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Kolmogorov's refined similarity hypotheses are shown to hold true for a variety of stochastic processes be-
sides high-Reynolds-number turbulent Aows, for which they were originally proposed. In particular, just
as hypothesized for turbulence, there exists a variable V whose probability density function attains a
universal form. Analytical expressions for the probability density function of V are obtained for Brownian
motion as well as for the general case of fractional Brownian motion —the latter under some mild assump-
tions justified a posteriori. The properties of V for the case of antipersistent fractional Brownian motion
with the Hurst exponent of

3
are similar in many details to those of high-Reynolds-number turbulence in

atmospheric boundary layers a few meters above the ground. The one conspicuous difference between tur-
bulence and the antipersistent fractional Brownian motion is that the latter does not possess the required
skewness. Broad implications of these results are discussed.
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with decreasing scale, so that scales far smaller than L
become statistically isotropic and homogeneous, this be-
ing the hypothesis of local isotropy. Kolmogorov further
assumed that the energy dissipation rate remains finite in
the limit of infinite Reynolds number.

Kolmogorov formulated this physical picture in terms
of the following two well-known hypotheses:

(1) The scales of motion r «L that dissipate most of
the turbulent energy are locally isotropic, and their
statistics are determined uniquely by (e), the global
average of the energy dissipation rate per unit mass, c,
and by the kinematic viscosity coeKcient v.

One can construct, from ( E ) and v, a length scale
q=(v /(s) )' and a velocity scale (v(E) )'~, which are
the Kolmogorov length and velocity scales, respectively. '

The first hypothesis is equivalent to the assertion that the
dissipative scales are characterized completely by q and U

and are independent of the large-scale details of tur-
bulence. For any positive integer ri, dimensional analysis
then yields the result that

( [b u ]") =0 "f„(rlrI),

A cornerstone of our understanding of high-Reynolds-
number Quid turbulence is the phenomenological theory
put forward by Kolmogorov (1941a). Kolmogorov visu-
alized that energy gets injected into a Quid Aow at some
large scale L, either by mechanical or thermomechanical
means, or by means of a large-scale instability. He fur-
ther visualized that the Quid motion at scale L would be-
come unstable and lose its energy to neighboring smaller
scales without directly dissipating it into heat. At high
Reynolds numbers, this process is supposed to repeat it-
self until one reaches a sufficiently small scale (now
known as the Kolmogorov scale) at which no further in-
stabilities are possible, and the energy is directly
dispersed to heat by viscous action. Kolmogorov as-
sumed that the rate of energy input at the large scales
and of energy dissipation at the small scales are equal to
each other and to the energy transfer rate across the
spectrum of intermediate scales. The anisotropy and in-
homogeneity at the large scales are thought to diminish

where Au(r)=u(x+r) u(x), u bein—g the x component
of the velocity vector u(x) with separation distance r
measured along x, and where the functions f„(rlrl) are
independent of the Reynolds number and of the details of
energy injection.

(2) For the so-called inertial range scales g«r «L
(assuming that such a range exists), the viscosity becomes
irrelevant and the statistics of b, u (r) depend only on the
global average of the energy dissipation rate, ( E ).

The second hypothesis means that the functions f„ in

Eq. (1) have to assume a form that will suppress v (which
manifests indirectly through U and rl). Elementary ma-

Note that the dimensions of c, are (velocity) /time or
(velocity) /length. The Reynolds number vq/v, based on the
Kolmogorov scales, is unity by construction —this being the
reason why turbulence subsides at scales much smaller than g.
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nipulations of Eq. (1) yield the result that 1. The first refined hypothesis

(2)

where the coe%cients K„are some suitable constants.
With the expectation that the K„are universal (in the
sense that they are independent of all large-scale
features), Eq. (2) expresses the global universality of tur-
bulence in the inertial range. The statements (1) and (2)
have equivalent forms in their spectral representation.
The encyclopedic work by Monin and Yaglom (1971)can
be consulted for further details.

Over a range of scales r such that r «L, the probabili-
ty density function of the stochastic variable

(4)

depends only on the local Reynolds number
Re„=r(rc„)'~ /v.

2. The second refined hypothesis

B. Intermittency corrections

The arguments used to derive Eqs. (1) and (2) ignore
many facets of turbulence, in particular, the intermitten-
cy of c.—by which one means that c. shows extreme vari-
ability in its spatial distribution. In the limit of infinitely
large Reynolds number, c is thought to be ill defined over
most of the space. In particular, intermittency of E.

renders the use of the global average &c, ) insufficiently
representative of its behavior. The first recognition of
the importance of intermittency is traced to a comment
by Landau (see, for instance, Landau and Lifshitz, 1963).
Although Landau's comment literally referred to the
nonuniversality that may arise from averaging c over
many nonuniversal large scales, Kolmogorov (1962) attri-
buted the recognition of intermittency effects to Landau.

Experiments (e.g. , Anselmet et al. , 1984; Stolovitzky
et a/. , 1993) have shown Eq. (2) not to be correct in gen-
eral. One has, instead,

(3)

where g„=n /3 —p„, and the so-called intermittency ex-

ponents p„are treated as corrections to the classical scal-
ing exponents n/3 [see Eq. (2)]. The only precise result
(Kolmogorov, 194lb) known from dynamical equations is
that p3=0. Experiments show that @2&0 and p„)0 for
all n )3, and that the p„become increasingly important
as n increases. Much effort has been expended in model-
ing this behavior. For a survey of these effects, see
Meneveau and Sreenivasan (1991}.

C. The refined similarity hypotheses

If Re„))1, the probability density function of V does
not depend on Re„either, and is therefore universal.
(Note: The hypothesis does not specify the probability
density function itself. )

The refined hypotheses have served as a vital reference
point in the research of high-Reynolds-number tur-
bulence. Although it was shown recently (Stolovitzky
et al. , 1992) that the probability density function of V
also depends on r when r is small, several aspects of the
hypotheses have been verified experimentally (Praskov-
sky, 1992; Stolovitzky et al. , 1992; Thoroddsen and Van
Atta, 1992}as well as by direct numerical simulations of
turbulence (Chen et al. , 1993; Hosokawa, 1993). This is
a remarkable situation because b.u(r) is a purely inertial
range quantity when r is an inertial range separation dis-
tance, whereas s„ is a mixed quantity (the dissipation rate
averaged over an inertial range scale). In view of the
large scale separation believed to exist at high Reynolds
numbers, it is indeed surprising (Kraichnan, 1974) that
their ratio (4) is essentially universal. (We may note ex-
plicitly that universality here means that the probability
density function of V is independent of r and s„.) Fur-
ther, in spite of their widespread use and significant ex-
perimental support, the refined hypotheses have not been
derived from first principles. Because of this, it is partic-
ularly difFicult to see how much of their content is
specific to fluid turbulence, or rather a property of gen-
eral stochastic processes. It is not clear whether any
broad statistical principle transcending the details of tur-
bulent motion requires the applicability of the refined hy-
potheses. This paper takes a step towards clarifying the
situation.

Kolmogorov's (1962) refinement of his earlier hy-
potheses was based on a proposal by Obukhov (1962),
who recognized that the role of the global average in the
earlier hypotheses should be assigned to.,local averages of
the energy dissipation rate. The proposal was,
e6'ectively, to divide the spatial domain into a collection
of ensembles, each of them characterized by a fixed value
of the locally averaged energy dissipation rate e,„where
c.„ is the average of c. over a volume of linear dimension r.
The refined hypotheses are stated below. (An entirely
new third hypothesis was added, but we shall not consid-
er it here. )

D. The scope of the paper

The intent of this paper is to show that a large part of
the refined hypotheses can be derived from general sto-
chastic principles unrelated to the Navier-Stokes equa-
tions. We cast the refined hypotheses in terms of general
stochastic processes and show that they hold for the clas-
sical Brownian motion as well as for the antipersistent
fractional Brownian motion (Mandelbrot and Van Ness,
1968); that is, we demonstrate for these cases the ex-
istence of a universal stochastic variable, just as Kolmo-
gorov hypothesized for turbulence. Recall that Browni-
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an motion results from summing uncorrelated random
increments and that the fractional Brownian motion ex-
tension of the classical Brownian process consists of
correlated increments. If we imagine the process occur-
ring in a one-dimensional spatial domain, with Z(x)
denoting the value of a realization of the fractional
Brownian motion at the spatial location x, we say that
Z(x) is a fractional Brownian motion with a Hurst ex-
ponent H (0 & H & 1) if the distribution of the increments
EZ(r) =Z(x + r) Z(x—) is Gaussian with zero mean and
with the variance (bZ(r) ) -r for large r. (To avoid
confusion, we use Z (x) for the fractional Brownian
motion and u (x) for the turbulent velocity. ) A fractional
Brownian motion with 0&H & 1/2 is said to be antiper-
sistent in the sense that positive increments for some x
imply (statistically) negative increments for x+r, and
vice versa. The range 1/2 &H & 1 is called the persistent
range: Positive increments for some x imply (statistical-
ly) positive increments for x+r. The special value
H= 1/2 yields the familiar Brownian motion, for which
successive increments are independent [see details, for ex-
ample, in Voss (1985, 1988)]. We shall derive an exact
closed-form expression for the probability density func-
tion of an equivalent of V for the classical Brownian
motion, as well as for the fractional Brownian motion-
the latter under some mild assumptions that are justified
a posteriori. We shall show that the fractional Brownian
motion result for a Hurst exponent H=1/3 agrees in
large measure with the experimental probability density
function of V for turbulence. A conspicuous difference
between turbulence and other stochastic processes will be
pointed out, together with some implications of the re-
sults.

II. A CONVENIENT RESTATEMENT
OF THE REFINED HYPOTHESES

The energy dissipation rate per unit mass in three-
dimensional turbulence is exactly written as

potheses, which can therefore be stated as a relation be-
tween the velocity increments

(6)

and the energy dissipation rate in a segment of linear size
r, given by

re„=15v I"+" ""
dx .

Given that b,u(r) and re„rae. both functionals of the ve-
locity gradient [see Eqs. (6) and (7)], they are correlated
variables in general.

Discretizing the integrals (6) and (7) and normalizing
a11 lengths by the Kolmogorov scale g and a11 velocities
by the Kolmogorov velocity v, we may write Eqs. (6) and
(7), respectively, as

(Sa)

and

r~r =+X =Y
1m'(E) (Sb)

Here, X; =du/dx
~ il/(rI(E) )'~ and p =r/Ert. The

variables X, are simply the normalized (and smooth) ve-

locity increments across a distance Eg, with K being the
number of Kolmogorov scales over which smoothness
obtains. Because of the intermittency of c, the size of the
smooth regions varies from place to place —being small
when e„ is large and vice versa. In the sums (Sa) and (Sb),
X, is evaluated at location x; and the following X;+& at
x;+ &

=x, +Kg.
In the example of the fractional Brownian motion

Z(x), X; represents the increments AZ=Z(x;+I)
—Z(x;) and p the ratio r/K (without reference to the
scale q). The definitions apply here as in Eqs. (8), yield-
ing

(5)
b,Z(r)/E =S (9a)

m„/15K = Yz, (9b)
where the x, (i =1—3) are the Cartesian components of
the vector position x and the u; are the components of
the velocity u in the same coordinate system. Local isot-
ropy allows the global average of the full energy dissipa-
tion to be expressed in terms of the one-dimensional ve-
locity derivative as ( s ) = 15v( (du /dx ) ) (Taylor, 1935).
It is traditional in the turbulence literature to assume on
this basis that s and (du/dx) have the same scaling
behavior. .'This assumption is not strictly true because
the statement about equality of averages cannot generally
be translated to one about equality of scaling properties.
However, Chen et al. (1993) have shown that a con-
sideration of the full expression for c does not
significantly alter the conclusions about the refined hy-

2Chen et al. (1993) obtained the full dissipation from a direct
numerical solution of the Navier-Stokes equations, and demon-
strated that the one-dimensional representation of the full dissi-
pation given by Eq. (5) is adequate in the context of the refined
hypotheses. However, the simulations of Chen et al. (like other
numerical solutions of Navier-Stokes equations) pertain to low
Reynolds numbers. If the demonstration of these authors were
to hold for high Reynolds number as well, the experimental
work —which, by necessity, is almost always restricted to
measuring only the one-dimensional surrogate of Eq. (5)—
would be on firmer ground. This would be true of the present
work as well.
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with w„= 15+",[Z(x +i ) —Z(x +i —1)] . The new dissi-
pationlike parameter w„ is defined to coincide with re„ in
the case of turbulence [see Eq. (7)]. In analogy to the sto-
chastic variable V of Eq. (4), we wish to study the vari-
able

aZ(r) rC' H-S,
151I F II

w„

in particular, its conditional probability density function
for given values of w„and r. (For later notational simpli-

city, this conditional probability density function will be
designated as the pdf conditioned on w„and r.) In partic-
ular, we wish to prove that the pdf of V conditioned
on w„ tends to a universal form for large w„and r. This
is the appropriate statement of the problem in the con-
text of the refined hypotheses.

In the following sections, we develop a formalism for
computing the conditional pdf of V~ for the general
case. We first provide results for an independent Gauss-
ian X; as well as for a non-Gaussian independent X, , and
subsequently for fractional Brownian motion. We shall
then return to the problem of turbulence to examine the
implications of the results just mentioned. To help sus-
tain focus, it may be useful to reiterate here the central
aspect of the approach, as well as to anticipate its princi-
pal conclusion. The approach is to demonstrate that
most aspects of the refined similarity hypotheses, particu-
larly the existence of the universal stochastic variable V
of Eq. (4), hold for Gaussian processes (with either un-
correlated or correlated increments) as well as for non-
Gaussian uncorrelated processes. The only significant
point of departure from turbulence concerns the (rela-
tively small but important) skewness of the pdf of the
variable V.

P
U;=Y

i=1
Now, in terms of the U variables, we may write the joint
pdf as

(12b)

P~(S, Y;p)= dU, . . .dU„Pp(U„. . . , U~)

X5(S~ —v'P U, )
' 1/2

(13)X5 Y~
— g U,

i=1

where 5(x) is Dirac's delta function, P~(U&, . . . , U~) is

thejoint pdf of U1, . . . , U~ given by

PU(U„. . . , U )

U, (p, 8,$„.. . , P~ z) =p cos8,

Uz(p, 8,$„.. . , P 2) =p sin8 cosP, ,

U3(p, 8,$„.. . , $ 2)=psin8sing, ,

U~(p, 8,$„.. . , P 2) =p sin8 sing, cos(t2,
(15)

=Px[X,(U„. . . , U~), . . . , X (U„.. . , U )],
(14)

and Px(X„.. . , X ) is the joint pdf of X„.. . , X„. In
writing Eq. (14) we have used the fact that the Jacobian
of the transformation given by Eq. (11) is unity.

At this point, we introduce a p-dimensional spherical
polar coordinate system related to the Cartesian systems

(U„U2, . . . , U ) through (see, for example, Sommerfeld,
1949, Appendix IV, p. 227)

III. THE GENERAI PROCEDURE

We start by studying the joint pdf of 5 and F at
fixed p, represented by P2 (S~, Y~;p ). If the X; are
taken to be components of the p-dimensional vector
X=(X&, . . . , X~ ), then X belongs to both the hyperplane

,X;=S and the hypersphere gf,X; = Y~. It will

prove convenient to rotate the coordinate system X to a
new system U so that one of the new axes (say, U, ) is or-

thogonal to the hyperplane. The change of coordinates is
governed by

U. = g R;JX, ,

where R,. is an orthogonal matrix with R,, = 1/V'p.
(The remaining components Rk~, 2 & k &P, can be com-

puted using, for example, a Gram-Schmidt orthogonali-
zation procedure, but are irrelevant for our immediate
purposes. ) The second equality conditions in Eqs. (8) can
now be rewritten as

=p '(sin8)" (sing, P . (sing 3) .

(16)
The integral (13) can be partially performed in polar
coordinates; noting that (gf, U; )'~ =p and

U, =p cosO, we first integrate over p and then over 0, to
obtain

(p —3) /2

P (S,Y;p)= — 1— :-(&~,S~;p ),

U i(1»8 4i . 0p-z)
=p sin8 sinks

' ' sin(t p
—3 c skp —2

U (p, 8,$„.. . , $ 2)=psin8sing, . sing 3sing~ 2,
where 0(p& 00, 0&8&m, 0&/; &vr for i =I, . . . , p —3

and —m (P 2 & ~. The Jacobian of this transformation
is

a(U„. . . , U, )
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:"(Y,S;p)= f dco&PUpP pP

S—,Uz( Yp, 8*,8's), . . . , Up(Yp, 8*,$'s )

(18)
0*=cos

Sp

p Y

dco~=dg, . dP 3dg 2(sing, )
. (sinPp 3) .

A11 the results so far are exact. The main task that
remains now is the evaluation of the integral (18) and
thus the joint pdf P2 of Sp and Yp. From this joint pdf,
one may compute the pdf of S conditioned on Y as

P2(Sp, Y;p)
P, (Sp ~ Yp;p) = (19)f dSPP2(S, , Y,';p )

and compare its properties with those expected from the
refined hypotheses. This is our central purpose. Various
special cases of Eq. (19) will now be considered.

where Q&(p) =rr(p —1)/I [(p —1)/2] is the integral over

p, through pp 2 of (sing, )p (sinpp 3). The proba-
bility of S conditioned on Y is then computed accord-
ing to Eq. (19) to be

P(SpiYp;p)= 1—1

p YpQs(p)

'
(p —3)/2

p

p Y2
(22)

1
fH Bm ptpf (V Y; )=

p p gp

where Qs(p)= Jo(sin8) d8, as expressed in closed
form in the statement of the theorem. From change of
variables to V~ =S /Y, one obtains the pdf of Vz
conditioned on Y to be

IV. NORMAI LY DISTRIBUTED INDEPENDENT X;:
THE CLASSICAL BROWNIAN MOTION X 1—

2
V~

Y2 —4H
p

(p —3) /2

(23)

Let the X; be identically distributed independent ran-
dom variables with Gaussian density with zero mean and
variance 0. . We then have the following exact result.
(Even though H= 1/2 for this example, it is instructive
to leave it as a variable for comparison with the general
case of Sec. VI.)

Theorem: For any integer p & 2, the probability density
function of V~ =S /Y„conditioned on Y is indepen-
dent of Y' only when H = 1/2. For this case, the condi-
tional pdf assumes the form

p'2

f(V~ IYp;p)= — 1—
pQs(p) .

'
(p —3)/2

V~2 (p, (20)

where Qs(p) =(rr/2p)[I (p —1)]/[I (p/2)], written in
terms of the gamma function I (x).

Proof: For this special case, we can perform the in-
tegral (18) completely. The assumption of Gaussianity
and independence implies that the joint pdf
Px(X&, . . . , Xp)=exp( +PtX; /2cr—)/(2no ) Equa-.
tion (14) then leads to the result PU( U&, . . . , Up )

=exp( gpiU; /—2o )!(2mcr )", whereby the integrand
in Eq. (18) becomes independent of the integration vari-
ables P, amounting to exp( —Y /2o )/(2mo )P . We
thus find that

It is easily seen that fH( V~ ~

Y';p) is independent of Yp

only for H= 1/2, in which case f,&2( V~ ~
Yp', p) has the

form stated in the theorem. The theorem can be restated,
for the case of independent velocity increments, in terms
analogous to Kolmogorov's hypotheses:

(Hl) The pdf of the stochastic variable Vz =Sp/Yp
conditioned on Yp depends only on p.

(H2) When p ))1, the pdf of V~~ becomes indepen-
dent ofp', in fact, it tends to the normal distribution.

Plots of f(V~~ ~Yp;p) for difFerent values of p are
shown in Fig. 1. These functions are nonzero only over
the interval (—&p, &p ). The distribution for p =2 is
clearly bimodal; that for p =3 is uniform between —&3
and &3. The trend towards a Gaussian distribution sets
in for larger p; there is negligible departure from Gauss-
ian (dashed line) for p =50.

0. 0

(p —3) /2
p

p Y2

x exp( —Y /2o )

(2mcr )P

P2(S„,Y;p ) =Q&(p) 1—

(21)

pl~. l. plots of f( Vs ~ Y;p) for different values of the param-
eter p when the random increments X; are assumed to be in-

dependent and Gaussian.
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V. NON-GAUSSIAN INDEPENDENT PROCESSES

(V„" ~r, ;p)=(n —1)!!, (24)

where (n —1)!!=(n —1)(n —3) 3. 1. Equation (24)
implies that V„z is a Gaussian random variable with zero
mean and unity variance. In particular, for p »1, the
pdf of V„& is independent of p and F . For an informal
proof of the result, write the nth power of S as

(25)

where the sum extends over all the possible values

0 ~i ~n with g, i =n, and we note that, when p))1,
most of the contribution to Sp is likely to come from

terms containing even i (because the terms with odd i

generally possess alternating signs and are likely to can-

cel out}. It is clear that the terms with i~ =0 or 2 dom-

inate the sum, so that we may rewrite Eq. (25) as

We now explore the consequences of relaxing the hy-
potheses that the X; are normally distributed, assuming
still that they are independent.

Let V„o=S~/1'~ and the X, be independent random
variables with zero odd-order moments and nondivergent
even-order moments. These conditions imply that
( V„"o~F~;p }=0for odd n W.e wish to show that, for

p » 1 and even n ~ 2,

buted according to an exponential density g, i.e.,

g(X)=—,'exp( —
~X~ ), (30)

0.4
Yp=1, 3, 5, 7, 9

&Y &=6
P

for which (X )=2 and (F~)=2p. We have computed
the pdfs It ( V„o ~ F;p ) of V„o =Sz /F~ conditioned on Yz
for diferent values of p. The values of the conditioning
parameter Y~ are taken as windows of size ( Fz ) /3 cen-
tered at the values indicated in Fig. 2. Figure 2(a} shows
bimodal distributions for p =3 with some dependence on
F . Recalling that the equivalent distribution for Gauss-
ian X, is uniform for p=3, we conclude that the condi-
tional distributions of V„G for small p do depend on the
distribution of X;. For p =10 [Fig. 2(b)], the distribu-
tions already exhibit Gaussian-like behavior, while for
p =50 [Figs. 2(c) and 2(d)] they hardly dier from Gauss-
ian. As p increases, the di6'erences among the various
curves corresponding to di6'erent values of F diminish.
In particular, for p=50, all four curves coalesce quite
well.

Again, the behavior just discussed can be described in
terms analogous to Kolmogorov's similarity hypotheses:
(Hl) the pdf of V„o conditioned on F depends on Yz
and p; (H2) for p ))1, it tends to a Gaussian with zero
mean and unit variance. This behavior is independent of

S"=
p (26)

where i. takes only the values 0 or 2. This statement
could be made more rigorous by bounding the errors
made in this approximation, but this will not be attempt-
ed here.

A similar analysis for Y, with i assuming only values
of 0 or 1 in Eq. (27a) and values of 0 or 2 in Eq. (27b),
would yield

Yp=5, 11,17, 23, 29

yn
p

i + +i =n/2
1 p

2ll 21
(n/2)!X ' . X ~

1 p (27a)

i + +i =n
1 p

E I E

(n/2)!X ' X' .1 p (27b)

Yp=52, 84, 116, 148

Comparing Eqs. (26) and (27b), we obtain

(S,"ir, ;p)= „" I;".
2n/2( /2)~ P (28)

la-' .-

10

Noting that n!/[2" (n 2/)!]=(n —1)!!,we restate Eq.
(28) as

(V„" ~r, ;p}=(n —1)!!

0 2

na

I

I

10 '
0 2 4

na

for p &) 1, as required. We thus conclude that in this lim-
it the pdf of V„G conditioned on 7 is independent of p
and F . Actually, it tends to be Gaussian with zero mean
and unit variance.

We now illustrate these results numerically. For
definiteness, we consider that the variables X; are distri-

FIG. 2. Plots of h(V„o~Y~;p), the conditional density of
V G Sp / Yp given Yp, for di6'erent values of the parameter p,
when the X; are exponentially distributed. (a) p =3, (b) p =10,
(c) p =50, and (d) p=50, with logarithmic ordinates. The
dashed lines in each figure represent the Gaussian density with
zero mean and unity variance.
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the particular distribution chosen for X, although details
do depend on p for small p.

A final remark is in order. The present results look
similar to the central limit theorem —a special case of
which states that the random variable S /(p(X ) )'
has a limiting normal distribution with zero mean and
unit variance for large p —but say something more be-
cause we have acquired more information by condition-
ing on Y . It is not difticult to deduce the central limit
theorem from the present result that S /Y tends to a
normal distribution for large p in the ensemble of S for
any fixed Y . Now, according to the law of large num-
bers, the probability that

~ Y~/(p(X ) ) —1~ (s (for s as
small as desired) approaches unity for sufficiently large p.
Therefore the unconditional pdf of S /(p (X ) )'/ can be
made as close as desired to the conditional pdf of S /Y
at Y„=(p(X ))' . Since the latter does tend to a
Gaussian distribution with zero mean and unit variance,
the central limit theorem is clearly recovered.

Vl. CORRELATED PROCESSES:
FRACTIONAL BROWNIAN MOTION

So far, we have considered the case of independent
variables X; (with and without the assumption of Gaussi-
anity). In turbulence, the X,. represent velocity gradients
[see the definition below Eq. (8b)] and are clearly not in-

dependent variables. The crucial question is then: %hat
happens when correlations are allowed between X 7 In
order to apply Eq. (19), we have to be able to compute
:-(Y,S;p) by performing the integral (18). That was

done exactly in Sec. IV for Brownian motion, but one
does not know the joint pdf PU( U„. . . , U~ ) for more
general processes. To estimate =( Y,Sz',P ) for the gen-

eral case, we first note that

U]

FIG. 3. The sphere represented by Eq. (8b) and the hyperplane
represented by Eq. (8a) for p =3. The intersection of these two
geometric objects constitutes the domain of interj. ation 0+ qf
Eq. (18). It is characterized by Y~ and R~ = F~ sin8.

A suitable analytical expression for (S~ ), valid for the
entire range ofp (or r),

gg 2(H —1 j 2(S')-
(g+ 2)l —H (32)

too

i 0-'

will prove useful later. As can be seen from Figs. 4(a)
and 4(b), this expression fits the fractional Brownian
motion data very well. In fact, a deeper reason for its
choice is that a matched asymptotic analysis of structure
functions in turbulence yields precisely this expression
for the moments of velocity increments (Sirovich et ai
1993; Stolovitzky et a/. , 1993).

Collecting this information, we have . Ps (S~ )

=exp( —S~/2(S ))/(2m(S ))', with (S ) given by
Eq. (32). The role of p in Eq. (32) is now to set the. size of
the Auctuations of S . W'hen the domain of integration is

0& as in Eq. (18), the size of the fiuctuations has to be

=]/@Ps (S~), (31)

where the integral is taken over the (p —1)-dimensional
hyperplane, and I'z is the pdf of S . Compare this with

P

Eq. (18), which is the integral over the sphere 0& given
by the intersection of the hyperplane (8a) and the hyper-
sphere (8b), as shown schematically in Fig. 3 for p =3.
8'e formally make the first assumption that the two in
tegrals (18) and (31) haue the same functional form.
While this appears to be reasonable, it can only be
justified a posteriori.

We can now obtain Ps (S ) from the knowledge of the

pdf of b.Z given that hZ =KS~ [see Eq. (9a)]. We know
from the definition of fractional Brownian motion that
bZ(r) is Gaussian with variance (bZ(r) )-r for
large r. Therefore Ps (S ) will also be a Gaussian

with zero mean and variance (S~ ) =K ( ( 4Z ) )-E '~ "p ~. The last step uses the definition that
r =pE.

0
I 4 l t I I fl! I

(02 (03 )04

V

&oo-
to-'-
10
10
&0-"-
&
0-'

10
10 10

&el

10
i I

&04

I
FIu. 4. The second-order moments of 4Z( r) =Z(x + r)
—Z(x), the increments of the fractional Brownian motion
Z(x), normalized by the root-mean-square of 4Z (circIes), and
the fitting of ((b.Z/hZ„, ) ) =Ar /(8+r )' .(solid line). (a)
H=0. 25, A =9.10 ', B=100, (b) H=0. 75, A =5.10 ', and
B=40.
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+2mo (Y~,S~,p)
exp

S
2cr (Y~,S~,p)

(33)

where

pro(YR )
o (Y S )=

[Co+( Y R„) ]' (34)

and R = Y„sin(g )= Y' (1—S /pY )'/ . The constants
cro and Co could be different from the constants A and 8
in Eq. (32), besides being p dependent in principle.

The change of variables (9), together with Eq. (19),
serve to compute the pdf of Vfa conditioned on m,
[defined just below Eqs. (9)] in the form

controlled by Y and R (see Fig. 3). Our second assump-
tion is that, in identifying the integral (18) with
+pPs (S ), we use Eq. (32) with p replaced by Y R,
even though any of the three combinations Y, R, or
R Y would have served in principle (since all three com-
binations behave approximately as p(X ) when p ))1).
Of the three combinations, we have chosen the last,
which fits the data best.

The result of these two assumptions is

=(SB,Y;p)

compare Eq. (36) for Prs ( Vfa ~tU„;r) with the numeri-

cally generated pdfs [primarily as an a posteriori test of
the assumptions made in evaluating the integral (18)], we
produced fractional Brownian motion signals with
H =0.25 and H =0.75 by the so-called successiUe random
addition method (discussed, for example, by Voss 1985,
1988). For H=0. 25 we have plotted the numerically
generated pdf of Vfa for fixed r conditioned on m„ for
r =10 [Fig. 5(a)] and r =50 [Fig. 5(b)]. Each figure con-
sists of several normalized histograms with 50 bins and
was computed from at least 10 points. Each histogram
corresponds to a particular bin of values of ur„, listed in
the figure captions. For r =10, each m, has a distinct
pdf while for r =50 all pdfs collapse onto a Gaussian, ex-
cel. for small values of w„. Figures 5(c) and 5(d) show
the prediction of Eq. (36). The parameters cr, C, and E
were chosen to fit the histograms for r= 10 and were held
the same for all curves with r=50. We observe good
agreement between Eq. (36) and the numerical calcula-
tions, thus justifying the assumptions made in deriving
the equation.

In contrast, the results obtained for H= 0.75 and
shown in Fig. 6(a) for r=10 and in Fig. 6(b) for r=50
yield no trend towards a unique pdf shape: from Eq. (36),

I

(b)

Pfa (Vra ~w„;r)=P,
H

Vramw. wr r
E 15K' E

(35)

10 '

num. exp t 10

Pfa ( Vfa ~ w„; r ) =p 1—

1

cr(Vra, w„,r)

2o (Vfr, w„, r)

where P is a normalization constant,

Further, Eqs. (19), (17), and (33) yield
{T/K —3) /2

1 —2H
VNr

10 —2

10 —2

I l

—1 0

r=10
theory

I ~ I

—1 0

10 —4 —2 0

10 —4 —2 0

o ( 1 —15Vtn /rw„' )
a (VFB,w„, r)=

[C/w +(1—15V /rw' )]'

(37)

o'=oo/15, and C=Co(1M') . All the information
about the joint pdf of the X, needed to compute Eq. (18)
has been condensed here in the three parameters cr, C,
and K, which have to be obtained empirically.

Equations (36) and (37) show that the regimes
0&H &1/2 and 1/2&H &1 behave differently. In the
former range of H, Pin ( Vfii ~w„;r) tends to be indepen-
dent of m„and r when the latter quantities are sufficiently

large, but this trend toward a unique pdf does not obtain
in the latter range of H. To verify these predictions and

Vra Vf E]

FIG. 5. Conditional probability density functions of VfB plot-

ted in (a) and (b) for a numerically generated fractional Browni-

an motion signal with H =0.25. (a) r = 10. Each curve

correspondds to w, /( w„)held fixed in the following narrow in-

tervals: [1,2] (innermost curve), [2,3], . . . , [10,11] {outermost

curve). (b) r =50. Each curve corresponds to w„/(w„) held

fixed in the narrow intervals: [10,15] (innermost curve},

[15,20], . . . , [60,65] (outermost curve). {c) and (d) show corre-

sponding theoretical predictions of Eqs. (36) and (37) for
parameter values E= 15, C =7, and o. =2: (c) r = 10,
w„=2,3, . . . , 11; (d) r=50, m„=15,20, . . . , 65. The dashed

curve in (b) and (d) represents a Gaussian with a variance of 2,
which is the asymptotic limit of the theoretical curve for r »1
and w, /(w„) ))l.
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1O' and to what range of r is the analoogy pp
e ir moment of Au can be written as

10

10 '

Vf Bn

Comparing this expression with Kolmo or
exact relation valid fa i or inertial range turbu

a ocal isotropy holds),

&& ( )'&= —
-', &

(39)

(40)

10'

10

10-'

0

&io--

p 10

r=50
theory

0

Vf~ V

FIG
fBa

IG. 6. Conditional probability densit function
a an or a numerically generated fractional Brow '-

(a) r=10. Each cu

sponds to w„/(ur„) held fixed in the fo

ac curve corresponds to io„/(w„) held fixed

in the narrow intervals: i10 15'
(innermost curve). Corres ondin

1 d' tlo of Eq. (36) d 3s. and (37) are plotted in (c) and (d):

c r=,w„= 1,2, . . . , 10 with parameter values E=20, C =0
and o =0.5; (d) r=50, w„=10,15, . . . 60

, and o. =0.25.

Vll. HIGH-RE YNOLDS-NUMBER TURBULENCE

It is helpful to restate the rinc' p o a
a or antipersistent fractional Bro

probabilit da i i y ensity function of the variable V co
na Brownian motion the

fB

(36) Since V is the
an i y w„, is universal and given b E

e quantity analogous to V
turbulence —and the latter la s a

0 in

p
e ypot eses —the principal task no

th' u'lit'tive 'ndi a ive an quantitative corres onden
h d' 1 df f V

parison is the followin
e basis of com-

e o lowing. For fractional Brow
'

motion, we can write b,Z(r)= V w in

en o w, for large enough r. If this same he-

nomenology is assumed to hold f
write

o o for turbulence, we can

hu(r) = V(rc„) (38)

where V is independent f „ f
One may ask: %'hat is

o rc„or sufBcientl 1y arge r.

fractional Brownian moti 1

a is t e value of H that makesma es the
ian motion ana1ogy hold for turbulence

the pdf is non zero onl( rw1 —2H
y over the range V

rw, , a range that shrinks with increasin
ures 6(c) and 6(d) hs ow analytical redict'P o g g

'
y wi t e numerical data. (The

eters, o., C, and E 1' d
' '

s
difterent values of r.

n isted in the ca tionsp
'

s are different for

io':

~ - 10'
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or re„r) E in the intervals 0.1

[20,22] [3033] [4044] [50 55] [80
curve . orresponding theoretical predictions of

o. =2 are plotted in (c) and (d) F
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1 0.5, 1, 3, 5, 7 9 1
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y p tie limit of the theoretical

one obtains H=1/3. This remark en

g, with V indepen-rc„ in the inertial ran e

brie iscuss1on also points to th 1s o e imitations of
e comparison with turbulence. %'hil he corn e. i e t e conditional

is as
or antipersistent fractional Brownian motion

asymptotically Gaussian it is cl f
i ion o consistency between Eqs. (39) and (40) that

sk
V = —4/5, showing that the pdf f V

'

kewed (and hence cannot be st
'

1 6
o is negativel

it
e s nct y aussian). Even so

turns out that many features of V aures o are similar to
o . n particular, Stolovitzky et al. (1992)

showed that the experimental V f 1a or arge r is close to
aussian in its overall shape. W h 11e. e s a return to the im-

p ications of this observation t th'a is point, it offers
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1X exp
0 T

V2

20 y

where P is the normalization constant as before,
Re„=(r/ri)(rE„/ri(E) )' is the local Reynolds number,
and

0 (1—15V /Re„)
0 2

2 2 2j3[C/(rE„/ri(E)) +(1—15V /Re„)] ~

The detailed applicability of Eq. (41) to turbulence is
what we wish to explore.

To this end, we have analyzed atmospheric turbulence
data at high Reynolds numbers. Defining V as in Eq.
(4), we computed the experimental pdfs of V conditioned
on re„/ri(E) for difFerent values of r Figu. res 7(a) and
7(b) show these experimental results for r/i)=14 and
144. The corresponding values of rc.„/i)(E) are listed in
the captions. Figures 7(c) and 7(d) present predictions of
Eqs. (41) and (42). The parameters o, C, and E were ob-
tained by Atting with the curves for r/g=14 and then
applied to r/g= 144. The nearly uniform distribution
for small values of rc„/ri(e) and the gradual appearance
of bimodal behavior for larger values of r E„/i) ( E ) ob-
served in experiment are duplicated by the formula very
well. Note that the formula shows that the pdf of V is
nonzero only in the interval [—(Re„/15) '~,
(Re„/15)'~ ], this being of some importance for small I.
As the local Reynolds number Re„ increases, the scale for
V will be given by 0.. Such bimodality is expected at

Velocity measurements were made in the atmospheric surface
layer at 6 m above the ground over a wheat field. The micro-
scale Reynolds number, based on the root-mean-square velocity
and the Taylor microscale, was estimated to be about 1900.
Data at a microscale Reynolds number of 1500 were also ac-
quired at about 2 m above the roof of a four-story building. Ve-
locity fluctuations were measured using a standard hot wire {5
pm diam, 0 6 mm length) operated on a DISA 55M01
constant-temperature anemometer. The anemometer voltage
was digitized on a 12-bit digitizer at sampling frequencies of 10
and 6 kHz. Some segments of the data were linearized. Further
details of data acquisition and processing are given in
Kailasnath (1993). For further analysis, we interpreted the
time-series data as a spatial cut by invoking Taylor s frozen Aow

hypothesis (according to which turbulence convects undistorted
at the local mean speed). Stolovitzky et al. (1992) provide some
details of the data manipulations and a brief account of the tests
made to ensure their credibility.

suKcient encouragement for exploring the application of
Eq. (36) to turbulence. This exploration becomes trans-
parent if we replace Vni by V, w„by re„/ri(, e)i, r by
r/g, and H by 1/3. Equation (36) then reads as

15V
'

(,r/Kq —3)/2

PT [ V
~
( r c,„/i) ( E ) ); r /ri] =p 1—

Re„

Re„—15o . When comparing Figs. 7(b) and 7(d), we ob-
serve that the trend towards the asymptotic pdf (Gauss-
ian with 0. =2 and represented by the dashed curve in
both figures) emerges more slowly in the theoretical
curves. This departure occurs probably because the
value of K (chosen at r /il = 14) is unsuitable for
r/q= 144. The overall features of the experimental pdfs
are nevertheless well reproduced by the theory.

A further experimental aspect duplicated well by the
theory is that the pdf of V for small r depends on both r
and the local Reynolds number Re„[not merely on Re„
as stated in the first hypothesis); see Stolovitzky et al.
(1992)]. This aspect emerges clearly from Eqs. (41) and
(42). For r ))i) and Re„))1 (more precisely, for
Re, ))15cr ), one may show PT(V~(rs„/i)(E));rli1) to
tend to a Gaussian with zero mean and asymptotic vari-
ance cr z given by

(43)

Further, 0 z depends only on re„/i)(E) and tends to o'

for big enough rE„/il(E). This is essentially the content
of the second hypothesis.

We have already pointed out that Eqs. (41) and (42)
yield a symmetric V in contrast to the experiment and to
the four-fifths law, both of which y1eld fin1te skewness.
Operationally, the skewness information is contained in
the joint pdf of X„.. . , X in Eq. (18) and can be includ-
ed by using a more suitable approximation to it than Eq.
(33). A Gram-Charlier expansion, or some physical
modeling like that used by Castaing et al. (1990) in the
context of velocity increments would be adequate for this
purpose, but the basic question remains: Why does the
conditional pdf of V~ show strong similarity to tur-
bulence even though it explicitly violates Eq. (40)—
whose interpretation (Monin and Yaglom, 1971) is that it
describes the energy transfer down the scales? The
answer lies in the circumstance that one is examining the
pdfs of V (and Vrii ) conditioned on rc,„(and w„). This re
suit implies that the conditional statistics are essentially
indifferent to the energy transfer process as long as one
averages them properly aver ensembes offixed dissipation

A further dift'erence between the fractional Brownian
motion results and turbulence emerges by comparing the
properties of rc, and of its fractional Brownian motion
counterpart m, . It can be shown numerically for frac-
tional Brownian motion (and analytically for the Browni-
an motion) that for sufficiently large r, ( w„~) -rq (where

q is some real number), while turbulence experiments
(Meneveau and Sreenivasan, 1991; Sreenivasan, 1991)

4This is a convenient and systematic way of representing a pdf
that is close to the Gaussian; see, for example, Lumley (1971),
Chap. 2.
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show that ((rs, )~)-r " with nonzero intermittencyP3

exponents p [defined in Eq. (3)]. In the spirit of the mul-
tifractal formalism (for example, Halsey et al. , 1986), this
implies a local scaling m„-r for fractional Brownian
motion while re„-I' for turbulence, where the exponent
a varies between o.';„and o. ,„, a range related to the
behavior of high-order moments ((rs„)~) for q~+~.
It is further known (Sreenivasan and Meneveau, 1988;
Meneveau and Sreenivasan, 1991) that ct;„&1, em-

phasizing that c,„has large excursions. For the fractional
Brownian motion, on the other hand, the excursions of
w„/( w„) are much milder.

In spite of these differences, we wish to emphasize the
remarkable commonality between the fractional Browni-
an motion results obtained here and turbulence. Not
only do the fractional Brownian motion processes possess
a universal pdf for the quantity analogous to V, but their
many properties are very similar for small r and for the
inertial range r. Again, we are prompted to ask: How is
it possible for two processes having such different statis-
tics in one aspect (r E„and w„) to share (almost) the same
statistics in another aspect (V and VtB )~ The key once
again resides in the conditioning of the pdf. %'hen it is
conditioned on r E„(or w„), the features of V (or Vts ) be-
come independent of the detailed statistics of the process.
The statistics of rs„(or w„), however, are important
when computing the unconditioned statistics of b, u (or
b,Z). It is known for turbulence (Kailasnath et al. , 1992)
that the pdf of Au behaves like a stretched exponential
exp( —c~b, u ~r)—with stretching exponents y depending
on r and varyin. g from @=0.5 for r-g to y-2 forr-I —while fractional Brownian motion, by definition,
possesses a Gaussian pdf of hZ.

Finally, we have so far concentrated on dissipative and
inertial range scales without reference to scales on the or-
der of the large scale. For such scales, u (x + r) and u (x)
become statistically independent, and the equivalent of
Eq. (32) is not valid anymore; instead, we have
(bu(r) ) =2(u ). One might argue on physical
grounds that the same should hold for ( hu (r)

~
rs„;r ), at

fixed r in the inertial range. In effect, the condition
re„))gc means that at least one large peak of dissipation
has occurred in a segment of size r (across which the ve-
locity increment is taken). Such peaks of high dissipation
essentially separate correlated turbulent structures: The
larger the dissipation in that segment, the more
"different" are the structures. Such structures will have
originated either from the same big structure by fragmen-
tation and repeated processes of stretching and folding or
from different large-scale structures, or both. Either situ-
ation would produce a break in correlation, as was ob-
served in numerical experiments of Chen et al. (1993).
This efFect, as well as the inclusion of skewness, will be
discussed elsewhere.

Vill. CONCLUSlONS

We have shown that an essential aspect of
Kolmogorov's refined similarity hypotheses, namely, the

existence of a universal variable V, holds true for more
general processes than previously believed. In particular,
the hypotheses apply to generic stochastic processes such
as antipersistent fractional Brownian motion and classi-
cal Brownian motion. This applicability is not ubiqui-
tous, however, because it fails to encompass persistent
fractional Brownian motion. Even in the absence of pre-
cise conditions under which the refined similarity hy-
potheses are valid, we conjecture them to hold only for
antipersistent processes. A statement with greater
dynamical content must await further work.

Equations (41) and (42) appear to capture the main
features of the experimental pdf pT(V~rE„/g(E);rig)
suf6ciently well, even though there are two major
differences between antipersistent fractional Brownian
motion and turbulence: The lack of skewness of VfB
(while V is skewed) and the lack of multifractality of
w, /r (a known property of the box-averaged dissipation
rate E„). The process of conditioning is thought to
render these differences irrelevant to the statistical prop-
erties of V; further, the skewness can be incorporated ad
hoc in Eq. (33), for example, by means of a Gram-
Charlier expansion.

Kolmogorov's famed first and second refined similarity
hypotheses appear now to stem from general stochastic
principles and to be not necessarily sensitive to many as-
pects of Navlcr-Stokes cquatlons. Th1s 1s thc main con-
ceptual message we wish to convey. Actually, we think it
possible to find the expression of Eq. (33) deductively by
maximizing the entropy of the joint pdf of X&, . . . , X
conditioned on Y, with constraints from the second mo-
ment of 5 . The situation would then be analogous to
the derivat1on of the Gibbs distribution in statistical
mechanics (e.g., Goodstein, 1985, Chap. 1), namely, the
maximization (subject to some constraints) of the entropy
of the probability of the microstates, this being indepen-
dent of the detailed dynamics driving the system. If this
goal can be achieued, Kolmogorou's refined similarity hy
potheses mill cease to be hypotheses, becoming instead
theorems of the general theory of stochastic processes
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