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This article describes the advances that have been made over the past ten years on the problem of fracton
excitations in fractal structures. The relevant systems to this subject are so numerous that focus is limited
to a specific structure, the percolating network. Recent progress has followed three directions: scaling,
numerical simulations, and experiment. In a happy coincidence, large-scale computations, especially
those involving array processors, have become possible in recent years. Experimental techniques such as
light- and neutron-scattering experiments have also been developed. Together, they form the basis for a
review article useful as a guide to understanding these developments and for charting future research
directions. In addition, new numerical simulation results for the dynamical properties of diluted antifer-
romagnets are presented and interpreted in terms of scaling arguments. The authors hope this article will
bring the major advances and future issues facing this field into clearer focus, and will stimulate further

research on the dynamical properties of random systems.
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I. INTRODUCTION

Over the decade a great deal of activity has been con-
centrated on understanding the nature of quantized exci-
tations in fractal networks, such as their spatial and
dynamical properties and their relationship to physical
observables. In addition, the dynamics of fractal net-
works has been used as a model to aid the understanding
of thermodynamic and transport properties of random
physical systems. Progress has followed three directions:
scaling theories, numerical simulations, and physical
realizations. The first has proven remarkably useful for
the physical interpretation of the dynamics of random
systems, the second for dealing with the complexity of
random systems, and the third for application of the
ideas developed through scaling and numerical simula-
tions. A happy coincidence arose with the possibility of
large-scale computations, especially those involving array
processors, together with the development of light-
scattering and low-energy inelastic neutron-scattering ex-
perimental techniques to the point where measurements
that elucidate microscopic mechanisms have become pos-
sible.

The purpose of this review is to describe the advances
that have been made over the past ten years in this field.
The relevant systems that have been investigated are so
numerous that we shall focus on a specific structure for
clarity: the percolating network. This is the random
fractal most thoroughly studied, and one for which the
most information is currently available. Although some
of the physical systems that have been experimentally in-
vestigated most certainly do not map onto percolating
networks (e.g., the aerogels), some certainly do (e.g., site-
diluted antiferromagnets). However, even where the
mapping is not technically correct, the insights into the
physical properties of random systems afforded by exam-
ination of the properties of the percolation network will
prove extraordinarily useful.

Work on the dynamics of a percolating network re-
ceived its most important promotion in the pioneering
paper of de Gennes (1976b). He formulated the problem
as follows: an ant parachutes down onto a site on the per-
colation network and executes random walk. What is the
mean-square distance the ant traverses as a function of
time? By applying the scaling theory to this problem,
Gefen, Aharony, and Alexander (1983) developed the
concept of a range-dependent diffusion constant on the
percolation network, introducing an exponent 8 so that
the diffusion constant, for length scales r less than the
percolation correlation length, scales as » .

This insight, together with the realization that solving
the problem of diffusion was equivalent to solving the
(scalar) elastic vibration problem (Montroll and Potts,
1955; Alexander et al., 1981), led Alexander and Orbach
(1982) and Rammal and Toulouse (1983) to evaluate the
density of states (DOS) for vibrations of a percolation
network with the introduction of the fracton dimension
d. This quantity was a specific combination of 6 and the
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fractal dimension D,. It should be noted that the DOS
had in fact already been calculated for magnetic systems
by Shender (1976a, 1976b) and, independently for deter-
ministic fractals, by Dhar (1977). In particular, they
showed that the DOSs are characterized by a new ex-
ponent. Alexander and Orbach (1982) determined the
DOS and the dispersion relation for vibrational excita-
tions of a fractal.lattice, which they termed fractons, in
terms of the fracton and fractal dimensions. The concept
of crossover was introduced: at long length scales, the vi-
brational excitations were (softened) phonons with a
linear dispersion law; whereas at length scales less than a
crossover length scale (the percolation correlation length
for percolating networks), corresponding to frequencies
greater than an analogous crossover frequency, the vibra-
tional excitations were fractons with their own vibration-
al dispersion law.

In addition, Alexander and Orbach (1982) noted that
the fracton dimension for percolation networks was nu-
merically remarkably close to the mean-field value, 4/3
(exact in Euclidean dimension d=26), for all dimensions
greater than one, even though 6 and the fractal dimen-
sion D, were by no means constant as a function of di-
mension. This numerical evidence led them to speculate
that the fracton dimension might be exactly 4/3 for per-
colation networks for d =2. This has come to be known
as the Alexander-Orbach conjecture. It is important- be-
cause, if true, it would allow the conductivity exponent to
be evaluated in terms of static exponents. Recent numer-
ical simulations, considerably more powerful, show that
the conjecture is only approximate, though the values
found for the fracton dimension continue to be remark-
ably close to 4/3 for d = 2.

Immediately after this work appeared, Rammal and
Toulouse (1983) developed an analogous scaling method
to calculate the vibrational density of states and the mean
number of sites visited by de Gennes’s “ant” during the
random walk on a fractal network. From this result,
they were able to use the scaling theory of localization to
establish that fractons are localized for fracton dimen-
sions less than two (see Sec. IV.B.1).

Scaling has proven to be a very valuable tool for ob-
taining insight into the dynamical properties of fractal
structures. However, it has its limitations. In particular,
it is useful for ensemble averages of a physical quantity.
However, when products or matrix elements of physical
quantities are involved, it is by no means obvious (and, in
general, it is untrue) that the product or matrix element
of the individual ensemble average has any relationship
to the ensemble average of the product or matrix ele-
ment. This sharply limits the utility of scaling assump-
tions, though of course one might hope that any final re-
sult would exhibit scaling properties. The problem with
random systems is that, without the use of average quan-
tities, fluctuations in general preclude the computation of
observables obtainable experimentally, this being the ulti-
mate goal for any microscopic theory. Instead, one must
resort to ensemble averages of numerical simulations.
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Fortunately, results obtained from such methods do ap-
pear to obey scaling. There are two types of scaling argu-
ments: one actually computes critical exponents, and the
other can be used to find relations between different ex-
ponents. The latter perspective is the one mainly used in
the subject related to this review. Again, one must resort
to numerical simulations to obtain the values of the criti-
cal exponents.

The scaling predictions of Alexander and Orbach
(1982) for the vibrational density of states were first sub-
jected to scrutiny numerically by Grest and Webman
(1984). They simulated the vibrations of a percolating
network for a relatively small number of sites (N <2200).
Nonetheless, they were able to establish that the predict-
ed crossover between the phonon and fracton density of
states was, in fact, present, and that the latter was, to
within their numerical accuracy, in accord with the
Alexander-Orbach conjecture. The insights gained from
this early work were very important for the direction of
further research.

As the size of supercomputers increased, especially
with the advent of array processors, the size of the per-
colating networks that could be simulated grew enor-
mously (Yakubo and Nakayama, 1987a, 1987b). More
than 10° sites are now possible, yielding a wealth of new
results (and insights). Examples are the calculation of the
density of states for fractons; the asymptotic form of the
fracton wave function; matrix elements for inelastic light
scattering in vibrating percolation networks; and the
dynamical structure factor (see Secs. V.A and V.B).

Numerical simulations do more than simply verify
physical assumptions: they point the way to a new quali-
tative understanding of the nature of excitations of
strongly random structures, ultimately enabling the in-
vestigator to develop phenomenological expressions for
physical quantities. Soon, these simulations will shed
considerable light on the debate over the use of scaling
for the interpretation of light-scattering experiments
(Alexander, 1989; Alexander, Courtens, and Vacher,
1993), as well as be useful for the calculation of matrix
elements for vibrational (hopping) transport processes. A
quite natural question to ask is this: are there physical
realizations that justify extensive numerical efforts? For-
tunately, there are a number of physical systems exhibit-
ing measurable dynamical properties that exhibit fractal
geometry. Examples are site-diluted magnetic structures
(spin-wave or magnon excitations crossing over to frac-
ton magnetic excitations); silica aerogels (phonons, cross-
ing over to fracton vibrational excitations); and glasses
and amorphous materials (which, though certainly not
fractals, appear to exhibit thermal transport properties
that coincide with predictions from phonon-fracton dy-
namics).

The dynamical properties of these materials have been
investigated by the measurement of the thermal conduc-
tivity and sound velocity, and by inelastic neutron- and
light-scattering experiments. In general, where the con-
nection with a theoretical model has been direct (e.g., the
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site-diluted antiferromagnet that maps onto the percola-
tion network), detailed numerical agreement between
theory and experiment has been found. Where the map-
ping is less direct (e.g., the silica aerogels), but where the
fractal nature of the structure has been unequivocally
verified (see Secs. V.C and VI.C), scaling theory seems
adequate to represent the experimental data, though, of
course, unable to predict the value of the exponents. In
the case where the materials are certainly not fractals
(e.g., glasses and amorphous materials), the relevance of a
scaling model is less direct. Remarkably, a fractal model
does appear to generate predictions for the higher tem-
perature thermal transport and velocity of sound which
appear to be consistent with experimental observations.
All three of these features—scaling, numerical compu-
tations, and physical realizations—are coming together
at the present time. They provide a basis for a review ar-
ticle useful as a guide for understanding these develop-
ments and for charting future research directions. Our
review begins in Sec. II with a detailed introduction to
the properties of a percolating network. We study the
dynamics of such a structure because it is a random frac-
tal, and because so much analysis and understanding of
its properties have been developed over the past few
years. An excellent introduction to percolation theory is
available (Bunde and Havlin, 1991; Stauffer and Aharo-
ny, 1992); so we shall only outline the most important
features of this system. In Sec. III, we describe the solu-
tion of Gefen, Aharony, and Alexander (1983) for anom-
alous diffusion on a fractal network, with specific applica-
tion to percolation. We then introduce the transform of
Alexander and Orbach (1982) and develop the concept
and application of the fracton dimension. The power and
limitations of scaling are developed in Sec. IV, including
the characteristic crossover length scale and frequency
for sound waves and fractons, the dispersion relation,
and the vibrational density of states. Physical realiza-
tions for the density of states are introduced in Sec. V.
The dynamical structure factor S(q,w) gives rich in-
formation on the dynamics of fractal structures. We de-
scribe some features of S(q,w) for lattice vibrations of
fractal networks in Sec. VI, where the results of scatter-
ing experiments, scaling arguments, and simulations are
given by illustrating silica aerogels. The density of states
and the dynamical structure factor for diluted antifer-
romagnets are exhibited in Sec. VII. Inelastic neutron-
scattering measurements of S(q,w) by Uemura and Bir-
geneau (1986, 1987) allow a detailed comparison to be
made between experiment and theory. Vibrational
anharmonicity is introduced in Sec. VIII as a means for
fracton hopping. The associated contribution to thermal
transport and to the sound velocity is calculated. Com-
parison is made with thermal-conductivity measurements
for the silica aerogels that exhibit fractal geometry, and
for glasses and amorphous materials that do not. It is ar-
gued that, above a crossover frequency, all vibrational ex-
citations of glasses or amorphous materials are localized,
allowing the use of the hopping model. Comparison is
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also made with sound velocity measurements on these
materials. A detailed discussion is given of the magni-
tude of the anharmonic coupling constant extracted from
these measurements. Very recent modeling experiments
show enhanced anharmonicity in accord with the ap-
proach taken here.

Our summary and conclusions constitute Sec. IX. Sec-
tion IX also outlines some important research opportuni-
ties which we feel are available in this field.

We believe that the unusual conjunction of scaling
theory, numerical simulations, and physical realizations
has created an exciting climate for theoretical and experi-
mental investigation of the dynamics of random struc-
tures. We hope that this review will bring the major ad-
vances and issues facing this field into clearer focus, and
that it will foster further research in the fascinating
world of random systems.

Il. PERCOLATING NETWORKS AS AN
EXAMPLE OF A RANDOM FRACTAL

That the percolating network is a fundamental model
for describing geometrical features of random systems
and takes fractal (self-similar) structure was first noticed
by Stanley (1977). The theory of percolation was formu-
lated by Broadbent and Hammersley (1957) in connection
with the diffusion of gases through porous media (Ham-
mersley, 1983).! They developed the geometrical and
probabilistic aspects of percolation. Soon after the paper
by Broadbent and Hammersley (1957), Anderson (1958)
and de Gennes, Lafore, and Millot (1959a, 1959b) point-
ed out the physical implications of percolation theory,
and Domb and Sykes (1960) provided arguments support-
ing its critical behaviors. Since these works, it has been
widely accepted that percolation theory can be used to
interpret an exceptionally wide variety of physical and
chemical phenomena. The concept of a fractal (Mandel-
brot, 1975, 1977) has contributed significantly to our
present understanding of percolation. Percolation theory
describes satisfactorily a large number of physical and
chemical phenomena, such as gelation processes (de
Gennes, 1979), transport in amorphous materials (Zallen,
1983), hopping conduction in doped semiconductors
(Shklovskii and Efros, 1984), and many other applica-
tions (Harder, Bunde, and Dietrich, 1986; Ingram, 1987).
In addition, it forms the basis for studies of the flow of
liquids or gases through porous media.

The physical implications of percolation theory have
been described in many review articles or books, enlight-
ening both the static and dynamic properties of percolat-
ing networks (see, for example, Shante and Kirkpatrick,
1971; Kirkpatrick, 1973a, 1979; Stauffer, 1979, 1985;
Thouless, 1979; Essam, 1980; Farmer, Ott, and Yorke,

IThe concept of percolation was introduced rather earlier by
Flory (1941a, 1941b, 1941c) and Stockmayer (1943) during their
study of the gelation process.
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1983; Stanley and Coniglio, 1983; Zallen, 1983;
Shklovskii and Efros, 1984; Aharony, 1986; Efros, 1986;
Sokolov, 1986; Deutscher, 1987; Havlin and Ben-
Avraham, 1987; Feder, 1988; Bouchaud and Georges,
1990; Clerc et al., 1990; Isichenko, 1992; Odagaki, 1993;
Sahimi, 1993), and in many conference proceedings (de
Gennes, 1983; Deutscher, Zallen, and Adler, 1983; Gold-
man and Wolf, 1983; Pynn and Skjeltorp, 1985; Pynn and
Riste, 1987). In particular, recent reviews by Bunde and
Havlin (1991; see also Havlin and Bunde, 1991) and
Stauffer and Aharony (1992) bring the subject to its
current state of understanding.

There are two main kinds of percolating networks: site
and bond. To create a site-percolating (SP) network,
each intersection (site) of an initially prepared d-
dimensional lattice is occupied at random with probabili-
ty p. Sites are connected if they are adjacent along a
principal direction. In a bond-percolation (BP) network,
all sites are initially occupied and bonds are occupied
randomly with probability p. At a critical (different) con-
centration p =p,, both site and bond percolation exhibit
a single, infinite cluster spanning all space. The
difference between the geometrical structure of SP and
BP networks is a short-range one, namely, a bond has
more nearest neighbors than a site. For example, in a
d=2 square lattice, a given bond is connected to six
nearest-neighbor bonds, whereas a site has only four
nearest-neighbor sites. This is the reason why BPs al-
ways have smaller p, than those of SPs (see Table I in
which we list the values of p, for various percolation
geometries and dimensions).

A. Nodes-links-blobs model

A very useful model for an infinite network near p, was
first proposed by Skal and Shklovskii (1974) and de
Gennes (1976a) and refined by Stanley (1977), Pike and
Stanley (1981), and Coniglio (1982b). This model, called
the nodes-links-blobs model, is quite useful for describing
the geometrical features of percolating networks, though
it was not evident a priori that such a simple picture was
mathematically valid.

The nodes-links-blobs model is based on the fact that
an infinite cluster contains a backbone network with a
characteristic length scale &(p), defined in Euclidean
space, and dead ends attached to the backbone. The
backbone comprises the networks made of links (quasi-1d
strings) and nodes (intersection of links). The length of
links, i.e., the linear spacing &(p) between nearest-
neighbor nodes, corresponds to the correlation length of
the percolating network. This is the original version of
the model proposed by Skal and Shklovskii (1974) and de
Gennes (1976a), which is called the SSdG model or the
nodes-links model. This model neglects the strongly
bonded (multiconnected) regions in the links. The SSdG
model was refined by incorporating these parts, called
blobs. One imagines for a network at p >p, in this pic-
ture the percolating backbone consisting of a network of
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TABLE I. Percolation thresholds p, for several lattices and the Cayley tree.

Dimension Lattice Sites Bonds
2 Square 0.5927460-£0.0000005% 172
Triangle 1727 2sin(7/18) (=0.34729)™
‘Honeycomb 0.6962° 1—2sin(7/18) (=0.65271)"
Kagomé 0.652 70474 0.524 430"
Penrose 0.5837+0.0003¢ 0.477 0+0.0002¢
3 Simple cubic (1st nn) 0.31161° 0.248 65+0.0001 3¢
0.2488+0.0001¢
Simple cubic (2nd nn) 0.137
Simple cubic (3rd nn) 0.097°
Body-centered-cubic 0.245¢ 0.18025+0.0001 58
0.1795+0.0003"
Face-centered-cubic 0.198° 0.119¢
Diamond 0.428° 0.388°
4 0.197+0.001' 0.16140.0015
0.160 13+0.000 12¢
0.160 05+0.000 158
5 0.141+0.001! 0.118+0.01
0.1182+0.0002¢
Simple cubic 0.118 19+0.000 04
6 0.108! 0.094 075+0.0001*
0.094 20+0.00018
7 0.085! 0.078 62+0.000 03F
0.078 685+0.000 032
d— 1/(2d —1)
Cayley tree 1/(z—1)
2Ziff (1992).

®Sykes and Essam (1963, 1964).
°Stauffer (1985) and Stauffer and Aharony (1992).

4Sakamoto, Yonezawa, and Hori (1989) and Sakamoto, Yonezawa, Aoki, et al. (1989).

°Grassberger (1986).

‘Domb (1966).

EAdler et al. (1990).

hGaunt and Sykes (1993).

iJan, Hong, and Stanley (1985).
iGaunt and Ruskin (1978).

kAdler, Aharony, and Harris (1984).
'Nakanishi and Stanley (1980).

quasi-1d string segments (/inks), tying together a set of
strongly bonded regions (blobs) whose typical separation
is of the order of the correlation length £(p) [see Fig.
1(a)].

Stanley (1977) called the links red bonds and gave the
following definition: Consider the situation in which a
voltage is applied between two sites at opposite edges of a
metallic percolating network at p.. When the singly con-
nected region (red bonds) is cut, the current flow stops.
This bond carries the total current. In this connection,
Stanley and Coniglio (1983) introduced the terms blue
and yellow bonds. Blue bonds carry current. But when a
blue bond is cut, the resistance of the system increases.
Yellow bonds belong to dead ends and can be cut out
without changing the resistance.

B. Critical exponents

The occupation probability p of sites or bonds in per-
colation theory plays the same role as the temperature in
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thermal critical phenomena. There exists a critical con-
centration p, below which (p <p_) only finite clusters ex-
ist and above which (p >p,) an infinite cluster is present
as well as finite clusters.

Let us define n (p) as the average number (per site) of
finite clusters with the size (site number) s. The quantity
ny(p) is related to various physical quantities characteriz-
ing the network. The scaling theory of percolation is
based on the idea that there exists a certain “parameter”
characterizing the system, which diverges at p =p.. This
allows one to express the scaling Ansatz for n (p) by
defining a parameter s(p):

n(p)=s""F[s/s(p)],
where F(x) is an unknown function. Taking the form of
s(p) close to p, as

s(p)=lp —p 717, (2.1)

one has an alternative equation for p —p. and s — oo,
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& —0o0

FIG. 1. Schematic of the nodes-links-blobs model. (a) A per-
colating network above p.. The solid circles indicate nodes
forming the homogeneous network at length scales L >§. (b)
Links-blobs model at p =p.. The hierarchical structure of
blobs is stressed here.

ny(p)=s "F[(p —p.)s"] . (2.2)

Equation (2.2) allows scaling forms to be obtained for
various physical quantities around p, in terms of a set of
critical exponents. '

The exponent 8. The probability that a site belongs to
the infinite network, P(p), is associated near p, with the
exponent 3. Since an occupied site must be either in a
finite cluster or in the infinite cluster, one has the exact
relation,

P(p)+ ¥ np)ls=p .

For p <p,, only finite clusters exist and ¥, n (p)s =p.
When p approaches p.(p >p.), the above relation be-
comes

P(p)= 3 [ny(p.)—nyp)ls +(p —p.) .
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Substituting Eq. (2.2) into the above equation, one finds
P(p)= [s'"[F(0O)—F(x)lds +(p —p,) ,

where x =(p —p,)s". Changing the variable s to x gives
P(p)=Py(p —p.Y*+(p—p.) (p>p.) (2.3)

where P, is the constant prefactor and the critical ex-
ponent f3 is defined as

_ T2
_—

Because f3 is always less than unity, except for the case of
the Cayley tree (see Table II), the first term of Eq. (2.3)
dominates. Note that =1 for the Cayley tree, and the
two terms in Eq. (2.3) are of the same order in (p —p,).
The quantity P(p) was first introduced by Broadbent
(1954), corresponding to the order parameter for thermal
critical phenomena.

The exponent a. This is the exponent for the total
number of finite clusters given by

M(p)=3 n,(p) . 2.5)

B (2.4)

The function M (p) consists of the analytic part M'(p) at
p=p, and a singular part M'(p) proportional to
lp —p.|1*>°, as seen from the same procedure as that in
the case of Eq. (2.3). The critical exponent « is given by

a=1"T 15 (2.6)
7

For a thermal phase transition, the exponent a corre-
sponds to that of specific heat, and M (p) to the free ener-
gy-

The exponent y. The average mass S(p) (number of
sites or bonds) of finite clusters is related to n,(p) by

Zns(p)s2

s

Sp)=—"——.
(p) S nip)s

Note here that the factor n,(p)s/ 3 n,(p)s is the proba-
bility of an occupied site belonging to a cluster of s sites.
Because 3, n (p)s =p when p <p_, one has the equation
in the limit of p —p,

S ny(p)s?

S(p)= (2.7

P

Substituting Eq. (2.2) into (2.7), the critical exponent for
the average mass can be given by

S(p)=Solp —p.I7",
where S, is the constant prefactor and
3—r
n

For thermal critical phenomena, the analogous quantity
is the susceptibility.

Y= (2.8)
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TABLE II. Percolation exponents for d=2, 3, 4, 5, and d = 6. Rational numbers give exact results, whereas those with a decimal

fraction are numerical estimates.

Exponents d=2 d=3 d=4 d=>5 d=6
B 5/36 0.463° 0.665+0.15° 0.83+0.1°¢ 1
0.454+0.008¢ 0.64¢ 0.84¢
0.474+0.014° 0.65+0.04" 0.835+0.005"
0.435+0.0358 0.64+0.02" 0.83540.005!
0.4340.04f 0.639+0.020'
0.405+0.025'
% 45/18* 1.73+0.03¢ 1.414+0.25 1.254+0.15 1
1.79¢ 1.4440.05° 1.20+0.03°
1.71£0.06% 1.44% 1.18"
1.82+0.04" 1.435+0.015 1.185+0.005'
1.74+0.015'
1.77+0.02™
1.805+0.02!
v 4/32 0.8810.024 0.68-0.03f 0.57" 172
0.89+0.01" 0.68" 0.57140.003!
0.8810.05f 0.678+0.050
0.90+0.02%
0.8340.01"
0.81'
0.875+0.008™
0.872+0.007
D, 91/48° 2.48+0.09¢ 3.2140.07° 3.74+0.4° 4
3.1240.02P 3.69+0.02P

2Nienhuis (1982), den Nijs (1979), Nienhuis, Riedel, and Schick (1980), Pearson (1980).

®Gaunt, Whittington, and Sykes (1981).

°Adler, Aharony, and Harris (1984) and Adler et al. (1986a, 1986b).

dGaunt and Sykes (1983).

¢Adler et al. (1986a, 1986b).

fGrassberger (1986).

8Adler (1984).

bde Alcantara Bonfim, Kirkham, and McKane (1980, 1991).
‘Adler et al. (1990).

iGaunt, Sykes, and Ruskin (1976).

kSaleur and Derrida (1985).

IReeve (1982), Reeve, Guttmann, and Keck (1982).
™Strenski et al. (1988).

"Margolina, Herrmann, and Stauffer (1982), Heermann and Stauffer (1981).

°Stanley (1977).
PJan, Hong, and Stanley (1985).

C. Correlation length and fractal dimension

The lower cutoff scale characterizing the percolating
network is the length a that forms the lattice spacing of
the original network. There exists another characteristic
length &(p), called the correlation length, which was
mentioned in Sec. II.A. This length scale exhibits critical
behavior in the vicinity of p,.

The exponent v. The diameter of finite clusters below
P. is characterized by the correlation length &(p), defined
as the root-mean-square distance between two sites i/ and
j in the same cluster, averaged over all finite clusters.
The average distance between two sites in a given s clus-
ter is written by
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1
2
5221‘,

The number of ways of connecting two sites in a given
cluster of size s is 52, so that s%n, becomes the number of
ways of connecting two sites in clusters with the same
size 5. The correlation length £(p) is R, averaged by the
probability s?n, / 3 s*n,. This is expressed by

SR,
S s,
s

We assume the same scaling form for R, as in Eq. (2.2),

Ep)= (2.9)

R,=s"H[(p —p,)s"], (2.10)



388 Nakayama, Yakubo, and Orbach: Dynamical properties ot fractal networks

where @ is the new critical exponent. Substituting Egs.
(2.2) and (2.10) into Eq. (2.9), one has, close to p,,
Ep)=Eolp —p.|™", (2.11)

| —v
where = is the constant prefactor and

v= 2 .
n

The correlation length &(p) represents the characteristic
size of the voids in the percolating system when p >p,,
and the characteristic size of a finite cluster when p <p,.

The fractal dimension D,. Stanley (1977) was the first
to notice that percolating networks exhibited self-
similarity and could be characterized by a noninteger
mass dimension, i.e., that they were “fractal.” Mandel-
brot gave a simple definition of fractals: A4 fractal is a
shape made of parts similar to the whole in some way
(Feder, 1988). Fractals can be classified as deterministic
or random, depending on whether the self-similarity is
exact or considered as the average. Percolating networks
are a typical example of a random fractal.

From Eq. (2.10), one sees R, <s® at p =p,.. This is
rewritten as

s(R,)<R}® . 2.12)

It should be noted that s(R;) is a measure of the system;
i.e., s (R,) corresponds to the “mass” M (R;) in our prob-
lem. The exponent D,=1/ is called the fractal dimen-
sion or Hausdorff dimension. We can interpret £(p) as a
length scale up to which the cluster can be regarded as
fractal. For the percolating network for p >p., the
structure can be regarded as homogeneous for length
scales larger than £(p). Kapitulnik et al. (1983) demon-
strated through Monte Carlo simulations that the net-
works for p >p_, are homogeneous on length scales L >§
and fractal on scales L <§&. Summarizing,

LDf, L <<E,

M(L)< L% L>¢.

(2.13)

There are many reviews and books concerning the prop-
erties and uses of fractals (see, for example, Mandelbrot,
1975, 1977, 1982, 1989; Family and Landau, 1984; Stan-
ley and Ostrowsky, 1986; Barnsley, 1988; Vicsek, 1989;
Feder and Aharony, 1990; Sapoval, 1990; Takayasu,
1990; Feder, 1988; Peitgen and Saupe, 1988; Pietronero
and Tosatti, 1988; Bunde and Havlin, 1991; Family and
Vicsek, 1991).

The shorter limiting length scale /,, characterizing the
underlying components making up the fractal, depends
on the type of percolation, i.e., site (SP) or bond (BP).
This is because the random filling produces a relatively
small number of neighboring sites around an occupied
site in SP networks, whereas BP networks have many
masses on neighbors that are not directly connected.
This severely influences the difference in short-range
character of these networks. Figure 2 presents results of
a calculation by Stoll, Kolb, and Courtens (1992), which

Rev. Mod. Phys., Vol. 66, No. 2, April 1994

—~ 1000 T T T T 100
=
(4]

100 10
S
8 1o 1
e
3
g 1 {01
=
o 01 {0.01
®
a 0.01 L Lo [ SR 0.001

0.01 0.1

Reduced wave vector q

FIG. 2. Structure factor S(g) for SP and BP networks with
d=2. The dots are for L=12 systems (averaged over 20000
realizations), and the full curves for L=6800. The dotted lines
have slope D, =91/48. After Stoll, Kolb, and Courtens (1992).

indicates that the lower limiting length scale I, of BP net-
works is shorter than that of SP networks by one order of
magnitude at p =p,.

The criticality of links. The critical behavior of the
links (red bonds) was derived by Coniglio (1982a, 1982b)
using renormalization arguments. Coniglio (1982a,
1982b) verified that the number of red bonds varies with
pas

L,=(p—p,) Tx&p)/. (2.14)

This is rigorous in all dimensions. This relation also indi-
cates that the fractal dimension of the links is 1/v be-
cause L, is the measure in this case.

The chemical distance. We should mention that there
are exponents, besides those described so far, that are
useful for the description of the purely static geometrical
properties of fractal networks. An example is the short-
est path R, along the percolating network from one site
(i) to another (j). We can define the shortest path R, be-
tween the site / and j as the minimum number of steps by
which we can reach j from i, with restriction to existing
paths between connected sites. This is termed the chemi-
cal distance R (Alexandrowicz, 1980; Middlemiss, Whit-
tingston, and Gaunt, 1980; Pike and Stanley, 1981; Hav-
lin and Nossal, 1984; Cardey and Grassberger, 1985). It
is not the same as the linear length R; measured between
the two points (referred to as the “Euclidean distance”).
The chemical (or topological) dimension d, is defined
from

M(R,)=R>

where M (R_) is the mass within the chemical distance
R.. From Egs. (2.13) and (2.14), the chemical distance
between two sites that are separated by the Euclidean dis-
tance L is given by

R, o P17

The ratio of D;/d,=d , is the fractal dimension for the
minimum path between two sites (Stanley, 1984;
Herrmann and Stanley, 1988). The chemical dimension
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d, has been determined numerically for d=2 and d=3
percolating networks, and they take the values
d,=1.678+0.005 and d,=1.885%0.015, respectively
(Havlin and Nossal, 1984; Havlin et al., 1985, Herrmann
and Stanley, 1988; Neumann and Havlin, 1988).

Scaling relations. The relation between D, and the ex-
ponents 3 and v can be derived from a simple argument.
For percolating networks with p >p_, the correlation
length &(p) is finite and is the unique length scale describ-
ing geometrical features on a scale L >>a. Consider the
number of sites M (£) within a box of size £. From the
definition of P(p), M (&) is given by

M ()= EP(p)cg? B,
where P(p)<(p —p.)P is used. Thus the fractal dimen-
sion D is given by

v

This relation is called the hyperscaling relation, since it
depends on the Euclidean dimension d. The exponents 8
and v are universal, so that D, is also universal. They
depend neither on the lattice structure nor on the type of
percolation (SP or BP), but are a function only of the
dimensionality d.

It is important to note that the critical exponents
defined in Egs. (2.4)—(2.8) are related to each other. Us-
ing Eqgs. (2.4)-(2.8), one has the scaling relations

a=2—dv=2—2B—vy, (2.16)
1

= (2.17)

Bty
B

=24 , (2.18)

T By
and

dv=2B+y . (2.19)

All the exponents given above can be found if the values
of two of them are known.

The values of the exponents have been calculated by
various methods: the renormalization-group method
(Bernasconi, 1978a, 1978b; Fucito and Marinari, 1981;
Derrida and de Seze, 1982; Lobb and Karasek, 1982;
Sahimi, 1984), the cluster expansion methods (Sykes,
Gaunt, and Glen, 1976a, 1976b; Gaunt, 1977; Nakanishi
and Stanley, 1980; Gaunt, Whittington, and Sykes, 1981;
Adler et al., 1986a, 1986b; Sykes and Wilkinson, 1986;
Harris, Meir, and Aharony, 1987; Takayasu and
Takayasu, 1988; Adler et al., 1990; Wada, Watanabe,
and Uchida, 1991), Monte Carlo calculations (Margolina
et al., 1984; Rapaport, 1985; Kim et al., 1987), and the
finite-size scaling method (Chayes et al., 1986; Sakamoto,
Yonezawa, Aoki, et al., 1989; Sakamoto, Yonezawa, and
Hori, 1989). Table II shows the values of these critical
exponents. For d=2, the critical exponents are known
exactly.

The upper critical dimension above which the mean-
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field theory is valid is d=6. Mean-field percolation can
be modeled by percolation on a Cayley tree (Bethe lat-
tice). Hyperscaling relations (2.15) and (2.19) are valid
for space dimensions less than the critical value d=6. In
the classical range d = 6, the values for all the exponents
are given by the relation at d=6, namely, =1 and
v=1/2, independent of d.

I1l. RANDOM WALKS ON FRACTAL NETWORKS

The percolation transition has been characterized, in
Sec. II, by quantities such as the cluster size n,(p), the
mean size of a finite cluster S (p), the correlation length
&(p), and the order parameter P(p). These quantities de-
scribe the static (geometrical) properties of percolating
networks. In this section, we describe the dynamic prop-
erties of percolating networks. The first example is
diffusion of random walkers on a percolating network.

In uniform systems, the mean-square displacement of a
random walker, { R (1)), is proportional to the time ¢,

(RA1t)) =<t ,

for any Euclidean dimension d. In percolating systems,
for a length scale <§&, diffusion is anomalous (Gefen,
Aharony, and Alexander, 1983). The mean-square dis-
placement is described by the form

(Rz(t)> oct2/(2+9) , 3.1)

with 6>0. This slowing down of the diffusion is caused
by the delay of a diffusing particle because of hierarchi-
cally intricate structure and the presence of dead ends.

A. Anomalous diffusion

The diffusion coefficient of random walkers is defined
by
1 d{R*1))
D, =————"",
© 2 dt
where (R*(¢)) is the mean-square displacement after -
time steps. For p>p, and the length scale

(R2(t))1?2>>£(p), the system looks homogeneous and
normal diffusion holds,

(R%(t))=D_t, (3.2)

where the diffusion coefficient D, on this cluster is relat-
ed to the dc conductivity oy, through the Einstein rela-
tion

e’nD

kyT °

Og4c™—

where e denotes the carrier charge, n their density, kg
the Boltzmann constant, and T the temperature.

The subscript o« of D reflects the fact that, on these
scales, the dc conductivity occurs only through the
infinite cluster (p >p.). Empirical evidence for power-
law behavior was given by Last and Thouless (1971) and
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by Watson and Leath (1974). Last and Thouless (1971)
measured the current through sheets of graphite paper
with randomly punched holes. The exponent y is defined
through the relation

o(p)=Zylp —p .

Noting that the carrier density » is proportional to P(p),
we find that

D, x(p—p ) F. (3.3)

We should emphasize that u—f3 is always positive be-
cause D , —0 with p, —p,. for any Euclidean dimension
d.

The mean squared distance (R %(¢)) should be linearly
proportional to the time ¢ for p >p, and (R*(¢))/?>>¢.
One has from Egs. (3.2) and (3.3)

(RY 1)) <t(p—p, )+ F. (3.4)

For finite-size clusters, { R%(¢)) becomes independent of
time ¢ after a sufficiently long time. One has for p <p,

(RYAt))=&«|p—p,| 2. (3.5)

Here the relation £« |p —p.|™" is used. All of these
equations can be derived from the dynamic scaling form,

(RA)'V?2=t*G[(p —p )] . (3.6)

When Eq. (3.4) holds for p >p_, Eq. (3.6) leads to the
asymptotic form G(z), ,,<z* P/2. One can then
derive the relation

L(/*Z_Jﬂ =% . (3.7)

For p <p., {R*(t)) becomes independent of time ¢, lead-

ing to the form G(z), ,__ =z */ from Eq. (3.5). One

finds the asymptotic form
X
y
From Egs. (3.7) and (3.8), we have the relations

=v. (3.8)

4

= e 3.9
T 2vrp—B° 3.9)
1
=—, 3.10
Y 2v+u—pB ( )
Substituting these into Eq. (3.6), one finds at p =p,
(RAD)) w0 (3.11)
where
dw=2+L:B . (3.12)

This is of the same form as Eq. (3.1), if we define
6=(u—pB)/v. The slow process described by Eq. (3.11) is
called anomalous diffusion, and d,, is called the diffusion
exponent.

From Eq. (3.6) one can estimate the characteristic time
7 of the crossover from anomalous diffusion to normal
diffusion. Anomalous diffusion occurs when <<,
whereas normal diffusion occurs when ¢>>7. The
characteristic time 7 can be obtained by setting the argu-
ment in the function G (z) in Eq. (3.6) to be of the order
of unity:

T (p __pc)—(2v+u~ﬁ) ) (3.13)

The value of d,, is obtained by direct numerical calcula-
tions of {R?(¢)), or from the numbers of sites visited by

TABLE III. Dynamic exponents of percolating networks.

Exponents d=2 d=3 d=4 d=>5 d=6
d, 2.69+0.04 3.45+0.1° 6
2.871+0.001° 4.00+0.05¢
3.755°
u 1.29715:99% 3
1.31f 2.04f 2.39f 2.72f
1.26410.054# 1.876+0.035%
1.303 7399k
1.31540.008'
d 1.334+0.007 1.14+0.02° 1.39™ 1.44™ 4/3
1.323+0.004° 1.32+0.06' 1.36" 1.36"
1.32240.003% 1.328+0.01° 1.3140.03°
1.33+£0.01° 1.31£0.02° 1.279+0.07°
1.325+0.006P 1.31740.03P

*Hong et al. (1984).

®Havlin and Bunde (1991).
°“Movshovitz and Havlin (1988).
9Roman (1990).

¢Lobb and Frank (1984).

fAdler (1985).

8Sahimi et al. (1983).

"Frank and Lobb (1988).
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iOctavio and Lobb (1991).

’Essam and Bhatti (1985).
kZabolitzky (1984),

'Argyrakis and Kopelman (1984).
MAlexander and Orbach (1982).
"Daoud (1983).

°See Fig. 5 in Sec. V of this review.
PSee Fig. 6 in Sec. V of this review.
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random walkers within the time ¢, V(t)OCth e (Ben-
Avraham and Havlin, 1982, 1983; Argyrakis and Kopel-
man, 1984; Hong et al., 1984; Pandey et al., 1984; Pan-
dey, Stauffer, and Zabolitzky, 1987; Wagner and Balberg,
1987; Movshovitz and Havlin, 1988; Bunde, Havlin, and
Roman, 1990; Roman, 1990; Duering and Roman, 1991;
Havlin and Bunde, 1991). When calculating these quan-
tities, one must note that Eq. (3.11) represents the
diffusion for ¢ << on the single infinite cluster. Values
of d,,, as well as other dynamic exponents, are given in
Table III. From Table III, we see that, for any Euclidean
dimension d, d,, is larger than the value 2, the value for
normal diffusion.

B. Fracton dimension and the
Alexander-Orbach conjecture

The linear size of the region of sites visited by the
“ant” after f-time steps from Eq. (3.11) is
(R%(t))"/2ct1/2%9  Therefore the number of visited
sites V' (¢) becomes

V(e)<RP o<ctdr2 (3.14)

where the fracton (or spectral) dimension d is defined by?
2D, 2D,

=276 4

(3.15)

w

Alexander and Orbach (1982) tabulated the then-
known values for the quantities D > 6, and d for percolat-
ing networks on d-dimensional Euclidean lattices. They
pointed out that while D, and 6 change dramatically
with d (below d=6), d does not. They conjectured from
the numerical values for d that for percolation

d=4/3, for 2<d <6. (3.16)

The expression “hyper-universal” or “super-universal”
was coined to express the possibility that an exponent
could be independent not only of the details of the lattice
but also of the dimensionality d itself (see Leyvraz and
Stanley, 1983). This conjecture is crucial, because, if ex-
act, the dynamic exponent u can be related to the static
ones through the relation
,u=%[(3d—4)v—ﬁ] . (3.17)
Determining the dynamical exponents, such as d, d,,, or
U, has been a challenge in the past decade, and many con-
jectures have been proposed. The exact values for these

2The term “fracton” denotes a localized mode peculiar to frac-
tal structures, coined by Alexander and Orbach (1982). These
excitations exist not only for vibrational systems, but also for
dilute magnets. This dimension (d) plays an important role in
describing the dynamical features of percolating networks, such
as the density of states, dispersion relation, and localization.
This subject is discussed in detail in Sec. IV.
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exponents are not known, except for the case d = 6 (foot-
note 3). Values for u are usually estimated by numerical
methods (Fogelholm, 1980; Derrida and Vannimenus,
1982; Li and Strieder, 1982; Mitescu and Musolf, 1983;
Sahimi et al., 1983; Herrman et al., 1984; Lobb and
Frank, 1984; Zabolitzky, 1984; Sarychev et al., 1985;
Seaton and Glandt, 1987; Frank and Lobb, 1988; Nor-
mand et al., 1988; Gingold and Lobb, 1990; Octavio and
Lobb, 1991); by analytical approximations such as series
expansions (Fisch and Harris, 1978; Adler, 1985; Adler
et al., 1990), small cell real-space renormalization tech-
nique (Bernasconi, 1978a, 1978b), and the e-expansion
method (Harris et al., 1984; Harris and Lubensky, 1984,
1987; Wang and Lubensky, 1986; Harris, 1987); and from
experiment (Song et al, 1986; Wodzki, 1986; Domes
et al., 1987; Careri et al., 1988; Lin, 1991).

The Alexander-Orbach conjecture leads to a value of
the ratio u/v equal to 91/96=0.948 for d=2 percolating
networks. This exponent u /v describes how the resistivi-
ty R diverges with the linear size L of the system,
R « L*/, The value of /v has been studied numerically
with the finite-size scaling technique (Hong et al., 1984;
Lobb and Frank, 1984; Zabolitzky, 1984; Normand
et al., 1988). Gordon and Goldman (1988a, 1988b) tried
to obtain the value of u/v experimentally for Al thin
films of 50 nm thickness. They prepared an 800X 800
square lattice by exposing Al thin films to an electron
beam. These values for u/v previously reported are
slightly smaller than the conjectured value 91/96, which
means that d is less than 4/3.

The exponent d,, is also related to d by Eq. (3.15). If
the Alexander-Orbach conjecture holds, d,, should take
the value of 91/32=2.844 for d=2 percolating networks.

3The fracton (or spectral) dimension can be obtained exactly
for deterministic fractals (Rammal and Toulouse, 1983; Ram-
mal, 1983, 1984a; Given, 1984; Southern and Douchant, 1985;
Yu, 1986; Ashraff and Southern, 1988). In the case of a d-
dimensional Sierpinski gasket (Rammal and Toulouse, 1983;
Rammal, 1983, 1984a), the fracton dimension is

~_,In(d+1)
In(d +3) °

We see from this that the upper bound for a Sierpinski gasket is
d=2. Hattori, Hattori, and Watanabe (1986) have noted that
this upper bound is a general result for fractal systems in which
coarse-graining treatments are applicable. It is interesting to
note that the fracton dimension for a d=3 Sierpinski carpet
takes the value d=2.894 (Hattori, Hattori, and Watanabe, 1985;
Hattori and Hattori, 1988). This is because the coarse-graining
treatment is not valid for this carpet. Bourbonnais, Maynard,
and Benoit (1989) have shown the existence of channeling
modes in the d=2 Sierpinksi carpet which have large ampli-
tudes along the line of dense matter in the network. Ben-
Avraham and Havlin (1983) and Havlin, Ben-Avraham, and
Movshovitz (1984) have presented a family of exact fractals
with a wide range of fracton dimensions, including the case of

d=2.
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The Monte Carlo method for random walk is useful for
estimating the exponent d, through Eq. (3.11) (Ben-
Avraham and Havlin, 1982; Havlin and Ben-Avraham,
1983; Havlin et al., 1983, 1984; Hong et al., 1984; Majid
et al., 1984; Pandey et al., 1984, 1987; McCarthy, 1988;
Roman, 1990; Duering and Roman, 1991). The calculat-
ed values of d,, are somewhat larger than 91/32, which
corresponds to d S4/3.

The fracton dimension d can be evaluated directly by
the relation Sy ~N9/2, where Sy is the number of dis-
tinct sites visited during an N-step random walk on an
infinite percolating network (Rammal and Toulouse,
1983). Using this relation, the value of d has been nu-
merically calculated by random-walk simulations (Ben-
Avraham and Havlin, 1982, 1983; Havlin and Ben-
Avraham, 1983; Argyrakis et al., 1984; Rammal et al.,
1984; Keramiotis et al., 1985). The results indicate that
the values of d are quite close, but not equal, to 4/3. The
exponent d has also been calculated by series expansion
by Essam and Bhatti (1985). Their result is
d =1.3341£0.007 for d=2 percolating networks.

Although the value of fracton dimension d is different
depending on the method used, it is now accepted that
the Alexander-Orbach conjecture is not correct and has
really no analytical basis apart from numerical coin-
cidences; the true value of d is slightly smaller than 4/3
for d <6 (see Table III). It remains, nevertheless, a re-
markably accurate estimate of d for all d > 2.

IV. SCALING THEORIES FOR DYNAMICS
OF FRACTAL NETWORKS

A. Vibrational density of states
and fracton dimension

The fracton dimension d is a key dimension for
describing the dynamical properties of fractal networks
in addition to the fractal dimension D,. D, describes
how the mass of the geometrical object depends on its
length scale, whereas the fracton dimension d character-
izes anomalous diffusion on the fractal system. Alex-
ander and Orbach (1982) mapped the problem of anoma-
lous diffusion onto the vibrational problem with scalar
elasticity. They showed that the basic properties of vi-
brations on fractal networks, such as the density of states
(DOS), the dispersion relation, and localization, are
characterized by the fracton dimension d. Rammal and
Toulouse (1983) derived the fracton dimension d via a
scaling argument. They showed that various random-
walk properties, such as the probability of closed walks
and the mean number of visited sites, were governed by
the fracton dimension d. Feng (1985a, 1985b) included
vector displacements in terms of the nodes-links-blobs
model described in Sec. II. He claimed that the rotation-
ally invariant Hamiltonian having a stretching force con-
stant and an angular force constant required an addition-
al dimensionality d,, which we call the bending-fracton
dimension. His theory is discussed in Sec. V.A.3 in con-
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nection with the results of computer simulations on the
DOS of percolating networks incorporating the vector
nature of atomic displacement. In this section we review
the works of both Alexander and Orbach (1982) and
Rammal and Toulouse (1983).

1. Alexander and Orbach’s original version

As noted in Sec. III, de Gennes (1976b) posed the fol-
lowing problem. ‘““ An ant is dropped onto an occupied site
of the infinite cluster of a percolating network. The ant at
every time unit makes one attempt to jump to one of its ad-
Jjacent sites. If that site is occupied, it moves to that site.
If it is empty, the ant stays at its original site. What is the
(ensemble) averaged square distance that the ant travels in
a time 1?7’ The scaling argument to this problem was
presented by Gefen, Aharony, and Alexander (1983) as
described in Sec. III.A. The solution opened the way for
a nearly complete description of the dynamics of fractal
networks.

The structure of the diffusion equation is the special
case of a master equation, which in turn has the same
form as the equation of motion for mechanical vibrations
or the linearized equation of motion for ferromagnetic
spins (Alexander et al., 1981). This allows the vibration-
al problem to be mapped onto the diffusion problem.

The master equation of diffusion on a lattice is written
as

~=Sw,P,, 4.1)
dt ; j=

where P; is the occupation probability of the diffusing
particle on site i, and W;; is the probability that a
diffusing particle hops from site i to j. If the diagonal
elements W, are defined to satisfy the condition
3 W;;=0, Eq. (4.1) reduces to the conventional maser
equation. The equation of motion for lattice vibrations
with scalar nearest-neighbor interactions is expressed by

d?u;

" dr?

m = zKijuj R 4.2)
J

where m; and u; are the mass and the displacement of
the atom at site i, and K;; is the spring constant connect-
ing two atoms at sites / and j, respectively. The diagonal
elements K; satisfy the condition 3 ; K;;=0, due to the
uniform-translational invariance of the system; i.e., the
uniform translation gives rise to no additional energy
[this can be derived by putting u =const in Eq. (4.2) for
any j]. The only difference between the two equations is
the order of the time derivatives (Alexander et al., 1981).
The spectral DOS can be obtained from the single-site
Green’s function for the vibrational problem by

D(e)=— 1ix%1m(P0(—s+io+)> , (4.3)

where { - - - ) means the ensemble average. The function
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(Py(e)) is the Green’s function. This is defined by
(Po(e)) = [ “exp(—et)(Po())dt (4.4)

where P(t) is the autocorrelation function.

The physical meaning of {Py(¢)) in the corresponding
diffusion problem is the probability of finding the particle
at the origin at time ¢ if it were initially at the origin at
time t=0. For compact diffusion (d <2) (Alexander,
1983; Rammal and Toulouse, 1983), we have the relation

(Po(1)) <[V(D]!, (4.5)

where V() is the number of visited sites within time ¢.
From Eq. (3.14), this quantity is written as

(Py(t))y 2 ™92, (4.6)

where d(<2) is defined by Eq. (3.15) in the context of the
diffusion problem as

2D
g=—""1
d 246
The substitution of Eq. (4.6) into Eq. (4.4) leads to
(Py(e)) =const X /27! fowexp( —x)x ~9%dx . 4.7)

Note that the integration takes a real positive value. By
letting e— —w?+i0" in Eq. (4.7) and substituting into
Eq. (4.3), one has the result

Do?)xw@™2 . (4.8)

It should be noted that d must be smaller than 2 due to
the condition for convergence of the integral in Eq. (4.7).
This conclusion is valid under some conditions (see foot-
note 3). The DOS is obtained as

Dw)xw?™ 1, (4.9)

where the relation d (w?)=2w dw is used. In analogy to
the usual Debye density of states ©®~ ! Alexander and
Orbach (1982) called the related excitations “fractons,”
and d the “fracton dimension.” It was also called the
“spectral dimension” by Rammal and Toulouse (1983)
because it represented the DOS for the vibrational excita-
tion spectrum.

2. Finite-size scaling

Rammal and Toulouse (1983) also derived the vibra-
tional DOS of fractals using a finite-size scaling ap-
proach.

Consider a fractal structure of size L with fractal di-
mension D,. The DOS per one particle at the lowest fre-
quency Aw for this system is defined by

D(Ao,L)=—5— | (4.10)
L Ao
Assuming the dispersion relation for Aw to be
Awo~L™%, 4.11)
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one can eliminate the size L from Eq. (4.10):

—1

D(Aw) = Ao 4.12)

The explicit expression for the exponent a of the disper-
sion relation is obtained from the exponent of anomalous
diffusion [Eq. (3.11)]; i.e., the corresponding mappings of
t—1/Aw? and (R?)!? L yield

—2/d
L xAw v,

The comparison of the assumed dispersion relation (4.11)
with this equation leads to

g=2vtu=B |_% _Dr
2v 2 ada |’

where Eq. (3.12) has been used.

Since the structure is fractal (self-similar), Aw can be
replaced by an arbitrary frequency . Namely, one has
the DOS from Eq. (4.13),

Do) =1, (4.13)
and so the “dispersion relation” becomes

w=[Lw)] >, (4.14)
where

d= DT = 2;:5’; 5 |- 22 (4.15)

As seen from Eq. (4.15), the fracton dimension d can be
obtained knowing the value of the conductivity exponent
y. The fracton dimension d is an intrinsic parameter re-
lated to the dynamics of complex systems, and it there-
fore affects physical properties on a deeper level than any
other exponents.

B. Characteristics of fractons

1. Localization

Rammal and Toulouse (1983) showed that fractons are
spatially localized at a fracton dimension d<2. They
used the so-called B; function defined by Abrahams
et al. (1979) in their scaling theory of localization:

gLy« L’

where g (L) is the dimensionless conductance of size L,
i.e., a quantity of the order of oL?%72 where o is the con-
ductivity. It is presumed that g(L) follows a power-law
relation on L in the above relation. It is clear that the
wave functions are localized when f3; is zero or negative.
In the case of percolating networks, o < (p —p_.)*. This
leads to o <L ~#/¥ for a correlation length &(p) larger
than the size L. The conductance becomes

g(L)OCL“”/”J“d_zocLDf(a_Z)/E ’

where the scaling relation for fractal dimension
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D;=d —v/B and the definition d =2D,/[2+(u—B)/v]
have been used. From the above relation, one finds
Br=D;(d—2)/d. For d=4/3, the B function is nega-
tive independent of Euclidean dimension d. It is interest-
ing to note that for length scales greater than &, d —d.
Thus, for d=3, for example, 3; may well be positive, in-
dicating delocalized vibrations (phonons). As the length
scale shortens to less than £, d ~4/3 leads negative 3
and localization. Hence the crossover can be thought of
as a dimensionality change in so far as localization is con-
cerned: passing through £, d crosses over from d to 4/3,
causing localization (8, changes sign).

2. Dispersion relation

Alexander (1989) gave a simple derivation of the
dispersion law from the given form of the DOS such as
that of Eq. (4.9). Consider the vibrations of an isolated
fractal blob of size L. Though high-frequency modes will
not be affected by the change in the boundary conditions,
the low-frequency modes will disappear from the spec-
trum. The crossover occurs at some frequency w; such
that

LZA(COL) s

where A(w) is the wavelength. The integrated spectral
weight of the missing low-frequency modes is lumped to-
gether in the center-of-mass degrees of freedom of the
disconnected blob (e.g., the rotational and translational
modes). This is a number that cannot depend on L and
. Therefore, using Eq. (4.9), one has

[A(a)L)]foO ng_ldwocAwa;‘:const .

This relation holds for any length scale L, and one has
the dispersion relation for an arbitrary frequency w:

Df/d )

o< Alw) (4.16)

Applying the argument of a frequency-dependent length
scale A(w) to waves in a finite homogeneous system
(Df==c7=d), one obtains the length scale A=2vm/0w=A
(where v is the sound velocity), because the lowest fre-
quency of a blob of size A is w(A)=2v7/A.

3. Crossover from phonons to fractons:
Characteristic frequency

If the wavelengths A of excited modes on percolating
networks p >p. are larger than the characteristic length
scale £(p), the system is homogeneous on this scale, and
vibrational excitations are weakly localized phonons.
This is because the scattering is determined by the square
of the mass-density fluctuation averaged over regions of
volume A%. Hence, even if the short-range disorder is
strong, the effective strength of the disorder for phonons
with A >>§£ is very weak. If the characteristic length A of
waves becomes of the order of or shorter than £(p), frac-
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tal structures become relevant. Thus there is a crossover
in the nature of the vibrational excitations when
Mo, )~E&(p). One has from Eq. (4.14) or (4.16) the cross-
over frequency of the form

va/d )

w.<(p—p.) 4.17)

By putting w,=v(p)k at k ~1/&(p) in Eq. (4.17), the
concentration (p) dependence of the phonon velocity be-
comes

v (p) o« (p —p. )VDf/d—VOC (p —p, )(,U,—B)/Z . 4.18)

Because the value p—f is always positive, we have
v(p)—0 when p—p,.. The results for the DOS are sum-
marized as

»? 1

—, o<,
D(w)= § [v(p)]

0?71, o>, .

The dispersion relations become

vipk, o<<eo,,

@ X ~
D,/d

kKT, o>

c

where k for o >>w, does not mean wave number due to
the lack of the translational symmetry of the system, but
rather it describes the inverse of the characteristic length
A7! [see Eq. (4.16)]. It should be noted that fractons
reflect two features of fractal structures, namely, the frac-
tality and the lack of the translational symmetry. The
latter leads the localization of fractons.

V. LARGE-SCALE SIMULATIONS AND
PHYSICAL REALIZATIONS

In this section, we first present results of simulation for
the vibrational DOS for very large percolating networks
with scalar interactions. These data provide rich infor-
mation about the fracton dynamics. The characteristic
properties of fracton wave functions themselves are also
described. We also show the results for the model taking
account of the vector nature of interactions and displace-
ments. In addition, experimental results for the DOS
measured in real materials—aerogels—are discussed us-
ing the concept of fractons.

A. Vibrations of a percolating network

1. Density of states: Site
percolation with scalar elasticity

Computer simulations can provide deep insight into
the eigenstates of random systems. Grest and Webman
(1984) have calculated the DOS of d=3 percolating net-
works, using the standard diagonalization routine for
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d=3 systems of size L=18. For larger systems, they
used a recursive technique to calculate the eigenfunctions
and eigenvalues in the low-frequency region. The stan-
dard diagonalization routines were sufficiently accurate,
except at low frequencies. They averaged over three
samples to obtain the DOS. Although there are obvious
difficulties in the treatment of large-scale systems, the sit-
uation is changing as array-processing supercomputers
become available. Many numerical methods have been
reported to overcome these difficulties and have been ap-
plied to the investigation of fracton dynamics (Lam
et al.,, 1985, Yakubo and Nakayama, 1987a, 1987b,
1989a, 1989b, 1989c; Nakayama, 1990, 1992; Nakayama
et al., 1989; Russ et al., 1989, 1991; Bottger et al., 1990;
Li et al., 1990; Montagna et al., 1990; Stoll and Cour-
tens, 1990; Yakubo, Courtens, and Nakayama, 1990;
Yakubo, Takasugi, and Nakayama, 1990; Lambert and
Hughes, 1991; Roman et al., 1991; Royer et al., 1991,
1992; Mazzacurati et al., 1992; Russ, 1992; Stoll et al.,
1992; Nakayama and Yakubo, 1992a, 1992b). Li,
Soukoulis, and Grest (1990) used the Sturm sequence
method to calculate the integrated DOS and treated d=2
systems of 160X640. Royer, Benoit, and Poussigue
(1991, 1992) used the spectral moment method, which al-
lowed them to work with a very large percolating net-
work consisting of a square lattice of size L=1415.

Yakubo and Nakayama (1987a, 1987b, 1989a, 1989b),
Yakubo, Courtens, and Nakayama (1990), and Yakubo,
Takasugi, and Nakayama (1990) succeeded in treating
systems with size number N ~ 10° by applying the forced
oscillator method of Williams and Maris (1985). Russ,
Roman, and Bunde (1989, 1991), Russ (1992), and Bour-
bonnais, Maynard, and Benit (1989) have also used this
method to calculate the DOS and the localization
behavior of fractons. This algorithm is based on the
principle that a complex mechanical system, when driven
by a periodic external force of frequency (2, will respond
with a large amplitude in those eigenmodes close to this
frequency. Yakubo, Nakayama, and Maris (1991) have
formulated a method for judging the accuracy of the cal-
culated eigenmodes and eigenfrequencies, and this
method is now used in many different fields. This algo-
rithm can be readily vectorized for use on an array-
processing supercomputer (Yakubo and Nakayama,
1987a, 1987b). It should be noted that, for the calcula-
tion of the DOS, the algorithm becomes more accurate
with increasing site number.

a. Two-dimensional case

Consider a site-percolating network consisting of N
particles with unit mass and linear springs connecting
nearest-neighbor atoms. The equation of motion of the
atoms is given by

mii, (=3 K,u;(t) 5.1)
J

where u; is the scalar displacement of the atom with unit
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mass (m=1) on the ith site. The force constant is taken
as K;; =0 if either site i or j is unoccupied, and as K;; =1
otherwise.* The displacement u; has only one com-
ponent.

The calculations for the DOS for d=2 percolating net-
works with the site number N ~ 10> have been performed
by Yakubo and Nakayama (1987a, 1987b, 1989a). Figure
3(a) shows the DOS at the percolation threshold p.
(=0.593). This network, formed on a 700X700 square
lattice, has 116991 atoms. The line through the solid cir-
cles has a slope of 1/3. It should be emphasized that the
®'7? law holds even in the low-frequency region, because
the lower cutoff frequency w; is determined from the
finite size of the clusters. One can estimate the cutoff fre-
quency to be w; ~ 1077 for the present case, using the re-
lation w; ~wp/N where wp=2V 2. The correlation
length &(p) diverges at p =p,, and the network has a
fractal structure at longer length scales.

The DOS of a d=2 site-percolating cluster with
p=0.67 is shown in Fig. 3(b). This percolating cluster is
formed on a 700X 700 square lattice with the cluster size
N =317 672. The results show that the frequency depen-
dence of the DOS is characterized by two regimes. In the
frequency region o, << <<1, the DOS is closely propor-
tional to w!”?. The crossover frequency w, corresponds
to the mode of wavelength A equal to the percolation
correlation length £(p). Therefore the DOS in the fre-
quency regime lower than @, should be given by the con-
ventional Debye law D(w)xw? !, where d is the Eu-
clidean dimension and D(w)xe?"! for @>>w,. The
simulated result is consistent with this view because the
frequency dependence of the DOS for lower frequencies
(w <<w,) clearly obeys the law D(w) * w, as discussed in
Sec. IV.B.3. Vibrational excitations in this frequency re-
gime behave as phonons.>

The region in the vicinity of w, is the crossover region
between phonons and fractons [Fig. 3(b)]. It should be
stressed that the DOS is smoothly connected in this re-
gion, exhibiting neither a notable steepness nor a hump
in the vicinity of w,. It is remarkable that the DOS does
not follow the »!”® dependence above w=~1. The inter-
pretation on this is given in Sec. V.A.4 in connection
with the discussion of the missing modes.

b. Three-dimensional case

The absence of the hump in the crossover region has
also been demonstrated in the case of d=3 percolating

4The force constants K;; have a different sign from the
definition of the dynamical matrix elements ®/ normally used in
the field of lattice dynamics. See Chap. IV of the book by Born
and Huang (1954).

5Tt is known that excitations in disordered systems with the
Euclidean dimension d <2 should be localized (Abrahams
et al., 1979). In this sense, phonons mentioned here are local-
ized, but weakly, whereas fractons are strongly localized in the
sense of the Ioffe-Regel criterion (see Sec. V.B.2).
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FIG. 3. Density of states for d=2 site-percolating networks at
two different concentrations: (a) The density of states per site at
the percolation threshold p, =0.593. The network is formed on
a 700X 700 square lattice and contains 116,991 atoms. (b) The
density of states per site at p=0.67 formed on a 700X700
square lattice. The network size is 317 672. Solid circles indi-
cate the numerical results. The straight lines are only meant as
a guide to the eye. After Yakubo and Nakayama (1989a).

networks (Yakubo and Nakayama, 1989a). The DOS of
a percolating network at p=0.4 (p,=0.312) formed on a
70X 70X 70 simple cubic lattice is shown in Fig. 4. The
network size is N =122 448. The DOS in the frequency
region 0.1 <w <1 is proportional to »'/3, as was found in
d=2. The DOS in the low-frequency regime (w <<0.1)
obeys the Debye law D(w) < w?, where at this concentra-
tion the phonon-fracton crossover frequency w. is close
to 0.1. A sharp peak at o =1 in Fig. 4 is attributed to vi-
brational modes of a single site connected by a single
bond to a relatively rigid part of the network.

It is clear that no steepness or hump of the DOS exists
in the crossover region in the vicinity of .. This feature
is also found in the results by Grest and Webman (1984)
for d=3 percolating networks. They found that the
phonon-fracton crossover clearly exists for their systems.
The behavior of the DOS at the phonon-fracton cross-
over has been determined from mean-field treatments

Rev. Mod. Phys., Vol. 66, No. 2, April 1994

1.0 T T T
pP=040
" N=122448
L o1t 4
8
2 < (W
o
3 L]
9 001 - .
m L]
D L]
>
0.001 L ! L
0.001 0.01 01 10 10

Frequency
FIG. 4. Density of states per site for a d=3 site-percolating
network at p=0.4 formed on a 70X 70X 70 simple cubic lattice.

The network size is N =122 488. After Yakubo and Nakayama
(1989a).

(Loring and Mukamel, 1986; Korzhenevskii and Lu-
zhkov, 1991). In particular, Loring and Mukamel (1986)
suggested a smooth transition of the DOS at the
phonon-fracton crossover, in contrast to the prediction of
the effective-medium theory (Tua et al., 1983; Derrida
et al.,, 1984; Entin-Wohlman et al., 1984; Tua and
Putterman, 1986) or the scaling theory (Aharony et al.,
1985a, 1985b, 1987b).

2. Density of states: Bond
percolation with scalar elasticity

The other percolating network, bond percolation (BP),
shows some interesting differences from site percolation
(SP) networks. The difference in geometrical structure
between SP and BP is short range, as mentioned in Sec.
II.C. As shown in Fig. 2, the fractal nature of the net-
work extends to very short ranges for BP. The DOS and
the integrated DOS have been computed for large-scale
(d=2, 3, and 4) BP networks (Nakayama, 1992).

In Figs. 5 and 6, the DOS and the integrated DOS per
atom are shown by the solid squares for a d=2 BP net-
work at p,=0.5 formed on a 1100X 1100 square lattice
(N =657426) with periodic boundary conditions. The
fracton dimension d is obtained as d =1.33+0.01 from
Fig. 5, whereas the data in Fig. 6 indicate the value
d =1.325+0.002. The DOS and the integrated DOS for
d=3 BP networks are also computed, with results exhib-
ited in Figs. 5 and 6 by the solid triangles (middle).
These data show the averaged DOS and DOS integrated
over three samples at the percolation threshold
p.(=0.249). The networks, formed on 100X 100X 100
cubic lattices, have 155 385, 114 303, and 143 026 atoms.
The fracton dimension d is obtained as d =1.3110.02
from a least-squares fit, using the data of Fig. 5. It
should be mentioned that d takes the  value

d =1.31710.003 when using the data of Fig. 6.
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FIG. 5. DOSs per atom for d=2, d=3, and d=4 bond-
percolating networks at p =p.. The angular frequency o is ob-
tained in units of mass m=1 and force constant K=1. The net-
works are formed on 1100X1100 (d=2), 100X 100X 100
(d=3), and 30X30X30X30 (d=4) lattices with periodic
boundary conditions, respectively. After Nakayama (1992).

The DOS and the integrated DOS of d=4 BP net-
works at p,.=0.160, formed on 30X30X30X30 quartic
lattices, are shown, respectively, in Figs. 5 and 6 by the
solid circles, obtained by averaging over 15 samples. The
network sizes are N =8410~64 648. The DOS in the
frequency region 0.12 < <0.9 clearly shows a power
law, as was found in the d=3 case. The fracton dimen-
sion d is estimated to be d =1.31+0.03 from the least-
squares fitting using the data of Fig. 5.
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FIG. 6. Integrated DOSs per atom at p =p_ for d=2, d=3,
and d=4 bond-percolating networks. The symbols correspond
to those in Fig. 5. After Nakayama (1992).
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It should be noted that, from these values of d, the
conductivity exponents p can be determined using Eq.
(4.15) as p=1.288 for d=2, pu=2.02 for d=3, and
pn=2.45 for d=4. The value u for d=2 is obtained using
the exact values for 8 and v in Eq. (4.15). The values of u
for d=3 and d=4 are calculated by substituting the
values obtained by Monte Carlo calculations
(Grassberger, 1986) into Eq. (4.15), namely, 3=0.43 and
v=0.88 for d=3, and 8=0.65 and v=0.68 for d=4.

3. Density of states: Vector elasticity

We have discussed the dynamical properties of per-
colating networks with scalar displacements in Sec.
V.A.1 and V.A.2. In most vibrational systems under the
conditions set forth by Feng (1985a, 1985b), the vector
nature of atomic displacements becomes crucial. Per-
colating networks with rotationally invariant vector elas-
tic forces have different critical exponents for elastic
moduli from those of the scalar forces (Benguigui, 1984;
Feng and Sen, 1984; Feng et al., 1984; Kantor and Web-
man, 1984; Bergman, 1985; Deptuck et al., 1985; Feng,
1985a, 1985b; Feng and Sahimi, 1985; Roux, 1986;
Sahimi, 1986; Arbabi and Sahimi, 1988; Sahimi and Ar-
babi, 1991). The same corresponding relation as that for
the scalar displacement (the mapping of the diffusion
problem onto the vibrational problem) is more difficult to
express because of the significant additional complication
of the vector nature of the displacements. The Hamil-
tonian taking vector displacements into account is given
by (Keating, 1966)

1 . 1
H =5 S mu,z-i- Ea zKij[(ui—uj)'r,-j]z
i ij

1

+
2

BY KKy (A6, )*. (5.2)
ijk
Here u; is the vector displacement of the ith atom with
unit mass (m=1); r;;, the unit vector between nearest
neighbors (ij); and A0;j, the small change in angle be-
tween bonds (ij) and (ik ) due to the displacements of
atoms.® The parameter K ;j takes the value unity if both
sites i and j are occupied by atoms; otherwise, K ;=0 and
a and B are the bond-stretching and the bond-bending
force constants, respectively. The rigidity threshold of
this system is identical to the percolating threshold De-
Kantor and Webman (1984), Feng (1985a, 1985b), and
Webman and Grest (1985) have applied the nodes-links-
blobs model (described in Sec. II.A) to predict the dy-

6It should be emphasized that, for square or cubic lattices,
both the equilibrium angles 6, =7/2 and 7 should be involved
in this Hamiltonian. From the model taking into account only
0,x =m/2, the angular force along linear links becomes ir-
relevant, so that the rigidity threshold becomes larger than the
percolation threshold.
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namic properties of percolating networks with bond-
bending force constants. That model describes well the
features of percolating networks in which the backbone
consists of a network of quasi-one-dimensional strings
(links), tying together a set of more strongly bonded re-
gions (blobs). The typical separation of the nodes forming
the macroscopically homogeneous network is equal to
the correlation length &(p) (see Fig. 1).

There exist two kinds of characteristic length, &£(p) and
l,, for percolation networks with vector elasticity. The
length £(p) scaling as |p —p,.| ™" is the correlation length,
the crossover length scale from a homogeneous to a frac-
tal structure. The mechanical length /., determines the
crossover length scale below which bond-stretching
motion is energetically favorable and above which the
bond bending becomes dominant. This crossover length
I, depends only on the force constants a and 3, namely,
I, <V'B/a, as shown below. One can connect the charac-
teristic lengths &(p) and I, with two characteristic fre-
quencies, @ ¢ and 1 respectively.

a. Theoretical prediction based on
the nodes-links-blobs model

Kantor and Webman (1984) claimed that the effective
spring constant K of a blob of size £(p) is given by

L&py?

where the blobs are assumed to be perfectly rigid and L,
denotes the number of links (red bonds). The critical
behavior of the links (red bonds) was described by Coni-
glio (1982a, 1982b) using a renormalization-group argu-
ment. The mean number of red bonds varies with p as
[see Eq. (2.13)]

—1

Z ) (5.3)

L,

Kl

Ly<(p—p) teg(p). (5.4)

If £(p) <<I,, where [, is proportional to V'B/a, the first
term of the effective spring constant Eq. (5.3) (stretching
motions) dominates. One has

a
Koc——.

L,
This implies that the elastic energy of the system is pri-
marily associated with the stretching force constant. For
the case of I, <<&(p), the bond-bending spring constant

becomes dominant, and the effective force constant is

Ke—B
L\&p)?
Let us derive the formula for the DOS of “stretching”
fractons according to the theories of Kantor and Web-
man (1984) and Feng (1985a, 1985b) for a system of size
L <<&. The DOS at the lowest finite frequency w; for
this system takes the form

.
L Aw

(5.5a)

(5.5b)

:Z)(CUL )=
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where the level spacing Aw is taken to be equal to the
lowest finite frequency w; of a fractal structure with
finite size L. This is expressed by

172
K (L)

M(L)

Av=0; «

’

where M (L) and K (L) are the mass and the effective
spring constant of the system at length scale L. The
effective spring constant is obtained for L <<§& <</, from
Eq. (5.5a),

K(L)ocz"«o:L“‘/V, (5.6)
1

where Eq. (5.4) is used, replacing &(p) by L. Using the re-
lation M (L)< L/, the lowest frequency w; is expressed
in terms of the length scale L as

o0, wyg, " PrTIM2

By using this dispersion relation and replacing @; by an
arbitrary frequency w, we obtain the DOS for stretching
fractons,

2D, /(D ,+1)—1
w I .

Dlw)x (5.7

Note that the exponent is determined only through the
static exponents D, and v. This is due to the assumption
that one-dimensional links dominate the elastic proper-
ties, and that the blobs are assumed to be ‘“‘rigid” (or su-
perconducting’) [see Eq. (5.6)].

The nodes-links-blobs model predicts a direct relation-
ship between the dynamic exponent p and the static ex-
ponents. The conductance G of this model is given by

1
Gx—,
L,

when the blobs are assumed to be superconducting. Us-
ing the relation between the conductivity o and G,

G <g L% 7?2 (see Sec. IV.B.1), the conductivity can be ex-
pressed as

o O(LZ—d—l/v .

This is written as a function of p, for L large (p close to
pe),

ox(p —p. )v(d—2)+l .

As a result, one has®

"The conductivity o;; between site i and j corresponds to the
elastic force constant K;; in Eq. (5.2), as seen from the mapping
relation between the resistive and elastic networks (de Gennes,
1976a).

8The value of u given by Eq. (5.8) constitutes a lower bound
for the conductivity exponent, except at d=6 (where it is exact).
This is because blobs are assumed to be superconductors in this
model, and the actual conductivity of the network is necessarily
smaller than that predicted by the relation (5.8).
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p=v(d—2)+1. (5.8

By using Eq. (5.8) and the hyperscaling relation
Df=d —pB/v, one can obtain the relation between D,
and . This yields, using Eq. (5.7) for stretching fractons,

.1)(co)<><a>as_1 N
where
P 2D,
S22+ (u—B)/v

Note that the exponent d, takes the same form as d given
in Eq. (3.15). Thus the nodes-links-blobs model for vec-
tor elasticity predicts that stretching fractons belong to
the same universality class as scalar fractons. It should
also be noted that the stretching elasticity is, in general,
different from scalar because the stretching force con-
stant becomes relevant only along the bond connection,
whereas scalar displacements respond to any deforma-
tion. Nevertheless, under the condition L >>I_, they
both belong to the same universality class.

Consider now the opposite case, [, <<L <<&(p). The
effective spring constant K is given by Eq. (5.5), and
bending motions become relevant. The equation corre-
sponding to Eq. (5.6) becomes

(5.9)

K(L)ocL ~(1/M=2 (5.10)

Using Eq. (5.10), we see that Aw becomes

—[D,+(1/v+21/2
Aox<L 7/ .

As a result, one has
w[Zva/(va+2v+l)]—l ‘

Dlw) o< (5.11)

The elasticity exponent f for the Young’s modulus Y is
defined as

Y~(p—p ).

The critical exponent f can be derived in terms of the
nodes-links-blobs model as follows: Because one has the
relation between Y and K as K < YL~ 2 (this is analo-
gous with the relation between the conductance and the
conductivity), using Eq. (5.10) for the case [, << L <<§,
one has the relation

YO:L—d—l/v .

This implies that

f=vd+1. (5.12)

We should note that this relation also gives a lower
bound for the dynamic exponent f, as explained in foot-
note 8. The rigorous bound is expressed through
vd +1= f <vd +vd_;, (Havlin and Bunde, 1991).

Inserting Eq. (5.12) into Eq. (5.11), we see that the
DOS for bending fractons becomes

Do) <o ",

Rev. Mod. Phys., Vol. 66, No. 2, April 1994

where
7 — 2D,
b2k —-BI/v

The dispersion relation for bending fractons is given by

(5.13)

AMo)<w @/Pr
Comparing Egs. (5.8) and (5.12), one has the relation be-
tween ¢ and f in the nodes-links-blobs model,

f=p+2v. (5.14)

Because v >0, one has f >y (Kantor and Webman, 1984,
Webman and Kantor, 1984). This implies that d, <d,
(=d). The bending-fracton dimension d, for 2d per-
colating networks, using the known values f=3.96
(Sahimi, 1986), v=4/3, B=5/36, and D,=91/48, is es-
timated to be ~0.78. This indicates that the DOS weak-
ly diverges at very low frequencies. The value of the ex-
ponent f has been evaluated numerically (Feng and Sen,
1984; Feng and Sahimi, 1985; Arbabi and Sahimi, 1988)
and experimentally (Benguigui, 1984; Deptuck et al.,
1985; Benguigui et al., 1987; Forsman et al., 1987; Sofo
et al., 1987). The upper/lower bounds for f,
3.67<f=4.17 for d=2 and 3.625=<f <3.795 for d=3
percolating networks (Havlin and Bunde, 1991), provide
bounds for d,.

The vibrational correlation between blobs connected
by zigzag chains longer than /, becomes irrelevant for the
stretching modes, as seen from Fig. 7. This implies that
stretching fractons with very low eigenfrequencies do not
exist, but bending fractons can (see footnote 6). This is
the reason bending fractons become dominant in the re-
gime below @ I,

Liu and Liu (1985) have found for the Sierpinski gasket
that bending fractons do not dominate over stretching
fractons, in contrast with the case for percolating net-
works. They suggest that the disagreement is purely a re-
sult of geometry, namely, the Sierpinski gasket is stabi-
lized by central forces alone, but percolating networks
are not. In this connection, it is interesting to note the
work by Garcia-Molina, Guinea, and Louis (1988) and
succeeding comments by Tyc (1988), Roux, Hansen, and

FIG. 7. Blobs connected by zigzag links.



400 Nakayama, Yakubo, and Orbach: Dynamical properties of fractal networks

Guyon (1988), and Day and Thorpe (1988), who consider
triangular networks connected by central forces.

Alexander (1984) claimed theoretically that an elastic
network with rotationally invariant elastic force con-
stants is not the only approach for describing the elastici-
ty of tenuous objects and amorphous materials. He
showed that there are scalar contributions to the elastic
energy in stressed systems, noting that real materials al-
ways have internal stresses.

This section can be summarized in the following
manner.

(i) Percolating networks with p >p. and £>1,. As
shown in Fig. 8(a), fractons are excited in the frequency
range o, <<w, whereas the vibrational excitations in the
low-frequency regime (w, >>w) are phonons. There are
two classes of localized modes, depending on the frequen-
cy regimes: o, << <oy, and 0 <Ko. We call the

former excitations ‘bending” fractons and the latter
“stretching” fractons. Stretching fractons belong to the
same universality class as fractons with scalar displace-
ments under the nodes-links-blobs model (Feng, 1985b).
This result holds only under the assumption of perfectly
rigid blobs.

(ii) The case of &(p)<I.. As illustrated in Fig. 8(b),
phonons directly crossover to stretching fractons at o,
and bending fractons are not observed.

b. Simulated results for vector displacements

The first attempt to calculate the DOS for the vector
displacement model was made by Webman and Grest
(1985). They focused on the limit A(w)>>I, when the
bending fractons dominated, and treated a system with
N ~10°. They found that the DOS was weakly divergent
at low frequencies. The DOS of excitations for
A(w)>>1, showed no crossover from bending to stretch-
ing fractons because o is a high frequency. Lam and

Bao (1985) used a recursion method to calculate the vi-
brational DOS of a site-diluted central-force elastic per-
colating network on a triangular lattice. They found the
db

DOS in the fracton regime to be proportional to
with d, =0.625. This estimate should be regarded with

@&>1

b) &<,

FIG. 8. Schematics illustrating the correspondence between
length scale and frequency. The upper line is for the length
scale where a is the lattice constant, and the lower one shows
the corresponding frequency region.
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caution because of the very narrow frequency interval in
the fracton regime from which they estimated the value
of d,. Day, Tremblay, and Tremblay (1985) calculated
the DOS of percolating networks formed on a triangular
lattice with central forces and 60° bond-bending forces.
They found values for the rigidity percolation threshold
p, and the fracton dimension d, in the ranges
0.4<p, <0.405 and 1.25<d, <1.3, respectively. The re-
sult suggests that the 60° bond-bending model does not
fall into the same universality class as a full bond-bending
model. In order to calculate the DOS for triangular elas-
tic BP networks with central forces and full bond-
bending forces, Bottger, Freyberg, and Wegener (1990)
performed a homeomorphic coherent-potential approxi-
mation (HCPA), a recursion technique, and a replica
trick calculation. They obtained d, =1.0 from the recur-
sion method and the HCPA, whereas the replica method
did not show fracton behavior. Liu (1984) calculated the
fracton dimension of an elastic Sierpinski gasket using
the relation f/v=d —1 (Bergman and Kantor, 1984) and
found d, =2D,/(D;+1). Arbabi and Sahimi (1988) per-
formed numerical simulations for the elastic properties of
d=3 percolating networks in which both central and
bond-bending forces were taken into account. Rahmani
et al. (1993) considered the model incorporating the
nearest- and next-nearest-neighbor interactions.

In this subsection, we present simulation results for the
DOS of large-scale percolating networks with vector dis-
placements by Yakubo, Takasugi, and Nakayama (1990;
see also Nakayama and Yakubo, 1990). We discuss first
the crossover behavior of the DOS from bending to
stretching fractons. For this purpose, Yakubo, Takasugi,
and Nakayama considered the situation in which the
bond-bending force constant 3 is larger than the stretch-
ing one «, so that the characteristic frequency o is

much smaller than the Debye cutoff frequency w,. The
network was prepared at p =p_., so that the condition
I, <& always held. The calculated DOS is shown in Fig.
9, where the percolating network formed on a 500X 500
square lattice has 53 673 occupied sites, and the set of the
force constants [a,B8] in Eq. (5.2) was chosen as
[0.0133,0.133]. This network had a cutoff frequency
wp=2.0784. The steplike decrease of the states in the
high-frequency regime in Fig. 9 indicates that the
stretching motions are not excited above some frequency
g, whose value is determined by the force constants a.
For a«=0.0133, this frequency w, is estimated to be
0.2309 from the relation @,=2V . This value coincides
with the observed value in Fig. 9.

In order to clarify the individual contributions from
the bending or stretching motions, the ratio of the poten-
tial energies [Eq. (5.2)] was calculated as a function of
frequency . The solid curve in Fig. 9 shows the ratio
between the potential energy attributed to the stretching
motion (Ey ) and the total potential energy (E,,) ob-
tained by substituting the displacements of calculated
eigenmodes into the potential-energy expression of Eq.
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FIG. 9. Calculated density of states, shown by the solid circles.
The network is formed on a 500X 500 square lattice at the per-
colation threshold p. with 53 673 sites. Force constants a and 3
are taken as 0.0133 and 0.1333, respectively. The straight line
through solid circles is only a guide to the eye for the law
D(w) < »'/3. The solid curve indicates the ratio of potential en-
ergy Ey/E,; as a function of frequency. After Yakubo,
Takasugi, Nakayama (1990).

(5.2). The crossover frequency o is estimated from the
condition Ey(@)/E o (@)=7, leading to @, ~0.005. The
DOS in the vicinity of o is independent of frequency.

The crossover region from bending to stretching fractons
extends over at least two orders of magnitude in frequen-
cy. This is because the ratio Ey(w)/E,,(®) increases
logarithmically, as shown in Fig. 9. This observation is
in contrast with the sharp crossover from phonons to
fractons for scalar displacements described in Sec. V.A.1.

The straight line through the solid circles in Fig. 9 is
drawn according to the law D(w) < »'”? [see Eq. (5.9)]. It
is not clear from the data of Fig. 9 in the frequency re-
gion between @; and wyg that the '/® law holds. This is

crucial for decreasing frequencies. A physical interpreta-
tion of this discrepancy has been given in Sec. V.A.3.a.

In order to clarify the contribution of bending frac-
tons, the DOS for the case 8/a=0.01 and 1.0 has been
calculated. These sets of force constants allow exclusive
examination of the DOS for the bending-fracton regime
because the stretching-fracton regime is shifted into the
high-frequency region. Figures 10(a) and 10(b) show the
results for the DOS and the integrated DOS, respectively,
for percolating networks at p =p, for the same network
as that of Fig. 9. The sets of force constants [«,] in Eq.
(5.2) were taken as [1.0,0.01] (solid circles) and [0.12,0.12]
(open circles), respectively [see Fig. 10(a)]. The cutoff fre-
quencies are the same as the previous cutoff frequency,
®p =0.2784, by virtue of the above choice of force con-
stants. The DOS, given by solid circles in Fig. 10(a),
weakly diverges as w—0, in accord with the theory by
Feng (1985b). The value of the bending-fracton dimen-
sion d, obtained by a least-squares fitting from Fig. 10 is
d,=0.79. The straight lines on the left-hand side
through the solid and open circles in Fig. 10(a) [Fig.
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FIG. 10. Density of states (a) and the integrated density of
states (b) of percolating networks with vector displacements.
Networks have the same structure as that of Fig. 9. Solid cir-
cles indicate the result for the net with stretching force constant
a=1.0 and bending force constant 8=0.01. Open circles are
for a=pB=0.12. The straight lines on the left-hand side of (a)
and (b) are drawn by least-squares fitting, indicating a law pro-
portional to a)db—l and a)d” with d,=0.79, respectively. The
straight lines on the right-hand side indicate a density of states
proportional to ®'/* and w*/3, respectively. After Yakubo,
Takasugi, and Nakayama (1990).

10(b)] are drawn according to ! (wa”) with d, =0.79.
This value agrees well with the predicted value
(d,~0.78), in contrast with the case of stretching frac-
tons.

In the case of B/a=0.01 (solid circles in Fig. 10), the
mechanical length scale I/, becomes close to the lattice
constant, resulting in the crossover frequency a),c’s

becoming too large to distinguish the crossover frequency
region. For the case of B/a=1.0 (open circles in Fig.
10), the crossover frequency can be estimated from the
evaluation of E /E,, as in the case of Fig. 9. The cross-
over frequency o from bending to stretching fractons

becomes close to w=0.1. Note that the simulation does
not exhibit any noticeable change in frequency depen-
dence of the DOS around crossover, as shown by the
open circles in the vicinity of w=0.1. The DOS for the
case B/a=1.0 does not exhibit a distinct crossover to
stretching fractons at @ - Similar behavior is found for
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the case B/a=10.0 in Fig. 9. For comparison, the lines
on the right-hand side are proportional to w!”® (0*?).
Note that the agreement with the data is unsatisfactory.
Furthermore, it should be emphasized that the magni-
tudes of the DOS in the bending-fracton regimes are
different for the two sets of force constants (see the
difference between solid and open circles in Fig. 10). We
shall show that this implies that the missing modes tend
to accumulate in the high-frequency region (® > ) (see
the next subsection).

In this subsection, simulated results for the DOS with
vector displacements have been presented. In the case
B>>a (strong bending force), stretching fractons are ex-
cited in the high-frequency regime. It has been shown
that the crossover region from bending to stretching frac-
tons is rather broad. The opposite choice of force con-
stants, such as the case of open circles shown in Fig. 10,
makes it difficult to clarify the bending-to-stretching
crossover in the DOS. It has been shown that the
bending-fracton dimension takes a value dj,~0.79 for
d=2 percolating networks. This is close to the predicted
value from scaling theory. However, the calculated DOS
for stretching fractons is not in accord with the value
d,=4/3. The results given in this section will be useful
in discussing the characteristics of the DOS for real
disordered materials in which the vector nature of dis-
placements is crucial.

4. Missing modes in the density of states

a. Missing modes at low frequencies: scaling arguments

The simulation results for the DOS for scalar displace-
ments confirmed that the crossover between the phonon
and fracton regimes is smooth, with no visible accumula-
tion of modes or a “hump” in the DOS around the cross-
over frequency ®, (Yakubo and Nakayama, 1987a,
1989a, 1989b; Russ et al., 1989; Li et al., 1990; Royer
et al., 1992). This is in accord neither with earlier pre-
dictions based on scaling considerations (Alexander
et al., 1983; Aharony et al., 1985a, 1985b, 1987b), nor
with arguments based on the effective-medium approxi-
mation (Derrida, 1984; Derrida et al., 1984; Sahimi,
1984), nor with the results given by a recursion technique
(Lam et al., 1985). The scaling considerations attributed
the origin of this hump to the fact that the crossover
from fractons to phonons is accompanied by “missing
modes” in the normalized DOS. In this subsection, the
whereabouts of these missing modes are discussed ac-
cording to the work of Yakubo, Courtens, and Nakaya-
ma (1990).

The early scaling arguments about missing modes
should first be recalled. The DOS of a percolating net-
work above threshold (p >p.) was characterized by two
regimes: the fracton DOS, D¢(w,p) = 0? !, for high fre-
quencies (0>w,), and the phonon DOS,
Dyn@,p) = ™, for low frequencies (o < ®.). Assuming
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strict similarity in the fractal regime, one expects
Di(w,p)=Dg(w,p, ), where the DOS per particle is nor-
malized by [” D(w)do=1. Because d is always larger
than d, D,y is smaller than Dy, when the latter is extrapo-
lated to phonon frequencies. As the integration of
Delw,p,) is normalized to unity, some modes must be
missing for D(w,p >p.) in view of the existence of the
phonon regime. Their spectral weight must be recovered
somewhere, and it was argued that the most reasonable
place for accumulation is near w,, leading to a hump in
the DOS and to a corresponding hump in the low-
temperature specific heat (see Fig. 11). The main point is
that a hump is seen neither in simulations of the
phonon-fracton crossover nor in actual experiments on
silica aerogels (Courtens et al., 1987a, 1987b, 1988;
Courtens, Pelous, Vacher, and Woignier, 1987; Courtens
and Vacher, 1988; Conrad et al., 1990; Buchenau, Mork-
enbusch, et al., 1992), the latter to be presented in Sec.
V.C.2.

b. The hump at high frequencies:
geometrical interpretation

To explain the absence of a hump in the crossover re-
gion, we write the scaling form for the DOS of a per-
colating network for p >p,:

Dw,p)=A4(p)o? 'Flo/o,) . (5.15)

For an infinite percolating network, the phonon-fracton

crossover frequency scales as w,=Q(p —p, )VDf /E. The
crossover frequency w, is defined as the intercept of the
asymptotic phonon and fracton lines in a double-
logarithmic presentation of the DOS vs o (Alexander
et al., 1983). The scaling function takes the forms
F(x)=1for x >>1and F(x)=x9"9for x <<1. Equation
(5.15) yields a prediction for the p dependence of D(w,p)
in the phonon regime,
Diw) e d(p)p —p, ) r P ipd—1

Simulation results are illustrated in Fig. 12, which ex-
hibits the validity of Eq. (5.15) in the phonon-fracton
crossover region. Because the ordinate in Fig. 12 is the

FIG. 11. Crossover of the DOS (solid line). The dotted
(dashed) lines represent the continuation of the phonon (frac-
ton) asymptotic behavior into the crossover regime.
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FIG. 12. Calculated density of states, normalized to one parti-
cle, divided by »!/3, and plotted as a function of the frequency
. The solid circles correspond to the critical percolation densi-
ty p.. The open ones are for p=0.67. The horizontal lines are
meant as guides to the eye. After Yakubo, Courtens, and
Nakayama (1990).

quantity D(w)/w'”?, the fracton regime corresponds to a
horizontal line of height A4 (p). Data at p,=0.593 are
plotted as solid circles, where the network was prepared
on a 700X 700 lattice with N=116,991. The data for the
DOS for a network with p=0.67 (N=317,672) are plot-
ted as open circles. One can clearly discern the two re-
gimes in Fig. 12, with a crossover frequency o, ~0.1. It
is clear that this simulation does not exhibit any notice-
able hump near w,. Further, the magnitude of the DOS
in the fracton regime is different in the two simulations,
invalidating the equality D (w,p) =Dy (w,p.) assumed by
Aharony et al. (1985a, 1985b, 1987b). This justifies a
nontrivial dependence of 4 (p) on p in Eq. (5.15). Final-
ly, one notices that the two curves. of Fig. 12 could not
possibly be made to scale towards the upper end of the
fracton range. This is the region where modes “missing”
from the low-frequency regime have accumulated, exhib-
iting the violation of the scaling hypothesis of Eq. (5.15).
To understand these observations, it is helpful to con-
sider the simple models illustrated in Fig. 13. From the
Sierpinski gasket of Fig. 13(a), one can construct large-
scale homogeneous systems in different ways. A first ex-
ample, illustrated in Fig. 13(b), is the carpet treated by
Southern and Douchant (1985). The modes of the simple
gasket, Fig. 13(a), have been investigated in considerable
detail by Rammal (1984a). They can be classified into
“hiera_gchical” modes, where the density at d=2 peaks at
o=V'5, and into “molecular,” or strongly localized,
modes with a highest density near the upper cutoff at
@=V'6. These modes are only slightly modified by the
higher coordination of a few sites (z=6) in Fig. 13(b).
The higher z simply produces a few modes at frequencies
above the Sierpinski gasket ‘“band” in the region
V6 <w<3. One notes that =3 is the upper cutoff of
the d=2 triangular lattice. An alternative way to con-
struct a large-scale homogeneous system is illustrated in

Rev. Mod. Phys., Vol. 66, No. 2, April 1994

Fig. 13(c). That model corresponds more closely to the
intuitive picture of fractal networks that reach their
correlation length by “growing into each other.” In that
case, the whole region V'6 < < 3 becomes rather densely
populated with modes, at the expense of the DOS in the
fracton regime. The corresponding ‘“missing” spectral
weight is rather uniformly distributed over the low-
frequency region.

The above considerations can now be extended to per-
colation with a correlation length £(p). The discussion is
facilitated by adopting the nodes-links-blobs picture as il-
lustrated in Fig. 1. The typical separation of the nodes
forming the macroscopically homogeneous network
equals the correlation length &(p). With
Dop=A4(plw/w??, and Dg=A(p)w'”?, one calculates
the number of “missing modes” associated with the pho-
non regime, M ph> @S

My~ fo (Dp—Dpp)dw
Z%A(p)wf
Z%A(p)ﬂa(p —p)"r (5.16)
With A(p)zA(bc)=0.4 and Q=13 from Fig. 12, one

estimates M, =3(p —p, )®/. The number of occupied
sites on the infinite network in the correlation volume for
d=2, &%, is £°P,, where P =Py(p —p. )P, with B=5/36
and Py=1.53. Hence the actual number of missing
modes within the correlation area is
~EP M, ~3ZP,. Here E, is defined by

=E,lp —p.| 7", independent of p —p, because the ex-
ponent —2v+B+vD, is identically zero. Using
E,=0.95, we find the number of missing modes to be of
the order of unity.® Thus there is one missing mode per
area £2. One should also note that, for any non-negligible
&, the number M ph relative to the total number of modes
with w <w, is very small compared to one, the corre-
sponding area in Fig. 12 being overemphasized by the
logarithmic presentation.

Numerically more important is the number of missing
modes My produced by the depression of the fracton
density from A4 (p.) to A(p). Ignoring the hump near
the high-frequency cutoff, this number is

A(p)
A(p.)

(5.17)

M= [ o *[Dil,p,) —Dyle,p)ldo=1—

9There is a certain degree of arbitrariness in the absolute
definition of £(p), as illustrated, for example, in the work of Ka-
pitulnik et al. (1983), where two rather different values are
found (one in their Fig. 2, and another further in the text). The
value of = we derived was taken from the mean-square size of
the fracton. The value of P, is taken from a series analysis us-
ing Padé approximants, by Sykes, Gaunt, and Glen (1976a).
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For the second equality, use was made of Eq. (5.15) and
of the fact that the integral of Dy (w,p.) over the full fre-
quency range is normalized to unity. The simulated
values of M, for several values of p are shown in Fig. 14,
demonstrating a critical behavior, M, =M,(p —p )".
The solid line, drawn with m =%, gives M, ~4.1.

This behavior can be explained as follows. Within the
area £2, a number of sites have higher coordination than
in the network at p.. The number of these sites is much
larger than the small number of nodes that eventually
form the homogeneous system and whose relative density
is 1/(£%P,,)~M_,. Based on the naive picture of Fig.
13(c), one could expect that the number of these sites is
proportional to the length of the perimeter, i.e., <& 1.
In the case of the percolation cluster, the perimeter at
is a fractal of dimension D,—1, and its length is §Df N
The total number of occupied sites within this perimeter
being §Df , the relative number of modes rejected to high
frequency is then Mﬁngfml/é’Dfm(p —p.)". In fact,
taking a square of side £, the ratio of occupied perimeter
sites to occupied area is M =4/£~=4.2(p —p,)"; and one
notices that v=4/3 for the d=2 case. Both the exponent
and the amplitude agree well with the simulated values
(Fig. 14). This supports the validity of this interpreta-
tion. Although there is, strictly speaking, no well-defined
“perimeter” at £ for which the connectivity of all sites in-
creases, the concept appears to remain well defined from
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FIG. 14. Relative number of missing modes, My, produced by
the depression in the fracton DOS, presented vs p —p.. The er-
ror bars are standard deviations. The straight line of slope
v——‘% is shown to agree with the asymptotic behavior for p —p..
After Yakubo, Courtens, and Nakayama (1990).
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FIG. 13. Lattice models based on the Sierpin-
ski gasket: (a) a gasket up to the fourth level of
hierarchy; (b) a unit cell made of such a gasket
and an empty triangle; (c) a denser unit cell,
possibly more representative of real fractal ob-
jects, obtained by the junction of two gaskets,
such as in (a).

an average point of view. The effect of the higher con-
nectivity is to depress the number of modes throughout
the fracton regime.

B. Localized properties of fractons

1. Mode patterns of fractons

The first realization of mode patterns of large-scale
fractons was obtained by applying the numerical method
mentioned in Sec. V.A (Yakubo and Nakayama, 1987a,
1989b). The network at p,=0.593 was formed on a
700X 700 square lattice with the number of occupied
sites N =169576. The magnified color picture of the
mode pattern of a fracton (snaphot) on a d=2 network is
shown in Fig. 1 in the paper by Yakubo and Nakayama
(1989b), where the eigenmode belongs to an angular fre-
quency @ =0.01. To clarify the details more directly, the
cross section of amplitudes of the mode pattern is shown
in Fig. 15. Figure 15 exhibits this cross section of the vi-
brational amplitudes for the fracton mode along the lines
A and B drawn in Fig. 1 in the paper by Yakubo and
Nakayama (1989b). The solid circles and the open circles
represent the occupied sites and the vacant sites in the
percolating network, respectively. One sees that the frac-
ton core (the blue part with the largest amplitude)
possesses very clear boundaries for the edges of the exci-
tation, almost of steplike character, with a long tail in the
direction of the weak segments. This is in contrast with
the case of homogeneously extended modes (phonons) in
which the change of their amplitudes is correlated
smoothly over a long distance. It should be noted that
displacements of atoms in “dead ends” (weakly connect-
ed portions in the percolating network) move in phase,
and the vibrational amplitudes fall off sharply at their
edges. In addition, it is interesting to note that the tail
(the portion spreading from the center of the figure in the
upper-right direction) extends over a very large distance
with many phases changes. 1°

10This is a natural consequence of the orthogonality condition
of eigenmodes, since vibrational modes belonging to eigenfre-
quencies »*¥0 must be orthogonal to the mode of ©?*=0 (uni-
form displacement).
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2. Ensemble-averaged fractons

Localization of waves in disordered systems has re-
ceived much attention since the work of Anderson
(1958). The progress made in understanding electron lo-
calization (Mott, 1967; Thouless, 1974; Abrahams et al.,
1979) has had implications for other excitations in disor-
dered media such as phonons, photons, and spin waves
(John et al., 1983; Akkermans and Maynard, 1985). In
particular, it was predicted by John, Sompolinsky, and
Stephen (1983) that the vibrational excitations on d <2
disordered systems would always be localized, and the lo-
calization length A would behave as A <exp(1/w?) for
d=2and as A<w *for d=1.

Rammal and Toulouse (1983) applies the scaling
theory of localization (Abrahams et al., 1979) to fracton
excitations on a percolating network. The key parameter
in the scaling theory, as described in Sec. IV.B.1, is the
exponent [3;, which they expressed in terms of the fractal
and fracton dimensions D and d as

D, _
BL=-de(d—2).

Because d ~4% for percolation in any Euclidean dimen-
sion d, it is clear that fractons are always localized. In
this context, Entin-Wohlman, Alexander, and Orbach
(1985; see also Alexander, Entin-Wohlman, and Orbach,
1985a, 1985b, 1985¢, 1986a, 1986b, 1987) supposed that
the ensemble average of the fracton wave function on
percolating networks was localized with the form

4y

.1
Alw) ’ (5.18)

(¢fr) < exp
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FIG. 15. Cross sections of a sin-
gle fracton shown in Fig. 1 in the
paper by Yakubo and Nakayama
(1989b). The upper figure corre-
sponds to line A in Fig. 1 in the
paper and the lower one to line
B. The signs of the amplitudes
(plus and minus) are switched
for convenience. After Yakubo
and Nakayama (1989b).

where A(w) is the frequency-dependent fracton length
scale (dispersion or localization), and r a radial distance
from the center. The exponent d ¢ denotes the strength
of localization. Note that this is an ensemble-averaged
envelope function. Many studies of the value of d ¢ have
been performed: theoretical (Aharony et al., 1987b;
Harris and Aharony, 1987; Levy and Souillard, 1987;
Bunde et al., 1990; Aharony and Harris, 1992; Bunde
and Roman, 1992), experimental (Tsujimi et al., 1988),
and numerical (de Vries et al., 1989; Nakayama et al.,
1989; Li et al., 1990; Lambert and Hughes, 1991; Roman
et al., 1991; Terao et al., 1992). Levy and Souillard
(1987) suggested that d,=D,/d. For d=2, because
D,=91/48~1.896, this gives d,=1.42. Localized states
with d, > 1 are called superlocalized modes. Harris and
Aharony (1987) found that averaged fracton excitations
decay exponentially (d, =1).

Van der Putten et al. (1992) have experimentally es-
timated the superlocalization exponent d ¢ from measure-
ments of the d. conductivity of carbon-black-polymer
composites. They obtained the value of the exponent
d4=1.9410.06 as well as the value of the conductivity
exponent ;4 =2.0%0.2.

a. Shape of core region

The localized nature of fractons, focusing on the value
of the exponent d ¢ for the core region of fractons, has
been numerically investigated by Nakayama, Yakubo,
and Orbach (1989; see also Yakubo and Nakayama,
1990). They performed numerical simulations on d=2
percolation networks to determine d 4 for the cores of 2d
fractons. The core has a large amplitude around the
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center of a localized fraction (r < A), as described in Sec.
V.B.1. They prepared nine 2d site-percolating networks
at p, formed on 700X 700 square lattices in order to take
an ensemble average. The maximum network size was
N =171306 and the minimum size was N =76 665.
Smoothly varying ensemble-averaged mode patterns were
obtained. The ensemble-averaged shape of the fracton
core was calculated by averaging over 129 fractons at
®=0.01. They obtained d ,=2.3.

In addition, d; and A(w) were calculated for four
different eigenfrequencies, »=0.005, 0.006, 0.007, and
0.008, excited on five percolating networks. As seen from
Fig. 16, the localization length A(w) depended on fre-
quency. The straight line drawn using least-squares

fitting indicates that A(w) <o~ %!, showing good agree-
. . . . ~d/D
ment with the theoretical dispersion law A(w) =< @ 4

with d /D »=0.705. For all those frequencies, they found
d;,=2.3%0.1, independent of w. It is now understood
that this large value of d;=2.3 applies only to the core
region of fractons, and that two exponents are required
to characterize the localized nature of fractons, namely,
for the core and for the tail (Roman et al., 1991).

b. Asymptotic behavior

The averaged profile of tails (asymptotic behavior) of
fractons has been numerically investigated by de Vries,
de Raedt, and Lagendijk (1989), Li, Soukoulis, and Grest
(1990), Lambert and Hughes (1991), Roman, Russ, and
Bunde (1991), and Terao, Yakubo, and Nakayama (1992).
Roman, Russ, and Bunde (1991) have solved the vibra-
tional equations for large percolation clusters (300 sheets)
with d=2, and have averaged over ten individual fracton
modes for each frequency. The amplitudes |¢(r, )| for
typical fracton modes are exhibited in Fig. 17. The data

Localization length

L L " 1 n 1

4 5 6 7 8 910
Frequency (x107%)

FIG. 16. Values of localization length A(w) plotted as a func-
tion of frequency on a log-log scale. The straight line
[Alw) =@~ %""] drawn using least-squares fitting shows that
fractons in the ensemble follow the correct fracton dispersion
law. After Yakubo and Nakayama (1989a).
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with D,=1.896 and d,=2.87, for frequencies «©=0.20

(squares), 0.15 (triangles), 0.10 (circles), and 0.07 (crosses).
After Roman, Russ, and Bunde (1991).

strongly support the value d ;=1 and the expected fre-
quency dependence of A. Note that a large crossover re-
gime exists when 7 S A, with an effective exponent d,, > 1
which coincides numerically with the result of Nakaya-
ma, Yakubo, and Orbach (1989). Asymptotically, for
r >>A, the curves approach a straight line in a semiloga-
rithmic plot, and hence d 0= 1.

Bunde and Roman (1992) have given an analytic ex-
planation for the asymptotic behavior of fractons. For
scalar vibrations, the envelope function of the fracton,
|¢(r,o)|, is related to the probability density P(r,t) the
probability of finding the random walker after time ¢ at a
site a distance r from its starting point:

P(r,t)=fowdw.@(w)|¢(r,w)|exp(——a)zt) , (5.19)

where D(w) is the DOS normalized to unity. For a large
class of networks, including percolating networks at p,,

P(r,t) decays, upon averaging over typical
configurations, as (Havlin and Bunde, 1989)
dw
InP(r,t)~—[r/R()]*, u= , (5.20)

d,—1

w

where d,, is the diffusion exponent defined in Eq. (3.12).
Using the asymptotic result Eq. (5.20), one obtains d, =1
upon taking the inverse Laplace transform of Eq. (5.19)
using the method of steepest descent, with
Alw) '~a cos(7/d, )wZ/ “ and a a constant of order
unity (Roman, Russ, and Bunde, 1991).

We warn the reader that the ensemble average of ma-
trix elements will be very different, in general, from the
matrix element using ensemble averages for the fracton
functions (Nakayama, Yakubo, and Orbach, 1989). For
example, the Raman-scattering intensity is proportional
to the square of the elastic strain induced by fracton exci-
tations. For this case, the ensemble average of the matrix
element for individual fractons should be taken into ac-
count [see Eq. (6.5)].
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c. Multifractal behavior

A multifractal analysis (see, for example, Paladin and
Vulpiani, 1987), which originated from the study of tur-
bulence (Mandelbrot, 1978), is useful for the analysis of
the distribution of various physical quantities (measures)
on fractal supports such as the voltage drop distribution
on a random resistor network (Rammal, Tannous, Bre-
ton, and Tremblay, 1985; Rammal, Tannous, and Trem-
blay, 1985; de Arcangelis, Redner, and Coniglio, 1985,
1986; Coniglio, 1987), the growth probability of a
diffusion-limited aggregate (DLA; see Meakin, 1986;
Blumenfeld and Aharony, 1990; Mandelbrot and Evertsz,
1990; Schwarzer et al., 1990), and the spatial profile of a
localized excitation (Castellani and Peliti, 1986; Bunde,
Havlin, and Roman, 1990; Evangelou, 1990; Evangelou,
1991; Schreiber and Grussbach, 1991, 1992; Bunde and
Roman, 1992; Roman, 1992a). Such analyses give infor-
mation about the distribution of physical quantities (mea-
sures) on a fractal support.

Consider a measure f; on the ith site of a fractal struc-
ture of size L. The multifractal nature arises when the
gth order moments of f;, averaged by the distribution
function n (f,L), scale as

with a nonlinear function 7(q). Typical examples of mul-
tifractal distributions are growth probabilities {p;} for
DLA and voltage drops { ¥;} on percolating resistor net-
works. In many cases, the multifractal properties are re-
lated to a very broad distribution function n (f,L), so
that different moments of f are dominated by different
parts of the distribution function. !

As mentioned in Sec. V.B.1, the profile of a fracton
eigenfunction ¢, is extremely complicated, and the distri-
bution function 7 (|¢|?) of amplitudes should be very
broad. It is natural to consider the possibility that such
large fluctuations may show multifractal properties. Pe-
tri and Pietronero (1992; see also Petri, 1991) have per-
formed a multifractal analysis for fracton wave functions
on d=2 percolating networks. They calculated fracton
eigenfunctions using a direct diagonalization technique
and obtained the (Euclidean) length-scale dependence of

1In multifractal analyses, measures are usually normalized as
>, fi=1. For example, choosing the mass m; of the ith site in
a fractal network as the measure f;, one should take
(m;)=L "7, The

D, D, —gD

(mf)=3t "mf=L7-L "/. Therefore the exponent 7(q)
becomes 7(q)=D,(q —1), namely, 7(q) is a linear function with
respect to g. In this case the distribution is called unifractal. In
general, the distribution function n (f,L) can be expressed by a
simple scaling form as n (f,L)=f*F (f”/L) for unifractals.

moments {m7) are calculated as
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the gth moments of the measures | |%, which are the
squared amplitudes at the ith sites. Their results suggest
that the function 7(q) is nonlinear with respect to q (see
Fig. 18), showing multifractal behavior.

We note here that an exponentially decaying averaged
wave function does not recover multifractal behavior for
a Euclidean length scale. The distribution of |¢%|? does
not exhibit multifractality, at least for r >> A, where A is
the localization length. Therefore the observed mul-
tifractality must arise from the core region r S A, as in
the case of Anderson localization, for which localized
wave functions within 7 S A do have multifractal proper-
ties (Wegner, 1980). Since Petri and Pietronero (1992)
chose relatively high frequency modes, the fracton cores
handled by them are very small (of the order of a lattice
constant).

Another kind of multifractal property for fracton wave
functions was proposed by Aharony and Harris (1992),
Bunde and Roman (1992), and Bunde et al., (1992) that
does not conflict with an exponentially decaying
ensemble-averaged wave function. They introduced 7-
dependent moments {|¢q(r,0)|*), where ¢g(r,0)
represents the amplitude of a fracton with frequency o at
a distance 7 from the center of the fracton mode. The an-
gular bracket { - - - ) denotes the average over all fracton
states with frequency @ and all possible realizations. An
exponentially decaying wave function leads to the mo-
ment {|@q(7,©)|*?) decaying exponentially with ». This
is not multifractal in the usual sense. However, if the
moments take the form

¢
I

(|pg(r,®)|?) <exp | —y(g) X , (5.21)

where y (q) is a nonlinear function with respect to g, the
wave function |¢L| can be regarded as multifractal under
a new definition in which exp[ —(r /A)¢] is considered as
the scale for fracton modes, instead of L.

Assuming that the moments of ¢ at a fixed chemical
distance / from the center of a fracton are expressed as
#,(l,0)~exp[ —ql/A], which holds for deep impurity
states with energies far from the band edge (Harris and
Aharony, 1987; Aharony and Harris, 1992), Bunde et al.

12

(q)
(@) N £ (o)} o0

FIG. 18. Simulated results of 7(g) for a fracton at the band
center (0=0.5107). After Petri and Pietronero (1992).
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(1992) have suggested that the moments of the fracton
wave function obey the form Eq. (5.21). They have also
predicted a critical value g, below which, ¢ <g,, the mo-
ments {|¢n(r,®)|%?) exhibit multifractal behavior for
r>r*(q). Here, r*(q)mqﬂ/d"‘i“, where d
the average chemical distance as (/) «<r ™". For g >gq,,
{|¢e(r,®)1??) has the simple unifractal exponential
behavior e ~%/A, For multifractal fracton wave func-

min describes

tions, the exponent y (g) becomes proportional to q1 min
in the theory of Bunde et al. (1992). They have estimat-
ed a value for g, from their numerical simulations using
50 fractons with frequencies w=0.1. They found
q.=213. Further details and numerical simulations con-
cerning these predictions have been reported in Bunde
et al. (1992), Bunde and Roman (1992), Roman (1992b),
and Aharony and Harris (1992).

C. Observation of fractons in real materials:
Neutron-scattering experiments

1. Fractality of silica aerogels
and other disordered systems

Kistler (1932) found a way to dry gels without collaps-
ing them, and produced extremely light materials with
porosities as high as 98%, which are called aerogels.
They have a very low thermal conductivity, solid-like
elasticity, and very large internal surfaces. As a conse-
quence, aerogels exhibit unusual physical properties,
making them suitable not only for a number of practical
applications, such as detectors of Cerenkov radiation,
supports for catalysts, or thermal insulators (see, for ex-
ample, Fricke, 1986, 1988; Brinker and Scherer, 1990),
but also for basic research studies. For example, a num-
ber of experiments have shown that these porous struc-
tures can have profound effects on critical phenomena
(Chan et al., 1988; Wong et al., 1990; Wong and Chan,
1990; Frisken, Ferri, and Cannell, 1991; Mulders et al.,
1991. See also the conference proceedings edited by
Fricke, 1992).

The initial step in the preparation of silica aerogels is
the hydrolysis of an alkoxysilane Si(OR),, where R is
CH; or C,H; (Kistler, 1932; Prassas et al., 1984). The
hydrolysis produces silicon hydroxide Si(OH), groups
that polycondense into siloxane bonds -Si-O-Si-, and
small particles start to grow in the solution. These parti-
cles bind to each other by cluster-cluster aggregation,
forming more siloxane bonds and eventually producing a
disordered network filling the reaction volume, at which
point the solution gels. The reactions are normally not
complete at this gel point, and the cluster networks con-
tinue to grow in the alcogel phase. After suitable aging,
if the solvent is extracted above the critical point, the
open porous structure of the network is preserved and
decimeter-size monolithic blocks with a range of densities
from 50 to 500 kg/m?> can be obtained.

Small-angle scattering techniques using neutrons and x
rays are very well suited to systematically investigate the
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structure of silica aerogels. It has been found (Schaefer
and Keefer, 1984, 1986; Courtens and Vacher, 1987;
Vacher, Woignier, Pelous, and Courtens, 1988; Vacher,
Woignier, Phalippou, Pelous, and Courtens, 1988; Woig-
nier et al., 1990; Posselt, Pedersen, and Mortensen, 1992)
that aerogels take fractal structures, as in the cases of
colloidal gels (Dietler et al., 1986, 1987). Direct electron
microscope observations on silica aerogels were done by
Brinker and Scherer (1990), Brinker et al. (1982),
Rousset et al. (1990), Vacher et al. (1991), and Buckley
and Greenblatt (1992). Bourret (1988) and Duval et al.
(1992) reported high-resolution electron microscopy
(HREM) observations that are compatible with a fractal
geometry. Beck et al. (1989) and Ferri, Frisken, and
Cannell (1991) used light-scattering techniques for
characterizing geometrical features. Phalippou et al.
(1991) applied thermoporometry for an in situ study of
silica aerogels.

The scattering differential cross section measures the
Fourier components of the spatial fluctuations in the
scattering length density. For aerogels, the differential
cross section is composed of the product of three factors,
namely,

49— 45 (g)5 (@)P(g)+B .
Here A is a coefficient proportional to particle concentra-
tion, f%(q) is the elemental-particle form factor, the struc-
ture factor S(q) describes the correlation between parti-
cles in a cluster, and ®(q) takes account of the cluster-
cluster correlations. B gives the incoherent background.
The Fourier transform of the particle density-density
correlation function G (7) gives

= N — iqr

S@=1+ [ |G —1le’adr . (5.22)
Fractal (self-similar) structures, extending up to a corre-
lation length £, can be modeled by the correlation func-
tion G (r) (Teixeira, 1986; Courtens and Vacher, 1989),

G(r)—1xr Cexp(—r/£) . (5.23)

This is the most convenient, but not unique, choice.
Equation (5.23) is a consequence of the mass M (r) within
a sphere centered on a particle at »=0, scaling as
M (r)OCer . Hence the density in the sphere scales as
p(r)OCer - Two limiting regimes are of interest. At
small g, g& <<1, S(q) is almost independent of g. When
g&>>1, one obtains by substituting Eq. (5.23) into Eq.
(5.22) the following simple result for the scattering func-
tion,

S(Q g 7. (5.24)
In the ideal case, the value of D, can be deduced from
the slope of the observed corrected intensity versus
momentum transfer in a double-logarithmic plot. This is
illustrated in Fig. 19, which shows the results of elastic-
scattering experiments on silica aerogels (Vacher, Woig-
nier, Pelous, and Courtens, 1988).
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The various curves are labeled by the macroscopic
density p of the corresponding sample, N095, meaning
“neutrally reacted” with p=95 kg/m3. The solid lines
represent the best fits. They are extrapolated into the
particle regime (g>0.15 A D to emphasize that the fits
do not apply in that region, particularly for the denser
samples. Remarkably, D, is independent of sample den-
sity to within experimental accuracy: D,=2.40%+0.03
for samples N095 to N360. Furthermore, £ scales with
as Eoxcp 1'670.05 The departure of S(q) from the g 7
dependence at large g indicates the presence of particles
with gyration radii of a few A.

The lower three curves in Fig. 19 are the results of
S(q) for samples prepared under basic catalysis. They
are very different from the upper three curves. Compar-
ing N200 to B220, one notes that the extension of the
power-law region is very different for these two curves.
A most striking effect is found in the value of D,. All
curves from base-catalyzed samples with an extended
fractal range have D, =1.8=+0.1.

To summarize, silica aerogels exhibit three different
length-scale regions: At short distance, elemental parti-
cles of radial size R are found. The particles are aggre-
gated into clusters with size £ at intermediate distance,
and a gel is formed by connection of the clusters at large
distance. At intermediate length scales, the clusters pos-
sess fractal structure, and at large length scales the gel is
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FIG. 19. Scattered intensities for 11 samples. From top to bot-
tom: ten untreated, neutrally reacted samples of increasing den-
sity, and one oxidized sample. The curves are labeled with p in
kg/m3. After Vacher, Woignier, Pelous, and Courtens (1988).
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a homogeneous porous glass. The fractal structure of sil-
ica aerogels and their dynamics have been reviewed by
Courtens, Vacher, and Stoll (1989), Vacher, Courtens,
and Pelous (1990), Kjems (1991, 1993), and Courtens and
Vacher (1992). 1

2. Observed density of states

A direct way to obtain the fracton dimension d for real
materials is to measure the density of states (DOS). A
very direct method is incoherent inelastic neutron-
scattering experiments, which measure the amplitude-
weighted DOS. The scattered intensity is given by

! —2W;

I(q,a))otqzk?%w) ge ‘D),
where n(w) is the Bose-Einstein distribution function.
The wave vectors k and k’ correspond to the incident and
scattered neutrons, respectively, and q=k’'—k. D;(w)
and W; are the DOS and the Debye-Waller factor
characteristic of the ith site, respectively. The summa-
tion extends over the different sites for the atoms, each of
which contributes (proportionally to the amplitude of vi-
bration at frequency w) to the incoherent-scattering cross
section. Incoherent neutron scattering from protons
chemically bonded to the particle surfaces can be used to
determine the DOS in porous media (Richter and Passell,
1980). A careful analysis has been applied to extract the
intrinsic DOS by extrapolation to zero-momentum
transfer.

Measurements of the incoherent inelastic scattering
have been performed in aerogels (Courtens and Vacher,
1988; Coddens et al., 1989; Conrad, Fricke, and
Reichenauer, 1989; Conrad, Reichenauer, and Fricke,
1989; Page, Buyers, et al., 1989; Page, Schaefer, et al.,
1989; Pelous et al.,, 1989; Reichenauer, Fricke, and
Buchenau, 1989; Vacher and Courtens, 1989a, 1989b;
Vacher, Woignier, Pelous, et al., 1989; Vacher, Woig-
nier, Phalippou, et al., 1989; Conrad et al., 1990; Cour-
tens, Vacher, and Pelous, 1990; Schafer, Brinker, et al.,
1990; Schaefer, Richter, et al., 1990; Vacher, Courtens,
Coddens, et al., 1990; Courtens and Vacher, 1992).
Vacher and Courtens (1989a, 1989b), Buchenau, Morken-
busch, et al. (1992), and Kjems (1993) have reviewed
these results.

Investigations on the phonon-fracton crossover in sili-
ca aerogels have been made using inelastic neutron-
scattering experiments. These have been done on back-

12There are several reports on disordered materials which are
said to exhibit fractal structures and properties: polymers
(Fischer et al., 1990; Zemlyanov et al., 1992), vitreous silica
(Dianoux et al., 1986; Dianoux, 1989), fumed silica (Page,
Buyers, et al., 1989; Page, Schaefer, et al., 1989), smoke-
particle aggregates of silica particles (Richter et al., 1987), and
superionic borate glasses (Fontana et al., 1987, 1990).
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scattering  spectrometers (Conrad, Fricke, and
Reichenauer, 1989; Conrad, Reichenauer, and Fricke,
1989; Pelous et al., 1989; Conrad et al., 1990; Vacher,
Courtens, and Pelous, 1990) and using the spin-echo
technique (Courtens, Vacher, and Pelous, 1990; Schaefer,
Brinker, et al., 1990; Schaefer, Richter, et al., 1990).
The backscattering technique has the advantage that the
low-frequency Debye range is seen as a constant-intensity
level extending from the elastic line to the crossover fre-
quency.!® Thus any excess modes at the phonon-fracton
crossover would show up as a peak in the scattering in-
tensity at that frequency, if present. However, such a
peak has not been observed in the two backscattering ex-
periments (Conrad et al., 1990; Vacher, Courtens, and
Pelous, 1990). Rather, a gradual decrease is observed as
one passes through the crossover regime.

The neutron-scattering spin-echo technique has several
advantages over these other techniques. The larger spec-
tral range makes it a suitable tool for the determination
of the fracton dimension.

The crossover frequencies determined by both back-
scattering and spin-echo measurements are generally in
good agreement with those determined by Brillouin
scattering (Courtens et al., 1987b; Courtens, Pelous,
Vacher, and Woignier, 1987). As far as investigations at
higher frequencies are concerned, there are several early
results (Reichenauer, Fricke, and Buchenau, 1989; Vach-
er, Woignier, Pelous, et al., 1989; Vacher, Woignier,
Phalippou, et al., 1989). These results exhibited a
change of slope in the log-log plot of the DOS at 200
GHz, giving a stronger increase with frequency at higher
frequencies. Investigators interpreted their data as a
crossover from fractons to vibrational modes within the
particles. Courtens and Vacher (1989) compared the
data at high frequencies to a formula which has been de-
rived for the DOS of small particles (Baltes and Hilf,
1973). In the regime of particle contribution, the
effective slope of the DOS is around 1.5. This seems to
originate from the contribution of both surface (propor-
tional to ) and bulk (proportional to w?) particle modes.
The energy resolution was insufficient to observe the
crossover to the long-wavelength phonon regime.

Measurements (Coddens et al., 1989; Vacher, Woig-
nier, Phalippou, et al., 1989) at higher resolution on a
sample prepared in a different manner have confirmed
the extended fracton region. The DOS in silica aerogels
has been studied in a wider frequency range by combin-
ing data from neutron time-of-flight and spin-echo exper-
iments (Vacher, Courtens, and Pelous, 1990). These re-
sults, exhibited in Fig. 20, indicate that different types of
modes contribute to the scattering in the fracton range,

13In general, the Debye range of dense solids cannot be ob-
tained by the backscattering technique because of the extremely
small value of D(w)/w?*=(1/27*)(1/v}+2/v3). In silica aero-
gels, however, the sound velocities are lower by a factor of
about 40 (Conrad et al., 1990).
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FIG. 20. Density of states of neutrally prepared silica aerogel.
The open circles are time-of-flight measurements. The dotted
curve indicates the DOS that fits the neutron spin-echo data.
The dashed lines indicate the asymptotic phonon as well as the
independent bend and stretch contributions. Inset: small-angle
neutron-scattering data from the same fit described in Fig. 1 of
Vacher, Woignier, Pelous, and Courtens (1988). A straight line
shows the Porod region at high g. After Vacher, Courtens,
Coddens, et al. (1990).

suggesting that the modes have predominantly bending
character at low frequencies and stretching character at
higher frequencies. In the fracton domain, a power law
is observed over more than one order of magnitude. It
has a slope d, —1~1.2.

We should mention neutron-scattering experiments on
other disordered materials, which were analyzed in terms
of the fracton theory. Freltoft, Kjems, and Richter
(1987) measured the low-frequency density of states for
fractal silica aggregates by inelastic neutron scattering.
They obtained their fracton dimensionalities. Page,
Buyers, et al. (1989) performed neutron inelastic-
scattering measurements on fumed silica and compared
the results with analogous results for amorphous quartz.
They saw no evidence for a hump!# in the DOS near the
phonon-fracton crossover. It was also found that neither
the temperature and wave-vector dependence of the in-
tensity nor the absolute intensity was in accord with sim-
ple phonon models. Fontana et al. (1990) reported a
study of low-frequency vibrational dynamics and
electron-vibration coupling in Agl-doped silver borate

14Earlier inelastic neutron-scattering experimental results that
exhibit steepness or a hump in the DOS (Buchenau, Nuecker,
and Dianoux, 1984; Buchenau et al., 1986; Rosenberg, 1985)
had been analyzed according to the fracton viewpoint.
Buchenau, Nuecker, and Dianoux (1984), Buchenau et al.
(1986), and Dianoux et al. (1986) have suggested, however, that
the observed hump in the vitreous silica can be attributed to
some intrinsic modes peculiar to amorphous materials.



Nakayama, Yakubo, and Orbach: Dynamical properties of fractal networks 411

glasses. By using both time-of-flight neutron-scattering
and Raman-scattering spectroscopies, they were able to
determine the vibrational DOS and the frequency depen-
dence of the electron-vibration coupling. The fracton di-
mension of this system was determined to be 1.4. Zem-
lyanov et al. (1992) employed inelastic neutron-
scattering measurements to study low-frequency vibra-
tional excitations in polymethyl metacrylate (PMMA).
The DOS obtained in the 2.5-10 meV range follows a
power law in energy, with a spectrum corresponding to a
fracton dimension d=1.8+0.05. Dianoux, Page, and
Rosenberg (1987) and Arai and Jdrgensen (1988) per-
formed inelastic neutron-scattering experiments on epoxy
resins. Dianoux, Page, and Rosenberg (1987) found that
the DOS above E=1.2 meV was proportional to E d BRR
with d=1.5, whereas the DOS below 1.2 meV was pro-
portional to E2. They also found a rapid rise in the DOS
near the phonon-fracton crossover energy. The results
by Arai and Jdrgensen (1988) exhibit a fracton dimension
d=1.940.1, with a crossover energy of 1.8 meV, but
they found no rapid rise in the DOS around E=1.8 meV.

There are experiments that investigate the dynamical
properties of fractal materials, but that do not involve
scattering techniques. Helman, Coniglio, and Tsallis
(1984) have shown that a proper description of the tem-
perature dependence of the spin-lattice relaxation rate of
low-spin hemoproteins and ferrodoxin measured by Sta-
pleton et al. (1980) and Allen et al. (1982) requires that
both the fractal structure of the protein backbone and
the cross connections between segments of the folded
chain be taken into account. This work led to several in-
vestigations regarding fractons in protein dynamics (Sta-
pleton et al., 1985; Herrmann, 1986; MacDonald and
Jan, 1986; Yup Kim, 1988). It is obvious that the ex-
ponent d is obtained by spin-lattice relaxation experi-
ments; but the analysis of data is not straightforward, be-
cause one cannot use the ensemble-averaged fracton wave
functions to calculate matrix elements. Theoretical
works (Alexander, Entin-Wohlman, and Orbach, 1985a,
1986; Entin-Wohlman, Alexander, and Orbach, 1985;
Shrivastava, 1986, 1989b) have been done assuming the
ensemble-averaged superlocalized fracton wave functions
given by Eq. (5.18). The arguments taking into account
the proper averaged procedure for the matrix elements as
done by Alexander, Courtens, and Vacher (1993) for in-
elastic light scattering are required. Kopelman, Parus,
and Prasad (1986) and Fischer, von Borczyshowski, and
Schwentner (1990) have determined the fracton dimen-
sion d by considering exciton recombination in disor-
dered systems. Kopelman, Parus, and Prasad (1986)
measured the exciton recombination characteristics of
naphthalene-doped microporous materials. This tech-
nique yields the fracton dimension of the embedded
naphthalene structure, or, equivalently, the effective
random-walk dimension of the porous network. The
values of d obtained are between 1 and 2. Fischer, von
Borczyshowski, and Schwentner (1990) have studied the
trap-depth distribution of dibenzofuran singlet excitons
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and the temperature-dependent energy migration by
time-resolved spectroscopy via synchrotron radiation and
two photon laser excitation. They obtained d=1.14 from
their experimental results. Krumhansl (1986) stressed
that for polymers consisting of long chains, the transla-
tional symmetry is effectively valid; namely, the conven-
tional phonon picture is valid for chains. It should be
kept in mind, however, that all configurations of linear
polymers have d=1 (Alexander, 1986).

Sintered metal powders possess a random structure
consisting of small metal particles of the size a ~500 A.
The study of the vibrational modes of these materials
might be important for understanding the anomalous
Kapitza resistance at millikelvin temperatures (see the re-
view by Nakayama, 1989). Malieppard et al. (1985) and
Page and McCulloch (1986) measured the ultrasound
propagation in sintered metal powders. They found that
a band edge exists, at A~ 10a, below which sound does
not propagate. They suggested that this edge is associat-
ed with a transition from phonon to fracton vibrational
modes of the sinter. Wu et al. (1987) have investigated
fracton modes using thin metallic planes, which are ran-
domly degraded square lattices of bonds. Their system
maps onto the percolation model with scalar displace-
ments. Hayashi et al. (1990) have studied low-frequency
vibrational modes in sintered copper and silver powders
using Au Mossbauer spectroscopy. The energies of the
vibrational modes coincide with the values estimated
from ultrasonic data (Malieppard et al., 1985; Page and
McCulloch, 1986) using a fracton model, providing sup-
port for the localized nature of the modes.

Finally, we should mention experiments on fractal su-
perconducting networks. Alexander (1983) has pointed
out that the linearized Ginzburg-Landau equation close
to the superconducting transition temperature 7, can be
mapped onto the equation for random resistor network
(or elastic network with scalar displacements). Modern
lithography techniques have enabled the fabrication of
superconducting percolating networks or Sierpinski
gaskets. These are obvious candidates for a quantitative
experimental test of the fracton concept. These were
done by Gordon and Goldman (1987, 1988a, 1988b),
Gordon, Goldman, and Whitehead (1987), Gordon et al.
(1986), Yu, Goldman, and Bojko (1990), Yu, Goldman,
Bojko, et al. (1990), Senning et al. (1991), and Meyer
et al. (1991; Meyer, Martinoli, et al., 1992; Meyer,
Nussbaum, et al., 1992).

VI. SCALING BEHAVIOR OF THE DYNAMICAL
STRUCTURE FACTOR

Scattering experiments yield S'(q,®), providing rich in-
formation on the dynamic properties of fractal struc-
tures. A variety of scattering experiments have been per-
formed so far for physical realizations of fractal materi-
als, such as sol-gel glasses, silica-aerogels, and borate
glasses. In this section, we review theoretical and experi-
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mental developments for this quantity. Scaling argu-
ments on the dynamical structure factor S(q,w) will be
presented in Sec. VI.A.2, in order to interpret experimen-
tal data or simulated results on S (q,®).

Before discussing the results for S(q,w), we should
clarify the meaning of energy width of fractons. Obvi-
ously, one could find exact eigenstates of the random
structure which would have no energy width: they would
be precisely defined in energy. It is only when one pro-
jects them onto plane-wave states that a lifetime is gen-
erated, equally in frequency or wave-vector space because
of the linear phonon-dispersion relation. When we calcu-
late an energy width for the fractons, it should be under-
stood to be that width that a plane wave would experi-
ence.

A. Theoretical treatments of the
dynamical structure factor S(q,w)

1. Expression for the intensity of inelastic scattering

In general, the intensity 7(q,) of inelastic neutron or
light scattering with a frequency shift o(=w —w,) is pro-
portional to the Fourier transform of the density-density
correlation function, defined by G(r—r',¢)
=(p(r,t)p(r',0)), where p(r,t) is the density and the an-
gular brackets denote an equilibrium ensemble average.
A general form is obtained by introducing the density
fluctuation dp(r,t) defined by

op(r,t)=p(r,t)—p(r) , (6.1)
where p(r) is the static density given by
pr)= 3 8(R;,—r) ,

and R; is the equilibrium position of the ith atom. One
usually neglects the term contributing only to elastic
scattering (0=0). §(q,») is then expressed in terms of
the Fourier transform of the density fluctuation 8p(r, ),

S(q0)=5 [ die " (8p_y0)Bpg0) . (62)

Because the density fluctuation 8p(r,¢) induced by lattice
vibrations with displacements wu;(¢) is written
Sp(r,t)=3,[6(R;+u;(¢)—r)—8(R;—r)], the Fourier
transform 8p(¢) becomes

—iq (R, +u;(1)) —iqR,
SP (t)=2{€ AR —e :} .
! i
Decomposing u;(¢) into normal modes u;= 3, u;&e—im,‘z,
one obtains
A

where
Spa(q)=e "“M&p,(q),
and 8p,(q) is defined by
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dprl@)=—i3 (qube VI (6.4)
Substitution of Eq. (6.3) into Eq. (6.2) yields
Sq0)=3 8lo—w,){8p,(q)8p,(—q)) . (6.5)
A

For convenience, the reduced dynamical structure factor
S (q,w) will be used hereafter. The usual mode quantiza-
tion and thermal factor [n(w)+1]/w, where n (w) is the
Bose-Einstein distribution function, are factored out
from 8(q,) by the relation

o
[n(w)+1]

Changing the summation in Eq. (6.5) into a frequency in-
tegral, one has

S(q,0)=D(w0){8p,(q)8p,(—q)),, , (6.6)

S(q,0)= $q,w) .

where the angular brackets denote the average of 8p,(q)
over all modes A with frequencies close to w. Finally, one
has the expression for the intensity of inelastic scattering,

I(qo)« M@+1
®

D(w){8px(q)8pr(—q)), -

In principle, S(q,®) can be calculated analytically
from Eq. (6.5) or Eq. (6.6) if one knows 8p,(r) [or the
fracton wave function ¢,(r)] for a specific realization.
However, this is not straightforward, because of the ex-
tremely complicated character of fractons (see, for exam-
ple, Fig. 15). Although some general remarks can be
made about S(q,w) using scaling arguments (Aharony
et al., 1988) and an analysis can be carried out within the
effective-medium approximation (EMA; Polatsek and
Entin-Wohlman, 1988; Entin-Wohlman, Orbach, and Po-
latsek, 1989; Polatsek et al., 1989), its explicit form is not
known except for deterministic fractals. Sivan et al.
(1988) and Entin-Wohlman et al. (1989) have analytical-
ly calculated S(q,w) for the d=2 Sierpinski gasket in
terms of Green’s function, where S(q,w) was defined
through the displacement-displacement correlation func-
tion. They have shown that fracton excitations on the
Sierpinski gasket obey a single-length-scale postulate
(SLSP), in addition to S(q,®) being peaked at

G max =©2?1?, indicating the appropriate dispersion.

2. Scaling arguments on S(q,)

Alexander (1989) and Alexander, Courtens, and Vach-
er (1993) have produced arguments supporting the
asymptotic behavior of the dynamical structure factor
S(q,w) based on the SLSP (single-length-scale postulate;
see Sec. IV.B). The following argument is a summary of
the theory proposed by Alexander et al. (1993).

If the SLSP is valid, the correlation function S(q,®)
should have the following scaling form, depending only
on the single length scale A(w),

S(g,0)=q’H(qgAw)) , (6.7)
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where the dynamical structure factor is a function of
g =|q| because of the spherical symmetry for the aver-
aged structure of random networks. The asymptotic
behavior of the scaling function H (x) for x <<1 and for
x >>1 is of power-law form,
x9 x<<1;
(e '
H(x) x4, x>1.

Here a and a’ are new scaling indices. Accordingly, one
has

70 P g Aw) <1 ;

S(q,w) < (6.8a)

qy_“'a)a’d/Df, gA(@)>>1 .

(6.8b)
In the case of g A << 1, Eq. (6.4) can be expanded as

spi@=—c 3 (q¢RNqu), (6.9)

where R*=R; —R, and R, is the center of the A-mode
fracton. The summand in Eq. (6.9) can be written as
q-{R*®u’}-q in terms of the dyadic product. Choosing
the center of the fracton as the origin, i.e., R; =0, and
3 R}=0 from the condition 3, u}=0 (see footnote 10
in Sec. V.B.1)

vA
opp(q)=— 2 Q‘{R?@[U%_ux]} 'q

where u, is the amplitude at the center of the A-mode
fracton, and the summation is restricted to a vibrating re-
gion v, which is chosen as the smallest region for which
the boundary condition plays no significant role for the
vibration A. If an average strain tensor, &,, is defined as

A — A
u;i—u, =R},

one obtains
VA
dpa(q)~—q-{ 3 (R}@RMe, t-q .

The R} in v, are all at most of order A, so that the mag-
nitude of 8p;(q) can be estimated as

Using the definition of S (q,w) from Eq. (6.6), one has
S(g,0)=D)g* AT (2, ?), (6.10)

Alexander, Courtens, and Vacher (1993) assume that
((ey)?*), has a scaling form, which to leading order is

[{(ex)*),]! 2=

u(w)
[Alw)]®

where the root-mean-squared amplitude u () of the frac-

(6.11)
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ton modes is given by

u (@)= l( 21u*!2>

and N, is the number of sxtes contained in the region of
vibration, v, (i.e., (N, ), < A®7). Thus the new exponent
o characterizes an effective length relevant to an average
strain, analogous to the relationship between the chemi-
cal and Euclidean lengths. The magnitude of u(w) is
proportional to [A(a))]*Df ’? because of the normaliza-
tion condition 3, [u}|?=1 (footnote 15). From Egs.
(6.10) and (6.11) and from the use of the dispersion rela-
tion AOCw_J/Df , Alexander,
(1993) obtain

1/2

’

Courtens, and Vacher

S(q,co)0<q4a)(20_4)(d/bf)_1, gA<<1 .

Thus the exponents y and a in Eq. (6.8a) are determined
through o as

D,
y=20——2- (6.12)
d
and
Dy
=4+ ——20 . (6.13)
d
In the case g A >>1, the phase factor e R in Eq. (6.4)

is uniform (coherent) only over small regions of size
1, g 7' (<<A) (see Fig. 17). Provided that the vibrating
reglon v, is divided into “blobs” of size [, <<A, the num-
ber of blobs in the reglon vx is proportlonal to (gA) Pr
and each blob has ~(ga) ’ particles. Then, as for the
derivation of Eq. (6.9), one can expand Eq. (6.4) for small
qas

4

Sprl@)=Se i(ga) (qUH— 3 (q1)qud)],
B i

(6.14)

where Ry is the center of mass in the “blob” B and

=R, —Rp. The factor UEN(qa) fz," u} is the aver-
aged motion of the blob B in the eigenmode A. The
second summation in Eq. (6.14) is taken over the region
of the blob 3. Inserting Eq. (6.14) into Eq. (6.6), one has
phase factors exp[ —iq-(Rz;—Rp)]. Because there is no
coherent contribution of the scattering from different
blobs in the limit (gA>>1), only terms with B=pf'
remain. Alexander, Courtens, and Vacher (1993) suggest
that the first term dominates the second term in Eq.
(6.14) for g A >>1.

I5For §(q,w) defined by Eq. (6.5), the normalization condition
becomes 3, [u}?=[n(w)+1]/0.
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Thus one has the result
S(g,0) = D[A)]7g" P (usyy, .

When the number of particles in each blob becomes
-D

large, i.e., (ga) 7/ >>1, the magnitude of ((U%)?) is as-

sumed to be

((UB?) , =~(gay {(u)?), . (6.15)

Using the relation u(w)x<[A(w)] Pr /2, Alexander,
Courtens, and Vacher (1993) have obtained S(q,w), ex-
pressed by

S(q,a)) c}Cmafqu—wa&x )

Comparing this expression with Eq. (6.8b), one has

2—D;+x=y—a’ (6.16a)
and
D;
a'=——(d—1). (6.16b)
d
Equations (6.12) and (6.16a) for y yield
x=2(c—1). (6.17)

To summarize, the scaling argument based on the
SLSP predicts, by introducing the averaged strain ex-
ponent o, the dynamical structure factor behaving as

(20—4)Xd/D,)—1
‘o I, gAw) <1,

S(gq,0)x (6.18)

qza_Dfa)Jﬂ, gA(w)>>1 .

B. Numerical simulations of S(q,»)

Computer experiments are crucial for gaining insight
into the properties of the dynamical structure factor
S(q,w), as well as for calculating the DOS or the disper-
sion relation for fractal structures. In this subsection,
numerical results for the dynamical structure factor of vi-
brating percolating networks are presented and com-
pared with the scaling arguments of Alexander, Cour-
tens, and Vacher (1993).

Montagna et al. (1990), Pilla et al. (1992), and Mazza-
curati et al. (1992) have calculated the dynamical struc-
ture factor S(q,w) by numerically diagonalizing the
dynamical matrix. They have obtained results for site-
percolating (SP) networks formed on 65X 65 square lat-
tices and 29X29X29 cubic lattices. Stoll, Kolb, and
Courtens (1992) have calculated S(q,w) for bond-
percolating (BP) networks by a direct diagonalization
technique for d=2 (68X 68) lattices and d=3
(21X21X21) lattices.

Nakayama and Yakubo (1992a, 1992b) have performed
numerical simulations for S(q,®) for very large-scale SP
networks (500X 500). They considered d=2 SP networks
at the percolation threshold (p, =0.593) with a periodic
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boundary condition. The dynamical structure factors
S(q,w) for percolation systems were obtained by the
same numerical technique employed in a series of works
(Yakubo and Nakayama, 1987a, 1987b, 1989a, 1989b,
1989c; Yakubo, Courtens, and Nakayama, 1990; Yakubo,
Takasugi, and Nakayama, 1990). By using this algo-
rithm, they excited several modes simultaneously with
frequencies close to a fixed frequency w, thereby decreas-
ing slightly the monochromaticity of the excited modes.
Their algorithm then automatically performed the fre-
quency average { -+ - ), in Eq. (6.6) for S(q,w). Using
these mode-mixed displacement patterns {v;°}, which are
normalized by 3, (v°)*=1, we see that S(q,) is given
by

S(q,w)zi)(m)<2(q-vf)(q-v;s’)e"'“"Rf“"f’>, (6.19)
ij

where the angular brackets denote the sample average.
Scalar displacements have been employed, whence
q-vP=quv{. The Fourier transform of the correlation
function (v,-“’vjf") has been calculated by assuming a
spherically symmetric correlation function
G°(r;—1;)=(vfv/’). This leads to

S (vfv)exp[—iq (R, —R;)]= 3 RG“(R)J,(qR) ,
ij R
where R =|r;—r;| and Jy(x) is the Oth Bessel function.
The ensemble average has been taken over five percolat-
ing networks formed on 500X 500 square lattices. The
maximum site number of our systems is N =110793; the
minimum, N =93 382.

The results for S(g,w) are shown in Figs. 21 and 22.
Figure 21 shows the calculated results of the g depen-
dence of S(gq,0) for 50 different frequencies
(0.005=w=0.5). The abscissa indicates the reduced

Dynamic Structure Factor

-1 0 101

Wave number

FIG. 21. Wave-number (g) dependence of S(q,w) for 50
different frequencies (0.005 <w=0.5). The abscissa indicates
the reduced wave number g/qo. Solid circles are plotted by
averaging data over a narrow wave-number range close to the
reduced wave number q/q,. The ensemble average has been
taken over five percolating networks formed on 500X3500
square lattices. Error bars indicate the statistical errors of the
data. After Nakayama and Yakubo (1992b).
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FIG. 22. Frequency (w) dependence of S(g,w) for 125 different
wave numbers (27/250=<q < 7). The abscissa indicates the re-
duced frequency @/wy. Solid circles are plotted by averaging
data over a narrow frequency range close to the reduced fre-
quency o/w,. The ensemble average has been taken over five
percolating networks formed on 500X 500 square lattices. Er-
ror bars indicate the statistical errors of the data. After Nakay-
ama and Yakubo (1992b).

wave number g /q(w), where q,(w) is the wave number
at which S(q,®) has the maximum value S, (@) for
each fixed frequency. The values of S(q,w) are rescaled
by S .x(@w). Solid circles are plotted by averaging over
data within a narrow range close to the reduced wave
number g /q, (one solid circle is obtained by averaging
about 100 data points). The results exhibit a S(g,w) for
different @ which can be scaled by a single characteristic
wave number g,. In particular, the wave-number depen-
dence obeys the power law: S(g,0)xg***%! below g,
and S (g,w) < q ~%*%! above g,. Figure 22 shows the re-
sults of the w dependence of S(q,w) for 125 different
wave numbers (277 /250 =q < ). The abscissa represents
the reduced frequency w/wy(q), where wqy(q) is the fre-
quency at which S (g, ®) has the maximum value S_,,(q)
for each fixed wave number. The values of S(q,w) are
also rescaled by S, ..(q). Solid circles indicate the aver-
age values over the data within a narrow frequency range
close to the reduced frequency w/w, Their result
demonstrates universal behavior scaled by the single fre-
quency @, This result also shows that the asymptotic
behavior of S (g,») can be expressed as S(g,0) x ' 70!
in the frequency regime w<<w, and as
S(g,0) < 201 for ¢ >>w,,.

Nakayama and Yakubo (1992b) obtained the values of
the exponents a, a’, and y from four asymptotic forms (g
dependence for both g <<gq, and g >>q,, and the o
dependence for both o <<w, and w>>a,) of S(q,w).
They found @ =3.2+0.1, @a’=2.4+0.1, and y =0.8+0.1,
which explain consistently four asymptotic relations of
Eq. (6.18).

Inserting the simulated result y =0.8%0.1 [or
a =3.210.1] into Eq. (6.12) [or into Eq. (6.13)], one finds
that o takes the value of 1.1. This value of o is larger
than unity and in agreement with the prediction (o >1)
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by Alexander, Courtens, and Vacher (1993).

Stoll, Kolb, and Courtens (1992) have computed
S (g,) for BP networks. They treated 68 X 68 square lat-
tices and 21X21X21 cubic lattices and employed the
standard diagonalization technique. As mentioned in
Sec. II, the scale range for fractal geometry of a BP net-
work is much wider than that of a SP network. There-
fore BP networks are more suitable for determining the
nature of fracton eigenfunctions belonging to high eigen-
frequencies. Their results were obtained by averaging 40
and 20 realizations of d=2 and d=3 BP networks, re-
spectively. Their values for the exponent a defined in Eq.
(6.8) are a=3.32 for d=2, and a=3.65 for d=3. The
value a=3.32 (d=2) is in accord with the result of
Nakayama and Yakubo (1992b). They obtained the ex-
ponent o defined by Eq. (6.11): 0=1.05 and 1.11 for
d=2 and d=3, respectively, close to the value obtained
by Nakayama and Yakubo (1992b).

In this subsection, we have described experiments,
scaling arguments, and numerical simulations for the
dynamical structure factor S(q,w). The scaling argu-
ment postulates that, for the strongly disordered fractals,
one is always in the Ioffe-Regel strong scattering limit, so
that three distinct length scales (a wavelength, a scatter-
ing length, and a localization length) collapse to one
(SLSP). For percolating networks, this length scale

should have the frequency dependence A(w)“w_d/Df .
Namely, all waves with the wavelength A <& satisfy the
Ioffe-Regel condition A~/ (Ioffe and Regel, 1960), indi-
cating that fractons are strongly localized with the locali-
zation length A(w) (see also Aharony et al., 1987a). For
weakly localized phonons, the characteristic lengths have
different frequency dependencies (John, Sompolinsky,
and Stephen, 1983). The numerical simulations by Stoll,
Kolb, and Courtens (1992) and Nakayama and Yakubo
(1992a, 1992b) confirm this postulate and show that the
asymptotic behaviors of S(g,®) can be characterized by
the exponent o introduced by Alexander, Courtens, and
Vacher (1993). In summary: (i) The SLSP holds for frac-
tons in percolating networks; (ii) the asymptotic form of
the dynamical structure factor S(q,w) follows a power
law in both g and w; and (iii) the exponents o character-
izing the average strain take the values 1.05 and 1.11 for
d=2 and d=3, respectively.

C. Inelastic light scattering for fractal materials

1. Raman-scattering experiments

Boukenter et al. (1986, 1987) made the first attempt to
measure the Raman-scattering intensity for silica aero-
gels. They analyzed the results, assuming the ensemble-
averaged form for the fracton wave functions, Eq. (5.18),
introduced by Alexander, Entin-Wohlman, and Orbach
(1985a, 1985b, 1985c, 1986a). Keys and Ohtsuki (1987)
questioned the validity of the analysis, but also used the
averaged wave function. Boukenter et al. (1986, 1987)
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used two kinds of silica aerogel samples in their Raman-
scattering experiments. Sample A was prepared by acid-
catalyzed hydrolysis and condensation of silicon
tetraethoxide in ethanol, and sample B by base-catalyzed
hydrolysis and condensation of silicon methoxide in al-
cohol. The condensation leads to gels dried by a hyper-
critical procedure. They extracted values for the fracton
dimension from their analysis of d=1.21 for type A and
d=1.31 for type B. Since these pioneering studies, a
number of studies on the dynamical properties of fractal
materials have been performed using inelastic light
scattering. The dynamical properties of silica aerogels
have been vigorously investigated by Courtens, Vacher,
and their collaborators (Courtens, Pelous, Vacher, and
Woignier, 1987; Woignier et al., 1987; Courtens et al.,
1987a, 1987b, 1988; Courtens and Vacher, 1987, 1988,
1989, 1992; Tsujimi et al., 1988; Vacher, Woignier,
Pelous, and Courtens, 1988; Vacher, Woignier, Phalip-
pou, Pelous, and Courtens, 1988; Vacher and Courtens,
1989a, 1989b; Vacher, Courtens, Pelous, et al., 1989;
Vacher, Woignier, Pelous, et al., 1989; Vacher, Woig-
nier, Phalippou, et al., 1989; Xhonneux et al., 1989;
Courtens, Lartigue, et al., 1990; Courtens, Vacher, and
Pelous, 1989; Vacher, Courtens, Coddens, et al., 1990;
Vacher, Courtens, and Pelous, 1990). Mariotto et al.
(1988a, 1988b) have reported low-frequency Raman spec-
tra of gel-derived silica glasses annealed at different tem-
peratures. The very low-frequency spectrum is interpret-
ed in terms of localized “‘extra modes” coexisting with
phonons. Besides these experiments on silica aerogels,
inelastic light-scattering measurements have been report-
ed for polymers such as PMMA (Malinovskii et al.,
1988); epoxy or diglycidyl ether of bisphenol A (DGEBA;
see Boukenter, Duval, and Rosenberg, 1988); glasses such
as silver borate glasses (Rocca and Fontana, 1989; Fonta-
na et al., 1990) or lithium borate glasses (Borjesson,
1989); and amorphous arsenic (Lottici, 1988).
Information on the DOS can also be obtained by
means of Raman scattering. Saikan et al. (1990) have
made Raman-scattering studies for the DOS of epoxy
resins. Fontana, Rocca, and Fontana (1987) have deter-
mined the crossover frequency w, between the phonon
and fracton regime from the low-frequency inelastic light
scattering for superionic borate glasses of the type
(Agl), (Ag,0-nB,03),_,. Duval et al. (1987) have per-
formed very low-energy Raman scattering on Na-colloids
in NaCl. They analyzed the data from the viewpoint of
fractal structures. Low-frequency Raman-scattering
spectra in yttria-stabilized zirconia (YSZ) were measured
by Yugami, Matsuo, and Ishigame (1992). They found
that the frequency dependence of the Raman intensity
can be separated into two regions, namely, the region
below the characteristic frequency ., obeying the w* law
and the region above not following Debye theory. They
analyzed the data in terms of fracton excitations above
.- In these cases, the observed intensity involves the
product of DOS and the square of the polarization ampli-
tude produced by the strain of the fracton excitation.
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FIG. 23. Brillouin-scattering spectra (points) and fits (lines) as
explained in the text: O, 6=39°, ¢/q.=0.53; O, 6=90°
q/9.=0.92; A, 6=180°, q /q.=1.25. The intensities have been
normalized to their peak values. The arrow indicates the posi-
tion of the average crossover /27 for p=201 kg/m>. After
Courtens et al. (1988).

This means that the observed power law involves more
than a single exponent.

All these experimental results have been analyzed by
using the ensemble-averaged fracton wave function of
Eq. (5.18) (Montagna, Pilla, and Viliani, 1989; Shrivasta-
va, 1989a).1¢ As first pointed out by Nakayama, Yakubo,
and Orbach (1989), and as mentioned in the previous sec-
tion, the use of an ensemble-averaged form for the frac-
ton wave functions to obtain the matrix elements of the
strain tensor is not correct in general. Theoretical argu-
ments avoiding this error were made by Alexander
(1989), Mazzacurati et al. (1992), Pilla et al. (1992), and
Alexander, Courtens, and Vacher (1993).

2. Analysis of inelastic light-scattering
results for silica aerogels

We have shown in Sec. V.A.3 that there exist two
characteristic frequencies w; and w; for networks incor-

porating vector forces between particles. Under realistic
conditions of the network (£>1.), bending fractons
characterized by d,;, are important below w < ®,; , whereas

stretching fractons are important for v > w; (see Fig. 8).

Courtens et al. (1987a, 1988; see also Courtens, Pelous,
Vacher, and Woignier, 1987) have measured the
Brillouin-scattering spectrum for silica aerogels. Figure
23 presents the results for a silica aerogel with density

16Benoit, Poussigue, and Assaf (1992) have calculated the Ra-
man intensity of the Sierpinski gasket without using the aver-
aged fracton wave function. The results show that, in the frac-
ton regime, the Raman intensity behaves with a power law.
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p=201 kg/m> in polarized scattering [VV (vertical-
vertical) polarization], in which the relevant frequency
region is low (o <o ). They have analyzed the data, as-

suming the following form for the scattering intensity
I(qw),
Av3q? r

0?  (0*+T2—0%g?)2+4r%%g? ’
where A is a numerical constant, and v and " are the
group velocity of phonons and the decay rate of phonons,
respectively.

The dispersion relation is expressed as @ =vyk in the

. -D./d, . .

phonon regime and as o~k 7’ in the fracton regime,
whereas the decay rates are taken as I’ xw*/w] in the
phonon regime (Rayleigh-scattering regime) and I" < o in
the fracton regime (Ioffe-Regel regime). Courtens et al.
(1988) have used the following relations for v(w) and
I'(w) in order to connect smoothly the phonon and frac-
ton regimes in Eq. (6.20),

v(w)=vo[1+(@/0, )" ]*'™

I(g,0)= (6.20)

(6.21)

and

w4

o1+ (w/w,)" '™

Substituting Egs. (6.21) and (6.22) into Eq. (6.11), and
using the experimental data, they obtained the following
values for the parameters: m=2, , /27m=9.926p>47+0-0¢
Hz, and vy=4. 79p1'63i°‘04 cm/sec. From these values,
they have obtained the acoustic correlation length defined
by £,.=vo/®w,=8.3X10% 18 A. The value of &, 18
larger than that of the static correlation length £ estimat-
ed from neutron-scattering experiments (Courtens and
Vacher; 1987). They find £,.~5&. From the value of &,
the fractal dimension was extracted using the formula
gxp /P77 D,=2.46. 1t should be stressed that this
value of D, is very close to the value obtained from
neutron-scattering experiments, D,=2.4 (Vacher, Woig-
nier, Pelous, and Courtens, 1988).

Courtens and Vacher (1988) also obtained the disper-
sion relation w, < £,.'% from the data for various densi-
ties of silica aerogels, as shown in Fig. 24. Substituting
this dispersion relation into Eq. (4.16), and using
D;=2.46, they obtained d,=1.3. Vacher, Courtens,
Coddens, et al. (1990) performed inelastic neutron-
scattering experiments for silica aerogels with a density
210 kg/m? and D;=2.4. They estimated the crossover
frequency o /27 10 GHz, above and below which the

HNw)=

(6.22)

fracton dimensions were estimated to be d,=1.3 and
d;=2.2. The value for d, is very close to that obtained
by Courtens et al. (1988) from light scattering.

Tsujimi ez al. (1988) have reported the results of depo-
larized Raman spectroscopy on fractal silica aerogels at
frequencies from 0.3 to 50 cm~!. They found in the frac-
ton region a power-law dependence of the Raman suscep-
tibility on frequency. A typical spectrum is shown in
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FIG. 24. Plot of the values of w, vs g, derived from various
Brillouin-scattering measurements performed on a series of mu-
tually self-similar aerogels. Different symbols correspond to
different sample densities, as indicated in units of kg/m?®. The
points for each individual sample were obtained at various
scattering angles. After Courtens and Vacher (1988).

Fig. 25, showing the scattering spectra for a silica aerogel
with p=357 kg/m® in depolarized 90° scattering [VH
(vertical-horizontal) polarization]. In the VH polariza-
tion the contribution from the bending fracton is most
important, and that of longitudinal phonons is irrelevant.

—

NEUTRALLY REACTED
OXIDIZED

RAMAN SUSCEPTIBILITIES (ARB. UNITS)

1 10
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FIG. 25. Raman susceptibilities I(w)/n(®) for four samples
designated by their densities in kg/m3. The corresponding
acoustic correlation lengths &, are 750, 480, 300, and 170 A, in
order of increasing density. The straight lines are fits with the
indicated slopes, whereas the tin curves are meant as guides to
the eye. The different symbols correspond to the four different
mirror spacings L. After Tsujimi ez al. (1988).
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They have shown, by comparing polarized (VV) and
depolarized (VH) scattering intensities, that the effect of
the far wing of the elastic line is negligible for the spectra
beyond 6% of an order away from the central line. To
cover the spectral region of interest with sufficient over-
lap, they have selected four mirror spacings (L=0.015,
0.029, 0.075, and 0.165 cm). The spectra were divided by
the Bose-Einstein factor to obtain the Raman susceptibil-
ities, and both Stokes and anti-Stokes channels were
averaged over logarithmically spaced increments. They
matched the results obtained with different spacings by
using constant multiplicative factors, leading to the pre-
sentation in Fig. 25.

On the four curves of Fig. 25, one recognizes a linear
region in the logarithmic plot of the susceptibilities, as
indicated by the straight lines. For the lightest sample,
this behavior extends over at least 1.5 orders of magni-
tude in w. The large extension to lower frequencies can
be related to the low value of w,~0.02 cm ™! derived
from the Brillouin data on this sample (Courtens et al.,
1988). For the heaviest sample, the same data give
®,.~0.3 cm™!, and this corresponds qualitatively to the
onset seen in that region in Fig. 25. The rounding-out of
the curves measured on the three heaviest samples at low
frequencies scales with their respective phonon-fracton
crossover frequencies as determined from the Brillouin
experiment (Courtens et al., 1988). This establishes the
origin of that feature, and also that the straight-line
behavior corresponds to the fracton regime. The Raman
susceptibility is given by

I(q,0)/n(0/kgT) <0 ™,

with x =0.35~0.39. Alexander, Courtens, and Vacher
(1993) have given an equation for the exponent x incor-
porating the long-range dipole-induced-dipole (DID)
mechanism and introducing an averaged strain exponent
o. The exponent x is expressed as

x=2[(d, /D) D;—d —0o)+1].

Using the observed values x=0.36, ‘71; =1.3, and
D;=2.4, we can estimate the exponent o for strain to be
o=1.

Montagna et al. (1990), Pilla et al. (1992), and Mazza-
curati et al. (1992) have calculated numerically the polar-
ized Raman-scattering activity coefficient C(w) for the
DID effective polarizability model for SP on 65X 65 lat-
tices for d=2 and on 29 X29X29 lattices for d=3 (foot-
note 17). The Raman coefficient C (w) is defined by

17The net electric field incident on a given atom is composed
of the incident field plus the sum of all previously scattered
fields. When the incident field, modified by the effect of the in-
dex of refraction is much stronger than the scattered field, one
can neglect the latter. This corresponds to Raman scattering by
the direct process or neutron scattering. When the scattered
field is strong, the dipole-induced-dipole mechanism becomes
relevant.
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(0] 1 I
[n(0)+1] D(w)

where the Raman intensity I (o) is

Clw)=

),

— 1 it . .
Hw)=3— [ die ,-zj(“’(’)“’(()))’

and u,;(?) is the induced dipole of the ith atom. When the
induced dipole is proportional to the local strain, the Ra-
man intensity I (w) becomes equivalent to the dynamical
structure factor S (q,w) as ¢g—0. The results for C(w) of
Montagna et al. (1990) and Mazzacurati et al. (1992)
suggest that the DID Raman coefficients depend linearly
on o for both d=2 and d=3 percolation networks at p,,
which is not in accord with the simulation results by
Stoll, Kolb, and Courtens (1992). The source of disagree-
ment may lie with the use of SP lattices by Montagna
et al. (1990) and Mazzacurati et al. (1992). As shown by
Stoll et al. (1992) (see Fig. 2), the SP lattice does not
reach the scaling regime until roughly ten lattice sites
have been covered. Only a few lattice sites are required
for BP. This means that the geometry of a spatial region
of characteristic dimension less than approximately ten
lattice sites for SP would not exhibit fractal structure.
Hence any vibrational excitations localized over spatial
ranges less than this amount would not exhibit the scal-
ing properties expected for fractons. Therefore the lack
of scaling noted by Montagna et al. (1990) and Mazzacu-
rati et al. (1992) may be attributable to the small lattice
size used by them for their simulations.

Stoll, Kolb, and Courtens (1992) have calculated the
Raman coupling coefficient C(®) for the DID scattering
process. The results are shown in Fig. 26. The symbol F
means the full-DID calculation in which the polarization
of an atom is induced by polarizations of all remaining
atoms, while NN means the polarization is affected by
only the nearest-neighbor polarizations. Their results in-
dicate that the coefficients Cp(w) follow the relations
Crlw)xo®*® and «w®? for d=2 and d=3 BP net-
works, respectively. These results are in accord with the
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FIG. 26. Relative DID coupling coefficients for the six cases in-
dicated. The straight lines were drawn according to a theory of
Alexander, Courtens, and Vacher (1993). After Stoll, Kolb, and
Courtens (1992).
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scaling predictions of Alexander, Courtens, and Vacher
(1993).

VIl. MAGNONS AND FRACTONS IN
PERCOLATING MAGNETS

Diluted Heisenberg magnets represent realizations of
fractal structure. We discuss the nature of spin-wave and
magnetic fracton excitations in this section and use iso-
tropic percolating Heisenberg magnets. We focus, in
particular, on the dynamical property of percolating anti-
ferromagnets, because they can be readily prepared and
studied.

A. Fractons on percolating ferromagnets

The Hamiltonian for a diluted Heisenberg magnet on a
percolating network is given by

H= 2Jijsi'sj . (7.1)
l’]

Here the symbol S; denotes the spin vector at the site i,
and J;; the exchange coupling between nearest-neighbor
spins, respectively. The coupling constant J; is taken as
Jij=J, if both sites i and j are occupied, and J;; =0 other-
wise.

We first discuss the case J <0 in this subsection, name-
ly, the ferromagnetic system. The linearized equations of
motion for spin deviations S, from perfect ferromagnet-
ic order are expressed in units of 25 /%=1 (S is the mag-
nitude of single spin) by

+
a; = ? TS —=87), (7.2)

i

where S;" =S7+iS}?. The same equation holds for S,”
(=S7—iSY?).

For p <p,., there is no long-range magnetic order of
spin configurations, because no infinitely connected clus-
ter exists for p <p.. Shender (1976b) has shown that the
Curie temperature 7, is proportional to (p —p, )¢~ ". At
p=1, one has conventional spin waves with dispersion re-
lation

w=Jk? .

It has been shown, using a variational approach (Murray,
1966), that spin waves persist above the percolation
threshold. For the case of p >p, and A >>¢§, where A is
the spin-wave wavelength, Edwards and Jones (1971) and
Tahir-Kheli (1972a) have demonstrated that weakly
damped spin waves exist on diluted percolating fer-
romagnets, for which the dispersion relation is given by

w=D(p)k?, (7.3)

where D (p) is an effective spin-stiffness coefficient. The
concentration dependence of D (p) for ferromagnetic spin

Rev. Mod. Phys., Vol. 66, No. 2, April 1994

waves in the hydrodynamic limit has been determined by
Kirkpatrick (1973b). He has related the stifffness
coefficient D (p) with the conductivity o(p) of the net-
work, using the corresponding relationship between the
equation of spin motion (7.2) and Kirchhoff’s equation of
the resistor network. He found

e

% TgoP «(2)D(p), (7.4)

olp)=
where g, is the conductance of a single bond. From this,
D (p) becomes'® [see also Eq. (3.4)]

P) oy —p B '
D(p)«Pw(p) (p —p,.) " (7.5)

To make the connection with fracton excitations, we
introduce dynamic scaling for the dispersion relation

w=kF(kE), (7.6)

where z, is a dynamic exponent (Halperin and Hohen-
berg, 1967, 1969; Kumar, 1984; Christou and Stinch-
combe, 1986a). The scaling function F(x) satisfies
F(x) Otxz_zf for x >>1, because dispersion relation (7.3)
must hold in the hydrodynamic limit; and F(x)=const
for x << 1, because the dispersion relation cannot depend
on £ in this limit. Thus, for long-wavelength magnetic
excitations (k& <<1), one has a)océ‘z_zf k2. From Eq.
(7.3), D(p) < &B~#’; and one finds

z;=2+(u—PB)/v. (7.7)

But z;=2D,/d, (Alexander and Orbach, 1982; Rammal
and Toulouse, 1983), where d : is the fracton dimension
of ferromagnetic fractons, so that

7P

I u—p+2v
This equation for d  is the same as that for the fracton
dimension d of the vibrational problem. This is a natural
consequence of the equivalence between the equation of
motion (7.2) for spin waves and Eq. (5.1) for vibrations
with scalar interactions. The only difference is the power
of the eigenfrequency o in the corresponding secular
equations. The above scaling argument suggests that fer-
romagnetic fractons belong to the same universality class
as that for vibrational fractons with scalar interactions.
Magnetic excitations on percolating ferromagnets were
discussed in some detail by Shender (1976a, 1976b) prior
to the formulation of the scaling theory of vibrational

(7.8)

181t might be expected from Eq. (7.5) that the ordered ground
state for p >p, would be stable against long-wavelength spin
fluctuations. However, the derivation of Eq. (7.5) is based on
the linearized equations of motion valid when the magnetiza-
tion is near full polarization, that is, (S;) is large and one is at
low temperatures.
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fractons (Alexander and Orbach, 1982; Rammal and
Toulouse, 1983).
The DOS of ferromagnetic fractons is given by

D)o (7.9)

and the dispersion relation becomes

—df/ZDf ,

Alo)xw (7.10)

where A has the meaning of a localization length, a wave-
length, and a scattering length, as in the case of vibra-
tional fractons. From Eq. (7.10), one sees that the cross-
over frequency w, from magnons to fractons is given by

2v1)f/a'f i (7.11)

o, <(p—p.)
which is different from the case of vibrations [see Eq.
(4.17)] by a factor of 2 arising from the difference in order
of the time derivative in the equation of motion.

Numerical calculations for the ferromagnetic systems
have been performed by Lewis and Stinchcombe (1984),
Evangelou (1986a), Evangelou, Papanicolaou, and
Economou (1991), Argyrakis, Evangelou, and Magoutis
(1992). Lewis and Stinchcombe (1984) calculated the
DOS of magnetic excitations for d=2 diluted Heisenberg
ferromagnets. They treated percolating networks at p,
on 64X 64 square lattices with periodic boundary condi-
tions. The computation was carried out for 15 different
random clusters. They found that the DOS is propor-

tional to w””>' with d,=1.34+0.06. Evangelou
(1986a) also calculated the DOS of spin waves in d=2
site-percolating Heisenberg ferromagnets formed on
square lattices by the Gaussian elimination technique
(Evangelou, 1986b). The results obtained for systems
with  ~10* sites follow the power law
Do) < ™ 0325002, indicating d;=1.36+0.04.
Evangelou also obtained the dispersion relation from the
concentration dependence of the crossover frequency w,
from magnons to fractons, checking the relation Eq.
(7.11). The DOS of d=3 ferromagnetic fractons has been
calculated by Evangelou, Papanicolaou, and Economou
(1991) using the maximum-entropy method (Jaynes,
1957a, 1957b; Mead and Papanicolaou, 1984). They es-
timated a value for the fracton dimension of
d;=1.5210.05. Argyrakis, Evangelou, and Magoutis
(1992) have calculated the DOS of spin waves in the SP
network using the Lanczos method. Their results
demonstrate that the DOS is proportional to the power

law o' with d,=1.32 and d,=1.30 for d=2 and
d=3 networks, respectively, and that it is smooth at the
magnon-fracton crossover.

Effective-medium approximations (EMA; see Yu, 1984
and Wang and Gong, 1989) suggest that szl for per-
colating ferromagnets in any Euclidean dimensions d.
The DOS of percolating ferromagnets above p, have been
calculated, and results show a sharp crossover from the
magnon spectrum [D(w) < w??7!] for o <<w, to the
fracton spectrum [D(w) < w ™ /2] for @ >>®.. The cross-
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over frequency w, depends on the concentration p
through o, <(p —p,)?>. Provided that the Alexander-
Orbach conjecture, d +=4/3, holds, the DOS of fer-
romagnetic fractons should obey D(w)xw™ 1”3 and the
crossover frequency . should be proportional to
(p —p.)*?* for d=3. The difference between the ex-
ponents 1/2 and 1/3 is due to the fact that the spatial
correlations of percolating networks are neglected in the
EMA. The DOS at the crossover frequency obtained by
the EMA exhibits very sharp structure. There is no sign
of structure in the crossover region from numerical simu-
lation studies (Evangelou, 1986a).

The values of z, and d + have also been calculated
analytically by Stinchcombe and Harris (1983) and by
Pimentel and Stinchcombe (1989). Stinchcombe and
Harris (1983) treated ferromagnetic spin-wave dynamics
near the percolation threshold by the renormalization-
group technique and the continuum approach, valid for
small wave vectors and long correlation lengths £. Both
approaches yielded the same dynamic exponent zp=2.
This implies d, =D, for ferromagnetic fractons. Pimen-
tel and Stinchcombe (1989) studied spin-wave fracton dy-
namics using Nagatani’s model (Nagatani, 1985) as a
d=2 deterministic fractal model for the BP network.
They obtained the values of z,=In22/In3~2.81 and
d +=2In8/In22~1.34. These results are in good agree-
ment with the numerical results and the Alexander-
Orbach conjecture. The dynamical structure factor of
damped magnons (k& <<1) in percolating ferromagnets
has been obtained through a diagrammatic perturbation
technique (Christou and Stinchcombe, 1986a, 1986b).

The DOS of ferromagnetic fractons have been obtained
experimentally by measurements of the temperature
dependence of the magnetization M (T) of diluted
Heisenberg ferromagnets (Salamon and Yeshurun, 1987;
Yeshurun and Salamon, 1987). Because each spin excita-
tion reduces the magnetization of the ferromagnet by one
Bohr magneton, the well-known Bloch’s law for homo-
geneous systems, M (T)/M (0)=1—BT3"2, follows from
a Bose-Einstein integration of the spin-wave DOS per
unit volume (D~ w'”?) (Bloch, 1932; Keffer, 1966). Mag-
netic fractons in percolating Heisenberg ferromagnets
cause a deviation in the temperature dependence of the
magnetization from the Bloch 73/? law because of their
anomalous DOS (Stinchcombe and Pimentel, 1988).
Salamon and Yeshurun (1987; Yeshurun and Salamon,
1987) have measured the temperature dependence of the
magnetization of amorphous (Co,Ni,_,);sP¢BsAl; al-
loys with 0.34=<p <0.5. They found departures from
Bloch’s T3/? law and obtained the DOS of magnetic frac-
tons. Their results agree well with the numerically ob-
tained DOS.

B. Fractons on percolating antiferromagnets
1. Scaling arguments

In the case of diluted Heisenberg antiferromagnets, the
Hamiltonian (7.1) is taken, but J>0. The linearized
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equations of spin motion are given by
as*
ot

i =0; 3 J;(S§;+87), (7.12)
j

and the same equations hold for S;”. In Eq. (7.12), o; is
taken to be +1 for the site i belonging to the up-spin sub-
lattice and —1 to the down-spin sublattice. These equa-
tions have quite different symmetry from the equations of
motion for ferromagnetic spin waves, Eq. (7.2), or vibra-
tions with scalar displacements, Eq. (5.1).

To explore the consequences of this difference, consid-
er the corresponding secular equation wy;= 3 5 QiiX ;>
where y; is the normal mode belonging to the eigenfre-
quency o, i.e., S;7(t)=3, 4,x,(Me ““. The matrix
elements Q;; are given by Q;;=0;[J;; —8;; 3, Ji;]. The
matrix Q is not symmetric (Q;=—Q; for i#j) and
3 ; Q;;70 because of the factor o;, whereas the dynami-
cal matrix D for lattice vibrations or ferromagnetic spin
waves is symmetric and satisfies the condition ¥; D;; =0.
These differences are the reason that the equations of
motion for antiferromagnets cannot be mapped onto the
master equation.

Shender (1978) has shown that the Néel temperature
T, of a percolating antiferromagnet is proportional to
(p —p. "7, so that one can expect spin-wave excitations
on percolating antiferromagnets for p > p_, as was found
for ferromagnets. This has been confirmed by a Green’s-
function approach (Jones and Edwards, 1971) and the
coherent-potential approximation (Buyers, Pepper, and
Elliott, 1972; Tahir-Kheli, 1972a, 1972b; Elliott and
Pepper, 1973; Holcomb, 1974, 1976). These theories pre-
dict a linear dispersion relation for low-frequency spin
waves,

o=C(pk . (7.13)

Using the phenomenological expression for the hydro-
dynamic long-wavelength spin waves, Harris and Kirk-
patrick (1977) have shown that the stiffness constant
C(p) in Eq. (7.13) is given by

C=yV24/x, . (7.14)

Here y is the gyromagnetic ratio; Y, the transverse sus-
ceptibility; and 4 is defined as a measure of the energy
needed to create a spatial variation in the staggered mag-
netization. The quantity A4 is proportional to the con-
ductivity of a related resistor network (Brenig et al.,
1971; Kirkpatrick, 1973a; Harris and Kirkpatrick, 1977).
Thus one can set 4 <(p —p,)*. Breed et al. (1970, 1973)
have shown experimentally that the transverse suscepti-
bility x, diverges as p—p,. The p dependence of y, was
first elucidated by Harris and Kirkpatrick (1977), who
found numerically that Y, <(p —p.)”" with 7=0.5 for
d=3. The stiffness constant C(p) in Eq. (7.14) therefore
varies with concentration p as

C(p)e<(p—p ) r+t772 (7.15)
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The dynamical scaling argument for spin waves on per-
colating antiferromagnets can be extended with the aid of
the hydrodynamic descriptions, Eqs. (7.14) and (7.16).
The dispersion relation is given, as in the ferromagnetic
case [Eq. (7.6)], by

w=k*G(kE), (7.16)

where z, is a dynamical exponent for antiferromagnets.
Since the linear dispersion relation, Eq. (7.13), holds in
the hydrodynamic limit (k& <<1), the scaling function
G (x) should satisfy G(x)OExl_le for x <<1. At the op-
posite extreme, G(x) should be constant for x >>1.
From these behaviors of the scaling function in two

asymptotic regimes, one finds @ « k** with

za=1+}‘_+7'_ .

2y (7.17)

The dynamical exponent z, is related to the fracton di-

mension d, as z, =D, /d,, and one obtains
¢ utT+2v

It should be noted that this relation becomes the same

with the expression for d, [Eq. (7.8)] or d [Eq. (4.15)] if

one replaces 7 by —f. Because 7 and f3 are positive, and
so 7> —f3, one has the inequality

d,<d; .

(7.18)

(7.19)

As seen from the above scaling arguments, magnetic
fractons should exist in diluted Heisenberg antiferromag-
nets as well as for the case of ferromagnets (Shender,
1978; Christou and Stinchcombe, 1986b; Orbach and Yu,
1987; Orbach et al., 1988; Polatsek, Entin-Wohlman, and
Orbach, 1988; Orbach, 1989c). The DOS of antiferro-
magnetic fractons is

d —1

D(w)xw* (7.20)
and its dispersion relation becomes
A <o %, (7.21)

where A is the characteristic length of fractons.

The relationship between 7 and other known exponents
has been investigated by Harris and Kirkpatrick (1977).
They considered a system in which all the spins are
directed initially along the z axis, dividing it into small
cells v,, with volume £%. The disorder of the system pro-
duces the unbalanced spins S (v,,)= 3. (S?) <V'N,,,
where N,, is the number of spins in the cell v,,. Magnet-
ic fields HyX on v,, are applied, where % is a unit vector
perpendicular to Z. Provided that the spins on the
boundary of each cell are fixed to be parallel to Z, spins
are tilted by the magnetic field and are expressed by

2
1—-=L

S(r)=5? (7.22)

2+9,ﬁ] ,

with
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d
0,=a; [] sinkx, ,
a=1
where x, is the Cartesian coordinate of the a direction
and k =2 /§ is chosen so that 0, vanishes on the bound-
ary of v,,. The symbol g, is a numerical constant. The
change of the total energy E(v,,) in v,, arises from the
exchange energy of order £%2k? and the Zeeman energy
of the unbalanced spins. As a result, one has

E(v,,)=cE%2k*—c,S(v,,)a H, , (7.23)

where c¢; and c, are numerical constants. Minimizing
E (v,,) with respect to a;, one has

a,~S (v, )€~ H, ,

so that the transverse magnetization per site m
[~§"de(vm )sin@,dr] is given by

m1~S(Um )2§2—2d .

This is the result for the constrained spins on the bound-
ary of a cell. We expect larger magnetization for uncon-
strained spins. Therefore the transverse susceptibility
X (=m,/H,) should be

X1=8 (v, 262 /H, .
The effective field ¥; J;;S; for the ith spin plays the
role of H, in this case, and this field is proportional to
A(xEHV)in Eq. (7.14). Using S (v,,)*<N,, °<§Df, one

obtains
24D, —2d +p/v

X1Z§€ , (7.24)
and thus
TZu—B+2—dwv. (7.25)

There are several arguments on inequality (7.25) sug-
gesting that this relation should be an equality (Harris
and Kirkpatrick, 1977; Ziman, 1979; Kumar and Harris,
1985). Ziman (1979) has derived the same relation by
considering the propagation of spin waves on a nodes-
links-blobs picture of the percolating network. The
mean-field calculation by Kumar and Harris (1985) also
generates an equality for Eq. (7.25). Ziman (1985) has
calculated numerically the value of the exponent 7 for
d=3 percolating antiferromagnets by employing the
finite-size scaling technique for the transverse susceptibil-
ity per occupied site, ¥, [ <(p —p.) " P]. For a finite-
size system, this quantity depends on system size L as
X, <L'"tP7/Y at p=p,. Ziman (1985) calculated the size
dependence of ), for percolating systems formed on d=3
lattices of 10X 10X 10 to 80X 80X 80 available sites. The
results suggest ¥, < L'4*%1 corresponding to an ex-
ponent 7=0.79+0.1. The lower bound value of 7 for
d=3 percolating systems becomes 0.72, using known
values of u, B, and v. The value 7=0.7910.1 is larger
than the value of the lower bound.

Using Eq. (7.18) and the inequality (7.24), we show that
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the fracton dimension d, is bounded by
PR a—
T 2u—B+(4—dwv
Yakubo, Terao, and Nakayama (1993) have found that
if the Alexander-Orbach conjecture d=4/3 is
taken into account in inequality (7.25), i.e.,

u=[v(3d —4)—pB]/2, the upper bound for d, becomes
unity independent of the Euclidean dimension d. Thus

d,<1 (7.27)

(7.26)

for all d 22, a most surprising result.

2. Simulated results of the density of states

Several numerical calculations for the universality
class of antiferromagnetic fractons have been reported so
far. Hu and Huber (1986) have carried out numerical
studies of the DOS of spin waves excited on percolating
Heisenberg antiferromagnets using eigenvalue-counting
techniques (Dean, 1960; Grassl and Huber, 1984). They
obtained the averaged DOS over 65 configurations of
d=2 percolating systems formed on 50X 50 square lat-
tices at p.. Their results indicate D, (@) < »~ %%, indicat-
ing d,=0.94. This value of d, is very close to the upper
bound of inequality (7.27).

Large-scale and more accurate calculations have been
performed by Yakubo, Terao, and Nakayama (1993; see
also Nakayama, 1993, 1994). Their results show the clear
existence of antiferromagnetic fractons for d=2, 3, and 4
percolating networks. They employed the equation-of-
motion method (Alben and Thorpe, 1975; Thorpe and
Alben, 1976), introduced in Sec. VIL.A, to calculate the
fracton DOS. In the case of d=2 systems, BP networks
(11 realizations) are formed on 1000X 1000 square lat-
tices at p, with periodic boundary conditions for both x
and y directions. The largest BP network has 605 544
sites. The DOS and the integrated DOS for d=2 per-
colating antiferromagnets are shown by solid squares in
Figs. 27 and 28, respectively. It is remarkable that an al-
most constant DOS for o <<1 is found in Fig. 27 for all
three dimensions. The least-squares fitting for solid
squares in Fig. 27 leads to D, xqe %03+0.03

; SO
~ d —
d,=0.9710.03. It should be emphasized that the o * :
law holds even in the very low-frequency region, as in the
case of Fig. 3. We see from Fig. 27 that the DOS does

not follow the power-law dependence coa”m1 above o~ 1.
This is because the system is not fractal on a length scale
shorter than the wavelength corresponding to w~1. The
value d,=0.97 agrees well with the upper bound given
by inequality (7.27).

The DOS and the integrated DOS for d=3 percolating
antiferromagnets at p.(=0.2488) are shown in Figs. 27
and 28 by solid triangles, respectively. The BP networks
of 13 realizations (the largest network has 177 886 spins)
are formed on 96 X 96 X 96 cubic lattices. The value of d,

obtained by least-squares fitting takes d,=0.97+0.03.
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FIG. 27. Density of states (DOS) per spin for d=2 (squares),
d=3 (triangles), and d=4 (circles) BP antiferromagnets at
P =p.. The results have been obtained by averaging over 11,
13, and 12 realizations of BP networks formed on 1000 X 1000,
96X96X96, and 28 X28 X 28X 28 hypercubic lattices for d=2,
d=3, and d=4, respectively. After Yakubo, Terao, and Nakay-
ama (1993).

Solid circles in Figs. 27 and 28 indicate the DOS and the
integrated DOS for d=4 BP networks at p.(=0.160), re-
spectively. The BP networks of 12 realizations (the larg-
est network has 26 060 spins) are formed on 28 X28X28
X 28 hypercubic lattices. From the DOS data, we obtain
d,=0.98+0.09 for d=4 antiferromagnetic fractons.
These values of d, do not depend on the Euclidean di-
mension d, but they agree with the upper bound of d, ex-

pressed through inequality (7.27); that is,
d,=1 foralld (>2).
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FIG. 28. Integrated DOSs per spin for d=2 (squares), d=3 (tri-
angles), and d=4 (circles) BP antiferromagnets at p =p.. After
Yakubo, Terao, and Nakayama (1993).
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Polatsek, Entin-Wohlman, and Orbach (1989) have cal-
culated the DOS of percolating antiferromagnets in
terms of the effective-medium approximation (EMA).
They find a fracton dimension d, =2 for antiferromag-
netic fractons in any Euclidean dimensions d, in disagree-
ment with the results of numerical simulations. This
discrepancy is not surprising for the same reason as that
found for ferromagnetic fractons. Pimentel and Stinch-
combe (1989) have analytically calculated the values of z,
and d, using Nagatani’s model (Nagatani, 1985) for BP
networks. They obtained 2z,=1n22/In9~1.41 and
d,=21n8/In22=~1.35, exceeding the upper bound ex-
pressed in Eq. (7.27).

C. Dynamical structure factor of antiferromagnets

1. Theories and numerical simulations

The dynamical structure factor of antiferromagnets
has been analyzed with several theoretical treatments.
Perturbation technique or coherent-potential-
approximation (CPA) calculations of S(q,w) for diluted
antiferromagnets have been investigated so far by various
authors (Jones and Edwards, 1971; Buyers, Pepper, and
Elliott, 1972; Tahir-Kheli, 1972b; Elliott and Pepper,
1973; Holcomb, 1974, 1976). These calculations, howev-
er, do not suggest critical properties, such as the fracton
DOS or the anomalous dispersion of spin-wave excita-
tions in diluted antiferromagnets.

In order to describe fracton dynamics, an EMA calcu-
lation was performed by Yu and Orbach (1984; see also
Orbach and Yu, 1987), Orbach et al. (1988), and Po-
latsek, Entin-Wohlman, and Orbach (1988, 1989). They
treated the isotropic Heisenberg antiferromagnet formed
on a bond-percolating network and obtained the disper-
sion relation, the DOS, and the dynamical structure fac-
tor S(q,w) for percolating antiferromagnets slightly
above p.. The EMA leads to the fracton dimension
d,=2/3 and a cubic dispersion relation. The dynamical
structure factor S(g,) within the EMA is expressed by
a quasi-Lorentzian form which is characterized by an
effective stiffness constant C(w) and a linewidth 7~ ().
The linewidth for magnon excitations (w <<w,) follows
the Rayleigh law (77!« @? T1), whereas the fracton exci-
tation linewidth obeys the Ioffe-Regel condition for
strong localization (Ioffe and Regel, 1960). Though the
qualitative features of S'(g,®) appear consistent with the
experimental results (see Fig. 31), the EMA results are
not quantitatively correct because they ignore the spatial
correlation of spin configurations.

The intrinsic properties of S(gq,») for magnetic frac-
tons and, similarly, for vibrational fractons, are given by
the single-length-scale postulate (SLSP). The SLSP leads
S(g,w) to be expressed, by analogy with Eq. (6.2), by

S(g,0)=q "“H[gA(w)], (7.28)

where A(w) is the unique characteristic length of a spin-
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wave fracton. Christou and Stinchcombe (1986a, 1986b)
have presented an analytic expression of S(gq,w) for
g&<<1 satisfying the dynamical scaling hypothesis.
They employed a Green’s-function technique and a
dynamical scaling argument for hydrodynamic magnons.
The dynamical structure factor they obtained takes a
Lorentzian form with respect to frequency. It seems nat-
ural that the Lorentzian form of S(q,w) keeps its profile
even in the fracton regime. In this case, the dynamical
structure factor S(q,w) for antiferromagnetic fractons is
written in the form (Terao, Yakubo, and Nakayama,
1994; Yakubo, Terao, and Nakayama, 1994)

I'(q)
[w—a)p(q)]2+l“2(q)

S(q,0)=1(q) , (7.29)

where o), is the frequency at which S(g,®) takes its max-
imum value for fixed g. The symbols I'(g) and I(q)
represent the width of the line shape and g-dependent in-
tensity, respectively. Terao, Yakubo, and Nakayama
(1994; see also Yakubo, Terao, and Nakayama, 1994)
have shown, using Egs. (7.28) and (7.29), that the profile
of S(gq,w) can be characterized by one unknown ex-
ponent y,. The SLSP requires that both the peak fre-
quency w, and the width I" have the same wave-number
dependence, i.e., a)p(q)=cooqz" and F(q)=F0qz”, where
z, is the dynamical exponent given by Eq. (7.17). Thus
the right-hand side of Eq. (7.29) is written in the form of
I(q)G[gA(w)]/w, where G is a function of gA(w). The
scaling function H [qg A(®)] in Eq. (7.28) is then given by
Ya

H[gAw)]=1(q) L) (7.30)
Because the right-hand side of Eq. (7.30) should be a
function of the variable g A, the function I (q) should be
proportional to qz“ “%_ Therefore, from Eq. (7.29), one
obtains S'(gq,w) in the form

S(g,0)=S, (7.31)

(@—aog )+ Fig ™

where S, is a numerical constant. The asymptotic
behavior of frequency dependence of S (g,) given by Eq.
(7.31) is w2 for o>>w,(q), whereas the wave-number
. 2z, <y -y
dependencies are g ¢ "¢ and g ¢ for ¢ << q,(®)
(=[w/w0]l/z") and for ¢ >>g,(w), respectively. The va-
lidity of Eq. (7.31) can be checked by numerical simula-
tions.

One can evaluate the upper and lower bounds of the
new exponent y, as follows. From Eq. (7.28), the equal-
time correlation function C(q) defined by the integration
of S (g,w) over the whole range of w is given by

C(q)xg™ 7. (7.32)

The correlation function C(gq) should not be zero at g=0.
This leads to a lower bound of the exponent y,: y,>z,.
The Fourier transform C(r) of Eq. (7.32) becomes pro-
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portional to r’* ° °. Because the spatial correlation

function C(r) should decrease with increasing distance r
between two spins, one has y, <z, +d, which generates
an upper bound for y,. Consequently, the value of the
exponent y, is bounded by

z,<y,<z,+d . (7.33)
The explicit value of the exponent y, can be determined
from numerical computations of S(gq,w) for magnetic
fractons.

Terao, Yakubo, and Nakayama (1994) have performed
numerical simulations on S (g,) of magnetic fractons on
percolating Heisenberg antiferromagnets. They con-
sidered BP at d=2 networks at the percolation threshold
(p. =0.5) formed on 62X 62 square lattices with periodic
boundary conditions. The dynamical structure factor
S(q,w) of Heisenberg antiferromagnets is expressed by
spin-wave eigenmodes Y;(A) as (Terao, Yakubo, and
Nakayama, 1994)

2

S(q,m)z—:,—zzxarm)kx sy |, e
A i

where V is the volume of the system and R; is the posi-
tional vector of the site i. The symbol R, is defined by
R; =X;(A)/x;(X), which is independent of i, where ¥;(A)
is related to x;(A) as 3; 0, X;(A)x;(A")=38,,.. The direct
diagonalization technique has been employed to obtain
fracton eigenmodes x;(A), and S(q,w) has been calculat-
ed from the Fourier transforms of y;(A), whose eigenfre-
quencies are close to w. The dynamical structure factor
S(q,) as a function of g (=|q|) and w has been obtained
by a directional average over vector q and an ensemble
average over 54 realizations of percolating networks.
Calculated results of g dependence of S(q,w) for several
values of w are shown in Fig. 29. The value of the ex-
ponent y, in Eq. (7.28) is evaluated by least-squares
fitting for the g dependence of S (g,) with fixed values of
gA(w). They find y,=3.01+0.3. This value satisfies con-
dition (7.33).

Figure 30 is a plot of the -calculated value
H(gA(®))=q""S(g,»), with the above value of Vor as a
function of gA(w). Solid circles represent the average
value over data within narrow range of the scaling vari-
able gA(w). The results show that S(q,w) obeys Eq.
(7.28), with the single scaling function H(x) having a
power-law asymptotic form both for x <<1 and for
x >>1. From Fig. 30, Terao, Yakubo, and Nakayama
(1994) obtained the wave-number dependence and the
frequency dependence of S(g,w) for these cases. For
o>w,(q), the frequency dependence of S(g,w)
behaves as S(g,0) <o °*%! The wave-number depen-
dencies are ¢%°*%! and ¢ ~*8*%8 for g <<g,(w) and for
g >>q,(w), respectively. = With the values of
z,=1.83%£0.08 and y,=3.0%0.3 taken into account,
these results are consistent with Eq. (7.31).
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FIG. 29. Numerically obtained S(q,») of percolating antifer-
romagnets at p.. The solid lines are only meant as guides to the
eye. After Terao, Yakubo, and Nakayama (1994).

2. Experiments

In this subsection we describe experimental work lead-
ing to the observation of fractons in antiferromagnets.
Inelastic neutron-scattering experiments reveal the
characteristic features of fracton excitations most easily,
as mentioned in Sec. VI.'° In order to compare experi-
mental results with theoretical predictions of fracton ex-
citations, one should prepare samples with the following
properties: (i) The coupling between spins should be de-
scribed by the Heisenberg interaction; (ii) the anisotropy
of the system should be negligible; (iii) the spin interac-
tion should be short range; (iv) the diluted magnetic ions
should be distributed uniformly over the entire system so
that the configuration of magnetic ions has a percolation
structure; and (v) randomness should not introduce spin
frustration. Mn,Zn,_,F, is one material that satisfies
most of these conditions [it does not satisfy property (ii)].
MnF, is a representative d=3 Heisenberg antiferromag-
net with the rutile structure. Below the Néel tempera-
ture, Ty =67.4 K, the Mn spins align along the ¢ axis be-
cause of the weak anisotropic Ising interaction between
the Mn moments. The antiferromagnetic exchange in-

19There is an experiment other than inelastic-scattering mea-
surements that observes antiferromagnetic fracton excitations.
Ito and Yasuoka (1990) have investigated magnetic excitations
in antiferromagnets Mn,Zn;_,F, using NMR techniques.
They observed the temperature dependence of the '°F resonance
frequency v(T), which follows the relation v(T)=w(0)(1—aT?)
for extended spin waves. They found that v(T)/v(0) of this
sample deviated slightly from the T2 law, and attributed this de-
viation to fractons.
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FIG. 30. Scaling function of the dynamical structure factor of
d=2 percolating Heisenberg antiferromagnets at p, as a func-
tion of the scaling variable g A(w). Solid circles are plotted by
averaging over a narrow range of gA. The ensemble average
has been taken over 54 BP networks formed on 62X 62 square
lattices. Error bars indicate the statistical errors of the data.
The asymptotes have the theoretical slopes 2z, and 0 with
z,=1.83. After Terao, Yakubo, and Nakayama (1994).

teraction between the Mn moments located at the body
center and the corner of the rutile crystal is much
stronger than this anisotropy energy and the coupling be-
tween Mn spins on the same sublattice. Therefore the
randomness introduced by diluting MnF, does not give
rise to frustration. Diffuse scattering measurements (Bir-
geneau et al., 1980; Uemura and Birgeneau, 1986, 1987)
suggest that this material can be regarded as a d=3 site-
percolating spin network on the body-centered-cubic lat-
tice. Because the threshold concentration of the bcc
site-percolation network is 0.245, one can expect spin-
wave excitations above 25% Mn concentration.

Coombs et al. (1976) performed inelastic neutron-
scattering  experiments on  Mng 4sZny,,F, and
Mny 3,Zn, ¢3F,. For high-density Mn samples, they ob-
served a well-defined magnon spectrum with the energy
width broadened with increasing wave vector. Such
weakly damped spin-wave excitations supported the va-
lidity of the hydrodynamic theory of Harris and Kirkpa-
trick (1977). In contrast, for the Mn, ;,Zn, ¢F, sample,
a very broad spin-wave response has been observed. This
is a sign of nonpropagating spin waves in antiferromag-
nets. Takahashi and Ikeda (1993) have performed inelas-
tic neutron-scattering experiments on d=3 diluted anti-
ferromagnets RbMn, Mg, _ . F; with x=0.74 and 0.63.

Uemura and Birgeneau (1986, 1987) performed high-
resolution inelastic neutron-scattering studies on
Mn,Zn,_,F, with x=0.75 and 0.50. High-quality and
quite large (~ 10 cm?) single crystals made it possible to
perform detailed measurements with an energy resolution
much better than that of previous scattering experiments.
Their results for Mng 45Zng ,5sF, at T=5 K (the Néel tem-
perature of this sample is Ty =46.2 K) indicate that the
magnon peak is still sharp (well defined) even at high en-
ergies. This feature agrees well with the result of
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ground level. After Uemura and Birgeneau (1987).

Coombs et al. (1976) for Mn,, 73Zn,, ,,F,. The results ob-
tained for Mn, sZn, sF, at T=5 K (the Néel temperature
is Ty =21.0 K) are shown in Fig. 31, which displays the
energy dependence of the reduced intensity. Peaks at
higher energies are extremely broad, whereas responses
at the lower energies continue to have sharp peaks. They
identified the sharp and broad peaks with extended mag-
nons and localized fractons, respectively. Line shapes of
neutron intensities at small g are highly asymmetric.
This is because the spectrum for ¢ <1/£ may be de-
scribed as the sum of a sharp component at low energies
(magnons) and a broad component extending to high en-
ergies (fractons). Such a two-component shape of neu-
tron intensity was predicted by Aharony, Entin-
Wohlman, and Orbach (1988). At g =g, (crossover wave
vector), the amplitudes of these two components become
comparable.

Uemura and Birgeneau (1987) observed a double-peak
structure in S(q,w) near g,, as shown in Fig. 32. They
fitted their data from Mng sZn, sF, with a line shape
composed of the sum of a sharp Gaussian (magnon spec-
trum) and a broad Lorentzian (fracton spectrum). Three
distinct energies—the peak energies of the Gaussian wg
and of the Lorentzian w; and the energy width of the
Lorentzian I'; —are plotted in Fig. 33 as a function of
wave vector. The diamond symbols (wg ) in Fig. 33 show
the dispersion relation of the magnons. The value of wg
at ¢=0 indicates the anisotropy gap energy. Solid circles
(o;) and open circles (I'y) above ¢g~0.2 (r.lu,
reciprocal-lattice units) show the fracton dispersion rela-
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FIG. 32. Energy spectra from Mng sZng sF, observed at wave
vector ¢g=0.125 r.l.u. in the [¢01] direction at T=5 K. The
solid line represents the fit to the sum of a sharp Gaussian and a
broad Lorentzian; the dotted line shows the background level.
A double-peak feature characteristic of the wave vector around
g.~0.15 r.l.u. is demonstrated. After Uemura and Birgeneau
(1987).

tion. Both of them have the same g dependence, indicat-
ing that magnetic fractons satisfy the SLSP. The value of
o; at g=0 exhibits a crossover energy .. In the case of
Mn, sZn, sF,, the gap energy is about a half of the cross-
over energy. In order to obtain precise information
about magnetic fractons, it is important to perform ex-
periments on more isotropic antiferromagnets such as
RbMn, Mg, F; (Ikeda et al., 1994).

VIll. TRANSPORT ON A
VIBRATING FRACTAL NETWORK

In this section, we introduce the process of phonon-
assisted fracton hopping through the effects of vibration-
al anharmonicity and calculate the characteristic hop-
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FIG. 33. Best-fit values of the peak energy w; (wg) and the en-
ergy width I'; for the Lorentzian (Gaussian) part of the energy
spectra of Mn,Zn,_,F, at T=5 K. The data at ¢ $0.15 r.lL.u.
are fitted to the sum of the two parts, while those at ¢> 0.2 r.l.u.
are fitted to the Lorentzian alone. After Uemura and Birgeneau
(1987).
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ping distance and the contribution to the thermal con-
ductivity k. We also calculate the change in the velocity
of sound coming from the same microscopic process and
compare it with the results with the two-level-system
model of amorphous materials.

A. Anharmonicity
The thermal conductivity at temperature T is given by

K=inc,,,(T>Dd(T> , (8.1)

where C is the specific heat and D, the diffusion con-
stant associated with the mode a’. However, in the ab-
sence of diffusion, D, is zero and k vanishes. This is a
strong condition, for it implies that whenever the condi-
tion for localization in the Anderson sense occurs (An-
derson, 1958), thermal transport is forbidden. Thus
thermal conductivity approaches zero where the mean-
free path becomes of the order of, or even worse, less
than the wavelength for vibrational excitations. Unfor-
tunately, the literature abounds with use of the above ex-
pression for « under conditions where the vibrational
states are strongly localized. Transport on structures
where the geometry allows a crossover from phonon to
fracton vibrational excitations faces this problem direct-
ly. Fractons are known to be strongly localized (see Sec.
V.B), so that thermal transport can only be accomplished
by the (extended) phonon normal modes.

It is interesting to calculate x under these conditions.
Clearly, that part of k associated with the phonons, Kpho
will increase with increasing temperature for two
reasons. The first is associated with increasing mode
density occupied as T increases; the second is associated
with the increase in the Bose factor as T increases. This
increase will continue until one exhausts all of the ex-
tended phonon states with increasing temperature. The
thermal conductivity from phonon sources will then satu-
rate in the Dulong-Petit regime with regard to the ex-
tended phonon states (kpT >>#iw,,). However, this is
not the case for aerogels, as k continues to increase above
the value where the phonon contribution saturates. The
question presents itself: why? We shall show that the in-
troduction of anharmonicity into the phonon-fracton ex-
citation spectrum allows for fracton contributions to
thermal transport. Indeed, the form for this increase in
thermal conductivity is reminiscent of the universal
features of amorphous structures. Just why is currently a
matter of speculation, to which we shall return.

The introduction of anharmonicity is essential for
thermal transport in the fracton regime (Alexander,
Entin-Wohlman, and Orbach, 1986). As we shall see, its
introduction allows for fracton “hopping” in much the
same sense as the ‘“phonon-assisted electronic hopping”
of Mott for localized electronic states (Mott, 1967, 1969).
In fact, our treatment will follow Mott’s arguments close-
ly. That the introduction of vibrational anharmonicity
allows for thermal transport is an interesting feature of
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random structures. In ordered structures, anharmonicity
(through, e.g., umklapp processes) reduces thermal trans-
port. In random structures, what thermal transport
there is results from anharmonicity. Thus randomness
causes anharmonicity to “stand on its head”: whereas in
ordered structures, anharmonicity serves to reduce heat
flow, in disordered structures anharmonicity is the cause
of heat flow. This is but another example of the complex-
ity of random structures and how their properties are
consequences of sometimes quite counterintuitive ideas.

1. Phonon-assisted fracton hopping

The introduction of vibrational anharmonicity results
in two important vertices exhibited in Fig. 34. The
second vertex, (b), is relevant to phonon-assisted fracton
hopping (Alexander, Entin-Wohlman, and Orbach, 1986;
Jagannathan, Orbach, and Entin-Wohlman, 1989). We
introduce the corresponding Hamiltonian,

ﬂhopzceﬁ‘ 2 (Aa,a’,a”bl’ba"ba-i—H’c‘)’ (8.2)

a,o, o

where the b, (bl) operators annihilate (create) phonons
or fractons depending on whether the index a refers to
modes with frequencies less than or greater than the
crossover frequency w,.

a. Characteristic hopping distance

Because the fractons are strongly localized, the two
fractons in Fig. 34 are, in general, located at different
spatial positions. To determine how far they are separat-
ed spatially, we invoke the most probable hopping dis-
tance of Mott (1969). The region of volume £ / contains
Delwy)Aw, fractons of energy in the interval
[0y, 0y +Awy]. The differential probability of finding
these fractons in a volume element r7 ' dr (assuming a
uniform random distribution of the fractons) is then

dP (r,0,)= Dilw ) Aoy’ ar . (8.3)

1
£

Take the first fracton in Fig. 34(b) (index a’’) to lie at
the origin. Then, to obtain the most probable hopping

b)
@ ‘
a a
- @C:I:
C--_l':> /:’ Ot,
o .
" o
o
FIG. 34. Schematics of the anharmonic process: (a)

phonon+ phonon<«sfracton; (b) phonon+fracton«>fracton.
The wavy lines denote phonon states; the dashed arrows, frac-
ton states.
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distance, we integrate Eq. (8.3) up to that distance R (a')
which would give us a second fracton within the volume
with probability 1. Integrating up to the maximum dis-
tance £ would give us Dg(w,)Aw,; i.e., the total number
of fractons inside the volume §Df . One finds that
/D,

, (8.4)

’

a

R(a')=Aloy)

c

where the energy uncertainty Aw, has been taken to be
o, (Alexander et al., 1983). Note that this results in a
hopping distance R , > A(w, ), so that in fact the fracton
hops a significant distance relative to its localization
length scale. The diffusion constant associated with the
hopping of the a’ fracton then becomes

D= R¥w,) (8.5)

“ Tfr(wa’7 T ’ '

where 7o (w,,T) is the lifetime of the fracton of energy
o, at temperature T associated with its hopping a dis-
tance R .

b. Contribution to the thermal conductivity

These relationships allow direct calculation of the
thermal transport associated with fracton hopping. At
temperatures greater than the crossover energy, inserting
Eq. (8.5) into Eq. (8.1) yields the contribution to the
thermal conductivity from fracton hopping (Jagan-
nathan, Orbach, and Entin-Wohlman, 1989):

2*G73Cld o)

k3T . (8.6)
8pv/E%w;

Khop( =

This equation has very few undetermined constants (e.g.,
G arises from an integral over frequencies and has a value
close to 1.4). The other terms appearing include wp,
which is the Debye frequency associated with the phonon
velocity of sound v, and p, the mass density. Thus it
represents a quantitative contribution to the thermal con-
ductivity, which, apart from the coupling constant, can
be determined quite accurately. In reverse, knowing ki,
one can determine C 4 directly.

Another feature of Eq. (8.6) is the absence of any
dependence upon the fracton density of states above the
crossover frequency .. This is because the dispersion
relation for fractons (Sec. IV.B.2) leads to a rapid spatial
diminution of the fracton size with increasing fracton en-
ergy. As a consequence, the fracton overlap associated
with vertex (b) in Fig. 34 falls off so rapidly with increas-
ing fracton energy, that the principal contribution to &y,
arises from fractons in the immediate vicinity of w,.
Hence only the lowest energy fractons contribute to the
thermal conductivity via phonon-assisted fracton hop-
ping. We shall argue below that this can explain the
rather universal form found for thermal transport above
the plateau temperature for amorphous materials. That
is, the thermal conductivity appears to increase linearly
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with temperature independent of the precise nature of the
density of states for temperatures above the plateau tem-
perature.

The vertex (b) in Fig. 34 not only determines the frac-
ton hopping rate, but also the phonon lifetime associated
with fracton hopping. Because the same vertex is in-
volved for both processes, one can express Ky, in terms
of the inelastic lifetime 7,(e,y, T) for a phonon of fre-
quency w,;, at temperature 7. Now there are almost no
adjustable parameters. Jagannathan, Orbach, and
Entin-Wohlman (1989) find

ad¢I2Dfa)D kpo? 1
K; - .
hop 8Df F(Df /dd’ ) § w%)thh( wph’ T)

(8.7)

This remarkable formula involves only the constant
a =5—d—4d /Dy; I, an integral of order unity [Eq. (17)
of Jagannathan, Orbach, and Entin-Wohlman (1989)];
and the I" function with argument D, /d ;.

2. Temperature dependence of the sound velocity

Even more remarkably, use of the Kramers-Kronig re-
lation allows for the extraction of the velocity of sound
change caused by the (b) vertex above in terms of the
fracton hopping contribution to the thermal conductivi-
ty. Jagannathan and Orbach (1990) find

2
O _ o1& faeD) T (8.8)

Vg 2772vs T kB

The term «(T)/T is independent of temperature for
phonon-assisted fracton hopping, so that Eq. (8.8) is
linear in the temperature but independent of the frequen-
cy of the sound wave. This result differs substantially
from that generated by two-level systems (TLS) in amor-
phous materials. Such models generate (Jackle, 1972;
Tielburger et al., 1992)

dv, CkgT
Us B EO

In(ewTy) , (8.9)

where C is a constant proportional to the product of the
tunneling parameter P and the square of the coupling
constant between the phonons and the TLS; E, is the
ground-state energy of the tunneling particle; @ is the
sound wave frequency; and 7, is a few times the vibra-
tional frequency of the tunneling particle in a single well.
Whereas this quantity has not been measured in the aero-
gels at temperatures in the vicinity of the phonon-fracton
crossover, it has been extensively studied in amorphous
materials. We shall discuss the relevance of Egs. (8.8)
and (8.9) to experiments in Sec. VIIL.D.
In conclusion, all three quantities,

Sv,
Khop 7'ph( @phy ), v,
s

are closely linked within the phonon-fracton model.
They are all consequences of the vibrational anharmonic
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vertex (b) of Fig. 34, so that knowledge of any one of
them determines the other two. The phonon-fracton
theory overdetermines the quantities that can be mea-
sured experimentally, and therefore it can be stringently
tested.

B. Thermal conductivity of the aerogels

The specific heat and thermal conductivity of aerogels
were first measured by Calemczuk et al. (1987) and de
Goer et al. (1989). These measurements were carried out
for unrelated samples and over a restricted temperature
range which did not cover the phonon-fracton crossover
energy. More recently, specific-heat and thermal-
conductivity measurements by Sleator et al. (1991) and
Posselt et al. (1991), respectively, and by Bernasconi
et al. (1992) were carried out on the same materials that
were characterized by small-angle neutron scattering
(SANS; see Posselt, 1991), and over a temperature range
that included the phonon-fracton crossover energy.

The arguments at the beginning of Sec. VIII.A suggest
that the thermal conductivity for fractal structures
should increase in the phonon regime up to a saturation
value when one reaches a temperature such that vibra-
tional excitations of energy greater than #w_ are popu-
lated. At such temperatures (and higher), there are no
further phonon states to thermally excite, and the only
additional excitations are fractons. But fractons are lo-
calized and so cannot contribute to the heat current by
themselves. Hence kzT exceeds the phonon energies,
and one is in the Dulong-Petit regime where the thermal
conductivity from the phonons saturates at a constant
value. However, as shown and calculated earlier, the
presence of vibrational anharmonicity, Eq. (8.2), pro-
foundly affects the subsequent form of k. An additional
transport channel opens up, with a contribution «y,, that
is linear in temperature and that does not depend upon
the specific nature of the density of states at energies
kg T. The strength of this contribution will depend upon
the anharmonic coupling constant, C. g, from Eq. (8.6).

We display the experimental observations of Posselt
et al. (1991) for the thermal conductivity of two aerogels
of density 0.145 g/cm® (low density, LD) and 0.275
g/cm? (high density, HD) in Fig. 35. These are the first
measurements ever to explore « for aerogels in the tem-
perature range T,=%w,/kyz. For the HD sample,
T.=0.37 K, and a strong break in slope occurs around
T=0.13 K, as can be seen in Fig. 36. This is interpreted
by Posselt et al. (1991) as evidence of a crossover from
phonon-dominated to fracton-dominated thermal trans-
port. The sharp increases in « above about 3 K is as-
cribed to particle modes, caused by the approximately 20
A spheres that make up the fractal network in the aero-
gels. For the LD sample, T, =0.10 K, and the accessible
measurement temperatures were too high to observe the
crossover from phonon- to fracton-dominated transport.

The phonon-fracton model predicts the following form
for the thermal conductivity:

Rev. Mod. Phys., Vol. 66, No. 2, April 1994

1030 . A,
K (W/m K) ’;”
-1 vl
10 ' ¢ /Q
10-2 E /‘
10'4 L 3 /u
107 |
T E
. TR
£ 0.1 1 10 100
S 00°°
i oo°°°°°w° M
165 E o°59’ o b
K4 e
f"‘ ) et o 0.275 g/cm3
0.190 g/cm3
0.145 g/cm3
10—6 N L L
0.1 1 10

T(K)

FIG. 35. Temperature dependence of the thermal conductivity
for silica aerogels of different densities. The three parallel
straight lines indicate that at high temperatures the T depen-
dence of k is the same for different densities. The inset shows
k(T) for vitreous silica by Zeller and Pohl (1971). After Ber-
nasconi et al. (1992).

K=Kpyp +Knop (8.10)
which can be written, for T > T,
k=A +BT, (8.11)

in an obvious notation. Posselt et al. (1991) find that 4
scales with £ in a consistent manner for the HD and LD
samples, the limiting phonon mean free path being of or-
der £ (see Aharony et al., 1987). Using the form for «y,,
given by Eq. (8.7), they find that the ratio BHP /BLP from
the fit is in fair agreement with calculations based on Eq.

T
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FIG. 36. «(T) between 0.05 and 0.7 K. The solid lines are fits
to Eq. (8.11). After Bernasconi et al. (1992).
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(8.8). Thus the predictions for thermal transport based
on phonon-assisted fracton hopping appear to be quanti-
tatively verified in the aerogels.

C. Transport properties of glassy
and amorphous materials

The lessons we have learned from the phonon-fracton
concept are attractive because of the simplicity of the
model and the tractability of the equations. We are able
to execute quantitative calculations for quantities as com-
plex as thermal transport associated with the hopping of
localized excitations. In addition, the actual results for
the quantities calculated often bear a striking similarity
to the more or less universal properties of glasses and
amorphous materials. We are not saying that such sub-
stances are fractal, nor that they exhibit dynamic proper-
ties that mimic fractal structures, e.g., phonon-fracton
crossover. What we are saying is that there may be prop-
erties of glassy and amorphous materials that might obey
the same kinetics as those that we have explored for frac-
tal structures. In this subsection, we shall focus on two
of those properties that have been extensively explored:
the thermal conductivity and the temperature and fre-
quency dependence of the velocity of sound. We shall
suggest that the internal structure of lattice vibrations in
glasses and amorphous materials is such that a mobility
edge exists, which we term ., above which energy the
vibrational excitations are localized. The energy width of
the crossover region is unknown to us, but undoubtedly it
is connected with the temperature width of the plateau in
the thermal conductivity, exhibited by nearly every glass
or amorphous material. At the high-temperature end of
the plateau, the thermal conductivity « is known to rise
with increasing temperature. Examples for five amor-
phous solids are given in Fig. 37. In addition, similar
behavior is exhibited by the epoxy resins, as shown in
Fig. 38. To our eyes at least, the rise of k above the pla-
teau value is certainly at least initially linear with in-
creasing temperature, reminiscent of the linear increase
in the thermal conductivity manifest in ky,, of the previ-
ous subsection.

1. Thermal conductivity

Many authors have observed (Dreyfus et al., 1968;
Blanc et al., 1971; Lasjaunias and Maynard, 1971; Las-
jaunias, 1973; Alexander et al., 1983; Karpov et al.,
1983; Karpov and Parshin, 1983, 1985; Akkermans and
Maynard, 1985; Buchenau et al., 1988, 1991; Buchenau,
Galperin, et al., 1992; Sheng and Zhou, 1991; Buchenau,
Galperin, et al., 1992) that the plateau in the thermal
conductivity, k, for amorphous materials can be ex-
plained if one assumes the existence of a mobility edge
for phonons in the medium. Evidence for localization
can be obtained from the extraction of the phonon mean
free path as a function of phonon frequency from the
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FIG. 37. Thermal conductivity for temperatures above the pla-
teau temperature for five amorphous solids. The data for vitre-
ous silica are plotted according to the scale on the right. After
Cahill and Pohl (1987).

thermal conductivity. We exhibit in Fig. 39 the analysis
of Zeller and Pohl (1971) as an example. The phonon
mean free path is seen to plunge precipitously for phonon
frequencies just below the plateau frequency (tempera-
ture) to a few atomic spacings, suggesting that a Ioffe-
Regel limit (1960) for phonons is reached at this vibra-
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FIG. 38. «(T) for temperatures above the plateau temperature
for different samples of epoxy resin. EDA2X contains twice the
stoichiometric quantity of hardener EDA (thylene diamine),
while EDA1X contains the stoichiometric amount. The greater
than amount of hardener, the shorter the value of the crossover
length scale (corresponding to a greater crossover frequency).
After de Oliveira, Page, and Rosenberg (1989).
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FIG. 39. The average phonon mean free path A(T) extracted
from thermal-conductivity measurements for various glasses us-
ing the kinetic formula K=%vasl\( T), where « is the thermal
conductivity, C, is the phonon specific heat, and v, is the Debye
sound velocity, respectively. The phonon wavelengths are indi-
cated at the top of the figure in the dominant-phonon approxi-
mation for vitreous silica. The X drawn on the SiO, curve
denotes the length scale at which crossover takes place between
extended and localized vibrational states. After Zeller and Pohl
(1971).

tional energy.?”® As shown by John, Sompolinsky, and
Stephen (1983), John (1984), and Aharony et al. (1987),
this implies phonon localization. With an assigned pho-
non localization frequency, say, ., then, for tempera-
tures above #iw./kg, conventional heat transport can
only occur via the already excited phonons. We have ar-
gued that such behavior leads to a saturation in «; for
glasses and amorphous materials, it is referred to as the
plateau in the thermal conductivity.

The general argument we have presented for the oc-
currence of the plateau in the thermal conductivity was
first made by Dreyfus, Fernandes, and Maynard (1968).
Akkermans and Maynard (1985) suggested that Rayleigh
scattering of phonons could lead to a mobility edge in the
phonon spectrum. However, there are strong experimen-
tal indications that the mean-free-path dependence may
be inelastic in character for phonon frequencies ap-
proaching o, (Dietsche and Kinder, 1979), and therefore
non-Rayleigh-like.

We interpret the increase in « at temperatures higher
than that marking the onset of the plateau to be caused

20See also the detailed analysis of Graebner, Golding, and Al-
len (1986).
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by an additional heat conduction channel, namely,
phonon-assisted hopping of the strongly localized vibra-
tional states with energies larger than w,. This is
different from the ‘‘resonance” interpretation of others
(Karpov aud Parshin, 1983, 1985), where the increase in
k above the plateau temperature is caused by a return to
extended character for the phonon states. There is clear-
ly a point here where the competing theories can be test-
ed: are there extended phonon states above ®,? Some
preliminary answers are now available. Experiments by
Cahill et al. (1991) and Love and Anderson (1990) have
shown that there is no contribution to thermal conduc-
tivity from phonons at room temperature.

There is an additional complication. Glancing at Fig.
37, one sees that the increase in « does not continue
linearly with temperature indefinitely, that there is a
“roll-over” in the vicinity of 100 K. Jagannathan, Or-
bach, and Entin-Wohlman (1989) have hypothesized that
this is caused by the condition w7, <1 brought about
by anharmonicity. Here, w;, is the phonon that assists
the vibrational state hopping, and 7, is the
anharmonic-induced lifetime for the localized vibrational
state that is doing the hopping. This quench of the
phonon-assisted localized vibrational state hopping is
quite analogous to the Simons (1964) calculation of the
breakdown of three-phonon anharmonic scattering.

Our approach to the calculation of the increase of k
above the plateau temperature will follow closely the re-
sults of Sec. VIII.A.1, except that we shall substitute the
localized vibrational excitations above w, for the frac-
tons. The mathematical machinery will be comparable
for the two calculations, leading to some interesting
quantitative conclusions. This approach has recently
been criticized by Bernasconi et al. (1992), who argue,
“We conclude that the « plateau of amorphous SiO, is
most likely not the result of fractal behavior at short
length scales, because a similar feature is not observed for
aerogels in the regime dominated by particle modes.”
While there is a serious criticism it is possible that the
small 20 A particles may not possess the same structure as
conventional vitreous silica. Further, the existence of a
plateau in « means that the crossover region cannot be
sharp, but must be extended in energy. Neither we nor
anyone else possesses a satisfactory microscopic theory
for dynamics in this energy range for glasses. Rather, we
wish to focus on those aspects that are amenable to cal-
culation, and see if the consequences warrant considera-
tion.

To be specific, we use Eq. (8.7) for vitreous silica, tak-
ing 7,p(@yp, T) from Fig. 39 at the value of w,;, where the
Ioffe-Regal condition is satisfied. We have marked this
point by an X on Fig. 39. Reading from the axes, we
find £=20 A. The average sound velocity v, in vitreous
silica in 4.4X 10° cm/s. The crossover frequency is then
obtained from o, =27v, /£, so that w,=1.4X10" s71,
The dominant phonon approximation sets wgyom(7)
=3.83kp T /%, giving a crossover temperature 7, =28 K.
To choose the phonon whose frequency and lifetime we
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shall insert into Eq. (8.7), we select an equivalent temper-
ature (dominant phonon approximation) of 10 K. One
extracts from Fig. 39 coph=5.3><1012 s7L and a mean
free path of A(10 K) of approximately 200 A. We use
conventional exponents for the fractal parameters which
appear in Eq. (8.7), but they do not affect the numerical
results very much.

Inserting these values into Eq. (8.7), we find at 50 K for
vitreous silica

Knopl T =50 K)=5X10* ergs/cmKs .

This is clearly an upper bound for k;,, because of our as-
sumption that 1/7,, as extracted from Fig. 39 is entirely
inelastic. Nevertheless, comparison with experiment is
remarkable, remembering that no adjustable parameters
have been introduced. From Fig. 37, we find

Ko o(T =50 K)=2X10* ergs/cmKs .

exp

The quantitative agreement between the calculation of
Knop( T) and the increase of « for temperatures greater
than the plateau temperature for vitreous silica is sugges-
tive. When combined with increasing evidence for vibra-
tional localization in glasses at low energies (Laird and
Schober, 1991), it may be that vibrational localization,
which leads to the plateau, and phonon-assisted hopping
of localized states above the plateau are the fundamental
mechanisms that generate the near-universal behavior of
k(T found for glasses and amorphous solids.

A test of the correctness of the hopping model can be
found by inverting Eq. (8.6), using the experimental value
of k(T) above the plateau for vitreous silica, to find the
anharmonic coupling coefficient C.4. We obtain (Jagan-
nathan, Orbach, and Entin-Wohlman, 1989)

C.s=10" ergs/cm’® . (8.12)

Using measurements of the pressure derivative of the
elastic stiffness moduli (Andreatch and McSkimin, 1976),
we find C.4 to be about an order of magnitude larger
than the third-order elastic constant found at long length
scales. A recent experimental realization of a Cantor-like
structure (Alippi et al., 1992) finds an enhancement of
the nonlinear vibrational interaction of about the same
magnitude. This is discussed in Sec. VIIL.E.

2. Sound velocity

As derived in Sec. VIII.A.2, the vertex (b) of Fig. 34
also leads to a change in the velocity of sound with in-
creasing temperature. We found from phonon-assisted
fracton hopping that v, /v, varied linearly with T and
was independent of sound frequency [see Eq. (8.8)]. Mak-
ing the argument that an analogous process involving lo-
calized vibrational states takes place in glasses and amor-
phous materials, is such a dependence found? And if so,
what would be its predicted magnitude in vitreous silica
using C 4 as extracted from thermal-conductivity mea-
surements, Eq. (8.12)?
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The velocity of sound in glasses and amorphous ma-
terials exhibits a temperature dependence that is very
different from crystalline materials. The change in the
sound velocity is nonmonotonic at low temperatures, in-
volving resonance scattering of the sound waves off the
TLS (Hunklinger and Arnold, 1976). In the vicinity of 1
K and above, relaxational scattering leads to a decrease
in the sound velocity with increasing temperature as the
logarithm of the temperature (Dreyfus, Fernandes, and
Maynard, 1968; Blanc et al., 1971; Lasjaunias and May-
nard, 1971; Lasjaunias, 1973). With increasing tempera-
ture, the sound velocity exhibits a stronger temperature
dependence. It is in this regime, above 10 K or so, that
we suggest that localized vibration hopping accounts for
the temperature dependence of the velocity of sound.
The temperature scale for this regime is set by the experi-
mental observation of the plateau in the thermal conduc-
tivity.

The experimental work of Bellessa (1978) demonstrates
that the frequency and temperature dependence of the
sound velocity in amorphous materials can be broken
into two parts,

U

=AT+B o .

(8.13)

s

The two constants 4 and B are independent of tempera-
ture and frequency, respectively. This behavior is incon-
sistent with the TLS result quoted in Eq. (8.9). Examples
of the first term are exhibited in Fig. 40, and that of the
second in Fig. 41 for vitreous soda-silica. More recent
measurements of Duquesne and Bellessa (1986) on amor-
phous Se, Ge, and Se-Ge compounds show identical
behavior, as exhibited in Fig. 42. These figures suggest
that the temperature dependence of the velocity of sound
in this temperature range can be associated with sound-
wave-—assisted localized vibrational hopping, whereas the
temperature-independent term arises from the TLS
(Bellessa, 1978).

The magnitude of the velocity change can be calculat-
ed immediately from Eq. (8.8). We find for vitreous silica

(8v,)
—she — _(1.0x107} KT,
vS

while experimentally, from Hunklinger and Arnold
(1976), we extract

(8vs )exp _
v

—(0.3X1073 K™ HT .

s

Our calculated value somewhat overestimates the slope.
However, the numerical prefactors that led to Eq. (8.13)
were only approximate, and so the agreement with exper-
iment can be considered quite reasonable. The more im-
portant point is the consistency between all calculated
quantities. We find that the magnitude of the thermal
conductivity and the temperature-dependent part of the
velocity of sound all are related to the phonon lifetime
which we have extracted from experiment. There are no
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FIG. 40. Variation in the velocity of longitudinal sound waves
as a function of temperature for different frequencies in vitreous
soda-silica. The velocity variation is relative to the value at 0.4
K. The longitudinal sound velocity is 5.8X10° cm/s. After
Bellessa (1978).
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function of frequency for different temperatures in vitreous
soda-silica. The velocity variation is relative to the value at 0.4
K. After Bellessa (1978).
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FIG. 42. Variation in the velocity of ultrasonic waves in a-Se
(164 MHz), a-Se;sGe,s (150 MHz), a-SeqGeyo (450 MHz; shear
waves), and a-Ge (220 MHz; Rayleigh wave) as a function of
temperature. The curves are arbitrarily shifted along the veloc-
ity axis. After Duquesne and Bellessa (1986).

undetermined parameters. This is strongly suggestive
that our basic picture of vibrational transport at temper-
atures above the plateau temperature has relevance to
glasses and amorphous materials.

Very recent experiments of Tielburger et al. (1992) on
vitreous silica agree with neither the form of Eq. (8.13)
nor the analysis of Bellessa (1978). They find, in the tem-
perature range between 5 and 15 K, that the coefficient 4
depends upon frequency as the logarithm, in accord with
the results of the TLS model quoted in Eq. (8.9). It is
difficult to know how to reconcile the results from the
two groups, except to note that the energy characteristic
of the plateau for vitreous silica is 28 K [see the analysis
for k(T) above]. The temperature range of Tielburger
et al. (1992) is therefore too low to have present
significantly many thermally excited localized vibrational
states. Our model would predict a change in the frequen-
cy dependence found by Tielburger et al. (1992) in the
vicinity of the energy characteristic of the plateau.
Indeed, the experiments of Bellessa (1978) are all at or
above this characteristic energy, consistent with the as-
sumptions of our model.

Above about 50 K for vitreous silica, Jagannathan and
Orbach (1990) estimated that there would be substantial
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deviations from the simple perturbative results that led to
Eq. (8.8). Finite lifetimes for the localized vibrational
states arising from anharmonicity will inhibit the full
strength of the vertices in Fig. 34, leading to a diminu-
tion in our calculated value for Sv,. This will allow the
increase in coupling with density inhomogeneities to
dominate, leading to a minimum in 8v, /v,, as observed
around 60 K, and then to a subsequent linear rise up to
the highest temperatures measured, as observed for vitre-
ous silica.

D. Magnitude of the anharmonic coupling constant

An important point of phonon-assisted localized vibra-
tional state hopping is the large value of anharmonicity
required to explain agreement between theory and experi-
ment. The value of C s extracted from comparison with
the absolute values for «(T) [and, concomitantly, 8v,(T)]
observed experimentally are too large by roughly an or-
der of magnitude when compared with the values found
for the anharmonicity at long length scales.

Very recently, Alippi et al. (1992) found experimental
evidence of extremely low thresholds for subharmonic
generation of ultrasonic waves in one-dimensional
artificial piezoelectric plates with Cantor-like structures,
as compared to the corresponding homogeneous and
periodic plates. A theoretical analysis demonstrated that
the enhancement of the interaction between the localized
vibrational states (in their case, true fractons) and the ex-
tended phonon states was caused by favorable frequency
and spatial matching of the coupled modes in the
Cantor-like structure, “wish no need to invoke anoma-
lous modifications of the nonlinear elastic constants.”
Whereas the driving voltage for subharmonic generation
for the homogeneous and periodic structures was around
25 V, typical values of the lowest threshold voltages ob-
served for the Cantor-like sample were 3—5 V.

The frequency and spatial matching arose from the na-
ture of the fracton states. Rather than being completely
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FIG. 43. Experimental displacement profiles of the normal
modes (a) w, =385.5 kHz, a fracton mode, and (b) 0, =®, /2, a
phonon mode, of the Cantor-like sample. The anharmonic cou-
pling between these two modes, which is responsible for the
subharmonic generation, is favored by the relatively large spa-
tial overlap between the square of the subharmonic displace-
ment (b) and the displacement of the fundamental mode (a) in
the region where the fracton mode (a) extends. Ater Alippi
et al. (1992).
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overdamped, they were found to possess two or three os-
cillations before the envelope fell to zero. This allowed
substantial overlap with the square of the subharmonic
modes. An example is shown in Fig. 43. Our results for
the structure factor, as given in Sec. VI (Fig. 22), exhibit
structure similar to that in Fig. 43—a few wavelike oscil-
lations within a narrow (superlocalized) envelope.

The lessons from fractal structures may carry over to
glasses and amorphous materials. Anharmonic couplings
on length scales of the order of the localized vibrational
modes may be much larger (an order of magnitude) than
those conventionally measured at large length scales.
This amplification would be all that is necessary to quan-
titatively match the strength of phonon-assisted localized
vibrational hopping processes to experimental observa-
tions.

IX. SUMMARY AND CONCLUSIONS

This review has attempted to present a complete pic-
ture of the dynamical properties of fractal networks as of
this point in time. Its size and scope reflect the great ac-
tivity in this field since the review by Orbach (1986) and
Vacher, Courtens, and Pelous (1990). It is fair to say that
theory and experiment, especially in relation to the silica
aerogels, agree remarkably. True, but perhaps surpris-
ing, scaling based upon a single length scale has yet to
fail. We have reviewed the properties of a percolating
network, defining the nature of excitations on this model
structure and displaying the crossover between extended
(phonon, magnon) and strongly localized (fracton) excita-
tions. Scaling theory has been introduced which freed us
from these specific examples and enabled an analysis of
excitations on any self-similar (fractal) structure. The ad-
vent of modern, large, and fast computers has allowed
numerical simulations of sufficient size to shed light on
and to test the scaling theories through explicit simula-
tions. Two physical systems with fractal geometry over a
rather significant length scale have yielded extensive exci-
tation spectrum data from light- and neutron-scattering
experiments: the silica aerogels (vibrational excitations)
and site-diluted antiferromagnets (magnetic excitations).

Finally, the transport properties of fractal networks
were examined, addressing the disturbing question of
how a strongly localized fracton could transport heat. A
calculation of the thermal diffusivity was described which
involved phonon-assisted fracton hopping. This is the vi-
bration analog of Mott’s variable range phonon-assisted
localized electronic state hopping. The theory that has
been developed couples together the assisting phonon
lifetime, the fracton contribution to the thermal conduc-
tivity, and the temperature dependence of the velocity of
sound. Knowledge of any one of these quantities deter-
mines the other two with no adjustable parameters. Very
recent thermal-conductivity experiments on the silica
aerogels have exhibited results consistent with the theory
and have shown that the results scale as the theory would
require.
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The transport results for fractal networks appear to be
similar to those found universally for (nonfractal) glasses
and amorphous materials at and above the temperature
region of the plateau in the thermal conductivity. This
led to speculation that the plateau was a consequence of a
crossover from extended to localized vibrational excita-
tions in these materials. If so, and if the localized charac-
ter of the vibrational excitations continued well above the
plateau energy (temperature), phonon-assisted localized
vibrational state hopping might well be an important
mechanism for thermal transport. Calculations were per-
formed for the thermal conductivity arising from this
mechanism for vitreous silica, using phonon lifetimes ex-
tracted from lower temperature thermal-conductivity
measurements. Agreement was found with experiment
with nearly no adjustable parameters, but it was found
that the anharmonic coupling constant extracted from
the fit to experiment was about an order of magnitude
larger than that for long (continuum) length scales. This
has now been shown to be the case for an artificially con-
structed one-dimensional (Cantor) fractal, suggesting that
by analogy random structures may exhibit similar prop-
erties (Alippi et al., 1992; Craciun et al., 1992).

These considerations point to continued activity in this
field for some time to come. Numerical simulations for
d=3 percolating networks can shed further light on the
structure factor and on the reasons why single length
scaling works so well. As interesting is the question of
the effects of anharmonicity. So far only one-dimensional
Cantor-like structures have been analyzed to show how
phonons and fractons interact. It is very important to
know whether the resonances in frequency and space
which are crucial for the enhancement of anharmonicity
for d=1 are still present for d=3. Preliminary evidence,
through the form of the structure factor, suggests that
this may be the case (the fracton exhibits a few spatial os-
cillations within its superlocalized envelope).

The recent low-temperature measurements of the
thermal conductivity and the specific heat for the silica
aerogels suggest further work. Lower measurement tem-
peratures would enable comparative measurements of the
phonon-fracton crossover as exhibited through these
measures, enabling systematic information to be extract-
ed. In addition, the relationship between phonon life-
time, thermal transport, and variations in the velocity of
sound can be directly tested in the aerogels. It is impor-
tant to measure v; at temperatures near and above the
crossover temperature to determine if the phonon-
assisted fracton hopping relationship predicted between «
and v, is, in fact, observed.

Another area of interest is site-diluted magnets. So far,
excitations in d=3 antiferromagnets have been measured
through neutron scattering for the highly anisotropic an-
tiferromagnet Mn,Zn,_, F,. Lower anisotropy would al-
low a greater energy range for magnon excitations for
materials with p closer to p.. It would also be very in-
teresting to measure the magnetic excitation spectrum of
d=2 site-diluted magnets, for which numerical simula-
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tions of S(q,w) have been performed. New results from
simulations and scaling theory suggest that d, is close to
unity for all d greater than 2. This is a strong prediction
for the fracton DOS and dispersion law and cries out for
experimental examination. And, of course, it would be
welcome to have numerical simulations to serve as a test
of scaling theories and to match with experiment. For
example, is it possible to obtain two peaks in S (Qgyeq, @)
as a function of w, one for magnons, the other for fracton
excitations, as has been observed for Mn, sZn, sF,
(Uemura and Birgeneau, 1986, 1987), but which fail to
show up in effective-medium calculations?

Finally, are the vibrational excitations in glasses and
amorphous materials strongly localized above energies of
the magnitude of the plateau temperatures? This is a
crucial question to test the applicability of the ideas gen-
erated by fractal lattices to these nonfractal but disor-
dered structures.

Surprises will continue to abound in this field. We
hope that this review will serve as a basis for further ex-
ploration of the dynamics of random structures.
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