-

tice (bcc).

7 PMF FMF BF bce

1.0 1.174(1) e te

2.0 0.0041(4) 0.2517(6) —0.4531(1)

5.0 —0.1512(1) —0.1214(2) —0.21663(6)

10.0 —0.10675(5) —0.1013(1) —0.12150(3)

20.0 —0.06329(3) —0.06251(3) —0.06666(2) e
50.0 —0.02884(1) —0.02878(2) —0.02927(1) —0.02876(1)
100.0 —0.015321(5) —0.015340(5) —0.015427(4) —0.015339(3)
130.0 <. s —0.012072(4) —0.0123037(2)
200.0 —0.008007(3) —0.008035(1)
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the lowest electron-density metal. There is no sign of a
tendency to ferromagnetism in the physical properties of
this metal.

In fact, as a comparison of the curves from computer
experiments displayed in Fig. 7 shows, the ferromagnetic
state does not become stable with respect to the paramag-
netic state until », > 70, indicating the vital importance of
electron correlation in discussing this magnetic transi-
tion. This ferromagnetic state intersects the Wigner
crystal at r;=100. Around such values of r; the Bose
and Fermi crystals differ in energy by an amount which is
less than 1.0X 107 rydbergs.

While Ceperley and Alder point out that their comput-
er studies need refinement, there can be little doubt that
the Wigner crystal becomes stable in the range
70 <r, <100, and this, of course, is very valuable infor-
mation. We notice that one area of obvious importance,
if the Wigner electron crystal is to be unambiguously
identified in three dimensions, is the question of the tem-
perature at which melting of the electron crystal will
occur.

E. Calculation of correlation energy for small molecules

Configuration-interaction calculations have been able,
in the past, to account typically for about 80% of the
correlation energy of molecules such as water (see, for ex-
ample, Meyer, 1971 and Rosenberg and Shavitt, 1975).
However, interesting chemistry occurs on an energy scale
of only a fraction of the correlation energy. For example,
the O-H bond strength in water is about 50% of the
correlation energy. Thus the correlation energy comput-
ed using large CI wave functions differs from the exact
(nonrelativistic, Born-Oppenheimer) energy by an
amount of this same order of magnitude. Improving the
CI results can be difficult, since convergence to the exact
result is slow and can be nonuniform. Nevertheless,
present-day state-of-the-art CI calculations yield whenev-
er possible very accurate energy estimates (Martensson-
Pendrill et al., 1991) and to date still provide the yard-
stick against which all other calculations are measured.
The numerical effort involved in CI calculations for a sys-
tem of N electrons increases with a power of N which is
between 4 and 5.

The quantum Monte Carlo method, at least in princi-
ple, appears to be free of the limitations inherent to an
expansion procedure. In practice, in the absence of a
stable algorithm to implement nodal relaxation, optimiz-
ing the nodes of the trial wave function becomes a crucial
issue. Moreover, treating molecules with large nuclear
charges Z by QMC may require very large computational
times, even larger than in CI. In fact, though Reynolds
et al. (1982) optimistically estimated that the computa-
tional effort needed in QMC would increase only as the
third power of the number of electrons, subsequent and
more careful estimates yield, for an atom with nuclear
charge Z, a computational effort that increases either as
Z>3 (Ceperley, 1986) or as Z%3 (Hammond et al., 1987).
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The quantum Monte Carlo method was developed and
used primarily in the fields of nuclear and condensed-
matter theory (cf. Sec. IV.D on jellium). However, subse-
quent chemical calculations have been performed (An-
derson, 1975, 1976, 1980; Mentch and Anderson, 1981;
Moskowitz and Kalos, 1981; Alder et al., 1982;
Moskowitz et al., 1982a, 1982b; Ceperley and Alder,
1984; Moskowitz and Schmidt, 1986). In the following
we shall briefly review some of these calculations. In par-
ticular, we shall illustrate the quality of calculations per-
formed (a) with diffusion Monte Carlo, (b) with the
Green’s-function Monte Carlo, (c) within the fixed-node
approximation, and (d) with allowance for nodal relaxa-
tion. We shall also comment again on limitations and
possible developments of QMC.

The DMC method has been applied by Reynolds ez al.
(1982) to the calculation of the ground-state energy of
some small molecules, H,, LiH, Li,, H,O, within the
fixed-node approximation. Trial wave functions of
different sophistication were considered by these authors
so as to show the importance of ¥, on the efficiency of
the sampling. All their importance functions were in the
form of a product: a Slater determinant for each of the
two groups of electrons with given spin projection times
a correlation factor of Jastrow type. Of course, the Slater
determinants were taken in such a way as to ensure the
symmetry associated with the particular choice of the to-
tal spin projection, whereas the Jastrow factor was such
as to reproduce the correct cusp behavior of the wave
function as the electrons approach each other. They
have considered three kinds of trial wave functions corre-
sponding to Slater determinants constructed, respective-
ly, from (a) a minimal basis set of Slater-type atomic or-
bitals, (b) a somewhat enhanced basis set and/or an opti-
mized version of (a) and (c) localized Gaussian orbitals.
In case (c) the Jastrow factor contained additional terms
to reproduce also the cusp behavior associated with the
electron-nuclear Coulomb attraction: this should have
the effect of making the local energy associated with v,
even smoother.

In Table II, the fixed-node (FN) quantum Monte Carlo
ground-state energy for some molecules is reported for
the three choices of ¥ listed above. Reported also for
comparison are the energies obtained with the Hartree-
Fock (HF) approximation, the best CI calculations, and
the exact clamped nuclei or Born-Oppenheimer approxi-
mation, in the usual nonrelativistic framework afforded
by the many-electron Schrodinger equation. All the en-
ergies are in hartrees. It is clear that, with the exception
of the water molecule, in all cases the fixed-node energy
accounts for most of the correlation energy. There are
improvements in going from simpler to more sophisticat-
ed wave functions, so that with the best trial wave func-
tion (IIT) the fixed-node energy accounts for 95% or more
of the correlation energy. It should be noted that in the
case of the hydrogen molecule the ground-state wave
function has no nodes. Therefore differences between
fixed-node and exact energies of H,, which are beyond
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TABLE II. Total ground-state energy (in hartrees) of some small molecules (from Reynolds et al.,
1982). The figure in parentheses is the statistical error. The various symbols are explained in the text.

H, LiH Li, H,0
HF —1.1336 —7.987 —14.872 —176.0675
FN-I —1.1745(8) —8.047(5) —14.985(5) —176.23(2)
FN-III —8.059(4) —14.991(7) —176.377(7)
FN-III —1.174(1) —8.067(2) —14.990(2)
Best CI —1.1737 —8.0647 —14.903 —176.3683
Exact —1.17447 —8.0699 —14.9967 —176.4376

the statistical error, give a measure of the numerical er-
ror associated with the use of a finite time step in the
diffusion Monte Carlo calculations. In the case of the
water molecule, it seems that none of the trial functions
that were used is of especially good quality. In fact, in
such a case only about 80% of the correlation energy is
accounted for by the fixed-node calculations.

Reynolds et al. (1982) have also performed fixed-node
calculations for the ground-state energy of the lithium di-
atomic molecule at various internuclear distances around
the equilibrium one. The results of such calculations,
based on a ¥4 of type II, are reported in Table III, to-
gether with the Hartree-Fock and the exact energy. It is
found that 90% or more of the correlation energy is ob-
tained also in this case.

As noted by Reynolds et al. (1982), the Born-
Oppenheimer approximation, adopted throughout their
work, can also be relaxed. This is achieved by allowing
the nuclei, as well as the electrons, to diffuse. The
diffusion constant for each nucleus is then #/2M, where
M denotes the nuclear mass. Thus the nuclei diffuse con-
siderably more slowly than the electrons, and this makes
the calculation longer.

Thus it is found that by using relatively simple trial
functions ¥y and making only a modest computational
effort, one can obtain with the fixed-node QMC at least
as much, and often more, of the correlation energy than
proves possible by CI calculations to date, for simple
molecules.

Fixed-node calculations for small molecules using the
domain Green’s-function (DGF) method have been per-
formed by Moskowitz and Schmidt (1986). As these au-
thors stress, the use of the DGF method is free of the sys-
tematic error introduced in the DMC by the finite time
step. Here we shall just briefly comment on their results.

TABLE III. Ground-state energies (in hartrees) at selected nu-
clear separations for Li,. The symbols are as in Table I. Typi-
cal statistical uncertainty on the fixed-node results is 0.005 har-
trees.

r (bohr) HF FN-II Exact
3 —14.786 —14.905 —14.915
4 —14.853 —14.968 —14.983
5.05 (equil.) —14.872 —14.991 —14.997
6 —14.869 —14.985 —14.992
7 —14.859 —14.976 —14.982
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Among the systems that they consider are the LiH mole-
cule, the Be atom, and the BeH, molecule. With their
calculations they are able to reproduce ground-state
correlation energies within chemical accuracy, i.e., a few
percent, when using the best trial functions. The same
degree of accuracy is also found in the prediction of exci-
tation energies for the Be atom and the energy barrier for
insertion of Be in H,.

It should be stressed once again that the quality of
fixed-node energies depends on the capability of the
chosen trial wave function to reproduce the nodal sur-
faces of the exact ground state. Thus, while the fixed-
node approximation yields upper bounds to the exact en-
ergy, the systematic optimization of such results does not
appear to be easy. In this respect the nodal relaxation
technique, which was developed by Ceperley and Alder
(1980) for the electron gas in the first instance, may prove
valuable. One has to keep clearly in mind, though, that
such a technique only gives transient estimates for the en-
ergy. In other words, if the relaxation is performed for
times too long, it becomes intrinsically unstable, with the
interesting signal that decreases exponentially whereas
the noise remains constant. Thus the nodal relaxation
technique crucially depends on the availability of a good
starting guess for the ground-state wave function, and
this may be provided by a preliminary (or, in actual prac-
tice, contemporary) fixed-node calculation.

Ceperley and Alder (1984) have performed further cal-
culations on some of the small molecules previously con-
sidered with the DMC method, improving on them in
two ways. They have changed to Green’s-function
Monte Carlo, utilizing a technique introduced by Ceper-
ley (1983), to sample the exact Green’s function, thus el-
iminating any error associated with the use of a finite
time step. Further, they have implemented the nodal re-
laxation. In these new calculations they have also con-
sidered the H; molecule. Below, we shall briefly review
their study as an example of how nodal relaxation can
work. Since we have already described in some detail the
main points of the nodal relaxation method, we shall
merely present their results for the ground-state energy
of the molecules considered. We shall also try to exem-
plify a bit the problem of the convergence of the nodal re-
laxation. For these calculations, with the exception of
the H,O molecule, trial functions of type III as used in
the work of Reynolds et al. (1982) were employed. For
H,O a more sophisticated ¥, was used. We refer the in-
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terested reader to the original paper by Ceperley and
Alder (1984) for the details of their trial functions.

In Table IV we report the ground-state energy for LiH,
Li,, H,0, and for three different configurations of Hj
denoted by H;(I), H;(II), and H;(III). At first glance, the
nodal relaxation appears to be able in all cases to bring
down the fixed-node energy so as to agree with the exact
energy. However, a few comments are necessary. It is
true that the relaxed-node energies coincide with the ex-
act ones within the statistical error. Nevertheless, the
statistical error increases with increasing total energy. In
addition, as has already been mentioned, the nodal relax-
ation can only provide transient estimates of the fermion-
ic ground-state energy. Therefore it appears necessary to
examine the convergence of the nodal relaxation in de-
tail. To this end one can consider the total energy as a
function of the generation number, starting from the first
generation after the beginning of nodal release. Such
curves for two typical cases are shown in Figs. 8—10. In
Fig. 8 the relaxing of the total energy for LiH is shown.
It is clear that in this case one can confidently speak of
convergence. We stress that in the figure are also report-
ed the results of runs in which the trial wave function
was deoptimized to show how this destroys the conver-
gence. The case of H,O is illustrated in Fig. 9. Although
the relaxed energy at the end of the run is in agreement
with the exact energy, within the statistical uncertainty,
there is no indication that convergence was reached, in
that the slope of the energy curve does not seem to di-
minish.

A better way of studying the convergence of the nodal
relaxation is to look at the energy difference between suc-
cessive generations. Of course, a sign of convergence
should be the vanishing of such a quantity after a
sufficient number of generations. This quantity can also
be evaluated more accurately than the total energy itself,
as discussed by Ceperley and Alder (1984). In Fig. 10 the
difference in release-node energy is shown for LiH. It is
clear that with a good trial wave function the node relax-
ation can be considered to be converged. However, in
the case of H,O, reported in Fig. 11, it is not possible to
say much, since the error bars increase too fast with the
generation number even in the difference calculation.

The conclusion that can be drawn from the above dis-
cussion is that whereas the nodal relaxation appears to
work well with light molecules, there are still problems
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FIG. 8. Energy (in hartrees) vs the number of generations since
node release for the molecule LiH. The results for three
different trial functions are shown. (0O ) indicates the results ob-
tained with the best trial function. The parameters in the other
two trial functions were deliberately deoptimized to raise the
fixed-node energy. From Ceperley and Alder (1984).

with the heavier ones. This is related to the fact that in
the heavier molecules, because of the larger nuclear
charges Z, the total energies are also larger and hence so
are the error bars. Moreover, with increasing Z, the
difference between the Bose and Fermi ground-state ener-
gy increases and, correspondingly, the rate (exponential)
at which the Bose component obscures the fermionic one.

A number of ways to partially improve the QMC com-
putations for heavier molecules are listed by Ceperley
and Alder (1984). One way is based on a different treat-
ment of inner electrons, possibly by means of pseudopo-
tentials, so as to deal, in practice, with an equivalent
problem with lower Z. Another way considers the possi-
bility of deleting all the random walks that frequently
cross the nodes. They also cite the possibility of directly
calculating energy differences by means of correlated ran-
dom walks. To date, practical calculations of heavier
atoms and molecules, within the fixed-node approxima-
tion, have mainly exploited the separation of electrons in
core and valence, followed by a different treatment of the
two kinds of electrons (Hammond et al., 1987; Hurley
and Christiansen, 1987; Hammond et al., 1988; Yoshida
and Iguchi, 1988; Bachelet et al., 1989). The use of pseu-

TABLE 1V. Comparison of fixed-node and relaxed-node ground-state energies (in hartrees) with CI
and exact results. RN indicates the relaxed-node energy, and the other symbols are as in Tables I and

II. A is the difference Epy — Egrn-

Molecule FN RN A Exact Cl
H,() —1.6581(3) —1.6591(1) 0.0009(2) —1.65919 —1.65876
H;(I) —1.6239(3) —1.6244(3) 0.0005(2) —1.62451 —1.62337
H,IID) —1.6606(2) —1.6617(2) 0.0011(2) —1.66194 —1.66027
LiH —8.067(1) —8.071(1) 0.004(1) —8.0705 —8.0690
Li, —14.990(2) —14.994(2) 0.004(1) —14.9967 —14.903
H,0 —76.39(1) —76.43(2) 0.04(1) —76.437 —76.368
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FIG. 9. Energy (in hartrees) vs the number of generations since
node release for the molecule H,O. From Ceperley and Alder
(1984).

dopotentials to achieve the core-valence separation intro-
duces, however, a new complication: good pseudopoten-
tials are nonlocal, and this is in conflict with key aspects
of QMC. To overcome this complication, workers have
resorted to two tricks: either the nonlocal potentials are
made local by suitable approximations (Hammond et al.,
1987; Hurley and Christiansen, 1987; Yoshida and Igu-
chi, 1988), or they are transformed into local ones by in-
troducing appropriate pseudo-Hamiltonians (Bachelet
et al., 1989). A different approach has also been pro-
posed and tested, in which core and valence electrons are
both described in terms of wave functions, with the core,
however, being treated variationally while the important
valence electrons are treated by QMC (Hammond et al.,
1988).
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FIG. 10. Change in release-node energy (in hartrees) every five
generations since node release for the molecule LiH. From
Ceperley and Alder (1984).
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FIG. 11. Change in release-node energy (in hartrees) every five
generations since node release for the molecule H,0. From
Ceperley and Alder (1984).

The severe limitation imposed on QMC calculations by
the big increase with Z of the computation time remains
an open problem, even though improved diffusion Monte
Carlo algorithms (Umrigar et al., 1991) may allow time
steps considerably larger than in the past, thus partially
alleviating the slowing down of calculations. In fact, the
attempts mentioned above to overcome such a slowing
down with a core-valence separation still appear far from
developing into standard, transferable algorithms. On
the other hand, even though the use of sophisticated,
specifically tailored wave functions may allow very accu-
rate predictions of the correlation energy in fixed-node
calculations (Umrigar et al., 1991), nodal relaxation
remains very difficult to implement, because of the lack
of a stable algorithm. Thus the fermion sign problem
and the computational slowing down for species with
large Z remain open challenges for the quantum Monte
Carlo treatment of many-electron systems.

F. Auxiliary-field quantum Monte Carlo
method and Hubbard model

The central idea of the auxiliary-field quantum Monte
Carlo (AFQMC) method, as we have already anticipated,
is to exactly rewrite the propagator of a many-particle
system—with two-body interactions—in terms of a
propagator for independent particles interacting with
auxiliary external fields. While this procedure introduces
the need for averaging over the values taken by such ex-
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tra fields, it permits the use of well-established techniques
to treat the propagator for independent particles. The
strategy is relatively simple and contains three main
steps: (a) find the appropriate transformation that re-
places the coupling between the particles with a coupling
to suitably chosen classical fields; (b) solve the new in-
dependent particle problem,; i.e., calculate the trace (par-
tition function) or a suitable matrix element of the propa-
gator; (c) perform the average over the auxiliary fields,
usually with techniques borrowed from classical statisti-
cal mechanics. For the sake of simplicity, rather than
considering the general case of an arbitrary Hamiltonian
with quadratic interactions (see, e.g., Sugiyama and Koo-
nin, 1986; Negele and Orland, 1988), here we shall con-
centrate on the specific case of the Hubbard model, for
which we shall then discuss some applications.

The basic relation that allows for the introduction of
the auxiliary fields is the Hubbard-Stratonovich (HS)
identity (Stratonovich, 1957; Hubbard, 1959) valid for
any Hermitian operator 0,

2"2
e(l/l)a ]

> f dx e—(1/2)x ——axO 4.37)
m

‘/
or appropriate extension of it (see below). The Hubbard
Hamiltonian of Eq. (4.10) contains a one-body term,
K=3st; a,aa s> and a two-body interaction
V=U 3, n;yn;;. Therefore it appears to be a good can-
didate for the HS transformation. However, the propa-
gator e #H contains the sum H, 0+ V, rather than merely
V. Here Hy=K —u 3,,a;5a;,. The trick for circum-
venting this difficulty is to resort to the Trotter formula,

L —eHy+ V)
=Ile

r=1

~BlHy+V)

L —eH
=[[e ‘e "+0(e), (4.38)
with e=f/L, so that the exponential of V appears explic-
itly. In fact, V still needs some rearranging. One possi-
bility is to rewrite e “¢¥—in each of the time slices gen-
erated by the Trotter formula—using the relation
(Hirsch, 1983)

n”nil:—%(n”—nil)z-i—%(n”-*—nu) , 4.39)

which is valid for fermions (n2, =n;,). Then, use of the
HS transformation in Eq. (4.38) and elementary manipu-

lations yield the propagator in a new form,

U(B)=e PH
NL/2

_E
2

xff[

r=11i

—eh,(x)

L 0
Ie

—(e/2)x

N
dx,e (4.40)
=1

valid to order €, with
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~ U
hr(x)=H0r+Z ‘/eri(nriT_nril)+_2—(nri1‘+nril)
i

(4.41)

and N the number of sites of the finite lattice on which
the Hubbard model is considered. It is evident that the
Hamiltonian A,(x) contains only one-body operators: in
particular, it describes independent particles moving in
an external field V' Ux,;. Thus, through a Gaussian
averaging, the imaginary-time propagator U (f) is related
to a new propagator for independent particles,
L=B/e _ep (x)
e

U.Bx)= II

r=1

(4.42)

A number of comments are in order. The accuracy of
Eq. (4.40) increases with increasing L =f3/¢, and this al-
ternative representation of the propagator only becomes
exact in the limit e—0 (L — o). However, one can
study systematically such a convergence and accordingly
estimate the systematic error introduced by a finite
Trotter time €. The reader will have noted the presence
in Eqgs. (4.40) of a time index denoted by r. This new la-
beling simply keeps track of the Trotter time slice.

As we have anticipated, quantities that one typically
wants to calculate are the partition function Z =TrU(f)
or a projected partition function Z;=(®|U(B)|®;),
where @ is a trial wave function nonorthogonal to the
ground state. In either case, for S— o one obtains a lim-
iting behavior Z(Z;)x e %o Thus one can obtain E,
as

Eo=— lim ~Z(B)=— lim ~Z.(8) . (4.43)
" powB B BT
From Eqgs. (4.40) and (4.41) it is clear that the evaluation
of Z requires that of

Z(x)=TrU_(B,x) . (4.44)

This can be evaluated (Blankenbecler et al., 1981) in
terms of a determinant involving the matrices associated
with the Hamiltonians h,(x) of Eq. (4.41). Once Z(x) is
known, the problem of calculating Z is reduced to that of
evaluating a multidimensional integral over the variables
{x,;}. Infact, one readily obtains

Z= fdx e BUWsen(Z(x)) , (4.45)
where

f dx = i - f r]i[} ,11—:11 dx,; (4.46)
and

U(x)=—2~E 2 x,,——lan (x)| . (4.47)

Thus the problem of calculating the partition function
for a quantum system is reduced to the classical problem
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of calculating a configurational integral. We shall merely
note that numerical problems may, however, arise from
the possible presence of nodal surfaces in the function
Z(x). These can give (a) problems of ergodicity in sam-
pling the integral of Eq. (4.44) as well as (b) problems of
signal-to-noise ratio if Z results from the cancellation of
large contributions of opposite sign. This is a manifesta-
tion of the so-called fermion sign problem.

The considerations above, and, in particular, Egs.
(4.44)—(4.46), remain valid if one calculates a projected
partition function—the only difference being that
Z and Z(x) are replaced by Z; and Zp(x)
=(®,|U.(B,x)|®r), respectively. Appropriate tech-
niques are available (Sugiyama and Koonin, 1986; see
also Sorella, 1989) to evaluate Z,(x). With manipula-
tions similar to those reviewed above, it is also possible to
reduce the calculation of relevant correlation functions to
that of pseudoclassical averages. It seems proper at this
point to add that, particularly for the Hubbard Hamil-
tonian, it has proved possible (Hirsch, 1983) to write a
discrete transformation of the HS type, i.e.,

—eUn;.n

it I'Tzl 2 e
o=x+1
with cosh(eJ)=e®U’2, This transformation maps the
quantum Hubbard problem onto an equivalent classical
problem where one has to sample over Ising variables,
rather than continuous ones. According to Hirsch
(1986), in calculations using the transformation of Eq.
(4.47), the sign problem is not severe.

To give a practical illustration of the AFQMC, we
shall discuss recent work on the 2D Hubbard model,
stimulated by its possible relevance to the high-T, super-
conductors. We shall not attempt here to give an exhaus-
tive review, and therefore the interested reader is urged
to consult the original papers mentioned below for a de-
tailed discussion and further references.

Hirsch and Tang (1989) have studied the 2D Hubbard
model with nearest-neighbor hopping for lattices as big
as 8 X8 and for imaginary times up to f=20, in units in
which the hopping energy —t¢=—1. They have per-
formed AFQMC simulations based on the sampling of
the partition function Z for different values of the cou-
pling U and of the filling p—defined as the ratio between
the number of electrons N, and the number of sites in the
lattice N, p=N, /N. Because of electron-hole symmetry,
one can take p < 1. The doping can be suitably defined as

—e[Joln,, —n, )+ U(n, +n; )/2]
it il it il , (4.48)

[ %)

6=1—p. Since the lattice can accommodate 2N elec-
trons, p=1 corresponds to half filling and, similarly,
p=0.5 to a quarter filling. Hirsch and Tang have looked
especially into the magnetic properties of the system,
which can be characterized by the magnetic structure
factor

1 iqe(l,—
S(@Q=—3e
N i

Ij)<(n,~T"‘n”)(an_njl)> (4.49)
and, in particular, by its value at the wave vector
q,, =(m,m)=m. They find that at half filling the magnet-
ic structure factor exhibits a sharp peak at q,,. Such a
peak, which is shown in Fig. 12, tends to become more
and more pronounced with increasing lattice size or cou-
pling U. Also apparent—from the same figure—is the
saturation of S () with increasing simulation time 8. In
fact, as the time becomes shorter, the drop in S(7) be-
comes more and more pronounced for larger lattices and
couplings. The presence of such a peak in S(q) is inter-
preted as a sign of antiferromagnetic long-range order.
As they move from p=1, they find a rapid suppression of
such an ordering, as can be seen from Fig. 13, and they
conjecture that the antiferromagnetic order disappears
immediately away from half filling. Hirsch and Tang
also find that at low temperatures (long imaginary times)
the properties of the 2D Hubbard model at half filling are
well described by a spin-wave theory with renormalized
local moment and spin-wave velocity.

The results of Hirsch and Tang are consistent with
those of recent MC simulations (Reger and Young, 1988)
of the two-dimensional antiferromagnetic Heisenberg
model with which the two-dimensional Hubbard model
at half filling is equivalent for large U. Moreover, they
are fully confirmed by independent investigations on the
Hubbard model. In Fig. 14 we show the results of White
et al. (1989) for the spin-spin correlation function

c(lx,ly)=%2(m(l,-+I)m(l;)> , (4.50)

where m (l;) is the local magnetic operator along the z
axis. Clearly, while staggered spin correlations are clear-
ly visible for half filling, these are nearly absent for the
quarter-filled case. In fact, results of Sorella (1989), ob-
tained using the projected partition function technique
and Langevin dynamics to sample the pseudoclassical
partition function, show that, even with a doping & of
only 12%, such correlations are practically absent. Thus

E T T T
(b) U=2

FIG. 12. Magnetic structure factor for
S(m)=S[q=(m,7)] vs imaginary time S for
lattices of size 4X4, 6X6, and 8X8, at half
filling. The solid lines are results of spin-wave
theory (Hirsch and Tang, 1989). The dashed
lines at the right side indicate the T'=0 limits
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of the spin-wave results. From Hirsch and
Tang (1989).
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FIG. 13. Magnetic structure factor for
S(m)=S[q=(m,m)] vs band filling for U =4,
with 4X4, 6X6, and 8 X8 lattices at various
imaginary times. The numbers next to the
curves indicate B; the curves are drawn
through the points to guide the eye. From
Hirsch and Tang (1989).

the conjecture of Hirsch and Tang on the suppression of
antiferromagnetic order away from half filling seems fully
confirmed.

White et al. have also presented results for the

single-particle momentum occupation n(k)={(n,,)
=(a;£,,akc,). As can be seen from Fig. 15, the one-
electron momentum distribution for the interacting elec-
trons at half filling is broadened more than at a quarter
filling, with respect to the noninteracting-electron case.
This is also confirmed by a subsequent study by Moreo
et al. (1990), which in addition, from an investigation of
the compressibility and of the electron self-energy, pro-

- 10x10, U=4, <n>=1, §=10 b

(5,5)

c(tl,)

PO SR TN R SN SR WA NN SR N SN SN Y
(0,0 (5,0) (5,5) 0,0)
1 LI B S SN S B S B B S
r (b) 7
F 8x8, U=4, <n>=0.5, =10 B
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3
)
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FIG. 14. Spin-spin correlation function c¢(l,,/,). The horizon-
tal axis traces out the triangular path seen in the center of the
figure. Strong antiferromagnetic correlations are visible in (a),
which is for a half-filled band ({n )Ep= 1.0), but are nearly ab-
sent in (b), which is at quarter filling ({(n)=p=0.5). From
White et al. (1989).
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vides evidence for a one-electron gap at half filling. Of
course, this is consistent with the presence of antiferro-
magnetic long-range order. On the contrary, there is no
evidence of a gap at a quarter filling where the system ap-
pears to be in a Fermi-liquid state—as is also suggested
by the sharpness of the one-electron momentum distribu-
tion which more closely resembles that for noninteract-
ing electrons. Thus one can conclude that in two dimen-
sions the Hubbard model predicts antiferromagnetic
long-range order for any finite U at half filling behaving
like an insulator, whereas such order disappears on mov-
ing away from p=1 and the system behaves rather like a
paramagnetic Fermi liquid.

1.0i i “.l T
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FIG. 15. Momentum distribution »n (k) for an 8 X8 lattice with
U=4 and B=10 at (a) half filling ({n)=p=1.0) and at (b)
quarter filling ({n ) =p=0.5). The dashed curves are the U =0
results. From White et al. (1989).
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V. SUMMARY AND FUTURE DIRECTIONS

The major topics discussed in this article fall into two
categories: (a) full many-body treatments of molecules
and solids, and (b) simplified models, in which, however,
strong correlations can be accommodated, at least in
principle.

These two categories overlap in important areas. Thus
(a) includes the jellium model of a metal which, in spite of
its simplicity, has provided the basis for the development
of the original Thomas-Fermi-Dirac method (see
Gombas, 1949; March, 1957) into the theory of the inho-
mogeneous electron gas or, more formally, density-
functional theory (Hohenberg and Kohn, 1964). Within
this framework, fairly realistic calculations can now be
performed on properties determined by the ground-state
charge density alone for metallic, semiconducting, and
insulating crystals. These calculations build the jellium
results into the exchange and correlation contribution to
the one-body crystal potential. While this treatment,
which follows closely the pioneering work of Slater
(1951) and was formalized into the current approach by
Kohn and Sham (1965), is by now widely used in exten-
sive systems, it has obvious limitations due to the forcing
of the many-electron problem into a one-electron mold.
One of these, the gap problem in insulators and semicon-
ductors, is so severe that the correction to the one-body
potential band gap is the order of the band gap itself (see,
for example, Sham and Schliiter, 1983). To correct this,
one must go back to a fully many-electron approach in-
volving the nonlocal mass operator (Pickett, 1986; Godby
et al., 1988; Fiorentini and Baldereschi, 1992).

Having dealt with the way the results of the jellium
model can be built into realistic calculations on molecules
and solids, we turn to the second class, under (b), which
is provided by Hubbard- and related Heisenberg-model
Hamiltonians. These are designed to treat situations in
which very strong electron-electron correlations tend to
bring about site localization of electrons. Here the basic
idea, at the simplest level, is to keep antiparallel electrons
apart by imposing an energy penalty, U, for allowing two
electrons with antiparallel spins simultaneously on a
given atomic site. It is interesting that the variational
wave-function approaches of Coulson and Fischer for H,
from the quantum-chemical angle, and subsequently
Gutzwiller from the standpoint of low-order density-
matrix theory, address what amounts to essentially the
same basic point: how to reduce the weight of ionic
configurations in a molecular-orbital or band-theory ap-
proach. The strong interplay between chemical and
physical points of view should be clear from the account
of Sec. I1I, where a local approach to correlation in mole-
cules is also given some prominence. We shall return to
this interplay below. ‘

But before doing so, we must stress here, following Sec.
IV, that the very accurate correlation energy calculations
have come from quantum Monte Carlo computer tech-
niques. However, crucial input into such calculations is a
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trial wave function. For the jellium model, which was
simulated by the above technique by Ceperley and Alder
(1980), the trial function was a Slater determinant of
plane waves, multiplied by a product of pairs (Bijl-
Jastrow) wave function. The analytical efforts expended
earlier on such wave functions, which unfortunately al-
most always had to invoke relatively uncontrolled ap-
proximations to allow the calculation of the appropriate
low-order density matrices determining the energy, have
been brought to fruition through the addition of the
quantum Monte Carlo technique. But as well as the jelli-
um results, correlation energies of small molecules are
also reported in Sec. IV, together with some numerical
solutions of the two-dimensional Hubbard model.

This prompts us to return to the theme raised above as
to the fruitful interplay between physical and chemical
ideas in treating realistic many-electron systems. This
was already apparent in the early and originally largely
parallel developments in the quantum chemistry of the
polyenes, which anticipated, through the recognition of
alternating single and double bonds (see, for example, the
survey for Murrell, 1971), what solid-state physicists to-
day call “Peierls’s theorem,” namely, that one-
dimensional metals cannot exist. Later the exact solution
of the one-dimensional Hubbard Hamiltonian by Lieb
and Wu (1968; see also Kotrla, 1990) was a significant
step in the study of strong correlations, though it did not
allow for bond alternation. However, this has now been
done in the quantitative, though admittedly approximate,
work of Kajzar and Friedel (1987). In this same context,
the high-T, superconductors (see, for example, Micnas
et al., 1990) have had, as one by-product, to bring
Pauling’s theory of resonating valence bonds (RVB) back
into fashion, as briefly summarized in Sec. III.E.

But, in more general terms, one question that surely
remains at the heart of the theory of the high-T, ceramic
oxide superconductors is whether the chemistry of these
very specific systems can in fact be subsumed within the
parameter space of the currently popular two-
dimensional Hubbard model. If this proved to be the
case, then the system specificity already referred to must

-mean that high-T, superconductivity can only be ob-

tained in a very tiny portion of this parameter space.
Certainly, the recent discussion of Anderson (1990) sug-
gests that, already, considerable new insight is coming
from low-dimensional Hubbard models, when solved in a
highly accurate manner via Tomonaga-Luttinger-liquids
theory. This approach, going back to Luther (1979) and
taken forward in a major way by Haldane (1981), prom-
ises to have a lot to say that will be, at least, highly
relevant to the normal state of high-T, superconductors.
The main point to stress here is that careful many-body
analysis of interacting fermion systems reveals the possi-
bility of two fixed points. One is the well-established
Landau-Fermi-liquid theory. In this theory the interac-
tion parameters are marginal operators around a single
fixed point: essentially the free Fermi liquid [Anderson
(1990), who refers to the work of Benfatto and Gallavotti
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(1990)]. The Luttinger liquid was defined by Haldane
(1981), who showed that a large variety of one-
dimensional quantum fluids could all be solved by com-
mon techniques based on transforming to phase and
phase-shift variables for the Fermi-surface excitations.
As Anderson (1990) emphasizes, these systems are
characterized by fractionation of quantum numbers and,
often, a Fermi surface with nonclassical exponents. He
argues that the Luttinger liquid is a fixed point, of the
same renormalization group that ‘“‘usually” yields the
Landau-Fermi liquid as a unique fixed point. This
Luttinger-liquid state, according to Haldane (1981), al-
ready embraces a large class of interacting one-
dimensional systems and, Anderson has argued, should
also include some two-dimensional systems in which the
band spectrum is bounded above, i.e., systems with
Mott-Hubbard gaps and an upper Hubbard band. An-
derson makes this approach the basis for a theory that
appears to be useful in calculating normal-state, and
some superconducting, properties of high-7, supercon-
ductors.

The fact that charge and spin acquire distinct spectra
in the Haldane-Anderson approach, plus the excitement
surrounding the possible role of particles with fractional
statistics in two dimensions, the anyons of Wilczek, fol-
lowing the demonstration by Kalmeyer and Laughlin
(1987) that a gas of anyons has a superconducting ground
state, mean (see also Halperin et al., 1989) that many-
electron theorists have truly major challenges ahead.
Since the early books by Thouless (1961) and by March
et al. (1967) on many-body theory, the area of applica-
tion of many-electron techniques has expanded hugely.
The correlation problem was important in the early days
(see Wigner, 1934, 1938), but now it has moved to the
center of the stage. Whether present models are rich
enough to embrace much chemistry underlying the at-
tractive interactions between holes in the ceramic oxide
superconductors [see, however, the work of Callaway
et al. (1990) on small cluster calculations using the Hub-
bard model], the framework existing now for many-body
studies surveyed in the present article should be flexible
enough to increasingly embrace realistic systems and, in
the high-T, materials, to eventually incorporate band-
structure effects in the specific ceramic oxides, as well as
the long-range Coulomb repulsion between holes, which
seems to be missing from current studies of the Cooper
pair binding.

APPENDIX A: MODEL OF TWO-ELECTRON
HOMOPOLAR MOLECULE

Here we shall summarize the results of the model of
Falicov and Harris (1969) of a two-electron homopolar
molecule.

To define their one-band Hamiltonian, it is convenient
to use second quantization operators and to restrict the
model to four orbitals, one of each spin in each of the two
centers. The Hamiltonian then takes the form

Rev. Mod. Phys., Vol. 66, No. 2, April 1994

H=H,+Hgz+H,+Hg (A1)
where

H,=a(n;4+ny +ny+n,), (A2)
HB=B(CJ{TCZT +CI$¢21+C;TCH+CLCN) , (A3)
H,=U(nyny tnyny ), (A4)
Hy=K(nyny tnygny tngnytngn,). (A5)

Here c,-‘:,, C;o» and n,-a=c,-t,c,-o are, respectively, creation,
annihilation, and number operators for the orbital of spin
centered on nucleus i. H, and Hy are, respectively, the
single-particle diagonal and off-diagonal terms; H,, is the
intra-atomic Coulomb repulsion, while H, is the corre-
sponding interatomic term. The parameters 3, U, and K
are positive-definite quantities, such that U > K.

Since one is considering only two-electron states, the
following results can be exploited:

(a) The electron-number operator

N=3no (A6)

io

is completely diagonal and can be replaced everywhere
by the number 2; e.g.,

H,=2a . (A7)
(b) The operator
Nz: 2 nianja" (A8)
ijoo

is also completely diagonal and can be replaced every-
where by the number 4.
(c) Recalling that

ic=Nig (A9)

for any i and o, we can utilize (a) and (b) immediately
above to write the identity

4=2+2(n”n” +n2Tn2¢)

+2(npngptugn, tugnyy g n,y ). (A10)
(d) The Hamiltonian can be rewritten
H=2a+K +# (A11)
with
H=Hg+H,+(H,—K), (A12)

where the final term can be written
HK'_K =""K(n11n1i+n21~n2l):_(K/U)Hu .
(A13)

From the above expressions, or alternatively from sim-
ple physical arguments, it can be readily seen that the ei-
genvalues of H can depend on U and K only through the
difference U —K. This permits one to write the ground-
state energy E as
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TABLE V. Matrix elements of H.
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[1121) [1421) [1111) [2124) [1124) 12114)
(1121| 0 0 0 0 0 0
(1i21] 0 0 0 0 0 0
(1114] 0 0 U—-K 0 -B -B
(2121 0 0 0 U—K —-B -B
(1124] 0 0 —B -B 0 0
(2114] 0 0 —B —B 0 0
E=(H)=2a+K +e, (A14) geneous boundary conditions, is non-negative. We start
by remarking that, with a suitable choice of the constant
where Vo, all the eigenvalues of the Schrodinger operator
e={F) =Pe(x) (A15) H +V, with homogeneous boundary conditions are posi-

with € only dependent on the variable x =(U /K)/p.

We now discuss the exact ground state.

Any eigenstate of Eq. (A12) with two electrons should
be a linear combination of the six states

[1121), |1424), |111l),
[2124), [1121), [2111),
where

liojo'Y=ceih10) (A16)

with |0) as the vacuum state. The matrix elements of H
in this manifold are given in Table V, taken from Falicov
and Harris (1969).

An exact diagonalization of the Hamiltonian matrix
yields from the ground state |G )

|G)=2[16+xXx2+16)"21712(|1111 ) +[2124))
+0.5[x +(x2+16)12]
X[164x2+x (x2+16)!/2]71/2

X112 +1]2111)), (A17)

while the energy, expressed in the variables discussed
above, is characterized by

€6=0.5[x —(x2+16)?] . (A18)

Falicov and Harris have used these exact results. to as-
sess the accuracy of various approximate solutions such
as the Heitler-London and molecular-orbital solutions
discussed in Sec. IILLA, but we shall not go into detail
here, except to say that the most successful approximate
solutions of their model are of the form of symmetrized
spin-density-wave trial functions.

The generalization of this model to more complicated,
many-electron chains has also been discussed (Fenton,
1968; Harris and Falicov, 1969), and we refer the in-
terested reader to these papers for details.

APPENDIX B: POSITIVITY OF THE
STATIC GREEN'S FUNCTION G (R,R’)

Here we shall prove that the Green’s function
G (R,R’), obtained as a solution of Eq. (4.11) with homo-
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tive and in particular the lowest one, eg=E,+ ¥V >0. Of
course the ground-state wave function ¢y(R) has the
same sign everywhere.

From Eq. (4.15), it is evident that G (R,R’) is positive
and vanishes only at points R’ where all wave functions
are vanishing. Therefore, G(R',R’)=0 also implies
G (R,R’)=0 for all values of R.

On the other hand, G(R’,R’)>0 implies that, for
given R’, the function ¢y(R) defined by

oo(R)=G(R,R’), fixed R’, (B1)

is positive in a region around R’ for reasons of continui-
ty. Let us assume per absurdum that regions exist where
#o(R) is negative. Let D, be the domain where
#o(R) <0, the point R’ being in its complement D,, and
D=D,+D, being the 3N-dimensional domain of in-
terest. Clearly, nodal surfaces must exist that separate
negative and positive regions. It is not difficult to con-
vince oneself that it is always possible to find a sub-
domain of D, (denoted by D’), possibly coinciding with
D,, such that ¢,(R) does not change sign in D’ and van-
ishes on its boundary. It follows that in the closed
domain D’ the function @,(R ) satisfies

(H+Vy)do(R)=0, (B2)

with homogeneous boundary conditions. In other words,
the Schrodinger operator H + ¥, restricted to D’ and
with the condition that the eigenfunctions vanish at the
boundary, possesses the ground-state eigenfunction ¢,
with eigenvalue §,=0. Clearly, one has €,>%,. Howev-
er, it can be shown using the calculus of variations (see,
for instance, Courant and Hilbert, 1953, particularly
Chap. VL2, theorem 3) that under the present cir-
cumstances, i.e., D’ is a proper subdomain of D, it must
instead hold the condition €,>¢€,. Thus one is led to a
contradiction. Therefore G (R,R’) is non-negative.
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