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The interacting disordered electron problem is reviewed with emphasis on the quantum phase transitions
that occur in a model system and on the field-theoretic methods used to describe them. An elementary
discussion of conservation laws and diffusive dynamics is followed by a detai1ed derivation of the extended
nonlinear sigma model, which serves as an effective field theory for the problem. A general scaling theory
of metal-insulator and related transitions is developed, and explicit renormalization-group calculations for
the various universality classes are reviewed and compared with experimental results. A discussion of per-
tinent physical ideas and phenomenological approaches to the metal-insulator transition not contained in
the sigma-model approach is given, and phase-transition aspects of related problems, like disordered su-
perconductors and the quantum Hall effect, are discussed. The review concludes with a list of open prob-
lems.
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at zero temperature, so that the Auctuations determining
the critical behavior are quantum mechanical rather than
thermal in nature.

Metal-insulator transitions can be divided into two
categories (see, for example, Mott, 1990). In the first
category, some change in the ionic lattice, such as a
structural phase transition, leads to a splitting of the elec-
tronic conduction band and hence to a metal-insulator
transition. In the second category the transition is purely
electronic in origin and can be described by models in
which the lattice is either fixed or altogether absent as in
models of the "jellium" type. It is this second category
which forms the subject of the present article. Histori-
cally, the second category has again been divided into
two classes, one in which the transition is .triggered by
electronic correlations and one in which it is triggered by
disorder. The first case is known as a Mott or Mott-
Hubbard transition, the second as an Anderson transi-
tion.

Mott's original idea (Mott, 1949, 1990) of the
correlation-induced transition was intended to explain
why certain materials with one electron per unit cell, e.g. ,
NiO, are insulators. Mott imagined a crystalline array of
atomic potentials with one electron per atom and a
Coulomb interaction between the electrons. For
sufficiently small 1attice spacing, or high electron density,
the ion cores will be screened, and the system will be me-
tallic. Mott argued that for lattice spacing larger than a
critical value the screening will break down, and the sys-
tem will undergo a erst order transiti-on to an insulator.
This argument depended on the long-range nature of the
Coulomb interaction. A related, albeit continuous,
metal-insulator transition is believed to occur in a tight-
binding model with a short-ranged electron-electron in-
teraction known as the Hubbard model (Anderson,
1959a; Gutzwiller, 1963; Hubbard, 1963). The model
Hamiltonian is

(l.la)

where a, and 8; are creation and annihilation opera-
tors, respectively, for electrons with spin cr at site i, the
summation in the tight-binding term is over nearest
neighbors, and

(1.1b)

I ~ INTRODUCTION

In the field of continuous phase transitions, metal-
insulator transitions play a special role. In the first place,
they are not nearly so well understood, either experimen-
tally or theoretically, as the classic examples of liquid-gas
critical point, Curie point, A, point in He, etc. In the
second place, one important subclass of metal-insulator
transition consists of what are now called quantum phase
transitions, i.e., continuous phase transitions that occur

Here t is the hopping matrix element, and U is an on-site
repulsion energy ( U) 0). Despite its simplicity, remark-
ably little is known about the Hubbard model. In one di-
mension (1—d) it has been solved exactly by Lieb and
Wu (1968), who showed that at half filling the ground
state is an antiferromagnetic insulator for any U) 0. In
higher dimensions, various approximations have suggest-
ed that the model with one electron per site shows a con-
tinuous metal-insulator transition at zero temperature as
a function of U (see Mott, 1990). This is generally be-
lieved to be true, but has not been firmly established. Re-
cently the Hubbard model has received renewed atten-
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tion, mostly because models closely related to it have
been suggested to contain the relevant physics for an un-
derstanding of high- T, superconductivity (Anderson,
1987). This renewed interest has spawned new approxi-
mation schemes as well as new rigorous results. For in-
stance, it has been proven (among other things) that the
ground state of the Hamiltonian, Eqs. (1.1), at half filling
has spin zero in all dimensions (Lieb, 1989). The Hub-
bard model has also been studied in the limit of infinite
dimension (Metzner and Vollhardt, 1989). It turns out
that in this limit the model can be reduced to a one-
dimensional problem that has been solved numerically.
A number of nontrivial results have been obtained. In
particular, it has been established that in d = ao with in-
creasing U there is a Mott transition from a metallic to
an insulating state (Georges and Krauth, 1992; Jarrel,
1992; Rozenberg et al. , 1992).

Much more is known about the Anderson transition
(Anderson, 1958; for a recent review see Lee and Ramak-
rishnan, 1985), which can be described by the Anderson
model,

P=t y a,+e, +y E,a,+a, .
(ij) i

(1.2)

This is a model for noninteracting electrons, so spin pro-
vides only trivial factors of two and can be omitted. The
c; are randomly distributed site energies, governed by
some distribution function characterized by a width 8'.
Anderson argued that for 8'/t large but finite the system
is an insulator. In d= 1 it actually is insulating for all
W) 0 (Mott and Twose, 1961;Borland, 1963). For large
8', or near the band tails, the states were proven to be lo-
calized (Frohlich et a/. , 1985). In d =3, Anderson pre-
dicted a metal-insulator transition to occur at a nonzero
value of W/r, a prediction which was confirmed numeri-
cally (Schonhammer and Brenig, 1973). This as well as
all other early (pre-1979) work, both numerical and
analytical, also found a metal-insulator transition in
d =2, which was later shown to be incorrect (see below).

The reason for the insulating behavior at large S' is
that the electrons become "trapped" or "localized" in the
potential

fluctuations.

This is not an intrinsically
quantum-mechanical phenomenon. Anderson's work
had been motivated in part by work on classical percola-
tion (Broadbent and Hammersley, 1957), and the classical
Lorentz model (see, for example, Hauge, 1974) shows a
transition between a diffusive and a localized phase much
like the Anderson model (see Fig. 1). In the Lorentz
model, a classical pointlike particle moves in a random
array of fixed scatterers, often taken to be hard disks
(d =2) or hard spheres (d=3). The localization does
not require attractive potentials, but rather comes about
by trapping of the particle in cages at suf5ciently high
scatterer density. If the scattering potentials are soft, the
delocalization can be achieved not only by decreasing the
density of scatterers, but also by increasing the energy of
the scattered particle. An analogous effect exists in the
quantum case: if 8' is not so large as to localize the
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FIG. 1. Numerical simulation data for the diffusion coefficient
D vs the scatterer density n of a 2-d Lorentz model: , Bruin
{1972,1974, 1978); O, Alder and Alley (1978), and Alley (1979),
as quoted by Gotze et al. {1982). D is normalized by its
Boltzmann value D' ', and n by its critical value n, . After
Gotze et al. (1982).

whole band, then energies E, separate localized states in
the band tails from extended ones in the band center, and
the metal-insulator transition can be triggered by sweep-
ing the Fermi energy across the "mobility edge" E,
(Mott, 1966, 1990); see Fig. 2.

A further important development occurred when
Wegner (1976a) used real-space renormalization-group
methods to argue that the dynamical conductivity could
be written in the scaling form

~) b
—(d —2)f(tb 1/v Qbd) (1.3)

E (1)
C

E (2)
C

FIG. 2. Schematic picture of the density of states N vs the ener-

gy E in the Anderson model. E," ' are mobility edges, and the
states in the shaded regions are localized.

Here t is some dimensionless distance from the critical
point (e.g., t =

f
W —W, f / W, or t = fE E, f /E, ), II is-

the frequency, b is an arbitrary scale parameter, f is an
unknown scaling function, and v an unknown correlation
length exponent. Equation (1.3) predicts that the static
conductivity vanishes at the metal-insulator transition
with an exponent s=v(d —2), and that the dynamical
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conductivity at the critical point, t =O, goes' like
O'" ' ". The importance of this result lay in the
demonstration that the metal-insulator transition could
be discussed in the canonical terms of critical
phenomenon theory (see, for example, Ma, 1976; Fisher,
1983). This line of approach to the model was taken one
step further with Wegner's (1979) mapping of the Ander-
son localization problem onto an efFective field theory.
The methods employed by Wegner and his followers are
the central theme of this review and will be explained in
detail in Sec. III.

Abrahams et a/. (1979) conjectured that in d=2 all
states are localized by arbitrarily weak disorder, as they
are in d = 1. In contrast to Anderson localization per se,
this is a pure quantum effect, which is not present in the
Lorentz model and which can be understood as an in-
terference phenomenon (Bergmann, 1983, 1984). In con-
trast to the 1-d case, the effect for weak disorder in d =2
is only logarithmic for temperatures that are not too low.
A key prediction was that in thin metallic films the resis-
tance at moderately low temperatures should 1ogarith-
mically increase with decreasing temperature, a predic-
tion that has become known as the "weak-localization"
eff'ect. The observation of such logarithmic rises (Dolan
and Osheroff, 1979; see also Bergmann, 1984) was widely
hailed as a confirmation of the theory. Later it became
clear that at least in some cases the agreement had been
fortuitous, as the importance of interaction effects, which
are neglected in the weak-localization model, was not ap-
preciated early on. For many subsequent years the field
enjoyed considerable activity, which has been reviewed
by Bergmann (1984) and by Lee and Ramakrishnan
(1985).

Shortly after the prediction of the weak-loca1ization
effect it was realized that very similar effects can be
caused by a completely different physical mechanism.
Altshuler and Aronov (1979a, 1979b) showed that the
electron-electron interaction in 3-d weakly disordered
systems leads to a square-root cusp in the tunneling den-
sity of states and to corresponding square-root anomalies
in the temperature and frequency dependence of the
specific-heat coeKcient and the conductivity. The latter
anomaly has the same functional form as the 3-d weak-
localization contribution (Cxorkov et a/. , 1979). In 2-d
the corresponding effects are 1ogarithmic and, in particu-
lar, the conductivity was predicted to have a logarithmic
temperature dependence just like the weak-localization
effect, even if the interference effects that cause the latter
are neglected (Altshuler, Aronov, and Lee, 1980;
Fukuyama, 1980). It thus became clear that an observed
anomaly in the conductivity by itself could not be taken
as evidence for the presence of the weak-localization

The former behavior can be seen by choosing b =t, the
latter by choosing b=Q ' ". Scaling properties at the metal-
insulator transition will be covered in detail in Sec. IV.
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FIG. 3. Far-infrared absorption coefBcient a for three different
donor concentrations nz in Si:P. The critical concentration in
this system is n, -= 3.7 X 10' cm . From Thomas et al. {1981).

effect. Rather, one must try to separate the two effects by
means of the above-mentioned thermodynamic and
density-of-states anomalies, which accompany the in-
teraction effect but not weak localization, or by means of
the magnetoresistance. The magnetoresistance is nega-
tive for the weak-localization model, since a magnetic
field destroys the phase coherence that is essential for
producing the interference effect (Altshuler, Khmel-
nitskii, Larkin, and Lee, 1980), while it is zero or positive
for various interaction models (Fukuyama, 1980;
Altshuler et a/. , 1981).

These perturbative considerations in the weak-disorder
regime raised the question of whether and how interac-
tion anomalies affect the metal-insulator transition.
Since the Coulomb interaction between the electrons is,
of course, always present, a pure Anderson transition
cannot be expected to be realized in nature unless the in-
teraction turns out to be irrelevant for the nature of the
transition. As we shall see later, this in general is not the
case. Unfortunately, this means that the comparatively
simple models developed for disordered noninteracting
electrons are insufhcient for understanding experiments.
On the other hand, most materials that display a metal-
insulator transition are highly disordered, and the pure
Mott transition picture is equally inadequate. Consider,
for instance, the case of phosphorus-doped silicon, a par-
ticularly well studied example of a system showing a
metal-insulator transition. Suppose one starts with pure
silicon, which is an insulator at T=O. Upon doping with
the donor phosphorus, extra electrons are brought into
the system. However, for low dopant concentrations the
overlap between donor states is exponentially small, and
one expects an insulator with hydrogenlike impurity
states. This is indeed what is observed (see Fig. 3). With
increasing phosphorus concentration one finds a
broadening of the lines due to impurity pairs, and finally
a broad continuum due to a distribution of impurity clus-
ter sizes, with the system still being an insulator (Fig. 3).
With a further increase in phosphorus concentration, one
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FICz. 4. Divergence of the dielectric susceptibility y (~), and
vanishing of the static conductivity o ( 0 ), both extrapolated to
zero temperature, at the metal-insulator transition in Si:P n is
the P concentration. After Rosenbaum et a7. (1983).

expects, according to Mott's argument, a transition to a
metal at some critical concentration n, . Again, this is
what is observed (see Fig. 4). The observed transition is
continuous and cannot be understood purely in terms of
a Mott transition. The reason lies in the fact that the
doping process not only introduces excess electrons, but
at the same time creates disorder, since the dopant atoms
are randomly distributed in the host lattice. One there-
fore would expect the transition, in part, to follow the
Anderson model.

The conclusion that has been reached over the years is
that neither Anderson's nor Mott's picture by itself is
sufficient to understand the observed metal-insulator
transition. Rather, one has to deal simultaneously with
disorder and interactions between the electrons, neither
one of which is a small effect near the transition. This
has proven to be a very hard problem, which is far from
having been solved completely. Somewhat ironically, the
most precise experiment, viz. , the one on Si:P shown in
Fig. 4, has proven the hardest to understand for reasons
that will be discussed in detail in Sec. VI. Nevertheless,
substantial progress has been achieved in our understand-
ing of this "Anderson-Mott transition. "

An important development in this respect was the
work of Finkel'stein (1983a, 1984a, 1984b), who extended
the field-theoretic description of the Anderson transition
(Wegner, 1979; Efetov et al. , 1980) to allow for interac-
tions. This model not only allowed for the use of
renormalization-group methods to deal with strong dis-
order, but also was able to consider interactions of arbi-
trary strength. It thus achieved two important improve-
ments over previous perturbative work and quickly led to
a description of the Anderson-Mott transition in the
presence of magnetic impurities or a magnetic field
(Finkel stein, 1984a), which will be reviewed in Sec. V.
These results were soon supplemented by a derivation in
terms of resummed many-body perturbation theory

(Castellani, Di Castro, Lee, and Ma, 1984) and by inter-
pretations in terms of Fermi-liquid theory (Altshuler and
Aronov, 1983; Castellani and Di Castro, 1986).

In contrast to these successes, an understanding of the
metal-insulator transition in the absence of either mag-
netic impurities or magnetic fields has proven much
harder. The difFiculties are twofold: the interaction am-
plitude in the particle-hole spin-triplet channel scales to
infinity if it is not cut off by magnetic effects, and the
particle-particle or Cooper interaction channel has a
structure that is not easily amenable to standard
renormalization-group techniques. The first problem has
received much attention (Finkel'stein, 1983a, 1984b,
1984c; Castellani, Di Castro, Lee, Ma, Sorella, and Ta-
bet, 1984, 1986; Castellani, Kotliar, and Lee, 1987) and
was originally interpreted as being related to local mo-
ment formation, or as signaling an exotic metal-insulator
transition in which the scaled disorder Aows to zero at
the transition. More recent work has suggested that it
actually signals the presence of a phase transition that is
magnetic in nature and distinct from the metal-insulator
transition (Kirkpatrick and Belitz, 1990b, 1992b; Belitz
and Kirkpatrick, 1991). The second problem has been
considered (Castellani, Di Castro, Forgacs, and Sorella,
1984; Finkel stein, 1984b; Kirkpatrick and Belitz, 1993),
but the proposed solutions so far are not mutually con-
sistent and cannot even tentatively be considered final.
They will be discussed in Secs. V and VI. Another prob-
lem is that experiments on doped semiconductors
(Paalanen et al. , 1986, 1988) show thermodynamic
anomalies that cannot be consistently explained within
the field-theoretic model and have prompted rather
different theoretical approaches (Bhatt and Fisher, 1992).
These will be considered in Sec. IX.

For all these reasons the metal-insulator-transition
problem cannot be considered solved. However, the pro-
gress made within the last decade has not been reviewed,
and it is the purpose of the present article to describe the
current state of affairs. In doing so, one difficulty is that
the problem has been tackled by a large variety of ap-
proaches that are very different with respect to both the
underlying physical ideas and the technical methods
used. On the physical side, one can distinguish between
phenomenological approaches, on the one hand, which
try to get clues from experiments about what physical
effects are important near the transition and must be in-
cluded in the theory, and what one might call the slow-
mode- philosophy on the other hand. The latter starts
from the assumption that the physics near the metal-
insulator transition will be dominated by the low-lying
excitations of the system, which can be extracted from a
simplified. microscopic model. On the technical side, in-
tuitive phenomenology, many-body perturbation theory,
the renormalization group, and effective field-theoretic
techniques have all played an important role. Since the
problem remains unsolved, one cannot really afford the
luxury of taking one of these points of view exclusively.
We shall focus, however, on the low-lying-mode philoso-
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phy, implemented by field-theoretic techniques, for two
reasons. First, this line of approach is relatively new for
interacting systems and has recently led to developments
that have not been covered in previous reviews. Second-
ly, we believe that these techniques have the best chance
of eventually providing us with a complete, microscopic
theory of the metal-insulator transition. One should keep
in mind, however, that even if one accepts the slow-mode
approach, it is in general still an open problem how to
determine all of the relevant slow modes. We shall come
back to this problem in Secs. II, III, and X.

The plan of this review is as follows. We start in See.
II with an elementary discussion of the slow modes, i.e.,
the diffusive modes that result from the conservation
laws for particle number, spin, and energy. All of the
material presented in that section can be found in various
books and review articles. We feel, however, that our
discussion is necessary both for pedagogical reasons and
to put the results of the field theory presented later in the
proper context. Section III is devoted to an explanation
of the technical apparatus that will be used in most of the
rest of the paper. That section is rather technical and ex-
tensive for two reasons: the field-theoretic methods un-
derlying much of the work to be reviewed are not as
widely known among condensed-matter theorists as, say,
Green's-function techniques, and the details of the
derivation of the fundamental model describing interact-
ing disordered electrons have never been published. The
section is written for readers who wish to work actively
with the field theory. Anybody who is mainly interested
in learning about the results presented in the later sec-
tions can skip over most of the technical details in Sec.
III. Section IV is devoted to a general discussion of pos-
sible scaling scenarios for a metal-insulator transition of
interacting electrons, i.e., the question of how to general-
ize Eq. (1.3) to the interacting case. Sections V and VI
review explicit calculations that show how these scaling
scenarios are realized in various universality classes. Sec-
tion VII is devoted to a related subject, namely, the de-
struction of (conventional bulk) superconductivity near
the metal-insulator transition. This problem is actually
part of a more general one, namely, the question of how
collective phenomena like superconductivity, magnetism,
etc. , are affected by strong disorder in the vicinity of a
metal-insulator transition. Since the answer obviously re-
quires a solution of the problem in the absence of the col-
lective phenomenon, these issues have only recently start-
ed to be addressed. In Sec. VIII we discuss a recent sug-
gestion of disorder-induced spin-triplet superconductivity
in 2-d systems. In its existing form the slow-mode field
theory is unlikely to accomplish the ultimate goal of pro-
viding a complete microscopic theory of all phenomena
observed close to the metal-insulator transition. Rather,
it will have to be supplemented by physical ideas
developed through other approaches. Some of these are
discussed in Sec. IX. Section X provides a summary and
a discussion of what we consider to be the most pressing
open problems in the field.

The localization problem has been reviewed previously
a number of times, most notably by Altshuler and Aro-
nov (1984), Bergmann (1984), Lee and Ramakrishnan
(1985), Finkel'stein (1990), and MacKinnon and Kramer
(1993). We have tried to avoid duplication of material as
far as possible and often refer to these reviews rather
than trying to be complete. With some exceptions, we
also concentrate on the metal-insulator transition proper
and its immediate vicinity, excluding effects at weak dis-
order or deep in the insulator. This holds in particular
for our selection of experiments to be discussed in detail
in Secs. V and VI. Throughout the paper we use units
such that Planck's constant A. Boltzmann's constant kz,
and minus the electron charge e, are equal to unity unless
otherwise mentioned.

II. DIFFUSIVE ELECTRONS

A. Diffusion poles

The dynamics of conserved quantities show peculiari-
ties that arise from the fact that, due to the conservation
law, their values cannot change arbitrarily in space and
time. Let us consider the density n(x, t) of a conserved
quantity X in some many-particle system. In equilibri-
um, n is constant in space and time: n(x, t) =no. Sup-
pose a fluctuation 6n is created, n(x, t)=no+An(x, t),
and we ask how the system will go back to equilibrium.
Since n is conserved, it can do so only by transporting
some X out of or into the region where 5nAO. If this re-
gion is large, this will take a long time. Therefore long-
wavelength fluctuations of conserved quantities will de-
cay very slowly. Slowly decaying fluctuations determine
the low-lying modes and are of central importance for a
description of the system. An example is classical Quid

dynamics, where the conserved quantities are particle
number, momentum, and energy, and the slow modes are
first sound, heat diffusion, and transverse momentum
diff'usion (see, for example, Forster, 1975; Boon and Yip,
1980).

We shall be concerned with the dynamics of electrons
moving in a random array of static scatterers. Since the
scatterers can absorb momentum, the only conserved
quantities are particle number (or charge), energy, and
possibly spin. In general, all of these have diffusive dy-
namics. The central assumption of the theory we shall
review is that the slow decay of charge, spin, and
energy-density Auctuations leads to, and dominates, the
physics near the metal-insulator transition. The basic
strategy for a description at zero temperature is to start
with perturbation theory in the diffusive phase and to
study the instability of that phase. Of course, this
presumes the existence of a diffusive phase somewhere in
the phase diagram. If this is not true, one can use pertur-
bation theory only at finite temperature, where transport
is diffusive due to inelastic processes. As the temperature
approaches zero, perturbation theory will then break
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down everywhere in the parameter space. An example
may be seen in the 2-d systems, for which all theoretical
approaches now agree that at T=O electrons are in gen-
eral never diffusive (Abrahams et al. , 1979). More re-
cently it has been suggested that the spin dynamics may
never be diffusive, not even for d )2 (Bhatt and Fisher,
1992). The possible consequences of this are currently
not quite clear. However, in the simplest possible
scenario the absence of spin diffusion would merely
change the universality class (see Sec. III.B.4.c) of the
metal-insulator transition. We shall discuss this proposi-
tion further in Sec. IX. Here we proceed under the as-
sumption that for d )2 at T=O there is a small-disorder
phase where charge, spin, and energy are diffusive.

In this subsection we consider noninteracting electrons
in an environment of elastic, spin-independent scatterers.
In this case the conservation laws for spin and energy do .

not add anything to particle number conservation, and
the spin and heat diffusion coefficients are the same as the
charge or number diffusion coefficient. For the spin
diffusion coefficient this is obvious, and for the heat
diffusion it has been shown by Chester and Thellung
(1961),Castellani, DiCastro, and Strinati (1987), and Stri-
nati and Castellani (1987). We can therefore restrict our-
selves to a discussion of particle number diffusion. The
situation changes, of course, as soon as the electron-
electron interaction is taken into account; see Sec.
III.B.3.d.

+P(q) =X &k —q/2~k+q/2
k

(2.1c)

Since we are dealing with noninteracting electrons, spin
results only in trivial factors of two and can be
suppressed. We shall add the Coulomb interaction later.

a. A phenomenological argument for diffusion

Let us start with a very simple phenomenological argu-
ment for diffusive density dynamics (see, for example,
Forster, 1975). Of course this approach does not depend
on microscopic details and also holds for interacting elec-
trons as well as for systems outside the quasiclassical re-
gime. Consider a macroscopic number-d. ensity Auctua-
tion 5n(x, t). Particle number conservation implies the
continuity equation

8 5n(x, t)+V j(x, t)=0,
at

(2.2)

with j the (macroscopic) number current density. It is
plausible to assume that for a slowly varying density the
current is proportional to the negative gradient of the
density,

I Id;, over the randomly situated scattering centers
(Edwards, 1958). For simplicity we assume pointlike
scatterers (i.e., s-wave scattering only). p(q) is the densi-

ty operator,

1. The quasiclassical approximation for electron transport
j( tx)= DV5n(x, t)—. (2.3)

The basic building block of the theory is the diffusive
density response of the electrons in the quasiclassical ap-
proximation. We first discuss three derivations of the
density response, in order of increasing technical sophis-
tication. For the time being, we consider noninteracting
electrons with a Hamiltonian

The positive coefficient D is called the diffusion constant.
More precisely, j should be expressed in terms of a chem-
ical potential gradient and an Onsager coefficient, which
in turn can be expressed in terms of a density gradient
and the diffusion coefficient (see, for example, DeGroot
and Mazur, 1962). Combination of Eqs. (2.2) and (2.3)
yields Fick's law,

8'=g [k /2m —p]8k+&k+ —g u(q)p+(q) .
1

(2.1a) Db, 5n(x, t) =0 . —
at

(2.4)

Here ak and ak are creation and annihilation operators
for electrons in state k, p is the chemical potential, we as-
sume free electrons with mass m, and V is the system
volume. u is a random potential whose strength is given
by

(2.1b)

with NF the density of states (DOS) per spin at the Fermi
level, and ~ the elastic mean free time in the Boltzmann
approximation. n,. is the scatterer density, whose appear-
ance results from performing the ensemble average

We Fourier transform and find the solution,
—D 2t

5n(q, t)=5n(q, 0)e ~ ', t &0, (2.5a)

+ for Imz m~0, (2.5b)

with complex frequency z. This yields

which displays the slow decay of long-wavelength Auc-

tuations mentioned above. We de6ne a Laplace trans-
form in time by

5n(q, z)—:+i f dt 6(+r )e'"5n(q, t),

5n(q, t =0)—
5n(q, z) =

z+iDq
(2.5c)

The same is true for number and heat difFusion in the classical
Lorentz model mentioned in Sec. I. Quantum mechanics does
not change this.

Here 5n(q, z) as a function of z has a branch cut at
Imz=0 and two Riemann sheets. The physical sheet is
the one with no singularities. The analytic continuation
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to the other sheet from above and below the real axis has
a pole at z= —iDq and z=iDq, respectively. This pole
is called a diffusion pole. Its relation to diffusive dynam-
ics is obvious from Eqs. (2.5).

x" (q, n)= —[x (q, n+io) —x (q, n —iO)]=1
2l

=—fdt e' 'X (q, t) .=1 (2.10b)

b. Linear response and the Boltzmann equation

H,„,(t)= —f dxp(x)p, ,„,(x, t), (2.6)

where p is the density operator, Eq. (2.1c). Linear-
response theory (Fetter and Walecka, 1971; Forster,
1975) then tells us that the change in the expectation
value of p, to linear order in p, „„

is given by

We now turn to a microscopic derivation of Eqs. (2.5).
Again, the formal part of this subsection is valid for gen-
eral systems. Suppose the deviation from equilibrium,
5n, is created by an external chemical potential p, ,„,(x, t ).
Then the Hamiltonian contains a term

The retarded and advanced susceptibilities are given by

x '"(q, n)=x (q, n+io)=x' (q, n)+ix" (q, n),
(2.11a)

where

x' (q, Q)= —[x (q, Q+iO)+x (q, n —io)] .=1 (2.11b)

happ
is positive semidefinite and determines the energy dis-

sipation in the system. It is therefore also called the "dis-
sipative part" of the susceptibility. It is related to the
"reactive part"

happ by means of a Kramers-Kronig rela-
tion,

5n(x, t) —= &p(x, t) &
—&p(x, t) &„=0

=i f dt' f dx'X ( x 'xt, t')p,„,( 'xt'), (27a)

with the density susceptibility

'n n-dn' x,",(q n')

Idn' x q»
n —n

(2.12a)

(2.12b)

(x, x', t, t') =
& [p +(x, t),p(x', t')] & . (2.7b)

Here [a,b]=itb ba for an—y two operators a, b. The
averaging is performed with the unperturbed Hamiltoni-
an. If we include the ensemble average in the definition
of the brackets in Eqs. (2.7), the system is translationally
invariant in space and time, and we have

bn (q, t ) =i f dt'X (q, t t')p, ,„,(q,—t'), (2.8a)

with

(q, t)= & [p+(q, t),p(q, t =0)] & . (2.8b)

A Laplace transformation according to Eq. (2.5b) yields
the causal density susceptibility, which is equal to minus
Zubarev's (1960) commutator correlation function,

Xqq(q, z)=+i f dt 0(+t)e'"X (q, t)

Finally, the dissipative part
happ

is related to the spontane-
ous density Auctuations in the system by the Auctuation-
dissipation theorem (Callen and Welton, 1951). Corre-
sponding relations hold for the general A —8 susceptibil-
ity, Eq. (2.9b), and generally for any causal function f (z)
instead of x (q, z ).

The susceptibility determines the response of the sys-
tem to external perturbations. The exact form of the
response still depends on the nature of the perturbation
(Kubo, 1957). Suppose the perturbation is suddenly
switched on at t=O: p,„,(q, t)=6(t)p,„,(q). Then one
finds from Eq. (2.8a)

5n(q, z)= ——X q(q, z)p,„,(q) .
1

z
(2.13)

Now suppose that the perturbation is turned on adiabati-
cally at t = —oo and switched off at t =0:
p,„,(q, t)=6( t)e "p,,„,(q) (e—~0). Then one finds

= —«p+(q);p(q) », ,

with the notation

« a;B », =+i f dt e(+t)e"'& [A(t)B] &

(2.9a)

(2.9b)

5n (q, z ) =C& (q, z )p,„,(q) .

Here N is Kubo's relaxation function,

+,',(q z) =—Ix„(qz) —x,',(q)]=1

(2.14a)

(2.14b)

for any operators A, B. X (q, z) has the usual properties
of causal functions (see, for example, Forster, 1975),
which we list here without derivations. Causality allows
for a spectral representation,

with the static susceptibility

(q) =X (q, z = iO) = X" (q, n)/n .dQ
(2.14c)

dn x,",«»)
(q,z)= (2.10a)

Kubo has noted that the static susceptibility g in general
is different from the isothermal susceptibility,

with a spectral function
xqq(q) =

& p(q) &—: (q),
~sexi q Bp

(2.15)
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which enters the Kubo function

(q, z) =—y (q, z) — (q)
1 r)n

z
i

t)p
(2.16a)

2

(q, z ) = NL (q,z),
Z

with the longitudinal current Kubo function

(2.19a)

At q=0, the isothermal density susceptibility is related
to the compressibility rr= —(t)V/i)p)T/V by (Forster,
1975)

Bn/Bp=n ir, (2.16b)

z « 3;B», =
& [A, k ] &

—« [8,A ];B»,
=&[J,S]&+«J;[H,k]», . (2.17)

For the density operator, Eq. (2.1c), we have

[~ p(q) l=q j(q»
with the current-density operator

(2.18a)

+& 1 ~k — /2~k+ /2Pl
(2.18b)

Equations (2.18) are the microscopic analog of Eq. (2.2).
Notice that they are a consequence of particle number
conservation and remain valid for interacting elec-
trons. Applying Eqs. (2.17) twice, and using
& [j+(q),p(q)]& =qn/m, we find

A nonergodic variable in this sense is one whose correlations
do not decay in the limit of long times, so its Kubo function
diverges for small z like 4{q,z~O)= f(q)/z. Notice that—
this is always the case for conserved quantities at q =0, but is a
nontrivial property at q&0. For a mathematical discussion of
ergodicity, see Khinchin (1949).

so (Bn/Bp)(q) can be interpreted as the wave-vector-
dependent compressibility. Kubo (1957) has shown that
for ergodic variables one has y =g . In this review we
shall encounter no nontrivial nonergodic variables, and
we shall not distinguish between y and y . The distinc-
tion is crucial, however, for a description of, e.g. , the in-
sulating side of the metal-insulator transition (Gotze,
1981), and it may be important for a solution of some of
the open problems discussed in Sec. X. Let us also
mention that for free electrons one has y (q)
=(Bn /t)p)(q) =g(q), with g the static Lindhard func~tion

(Lindhard, 1954; Pines and Nozieres, 1989). In the
homogeneous limit, g(q =0)=K+. That is, for free elec-
trons the compressibility and the single-particle DOS are
the same. This is not so for interacting electrons, as can
be seen already at the level of Fermi-liquid theory, where
the compressibility contains the Landau parameter I 0,
while XF does not [see, for example, Pines and Nozieres,
1989, and Eqs. (3.126) and (3.127) below]. In the pres-
ence of disorder, the distinction between the two quanti-
ties is crucial (Lee, 1982).

In order to determine the general form of the density
response, we use the equations of motion for the suscepti-
bility (Zubarev, 1960),

C (q, ) =——(1/q') « q j +(q) q. j(q) »—
Z I

(2.19b)

Let us consider Eqs. (2.19) in the limit q~O. Kubo
(1957) has shown that Nl (q =O, z) determines the
dynamical conductivity,

o.(z)= i@—1 (q=O, z) .

For small frequencies, cr is further related to the diffusion
constant by an Einstein relation (Kubo, 1957),

lim cr(Q+iO)=+ D .Bn

Q 0 Bp
(2.21)

lim y (q, Q+iO) = (q),Bn

Q~O Bp
(2.22b)

we see that the limits q —+0 and Q~O do not commute,
so g (q, z ) must be nonanalytic at q =0, z =0. Indeed,
we can use Eq. (2.22a) to write the Kubo function in the
hydrodynamic limit as

(q ~0,z) = —t)n /t)p
z+iDq sgn(Imz)

(2.23)

We thus recover the diffusion pole of Eq. (2.5c). Note
that the Kubo function is the appropriate response func-
tion to compare with Eq. (2.5c), since in our phenomeno-
logical argument we had assumed an adiabatically
prepared nonequilibrium state, which was allowed to re-
lax according to the unperturbed system's dynamics. For
later reference we note that Eqs. (2.21)—(2.23) are gen-
erally valid, not just for noninteracting electrons.

The question remains how to calculate o. or D. In the
quasiclassical approximation, we can use the Boltzmann
equation with the result (see, for example, Ziman, 1964)

n/I
Bn /Bp

(2.24a)

where r is the elastic mean free time. In three dimen-
sions,

m.—=n, 2rrvz dosing(1 cos8)cr(8—),
7

(2.24b)

where o(t) ) denotes the differential scattering cross sec-

It follows from Eq. (2.19a) that in the hydrodynamic lim-
it y vanishes like q as a result of particle number con-
servation,

lim y (q, z)= iD sgn(Imz)+o(q ) .q . Bn 2

q~0 z Bp

Here o(q ) denotes terms that vanish faster than q as
q ~0. If we compare Eq. (2.22a) with the zero-
frequency result
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tion. For isotropic scattering the cosB term does not
contribute, and if we treat the scattering process in the
Born approximation we recover Eq. (2.lb). We can also
solve the Boltzmann equation directly for the density
response. In general one obtains Eq. (2.23) for the densi-
ty response function. For the special case of isotropic
scattering the explicit result for the diffusion coefficient is
again given by Eqs. (2.24) (see, for example, Hauge,
1974).

c. Oiagrammatic deri vation of the diffusive density response

and its Fourier transform

P iQ„7.
vr (q, iQ„)= dre " ~ (q, r) .

0
(2.25b)

Here ~ denotes imaginary time, T, is the imaginary-time
ordering operator, Q„=2~Tn,with n an integer, is a bo-
sonic Matsubara frequency, and @=1/T is the inverse
temperature. ~ (q, iQ„),which is often called the polar-
ization function, is identical to minus the causal density
susceptibility, Eq. (2.10a), taken at z =iQ„.The retarded
and advanced susceptibilities, Eq. (2.1la), can be ob-
tained by analytical continuation to real frequencies,

We shall now calculate the density and current correla-
tion functions explicitly by means of many-body pertur-
bation theory. In order to do so, we have to rewrite the
commutator correlation function, Eq. (2.8b), in terms of a
time-ordered correlation function. This can be done us-
ing standard techniques (Fetter and Walecka, 1971;
Mahan, 1981) and allows for a convenient handling of the
correlation function formalism at finite temperatures.
We define an imaginary-time correlation function in the
Matsubara formalism,

~ ' "(q,Q) =m.(q, i Q„~Q+i 0) . (2.26)

1 . no.(Q)=i . ~L (q =0,iQ„)+
iQ„—+0+ i0

(2.27a)

An analogous polarization function can be formed with
the current operator. The Kubo formula for the conduc-
tivity, Eq. (2.20), then takes the form

vr (q, r)= —(T,p+(q, r)p(q, r=O)), (2.25a) where

ml(q, iQ„)=—f dre " (T,(q/q) j+(q, r)(q/q) j(q, &=0)) .
0

(2.27b)

The Wick theorem can now be used to evaluate the
time-ordered representations of the correlation functions
in perturbation theory.

For our present purposes, the small parameter for a
perturbative treatment is the density of scatterers n,
The averaging over the random positions of the scatter-
ers can be performed using the technique developed by
Edwards (1958; see also Abrikosov et al. , 1975; Mahan,
1981). The building blocks of the theory are, first, the
bare-electron Green's function,

GI '(p, icy„)=[ice„—p /2m+@] (2.28')

the integrals are easily done, and one obtains the familiar
Lindhard function (Lindhard, 1954). The same result can
be obtained by evaluating the commutator in Eq. (2.7b)
and performing the Fourier-Laplace transform. For
finite impurity concentrations, we know from the previ-

I

which is shown graphically in Fig. 5(b). With the explicit
expression for G' ',

G' '(q, ice„)= —f dr e " ( T,a (r)a+ (r=0) )H

(a)
G&p&

Up

X G' '(p+ q, iso„+iQ„), (2.29)

and, second, the impurity factor uo, Eq. (2.1b).
co„=2rrT(n+I/2), with n an integer, is a fermionic
Matsubara frequency, and the index 00 indicates that
the average is to be taken with the free-electron part of
the Hamiltonian only. Diagrammatically, we denote 6' '

by a directed light line, and uo by two broken lines [one
for each factor of u(q)] and a cross (for the factor of n,;);
see Fig. 5(a). To zeroth order in the impurity density, the
density polarization function is given by

m' '(q, iQ„)=gT g G' '(p, ice„)
P ECO

(b)

G(p)

FIG. 5. Diagrammatic elements of perturbation theory: (a) di-
agrammatic representation of the bare Careen's function and the
impurity factor; (b) diagrammatic representation of the bare
density polarization function; (c) the Cxreen's function in the
Born approximation; (d) conserving approximation for the den-
sity polarization function.
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G ( p, i co„)= [ico„—p /2m +p+ X(p, i co„)]
with the self-energy in the Born approximation

(2.30a)

ous subsection that the diffusion constant goes like n;
for small n;. It is therefore clear that any expansion in
powers of n; will require an infinite resummation in order
to reproduce the diffusion pole. In order not to violate
particle number conservation, one actually has to do two
separate infinite resummations. The first is to dress the
bare Green's function by means of the Born approxima-
tion shown in Fig. 5(c). The result is

X(p, i co„)= sgn(co„) .l

2~
(2.30b)

If one substituted Eqs. (2.30) for G' ' in Eq. (2.29), one
would obtain a result that violates particle number con-
servation or gauge invariance. In fact, it is well known
from quantum electrodynamics (Koba, 1951) that in or-
der to maintain gauge invariance one has to treat vertex
corrections consistently with self-energy corrections.
This is the case in the approximation shown in Fig. 5(d),
which reads

m (q, i Q„)=g T g I (p, q, ico„,iQ„)G(p+q/2, ico„+iQ„)G(p—q/2, ico„).
P 1 CO

(2.31a)

The density vertex obeys the equation

I (p, q;ico„,iQ„)=1+uoQ I (k, q;ico„,iQ„)G(k+q/2, ico„+iQ„)G(kq/2, —ico„),
k

(2.31b)

which is also shown graphically in Fig. 5(d). Notice that in a calculation of n.L rather than vr (see, for example,
Mahan, 1981), the bare vertex is given by p.q/q rather than by 1, and hence the vertex corrections vanish. Moreover, if
we had not assumed pointlike scatterers the impurity factor uo would be momentum dependent and the integral equa-
tion (2.31b) would not be separable. With uo simply a number, I is independent of p, and we have

I z(q;i co„,i Q„)= (1 Io(q;i co„—, i Q„))
where Io is the first in a set of integrals,

(2.32a)

I (q;i co„,i Q„)= g (k.q/kq ) G(k+ q/2, i co„+iQ„)G(k q/2, i co„—), m =0, 1, . . . .
2~1VFw

(2.32b)

Even with the simple approximation, Eqs. (2.30), for G the integrals cannot be obtained in closed form, but their
behavior for r~ oo can be determined systematically (Kirkpatrick and Belitz, 1986a). To lowest order in 1/r the fol-
lowing simple replacement is sufficient (Abrikosov et al. , 1975):

I (q;ico„,iQ„)= Ny Jde„—f dx
1 1

277 QT 2 —1 l li(co„+Q„)—si, —(k~q/m )x+ sgn(co„+Q„)ico„—Ei, + sgn(co„)
2~ " " " 29-

=6 — +Q — d
x

(2.33a)

Here l=v~~ is the mean free path, and we have assumed a 3-d system. For d =2, only the angular integration is
different. In the limit of small q and Q„wehave

and

Io(q;ico„,i Q„)=6[—co„(co„+Q„)](l—~Q„~r Dq r)+O(Q„,—q, Q„q ) (2.33b)

I~(q;ico„,i Q„)=6[ co„(co„+Q—„)]— 1 —~Q„~r— Dq r +O(Q„,q—, Q„q ), (2.33c)

gati an
(q, iQ„)=— +

c)p c)p ~Q„(+Dq'
(2.34)

where D =vF~/d is the semiclassical diffusion constant,
Eq. (2.24a), for free electrons. For the density polariza-
tion function in the hydrodynamic limit we then obtain

The first term in Eq. (2.34) comes from the region in fre-
quency space where Io =0 and I = 1. Apart from
corrections of order ~Q„~ and 1/r ttus contribution is
given by the static response of free electrons. The second
term comes from the region co„(co„+Q„)(0 and is there-
fore proportional to ~Q„~. For the density susceptibility
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we finally obtain

(q, i Q„)= —rr (q, i Q„)= Bn Dq
PP ' " PP ' "

gp ~ +D 2

and for the Kubo function, Eq. (2.16a),

Bn—/c)p

iQ„+iDq sgn(Q„)

(2.35)

(2.36)
FIG. 7. Crossed-ladder vertex.
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For the conductivity, Eqs. (2.20) and (2.19), we recover
the Einstein relation,

With A instead of I" in Fig. 6 one obtains for the conduc-
tivity

cr(i Q„)= D sgn(Q„)+O(Q„).Bn

Bp

1 1o(Q)=era. 1—
q —in+Dq

(2.40)

These results are identical with those obtained in the pre-
vious subsection. In particular, we recover the diffusion

pole structure of the density response. We conclude that
the summation of ladder diagrams for the density vertex,
Fig. 5(d), reproduces the results of the quasiclassical
Boltzmann equation.

Qf course, the result for the conductivity, Eq. (2.37),
can also be obtained by evaluating Eqs. (2.27) directly
(see, for example, Mahan, 1981). The corresponding dia-

grams are shown in Fig. 6. The integral equation for the
vertex function I in Fig. 6 is easily solved,

I z ~; (q, iQ„):—I; (q,iQ„)
=uo[1 Io(q;ic—o„,i Q„)] ' . (2.38)

Notice that for pointlike scatterers the vertex corrections
do not contribute to the conductivity. This is because
the current vertex, shown as a triangle in Fig. 6, is odd
under parity.

d. Beyond the quasiclassical approximation

where cr o
=ne elm is the quasiclassical result and

f =—fdq/(27r)" Th.e integral over the diffusion pole
leads, at 0=0, to a logarithmic divergence in d =2. This
corroborates the suggestion (Abrahams et al. , 1979) that
for 2-d noninteracting electrons the static conductivity
vanishes for all values of the disorder. This phenomenon
is known as "weak localization" and has generated a sub-
stantial body of literature, which has been reviewed by
Lee and Ramakrishnan (1985). In Sec. III.B.4.a we shall
discuss another, symmetry-related, argument for the ab-
sence of diffusion in d ~2.

For d )2 at Q=0, Eq. (2.40) gives a correction to the
static conductivity. For free electrons, the integral
diverges in the ultraviolet and has to be cut off. It has
been argued (Kawabata, 1981; Wolfle and Vollhardt,
1982) that this cutoff' should be proportional to the in-
verse mean free path, 1/l= I/U~r. The argument given
was that the diffusive form of the vertex function holds
only in the hydrodynamic region qh &1. This leads, in
d=3, to a correction to o.

o in the limit kFl »1 that
reads

One way to go beyond the quasiclassical approxima-
tion is to include additional classes of diagrams. A par-
ticularly well studied contribution to the conductivity is
obtained by replacing the "diffusion ladder" vertex I in
Fig. 6 by the "crossed-ladder" or "Cooperon" vertex A
shown in Fig. 7 (Cxorkov et al. , 1979; Abrahams et al. ,
1980). The result for A is (Vollhardt and Wolfle, 1980)

Ak ~;„(q,i Q„)=I,„(k+p,i Q„), k = —p . (2.39)

o(Q=O)=cro, 1 — +O((k~l ) ) . .(k„l) (2.41)

This result, though very popular (see, for example, Mott,
1990, and references therein), is incorrect. The reason is,
first, that in the limit kFl))1 there are diagrammatic
contributions to o (Q =0) that are not included in A, and,
second, these contributions are not restricted to the hy-
drodynamic limit. The diagrams that contribute to the
expansion of the static conductivity have been identified
by Kirkpatrick and Dorfman (1983). In d =3, the result
of the calculation is (Kirkpatrick and Belitz, 1986a)

k.q/kq

2m 1 m —4 1 1o(Q=O)=era 1 — + ln
3 k~l 8 (k l)' kFl

+O((k~l) )
' . (2.42)

FIG. 6. Conserving approximation for the current polarization
function.

The leading correction to the Boltzmann result is linear
in 1/kzl. The next-leading term is nonanalytic (Langer
and Neal, 1966), as it is in classical systems (van Leeuwen
and Weyland, 1967), and only the third-leading term will
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cr(Q~O) =cr(Q =0) I 1+const X Q' (2.43a)

for 2&d &4. In the time domain this corresponds to a
behavior of the current-current correlation function, Eq.
(2.27b), at long (real) times t,

(2.43b)

Such an algebraic decay of autocorrelation functions is
known as a long-time tail and is characteristic of disor-
dered systems. It was first found numerically for classi-
cal hard-sphere-model fluids (Alder and Wainwright,
1970) and explained theoretically in terms of correlated
collision events (Dorfman and Cohen, 1970; Ernst et al. ,
1970). The existence of these long-time tails came as a
surprise, especially the fact that they exist for arbitrarily
low density, the regime of validity of the Boltzmann
equation, which predicts an exponential decay of the
current autocorrelation function. The salient point is

1.0 .
„

0.8—
LO

X

be of 0[(kzl) ]. The leading correction in Eq. (2.42)
has recently been quantitatively confirmed by experi-
ment. Adams et al. (1992) reanalyzed data by various
groups on the mobility of electrons in dense neutral
gases. In these systems the electron density is so low that
the electron-electron interaction is negligible, and the
mean free path can be controlled by changing the gas
density. Figure 8 shows data on electrons in H2 and He
together with the prediction of Eq. (2.42). The current
experimental accuracy is not sufficient to check the
theoretical prediction of a logarithmic correction to the
term of O((kzl) ). If this should become feasible,
theory would also have to provide the constant coefficient
of the term -(kFl) in order to extract the logarithm
from a constant background. Efforts to calculate this
coefficient are under way (Wysokinski et al. , 1994).

Equation (2.40) also predicts that o (Q) is a nonanalyt-
ic function of frequency, the behavior at small frequency
being

that the Boltzmann equation becomes exact at fixed time
in the limit of low density, but not at fixed density, no
matter how small, in the limit of long times. Physically
the existence of power-law decays implies that there is no
separation of time scales in general transport theory. In
the classical hard-sphere Quid the long-time-tail exponent
is d /2 as in Eq. (2.43b), and the same is true in more real-
istic classical fluids (Pomeau and Resibois, 1975; Forster
et al. , 1977). In the classical Lorentz model mentioned
in Sec. I, the exponent is (d+2)/2 (Ernst and Weyland,
1971). This difference, as well as a different sign of the
prefactor of the long-time tail, is due to the missing dy-
namics of the scatterers in the Lorentz model. In a quan-
tum Lorentz model, which is an appropriate model for
localization of noninteracting electrons, the exponent has
been shown to be d/2, and the prefactor has been calcu-
lated exactly (Kirkpatrick and Dorfman, 1983). The
crossed-ladder approximation, Eq. (2.40), thus repro-
duces the exponent correctly. The physical reason for
the different exponents in the classical and quantum
Lorentz models is not entirely clear.

2. Disorder renormalization of electron-electron
and electron-phonon interactions

Ultimately, we are interested in the interplay between
the diffusion processes inherent in the vertex functions I
and A and the Coulomb interaction between the elec-
trons. For the theory of disordered superconductors
(Sec. VII), as well as for the critical behavior of the sound
attenuation described in Sec. V, we shall also need the
diffusion corrections to the electron-phonon interaction.
The theory of disordered superconductors is very compli-
cated, since slow diffusive electron dynamics change the
effective interaction, which in turn changes the electron
dynamics. The sound attenuation is simpler because one
can neglect the feedback of the phonons on the electron
system. In this section we use simple diagrammatic per-
turbation theory to study the influence of the diffusion
pole discussed in Sec. II.A. 1 above on the dynamically
screened Coulomb potential and on the electron-phonon
interaction, neglecting all feedback effects.

0.6—

0.4—

a. Oynamical screening of diffusive eiectrons

In a many-electron system, the Coulomb potential

0.2—

0.0
0.0 0.2 0.4 0.6

2ikT&

0.8

L
)k

1.0
V(q, iQ„)=U, (q)/E(q, iQ„), (2.44b)

(2.44a)

is screened by the dielectric function. The screened po-
tential is given by

FIG. 8. Mobility p of electrons in dense gases, normalized to
the classical value p,&, as a function of the inverse mean free
path. kT=&2mT is the thermal wave number. The symbols
represent experimental values; the solid line is the theoretical
result, Eq. (2.42}. After Adams et al. (1992). (q, isQ„)=1+v, (q)y (q, iQ„). (2 44c)

and within the random-phase approximation (RPA) the
dielectric function is given by the density response (see
Pines and Nozieres, 1989),
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If we use the diffusive response, Eq. (2.35), in Eqs. (2.44),
we obtain for the dynamically screened potential at small
frequencies and wave numbers

r

v(q, i Q„)= ~

I Q„f+Dq
2' d=3

q' D~,'+ IQ. I
+Dq'

fQ„I+Dq'
2,

D~2q+ I Q„I
+Dq'

where

~d =(~2' 'an /ap, )'"" ", d =2, 3, (2.45b)

is the screening wave number. A characteristic feature of
screening by diffusive electrons in the RPA is that the
statically screened potential is given by the disorder-
independent Thomas-Fermi expression, while at nonzero
frequency the Coulomb singularity persists for wave
numbers q (IQ„I/D Wit. h increasing disorder D de-
creases, and the phase-space region where the bare
Coulomb singularity is present expands. This reAects the
fact that the slow electrons have increasing difhculty
screening fast charge Auctuations. From the preceding
discussion it is clear that the general form of Eq. (2.45a)
follows from particle number conservation and should be
very generally valid. Surprisingly, a recent attempt to
confirm the IQ„I/q singularity experimentally was un-
successful (Bergmann and Wei, 1989). We also mention
that Eq. (2.45a) is valid only in the limit of small frequen-
cies. At large frequencies, the density response ap-
proaches that of free electrons, and one recovers the
plasmon, weakly damped by disorder (Belitz and Das
Sarma, 1986). For all dimensionalities d & 2 the plasmon
has a nonvanishing frequency at zero wave number. In
the language of field theory, it is a massive mode. d & 2 is
also necessary in order to have a metal-insulator transi-
tion, and according to the soft-mode paradigm explained
at the beginning of Sec. II.A the plasmon will be ir-
relevant for the critical behavior at the metal-insulator
transition. In d =2 the bare plasmon is soft and over-
damped by disorder in the region of small q (Giuliani and
Quinn, 1984; Gold, 1984), but it still decays much faster
than a diffusion mode and is therefore still irrelevant in
the limit of small wavelengths and frequencies.

The diffusion pole that enters the dynamically screened
Coulomb potential via the density response will appear at
every electron-Coulomb vertex. The latter is denoted by
a black triangle in Fig. 5(d) and given by Eq. (2.32a). We
shall discuss the consequences of this in Sec. II.B below.

(2.46a)

with a bare electron-phonon vertex,

r',",(k, q) = 1 tk.

qual:k

eb(q) l .
m Qp;,„cob(q)

(2.46b)

Here Bb (q) and Bb(q) are phonon creation and annihila-
tion operators with wave vector q and polarization index
b (b =L, T for longitudinal and transverse phonons, re-
spectively). cob(q) is the bare-phonon dispersion relation
(cob(fqf~O)=cbfqf with sound velocity cb), p;, „

is the
ionic mass density, and eb is the phonon polarization vec-
tor. Equation (2.46b) replaces the k-independent
Frohlich vertex. As in Frohlich theory, the bare vertex
has to be screened. This is done in the RPA, as in Sec.
II.A.2.a above, and is shown diagrammatically in Fig.
9(a). The result can be expressed in terms of the integrals

A/W = n.re +

Coulomb vertex. This conclusion is incorrect, as has
been shown by Pippard (1955). Pippard's result has been
confirmed and expanded on by many workers (Holstein,
1959; Tsuneto, 1961; Eisenriegler, 1973; Schmid, 1973;
Griinewald and Scharnberg, 1974, 1975), but a large
number of papers in the literature have overlooked this
point and obtained a diffusion enhancement. A summary
of the resulting confusion has been given by Belitz
(1987b). The physical reason for the absence of any
diffusion enhancement is that if the ionic lattice under-
goes thermal motion, the electrons will follow almost
coherently because of the system's tendency to maintain
local charge neutrality. Because of this coherent motion,
an impurity in the lattice will not lead to a strong effect
in the electron-phonon coupling. Using a unitary trans-
formation to a frame of reference that moves locally with
the ions, Schmid (1973) showed that indeed the leading
terms in the electron-phonon interaction vanish. The
remaining effective interaction arises from a coupling be-
tween the lattice strain and the electronic stress tensor,

H, =&' X X r,"-' (k q)ak —l2ak+ l2
k, q b

X V co (bq)/2I8 (bq)+B b(

—q)],

b. Coupling ofphonons to diffusive electrons

The electromagnetic field couples to density Auctua-
tions in the electron system. According to the simple
Frohlich model (see, for example, Abrikosov et al. , 1975)
the same is true for the acoustic phonon field. One might
therefore expect the electron-phonon vertex to be
diffusion enhanced in the same way as the electron-

FIG. 9. The electron-phono n vertex. (a) The screened
electron-phonon vertex (hatched triangle) in terms of the bare
vertex (simple triangle) and the screened Coulomb potential
(thick wavy line). The thin wavy line denotes the bare Coulomb
potential, and the black triangle is defined in Fig. 5(d). (b) Im-
purity ladder corrections to the screened electron-phonon ver-
tex.
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I,Eq. (2.33a). In the longitudinal case one finds

I", I (k, q;iso„i,Q„)=I','~(k, q)

kF~b, I 1 Io+
3m +p c„1 —Io —

I Qn Intro

(2.47)

where Io and I2 are to be taken at arguments q;i~„,i0„.
There is no screening in the transverse case. The
screened vertex has still to be corrected for impurities,
Fig. 9(b), and one obtains the final result (Schmid, 1973)

FIG. 10. The phonon self-energy.

2
1 x arctanx
3 x —arctanx

fT(x)= [2x +3x —3(x +1)arctanx] .
1

2x

(2.50c)

(2.50cl)

I, (k, q;iso„,i Q„)
k 5=r',",(k, p)+

3m Qp,.„cb

1 —r, —3IQ. I.I,
1 Io I—Q, IrIo

Notice that, in our simple jellium model, aT vanishes in
the clean limit,

I ql l ))1. Disorder enhances the coupling
between electrons and transverse phonons (Keck and
Schmid, 1976). In the long-wavelength or dirty limit,
lqll &&1, one has

1—3I2 . (2 48) 4
ar (q) =aT(q)(cT/cI )

—= kF44
45~ CLPion

2 q l, d=3.

Explicit use of Eqs. (2.33) shows that, instead of a
diffusion pole, the correction to the vertex has the struc-
ture IQ„I/(Dq + IQ„I). This is finite if summed over q,
even in d =2 in the limit

I Q„I
~0.

One can now use Eq. (2.48) to calculate the phonon
self-energy mb(q, iQ.„),shown in Fig. 10, whose imagi-
nary part determines the sound attenuation coefficient
ab (q ) via

cob (q)
ab(q) = — Imvrb [q, i Q„~o~(q)+i0] . (2.49)

Cb

In d =3 one recovers Pippard's (1955) result (Schmid,
1973),

ab(q)=[cob(q)/cb]db(3m /m. )(1/q l)fb(Iq i),

In 2-d one obtains
(2.51a)

kF
aI(q)=aT(q)(cT/cL )= q l, d=2 .

8~ CLPi»

(2.51b)

In Eq. (2.51b), p;,„stilldenotes the bulk ion mass density.
An alternative route to these results has been given by

Kadanoff'and Falko (1964). They start out with the bare
vertex, Eq. (2.46b), which shows that the sound attenua-
tion is given by an electronic stress susceptibility g. . .

b b

which is defined by Eqs. (2.9) with the density operator p
replaced by the stress operator,."b(q) =X lk q/q][k b(q)]uk —q/2~k+q/2

k

where l =vF~ is the electronic mean free path, and

dI =(cT/cI )dT=kF/3m V p;,„cI
and

(2.50a)

(2.50b)

The stress susceptibility y, still contains the electron-
b b

electron interaction, but not the electron-phonon interac-
tion. The electron-electron interaction is then taken into
account within the RPA as in Sec. II.A.2.a above. The
result is

iQ„
ab(q)= ~, Im[g, , (q, iQ„)—[y, ( iqQ)]'/y (q, iQ„)II,„~~+ o,

pioncb
(2.53)

where the correlation functions are now for noninteract-
ing electrons. We see again that the screening correc-
tions vanish in the transverse case, since there is no cou-
pling between density and transverse stress. A calcula-
tion of the susceptibilities in Eq. (2.53) by means of the
techniques mentioned in Secs. II.A. 1.b, and II.A. 1.c
above leads again to Eqs. (2.50) and (2.51).

As in the case of the conductivity, one can go beyond
the quasiclassical approximation by replacing the vertex
function I in Fig. 9(b) by the crossed-ladder vertex A,

Fig. 7. These "weak-localization corrections" to the
sound attenuation have been calculated by Houghton and
Won (1985) and by Kotliar and Ramakrishnan (1985).
The perturbative corrections to lowest order are similar
to those to the conductivity, but an analysis of higher-
order terms (Kirkpatrick and Belitz, 1986a) revealed
that, unlike the case of the conductivity, the first-order
perturbative result cannot simply be exponentiated to
yield the critical behavior at the Anderson transition.
The problem was solved by means of field-theoretic tech-
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niques (Castellani and Kotliar, 1986, 1987, Kirkpatrick
and Belitz, 1986b), which revealed the existence of two
scaling parts for the sound attenuation. We shall come
back to this in Sec. III.C.2.

B. Perturbation theory for interacting electrons;
early scaling ideas

It is possible to study the interacting electron problem
in perturbation theory by allowing for the dynamically
screened Coulomb potential, Eq. (2.45a) (or simply a stat-
ic, short-ranged model potential), together with the
diffusion poles in the diagrammatic expansion. The sim-
plest possibility is to account for the interaction within
the RPA, neglecting the modification of the density ver-
tex, Eq. (2.31b), by disorder. This approximation, which
replaces the interacting problem by an effective nonin-
teracting problem, has been studied by Gold and Gotze
(1983a, 1986) and has been used to analyze experiments
(Gold and Gotze, 1983b, 1985; Gold et al. , 1984; Gold
1985a, 1985b).

In order to see the qualitative modifications of the lo-
calization problem induced by the interaction, one must
include diagrams that describe the interplay between in-
teractions and disorder. To first order in both the in-
teraction and the disorder this can still be done relatively
easily. As an example, two contributions to the electron-
ic self-energy are shown in Fig. 11. This interplay be-
tween diffusion and the Coulomb interaction was first
considered by Schmid (1974), who found that the inelas-
tic lifetime, i.e., the imaginary part of the self-energy, is
enhanced by diffusion and shows a nonanalytic tempera-
ture or energy dependence. However, the subject became
popular only after Altshuler and Aronov (1979a) found a
corresponding nonanalyticity in the real part of the self-

energy, which determines the tunneling density of states.
In d =2, the nonanalyticity takes the form of a loga-
rithm, and a logarithmic contribution was also found in
the first-order correction to the conductivity (Altshuler,
Aronov, and Lee, 1980). A remarkable aspect of this re-
sult was that, in the presence of interactions, ordinary
diffusion ladders, Eq. (2.38), lead to the same kind of log-
arithmic divergence as do the crossed ladders, Eq. (2.39),
in the case of noninteracting electrons. A large number
of perturbative calculations followed, which further
demonstrated the intimate interplay between disorder
and interactions and laid the groundwork for later
theories of the metal-insulator transition. This work has
been covered in many reviews, e.g. , Altshuler, Aronov,
Khmelnitskii, and Larkin (1982), Altshuler and Aronov(')
FIG. 11. Two Coulomb contributions to the electron self-

energy.

(1984), or Lee and Ramakrishnan (1985). There is no
need to repeat this coverage here. To deduce from per-
turbation theory a scaling theory of the metal-insulator
transition of interacting electrons proved very difBcult,
mainly due to the proliferation of the number of dia-
grams in the many-body formalism once one goes beyond
first order in either the interaction or the disorder. This
caused early attempts at this task to fail. However, after
Finkel'stein (1983a} mapped the problem onto an
effective field theory, the problem was also successfully
dealt with within the many-body formalism, using the
structure of the field theory as a guideline (Castellani, Di-
Castro, Lee, and Ma, 1984). Subsequently, the diagram-
matic many-body approach was pursued in parallel with
the field theory for a number of years, and it has played
an important role in the physical interpretation of the
coupling constants that appear in the field theory. We
shall describe the results of this work together with those
of the field-theoretic approach in the following sections.

Before we turn to the field-theoretic description of the
problem, let us mention the earliest attempt to construct
a scaling theory, that of McMillan (1981). He used very
general arguments to derive scaling equations that ex-
tended the one-parameter scaling of Abrahams et al.
(1979) by adding an interaction strength as a new param-
eter. The metal-insulator transition was proposed to cor-
respond to a fixed point at finite values of both disorder
and interaction strength. It was pointed out by Lee
(1982) that the paper contained a mistake [the Einstein
relation, Eq. (2.37}, was used with the single-particle
DOS instead of Bn/Bp] which rendered invalid the rela-
tions between exponents derived by McMillan. However,
his general scaling picture has proven to hold for all
universality classes in which the interaction strength does
not show runaway fiow (Castellani, DiCastro, Lee, and
Ma, 1984; Finkel'stein, 1984a).

III. FIELD-THEORETIC DESCRIPTION

A. Field theories for fermions

At the heart of the field-theoretic formulation of the
quantum-mechanical many-body problem is an expres-
sion of the partition function in terms of a functional in-

tegral of the form

(3.1)

Here f=g(x, r) is an auxiliary field that depends on posi-
tion x and imaginary time r, and g is the conjugate field.
For many-boson systems, 1t is complex valued and g is its
complex conjugate. For fermion systems, we shall see
that we need anticommuting (Grassmann) fields. S is re-
ferred to as the action, and we shall derive its functional
form below.

A very efficient way to derive Eq. (3.1) is to use so-
called coherent states, i.e., eigenstates of annihilation
operators. [Coherent states were first introduced in
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[a,&p]+=[a+,ap ]+=0, Va, P,
[a,ap ]+=5 p,

(3.2a)

(3.2b)

with [&,b ]+=ah +ha for any operators a, b. If the alge-
bra of eigenvalues is correctly chosen (see below), it fol-
lows from Eq. (3.2a) that one can find a common eigen-
vector for all a . Let that common eigenvector be ~it ).
The eigenvalue equation is

(3.3)

Operating on both sides of Eq. (3.3) with ap, and using
Eq. (3.2a), we find that the eigenvalues tP are not c num-

bers, but rather they anticommute. We are therefore
forced to consider anticommuting variables, often re-
ferred to as Grassmann numbers. In the following sub-
section we list as many (or rather, as few) properties of
Grassmann variables as is necessary for our purposes.
This coverage is not meant in any sense to be complete or
mathematically precise. For either purpose the reader is
referred to the books by Berezin (1966, 1987). Our expo-
sition follows Negele and Orland (1988), Itzykson and
Drouffe (1989), and Zinn-Justin (1989).

1. Grassmann variables

quantum electrodynamics (Glauber, 1963), hence the
name. ] Cxiven the coherent states, the procedure for bo-
sons (Casher et al. , 1968), is straightforward. For fer-
mions, in trying to follow the same arguments, one im-
mediately encounters the following problem. Let &+ and
& be creation and annihilation operators for fermions
with quantum number (or a set of quantum numbers) a.
The a + and & obey the anticommutation relations +f2(+ P)go]WAp+ (3.6)

G is closed under multiplication, and fulfills all axioms
for a graded algebra over (t . (t is called the Grassmann
algebra with M generators i'„.. . , g~. It is also called
the exterior algebra of the M-dimensional vector space
over C generated by the itj . (For further information see,
for example, Chap. IX.9 of Nickerson et al. , 19S9 or
Chap. 13 of van der Waerden, 1970). On an algebra with
M=2m, m HN, generators one can define an involution:
choose m generators g and with each P associate an
adjoint itj such that

(3.7a)

ag =a*/, Va HC, (3.7b)

where a * denotes the complex conjugate of a,

(3.7c)

4A'p= it p0. (3.7d)

On G one can define differentiation and integration
(Berezin, 1966). Left and right derivatives are defined by
their actions on mononomials,

group with respect to addition, and a vector space of di-
mension 2 over C. (3) Equation (3 4) permits the
definition of a multiplication operation on G by

fg =fogo+g [fog (&)+f «)go)4
+—g [fog2(Q P)+f i(a)gi(P) f i(P)gi(CK)

Let us consider a set of M objects g (a = 1, . . . , M ).
(We shall assume M ( ~ . Additional complications
occur for infinite M; see Berezin, 1966.) Let there be an
additive operation between the g, g + fp, and a multipli-
cation with c numbers such that the distributive law
holds. Let there further be an (associative) multiplication
operation g Pp such that

4p, 0p, ~
=o.p, 4p, 0p, ,

(3.8a)

g gp+QpP =0, Va, P . (3.4)

Now consider the set G of aH linear combinations of
mono nomials,

f=fo+Xfi(iz)4 + g f2(ci P)0A'p

(3.8b)

The chain rule holds in its usual form. For integration,
one defines a measure d g which satisfies

a&P

+ g f3(a;p, Y )it' it'pg~+
a&P&y

[dit. dip)+=[de. ep)+=o &ct P

and defines definite integrals

(3.9a)

M

f„(ai,. . . , a„W
n=o ' al, , a

(3.5)

where the f„arec-number valued, totally antisymmetric
functions of their arguments. It is tedious but straight-
forward to prove the following statements: (1) The ex-
pansion of f given in Eq. (3.5) is unique. (2) I( forms a

fdic =0,

Jdg g =1.
(3.9b)

(3.9c)

Notice that, as with ordinary functions that vanish at
infinity, the integral of a total difFerential (viz. ,
I=df /dg ) vanishes. Also notice that, according to
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this definition, integration is the same as di6'erentiation.
We give four integration formulas without proof (the
proofs can be found in Berezin, 1966, Negele and Orland,
1988, or Zinn-Justin, 1989).

Proposition I (integration by parts): Let f ( g),
g ( g ) H I( . Then

f
deaf(g)

g(g) = f dg f(P) g(g),
ts t3

(3.10)

[g,ats]+=[/, ttp ]+=[/, itis]+=[/, ap ]+=0,
Va, P, (3.14a)

(g aii)+ =a& g, Va, /3 . (3.14b)

exp

Then a common eigenvector of the & can be written
(Negele and Orland, 1988)

where Q= I Q ], and dP=dg . . dpi

Proposition 2 (change of variables): Consider the linear
substitution

(3.11a)

(3.15a)

where IO & denotes the ground state of the fermion sys-
tem. It is not hard to see that

I g& has the desired prop-
erty, viz. ,

with m &EC. Then

f dg f(g) =(detm ')f dr) f(g(g) ) . (3.11b)

Notice that the inverse of the Jacobian appears on the
right-hand side.

Proposition 3 (Dirac delta function): The Grassmanni-
an delta function defined by

(3.15b)

& yI =
& oIexp (3.16a)

We list four properties of the coherent state; the proofs
can be found in Negele and Orland (1988):

Proposition 1 (adjoint of coherent state):

o(g, pe)= fdg e ' e, a&f3&y&a,

has the property

f d gP(g, gp)f(Pp) =f(g ) . (3.12b)

with

Proposition 2 (overlap of coherent states):

(3.16b)

Proposition 4 (Gaussian integral): Let m be a complex
skew-symmetric matrix: m &= —

m& . Then

fdgexp g g m tsPts =[det(2m )]' . (3.13a)
a, P

Proposition 3 (completeness relation):

(3.17)

(3.18)

Corollary (generalized Gaussian integral): Consider a
Grassmann algebra G with involution, with generators

Let g;, g; be the generators of a Grassmann alge-
bra &I, which is isomorphic to G. Then for any inverti-
ble, complex matrix m,

Proposition 4 (traces of operators): Let A be an opera-
tor in the Fock space spanned by the complete set I I

n & ].
Then the trace of A can be written

trA =& &nI JIn &

f ~ dq.dq. exp y q.m.tsqti+y (nA. +q.n. )

a, P

= f Qd@.d@.e (3.19)

=(detm)exp —g il (m ') tjrits
a, P

(3.13b)

2. Fermion coherent states

We now return to our fermion system with annihila-
tion and creation operators & and 8+, respectively. We
define a Grassmann algebra by associating a generator g
with each &, and a conjugate generator g with each
& . We require

where the integrand on the left-hand side is an element of
the direct sum of G and G'.

Here &
—gI denotes the state given by Eq. (3.16a) with

P replaced by —g.
Equation (3.18), where 1 on the left-hand side denotes

the unit operator in Fock space, implies that the coherent
states form a complete set in Fock space (they are actual-
ly overcomplete, since they span the enlarged Fock space
defined over I( rather than C). Equation (3.19) is crucial
for writing the partition function in the form of Eq. (3.1).

3. The partition function for many-fermion systems

With the help of the coherent states, Eq. (3.1) can now
be derived as follows (Casher et al. , 1969; Negele and Or-
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land, 1988). Consider a many-fermion system with Ham-
iltonian operator H =P(&+,& ). We are interested in S[Q,p]= f d~g p (7.) +p g (~)

Z=tre ~ = fdp(g)e ( —P~e ~ ~g) . (3.20) d&H (3.24b)

Here K =8—pA' with X the particle number operator.
We have defined a measure dp(g)=1i dg dg, and we
have used the coherent-state representation, Eq. (3.19),
for the trace. The strategy is now to discretize imaginary
time by dividing the interval [O,p] into X steps of size
E —p/X. At each step we insert a unit operator ex-
pressed in terms of coherent states, Eq. (3.18). This
yields

N N y pkpkZ= lim f + dp(P") e
N~ oo

N —k(Q a )k —1 ( ' k

k=1
(3.21)

N
Z= lim f + dp(g) e

k=1
(3.22a)

where

with (g ~

= ( —g ~. In the limit N~ ~ it is sufficient to
keep terms to first order in c. Then we can expand and
reexponentiate exp( —EK ) in Eq. (3.21). With the help of
Eqs. (3.1Sb) and (3.16b) we find

where

g (0)=—g (P) .

This concludes the derivation of Eq. (3.1) and specifies
the action.

(3.24c)

B. Sigma-model approach to disordered
electronic systems

1. The model in matrix formulation

Wegner (1979) pioneered the formulation of the disor-
dered fermion problem in terms of classical matrix fields.
Wegner s original formulation started with bosonic (i.e.,
commuting) fields which describe diffusion of nonin-
teracting electrons. Efetov et al. (1980) have given an
equivalent formulation in terms of fermionic (i.e.,
Grassmannian) fields, and Finkel'stein (1983a) general-
ized the model to include interactions. . While for nonin-
teracting electrons the choice between a bosonic and a
fermionic formulation is, to some extent, a matter of
taste, the presence of interactions, and the resulting mix-
ing of energies, requires the use of fermionic fields. In
this section we present a generalized and expanded ver-
sion of the model derivation given by Efetov et a7. and by
Finkel'stein.

S[f,g]= —E g
k=1 a

+H(f",g" ') (3.22b)

a. The modelin terms of Grassmann fields

We consider a system of fermions with an action

S= —f dx g g (x) i' (x)+So+Sd;, +S;„,.a
87

with P = f. Here H—(f", g" ') is the Hamiltonian
H(&+, a ) with a+ and a replaced by g" and f" ', re-
spectively.

Equations (3.22) represent the final result, but for nota-
tional convenience it is customary to introduce a continu-
um notation. In the limit X~~ the set Ig, . . . , i'
defines a Grassmann-valued function g (i), ~E[0,P],
and it is natural to write

(3.23a)

(3.25b)

with 6 the Laplace operator. Sd;, describes non-spin-Rip
scattering by a random potential u(x),

Sd;, = —f dx g f (x)u(x)1( (x), (3.2Sc)

(3.25a)
Here we use four-vector notation, x =(x,r), and

fdx —= fdx f~~dr So .describes free fermions with
chemical potential p,

H(P", g" '):—H[f (r), g (r)] .

With a functional integration measure defined by
N

D[y, q]= »m
N~oo k

we can write

Z = D es[g~g]

with

(3.23b)

(3.23c)

(3.24a)

and S;„,describes a general two-particle interaction,

4This result (e.g., Negele and Orland, 1988) has been derived
by ordering the imaginary-time slices in the usual way, from
right to left. Some authors (e.g. , Popov, 1983) give the result
with a different sign of 8/B~ in Eq. (3.24b). This one obtains by
ordering the time slices from left to right. Since X is indepen-
dent of imaginary time, time ordering is inessential, and the two
results are equivalent.
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1S;„,= dx, dx2dx3dx4 g v(x, x2, x3 —x2, x4 —x, )g~ (x, )g~ (xz)g~ (x3)g~ (x4) .
01,02

(3.25d)

In writing Eq. (3.25d) we have used translational invariance in space and time. We assume the interaction potential v to
be real and spin independent. Hermiticity requires

U(x, y, z)=v(x —y+z, —y, —z) . (3.26)

We assume the random potential to be governed by a Gaussian distribution,

P[u]=exp AN—I rf dx(u(x)) fD[u]exp AN—Fr f dx(u(x)) (3.27)

The u-u correlation function then is One introduces N identical "replicas" of the system (with
N an integer) labeled by the index a. Then

tu(x)u(y)]d;, = fD[u]u(x)u(y)P[u]

1 6(x—y),
2ZNF~

(3.28)

N
ZN= D, exp S

o.= 1 cx= 1

(3.30)

lnZ= lim —(Z —1) .1

N P N
(3.29)

where ~ is the elastic-scattering mean free time and XF is
the (bare) one-particle density of states.

Quenched (as opposed to annealed) disorder is charac-
terized by static impurities and the necessity to average
the free energy rather than the partition function (see, for
example, Grinstein, 1985). This is accomplished by
means of the replica trick (Edwards and Anderson, 1975),
which is based on the identity

With a Gaussian distribution for the randomness, the cal-
culation of the ensemble average IZ ] ~;, amounts simply
to performing a Gaussian integral. The replica trick con-
sists of performing this average for integer N, continuing
the result analytically to real N, and taking the limit
N~O. Via Eq. (3.29), this procedure yields IinZ]d;, . It
reduces the calculation of a quenched average to that of
an annealed average for the replicated system.

In order to calculate correlation functions, we add
sources to the action,

oo 21

S ~S + g f + dx, g J' ' (x„.. . , xz;)g (x, ) ' P (x;)g (x;+, ) P (x2, ),
i =1 j=1 Ia,. I

(3.31)

and consider

S=ln Du I'u exp S (3.32)

We define correlation functions for the replicated theory as averages formed with the action S. These can be generated
by diA'erentiating with respect to the source fields J' '. For instance, the two-point correlation function reads

(P (x&)f (xz)) =— f ~ D[P~P~] g P (x&)P (x2) exp[S]
1 2 ~Z 1 2

1 6
lnZ

J(2i) p

(3.33a)

5The mathematical legitimacy of this procedure has not been established for the model under consideration. This point is not en-
tirely academic, as one can construct models for which the replica trick demonstrably fails (e.g., Verbaarschot and Zirnbauer, 1985).
For the description of phase transitions an important question is whether or not the replica limit commutes with the bulk or thermo-
dynamic limit. For noninteracting fermions, a way to avoid the replica trick is the supersymmetry method (Efetov, 1982). However,
it comes with mathematical problems of its own and has not been applied to the interacting problem.
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with a partition function

N
Z—: D, exp S (3.33b)

—T
Si~t= g g 5k +k, k +k w(k„kz,k3)

o, a' Ik,. I

XQ (k))f (k 2)Q, (k 3)Q (k4) .
We then obtain

t &li. (,)q. (,) &I...= 1 (y. (,)li: (,)), (3.34) The potential m is related to U by

(3.36d)

f (x)=T' ge " g (k)
k

(3.35a)

f (x)=T' ge " g (k),
k

(3.35b)

—i g. )s.(k.x.—co„~.)

k), k~, k3

XU(k„k~,k3), (3.35c)

where s1=s2=1, s3= —1, and for the spatial transform
we have set the normalization volume V= 1.
co„=2mT(n+ 1/2), n =0,+1, . . . , is a fermionic Matsu-
bara frequency, and we use a four-vector notation
k—= (k, ro„). We now perform the impurity average ac-
cording to Eq. (3.32). The Gaussian integration is easy,
and we obtain

where the correlation function on the left-hand side con-
stitutes an average with the action S. The same result
obviously applies to all higher correlation functions. We
now have the following prescription. Replicate the sys-
tem, and perform an annealed average. Calculate the
correlation functions, and let X~O ("replica limit" ).
This yields the averaged correlation functions of the orig-
inal system with quenched disorder.

Let us define Fourier transforms of the Grassmann
fields and the interaction potential,

w(k), k2, k3) —U(k2 k3yk3pk3 k2 —k, ) (3.37a)

and obeys the following symmetry relations (which fol-
low from Hermiticity):

w(k] k2 k3) w(k]+k2 k3 k3 k2)

w(k3 kJ +k2 k3, k, )

=w(k2, k„k,+k2 —k3) . (3.37b)

Disorder-averaged correlation functions can be obtained
from the action S, Eqs. (3.36), via Eqs. (3.33) and (3.34).
In what follows we drop the tilde on S and imply the re-
plica limit.

b. Spinor notation and separationin phase space

ri„(x)= 1

2

g„t(x)
g„t(x)
g„t(x)

—le„t(x)

(3.38)

In order to make the theory more tractable, we shall
want to perform a Gaussian transformation to classical
variables. To do so, it is convenient first to regroup the
Grassmann variables. We follow Efetov et al. (1980) in
defining bispinors,

nS= g (So+Sd;, +S;„,),
a=1

where

Sc =g g g (k)[iro„—k /2m+@]P (k),

(3.36a)

(3.36b)

The four degrees of freedom comprised by these objects
are the charge or particle-hole degrees of freedom and
the two spin degrees of freedom. For later reference, we
define a basis in the space of complex 4X4 matrices as
r;s~ (i,j =0, 1,2, 3) with

1
Sdis 4 ~ X X ~k)+k3, k~+k~

F @=11k,. I

X g $„.(k, )li„.(k,)P.,(l, )y~. ,(I,),
n, m
CT, 0

(3.36c)

7 0

1 0
0 1

0 —1

0 0 3

0 —i

—i 0
0 i

(3.39a)

with P„(k)=g(k, co„),etc. , and
1 0 0 i

01 '1 . 0
(3.39b)

6Gaussian integrals of the type encountered here can be per-
formed by expanding the exponential and integrating term by
term. In symbolic notation, fD[u]exp[ —(u +2ulil()]
= f D[u]exp [—u2] [1 —2upp+ 2u~(l(f) + . ] = const
X exp[(gg)~]. The last identity can easily be proven by induc-
tion. The same result is obtained by completing the square and
formally substituting u —+ u —

li tt .

0 1 i 0
—1 0 ' 3 0 —iS

The ~; are the quaternion basis and span the charge
space, while the s; serve as our basis in spin space. No-
tice that r.= —s = —io (j=1,2, 3), with cr the Pauli
matrices. We introduce a spinor notation
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g„t(x)
1(t„(x)= (3.40)

Then we can write the bispinor as

P„(x)g„(x)= szg„(x) (3.41a)
(b)

and define an adjoint bispinor,

g„(x)=(Cg„(x))= —( —P„(x),P„(x)sz ),1

0

$2

$2

0 =l7 i(3$2

with the charge-conjugation matrix

(3.41b)

(3.41c)

(c)

FIG. 12. Particle-hole scattering processes: (a) Small-angle
scattering; (b) large-angle scattering; (c) 2k+ scattering of a
particle-hole pair.

We define Fourier transforms of the bispinors,

rI (k)= fdxe' "g„(x),
(k)= jdxe '""g„(x).

(3.42)
1

dis 4~~ r g g X k&+k3, k2+k&
F a, P n, m Ik,. I

Notice that q(k, co„) is composed of 1fj( —k, co„)and

f(k, co„). With this notation, we can write the free-
fermion part of the action as

So=+g (r) (k), [iso„—k /2m+iu, ]rI (k)) (3.4j)
a k

and the disorder part as

X(g„(k,),r)„(k2))(g~(k3), g~ (k4)) . (3.44)

Here (q, g)—:g g denotes a scalar product in bispinor
space, which is given by the matrix product.

Before we turn to the interaction part of the action, let
us consider the wave-number constraint in Eq. (3.44).
Sd;, can be rewritten in three different ways, which are
identical,

4vrX~rSd;, =g g g (g„(k),g„(k+q))(q~(p), q~ (p —q))
a, pn, m k, p, q

=g g g (q„(k),g„(p))(g~(p+q), g~ (k+q))
a, P n, m k, p, q

=g g g (q„(k),g„(p))(g~( —k+q), rI~ (
—p+q)) .

a, P n, m k, p, q

(3.45)

Suppose q is small, i.e., ~q~ &&kF with kF the Fermi wave number. If we reexpress the g's in terms of the P's, we can
then give a distinct physical interpretation to the three different terms that appear: small-angle scattering, large-angle
scattering, and across-the-Fermi-surface or 2kF scattering of a particle-hole pair by an impurity, respectively. This is il-

lustrated in Fig. 12. Alternatively, Eq. (3.45) can be interpreted as taking into account different types of density fluctua-
tions that are slowly decaying in the long-wavelength or q ~0 limit. This is relevant because the aim of the field-theory
approach is to identify and to construct an effective theory for the slow modes. Notice that the spinor representation
mixes the second and third processes. Also notice that, since the sums in Eq. (3.45) are over all q, each of the three
different ways to write Sd;, actually covers a11 possible processes. Our ultimate goal is to construct an effective theory
for long-wavelength excitations. If one restricts the q sum in each of the three expressions in Eq. (3.45), each of them
covers a different region in phase space. It has been universally assumed in the literature that it is permissible simply to
add these three contributions. The second and the third are easily seen to be identical. We can thus write

(&) (2)
d1S d1S dlS

where

(3.46a)

Sd;. = g g g g'(g„(k),rl„(k+q))(g (p), rj (p —q)),1

F aPn mkp q

g g g g'(r)„(k),rj„(p))(q~(p+q), r)~ (k+q)) .1

aPnmkp q

(3.46b)

(3.46c)
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Here the prime on the q-summation symbol indicates the restriction to ~q~ && kF.
We now turn our attention to S;„„Eq.(3.36d). Here it is advantageous, and physically more transparent, to perform

the breakup into the three phase-space regions while still in the 1(j representation. We thus write

(I) (2) (3)
Sin, =Sin, +Si„,+Sin, ,

where

(3.47a)

S;„,= g X X X'w(k~p+q, p)((' (k)g .(p+q)g, (p)g (k+q),
a o o'kp q

(3.47b)

S;„,= g g g g'w(k, p+q, k+q)tg(k)g(p, +q)P, (k+q)g (p),
a oa'kp q

(3.47c)

g g gg'w(k, —k+q, p+q)f (k)g, ( —k+q)g, (p+q)g ( —p) .
a oa'kp q

(3.47d)

We next split these terms into spin-singlet and spin-triplet contributions, respectively. With the help of the spinor nota-
tion, Eq. (3.40), we can write

(&) (2) (s) (t)
Sing +Sing =Sing +Sing (3.48a)

where

ggg'r', ,'(q)(g (k),~ tP(k+q))(tp (p+q), s g (p)),
a k,p q

3s;„= g g g'r„' (q) g (g (k), z, g (k+ q))(p (p+q) ~ g (p))
a kp q i=1

Here we have defined singlet (s) and triplet (t) interaction amplitudes

r'k"~(q) =
—,'w(k, p+q, k+q),

r~&'„'(q)=w(k, p+q, p) —r~&" (q) .

They obey the symmetry relations

I""(q)=I "„"(q)=I'„'" ( —
q ) .

(3.48b)

(3.48c)

(3.49a)

(3.49b)

(3.50)

S „",and S „",describe small frequency-momentum transfer between a particle and a hole. They are therefore referred to
as the particle-hole interaction channel. S,'„,', on the other hand, describes small energy-momentum transfer between
two particles or two holes. It is therefore referred to as the particle-particle or Cooper interaction channel. Here the
splitting into spin-singlet and spin-triplet contributions is straightforward, and we write

S(3) Sc(s) +Sc(t)
int int int

where

S;„' = —Tg g gg'rk"(q)g (k)1( '( —k+q)g (p+q)g ( —p),
a ohio'kp q

(3.51a)

(3.51b)

s"t"= —T X X X X' r'k',"(q)4.(k)C (
—k+q W: (p+q 4".( —p) .

a o., o' k,p q

The superscript c refers to the Cooper channel, and we have defined the amplitudes

I k'~ "(q)=—,'[w(k, —k+q, p+q)+w(k, —k+q, —p )],
which obey the symmetry relations

(3.51c)

(3.52)

(3.53)

In Eqs. (3.52) and (3.53) the plus and minus signs apply to the singlet and triplet amplitudes, respectively. We note that
for a pointlike, instantaneous interaction, I""vanishes. This is a consequence of the Pauli principle.

Finally we express S;„,in terms of bispinors. We shall be concerned only with even-parity potentials. From now on
we shall restrict ourselves to this case, i.e., we assume that the interaction amplitudes are invariant under
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(k, p, q)~( —k, —p, —q). Using this assumption as well as the symmetry properties (3.50) and (3.53) one easily con-
vinces oneself that the four contributions to S;„,can be written as

S,'„",= ——ggg' g ( —)"(g (k), ( r„es, )q (k+q))l'k' (q)(q (p+q), (r„so)rl (p)),(s)—
a k,p q r=0, 3

(3.54a)

(t)S'",= ——ggg' g (
—)" g (g (k), (r„s;)21 (k+q))l'k" (q)(21 (p+q), ( r„N(s)g (p)),

a kp q r=03 i=1
(3.54b)

S;„", = ——g g g' g g (il„(—k) (r„so)21 „+(
—k+q))l"'I,') (q m )

c(s)
Int

a k, p q nl, n2 r =1,2 n&, n2

X('g „(p), (&„(8)so)'g„,+. ( p q)),

c(t)
3

S;„',"=——g g g' g g g (21„(—k), ( r s)q „+( —k+q))
a kip q n&, n2 r=1,2i =1

(3.54c)

XI'(k" (q, m )(g „(—p), (r„ss;)21„+( —p —q)) .
nl, n2

(3.54d)

c. Decoupling of fhe four-fermion terms —f dx[(v(x)) +2v(x)A(x)]
(3.57)

The next step is to perform a Gaussian transformation
(Stratonovich, 1957; Hubbard, 1959) on the action. The
objective is to integrate out the Grassmann fields and to
formulate the theory in terms of c-number fields instead.
Among other things, the resulting field theory can then
be examined or approximately solved using saddle-point
techniques.

We start with Sd;,', Eq. (3.46b). If we define a
Grassmannian field

where we have again dropped a multiplicative constant.
Since A (x) is self-adjoint, v(x) can be chosen to be real.

Now consider Sd;,'. Here the terms that belong togeth-
er in k space are members of different scalar products, so
we shall have to work with matrix fields. We introduce
covariant and contravariant indices such that 'g denotes
the elements of g, and;g denotes the elements of g. If
we define a Grassmannian matrix field

A(q)= 1 g g g (g„(k),il„(k+q)),
+4~NF r

then we can write

(3.55)

1B„p(q)= g;rl„(k)'g~ (k+q),
2m' ~

then we can write

(3.58)

(3.56)

Here, and in all following real-space integrals, the restric-
tion to long-wavelength Auctuations will be implicitly un-
derstood. Notice that A(x) is self-adjoint, A(x) = A (x).
Now we introduce a scalar c-number field v(x). Then we
can write the contribution of Sd';,' to the partition func-
tion as a Gaussian integral over v(x),

Sd(2,) = —g g g' g Bg (q), 'B~„(—q)
aPnm q ij

dxtr B x (3.59)

Here tr denotes the trace over all discrete indices. B has
the property B(x)=B (x). Now we introduce a c-
number matrix field Q(x). Then we can write

exp[Sd;,']= J D[Q]exp. —Jdx tr(Q(x))2+ (21(x)~Q(x)q(x))
+2vrNF r

(3.60)

Here we have introduced a new scalar product in bispi-
nor space,

matrices. For instance, we can expand Qg in the basis
given by Eq. (3.39),

a n i
(3.61)

Q is an infinite matrix whose matrix elements Q„g are
spin quaternions and can be represented by complex 4 X4

3 3

Qg (x)= g g „'Qg(x)(r„s,. ) .
r=OI =0

(3.62)

Since B =BT, we can choose Q to be Hermitian, Q+ =Q.
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g+ —( Tg T( —g (3.63)

Furthermore, as an operator in bispinor space, Q must
respect the scalar product, Eq. (3.61). Since g and g are
related by charge conjugation, Eq. (3.41b), this imposes
the condition

OgaP ( )rOgPa r —0 3

igaP —
( )r+ligPa r P 3.

& 1 2 3

ogaP ogPa r=1 2

'Q P= —'QP, r=l 2 i=1,2, 3 .

(3.66a)

(3.66b)

(3.66c)

(3.66d)
From the first equality in Eq. (3.63) it follows that the ele-
ments of Q have the structure

p
Gyp Gyp crt

ap
nm

dye dLT

C d G

(3.64)

ig aPe igaP r —P 3 (3.65a)

The equivalent statement in the expansion (3.62) is that
the elements of Q describing the particle-hole degrees of
freedom are real, while those describing the particle-
particle degrees of freedom are purely imaginary,

Next we separate S;„,by means of Gaussian transforma-
tions. In order to facilitate the calculations, we make
two simplifying assumptions concerning the interaction
amplitudes. First, we neglect the k and p dependence of
the I kz(q). For our purposes this does not mean any loss
of generality. Later we shall construct an effective theory
for slow (i.e., density) modes only. Therefore, we shall be
interested only in the scalar component of the I k in a
multipole expansion. Second, we neglect the frequency
dependence of the amplitudes I""and I"'. This is
consistent with the symmetry relations (3.50) and (3.53);
all work done to date has been for instantaneous interac-
tions. For I"",we cannot drop the frequency depen-
dence lest the amplitude vanish, so in this channel we
keep the full frequency dependence.

We define Grassmannian fields
i gap e igap
r nm r nm~ r=1,2 . (3.65b)

(3.67)

In addition, from the Hermiticity requirement we obtain
the symmetry properties and four matrices M'"' (u = 1,2, 3,4),

2 ( u)a1P1'a2P2
rl r2 n1m1, n2m2

5; 0 for u=1,
r1 1

5; ~
for u=2,

j=1

I'"'(x—y)5; o for u =3,
(3.68a)

rir2 l1iltli, t22PI2 Iy 2 a P a P a a r r [5r i+5r 2]5i i 5~ 3I'„"' „(x—y, m, +n, ) g 5; for u =4,
j=1

(3.68b)

where we have defined I'"=I",I' '= I'", I "'=I"', I' '= I'". Then we can write
4

S,„,= fdxdy g gb, ,(x)MI2'(x —y)b, &(y),
Q=1 1,2

where 1 —=(a,p„r,ii, n, m, ), etc. If we introduce a c-number field X,(x), then we can write

4 4
exp[S;„,]=fD[X]exp —g fdxdy+X, (x)MI2'(x —y)Xz(y) exp —2 g f dx(ri(x)~pi "i(x)g(x))

u =1 1,2 Q =1

(3.69)

(3.70)

Here we have used the fact that M2i'(y —x) =M'i2'(x —y), which follows from the definition of the M'"' and the sym-
metry relations for the I"s. We also have defined four new operators in bispinor space

0'"' (x)=g g'X'"' p(x) s (3.71a)

where

~'i"'(x) = f dy +M', z'(x —y)X'2(y) .
2

(3.71b)
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Let us now inspect Eqs. (3.43), (3.57), (3.60), (3.70), and (3.71). We see that we have rewritten the action in a form that
is bilinear in g, at the expense of introducing new fields. The partition function can be written

Z= D exp S (3.72)

with

fD[ ]D[ ]D[X] ol. r) 'Ql g;, (Q»R '9);„t( '9 '91
(3.73)

(3.74)

The mentioned bilinearity of S in g allows one to integrate out the Grassmann fields by means of the operator identity

f dx(g(x) Oq(x)) )&& J dxtr(lnO(x))/2Di)e = detO =e

which follows from Eq. (3.13a). The result can be simplified by shifting Q,
4

Q(x)~Q(x)+iv(x)/&2+i +2vrNFr g 0'"'(x) . (3.75)

v(x) can then immediately be integrated out. Again we drop multiplicative constant contributions to Z. If we further
notice that trO'"' ~ 5„1,we can write the action in the form

exp(S[Q ])=exp —fdx tr[Q(x) ] ——tr ln[ico„+6„/2m +@, 2iQ(x—)/+2m Nzr]2 1

—(1/2N, )(trQ(x)) fD[X]exp( —%[X,Q]), (3.76a)

where

4

&[X,Q]= P f dxdyP X()x) M(2( x—y)X&(y)
1,2

4

2~NFr f—dxtr g 0'"'(x) +2i (/2vrN~r f dx g tr(Q(x)0'"'(x))
4 =1 M =1

+i+2vrN~r/N, f dxtrQ(x)trO"'(x) —(m NFr/N) fdx(trO'"(x))',

and X, contains a free sum over frequency indices,

N, = 1 2N g . —

(3.76b)

(3.76c)

We note that the resulting action is a quadratic form in X, so we can also integrate out X exactly. This procedure is
more involved, and we devote the next subsection to it.

d. The mode(in terms of classical matrix fields

We simplify our notation by defining a scalar product in the space of the fields X1 as

(X~X)=f dx+ X( x) X( x). (3.77)

Then the first term in X, Eq. (3.76b), is simply

y (XlM(")X) .
0 =1

(3.78)

For the second term, we notice that trO'"'O"-6„„dueto the spin and charge structure of the matrices M'"', Eqs.
(3.68). It is therefore sufficient to consider

fdxtr(0'"'(x)) =( —)"2TI'"' g (X~M'"'X), u =1,2, (3.79a)
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fdxtr(O' '(x)) =2TI' ' g (X~M' 'X), (3.79b)

fdxtr(O' '(x)) = 2—T(X~P' 'X) .

In Eqs. (3.79a) and (3.79b) we have for simplicity assumed short-range interactions,

(3.79c)

r'"'(x) = I'"'|i(x) . (3.80a)

For our purposes this will not mean any loss of generality for u =2, 3. On the other hand, the long-range nature of the
Coulomb interaction implies that I'" has a contribution that is not short ranged. This contribution will be considered
separately in Sec. III.B.3.d below.

I" ' is defined as

with

P', '(x)=y', '(x)M', '(x),

yI", (x)=y'„" „(x)=f dye l"' (y, n, +m, )r"' „(y+x,n, +m, )yr'„" „(x,n, +I, ) .

(3.80b)

(3.80c)

Notice that, as a consequence of our assuming instantaneous interactions, free frequency sums appear in Eqs. (3.79a)
and (3.79b). These sums, which formally are infinite (or linearly dependent on any frequency cutofI), will be of no conse-
quence for observable qualities, as we shall see. For the next term in Eq. (3.76b), we find

fdxtr(Q(x)O'"'(x))=+4(Q~M'"'X), + for u =1,2; —for u =3,4 .

Finally, we have to consider trO"'(x). If we define a matrix
2

L„(x)=(4~)N,)N, r Tr"'y |(x)S„.S„.S„„n„,n, , S, ,S.,f„,,

(3.81)

(3.82)

then we can write

N,fdx(trO"'(x)) = (X~LX),
mN~~

(3.83a)

and

—2N, /mNF~fdxtrQ(x)trO'"(x)= (X~LQ) .Tr"'y„ (3.83b)

Collecting our results, we now have

Q —3

/[X, Q]= y (X~M ~"~X)+8j/277NF7/(Q~M. ~ "~X)—y (Q ~M~ "~X) —(X~LX)—
1

2i +2~N~r
(, )

(X LQ),
~N, r"'Tr y„

(3.84)

where

M', "'(x)= 1+4m N I'"'Tr g M'"'(x),

+ for u =1, —for u =2, 3, (3.85a)

M', ~'(x) =M', 2'(x)+4vrTrNFP', 2'(x) . (3.85b)

Before we proceed to integrate out the fields X, let us
pause and consider the structure of Eqs. (3.84) and (3.85).
The operator L couples only to the particle-hole spin-

singlet degree of freedom, and the matrices M " ' ' are
simply multiples of the matrix M. The fields X, which
describe the particle-hole triplet and the particle-particle
singlet channels, respectively, can therefore be integrated
out immediately. The particle-hole singlet channel,
u=1, we shall deal with below. The result for the
particle-particle spin-triplet channel, u =4, can be for-
mally expressed in terms of the inverse of the operator
M' '. However, this inverse is rather awkward to deal
with in explicit calculations later. To deal with this prob-
lem, we note that the difference between M '"' and M'"' is
of first order in the small parameter T~ for all u.
Finkel'stein (1983a) has argued that these terms should
therefore be irrelevant. We follow this reasoning and re-

Rev. Mod. Phys. , Vol. 66, No. 2, April 1994



288 D. Belitz and T. R. Kirkpatrick: The Anderson-Mott transition

place all M's by M's.
Integrating out X for the channels u =2, 3,4 is now

straightforward, and the contribution to the action is

with

Q =(M'" L—) '(aM'" bL—)Q (3.87b)
S'"=""[g]= —32~N,.y (g IM'"'I g) .

9 =2
(3.86)

For the particle-hole spin-singlet channel (i.e., u =1), we
have

&'"="[X,g]=(XIM'" —L I&)—(g I~M"' —bL I&)
a = 4i +— 2vrNFr, (3.87c)

—(x I
~M" ' —bL

I g )

=(x 0IM—"' I. Ix——g )

—(g IM"' —L lg), (3.87a)

b = i (/—2~N~r/mNFI'"Tr g .

The corresponding contribution to the action is

(3.87d)

S,'„",-"[g]=(g l(aM'" —bL )(M'"—L )-'(aM'" —bI. ) I g )

=a (QIM"'Ig) —b (QILIQ)+(a b) (Q—l[1 L(M'"—) '] 'LIQ), (3.88)

So far we have assumed that the inverses of M'" and I
exist. This is not the case, since the operators

i=4 Tr"'y ~N, r/N, . (3.91b)

n)n2 7$3n4 7j)+n3 tl2+tl4

=16n)n2n3n4n)ngn3n4

(3.89a)

(3.89b)
Let us collect our results. With the help of Eqs.

(3.76a), (3.86), and (3.90) we can write the action

do not have an inverse, and neither does their sum. We
can circumvent this problem by adding a sma11 diagona1
term to M,

1l2 1l3 n4 77 ] 113 ng 114 fl
1 n2 7l3/l4

(3.89c)

b'+(a b)' —— (Q IL Ig) .
Xl —m

and letting c, ~O in the end. M is invertible, and we fInd

s,'.", "[Q]=~'(QIM'"Ig)

—mXFS[g]= fdxtr(Q(x))
8&

+ f dxtr1n[itu Ho+i g(
—

x) /2r] /2 +S;„,[ Q],

(3.92a)

(3.92b)

(3.90)

Here a and b are given by Eqs. (3.87c) and (3.87d); from
Eqs. (3.68a) and (3.82) we have

4

S;„,[Q]=— g fdx[g(x)y'"'Q(x)]+5S;„,[Q],
0 =1

(3.92c)
Tm= ——I (1)
2

(3.91a) with

[Qy"'Q] =K"' g 5„„„„gg ( —)"tr(r„cesog„„)tr(r„sog„„), (3.92d)

n3n4

3

[Qy' 'g] = —K' ' g 5„+„„+„gg ( —)" g tr(r„cgs, Q„„)tr(r„es,Q„„),
i=1

n3n4

(3.92e)

The validity of this procedure is not obvious, mainly because of the infinite quantity g„multiplying the small parameter Tr For.
frequency-independent interaction amplitudes, one can actually keep the terms of 0( T~) and demonstrate that they are of no conse-
quence. This is shown in Sec. III.B.2 below. However, by dropping the frequency dependence of I ' ' one loses the particle-particle
spin-triplet channel altogether. See the discussion after Eqs. (3.66).
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[Q y' 'Q ]= —K' ' g 5„+„„+„+g tr, [ tr, (r„eso Q„„)tr,(r„ soQ„„)], (3.92f}

n3n4

3

[Qy' 'Q]= g &„'„' „„5„+„„+„gg g tr, [tr,(r„s,g„„)tr(r„es,g„„)]. (3.92g)

n3n4

Here tr =tr tr, with tr acting on the ~'s and tr, acting on
the s's, and we have defined new interaction amplitudes

(3.92}i)

In later sections we shall go back to the notation X",
and + instead of &[

respectively. Note that. K"&0 for a repulsive interac-
tion. Finally, 5S;„,in Eq. (3.92c) is given by

5S;„,[Q]=— b +(a b)—
Nl —m 32N,

2

cently (Belitz and Kirkpatrick, 1992). The most general
saddle-point solution would be very complicated, as
several different kinds of spontaneous symmetry breaking
can occur. It is therefore expedient to restrict oneself ini-

tially to discussing different cases separately. We shaH

demonstrate the derivation of the noninteracting saddle-
point solution and of disordered Hartree-Fock theory
and BCS-Ciorkov theory in the interacting case. Super-
conducting saddle-point solutions involving the particle-
particle spin-triplet channel will be discussed in Sec.
VIII. Magnetic solutions, as well as solutions describing
interplay between magnetism and superconductivity, ex-
ist but have not been considered so far.

XN~ TI'"g f dx(trQ(x))
n

(3.92i) a. The saddle-point solutionin the noninteracting case
and Hartree-Fock theory

with a, b, l, and m given by Eqs. (3.87c), (3.87d), (3.91a),
(3.91b), and N the number of replicas. Notice that in
writing Eqs. (3.92} we have scaled the Q fields with a fac-
tor Qm N~ /8—r. + +

Let us consider the three terms Eq. (3.92a) contributes
to the saddle-point equation. The first term is

2. Saddle-point solutions

5 fdytr(g(y)) =8
5'„QP„(x)

„'Q„~(x),

In this section we consider solutions of the field theory
given by Eqs. (3.92) which one obtains in the saddle-point
approximation. The saddle-point equation is

5S[Q]/5'„Q„P(x)=0 . (3.93)

The saddle-point solution of the noninteracting theory,
Eq. (3.92a) with S;„,=0, has served as a starting point for
the derivation of the nonlinear sigma model, both for the
noninteracting (Pruisken and Scha, fer, 1982) and the in-

teracting case (Finkel'stein, 1983a). The latter procedure
requires some justification, which we shaH come back to
in the next subsection. Saddle-point solutions of the full
model, Eqs. (3.92), have not been discussed until very re-

with

+
3

=5~—g 5,„,
@=1

(3.94}

—:—5 p5„G„(x—y)

and expand the logarithm. This yields

(3.95a)

In the second term, we denote the bare Green's function
by

"~(x,y)= —5 P„(ice„—Ho)„y

f dytrln —(9 ) '(y)roso+ Q(y) = — Q„p(x,x}trr„trs;
5i gpa ( 2~ 2~

2

g (9 -'„QQ )„~(x,x)trr„r„trs,s,
2~ —7—

3

9 ='„QQ )g(x, x)trr„r„r„trs;s,s, .

7rr ii
(3.95b)

The right-hand side of Eq. (3.95b) has the structure of a Dyson equation. This identifies ig /2r as the self-energy, and
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'=(0 ) '(roso) —ig/2r (3.95c)

as the inverse dressed Green s function. This identification can be confirmed by retaining a source in the action, Eq.
(3.31), while transforming to the Q variables (Pruisken and Schafer, 1982). Finally, from the interaction term we have
the contributions

6
5'„Q~„(x)

5
5'„Q~„(x)

5
5'„Q~„(x)

5
5'„Q~„(x)

32K' ' g 5 +„„+„'„Q„„,(x),
n)n2

+
fdy[g(y)y'"g(y)]=5. ,5„0 32m''" y 5.+„„+„„g„-„(x),

1 2

0 +
fdy[g(y)) "'Q(y)]= —5.p +

+ i r

0

fdy[g(y)) "'Q(y)]= 5.—+o + 16&"' X 5

0 r nln2

0 0

fdy[Q(y))'"'Q(y)]=5. p +
+ I 0 r

(3.96a)

(3.96b)

(3.96c)

(3.96d)

Inspection of Eqs. (3.94)—(3.96) shows that the first
term on the right-hand side of Eq. (3.95b) is the only one
that can provide an inhomogeneity (viz. , the bare Green's
function) in the equation for Q. If either r&0 or i&0,
then there is no inhomogeneity, and the self-energy will
be nonzero only if there is a broken symmetry, in which
case Q serves as the order parameter. '„QWO, r=0, 3,
i =1,2, 3 describes magnetism, a possibility that we shall
ignore. „QWO, r =1,2 describes spin-singlet supercon-
ductivity (see the next subsection), and ', QWO, r=1,2,
i = 1,2, 3 describes spin-triplet superconductivity (see Sec.
VIII). For now we restrict ourselves to the case with no
broken symmetry and make the ansatz

'„Qg(x)=5„05,o5 „5p(
—i2&)X„.

This yields

(3.97)

r„= y G„(k)— rC"'Tr y X„,2m' &
(3.98a)

where we have omitted the contribution from Eq. (3.96e)
since it vanishes in the replica limit. If, in addition to the
restrictions inherent in the ansatz (3.97), we neglect an ir-
relevant real contribution to X„that simply renormalizes
the chemical potential, and consider the low-frequency
limit and assume X„=A„withA„=—A „,we obtain

In deriving Eq. (3.96d) we have made use of the symme-

try relation, Eq. (3.53). Finally, 5S;„„Eq.(3.92i), gives a
contribution proportional to

fdy(trg(y)) =5 +,.05„o5„2trg(x).5
5'„Q~„(x)

(3.96e)

This is the usual self-energy contribution from elastic im-
purity scattering, and Eq. (3.98b) in Eq. (3.97) gives the
saddle-point solution of the noninteracting theory (Efetov
et a/. , 1980; Finkel'stein, 1983a). If we do not assume X„
to be an antisymmetric function of n, we find

X„= g G„(k)
2vrNF

+ 2K'"[1+O(Tr)]QTQG (k) .
~XF2 k m

(3.98c)

XF
(3.99)

We make this substitution in Eq. (3.98a) and solve the in-
tegral equation for X„.This yields

%'e remember that the particle-hole singlet interaction
amplitude K'" is the sum of an exchange and a direct
contribution [this can be seen from Eqs. (3.92h) and
(3.49)] and recognize Eq. (3.98c) as the Hartree-Fock
equation in the presence of elastic scattering; see the di-
agrammatic representation in Fig. 13.

In accord with the discussion after Eq. (3.85) we have
omitted corrections of O(Tr) in Eq. (3.98). As we have
mentioned earlier, this is unnecessary. Let us go back to
Eq. (3.85a), keep the correction term, and use Eq. (3.92h).
This leads to the following replacement of K"' in the ac-
tion, Eq. (3.92d):

g G„(k)= sgn(co„) .
2~NFw k 2w

(3.98b) FIG. 13. Diagrammatic representation of the self-energy in the
saddle-point approximation.
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X„= QG„(k)+ K"'g Tg G„(k),
2~NF~

„

(3.100) and (3.66c). We solve Eq. (3.101a) for b, —=b.
„

in
the limit w~oo and find

(3.98c')

which is Eq. (3.98c) with the correction terms Uanishing
identically. In the next subsection we shall find the
analogous result for the particle-particle channel. We
conclude that, at the level of the saddle-point solution,
the terms proportional to Trg„drop out of the final re-
sults for observable quantities. Presumably this will also
be true, order by order, in the loop expansion to be set up
in the next section, but this has never been checked ex-
plicitly.

K' 'g T gF„+(k).
~XF2

Equation (3.101c) for F„+can be rewritten

F„+(k)=b,G „(k)G„(k),
where

G„(k)=G„'(k)—Go(k)~F+(k) .

Solving for F„+,one obtains the Gorkov functiori

F„+(k)=
a)„+pi,+b,

(3.102a)

(3.102b)

(3.102c)

(3.103)

b. 8CS-Gorkov theory as a saddle-point solution
of the field theory

where g&=k /2m —p, and the saddle-point equation
takes the familiar form 6=0, or

„'Q~„(x)=5 P„,5;O5 „2'b. (3.100)

This ansatz implies that we work to leading order in 1/r
only, as we have no disorder-related self-energy. The fac-
tor of i is convenient to make the gap function 5 real
(notice that we have expanded in quaternions rather than
in Pauli matrices, as is customary in superconductivity
theory). Equation (3.100) in Eq. (3.93) yields

We now turn our attention to saddle-point solutions
describing superconductivity. For simplicity, we neglect
normal self-energies coming from the interaction by put-
ting K"'=E'' '=0. That is, we do not explicitly consider
the Coulomb repulsion, and K' ' should be interpreted as
containing the Coulomb pseudopotential: K' ' ~ —k
+p . We also ignore the possibility of triplet supercon-
ductivity, K' '=0. We shall consider the case K' '%0 in
Sec. VIII.

Since BCS-Gorkov theory (Abrikosov and Gorkov,
1958, 1959; Gorkov, 1959; see also Abrikosov et al. ,
1975) is already fairly complicated, let us first derive BCS
theory in the clean limit. Accordingly, we make the an-
satz

2+&2+~2 (3.104)

As a result of this more complicated ansatz, the equa-
tions for the Green's functions F+ and 6 will become
more complicated, but the structure of the theory is the
same as before, and the result will again be Eq. (3.104).
Equation (3.105) in Eq. (3.93) yields

, K"'g T g F„+(k)+ g F„+(k),
2~NF

X„= g G„(k).
FT

(3.106a)

(3.106b)

Equation (3.104) is the gap equation of BCS theory (see,
for example, Abrikosov et al. , 1975).

Now we repeat the calculation for arbitrary ~ by in-
cluding the disorder piece of the self-energy. Equation
(3.100) gets replaced by

'„QP„(x)=5 p5;02ri[ —5„5„OX+5 „5„,6 ] .

(3.105)

(3.101a)'

K "'=K"' 1 — K''"Tr y. (3.101b)

The function F + is given by the infinite series

F„+(k)=b.„G„(k)G„(k)

X g (
—) (b,„)[G„(k)G „(k)]

v=0
(3.101c)

Here we have used A„=A „,which follows from Eqs.

Here we have again kept the terms of O(Tr) in the ac-
tion, and therefore replaced K' ' by [cf. Eq. (3.85b)]

—1

The functions F+ and 6 are most conveniently expressed
in terms of F + and 6 from clean BCS theory. The latter
are given by Eqs. (3.102b) and (3.102c) and have to be
augmented by the normal self-energy X in order to yield
F+ and 6. Terms linear in X are easily incorporated by
writing (in symbolic notation)

F+=F++F+XG+GXF++0(X ),
G =G+ GXG F+XF ++O(X —

) .

(3.107a)

(3.107b)

For our purposes, F=F+. This would change, for ex-
ample, in the presence of a magnetic field. From the usu-
al structure of Dyson's equation it is now obvious that
the result to all orders in X can be obtained by dressing
one of the BCS-Green's functions in the first-order terms
with X. With frequency and wave-number dependence
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put back in, we have

E„(k)=E„+(k)+F„+(k)X„G„(k)+G„(k)X„E„+(k),
(3.108a)

G„(k)=G„(k)+G„(k)X„G„(k)—F„(k)X „F„+(k).
(3.108b)

F+(k) =

G„(k)=

1

Un ~„'+(gk/il„)'+&'
iso„+gk /i)„

'0, co„+(g„/ii„)+b, 2

(3.109a)

(3.109b)

with

A graphic representation of Eqs. (3.108) is given in Fig.
14. These are the Gorkov equations in standard form,
and the remainder of the discussion can be found in text-
books (e.g., Abrikosov et al. , 1975). The final result is

of Eq. (3.92a) contains a term linear in Q which can be el-
iminated by a suitable shift of Q. It is possible, and phys-
ically appealing, to expand about the Hartree-Pock
saddle-point solution, Eqs. (3.97) and (3.98c). We notice
two points, however. (1) With our static potential, the
Hartree-Fock saddle point, Eq. (3.98c), differs from the
noninteracting saddle point, Eq. (3.98b), only by an addi-
tive constant. The interaction therefore just shifts the
chemical potential and is of no deep significance. (2)
Keeping this shift, and the resulting self-consistent
change of the first term in Eq. (3.98c), amounts to an ap-
proximate consideration of Fermi-liquid corrections to
the parameters of the effective theory to be derived.
Since the effective theory should be interpreted as con-
taining the exact Fermi-liquid corrections stemming from
the nonhydrodynamic regime (see Sec. III.B.3.d below), it
makes little sense to include these approximate effects ex-
plicitly.

With these points in mind, we write (Finkel stein,
1983a)

~„=1+ y F+(k),
277 F7

(3.109c) Q =Qsp+ Q —2rQ, (3.110a)

and the gap 5 still determined by Eq. (3.104).
A remarkable aspect of this result is that the gap is in-

dependent of the disorder and therefore so are all ther-
modynamic properties. This fact is often referred to as
Anderson's theorem (Anderson, 1959b). The physical
reason behind Anderson's theorem, namely, particle
number conservation, is completely obscured in the
above derivation. It can be seen more clearly by express-
ing the superconducting T„and hence 5, in terms of a
density-density correlation function for noninteracting
electrons (see, for example, Belitz, 1990, and Sec. VII
below). In the absence of magnetic fields or magnetic im-
purities, the correlation function is to be taken in the
homogeneous limit, q ~0, where, due to particle number
conservation, it depends on disorder only through the
DOS; see Eq. (2.36).

where

'„(Qsp)„(x)=5„05;05„5psg ( „) (3.110b)

Qnm 5ap nm &n SOS $0 (3.110c)

=tr ln[ —HO+ iQsp(x)/2r]

and expand the action in a Taylor series about Qsp. The
terms linear in Qsp vanish, the first term on the right-
hand side of Eq. (3.92a) yields a term proportional to
tr(Q ) and one proportional to tr(QQ), and the only
nontrivial contribution comes from the tr ln term in Eq.
(3.92a). To second order in Q one finds (McKane and
Stone, 1981;Finkel'stein, 1983a)

tr 1n[ico —HO+iQ(x)/2r]

3. The generalized nonlinear sigma model + tr[Qsp(x)Q(x)Qsp(x)Q(x)]
8

a. An effective theory for diffusion modes
+mN~tr[QQ(x) ], (3.111a)

Equations (3.92) have been derived for slowly varying
matrices Q. It is therefore natural to expand in powers of
the gradient of Q and in powers of the external frequen-
cy. Furthermore, the second term on the right-hand side

F+

where Qsp is the saddle-point Green's function,

Qsp = [(9 ) '(rO sO ) —iQsp /2r] (3.111b)

in the limit of zero frequency. Adding the remaining
terms in Eq. (3.92a) we find

—VLF
~[Q l = g «[Q«)Q( —k)]

8&

6 G F F+
+ ~Z

FIG. 14. Diagrammatic representation of the Gorkov equa-
tions.

X 1 — g Gsp(p)Gsp(p —k)1

2m.&Fz

mNF+ J d xtr[ QQ( x)] +S;„,[Q —2rQ] .
2

(3.112)
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Here Gsp is related to Qsp in the same way as G to 9 in

Eq. (3.95a). For reasons that will become clear below, we
first restrict ourselves to fluctuations Q„with n ~0 and
m ~ —1 or n —1 and m ~0. For these cases the term
in the square brackets in Eq. (3.112) is readily identified
as an essential ingredient in the diagrammatic derivation
of the diffusion pole in Sec. II. We have [cf. Eqs.
(2.31)—(2.32)]

1 — g Gsp(p)Gsp(p —k)= —1 —Io(k, Q=O)1

7T FV

=~Dk +O(k ),
(3.113)

where D =UF&/d is the bare diffusion constant in d di-
mensions. Neglecting terms of order (VQ), 0, and
Q(VQ), we now have

S[Q ]= — KpD—f d x tr(VQ(x) )

~SF+ fdxtr[QQ(x)]+S;„,[Q] . (3.114)
2

So far we have neglected Q in the argument of S;„,. We
shall see in the next subsection that S;„,[Q] is effectively
proportional to 0, so the neglected terms are of O(A ).
We have also ignored fluctuations Q„with n;m ~ 0 or
n, m ~ —1. It is easily shown that, in the Gaussian ap-
proximation, fiuctuations Q„with n, m ~ 0 or
n, m ~ —1 are massive in the sense that they are not
singular in the long-wavelength, small-frequency limit.
However, these Auctuations cannot be simply neglected
because at higher order the massive Q's couple to the
massless ones. Technically the massive Q's need to be
integrated out. This can be most simply accomplished
by putting two constraints on the matrix
Q=Q —Qsp+2rQ. To this end we note that, for zero
external frequency, Q=O, which implies S;„,=0, homo-
geneous fluctuations of Q that satisfy Q =(Qsp) =1 do
not change the free energy. In this case, only the gra-
dients of Q will contribute. This implies that the first
term in Eq. (3.114) is adequate if we restrict ourselves to
matrices that obey

m~0

(1—qq+ )'~ —1

m&0

n~0

—(1—q+q)'~ +1 n&0

(3.117a)

Here the q are matrices with spin-quaternion-valued ele-
ments q„~',n =0, 1, . . . ; I= —1, —2, . . . . Like the ma-
trix Q, they are conveniently expanded in the ~13s basis,

3 3

qnm X X rqnmrr i
r =0 i =0

(3.117b)

ly written down by Wegner (1979). They constitute a
nonlinear sigma model, i.e., a free-field theory with a con-
straint of the form of Eq. (3.115). Models of this form
had originally been introduced in the theory of beta de-
cay (Gell-Mann and Levy, 1960). They were then applied
to condensed-matter physics as models for ferromagne-
tism (Polyakov, 1975; Brezin and Zinn-Justin, 1976; Nel-
son and Pelcovits, 1977). In these models the analog of Q
was an n-component vector. Wegner argued phenomeno-
logically, drawing analogies to ferromagnetism, that the
matrix nonlinear sigma model should describe the soft
modes of disordered electron systems. His reasoning was
corroborated by technical derivations of the model
(Schafer and Wegner, 1980; McKane and Stone, 1981;
Pruisken and Schafer, 1982). These authors derived the
model by explicitly integrating out the massive modes,
making heavy use of the symmetry inherent in the model
and of the way it is broken by the external frequency.
The interaction term and its consequences were not con-
sidered at this technical level. The model with the in-
teraction term included should therefore be viewed as
somewhat more phenomenological than the pure locali-
zation model. This also shows in the renormalization-
group analysis, which we shall discuss below.

Equations (3.114)—(3.116) are sufficient to completely
parametrize the model. The constraints (3.115), (3.116),
and the Hermiticity requirement (3.63) can be eliminated
by parametrizing the matrix Q (Grilli and Sorella, 1988;
Belitz and Kirkpatrick, 1989a) by

2 —1 7 (3.115)

where 1 denotes the unit matrix. Furthermore, it is clear
from Eq. (3.92i) that fiuctuations with trQXtrOsp=0
greatly increase the energy. We note that this is true also
in the absence of interactions, as can be seen from Eq.
(3.76a). One can suppress these massive fiuctuations by
requiring Q =Qsp [exp W —1], (3.117c)

We note that the q do not obey the symmetry relations
(3.66) for the Q.

The parametrization of Q is not unique. A different
possibility, which has been used widely (Polyakov, 1975;
Efetov et al. , 1980; Finkel'stein, 1983a), is

trQ =0 . (3.116)
with

The net result is that the Q matrix in Eq. (3.114) can be
regarded as a general Q„matrix if the constraints given
by Eqs. (3.115) and (3.116) are enforced.

Equations (3.114)—(3.116) (with S;„,=0) were original-

m+0 I &0

0

n~0

n&0, (3.117d)
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and the matrix elements of the w again spin quaternions.
While the two parametrizations are equivalent, Eq.
(3.117a) has certain technical advantages, as we shall see.

In terms of Q the action reads

S[Q ]= Idx tr(VQ(x) )2

+2H fdxtr(QQ(x))+S;„,[Q] . (3.118)

The coupling constants are G =4/vr&~D =8/~o, with o.

the bare conductivity, and H =~X+/4, which plays the
role of a frequency coupling parameter. S;„,is given by
Eqs. (3.92c)—(3.92g). Notice that 5S;„,in Eq. (3.92c) has
been dropped from the effective action.

b. Gaussian theory

With the help of Eq. (3.117a) one can expand the ac-
tion in powers of q,

S[Q]= g S„[q],
n=2

(3.119)

where S„[q]~q". We first concentrate on the Ciaussian
part of the action:

—4
S2[q) =

G & g ', q12(P) M12, 34(p) q34( —p)
I' r, i 12

3,4

(3.120a)

Here f = f dp/(2m)", .and 1=(n„a,), etc. The matrix
M is given by

(~,. )

O 3M12 34(p) =51 2 3 4I 513(p +GH(co„—co„)) +5«5«21rTGIC '
] (3.120b)

where v0 s, v1,2, 3 t, and

2 c(v,. )
2M12 34(p) = —5, +2 3+4I 513(p +GH(co„co„)) +5— 5 2 irTGIC„ (3.120c)

In Eq. (3.120c) we have included the frequency dependence of the interaction coupling parameter since, as mentioned
above, K'"—=0 if it is assumed to be frequency independent. In Sec. VI we shall see that, even if one starts with
E""=0,the renormalization group generates a frequency-dependent, nonzero K"". The consequences of this have
been analyzed at the level of the saddle-point solution (see Sec. VIII), but not yet at the level of the loop expansion. In
the remainder of this section, and in the following three sections, we shall therefore assume K'"=0.

The inverse of the matrix M determines the Gaussian propagators. Since M is diagonal in charge, spin, and replica
labels it is sufficient to consider the frequency dependence. Consider operators with structures

(3.121a)

(3.121b)

with a and b constants. It is readily checked that the inverses of these operators are

a(n, n2)—"1"2'"3"4 a(n, n2) "1"3 "2"—4 "1 "2'"3 "4 n, n2 (a+b)(—n, n2)— (3.121c)

"1"'"3"4 a(ni n2) "1"3 "—2"4 "1 "2'"3 "4 a(n1 n2)a(n3 —n4) —1+f(n 1+n2)
(3.121d)

where

f(n) =b g 5„~„1
(3.121e)

We note that with constant a, b, and unrestricted frequency sums, the formal expression for f(n) is logarithmically
divergent in the ultraviolet (UV) for all p and n and in the infrared (IR) for p, n ~0. The UV divergence is due to the
unphysical treatment of the high-frequency behavior and should be cut off by a large cutoff N, while the low-frequency
singularity is the usual divergence one obtains in the particle-particle channel: for b (0 there is a Cooper instability in
the denominator of the last term of Eq. (3.121d). These singularities are independent of the dimensionality and of any
loop expansion. For b )0 it is, naively, tempting to let f(n)~ oo at the end of the calculations and thereby neglect
terms that are logarithmically small. However, Kirkpatrick and Belitz (1993) have recently argued that these terms
give rise to logarithmic corrections to scaling and to some asymptotic power laws near the metal-insulator transition
whenever the particle-particle channel is present. We shall discuss this in Secs. V and VI. For now, we carry the forrnal
expression for f(n) through the calculations and deal with the fact that the f(n ) is logarithmically large at the end.

With the help of Eqs. (3.121), we can immediately write down the inverse of the matrix M, which determines the
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Gaussian propagators,

(2) i j S2I:e] S2 I. q]
& ', q»(P1)!q34(p» &

= D [q]',q 12(p1)!q34(p2)e D[q)e

with

8
5 5''5(P1+P2) M12, 34(P1 ) (3.1228)

0, 3~12,34(p) 51—2, 3—4 513+n1 —n2(p)+
5

„(p)
n, —n2

(3.122b)

S..G2~m")
,,', (p) = —5. .. 5,P)„„(p)—5,P)„„(p)2)„„(p)1+G2mTIC"'f .„+„(p)

(3.122c)

where vo=s v~ 23=t and

f„(p)=g 5„„,+„,&„,„,(p) .
nln2

(3.122d)

Here we have introduced the propagators

2)„(p) = [p +GHQ„]

2)'„'(p)=[p +G(H+K")0„]
~'„''(p)=&'„''(p)—2)„(p).

(3.122e)

(3.122f)

(3.122g)

A physical interpretation of Eqs. (3.122e) and (3.122f) will be given in Sec. III.B.3.d below. Equations (3.122b) and
(3.122c) can be put into a more standard form by summing over n 3 and n4,

X 03 1234 P = aa n —n P aa n —n P
n3, n4

(3.123a)

n3, n4

2M12 34(p)= —( 1 —5 )2)„—„(p)—5 ( 1 —5;0)2)„„(p)—
5;(15 2)„„(P)

1+G2~TK"'f„+„(p) (3.123b)

Examining the various terms in Eqs. (3.123), we see that all of them have a standard propagator structure except for the
last contribution in Eq. (3.123b). %'e also note that this term is logarithmically small compared to the others.

c. Loop expansion and the renormalization group

The general scheme of the field-theoretic treatment of the problem is now as follows. Let us consider a q-q correla-
tion function, which we write symbolically as

G' '=&qq&= —fD[q]qqe "=' " =—fD[q]qqe ' 1+$4[q]+—(S3[q]) +S6[q]+ (3.124)

All of what follows applies to correlations of more than
two q's as well. Equation (3.124) expresses G' ' in terms
of an infinite series of Gaussian correlation functions
which, by means of Wick's theorem (e.g., Abrikosov
et al. , 1975) and Eqs. (3.122), are easily calculated. It is
convenient to depict the terms in this series graphically.
Draw S„[q]as a point from which n lines emerge, with
Gaussian propagators as joined lines. Then the four
terms shown in Eq. (3.124) are represented graphically in
Fig. 15. The expansion for G' ' contains both connected
and disconnected diagrams, as in Fig. 15. However, ac-

I (2)—I (2) y(2)
Q (3.125)

with I z', the Gaussian vertex, the inverse of the Gauss-

I

cording to a general theorem, 6' ' is easily reconstructed
from the connected propagator G,' ', which is defined as
the sum of all connected diagrams that contribute to 6' '

(see, for example, Le Bellac, 1991). The number of dia-
grams to be considered can be further reduced by study-
ing the two-point vertex function I' ', defined as the in-
verse (in a matrix sense) of 6,1 1. From Dyson's equation
we have
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(a) (b) (c)

1976). All calculations performed to date support the hy-
pothesis that the full model is renormalizable with one
additional renormalization constant for H and one for
each interaction amplitude. In the remainder of this re-
view we shall assume that this is true. We shall further
discuss the open problem of renormalizability in Sec. X.

+ C

d. Fermi-Iiquid corrections andidentification of observables

(e)

FIG. 15. Diagrams up to two-loop order for the propagator
G(2)

ian propagator, and X' ' the mass operator (or self-
energy). X' ' is one-particle irreducible, i.e., it contains
no diagrams that can be cut into two disconnected parts
by cutting only one line. Of the six diagrams in Fig. 15,
only (a), (b), (c), and (f) contribute to I'2'.

The diagrams can be classified with respect to the
number of closed loops they contain. Using the Gaussian
propagators, and counting powers of the coupling con-
stant 6, one easily sees that the number of loops is corre-
lated with the number of powers of G. Equation (3.124)
therefore provides a systematic expansion in powers of 6,
which is known as the loop expansion. It provides a per-
turbation expansion for the propagators or the vertices
and therewith for the coupling constants of the theory.
This expansion can be reproduced term by term by
means of many-body perturbation theory, although in the
framework of the latter it is much harder to find all dia-
grams contributing to a given order. In the limit d —+2,
the loop expansion will contain divergences of the type
we already discussed in Sec. II. These divergences signal
a breakdown of perturbation theory and the need for a
resummation. Proper handling of this requires the use of
the renormalization group (RG}.

This is not the place to review the RG. Readers un-
familiar with this technique are directed to the many re-
views and books on the subject (e.g. , Wilson and Kogut,
1974; Amit, 1984; Itzykson and Droeffe, 1989; Zinn-
Justin, 1989; Le Bellac, 1991). Work on the nonlinear
sigma model has used both the momentum-shell version
(Wilson and Kogut, 1974) of the RG and the physically
less intuitive, but more powerful, field-theoretic version
(e.g. , Zinn-Justin, 1989). Examples of the former are Po-
lyakov (1975), Nelson and Pelcovits (1977), and Efetov
et al. (1980). Examples of the latter are Brezin et al.
(1976) and Amit et al. (1978). Since the momentum-shell
method is impractical at higher than one-loop order, and
in Secs. V—VII we shall deal with higher orders in the
loop expansion, we shall use the field-theoretic method in
this review.

We note at this point that the renormalizability of the
model, Eq. (3.118), in the presence of interactions has so
far not been proven. The model with S;„,=0 is known to
be renormalizable with two renormalization constants,
one for G and one field renormalization (Brezin et al. ,

Bn/Bp=(kFm*/vr )/(1+Fo),

y, =(p~k~m */~ )/( I+F0),
Ci, =(kFm*/3)T .

(3.126a)

(3.126b)

(3.126c)

Here p~ is the Bohr magneton, and m is the effective
mass,

m * =m (1+F', /3) . (3.126d)

X„andD in Eq. (3.114) should then be interpreted as
(d=2, 3)

D =UFO'/d, (3.127a)

(3.127b}

with UF =kF/m *. Similarly, the bare interaction ampli-
tudes in S;„,should be interpreted as containing the ap-
propriate Fermi-liquid corrections.

We now turn to the interpretation of the coupling con-
stants of the field theory in terms of observable quanti-
ties. Let us first reconsider the Gaussian theory, Sec.
III.B.3.b above. The three Gaussian propagators 2), 2)',
and 2)', Eqs. (3.122e), (3.122f), and (3.122g), have the typ-
ical diffusion pole structure discussed in Sec. II, and we
can identify the quantities multiplying the frequency as
inverse diffusion constants. At the Gaussian level, they
are determined by the bare coupling constants. 2)' and
2)' obviously describe charge and spin diffusion, and the
respective bare diffusion constants are

D, = 1/G(H+K, ), (3.128a}

So far our derivation of the effective action, Eq.
(3.118), has taken into account the hydrodynamic region
only. Finkel'stein (1983a) has suggested a way to im-
prove on this.

The nonhydrodynamic region leads to Fermi-liquid
corrections to the parameters of the effective theory.
Within Fermi-liquid theory (e.g., Negele and Orland,
1988; Pines and Nozieres, 1989) the charge- and spin-
polarization clouds that a particle creates around itself by
charge- and spin-polarizing its environment are con-
sidered together with the particle as a quasiparticle (Lan-
dau, 1958). The quasiparticles have kinetic and thermo-
dynamic properties that differ from those of the bare par-
ticle and that are parametrized by means of the Fermi-
liquid parameters I'„',n =0, 1. . . and I'„',n =0, 1, . . . .
The isothermal density susceptibility, spin susceptibility,
and specific heat of the quasiparticles are given by
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D, =1/G(H+IC, ) . (3.128b) Lee, Ma, Sorella, and Tabet (1984, 1986), have shown
that

While this identification so far holds only at the Gaussian
level, it is plausible that it should be exact. The reason is
that the diffusion poles are a direct consequence of the
conservation laws, as we have seen in Sec. II. In any
theory that respects the conservation of charge, spin, and
energy, the appropriate inverse propagators must be
linear in co„and p for small ~p and co„,and the
coefficient of the p term will be the diffusion coefficient.
Indeed, Castellani, DiCastro, Lee, Ma, Sorella, and Tabet
(1986) have used the charge and spin conservation laws
(in the form of Ward identities) to prove that Eqs.
(3.128a) and (3.128b) hold exactly. This ensures that the
same combinations of renormalized coupling constants
will yield the renormalized diffusion constants. The in-
terpretation of 2) is less clear, even at the Craussian level.
The fact that energy is the only remaining conserved
quantity, and that 2) represents a third diffusion pole, in-
dependent of 2)' and D ', leads one to suspect that GH can
be identified with the inverse heat diffusion coefficient.
Castellani et al. (1987, 1988) have invoked the corre-
sponding Ward identity for heat transport to show that
2) indeed contains the heat diffusion constant. We there-
fore have for the heat diffusion constant

D~ =D=1/GH . (3.128c)

Again, this not only holds at the Gaussian level, but is an
exact identity.

From the Einstein relation, Eq. (2.21), we know that
the charge conductivity and the charge diffusion constant
are related via cr, =D, (Bn/Bp). If we combine this with
G=8/vcr„we find that H+K, is proportional to the
isothermal density susceptibility,

H+K = (Bn/—Bp) .s 8
(3.129a)

The relation (3.129a) is important because the compressi-
bility Bn/Bp is not expected to be critically affected by
disorder. Physically, one expects n to be a smooth func-
tion of p even at a metal-insulator transition. Mathemat-
ically, Bn/Bp does not acquire diffusion corrections in
perturbation theory (Finkel'stein, 1983a; Sota and
Suzuki, 1989). One therefore expects, though this has
never been rigorously proven, that H+K, will not be re-
normalized.

In a completely analogous fashion, H+K, and H
determine the spin and thermal susceptibilities, respec-
tively. Finkelstein (1984b), and Castellani, DiCastro,

H+K, =(rr/4pii )y, . (3.129b)

Castellani and DiCastro (1986), and Castellani et al.
(1987, 1988), have also established the relation between H'
and the specific-heat coefficient,

H = Cv/T,3
4m

(3.129c)

~SFH= (1+F'i /3),

E, /H= —Fp/(1+Fp)= —Ap,

K, /H = Fp /( I +F—p ) = —A p,

(3.130a)

(3.130b)

(3.130c)

with A p' the Landau scattering amplitudes (see Abriko-
sov et al. , 1975). Notice that Eq. (3.130a) is consistent
with the bare value of H, Eq. (3.118), and the reinterpre-
tation of N~ in that expression, Eq. (3.127b). We also
note that I"

o and E, are positive, while I'o and E, are
negative. Equations (3.130) suggest that H, K„and IC,
are generalizations of the Fermi-liquid parameters F

„

Ao, and Ao. This idea has been developed and formal-
ized by Castellani and DiCastro (1985, 1986), Castellani,
Kotliar, and Lee (1987), and Castellani et al. (1987,
1988). These authors have shown that one can indeed
construct a consistent Landau theory for quasiparticles
in a disordered system that makes the analogy precise.
In this picture, the quasiparticle diffusion constant is
given by Dz, the quasiparticle DOS by 2H/~, and the
quasiparticle weight by AN(0)/2H with N(0) the tunnel-
ing DOS. Finally, the quasiparticle lifetime is given by
Vph2H /~NF, where ~ph is the dephasing time discussed
by Castellani, DiCastro, Kotliar, and Lee (1986).

Apart from the transport coefficients, we shall also be
interested in the tunneling DOS. This is given by the ex-
pectation value of the diagonal elements of Q
(Finkel'stein, 1983a),

with Cz the specific heat at constant volume. Equations
(3.129), like Eqs. (3.128), are exact identities that hold or-
der by order in perturbation theory. Together, they pro-
vide an interpretation of all of the coupling constants of
the field theory except for K"'. It does not seem possi-
ble to relate this interaction amplitude to an observable
quantity.

Let us compare the exact expressions for the suscepti-
bilities, Eqs. (3.129), with their counterparts within Lan-
dau theory, Eqs. (3.126). If we substitute the Landau ex-
pressions for dn /Bp, y„and Ci, in Eqs. (3.129) we obtain

We note that the propagators 2)', 2)', and 2) are not the physi-
cal charge, spin, and heat density correlation functions. One
can see this by calculating the latter by adding an appropriate
source term to the action. Therefore the plausibility argument
given above, strictly speaking, also assumes renormalizability of
the theory with one renormalization constant per coupling con-
stant. See also Sec. III.B.3.c above.

N(&) =NFRe( pQ„„(x)) l;n ii+;p (3.131)

Here 0 represents a frequency (or energy) measured from
the Fermi surface, and the average is to be -taken with the
full action. Note that the tunneling DOS is given by the
one-point propagator, while the transport coefficients are
determined by the two-point propagators.
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e. Long-rangeinteraction

(3.133a)

Here U, (q) is the Fourier transform of Eq. (3.132),

u, (q)=2" 'me'/lql ', d=2, 3, (3.133b)

the factor (1+F0) accounts for Fermi-liquid correc-
tions to the vertices, and y (q, co=0) is the static density
susceptibility (see Sec. II). In the long-wavelength limit,
and for ergodic density fluctuations, we have [cf. Eq.
(2.15)]

p&z(lql O, co=0) =dn/Bp . (3.133c)

Let us now consider the quantity H+K,'". Equations
(3.129a) and (3.133a) yield

m Bn lql
8 Bp lqld

(3.133d)

with the screening wave number sd given by Eq. (2.45b).
Equation (3.133d) shows that in the long-range case
H+K,'" is equal to the full compressibility (rather than to
the screened one, which is given by H +lC, }, which 'van-

ishes at zero wave number. Equation (3.133d) is one
manifestation of the so-called compressibility sum rule
(see, for example, Pines and Nozieres, 1989). In the
singlet propagator 2)', Eq. (3.122f), we therefore have to
keep the momentum dependence of H+K,'". We con-
clude that one can go from a short-range interaction to
the Coulomb case by making the replacements

We now turn to the problem of the long-range nature
of the Coulomb interaction, which we have ignored so
far. A Coulomb potential

U(x, y, z) =5(y)5(z)v, (x)=5(y)5(z)e /lxl (3.132)

in Eq. (3.25d) results in a long-range e6'ective potential in
the term S „",, Eq. (3.47b), and only there. This long-
range potential has to be screened as usual, and one
should therefore add a statically screened Coulomb po-
tential to the singlet interaction constant IC, (Finkel stein,
1983a),

Notice that the propagator shown in Eq. (3.134b)
diverges for l pl ~0 even for nonzero co„.This is a direct
consequence of the incompressibility of the Fermi liquid
with long-range interactions. We also note that the
denominator of 2)' in the long-range case, Eq. (3.134b),
has the same structure as the dynamically screened
Coulomb interaction, Eq. (3.133a), with gz&(q, co=0) re-
placed by

(Bn /dp)Dq
0 +Dn q

(3.135)

This shows that dynamical screening effects are correctly
taken into account by Eqs. (3.134). Finally we mention
that the electrical conductivity is related to the screened
density susceptibility, Eq. (3.135) (see Pines and Nozieres,
1989), and the Einstein relation, Eq. (2.21), still holds.

In the literature both the case of short-range interac-
tions and that of Coulomb interactions have been stud-
ied. It has been found that both cases yield the same crit-
ical behavior for all quantities except for the single-
particle DOS (Castellani, DiCastro, Lee, and Ma, 1984)
and for the ultrasound attenuation (Dobrosavljevic et al. ,
1991). In actual calculations there is a convenient cri-
terion for the relevance or otherwise of the Coulomb in-
teraction: it is relevant whenever the result does not al-
low for the limit (H+K') ~0 to be taken.

4. Symmetry considerations

a Spontaneously broken symmetry

S0 =S0 +S0

where

S"=y ( —k /2m+p)(7)(k)lrl(k)},
k

(3.136a)

(3.136b)

Let us discuss the symmetries of the field theory, first
in the spinor formulation. For the sake of simplicity we
do so for the free-electron action So, Eq. (3.43}. Note,
however, that the symmetry considerations given below
remain valid in the presence of the random potential con-
tribution Sd;, in Eqs. (3.25) or (3.136). We split the action
S0 into two parts,

So =g(q(k)liAq(k)), (3.136c)

with (g(k)lg(k))—:g„g(g„(k),g„(k)),and 0 given by
Eq. (3.110c). So is invariant under transformations D
which leave invariant the scalar product in spinor space:

(3.134a)

(DglDg)=(CD') DrI=(CrI) (CDC ') Dr)
x '+ lpl 1&'„(p)~

lpld
—' '+ lpl' d&d '+GH~-—

where

H=H/(1+E')= Bn/Bp . —
0 8

(3.134b)

(3.134c)

=(rllCD C 'Dg)=(rjlq),

(3.137)

where we have used C ' =C with C the charge-
conjugation matrix, Eq. (3.41c). The transformations D
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that leave Sz invariant therefore obey

(3.138)

Q'=DQD-', (3.139b)

where we have used C =C ' and Eq. (3.138). Indeed
one easily checks that the first term in Eq. (3.114) is in-
variant under Q~Q'.

The second term in Eq. (3.114) breaks this symmetry,
trQQ'=trQ'QAtrQQ. In the absence of interactions
this symmetry breaking has been discussed in detail
(McKane and Stone, 1981). In that case, the symmetry is
spontaneously broken to Sp(2N ) XSp(2N), and the full
Lagrangian has the symmetry Sp(4N )/Sp(2N ) X Sp(2N ).
The Goldstone mode associated with the spontaneous
symmetry breaking is the diffusive propagator
(=2)'—=2)'), whose mass is indeed proportional to the
external frequency. The order parameter is given by
( Q„~(x)) =;0=N(E~) =Nz with —N the single-particle

n

DOS.
In the noninteracting case, 0&N(c, ) & ~ for all ener-

gies inside the band and for all amounts of disorder
(Wegner, 1981a). The localization transition is therefore
not a transition between a symmetric and a broken-
symmetry phase, but rather one between a Goldstone
phase and one in which localization substitutes for a
Goldstone mode (McKane and Stone, 1981), with the
symmetry being broken in either phase. This interpreta-
tion of the diffusive density response as a Goldstone
mode resulting from the spontaneous breaking of a con-
tinuous symmetry has an interesting consequence con-
cerning the dimensionality dependence of the metal-
insulator transition. A general theorem associated with
the names of Mermin and Wagner (1966) and Hohenberg
(1967) in condensed-matter physics, and Coleman (1973)
in field theory, states that there cannot be a Goldstone
mode for d ~2. In the present context this means that
there should be no diffusion and hence no metal-insulator
transition in d 2; the system will be an insulator for all
nonvanishing values of the disorder. In the language of
critical phenomena, d, =2 is a lower critical dimension
for the problem. This conclusion is consistent with per-

Notice that the symmetry group here is the compact group
Sp(4N), while in Wegner's original model (Wegner, 1979) it was
the noncompact group O(2N, 2N). Hof and Wegner (1986)
have shown that nonlinear sigma models with compact sym-
plectic and noncompact pseudo-orthogonal symmetries, respec-
tively, have identical perturbation expansions.

Equation (3.138) identifies the D as elements of the sym-
plectic group Sp(4N) (see, for example, Chap. 10-18 of
Hamermesh, 1962). From the definition of the composite
fields B =gSq, Eq. (3.58), it follows that if g transforms
like rl'=DPI, then B and therefore Q transform like

B'=Dgg Dq=Dqg g D C

=DErt C D '=DBD ', (3.139a)

turbative calculations; see Sec. II.A. l.d. For d =2+@,,
c. (&1, one expects the critical disorder to be small and
related to c. This suggests a 2+ c expansion for a
description of the metal-insulator transition, which has
been utilized in all field-theoretic approaches to the prob-
lem (see below and the following sections).

The physical significance of the interpretation of the
diffusive propagator as a Goldstone mode in the nonin-
teracting field theory is not obvious. In general there can
be two distinct reasons for an excitation to be slow: an
underlying conservation law or the existence of a Gold-
stone phase. As discussed at the beginning of Sec. II,
particle number-, spin-, and energy-density fluctuations
are in general slow due to the respective conservation
laws.

In the presence of interactions, the third term in Eq.
(3.114), S;„,[Q], breaks the symmetry as well as the
second term, while the DOS at the Fermi surface does
vanish in the insulating phase; see Secs. V and VI below.
Neither the mathematical nor the physical aspects of
these changes in the symmetry breaking compared to the
noninteracting case have been investigated. However,
the presence of S;„,does not change the fact that d, =2,
and the 2+ a expansion is still possible.

b. Externally broken symmetry

b, ~ V ——A(x)
C

(3.140a)

in Eq. (3.25b). By explicit calculation it is easily checked
that, in the spinor formulation, Eq. (3.43), this corre-
sponds to the substitution

b,~ V ——A(x)r3so (3.140b)

Repeating the derivation of the nonlinear sigma model,
Eq. (3.114), one finds that the action now reads (Efetov
et al. , 1980)

2

S[Q]= fdxtr VQ(x)+ —A(x)[Q(x), r3so]
C

+2H f dtxr(QQ( )x) +S;„,[Q] . (3.141)

Apart from the orbital term, there is a Zeeman term in
the Hamiltonian, which in first quantization reads—

gL p~ —,
' o'B. Here gL

——2 is the Lande factor,
p~= 1/2mc is the Bohr magneton, and o =( &, oz, or )c3
with o, the Pauli matrices. In Eq. (3.25a) this contrib-
utes a term

The Sp(4N ) symmetry can also be explicitly broken by
external fields. Examples that have been discussed are
external magnetic fields, magnetic impurities, and spin-
orbit coupling.

Let us consider magnetic fields first. The orbital effect
of an external field B(x)=V X A(x) is taken into account
by the substitution

2
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S& = —
& gl p&B f dx g g (x )( —) g (x) . (3.142a)

In bispinor language this corresponds to

Ss ——,'gl—ij,&Bf dx P (p (x),&3$3ri (x)), (3.142b)

and in Eq. (3.114) this adds a term (Finkel'stein, 1984a,
1984b)

Ss [Q ]=b f dx tr(r3ss3Q(x) ), (3.143)

where b =~N+gl p~B /2.
Now we turn to magnetic impurities. In the Hamil-

tonian there is a term u, (x} o, where u, (x) is a random
potential. As for the spin-independent random scattering
potential, we assume a Cxaussian distribution [cf. Eq.
(3.27)], with second moment

I u,'(x)u,'(y) ] = 6,,5(x—y),1

7T P7S
(3.144)

where ~, is the magnetic scattering mean free time. In
Eq. (3.25a) this contributes a term

3

S, =i fdx g (x) g u J(x)sj 1((x) . (3.145a)

(3.145b)

In Eq. (3.114) this adds a term (Efetov et al. , 1980)

3

S,[Q]=— fdx g tr(X, Q(x))2,
6v;

where

(X;)g =5 g„r3s, .

(3.146a}

(3.146b)

Finally, we consider the spin-orbit interaction. In the
Hamiltonian, there is a term (Davydov, 1965, p. 252)

ico" [V(u—„(x)+u„(x))XV]with a constant c. Here
u„(x)is the spin-orbit interaction in the absence of im-

purities, and u„is the impurity spin-orbit interaction.
This leads to an additional term in Eq. (3.114) (Efetov
et al. , 1980),

S„[Q]= f dx g, tr(s, Q(x))
i =1 +so

(3.147)

where w„is the spin-orbit scattering time in spin channel
number i. All of these additional interactions are as-
sumed to be sufticiently weak that they can be considered
independent of each other and of elastic impurity scatter-
ing. In this case, the respective contributions to the ac-
tion simply add.

c. Remaining soft modes and universality classes

The various additional terms in the action which ap-
pear in the presence of magnetic fields, magnetic scatter-

In bispinor language this corresponds to
3

S, =i fdx g ( —)J+'u,'(x)g (q (x ), r,s, g (x )) .

ing, or spin-orbit scattering lead to some of the propaga-
tors given in Eqs. (3.123) acquiring a mass, i.e., they are
finite even at zero momentum and frequency. With the
help of Eq. (3.117a) or (3.117c), and keeping only terms
quadratic in q or m, respectively, one finds the following
(Efetov et al. , 1980). The orbital effect of the magnetic
field, Eq. (3.141), produces a mass proportional to B in
the particle-particle channels, r = 1,2, irrespective of the
spin. ' The Zeeman term, Eq. (3.142a), furthermore pro-
duces a mass in two (i=1,2) of the three spin-triplet
channels (Finkelstein, 1984a). Magnetic impurities re-
sult in a mass proportional to 1/~, in the particle-particle
channel, and additionally in all particle-hole spin-triplet
channels. Finally, spin-orbit scattering results in a mass
proportional to 1/~„in all spin-triplet channels. These
mass terms change the effective model, since according to
the soft-mode philosophy explained in Sec. II and earlier
in the present section, the massive modes can be discard-
ed if one is interested in asymptotic low-temperature
properties. " We thus have to distinguish between the
following cases, which give rise to different universality
classes for the metal-insulator transition.

(1) Weak magnetic field In this . case, which is the one
originally studied by Finkel'stein (1983a), one assumes a
magnetic field strong enough to suppress the particle-
particle channel, but weak enough so that the Zeeman
term can be neglected. In a real system, this case can at
most be realized in a transient temperature region. The
particle-hole propagators are given by Eq. (3.122b), while
the particle-particle propagators, Eq. (3.122c), are
suppressed. Since 1 zq are irrelevant, the matrix elements
of 'q (or w) are complex numbers rather than quaternions.
The expansion (3.117b) can still be used if r is restricted
to 7 =0& 3 with 7 p= 1& 7 3 =l.

(2) Strong magnetic geld In this .case the Zeeman
splitting is taken into account (Castellani, DiCastro, Lee,
and Ma, 1984; Finkel stein, 1984a). Here, in addition to
the restrictions of case (1), the spin channels are restrict-
ed to i =0,3 (i.e., the z component of the spin must van-

pThis is not the only effect of a magnetic field. In the action,
Eq. (3.141), a term has been left out which contains three Q ma-
trices and two gradients, and whose coupling constant is given

by the Hall conductivity (Pruisken, 1984). In fields strong
enough to lead to Landau quantization of the energy levels, and
in the absence of interactions, this term gives rise to the integer
quantum Hall effect (von Klitzing et al. , 1980; for a review, see
Prange and Cxirvin, 1987). It has also been used to analyze the
scaling behavior of the Hall conductivity; see Sec. III.C below.
With interactions, the corresponding effect is generally believed
to be the fractional quantum Hall effect (see, for example,
Chakraborty and Pietila, inen, 1988). This has not been studied
in the framework of the nonlinear sigma model, and we shall ig-
nore the case of a quantizing magnetic field.

11For small masses, one should actually keep them and study
the crossover phenomena associated with these terms. For the
case of interacting electrons, this has not been done so far.
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TABLE I. Universality classes for the metal-insulator transition.

magnetic field

Diff'usive modes

r =0,3
I =0,3

Interaction

short-range

Coulomb

magnetic impurities
short-range

Coulomb

sp1Il-oI bit
scattering

r=0, 1,2, 3
i=0

short-range

Coulomb

none
short-range

Coulomb

ish). The propagators for r, i =0,3, are still given by Eq.
(3.122b), and the ~q are complex numbers.

(3) Magnetic impurities Here .all of the difFusive modes
are suppressed, except for the particle-hole spin-singlet
channel. The latter propagator (r=0, 3, i=0) is still
given by Eq. (3.122b), and the ' q„~are complex num-
ber s.

(4) Spin orbit coup-/ing Here .all spin-singlet modes
(i=0) and only these are difFusive. The corresponding
propagators are given by Eqs. (3.122).

(5) Generic case. This is the case in which no external
symmetry-breaking fields are present. A11 difFusive
modes are present, and the propagators are given by Eqs.
(3.122).

We shall see in Sec. V that all of these cases result in
diFerent critical behavior, depending on whether the
electrons interact via the long-range Coulomb interaction
or via a short-range interaction. Excluding case (1),
which is realizable only in a transient regime, we then
have eight universality classes for metal-insulator transi-
tions that can bc realized, at least In principle, In actual
systems. ' They are summarized in Table 1. In Secs. IV
and VI we shall see that the generic case also allows for a
magnetic phase transition which is distinct from the
metal-insulator transition.

C. SummarY of results for noninteracting electrons

Before we describe results obtained for the full model
derived above, let us briefly summarize what is known
about the nonlinear sigma model for noninteracting elec-
trons, i.e., Eqs. (3.114)—(3.116) with S;„,=0. In the ter-

minology of the last section, the generic case, the spin-
orbit coupling case, and the cases of weak magnetic fields
or magnetic impurities are described by models with
Sp(n)/Sp(n —p ) XSp(p), U(n)/U(n —p ) XU(p), and
O(n)/O(n —p)XO(p) symmetries, respectively (Wegner,
1979; Efetov et ah. , 1980; Hikami, 1980; Hikami et aI.,
1980; Schafer and Wegner, 1980), in the limit' n =p =0.

3. Renormalization of the nonlinear sigma model

All of the above-mentioned nonlinear sigma models are
renormalizable with two renormalization constants. This
was shown by Brezin et al. (1976) for the O{n) vector
model, and their proof applies to the matrix models as
well. The two renormalization constants needed are a
field renormalization constant Z and a coupling constant
renormalization constant Z . In the replica limit, one
Ands Z= 1, ofdcr by order, in thc loop expansion. Thc
physical meaning of this result is that the density of
states is not critical at the metal-insulator transition
{Wegner, 1981a). Zg connects the bare resistivity G with
its renormalized counterpart g via

(3.148)

where z =d —2, and x is the arbitrary momentum scale of
the RG. Z~ determines the p function

p(g) = E,g
d in~ 1+g(d lnZ /dg)

The P function has been determined by a direct calcula-

i~For most experimental systems the Coulombic case is
relevant. However, Castellani, DiCastro, Lee, and Ma (1984)
and Altshuler, Aronov, and Zuzin (1982) have argued that for
He on a disordered substrate and for electrons in certain semi-

conductors devices the efFective interaction is short ranged.

i3This is the description in terms of compact groups, vrhich

arises from a formulation in terms of Grassmannian fields

(Efctov et QI., 1980). In thc IloI11IltcI'acting case, onc caIl also
start from bosonic fields (%"egner, 1979). One then finds a
description in terms of noncompact groups, O(n —p,p), etc.,
and the physical roles of orthogonal and symplectic symmetries

are interchanged.
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tion to four-loop order (Wegner, 1989). Hikami (1990)
recently noticed that the nonlinear sigma models in ques-
tion are closely related to certain classes of string
theories. Using this relation, he confirmed Wegner's
four-loop results and obtained the five-loop-order contri-
butions (Hikami, 1992). To this order the results for the
symplectic (s), unitary (u), and orthogonal (o) cases are

P, (g) =eg —g' —3 g(3)g'+ —'„'g(4)g'+0(g'),

P„(g)=eg —2g' —6g'+0(g7),

po(g) =Eg+2g —12$(3)g —", g(4)g —+0(g 7) .

(3.150a)

(3.150b)

(3.150c)

All three /3 functions allow for a fixed point g *,
P(g )=0, which corresponds to a metal-insulator transi-
tion. The spin-orbit coupling case is special in that Eq.
(3.150c) seems to suggest a metal-insulator transition
with nonzero g' in d =2. The P functions for the sym-
plectic and the orthogonal cases are related, and in the
unitary case only odd powers of g appear (Wegner,
1981b). Equations (3.150) yield the localization length
exponent v= —I/P'(g") and the conductivity exponent
s=vE to five-loop order. Wegner (1986, 1989) has also
determined the crossover exponents from symplectic to
unitary or orthogonal behavior. While the four-loop
terms in Eqs. (3.149) yield large negative corrections to
the one-loop result v=1/c, a Sorel-Pade approximation
based on the five-loop result for the symplectic case
yields a value for v that respects the rigorous inequality
v~ 2/d (Chayes et al. , 1986). Still, the unknown conver-
gence properties of the c expansion have given rise to the
suggestion that the nonlinear sigma model may not be
complete. It has been found that higher-order gradient
terms acquire large positive corrections to their bare di-
mensions and thus may be relevant, contrary to what one
assumes in deriving the nonlinear sigma model (Altshuler
et aI., 1988; Kravtsov et al. , 1988; Lerner and Wegner,
1990; Wegner, 1990). A possible consequence is a break-
down of the c, expansion. These investigations are not
quite conclusive yet, and further work on this subject is
needed. We shall come back to this subject in Sec. X.

From the loop expansion for the 0(n) vector model, an
equation of state can be constructed which gives results
in the high-temperature phase as well as in the low-
temperature phase and in the critical region (Brezin and
Zinn-Justin, 1976; Nelson and Rudnick, 1976). In the lo-
calization problem, the "equation of state" takes the
form of a transcendental equation for the dynamical con-
ductivity, which yields a physical solution in the insulat-
ing phase (Hikami, 1982; Pruisken and Wang, 1989).
The "equation of state" technique amounts to a resum-
mation of the loop expansion, which allows one to go
beyond perturbation theory. This can be done in a sys-
tematic way, yielding successive approximations for the
"equation of state" based on higher and higher orders in
the loop expansion (Belitz and Yang, 1993). For the sym-
plectic model, the one-loop "equation of state" coincides

with results obtained earlier by means of mode-coupling
techniques (Belitz et al. , 1981; Vollhardt and Wolfle,

1982; Wolfle and Vollhardt, 1982).

2. Composite operators, ultrasonic attenuation,
and the Hall conductivity

x+ =28 —
—,'g(3)s +0(s ),

x = —E+—', g(3)e +0(E ),
and in the unitary case are

x+ =+&2e+0(E) .

(3.151b)

(3.151c)

(3.152)

On approaching the critical point at zero frequency or
wave number, a/a diverges like

(3.153a)

For the critical dynamics at t =0 one finds
—x+ /d

a(co)/a (co)-co (3.153b)

In an expansion in powers of (Elnco), both the relevant
and the irrelevant operator contribute. This is the reason
underlying the observation (Kirkpatrick and Belitz,
1986a) that the critical behavior cannot simply be ob-
tained by an exponentiation of perturbation theory.

A similar phenomenon has been shown to occur in the
case of the Hall conductivity (Wang et al. , 1992). Again,
perturbation theory has a contribution from an irrelevant
operator, and simple exponentiation does not give the
correct critical behavior. The action for noninteracting

Among all correlation functions, the conductivity
plays a special role, since it appears as a coupling con-
stant in the nonlinear sigma model. In order to study
other correlation functions, e.g. , the stress correlation
that determines the ultrasonic attenuation (see Sec.
II.A.2.b), one has to add an appropriate operator to the
model. This was first studied by Wegner (1980), who cal-
culated the critical behavior of the participation ratio
this way. Later he gave a complete classification of all
composite scaling operators with no spatial derivatives
and calculated their anomalous dimensions (Wegner,
1987a, 1987b). The critical behavior of the transverse ul-
trasonic attenuation o. was found to be given as the sum
of two such scaling operators, one of which is relevant
while the other is irrelevant (Castellani and Kotliar,
1986, 1987; Kirkpatrick and Belitz, 1986b):

a(co, t)/a (co)=b +a+(cob', tb' )+b a (cob', tb'~ ) .

(3.151a)

Here ao(co) ~ A@2 is the Boltzmann result; see Eqs. (2.51).
b is an arbitrary scale factor, t = ~g* —g ~ /g ' is the di-
mensionless distance from the critical point, v is the lo-
calization length exponent, and z=d for noninteracting
electrons. The anomalous dimensions x+ and x in the
symplectic case are
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electrons in a magnetic field is given by Eq. (3.141) with

S,„,=O and 6 =4/m. o „,where o.
„

is the diagonal ele-
ment of the conductivity tensor in the self-consistent
Born approximation. In addition, there is a contribution
(Pruisken, 1984; Biafore et al. , 1990)

$„[Q]= f dx g E„tr[QV„QV Q(r3so )],
xy p, v

(3.154)

with 6 =4/mo„Y, and E„,the antisymmetric tensor of
rank two. Finally, Wang et al. (1992) have shown that
for a proper scaling description of the Hall conductivity
o. one also has to keep a term with four gradients,

S& [Q]= i A—Jd, x g tr( V„QV„QV Q V QQ ), (3.155)

where A, -kz l with I the mean free path. Even
though k has an engineering dimension of d-4 and there-
fore is irrelevant near two dimensions, it was shown to
couple into the Qow equation for o. in the form of the
combination A,B, whose scaling dimension is d-2, and
therefore it has to be kept. As a result (Wang et al. ,
1992), both cr,„ando vanish at the transition as

0.„„(t)-0„,(t) —r'",
and the Hall coefficient diverges,

R H
=o.

y /o „„8—t

(3.156a)

(3.156b)

3. Conductance fluctuations

The technique used to calculate the ultrasonic attenua-
tion has also been applied for a direct calculation of the
conductivity. Castellani and Kotliar (1987) have found
that the conductivity, in contrast to the ultrasonic at-
tenuation, is given in terms of a local operator (with no
gradients) and a nonlocal one which contains a gradient
of the Q matrix. The explicit calculation (Castellani and
Kotliar, 1987; Pruisken and Wang, 1989) recovers the re-
sult obtained from renormalizing the nonlinear sigma
model.

This direct calculation of the conductivity, or the con-
ductance, has been extended to study conductance Auc-
tuations within the framework of the nonlinear sigma
model (Altshuler et al. , 1986; DeSouza and Kirkpatrick,
1991). This work confirmed earlier results obtained from
many-body perturbation theory (Lee et al. , 1987) and es-
tablished that the distribution of fluctuations of the con-
ductance and the density of states is not purely Gaussian,
but has log-normal tails that get stronger with increasing
disorder. The latter conclusion was reached in the
framework of an extended sigma model, with the higher-
order gradient operators referred to above taken into ac-
count. The present status of this work has been summa-
rized recently by Altshuler et al. (1991).

IV. SCALING SCENARIOS FOR THE
DISORDERED ELECTRON PROBLEM

p~p(b)=(b'~ t, b "h) . (4.1a)

Here v is the correlation length exponent and b is the RG
length rescaling factor. The conjugate field exponent

yI, =(d+2 —g)/2 (4.1b)

is related to the exponent g which gives the critical
wave-number dependence of the order-parameter suscep-

By "conventional" we mean, for instance, that there is a
stable RG fixed point with one relevant operator at zero field

and temperature and one relevant diverging length scale.

In the following two sections we shall show how the
perturbative RG can be used to obtain explicit solutions
of the field theories derived and discussed in Sec. III.
This explicit solution procedure is quite complicated.
Before addressing it, we discuss some general properties
of the metal-insulator transition which one expects as-
suming that it is a conventional zero-temperature con-
tinuous phase transition. ' In particular, we examine
some of the phase-transition scenarios that general scal-
ing theory suggests. In subsequent sections we shall ex-
plicitly verify that each of the scenarios that can be con-
structed on general grounds is realized in the explicit RG
solution of the field theories. From this same general
viewpoint we shall then discuss the possibility that disor-
der can cause phase transitions that are separate from the
metal-insulator transition. In Secs. VI and VIII we shall
see that this situation can also occur. The scaling picture
that will be developed in this section is for the most part
a summary and coherent exposition of results obtained
by Wegner (1976), Lee (1982), Castellani, DiCastro, Lee,
and Ma (1984), Finkel'stein (1984a), Abrahams and Lee
(1986), Castellani and DiCastro (1986), Castellani,
Kotliar, and Lee (1987), Kirkpatrick and Belitz (1990a,
1992b), Raimondi et al. (1990), and Belitz and Kirkpa-
trick (1991).

Before beginning our specific discussion of the metal-
insulator transition we point out some general features of
phase transitions (see, for example, Ma, 1976; Fisher,
1983). First we consider the equilibrium properties of
conventional phase transitions at finite temperatures.
These are determined by two independent critical ex-
ponents. All other critical exponents are related to the
two independent ones by scaling laws or equalities.
These two exponents characterize how the system moves
away from the critical surface under scaling. If T, is the
critical temperature, then the distance from the critical
surface is given by the reduced temperature
t =(T T, )/T, and b—y the external field h, which is con-

jugate to the order parameter describing the phase transi-
tion. Let p=(t, h) define the parameter space. Under
RG iterations, the system moves away from criticality
according to
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tibility [see Eq. (4.9c) and Table II below]. Qther physi-
cal parameters distinguishing difFerent systems are ir-
relevant in the RG sense. The dependence of p on b in
turn implies that the singular part of any thermodynamic
quantity, Q(t, h ), near the critical point is a generalized
homogeneous function of second degree and scales as

by both theory and experiment. Consequently the size of
the asymptotic critical region is not known, and it is not
clear whether the measured "exponents" really represent
asymptotic critical exponents or rather some preasymp-
totic efFective exponents. This is an important point,
which will be discussed in detail in Secs. V and VI.

Q{t,h)=b ~Q(b'~ t, b "h), (4.2a)
A. Metal-insulator phase-transition scenarios

with x& depending on Q. Similarly, an equilibrium corre-
lation function 6, at wave vector k, scales as

G(k t, h)=b G(bk'b' t, b "h) . (4.2b)

For a complete discussion of finite-temperature equilib-
rium phase transitions one also needs to consider equilib-
rium time correlation functions (see, for example, Hohen-
berg and Halperin, 1977). Near a critical point one ex-
pects divergent relaxation times and, in addition to v and
yI„adynamical scaling exponent z is needed. If we
characterize the divergent time scale by ~ P, w-ith g the
correlation length, then a frequency-dependent time
correlation function C(k, 0;t, h ) scales as

C(k, Q;t, h)=b 'C(bk, b'f), ;b'i t, b "h) . (4.2c)

For zero-temperature quantum phase transitions such
as the metal-insulator transition the situation is slightly
more complicated (Hertz, 1976). In this case static and
dynamic quantities cannot be separated, and in general
any quantity will depend on the three exponents v, y&,
and z. Similarly, the scaling equalities will depend on
these three independent exponents. Physically, z is need-
ed to describe quantum phase transitions because it
reAects the role of temperature as a relevant operator
that has the same scaling behavior as frequency.

Finally, a general point of experimental relevance
should be emphasized. Scaling is valid only in a small re-
gion of parameter space around the critical point known
as the critical region, and there are systematic correc-
tions to scaling (Wegner, 1972). For standard thermal
phase transitions, the size of the critical region is at most
t ~ 10, and often it is much smaller. For an accurate
experimental determination of the critical exponents, the
following conditions are necessary (see, for example,
Levelt Sengers and Sengers, 1981): (i) the measurements
must cover several decades of t, and (ii) the experiment
must be in the critical region, or (ii ) corrections to scal-
ing must be taken into account in analyzing the data. Be-
cause of these stringent conditions, precision measure-
ments of critical exponents are difficult. For thermal
phase transitions they are nevertheless possible, since t is
relatively easy to control. The situation is less favorable
at the zero-temperature metal-insulator transition in
which t is related to the disorder, or possibly to a com-
bination of disorder and interaction strength. Even in
the most accurate experiments to date (Rosenbaum
et al. , 1983) values of t smaller than 10 have not been
achieved. Furthermore, the question of corrections to
scaling at the metal-insulator transition has been ignored

1. The noninteracting problem

Consider the noninteracting field theory given by Eq.
(3.118) with S;„,[Q]=0. The two parameters that occur
in the field theory are 6 and H. Because the frequency
appears in the second term in Eq. (3.118), the dynamical
scaling exponent z is related to how H renormalizes. The
disorder 6 is analogous to the temperature in finite-
temperature phase transitions, and the behavior of 6 un-
der scaling can be related to the correlation length ex-
ponent v. The order parameter for the metal-insulator
transition is the single-particle DOS at the Fermi level,
XF, which is given by the expectation value of OQ„„[see
Eq. (3.131)]. For the noninteracting problem only elastic
electron-impurity collisions are taken into account, and
consequently there is no frequency mixing. This implies
that H is the field conjugate to the order parameter. The
renormalization of H therefore gives y& as well as z.

Using the fact that g is the relevant length in the prob-
lem, we note for future use that the scale dimensions of 6
and H are

[G]=2—d = —c, ,

[H]=d —z .

(4.3a)

(4.3b)

If we denote the dimensionless renormalized disorder by
g, the dimensionless distance from the critical surface at
zero temperature is t=(g*—g)lg*, with g* the fixed-
point value of g. As in Eq. (4.1a), t(b) grows under RG
iterations with the correlation length exponent v,

(4.5)

Here E. =d —2, and we follow Ma (1976) in defining the
scale dimension of g as —1. The exponent z can be deter-
mined by using the fact that XF is not sensitive to the
metal-insulator transition, i.e., that the order parameter
is not critical. This has been proven rigorously by
Wegner (1981a), and McKane and Stone (1981) have
given a detailed discussion of this aspect of the metal-
insulator transition; see also the discussion in Sec.
III.B.4.a. In the framework of our discussion it is a
consequence of XF's being related to the single-particle
Green's function, which does not depend on difFusion
corrections in the noninteracting limit. In any case, this
implies that H in Eq. {3.118) is not renormalized. Its
scale dimension therefore vanishes, and Eq. (4.3b) gives

(4.4)
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o(t, k, Q)=b 'cr(b'i't, bk, b'0) . (4.6a)

The physical quantity of interest near the metal-insulator
transition is the electrical conductivity o {t,T). In what
follows, temperature T and frequency 0 will be used in-
terchangeably. Presumably this is correct in a scaling
sense. In our units the conductivity has the dimension of
a length to the power (2—d ). Since we assume that g is
the only relevant length, a critical o. naively implies
(r —1/g" . This further implies that the frequency- and
wave-number-dependent electrical conductivity satisfies
the scaling law

discussion, f satisfies the scaling equation

f(t, T, h)=b '" 'f(b' t, b'T, b "h) .

The order-parameter density no satisfies

no{t, T)= —— f(t, T, h )
1

~=o

=b " no(b' 't, b'T) .
—(d —y )

For the (;ritical exponent p this implies

(4.8)

(4.9a)

See Eq. (1.3). For the noninteracting problem, the naive
argument leading to the exponent —e in Eq. (4.6a) can be
made rigorous (Wegner, 1976, 1981a). For the interact-
ing problem this is not the case, and to obtain the most
general scaling scenario one should replace E in Eq. (4.6a)
by v+8 with 8 an unknown critical exponent. This im-
plies that, to obtain the genera1 scaling theory for metal-
insulator transition, one should replace c. in the equations
below by a+8. It should be stressed, however, that in
the context of the nonlinear-sigma-model description of
disordered electronic systems, 8=0 unless either the dis-
order (Castellani, Kot1iar, and Lee, 1987) or the electric
charge (Belitz and Kirkpatrick, 1993) is a dangerous ir-
relevant variable. So far there have been no consistent
theoretical calculations that give 8%0 for systems under-
going a metal-insulator transition, and in what follows we
consider only the case in which 6=0. We shall come
back to this point in connection with Eq. (4.16b) below.
The Einstein relation between cr and the charge diffusion
coeKcient D, [see Eqs. (2.21) or (3.128a), (3.129a)] yields

P=v(d —
y& )=—(d+ri —2),

2
(4.9b)

1
yo(t, T)= —f(t, T, h)=GO(k=O;t, T) .

T Bh h=o

where we have used Eq. (4.lb). Notice that in giving the
first equality in Eq. (4.9a) we introduced a factor T
which cancels the T in Eq. (4.7). In addition we have as-
sumed that h and not h /T is the field conjugate to the or-
der parameter. The physical motivation for these
definitions is that the order parameter for the metal-
insulator transition is local in frequency space and not in
imaginary-time space. The situation is in general
difFerent at other quantum phase transitions (cf. Fisher
et a/ , 1989),.and consequently the scaling descriptions of
such transitions can appear different, although they are
physically equivalent. Similarly the order-parameter
fluctuations define the order-parameter susceptibility yo,
which is equal to the order-parameter density correlation
function Go at zero wave number,

D(t, kQ) = b'D, (b'' t, bk, b'0) .

Note that Eq. (4.6a) implies that at k=O, 0=0,

o(t~O)-t',
with,

s=v(d —2) .

(4.6b)

(4.6c)

(4.6(l)

Here go obeys the scaling law

yo(t, T)=b " y (b0'i t, b'T),
which implies for the critical exponent y

y =v(2y„—d ) =v(2 —g) .

(4.9c)

(4.9e)

f(t, T, h )=— logZ,1
(4.7)

with p= T ' the transverse temperature, V the system
volume, Z the partition function, and h the field conju-
gate to the order parameter. According to our previous

Equation (4.6d) relates the correlation length exponent v
to the conductivity exponent s. It is known as Wegner's
scaling law. In the absence of dangerous irrelevant vari-
ables it is expected to hold at all metal-insulator transi-
tions (a definition and discussion of dangerous irrelevant
variables can be found in the lectures by Fisher, 1983.
See also Ma, 1976, Sec. VII.4).

We next derive several scaling equalities for zero-
temperature phase transitions and show that Eq. (4.4)
and the arguments leading to it are consistent with these
identities. We start with the free energy per unit volume, @R (k &) i()n/()P

i 0+D, (t,k, Q—)k
(4.10)

With the help of Eq. (4.6b), we see that this is indeed con-
sistent with g=2 —d (Abrahams and Lee, 1986). Note
that Eqs. (4.9d) and (4.9e) and yh =d imply that the
order-parameter susceptibility is divergent at the nonin-
teracting metal-insulator transition. This same argument

For later reference we note that Eq. (4.9c) with kAO
defines the wave-vector-dependent order-parameter sus-
ceptibility.

From Eq. (4.9b) we see that yh =d is consistent with a
noncritical order parameter at the metal-insulator transi-
tion. p=O also gives g=2 —d. To establish the con-
sistency of this, we note that the only propagator that ap-
pears in the noninteracting limit is the density-density
correlation function, Eq. (2.36); see also Eq. (3.122e). It
reads
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can be used for the interacting metal-insulator transition,
which will be discussed in the next subsection. For a
consistent scaling description in that case one needs to
take into account the fact that the physical propagator is
a renormalized propagator times a wave-function renor-
malization factor squared. The wave-function renorrnal-
ization can be related to the critical behavior of the order
parameter. The absence of a wave-function renormaliza-
tion in the noninteracting case is equivalent to the order
parameter s being uncritical, as was already mentioned in
Sec. III.C.1. We stress again that the noninteracting
metal-insulator transition is unusual in a scaling sense
only because the order parameter is not critical.

Finally, we note for future use that Eq. (4.8) implies a
scaling law for the specific heat (Castellani and DeCastro,
1986),

Q(A)=b ~Q(b 'Q, b 'Q, b '0) .
—1/z

Suppose z& )z2) z3 and let b =0 '. Then

Q(n)=n ~ 'Q(i, n "",n
Near the critical point, Q~O, one has

(4.13a)

(4.13b)

phase transitions. Fixed points with multiple divergent
relaxation times have been dubbed weak dynamical scal-
ing fixed points (De Dominicis and Peliti, 1978). For fu-
ture use we also note that the zero-temperature RG Aow
equations for g, y„y„andy, =k, /h (k, is the renor-
malized value of K"') can depend only on g, y„y„andy„i.e., only ratios of time scales will appear.

A simple way to interpret the meaning of multiple
divergent time scales is this: if Q(Q) is a scaling function
of fL, then it is natural to assume that

C, (t, T)= T —f(r, T,O)=b "C,(b'i t, b'T)
Q(Q)=Q ~ 'Q(1, 0,0) . (4.13c)

=b' Ty(b "t b'T)

(4.11)

Notice that, for noninteracting systems, z=d and Eq.
(4.11) gives C„(T~O)~ T, i.e., standard analytic Fermi-
liquid behavior, even at the critical point. In giving the
final equality in Eq. (4.11) we have defined a function
y(t, T ) which is a generalization of the usual specific-heat
coefficient. We have also used the fact that C, (T +0)—
must vanish according to the third law of thermodynam-
ics.

2. The interacting problem

From Eq. (4.13c) one might conclude that the subdom-
inant divergent time scales are irrelevant and that the
dynamical scaling exponent is z, . We shall see, however,
that sometimes this argument breaks down because
Q(1,0,0) does not exist, i.e., the subdominant time scales
are dangerous irrelevant variables.

Before discussing some of the phase-transition
scenarios allowed for by general reasoning, let us consid-
er some further constraints. For real electronic systems,
which interact through long-ranged Coulomb interac-
tions, we have the compressibility sum rule, Eq. (3.133d),
which holds for renormalized quantities as well, so that
in the long-wavelength limit

h+k, =O (4.14a)
The interacting field theories are given by Eqs. (3.118)

and (3.92). The parameters that occur in the field theory
are 6, H, and K", and possibly K'" and K"', depending
on the universality class, as discussed in Sec. III.B.4.c.
As compared to the noninteracting problem, there are
some conceptual problems. Examining Eqs. (3.122e),
(3.122f), and (3.122g), and scaling the wave number with

g, gives three time scales, which in principle all diverge
difFerently at the metal-insulator transition (Kirkpatrick
and Belitz, 1990a). If g is the dimensionless renormalized
disorder and h, k„and k, are the renormalized values of
H, E",and E '", then the three time scales and dynami-
cal scaling exponents are

or

z3 1 ( Coulomb interaction ) ~ (4.15a)

(4.14b)

With Eqs. (4.14) and (4.12c) we see that we have to be
careful in defining the dynamical scaling exponent z3.
Bn /Bp, and therefore the screening wave number Kd Eq.
(2.45b), is not critical at the metal-insulator transition. If
we scale the wave numbers in Eq. (3.133d) with g, we see
that eff'ectively Ii+k, -g' ". We can use this in Eq.
(4.12c) to obtain an exact value'5 for z3,

r, =g gh = A, g ', (4.12a)

r2=g gh(1+y, )= A2(' ',
r3=$ gh(1+@, )=A3$ ',

(4.12b)

(4.12c)

with y, , =k, , /h. These are in general three different
time scales. They coincide if and only if y, and y, are
finite constants not equal to —1 at the phase transition.
The possibility of multiple divergent time scales at a criti-
cal point has been discussed before for 6nite-temperature

z 3 1 is exact if and only if the charge that enters the screen-
ing wave number in Eq. (3.133d) is either not renormalized or
Rows to a constant at the transition. In principle one cannot
rule out the possibility that the charge might Aow to infinity at a
metal-insulator transition (Fisher et a/. , 1990). A one-loop cal-
culation for the universality classes MF and MI showed that the
charge is not renormalized to that order (Belitz and Kirkpa-
trick, 1993). Since the charge flowing to infinity would render
Eqs. (4.6d) and (4.16b) invalid, it would be important to know
whether this result holds to all orders.
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z3 d ( short-ranged interaction ) (4.15b)

General theoretical arguments also give a bound on
the correlation length exponent for phase transitions in
random systems where the control parameter is the disor-
der (Chayes et al. , 1986),

Near d =2 one has zi, z2 =2+0(E), so according to our
previous discussion z3 represents an irrelevant time scale
(which is possibly dangerous). We note that for the bo-
son localization problem similar reasoning gives z=1
(Fisher et a/. , 1990) for bosons interacting through long-
ranged forces. This exact result has been used for some
nontrivial theoretical predictions; see Sec. IX.D. For the
fermionic case the result z3=1 is not so useful because
the other z s give the asymptotic scaling properties. Fi-
nally, for the short-ranged case H+X"=h+k, [see Eq.
(3.129a)], and one has, also exactly,

There are no thermal, magnetic, or density-of-states
anomalies at the metal-insulator transition. The interest-
ing physical quantity is the electrical conductivity, which
satisfies Eqs. (4.6). This scenario is realized in the case of
electrons interacting through short-ranged forces with
magnetic impurities or spin-orbit scattering present
[universality classes MI(SR) and SO(SR) in Table I]. It
will be discussed in Secs. V.A. 1 and V.A.3 below.

(ii) The interaction amplitudes and h all scale to a con-
stant (except for k„which is absent for this universality
class). The deviations of y, and y, (for the short-ranged
case) from their fixed-point values iterate to zero. The
latter condition is necessary for a stable RG fixed point
that corresponds to a metal-insulator transition with
t = (g *—g )Ig * describing the zero-temperature distance
from the transition. Equations (4.12) and (4.15) allow for
two distinct subclasses within this scenario, (a) the short-
ranged case,

Equations (4.6d) and (4.16a) imply that

(4.16a) Z] Z2 Z3 d

(b) the long-ranged case,

(4.18a)

s ~ —(d —2),2
d

(4.16b)

Z —Z —Z =Z —d1 2 3 (4.17a)

and

gI, —Z=d (4.17b)

i.e. s ~ —' in d=3. Equation (4.16b) is an important in-

equality that is expected to hold at all metal-insulator
transitions. It is generally valid unless either the dimen-
sionless disorder vanishes at the transition, in which case
Wegner scaling is not satisfied, or there are multiple
divergent lengths at the transition, which makes the ap-
plication of Eq. (4.16a) ambiguous. The first possibility
has been proposed by Castellani, Kotliar, and Lee (1987).
It does not seem to be realized in any of the known
universality classes, as will be discussed in Sec. VI. The
second possibility has never been proposed in the context
of the metal-insulator transition. A third possibility, viz. ,
a renormalization of the charge, has been mentioned
above in connection with Eq. (4.15a). Since none of the
scenarios for a violation of Eq. (4.16b) could be substan-
tiated, we shall assume in what follows that the inequali-
ty holds. In Secs. V and VI we discuss possible interpre-
tations of experiments that appear to give s (—', in d =3.

We now brieAy discuss a number of scenarios for the
interacting metal-insulator transition. Particular atten-
tion will be paid to the dynamical scaling exponents. In
order of increasing complexity, the following scenarios
are possible:

(i) The interactions are irrelevant at the noninteracting
fixed point. For this case all of the interaction ampli-
tudes, k„k„andk„that are present scale to zero and h

scales to a finite constant. The noninteracting sigma-
model field theory is recovered. The dynamical scaling
exponents are

Z& =Z2=d, z3=1 . (4.18b)

There are no thermal or magnetic anomalies at this type
of metal-insulator transition. There is a singularity in the
single-particle DOS, and so the second nontrivial ex-
ponent besides v is [cf. Eqs. (4.9a) and (4.9b)]

P=v(d —yh) . (4.19)

Z] =d +K& Z3: 1 (4.20)

There are no magnetic anomalies, but the specific heat
satisfies [cf. Eq. (4.11)]C, = Ty with

y(t, T)=b y(b'i t, b 'T) . (4.21a)

Notice that for this case h (b ~ ce )~0, so a (0, and the
singular part of y vanishes at the metal-insulator transi-
tion. There is a singularity in the single-particle DOS, so
that the singularities at the transition are determined by
three unknown exponents: v, a., and p.

For this universality class the thermal diffusion
coefFicient has a different critical behavior than the elec-

Notice that in the interacting case the scaling behavior of
H does not determine the exponent p, since K is not con-
jugate to the order parameter, and the critical exponent z
is independent of yj, .

These cases are realized by systems in an external mag-
netic field with the Zeeman effect taken into account
[universality classes MF(SR) and MF(LR) in Table I].
They will be discussed in Sec. V.A.2.

(iii) The interaction amplitude k, (or y, ) is absent (spin
diffusion is suppressed by spin-Aip or spin-orbit mecha-
nisms) and h scales to zero with the constraint h+k, =0
due to Coulomb interactions. The interaction y, may be
present, but its fixed-point value is a constant and devia-
tions from y,* are irrelevant. Defining the anomalous di-
mension of h by v one has [cf. Eq. (4.12a)],
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Dh(t, k, Q)=b ' 'D (b'/'t, bk, b"+ T) (4.21b)

This scenario is realized for electrons interacting
through long-range forces with magnetic impurities or
spin-orbit scattering present [universality classes MI(LR)
and SO(LR) in Table I]. It will be discussed in Secs.
V.A. 1 and V.A.3.

(iv) The interactions scale to infinity, k, ~ oo, h ~ m

and we restrict ourselves to the long-range case,
h+k, =0. We also assume that, while h and k, diverge,

y, does not, y, —+const& ~. There are two dynamical
scaling exponents,

z) =Z2 =d +K, z3 —1 (4.22)

with ~&0. There are singularities due to both thermal
and magnetic fIuctuations as the metal-insulator transi-
tion is approached. Since y —b and y, —(6+k, ) [cf.
Eqs. (3.129b) and (3.129c)], these quantities satisfy the
scaling equations

trical conductivity or the charge diffusion coefficient
given by Eqs. (4.6a) and (4.6b), because of the singularity
in C, . Equations (3.128c), (4.3a), (4.20), and (4.21) yield

The other, more general, possibility is that some linear
combination of g and y, defines the relevant distance
from the metal-insulator transition, while a different
combination gives an irrelevant distance.

This scenario can be realized for the generic universali-
ty classes [G(SR) and G(LR) in Table I] for which there
is no spin-Aip or spin-orbit scattering and no external
magnetic fields. It will be discussed in Sec. VI.

Finally, we mention that one could imagine a more
complicated scenario for the generic case: h ~ ao,

k, ~ ao, and y, ~ ao near the metal-insulator transition.
Assuming that g ~g' at this transition and that the dis-
tance g —g is relevant, the above possibility implies two
relevant perturbations at zero temperature. Such a situa-
tion is not consistent with a stable RG fixed point. It is
interesting that the y, ~Do possibility is realized in a
different way, as discussed in the next subsection.

We conclude this subsection by giving in Table II a list
of scaling equalities relating the correlation length ex-
ponent v, the conjugate field exponent y&, and the
dynamical scaling exponent z to some of the physical
quantities that in principle can be measured near the
metal-insulator transition.

y(t T) bray(b 1/vt bd+ T)

T) be+(b 1/vt b d+vT )

(4.23a)

(4.23b) B. Possible magnetic phase transitions

D, (t,k, Q)=b ' 'D, (b'/ t, bk, bd+ fI) . (4.24)

The thermal diffusion coefIicient is similarly given by Eq.
(4.21b). The RG ffow equations for the critical surface at
zero temperature depend on both g and y„and general
reasoning allows for two distinct possibilities for a RG
stable fixed point describing a metal-insulator transition.
In the first scenario g~g and y, ~y, with the devia-
tions 5y, =y, —y,* being irrelevant and the deviations
5g=g* —g being relevant and defining the exponent v.

In addition there is a singularity in the DOS character-
ized by the exponent 13. The electrical conductivity and
the charge diffusion coefficient satisfy Eqs. (4.6) with
z=z, . There is also critical spin transport at this phase
transition. With Eq. (3.128b) for the spin diffusion
coefficient, which is equivalent to D, -o./y„and Eqs.
(4.6) and (4.23b) one obtains the scaling equation

g(b)-b 'G, (4.25)

In disordered systems electrons diffuse and therefore
move more slowly than in clean systems. This implies
that any two electrons spend an increased amount of time
around each other, which increases the effects of the
electron-electron interaction. In general, magnetic phase
transitions are triggered by interaction effects. This sug-
gests that in some cases it may be possible for disorder to
induce a magnetic phase transition that is distinct from
the metal-insulator transition.

To characterize a magnetic phase transition using a
nonlinear sigma model designed to describe a metal-
insulator transition is not straightforward. For instance,
at such a phase transition the physical disorder G is not
renormalized. This implies that the dimensionless renor-
malized disorder g satisfies

TABLE II. Physical quantities, their scaling behavior, and scaling equalities relating various ex-
ponents.

Physical quantity

Electrical conductivity
Density of states
Order-parameter density

susceptibility
Specific heat
Order-parameter density

correlation function

Heat diffusion coeKcient
Spin diffusion coefficient

Scaling behavior

o-(t~O, T=O)- t'
XF(t~0, T=O) -t~
y, (t~O, T=O)-t y

Cv(t =0,T~O) —T'
6(k —+0;t =0, T=O) —k

Dh(t —+0, T=O) —t "
s

D, (t~O, T=O)- T'

Scaling equality

s =v(d —2)
P=v(d X~)—
y=v(2@~ —d)

K=Z —d
'g =2+d kg

sg =s+v(z d )

Ss S+VK
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and the corresponding renormalized coupling constant

y=gTt (4.26b)

This suggests that a disorder-induced magnetic phase
transition will have the following properties: (i) The di-
mensionless coupling constant is y given by Eq. (4.26b).
If it is a conventional phase transition, y will have a finite
value y* at the fixed point describing the phase transi-
tion. The deviation of y from y*, t =y* —y, is relevant
and gives the correlation length exponent. (ii) At the
phase transition g —+0 and consequently the dimension-
less disorder is an irrelevant variable. y~y* (%0) and
g~0 implies that at this phase transition y, —+ao. We
conclude that this phase transition is consistent with the
scenario that we dismissed at the end of the previous sub-
section, except that now g —g is an irrelevant variable.
This implies that, if this fixed point exists, then it is a
stable RG fixed point.

Now consider the independent exponents at this phase
transition. The zero-temperature distance from the criti-
cal point gives the correlation length exponent v,

y* —y =t(b)=b'/'t . (4.27a)

The specific-heat singularity is related to the dynamical
scaling exponent and is given by the anomalous dimen-
sion of h,

i.e., the scaled disorder vanishes as the phase transition is
approached (b ~ co ). This leaves the scaling behavior of
y, as the only unknown RG Aow equation at zero tem-
perature (y, = —1 for real electronic systems, and we
shall see later that y, is irrelevant). However, to describe
a phase transition with a nonhnear sigma model one
should consider the RG fIow equation of a coupling con-
stant that has a bare scale dimension of 2. This is be-
cause 2 is a lower critical dimension for the model (see
the discussion in Sec. III.B.4.a). Equation (4.3a) together
with the fact that y, is dimensionless motivates defining a
bare coupling constant

(4.26a)

singularity. To identify the dynamical scaling exponent
z, one must use some care. Restricting our considera-
tions to the long-ranged case, we find that z3 =l is an ir-
relevant time scale. The arguments given above and Eqs.
(4.12a) and (4.12b) give

z)=2+v,
z2 =0+K

(4.29a)

(4.29b)

Since z2 )z&, this naively suggests that ~& is an irrelevant
time scale and that z=z2. However, in the explicit
theory for this phase transition, to be discussed in Sec.
VI, the time scale ~, acts like a dangerous irrelevant vari-
able, and effectively z in Eq. (4.28) is equal to z, .

At this magnetic phase transition the electrical con-
ductivity and the mass or charge diffusion coefficient are
noncritical. However, the spin diffusion coefficient D, is
singular. With Eqs. (4.28) and (4.25) one obtains

D, (t, k, Q)=b 'D, (b'/ t, bk, b'0) . (4.30a)

Using Eq. (4.25) and the arguments leading to Eq.
(4.21b), one finds that the thermal diffusion coefficient at
this phase transition satisfies

Dh (t,k, 0)=b Dh (b '/ t, bk, b'0) . (4.30b)

As already mentioned, in general one expects three in-
dependent exponents at zero-temperature phase transi-
tions. So far we have not discussed the scaling of the
field conjugate to the order parameter describing the
phase transition. Physically we expect that the order pa-
rameter is related to the magnetization and that the ap-
propriate susceptibility is just the magnetic susceptibility.
The fact that y, —k, and y=gy, ~y* at the phase tran-
sition gives a constraint that reduces the number of ex-
ponents by one. The net result is that there are only two
independent exponents at this phase transition. The ex-
plicit identification of y& proceeds as follows. First a
source term, SI„proportional to the magnetic field h and
the magnetization operator m, is added to the Grassman
action:

h(b)=b h .

Equation (4.25) andy y* yield

(4.27b) Si, = I dr J dxh m(x, r) .
0

In the Q-matrix field theory Sl, is transformed to

(4.3 la)

(4.27c) 3

Sh= 2vrN~Q Jdx —g g h, ,"Q„„(x)+O(h),
which together with Eq. (4.27b) implies that the triplet
interaction amplitude k, scales as

a, n r=0, 3 i =1

(4.31b)

k, (b)=b'+ k (4.27d)

( t T)—b E+K~ ( b 1/vt bzT) (4.28)

The relevant susceptibility at this phase transition is
the magnetic susceptibility g„which is proportional to
k, (notice that k, diverges more strongly than h as
b ~ oo ). Equation (4.27d) implies the scaling law

i.e., the magnetic field couples to the spin-triplet
particle-hole components of the Q matrix. Note that, for
the magnetic phase transition, the physical field h cou-
ples to a term in the action that is nonlocal in frequency
space [see the discussion above Eq. (4.9c)]. Using Eq.
(4.7), the fact that the magnetization is given by the first
derivative of the free energy with respect to h, and the
fact that g, is given by the second derivative, one obtains

i.e., the specific-heat exponent gives the susceptibility P=v(z+d —y„), (4.32a)

Rev. Mod. Phys. , Vol. 66, No. 2, April 1994



310 D. BeIitz and T. R. Kirkpatrick: The Anderson-Mott transition

y=v(2y), —z —d) . (4.32b)

Equations (4.28) and (4.32b) with z =2+)i give

yh
—d+K ~

P=2v .

(4,33a)

(4.33b)

Equation (4.33a) agrees with a result given by Raimon-
di et al. (1990) as a footnote (Ref. 21), which suggests
that the dangerous irrelevancy of y, might change the re-
sult given in the main text of that paper, viz. , y& =z&.
Equation (4.33b) naively implies that at the magnetic
phase transition the order parameter, viz. , the magnetiza-
tion, will be critical. Things may be more complicated,
however. If m; is the magnetization density in the i
direction, then Eqs. (4.7) and (4.31b) give

m, =2~NFT g g (;Q„„(x))
n r=0, 3

(4.34)

The explicit theory described in Sec. VI suggests that
only the component with n =0 is critical. Since this crit-
ical component is multiplied by a factor of T in Eq.
(4.34), this leads to an uncritical magnetization. Accord-
ing to this interpretation the exponent P given in Eq.
(4.33b) is meaningless because the critical quantity has a
vanishing prefactor.

V. METAL-INSULATOR TRANSITIONS IN SYSTEMS
WITH SPIN-FLIP MECHANISMS

In this section we consider disordered electronic sys-
tems that have strong spin-Aip or spin-orbit scattering or
that are subject to a strong magnetic field. "Strong" in
this context means that the spin-Aip or spin-orbit scatter-
ing rate or the Zeeman splitting is large compared to the
temperature. This case, which comprises the universality
classes MF, MI, and SO of Table I, turns out to be sub-
stantially less complicated than the generic case (class G
in Table I), which will be discussed in Sec. VI, because
strong magnetic fluctuation eFects are suppressed. Un-
like the generic case, these systems do not have compet-
ing magnetic and metal-insulator transition instabilities.
In the classes MF and MI the Cooper channel is also
suppressed, which further simplifies the problem. For
the metal-insulator transitions in these universality
classes a generally accepted theory exists (Finkel'stein,
1983b, 1984a; Castellani, DiCastro, Lee, and Ma, 1984).
In the class SO the Cooper channel is present, which
makes the problem substantially more complicated. Pro-
posed solutions of the Cooper channel problem
(Finkel'stein, 1984b; Castellani, Di Castro, Forgacs, and
Sorella, 1984; Kirkpatrick and Belitz, 1993) disagree with
each other at a rather fundamenta1 level.

We shall first discuss the asymptotic critical behavior
at the metal-insulator transition in systems with magnetic
impurities, then in systems with external magnetic fields,
and finally in systems with spin-orbit scattering. For the
last, we discuss the problems mentioned above in detail.
We then turn to the problem of corrections to scaling

near the metal-insulator transition. In particular, we dis-
cuss a proposal that, for the spin-orbit universality class
(and for the generic universality class to be discussed in
the next section), there are logarithmic corrections to
scaling that make it virtually impossible to probe experi-
mentally the asymptotic critical region in these systems.
In Sec. V.B we compare these theoretical results for the
metal-insulator transition with experiments on systems
that are believed to fall into the respective universality
classes.

A. Theory

1. Systems with magnetic impurities

The nonlinear sigma model for this universality class is
given by Eqs. (3.118) and (3.92) with the particle-hole
spin-singlet restriction

r Qnm ~iO[~rO OQnm +~r3 3Qnm 1 (5.1)

P(1) (OQaa( ) ) (5.2a)

(5.2b)

P(2) (0 aa( )0 aa(p )e ) (5.2c)

and the corresponding vertex functions, I'", I 0 ', and

I,' '. Here the averages are taken with the full action,
and

Oq„=( ' g ()q„ (5.2d)

For a one-loop calculation of these propagators, it is
sufficient to retain terms up to S4 in Eq. (3.119). The
physical meaning of P"' is that of the one-particle densi-

ty of states (DOS) at an energy Q„away from the Fermi
energy [see Eq. (3.131)]. Po ' is the basic diffusion propa-
gator and P,' ' is the charge-density (i.e., singlet) propaga-
tor [see Eqs. (3.122)].

To one-loop order I'", or (P'") ', can be obtained by
using Eqs. (3.117) to O(q2) in Eq. (5.2a). Let us first con-
sider the case of short-ranged interactions. With Eqs.

i.e., particle-particle and spin-triplet critical Auctuations
are suppressed by magnetic impurities. The parameters
that appear in this theory, and that will be renormalized
by the renormalization procedure, are the disorder G, the
frequency coupling constant H, and the spin-singlet
particle-hole interaction amplitude E".

To proceed, we introduce a number of propagators or,
equivalently, vertex functions, which depend on the pa-
rameters G, H, and X". A loop expansion for each
propagator is then developed; see Sec. III.B.3.c. The
next step is to introduce renormalized coupling constants
and to derive RG How equations that describe a metal-
insulator transition (Castellani, DiCastro, Lee, and Ma,
1984; Finkel'stein, 1984a).

We consider the following (connected) propagators:
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(3.122) one finds L, =1n(1+X' /H), (5.4b)

I'"=1+ L, +O(e G, G )
8c.

(5.3)

G =Sd 6/(2') (5.4a)

where we have used dimensional regularization with
E, =d —2. In Eq. (5.3),

where Sd is the surface area of the d-dimensional unit
sphere. Note that for systems interacting through long-
ranged interactions K~'/H = —1, and consequently L, in
Eq. (5.3) does not exist. To treat this case we consider
the integral, Id(n„), leading to the second term in Eq.
(5.3). For systems interacting through long-ranged in-
teractions,

I„(n„)=— =G ~ dao dp
( )

8 n+m 8 o 0 [
' "+(co+n )GH][ +( +n )GH]

(s.sa)

In giving the second equality in Eq. (5.5a) we have used
Eqs. (3.134) and neglected terms that are irrelevant for
the critical behavior of the density of states, or I'". We
have also replaced the frequency sum by the appropriate
integral in the limit T—+0. First performing the frequen-
cy integral and then doing the wave-number integral by
dimensionless regularization gives

(5.5b)

Note that the E singularity in Eq. (5.5b) is much
stronger than the c ' singularity usually encountered in
expansions about a lower (or upper) critical dimension.
Among other things, it implies that the RG Aow equation
for the single-particle DOS in d =2 depends explicitly on
the RG scale, and in d =2+ c the right-hand side is pro-
portional to c '. We discuss these features further
below.

To one-loop order, there are two topologically distinct
diagrams that contribute to the I' '. They are shown in
Fig. 16. Tedious but straightforward calculations give

I

the momentum integration.
The characteristic logarithmic structure denoted by L,

in all of these functions arises from performing the sum-
mation over frequencies. One way to do the integrals is
to perform the wave-number integration first, and then to
express the sums over the Matsubara frequencies in terms
of Riemann zeta functions. Alternatively, one can trans-
form the Matsubara frequency sums to real frequency in-
tegrals using standard methods. Again, the L, terms in
Eq. (5.6) do not exist for systems interacting through
long-ranged interactions. However, in the RG Aow equa-
tions for the coupling constants these terms are canceled
by a wave-function renormalization effect. The singulari-
ty L,~—ao is apparently relevant only for the DOS.

We next absorb the c, —+0 singularities encountered in
the theory into renormalization constants. The ultimate
goal of this procedure is to develop a renormalized field
theory with finite coupling constants at the metal-
insulator transition. We define a renormalized disorder
coupling constant g, a renormalized frequency coupling
constant h, and a renormalized interaction amplitude k,
by

r,'"(k,n )= +Hn +sr, ,

2

r,"'(k, n )= +(H+lc")n

(5.6a) G =p Zgg

H=Zhh,
X"=Z Is s

(5.7a)

(5.7b)

(5.7c)

with

+sr, + Ic"n (1+2L,),
Sc

(5.6b) where p is an arbitrary momentum scale. The renormal-
ization statement is

(k/G)G
1

H L +n GH L
E"

4c, 4c ' 2H

(5.6c)

Note that the factor G/G in the first term in Eq. (5.6c)
serves only to absorb the factor Sd/(2m)" arising from

rpp'(k, n;g, h, k,p)=Z I ' '(k n;G, H K")
(5.8)

where I ~
' is the renormalized vertex function and Z is

the field renormalization constant. The three functions
r'", r,"', and I,' ' are sufhcient to determine the four re-
normalization constants. Using minimal subtraction and
Eqs. (5.3)—(5.8), one finds

Z=l — l, +O(g ),
4e ' (5.9a)

FIG. 16. One-loop diagrams for the two-point vertex functions
I (2)

Z =1+ [1—(1+1/y, )l, ]+O(g ), (5.9b)
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Z„=1+ y, +O(g ), (5.9c) t(b)=b't(b=l)=b't=b'~ t, (5.11b)

Z, =l — +O(g ),
Sc,

(5.9d)
with t—:t(b= 1) the physical distance from the metal-
insulator transition at zero temperature and frequency
and

dg 2

b = —Eg+ [1—(1+1/y, )l, ]+O(g ), (5.10a)

b =—k, +O(g ),dh g
db 8

(5.10b)

with l, = ln(1+ y, ) and y, =k, /h.
The one-loop RG Aow equations are derived from Eqs.

(5.7) and (5.9) in the usual way. With b-p ' the RG
length rescaling factor, one obtains

v= —[1+O(e)] . (5.11c)

h(b) =b—h(b =1)=b 'i h(b =1) . (5.12a)

Similarly, the behavior of h in the vicinity of the fixed
point gives the critical frequency or temperature depen-
dence. The linearized Row equation is obtained by re-
placing g in Eq. (5.10f) by g

' =4E. This yields

b (h+k, )=0,d
(5.10c) Equation (5.12a) defines the critical exponent s. This im-

plies for the dynamical scaling exponent z [cf. Eq. (4.20)]

b y, = ——y, (1+y, ) .d
(5.10d) z=d+s=2+8/2 . (5.12b)

%'e emphasize two points.
(1) Equation (5.10c) implies that h+k, is not renor-

malized to one-loop order. This result is expected to be
exact. For systems interacting through screened
Coulomb interactions, the compressibility sum rule dis-
cussed in Sec. III.B.3.e fixes h+k, =0; see Eq. (3.133d).
For systems with short-ranged interactions, h +k, can be
related to the thermodynamic DOS or compressibility
(Bn/Bp); see Eq. (3.129a). This expression involves the
density of electrons far from the Fermi energy and conse-
quently should not be sensitive to diffusion corrections.

(2) For systems with short-ranged interactions, Eq.
(5.10d) implies that y, ~0 under RG iterations. This in
turn causes the term of O(g ) in Eq. (5.10a) to vanish.
One concludes that in this case interactions are irrelevant
and there is no metal-insulator transition to this order.
This case realizes the scaling scenario (i) of Sec. IV.A.2.
For the noninteracting model, the term of O(g ), Eq.
(5.10a), is needed to recover a metal-insulator transition;
see Eq. (3.150b).

We now consider electronic systems interacting
through screened Coulomb interactions. In this case
there is a metal-insulator transition at one-loop order.
For this universality class we have y, = —1 exactly, and
Eqs. (5.10a) and (5.10b) become

The scaling theory for this phase transition was dis-
cussed in Sec. IV.A.2, scenario (iii). The field theory
gives explicit values for the exponents v and a (or z), as
shown in Eqs. (5.1lc) and (5.12). v also determines the
conductivity exponent,

s =1+0(E), (5.12c)

and for T~O the singular part of the linear specific-heat
coefficient behaves as

y(t =0,T~O)- T (5.12d)

I'ti'(&, 'g ")l„„dghQ„ (5.13a)

With Eqs. (5.5b), (5.8), and (5.13a) the wave-function re-
normalization constant is given to lowest nontrivial order
in the disorder by

The remaining unknown independent critical exponent
is the DOS exponent P defined by Eqs. (4.9b) and (4.19).
This can be obtained by studying the scaling behavior of
the one-point propagator or vertex function; see Eq.
(3.131). To illustrate the points discussed below Eq.
(5.5b), we use a normalization-point RCx procedure (see,
for example, Zinn-Justin, 1989). The normalization con-
dition is

dg gb = —Eg+ +O(g ),
db 4

b = ——h+O(g ) .
dh g
db 8

(5.10e)

(5.10f)

Z'"=)+ g ~, dx
(I+Fo)

x —(1+F' )x

( I +Fo )x "+1
Xln.

K~x +1

b =et .dt
(5.11a)

The solution of Eq. (5.11a) is

Equation (5.10e) shows a fixed point at g* =4m, describing
a metal-insulator transition. The RG relevance of g
around g* gives the correlation or localization length ex-
ponent v. If we denote the deviation of g from g* by t,
t =g*—g, then the linearized RG equation for t is

d lnI ~i'
g=—J(I~i, ), (5.13c)

(5.13b)

with ~t, =~d /p-bad the (trivially) renormalized screen-
ing wave number. To lowest order in the disorder, the
RG Aow equation for the scale-dependent vertex function
I z' satisfies
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with

The physical critical limit is az ~~ for fixed c. In this
limit,

m. /sin(n. s/2), d )2,J(~' 2
—in~„d=2. (5.13e)

Note that incorrect results are obtained by evaluating
J(az ) for c, ~O and using the result for c, )0 (Castellani,
DiCastro, Lee, and Ma, 1984). With g* =4m. , Eq. (5.11c),
and Eq. (5.13e) in Eq. (5.13c), one obtains (Finkel'stein,
1984a)

p=1/E+O(1) . (5.14a)

For example, to one-loop order the DOS at the Fermi
surface, N~(t)=N(t, Q=O), vanishes as

NF(t)-r" . (5.14b)

Note that the critical exponent defined by Eq. (5.14b)
does not exist in two dimensions (c,=O). Using Eq.
(5.13e) and 1naz -lnb suggests that NF(t) vanishes faster
than any power law as t~O in 2-d systems. The true
asymptotic behavior in two dimensions is not known.
The explicit scale dependence on the right-hand side of
Eq. (5.13c) in two dimensions is due to the fact that the
dynamical time scale represented by the exponent z3
(which is equal to unity) discussed in Sec. IV.A.2 is a
dangerous irrelevant variable in this dimension.

Let us discuss this last point in more detail. Conven-
tional momentum-shell renormalization does not allow
for an explicit scale dependence in RG Aow equations,
while in the approach used above it occurs naturally. A
connection between these two approaches can be seen if
one considers the following points: (1) The screening

1+Fo
J(a~ ) =2a~+' dx

[ I +aitx ][1+a~ (I+F0 )x "]

(5.13d)

x+=—,'E +O(E'),

x = —I+0(E),
(5.15a)

(5.15b)

for the long-range case. For the short-range case one re-
covers z=d and Eq. (3.152) for the exponents x+ and
X

In Table III we give a summary of the critical ex-
ponents for the diFerent universality classes, including
those for magnetic impurities discussed here [classes
MI(SR) and MI(LR) of Table I]. In Sec. V.B. we shall
discuss experimental results relevant for this universality
class.

2. Systems in external magnetic fields

The nonlinear sigma model for this universality class is
given by Eqs. (3.118)and (3.92) with the restriction

'„Qg= [5;O5„O+5,O5„3+5,35„O+5;35„3]'„Q„~, (5.16)

length is a microscopic length scale, and one expects the
critical limit to be Ird ~~. (2) If /cd were a convention-
al irrelevant length scale, then the corrections would be
of order p /ad. (3) Such terms always occur in the field-
theoretic RG approach if a finite cuto6' is used. It is
known (Symanzik, 1983) that this scale dependence is
equivalent to retaining irrelevant operators in the
momentum-shell approach. (4) All of the above argu-
ments apply in the present case, except that here ~d is re-
lated to a dangerous irrelevant operator. This causes
J(az =1~dip) to diverge in d=2 in the limit K~ ~00.
For d & 2, J(az ~ oo ) is finite, and the scale dependence
of the Qow equations vanishes in the critical limit. A de-
tailed technical analysis of the DOS renormalization has
been given by Belitz and Kirkpatrick (1993).

The critical behavior of the ultrasonic attenuation for
this universality class has been calculated by Dobro-
savljevic et al. (1991). The result is Eq. (3.151a) with z
given by Eq. (5.12b), and

TABLE III. Values for the three independent exponents v, z, and P for the eight universality classes of Table I. Values are given for
d =2+a dimensions except for class G, where approximate values for d =3 based on a two-loop approximation are shown. P for
class MF(SR) depends on the nonuniversal quantities y, and f*=—f(y, ); see Eqs. (5.25). The critical behavior for class SO(SR) is not
understood, and that for class 6(SR) has not been considered.

ersality
class

SR

MI

LR

MF

LR SR

SO

LR SR LR

1 3
2c 4
+O(c,')

—+O(1)1 —+O(1)1 —+O(1)1 —+O(1)1 —=0.75

2+ —+O(c )
2

—+O(1)1

—(1/2f *}
Xln[1 —(y,*) ]

+O(c)

1/26
1 —ln2
+O(1)

2+O(E )

—+O(1)2

—=5.91

=—0.50
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p(2) (Oqaa( )0 aa(p )s ) (5.17)

and the corresponding vertex function I"', '.
To one-loop order I'" can be computed as for the

magnetic impurity universality class. Using dimensional
regularization with c=d —2 one finds

i.e., the particle-particle channel and those sectors of the
particle-hole channel with a nonvanishing z component
of the spin are suppressed by the magnetic field. The pa-
rameters that appear in this field theory and that will be
renormalized by the renormalization procedure are G, H,
K", and K'", with K'" the spin-triplet particle-hole in-
teraction amplitude.

To proceed, we consider the propagators given by Eqs.
(5.2) and, in addition, we introduce the particle-hole
spin-triplet propagator,

E'"=z k

The renormalization statement is

I' '(k, Q;g, h, k„k„(M)
=Z r' '(k Q;G, H K" K'")

(5.21)

(5.22)

The four functions I' ', I o,', are sufhcient to determine
the five renormalization constants. With minimal sub-
traction and Eqs. (5.7), (5.20) —(5.22) one finds

Z=l — (l, +l, )+O(g ), (5.23a)

the theory into renormalization constants. We define re-
normalized coupling constants g, h, and k, by Eqs. (5.7),
and a renormalized triplet interaction amplitude k, by

I(')=I+ (L +L )+O(E G, G ),
8 s (5.18a)

Zg =i+ [1—(1+1/y, )l, ]+[1—(1+1/y, )l, ]

with

L,„=in(I+K""/H ) (5.18b)

+O(g ),
Zh=l+ [y, +y, ]+O(g ),

(5.23b)

(5.23c)

For systems interacting through long-ranged interactions
one finds, to leading order in 1/c, Z, = 1 — [1+k, /k, ]+O(g2), (5.23d)

I "=1— +O(G/E G )
G

4c
(5.19) Z, =l — [1+@,/k, ]+O(g ), (5.23e)

The remarks given below Eq. (5.5b) also hold for this
universality class.

The two-point vertex functions I 0,', can be calculated
as in the previous subsection. One obtains

with l, , =in( 1 +y, , ), y, , =k, , /h.
The one-loop RG Aow equations follow from Eqs.

(5.7), (5.21), and (5.23) in the usual way. With b-p
the RG length rescaling factor one obtains (Castellani,
DiCastro, Lee, and Ma, 1984; Finkel'stein, 1984a)

r,(2'(k, n )= +Hn +sr, +sr, , (5.20a)
b = —Eg+ I [1—(1+1/y, )I, ]+[1—(1+1/y, )l, ]]

r,"'(k,n. )= +(H+K")n +sr, +sr,

+ (K"+K'")0
Sc.

+ K"0 (L +L ) (5.20b)

+O(g ),
b =—[k, +k, ]+O(g ),

db 8

b (h+k, )=0,d

(5.24a)

(5.24b)

(5.24c)

r("(k,n )= +(H+K(")n +sr, +sr, b k, = ——[k, +k, ]+O(g') . (5.24d)

with

+ (K"+K'")0
8c.

+ K "iO (L +L ), (5.20c)

The first comment below Eq. (5.10d) also applies to Eqs.
(5.24). The metal-insulator transition implied by Eqs.
(5.24) we first consider for systems interacting through
short-ranged forces and then separately for systems in-
teracting through screened Coulomb interactions.

The fixed-point values implied by Eqs. (5.24) for sys-
tems with short-ranged interactions are

(k /G)G H
s, t 4 ~(.s, t) s, t

GH K"')
P7l 4 s, t (5.20d)

We next absorb the c~O singularities encountered in

K" X"~+ +
2 2

k*=—k*= '(K"—K(")s t

4E
g

(5.25a)

(5.25b)

(5.25c)
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with y, =k,*/h * and for the DOS is now universal. Equations (5.19) and (5.27)
give (Finkel'stein, 1984a)

1 1 —xf(x)=2 —ln(1 —x )+—ln
x 1+x (5.25d) P= +O(1) .

1
(5.28a)

v= —[I+O(s)],1

s = 1+0(e),

z=d
1

in[1 —(y,') ] '+O(E),

(5.26a)

(5.26b)

(5.26c)

(5.26d)

(5.26e)

Stability implies the constraint y, H [0, 1]. In this inter-
val f(y, ) is monotonic, with f (0)=0 and

f (1)=2—21n2.
Using the arguments given below Eqs. (5.10), we find

the following critical exponents for the present universal-
ity class [class MF(SR) of Table I],

5x+= E +O(e ),4 1 —ln2

1x = +O(E) .
1 —ln2

(5.28b)

(5.28c)

The scaling theory for these phase transitions has been
discussed in Sec. IV.A.2, scenario (ii). In Table III we
give a summary of the critical exponents for the different
universality classes, including those for systems in mag-
netic fields [classes MF(SR) and MF(LR) of Table I] dis-
cussed above. In Sec. V.B we shall discuss experimental
results relevant for these universality classes.

The critical exponents for the sound attenuation are also
universal (Dobrosavljevic et al. , 1991),

where f':f(y,'). Fo—r the critical behavior of the ul-

trasonic attenuation (Dobrosavljevic et al. , 1991) one
finds Eq. (3.151a},with z given by Eq. (5.26d}, and

3. Systems with spin-orbit scattering

For the case of spin-orbit scattering, the model is given
by Eqs. (3.118) and (3.92), with the restriction

x + = (A+ If*)E/2+ O(E ), (5.26f)
i aP 0 nP,Q. =&;o,Q. (5.29)

with

h *=—k*=k'= '(H+X'")—s t

4c.

(1)

(5.27a)

(5.27b)

f(1)=2—21n2 . (5.27c)

The critical exponents v, s, ~, and z are again given by
Eqs. (5.26a) —(5.26d). However, the critical exponent P

where A, + = A, +(y,* ) with

A, +(y)=ln(1 —y )+I[in(1 —y )] +4+16y ] . (5.26g)

Notice that the critical exponents P and x+ are not
universal, since y, depends on bare parameters; see Eqs,
(5.25a) and (5.25b). Furthermore, the structure of the
theory suggests that at higher order v will also be
nonuniversal. From a RG point of view, nonuniversal
critical exponents are very unusual. To understand how
they arise in this case one needs to do a stability analysis
about the fixed point given by Eqs. (5.25). The coupled
equations for g, y„and y, lead to one relevant eigenval-
ue giving the inverse correlation length exponent, one ir-
relevant eigenvalue, and a zero eigenvalue for the scaling
behavior of y, —y, . The latter is responsible for the
nonuniversal critical behavior. This fixed-point scenario
is realized only if the zero eigenvalue remains zero to all
orders in the loop expansion. This point has so far not
been investigated.

For systems interacting through long-ranged Coulomb
interactions the fixed-point values implied by Eqs. (5.24)
are

i.e., all spin-triplet contributions are suppressed by spin-
orbit scattering. The parameters that appear in this case
are G, H, K", and K"', where K"' is the spin-singlet
particle-particle (or Cooperon) interaction amplitude.
This case was first discussed by Castellani, DiCastro,
Forgacs, and Sorella (1984).

a. Asymptotic critical behavior

As in previous subsections we first determine the
asymptotic critical behavior at the metal-insulator transi-
tion. We consider the propagators given by Eqs. (5.2).
In addition, we need a method for renormalizing K"'.
One way to do this is by directly renormalizing the gen-
erating functional (Wilson and Kogut, 1974) rather than
the two-point Cooperon propagator (Wilson and Kogut,
1974). This route was taken by Kirkpatrick and Belitz
(1991; Belitz and Kirkpatrick, 1992). A crucial point is
that f„(p)in Eqs. (3.122) is logarithmically singular.
The asymptotic critical behavior at the metal-insulator
transition can be obtained by letting f„(p)~oo at the
end of the calculations, thereby neglecting terms that are
logarithmically small. We must not, however, neglect
the second term in curly brackets in Eq. (3.122c) immedi-

ately, since the calculation will produce additional fac-
tors of f„(p)that will appear in the numerator. In the
next subsection we shall examine these logarithmically
small terms more carefully.

We note at this point that both the approach and the
results presented here have been subject to some debate,
and that the original treatment of the universality classes
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r" =1+ L+O(EG 6 ).
8c

(5.30)

For systems interacting through long-ranged interactions
one finds, to leading order in 1/E,

I'"=1— +O(G/E 6 )
4~2

(5.31)

The two-point vertex functions I 0,' can be computed

that include Cooperons was different (Castellani, Di Cas-
tro, Forgacs, and Sorella, 1984; Finkel'stein, 1984b).
Since the full importance of this disagreement becomes
apparent only if one goes beyond the leading critical
behavior we defer a complete discussion of it to the next
subsection. In the present subsection we mention the
differences where they occur, but they have no major im-
plications.

To one-loop order, I'" can be computed in the same
way as for the magnetic impurity universality class. Us-
ing dimensional regularization with E=d —2 and the
techniques discussed above, one finds

as in the previous two subsections. One obtains

g 2 k /G—r'"(k n ) = +Hn. +sr, — 6, (5.32a)

r"'(k n )= +(H+K'~)n +sr, — G

+ K"(1+2L )n
8c.

(5.32b)

with 5r, given by Eq. (5.6c). Notice that the
interaction-dependent parts of Eqs. (5.32) are identical
with Eqs. (5.6), i.e., in the limit f„(p)~oo the particle-
particle interaction amplitude does not contribute to the
renormalization of 6 and H (Finkel'stein, 1984b). The
additional contribution compared to Eqs. (5.6) is due to
the antilocalization effect of the Cooperon term in the
noninteracting part of the action. To compute the K"'
renormalization, we use the fact that to one-loop order
Eq. (3.120c) must have the same form as it does to zero-
loop order, except that G, H, and K"' acquire one-loop
corrections. ' At zero wave number, the result for K"'
to this order is

+ri n'n n + + n —n P n —n P l G+ +n n4 ~n2
—

n4~ P (5.33a)

Doing the integrals we find

GX"K"' =K"'+ +0( 6 6 )( 1-loop)
4E,

(5.33b)

ZI, =1+ y, +O(g ),

Z, =1— +O(g ),
8c.

(5.36c)

(5.36d)

Now we again absorb the c.~O singularities into renor-
malization constants. We define renormalized coupling
constants g, h, and k, by Eqs. (5.7) and a renormalized
spin-singlet particle-particle interaction amplitude k, , by

z"'=z
C, S C, S

The renormalization statement is

r,'"'(k, n. ;g, h, k„k„,l )

=Z 'r' '(k, n 6 H K" K"')

(S.34)

(5.35a)

Alternatively, one can use renormalized coupling con-
stants and introduce a renormalized q field, q~, by

q Z1/2 (5.35b)

The three functions I'", I'o,' and Eqs. (5.33b) and Eqs.
(5.35) are sufficient to determine the five renormalization
constants. Using minimal subtraction, one finds

k,
Z, , =1+ l, — +O(g ),

4c, ' 4c. k, ,
(S.36e)

with l, =ln(1+y, ), y, =k, /h.
For the universality classes with Cooper ons it is

relevant to note that the vertex functions used in Eq.
(5.35) are obtained by taking derivatives with respect to q
of the generating functional. These functions are actual-
ly matrices in Matsubara frequency space. In Sec
III.B.3.b we showed that the process of inverting the ver-
tex functions to obtain the propagators leads to the ap-
pearance of the function f„(p),which was discussed at
the beginning of this subsection and which itself is loga-
rithmically singular. This singularity is not eliminated by
the renormalization process expressed in Eq. (5.35a), and
its effect will be considered in the next subsection.

The one-loop RG flow equations follow from Eqs.
(5.7), (S.34), and (5.36) in the usual way. With b-p,
one obtains

Z= 1 — 1, +O(g ),4c '

Zg= 1+ I[1—(1+1/y, )l, ]——,'I+O(g ),

(5.36a)

(5.36b)

b = —sg+ . [1—(1+1/y, )l, ]—— +O(g ),dg g 1

db 4 ' ' 2

(5.37a)

This is true provided the theory is renormalizable. See the discussion in the next subsection and in Secs. III.B.3.c and X.
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b =—k, +O(g ),dh g
db 8

b (h+k, )=0,

b k„= —k,—+g 'k„—+O(g') .

(5.37b)

(5.37c)

(5.37d)

s =1+0(E),
~= —s+O(E ),
z=2+O(E ),
P=2/e+O(1) .

(5.39b)

(5.39c)

(5.39d)

(5.39e)

The ( —
—,
' ) term in Eq. (5.37a) is again the antilocalization

effect which is characteristic of systems with spin-orbit
scattering (see, for example, Bergmann, 1984; Lee and
Ramakrishnan, 1985).

For systems interacting through short-ranged interac-
tions, all of the comments below Eqs. (5.10d) for the
short-ranged magnetic impurity universahty class apply
here as well. That is, the interaction amplitudes y, and
k, , How to zero under RG iterations, and consequently
the noninteracting spin-orbit scattering universality class
is recovered. This is scaling scenario (i) of Sec. IV.A.2.
As was mentioned in Sec. III.C.1, the metal-insulator
transition for this universality class is not understood.

As in the previous subsections, for systems interacting
through screened Coulomb interactions there is a con-
ventional metal-insulator transition at one-loop order.
For this universality class one has y, = —1 exactly, and
Eqs. (5.37) become

dgb = —Eg+ +O(g ),
db 8

b = ——h+O(g ),dh g
db 8

d3 c g g'Vc 1 1
b +O(g ),

db 4 2 c, 4

(5.38a)

(5.38b)

(5.38c)

v= —[I+O(e)],1
(5.39a)

with y, =k, , /h. The second term in Eq. (5.38c) is ob-
tained by the replacement l', —+ —2/c for systems in-
teracting through long-ranged interactions. Note that
Eq. (5.38c) gives y,' =s/2 and that y, is irrelevant in the
RG sense. Equations (5.38) are the result obtained by
Kirkpatrick and Belitz (1993). The original approach
taken by Castellani, Di Castro, Forgacs, and Sorella
(1984; see also Finkel'stein, 1984b) considered the Cooper
propagator, rather than y„the relevant scaling quantity.
The Aow equations they obtained are structurally
different, but to lowest order in c. they lead to the same
asymptotic critical behavior as Eqs. (5.38). In the next
subsection we shall see, however, that one approach leads
to logarithmic corrections to scaling while the other one
does not.

Comparing Eqs. (5.38) with Eqs. (5.10), we see that the
critical properties of the spin-orbit universality class are
identical to those of the magnetic impurity universality
class, except that gso =2gM&. Therefore the critical ex-
ponents for the long-ranged spin-orbit universality class
are

The scaling theory for this phase transition has been
discussed in Sec. IV.A.2, scenario (iii). In Table III we
give a summary of the critical exponents for the different
universality classes, including those discussed above. In
Sec. V.B we shall discuss experimental results relevant
for these universality classes.

b. Logarithmic corrections to scaling

In the preceding sections we have emphasized that the
localization or metal-insulator transition can be de-
scribed as a conventional continuous phase transition
that occurs at zero temperature. In general the asymp-
totic critical behavior at such a phase transition is
characterized by universal critical exponents, scaling
laws relating exponents, and scaling functions. As dis-
cussed in the introduction to Sec. IV, corrections to scal-
ing are often important for the interpretation of experi-
ments dealing with continuous phase transitions.

The last point is of particular interest for the case of
the metal-insulator transition. The most accurate experi-
ments to date have been performed on a bulk doped semi-
conductor, viz. , Si:P. In this case, a simple power-law fit

to the data gives a conductivity exponent s [defined by
cr(t, T=O)-t'], of s =0.51+0.05 (Thomas, Paalanen,
and Rosenbaum, 1983). Taken at face value, this result
violates the rigorous inequality given by Eq. (4.16b). Less
accurate experiments on other 3-d systems have also led
to reported values of s close to, or lower than, —', (Shafar-

man, Koon, and Castner, 1989; Dai, Zhang, and Sara-
chik, 1991a, 199lb, 1992). In general it appears that in

systems where time-reversal invariance is not broken (i.e.,
for the universality classes SO and 6 one can observe
s

3
. In al 1 other systems the observed values of s are

close to 1.
Three mechanisms for a violation of the inequality

s ~
—,
' have been discussed in connection with Eq. (4.16b).

However, a much simpler explanation of the observations
than to assume that one of these mechanisms is at work
is that the experiments are not in the asymptotic critical
region and are measuring preasymptotic, effective ex-
ponents that do not need to satisfy the mentioned in-
equality. In order for this to be a viable explanation,
theory must explain why there is such a slow approach to
asymptotic scaling, and how corrections to scaling in the
experimentally accessible regime can lead to effective ex-
ponents with the observed values.

Recently Kirkpatrick and Belitz (1993, 1994) have ar-
gued that for time-reversal-invariant systems there are
logarithmic corrections to scaling in all dimensions. The
most important implication of this conjecture is that it is
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dg gb = —Eg+ (1 —I, )+O(g ),
db 8

(5.40a)

very dificult, if not impossible, to reach the asymptotic
critical scaling regime experimentally for these universal-
ity classes, and that the existing experiments measure an
effective conductivity exponent s,z that does not need to
satisfy any bound. We shall also see that these correc-
tions to scaling can yield an s,&=0.5 in the region of t
probed by the experiments, even if the asymptotic critical
exponent satisfies s & —,. Other implications will be dis-
cussed below.

The general idea behind the logarithmic corrections to
scaling is as follows. Consider a time-reversal-invariant
system. Suppose the ground state of this system in the
clean limit is superconducting. This means that there is
an effective Cooper channel interaction amplitude I,
whose temperature dependence in the ladder approxima-
tion is given by I, -y, /[1+y, ln(coD/T)], with y, (0 a
bare Cooper channel interaction amplitude. The singu-
larity in I, at T-coDexp( —1/~y, ~ ), with coD the Debye
frequency, signals the Cooper instability leading to the
superconducting state. Now consider a system that is
not superconducting in the clean limit, so that y, & 0. I,
will still appear in the low-temperature description of the
system, and it will still have the form given above. In a
scaling sense, inverse temperature and the RG length re-
scaling factor b can be used interchangeably. One
therefore expects that, provided y, scales to a
constant at the metal-insulator transition, there will be a
scale-dependent particle-particle interaction amplitude
I, -y,*/(1+y,*lnb ) with y,* the fixed-point value of y„
the renormalized Cooper interaction amplitude. At the
metal-insulator transition, b —+~. This implies that on
general grounds, and independent of dimensionality d, we
expect an interaction amplitude that vanishes logarith-
mically as the metal-insulator transition is approached,
provided that y, ~y, . This in turn will lead to logarith-
mic corrections to scaling.

An important question is whether the structural argu-
ment given above can be confirmed by repeating the RG
analysis of the problem discussed in the previous subsec-
tion and retaining those irrelevant terms that vanish
most slowly at the transition, i.e., the leading corrections
for large but finite f„(p).Technically we proceed by us-
ing a normalization-group RG procedure similar to that
used in Sec. V.A. 1 to describe the single-particle density
of states in systems with long-range interactions. The
motivation for this is that the physical argument given
above suggests that (1) there might be an explicit scale
dependence on the right-hand side of the RG Aow equa-
tions because I, will appear, and (2) an ultraviolet cutoff;
given by co~ in the physical argument, is explicitly
present. A RG description that incorporates both of
these features is a normalization-point procedure, with
ultraviolet cutoffs on all frequency and wave-number in-
tegrals. The resulting ffow equations are (Kirkpatrick
and Belitz, 1993)

b = — (1 —I", )+O(g ),dh gh 2

db 8
(5.40b)

yc g yc
db 4 8

4 gI,——+1+1, + +O(g ) .
E

(5.40c)

In Eq. (5.40), I, is the Cooper propagator at the normali-
zation point (see below). To zeroth order in the disorder,

yc
1+y, lnb

(5.40d)

(y,)„„
n~n2 n n

1 2

~y, (CO, A, Cd' ), (5.41b)

with Hn n the renormalized value of H. For simplicity,
1 2

Eqs. (5.41) are given at zero momentum. In the Eqs.
(5.40), I,(co, Q, co') appears at the normalization point,

(5.42)

The equations (5.40) by themselves are not a closed set
of equations because I, appears on the right-hand side.
The general and controversial question is the behavior of
I, at the metal-insulator transition. One approach that
has been taken in the literature amounts to deriving a
differential ffow equation for I, by using Eqs. (5.41) and
(5.42) (Finkel'stein, 1984b; Castellani, Di Castro, For-
gacs, and Sorella, 1984). In an approximation where y,
is given by the right-hand side of Eq. (5.33a), and where
an expansion in powers of y, is used, a one-loop RG ar-
gument leads to the conclusion that I, approaches a
fixed-point value of 0(s'~ ) at the metal-insulator transi-
tion. An important assumption in this approach is that
I, is a scaling operator at the transition. Note that, if
this result is correct, then there are no logarithmic
corrections to scaling, and the presence of Cooperons has
no qualitative implications for the metal-insulator transi-
tion.

At this order the structure of I, is compatible with the
phenomenological argument for logarithmic corrections
to scaling discussed above. However, the crucial ques-
tion is whether or not this structure will be retained in
the renormalization process. This question has not been
answered unambiguously so far, since I, is a very com-
plicated object.

In general, I, in Eqs. (5.40) can be determined by in-
verting the matrix, 2M given by Eq. (3.120c), for generalK"', , At zero temperature the inversion process

n/n2 n ln2

leads to a Bethe-Salpeter equation that is given by

~0 1 (CO, Q, CO )I (Cd, Q, CO )I,(co, Q, co')+ da)"
0 (2'"+0)

=y, (co,0,co'), (5.41a)

where co0 is a high-frequency cutoff and y, is the Coope-
ron interaction amplitude,

~ c(s)
n n, n n
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o =4S~b '/(2m)"ng(b. ) (5.43)

[cf. Eqs. (3.118), (5.4a), and (5.7a)]. To determine the
relevant scale factor b, we consider the general structure
of the linearized RG equation for the dimensionless dis-
tance from the fixed point t [cf. Eq. (5.11a)],viz. ,

b =——A, +O((lnb) ) .
db v 1+y,*lnb

(5.44a)

Here v is the correlation length exponent, and A is an
unknown coefficient that is universal except for a possible
dependence on how t is defined. Solving Eq. (5.44a), and
defining b by t(b) = 1 gives, with Eq. (5.43),

a&
o (t ~0, T=O) —=erat' 1+

ln(1/t )

ap+ + ~ ~ ~

[ln(1/t ) ]
(5.44b)

with s=v(d —2) and t in Eq. (5.44b) the physical dis-
tance from the critical point. Here o.

o is an unknown
amplitude, a, is determined by A in Eq. (5.44a), a2 is
determined both by 3 and by the coefficient of the
1/(lnb ) term in that equation, and so on.

In a similar fashion, the structure of o(t =0, T~O)
can be determined. The temperature scale is given by
1 =I'b h(b), where T=T/To with some nonuniversal
temperature scale To. The general structure of the
linearized equation for h is

b =(z —d )+ +O((lnb ) ),db 1+y ~lnb
(5.45a)

with z the dynamical exponent and p a universal con-
stant. With Eq. (5.43) one obtains

Arguments against this conclusion have been given by
Kirkpatrick and Belitz (1993,1994). This paper also ex-
pands on Kirkpatrick and Belitz (1993) in showing how
to obtain a difFerent result. Equations (5.40c), (5.41), and
(5.42) are also consistent with a fixed-point structure in
which y, is a constant plus irrelevant corrections, and in
which I, vanishes logarithmically slowly, in accord with
the physical arguments given above Eqs. (5.40).

At the present time it is not clear which of the two ap-
proaches, if either, is the correct one. The fact that two
different renormalization procedures yield qualitatively
different results casts doubt on the renormalizability of
the model (see Sec. X for a discussion of this point). Re-
cent work (Kirkpatrick and Belitz 1994) suggests that
more than one renormalization constant is needed for the
Cooper interaction channel. Further work on this sub-
ject is clearly needed.

Let us discuss the consequences of the logarithmic
corrections to scaling, if they exist. We focus on the gen-
eral structure of the equations (5.40) that are independent
of any loop expansion and are presumably valid in d =3.
First, we notice that the conductivity cr is related to the
disorder by

cr(t =O, T~O) =oaf'' '[ln(1/f')]'" '

Ep ln ln(1/T '~')
z ln( 1/f')

b)+ + ~ 0 ~

ln( 1/f') (5.45b)

with b& a nonuniversal number. Notice that the asymp-
totic scaling of o (t =0, T +0) is—determined by the loga-
rithms. The functional forms given by Eqs. (5.44b) and
(5.45b) for the conductivity are expected to be generally
valid for time-reversal-invariant systems. It is important
to note that if time-reversal invariance is broken, e.g. , by
a magnetic field, the Cooper channel will acquire a mass
and the logarithmic transients will be absent. These re-
sults will be used in our discussion of experiments, Secs.
V.B and VI.B below.

B. Experiments

There have been an enormous number of experimental
studies on disordered electronic systems near the metal-
insulator transition. Especially useful for the issues this
review deals with has been work that concentrated on the
behavior of the conductivity and the dielectric constant
at low temperatures (on the order of 10—100 mK) as the
metal-insulator is approached. More recently, there also
has been some work on the low-temperature behavior of
the thermodynamic properties near the metal-insulator
transition. All experiments indicate that the conductivi-
ty vanishes continuously as the transition is approached,
and at least as far as the transport properties are con-
cerned, the metal-insulator transition can be viewed as a
conventional continuous phase transition. We shall re-
view charge transport measurements in Sec. V.B.1 below.
The thermodynamic properties appear somewhat more
mysterious and will be discussed in Sec. V.B.2.

The first difficulty one encounters in comparing theory
and experiment is that for a given experimental system it
is not always obvious which universality class is relevant.
For example, an a priori determination of the spin-Aip or
spin-orbit scattering rate in any system is very difficult.
Of course, if a disordered system is subject to a strong
magnetic field, then the Zeeman splitting universality
class is the relevant one, provided that the spin-orbit and
spin-Rip scattering rates are small. Kaveh and Mott
(1987) have suggested that the strength of the spin-orbit
scattering is proportional to (b.Z), where b,Z is the
difference between the atomic numbers of the host and
the impurity atoms. This implies that the spin-orbit
universality class should be the relevant one if AZ))1
and if the spin-Aip scattering rate is small compared to
the inverse temperature. Note that Eqs. (5.1), (5.16), and
(5.29) imply that a system with both a magnetic field and
strong spin-orbit scattering present is in the magnetic im-
purity universality class, even if it contains no magnetic
impurities. It also follows that the universality class MF

Rev. Mod. Phys. , Vol. 66, No. 2, April 1994



320 D. Belitz and T. R. Kirkpatrick: The Anderson-Mott transition

can only be realized in systems that in zero field belong to
the generic universality class G. While the magnetoresis-
tance has been measured in such systems (for instance, in
Si:P, Rosenbaum et al. , 1983), no systematic investiga-
tion of the critical behavior in a fixed magnetic field has
been carried out. We therefore have to limit our discus-
sion below to the universality classes MI and SO.

It should be emphasized that in most experiments it
has not been possible to get very close, by phase-
transition physics standards, to the metal-insulator tran-
sition. This is an intrinsic difFiculty related to the fact
that disorder is the parameter driving the transition:
normally each data point requires the preparation of a
separate sample (an exception is the stress-tuning tech-
nique that has been applied to Si:P. This material is be-
lieved to be in the generic universality class and will be
discussed in Sec. VI). As a consequence, the widespread
practice of identifying an exponent value, obtained by
fitting the available data to a power law, with the actual
value of the asymptotic critical exponent is often hard to
justify. This point has been discussed before in Secs. IV
and V.A.3.b. In general, the exponents obtained experi-
mentally in this way should be regarded as effective ex-
ponents, and we shaH refer to them as such.

The body of available data related to this problem is so
large that we cannot possibly discuss aH of it. Since this
review is mainly concerned with the metal-insulator tran-
sition proper, we shall restrict ourselves to a discussion of
some representative systems for which there are some
transport data available in the region t ~0. 1, with t the
dimensionless distance from the metal-insulator transi-
tion. We also limit the discussion to experiments in
which the system has been driven through the transition
by a systematic variation of disorder. Finally, we consid-
er only experiments in which a careful extrapolation of
finite-temperature data to T=O has been performed.

ty class. In Fig. 17 the zero-temperature electrical con-
ductivity is shown as a function of boron concentration n

for Si:8 in a magnetic field H=7. 5 T. Here the dimen-
sionless distance from the critical point is t=n/n, —1,
with n, (H=7 5.T)=4.22X10' cm . Note that the
smallest t is on the order of t —=0.02. Figure 18 shows the
conductivity of ten Si:8 samples in a fixed magnetic field
of 7.S T plotted against T' for temperatures below 0.5
K. For a comparison of these experimental results with
the theory of Sec. V.A, several points should be noted: (i)
The zero-temperature data in Fig. 17 were obtained by
extrapolating the data in Fig. 18 to T=O assuming a
T' law. In general this cannot be justified. However,
the authors have verified that Fig. 17 is essentially un-
changed if, for example, a T' law is assumed (Sarachik,
1992). (ii) der jdT does not change sign as a function of
boron concentration in Fig. 18. We shall explain below
that this is consistent with Eq. (5.10e) for the magnetic
impurity universality class, and that in general one would
expect a different behavior in the spin-orbit universality
class. (iii) For this experiment, the logarithmic correc-
tions to scaling discussed in Sec. V.A.3.b are not relevant
because of the high magnetic field. If we assume that no
other slow transients exist, then the effective exponents
should be a reasonable approximation to the true asymp-
totic exponents. An estimate of the conductivity ex-
ponent s( =v) and the dynamical scaling exponent z can
thus be obtained from Figs. 17 and 18. The solid line in
Fig. 17 is a best fit to the data assuming the functional
form o =cror (n /n, ) —1]'. The authors found
o O= 171(+zs) (fl cm) ', n, =4 22(+ '

) X 10' cm
and s = 1.0(+o zo). Similarly, Fig. 18 and Eq. (4.6a) with
0—T and E= 1 suggest that z =2. (iv) The one-loop re-
sults in Sec. V.A. l, Eqs. (5.12b) and (5.12c), give s =v= 1

and z =2.5. The consistency of these results with experi-
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As was mentioned above, spin-orbit scattering can be
avoided only if the difference in atomic number between
host and impurity atoms is very small. Therefore most
systems for which the metal-insulator transition has been
studied in detail are likely to fall into one of the three
universality classes MI, MF, and SO. (An important ex-
ception is Si:P, which will be discussed in Sec. VI.) An
overview of this large body of work, as well as an exten-
sive collection of references, has been given by Thomas
(1985; see also Hirsch, Thomanschefsky, and Holcomb,
1988). Unfortunately, in most systems it has not been
possible to obtain more than a few data points in the re-
gion t ~ 0. 1.

One of the best studied materials near the metal-
insulator transition is Si:8 (Dai, Zhang, and Sarachik,
1991a, 199lb, 1992). For this system b.Z =9, and for this
and other reasons it is known that it has strong spin-orbit
scattering. As discussed above, a strong magnetic field
will cause Si:8 to be in the magnetic impurity universali-
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FIG. 17. The zero-temperature conductivity o.(T~O) as a
function of dopant concentration in Si:8 in a magnetic field
H=7. 5 T. After Dai, Zhang, and Sarachik (1992).
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FIG. 18. The conductivity of ten Si:B samples in a magnetic
field H=7. 5 T plotted against T' for temperatures below 0.5
K. In units of 10' cm, the dopant concentrations are as fol-
lows: +, 4.11; X, 4.2; A, 4.30; ~, 4.38; ~, 4.57; 0, 4.72; 6,
4.86; o, 4.95; 1, 5.01; 0, 5.22. From Dai, Zhang, and Sarachik
(1992).

ment is most likely not of great significance, since sub-
stantial corrections are to be expected at higher loop or-
der. More relevant is the fact that the measured
s v

3
as expected on general theoretical grounds. Fi-

nally, in Fig. 19 we test whether or not the experimental
results actually satisfy scaling. Except for the sample
closest to the metal-insulator transition there is indeed a
reasonable collapse of the data onto a single scaling func-

tion, even though small breaks in the curve from sample
to sample are visible. For the most disordered sample,
this break is more substantial. It is currently not known
whether the breaks reflect systematic errors in the experi-
ment or whether they indicate a violation of scaling in
the available t region.

Si:P in a magnetic field is expected to represent the MF
universality class because of the weak spin-orbit scatter-
ing in this system. It was recently studied by Dai, Zhang,
Bogdanovich, and Sarachik (1993),who found a behavior
very similar to that of Si:B in a magnetic field with
s =0.86+0. 15. This is remarkable, since Si:P in the ab-
sence of a magnetic field shows qualitatively different
behavior and displays a value of s (=0.5) which badly
violates the theoretical bound, Eq. (4.16b); see the next
section. The fact that a magnetic field restores s to a
value larger than —, is consistent with the interpretation
of the zero-field behavior in terms of Cooper-channel-
induced logarithmic corrections to scaling; see the last
subsection and Sec. VI below.

In Figs. 20 and 21 we show figures analogous to Figs.
17 and 18 for Si:B in the absence of a magnetic field (Dai,
Zhang, and Sarachik, 1992). If the spin-flip scattering
rate is small then this system should be in the spin-orbit
universality class. For this case the logarithmic correc-
tions to scaling discussed in Sec. V.A.3.b can be impor-
tant. Since in Fig. 20 there are only four data points in
the region t ~0. 1, the current experimental information
about this system is not yet complete enough to allow for
a meaningful use of Eq. (5.44b) to fit the data. In Sec.
VI.B we shall fit the corrections to scaling to data on
Si:P, which are in the generic universality class, and for
which more accurate experimental results are available.
The solid line in Fig. 20 is a best fit to all of the experi-
mental data, covering the region 0.012 ~ t ~ 0.29, assum-
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FIG. 19. Scaling plot of the conductivity data shown in Fig. 18.
The conductivity exponent is taken to be s = 1, and the cross-
over exponent is taken to be P= vz =2.0. The different symbols
denote data taken at different disorders. Values of t are as fol-
lows: 0, 0.019; E, 0.038; 0, 0.083; X, 0.119; c), 0. 152; (3,
0.173; ~, 0.187. The temperature was in the region 0.08
K(T &0.5 K.
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FIG. 20. The zero-temperature conductivity o(T~O) as a
function of dopant concentration in Si:8 in zero magnetic field.
After Dai, Zhang, and Sarachik (1992).
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FIG. 21. The conductivity of ten Si:8 samples in zero magnetic
field plotted against T' for temperatures below 0.5 K. The
units and symbols are the same as those in Fig. 18. From Dai;
Zhang, and Sarachik (1992).

ing the functional form o =o [(n/n, ) —1]'. The fit yield-
ed oc=15&(+' ) (Oem) ' n, =4.06(+ '

) X 10'8 cm
and s =0.65(+c',4). As already emphasized, this value of
s should be interpreted as an effective exponent, s,~, and
the fact that s,s marginally violates Eq. (4.16b) is of no
concern. Note also that Fig. 21 shows that do IdT
changes sign close to the metal-insulator transition.
Within the RG description given in Sec. V.A above, this
effect can be explained by the change of sign of the
coefficient of the g term in Eq. (5.40a). The structure of
the one-loop-order term in Eq. (5.40a) allows for such a
change of sign to occur. Whether or not do /dr actually
does change sign is a nonuniversal effect that depends on
the bare coupling constant y, and on the scaling
behavior of I . Experimentally, it seems that in all sys-
tems that show s,s (—'„doIdT changes sign close to the
metal-insulator transition. Apart from the Si:B system
discussed above, this is the case in Si:As (Newman and
Holcomb, 1983a), in Si:As,P (Newman and Holcomb,
1983b), and in Si:P (Rosenbaum et al. , 1981). The pro-
posed corrections to scaling discussed in Sec. V.A.3.b re-
late these two features and are consistent with the obser-
vations.

Results very similar to those for Si:B described above
have been obtained for Si:As (Shafarman, Koon, and
Castner, 1989). Nominal zero-temperature data extrapo-
lated from T~0.5 K in the region 10 &t &10 ' yield
an effective exponent s,&=0.60. The data on Si:Sb by
Long and Pepper (1984) are often also quoted to show
s,~=—0.5. However, this conclusion is based on results
far from the transition, while for their data closest to the
metal-insulator transition Long and Pepper reported that

FIG. 22. Extrapolated zero-temperature conductivity oo, in
a-Mo Ge& vs (x /x, —1). The critical concentration is
x, =0.104. The slope of the straight line gives an effective ex-
ponent s =1.0+0.1. From Yoshizumi et al. (1985).

s,z-——1 yielded a better 6t.
In Figs. 22, 23, and 24 we show zero-temperature con-

ductivity data for amorphous Mo„Ge, „(Yoshizumi,
Mael, Geballe, and Green, 1985), amorphous Nb„Sii
(Bishop, Spencer, and Dynes, 1985), and amorphous
Si, ,Au, (Nishida et al. , 1985). All three of these sys-
tems are expected to be in the spin-orbit universality
class. They provide an interesting contrast to Si:B. A
striking feature of these systems is that the metal-
insulator transition (MIT) is very close to a
superconductor-metal transition (SMT). For example, in
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FIG. 23. Extrapolated zero-temperature conductivity o.o and
tunneling DOS 1V(0) at T=2 K, in amorphous Nb Si& vs the
Nb concentration. The MIT is at a Nb concentration of about
11.5% and the effective critical exponents are s -=1,P= l. After
Bishop, Spencer, and Dynes (1985).

Rev. Mod. Phys. , Vol. 66, No. 2, April 1994



D. Belitz and T. R. Kirkpatrick: The Anderson-Mott transition 323

Au at%
14.5 15 16 18 20

I I I I I

30 40
I I

2. Thermodynamic properties and the
tunneling density of states

1000—

6
100:

10—

5
0.01 0.1 1.0

FIG. 24. Extrapolated zero-temperature conductivity o.o in
amorphous Si& Au vs (x /x, —1) with x, =0.14. The
effective critical exponent is s —= 1. From Nishida et al. (1985).

a-Mo Ge& .the MIT occurs at x —=0. 10 and the SMT at
x =-0. 13. This suggests that the bare Cooperon interac-
tion amplitude y, in these systems near the metal-
insulator transition is very small because it must change
sign to cause the superconducting instability. This in
turn implies that the corrections to scaling discussed in
Sec. V.A.3.b might not be important in these systems and
that the effective conductivity exponents might be close
to the asymptotic ones. These ideas are consistent with
the fact that in all three of these systems the effective
conductivity exponent is larger than —', [see Eq. (5.39b)]
and with the fact that da IdT does not change sign near
the metal-insulator transition in these systems.

The Hall conductivity o.~ has also been measured in
many systems that exhibit a metal-insulator transition.
In analogy to the longitudinal conductivity, the results
have been fitted to a form o.It=o, [(n —n, )/n, ] . Like
s, sH should be interpreted as an effective exponent. The
experimental results can be summarized by saying that
systems with s-=1 show sH —= 1, while those with s &

3

show no observable critical behavior of o.H. Examples of
the former behavior are Ge:Sb (Field and Rosenbaum,
1985) and Bi Kr, „(Rhode and Micklitz, 1987), while
examples of the latter are Si:As (Koon and Castner, 1988)
and amorphous Ga Ari (Zint, Rhode, and Micklitz,
1990). For each of the two cases there is one known ex-
ception: AlGaAs:Si has s =1 and sH=O (Katsumoto
et al. , 1987, 1989), and Si:B has s -=0.5 and sH &0 (Dai,
Zhang, and Sarachik, 1993). Theoretically, the behavior
of the Hall conductivity for noninteracting electrons is
now understood (see Sec. III.C.2), but the corresponding
calculations for the interacting model have not yet been
performed and the interpretation of these observations is
an open problem.
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FICi. 25. Temperature dependence of the spin susceptibility y,
normalized to the Pauli value, for three samples of Si:P,B with
electron densities n/n, =1.8, 1.1, and 0.58. From Hirsch et al.
(1992).

We now turn to some experimental results for the ther-
modynamic properties near the metal-insulator transi-
tion. Figure 25 shows electron-spin-resonance (ESR) re-
sults for the magnetic susceptibility of three samples of
Si:P,B (Hirsch et al. , 1992). Similar results, albeit at
higher temperatures, were obtained earlier for uncom-
pensated Si:B (Sarachik et al. , 1985). We note two
surprising features. (i) The magnetic susceptibility seems
to be singular even in the metallic phase. A power-law
fit, g- T ', gives a =0.75+0.05. (ii) The behavior of the
magnetic susceptibility is smooth across the transition.
This suggests that whatever is causing the magnetic
anomalies does not critically depend on what is happen-
ing to the conduction electrons. This experimental result
suggests that the metallic phase might not be a simple
disordered Fermi liquid. None of the theories in Sec.
V.A. suggest a magnetic ariomaly at the metal-insulator
transition, much less in the metallic phase. This singu-
larity in y is interpreted with very different theoretical
ideas in Sec. IX.

Similar conclusions can be reached from measurements
of the electronic specific heat of Si& Au and C& „Cu
(LaMadrid, Contrata, and Mochel, 1992), which one ex-
pects to be in the spin-orbit universality class. These au-
thors found in the metallic phase, but close to the metal-
insulator transition, a temperature dependence of the
specific heat C(T~O) —T' with a -=0.4. If one wanted
to interpret this as the critical behavior of the specific
heat according to Eq. (4.11), one would obtain a dynami-
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cal exponent z—=7.5. In the light of Eq. (5.39d) it seems
unlikely that z is that large. Furthermore, the result is
reminiscent of similar measurements on Si:P (Paalanen
et al. , 1988), which show an anomaly far from, and
smooth behavior across, the metal-insulator transition.
(We shall discuss this experiment in Sec. VI.) It therefore
seems likely that the observed anomaly in the specific
heat, like the one in the spin susceptibility, is quite in-
dependent of the metal-insulator transition. %"e shall
come back to this in Sec. IX.

We now discuss measurements of the tunneling density
of states. The conductance dI/dV of a tunnel junction
with a bias voltage V across the junction gives a direct
measure of the single-particle or tunneling DOS N(E),
with E= V measured from the Fermi surface. Early ex-
periments on Ge, Au„(McMillan and Mochel, 1981)
and on granular Al (Dynes and Garno, 1981) showed that
N(0), extrapolated to zero temperature, vanishes simul-
taneously with the electrical conductivity at the metal-
insulator transition. For the Nb:Si system discussed in
Sec. V.B.1 above this is shown in Fig. 23. The finite
value of N(0) at the transition in this case is due to the
fact that the temperature dependence of the conductivity
was measured down to 10 mK, while the tunneling exper-
iment was done at a fixed temperature T=2 K. The ex-
periment suggests an effective exponent f3=1. This is
certainly consistent with Eq. (5.39e), but no detailed com-
parison is possible at this point. In any case, all tunnel-
ing experiments are consistent with the notion, put for-
ward in Secs. III and IV, that the single-particle DOS is
the order parameter for the metal-insulator transition,
and that for the Coulomb interaction case the order pa-
rameter is critical (P) 0).

3. Nuclear-spin relaxation

Low-temperature N MR experiments close to the
metal-insulator transition have been performed both on
the Si nuclei (Paalanen, Ruckenstein, and Thomas, 1985;
Hoch and Holcomb, 1988) and on the P nuclei (Alloul
and Dellouve, 1987) in Si:P. Note that the magnetic
fields applied in these experiments are su%ciently large to
put the system in the universality class MF. GeA.s and
InSb have also been investigated with this technique
(Tunstall and Deshmukh, 1979; Tunstall and Sohal, 1983;
Tunstall, 1984), and so has compensated Si:(P,B) (Hoch
and Holcomb, 1988). The results can be summarized as
follows: (1) The spin-lattice relaxation rate I /T, is
strongly enhanced compared to Korringa's (1950) free-
electron result and shows anomalous temperature and
magnetic field dependences (cf. Figs. 26 and 27). (2)
1/TI and all other NMR observables show a smooth
behavior if the system is driven through the metal-
insulator transition. In fact, it is impossible to determine
the critical concentration for the transition from NMR
experiments (Jerome et al. , 1985; Paalanen, Ruckenstein,
and Thomas, 1985; Alloul and Dellouve, 1987). The
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spin-lattice relaxation rate has this feature in common
with the spin susceptibility discussed above.

The experimentalists have interpreted these results as
evidence for the presence of quasistatic spins or local
magnetic moments in the material, or as evidence for
spin localization even on the metallic side of the metal-
insulator transition. On the theoretical side there have
not been many attempts to interpret these observations.
Gotze and Ketterle (1983) have shown, within a model of
noninteracting electrons, that di6'usive electron dynamics
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FIG. 27. Same as Fig. 26 as a function of the static magnetic
field Bp at temperature T=13.5 mK. After Paalanen, Rucken-
stein, and Thomas (1985).
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FIG. 26. Temperature dependence of the spin-lattice relaxation
time TI of Si nuclei in Si:P. The data were taken on A, an in-
sulating sample (n, /n, =0.90); and two metallic samples —0,
n /n, =1.03; 0, n /n, = 1.035—in a magnetic field B=0.844 T.
1/TI is normalized by the Korringa rate 1/TIz. Note that
1/T, ~ has a linear temperature dependence. The lines are
guides to the eye. From Paalanen, Ruckenstein, and Thomas
{1985).
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lead to an enhancement of I /T, over the Korringa value.
Gan and Lee (1986) have interpreted the experiment of
Paalanen, Ruckenstein, and Thomas (1985) in terms of
local magnetic moments. We shall discuss this work in
Sec. IX.B.4 below. For the field theory discussed in Sec.
V.A the NMR response has not been calculated so far.

Vl. PHASE TRANSITIONS IN THE ABSENCE OF
SPIN-FLIP MECHANISMS

In this section we examine the disordered electron
problem in the absence of spin-Aip or spin-orbit scatter-
ing mechanisms. This model is presumed to be relevant
in situations where the spin-Qip or spin-orbit scattering
rate is small compared to the temperature. In some sys-
tems these rates are so small that this condition is
fulfilled down to temperatures on the order of 1 mK.
Such systems realize the generic universality class for all
practical purposes. This case is considerably more com-
plicated than the models considered in Sec. V. The
Cooper channel is present in this universality class,
which causes the same problems as were discussed in Sec.
V.A.3. However, even if one ignores this problem as has
been done in a large part of the literature, following
Finkel'stein (1983a), who neglected the Cooper channel,
the particle-hole spin-triplet channel poses a separate
problem: the interaction amplitude y, Aows to infinity
under RG iterations for any disorder in d =2, and before
the metal-insulator transition is reached in d=2+c.
That y, poses a runaway problem was recognized early
on (Castellani, DiCastro, Lee, Ma, Sorella, and Tabet,
1984; Finkel'stein, 1984b, 1984c).

A considerable body of literature has tried to make
physical sense out of the runaway behavior of y, based
on one-loop calculations. It has been proposed that
y, —+ ao, which implies a diverging spin susceptibility ac-
cording to Eq. (3.129b), somehow signals the formation
of local magnetic moments (Castellani, DiCastro, Lee,
Ma, Sorella, and Tabet, 1984, 1986; Finkel'stein, 1984c).
This suggestion was in part motivated by experiments on
Si:P, supposedly in the 6 universality class, which
showed a divergent magnetic susceptibility in the metal-
lic phase that could be interpreted in terms of local mo-
ments (Paalanen et al. , 1986). To explain this observa-
tion within the field theory it was argued that a long-
wavelength theory is not really suitable for describing
local-moment formation and that it could only be expect-
ed to crudely signal a magnetic anomaly. It was specu-
lated that a metal-insulator transition would occur at
larger disorder against a background of an inhomogene-
ous spin density. However, this scenario ignored earlier
data on the SQ-class material Si:B (Sarachik et al. , 1985),
which showed a very similar singularity. Allen et al.
(1993) and Belitz and Kirkpatrick (1994) have stressed
that a divergent spin susceptibility in the metallic phase
is a very common phenomenon in class-6 systems, where
y, Aows to infinity, as well as in others for which there is
no theoretical basis for assuming a runaway behavior of

y, . This rules out the unusual scaling behavior of y, in
class 6 as an explanation for the experimental suscepti-
bility anomaly. We shall discuss the spin susceptibility
anomaly and theoretical explanations for it in detail in
Sec. IX.

A different proposal was made by Castellani, Kotliar,
and Lee (1987). These authors noticed that the one-loop
RG Row equations did contain a fixed point where y,
scales to infinity and the renormalized disorder g scales
to zero, such that the product y=gy, is finite. Their
suggestion was that this fixed point described an unortho-
dox metal-insulator transition in which the renormalized
disorder vanishes with an exponent 8 and Wegner scaling
is violated; see the discussion of Eqs. (4.6a) and (4.16b) in
Sec. IV. Kirkpatrick and Belitz (1989) followed up on
this suggestion. They proved that s=0 to all orders in
the loop expansion, which would be consistent with a
discontinuous behavior of the conductivity at the
unorthodox metal-insulator transition. However, shortly
thereafter it was noticed that logarithmic terms in the y,
Bow equation at two-loop order ruin the fixed-point
scenario of Castellani, Kotliar, and Lee (Belitz and Kirk-
patrick, 1989b).

The next development was the realization (Kirkpatrick
and Belitz, 1990b, Belitz and Kirkpatrick, 1991) that the
leading logarithmic terms in the y, fIow could be con-
trolled to all orders in the limit y, —+ ao. A resummation
of the perturbation theory to all orders was performed,
which resulted in coupled integral equations for the spin
and heat diffusion coefficients. Numerical and asymptot-
ic analytical solutions showed that, for sufficiently large
values of the Fermi-liquid parameter I' o, i.e., for a
su%ciently large spin susceptibility in the clean limit, the
equations describe a phase transition from a Fermi liquid
to a metallic phase with an infinite spin susceptibility.
The runaway behavior of y, was thus linked to a magnet-
ic or pseudomagnetic phase transition that is distinct
from, and precedes, the metal-insulator transition. The
qualitative features of the solution of the integral equa-
tions were later confirmed, and the critical behavior stud-
ied in more detail, by means of RCx analysis (Kirkpatrick
and Belitz, 1992b). The nature of the magnetic or pseu-
domagnetic phase is not entirely clear yet, but it has been
speculated that it shows no long-range order but rather a
glassy state of the spins. Based on this speculation, this
phase has been dubbed the incompletely frozen spin (IFS)
phase. Attempts to interpret the spin susceptibility
anomaly in Si:P as evidence for the IFS phase (Belitz and
Kirkpatrick, 1991) were mistaken for the same reason as
the local-moment interpretations of y, —+~ mentioned
above. The IFS phase has probably not been observed so
far. We shall come back to this in Sec. VI.B below.

For values of I'o smaller than a critical value, both the
integral equation approach and RG analysis suggest that
y, does not Qow to infinity. This has led to the proposal
that, in that region of phase space, there is a direct
Fermi-liquid-to-insulator (FL-I) phase transition that is
intrinsically nonperturbative in nature (Kirkpatrick and
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Belitz, 1992a). The resulting phase diagram is shown in
Fig. 28 for three different dimensionalities. The explicit
description of the FL-I transition is technically on much
weaker ground than the FL-IFS phase transition, since
for the latter the asymptotic smallness of 1/y, provides
the theory with an additional small parameter that allows
for an exact treatment of the spin-tnplet channel. This
advantage is absent if y, does not diverge, and the
description of the presumed metal-insulator transition is
not controlled in the usual small-parameter sense.

In the theoretical part of this section we describe how
to derive these results. As in Sec. V, we first examine the
one-loop renormalization of the coupling constants and
construct the RG Qow equations to one-loop order.
These equations do not show a fixed point corresponding
to a conventional metal-insulator transition. Rather,
they display the mentioned runaway RG Aow trajectory
for the triplet particle-hole interaction amplitude,

y, =k, /h. We then discuss the analysis of the theory in
the limit y, ~~, which shows that this runaway Aow

can be interpreted as a phase transition, unrelated to the
metal-insulator transition, which is consistent with the
magnetic phase transition scenario discussed in Sec.
IV.B. The theory of this transition predicts the existence
of a lower critical dimension d„with 2&d, &3, above
which the FL-IFS phase transition does not extend to
I'o=0. This suggests the phase diagram shown in Fig.
28. For sufficiently large dimensionality there is a direct
FL-I transition at which y, stays finite. In Sec. VI.A.3
an approximate theory is given to describe this phase
transition in d =3. If the logarithmic corrections to scal-
ing discussed in Sec. V.A.3.b exist, they will be present in
the universality class 6 as well as in class SO, and they
may be important at this metal-insulator transition. This
topic is further discussed in Sec. VI.B, where we examine

some representative experimental data for this universali-

ty class.

A. Theory

1. The loop expansion

The nonlinear sigma model for this universality class is
given by Eqs. (3.118) and (3.92) with no restrictions on
the,"Q„~.The parameters that appear in the theory and
will be renormalized by the renormalization procedure
are the disorder 6, the frequency coupling constant H,
the spin-singlet and triplet particle-hole interaction am-

plitudes K" and K", and the spin-singlet particle-
particle interaction amplitude K"'. We shall start with
a determination of the one-loop renormalizations of these
coupling constants. In contrast to the situation in Sec. V,
however, the results of the one-loop calculation will not
be conclusive, and we shall be forced to consider the
theory to all orders in the loop expansion. This turns out
to be possible in the limit y, —+ ~, where 1/y, can be
used as a small parameter.

To proceed we consider the propagators given by Eqs.
(5.2) and (5.17) and the corresponding vertex functions,
r"', ro ', I,' ', and I', '. To renormalize K"' we use the
method discussed in Sec. V.A.3. As already mentioned,
there may be important logarithmic corrections to scal-
ing for this universality class. This possibility has been
discussed in Sec. V.A.3.b, both specifically for the spin-
orbit universality class and from a general point of view.
In the present subsection we ignore these effects for sim-
plicity. We will take them into account, however, in
comparing theory with experiment in Sec. VI.B. Of
course, all caveats about the treatment of the Cooper
channel that were mentioned in Sec. V apply here as well.

S a. One-loop results

(a)
To one-loop order I'" can be computed as in the pre-

vioos section. Using dimensional regularization with
c, =d —2 and the techniques discussed in Sec. V, one finds

(b) 1'"=1+ (L, +3L, )+0( G, G ) .6
(6.1)

(c)

FIG. 28. Qualitative phase diagram for the generic universality
class. FL, IFS, and I denote the Fermi liquid, incompletely
frozen spin, and insulator phases, respectively. k is a dimen-
sionless measure of disorder, e.g., A, =okF . The phase dia-
gram is shown for three different dimensionalities relative to the
critical value d, : (a) d &d„(b)d ~d„(c)d &d, . No informa-
tion is presently available for the IFS-I transition (dashed lines).
From Kirkpatrick and Belitz (1992b).

I ' =1+ 3L, ——+O(G/s, G 2) .
8

(6.2)

The two-point vertex functions I o,', can also be com-
puted as in Sec. V. One obtains

Here and in the remainder of this section we use the same
notation as in Sec. V. G and L, , are given by Eqs. (5.4a)
and (5.18b), respectively. For systems interacting
through long-ranged interactions, I,~—~ and the
one-loop term in Eq. (6.1) does not exist. For this case
the considerations discussed in connection with Eqs. (5.5)
give
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g 2

r,"'(k, n )= +Hn +sr, +3Sr, , (6.3a) ar, (k, n )=sr, +35r, + n (I(."—K(")6
8c

with

] 2

r,",'(k, n )= +(H+rc"")n +sr„, (6.3b)

ar, (k, n )=sr, +35r, + n (~"+3I(.-(")6

n H(K'"/H )'
2c

+ n It:'"(L +3L), (6.3d)

+ n~It: "(L,+3L, ), (6.3c)

with 5r, t given by Eq. (5.20d). To compute the It:")re-
normalization we use the same method as in Sec.
V.A.3.a. To one-loop order we find for K"'

K"""""'=&"'——
I& "2)' (p) —3&'"2)' (p)+&"B (p) [1—G&"In n—In' (p) ]

6
n ] n2 Pl3 El4 8 P

7l 3 Il2 n3 n2 7l3 n2 &4 I n2
—

n4~

—3E'"2l„„(p)[1—GK'"In„—n„Ix)1„„i(p) ]J, (6.4a)

or

E"' =K"+ (K"—3K'")+O(E G, G )(1-1OOP) 4c.
(6.4b)

For later use we also note that at one-loop order there is a disorder-induced. triplet particle-particle interaction ampli-
tude that is given by

G 2

I( c(t), ()-looP)
[ (n n )~ (p)[(It(s))2+5 (p)+(Q(t))2~t (p)]Pl ] ll2 tl3 n4 8 P

ll3 Pl 2 n 3 F72 Il 3 Pl 2 n3 —
n&

+ In. ,
—n., I&..-.,(P)[(& ) &f.,—.,~(P)+(I~ (6.5)

=Z»'r()v)(k n G H IC" K'" &"') (6.6)

There are no terms of order e ' in Eq. (6.5), and we ig-
nore K'" in the remainder of this section. We shall
come back to it in Sec. VIII.

We next absorb the c~O singularities encountered in
the theory into renormalization constants. We define re-
normalized coupling constants g, h, k„k„andk, , by
Eqs. (5.7), (5.21), and (5.34). The renormalization state-
ment is

r(z~)(k, n;g, h, k„k„k,„p)

Z„=1+ (l, —31, ) — (k, —3k, )+O(g ),
C, S

(6.7f)

with l, t =ln(1+y, , ), y, , =k, , /h as in Sec V. .
The one-loop RCx flow equations follow from Eqs.

(5.7), (5.21), (5.34), and (6.7) in the usual way. With
b-)((, ' one obtains (Finkel'stein, 1983a; Castellani, Di-
Castro, Lee, and Ma, 1984; Kirkpatrick and Belitz, 1993)

= —eg+ I 5 —(1+1/y, )I,
dg g

With minimal subtraction one finds that the renormaliza-
tion constants are

—3( 1+1/yt )lt ] +0(g ), (6.8a)

Z=l — ((t, +3lt)+O(g ), (6.7a)
b =—h[3y, +y, ]+O(g ),

db 8
(6.8b)

Z =1+ I[1—(1+1/y, )l, ]+3[1—(1+1/yt)lt]+1]
b (h+k, )=0,d

(6.8c)

+O(g ), (6.7b) b k, = +g ——k, +O(g ),d gk~Xt kt g
2 8 8

(6.8d)

Zh=l+ (y, +3y, )+O(g ),

Z, =l — (1+3k, /k, )+O(g ),

(6.7c)

(6.7d)

b k„=g (3k, —k, )+—k„(l,+3I, )+O(g ) . (6.8e)
d

For future use we note

Z, =1+ + (1—k, /k, )+O(g ) .
2c 8c

(6.7e)
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dye g gyc 3yt

+O(g ), (6.8g)

b = —sg+O(g3),dg
db

b =—yh+O(g ),dh 3

(6.9a)

(6.9b)

dyt yt
b =y +O(g ), (6.9c)

b = —Ey+ +O(g ) .
db 8

(6.9d)

Equations (6.9) suggest a nontrivial fixed point at g' =0,
y, = ao, and y* =g y,*=8m+ 0(s ), which we shall refer
to as the one-loop fixed point. Linearization of Eq. (6.9d)
around this fixed point leads to a relevant RG eigenvalue
that gives the inverse correlation length exponent
v= 1/e+O(1). Note that, in this limit, Eq. (6.8g) gives

y,*=2 and that y, is an irrelevant variable.
We shall not discuss further details of this fixed point

because we shall see in subsequent subsections that terms
at higher order in the loop expansion partially invalidate
these considerations. The reason is that, whenever a
physical quantity (such as y, ) fiows to infinity under RG
iterations, care must be taken in drawing conclusions.
Without further considerations it cannot be ruled out
that the fixed-point scenario is destroyed by higher-order
terms. For example, if there were a term of order y y, in

Eq. (6.9d) the one-loop fixed point would not exist. We
shall see below that the fixed point suggested by Eqs. (6.9)
is indeed destroyed at higher order, but only due to loga-
rithmic terms. We shall show how to calculate the lead-
ing terms to all orders, i.e., how to control the limit

yt —+~. The resulting theory will again show a fixed
point that is distinct from the one-loop fixed point and

with y, =k, , /h. For systems interacting through long-
range forces, I, in Eqs. (6.8e) and (6.8g) should be re-
placed by —2/E; cf. Eqs. (5.5).

We emphasize a few points concerning the structure of
these equations.

(1) For the general reasons discussed in Sec. V, h +0,
is not renormalized [see Eq. (6.8c)]. Further, Eqs. (6.8b)
and (6.8c) imply that both h and lk, l

increase under RG
iterations such that y, ~—1. Therefore for this univer-
sality class a short-ranged electron-electron interaction
leads, after some initial transient region, to the same Aow
behavior for the coupling constants as the Coulomb in-
teraction (Castellani, DiCastro, Lee, and Ma, 1984).

(2) An examination of Eqs. (6.8) shows that they do not
have a fixed point with gag*%0. That is, they do not
describe a metal-insulator transition.

(3) Motivated by the general discussion given in Sec.
IV.B, we next look for a nontrivial fixed point at g~O,
y, —+~ such that y=gy, is finite (Castellani, Kotliar,
and Lee, 1987). In this limit the RG fiow equations are

that corresponds to a phase transition distinct from the
metal-insulator transition. We shall also see that all
higher-order corrections in Eq. (6.9a) vanish. This im-
plies that the physical disorder is not renormalized and
that we are indeed dealing with the magnetic phase tran-
sition discussed in Sec. IV.B.

b. Absence of disorder renormalizations

S' =S~[q]+S~ [q]+S4" [q] . (6.10)

FIG. 29. Two-loop contribution to I' ' which, according to
naive counting, is of order (K'") .

As already mentioned, the existence of the one-loop
fixed point suggested by Eqs. (6.9) is not obvious once one
considers higher-order terms. Specifically, if for y, ~oo
a term of order g" grew like y~t with p &n —1 in Eq.
(6.9a), or with p & n in Eq. (6.9b), or with p & n + 1 in Eq.
(6.9c), then the one-loop fixed-point scenario would break
down. In fact, it is easy to find diagrammatic contribu-
tions that appear not to be consistent with the fixed-point
scenario. For example, the diagram in Fig. 29 naively
seems to lead to a term of order g y, in Eq. (6.9a) be-
cause it involves four q "interacting" vertices that, ac-
cording to Eqs. (3.92), (3.114), and (3.117a), can each be
of O(K'"). Note that for dimensional reasons E'" must
appear in the combination K'"/H. We also do not dis-
tinguish between K'" or H and the respective renormal-
ized quantities, k, or h, since ultimately the latter appear
in the theory.

To find out whether such violations of the one-loop
fixed-point scenario occur is a counting problem that has
been considered by Kirkpatrick and Belitz (1990a). The
key idea was to prove that every diagram that naively has
too many factors of k, contains, upon closer examination,
enough triplet propagators (which are proportional to
k, ' in the limit k, ~ oo) to cancel the excess k, factors.
A number of subtleties arise in this counting process, the
most obvious of which is that the limit X'"—+ ao does not
necessarily commute with sums over frequencies and in-
tegrals over wave numbers. The computational details
can be found in the reference mentioned above. The con-
clusions reached were as follows:

(1) To leading order in 1/y, for y, ~ ~ it is sufficient
to keep terms up to order q in the q expansion of the ac-
tion, Eq. (3.119). Furthermore, for a calculation of
skeleton diagrams to leading order the terms of O(q ) in
the action always have to be contracted in a particular
way, such that two factors of S3 can be combined into an
effective term of O(q ). The effective action in the limit

yt —+ ao can then be written
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For the calculation of insertion diagrams special care has
to be used, since contributions occur that are not con-
tained in Eq. (6.10). This does not constitute a serious
problem, though, since all insertions can be obtained re-
cursively from lower-order skeleton diagrams. In Eq.

(6.10) S2 is the Gaussian action, Eqs. (3.120), and S~ is
the term of O(q ) that results from the noninteracting
part of the action, Eq. (3.118) with S;„,=0. S~" is a
combination of the term of O(q ) in S;„,and the men-
tioned partial contraction of (S3 ) . It can be written as

~TK'" 3

X X X X ( —1)"&.
, +...,+.,

1 "2 a i=1 r=0, 3

n3n4

X f (2m) 5(p&+pz+p3+p&)~(p&+p&, in. —n, l)

X [tr[ r„s;(q(p, )q+(p 2))]„„tr[r„—s;(q+(p&)q(p2))]„„]

X [tr[r„s;(q(p3)q+(p4))]„„—tr[r„s;(q+(p3)q(pq))]„„], (6.11a)

with

sc'"in„n„i-
d, (p, +p2, n„—n„)=1-

+ )'gG+(z '"+H) in„n„,i— (6.11b)

Note that

lim b, (p(+p2 In„, (6.12)

so that formally S~"~ is of order (IC'")o. However, depending on the quantity to be calculated, this conclusion may turn
out to be incorrect if the limit is taken after doing the integrals. Similarly, S4, which is of O(q ), can produce fa««s «
K'" upon integration if dimensional regularization is used.

(2) For the renormalization of G neither the noncommutability nor any of the other problems mentioned occur. As a
result, the correction terms in Eq. (6.9a) have been shown to vanish to all orders. That is, the physical disorder is not
renormalized, and the exact solution of the g-How equation to leading order for large yt is

g =b 'g(b =1) . (6.13)

(3) The one-point vertex function I'" is not renormalized either. This implies that in the limit y, ~ ~ there is no
wave-function renormalization, Z = 1.

(4) For H and IC ~'I Eq. (6.12) does not imply the absence of renormalizations, as can be seen already at one-loop order
[see Eqs. (6.9b) —(6.9d)]. Still, in the flow equations for h, y„and y the conditions for the existence of the fixed point
mentioned at the beginning of the present subsection are fulfilled up to possible logarithmic terms to which the counting
arguments are not sensitive. Logarithmic terms that violate the fixed-point conditions do indeed occur, starting at two-
loop order; see the next subsection. Kirkpatrick and Belitz (1990a) have pointed out that the renormalized vertex func-
tions at one-loop order already suggest that there will be logarithmic problems with the fixed point at higher order.

c. Two-loop results

To leading order for yt ~ ao the vertex functions I 0
' and I', ' corresponding to the two-point propagators defined in

Eqs. (5.2b) and (5.17), respectively, have been calculated to two-loop order (Kirkpatrick and Belitz, 1989, 1990a). Loga-
rithmically divergent terms were found that invalidate the one-loop fixed point suggested by Eqs. (6.9).

The renormalization of H is determined by I 0 ~ The calculation is greatly facilitated by use of the effective action,
Eqs. (6.10) and (6.11). Equation (6.12) turns out to be misleading in this case, since after doing the frequency sums one
finds a contribution to leading order in K'". Also, an insertion diagram has to be considered separately. With dimen-
sional regularization, the result of the calculation is

2 3G E'"r' '(k n )= +Hn Hn—0 & m 6 m m

~(t)
+Hn

2
G [1+EL,+E 1n(GHn ) —3e/2]+O(G2EO, G3) .

32'

(6.14)
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The K'" renormalization can be computed by considering I', '. Again, the effective action can be utilized if certain
precautions are taken, and the procedure is explained in detail in the original literature. To leading order for large K'",
and in dimensional regularization, the result is

I 2 G X("I' '(k, Q )= +(H+K'")Q —K'"Q
m G m m

2 (t)
(t) SG K '

32 ' 1+e — L, ——L, ln2+ln(GHQ )
3 1

10 ' 2

1 ~ 32——+ + ln2+ —(ln2) +O(E, G ) .1 2 . 0 3

4 48 10 4
(6.15)

ZI, =1+ y+ y (1+E)+O(g ),3 3
8c 32g2

(6.16a)

Z, =1+ y+ y [1+E(—,', l, —
—,', )]+O(g ) .

1 5

2C 32E,

(6.16b)

This yields the following flow equations (Kirkpatrick and
Belitz, 1990a):

b =h —y+h y +O(g ),dh 3 3
db 8 16

b =y, —y+y, y l, —y, y +O(g ),dy, 1 3 2 15 2 3

(6.17a)

(6.17b)

b = —ey+ —y + y l, — y +O(g ).dy 1 2 3 3 15 3 4

db 8 32 ' 64
(6.17c)

Equations (6.14) and (6.15) explicitly confirm the absence
of a disorder I'enormalization at two-loop order. They
also show the logarithmic terms that will violate the
fixed-point scenario discussed earlier. We note, however,
that not all logarithms that show in the perturbative ex-
pressions appear in the How equations. For instance, the
contribution proportional to I., in the two-loop term in

Eq. (6.15) is canceled in deriving the fiow equations.
Now we can use the renormalization procedure de-

scribed in Sec. VI.A. 1.a above to determine the RG Aow

equations to two-loop order. From Sec. VI.A. 1.b, result
(3), we know that there is no wave-function renormaliza-
tion. From Eqs. (6.7) together with Eqs. (6.14) and (6.15)
the renormalization constants to leading order for

~ are

Comparing with the criteria given in Sec. VI.A. 1.b, we
see that Eq. (6.17a) is consistent with the fixed-point
scenario, but Eqs. (6.17b) and (6.17c) are not. The reason
is the logarithmic term at two-loop order. The
mathematical origin of this term is that the limit
K'"~ oo does not commute with performing frequency
sums. We note that the counting arguments used in Sec.
VI.A. 1.b are insensitive to these terms, so that they can
only be found by an explicit calculation.

d. Resummation of leading singularities

In the previous subsection we showed that the one-
loop fixed point proposed in Sec. VI.A. 1.a does not exist,
due to logarithmically divergent terms in the RG flow

equations. An inspection of the general structure of the
diagrams shows that one should expect increasing powers
of logarithms to appear at higher orders in the loop ex-
pansion. The leading term of n-loop order in Eq. (6.17c)
is expected to be proportional to y"+'I," ' unless cancel-
lations occur. This raises the question of whether one
can control these divergencies by performing a resumma-
tion to all orders in the loop expansion. This question
has been answered affirmativel (Kirkpatrick and Belitz,
1990b; Belitz and Kirkpatrick, 1991). In this subsection
we describe the resummation. In Sec. VI.A.2 we shall see
that the resulting theory contains the pseudomagnetic
phase transition discussed in Sec. IV.B.

To motivate the resummation discussed above we first
explicitly consider the w'ave-number- and frequency-
dependent one-loop corrections to G, H, and K'",

5G" '" '(k Q„)=O(G(K'")} (6.18a)

2~T5H" "' '(k Q )=5H""'~'(Q )=—GK'" g 1—
4 0„( ) 0„f n,'(p)+O(G(K'") },

P
(6.18b)

5K"'""'~'(k Q„)=G(K'") AT g f 2), „(p+k)2)(p)+O(G(IC'") ) . (6.18c)

Here we have neglected terms that vanish in the limit

g —+0, y, ~ ao, y =gy, finite. We have also neglected a
term in Eq. (6.18c) which is UV finite and was found in
the original literature to be of no qualitative importance.

I

Performing the integrals in Eqs. (6.18) one recovers the
one-loop terms in Eqs. (6.14) and (6.15).

In order to obtain the generalization of Eq. (6.18c) to
all orders, we first reconsider the effective action, Eq.
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(6.10). The term S4' consists of the original four-point
vertex in S;„,and two of the original three-point vertices,
which have been partially contracted by means of a trip-
let propagator. A diagrammatic representation is shown
in Fig. 30(a). The two terms on the right-hand side of
this diagrammatic equality correspond to the two terms
on the right-hand side of Eq. (6.11b). The noninteracting
four-point vertex S4 does not contribute to the E'" re-
normalization in the limit considered. In terms of these
diagrams the one-loop contribution to I ', ', Eq. (6.18c), is

simply a bubble; see Fig. 30(b). At two-loop order, the
two relevant skeleton diagrams in the limit E'"—+ ~ are
shown in Fig. 30(c). The diagram shown in Fig. 30(d)
contains both of these as well as a reducible diagram that
does not contribute to I', '. Since according to Eq. (6.12)
the effective vertex is of O((K'") ) this means that, to
leading order for E'"—+ ao, the two irreducible skeleton
diagrams in Fig. 30(c) can be replaced by minus the re-
ducible diagram in Fig. 30(d) [note that, in this case, no
integrations over the arguments of 6(p, Q), Eq. (6.11b),
are involved]. More generally, at n-loop order this equal-
ity can be generalized so that the sum of all relevant irre-
ducible diagrams can be related to reducible diagrams.
Diagrammatically this is shown in Fig. 30(e). In the limit
E'"—+ ~ the dashed line on the right-hand side of the
equality should be replaced by unity; cf. Eq. (6.11b).
Technically, the geometric series shown in Fig. 30(e) can
be summed by replacing one of the E'" factors in Eq.
(6.18c) by K'"(k,Q„).This sums all skeleton diagrams.
Insertions can be trivially included by dressing the two
propagators in the one-loop bubble. Analytically con-
tinuing the resulting equation to real frequencies and tak-
ing the zero-temperature limit yields

D, (k, Q)=D,'+ ' f
v p'(p+k)'

X f decoy(p, co)y(p+k, co+Q),
0

(6.19a)

where D, (k, Q) is the spin diffusion coefficient [cf. Eq.
(3.128b)],

D, (k, Q ) = 1/GK'"(k Q ) (6.19b)

with D, the bare D, . y in Eq. (6.19a) is the retarded sus-
ceptibility,

y(p, Q)=p /[ i—Q/D(Q)+p ] . (6.20a)

D(.Q) is the dressed, frequency-dependent heat diffusi-
vity, Eq. (3.128c),

D(Q) =1/GH(Q), (6.20b)

where we have anticipated that D will not depend on
wave number.

An equation for D(Q) can be obtained by dressing the
lowest-order perturbative result for H, Eq. (6.18b). Ac-
cordingly, we dress the triplet propagator in Eq. (6.18b).
We also must dress the factor of E'". It is important to
note that this E'" is not a vertex, but originates from a
propagator via the identity

p 2)'„(p)=1—K'"GQ„D„'(p), (6.21)

as can be verified from the perturbation theory. It there-
fore has to be dressed under the integral. One finds

1

D(Q)
1 3 1+ —G f —f des(1 —co/Q)

D0 4 pQ 0

1
X

ico+p—D, (p, co)

(6.22)

with D =1/GH.
Equations (6.19), (6.20), and (6.22) form a closed set of

integral equations for the diffusion coefticients D, and D.
Note that Eqs. (6.19) for D, are exact in the limit
E'"—+~ or D, ~O, since only the diagrams shown in

Fig. 30(e) contribute in this limit. Equation (6.22) for D
correctly reproduces perturbation theory up to two-loop
order, as one can see by iterating Eq. (6.22) and compar-
ing with Eq. (6.14). The quality of the expression for D,
Eq. (6.22), beyond two-loop order is not known. We also
note that both equations have been derived only in the

(b) (c)

(d)

FIG. 30. Resummation of the perturbation ex-
pansion for the triplet vertex function. (a)
Effective four-point vertex (square) in terms of
original three- and four-point vertices (circles).
Dashed lines denote triplet propagators. (b)
Leading one-loop contribution to j. ', '. (c)
Leading two-loop skeleton contributions to
I', '. (d) Cancellation of reducible and irreduc-
ible diagrams at two-loop order. (e) Relation
between reducible and irreducible diagrams at
n-loop order.

irreducible (e)
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limit of small ~k~ and Q. Outside of this regime there
may be arbitrary corrections over which we have no con-
trol. These corrections are irrelevant for universal quan-
tities such as critical exponents, but they are important
for nonuniversal quantities. We shall come back to this
point later.

j..0

0.5

— 0.04

— 0.02

2. The pseudomagnetic phase transition
0

0.05 0.10
The integral equations (6.19) and (6.22) have been

solved numerically and by construction of an analytic
scaling solution (Kirkpatrick and Belitz, 1990b; Belitz
and Kirkpatrick, 1991). This work also contained a ten-
tative RG analysis, which later was improved upon
(Kirkpatrick and Belitz, 1992b). All three approaches
show a phase transition where the spin diffusivity D, (0,0)
vanishes, while the specific heat shows a logarithmic
nonanalyticity, and the charge diffusivity is uncritical.
The two analytic approaches further show that the criti-
cal behavior is unconventional, i.e., nonpower law, in the
(unobservably small) critical region. The numerical and
the two analytical approaches represent solutions of in-
creasing technical complexity, and we shall discuss them
in this order.

a. Numerical solution

The first point to notice for a solution of Eqs. (6.19)
and (6.22) is that the integrals in these equations do not
exist unless there is an ultraviolet cutoff on the momen-
tum integrals. The universal critical behavior to be ob-
tained below will of course not depend on this cutoff.
For the sake of mathematical convenience we implement
a simple soft cutoff by multiplying the wave-number in-
tegrands in Eqs. (6.19) and (6.22) by

f(p) =Co/(lo+p (6.23)

p 2/A,

1+Fi /3
(6.24a)

D, =D (1+I'o) . (6.24b)

The integral equations can now be solved for given values

For reasons explained in Sec. II.A. 1.d we expect the
momentum cutoff qp to be on the order of the Fermi
momentum kF. The fact that in the original theory one
had f(p) =1 reffects again the fact that the derivation of
the equations is valid only for small wave numbers. With
Eq. (6.23) the wave-number integral in Eq. (6.19a) can be
performed analytically by means of a Feynman parame-
trization trick (Feynman, 1949).

The remaining integral equations can be solved by
iteration. It is convenient to introduce a disorder-related
coupling constant X=GkF /4~ and to measure
diffusivities in units of 1/2m. In these units, the bare
diffusivities D and D, can be expressed in terms of
Fermi-liquid parameters, (see Sec. III.B.3.d),

FIG. 31. Numerical solution of Eqs. (6.19) and (6.22). Shown
are the normalized spin diffusivity D, /D, (solid line), and heat
diffusivity D/D (dashed line) vs the disorder parameter A,.
Fermi-liquid parameters have been chosen as Fo =0,
Fo = 0.9. From Belitz and Kilkpatrick (1991).

of A, , Fp, and Fp. Figure 31 shows the result of such an
iterative solution' for d =3, F0=0, F& =0, and
Fp = 0.9 ~ We note the following features of the numer-
ical solution: (1) For the parameters chosen, D, vanishes
at a finite critical value of the disorder parameter, A, =A,
This supports the idea of a sharp phase transition that is
distinct from the metal-insulator transition; (2) if
t = ( 1,, —A, ) /A, , is the dimensionless distance from this
critical point, then D, —:D, (0,0) —t ' with s, =v(s'+E)
[see Eq. (4.30a)], very close to one; (3) D =—D(0) has a
much weaker singularity than D, . The behavior of D is

consistent with a power-law D —t ' with an apparent ex-
ponent sI, =vs'=0. 4; (4) for ~FO~ ( ~(FO), ~, D, was not
found to go to zero and the iterative method failed to
converge at large values of A, . The value of (Fo), was
found to depend strongly on the value of the momentum
cutoff qp and also on the shape of the cutoff function.
For the cutoff given by Eq. (6.23) with qo =2k+,
(Fo), -=0.7. We shall come back to points (3) and (4)
after an analytic discussion of the equations.

b. Analytic scaling solution

The numerical solution of Eqs. (6.19) and (6.22) dis-
cussed in the previous subsection describes a sharp phase
transition in at least some parts of parameter space. This
motivates constructing a scaling or similarity solution to
these equations. Here we do so, restricting ourselves to
2 (d &4.

In Eqs. (6.19) and (6.22) let the critical disorder be G,
and the distance from criticality t =

~ G, —G
~ /G, . At

The numerical result shown has been obtained by solving
equations that are slightly more complicated than Eqs. (6.19)
and (6.22), since they contain the additional contribution men-
tioned in connection with Eqs. (6.18). This leads to only minor
quantitative differences.
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t =0 insert the ansatz [see Sec. IV.B, Eqs.
(4.27b) —(4.27d)]

D(Q~O) =aQ ~', t =0,
D, (k, Q)=a, Q'+' '+b k' +', t=O,

(6.25a)

(6.25b)

into Eqs. (6.19) and (6.22). Using asymptotic analysis,
one 6nds

(6.26a)

(6.26b)

D, (t, k=O, Q=O)-t ', (6.27a)

except for logarithmic corrections. At the same level of
approximation the structure of Eq. (6.19) gives

with

l'V=
2

(6.27b)

To characterize the logarithmic corrections to this
scaling behavior, we generalize the above ansatz to

D(Q) =D /F(ln(1/Qr)), t =0, (6.28a)

D, (k, Q =0)=DO Ik/k~ I' 'F, ( —» Ik/k~ I ),

(6.28b)

and similarly for tAO and QAO (for D, ). In Eqs. (6.28) r
is a scattering rate and kz is the Fermi wave number. I
and F, can be determined by using Eqs. (6.28) in Eqs.
(6.19) and (6.22). After some algebra, a soluble functional
d.ifferential equation is obtained for these quantities.
Asymptotically close to the critical point one obtains
(Kirkpatrick and Belitz, 1992b)

D(Q~O) =D —ln(d /2)o 2
1/2

l
exp — ln c(d)ln

Qw

2

21n(d/2) . , (6.29)

D, (k~O, Q=O)=D, Ik/k~I dGkF y, —ln(d/2)2 — d 2 0 2
1/2

exp[ —[ln[c(d)lnIk/k+I ') /2ln(d/2) J, (6.30)

with c (d) and d nonsingular functions of d. We note that
the critical behavior of D is in between a power-law and
logarithmic behavior in the sense that D(Q~O) vanishes
more slowly than any power of 0, yet faster than any
power of 1/lnQ. Equations (6.29) and (6.30) are both val-

id at the critical point, t=0. Using similar techniques,
one can determine D and D, as functions of t, or
D, ( k =0, Q ) at t =0. Cxeneral scaling arguments (see Sec.
IV) suggest that the structure of the result would be the
same as in Eqs. (6.29) and (6.30), with, for example, t re-
placing Qr in Eq. (6.29). This is indeed the case, as will

become clear from the RG analysis in the next subsec-
tion.

c. Renormalization-group analysis

The question arises of how the asymptotic solution
provided in the previous section can be related to the
various RG analyses in Secs. VI.A. l.a and VI.A. l.c. For
this purpose it is useful to return to the perturbation
theory, of which the integral, equations given by Eqs.
(6.19) and (6.22) constitute a resummation. We also must

I

remember that the RG applies to the coupling constants
of the underlying 6eld theory rather than to the
diffusivities of Sec. VI.A. l.d. We recall that the former
are related to the latter by

H= 1/GD

X, = —Il+ l yGD,' .

(6.31)

(6.32)

Between the renormalized quantities there are analogous
relations (see Sec. III.B.3.d).

In the field theory, H =mXF /2 is the bare frequency or
temperature renormalization factor, and E'" is the bare
interaction parameter for the spin-triplet channel. The
loop expansion is a perturbation theory in powers of
Y=GK'"/H. We return from the real-frequency formu-
lation of the previous subsections to the original Matsu-
bara formulation with Matsubara frequencies Q„=2~Tn.
The dressed, frequency- and wave-number-dependent
counterparts of H and K we denote by h(n) and k, (p, n ),
respectively. Equations (6.19) and (6.22) are then
equivalent to the following equations for h and k, :

h(n) 3 1 k, (p, l)=1+—Y —g (1—l/n)
H 2 &n K'" p Q([h(l)+k, (p, l)]G

(6.33)

k, (q, n ) k, (q, n )

sc'" K'" p i=i p +QIh(l)G (p+q) +(Qi+Q„)h(1+n)G
(6.34)
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X [1—3E/2+O(c. )], (6.35)

k, (q=O, n )/IC("= I — [1+O(E)](t)
2c

+ Y (GHQ„)'
32'

X[1—E( —'+
,
' L, )+0—( E)],

(6.36)

where y, =If('1/H. Equations (6.35) and (6.36) have the
same structure as the two-loop perturbative result de-
rived in Sec. VI.A. 1.c. The discrepancy at two-loop or-
der between Eq. (6.36) and Eq. (6.15) is due to the term
omitted from Eqs. (6.18c) and (6.19a). Renormalization
by means of minimal subtraction leads to a How equation,
Eq. (6.17c), for y, the scale-dependent counterpart of Y.
To one-loop order Eq. (6.17c) seems to allow for a fixed
point y*=4c, but this prospect is ruined by the y l, term
at two-loop order. As mentioned in Sec. VI.A. 1.d, these
logarithmic terms also appear at higher-loop order with
the leading term at n-loop order of order y"+'l," '. Yet
the full equations, which resum the loop expansion to all
orders, allow for a phase transition where y =const. It is
then natural to assume that a resummation of all loga-
rithmic terms would result in a function of l, that tends
to a finite value as l, —+ ao.

The above scenario has been verified by a detailed cal-
culation (Kirkpatrick and Belitz, 1992b). For 1, —+ ~ the
results can be summarized by the RG Aow equations,

d = 2
y + y

db 2aa'[1 —(1—1/a')y /2aE]

b
dh (a —1)yh
db 2aa'[1 —(1—1/a')y/2aE]

(6.37)

(6.38)

In these equations a and a' characterize the solution of
differential equations that resum perturbation theory.
They satisfy the transcendental equations,

4( 1)-(a—1}ei2a —, n y, (6.39a)

Instead of the cutoff regularization of the previous sub-
sections we shall employ dimensional regularization here,
and have therefore omitted the cutoff function f(p).

Iteration of Eqs. (6.33) and (6.34) generates the loop
expansion, an expansion of h and k, in powers of Y. It is
instructive first to consider the low-order terms in this
expansion. To second order in Y we find

h(n )/H= 1 —Y [1+O(E)]3

8c

+ Y (GHQ„)'(I+y, )'2 3

dy 1 —y/y'
P(y) =b = —sy

1 —(1—1/a')y /y * (6.40)

p(y) has a zero at y=y*—=2ae, as it should, and its
derivative determines the correlation length exponent v,

The factor e ~ in Eq. (6.39c) can actually be replaced
by unity if one wants to keep leading logarithmic terms
only. It is retained because it contributes to the finite
term —(15/64)y in Eq. (6.17c). Terms like this turn out
to have a qualitative effect on the phase diagram even
though they are not important for the Fermi-
liquid —incompletely frozen spin (FL-IFS) phase transi-
tion itself. For this qualitative effect the exact value of
the exponent ( ——', above) is insignificant; it is only impor-
tant that it is negative.

Note that, for a=0, Eqs. (6.39) give a=4 and a'= l.
Use of these values in Eqs. (6.37) and (6.38) leads to the
one-loop RG flow equations discussed in Sec. VI.A. l.a.
We further note that the c~O approximation breaks
down when c lny, —=cl, + 1, as expected from the discus-
sion below Eq. (6.36).

Before proceeding let us briefly discuss in more detail
the transcendental equations given by Eqs. (6.39a) and
(6.39b). First note that y, is given in terms of
y, =y/g =y/g(b =1)b ' [cf. Eq. (6.13)]. At b =1,
y, (b =1)=y„andfor future use it is important to note
that Eqs. (6.39) should also be satisfied for b close to l.
Here we discuss these equations for general b. Equation
(6.39a) always has one and only one solution if y, ~ l.
a=4 for y, =l and a~i for y, ~oo. If (y, )'&y, &1
with (y, )'=exp[ —I/sX0. 0446. . . ] then there are two
solutions, of which the one yielding the larger 0. is by
continuity the physical one. For y, =(y, )' there is one
solution, giving the largest possible a=a =7.218. . . .
For y, & (y, )' there is no solution. The physical meaning
of this absence of a solution is that, if the bare value y, of
y, is smaller than a critical value (y, )', then the assump-
tion of y, scaling to infinity fails, and there is no FL-IFS
transition. We shall come back to this in the next subsec-
tion. a' vanishes for y, =(y, )', then increases with in-

creasing y„goes through a maximum, and approaches u
for large y, . Both a and a' as functions of y, show
square-root cusps at (y, )'. Note that these considera-
tions imply that at the expected fixed point +=a'=1.
Naively using this result in Eqs. (6.37) and (6.38) leads to
the exponents given by Eqs. (6.26a) and (6.27b). To re-
cover the logarithmic corrections discussed in the previ-
ous subsection, one must treat the approach of a to its
asymptotic value carefully.

The analysis proceeds by first defining the RG p func-
tion. Equation (6.37) yields

a(a —1)y,a'=a—
cx —1+0!

(6.39b)
v=1/P'(y*)=1/a's . (6.41)

with

y, =(1+y, )e (6.39c)

Asymptotically, we have again v=1/c. For h and k„we
find for y =y* from Eqs. (6.37) and (6.38) the fiow equa-
tions
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b =E(a —1),d lnh

db

d ink,

db

For y, this yields

d lny,
b c. .

(6.42)

(6.43)

(6.44)
b

dy
db 4

(6.52)

physically accessible fixed point. Rather, the theory
leads to a runaway RG trajectory for y, and y. However,
by examining the perturbation theory in detail, we can
make a limited amount of progress. It has been argued
(Kirkpatrick and Belitz, 1992b) that, for small scales or
for y ln(1+y, ) ( 1, the relevant RG flow equation is ap-
proximately

a=1+ 1nlny, .2

c, lny,
(6.45)

To leading order we have lny, =in@,. Combining Eqs.
(6.42), (6.44), and (6.45), we find for b ~ ~

Equation (6.39a) shows that, for y, ~ ~, a approaches
its asymptotic value logarithmically,

y 2

db

Note that the solution of Eq. (6.53a) is

(6.53a)

For larger b, where y ln(1+y, )) 1, the Row equation
for y is

b = ln(lnb ),d lnh 2
c lnb

(6.46) y(b)=
1 —yolnb

(6.53b)

with the solution

h(b)-exp —[ln(lnb )]

The same method yields for k,

(6.47)

with yo=y(b=1), which suggests that y diverges at a
finite scale. In reality Eq. (6.53b) breaks down before this
scale is reached, and for larger scales a theory for the IFS
phase is needed. As we already mentioned, such a theory
is not presently available.

k, (b) —b'exp —[(ln(lnb )] (6.48) d. Summary

We see that, in the case of h, the asymptotic exponent
o.—1=0 actually implies the log-log normal behavior ex-
pressed by Eq. (6.47), and in the case of k„there is a cor-
responding correction to the naive power law. The
scale-dependent diffusion coefFicients are given by Eqs.
(6.47) and (6.48) via D(b)-1/h(b) and D, (b) —1/k, (b).
Finally, the dependence on the physical parameters t, fre-
quency Q, and wave number ~p~ in the scaling regime can
be obtained from the relations

y(t, T)=b'exp y(b't, b T),
21n d/2

(6.54a)

In summary, in some parts of parameter space there is
a FL-IFS phase transition, which is caused by disorder
but is distinct from the metal-insulator transition. The
transition is characterized by a divergent magnetic sus-
ceptibility y, a weakly singular specific-heat coefFicient y,
and noncritical charge transport. The singular functions
near the phase transition satisfy the scaliiig laws

lnb =vln(1/t), (6.49)

for the behavior of the static, homogeneous diffusivities
as a function of t, and

y(t, T) =exp y(b't, b T),
21n d/2

(6.54b)

lnb = —lnj p/k~

(6.50)

(6.51)

D, (t, k, co)=b 'exp — D, (b't, bk, b co),
21n d/2

(6.54c)

for the momentum and frequency dependence at the crit-
ical point. Asymptotically, we have v=1/c, z=2, and
~=0. Comparison with Sec. VI.A.2.b shows that the RG
solution is in full agreement with the asymptotic
behavior of the integral equations if the latter are evalu-
ated to leading order in c. only.

We conclude this subsection by briefly discussing the
two-dimensional case. First we note that the RG calcula-
tions given so far cannot be directly applied because in
the theory the limits c,—+0 and y, —+ ~ do not commute.
Further, in two-dimensional systems there is no FL-IFS
phase transition, and as a consequence of this there is no

[ln(lnb ) ]D(t, k, Q)=exp — D(b't, bk, b 0) .
21n d/2

(6.54d)

In other parts of parameter space the situation appears
different. The numerical solution method discussed in
Sec. VI.A.2.a shows that in d =3 and for ~Fg ~ 0.7 there
is no FL-IFS phase transition. This is consistent with the
RG analysis of Sec. VI.A.2.c. In particular, in the previ-
ous subsection we noted that the transcendental equa-
tions for o, and a' do not have a solution if y, is smaller
than a critical value (y, )'. Since all of these equations
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(y, )'= —1+e ~ exp ——0.0446. . .
1

(6.55)

were derived under the assumption that y, scales to
infinity (otherwise there would not be a fixed point with a
nonzero y *), an obvious interpretation of the absence of a
solution is the failure of the assumption. (Other interpre-
tations are conceivable, however; see Sec. X.B.2.a.) We
conclude that the phase diagram in three dimensions
looks qualitatively as shown in Fig. 28(a). For a
sufficiently large value of y„orof ~FO ~

=y, /(1+ y, ), the
system undergoes, with increasing disorder, the FL-IFS
phase transition discussed in this section. With further
increasing disorder, the IFS phase presumably becomes
unstable, and a transition to a charge insulator occurs
(we reinind the reader that the IFS phase is a charge con-
ductor). There is at present no theory for the latter tran-
sition, and the corresponding phase boundary is indicat-
ed in Fig. 28 as a dashed line. In particular, it is not
known whether the dashed line will reach the line

~Fg =1 at a finite disorder. For y, smaller than a criti-
cal value (y, )', y, does not fiow to infinity with increas-
ing scale. There consequently is no IFS phase, and it is
natural to expect a metal-insulator transition instead.
This is discussed in the next subsection. Of course this
Fermi-liquid —insulator transition cannot be described
with the theory set up here, since at the metal-insulator
transition the disorder is renormalized, while here we
have explicitly assumed otherwise. Furthermore, with

y, (b —+ ~ ) approaching a finite value, we lose one of our
small parameters. We therefore cannot hope to find a
well controlled description for arbitrary dimensionalities,
as has been possible in the case of the FL-IFS phase tran-
sition. Worse than that, not even a controlled c. expan-
sion is feasible for the Fermi-liquid —insulator transition.
To see this, we consider the dependence of the critical
value (y, )' on the dimensionality. We recall, from the
discussion of Eqs. (6.39),

3 20 20
t ~y, exp ——— ln

2 E E
(6.57)

as a condition for o. to deviate from 1 by not more than
10%. The conclusion is that the critical region is unob-
servably small, and the behavior seen, e.g., in the numeri-
cal solution discussed in Sec. VI.A.2.a, is determined by
nonuniversal, preasymptotic power laws. As long as y,
has not grown appreciably from y„D,and D will behave
like

ticritical point in the phase diagram, where the three
phases meet, is shifted to smaller values of ~FO~ and
reaches Fo=0 at d, =2+v, )2. This is shown qualita-
tively in Fig. 28. For d &d, there is no multicritical
point, and the Fermi-liquid and insulator phases are al-
ways separated by an EFS phase, i.e., there is no direct
FL-I transition for dimensionalities close to two. An im-
mediate consequence for the description of the FL-I tran-
sition is that one cannot treat it by means of an c=d —2
expansion. Unless a difFerent small parameter can be
found, the theory of this transition is therefore necessari-
ly nonperturbative. In the next subsection we show how
one can use an approximate RG based on two-loop per-
turbation theory in d =3 and obtain approximate ex-
ponents for various transport and thermodynamic quali-
ties. We also mention that at the multicritical point one
expects a special critical behavior with crossovers to the
FL-IFS critical behavior discussed above and the FL-I
critical behavior discussed below, respectively.

The size of the critical region where the asymptotic
behavior, Eqs. (6.29) and (6.30), or Eqs. (6.47) and (6.48),
applies has also been discussed by means of the RG
(Kirkpatrick and Belitz, 1992b). As a direct consequence
of the logarithmically slow approach of the exponents to
their asymptotic values [see Eq. (6.45)], the asymptotic
critical region is exponentially small for c «1. To lead-
ing logarithmic accuracy one finds

As noted in Sec. VI.A.2.c, the factor e in Eq. (6.55) is
not exact, but rather results from a two-loop approxima-
tion for the less leading terms in the perturbation theory.
The numerical value for (y, )' is therefore an approxima-
tion, but its c dependence is accurate. For d =3, Eq.
(6.55) corresponds to a critical value of Fo, which is

(Fo), = —0.777. . . . This should be contrasted with the
integral equation approach, which numerically gives
(Fo), —= —0.7 for a particular type of momentum cutoff.
However, this value is strongly cutoF dependent, and for
difFerent cutoff procedures values of (Fo), as small as
—0.98 have been found. It is therefore possible that the
region of parameter space occupied by the IFS phase is,
for 3-d systems, very small. With decreasing c=d —2,
this region increases, and from Eq. (6.55) we find that
(y, )' vanishes at a value e=Eo) 0 given by

c, -=0.030. . . .

It follows that, with decreasing dimensionality, the rnul-

(6.58a)

s, =a/a', (6.58b)

hh (6.59a)

with

sh =(a—1)la' . (6.59b)

Here a and a' are given by Eqs. (6.39a) and (6.39b), with

y, replaced by y, . They therefore depend on y, . With
decreasing t, y, starts to grow, and the efFective ex-
ponents acquire a t dependence. They are now given as
solutions of Eqs. (6.39a) and (6.39b) as written. For d =3
and Fo = —0.778, u, n', s„and sI, are shown in Fig. 32.
We see that sz approaches zero very slowly. In the re-
gion covered by the inset in Fig. 31 (t on the order of a
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5 —3( 1+1/y,* )ln( 1+y,' )

15
[1—

—,'in(1+@, )] .
( I+y,') (6.61b)

0
0

I. I I I

1 2 3 4 5

log (1/t}

few percent), its value is close to 0.4. This is compatible
with the numerical result. In contrast to sz, s, ap-
proaches its asymptotic value, 1, fairly rapidly. At
t=10, the deviation is less than 3%. This explains
another feature of the numerical result, which had found
D, to vanish linearly (see Fig. 31).

In conclusion, the existence of the FL-IFS transition
seems theoretically well established by a variety of tech-
niques. However, the experimentally important question
of how large a region in parameter space and IFS phase
occupies has not been answered convincingly.

FIG. 32. Effective exponents u, a', s„and sq as functions of
1n(1/t) in the preasymptotic region. Parameters are d =3, and
Fo = —0.778.

v= 1/A, + =0.75,
= —4.08,

z =5.91,
v=2. 91 .

(6.62a)

(6.62b)

(6.62c)

(6.62d)

The density-of-states exponent P can be obtained by us-
ing the fixed-point values g' and y,* and Eqs. (6.6) and
(6.7a). With I,~—m/sin(m. E/2), which is the generaliza-
tion of l, = —2/s to E =0(1), one finds

In d =3, the solution of Eqs. (6.61) is g*=4.02 and
y,*=0.84. The linearized RG eigenvalues, which give
the critical exponents for the metal-insulator phase tran-
sition, are determined by expanding Eqs. (6.60) about
(g *,y,*,h *=0). One finds one relevant eigenvalue,
1,+= I/v, related to the correlation length exponent v,
and one irrelevant eigenvalue A, . This shows that the
fixed point is stable. The linearization of the right-hand
side of Eq. (6.60c) gives ha. , and the dynamical scaling ex-
ponent is z=d+x [cf. Sec. IV.A.2, scenario (iv)]. For
d =3 the predicted exponents are

3. The metal-insulator transition P=0.50 . (6.62e)

b = —sg+ [5—3(1+1/y, )ln(1+ y, )], (6.60a)

To describe the direct Fermi-liquid —insulator transi-
tion (Kirkpatrick and Belitz, 1992a) mentioned in the
previous subsection we consider the two-loop RG equa-
tions d.erived in Secs. VI.A. 1.a and VI.A. 1.c,

Near this metal-insulator transition the electrical con-
ductivity o., the spin susceptibility y„and the coefficient
of the linear term in the specific heat, y=limT oC/T,
satisfy the scaling laws given in Sec. IV.A. An approxi-
mate expression for the Fermi-liquid —insulator phase
boundary in Fig. 28 can be determined by computing the
RG critical surface for fixed point. In d =3,

b = —(I+y, )
— g y, [5/2 —ln(1+y, )],

db 8 ' 32
go =3 38+0.78y (6.63)

g(3)'t —1)+-dh h 3
db 8

(6.60b)

(6.60c)

4c
5—3(1+1/y,")ln(1+ y,')

(6.61a)

Equations (6.60) contain the first two nonvanishing con-
tributions to the Bow equations for g, y„and h. The
one-loop terms in Eqs. (6.60) are exact. The two-loop
terms were derived in the limit y, »1. In order to de-
scribe a metal-insulator transition, one must use these
equations for y, —O(1) and g -O(1). Though this pro-
cedure is, strictly speaking, uncontrolled, it can be
justified a posteriori on grounds of the results' being quali-
tatively consistent with the existence of the multicritical
point in Fig. 28 and with scenario (iv) for the metal-
insulator transition discussed in Sec. IV.A.2.

The metal-insulator fixed point predicted by Eqs. (6.60)
is defined by the equations

An important question is whether the fixed point dis-
cussed above is accessible. This has been addressed
(Kirkpatrick and Belitz, 1992a) by means of a numerical
solution of the fiow equations, Eqs. (6.60). The result,
shown in Fig. 33, was that there are several fixed points
as a function of c, and initial values of g and y, . The
physical fixed point, if any, is the one that first occurs
with increasing disorder. For s =0 [Fig. 33(a)] and

go =g(b = 1) very small, g first increases and then de-
creases, and y, diverges at a finite value of b. The
ground state in d =2 is therefore not a Fermi liquid. For
larger go one finds a stable fixed point
(g, y,*)=(0.51,2.08) with an associated separatrix,
separating regions in parameter space where y, diverges
at a finite scale from those where g diverges at a finite
scale. It is important to remember that Eqs. (6.60) are
capable only of describing how metallic (small-g)
behavior breaks down. For v=0, this breakdown occurs
already at arbitrarily small go by means of y, ~~. The
fixed point is therefore inaccessible and has no physical
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+ 0.5
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FIG. 33. Flow diagram showing the solution of Eqs. (6.60) for
three different dimensionalities d =2+v: (a) c=O, (b) a=0.05,
(c) c, =1. Fixed points are denoted by crossed circles, and
separatrices by dashed lines. From Kirkpatrick and Belitz
(1992a).

significance. For 0&E«1 [Fig. 33(b)] and small go, a
Fermi-liquid fixed point (g*=0, y, =finite number) is
reached. With increasing go, one enters a region in
which y, again diverges at a finite scale. The separatrix
between these two regions can be related to the FL-IFS
phase transition. Since it involves runaway trajectories,
this transition requires an infinite resummation of the
loop expansion and cannot be described by Eqs. (6.60).
This has been discussed in Sec. VI.A.2 above. For still
larger go, there is again an inaccessible stable fixed point.

For c.=0 ( 1 ), the behavior of the fiow changes again
qualitatively [Fig. 33(c)]. For small go (and a yot that is
not too large), there always is a Fermi-liquid fixed point.
With increasing go one reaches the stable fixed point
separating g —+0 Row from g ~ ao Aow with no y, ~ ~
trajectories in between. The fixed point is therefore ac-
cessible and describes a metal-insulator transition (the
FL-I phase boundary in Fig. 28). For y, ))1 there is
again a separatrix related to the FL-IFS phase transition
(the FL-IFS phase boundary in Fig. 28), confirming the
existence of the multicritical point M in Fig. 28.

We conclude that for c larger than a critical value
0 & c, ( 1 there is an accessible, stable fixed point describ-
ing a metal-insulator transition. Because there are no
runaway trajectories at this point, one does not have to
perform an infinite resummation as for the pseudomag-
netic transition, but rather Eqs. (6.60) should be sufficient
to describe it approximately. Furthermore, the results
are consistent with both the results of Sec. VI.A.2 and

scenario (iv) of Sec. IV.A.2, which makes it rather unlike-

ly that the metal-insulator fixed point discussed above is
an artifact of the two-loop RG equations. It must be
stressed again, however, that the existing theory of this
metal-insulator transition is uncontrolled. For the most
part this is due to the fact that the transition simply does
not exist for d —+2. A controlled theory would therefore
have to follow a route completely different from the one
described here.

B. Experiments

The best studied material near a metal-insulator transi-
tion is phosphorus-doped silicon (Si:P), and some of its
general features have already been mentioned in Sec. I.
At the same time, it is the only material for which. it has
been established that it represents the generic universali-
ty class G at all practical temperatures. Since hZ=1 in
this material, the spin-orbit scattering is expected to be
insignificant, and measurements of the spin-Aip scattering
rate (Paalanen et al. , 1986) have suggested that the spin-
triplet channel survives down to T=—3 mK. In the mil-
lidegrees Kelvin temperature range, values of t =10
have been achieved by using a stress tuning technique
(Paalanen et al. , 1982). In this region both the transport
and thermodynamics properties of Si:P near the metal-
insulator transition have been measured very accurately.
For these reasons we discuss only Si:P in this subsection.
Also, consistent with the theory we have discussed, we
concentrate on experimental results on the metallic side
of the metal-insulator transition. In Sec. IX we shall dis-
cuss further aspects of the insulating phase.

1. Transport properties

In Fig. 34 the zero-temperature conductivity versus
the dimensionless distance from the metal-insulator tran-

20

10

0.5

0.2
10 10 1

n/n —1

FIG. 34. Zero-temperature conductivity o of Si:P, normalized
by the Mott number, vs the dimensionless distance from the
critical point. The solid line represents the best power-law fit.
After Rosenbaum et al. (1983).
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2. Thermodynamic properties

0.5—

0—

—0.5

g10 (n/n —1)

FIG. 38. Zero-temperature conductivity in Si:P vs dimension-
less distance from the critical point. The dotted, dashed, and
solid lines are best fits obtained by using one, two, and three
correction terms in Eq. {5.42b) with an asymptotic critical ex-

ponent s =0.7. Best-fit values for the coe%cients in Eq. (5.42b)
are o.

o
=54. 87, 94.82, 132.16; a

&

= —1.84, —4.42, —6.61;
a2=0, 6.21, 17.73; a3=0, 0, —16.38 for the three curves, re-
spectively. From Kirkpatrick and Belitz (1993).

best fits obtained from Eq. (5.44b) with s =0.7. The data
points were selected as follows. For small t, roundo6'due
to sample inhomogeneities sets a limit at t=—10 . At
large t, points up to I; =10 ' were included. In order to
improve the statistics with several logarithmic correction
terms taken into account, the 13 data points for
10 ~ t & 10 ' were augmented by another 12 obtained
by linearly interpolating between neighboring points. A
standard y fitting routine with singular-value decompo-
sition was then used to optimize the values of the
coefficients a„a2,etc. , in Eq. (5.44b). The dotted,
dashed, and solid lines, respectively, in Fig. 38 represent
the best fits obtained with one, two, and three correction
terms taken into account. The fits obtained with two and
three correction terms are of significantly higher quality
than a straight-line At optimizing s. More than three
correction terms did not lead to further improvements in
the fit quality. While the value for s was chosen arbitrari-
ly, this shows that the experiment is certainly consistent
with the theoretical lower bound for s, once corrections
to scaling are taken into account. An attempt has also
been made to determine s from the data by means of Eq.
(5.44b), by repeating the fitting procedure with difFerent
values of s. However, the fit quality was found to go
through a very shallow maximum as a function of s, with
relatively large (+0.15) fiuctuations in the best value of s
if one successively eliminated large-t data points. The
best estimate for this experiment was s =0.70+o 03, where
the lower bound was set by the theoretical bound rather
than by the fit.

0.01
0.01

I I I I I IIII
0.1

I I I I I IIII I I I I I III
10

FIG. 39. Donor susceptibility gD in Si:P, normalized to the Cu-
rie susceptibility at 1 K, vs temperature. The labeling of the
curves gives the phosphorus concentration n/n„and the solid
line represents the Curie susceptibility. From Ootuka and
Matsunaga {1990).

Figure 39 shows the donor susceptibility yz in Si:P
normalized by the Curie susceptibility at T=1 K (Gotu-
ka and Matsunaga, 1990). The diamagnetic contribution
included in y~ is not believed to lead to substantial devi-

ations of yD from the spin susceptibility y, . As in the
case of Si:P, B, Fig. 25, no saturation of y, is observed
down to T=—30 mK, and the data are consistent with g,
diverging for T—+0 even well into the metallic phase.
Also, the susceptibility shows no obvious additional
anomaly across the metal-insulator transition. A power-
law fit to the low-temperature behavior, g, —T ', gives
a =0.46. Similar behavior was observed by Paalanen
et al. (1986).

The specific heat C in Si:P is shown in Fig. 40 as a
function of temperature for three samples with

n/n, =0.78, 1.09, and 1.25 (Paalanen et al. , 1988). The
phonon contribution, proportional to T, is shown as
dashed lines for each of the three samples. Thereby a
Debye temperature of 640 K has been assumed. The
solid line represents the "free"-electron contribution
Co =yoT, which was calculated using the Si conduction-
band mass (mo =0.34mo), consistent with specific-heat
measurements well above n, . In general the anomaly in
the metallic phase is not strong enough to be meaningful-

ly characterized by an exponent. For the insulating sam-

ple (n/n, =0.78), the specific heat is consistent with a
power law y/yo- T below 0.7 K. For completeness
we show in Fig. 41 the specific heat well into the insulat-
ing phase (Lakner and v. Lohneysen, 1989). An interest-
ing feature is that, for small enough n, the specific heat
increases with decreasing temperature down to the mK
temperature range. Since C( T~0) must vanish, this im-

plies that, at least in the insulating phase of Si:P, there is
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been observed, but since no theoretical estimate for the
saturation temperature is available it is possible that the
experimental temperatures have not been low enough.
An alternative explanation of the data in terms of local
magnetic moments in both the metallic and insulator
phases will be discussed in Sec. IX.
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an extremely low temperature scale that is not under-
stood.

The thermodynamic data shown in Figs. 39—41 are not
readily explained with the theoretical results of Secs. V.A
and VI.A. Because Si:P is expected to be in the generic
universality class, it is in principle possible that the IFS
phase exists between the Fermi liquid and the insulator
(cf. Fig. 28) and that this is what is observed in some of
these experiments. However, the best available estimate
for the location of the multicritical point is Fo~' 0.7,
while a reasonable value for Si:P is I'0=- —0.5. It is
therefore more likely that the experiments probe the FL-
I transition than that they probe the FL-IFS phase tran-
sition. Even more importantly, in the Fermi-liquid
phase, on the low-disorder (or high-doping in the case of
Si:P) side of the FL-IFS phase transition, one expects y,
to saturate at low temperatures. No such saturation has

I I I I III I I I I I I III
Si:P

N= 16 10 cm

N= 0.89 ]018 crn 3

10—7 I I I I I II

0.1
I ~~l I I II

1.0

FIG. 41. Specific heat C vs temperature T of Si:P for various
donor densities. The critical density is about 3.3X10" cm
From Lakner and von Lohneysen (1989).

TEMPERATURE (K)

FIG. 40. Specific heat of Si:P as a function of temperature for
three different phosphorus concentrations. See text for more in-

formation. After Paalanen et al. (1988).

Vll. DESTRUCTION OF CONVENTIONAL
SUPERCONDUCTIVITY BY DISORDER

In this section we consider the eff'ects of nonmagnetic
disorder on systems whose ground state in the clean limit
is a superconductor rather than a Fermi liquid. This is a
rather extensive subject, and complete coverage of all as-
pects would require a separate review. A further compli-
cation arises from the fact that the phenomenology of the
field is complex and not as widely known as that of the
metal-insulator transition. Also, to the authors'
knowledge, the topic has never been reviewed in full,
though aspects of it have been covered by Bergmann
(1976), Rowell and Dynes (1980), Lee and Ramakrishnan
(1985), Ramakrishnan (1989), and Belitz (1990). We
therefore give a brief overview of the field in Sec. VII.A,
where we also explain the limitations of our coverage. In
Sec. VII.B.1 we describe the results, but not the detailed
derivations, of various generalizations of the standard
theories of superconductivity to disordered systems. Sec-
tion VII.B.2 contains a detailed account of recent ap-
proaches that use the field-theoretic methods that are the
main theme of this review, and Sec. VII.C discusses ex-
periments. We assume that the reader is familiar with
the Ginzburg-Landau, BCS, and Eliashberg theories [see
the books by Abrikosov et al. (1975), Bogoliubov et al.
(1959), de Gennes (1966), Parks (1969), Schrieff'er (1964),
or Tinkham (1975)j.

A. Disorder and superconductivity: A brief overview

Reports of the inAuence of disorder on superconduc-
tivity date back to Kamerlingh Onnes in 1925, but the
first systematic study of various materials was performed
by Buckel and Hilsch (1954). By quench-condensing thin
films of superconducting elements on cold substrates they
obtained residual resistivities of typically 20 pQ cm. For
Al, Zn, Sn, In, and Tl the transition temperature T, was
found to be enhanced compared to the clean bulk value,
with enhancement factors ranging from 2.3 (Al) to 1.1
(Tl). The r, of Pb was found not to change, and that of
Hg to decrease slightly. Matthias et al. (1956) studied
solid solutions with up to 50% of chemical scattering
centers. In cases where the electron concentration was
not expected to change much in the alloying process,
they found T, values comparable to those of the pure ma-
terials. Lynton et al. (1957) systematically studied the
eff'ect of very small (-0.1 at. %%uo )amount sof impuritie s
on the T, of Sn, starting from single crystals. They
found an initial sharp drop in T, followed by a much
more gradual behavior at larger impurity concentrations.
In contrast to these mild e6'ects of substantial amounts of
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nonmagnetic scattering centers, magnetic impurities were
found to lead to a continuation of the initial sharp drop
of T„and T, vanished at concentrations on the order of
1 at. % (Matthias et al. , 1958).

This qualitative difference between the effects of mag-
netic and nonmagnetic disorder was explained on the
basis of BCS theory (Bardeen et al. , 1957). Abrikosov
and Csorkov (1960) showed how magnetic impurity
scattering breaks the spin-singlet Cooper pairs and
suppresses T, . For nonmagnetic disorder, Abrikosov
and Cxorkov (1958, 1959) showed that, to leading order in
perturbation theory, T, is independent of disorder; see
Sec. III.B.2.b. Anderson (1959b) gave a qualitative ex-
planation of why nonmagnetic disorder should have no
drastic effects. He considered the set of exact eigenstates,
g, of a Hamiltonian describing noninteracting electrons
in a disordered environment, Eq. (2.1a). While the g
cannot be determined explicitly, they form a complete set
and can be used as a basis set analogous to plane waves in
clean materials. In particular, one can form a Cooper
pair out of a P and its time-reversed counterpart. BCS
theory can then be repeated with the f replacing plane
waves, and the only effects of disorder are small changes
in the matrix elements and in the density of states upon
ensemble averaging. These changes are expected to be
largest in the initial stages of the disordering process,
where peaks in the density of states and in the matrix ele-
ments get smeared out. This accounts for the observed
initial sharp drop in T, . Once this has happened, one
would expect no further change of T, with increasing dis-
order. This prediction is sometimes called "Anderson's
theorem. " The dependence of T, on the single-particle
DOS that remains even within the exact eigenstate for-
mulation of the BCS theory has been invoked to explain
not only the small changes of T, at small disorder men-
tioned above, but also the large changes that occur over a
substantial range of disorder in, e.g. , the A-15 materials
(Testardi and Mattheiss, 1978). This kind of one-electron
description was criticized by Anderson et al. (1983), and
it has become increasingly clear that the experimental
observations suggest a breakdown of Anderson's theorem
due to an interplay between disorder and many-body
effects.

It has always been clear that Anderson's theorem can-
not be strictly valid for real materials (though it is strictly
valid within certain models; see below), but our under-
standing of how and why T, depends on nonmagnetic
disorder has progressed slowly. Much experimental in-
formation has accumulated over the years which shows
that, though small amounts of disorder can either in-
crease or decrease T„sufficiently large disorder' will al-

What "sufficiently large" means depends on the material,
and in particular on the value of T, in the clean limit, T, . Sys-
tems with a low T, almost always show an initial increase of T,
upon disordering, while those with a high T, show an irnmedi-
ate T, degradation. This correlation has been noted by Belitz
(1987a).

ways destroy superconductivity. The subject gained po-
pularity among theorists in the 1980's, when the interest
in localization raised the question of whether the destruc-
tion of superconductivity is due to incipient or actual lo-
calization of one-electron states. A particularly interest-
ing case is that of 2-d systems, whose ground state is in-
sulating in the absence of superconductivity. This gave
rise to the somewhat ill-posed question of whether or not
superconductivity is possible in systems where the one-
particle excitations are localized.

In bulk systems, the observed degradation of T, at
sufficiently large disorder has often been found to depend
only on the extrapolated residual resistivity, not on how
the disorder was introduced. This has at times given rise
to the notion of a "universal" T, degradation. Recently,
however, through systematic studies on thin films, it has
become clear that the morphology of the materials is
very important for their superconducting properties.
From a theoretical point of view it should be stressed
that there is no universality, in the technical sense of the
word, in the T, degradation. It depends on many
nonuniversal details of the system, just as the value of T,
in the clean limit does. It has proven useful to consider
two idealized classes of materials, viz. , "homogeneous"
and "granular" disordered superconductors (Deutscher
et al. , 1985; Valles and Dynes, 1990). The homogeneous
systems are thought to be disordered on an atomic length
scale as one would expect, e.g. , in a solid solution or as a
result of irradiation. The granular systems, on the other
hand, are composed of grains or microcrystallites of rela-
tively clean material with linear dimensions of typically

0
50 A, which are separated by regions of normal conduct-
ing or insulating material. The prototype of a "homo-
geneous" system is, apart from bulk solid solutions, a Pb
film grown on a substrate with an underlayer of Ge
(Strongin et al. , 1970); the prototype of a granular sys-
tem is granular aluminum (see, for example, Abeles,
1976). The former show a steady T degradation, but the
transition remains sharp (Fig. 42), and superconductivity
is believed to be destroyed by a suppression of the amp/i-
tude of the superconducting order parameter. In the
latter, T, defined as the onset of the transition stays al-
most constant while the transition becomes steadily
broader (Fig. 43), which is believed to be due to increas-
ing Auctuations of the phase of the order parameter
(Valles et al. , 1989; Valles and Dynes, 1990). Real sys-
tems often lie in between these extremes, and often it is
not known how "homogeneous" a given sample really is.

In this section we cannot possibly cover all aspects of
disordered superconductors. In accordance with the gen-
eral theme of this review, we concentrate on the destruc-
tion of superconductivity which happens more or less
close to the metal-insulator transition. We restrict our
discussion to the disorder dependence of T, and do not
consider effects in the superconducting state. We further
restrict our discussion to homogeneous systems, where
the relevant physics is believed to be close to that govern-
ing the other topics in this review, namely, interplay of
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1. Generalizations of BCS and Eliashberg theory

In homogeneous systems, the destruction of supercon-
receded by a characteristic degradation ofductivity is prece e

T, . It is possible, at least in d=3, that essentially the
same physics that is responsible for this degradation also
brings about the eventual destruction of superconductivi-
ty. Before we discuss methods capable of describing t e
disappearance of superconductivity, we therefore men-
tion the substantial body of work aimed at describing this
degradation by adding disorder, often perturbatively, to
the standard theories of superconductivity.

FIG. 42. Resistance as a function of temperaturerature for a series of
homogeneous Bi films. From Haviland et al. 1989).

disorder and interactions. A brief overview including the
granular models as well has been given by Ramakrishnan
(1989). For homogeneous thin films, it has been suggest-
ed that there is a universal normal-state sheet resistance
R~ —=h/4e, which separates superconducting samples
from insulating ones (Jaeger et al. ,l 1986' Haviland et al. ,
1989). There is currently no agreement between experi-

tal roups as to whether or not this is actually the
case. We shall briefly comment on a theoretica g-

. In this sec-ment in favor of a universal R * in Sec. IX.D. n

tion we also exclude effects in magnetic fields, and we re-
strict ourse ves o e1 t th BCS T even in two dimensions,c~

where strictly speaking there is no BCS transition. We
deal only with conventional, phonon-mediated, s-wave
superconductivi y. ed

' 't . We do not discuss heavy-fermion or
high-T, superconductors (a discussion of disorder e6'ects

in heavy-fermion superconductivity can be found in
Ahlheim et al. , 1988).

( ) I i I / ( f ( (

a. Enhancement and degradation of the mean-field T,

a F(co)=a Fl (to)+2a Fr(co), (7.1a)

with

a'Fb(~)=, j dq Bb(q, oo)fb(ql
kF2l 0

(7.1b)

Here b=L„Tfor longitudinal and transverse phonons,
respectively, I is the electronic mean free path, Bb(q, co) is
the phonon spectral function, and db and fb are given by
Eqs. (2.50). The disorder dependence of T, is then given
through that of the usual coupling constant

A, =2 f des a F(co) lcm . (7.2)

Keck and Schmid (1975, 1976) considered Eliashberg
theory with an electron-phonon coupling given by Eqs.
(2.46). They dressed the bare vertex by means of impuri-
ty ladder diagrams as explained in Sec. II. .2.b.2.b and cal-
culated the anomalous self-energy in a conserving ap-

The result was the linearized Eliashberg (1960 equations
in standard form with all of the disorder dependence in a
generalized Eliashberg function,

4

2
O

0

0
I I I i I i I & I

2 4 6 8 10
T (K)

FIG. 43. Resistance as a function of temperature for a series of
granular Sn films. From Valles and Dynes (1990). The lines are
guides to the eye.

Since t ere is no i u
'

h
' d'ffusion enhancement of the electron-

phonon vertex [see Eq. (2.48)j, this disorder dependence
is weak. Furthermore, it comes from coup ing to pho-
nons with wave number q =—1/l and therefore is mode
dependent. Keck and Schmid evaluated T, (l) for a De-
bye model and found a decrease in the effective coup ing
to longitudinal phonons, which is overcome by an in-

crease from zero) in the coupling to transverse phonons,

found this increase to be consistent with experiments on
In by Bergmann (1969).

The work of Keck and Schmid has often been criti-
cized, both on theoretical and experimental grounds. s
mentione in ec. , md

'
S II many other calculations (incorrect-

1 ~ b
'

d a diffusion-enhanced electron-phonon vertex
(see, e.g., the discussion by Schmid, 1985), whtc ea s o
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an increased coupling to longitudinal phonons. Some of
these theories did not use the Tsuneto-Schmid transfor-
mation to a moving coordinate system, but rather con-
sidered the effects of moving impurities in a stationary
frame of reference. Since many workers considered the
latter method more convincing, this cast doubt on
Schmid's calculation. The resulting argument has been
put to rest by Reizer and Sergeyev (1986). They showed
that a correct calculation with either method yields for
a Ii the result of Keck and Schmid, Eq. (7.1). They also
pointed out, however, that care must be taken in drawing
conclusions about T„which depends on the electron-
phonon coupling at large wave numbers as we11 as small
ones. Criticism from the experimental side arose from
the fact that Eq. (7.1) with Debye phonons gives a low-
frequency asymptotic behavior a F(co~0) ~co, while
most experiments find a linear low-frequency behavior
(Bergmann, 1976). This discrepancy has been discussed
by Belitz (1987b), who showed that the inclusion of pho-
non damping in Eq. (7.1b) qualitatively changes the low-
frequency asymptotics. As a result, e I shows a linear
frequency dependence both at asymptotically low fre-
quencies and at larger frequencies co))c/l with c the
speed of sound. The co law appears at most in an
intermediate-frequency window whose width is disorder
dependent, and which is absent for resistivities smaller
than about 50 pA cm.

Since Keck and Schmid did not consider the Coulomb
repulsion, their theory predicts that T, will always in-
crease with disorder. Belitz (1987a) has argued that for
low- T, materials at sma11 disorder the Keck-Schmid
mechanism (with some modifications due to crossed-
ladder renormalizations, see below) indeed dominates all
T, degradation effects and may well explain the experi-
mentally observed T, enhancement in this regime. This
theory has recently been found to be in very good agree-
ment with new experimental investigations by Miehle
et al. (1992).

Disorder-induced degradation of T, was first con-
sidered by Maekawa and Fukuyama (1981, 1982) and by
Takagi and Kuroda (1982). These authors considered 2-d
systems within a BCS model, where k is a phenomenolog-
ical constant. Their perturbative disorder renormaliza-
tions of the pair propagator and the Coulomb pseudopo-
tential yielded a T, decrease linear in 1/kFl. If the
theory is extrapolated to the regime of small T„it pre-
dicts reentrant behavior, i.e., the ground state is predict-
ed to be an insulator. Reentrance has not been observed
experimentally, but the prediction is clearly outside of
the region of validity of the perturbation theory. The ini-
tial decrease in T, explains the experimentally observed
behavior with reasonable parameters (e.g, Graybeal and
Beasley, 1984). In d =3, the same theory (Fukuyama
et al. , 1984; Maekawa et al. , 1984) yielded a leading
correction to T, which is proportional to 1/(kzl ) . This
result has been criticized by Belitz (1985), who argued
that the correct result is of order 1/kFl and that the ex-
tra factor of 1/kzl is due to the same mistake as was dis-

cussed in connection with Eq. (2.41).
Anderson et al. (1983) considered the local Coulomb

kernel in a strong-coupling theory (Scalapino et al. ,
1966),

K'(iei„)=gK'(q, iso„)=gV(q, iai„)C (q, ice„),
q q

(7.3)

p'=p, [1+(9m./4k~i )1na] (7.4b)

a=(p/p, )', (7.4c)

with p the residual resistivity and p, the characteristic
resistivity scale at the Anderson transition. For systems
sufficiently close to the Anderson transition, p' is
enhanced and T, is suppressed accordingly. Comparison
with the observed T, degradation in A-15 materials
(Rowell and Dynes, 1980) yielded good agreement if p,
was taken in the range 7—31 pQ cm, about a factor of 50
smaller than one would expect. While Anderson et al.
gave some reasons for why p, might be small in A-15's,
Gutfreund et al. (1985; Entin-Wohlman et a/. , 1986) ar-
gued that these materials with resistivities in the 100
pQ cm range cannot possibly be close to an Anderson
transition. They proposed instead that the quasi-one-
dimensional nature of these materials is important. Ac-
cordingly, they assumed a very anisotropic q dependence
of the integrand in Eq. (7.3). This strongly enhances the
increase of p, but the authors concluded that still the
effect by itself was not strong enough to explain the T,
degradation in A-15 s with realistic parameters. Leavens
(1985) then found that an inclusion of the critical retar-
dation effects of Anderson et al. in the normal self-
energy function Z, which these authors had taken equal
to 1+k as in the clean case, actually leads to an increase
of T, close to the Anderson transition. This is contrary
to what is observed in experiment and makes it clear that

where Vis the dynamically screened Coulomb potential,
Eq. (2.45a), and 4 is the density-density Kubo function
for noninteracting electrons, Eq. (2.36) [for a derivation
of Eq. (7.3), see Gutfreund et al. 1985]. The local
Coulomb kernel is a frequency-dependent generalization
of the instantaneous Coulomb potential p in the clean
limit. In the Coulomb pseudopotential p' (Morel and
Anderson, 1962), p appears both in the numerator and in
the denominator, so a mere increase of p would have lit-
tle effect. Anderson et al. noted, however, that for
sufficiently strong disorder K' develops a strong retarda-
tion, with K' at low frequencies much more strongly
enhanced than at high frequencies. They then solved the
linearized gap equation using a two-square well approxi-
mation and obtained for T, a McMillan formula with a
generalized Coulomb pseudopotential of the form

@*=@'/[1+p, 'ln(E~/coD )
—(p' —p)ln(EFr&a)], (7.4a)

where
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there must be other T, -degrading effects.
The work of Wysokinski and Kuzemski (1983) impli-

citly contains both of the effects discussed so far, albeit
for a difFerent model. The retardation and enhancement
of the Coulomb kernel, Eq. (7.3), is implicit in their
efFective Coulomb potential U,~, but was not explicitly
discussed.

Belitz (1987c, 1987d) has constructed a strong-
coupling theory that contains all of the above effects and
two additional ones. First, the theory considers crossed-
ladder renormalizations in addition to the usual impurity
ladders. Secondly, it was found that, besides the usual re-
normalization function Z, an additional normal self-
energy piece is important in disordered systems. This
contribution, which was denoted by Y, is even in frequen-
cy, and in the clean case it is an uninteresting constant,
which simply renormalizes the Fermi energy (Eliashberg,
1960). In the disordered case it refiects the effects of the
Coulomb gap (Altshuler and Aronov, 1979a, 1979b) on
T, and has to be kept. The importance of Y was noted
independently by Browne et al. (1987). After several ap-
proximations, the theory could be cast into the same
structure as Eliashberg theory and was solved by
McMillan's method. The resulting T, formu1a is

eD —1.04(1+1+F')
Tc exp

1 45 X—@*[1+0.62k, /(1+ Y')]
(7.5)

Here X,, Y' (which is related to the self-energy piece 7),
and p* are aH monotonically increasing functions of dis-
order. A, contains the Keck and Schmid effect, and p*
that of Anderson et al. With this result, reasonable fits
to experiments on A-I5's and on rare-earth rhodium
borides have been obtained.

b. Breakdown of mean-field theory

The reason why mean-field theory works so well for su-
perconductivity is the large value of the coherence length

In a disordered system, i.e., one with diffusive quasi-
particle dynamics, the coherence length is g = ( gol )

'

With decreasing mean free path I, g decreases, which ac-
cording to the Ginzburg criterion increases the size of
the region where thermal Auctuations are important. If
superconductivity survives until a region of sufficiently
short g is reached, one would then expect fiuctuations to
play an important role in the suppression of supercon-
ductivity, even in homogeneous systems.

Kapitulnik and Kotliar (1985; Kotliar and Kapitulnik,
1986) have considered these questions in the framework
of a Ginzburg-Landau theory. They concluded that in
the critical region of the Anderson transition g saturates
at a value proportional to (N~b, ) '~, with 5 the super-
conducting gap and a prefactor of order unity. This
gives rise to a sizable Auctuation region and reduces T,
below its mean-field value. Ma and Lee (1985) have ar-
gued that, within mean-field theory, superconductivity
can survive even on the insulating side of the metal-

insulator transition, a rather extreme example of
Anderson's theorem in which localized one-particle
states are paired. Ma et al. (1986) then mapped the
problem onto a quantum spin- —,

' model with a random
field. They found a superconductor-insulator transition
induced by quantum Auctuations. Recently Smith and
Ambegaokar (1992) have argued that coherent back-
scattering events decrease the number of superconduct-
ing electrons to the point where Auctuations become im-
portant. None of these theories considered the disorder
enhancement of the Coulomb repulsion, which from per-
turbation theory is known to be quite strong (see the pre-
vious subsection). Their applicability to real supercon-
ductors is therefore not obvious.

2. Field-theoretic treatments

In this section we use the methods explained in Sec. III
to describe disordered superconductors. Two distinct ap-
proaches wiH be discussed in detail. One is based on a
microscopic derivation of a Landau-Ginzburg theory for
superconductivity in disordered electronic systems. The
net result is a Landau theory for the superconducting or-
der parameter, with coefficients given in terms of correla-
tion functions of a disordered electronic system in the ab-
sence of superconductivity. This result (Maekawa and
Fukuyama, 1982) can be derived using a variety of tech-
niques. To stay within the spirit of this review we shaH
give a field-theoretic derivation due to Kirkpatrick and
Belitz (1992c). The resulting theory can then be used to
study the suppression of the mean-field critical tempera-
ture by disorder. This approach should be expected to be
subject to the usual drawbacks and advantages of any
Landau theory: (1) It will work best in high spatial di-
mensions, but will be applied to d =3 and even to d =2
anyway. (2) The theory should give, at least in d =3, a
qualitatively correct picture of the superconducting tran-
sition and of the physical mechanisms that determine the
disorder dependence of T, .

The other approach we shall discuss in detail is due to
Finkel'stein (1987). It is based on the nonlinear sigma
model given in Sec. III, with K"'&0, so that in the ab-
sence of disorder the system is superconducting at low
temperatures. Again, we shaH discuss how to determine
the disorder dependence of T, using this approach.

We end this subsection with a discussion of how these
two approaches are related to each other and to other
work on T, degradation. We also brieAy discuss other
recent descriptions of disordered superconductors.

a. The Landau-Ginzburg- Wilson functional

The main idea behind this approach is to separate the
superconducting Auctuations in the particle-particle
channel from the disorder-induced charge- and spin-
density Auctuations in the particle-hole channel, which
we discussed in Secs. V and VI. The net result is an
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effective field theory for the superconducting order pa-
rameter. The Gaussian approximation to this field
theory reproduces the mean-field theory of Maekawa and
Fukuyama (1982). In spirit the approach is a generaliza-
tion of early work by Gorkov (1959).

We start with the action for a general disordered, in-
teracting Fermi system as derived in Sec. III.B.1,

So and Sd;, are given by Eqs. (3.43) and(3. 44), respective-
ly, and S,'„'," by Eqs. (3.48b) and (3.48c). In the spin-
singlet Cooper channel, we neglect the wave-number
dependence of the interaction. Then Eq. (3.51b) yields

S;„",=—g g g g y'„„(m)P(k, n) )i]'r (
—k+q, n, +m—)g .( —p+q, nz+—m)g~(p, nz),

o&o'k p q n& n2

(7.7)

where for simplicity we have suppressed the replica in-
dex. For the mean-field solution given here, this index
does not play a role. For a more general treatment that
includes fluctuation effects it can and must be retained.
Further, since we are interested in singlet superconduc-
tivity, we put the spin-triplet Cooper channel interaction
equal to zero. In Eq. (7.7), an attractive Cooper channel
interaction means y') 0. The partition function can then
be written

and consider classical fields Y„(q,m), Y„(q,m), and a
metric

Y Y= g Y„y'„„Y„
n&, n2

(7.10)

y y q F[Y Y] (7.11a)

Then we can write the partition function in terms of a
functional integral over Y,

Z =Zo ( exp( S;„", ) )s0

where

(7.8a) where q = (q, m ) as in Sec. III, and

[ Y(q) 4(q)+ 4(q) Y(q)]F Y, Y=lne
0

(7.11b)

and the average is to be taken with the action So defined
by the second equality in Eq. (7.6),

As in Sec. III, we omit multiplicative constant contribu-
tions to Z. We define the superconducting order parame-
ter by scaling Y with y'.

(7.8c)

The idea is now to decouple S,'„", by means of a
Hubbard-Stratonovich transformation, but to leave the
particle-hole channel in terms of the Grassmann fields.
This is in contrast to Sec. III.B.1.c, where all four-
fermion terms were decoupled and the Grassmann vari-
ables were integrated out.

We define a Grassmann field

q) „(q,m ) =g g (
—k+q, n+m )Q, (k, n )

&„(q)=gy'„(q)Y(q) .

Then we have

Z= fD[b„h,]e

with a Landau-Ginzburg-Wilson action

Stow[6 5]=g g 6 (q)(y ) (q)k (q)
q n&n2

F[h, b, ), —

which can be expanded in powers of 5,
I

(7.12)

(7.13a)

(7.13b)

S„ow[b„b]=gg g b,„(q,m)[(y')„'„(m) ETC„„(q,m)]—6„(q,m )+O(b, 6 ) .
q m nln2

(7.14)

Here C denotes the pair propagator,

C„„(q,m )=g (g&( —k+q, —ni+m ) t&(ik), i)nf&( , pn)g2t( —p+q, —
n2+m ) )&

k, p

(7.15)

We see that the coefficients in the expansion (7.14) of
SL&w are given in terms of electronic correlation func-
tions for a reference system that contains the full interac-
tion in the particle-hole channel as well as the full disor-
der. The coefficient for the Gaussian term, Eq. (7.14), is a

four-point correlation function, viz. , the pair propagator.
Coe%cients for higher terms are determined by higher-
order correlation functions. In Secs. V and VI we have
calculated the most general four-point correlation func-
tion for a general interacting system. In particular, we
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know the pair propagator for our reference system, and
we shall now make use of this knowledge for a mean-field
theory of disordered superconductors.

The Landau theory of the superconducting phase tran-
sition is given by the identification of SLow[b„b,] with an
effective potential for the superconducting state. The
mean-field transition temperature is given by the ex-
tremum condition

LGw 6 LGw

5b,„(q) (7.16)

(7.17)

which is an explicit equation for T, . The superconduct-
ing instability occurs first for q=m =0. We assume that
y' has the form

y'. . (m =0)= I&"'le(X—n, )e(X—n2) . (7.18)

Here E"'=E'' '&0 is the spin-singlet Cooper channel
interaction amplitude from Eq. (3.92h), and

X =coD/2m T, with coi, a frequency cutoff on the order of
the Debye frequency. With this ansatz the integral equa-
tion (7.17) is separable, and we get for the T, equation

1/~IC"'~ =~T g' C„„(q=O,m =0),
n&n2

(7.19)

where the prime on the summation symbol indicates the
~D cutoff

Notice that the pair propagator C, Eq. (7.15), contains
all interactions except for the BCS interaction in the
particle-particle channel, Eq. (7.18). Equation (7.19) can
be derived by a variety of methods (Maekawa and
Fukuyama, 1982). The advantage of the above derivation
(Kirkpatrick and Belitz, 1992c) is that it leads to an
order-parameter field theory, so that it is obvious, in
principle, how to go beyond mean-field theory. We shall
discuss some aspects of superconducting fluctuations in
the following subsections. Within mean-field theory the
remaining problem is to calculate the pair propagator.
This has been done in perturbation theory by Fukuyama
and co-workers. Here we make use of the RG calcula-
tions of the vertex functions that were presented in Secs.
V and VI.

We first notice that in terms of the Q-matrix formula-
tion of Sec. III we have

C„„(q=0, m =0)= {oq„„(p=0)

Xoq„„(p=O)*),(,)

(7.20)

Assuming that the transition is continuous, Eq. (7.16)
leads to the linearized gap equation

5„(q,m)=m. T g y'„„(m)C„„(q,m)b, „(q,m),

we use the Gaussian approximation for this propagator,
Eq. (3.122c), we recover the usual BCS result (we recall
that H is a DOS, and X"' is a DOS squared times a po-
tential),

T, =coDexp[ —2H /~X"'~ ] . (7.21)

Z in(~D /T, )

h 1+( 5k"' 2/h)l (neo D/T)
(7.22a)

or

—2h
+c QpD exp

Z~K"'~ —5k"' (7.22b)

A crude way to take into account that h, 6k"', and Z are
all scale dependent and therefore temperature or frequen-
cy dependent is to write the T, equation in implicit form
(Kirkpatrick and Belitz, 1992c),

1=I deny, (co)/2', (7.23a)

where

y, (co)= [Z(co) ~E"'~ —5k"'(co)]/h(co) . (7.23b)

The scale dependence of y, can be obtained from the
flow equations derived in Secs. V and VI for various
universality classes. Before we do so, let us discuss the
physical content of the above result. For this purpose,
the oversimplified version (7.22b) of the T, equation is
most convenient. Let us start out with the BCS result,
Eq. (7.21), which we write as

If we go beyond the Gaussian approximation, then the
disorder generates a nonzero Cooper channel coupling
constant 6k"', even though the bare E"' vanishes.
Equations (5.33) and (6.4) show that at one-loop order
6k"' is positive, i.e., repulsive, and frequency depen-
dent. In principle this means that the inversion problem
discussed below Eq. (5.40) must be solved. This has not
been done in the existing literature, where the "mean-
field" approximation has been defined to include ignoring
the inversion problem. While this puts the results at
odds with perturbation theory, one can say in defense of
this approximation that (1) in 3-d systems the frequency-
dependent terms in 6k"' are subleading compared to the
leading BCS logarithms, and (2) in 2-d systems, where the
frequency dependence of 6k"' is logarithmic itself, the
theory is somewhat doubtful anyway, and there are other
problems that have not been addressed, which we shall
come back to. Ignoring the inversion problem, the only
frequency dependence is the explicit one in the propaga-
tors, which upon summation gives rise to factors of
in(cubi, /T ). In addition to the renormalization of the cou-
pli.ng constants, there is also a field renormalization func-
tion Z multiplying the propagator; see Eq. (6.6). Then
the T, equation reads

where the q propagator has to be taken for a system with
vanishing bare Cooper channel interaction, K"'=0. If

T, =coDexp
X+U

(7.24)
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with U )0 an attractive effective potential. One effect of
disorder that one would expect is a renormalization of
the DOS factors in the exponential (Valles et al. , 1989).
A priori, without a detailed analysis of the pair propaga-
tor, it is not clear which clean limit the factors of X~ ac-
tually represent. Equation (7.22b) shows that the factor
X+ in the denominator represents a single-particle DOS
squared, since Z'~ renormalizes that quantity [see, for
example, Eq. (6.6)]. On the other hand, the factor of X~
in the numerator represents the quantity H, which has
been interpreted as a quasiparticle DOS in a generalized
Fermi-liquid picture (Castellani, Kotliar, and Lee, 1987);
see Sec. III.B.3.d. In addition to these two different DOS
effects there is 5k"', which is a repulsive interaction in
the Cooper channel and can be interpreted as a disorder-
induced enhancement of the Coulomb pseudopotential
(the clean-limit Coulomb pseudopotential is included in
U).

At this point we can also compare the result, Eqs.
(7.22) and (7.23), with the theories discussed in the
preceding subsection. The work of Fukuyama et al.
treated all three effects mentioned above in perturbation
theory with respect to both disorder and the interaction
strength. Anderson et al. stressed the importance of re-
tardation for an enhancement of the Coulomb pseudopo-
tential. This can also be seen from Eq. (7.23b): 5k"'
vanishes at high frequencies and increases monotonically
with decreasing ~. In the generalized McMillan formula
(7.5), the quantity Y' was related to the single-particle
DOS, while no term related to H appeared. This is due
to an approximation made by Belitz (1987c, 1987d),
which amounts to neglecting certain vertex corrections.
As a result, that theory could not distinguish between H
and the single-particle DOS. Finally, the enhancement of
A, discussed by Keck and Schmid is obviously not con-
tained in the present model, which considers K"' a phe-
nomenological constant. An important point to note,
however, is that the RG analysis allows one to conclude
that within this model the three quantities h, Z, and
5k"' contain the complete disorder dependence of T, .

One can now determine y'(co) and calculate T„Eqs.
(7.23), by using the results of Secs. V and VI. Kirkpa-
trick and Belitz (1992c) have reported explicit results for
the case of strong spin-orbit scattering, Sec. V.A.3. With
Eqs. (7.23b), (5.33b), (5.36a), (5.38a), and (5.38b) the RCz
How equation for y, is (with /, ~—2/E and k, = —h,
since we consider the long-range case)

perturbation theory of Sec. V.A.3, but always in some
combination that vanishes as f„(p)~~ (see the discus-
sion at the beginning of Sec. V.A.3.a). The net result is
that the How equations for y„g„andh are the same with
or without a bare repulsive K,". Note also that the
f„(p)~~ limit discussed in Sec. V.A.3 cannot be taken
if K,"(0, and the final results given by Eqs. (5.38) are
not valid in this case.

Below Eq. (7.21) we have stressed that the approach
described here is rather suspect in d =2. If one applies it
to the 2-d case anyway, the 1/s in the first term on the
right-hand side of Eq. (7.25) gets replaced by lnb for
b ~ oo. For arbitrary b, a careful evaluation of Eq. (5.5a)
gives

d'Yc f (b) 1 'Ye

gp —g 1,d=2
db 2 ' 4 2

(7.26a)

where

ln(xDb )f(b)=, +
1+(xDb) 1+(xr b)

(7.26b)

co/coo=H/b h(b), (7.27)

with the flow equation for h given by Eq. (5.38b).
coo=co(b =1) is the initial frequency scale, which is on
the order of coD. Figures 44 and 45 show results for d = 3

and d =2, respectively, in comparison with experimental
data. These results will be discussed in Sec. VII.C. Simi-

p (p,Q cm)

50 100
I I I I

]
I I I I

I
I I I

20—

10—

Here xD =~&/q with Irz the screening wave number and

qo the initial wave-number scale, which is on the order of
the Debye wave number. The RG length scale b is relat-
ed to the frequency (or temperature) by (see Sec. IV)

db
1 1 'Vc

2c ' 4, 2
g'Vc (7.25)

and the Qow equations for g and h are still given by Eqs.
(5.38a) and (5.38b). It is a nontrivial result that Eq. (7.25)
is identical to Eq. (5.38c) with y, ~—y, and that the
Row equations for g and h do not depend on whether or
not a bare repulsive K"' is present. To understand this,
we note that k, , does not appear in Eqs. (5.36a) —(5.36d).
This interaction amplitude actually does appear in the

0
0 100 200 300

p (pQ cm)

400

FIG. 44. Fit of Eqs. (7.23), (7.25), and (7.27) (solid curves) to ex-
perimental results of Rowell and Dynes (1980): +, on Nb3Ge;
0, on Nb3Sn; 0, on LuRh4B4. From Kirkpatrick and Belitz
{1992c).
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the last subsection because it addresses the inversion
problem mentioned below Eq. (7.21), which was just ig-
nored in deriving, say, Eq. (7.23). Finkel'stein's basic
idea is as follows. At the superconductor-to-normal met-
al phase transition the Cooper propagator I, that was
defined in Sec. V.3.b should be singular at zero momen-
tum and T=T, . Assuming that it is meaningful to
derive a RG liow equation for I', = —I, (remember
K"I(0), Finkel'stein has used the approximations de-
scribed below Eq. (5.42a) to obtain

dI,
b =I,—g/4 . (7.29)

1

R (kQ)

FIG. 45. Fit of Eqs. (7.23), (7.26), and (7.27) (solid curves) to ex-
perimental results on films of MoCxe (Graybeal and Beasley,
1984; Cxraybeal, 1985) and Pb (Valles et al. , 1989). From Kirk-
patrick and Belitz (1992c).

lar results can be obtained for the generic universality
class G using Eq. (7.23b) and the results of Sec. VI.

6. The nonlinear-sigma-model approach

Finkel'stein (1987) has used the nonlinear sigma model
derived in Sec. III to compute the T, degradation due to
disorder in 2-d systems with strong spin-orbit scattering.
This theory has some significant advantages for describ-
ing experiments on thin-film superconductors over the
theory discussed in the previous subsection. However,
there still are two fundamental problems with the
description of thin-film superconductors which this
theory does not address either. First, in 2-d systems the
superconductor-to-normal metal transition is of
Kosterlitz-Thouless type. Inherent in Finkel'stein's ap-
proach, as well as in that of Kirkpatrick and Belitz, is the
assumption that the transition is BCS like. Second, in
the expansion about mean-field theory one encounters the
fluctuation propagator,

P„„(q,m ) = [(y') '(m) ETC(q, m )]„'„.(—7.28)

By definition of the mean-field transition temperature T„
P turns into a massless diffusion propagator (at small q
and 0 ) at T=T, . In d (2 this singularity leads to
divergent contributions to the T, degradation in first or-
der in the disorder (Schmid, 1970; Strongin et al. , 1970;
Ovchinnikov, 1973; Eckern and Pelzer, 1988). Singular
contributions to T, in d ~ 2 are actually expected from
general phase-transition theory (see, for example, Le Bel-
lac, 1991). In the absence of a solution of this problem,
any T,-degradation calculation is ill defined.

While Finkel'stein's approach does not address these
difhculties, it has an advantage over the one discussed in

The transition temperature is then given by the condition
I', (b, )= oo, with Eq. (7.27) relating T, and b, . For 2-d
systems it is possible to argue that it takes little disorder
to suppress T, to zero and that g in Eq. (7.29) can be re-
garded as a constant. Finkel'stein (1987) compared his
results with the T, data on MoGe films obtained by
Graybeal and Beasley (1984). The fit is of the same quali-
ty as that shown in Fig. 45.

An interesting question is the relationship between
Finkel'stein's theory and the mean-field theory discussed
in the previous subsection. The latter suggests the ex-
istence of three distinct physical mechanisms that lead to
T, degradation: suppression of the single-particle DOS,
change in the quasiparticle DOS, and increase of the
Coulomb pseudopotential. An examination of Eq. (7.29)
and the details of its derivation shows that Finkel'stein's
theory does not contain either DOS effect. While
Finkel'stein's approximations are consistent with simply
neglecting the quasiparticle-DOS effects, the single-
particle DOS effects are a more complicated matter.

In a leading-log expansion of the T, degradation in
d =2, the terms that lead to the log-squared anomaly in
the DOS lead to a log-cubed contribution to the T, de-
gradation (Maekawa et al. , 1984). Terms of this order
are also generated by the renormalization of the
Coulomb pseudopotential and by contributions propor-
tional to the Auctuation propagator. If we ignore the
problems mentioned below Eqs. (7.28), the total leading
perturbative result can be written in the form

ln(T, /T, )= —R~A [ln(TO/T, )] +0{[in(TO/T, )] ] .

(7.30)

Here P~ =R~e /12m. A is the dimensionless sheet resis-
tance, and To is a microscopic temperature scale. For
systems with spin-orbit scattering, the first two contribu-
tions to the prefactor 2 mentioned above are 2'"=2
(Coulomb pseudopotential) and A ' '=1 (DOS; Maekawa
and Fukuyama, 1982; Maekawa et al. , 1984; Finkel'stein,
1988). The last contribution has not been reported sepa-
rately. The calculation yields A ' '= —2. The net result
is thus A =1, and this is reproduced by Eq. (7.29). It is
not clear what, if any, general conclusions can be drawn
from the fact that there is a partial cancellation between
the various contributions to A. Finkel'stein has claimed
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FIG. 46. T, and tunneling DOS for Sn and Pb films as func-
tions of sheet resistance R&. After Valles et al. {1989).

c. Other approaches

A completely difFerent approach has been pursued by
Oppermann (1985, 1986, 1987a, 1987b, 1987c, 1988a,
1988b, 1988c; a summary has been given by Oppermann,
1990), who neglects all interactions except for the attrac-

that the DOS effects are canceled by other terms and do
not contribute to the T, degradation. However, the issue
is still controversial. Since in 2-d perturbation theory the
various terms all have the same form, one could as well
argue, on a perturbative level, that the net result 3 =1
reAects only the DOS term. There are also DOS contri-
butions that are subleading in d =2 (i.e., they do not con-
tribute to the leading ln term) and that do not get can-
celed by any other terms. A common misinterpretation
of the published results is that there is a total cancella-
tion of all DOS contributions to the T, degradation.
This is not correct. Finally, one has to keep in mind that
terms that are equal and opposite in perturbation theory
can behave very differently under renormalization.

Given the qualitative and mutually contradicting
theoretical results, detailed comparisons with experiment
have to be viewed with reservations. Moreover, since
both approaches achieve equally good fits to experimen-
tal results, one cannot simply settle the controversy about
the presence of the DOS terms by reference to experi-
ment. Still, there is at least qualitative experimental sup-
port for DOS effects to play a role in the T, -degradation
problem, as a clear correlation has been observed be-
tween the suppression of the single-particle DOS and that
of T, in Pb and Sn films (Valles et al. , 1990; see Fig. 46).

tive ones in the Cooper channel. In the absence of Auc-
tuations one can then derive a nonlinear sigma model
which describes localization of quasiparticles without
affecting the superconducting order (Oppermann, 1987b).
This is in agreement with the observation by Ma and Lee
(1985). However, Oppermann (1986) realized that situa-
tions are possible in which the average order parameter
vanishes, ( b, ) =0, while the order-parameter fiuctuations
are nonzero, ( 6 )%0, and that this gives rise to gapless
superconductivity. He calls such phases superconducting
glass phases. He made a symmetry analysis of models
displaying such phases (Oppermann, 1987a) and found
that, depending on how the symmetry of the underlying
field theory is broken, one can obtain superconducting
glasses that are analogous to Ising or x-y spin glasses
(Oppermann, 1987c, 1988a). The density of states and
the specific heat of the superconducting glass phases have
also been worked out (Oppermann, 1988b, 1988c). A
different and more phenomenological discussion of super-
conducting glass phases has been given by Fisher, Fisher,
and Huse (1991).

Ramakrishnan (1989) and Kravtsov and Oppermann
(1991) have argued that fiuctuations of the order-
parameter phase can be important even in inhomogene-
ously disordered systems. It is currently not known how
the disorder enhancement of the repulsive interaction
discussed in the last subsection will modify these effects
and vice versa.

C. Experiments

As we mentioned earlier, there is a large body of exper-
imental literature on disordered superconductors, but
there are not many systematic studies of the region where
superconductivity disappears. In this subsection we dis-
cuss experiments which clearly show T, going to zero as
a function of disorder. As in Sec. VII.B above, we ex-
clude from our discussion granular systems and studies
whose main objective was to investigate the Kosterlitz-
Thouless or related transitions in thin films.

1. Bulk systems

Figure 44 shows theoretical results of the previous sub-
section together with experimental data on Nb3Ge,
Nb3Sn, and LuRh4B4. The relation between the RG pa-
rameter go=g(b =1) and the resistivity p has been taken
to be p=p go/g„where g, =8, and p* is a resistivity
scale on the order of the Mott number. The parameters
are then y, =y, (b= 1), T, =T,(p=0), and p*. Good
agreement is obtained with reasonable parameters. Note
that the curvature of the curves changes sign as a func-
tion of y, and that this curvature change is necessary to
explain the experimental results.

We next discuss some experiments on bulk homogene-
ous systems that the theory of Sec. VII.B.2 cannot ex-
plain. Nishida et al. (1984; Furubayashi et al. , 1985),
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FIG. 47. Conductivity and superconducting T, of Au„Si& „as
functions of Au concentration. The lines are guides to the eye.
From Furubayashi et al. (1985).

after having found superconductivity in amorphous
Si, Au prepared by electron-beam evaporation, stud-
ied both T, and the extrapolated residual conductivity o.

o
as a function of Au concentration x. The material shows
superconductivity in the range 0. 18~x ~0.40 and a
metal-insulator transition at x=0. 14. In the region of
small oo and small T„both quantities show a linear
dependence on x within the experimental uncertainties;
see Fig. 47. Similar observations have been made on
amorphous Nb„Si, „(Bishop et al. , 1985). The metal-
insulator transition is at x =0.12, and T, vanishes close
to x =0.18 (Fig. 48). Despite the fundamental difference
that Nb is a superconductor while Au is not, the virtually
identical behavior of these two systems close to the
metal-insulator transition makes it seem likely that the
basic physics in this region is the same for both materials.
In both systems superconductivity disappears only very
close to the metal-insulator transition, with o.o on the or-
der of 100 (0 cm) '. This is in contrast to the behavior
of the A-15 and rare-earth rhodium boride materials
mentioned earlier, for which an extrapolation of T,
reaches zero at substantially higher values of o.o,

' see Fig.
44. It is also inconsistent with the theory of Sec. VII.B.2,
which predicts that T, will vanish far from the metal-
insulator transition. The example of SiAu makes it clear
that this discrepancy must be due to a very effective T, -

increasing mechanism which is not understood. Jisrawi
et al. (1987), who have prepared superconducting AuSi
samples by an ion implantation technique, have suggest-
ed that the amorphous AuSi may be similar to the super-
conducting high-pressure phases of Si, where supercon-
ductivity is believed to be due to a soft phonon mode
(Chang et a/. , 1985).

Similar results have been obtained in Al Ge,
(Lesueur et al. , 1988) and in Mo„Ge, „(Carter, 1983).
Again, in both systems T, vanishes very close to the
metal-insulator transition, and T, varies linearly with o.

o
within the experimental error bars. Lesueur et al. (1988)
have discussed evidence that electron-electron interac-
tions together with disorder are important for the de-
struction of superconductivity. Specifically, they have
observed a correlation between the Coulomb gap in the

400

300
—150

6 200
—100

(

100
—50

0
15

%Nb
12

FICx. 48. Conductivity and superconducting T, of Nb Si& as
functions of Nb concentration. The lines are guides to the eye.
From Bishop et al. (1985).

single-particle DOS and T, . While the theory discussed
in Sec. VII.B.2 above qualitatively accounts for such a
correlation [see Eqs. (7.22) and the following discussion],
it can explain neither why superconductivity persists so
close to the metal-insulator transition, nor the linear
dependence of T, on cro. The reason is presumably that,
as in the Si-based materials, there is a strong T, -

enhancing mechanism, whose description requires a mi-

croscopic theory of the pairing mechanism. There has
been some debate about whether the pairing, at least in

A1Ge, is perhaps not due to electron-phonon coupling
(Bernas and Nedellec, 1981).

2. Thin films

Preparing ultrathin, homogeneous superconducting
fihns is difficult. This task was first accomplished by
Strongin et al. (1970), who found that with underlayers
of Ge, SiO, or A1203 they could obtain continuous films

0

of Pb, Sn, and Bi, which were as thin as 10 A. With de-

creasing film thickness, or increasing sheet resistance,
they found a monotonically decreasing T, (see Fig. 49).
The actual experiment is done by starting with the thin-
nest film, measuring its properties in situ, and then de-

positing more and more material. The same technique
has been used by Dynes et al. (1986) to produce Pb films

as thin as 3 A with a sheet resistance of 3.5 kQ. Valles
et al. (1989) have also prepared Sn films in this way and
have found results for T, that are very similar to those on
Pb. The Pb data are shown in Fig. 45 together with
theoretical results by Kirkpatrick and Belitz (1992c). A
nominally identical system has been investigated by
Haviland et al. (1989). The relation between R and
nominal film thickness is different in the two experi-
ments, and so is the relation between T, and R, with

the sample of Haviland et al. showing a higher T, at a
given Rz. In addition, the sample of Haviland et ah.

shows much more curvature in T, vs R at R ~2 kQ
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tunately, no direct efforts seem to have been made to
determine the degree to which the films are homogene-
ous.

Homogeneous films of amorphous MoGe have been
studied by Graybeal et al. (1984), Graybeal and Beasley
(1984), and Graybeal (1985). Their thinnest supercon-
ducting sample had a nominal film thickness of 12 A and
a Rz of 1.96 kA. Three thinner samples with higher Rz
did not show superconductivity down to 30 mK. The
data from Graybeal (1985) are shown in Fig. 45 together
with theoretical results. It is somewhat surprising to see
the good agreement between this experiment and the
theory of Sec. VII.B.2, since the theory cannot explain
the experiments on bulk Ge-based materials discussed
above. Results that are very similar to those on MoGe
films have been obtained by Lee and Ketterson (1990) on
MoC films.

FIG. 49. T, as a function of resistance for Pb films. e, Q, Pb
onGe;+, PbonA1203;'7, , o, , , E, ~, ~, PbonSi02;
a11 deposited at helium temperature; f, Q, Pb on Ge. After
Strongin et al. (1970).

than the experiment of Valles et al. The latter group ob-
served a pronounced kink in the curve at R~=250 0,
which they attribute to a structural phase transition. For
higher Rz, both Pb and Sn show little curvature. It is
not known exactly what the reason for these differences
is. However, it is interesting to note that the scatter in

T, in the data of Dynes et al. and Valles et a/. is due to
differential sample runs' being plotted in the same figure
(see also Fig. 49). For each separate run a smooth curve
was obtained (Valles, 1992). Since in granular films T,
hardly decreases at all (see Fig. 43), one can speculate
that the materials properties vary slightly from sample to
sample, and more drastically so with overall deposition
conditions. This could produce samples with varying de-
grees of homogeneity, with those showing the lowest T,
for a given Rz being the most homogeneous. Unfor-

VII I. DISORDER-INDUCED UNCONVENTIONAL
SUPERCONDUCTIVITY

In Sec. VI we saw that the renormalization group gen-
erates an interaction K'" in the particle-particle spin-
triplet channel, even if there is none in the bare theory.
It was noted by Kirkpatrick and Belitz (1991) that this
can lead to an unusual form of superconductivity. Some
characteristic features of this kind of superconductivity
have been calculated by Belitz and Kirkpatrick (1992).
In this section we briefly discuss this suggestion in the
general context of the preceding exposition. Details can
be found in the two papers cited above.

A. A mechanism for even-parity spin-triplet
superconductivity

Let us consider the particle-particle spin-triplet in-
teraction amplitude we found at one-loop order, Eq. (6.5),
and also the corresponding renormalization of the
particle-particle spin-singlet amplitude, Eqs. (6.4). It is
useful to rewrite these results in the following form:

~c (t), (1-loop) 5~ c ( t) 5~ c ( t)
ning n3n4 t S

K ( ), (1-c1 sP) oKoc(s) [3K(t)~t ( ) K(s)~s ( )]+3gKc(t) gKc(t)6
71)n2n3n4 8 n, —n, p n3 n2 t s

P

where

M "=——f [K("bZ)'„„(p)+G
~
II„—Q„~(K(")'2)i„„((p)&„„(p)],c(, t)

f [K"~' —.(p)+G~n. —~I. ~(K")'ni. —.((p)X. —.(p)]c(t)

p

(8.1b)

(8.1c)

(8.1d)

In Eqs. (8.1) we have omitted the frequency indices on
5K,""and 5Kt'". We note the following features of Eqs.
(8.1).

(1) K"'""'p' has an UV-divergent, positive (i.e.,
repulsive) contribution, which is lacking in K'"' ' " '.

(2) K"'""' has UV-finite, negative (i.e., attractive;
we shall see explicitly below that 5K,'" and 5Kt'" are
positive semidefinite) contributions from both K" and
~(t)

(3) K"" "'p' has the same attractive contribution
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from E"as E"'""'"', while the one from E'" is repul-
sive.

These features can be physically understood as follows.
(a) The UV-divergent terms in the singlet channel [cf.

Eq. (6.4b)] represent the well-known disorder enhance-
ment of the bare Coulomb repulsion, i.e., the Schmid-
Altshuler-Aronov mechanism discussed in Sec. II.B. No-
tice that these terms are linear in the interaction ampli-
tudes E" and E'" and are therefore easily obtained in
diagrammatic theory. In the triplet channel there is no
bare repulsion, hence there is nothing to be enhanced,
and these contributions are absent. This explains point
(1) above.

(b) To understand the remaining two points, let us first
consider the effect of E'". By means of E'", spin Auctua-
tions are created in a Fermi liquid, i.e., an electron spin
polarizes its environment. This polarization is ferromag-
netic. Suppose an electron has created a spin-
polarization cloud and then moves away. In a clean sys-
tem the polarization cloud at a given point in space will
decay exponentially with time. The polarization cloud
therefore essentially moves with the electron that creates
it, giving rise to the Fermi-liquid renormalization of y,
which we discussed in Sec. III.B.3.d. In a disordered sys-
tem, a spin-density fluctuation 6n, will decay algebraical-
ly, like 5n, (t)-t ",because of the long-time tail effect
discussed in Sec. II.A. 1.d. The polarization cloud will
therefore persist even after the electron that created it
has diffused away. A second electron moving into the re-
gion at a later time will still see the remains of the polar-
ization cloud. It will get attracted to it if the two elec-
trons form a spin triplet, and it will be repelled if they
form a spin singlet. We therefore expect an attractive
contribution of E'" to E"'""'"' and a repulsive one toX""'"~', in accord with Eqs. (8.1). Note that these
effects are most pronounced if spin fluctuations decay
slower than number-density Quctuations, because a time-
scale separation then exists between spin and mass trans-
port. As discussed in Sec. VI, this situation is realized in
the generic universality class.

(c) Now consider IC", by means of which an electron
charge polarizes its environment. Again, while in a clean
system this leads only to the appearance of the Fermi-
liquid parameter I 0, in a disordered system the resulting
(positive) charge-polarization cloud will decay like
5n, (t)-t ~ . A second electron will get attracted to
this region regardless of its spin. This explains the at-
tractive contribution of E" to both E"'""'"' andK"""' ' in Eqs. (8.1).

Equations (8.1) and their interpretation above show
that the net interaction in the particle-particle spin-
triplet channel in a disordered system will necessarily be
attractive. This raises the prospect of spin-triplet super-
conductivity. Before we discuss this possibility in greater
detail, a few remarks are in order to put this idea in the
appropriate context.

Triplet superconductivity (or superfluidity) is usually
discussed by means of a static, odd-parity interaction.

This is the case, for instance, in superAuid He (e.g.,
Vollhardt and Wolfle, 1990) and in the Balian-
Werthamer theory of triplet superconductivity (Balian
and Werthamer, 1963). The effective triplet particle-
particle interaction then has the antisymmetry property,
Eq. (3.53), mandated by the Pauli principle. In the
present case, the pairing potential has even parity, and
therefore necessarily is frequency dependent. In particu-
lar, it must vanish at zero frequency. Inspection of
5','I", Eqs. (S.lc) and (S.ld), shows that they go indeed
as n'" ', where n is some frequency label. Notice that
Q~" is just the Laplace transform of the p

" long-
time tail. However, E"'""'"' and E"'""' ' as given
by Eqs. (8.1) are not symmetric and antisymmetric, re-
spectively, under interchange of n

&
and n 2 or n 3 and n4.

This does not constitute a violation of the Pauli principle,
since Eqs. (8.1) have been derived as couplings in the
theory in terms of the matrices q, Eqs. (3.117a) and
(3.117b), which carry a restricted frequency range. Be-
fore we can use Eqs. (8.1) in the Q formulation of the
theory, we therefore have to (anti)symmetrize them.

In the interpretation given above, disorder plays a cru-
cial role in that it leads to the long-time tails which are
essential for the pairing mechanism. Indeed, the strength
of the pairing potential increases with increasing disor-
der, at least for small disorder in which the one-loop ap-
proximation is valid. This is again in sharp contrast to a
Balian-Werthamer state, which is degraded by nonmag-
netic disorder as effectively as a BCS state is by magnetic
impurities.

It has been suggested by Beni-Monod et al. (1984;
Beal-Monod, 1985) that the latter conclusion can be
avoided in nearly ferromagnetic systems. These authors
argued that strong paramagnons not only increase the
triplet pairing potential, but also weaken the pair break-
ing by impurities. For systems with strong antiferromag
netic correlations, Abrahams et al. (1993; see also Balat-
sky and Abrahams, 1992) have proposed spin singlet-
pairing that is odd in both frequency and wave number.
Competition between magnetic and superconducting
phases has also been studied in the context of a disor-
dered Hubbard model (Zimanyi and Abrahams, 1990).
As we mentioned in Sec. III.B.2, this kind of interplay
between magnetism and superconductivity has so far not
been considered within the field-theoretic models dis-
cussed in this review.

A pairing potential for triplet superconductivity that is
odd in frequency and even in momentum was first pro-
posed by Berezinskii (1974) in the context of He. He
noted that, due to the frequency dependence of the po-
tential, extra powers of frequency or temperature appear
in the BCS T, equation [consider Eq. (7.23a) with

y, (co~0)~0]. This leads to two effects. First, the in-
teraction strength must exceed a threshold value in order
for a superconducting instability to occur. Second, the
system will in general reenter the normal state at very
low temperatures, and the ground state will be normal.
The same is true for the present mechanism in d =3.
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However, due to the dimensionality dependence of the
long-time tail exponent, the situation is qualitatively
different in d =2. There the polarization clouds decay
only like I /t, and in frequency space the potential is ex-
pected to be constant even at zero frequency or tempera-
ture. This is a manifestation of the strong fl.uctuations
present in a 2-d system at low temperature. At the very
least this means that in this regime strong triplet super-
conducting Auctuations will compete with the insulating
tendencies discussed in Secs. V and VI, and with the spin
instability discussed in Sec. VI. As was already men-
tioned in Sec. VI.A.2.c, the actual nature of the ground
state of a 2-d disordered interacting electron system con-
stitutes at present an open problem. However, the
preasymptotic behavior can be worked out. This will be
done in what follows in the mean-field approximation.
We shall return to the 2-d ground-state problem in Sec.
X.

(8.4b)

b,„=h„— g F„+(k),
2mÃF w

(8.&)

one finally obtains the gap equation on the imaginary
axis,

T ~ ~(t) (8.6a)

Here the kernel X'" is defined by

with F„+,G„given by Eqs. (3.107), (3.101c), and (3.102c),
with 6 in the latter equation replaced by 5„.The expli-
cit disorder dependence can be eliminated in exactly the
same way as in BCS-Gorkov theory. If one defines a gap
function 6 by

B. Mean-field theory

(t) ~(4)1
+nm aT —n —i, n;m, —m —1 (8.6b)

We now derive a mean-field theory for spin-triplet su-
perconductors by considering a saddle-point solution of
the general field theory, Eqs. (3.92), with an appropriate
ansatz for the order parameter. The derivation closely
follows that of BCS-Ciorkov theory given in Sec.
III.B.2.b. We shall first derive the gap equation for a
general pairing potential, and then separately discuss the
charge- and spin-fluctuation-induced pairing mechanisms
explained above.

6 (co)= . f dxA'"(co, x)V (x) .
l1T 0

(8.7)

Here b. and 7 are retarded functions, Eq. (2.11a) with
V the Gorkov function,

with K' ' from Eq. (3.92h).
While the imaginary-axis equations (8.6) are sufficient

for many purposes, in general one also needs their analyt-
ic continuation to real frequencies. For suKciently well
behaved kernels A'" this is easily done, ' and the result
at zero temperature is

1. The gap equation

In analogy to Eq. (3.105), we make an ansatz

'„Q~„(x)=5ii2ri[ —5„5„O5;OX+5„5„,5;,6 j,
~( )

1 ~ h(z)
&F i gq+b, (z) —z

(8.8)

(8.2)

with a real anomalous self-energy 6 . As a consequence
of Eq. (3.66d), b, is an odd function of frequency,

In principle one should consider all three spin com-
ponents of iQ and derive coupled equations for them, as
one does in the case of He. However, all of He's in-

teresting features due to the three gap functions stem
from the fact that the latter are momentum dependent.
This is not the case here, and therefore a, say, Balian-
Werthamer state and an Anderson-Brinkman-Morel state
would be expected to differ at most in their spin suscepti-
bility. The ansatz, Eq. (8.2), also neglects more general
contributions to the normal self-energy, which are known
to be of quantitative importance in He.

Equation (8.2) in Eq. (3.93) yields

, g T pre"'„„b,+ gF.„+(k),

(8.4a)

and h(z) the causal gap function for complex frequency
z. A'"(co, x) is obtained from %'„"by the substitution
ice„+co+iO—, ice ~x+iO. V and b, allow for spectral
representations, Eq. (2.10a), and their reactive and dissi-
pative parts, b, ', V', and b,",9", respectively, obey
Kramers-Kronig relations, Eqs. (2.12). Equation (8.3)
implies the symmetry relations

b, (z) = —b, (
—z ), b."(co)=5"(

—co), 6'(co) = —b, '( —co),

(8.9a)

The kernel we are interested in, given by Eqs. (8.1), possesses
branch cuts that make the analytic continuation very subtle.
We obtain Eq. (8.7), but see Ref. 19 of Belitz and Kirkpatrick
(1992) for technical difhculties encountered.

20This is true for physical kernels, and can be spoiled by ap-
proximations. For instance, in BCS theory 9 is causal, but b, is
not. Eliashberg theory restores the causality of A. In the
present case the kernel is determined by causal functions, viz. ,
diffusion poles, and both 2 and 5 are causal.
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V(z) = —V( —z), V"(co)= V"( —co), 7'(~) = —9'( —cg). 2. The charge-fluctuation mechanism

(8.9b)

Since b.„and V„are real, Eqs. (8.9) together with the
spectral representation imply that b, ', b,", V', and V" are
all purely imaginary.

Consider the singlet or charge-Auctuation contribution
5K,'" to IC"'" '"~' in Eq. (8.1a). As mentioned earlier,
we first have to antisymmetrize the interaction ampli-
tude. We define

(8.10)

GH GHF, , iso„+co
16m.

L

(8.11a)

with 5K "from Eq. (8.1d). A "has the proper antisymmetry property and can be used as IC' ' in Eq. (8.4a). We next
do the integrals in Eq. (8.1d) in d =2 for the case of a long-range Coulomb interaction, using Eqs. (3.134), and specialize
the result according to Eq. (8.6b). To leading logarithmic accuracy we obtain

co„co GH
i
co„co(~(t) ) ~.+~~ I7 l~„+~

where

(S.1 lb)

and

x =v2(1+F0 ), (S.1 lc)

with ~2 the screening wave number from Eq. (2.45b). A,'"
is the singlet or charge-fluctuation contribution to the
kernel in the gap equation. Actually, one should use
both the charge and the spin-fluctuation contributions
simultaneously in order to calculate observables. Due to
various physical and technical points, however, the dis-
cussion becomes much more transparent if the two con-
tributions are discussed separately.

The critical temperature for the

charge-fluctuation

mechanism is obtained as the solution of the linearized
version of the imaginary-axis gap equation, Eq. (8.6a).
As in BCS theory we work to leading logarithmic accura-
cy for T, ~O. We find

—G GH2m T, /n
—m/

32m. I7 2m+1 n +m +1

(8.12)

In the limit T, ~0 one can further replace the frequency
sum in Eq. (8.12) by an integral according to
2m Tg o= f o duo . In this limit 5„is independent of
frequency for positive or negative frequencies and has a
discontinuity at zero frequency. The result for T, can be
written as

I

(2.21).
The gap function at zero temperature can be obtained

by solving Eq. (8.7). The technical details can be found
in the papers quoted at the beginning of this section. The
main results are as follows. As in Eliashberg theory,
there are two frequency scales. The upper one is inherent
to the pairing mechanism, analogous to the Debye fre-
quency in Eliashberg theory. In the present case one ex-
pects it to depend both on the screening length and on
disorder. Indeed it is given by

co& =b, (icoz ) . (8.14b)

In the limit T, —+0, the explicit result is

—'j /g
Ci)2 —

CO~ e (8.14c)

with a coupling constant A. =G /4m. The analogous
quantity in Eliashberg theory is the gap b, =b, (co=0).
The gap function can be obtained analytically in the limit
of asymptotically small frequencies,

h(co~0) = i Aco(into) —Ace(m+3i —)1nco+O(co),

(8.15a)

and in the limit of large frequencies,

(8.14a)

as can be seen from Eqs. (S.1 la) and (3.128c). The lower
frequency scale separates high and low frequencies in the
gap function and can be defined from the imaginary-axis
solution by

(I7/kF)
T TF

Ro
4m /ln2

exp (8.13)

h(co~ ao ) =const X 1nco —2 — +O(co ),l 1T ~ —5/2

(8.15b)

Here P~ =R~/(A/e ) =R&/41080 is the dimensionless
resistance per square, and TF is the Fermi temperature.
In writing Eq. (8.13) we have used the fact that, for a 2-d
system, G =4Ro/m, as well as the Einstein relation, Eq.

where co=co/co]. The complete solution can be found
numerically and is shown in Fig. 50 for A, =O. 1. For cou-
pling constants A, larger than a critical value A,,+ =0.2 it
has been shown that Eq. (8.7) does not possess a causal
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X(co), through

X(co) CO

[~2 g2( ) ]1/2
(8.16)

-3

30

The asymptotic behavior is easily obtained from Eqs.
(8.15), and the numerical solution is shown in Fig. 51.
Finally, X(co) determines the low-temperature specific
heat via

C(T)= dcoN(a))co e
1

T2 0
(8.17)

FIG. 50. Real and imaginary parts of the gap function 5 vs fre-
quency co for the charge-fluctuation mechanism. 5 and co are
measured in units of co&*, and the coupling constant has been
chosen as A. =O. 1. From Belitz and Kirkpatrick (1992).

solution. The reason for, and the physical implication of,
this absence of a solution is not clear at present. It is
possible that the e6'ect is an artifact due to the omission
of the feedback of the superconductivity on the pairing
potential. This feedback or self-consistency efFect should
be taken into account whenever one deals with a purely
electronic mechanism for superconductivity, as has been
pointed out by Pao and Bickers (1992).

The gap function determines the tunneling DOS,

N(co)

which is also shown in Fig. 51.

3. The spin-fluctuation mechanism

Now we turn to the spin-fluctuation contribution
5K,"' to K'""' "'~' in Eq. (8.1a). It has to be antisym-
metrized according to Eq. (8.10), and performing the in-
tegrals yields

(8.18a)

where

F,(x)= 0 [(x —1)ln(1+y, ) —y, xlnx ],1

x(1+y, ) —1

(8.18b)

with y, =K'"/H. The appearance of the triplet interac-
tion amplitude y, in the kernel raises both problems and
interesting prospects having to do with renormalization.
In general one would expect the renormalized coupling
constants to enter the kernel. In the case of y, we know
from Sec. VI that it grows under renormalization, al-
though the precise behavior at large scales in d =2 is not
known. We therefore replace y, in Eq. (8.18b) by y, and
consider the limit y, ~ Do. The linearized imaginary-axis
gap equation, Eqs. (8.6), then reads

0 10
I

15
10 (0

20

with

Jo ~m n +m+1
ln

16 0 2m+1 n —m
(8.19a)

(8.19b)

5—
o

3—

'0
104 T

FICx. 51. Tunneling density of states N vs frequency m, and
specific heat C vs temperature T, for the gap function shown in
Fig. 50. N is measured in units of N+, C in units of %+co&, and co

and T in units of cu& . From Belitz and Kirkpatrick (1992).

—2
T, = Toexp (1—yo/y, )

3'p
(8.20)

where To is the initial, microscopic temperature scale,
which one expects to be on the order of the Fermi tem-

In the same spirit, yo in Eqs. (8.19) should be replaced by
its scale-dependent counterpart, y( T). y( T) is deter-
mined by the Qow equations (6.52) or (6.53a), depending
on the value of y, . For su%.ciently large values of y„Eq.
(6.53a) is appropriate, and one fin'ds for the critical tem-
perature
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perature, and y, =64/m . Comparison of Eqs. (8.20) and
(8.13) shows that the spin-fluctuation mechanism allows,
in principle, for substantially higher values of T, than the
charge-fluctuation mechanism. We shall come back to
this in the following subsection.

The gap function at zero temperature, the tunneling
DOS, and the low-temperature specific heat for the spin-
ft.uctuation mechanism have also been calculated in exact
analogy to Sec. VIII.B.2 above. The results were found
to be very similar to those for the charge-fIuctuation
mechanism shown in Figs. 50 and 51. Only the scales
and some details of the asymptotic behavior are different.

C. Is this mechanism realized in nature?

ly, normal self-energy effects have been neglected so far.
The latter are known to be of great quantitative impor-
tance in the case of superfluidity in He (Levin and Valls,
1978). In fact, the omission of these effects was one of
the reasons why early estimates of T, in He were much
too high. With all these caveats in mind, one can try to
estimate T, values from Eq. (8.13) if one is careful not to
allow too large a value for R~. A suitable system seems
to be the inversion layer in a Si MOSFET (Ando et al. ,
1982), because it is truly two dimensional, the relevant
parameters are well known, and R~ can be changed con-
tinuously by simply changing the gate voltage. Belitz
and Kirkpatrick (1992) have estimated T, for this system
to lie in the range 15—640 pK.

Even-parity spin-triplet superconductivity has so far
not been experimentally observed. On the other hand,
the mechanism discussed above is so general that one
would expect it to be realized in some systems. Let us
briefIy discuss the most uncertain points in the predic-
tion, in which systems one might want to look for this
kind of superconductivity, and what values of T, one
might expect.

Of the two mechanisms discussed, the spin-fIuctuation
mechanism is expected to lead to a much higher T, than
the charge-Auctuation mechanism. The physical reason
for this was explained in point (b) below Eq. (8.1d).
Technically, the higher T, is due to the fact that y or y,
is expected to increase as the temperature decreases.
Taking this effect into account has led to an uncertainty
in our theoretical discussion of T, . We note that, in prin-
ciple, G and H occurring in the charge-fluctuation mech-
anism should also be renormalized, but their scale depen-
dence is much weaker than that of y„'see the discussion
in Sec. VI. We conclude that a relatively high T, should
be possible via the spin-fluctuation mechanism if one can
find a 2-d system that is nearly ferromagnetic, i.e., with a
large value of y„with no or very weak spin-orbit scatter-
ing. Such a material may be hard to find. If it can be
found, one expects T, to be a very rapidly varying func-
tion of both disorder and y, (or the Fermi-liquid parame-
ter Fo), and superconductivity to be observable only in a
narrow region of parameter space.

For the charge-Auctuation mechanism, reasonably reli-
able predictions appear to be somewhat easier to make.
Here the main uncertainties are twofold. First, higher-
order renormalization effects have been neglected. Since
the 'particle-particle triplet coupling constant appears
only at one-loop order, one should go back to the original
action, add this interaction, and repeat the renormaliza-
tion process. This has not been done so far, i.e., the trip-
let pairing mechanism has been discussed only at the
Gaussian or tree level. From our experience with the de-
gradation effects for conventional superconductivity dis-
cussed in Sec. VII, we expect T, degradation efFects here
as well, starting at two-loop order. This will change the
behavior of T, as a function of P~ and make T, for large
R~ fall off much faster than Eq. (8.13) predicts. Second-

IX. OTHER THEORETICAL APPROACHES AND
RELATED TOPICS

In this section we first discuss some approaches to the
interacting disordered electron problem that do not make
use of the generalized nonlinear sigma model derived in
Sec. III. We do not intend to review these various
theories thoroughly; rather, we only sketch the main
technical aspects of each method and then give the main
results. We also discuss possible connections between
these theories and the sigma-model approach used in the
rest of this review. We then discuss two delocalization
transitions that occur in 2-d disordered electronic sys-
tems, viz. , the transition from an insulator to a supercon-
ductor in a thin film and the delocalization transition in
the integer quantum Hall effect.

A. Results in one dimension

In the absence of interactions all states are localized in
1-d disordered electronic systems (Mott and Twose, 1961;
Borland, 1963). Typical localization lengths are on the
order of the elastic mean free path between electron im-
purity collisions. The existence of interactions between
the electrons can change this situation qualitatively. In
particular, for sufticiently strong attractive interactions
there is a competition between superconducting Auctua-
tions and disorder, which can lead to delocalization
(Chui and Bray, 1977; Apel, 1982; Apel and Rice, 1982;
Suzumura and Fukuyama, 1983, 1984). The resulting
phase transition is similar to the zero-temperature
superconductor-insulator transition that is expected to
take place in 2-d electronic systems (Fisher, 1990; He-
bard and Paalanen, 1990). The main distinction is be-
lieved to be that the 1-d zero-temperature superconduct-
ing state has only quasi-long-ranged order (i.e., algebrai-
cally decaying correlations), unlike 2-d systems, which
can have true long-ranged order at T=O. This distinc-
tion is due to the fact that the lower critical dimension
for a zero-temperature superconductor-insulator transi-
tion is one space (plus one time) dimension.
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To describe this phase transition in d = 1, a perturba-
tive RG description specially designed for 1-d systems
has been developed (Giamarchi and Schulz, 1988). A
motivation for this work was the expectation that the
behavior in d =1 would shed some light on the, presum-
ably technically harder, problem of disordered interact-
ing electrons in higher dimensions. The starting point is
the standard "g-ology" description of 1-d interacting
electron systems (Emery, 1979), which is then modified to
include disorder. The treatment of the latter is modeled
after Berezinskii s (1973; Abrikosov and Ryzhkin, 1978)
theory of noninteracting 1-d systems. The main assump-

tion is that the only important processes are those near
the Fermi surface (which is assumed to exist). In this
case the energy spectrum can be linearized around kz,
and the interaction can be parametrized by the four cou-
pling constants g», g1II, g2~, g2II. The g's describe pro-
cesses with momentum transfer close to zero (g2i, g2~~)

and 2kF (g,i,g,
~~

), respectively, and the symbols l and II

refer to the spin structure of the interaction. The in-
teraction between the electrons and impurities can be
par ametrized by two uncor related Gaussian random
fields r) and g'. With L denoting the system size the Ham-
iltonian is

X P( F),k, , k, +L X (gl~~fi, '+g1ifi, — '@+ k, a —,k, '~+, k +, '~ —,k
k) o') T k&)k2)p

O, O

+L ' g (g2(~5 +gati 5 )p+ (P )p ( —p )
)P, O. , O.

+g f dx ))(x)[g+ (x)g+ (x)+ fr+ (x)g (x)]

+g fdx[/(x)it)+ (x)g (x)+g*(x)it) (x)it)+ (x)], (9.1)

where

P, , (P)=g d. , k+p, &., k,
k

(9.2a)

tion. To interpret these singularities, RG ideas can be
used. To first order in the disorder, or in D&, and to
second order in g» the RG Aow equations are

L —1/2 y g ikx

k

(9.2b) dK 1 u
P K2 P~

dlnb 2 ~u
(9.4a)

P„-exp D„'f dx il (—x) ~, (9.3a)

r =+ denotes right- and left-going fermions, o. =+ indi-

cates spin up and spin down, and a„k (a„k~ ) is the an-

nihilation (creation) operator for a fermion in state (r,o).
with momentum k. The fields g and g in Eq. (9.1) de-

scribe the forward and backward scattering of electrons

by the impurities. They are governed by the Gaussian
probability distributions,

dK

d lnb 2
= ——K [2)+y ],

du uE
I) P P cg

d lnb 2u

du u K
d lnb 2

=2(1—K )y
—X),dp

(9.4b)

(9.4c)

(9.4d)

(9.4e)

P&-exp D&
' f dx—g*(x)g(x) (9.3b) d2) =[3—K —K —y]2),

d lnb
(9.4f)

where D =U~/r, v=i), g with r the scattering time as-

sociated with each process. The field il is real, whereas g
is complex, g and g* being associated with momentum
transfer 2k+ and —2k&, respectively. The effects of the
forward-scattering random field g turn out not to be of
qualitative importance. This feature is analogous to the
irrelevance of S~z';,' in Eqs. (3.46) in the o-model ap-
proach. The effect of the electron impurity backward
scattering, as described by the random field g, is much
more drastic. In the noninteracting limit this term leads
to localization. In the interacting case both impurity
backscattering and the interaction described by g» give
rise to divergent contributions in a perturbative calcula-

with (v= p, a. ),
1/2

2&UF +g~
2&UF g~

1/2

Uy
4m.

p 1II g2ll 2l

go- gill g2II +g2+ ~

2D(a X
(u /u )',

mu2
O

(9.5a)

(9.5b)

(9.5c)

(9.5d)

(9.5e)
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y =g&~/mu (9.5f)

where a is a length-scale cutoff. The labels p and o.

denote interaction parameters related to the charge and
spin degrees of freedom, respectively, and we note that in
the absence of disorder (2)=0) the charge and spin de-
grees of freedom are not coupled.

Equations (9.4) have the following interesting features.
First, the parameters K and u, (v=p, o ) appear natu-
rally in the bosonic representation of the 1-d fermion
problem. In the clean limit they determine how the
decoupled spin and charge correlation functions decay in
space and time. Secondly, note the structure of Eqs.
(9.4e) and (9.4f). 2) is essentially the disorder, and to
O(2)) its renormalization is given by Eq. (9.4f). Compar-
ing this equation with the analogous sigma-model result
to O(g), dg /d lnb =g (for s = —1, cf. Secs. V and VI), we
see a qualitative difference: the disorder is renormalized
by the interactions in Eq. (9.4fl even to lowest order in 2).
Similarly, we see that the renormalization of the interac-
tion strength y given by Eq. (9.4e) contains a disorder-
independent term. Both of these effects, which have no
ana1ogies in the sigma-model approach, are due to the
nontrivial nature of the clean 1-d interacting ground
state, where long-ranged correlations exist even in the ab-
sence of disorder or diffusion. To illustrate the compli-
cated situation in clean 1-d systems, we show a typical
phase diagram in Fig. 52 (Giamarchi and Schulz, 1988;
see also Emery, 1979). The labeling in Fig. 52 indicates
that the respective regions are dominated by divergent
correlations of 2kF charge-density-wave (CDW), spin-
density-wave (SDW), singlet superconductivity (SS), and
triplet superconductivity (TS) type. This phase diagram
assumes vanishing spin anisotropy, in which case K and
u can be related to y. We stress that in higher dimen-
sions, where the sigma-model approach has been applied,
it has been assumed that the clean ground state is a sim-

ple Fermi liquid with no long-ranged correlations. The
validity and generality of this assumption is not clear.

Equations (9.4) have been analyzed for vanishing spin

anisotropy (g&j =g,~~=g„gz~=g2~~=g2). A phase dia-
gram for finite disorder has been derived under the as-
sumptions that runaway RG trajectories indicate How to-
wards strong coupling and that there are no nontrivial
fixed points at intermediate coupling (Giamarchi and
Schulz, 1988). The resulting phase diagram is shown in
Fig. 53. In the regions labeled RAF (random antifer-
romagnet) and PCDW (pinned charge-density wave), 2)
Aows to infinity and the electrons are localized. The two
possibilities are related to different magnetic properties,
which are in turn determined by the sign of the fixed-
point value g j of g &. If g &

)0, then there is a repulsion
between electrons of the same spin. An electron thus
avoids localizing close to one in the same spin state. Due
to the randomness, the exchange interaction between ad-
jacent electrons will also be random. One therefore ex-
pects properties typical of a random antiferromagnet. If
g& (0, then there is a nonmagnetic system of localized
pairs of spins. This has been dubbed a pinned charge-
density wave or a charge-density-wave glass. In the re-
gion labeled TS in Fig. 53, 23 and y flow to zero, while in
the region labeled SS, 2) flows to zero and y flows to —oo.
In both cases the states are delocalized. Details then
determine whether the dominant superconducting Auc-
tuations are of the triplet or singlet type.

It should be noted that the phase diagram discussed
above does not really follow from the flow equations
given. The first-order RG How equations imply that for
the localized phase (2)~oo ) one has g&~ —oo, i.e., a
nonmagnetic behavior of the pinned charge-density-wave
type, regardless of the strength of the bare g, . This
behavior arises because only first-order terms have been
retained, even though both 2) and ~g & ~

flow to infinity. In
Sec. VI we discussed some of the problems that are en-
countered in interpreting RG equations with runaway
Aow trajectories. In the present case it turns out that
magnetic (SDW) fluctuations interact with the disorder
via second-order terms. It has been assumed that retain-

RAF TS

SDW
(cDw)

0.5

TS
(SS)

0.3—

K

cDw cDw SS
(SS) (CDW)

PCDW SS

FIG. 52. Phase diagram for a clean 1-d electronic system in the

y —K~ plane. In d =1, the "phase diagram" means a diagram
of dominant Auctuations. Less divergent fluctuations than the
dominant ones are within parentheses. The respective regions
are dominated by divergent correlations of 2kF charge-density-
wave (CDW), spin-density-wave (SDW), singlet superconduc-
tivity (SS), and triplet superconductivity (TS) type. From Gia-
marchi and Schulz (1988).

FIG. 53. Same as Fig. 52, but for finite disorder, 2)=0.05. The
dashed lines are parts of the phase boundaries that cannot be
derived from a one-loop calculation. The two vertical lines, to-
gether with the X axis, represent the phase boundaries in the
limit of vanishing disorder, 2)~0. Note that the behavior in

the limit X)~0 is different from that in the clean case, 2)=0,
shown in Fig. 52. From Cxiamarchi and Schulz (1988).
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ing these and higher-order terms will lead to a phase dia-
gram like that shown in Fig. 53.

The superconductor-insulator transition in Fig. 53
occurs for strongly (strength comparable to the band-
width) attractive interactions only. For example, from
Eqs. (9.5) we see that X =2 means that g2 = —

(3m U~ ) /5.
Even for systems with a superconducting ground state
such a strong attraction is unlikely to exist. In real
quasi-1-d materials, the observed absence of localization
is presumably due to some type of 3-d coupling between
the chains.

B. Local magnetic-moment effects

Local magnetic moments are known to exist and to be
important in determining materials properties in many
clean electronic systems. There are two key questions in
local-moment physics. The first has to do with local-
moment formation. This problem was first studied by
Friedel (1956) and by Anderson (1961) and WolÃ (1961).
The second question deals with the behavior of local mo-
ments and whether they can exist at very low tempera-
tures. In the metallic phase this second aspect is the
Kondo problem (Kondo, 1964; for an elementary discus-
sion of the physics involved, see Anderson, 1984, pp. 188
ff.). It has been known for some time that for tempera-
tures less than the Kondo temperature Tz a type of
screening takes place by which a conduction electron
forms a singlet state with a local moment making the
composite object a simple nonmagnetic impurity. That
is, for T & Tz local moments effectively do not exist in
clean materials.

In the presence of disorder two new concepts related to
these problems have recently been introduced: (1) disor-
der can facilitate local-moment formation; (2) in some
sense the Kondo temperature is zero in disordered sys-
tems. - Both of these effects can have important experi-
mental and theoretical consequences.

In this subsection we review recent work on local mo-
ments in disordered electronic systems. From this dis-
cussion it will become clear that many aspects of this
problem are not incorporated in the sigma-model ap-
proach that was discussed in Secs. V and VI.

modeled by a system of spin- —,
' objects distributed ran-

domly in space. The magnetic properties of the system
are characterized by the quantum antiferromagnetic
Heisenberg Hamiltonian,

(9.6a)

where

J(r) =Joexp( 2r—/a ), (9.6b)

JM ) +(JM )+ (JM ) (9.7)

xo'

10

Jo )0, falls off exponentially with r.
Building upon earlier one-dimensional work (Dasgupta

and Ma, 1980), Bhatt and Lee (1982) have used numerical
methods and RG ideas to study the low-temperature
properties of systems described by Eq. (9.6). The solution
method takes advantage of the broad distribution of ex-
change couplings (typically four to eight decades) to
iteratively discard high-lying excitation levels of the sys-
tem that are not important at low temperature and trans-
form the Hamiltonian to a scaled version with the same
low-lying states. The magnetic properties of the system
can then be extracted from the distribution of energy lev-
els. The basic physical idea behind the procedure is that,
for a given T, spins connected by a J& T will combine to
form a nonmagnetic singlet state and drop or condense
out of the problem. In some respects this is an insulator
analog of Kondo screening.

At each iteration, the highest energy levels discarded
are equal to J~, the largest coupling in the system. For
the highly disordered system under consideration, in
which the couplings and energy levels span several orders
of magnitude, it is a good approximation to consider, at
T=J~, all discarded levels as frozen and the remaining
spins as free. This yields a magnetic susceptibility

1. Local moments in the insulator phase

Many of the ideas developed to understand local mo-
ments in the metallic phase of disordered electronic sys-
tems were motivated by the behavior of local moments in
the insulating phase, which was studied earlier. We be-
gin our discussion of local moments by reviewing some of
this work. To be specific we consider models of doped
semiconductors (e.g. , Si:P, CdS:In) at donor concentra-
tions n below the metal-insulator transition. Because the
Bohr radius of the donor electron, a, is much greater
than the host lattice spacing and sets the range of the ex-
change coupling J, doped semiconductors can be

02

10
10 10 10

FICx. 54. Magnetic susceptibility of the spatially random three-
dimensional spin- 2 Heisenberg model with exponential ex-

change for various concentrations n. From Bhatt and Lee
(1982).
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where y, (JM ) =ps/JM is the Curie susceptibility of a
free spin at temperature T=JM and N(JM) is the
effective number of free spins remaining when the largest
surviving coupling equals J~.

Figure 54 shows the normalized magnetic susceptibili-
ty as a function of temperature. The Curie susceptibility
is also shown. It is important to note there is no sign of
any saturation as T~O. This indicates the absence of
any magnetic ordering at finite T. Also note that the
curves seem to suggest a sub-Curie divergence:
y(T~O) —T ' with 0 & a & 1. One concludes that quan-
tum fluctuations prevent the classically expected spin-
glass ordering. The zero-temperature ground state ap-
pears to be a random singlet state with a divergent mag-
netic susceptibility.

2. The disordered Kondo problem

In clean metallic systems with local moments, the mag-
netic interactions discussed in the previous subsection are
thought to be less important than the interactions be-
tween the local moments and the conduction electrons,
i.e., the Kondo problem. Before turning to the disor-
dered problem and seeing if this remains true, we first re-
call some important features of the Kondo effect in clean
systems (see, for example, Griiner and Zawadowski,
1974; Nozieres, 1979). The standard Kondo Hamiltonian
for a single spin- —, magnetic impurity at the origin is

H=g Ekak ak +JS s(0)
k, o.

moment contribution to y is thus cut off at Tz, and for
lower temperatures it is given by

ELM(T & Tx )- n, .p
TK

(9.10b)

—crdP(r)-e (9.11a)

the local moment is located in a cavity of radius r and
isolated from the rest of the system. It is plausible to as-
sume that the exchange coupling between the local mo-
ment and the rest of the system, with the nearest neigh-
bor a distance r away, goes as

The crucial physical point is that for T & Tz the local
moment is effectively screened, and for T—+0 the system
is a conventional Fermi liquid. Note that, in these argu-
ments, the effects of local-moment/local-moment interac-
tions are ignored. This is an important current research
topic, and the effects of these interactions are not yet un-
derstood.

We next argue that a generic disordered system with
local moments will not be a Fermi liquid at T~O. We
then discuss some of the possible consequences of this
non-Fermi-liquid behavior for the metal-insulator transi-
tion. There are two distinct mechanisms that can lead to
the absence of Kondo screening in disordered systems.
The first (Bhatt and Fisher, 1992) is a local phenomenon
and rests on the statistical properties of the random po-
tentials that are important in disordered electronic sys-
tems. Consider a local moment at the origin. With a
probability

=g Eza I, a L +—g S o ~ g &k &z, , (9.8)
J(r)-e (9.11b)

with s(0) the effective spin at the origin due to the con-
duction electrons, o. the Pauli matrices, S the impurity
spin, and J & 0 an antiferromagnetic coupling. Ordinary
perturbation theory and perturbative RG calculations
imply that the renormalized antiferromagnetic couphng
becomes very large below a "Kondo temperature" TI„-
given by

Tx =E exp[ —I/JNF], (9.9)

2

ELM(T+ TK) T nl (9.10a)

with p as the magnetic moment of a local moment and nI
the density of local moments. For T & Tz the renormal-
ized antiferromagnetic coupling scales to infinity, and it
is energetically favorable for the impurity spin to "trap"
a conduction electron. One then has a spin-singlet com-
posite object with nonmagnetic properties. The local-

where E is an energy scale on the order of the bandwidth
or the Fermi energy. Our focus will be on the exponen-
tial dependence of Tx on JNF in Eq. (9.9). The following
physical picture emerges. For T) Tz there are local mo-
ments that give a Curie-like contribution to the magnetic
susceptibility,

T=E exp[ —e '/NF], (9.12a)

or

E
r -ln ln—

C T (9.12b)

The density of unquenched local moments, nI(T), is then
proportional to P(r, ) given by Eqs. (9.11a) and (9.12b):

nI(r, )=nI(T)-exp . —c" ln ln— (9.13)

with a constant c". This leads to a local-moment mag-

In Eqs. (9.11) c and c' are constants. In the absence of J
the local moment would give a divergent Curie suscepti-
bility, y-p /T. However, the coupling to the conduc-
tion electrons can quench or screen the local moment.

In general a local moment will not be Kondo quenched
if J is too small, i.e., if r in Eq. (9.11b) is too large. A
critical value for r can be determined by using Eq. (9.9)
with J~J(r) and Tx ~Tx(r) That is, in. a disordered
system there will be a range or distribution of Kondo
temperatures. Using this, one concludes that an isolated
local moment will not be Kondo screened at temperature
T, if r &r, with
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netic susceptibility given by

(T)— exp —c" ln ln-p „E
LM (9.14a)

and a contribution to the specific heat given by

(9.14b)

J (r)
R

(9.16a)

or
T

NFJ (r)
d

Equations (9.16), (9.10), and nI-e '" lead to a low-

temperature local-moment susceptibility given by

ELM( T ) — -exp [c [ln( I /T ) ]
' i

] . (9.17a)
N~J (r)

This and a similar expression for y(T) diverge slower
than any power of T as T—+0. Note that this estimate
should be considered as a (nonrigorous) lower bound for

It is clear that both ELM and y diverge as T—+0. The
conclusion is that disordered Fermi systems with local
moments are not Fermi liquids in any dimension at any
finite disorder.

Several points should be stressed. First, the above ar-
gument is of the Lifshitz-tail type and presumably is
correct only asymptotically. The above reasoning there-
fore might be valid only at extremely low temperatures.
Second, the argument does not depend at all on the
metal-insulator transition or on any long-wavelength
physics. Third, we have not yet considered the effects of
local-moment/local-moment interactions. It can be ar-
gued that the latter themselves can lead to important
quenching if the range of the interactions is long enough.

Let us examine the final point above (Bhatt and Fisher,
1992). In the metallic phase the interaction between local
moments occurs via the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction mediated by the conduction
electrons. The interaction between spins at positions R,.
and R, separated by a distance R; and coupled to the
conduction electrons via exchanges J; and J, is

J;J
XJ.— d NFgd(k~R;, kFR ),

R;.

with gd an oscillating function, ~gd ~
=O(1). For spin- —,

'

local moments, the antiferromagnetic interactions have a
stronger effect than the ferromagnetic interactions. For
simplicity, gd in Eq. (9.15) is replaced by unity. To esti-
mate the effects of Eq. (9.15) we consider two local mo-
ments in cavities of size I and separated by a distance R.
The typical separation R can be related to nI(r) by
R -nI ' ". To relate R to the temperature it is assumed
that two spins will form a nonmagnetic singlet state if the
energy gained is greater than T. This gives

the susceptibility. It is based on classical reasoning,
which can underestimate singularities caused by quan-
tum effects. Also note that the amplitude of the RKKY
interaction must vanish (perhaps related to the vanishing
of the single-particle DOS) at the metal-insulator transi-
tion. This would lead to a singularity in ELM that is con-
trolled by the amplitude of K; .

Finally, we compare the local-moment quenching dis-
cussed above with that of Sec. IX.B.1, where a short-
ranged interaction between local moments was assumed.
Suppose K;, —~R,J ~

'. Repeating the arguments given
above yields

ELM( T )—,„exp—[ln( 1/T ) ]
' "1 C

a
(9.17b)

(9.18)

with Xz the average DOS. In the tails of the distribu-
tion, Eq. (9.18) holds for all u. With Eq. (9.9) this leads
to a distribution of Kondo temperatures given by

P(T~)= 1

2&vru T~ln(E/TK )

X exp
1 2 N~J E

ln . ln
4u e" Tz

(9.19)

We note that the distribution P( Tz ) diverges as
T&~0, which implies that there is a large number of
spins with a very low Kondo temperature. This distribu-
tion can be used to compute the low-temperature form of
y and y. A local moment contributes a term —1/T to
both g and y if Tz & T at that site. Thus we can write
for y (and similarly for y)

i.e., a =d is a marginal case. Also note that for exponen-
tial interactions a is infinite, and the mechanism dis-
cussed does not quench the local moment.

Very recently another way to avoid Kondo screening
was proposed by Dobrosavljevic, Kirkpatrick, and
Kotliar (1992). This mechanism is strongest near (but
not at) the metal-insulator transition and at temperatures
that are not too low. These authors argue that, in con-
trast to the ideas explained above, in which the distribu-
tion of the Kondo temperature is due to the distribution
of J's in Eq. (9.9), a similar effect can be obtained by us-

ing the fact that the single-particle DOS in Eq. (9.9) is a
local DOS, N+=NF(r), which also has a broad distribu-
tion. In particular it is known that away from the
metal-insulator transition the distribution P[NF(r)] is
close to Gaussian (but with log-normal asymptotics),
while near the transition it becomes completely log-
normal. Let u =ln(cro/o ) with oo the bare conductivity
and o its renormalized value. For u ~ 1 one has (Lerner,
1988)

1 NF(r)
P[NF(r)] = exp — ln e"

2 mu NF(r) 4u
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(9.20a)

where we have defined an effective number of free spins
by

nr„,(T)=f dTxP(Tx) . (9.20b)

Introducing the quantity

x,„(T ) = — 1n[NF Je "ln(E/T) ],1

4u
(9.20c)

we can write

n~„,(T)= 1 x,„(T)
—f dx exp[ —x ]
P —oo

=
—,
'

I 1 +erf[x,„(T ) ] ] . (9.20d)

At low temperatures, n~„,(T)—T ' ', with
a(T~O)~0, i.e., nr„, vanishes, but slower than any
power of T. With Eq. (9.20a) we conclude that the distri-
bution of XF(r) leads to a divergent ELM (and y) as
T~0.

It is important to estimate the magnitude of the
anomalies predicted by Eqs. (9.20) for typical parameter
values. With E -EF-10 K, a bare Kondo temperature
of about 10 K, and in the strongly disordered (but still
metallic) region where u = 1, one finds n &„,( T )

-40—60% at T-10 —1 K. Note that the extremely
slow temperature dependence of n&„,is a consequence of
the ln ln(T ') dependence of x,„(T).

The preceding argument neglects the interaction be-
tween local moments. Repeating the discussion below
Eq. (9.15) leads to only a logarithmic singularity in
y(T~O).

We next compare the theoretical results above with the
experimental ones given in Figs.25 and 39. Both theory
and experiment suggest a low-temperature singularity in
the magnetic susceptibility, even well inside the metallic
phase. However, the experiments indicate a power-law
singularity, y( T~0)-T ', with a =-0.5, while Eq.
(9.17a) shows a singularity that is weaker than any power
law. There are a number of possible explanations for this
discrepancy. (1) The experiments are not yet in the
asymptotic low-temperature regime. (2) In addition to
the local-moment contribution to y, some of the systems
might show magnetic anomalies because they actually are
in the incompletely frozen spin phase; see Sec. VI. (3)
The basic physical point in the second argument for
Tz =0 is that some local moments do not see the conduc-
tion electrons and therefore cannot be Kondo screened
by them. Following this line of reasoning one can argue
that the surviving local moments will not interact
through a simple RKKY interaction either, since this in-
teraction is indirectly caused by the conduction electrons.
The conclusion is that the current understanding of the
interaction between local moments is not sufficient to
compare theory and experiment quantitatively.

It is also important to examine how the local moments

that survive inhuence the transport behavior near the
metal-insulator transition (see, for example, Sachdev,
1989). Naively one might expect that the magnetic im-

purity universality class (MI) discussed in Sec. V.A. 1 pro-
vides the relevant behavior. Upon reAection, however,
the situation is more complicated. There are two physi-
cal points. First, the number of local moments vanishes
at T~0, which is not rejected in the magnetic impurity
universality class. Second, as discussed above, the local
moments that survive are probably not interacting with
the conduction electrons. To discuss this final point in
more detail we examine whether or not the surviving lo-
cal moments can give a mass to the spin-triplet particle-
hole propagator that plays a crucial role in the generic
universality class discussed in Sec. VI, and which is ab-
sent in the magnetic impurity universality class. A relat-
ed question is how the local moments affect the Coope-
rons that lead to the logarithmic corrections to scaling
discussed in Sec. V.A.3.b.

At the level of the Born approximation for local-
moment/electron scattering, the scattering rate for a
given site is proportional to the local DOS, N~(r). Add-

ing the contribution from all the sites with Tz (T, and
taking into account that the scattering rate is proportion-
al to the DOS, leads one to define an effective fraction of
local moments that induce spin-Hip scattering of the con-
duction electrons,

n„(T)= f de%+(Tx )P(Tx ) .
N~ o

(9.2 la)

This integral can be evaluated as before, and one finds

n„(T)=—,
'

I I+erf[x,„(T)—&u ]] . (9.21b)

It is particularly interesting to examine n„(T ) as the
metal-insulator transition is approached. Since
x,„=&u/2 for u ))1, the argument of the error func-
tion is roughly —&u /2~ —ao. This yields n„(T)+O-
at the metal-insulator transition. The local moments
seem to decouple from the conduction electrons as the
transition is approached. The implication for the univer-
sality class when the mass of the triplet propagator van-
ishes continuously at the metal-insulator transition
remains to be worked out. Similarly, the effects of the )o-
cal moments on the Cooperons have not been studied.

3. Formation of local moments

(9.22)

Local-moment formation in disordered metals has been
studied in an approximation where disorder is treated ex-
actly (using numerical methods), while the interactions
are taken into account only in a Hartree-Fock or mean-
field-like approximation (Milovanovic, Sachdev, and
Bhatt, 1989). The calculation starts with a disordered
Anderson-Hubbard model,

8 = —g t,j.d;+aj. + Up &;&8';&+g (s; —p)a;+a,
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+g (E; —p, )a;+a, +g h, s, , (9.23)

where s;=g P;+o P;&/2 is the spin of the electron at
site i. The variational parameters in H, & are c; and h, ,
representing the local site energy and the local magnetic
field, respectively. The best variational wave functions of
H ff are given by minimizing the free energy F,ff with
respect to c; and h;. Since h;=0 at high T, it is con-
venient to expand in powers of h, . Let y be the eigen-
values, and 4 (i) the corresponding wave functions, of
H, ff with h,. =0. The condition that F, ( sEh, =0) has a
local minimum with respect to c, yields the self-
consistency equation,

(9.24)

where f is the Fermi function. This equation gives E,
Expanding F,~ to second order in h, gives

where i,j extend over all the sites in the system,
&; =a;+&;, and both the hopping matrix elements t,
and the on-site energies c.; are random variables. Physi-
cal intuition suggests that Auctuations of the t, and the
c; produce local environments favoring the formation of
local moments, and the main problem is to find a theoret-
ical criterion for this to occur.

Theories of local-moment formation in clean systems
have relied on the following three observations: (i) A
Hartree-Fock calculation is adequate to determine the
boundary between the local-moment and Fermi-liquid re-
gimes (Haldane, 1978; Krishnamurthy et al. , 1980a,
1980b). (ii) The electron local-moment state is associated
with a resonance near the Fermi level in the Hartree-
Fock Hamiltonian. This quasiparticle eigenstate is not
localized (Anderson, 1961;Wolft; 1961). (iii) The interac-
tions between the generated local moments can be ig-
nored. The arguments of the previous subsection indi-
cate this might not be correct in disordered systems.

The Hartree-Fock or mean-field approach to the disor-
dered local-moment formation problem proceeds by
finding the single-particle Hamiltonian H,z which best
approximates the properties of the interacting system,

H, (s,s, h, )= —g t;J.a;+d~

and the corresponding eigenvalues by ~:
gy, m (j)=~ m (i) . (9.26)

(9.27a)

(9.27b)

In Fig. 55 the average P& =(PH ) over many samples
and for states within an energy 0. 1to (to setting the scale
for the r, )of the Ferm"i energy is shown. On a log-log
plot I'H decreases monotonically as a function of the
number of sites in the system, which is evidence that all
the states within 0. 1to of the Fermi level are extended.
For the same samples, the behavior of Pz=(Pz ) is
quite diAerent. It remains independent of the system
size, showing that while the electronic states are delocal-
ized there exist local-moment states that are localized,
i.e., local moments exist at low temperatures in the me-
tallic state.

0.8:—:

O 0.6-

$ O.4-
+ 0.3:—

~ 0.2—

0.1—

P (T = 0 1)

P (T=0.01)

It is clear from Eq. (9.25b) that h;%0 will first be energet-
ically favorable when max(v ) ) 1/U. This is the
theoretical criterion mentioned below Eq. (9.22).

The properties of the single-particle wave functions
4 (i) and the eigenvectors m (i ) of y, have been studied
using parameters appropriate for Si:P. In general one
finds that every m (i) that is localized around a site rI, is
associated with an eigenvector 4 (i ), which is peaked at
rk and has an energy close to the Fermi level. To get a
quantitative measure of the localization properties of
4 (i) and m (i), Milovanovic et al. have computed the
inverse participation ratios,

F,fr(E;, h, ) =F,s(s, , h, =0)

+ g (5 k
—Uy ~ )(h, .hk )+O(h";),

i,j,k

(9.25a)

where

(y ) — (yp)
x;, = —g + (i )+~(~')+*(j)+~(j) (9.25b)

is the spin susceptibility of free electrons described by
H, ff. The eigenfunctions of y," will be denoted by m (i)

I, . . . 1

100 200 300
NUMBER OF SITES

FIG. 55. Mean inverse participation ratio's PH and P~ for the
eigenvectors 4 (i) of the Hartree-Fock Hamiltonian and for the
eigenvectors m (i) of g, respectively, at a density na'=0. 02
and filling factor 2 for different system sizes. The values of P~
are shown at two temperatures. These results are independent
of system size, suggesting that the eigenvectors m (i) are local-
ized. Values of PH, on the other hand, decrease with increasing
system size, suggesting that the 4 (i) are extended. From Milo-
vanovic et ah. (1989).
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Figure 55 is for an electron filling factor of one elec-
tron per site, which is appropriate for uncompensated
semiconductors. To investigate the consequences of
changing the filling factor, the chemical potential has
been varied so that the filling factor decreases to 0.25. In
Fig. 56 the results for FIM, the ratio of the number of
local-moment instabilities to the total number of elec-
trons as a function of filling factor, are shown. One sees
that FLM has a maximum at half filling and gradually
falls off with decreasing filling factor. This prediction is
in disagreement with recent experiments. Hirsch et al.
(1992) have found that, if one wants to interpret the mag-
netic properties of doped Si in terms of local moments,
FLM in the compensated material Si:P,B is three to five

times larger than in uncompensated Si:P.
It is clear from the solution method (expansion in h;)

that the variational treatment used here neglects the in-
teraction between local moments. The arguments re-
viewed in the previous subsection indicate that this might
not be valid. It is also possible that the considerations
given here are correct for a range of temperatures, but
that at a lower temperature the importance of local mo-
ments is reduced for reasons outlined previously. One
should also keep in mind that a Hartree-Fock approach
often shows an instability that actually is suppressed by
more complicated many-body effects. Very recently
Dobrosavljevic and Kotliar (1993) have studied local-
moment formation in a disordered Hubbard model that is
exactly soluble in the limit of infinite dimension. The
basic idea is that local-moment formation is a local
phenomenon, which should be qualitatively the same in
all dimensions, so that results for d ~~ might be
relevant for d =3. We note that this would not be the
case for the metal-insulator transition, which is presum-
ably controlled by long-wavelength physics. The results
of these authors are in general consistent with those of
Milovanovic et al. , and, insofar as the d = Oo results are
valid in d =3, justify the Hartree-Fock approximation
used above.

4. Two-fluid model

The experimental data on transport and thermo-
dynamic properties near the metal-insulator transition
have been described by postulating a two-Quid model
which imagines a disordered electron system as consist-
ing of a mixture of itinerant electrons and local moments
(Quirt and Marko, 1971; Ue and Maekawa, 1971;
Paalanen, Cxraebner, Bhatt, and Sachdev, 1988). This
picture has been buttressed by the theoretical develop-
ments discussed in the previous two subsections.

The two-Quid model assumes that the results of Bhatt
and Lee for the insulating side of the metal-insulator
transition, which were discussed in Sec. IX.B.1 above,
also hold for the local-moment component of the two-
component system on the metallic side. The numerical
RG results of Bhatt and Lee can be fit by

y(T) T
XQ To

(9.28a)

y(T)
'VQ

T
TQ

(9.28b)

with cx =0.6 TQ a temperature scale, and

P 3 le04a/(1 ~)2
On the metallic side of the metal-insulator transition,

the susceptibility and specific heat are described by add-
ing a Fermi-liquid contribution,

y(T) m* T
QQ Pl Q TQ

(9.29a)

y(T) m*

+Q Pl 0

T
TQ

(9.29b)

For applications to Si:P, m Q is taken to be the Si
conduction-band mass ( m 0 =0.34m 0 ) and m * is the
Fermi-liquid effective mass, Eq. (3.126d). The exponent
a in Eqs. (9.29) is assumed to be independent of the phos-
phorus density n. The parameter TQ measures the frac-
tion of electrons with localized spins. An interesting ex-
perimental quantity is the Wilson ratio,
w =(y/y)/(yo/yo). With Eqs. (9.29) the only free pa-
rameter in w is To = To(m ~/m )' . Figure 57 shows w

as a function of temperature. The solid lines are best fits
using Eqs. (9.29) with To =0.11 K and 0.03 K for
n/n, =1.09 and n/n, =1.25, respectively, with n, the
critical phosphorus density for the metal-insulator transi-
tion. With these To values Eqs. (9.29) also give good fits
to the susceptibility and specific-heat data separately.
Note that the results on the insulator side, n/n, =0.78,
are consistent with the Bhatt-Lee numerical result for
T—+0. In Fig. 58 we show g/gQ versus y/yQ. We see
again that the two-Quid model, shown as a solid line, is in
good agreement with the experiments. Note that this
curve is independent of the adjustable parameter TQ.
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FICx. 57. Ratio of the spin susceptibility to the specific heat in
Si:P vs temperature. The solid lines are one-parameter fits with
Eqs. (9.29). After Paalanen et al. (1988).

100

Gan and Lee (1986) have invoked a two-fluid model to
explain the data of Paalanen, Ruckenstein, and Thomas
(1985) on the spin-lattice relaxation time T, of Si nuclei
in Si:P. The experimental results are shown in Figs. 26
and 27. Gan and Lee assume that the relaxation rate
consists of a Korringa-type contribution, 1/T f, and of a
local-moment-induced contribution, 1/T

&
. 1/T j is

linear in temperature and independent of the magnetic
field B (Korringa, 1950). 1/T, is independent of tem-
perature (for reasons we shall see shortly), and its field
dependence is determined as follows. Consider a single
pair of spins governed by the local-moment Hamiltonian,
Eqs. (9.6). The two lowest-lying states are a singlet and a
triplet, separated by the exchange coupling J. In a mag-
netic field, the triplet is split, with the lowest triplet state
lowered by 2p, B, where p, is the electronic magnetic
moment. When the gap 6„=J—2p, B between the
singlet and the lowest triplet coincides with the nuclear

C. Delocalization transition
in the quantum Hall effect

Low-temperature magnetotransport experiments on 2-
d systems show large regions in the magnetic field B
where the Hall resistance p is accurately quantized ac-
cording to h/ie, with i an integer. This is the integer
quantum Hall effect (von Klitzing et al. , 1980). In Fig.
59 we show typical experimental results (Wei et al. ,

----- 42 K
---- 1.3 K

0.35 K

(3) PX&

5K&

PXX—4

spin splitting 2p„B,with p„the nuclear magnetic mo-
ment, then the spin pair will relax the nuclear spin. Sincep„«p„the relaxation condition is essentially J=2p, B.
The relaxation rate is therefore proportional to the prob-
ability I' of finding the exchange coupling at the right
value, 1/T, -P(J=2p, 8). Now P(J) =P„(r)/~dJ/dr ~,

with P„(r)the probability density for finding a pair sepa-
ration r. Because of the broad distribution mentioned in
Sec. IX.B.1 above, P„(r)is a slowly varying function of r,
while Eq. (9.6b) yields dJ/dr -J. One therefore has
1/Ti —1/J —I /8. This explains the field dependence of
the experimentally observed rate, Fig. 27. For the tem-
perature dependence of 1/T, the local-moment mecha-
nism gives a constant contribution, since T ))p„Bfor all
achievable temperatures. Gan and Lee argue that a con-
stant plus the linear Korringa contribution fits the exper-
imental result, Fig. 26, as well as the power-law fit in the
experimental paper, provided only data below T=100
mK are considered.

20—

= 1.09
= 1.25

5K@/T

10 20

FICx. 58. Susceptibility enhancement vs specific-heat enhance-
ment for metallic Si:P samples. The solid line is the two-Quid
model, Eqs. (9.29). After Paalanen et al. (1988).

B (T)

FIG. 59. Quantum transport coefficients in Ino 53Gao 47As/InP.
(a) p „and (b) p„„asfunctions of magnetic field B at three tern-

peratures, T=4.2, 1.3, and 0.35 K. (c) The corresponding
dp ~ /dB. The sample had a 2-d electron density
n»=3. 3X10" cm and a mobility p=34000 crn /Vs at
T=O. 8 K. From Wei et al. (1988).
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1988) on InGaAs/InP. Note the rather sharp steps con-
necting the successive quantum Hall plateaus. This is an
indication that there is a very narrow range in energy
within each Landau level where the electronic states are
of a different nature from those in the rest of the band.

In the region where p changes, the dissipative or
parallel resistance p „generally is nonzero. In this re-
gion the system behaves like a metal, and extended levels
near the Fermi energy are necessary in order to account
for the experimental results. The conclusion is that even
in 2-d systems there are extended states if the magnetic
field is strong enough, and that there are delocalization
transitions at critical magnetic fields B*. Theoretically
the number of extended states is expected to be of mea-
sure zero, and in some sense the observed transition is
probably an insulator-to-insulator transition with a me-
tallic phase of measure zero in between. A sketch of the
experimental and theoretical situation is shown in Fig. 60
(Pruisken, 1988).

Motivated by general theoretical considerations like
those presented in Sec. IV, as well as by experiments, one
finds it natural to assume that this delocalization transi-
tion is a conventional zero-temperature phase transition
and to construct a scaling theory for it (Pruisken, 1988).
The dimensionless distance from the critical point t is
given by 5B=(B B')/B*—, and the scaling functions
contain an argument b' 5B, with v the correlation
length exponent. Similarly, the temperature will appear
in the combination b'T, with z the dynamical scaling ex-
ponent for the delocalization transition. Since the resis-

tance in fundamental units is dimensionless in space di-
mension 2-d, the scaling part of p & (a,P=x,y ) satisfies

p ~(B,T)=p &(b' '5B,b'T) .

Choosing b =1/T' ' gives

p p(B, T)=p p(&B/T' ') .

(9.30)

(9.31)

In Fig. 61 we show experiments on InGaAs/InP which
indicate that the slope of p„,and the width AB of the
peak in p, near B ', satisfy the power laws

aPxy

aB

AB —T

with

a =0.42+0.04 .

Equation (9.31) gives

(9.32a)

(9.32b)

(9.33)

v= 1/vz, (9.34a)

and the experimental result yields

vz =2.38 . (9.34b)

The same scaling behavior with the same value for the
exponent sc has been observed for the fractional quantum
Hall effect by Engel et al. (1990).

These experiments could not separately measure v or z.
Very recently Koch et al. (1992) have used a different ex-
perimental technique to separately obtain v and, in prin-
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FICi. 60. The resistivity and the density of states in the quan-
tum Hall effect: (a) sketch of the experimentally measured p„„
and p ~ as functions of the applied magnetic field B; (b) density
of states at the Fermi energy as a function of B. From Pruisken
(1988).

FIG. 61. The upper portion shows the T dependence of
(dp„~/d8),„

for Landau levels X=O&, 1 f, and 1$; the lower
portion shows the T dependence of 1/AB for the N = 1 f and 1 $

Landau levels. The open symbols are data taken in a dilution
refrigerator, whereas the filled symbols are data taken in a 'He
system. The typical uncertainty in T is about 0.02 K at 0.4 K.
From Wei et al. (1988).
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ciple, z. They obtained a universal result for v, namely,
v=2. 3+0.1, but for reasons that are not clear, the
dynamical scaling exponent did not appear to be univer-
sal. There is no theory for either v or z for interacting
systems.

There also has been numerical work on the delocaliza-
tion transition of noninteracting disordered electrons in a
strong magnetic field (Aoki and Ando, 1985; Ando and
Aoki, 1985; Huckestein and Kramer, 1990; Liu and Das
Sarma, 1993, 1994). The results of these simulations are
generally consistent with the above phase-transition
scenario. There is a delocalization transition near the
center of the Landau level, and the correlation length ex-
ponent has been estimated to be on the order of two. The
numerical result by Huckestein and Kramer is
v=2. 34+0.04. Within the error bars this agrees with the
experimental result by Koch et al. We note that a priori
there is no reason for the simulation result for a nonin-
teracting system to agree with actual experiment. It is
not known whether this agreement is fortuitous or not.

D. Superconductor-insulator transition
in two-dimensional films

The theoretical ideas discussed in Sec. IX.A and
numerous experimental studies suggest that in 2-d films
there is a superconductor-insulator (SI) transition at zero
temperature, i.e., there exists a quantum phase transition.
Theoretically it is easiest to imagine probing such a tran-
sition by varying the disorder G. Experimentally, howev-
er, it is dificult to vary the disorder in a given sample.
Alternatively, a superconductor-insulator transition can
be observed for fixed disorder if an external magnetic
field 8 is increased beyond a critical value 8, . In Fig. 62
we show such a transition in amorphous InO films (He-
bard and Paalanen, 1990). For 8 &8, =5460+20G, the

(9.35)

Similarly, the critical magnetic field 8, for the field-tuned
superconductor-insulator transition should vanish as
G~G, . Since in superconductivity theory, and in the
Cooper channel in general, the magnetic field appears as
a length (viz. , the cyclotron radius) squared, B, will scale
as

g -g—'-~G —G ~"

Equations (9.35) and (9.36) imply

T2/z
C C

(9.36)

(9.37)

Finally, by identifying the frequency 0, or the energy
scale, with the long-ranged Coulomb interaction between
electrons at scale g, which goes as I/g, it can be argued
(Fisher et a/. , 1990) that

z=1 . (9.38)

zero-temperature resistance R tends to diverge, and for
8 &8, R tends to vanish as T—+0. This quantum phase
transition appears to be continuous, and it is natural to
construct a scaling description of it (Fisher, 1990). Here
we restrict ourselves to very simple considerations and
refer the reader to the original paper for a more complete
theory.

Let the critical disorder for the superconductor-
insulator transition in zero field be G, . At G =G„the
superconducting transition will be at T=O, while for
G (G, there will be a finite-temperature (Kosterlitz-
Thouless) superconducting transition with a critical tem-
perature T, . As T, ~O its scaling behavior should be
determined by the dynamical scaling exponent z for the
superconductor-insulator transition. If the correlation
length diverges at the transition according to
g- ~G —G, ~, then scaling gives

12

10—

This result can also be derived by examining the dynam-
ics of density Auctuations in a system with long-ranged
interactions; see Eq. (4.15a). Equations (9.37) and (9.38)
give

8—2
8 —TC C (9.39)

4 —4

0 10
0.01

I
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T (K)
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FIG. 62. Logarithmic plots of resistive transitions in a-InO„.
The isomagnetic lines range from B=4 KG {11)to B=6 KG
(1) in steps of 0.2 KG. R is the zero-temperature resistance at
the critical field. After Hebard and Paalanen (1990).

Equation (9.39) is a nontrivial prediction that can be
easily tested experimentally. Figure 63 shows 8, versus
T, in amorphous InO (Hebard and Paalanen, 1990).
The good agreement with Eq. (9.39) shows that the ex-
periment is at least consistent with the scaling theory for
the superconductor-insulator transition.

Finally, general theoretical considerations give one
other important result. At the critical disorder, and at
zero temperature, a 2-d film can be regarded as a metal
with a universal conductivity o (Fisher et al. , 1990). In
other words, the dimensionless critical resistance for the
superconductor-insulator transition should be a universal
number, R *. This result can be proven using ideas simi-
lar to those used to prove that amplitude ratios are
universal at thermal phase transitions (see Kim and
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FIG. 63. Logarithmic plot of the critical field 8, vs T, in
a-InO for five diferent films or values of the disorder. From
Hebard and Paalanen (1990).

Weichman, 1991). Recent Monte Carlo studies (Sefrensen
et al. , 1992) confirm this idea. So far, experiments have
not yet convincingly demonstrated the predicted univer-
sality.

X. CONCLUSIONS

One of the most important theoretical advances to-
wards our understanding of the metal-insulator transition
was the realization that it can be viewed as a continuous
quantum phase transition that is characterized by three
independent critical exponents (Wegner, 1976; Abrahams
et al. , 1979). The remaining exponents that determine
the singular behavior of physical quantities near the
metal-insulator transition are related to the three in-
dependent ones by scaling laws. The general scaling pic-
ture for the metal-insulator transition has been given in
Sec. IV. To complete this scaling description, methods
were developed to calculate the critical exponents explic-
itly. The major breakthrough that made this possible is

In the past few decades there has been an enormous
amount of work on the metal-insulator transition in par-
ticular and on various properties of disordered electronic
systems in general. In this review we have concentrated
on the interplay between electron-electron interactions
and disorder. We have argued that many aspects of this
problem are now fairly well understood, and naturally we
have concentrated on these aspects. However, much
remains to be understood. In this section we conclude
our overview by summarizing some of the main theoreti-
cal and experimental achievements and by briefly discuss-
ing a number of open problems in the field of disordered
electronic systems.

A. Summary of results

due to Wegner (1979). For the special case of nonin-
teracting disordered electrons, he showed that the metal-
insulator transition problem could be mapped onto an
efFective field-theoretic problem. The resulting
nonlinear-sigma-model field theory was susceptible to a
solution by RG methods, and an c=d —2 expansion for
the critical expon=nts could be developed. Finkel'stein
(1983) generalized the model to include the effects of
electron-electron interactions. Finkel'stein's action is de-
rived in Sec. III, and the c expansion is performed in
Secs. V and VI. It should be noted that the convergence
properties of this c expansion are not at all understood;
see Sec. X.B below. There we shall also discuss other
conceptual problems of the sigma-model approach.

Another important step towards describing the metal-
insulator transition for general physical systems was the
identification of distinct universality classes. Using
methods from either field theory or many-body perturba-
tion theory it was established, first for noninteracting
electrons, that there are four main universality classes for
the metal-insulator transition (Efetov et al. , 1980): (i)
systems with magnetic impurities (class MI), (ii) systems
in an external magnetic field (class MF), (iii) systems with
strong spin-orbit scattering (class SO), and (iv) systems
that have no symmetry-reducing fields, which we call the
generic universality class (class G). After including
electron-electron interactions, it was realized that one
must also distinguish between the cases of short-ranged
and long-ranged interactions (Castellani, DiCastro, Lee,
and Ma, 1984). The conclusion is that there are at least
eight universa1ity classes for the localization transition in
disordered interacting fermion systems. These eight
universality classes have been listed in Table I, and the
respective three independent critical exponents are given
in Table III. We remark in passing that one of the main
experimental problems is the determination of which
universality class is the relevant one for a given system.

Finkel'stein (1984a), Castellani, DiCastro, Lee, and Ma
(1984), and Castellani, DiCastro, Forgacs, and Sorella
(1984) found that for the magnetic impurity, magnetic
field, and spin-orbit universality classes, straightforward
perturbative RG methods lead to bona +de metal-
insulator transitions. The behavior within these univer-
sality classes is therefore in principle understood, al-
though, as mentioned above, the unknown (and presum-
ably very poor) convergence properties of the E expansion
about the lower critical dimension make a determination
of the critical exponents in the physical dimension d =3
impossible. For the generic universality class the situa-
tion turned out to be more complex. In the field-
theoretic description, a magnetic instability competes
with the metal-insulator transition for c.« 1

(Finkel'stein, 1984c; Castellani and DiCastro, 1986; Bel-
itz and Kirkpatrick, 1989b). It was subsequently shown
(Kirkpatrick and Belitz, 1990b) that for small enough s
the field theory predicts a phase transition from a Fermi
liquid to a magnetic phase. This transition precedes the
metal-insulator transition. It was later argued (Kirkpa-
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trick and Belitz, 1992a} that in d =3 there are some re-
gions of parameter space where these instabilities do not
compete, and that there is a direct transition from a Fer-
mi liquid to an insulator. However, a controlled descrip-
tion of this metal-insulator transition has not yet been
given. Very recently another prediction has been made
(Kirkpatrick and Belitz, 1993, 1994): for the spin-orbit
and generic universality classes it has been proposed that
there are logarithmic corrections to scaling and to some
asymptotic power laws near the metal-insulator transi-
tion.

On the experimental side, an important development
began with the finding that there are logarithmic correc-
tions to the electrical conductivity in 2-d systems (Dolan
and Osheroff, 1979). This result confirmed the theoreti-
cal notion that the lower critical dimension for the
metal-insulator transition is two. The sign and amplitude
of the logarithmic correction was found to depend on
whether or not there are magnetic impurities, or spin-
orbit scattering, or an external magnetic field present
(see, for example, Bergmann, 1984). This is consistent
with the theoretical notion of distinct universality classes
for the metal-insulator transition that are characterized
by the presence of these various symmetry breakers.

Later experiments investigated how the bulk conduc-
tivity vanishes at the metal-insulator transition, either as
a function of temperature at the critical disorder or as a
function of disorder at (extrapolated) zero temperature.
The most accurate experiments (Rosenbaum et al. , 1983;
Dai et al. , 1992) find the conductivity exponent at zero
temperature, s, to be close to either one-half or unity.
Less accurate experiments have reported values that
range between one-half and one. These experimental re-
sults seemed to be at odds with the theoretical results de-
scribed above in at least two ways. First, as described in
Secs. IV.A.2 and V.A.3.b, any value of s smaller than 3,
taken at face value, seems to violate a rigorous lower
bound on the correlation length exponent. Second, there
are experiments on different materials which should be in
the same universality class but are found to have different
values of s. An example is Si:B (s =0.65+o'i4', Dai et al. ,
1992), and Si, Au„(s=0.95+0.20; Nishida et al. ,

1985), which are both expected to be in the spin-orbit
universality class. In Secs. V.B and VI.B both of these
problems are tentatively explained as being due to the
logarithmic corrections to scaling that exist for the spin-
orbit and generic universality classes. However, recently
the validity of some of the experimental conclusions has
been debated (Stupp et al. , 1994a, 1994b; Rosenbaum,
Thomas, and Paalanen, 1994). Further investigations of
this problem are clearly needed.

Important experiments have also been done on the
thermodynamic properties near the metal-insulator tran-
sition (Paalanen et al. , 1986, 1988). In all systems that
were investigated an increasing magnetic susceptibility
and specific-heat coefficient were observed in the metallic
phase down to the lowest measurable temperatures. This
has been interpreted as evidence for the existence, in the

metallic phase, of local moments that are not Kondo
quenched and survive down to zero temperature. This is
a surprising result, which implies that at least in some
classes of disordered electronic systems there might not
be a Fermi-liquid phase anywhere in the phase diagram.

In this review we have also touched upon the broader
subject of disordered electronic systems in general. Sec-
tion VII was devoted to the effects of disorder on the
mean-field super conducting transition temperature in
conventional bulk sup ere onductors. According to
present understanding, there are four effects that occur in
all systems. Denoting the mean-field superconducting
transition temperature by T„the four eff'ects are (i) A de-
crease in effective electron-phonon coupling due to longi-
tudinal phonons. This is overcome by an increase (from
zero) in the electronic coupling to transverse phonons.
The net result is a T, -increasing mechanism (Keck and
Schmid, 1976). (ii) A decrease in the single-particle den-
sity of states, which in turn decreases T, (Maekawa and
Fukuyama, 1982). (iii) An increase in the repulsive
Coulomb pseudopotential, which also decreases T, (An-
derson et al. , 1983). (iv) Either an increase or a decrease
of T, from the disorder dependence of the quasiparticle
density of states (Kirkpatrick and Belitz, 1992c). For
small disorder the above competing effects can lead to a
T, that either increases or decreases with disorder (Bel-
itz, 1987a). However, for sufficiently strong disorder T,
always decreases and vanishes in the metallic phase. In
general the theory compares well with experimental re-
sults. There are, however, special problems with 2-d su-
perconducting systems and questions about whether the
processes listed above all contribute in d =2. This re-
quires further investigations. In Sec. VIII it was shown
that in some parts of parameter space and for low enough
dimensions, disorder can actually cause a novel type of
even-parity spin-triplet superconductivity (Kirkpatrick
and Belitz, 1991; Belitz and Kirkpatrick, 1992). This
new phase of disordered electronic systems has so far not
been observed experimentally.

Finally, there have been important theoretical develop-
ments outside of the framework of the nonlinear sigma
model, in particular, work on local moments in disor-
dered itinerant electronic systems. It has been argued
that (i) fiuctuations in local energies can produce local
environments favoring the formation of local moments in
disordered systems (Milovanovic et al. , 1989); (ii) rare
fiuctuations in either the conduction-electron/local-
moment coupling constant (Bhatt and Fisher, 1992},or in

the local single-particle density of states (Dobrosavljevic
et al. , 1992) can effectively cause the Kondo temperature
to be zero in disordered electronic systems. These
theoretical results were motivated by and are consistent
with experiments in doped semiconductors such as Si:P,
Si:P,B, and Si:B. They have been described in Sec. IX.B.

B. Open problems

We conclude by mentioning a number of open prob-
lems related to disordered electronic systems. Our re-
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marks and questions are necessarily speculative, and the
order in which they are arranged is to some extent arbi-
trary.

1. Problems concerning local moments

In Secs. V.B, VI.B, and IX.B it was argued that there
is both experimental and theoretical evidence for the ex-
istence of local moments in the metallic phase of doped
semiconductors at zero temperature. While some work
has been done addressing the formation of, and the ab-
sence of Kondo screening for, these local moments, an
important unresolved question is how they interact with
the conduction electrons that become localized at the
metal-insulator transition. The answer is of vital impor-
tance for the interpretation of transport experiments. It
would be contained in a solution of the very difficult
problem of constructing a theory for the metal-insulator
transition that self-consistently takes into account the
disordered conduction electrons, local-moment formation
and Kondo physics in disordered systems, and local-
moment interactions. In particular, it would be impor-
tant to know how local moments affect the strong spin-
density fluctuations described in Sec. VI and the logarith-
mic corrections to scaling discussed in Sec. V.A.3.b.

The above remarks bring us to an important point. In
Sec. IX.B it was argued (Bhatt and Fisher, 1992) that a
generic disordered electronic system might not possess a
Fermi-liquid phase. Naively, this notion casts doubt on
the validity of the sigma model presented in Sec. III, in
the derivation of which a disordered Fermi-liquid
description was assumed. However, from a more general
point of view, the sigma-model approach relies more on
fundamental conservation laws than it does on the validi-
ty of a Fermi-liquid description. The key physical idea is
to determine the slow modes of the system and to con-
struct an effective theory for them. In general the basic
slow modes are determined by the conservation laws for
charge, energy, and spin, independent of whether or not
the ground state is a Fermi liquid. From this viewpoint
the concluding questions in the paragraph above are
more important than whether or not a particular system
has a Fermi-liquid phase. A question of particular
relevance for the issues discussed in Secs. V.A.3 and VI is
whether the local moments act like magnetic impurities
and lead to spin-Aip scattering. If this were the case,
then spin diffusion would always be eliminated as a slow
mode, and neither the generic nor the spin-orbit univer-
sality class would be realized in these systems. As was
discussed in Sec. IX.B.2, there are indications that this is
not the case, and that the interaction between local mo-
ments and conduction electrons is weak or effectively ab-
sent, but more work on this point is needed. Some
relevant experimental information on this point was re-
cently provided by Allen, Paalanen, and Bhatt (1993),
who conclude from studies of NbSi 6lms that the local-
moment density is not correlated with the effective criti-
cal exponent for the conductivity at the metal-insulator

transition. However, recent computer simulations cast
some doubt on the conclusiveness of this study (Bhatt,
1993).

From a general point of view it is also possible that in
some systems a non-Fermi-liquid metallic phase exists
with long-range correlations that are not related to the
underlying conservation laws. In this case the present
sigma-model approach might be invalid because these ad-
ditional slow modes could affect the metal-insulator tran-
sition. In this context it is interesting that recent work
on the extended Hubbard model in infinite dimensions
has established that, in some parts of parameter space,
there is indeed a non-Fermi-liquid metallic phase with
correlation functions that are characterized by power-law
decays (Si and Kotliar, 1993).

2. Description of known or expected phase transitions

The discussion in Secs. VI and VII was incomplete be-
cause for various phases and phase transitions in the
phase diagram that are known or suspected to exist there
is not yet a satisfactory description.

a. Phase diagram for the generic universality class

In Sec. VI it was argued that for the generic universali-

ty class there is a direct Fermi-liquid —insulator transition
if c=d —2 is not too small. It was pointed out that this
transition is inaccessible within the framework of the c
expansion and therefore it is nonperturbative in nature.
In Sec. VI a tentative description of this metal-insulator
transition was discussed, which is, however, not a con-
trolled description in the usual sense because there is no
small parameter. Even if we restrict ourselves to the
sigma-model description of disordered electronic sys-
tems, it is an open problem to confirm systematically the
phase diagram given in Fig. 28 and to develop a way to
describe the transition in a controlled manner.

In particular, it should be pointed out that the ex-
istence of the multicritical point in Fig. 28 has not been
proven. Rather its existence was suggested by solving
equations that were derived for large y, . For initial con-
ditions y, smaller than some (yo, ), these equations were
found not to have a solution with y, ~ ao self-

consistently. This was interpreted as an indication that
there is no magnetic incompletely frozen spin phase be-
tween the Fermi-liquid and insulator phases. However,
this is not the only possible interpretation. It is conceiv-
able that the IFS phase exists for all y„but that one
should start using the equations derived in Sec. VI.A
only when y, has already been renormalized to a large
value. At present we cannot rule out this possibility. It
should be emphasized, however, that the direct Fermi-
liquid-to-insulator phase transition described in Sec.
VI.A.3 was one of the generic possibilities discussed in
Sec. IV.A and on general grounds one would expect it to
occur somewhere in parameter space.
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Also, the physical nature of the IFS phase needs to be
clarified. The existing interpretation as a critical phase
for the spin dynamics is a speculative one, based on the
properties of integral equations that are not valid in the
new phase. Other possibilities, including that of long-
range spin order, cannot be ruled out. Again, the non-
linear sigma model may not be well suited for this task,
since the description of any large-disorder phase is very
difIicult within this approach. The expected transition
from the IFS phase to the charge insulator can obviously
be studied only after this problem has been solved.

b. Critical-exponent problems

In Secs. V and VI we discussed the conductivity ex-
ponent puzzle, i.e., the fact that the observed critical
behavior of the conductivity appears to be inconsistent
with a rigorous bound on the exponent v. This has been
tentatively explained as due to logarithmic corrections to
scaling; see Fig. 38. However, other explanations are
conceivable. For instance, the lower bound on v would
be inapplicable if the transition were unconventional in
the sense that there was more than one divergent length
scale. This can happen in disordered systems; an exam-
ple was studied recently by Fisher (1992). Also, Wegner
scaling would be violated, and the conductivity exponent
s would be diff'erent from v in d =3 if the disorder scaled
to zero at the transition, as was first suggested by Castel-
lani, Kotliar, and Lee (1987). A renormalization of the
charge would have the same effect (Belitz and Kirkpa-
trick, 1993). As we have discussed in Secs. V and VI,
these possibilities have been investigated in some detail
and found not to be realized in any of the known univer-
sality classes. However, this statement holds only within
the framework of the sigma-model approach. It is possi-
ble that the sigma model is not sufficiently general (see
Sec. X.B.3 below), and in a more general model this scal-
ing scenario might be realized.

In Sec. V.B.1 we also mentioned another exponent
puzzle that deserves closer attention. Measurements of
the Hall coe%cient seem to show a correlation between
the values of the critical exponents s for the conductivity
and s~ for the Hail conductivity: for systems with s-=1
one finds sH —= 1, while for systems that show the "anoma-
lous*' value s =—0.5 the Hall coefFicient is found to be un-
critical, i.e, sH=0. The only reported exceptions to this
rule seem to be A1GaAs:Si, where s =1 and sII=0
(Katsumoto et al. , 1987, 1989), and Si:B, where s-=O. S
and sH )0 (Dai, Zhang, and Sarachik, 1993). Qn the ex-
perimental side it should be pointed out that the existing
measurements of the Hall coeKcient are not nearly as ac-
curate as the best available data for s. Moreover, noncri-
ticality of an observable is hard to establish experimental-
ly, since the critical region for the observable may be
very small. Theoretically, the Hall eff'ect has not been
considered for the case of interacting electrons. Clearly
this problem needs more work both theoretically and ex-
perimentally. EQ'orts in this direction have been made

(Kotliar, 1992; Sarachik, 1992), and hopefully this issue
will be resolved soon.

c. The superconductor-metal transi tion

In Sec. IX the superconductor-insulator transition that
presumably takes place at zero temperature for d ~ 2 was

briefly discussed. In Sec. VII a mean-field theory for T,
degradation in conventional superconductor s was re-
viewed. It was noted that experiments seem to indicate
that there is a zero-temperature superconductor-metal
transition in bulk superconductors. The nature of this
quantum phase transition has not been investigated and
is an important open problem. It is not at all clear that
the formalism developed in Sec. VII to describe the
finite-temperature superconductivity phase transition can
be used at zero temperature. The main problem is that
the coefFicients in the effective Hamiltonian for the
order-parameter Auctuations diverge as T—+0. Physical-
ly this reAects long-range correlations at zero tempera-
ture that are caused by a coupling of statics to dynamics.
In general dynamical spin and charge-density fluctua-
tions are of long range because of the conservation laws. .
One possible solution to the above problem is to not in-
tegrate out the Auctuations that lead to these nonlocal
terms. If noncritical amplitude Auctuations are integrat-
ed out, then the resulting field theory is just the non1inear
sigma model discussed in the bulk of this review, except
that K,"(0. Alternatively, it might be useful to consider
the field theory derived in Sec. III before integrating out
the massive modes. A controlled RG solution of either
of these field theories has not yet been given.

d. The quantum Hall effect

In Sec. IX.C we discussed experimental and theoretical
evidence for scaling and a delocalization transition in the
integer quantum Hall effect. While there is a good mi-
croscopic understanding of this effect in general (Prange
and Girvin, 1987), this is not true for the delocalization
transition aspect of it. For instance, it has so far not been
possible to extract this transition from the field theory for
the integer quantum Hall effect (Pruisken, 1984) or to
calculate the relevant exponents. Further, no attempts
have been made to incorporate the electron-electron in-
teraction into the theory of the integer quantum Hall
effect and to arrive in this way at a unified theory of both
the integer and the fractional quantum Hall effects.
There are, however, developments towards such a
unification that start from the fractional quantum Hall
effect (see, for example, Jain, 1992).

3. Problems with the nonlinear sigma model

Throughout much of this review we have used the
Geld-theoretic nonlinear-sigma-model approach to de-
scribe disordered electronic systems. Prior to its utiliza-
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tion in this field, the nonlinear sigma model had already
found condensed-rnatter applications, for example as a
model for Heisenberg ferromagnets (Polyakov, 1975; see
also Zinn-Justin, 1989). Despite a considerable amount
of work on this model, its status as a model for these
condensed-matter problems is not entirely clear. There
are several fundamental points that are not understood.
Some of these are listed in this section.

a. Nonperturbati ve aspects and completeness

It is clear that the small-disorder (6) or e-expansion
approach misses terms that are exponentially small as
6—+0. For example, the parametrization given by Eq.
(3.117a) implies the constraint 1 —

qq )0, which is not
enforced in the small-disorder expansion. Technically,
one makes the approximation of extending the functional
integral over all q. Physically, the fluctuations that
violate the above constraint are of finite amplitude and
contribute terms of O[exp( —I/GkF )] to the observ-
ables. It is certainly not clear that these terms can be
neglected in d =3, where the dimensionless disorder is of
order unity at the metal-insulator transition.

Even if the nonlinear sigma m.odel could be solved ex-
actly, it is not obvious that, for example, the O(3) sigma
model would give the exact critical behavior of the O(3)
Heisenberg model in d =3. The equivalence has been
shown only in a perturbative sense, and terms which are
exponentially small and irrelevant near d =2 can become
relevant and change the fixed-point structure as d in-
creases (Cardy and Hamber, 1980). In the context of lo-
calization it has been noted that the noncompact and
compact models that arise from a bosonic (Wegner, 1979)
and fermionic (Efetov et al. , 1980) formulation of the
noninteracting localization problem are perturbatively
equivalent, but may differ in their nonperturbative prop-
erties. Efetov (1982, 1983) has proposed an alternative,
graded or "supersymmetric" nonlinear sigma model for
noninteracting electrons that comprises both bosonic and
fermionic degrees of freedom and avoids the replica trick.
Perturbatively it is equivalent to the replicated models,
and its nonperturbative properties have been investigated
in the Migdal-Kadanoff approximation (Zirnbauer, 1988).
It is currently unclear whether any of these ideas can be
used for the interacting case, or what exactly the role of
nonperturbative effects is for disordered electrons in gen-
eral.

A possibly related problem is the poor convergence
properties of the c, =d —2 expansion. For the relatively
simple cases of noninteracting electrons and the O(n)
model, where high-order c-expansion calculations are
possible, this problem has been studied directly in some
detail (Hikami and Brezin, 1978; Wegner, 1989; Hikami,
1992; see also Zinn-Justin, 1989, and Sec. III.C. 1 above).
The conclusion is that the c expansion is probably not
Sorel summable for at least some of these models, and re-
liable estimates for exponents in d =3 are hard to obtain

from the perturbative renormalization group. For the
more complicated interacting electron problem, even
high-order c expansions do not seem feasible using the
theoretical formalism described in this review. Further,
although for noninteracting electrons numerical tech-
niques have been used to determine the critical exponents
(Evangelou, 1990, 1991;Kramer et al. 1990), it seems un-
likely that similar techniques will be available for the in-
teracting problem in the near future. In summary, there
are no practical, controlled ways to calculate critical ex-
ponents for the metal-insulator transition in d =3.

Another, possibly related, question has been asked
with respect to the completeness of the nonlinear sigma
model. In deriving the model, gradient terms of higher
than second order have been neglected because of their
presumed irrelevance. Recent work (Altshuler et al. ,
1988; Kravtsov et a/. , 1988; Lerner and Wegner, 1990;
Wegner, 1990) has cast doubts on this approximation.
The main point is as follows. The dimension of an opera-
tor with 2n gradients, which to zero-loop order is 2 —2n,
making operators with n ) 1 irrelevant, acquires at one-
loop order a positive correction proportional to
n(n —1)s. For n ~~ these corrections are not small for
any c, and they have the potential for overwhelming the
negative zeroth-order term. The implications of this ob-
servation are not entirely clear. Possible scenarios have
been discussed by Wegner (1990), and more work on this
problem is desirable.

b. Symmetry considerations and renormaiizability

For the nonlinear sigma model describing noninteract-
ing electrons the symmetry properties have been dis-
cussed in detail, and renormalizability has been proven
(see Zinn-Justin, 1989, and Secs. III.B.4.a and III.C.1

above). This is not the case for the interacting model,
Eq. (3.118), which we have discussed in much of this re-
view. While it is clear that the interaction term S;„,in
the action breaks the symmetry of the noninteracting
nonlinear sigma model, the nature of the remaining sym-
metry properties of the full action has not been investi-
gated. Neither has it been proven that the full model is
renormalizable. If one neglects the particle-particle
channel, all existing (one- and two-loop) calculations in-
dicate that the theory is probably renormalizable with
five renormalization constants. However, in general one
cannot neglect the particle-particle channel, and in Secs.
V [e.g., Eq. (5.38c)], VII, and VIII we have seen that the
particle-particle channel contains unusual structures, as
far as field theories go, and renormalizability seems far
from obvious. It should be emphasized that nonrenor-
malizability would not necessarily render the theory use-
less (see, for example, Weinberg, 1983; Collins, 1984,
Chap. 5.7.6; Lepage, 1990), but it would be good to
know.
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4. Alternatives to the nonlinear sigma model

Given the problems with the nonlinear sigma model
discussed in the previous subsection, it would be nice to
have an alternative approach. In particular, it would be
desirable to develop a mean-field theory for the disor-
dered interacting electron metal-insulator transition. For
the special case of noninteracting disordered electrons
some progress has been made by studying the localization
transition on a Bethe lattice (Efetov, 1984, 1987; Zirn-
bauer, 1986) or in an ensemble of sparse matrices (Fyo-
dorov and Mirlin, 1991). Similar results are obtained by
treating the graded or supersymmetric nonlinear sigma
model in an effective-medium approximation (Efetov,
1988; Efetov and Viehweger, 1992). The resulting phase
transition is rather different from the one expected on the
basis of either the c=d —2 expansion approach or three-
dimensional computer simulations. In fact, the localiza-
tion transition on the Bethe lattice resembles the mean-
field spin-glass phase transition. However, it is possible
that a more conventional mean-field theory can be con-
structed for interacting disordered electrons. This is con-
ceivable because, as was discussed in Sec. IV, at the in-
teracting metal-insulator transition the critical exponent
P is not fixed to be zero, and therefore it is possible that a
finite upper critical dimension exists. Research in this
direction might start with the recent work on the Hub-
bard model in high dimensions (Metzner and Vollhardt,
1989). Alternatively an order-parameter description of
the interacting metal-insulator transition might be possi-
ble. The unsuccessful attempt of Harris and Lubensky
(1981) to give an order-parameter description of the
noninteracting metal-insulator transition may give some
inspiration in this respect.

5. The 2-d ground-state problem

In Sec. VIII the 2-d ground-state problem was intro-
duced. The basic point is that if the local moments dis-
cussed in Sec. X.B.1 above do not suppress triplet Auc-

tuations in a generic system, then in two dimensions the
nature of the ground state is not obvious. Naively the re-
sults of Sec. VI would suggest some type of random mag-
netic insulator, with unknown properties. However, the
situation could be more complicated. The results of Sec.
VIII indicate that this state will compete with an even-
parity spin-triplet superconducting state. Whatever the
outcome of that competition is, it seems likely that with
decreasing temperature the system will go through a
series of regions dominated by different fluctuations. Ex-
isting theory is not well suited to deal with the 2-d prob-
lem, which presents formidable technical difhculties al-
ready in the noninteracting case (Houghton, Schifer, and
Wegner, 1980).
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