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Anisotropic x-ray anomalous diffraction and forbidden reflections

Paolo Carra and B. T. Thole'

European Synchrotron Radiation Facility, F-88043 Grenoble Cedex France

In this paper the authors present a general analysis of resonant elastic scattering of x rays. The approach
exploits crystal symmetry, scattering geometry, and polarization. Extinction rules, their breaking, and the
observation of forbidden reflections are discussed. As an application, a detailed description of the experi-
ment performed by Finkelstein, Shen, and Shastri at the iron E edge in a Fe203 (hematite) is reported.
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I. INTRODUCTION

'Also at the Department of Chemical Physics, Materials Sci-
ence Center, University of Groningen, Nijenborgh 16, 9747 AG
Groningen, The Netherlands.

The angular distribution of x rays diffracted by a crys-
tal usually reflects only the crystal's macroscopic dielec-
tric properties, but additional effects emerge when the
response of particular atoms or ions in the lattice is
boosted by resonances. Such resonances occur when the
x-ray photon energy approaches the value required to ex-
cite an inner-shell electron to an empty orbital of its
atom's valence shell. The atom's elastic-scattering form
factor then depends on crystal and/or magnetic orienta-
tions with respect to the polarization of the incoming and
outgoing photons. This effect has been demonstrated by
various authors (Namikawa et al. , 1985; Gibbs et al. ,
1988; Isaacs et al. , 1989) for magnetic systems. The
relevant intensities can be as large as l%%uo of the charge
peaks (Isaacs et al. , 1989); electric dipole and quadrupo-
lar transitions may then contribute to the scattering pro-
cess with comparable magnitude (Cxibbs et al. , 1988;
Hannon et al. , 1988).

The x ray's short wavelength, comparable to the atom-

ic spacing, causes the aggregate response of all resonant
atoms to reflect lattice symmetries that otherwise fail to
emerge. Disparate elements —the x-ray polarization,
magnetism of the resonant atoms, and lattice features—
thus combine to yield a sensitive anisotropy. The com-
bination of such disparate elements provides a basis to il-
lustrate, in this colloquium, an unusual interplay of crys-
tal symmetry elements, x-ray propagation and polariza-
tion, diffraction, and single-atom responses in a crystal-
line setting.

The anisotropy of x-ray anomalous" diffraction was
first observed by Templeton and Templeton (1982), near
the uranium L3 edge in sodium uranyl acetate. Near the
same edge of a related uranyl compound, a substantial
linear dichroism had also been previously observed (Tem-
pleton and Templeton, 1980). Linear dichroism implies a
difference in absorption between radiations with linear
polarization parallel or perpendicular to a local symme-
try axis. Both effects involve a single electronic process:
electric dipolar transitions in the presence of a low-
symmetry crystalline environment.

The anomalous diffraction anisotropy thus violates
screw-axis and glide-plane extinction rules, which hold
for isotropic scattering (Dmitrienko, 1983; Templeton
and Templeton, 1985, 1986; Kirfel and Morgenroth,
1993, and references therein). Octahedral symmetry
reflections, forbidden at the dipolar level, may instead
manifest themselves via quadrupolar transitions boosted
by resonance, as shown for the X edge of iron in aFe203
(hematite) by Finkelstein and co-workers (Finkelstein
et al. , 1992).

The present authors have recently developed, as have
others, a theoretical interpretation of x-ray dichroism
and anomalous diffraction in terms of simple sum rules,
relating the integral of the observed spectra to the
ground-state expectation value of effective spin and orbit
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one-electron operators (Thole et a/. , 1992; Carra, Thole,
et a/. , 1993; Luo et a/. , 1993). This development pro-
vides an opportunity to outline a comprehensive symme-
try analysis of the anisotropic x-ray resonant diffraction.

Given an arbitrary point-group symmetry, a set of sim-
ple rules identifies the terms in the resonant amplitude
that determine observable effects. Taking into account
the local symmetry (crystalline as well as magnetic), the
scattering geometry, and the polarization yields an
effective procedure for inferring which scattered com-
ponents will receive nonzero intensity. Extinction rules,
their breakdown, and the observation of forbidden
rejections are all treated in the same framework. As an
illustration, Sec. III will discuss the resonant diffraction
at the iron K edge of hematite (Finkelstein et a/. , 1992).

II. THE RESONANT AMPLITUDE

The current operator J~ and the excited state (II
combine with their Hermitian conjugates and the reso-
nance denominator EI E——fico —i 1 /2 to form the
second-order perturbation operator

(J')tlI &~IIJ'
E —E —r~ —irx2I g

Here A~ represents the resonant photon's energy and I
the resonance width of the excited state.

For any electric 2 -pole transition in a spherically sym-
metric ion, the coupled-multipole expansion for the reso-
nant coherent elastic-scattering amplitude 'therefore takes
the form (Luo et a/. , 1993)

2Lf (co)=4m.k g [T'"'(ef*,kf, e, ,k, )EI
1M=0

&«y, l~"'( ) .Iy, &]',
The p. A interaction between x rays and matter ex-

pands into spherical Bessel functions gi(k, r) and s.pheri-
cal harmonics of k; and r: p.e;gi(k, .r) g Y' (k;)Y' (r).
Here e; and k; denote the polarization and a unit vector
in the direction of the photon momentum of the incident
beam, respectively. A better formulation' is obtained by
recoupling p and Y'(r) to a total L, yielding the term

g [[e;,Y'(k;)] [p, Y'(r)] ] gi(k;r),
L

with the couplings defined by

with

1
P

+'"'(~)zi = X 2A,I .rE —E —Ace —)—I g 2

T" (ef,kf,'e;, k; )EL

YL —1(k )]L[ YL —1(k )]L]P

and the current operator

(2)

(3)

[e;, Y'(k)] =— —c k=O
3

Three values of l contribute to any other value of L. In
the limit k;r «1, gi(k;r) (k, r), —and the lowest value
I =L —1 yields the largest contribution. This term can
be rewritten as

I:p Y' '(r)l'»' '= 1

V'L (2L + 1 )

reducing to

2m (E2 E,)—«.Ip &+~pl&~&-.
iA L(2L+1)

i.e., as an electric multipole matrix element.

Here we sketch a simplifl. ed derivation, dealing with the elec-
tric part only, of the photon wave-function expansion in angular
momentum and parity eigenstates —the vector spherical har-
monics. Full details can be found in Akhiezer and Berestetsky
(1957).

[W',a'"]', =r, , ,„W,", a—,'„"&L'L "/'/" IL/ & .

The product gi(k, r)[p, Y'(r)].M forms a core of the
"current operator" J~ that raises an inner-shell electron
to empty valence orbitals. The remaining factor
[e;, Y'(k; )]M pertains to the geometry of x-ray scattering.
%'hen L=0, one obtains

4ni~k~.
J

(4)

A. The spectrum

Consider the ground-state matrix element of a transi-
tion operator. To yield a nonzero value, the operator has
to be totally symmetric. In spherical symmetry only
p=O has such a property. The spectrum is necessarily
isotropic.

Upon a lowering of the crystal symmetry, from SO3
down to a specific point group, for example, each p-irrep

Changing one L into L' generalizes Eq. (1) to include interfer-
ence efFects. An example is the El-E2 interference in ordered
compounds that display natural optical activity.

This formulation yields the scattering amplitude as a
linear combination of pairs of tensors of increasing rank
p, which transform according to the irreducible represen-
tations of the spherical group (SO3); we shall refer to
them as p-irreps. Each pair consists of a polarization
response (angular factor) and of the expectation value of
a frequency-dependent transition operator (a "spec-
trum") coupled into a scalar. Equation (1) provides a
suitable starting point for determining the form of the
amplitude diffracted into any crystal point group. To
this end, a simple procedure can be devised.
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FICx. 1. Representation branchings for the group chain 03 DOq DD4q. The subgroup representations are given in Schonflies nota-
tion; A

&
denotes the totally symmetric one. (In this case, all 2jm phases are unity. )

branches into a number of subgroup irreducible represen-
tations. Only those p-irreps that branch into the totally
symmetric representation (usually denoted by A&) will

contribute to the anomalous scattering amplitude. An-
isotropy effects are observable for such p&0 tensors
[@=0is always present; the group-subgroup branchings
are tabulated for all crystallographic groups (Butler,
1981), and those that are relevant to our discussion are
displayed in Fig. 1].

As an example, consider dipolar transitions (for which
@=0,1,2) in octahedral symmetry. According to Fig. 1,
only p=0 branches to 3 &,

' again, the spectrum is isotro-

pic and no Templeton effects are detectable. In the case
of a tetragonal distortion (D4& symmetry), @=0 and 2
must both be taken into account (Fig. 1), yielding observ-
able anisotropy effects.

As a further example, consider a magnetic system with
negligible crystal-field effects. In this case the symmetry
is SO@ and all the p-irreps branch to 0. (For SO3&SO&,
the branching is given by p —+I ={—p, . . . ,pj, with
m=0 the totally symmetric representation. ) The ampli-
tude for resonant magnetic scattering in the form derived
by Hannon and co-workers (Hannon et al. , 1988) for
electric dipole transitions reads

f '(co)= —K — —ef.e, FO '(co)z, i (e—f Xe, ) zFO '(co)z, + [3(e, .z)(ef.z) —e, ef]FO '(co)E, - .
3 2 30

In Eq. (1), any basis can be chosen to perform the cou-
pling to the totally symmetric amplitude:

f&I =477(„y ( )P
—

~[@]
—&~22 P (F~P~ )

with [p]=2p+1. Here m and y label the SO@ (cylindri-
cal) and an arbitrary point-group basis, respectively; (~r)

denotes a 2j symbol [a tabulated phase factor (Butler,
1981)]. The ground-state expectation value (F~z"') is
nonzero only for totally symmetric y, in which case

f =4m. K g [p] ' T'"'(F'"' ) .
p

A) A)
P

(A gz must be included when p branches to A, more
1

than once. )

Equation (6) expresses a property of the rotation group
and of its subgroups: any point-group basis will serve for

writing out the scalar product. Given the local symme-
try of the system, it is natural to express the amplitude
through the irreducible representations of the corre-
sponding point group, thus introducing point-group coor-
dinates. In this way, the observable spectra of a 2 -pole
electric transition are readily determined by the totally
symmetric components of the allowed irreducible ten-
sors, as in Eq. (7). This procedure affords much
simplification over Cartesian tensor formulations when
dealing with complex problems (see Sec. III).

B. The angular dependence

The analysis of crystal symmetry effects on f
proceeds equivalently either by keeping the angular
dependence fixed and applying the space-group opera-
tions to F~"', or by keeping the ion fixed and transform-

ing Tz~', as in the present work.

Consider the diffracted amplitude generated by the
q.R. EL,whole crystal: g, e 'f, , with q =k; —kf the scatter-

The SO2 symmetry of an ion is determined by the presence of a local preferred direction, along which a spin is aligned by the ex-

change interaction with neighboring sites. The orbit is aligned along the same direction by the spin-orbit interaction; this effect (or a
spin-orbit split core hole) is crucial for the observation of magnetic effects in the p. A coupling.

4A complete analysis of anomalous diffraction using a decomposition of Cartesian tensors in their symmetric and antisymmetric
parts has been given by Blume (1993).
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ing wave vector and s running over all lattice sites.
Deriving glide-plane and screw-axis extinction rules re-
sults conveniently by expanding the angular dependence
in spherical tensors: T„'"'= g t T'"', as described by

1

Butler (1981,Chap. 14) and below. The components T'"'
of the angular dependence transform under space rota-
tions like spherical harmonics, with y dependence: e'
An extra factor, ( —1)", is brought in by parity upon
rejections and inversions. [The tensors T'"' have posi-
tive parity, whereas the spherical harmonics F'"' have
parity ( —1)".] Bragg rejections are observable when any
operation of the space group leaves invariant the product
of the Bragg factor and of the angular dependence. The
roles of screw axes and glide planes will now be discussed
in detail. Standard extinction rules hold for p =0.

n -fold screw axis Wh. en q ( —=z axis) lies along an n

screw axis parallel to c (i.e., with rotation 2n. /n and
translation j c/n), the e' ~ factors of harmonics change
into e' 'q'+ " "' and the Bragg factor e'q changes into
e'q' +~' "', yielding together a factor e' "
As this global factor must reduce to unity, the reAection
is allowed only when q.c/2ir =(nk —m)/j, with k an in-
teger. When 2m is not a multiple of n, only one of the
e*™~factors survives: the intensity is then y indepen-
dent.

Glide planes. Consider a z axis along q and parallel to
a glide plane at an angle cx with the x axis. Reflection in
the plane changes y into —2a —y; it is then sufhcient to
discuss the cases a=0 and ir/2, without loss of generali-
ty. The functions e'*'=e™~+e™~change by a factor
+1 under reAection. At a =0, e'+ ' does not change, and,
for the translation, the Bragg factor has to equal ( —1)"
to allow for this y dependence; e' ' changes instead into
—e~ +, requiring a Bragg factor ( —1)"+'. Similarly,
when a=it/2, the factor e'+' changes sign, whereas e'

remains the same, requiring Bragg factors ( —1)"+' and
(
—1 )", respectively.

These rules determine the transformation of the angu-
lar dependence T'"' for arbitrary scattering geometry
vectors (e;,k;, e&,k&]. A few special settings yield the
following:

(i) For e/ =e; (e.g., o ~o.), Tg =0 when p is odd.
(ii) irwin. vanishes when L +L'+p+m is odd (z axis

along q). So, when L =L' and m =0, m ~evan. ishes for
odd p (magnetization along q).

(iii) o~ir .vanishes when m is even (z axis perpendicu-
lar to the scattering plane); this applies to magnetization
(p odd) or a crystal field (p even) "oriented" perpendicu-
larly to the scattering plane.

(iv) When the xz plane coincides with the scattering
plane, o.~m vanishes for the combination
T~&) + (

—1 ) T~&); o.~o and ir ~ir vanish for
7'~' —(

—1) T'~' . This rule is important when the
scattering plane is a mirror or a glide plane. (The z axis
has to be specified whenever a rule contains m. )

C. Sum rules

As mentioned in the Introduction, (approximate) sum
rules for the frequency-dependent transition operator
have provided valuable insight into the nature of x-ray
absorption and resonant scattering. The sum rules ex-
press the total contribution of all the c~l electric 2-
pole transitions of a given j+ =c+—,

' absorption edge to
the operator F~")(co)zL, as a linear combination of one-
electron spin and orbital coupled-tensor operators, as
defined by Judd (1967). Particularly simple expressions
result when the energy spread of the j+ manifold can be
neglected:

' 1/2

F" (co)zL =R (cj +,L;l;co)() . 21+1
2z+1

where

&(cLI))(R„,(r)~r ~R„, ))'
R (cj~,'L; i;co)=

[El E~ fico i I /2—]——

I =fp —1/, Wp

(9)

(10)

with a„, b„i, and K(cL/) constant factors. [Full details of the derivation are provided by Carra, Konig, et al. (1993),
Carra, Thole, et al. (1993),and Luo et al. (1993).]

The coupled tensors 8"' '" describe the multipole moments of the charge and magnetic distribution of the valence l

5This "fast-collision approximation" amounts to an n =0 truncation in the expansion for the resonant denominator

. rE —E —fico —i—I g 2
. IE —E —%co—i—I g

and holds when Max( ~EI Eg —A'co~, I ) &&Q(Ei EI )—, with Ei the central ener—gy of the transition.
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electrons (making the sum rules shell se-lectue) and can be expressed in terms of elementary operators; for example,

W' '= [2(2I + 1)] '~
n» (number of holes),

8'"'o=[l(l+1)(2l+1)/2] '~ ps; I; (spin-orbit),

W" '= —[(2l +1)/2] ' S (spin),
—1/2

()2)) I (I + 1)(21+ 1)
(21 —1)(2l +3) g [s, —3r, (r;.s;)] (magnetic dipole) .

W'0"= —[21(1+1)(21+1)/3] '~2L (orbital),

For x-ray absorption and dichroism, Eqs. (9)—(11)
serve to interpret the observed spectra directly. In the
important case of magnetic circular dichroism, they indi-
cate the possibility of an element-specific determination
of the orbital and spin contributions to the magnetic mo-
ment. This prediction was recently verified experimental-
ly (Chen et al. , 1994).

In the case of resonant x-ray scattering, the sum rules
yield an effective scattering amplitude from which a dy-
namic structure factor, S(q, co), can be readily written
out in terms of two-particle correlation functions; the al-
lowed operators are selected by the x ray's polarization
and point-group symmetry.

III. AN APPLICATION: THE IRON
K EDGE IN HEMATITE

The method outlined previously affords a detailed,
quantitative discussion here of the x-ray quadrupolar

0.4

(a)

0.0

I

anomalous diffraction experiment performed by Finkel-
stein and co-workers (Finkelstein et al. , 1992).

The hematite crystal (R 3c) has a rhombohedral primi-
tive cell with two molecules. In the following discussion
we use the hexagonal setting, where the crystal displays a
threefold symmetry about the c axis and glide planes
parallel to this axis. The iron atoms are positioned along
the c axis, with an approximately octahedral oxygen envi-
ronment. Layers of octahedra separated by c/6 are
equivalent by glide-plane operations. Finkelstein and
co-workers measured the (0003) reflection, where the
difFraction planes are separated by c/3. In aFe303 the xz
plane serves as a mirror plane of the octahedron. The yz
plane then is a glide plane with a shift of c/6 along z.
For this shift, the Bragg factor with q =6m. /c is —l.

For E1 transitions in Oh symmetry, the resonant form
factor f ' is a product of two scalars (only p=O
branches to A

& ); thus the (0003) reQection is forbidden as
a consequence of the glide-plane symmetry. E2 transi-
tions involve instead two contributions: p=O and @=4
(as from Fig. 1). Again, the scalar p=O term is forbid-
den; thus we need only work out the totally symmetric
part of the p=4 term, as given by Eq. (6). In switching
to spherical harmonics, it is convenient to choose the z
axis along a threefold axis of the octahedron, with basis
functions pertaining to the group chain O3 DO& D C3$.
The angular dependence reads

r

- 0.4
I I I I 4 I I I I I I I I I I I I I I ~

T" = — T+ T —TA)(o» ) 3~3 3 10 0 3 (12)

0.155

I
0.10

Q

O
c8

I o.05

OMK

channel

with

T+3 —[ Y+, (e; ) Y+, (k; ) Y+, (ef ) Yo(kf )+cyc. perm. ]

(13)

000 7'10 7.11
5m (kev)

7.12

FICi. 2. Calculated quadrupolar anomalous diffraction at the K
edge of Fe + in an octahedral crystal 6eld with 10Dq =1.45 eV:
(a) imaginary part of the amplitude; (b) cross section. The spec-
tra are in the cr —+m polarization channel. (There is no signal in
o.~o.. )

The expansion in spherical harmonics is performed according
to Butler's tables (Butler, 1981). Retaining the chain
03&Oq DC3$ amounts to having the z axis along a threefold
axis of the octahedron, a suitable choice in our case. The chain
03 DO& DD4& DC4&, for example, would lead to an expansion
in spherical harmonics with the z axis along a fourfold axis; the
rotations of these functions about a threefold axis would be
rather tedious to discuss.
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and
4To = —[k''kfe; ef +k ef'e' kf6~70

—S(k; kfe; zef z+e; kfk, zef. z

+e;.efk;.zkf z+ef k,.e,. zkf z)

+3Sk, zkf. ze;.zef z] . (1

In the angular dependence [Eqs. (12)—(14)], To does
not depend on y', thus it is invariant upon reAection in
the glide plane, and its contribution to the reAection is
forbidden. The term —T3+T 3 contains the factor
e '++ e '+, which changes sign upon reAection in the yz
plane (a =m/2). These terms control the quadrupolar
anomalous diffraction in hematite. In our derivation, y is

an abstract angle used to study the transformation prop-
erties of T'"'. This angle is strongly connected to the az-
imuthal angle ((( between the scattering plane and the xz
plane of the crystal, as can be seen by writing e and k in
polar coordinates (O, q&). In the crier channel one has

(p, =g m. /—2, y, =Q+~. The com-

ponents T'g' contain the factor e ' @+ ', with a a shift
angle to be determined; thus the ((() dependence of the T+3
terms is cos(3/+a). To determine a, Eq. (13) may be
written out completely; however, its value can be inferred
from extinction rule (iv), Sec. II.B, stating that the cr ~m
channel vanishes when /=0, which implies a=+m. /2 or
f~2-sin3$, as observed experimentally (see Fig. 2 in
Finklestein, 1992).

For the transition operator, we obtain

&ggl+A, (o„)(~)E2lgg &= —X ~
(4) '(/10 1

3 3 I Ig

1

2 I &I II JF.(o„)II@ & I —,
'

I &III~T,(o„)ll@g & I

E E —A'co ——i I /2I g

(15)

where the double vertical bars denote a reduced matrix
element. In terms of spherical harmonics, we have

IIJE(o„)II'=T(IIJ'-z —&2Jill'+IIJK+i 2J'-ill')

and

IIJT'„o„)II'=-,'(ll I i ++2J'-z II'll~'-) —+2Jz II')+ llano II'

here
II

.
II

is shorthand for the squared modulus of the
reduced matrix element.

J k J'
rJMIQ I) &M & ( 1) M q ~ &)'~IIQ

The calculation of the atomic quadrupolar spectra [Eq.
(10)] has been performed with Cowan-Butler's atomic
programs (full multiplet structure in a crystal field; see
Cowan, 1968 and Butler, 1981). Transitions from the
ground state of the 3d configuration (a )99%%uo pure

A i ) of the Fe + ion in octahedral symmetry to the full

multiplet of. 1s'3d have been calculated, assuming the
crystal-field splitting 10Dq = 1.45 eV (Kuiper et al. ,
1993). The effect of the core-hole width has been taken
into account by convoluting the spectra with a I = 1.5 eV
(full width at half maximum) Lorentzian.

The imaginary part of the scattering amplitude is de-
picted in Fig. 2(a). The vertical bars denote the multiplet
structure: there are two groups of lines, corresponding to
E and T2 transitions, in order of increasing energy.

From the sum-rule analysis (Sec. II.C), the integral of
the curve is known to be proportional to the ground-state
expectation value of a fourth-rank tensor, 8" ' ', which
describes the hexadecapolar moment of the 3d-electron
distribution. The hexadecapolar moment vanishes for a
pure d, A, state. From Fig. 2(a) we indeed find that,

due to an almost complete cancellation, the total integral
of the curve is about one-thousandth of the integral over
one of the peaks (E or T2). This very small value implies
that the fast-collision approximation breaks down in this
case, as I and 10Dq are nearly equal at the iron X edge
in hematite. Consequently, an appropriate description of
the experiment requires that higher-order terms be re-
tained in Eq. (8). However, such an analysis is beyond
the scope of the present work.

The calculated scattering cross section, convoluted
with a a =1 eV Gaussian function to simulate experi-
mental resolution, is shown in Fig. 2(b). The spectrum
consists of a single peak (no structure). This should be
compared with the data (see Fig. 1 in Finkelstein, 1992),
where a main peak and two shoulders appear. It is not
clear whether these additional features are merely experi-
mental artifact; they could reQect a lower-symmetry crys-
talline environment or hybridization of the Fe ion, effects
not considered in our calculation. To account for the
main features of the experiment, a d ground state in oc-
tahedral symmetry suffices. (In the actual C3 symmetry
of the Fe atoxns, E1 transitions are still forbidden by the
glide plane; other E2 contributions with the same g
dependence could appear. )¹teadded in proof. After submitting this work for
publication we learned that part of the results discussed
in Sec. III were independently derived by Michael Ham-
rick [Finkelstein, K. D., M. Hamrick, and Q. Shen, 1994,
"Resonant x-ray diffraction and polarisation analysis at
the iron K edge, " in Resonant Anomalous X-Ray Scatter-
ing, edited by G. Materlik, C. J. Sparks, and K. Fischer
(Elsevier, Amsterdam), p. 91, and Doctoral thesis, Rice
University, 1994].
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