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The reliable development of highly complex organisms is an intriguing and fascinating problem.
The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under
the influence of their common genes, produce spatial patterns' Simple models are discussed that
describe the generation of patterns out of an initially nearly homogeneous state. They are based
on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local
autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show
that the models account for many basic biological observations such as the regeneration of a pattern
after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or
after) completion of growth. Very complex patterns can be generated in a reproducible way by
hierarchical coupling of several such elementary reactions. Applications to animal coats and to
the generation of polygonally shaped patterns are provided. It is further shown how to generate a
strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This
is illustrated by two examples: the assembly of photoreceptor cells in the eye of Drosophila and
the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures
have to achieve an internal polarity under the influence of some primary pattern-forming system
existing in the fly s eye or in the plant. The fact that similar models can describe essential steps
in organisms as distantly related as animals and plants suggests that they reveal some universal
mechanisms.
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I. INTRODUCTION
A most fascinating aspect of biological systems is the

generation of complex organisms in each round of the

life cycle. Higher organisms develop, as the rule, from a
single fertilized egg. The result is a highly reproducible
arrangement of difFerentiated. cells. Many processes are
involved, for example, cell difFerentiation, cell movement,
shape changes of cells and tissues, region-specific control
of cell division, and cell death. Development of an organ-
ism is, of course, under genetic control, but the genetic
information is usually the same in all cells. A crucial
problem is therefore the generation of spatial patterns
that allow a difFerent fate for some cells than for others.

The complexity of the evolving pattern seems to pre-
clude any mathematical theory. However, by experi-
mental interference with a developing organism it has
turned out that the individual steps are fairly indepen-
dent of each other. For instance, the organization of the
anteroposterior axis (i.e. , the head-to-tail pattern) in a
Drosophila embryo is controlled by a completely difer-
ent set of genes than the dorsoventral axis. Shortly after
its initiation, the development of a wing is largely inde-
pendent of the surrounding tissue and can progress even
in an ectopic position after transplantation. Therefore
models can be written for elementary steps in develop-
ment. The linkage of these steps then requires a second
approximation.

The necessity of mathematical models for morphogen-
esis is evident. Pattern formation is certainly based on
the interaction of many components. Since the interac-
tions are expected to be nonlinear, our intuition is insuf-
ficient to check whether a particular assumption really
accounts for the experimental observation. By modeling,
the weak points of an hypothesis become evident and the
initial hypothesis can be modified or improved. Mod-
els often contain simplifying assumptions, and diferent
models may account equally well for a particular observa-
tion. This diversity should, however, be considered as an
advantage: multiplicity of models stimulates the design
of experimental tests in order to discriminate between the
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rival theories. In this way, theoretical considerations pro-
vide substantial help in understanding the mechanisms
on which development is based (Berking, 1981).

In his pioneering work, Turing (1952) has shown that
under certain conditions two interacting chemicals can
generate a stable inhomogeneous pattern if one of the
substances dift'uses much faster than the other. This
result goes against "common sense, " since difFusion is
expected to smooth out concentration differences rather
than to generate them.

Turing apologizes for the strange and unlikely chemi-
cal reaction he used in his study. Since then, biochemi-
cally more feasible mod. els have been developed and ap-
plied to diB'erent developmental situations (I cfever, 1968;
Gierer and Meinhardt, 1972; Gierer, 1977; Murray, 1990).
Chemical systems have also been intensively investigated
for their ability to produce "Turing patterns": some ex-
periments present beautiful reaction-difFusion structures
in open reactors (Ouyang et al. , 1989; Castets et al. , 1990;
de Kepper et a/. , 1991).

In the first part of this article, after briefly discussing
the relevance of chemical gradients in biologi. cal systems,
we shall present simple models of pattern formation and
their common basis, local self-enhancement and long
range inhibition. The patterns that can be generated. are
graded concentration profiles, local concentration max-
ima, and stripelike distributions of substances. In the
second part we shall show how more complex patterns
can be generated by hierarchical superimposition of sev-
eral pattern-forming systems. The formation of a regular
periodic arrangement of difFerent cell types or the genera-
tion of polygonal patterns will be discussed. The models
of that section are original and up until now unpublished.

Appendix A contains a complete discussion of linear
stability analysis in the case of the simplest models. The
parameters used for the simulations presented hereafter
are listed in Appendix B. A reader interested in numer-
ical simulations should have no difIiculty in reproducing
or improving upon the results.

Throughout the paper, comparisons of models with ex-
perimental observations are provided. If necessary, the
biological background is outlined in such a way that the
article should be understandable without previous knowl-
edge of biology.

II. GRADIENTS IN BIOLOGICAL SYSTEMS

centration of a substance that is distributed. in a graded
fashion dictates the direction in which a group of cells
has to develop. The organizing region is thought to be
the source of such a morphogenetic substance. A famous
example is the determination of the digits in the chick
wing bud (Cooke and Summerbell, 1980; Tickle, 1981).
It occurs under control of a small nest of cells located at
the posterior border of the wing bud, the zone of polar-
izing activity (ZPA). The results fit nicely with the as-
sumption of some hypothetical substance difFusing out of
the ZPA and producing a concentration gradient; groups
of cells form the correct digit by measuring the local
concentration within this gradient (Sumrnerbell, 1974;
Wolpert and Hornbruch, 1981). Many experiments in
which a second ZPA is implanted at various positions
of the wing bud confirm this conjecture: supernumer-
ary digits are then formed at abnormal positions but in
accordance with the pattern predicted by the assumed
gradient produced by the two ZPA. A possible candidate
for the morphogenetic substance is retinoic acid (Thaller
and Eichele, 1987, 1988). Indeed, small beets soaked with
this substance at low concentrations mimic all the efFects
of a ZPA.

Today there is a growing body of evidence that chemi-
cal gradients play a key role in pattern formation and cell
difFerentiation. For instance, it has been observed that
the protein bicoid has a graded concentration distribu-
tion in the Dro8ophila melanogaster embryo; it organizes
the anterior half of the fIy and has been fully character-
ized (Driever and Nusslein-Volhard, 1988; Boring et al. ,

1993).
In this context, theoretical models have to give satis-

factory answers to the following two questions:
(i) How can a system give rise to and maintain large-

scale inhomogeneities like gradients even when starting
from initially more or less homogeneous conditions'?

(ii) How do cells measure the local concentration in
order to interpret their position in a gradient and choose
the corresponding developmental pathway' ?

The next two sections are devoted to the first question.
We shall discuss theoretical models having the ability
to prod. uce graded distributions of chemical substances
and present their regulation characteristics. In the sub-
sequent section, we shall show how to use the positional
information contained in gradients in order to induce a
correct difFerentiation.

In many developmental systems small regions play an
important role because they are able to organize the fate
of the surrounding tissue. The mouth opening of a hy-
dra or the d.orsal lip of an amphibian blastula are well-

known examples. Transplantation of a small piece of such
an organizing center into an ectopic position can change
the fate of the surrounding tissue: these cells are then
instructed to form those structures that are induced in
the normal neighborhood of such an organizing region.
Based on these observations, Wolpert (1969) has worked
out the concept of positional information. The local con-

III. SIMPLE MODELS FOR PATTERN FORMATION

As mentioned, Turing (1952) was the first to realize
that the interaction of two substances with difFerent dif-
fusion rates can cause pattern formation. Gierer and.
Meinhardt (1972) and independently Segel and Jackson
(1972) have shown that two features play a central role:
local self-enhancement and long range inhibition. I-t is
essential to have an intuitive understanding of these two
requirements, since they lie at the heart of pattern for-
mation.
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Self-enhancement is essential for small local inhomo-
geneities to be amplified. A substance a is said to be
self-enhancing or autocatalytic if a small increase of a
over its homogeneous steady-state concentration induces
a further increase of a. The self-enhancement does not
need to be direct: a substance a may promote the pro-
duction rate of a substance 6 and vice versa; or, as will
be discussed further below, two chemicals that mutually
inhibit each other's production may act together like an
autocatalytic substance.

Self-enhancement alone is not sufFicient to generate
stable patterns. Once a begins to increase at a given
position, its positive feedback would lead to an overall
activation. Thus the self-enhancement of a has to be
complemented by the action of a fast-difFusing antago-
nist. The latter prevents the spread of the self-enhancing
reaction into the surrounding tissue without choking the
incipient local increase. Two types of antagonistic reac-
tions are conceivable. Either an inhibitory substance 6
is produced by the activator that, in turn, slows down
the activator production or a substrate 8 is consumed
during autocatalysis. Its depletion slows down the self-
enhancing reaction.

A. Activator-inhibitor systems

The following set of difFerential equations describes
a possible interaction between an activator a and
its rapidly diffusing antagonist h (Gierer and Mein-
hardt, 1972):

is large compared to that of a: ph ) p, . Otherwise the
system oscillates or produces traveling waves.

Though not necessary for pattern formation, the satu-
ration constant v has a deep impact on the 6.nal aspect
of the pattern. Without saturation, somewhat irregularly
arranged peaks are formed whereby a maximum and min-
imum distance between the maxima is maintained [Figs.
1(a) and l(b)]. In contrast, if the autocatalysis saturates
(r ) 0), the inhibitor production is also limited. A
stripelike pattern emerges. In this arrangement activated
cells have activated neighbors; nevertheless nonactivated
areas are close by into which the inhibitor can difFuse

[Fig. 1(c)].
Embryonic development often makes use of stripe for-

mation. For example, genes essential for the segmenta-
tion of insects are activated in narrow stripes that sur-
round the embryo in a beltlike manner (Ingham, 1991).
In monkeys, the nerves of the right and the left eye
project onto adjacent stripes in the cortex (Hubel et al. ,
1977). The stripes of a zebra are proverbial.

By convenient choice of the concentration units for c
and 6, it is always possible to set p = p and ph
ph (Appendix A). Moreover, some constants involved in
Eq. (1) are not essential for the morphogenetic ability of
this system (they are useful if one needs "fine tuning"
of the regulation properties). In its simplest form, the
activator-inhibitor model is written:

ga Q—= D~ La+ p~ —p~& + 0~,Bt 1+K a2 6
Bh = Dh &h + pea —phh+ oh )

where A is the Laplace operator; in a two-dimensional
orthonormal coordinate system, A = B2/Bx + B /By .
D, Dp, are the difFusion constants, p, , ph the removal
rates, and p, pg the cross-reaction coeKcients; 0, ah
are basic production terms; K, is a saturation constant.

As discussed above, lateral inhibition of a by h requires
that the antagonist h difFuse faster than the self-enhanced
substance a: Dp, && D . This is not yet sufBcient to
generate stable patterns. We show in Appendix A that in
addition the inhibitor has to adapt rapidly to any change
of the activator. This is the case if the removal rate of 6

To simplify the notations, we shall use the same symbol
to designate a chemical species and its concentration. This
should not lead to any confusion.

Here are some orders of magnitude for the diffusion con-
stants in cells. Roughly speaking, the diffusion constants in
cytoplasm range from 10 cm s for small molecules to
10 cm s for proteins. Diffusion from cell to cell via gap
junctions lowers these values by a factor of 10 (Crick, 1970;
Slack, 1987).

FIG. 1. Patterns produced by the activator-inhibitor model
(1): (a) Initial, intermediate, and final activator (top) and
inhibitor (bottom) distribution. (b) Result of a similar simu-
lation in a larger field. The concentration of the activator is
suggested by the dot density. (c) Saturation of autocatalysis
(/c ) 0) can lead to a stripelike arrangement of activated
cells.
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BG G= D~AG+P~
h,

Oh,

N
= Dh Ah+ ph, (a —h) (2b)

Convenient length and time units can be found in which

p = Dh ——1. This reduces the number of essential
parameters to two, namely, D and py, .

B. Activator-substrate systems

I ateral inhibition can also be achieved by the depletion
of a substance 8 required for the autocatalysis:

BG

Bt
= D LG+P

88—= D. &8 —P,Bt

G 8
PaG+ Oa )1+K G~

Q 8 + 081+K G2

(Sa)

The parameters D, D„p,p, p„r,o, and 0., have
the same meaning as in Eq. (1); a is the self-enhanced
reactant, while 8 plays the role of the antagonist and
can be interpreted as a substrate depleted by G. For this
reason, we shall refer to this system as the GcHeator-
substrate mode/. Lateral inhibition of G by 8 is effective if
D, )) D . The model has similarities to the well-known
Brusselator (Lefever, 1968; Auchmuty and Nicolis, 1975;
Vardasca et aL, 1992).

Suitable concentration units for G and 8 allow us to set
p = p and o., = p, . In its simplest form, the system
looks like

ima is much higher, although corresponding parameters
have been used for both simulations (see Appendix B).
We shall often make use of these diferent properties. If
a maximum has to be displaced. or to form a wave, one
will preferentially use an (a, s) system. In contrast, if an
isolated maximum has to be generated, we shall employ
an (a, h) system. The ultimate reason for this difFerent
behavior is the inherent saturation in the (n, s) system.
The autocatalysis must cease if all the substrate is used
up. An (a, 6) system obtains similar properties if the
autocatalysis saturates moderately.

C. Bi@chemical switches

A monotonic gradient based on the mechanisms de-
scribed above can be maintained only if the size of the
tissue is small, since otherwise the time required to ex-
change molecules by diffusion from one side of the Geld
to the other would become too long. Indeed, as Wolpert
(1969) has pointed out, all biological systems in which
pattern formation takes place are small, less than 1mm
and less than 100 cells in diameter. In an organism grow-
ing beyond this size, cells have to make use of the signals
they have obtained by activating particular genes. Once
triggered, the gene activation should be independent of

BG 2—=D Ra+ p (a s —a)
88 2—=D, & +sp, (I —o, s) .
Bt

(4a)

(4b)

One can always adapt the time and length units so that
p = D, = 1; only two parameters, p, and D, then
remain.

Figure 2 presents typical patterns resulting from such
a model. The activator-substrate (a, s) and activator-
inhibitor (a, h) models have some distinctly difFerent
properties. As can be seen in Fig. 2, in (n, s) systems
the activator forms rounded mounds, in contrast to sharp
peaks of (a, Ii) models [I'ig. 1(a)j. In a growing field of
cells, an (o, , s) system produces new maxima preferen-
tially by a split and shift of existing ones, while in (a, 6)
models new peaks are inserted at the maximum distance
from the existing ones. The reason for the shift of max-
ima in an (a, s) system is the following. With growth, the
substrate concentration increases in the enlarging space
between the activated regions. This can lead to a higher
activator production at the side of a maximum if com-
pared with its center. In such a case the maximum begins
to wander towards higher substrate concentrations until
a new optimum is reached. In (a, 6) systems, a rnaxi-
mum suppresses more eKciently the formation of other
maxima in the surroundings. This is evident from Figs. 1
and 2. In the former case the distance between the max-

FIG. 2. Patterns produced by the activator-substrate model
(3). (a) Initial, intermediate, and final pattern. Upper and
lower plots show the concentrations of a and 8, respectively.
A high level of a produces a pit in the distribution of the sub-
strate s. (b) Similar simulation in a larger field (the activator
concentration is shown). Figures 1 and 2 have been calculated
with corresponding parameters. Nevertheless the peaks here
are broader and more densely packed. (c) Saturation of the
autocatalysis (r ) 0) leads to the formation of stripes.
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the evoking signal. Similarly to pattern formation, this
requires either a direct or an indirect autocatalytic acti-
vation of genes (Meinhardt, 1978).

Here is a simple example of a switch system:

Ba c=D Aa+p
~

—a +o-
t9t ( 1+r b2

extBg g= Py
—Pyg+0

Kyg

86 ( 1—= Db&b+ pg
~Bt ( 1 + rqa2c

—b i+os, ,

In this equation p» pz, and K& are constants; o de-
scribes the external signal. In the absence of such a sig-
nal the system has two stable steady states, the low one
at y = 0 and the high one at y = (p„+~a)/2r„p„,
separated by an unstable steady state at y = (p„—
~n)/2r, „p»where n = p2 —4r„p2. If the external sig-

nal o exceeds a certain threshold the system switches
from the low to the high state (Fig. 3). Once the un-
stable steady state is surpassed, the high state will be
reached and maintained independently of the external
signal (which could even vanish).

Somewhat more complex interactions allow the space-
dependent activation of several genes under the influ-
ence of a single gradient (Meinhardt, 1978). Meanwhile
many genes have been found with a direct regulatory in-
fluence on their own activity (see, for instance, Kuziora
and McGinnis, 1990; a review is given by Serfling, 1989),
supporting the view that autoregulation is an essential
element in the generation of stable cell states in develop-
ment.

D. Other realizations of local autocatalysis and long-range
inhibition

In the above-mentioned models, self-enhancement oc-
curs by direct autocatalysis (the activator production
term in Ba/Ot is proportional to a2). This direct feedback
is not necessary. As already mentioned, self-enhancement
may also result from indirect mechanisms. As an exam-
ple, consider the following system:

Position

FIG. 3. Position-dependent activation of a gene by an exter-
nal signal simulated in a one-dimensional array of cells ac-
cording to Eq. (5). The concentration of the autoregulatory
gene product y (fine lines) is given as a function of position
and time. A primary gradient (boldface line) is used as exter-
nal signal o . Despite the shallow signal, a sharp threshold
exists; if it is exceeded, the system switches irreversibly to the
high state.

Bc
Bt
—= D,&c+ p, (b —ac) . (6c)

In this example the two substances a and 6 mutually
repress each other's production. A small local advan-
.tage of a leads to a decrease in production of the 6. If 6

shrinks, a increases further, and so on. In this case, self-
enhancement results from the local repression of a repres-
sion. The necessary long-range inhibition is mediated by
the rapidly diffusing substance c, which is produced by
6 but is poisonous to it. Further, c is removed with the
help of a. So, although a and 6 are locally competing,
a needs 6 in its vicinity and vice versa. Therefore the
preferred pattern generated by such a system consists of
stripes of a and 6, closely aligned with each other.

The interaction given above is a simple example of an
important class of pattern-forming reactions based on
long-range activation of cell states that locally exclude
each other (Meinhardt and Gierer, 1980). According to
the theory, they play an essential role in the segmen-
tation of insects (Meinhardt, 1986). Molecular analysis
has confirmed this scheme; the engrailed and the wingless
genes of Drosophila have the predicted properties [see, for
instance, Ingham and Nakano (1990) or Ingham (1991)j.

The examples discussed here have been selected from
a large set of feasible morphogenetic models (Gierer,
1981). They have the advantage of conceptual simplic-
ity. Many other nonlinear systems have been proposed
(Lacalli, 1990; Lyons and Harrison, 1992; for a broad
overview, see Murray, 1990). But, to state it once again,
more important than the details of the equations are the
basic principles on which all these models rely, on /ocal
self- enhancement and long range inhi-bition.

Numerical simulations have shown that properties of
the systems discussed above are able to account for many
observations. As an example, regeneration after tissue
removal will be discussed further below.

The models presented describe biochemical reactions
and diffusion of the reactants. Other kinds of inter-
actions are possible, mediated for instance by mechan-
ical forces (Lewis and Murray, 1992; Bentil and Murray,
1993), by electric potentials (Jaffe, 1981; Stern, 1986), or
by surface contact between cell membranes (Babloyantz,
1977). Cellular automata are also often used to explain
the emergence of inhomogeneous patterns (Cocho et al. ,

1987); they provide particularly elegant solutions as long
as only cell-cell contacts are involved (i.e. , the state of a
cell afFects only its direct neighbors). However, chemical
interactions coupled by the exchange of molecules (either
by difFusion or by more complex signaling mechanisms)
are believed to be the main motor of primary pattern
genesis in biological systems.

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994
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In the previous section, we discussed some simple
models able to produce inhomogeneous concentrations of
chemicals out of a (nearly) homogeneous initial state. Let
us now observe the main characteristics of the resulting
patterns.

A. Insertion of new maxima doring is@tropic growth

Suppose that the initial Geld is large when compared.
with the range of the inhibitor. If the pattern is initiated
by small random Buctuations, the inhomogeneous steady
state of an activator-inhibitor model consists of irregu-
larly arranged activator peaks. Due to lateral inhibition,
each peak maintains a certain minimal distance from its
neighbors.

If the field grows isotropically (Fig. 4), new activator
maxima emerge at positions where the inhibitor is too low
to further repress the local onset of autocatalysis from
the basic activator production. This requires a minimum
distance from existing activated. centers. Therefore the
average spacing and the overall density of maxima remain
approximately constant.

Biological examples of such near-periodic patterns are
the distribution of stomata (special organs for gas ex-
change) on the lower surface of leaves (Biinning and
Sagromsky, 1948) or the arrangement of bristles on in-
sect cuticle (Wigglesworth, 1940). In both cases, it has
been demonstrated that during growth new structures
arise where the old ones are the most widely spaced [Fig.
4(b)].

B. Strictly peri@die patterns

To get strictly periodic patterns, one needs more subtle
mechanisms. The simplest idea would be to achieve strict
periodicity by relaxation of a random structure. How-

ever, this is unrealistic from a biological point of view.
Relaxation takes time. A misplaced maximum may al-
ready evoke a particular structure, for instance a bristle,
at the wrong position. This cannot be corrected by a
later shift of the maximum to the correct place.

Strictly regular structures are formed during marginal
growth. With the addition of new cells at the bound-
aries, the distance between these cells and the existing
maxima increases and the inhibitor concentration de-
creases. Whenever the inhibitor concentration becomes
lower than some threshold a new maximum is triggered.
Therefore each new maximum keeps a well defined. dis-

The mean distance d between two neighboring Inawirna can
be evaluated by use of the wave number k calculated in
the linear approximation [see Appendix A, Eq. (A6)]: d-
&/kmax ~

tance from the previously formed ones, and the arrange-
ment is very regular (Fig. 5).

A famous example of the generation of a strictly pe-
riodic structure is the initiation of leaves on a growing
shoot. As the shoot grows upward, new leaves (or flo-

rets, scales, etc.) are added sequentially near the tip, so
as to maximize the spacing with the older ones (Adler,
1975; Marzec and Kappraff, 1983). Leaves emerge along
spirals [Fig. 5(b)] that wrap around the stem (Coxeter,
1961; Rothen and Koch, 1989a, 1989b). We shall come
back to this particular pattern in Sec. V.

It may also happen that systems which have already
reached a large size need to position organs in a regular
fashion. This can occur by a "simulated" growth. The
property of a tissue may change in a wavelike manner
from a noncompetent to a competent state for pattern
formation. Although many cells are already present, pat-
tern formation can take place only in a small portion of
the field. With the enlargement of the competent region
more and more maxima are formed that keep a precise
distance from the existing ones. An example is the forma-
tion of the regularly spaced feather pattern in chicks [Fig.
5(c)]. Feather primordia begin their differentiation be-
hind a competence wave that starts from the dorsal mid-
line and spreads to both sides of the back. Experiments
(Davidson, 1983a, 1983b) have clearly demonstrated that
lateral inhibition is involved in the formation of the reg-
ularly spaced feather primordia. We shall meet a similar
phenomenon in Sec. V when discussing the formation of
the Drosophila eye.

C. Regeneration properties and polarity

Many biological systems can regenerate missing parts.
The models discussed above are able to account for this
property. We shall use the activator-inhibitor model and
modiGcations of it to demonstrate this feature and com-

pare them with biological observations.
After partition of an early sea urchin embryo both frag-

ments regenerate complete embryos. By vital staining
during separation it has been shown that both embryos
obtain a mirror-image orientation with respect to each
other (Fig. 6). According to the model, in a nonacti-
vated fragment the remnant inhibitor decays until a new

activation is triggered. The polarity of the resulting pat-
tern depends on the distribution of the residual activa-
tor and inhibitor in the fragment. A polarity reversal,
as in the case of the sea urchin mentioned above, will
take place if the residual inhibitor gradient is decisive for
its orientation. It is the region with the lowest inhibitor
concentration, i.e. , the region most distant from the orig-
inally activated site that wins the competition to become
activated.

In many other systems the polarity is maintained.
The fresh water polyp Hydra (Wilby and Webster, 1970;
Wolpert et al. , 1971; Macauley-Bode and Bode, 1984)
and planarians (Flickinger and Coward, 1962; Goss, 1974;
Chandebois, 1976) are examples. The maintenance of po-
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FIG. 5. Generation of peri-
odic structures during marginal
growth: (a) In this simulation,
the domain enlarges by addi-
tion of new cells at the up-
per and left borders; a peri-
odic structure emerges. Plot-
ted is the activator of an (a, (i)
model. (b) The regular spac-
ing of thorns on this cactus is
achieved by apical growth (see
also Sec. V). The thorns are ar-
ranged along helices that wrap
around the stem. (c) Feather
primordia are regularly spaced
on the back of a chicken. To
position them accurately, the
chicken "simulates" growth by
use of a determination wave
that starts from the dorsal mid-
line and spreads on both sides:
only cells reached by the wave
can initiate the development of
primordia. The wave motion
simulates growth by enlarg-
ing the region competent for
feather production (photograph
by courtesy of Dr H. Ichijo.).

(c)
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Bh = Dl„&h+pg (a —h)
Bb—=pg(h —b) .

(7b)
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FIG. 6. Regeneration with polarity reversal: (a) Experimen-
tal observation. The early blastula of a sea urchin is cut in
two halves. Cells close to the wound are vitally stained (dot-
ted region) to determine later the original orientation. Both
parts regenerate a complete embryo. They are mirror sym-
metric, so that in one fragment the polarity must have been
reverted (Horstadius and Wolsky, 1936). (b) Simulation by
an activator-inhibitor model. The abscissa scale gives the po-
sition along the dorso-ventral axis of the blastula, in percent
of the animal length. After separation, the high residual in-
hibitor concentration (dashed curve) in the nonactivated part
(arrow) leads to regeneration of the activator (solid curve)
at the opposite end of the field. The distribution before and
after cutting is shown, as well as the newly formed steady
state.

As can be verified in Eq. (7c), at equilibrium, b = h.
Thus the self-enhancement term ba /h in the activator
equation (7a) reduces to a2/h, as in the usual activator-
inhibitor model [Eq. (1)j. Since the removal rate pg is
small compared to p and pp„b preserves the polarity
when the animal is dissected: due to enhancement of
autocatalysis by 6, the activator a builds up again in each
half at the site of highest 6 concentration. The position of
the relative highest source density plays the crucial role
in determining where the new activator maximum will be
formed. This insures maintenance of the initial polarity
(Fig. 7).

The feedback of 6 onto the source density 6 has another
very important eKect; it helps to suppress the initiation of
secondary maxima. This is required if a single structure,
for instance a single head, should be maintained in a
system despite substantial growth. Since, with increasing
distance from the existing maxima, cells have a lower and
lower source density, it becomes less likely that these cells
will overcome the inhibition spreading from an existing
nlaxlmuIl1.

In Hydra, treatment with diacylglycerol (a substance

larity implies that the same tissue can regenerate either
a head or a foot depending whether this particular tissue
is located at the apical or the basal end of the fragment
which has to regenerate. Morgan (1904) interpreted this
phenomenon as evidence that a graded stable tissue prop-
erty exists. It provides a graded advantage in the race to
regenerate a removed structure. During head regenera-
tion, for instance, those cells will win that were originally
closest to the removed head.

In terms of the activator-inhibitor mechanism, a sys-
tematic difference in the ability to perform the autocatal-
ysis must exist. We call this property the source density.
Detailed simulations for hydra (Meinhardt, 1993) have
shown that the source density must have approximately
the same slope as the inhibitor. However, while time con-
stants of the activator and inhibitor are in the range of a
few hours, a major change of the source density requires
approximately two days (Wilby and Webster, 1970).

In the following model, a feedback exists from the in-
hibitor 6 onto the source density b. Therefore, in the
course of time, a long-range gradient not only of 6 but
also of 6 will be established. Whenever the system is
forced to regenerate, the residual distribution of 6 en-
sures the maintenance of polarity.

cia a'—=D Aa+ p b —+cr
~

—a62

50 100

50 50 100

FIG. 7. Regeneration with maintained polarity. (a) After
cutting, fragments of Hydra regenerate. The original apical-
basal polarity is maintained. (b) Model based on Eq. (7). The
abscissa gives, in percent of the full length, the position along
the body axis. The inhibitor is assumed to have a feedback
on the source density b (dashed curve) which describes the
general ability of the cells to perform the autocatalysis. This
source density, having a long time constant, does not change
very much during regeneration of the activator-inhibitor pat-
tern. Regions closer to the original head have an advantage in
the competition for head formation, and the new maximum of
the activator a (solid curve) is reliably triggered in the region
that was originally closest to the apical side.
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involved in the second messenger pathway) causes super-
numerary heads (Miiller, 1990). From detailed observa-
tions and simulations one can conclude that this sub-
stance is able to increase the source density in a dra-
matic way. Since the source density becomes high ev-
erywhere, the so-called apical dominance of an existing
head is lost and supernumerary heads can be formed.
These heads keep their distance from each other since
the spacing mechanism enforced by the inhibitor alone is
still working. The model agrees with many other exper-
imental results, including the existence of a critical size
(see Appendix A) below which the animal is unable to
regenerate (Shimizu et a/. , 1993).

V. FROM SIMPLE GRADIENTS TO COMPLEX
STRUCTURES

So far we have considered models able to generate inho-
mogeneous distributions of substances out of an initially
uniform state. When several systems of this kind are
combined, very complex structures can be formed in a
reproducible way. Central to this process is the idea of
hierarchy. A first system A establishes a primary pat-
tern that is used to modify and trigger a second system
B. The feedback in the reverse direction, of B onto A, is
assumed to be weak (this greatly simplifies the treatment
of these nonlinear systems and makes the comprehension
of their properties easier).

Suppose that both A and B' are activator-inhibitor sys-
tems (o~, h~) and (a~, h~). It is then natural to assume
that parameters p, ph, o, of B are functions of
the chemical concentrations of A. The couplings which
have proved to be the simplest and the most efFicient in
simulations modify either the cross-reaction parameter
p ~ or the basic (activator-independent) production o
of the second activator a~. The two following rules of
thumb are helpful:

(i) If the second system has to respond dynamically to
any change in the first one, one will preferentially alter
the value of p . This ensures that any change in A is
carried over to B [in terms of Fig. 14 in Appendix A,
one would choose the coupling function p in such a
way that the system B shifts under the pressure of A
from the region H of the stability diagram (where B has
no pattern forination ability) into the domain I (where
inhornogeneities can be amplified) ].

(ii) If A has only to trigger R, the coupling between
the two systems is achieved by the basic production o.

The structure developed by B is then stable even if, later,
A vanishes.

Other kinds of interactions are conceivable as well. For
instance, cells could change the communication with their
neighbors by opening or closing gap junctions; this can
be modeled by altering the difFusion constants under the
infIuence of a second patterning system. In the four ex-
amples developed below, however, we restrict the interac-
tion between systems to the two rules mentioned above.
The first two systems are relatively simple models for ani-

mal coat patterns and for reticulated structures. The last
two examples are more complex and describe interactions
that lead to the precise arrangement of differently deter-
mined cells in a strictly periodic way. The eye formation
in Drosophila and organ genesis in a growing plant will
be used as biological counterparts.

A. Animal coat patterns

Ba a 8—=D Aa+ p —a
Bt 1+ K~a

88 0~ psa s
Ds+s + pss )Bt 1+K,,y 1+r a (8b)

9y y
1+ Kyy

= py
—pyy + 0"ya (8c)

One recognizes a modified activator-substrate model

(o, , s) combined with a switching system y. Melanocyte
activity is given by y, where y = 1 corresponds to cells
producing melanin, while y = 0 corresponds to calls that
do not. The state y of each pigment cell is determined

by its exposure to the morphogen a. To insure that a
does not produce a stationary pattern but spread. s like a
wave, the diffusion constant of s should not be too large
when compared. to that of a.

The system works in the following way: initially y = 0,
a = 0, and s = sp everywhere, except at some randomly

The variability and complexity of animal coat pat-
terns has attracted many biologists. Models can be
found for the coloration of butterfly wings (Nijhout, 1978,
1980; Murray, 198la), zebra stripes (Bard, 1981; Murray,
198la, 198lb), patterns on snake skin (Cocho et al. , 1987;
Murray and Myerscough, 1991), or on sea shells (Mein-
hardt and Klinger, 1987; Ermentrout et al. , 1986). We
present here a simple reaction-diffusion mechanism which
allows widely varying patterns, ranging from the spots of
the cheetah to the reticulated coat of the giraffe.

In mammals, hair pigmentation is due to melanocytes,
which are supposed to be uniformly distributed in the
derma. Whether they produce melanin (which colors
hairs) or not is believed to depend on the presence of
some unknown chemicals whose pattern is laid down dur-
ing the early embryogenesis (Bard, 1977).

Let us start with a short description of the giraffe's
coat. Figure 8 shows the similarity between the polygonal
spots that cover the animal and Dirichlet domains. This
suggests that a reaction-difFusion system is at work in the
girafFe's coat that is able to produce Dirichlet polygons.
Consider a surface 8 and points Pi, . . ., P randomly
scattered. on it. Suppose that each P; initiates at a given
time a chemical wave, which spreads uniformly in all di-
rections. The system should be such that, if two waves
meet, they annihilate each other. The lines along which
annihilation occurs define the envelopes of the Dirich-
let domains around the initial centers P, . The following
reaction-difFusion system fulfills these requirements:
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FIG. 8. Analogy of the giraff'e pattern with Dirichlet domains. (a) Side of a giraffe (Girafjo carneloIpardalis reticulata). The

pattern is formed by convex polygons separated by thin lines (photograph kindly provided by O. Berger). Th«ormai resem-

blance with Dirichlet domains is suggestive. (b) Construction and definition of Dirichlet domaiiis. Given a set {Pi ~ ~ ~ Pn}
of points belonging to a surface 8, one draws the perpendicular bisectors between neighboring points. The convex envelop

surrounding a center P, delimits its associated Dirichlet domain D;. By construction, D, contains all the points of the surface

8 nearer to P, than to any other P~ (j pi, ).

scattered points P;, where a = ao, this high value of a
switches y from 0 to 1 at P,. due to the source term o„a
in Eq. (Sc). On the other hand, due to the depletion of s
and to its low difFusion constant D„high-a regions shift
toward zones where the substrate is abundant: a waves
propagate over the surface. When two such waves get
close, they annihilate each other due to the depletion of
substrate 8. Owing to its switching nature, y needs the
activator a in order to be triggered. Once a has vanished,
the state of y remains stable. Note that y has a negative
feedback on the production of s in Eq. (Sb); in regions
where y has switched on, it is no longer necessary to
waste energy to produce the substrate 8 any more.

Figure 9(a) presents the result of a simulation. The
similarity to the coat of a giraIII'e is obvious. Straight lines
with nearly constant thickness delineate irregular poly-
gons; earlier models proposed for giraffe patterns (Mur-
ray, 1981a, 1981b, 1988) produce, instead, spots compa-
rable to Fig. 9(c).

According to the parameter values, model (8) produces
a variety of patterns related to Dirichlet domains. For
instance, if the removal rate of 8 is low enough, regions
where a does not vanish remain; the system then reaches
a stable configuration in which the activator a remains
acti.vated along circular rings or "half-moons" centered
on the initiating points P, [Fig. 9(b)]. Conversely, if the
consumption of 8 is too high, the a waves cannot spread
very far and die before they meet; forIning randomly scat-
tered spots [Fig. 9(c)]. In that situation, the resulting
pattern has many similarities to the one described by
Murray (1981a, 198lb, 1988).

The coats of mammals have been taken as illustra-
tions. Fish, snakes, and insects show similar patterns.
It is appealing to imagine that they may all be based
on a common mechanism involving Dirichlet domains, as
discussed above.

B. Bet&culated structures

Polygonal patterns are also common in other biological
systems. The fine veins of the wing of a dragonfly or the
projection areas of mice sensory whiskers on the brain
are examples (Fig. 10).

A crucial property of the system discussed in the pre-
ceding paragraph is that the pattern, once formed, is
fixed. For instance, no new lines can be inserted dur-
ing growth to subdivide a large polygon into two smaller
ones. This is appropriate for the giraffe s coat as indi-
cated by the large size of the polygons. For other systems,
such as the wing of the dragonfly mentioned above, it is
to be expected that the final pattern is not produced in
a single step at a particular moment of the d.evelopment.
Rather, it is likely that, at an early stage and. in a small
field, a simple pattern is laid. down. We assume that, in
analogy to the Drosophila wing venation (Diaz-Benjumea
et al. , 1989; Garcia-Bellido et al. , 1992), the positions of
the main veins of the dragonfly wing are genetically de-
termined; the finer ones are presumably added later in
order to strengthen the growing structure and to keep
approximately constant the size of a domain enclosed by
veins.

The following model has this property. It relies upon
hierarchical interactions of two systems. A first (a, s)
activator-substrate system prodnces a pattern of activa-
tor mounds [see Fig. 2(a)]:

In principle the centers P, could be laid down by a pri-
mary pattern-formation mechanism (a&, hi ) like that used
to produce Fig. 1(a). These points would then activate the
production of a by means of an additional term cr a~ in Eq.
(Sa). We skip this step.

Oa—=D Aa+p j,—a j+cr
E 1+ ~.b' )

88 sa'—= D. &s —p.j, j
+ o. .

Ot i 1 + K~b )

(9a)

(9b)

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



A. J. Koch and H. Meinhardt: Biological pattern formation 1491

This primary pattern triggers an activator-inhibitor sys-
tem (ti, h) producing boundaries around the mounds of
a:

Ob s2 ( g2
=Db&~+ pb ~, ~ ~

+~b
l

—t, (10a)
Ot 1+mba@ ( h, )
Bh = Dh &6+ ph (6 —6) (10b)

(c)
FIG. 9. Simulation with the system (8). The dot density
is proportional to the concentration of y. According to
the parameter set, the resulting pattern will have similari-
ties with that observed on the coats of (a) girafFes (Girja
camelopardalis reticulata), (b) leopards (Panthera pardus), or

(c) cheetahs (Acinonyz jubatus).

(b) (c)
FIG. 10. Polygonal structures: (a) The left posterior wing of
a dragon8y (I ibellula depressa) is strengthened by a fine and
elegant network of veins (picture after Seguy, 1973). The po-
sitions of the larger veins are presumably genetically coded.
According to the model, finer veins are produced during wing
development: During growth, their insertion tends to keep
constant the size of the enclosed domains. (b) Experimentally
observed barrel pattern in the mouse somatosensory cortex.
The dotted regions correspond to domains labeled by an an-
tibody against Jl jtenascin (after Steindler et al. , 1989). (c)
Simulation based on the system (9)—(10) in a two-dimensional
domain. The density of dots is proportional to the concen-
tration of b. One can see the completion of a new boundary
between two domains (arrow).

The a concentration modifies the saturation value of the
activator 6 in Eq. (10a). A high value of a makes this
saturation so strong that the (6, 6) system is set off. In
regions of low a, the process is reversed: the saturation
becomes weak enough so that the (6, 6) system triggers
the formation of a stripelike boundary. This efrect is
enhanced by the substrate 8, through the term pcs in
Eq. (10a). In other words, stripes will appear along sites
with a high concentration of 8, in regions that are most
distant from the maxima of a. Due to the action of 6,
the stripes become sharp. The weak feedback of 6 onto a
in Eq. (9a) is not absolutely necessary but speeds up the
development of the structure.

The model has size regulation properties. New bound-
aries are inserted whenever a domain becomes too large.
This is because, with growth, the distance between the
a maxima increases. H a certain distance is surpassed,
a maximum splits into two and displacement towards a
higher substrate concentration follows. Between these
two maxima, a new region with high substrate concen-
tration appears that, in turn, initiates a new b line. Such
a process can be observed in Fig. 10(c).

As a possible application of the mechanism (9)—(10) let
us briefly mention the barrel formation in the brain of a
mouse (Steindler et al. , 1989; Jacobson, 1991). The facial
vibrissae of the mouse project on the primary somatosen-
sory cortex [Fig. 10(b)j. The mapping on the brain mir-
rors the arrangement of whiskers on the mouse's face:
two adjacent vibrissae project on neighboring sites in the
cortex; the domain connected to a given whisker is called
a barrel. The shape of the barrels can be highlighted by
a labeling with tenascin-specific antibodies. During the
first postnatal days, the barrel pattern has dynamic prop-
erties: removal of vibrissae disrupts the formation of the
associated barrels. The model gives a good description of
such dynamic efI'ects if one admits that the autocatalytic
production rate of activator a is linked to neural excita-
tion by the whiskers. Destruction of the latter leads to a
reduction of neural excitation, to a decrease of a, and so
to the resorption of the associated barrel, whose area is
then invaded by its neighbors.

An important component of biological tissue is the ex-
tracellular matrix, an entanglement of macromolecules that
strengthens the cellular structure. Tenascin is a glycoprotein
involved in the adhesion of neurons to the extracellular ma-
trix. The local concentration of tenascin can be visualized by
staining it with specific Quorescent-labeled antibodies.
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C. The faceted eye of Drosophila flies

As an example of a complex but very regular peri-
odic structure, we shall now discuss the formation of the
faceted eye of the fruit Ay Drosophila melanogaster. The
eye is derived from the eye-antennal imaginal disk. It
consists of a very regular array of about 700 ommatidia
[Fig. 11(a)]. Each ommatidium is formed by the precise
arrangement of 20 cells, among which 8 are photorecep-
tor neurons named B1, . . ., A8. These clusters of 20 cells
have well defined polarity and orientation with respect to
the main body axis.

The molecular basis of eye formation has been exten-
sively studied over the last few years. For comprehensive
reviews, see, for instance, Tomlinson (1988) or Basler and
Hafen (1991).The model presented below reproduces es-
sential aspects of this pattern formation.

The following steps play a crucial role [Fig. 11(b)].
(a) A wave moves from posterior to anterior across the

eye imaginal disk. It causes a slight deformation in the
tissue, the morphogenetic furrow.

(b) Within the furrow, a first morphogenetic event
takes place. It leads to the formation of regularly spaced
clusters of six or seven cells, including one photoreceptor
neuron R8 and one or two mystery cells M.

(c) In the cluster around BS, three pairs of photore-
ceptors differentiate sequentially, 6rst R2 and R5, then
B3 and B4, followed by B1 and B6; 6.nally, R7 is formed.
During this stage, the mystery cells M are eliminated by
selective cell death.

(d) Finally the cluster of eight photoreceptors recruits
other cells in order to form the cone, pigment, and bristle
cells.

The eight photoreceptors Rl —R8 belong to at least
three types, namely, R1—B6, R7, and B8. Receptors B7
and R8 have clearly distinct functions, as appears from
their morphology (Tomlinson, 1988). Whether Bl B6-
are different is unclear (Heberlein et aL, 1991). The dif-
ferentiation pathways show that there are three pairs of
similar receptors, Rl/6, B2/5, and B3/4. If the six neu-
rons B1—R6 are functionally identical, a plausible reason
for their sequential differentiation is to achieve a precise
regulation of the number of photoreceptors contained in
each ommatidium (differentiating them in one step could
lead to an irreproducible receptor number).

The fate of a cell is determined only by interactions
with its neighbors, and not by its lineage (Ready et aL,
1976). The system is therefore very convenient for study-
ing the interactions required to achieve a complex peri-
odic structure. Moreover, the pattern formation takes
place in a rnonolayered epithelium; it is a strictly two-
dimensional process.

We propose here a model that accounts for the first
morphogenetic steps up to the formation of the R1 and
B6 receptors. The fate of the cell is assumed to be hier-

In Drosophila larvae, imaginal disks are nests of epithelial
tissue which differentiate at metamorphosis. Legs, wings, an-
tennae, eyes derive from imaginal disks (Alberts et al. , 1989).

archically determined in a cascade:

furrow; BS cells ,'M cells ,'B2/5 cells ~ ~ ~

Bf sf
Ot

= DJAf + pt 1+ryf2
Os

Bt pa sf

—Vff (11a)

(lib)

Suppose that initially s = 1 and f = 0 everywhere, ex-
cept in one cell where f = fo. Due to diffusion, this
cell activates the production of f in its vicinity [the term
Df&f in Eq. (lla) plays the role of cr'" in (5)]. But,
since the substrate s is depleted, f cannot remain in its
high state and goes back to zero. This produces a wave
front of f, which spreads once over the eye disk.

The furrow model (ll) is certainly a simplification. It
does not match all experimental data. A shift of Qy em-
bryos to nonpermissive temperatures halts the motion of
the furrow. When shifted back to normal temperatures,
the furrow continues as if nothing had happened. The
model is not well suited to reproduce this experiment:
it would require a simultaneous decrease of p, and of
Df . The change of both parameters at the same time
by the temperature shift is unlikely and indicates a more
complex wave formation. For our purpose, however, the
form (ll) is sufficient, since we only need it as a signal
for beginning the neuronal differentiation.

2. The R8 photoreceptors

The morphogenetic wave triggers the differentiation of
neuronal cells R8. Experimental data indicate that lat-
eral inhibition is essential for proper BS spacing (Baker
et a/. , 1990; Harris, 1991), so BS cells are best modeled
by an activator-inhibitor couple (aRs, hRs):

aRS & nRs+nR8 + P ss ~
nR8

~
+ O.a.fBt )

(12a)

In the following, a model for each individual step will be
described. The hierarchical interactions postulated are
summarized in Fig. 12(a).
1. The morphogenetic furrow

The difFerentiation of cells behind a spreading wave in-
dicates that, in the eye, the precise arrangement of struc-
tures is achieved by the scheme of simulated growth men-
tioned in Sec. IV. In this way, each subsequently formed
structure achieves a precise spacing with respect to the
structures already laid down.

The morphogenetic furrow is modeled as a wavelike
event which moves across the system. This is in agree-
ment with the experiments of White (1961),where graft-
ing of epithelium tissue in the eye imaginal disk of
mosquitoes allowed him to observe the furrow spread-
ing through holes of the grafted tissue or moving around
it like a wave.

The following equations have been used to simulate the
wave that generates the furrow:
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F13~-R4

R1 Rs

FIG. 11. Overall structure of
the Drosophila eye and its
genesis: (a) Scanning elec-
tron micrograph of the eye
of a Drosophi la fIy showing
the regular array of ommatidia
(photograph kindly provided
by J. Berger). (b) Pattern
formation of the Drosophila
eye. A morphogenetic furrow

sweeps anteriorly across the
eye-antennal imaginal disk (the
arrows show the direction of
propagation). Behind the fur-

row, ommatidial assembly be-
gins with the difFerentiation of
regularly spaced R8 photore-
ceptors, each one associated
with one or two mystery cells
M. Later R2 and R5 neurons
are recruited, followed by the
formation of R3, R4, R1, R6,
and, finally, R7 receptors; M
cells are meanwhile eliminated
by selective cell death. After
formation of all photoreceptors,
12 other cells are added in every
ommatidium (cone, pigment,
and bristle cells). Dots indi-
cate difFerentiating cells while
hatches show difFerently difFer-

entiated cells.

jF

~JY~AVXii R2~/zj, R5 WPiAV%P'
~~&~N~Pi~ ~~Y&~Firi

FIG. 12. Simulation of eye development. (a) Scheme of hierarchical interactions used in the model. The furrow E induces
regularly spaced R8 neurons. These are needed to develop M cells. Later, R8 and M cells cooperate to trigger the difFerentiation
of R2 and R5 neurons. Finally, R8 and R2/5 neurons induce the formation of R3/4 and Rl/6 receptors. Except for the R8
spacing mechanism that involves long-range inhibition, all interactions are assumed to be mediated by cell-cell contacts. (b)
The structure resulting from the model. The morphogenetic furrow I!' moves across the eye disk (the arrows show the direction
of spreading). It initiates the diiferentiation of neural cells: a regular array of R8 photoreceptors develops behind it. Mystery
cells M difFerentiate immediately anteriorly to R8 receptors. Later R2 and R5 are formed. The difFerentiation of R3/4 and
Rl/6 follows (these cells have not been plotted for reasons of clarity).
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BhR8 = Dh~. &hRS+ phe. (a~S —hRS) .
Ot

Cells begin to differentiate after they have been exposed
to the morphogenetic wave. In the model, activation de-
pends on the basic production term a, f in Eq. (12a).
Due to the lateral inhibition via hRS only some cells be-
come fully activated and differentiate into B8 photore-
ceptors [Fig. 12(b)]. These cells have a precise spacing
with respect to the previously activated B8 cells.

The diffusion range of the inhibitor h, RS is supposed to
be of the order of several cell diameters. In the model this
is the only substance with such a long diffusion range. All
subsequently determined cells (M, R2, R5, etc.) difFeren-

tiate under the influence of local interactions relayed by
direct contact with the R8 cells (Banerjee and Zipursky,
1990).

3. Mystery cells M

The mystery cells M got their names because biolo-
gists were, until now, unable to assign them a role during
formation of the eye; some hours after their differentia-
tion, mystery cells die. The model suggests that M cells
are used in conjunction with B8 neurons to induce a lo-
cal polarity: like an arrow, the pair B8-M points to the
furrow. This local memory is thought to be crucial for
the correct positioning of subsequent photoreceptors, es-
pecially of R2/5. According to the model, the M cell
acts, in conjunction with B8, as an initial organizer for
ommatidial development by determining the primary ori-
entation of the cell cluster and by restricting the number
of cells which can choose the fate of R2/5. Perturbations
of the furrow motion, as in White's (1961) experiment,
should lead to observable alterations of the initial cluster
orientation. This could be a test for the model.

The following interaction allows the activation of the
M cell adjacent to the B8 cell:

4. Recruitment of R2/5, R3/4, and Rl/6 neurons

It is generally accepted that the subsequent differenti-
ation of the R2/5 and later of the R3/4 and Rl/6 pho-
toreceptors is a consequence of cell-cell contacts. In the
model, interactions with the B8 and M cells direct an
undifFerentiated cell to develop into an R2/5 cell. Con-
versely, newly formed R2/5 neurons inhibit their neigh-
bors from following the same pathway. Later, other cells
difFerentiate into R3/4 and Rl/6 receptors, due to con-
tact with R8 and R2/5 neurons. Again, R3/4 and Rl/6
receptors prevent other cells in their vicinity from choos-
ing the same fate.

These considerations suggest that equations governing
the R2/5, R3/4, and Rl/6 neuronal pathway are of the
same nature as those for B8 and M cells. For instance,
the R2/5 receptors are described by

GR2 2

+aR2 + P cR2(aRS aM) ~Bt R2

paR2 GR2 + OaR2 (14a)
hR2 2—Dh, +hR2+ Ph, ( R2 hR2) + hBt

(14b)

aM with the furrow selects which of the B8 neighbors
is chosen to become a mystery cell. The trail of the f
wave ensures that M cells differentiate anteriorly to B8
neurons, so that the pair B8-M is like an arrow pointing
to the furrow.

In the simulations, the precise positioning of M ante-
riorly to B8 is delicate; fluctuations easily disrupt this
order. It could be that a similar sensitivity exists in
nature. Experimentally it has been observed that cell
movements play an important role in local rearrangement
during genesis of the eye (Tomlinson, 1988). In this way,
small errors in the precise positioning of the M cells could
be corrected.

M
2

—Da +aM + p cM(aRs)
hOt M

paMaM + o'aMf )

hM = Dh &hM + ph~ (aM —&M ) + oh . (13b)2

Ot

The function cM(a~s) simulates the transmission of a
signal by cell-cell contact between the putative M cell
and the B8 neuron: this signal could, for instance, be
relayed by proteins lying on the cellular membrane of B8
neurons. In the simulation, we chose

aRS
~m GR8

1 + KMGR8

Cells with a high a~2 concentration become R2/5 neu-
rons [Fig. 12(c)j. The function c~2 relays a signal from
R8 and M cells to the presumptive R2/5 photoreceptors:

GRS
cR2(ass aM)

1 + KR2GR8 1 + PR2GM

Note that cR2 depends on the product of two signals.
Interactions with both B8 and M are simultaneously re-
quired to induce the difFerentiation of R2/5 receptors.

Further differentiation of Rl/6 and R3/4 photorecep-
tors follows the same scheme except that c~2(a~s, aM) is
replaced by a function cRs(a~s, a~2) which mimics sur-
face contact with R8 and R2/5 neurons.

Due to this function, GR8 is required for the induction
of the mystery cell, but, by reason of a disfavoring effect
at very high aRS concentrations, it is not the BS cell
itself but a neighboring cell in which a~ activation takes
place. The term cr f, which couples the production of

5. Abnormal eye patterns

Many mutations are known which alter the structure
of the compound eye. Four of them, rap (Karpilov et al. ,
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1989), Ellipse (Baker and Rubin, 1989), Notch (Harris,
1991; Markopoulou and Artavanis-Tsakonas, 1991), and
scabrous (Baker et al. , 1990) affect the positioning and
differentiation of B8 cells. Based on the phenotypes of
Ellipse and scabrous Hies, we suggest that Ellipse is linked
to the B8 activator a~8, while the diffusible molecule
encoded by scabrous may be the corresponding inhibitor
has

In scabrous mutants, the B8 inhibition is reduced. This
is modeled by increasing the value of pg„, in Eq. (12b).
For a given concentration of a~8, more h~s is produced
and this, in turn, decreases the amount of both a~8 and
h~s,. as a consequence, B8 cells are spaced closer to-
gether, irregularly distributed, and sometimes two B8
neurons are fused, as observed in scabrous mutants.

Notch mutants exhibit the same kind of reduced B8
spacing. Notch encodes for a transmembrane protein
that is believed to be a receptor for several extracellu-
lar signals. Among them is the signal relayed by the
scabrous protein. In this sense, the parameter p „,has
to be a function of Notch. The model does not explicitly
take this Notch dependance into account, but a mutation
making the Notch protein less effective for the reception
of the scabrous inhibition signal could decrease the value
of p „,in Eq. (12a). Less activator is then produced; this
decreases the h~8 concentration, and B8 cells are formed
too close to each other, as observed in Notch mutants.

The opposite result is achieved by increasing p „,.
This enhances the production of a~8, leading this time
to an abnormally wide B8 spacing. It is interesting to
note that the Ellipse mutation is believed to overactivate
the gene responsible for B8 differentiation, in accordance
with the considerations above.

It should be noted that the regulatory behaviors men-
tioned above are nontrivial consequences of the model:
if more inhibitor molecules are produced per activator
molecule, one achieves a decrease of the inhibitor con-
centration. This results from the nonlinear crossreaction
between these two chemicals. This kind of regulatory be-
havior is not unique to eye development. Mutants have
been found in hydra, where a decrease in the head in-
hibitor production rate induces, surprisingly, an increase
in the head-bud spacing (Takano and Sugiyama, 1983).

Another mutation that disrupts the eye assembly is
rough (Heberlein et al. , 1991). In rough mutants, devel-
opment of ommatidia occurs normally up to R2/5, but
R3/4 neurons fail to difFerentiate. It has been suggested
(Tomlinson et aL, 1988; Basler et al. , 1990) that rough
controls in R2/5 photoreceptors the signal that induces
the R3/4 cell fate. In the model we would identify the
activity of rough with the signal c~s(a~s, a~q). Exper-
imentally it has been observed that rough expression is
high, first, in the morphogenetic furrow and, later, in
R2/5 and R3/4 cells (Kimmel et al. , 1990). This corre-
sponds to the expectation of the model.

The model is already quite complex, but it is certainly
an oversimplification. For instance, the exchange of infor-
mation between the cells is much more sophisticated than
just a substance leaking through some holes into neigh-

boring cells. A plausible mechanism would rather involve
signaling molecules that are inserted into the membrane
of one cell type and receptor molecules exposed on other
cells. "Relay molecules" would then transmit the signal
from the cell surface to the nucleus. There, transcrip-
tional regulation could take place that would ultimately
be responsible for the choice of the pathway. Neverthe-
less, this signal transduction is presumably a more or
less linear chain of events, so that the approximation by
a single substance exchanged by diffusion is reasonable.

Although the model seems complex, it is constructed
in a straightforward way, by the successive addition of
elements whose properties are well understood. These
"building blocks" include wave formation, production of
regular structures by simulated growth, and inBuence
over the development of a neighboring cell. Though each
single element has well defined characteristics, one learns
from these models where the critical steps are. For in-
stance, it has turned out that the generation of polarity
in the periodic array of receptors is a delicate step, which
is facilitated by the addition of a mystery cell.

D. Positioning mechanisms during plant growth

As a final example of a complex structure, we describe
a model that allows the precise positioning of organs dur-
ing the development of plants.

Plant growth occurs mainly by cell division in special-
ized tissues called meristems. The shoot apex meristem is
a cone of undifferentiated cells located at the tip of stems;
its cells undergo frequent mitosis. Somewhat behind the
tip, the primordia are formed (Fig. 13). These will de-
velop into leaves or Gower organs. The determination of
the positions at which primordia appear is believed to in-
volve some inhibition mechanism (Schoute, 1913; Thorn-
ley, 1975; Marzec and KapprafF, 1983; Koch et al. , 1994).
Several models have been proposed to explain the precise
positioning of primordia. They are based either on the
exchange of diffusible molecules (Meinhardt, 1982; Yot-
sumoto, 1993; Bernasconi, 1994) or on stress and pressure
in the tissue (Adler, 1974, 1977a, 1977b; Green and Po-
ethig, 1982). A pattern very similar to phyllotaxis can
be generated by physical ingredients only. Under suit-
able conditions, mutually repelling droplets of a mag-
netic fluid also produce a helical arrangement (Douady
and Couder, 1992).

Although a single activator-inhibitor system is able to
account for the basic modes of leaf arrangement (disti-
chous, decussate, helical) (Mitchison, 1977; Richter and
Schranner, 1978; Meinhardt, 1982), it is easy to see that
more complicated systems are involved. We shall discuss
the necessary extensions in several steps.

Leaf initiation can take place only in a small zone at
some distance from the tip of a growing shoot. Further,
a signal must be available which specifies where the api-
cal meristem is located. This suggests that at least two
pattern-forming systems are involved. The first one de-
termines the position of the meristem. The second gener-
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ates leaves. The latter is controlled by the former: on the
one hand, the meristem system represses leaf initiation at
the tip but, on the other hand, it generates the precondi-
tion for this process nearby (Fig. 13). This is analogous
to Drosophilo, eye development, in which a mystery cell
M can emerge only in the neighborhood of a photorecep-
tor RS. Therefore leaf initiation is restricted to a narrow
zone at the border of the apical meristem. A similar pro-
cess takes place in the freshwater polyp Hydra: initiation
of tentacles takes place only in a whorl around the mouth
opening (Meinhardt, 1993).

However, even this more complex model is insufhcient.
After leaf initiation, axillary meristems are formed ad-

jacent to the leaf primordia. They are always located
on the side pointing towards the tip of the shoot. These
meristematic regions do not lead immediately to cell pro-
liferation, but they can give rise to a new shoot after the
original shoot is removed. Moreover, leaves quickly at-
tain a polarity of their own in that their upper and lower
surfaces become different from each other [this process is
probably induced by the neighborhood of the leaf (Sus-
sex, 1955)]. The situation is therefore similar to that
described above for eye development, since several dif-
ferent structures are generated in a precise periodic ar-
rangement and with a predictable orientation.

A key for the understanding of this complex pattern is

k4&
hIIhI.

FJC. 13. &he modular construction of a plant and its simulation: (a) Cross section through the growing tip of a shoot. The
apical shoot meristem A is a tissue in which rapid cell division occurs. At its periphery the primordia P which will grow into

leaves L appear. Axillary buds B differentiate somewhat later, in proximity to a leaf. The shoot can be regarded as a periodic

repetition of an "elementary module" M formed by a node N and internode I region; every nodal-internodal segment bears a
leaf L and an axillary bud B'. Each module M acquires an intrinsic polarity, thanks to the iteration of at least three subunits,

rn&I mzI and ms. (b) Simulation of plant growth. The stem of the plant is idealized as a cylinder, which is represented here

unwrapped. The apical meristem A contributes to stem elongation by addition of new cells. These diQ'erentiate so as to produce

the repetitive sequence mi m2 m3 mq m2 m3 . . . rendered here by three grey levels in the background. The mq —m2 border

acts as a positional signal for the differentiation of primordia P, identified with regions of high a„concentration. The overlap

of the primordium on the three compartments (mqI mq, and ms) can be used to trigger the development of an axillary bud

B (aAf = 1) on the mz segment, or of a leaf having its upper and lower face on the mz and ms segments, respectively. Note

that the primordia are placed along spirals with a 2/3 phyllotaxis (the azimuthal distance between two successive primordia is

approximately equal to two-thirds of the stem perimeter). Once an axillary bud is sufficiently distant from the apical meristem,

it becomes active (a~ = 1, rendered by black squares).

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



A. J. Koch and H. Meinhardt: Biological pattern formation 1497

its modular character (Lyndon, 1990). The elementary
unit (the module) produced by a growing shoot consists
of a node and internode segment associated with a leaf
primordium and an axillary bud (Fig. 13). Leaves are al-
ways located at the top of a module, in the nodal region;
axillary buds difFerentiate close to leaves and immedi-
ately above them. Stem elongation takes place in the
internodal region (Zobel, 1989a, 1989b).

In the following, we shall propose a model based on
this modular structure that accounts for the precise axial
and. azimuthal positioning of leaf primordia and axillary
buds on the stem. The model also includes a control
of meristematic activity after tip removal. Since most
of the primary morphogenetic events afFect only one or
two surface cell layer(s), we shall idealize the plant as a
hollow cylinder.

In a young plant, apical meristem is found only in the
shoot apex, so that initially aM ——0 everywhere except
at the top of the stem, where aM ——1. During apical
growth, meristem appears in axillary buds. The term
proportional to o M will be explained later; it corresponds
to an external signal inducing the formation of an axillary
bud.

(b) Activity o,~ of the meristem:

2 aM=PA aA + A (i6)1 + KAaA 1 + vAAA

Meristem activity is initiated by a signal proportional to
cr~. Due to the repression by h~ (discussed below), a
bud has to reach a given distance from the apex before
it can become active.

(c) Long-range inhibitor h~ of meristematic activity:

1. The apical shoot meristem 86A
Dh~ +~A + Ph~ ( +A hA )Bt (17)

6aM aM
t9E 1 + KMGM

—aM + oMmya& .

The apical meristem located at the tip of a stem re-
presses the activity of the buds in its vicinity. The apical
dominance decreases as the distance between the apex
and a given bud increases with growth. This regulation
is known to be mediated by phytohormones like auxins
(Snow, 1940; Kiihn, 1965).

We take into account two properties of the meristem.
The first, modeled by a switch system aM, tells whether
a cell belongs to the apical meristem type (aM = 1) or
not (aM = 0). A second switching system a~ controls
whether the meristem is active, i.e., whether cells are
undergoing frequent mitosis (a~ = 1) or stay in a latent
state (a~ = 0). A further substance h~ mediates the re-
pression of axillary bud activity. It is produced in active
shoot meristems and could correspond to the phytohor-
mone mentioned above. It must have a very long range
in order to suppress meristematic activity in distant ax-
illary buds. This long-range repression can result either
from the mere difFusion of the inhibitor hA or by some
active transport mechanism of hA in the plant. Indeed,
auxin is actively transported from the shoot towards the
root (Snow, 1940; Kiihn, 1965). The (auxin) concentra-
tion hA has to sink below a given level before an axillary
meristem can become active, causing cell proliferation
and a lateral shoot. This can occur either after substan-
tial growth or after removal of an existing dominant tip.

The apical shoot meristem is assumed to establish a po-
sitional information system in its vicinity (Holder, 1979)
to account for the observation that leaf primordia always
appear at a Axed distance from the shoot apex. Such
positional information is established if the active cells of
the meristem produce a diffusible substance bA. Its local
concentration provides a measure for the distance from
the meristem.

The previous considerations suggest the following sys-
tem to describe the shoot apex meristem.

(a) Meristematic identity aM.

This is used to repress the bud activity until a given
distance is achieved between the bud and the shoot apex
[see the term proportional to o~ in Eq. (16) ].

(d) Positional information system 6~

ObA

BE
+ pb~aA —pbAbA

Due to bA, new cells begin their difFerentiation only at
a given distance from the shoot apex, on the meristem
periphery [see Eqs. (19) and (20)].

2. Building of the nodal-internodal module

Cells newly produced by mitosis in the apex "recede"
from the tip of the stem. As soon as they are far enough
from the meristem, they undergo difFerentiation. In the
model, they get the information on their distance from
the apical meristem from the local concentration of the
substance bA. To account for the nodal character of leaf
initiation, we propose that there is a serial repetition of at
least three cell states, say mi, m2, and m3, the stem of a
plant corresponds then to a succession of cell states like
. . . mqm2ms / mqmzms /mq. . . . The borders between
mq and m~, m2 and m3, m3 and mq will be used in the
further elaboration of the model to initiate either polar
leaves or axillary bud meristems. The ordered succession
of the three states mq, m2, and m3 defines a module; the
juxtaposition of mz and m3 corresponds to the boundary
of such a module.

The following set of equations produces, under suitable
growth conditions, such a repetitive sequence [Fig. 13(b)]:

Bm; m,'
Bt ' h, (m2, + r. , m2+ m,'.+, )

+~, &
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Oh;' = Dh, &h, + ph, (m, —m,.+gh, ) + oh, b~, (19b)

where i = 1, 2, 3 and with the cyclic identifications
mo = ms, m4 = mq. Equations for (m;, 6,) are of the
activator-inhibitor type. By construction, m; and m,.~q
are locally exclusive states due to the terms m;+z in the
denominator of Eq. (19a); m, ~q favors the appearance of
m; in its vicinity, since it increases the removal rate of
inhibitor h,

The set of equations given above is, of course, only
an example of a system producing a repetitive sequence.
What is important is that cell states locally exclude each
other but activate each other over the long range (Mein-
hardt and Gierer, 1980). Such mechanisms have the ten-
dency to form narrow stripes, since in this arrangement
cells of a particular type are close to cells of the other
types that are required for their stabilization.

It is quite amazing to observe the similarity between
the above proposed model for modular growth of plants
and a model for the segmentation of insects (Meinhardt,
1986, 1991). In both cases, the iteration of at least three
cell states generates the periodic polar structure, and the
borders between the elements are later used for accu-
rate positioning of organs (leaves and axillary buds in
plants, imaginal disks and segment borders in insects).
The Inodel for insect segmentation has found much sup-
port from observation on the molecular level. The system
(19) also shares a resemblance with the hype@cycle con-
cept propased for prebiotic evolution (Eigen, 1971; Eigen
and Schuster, 1979): the "species" m; are autocatalytic
and compete with each other. But no species can out-
compete the others, since they depend on one another for
the help of m;+~, which enhances the production rate of
mz

3. Leaf primordia and axillary buds

Once a repetitive pattern . . . m~ mq m3 mq . . . has
been laid down it provides a convenient framework in
which to initiate leaves and axillary buds along the axis.
Two possibilities exist: (a) either a given structure can
appear only in cells with a particular determination, for
instance in mq, or (b) the boundary between two ele-
ments, say m~ and m2, is required to initiate the devel-
opment of that structure. These two possibilities lead
to quite difFerent predictions. Suppose that m2 is lost
due to a mutation; in the erst case, this will not afFect
the formation of a leaf while, in the second situation, no
leaves appear, due to the loss of the m~ —m2 border. The
second solution ensures, in principle, a oner positioning,
since a border is always sharp. But most important, the
border has a polarity. If, for instance, the signal for pri-
mordia formation can be generated only on an mq —m2
border, one can use the overlap of the primordium on
mq to produce the axillary bud, while the overlap on m2
triggers the formation of a leaf. The relative position of
a bud and a leaf, the one in front of the other, is nec-

essarily correct. Furthermore, if the signal inducing the
primordium is suKciently broad, it can also extend into
the m3 region. Let us suppose that m2 cells can produce
only the upper side and the m3 cells only the lower side of
a leaf: the polarity of the leaf is then 6xed. If further pro-
liferation is restricted to those cells close to the m2 —ma
border, it is clear that the leaf will become fIat, although
the signal that induces the primordium formation has a
conical shape.

To account for the features of lateral inhibition in leaf
initiation, we use an activator-inhibitor system (ap, hp)
coupled to the modular pattern in such a way that the
activator peaks are initiated on mq —m2 borders:

BQp CL

Bt
= D~ AQp+ p~ hym2 —"—p~ Gp+ cT~ )P h p )

p
(20a)

Bhp —Dh~+hp + Ph~up (Ph„+Ah~ms) ~p + oh„lA ~

(20b)

Due to the term p hqm2 in Eq (20.a), leaves appear
close to the mq —m2 borders [Fig. 13(b)]. Moreover, the
removal rate of hp is increased in m3. This accounts
for the observation that the inhibition of primordia is
Inuch more efFective along the shoot apex margin than
axially along the stem axis (the inhibitory effect is of the
order of magnitude of the apex diameter d but the axial
separation of primordia is much lower than d).

Finally, each leaf induces the formation of an axillary
bud in its immediate upper neighborhood, in the m3 re-
gion [Fig. 13(b)]. Apical meristem appears in buds under
the influence of the source term a Mmqhp in Eq. (15): this
term is high in mq subsegments only in the close vicinity
of a leaf primordium.

The newly created apical meristem remains quiescent
(i.e. , a~ 0) as lang as the concentration of the meri-
stematic activity inhibitor h~ remains high. It becomes
active only when the inhibition sinks below a threshold
[see the term proportional to 0~ in Eq. (16)]. This can
occur after the shoot apex is cut (Bonner and Galston,
1952) or after substantial growth enlarges the distance
between the active apical meristem and the quiescent
bud.

The model is so far hypothetical. No gene system
is yet known that could be responsible for the nodal-
internodal structure. One reason could be that a corre-
sponding mutation would have too severe an impact on
the plant embryo, since, for instance, no leaves would be
formed. Since the (at least) three elements depend on
each other, the loss of one element can eliminate the oth-
ers. Based on genetic observations Coen and Meyerowitz
(1991) have proposed a somewhat related mecharusm far
the determination of the character of Qoral structures
(sepals, petals, carpals, and stamen), but nat for their
positioning.

The model provides a feasible mechanism for essential
elements of plant morphogenesis. It gives clues as to how
polarity is established in the substructures. It predicts

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



A. J. Koch and H. Meinhardt: Biological pattern formation 1499

that the modular nodal-internodal structure is laid down
before initiation of leaf primordia and axillary buds. The
rapidly growing data on the molecular-genetic level in
plant morphogenesis will certainly provide a crucial test
in the near future.

Vl. CONCLUSION

We have tried to show that simple reaction-difFusion
equations describing the interactions of a few chemicals
provide an efIicient way to understand numerous aspects
of pattern formation in biology. Graded concentration
profiles, periodic, and stripelike patterns can be gener-
ated out of an initially more or less homogeneous state.
The regulatory properties of these mechanisms agree with
many biological observations, for instance, the regenera-
tion of a pattern with or without maintenance of polarity,
insertion of new structures during growth in the largest
interstices, or the generation of strictly periodic struc-
tures during marginal growth. By a hierarchical coupling
of several such systems, highly complex patterns can be
generated. One pattern directs a subsequent pattern and
so on. Complex structures are well known from physics,
for instance, in turbulence. But, in contrast, the complex
patterns discussed here are highly reproducible (as well in
their time development as in their spatial organization),
a feature of obvious importance in biology.

Very distinct biological systems can be simulated by
the assumption of basically similar mechanisms. For in-
stance, the regular initiation of new leaves with their in-
trinsic polarity during plant growth and the genesis of the
complex arrays of receptor cells in the developing eye of
Drosophila are achieved by marginal growth (either real
or "simulated" growth). A polarizing inHuence from the
structure that organizes the growth, i.e. , the tip of the
shoot or the morphogenetic furrow, ensures the correct
arrangement of the many periodically arranged substruc-
tures.

The models suggest another example of such conver-
gence. Both the periodic pattern of insect segments
and the nodal arrangement of leaves in plants are pre-
sumably achieved by the serial repetition of at least
three cell states. The corresponding model for insects
has been meanwhile experimentally verified (Meinhardt,
1994). All this indicates that very distantly related or-
ganisms have developed very similar mechanisms for pat-
tern formation.

Experiments indicate that biological systems are, as
the rule, much more complex than was expected from
the theoretical models. There are many reasons for this.
On the one hand, to bring a molecule from one cell to the
next and transmit the signal to the cell's nucleus is of-
ten realized in biology by a complex chain of biochemical
events, but described in the model by the Inere diffusion
of a substance. On the other hand, the autocatalysis of a
substance may involve several steps; for instance, a small
diffusible molecule may be able to activate a particular
gene, which, in turn, controls the synthesis of the small

molecule. The gene goosecoid and the small molecule Ac-
tivin (Izpisua-Belmonte et aL, 1993), both involved in the
generation of the primary organizing region of Amphib-
ians, may function in this way.

Particular developmental steps have been treated as if
they were isolated froxn the rest of the organism. In re-
ality, they have to be integrated with many other events.
The whole process has to take place at a given position
within the complex organism and in a particular time
window. Further, a particular developmental stage must
be reached before specific subsequent steps can start. For
instance, the pattern on the growing shoot must be com-
patible with its later transformation into a very different
structure: a fIower. During evolution, only modifications
of existing mechanisms and the addition of new ones are
allowed; a radically new construction from the beginning
is impossible.

Of course, there is a strong selective pressure to make
biological organisms reliable, not to make them simple.
Complexity is not a problem for biological systems. For
instance, a particular step can be made safe by a second
parallel and independent process, as is often the case in
technical processes, too (Goodwin et aL, 1993). That
sometimes severe mutations, for instance in Drosophila
development, produce only a mild phenotype supports
such a view. If the corresponding models are then more
complex too, one should not blame the theoreticians.

So far, no biological system able to generate primary
pattern formation has been completely characterized at
the molecular level. However, molecular biology is mak-
ing tremendous progress, and we hope that the next few
years mill bring more evidence for the models and ex-
plain how the postulated mechanisms are actually imple-
mented in real systems. We hope that the reader is at
least convinced that the theoretical treatment of biolog-
ical pattern formation is feasible and provides essential
insights into the beautiful processes of life.
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AP P ENDIX A: STABILITY ANALYSIS

This appendix is devoted to the mathematical analysis
of Eqs. (1) and (3). We shall determine under which con-
ditions the homogeneous steady state becomes unstable
and leads to inhomogeneous patterns. The calculations
are done explicitly for an activator-inhibitor system (1)
with the restriction K = og = 0 (this greatly simplifies
the calculations) and in the one-dimensional case. There
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is no fundamental change if one considers the two- or
three-dimensional situation, but notations become heav-
ier. The same results can be extended to the activator-
substrate model (3), in which one sets K = 0.

The methods used belong to the standard tools for the
study of nonlinear differential equations (Auchmuty and
Nicolis, 1975; Nicolis and Prigogine, 1977; Haken, 1977).

Linearization of the dimensionless equations

It is convenient to define new time (t), length (l), and
concentration (a, h) variables by use of the parameters
contained in Eq. (1); written in terms of the old variables
(t, I, , a, and h), they read

t = p t, t = Q(p, /Dh)l,

a= graph. ~ g ph. ~
2

a )
ph, pa gh. p~

where we have introduced the abbreviations D = D /Dh,
u = I ~/~- = (~h -)/(u~c-) d & = ~'/»'.

Critical length

We shall solve the system (Al) in a domain 17

(x
~

0 ( x ( Lj and search for solutions with zero-flux
boundary conditions at X = 0 and x = 1. To simplify
the notation, we shaH, from now on, drop the overbars;
this should not lead to any confusion.

The homogeneous steady-state solution (ap, hp) is
found at ao ——1+o and ho ——ao. Let us slightly perturb
this solution: a = ao + ba, h, = ho + bh with

Sa = Snp e ' cos(2~kx), Sh = 6hp e ' cos(2vrkx),

and ~hap~, ~6hp~ (( 1. Due to the zero-flux boundary
conditions, A: takes only discrete values

Writing Eq. (1) with these new variables, we get
k =nor/L, n=0, 1, 2 . . . (A2)

—2a —a+ cT

h,

Ot
= Dh+ p(a —h),

(Ala)
Each k is associated with a "frequency" ~, which can
be a complex number. The functions cu (k ) are found
by introducing the ansatz (np + 8a, hp + 8h) into (Al).
Retaining terms up to first order in ba and bh, we get
linearized equations:

hap l .th ~ I' cu„+D k„'+(1 —2/ap ) 1/ap

q Shp ) q
—2pap cd~+k +p)

The perturbation amplitudes bao and bho can be di8'erent
from zero if and only if the discriminant of 2 is zero,
detZ = 0:

If u is complex, this is equivalent to o. = 0. By use of Eq.
(A2), this restriction states that oscillating perturbations
may be amplified in a system of length I if and only if
the following inequality is verified:

with

0 = (d + o! Cd~ + p (A3) 1+D
L & L, (n) = n7r

2/np —1 —p

- 1/2

n = (1+D) k„+1+ p, —2/ap,
P = Dk„+(1+pD —2/ap) k + p .

Re(~„)= 0 . (A4)

A Quctuation associated with the frequency w grows if
Re(u ) & 0. The critical length L, (n) is then defined by
(Granero et aL, 1977)

Clearly, the first oscillating fluctuation that can develop
in a small field is associated with ur(1), since L,(l) (
L.(n) (n & 1).

Let us now consider what happens if the frequency
is real. In that situation, Eq. (A4) reduces to P =

0. By use of Eq. (A2), the previous condition asserts
that fluctuations associated with the frequency ~ are
amplified in a system of length I if

r' 2 (2I & I,(n) = nvr42D &'
~

——1 —pD
~

+
~

——1 —pD
~

—4pD
) (ap j

—]./2
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Again L,(l) & L, (n) for any n & 1.
In both situations, ~ complex or real, L & L, (n) is

a necessary condition for the development of an inhomo-
geneous state by growth of Quctuations associated with
a wave number k . The existence of a critical length has
important biological implications. A growing organism
develops a nonuniform pattern only if its size becomes
greater than L,(l), and the resulting structure, associ-
ated with ki ——7r/L, will be polar, having a maximum
of a and h, concentration on one side and a minimum on
the other.

Stability diagram

Re[~(k)] = 0,
k=k

a2
Re [(u (k) ]

k=k
&0,

which state the maximality of the real part of e(k „).
Fluctuations grow at this wave number if Re[co(k „)]&
0. VFe again have to make a distinction between u as a
complex or a purely real number.

If u is complex, Re(tu) = —o./2, and conditions (A5)
show that the wave number k = 0 has the largest
amplification rate. It is then easily veri6ed that, if 0 is
not too large (0 & 0 & 1), u(k „=0) is a complex
number with positive real part if the parameter p lies in
the range

Suppose now that the size L of the domain is much
larger than L (1). In this limit, we consider k as a con-
tinuous variable. Let us calculate the value km „ofthe
wave number associated with the largest positive ampli-
fication rate Re(ur). In the linear approximation, k
dominates the evolution of Huctuations. It is determined
by the resolution of

p D & /2/Gp —1

We have, finally, to consider the situation in which ~
is real and k „=0. This requires n —4P & 0. The
frequency u then has a positive maximum at k = 0 if p
verifies

0& p& y2/ap —1
- 2

These results are summarized below and pictured in
Fig. 14.

- 2
(a) If 0 & p, & g2 jao —1,fluctuations grow expo-

nentially with k „=0 (domain G in Fig. 14).
- 2

(b) If g2/ao —1 & p & 2/ao —1, perturbations as-

sociated to k „=0 oscillate at a fixed frequency Im(w)
and grow exponentially at the time rate Re(w) (region
Gg in Fig. 14).

(c) In the region p & 2 jao —1 and pD

(ty2/ae —i), the aatteesa steady state is aastahie; the

system develops an inhomogeneous pattern. This corre-
sponds to area I in Fig. 14 (this is the interesting region
for morphogenesis).

(d) The homogeneous steady state is stable in the
domain II defined by p & 2/ap —1 and p D

(
2

g2/ao —1 . Every perturbation is damped.

- 2
g2/ao —1 & p, & 2/ao —1

If, on the other hand, u is real, the implicit functions
theorem applied to (A3) shows that Bu/Bk = 0 if ~ is
given by

0.0
0.0 D

I

0.5

t9P/t9k k „[2Dk~„+(1+pD —2/ao) ]

t9n/t9k k „(1+ D)

However, since the denominator of this expression is
proportional to k, we have to determine whether

Let us Erst consider the case in which k „&0. By'
introducing the previous solution for w in Eq. (A3), one
gets the following expression for k

- 1/2
2/Gp —1 —pD

2D

With this value of k „,u is a maximum and w(k „)& 0
if p and D satisfy

FIG. 14. Linear stability diagram for the steady-state solu-
tions of Eqs. (Al). The behavior of Suctuations depends on
the values of both D and p, . If (D, p) belongs to the domain
G LlGh, Suctuation amplitudes grow exponentially with (Gh)
or without (G ) oscillations. In the region I, small perturba-
tions develop a stable inhomogeneous pattern associated with
the wave number k . In 0, Huctuations are damped: the
homogeneous steady state is stable. Taking into account non-
linear terms does not modify these conclusions, except in the
region Gb C G& lying near the G&—I boundary. Two solutions
compete, the first with purely real frequency and nonzero
wave number, and the second with a complex frequency and
k = 0. According to the initial value of perturbations, ei-
ther a stable inhomogeneous pattern forms or an oscillating
solution emerges. The exact border of G& depends on initial
conditions, Huctuation amplitudes, etc.
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The mathematical treatment supports the intuitive
considerations developed in Sec. III: we find that D =
D /Dh (( 1 is needed for the development of fluc-
tuations. The system reaches an inhomogeneous sta-
ble steady state if the removal rates of a and h, verify

p = pi, /y, ) 2/ap —1.
A stability analysis has been performed with the (a, h. )

system (1). The activator-substrate model (3) leads to
the same conclusions. Indeed, by defining appropriate
variables, one can write the activator-substrate model

(3), with the restriction K = 0,

tatis mutandis, all conclusions reached for the activator-
inhibitor model apply also to the activator-substrate sys-
tem.

The results given here rely on a linear analysis. In-
cluding nonlinear terms allows one, for instance, to de-
cide the kind of bifurcation the solution undergoes when
L = L,(1) (Haken and Olbricht, 1978) or to deter-
mine the essential features of the inhomogeneous solu-
tions in various geometries, on a plane (Granero, Porati,
and Zanacca, 1977) or on a sphere (Berding and Haken,
1982).

= a&a+ sa —a+ 0

= As+ p(1 —sa ) . APPENDIX 8: PARAMETER SETS

The homogeneous steady state is found at ao ——1+o and
sp ——1/ap. One introduces small perturbations according
to a = ao+ ba and s = so —bs. After linearization of the
system, one is left with

, ~(b, l

where the matrix 2' has the same form as in the case
of the activator-inhibitor system studied above. So, mu-

Numerical results described in this paper were ob-

tained by implementing the models on a desktop com-

puter. Numerical integration of the partial differential

equations was performed by use of standard discretiza-
tion methods. The concentration of the various chemi-

cal species a, h . . . was evaluated on a two-dimensional

square grid with mesh bx. Any grid point was then de-

fined by two indexes i and j: x, ~
= (i 8x, j hx). In two

dimensions, the Laplace operator L applied to any func-

tion a(x, t) is taken as

a(xi+1 j t) + a(xi j+1 t) + a(x —1 j t) + a(x' j—1 t) 4a(x j t)Aa x;, , t

Time was also discretized, tk ——A: bt, and the time deriva-
tive approximated by

Figure l(c) is calculated in a 50 x 50 field with the same
parameters except for v. = 0.25.

0 a(x, tk+i) —a(x, tk)—a x, tk
Ot

In all simulations, we have chosen bx = bt = 1. As
a consequence, the border lengths of the integration do-
main are directly equal to the number of cells along them,
and the time t is equal to the number of iteration steps.
In the simulations, spatial concentration fluctuations are
assumed; their order of magnitude is between 3 and 10
percent of the concentration value.

Below are listed the parameter sets used to produce
the various pictures presented in the text.

Figure 1

D
0.005
0.2

pa
0.01
0.02

Pa
0.01
0.02

0.0 0.0

We used Eqs. (1). Periodic boundary conditions are
assumed. Initial conditions are given by the homoge-
neous steady state of the system. Figures l(a) and l(b)
are calculated with the same constants but in fields of di-

mension 30 x 30 and 50 x 50, respectively. The parameter
values used for these two pictures are listed below.

Figure 2

Equations used are (3). The boundary conditions are
periodic and the field size is 30 x 30 for picture (a) and
50 x 50 for (b) and (c). All computations start from
the homogeneous steady state. The parameter values for
cases (a) and (b) are

D
0.005
0.2

pa
0.01
0.02

Pa
0.01 0.0

0.02
0.0

Figure 3

The picture is computed with Eq. (5) in a one-
dimensional field formed by 30 cells. Initially, y = 0
everywhere; the external source 0' decreases linearly,
from 0.35 on the left side to 0.175 on the right side.

Pa
0.05

Pa
0.05 0.2

Picture (c) is calculated with the same parameters ex-

cept for r = 0.25. Note the correspondence with the
parameters of Pig. 1.
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Figure 4 Figure 9

D
0.0025
0.2

pa
0.01
0.02

Pa
0.01
0.02

0.005
0.02

0.0

Figure 5

The picture is based on Eq. (1). The boundary con-
ditions are tight; the field grows from 8 x 8 to 52 x 52
cells. One line and one column of cells are added at the
top border and at the right-hand side after every 2000th
iteration. The system starts initially out of its homoge-
neous steady state.

D
0.006
0.2

pa
0.01
0.02

Pa
0.01
0.02

0.001
0.0

0.0

The picture is computed with Eq. (1). The boundary
conditions are tight and the field grows from 21 x 21 to
31 x 31 cells. One cell line and one cell column are added
at random positions after every 2000th iteration. The
system is initially in its homogeneous steady state.

D
0.015
0.03

pa
0.025
0.0025
0.03

0.00075
0.003

O. l
0.00225 20.0
0.00015 22.0

To produce the leopard coat (b) we have replaced the
initial conditions on 8 by 8 = 2.5, and on a by a = 2
at the positions P, . The parameters involved are listed
here.

D
0.01
0.1

pa
0.05
0.0035
0.03

0.003
0.003

0.0075
0.00007

0.5
0.3

22.0

The next data set produces the spots on the cheetah (d).

The three pictures are based on Eq. (8). The Beld has
a size of 120 x 65 cells in (a), and 80 x 80 cells in (b)
and (c). For the three plots, the boundary conditions are
periodic. The initial state is given by a = 0, 8 = 3, and

y = 0 everywhere except on some randomly scattered
point P; where a = 5.

Here are the parameters used for the girafFe coat (a).

D
0.015
0.1

pa
0.025
0.0025
0.03

0.00075
0.003

0.5
0.00225 1.0
0.00015 22.0

Figure 6

D
0.005
0.2

pa
0.0005
0.00075

Pa
0.0005
0.00075

0.00005 0.0
0.00025

Figure 7

The sea-urchin simulation uses Eq. (1). Boundaries are
tight; the one-dimensional field grows from 5 to 50 cells,
one cell being added at a random position after every
2000th iteration. The system is initially homogeneous.
When the system reaches a size of 50 cells, it is cut in
two parts having tight boundaries. After the cut, no
further growth is assumed.

Figure 10

D
0.01
0.2
0.0075
0.15

pa
0.0025
0.003
0.01875
0.0375

0.00025
0.003
0.00187

0.1

0.2

Equations (9)—(10) are integrated in a field of initial
dimension 50 x 80; one line and one column of cells are
added at random positions after every 500th iteration,
up to a dimension of 70 x 100 cells. The boundary con-
ditions are periodic. One begins with the system in its
homogeneous steady state.

D
0.002
0.2

pa
2 x10
2x]0 4

4 x10

lxlo '

Equations used are (7). The domain is one dimen-
sional, initially composed of 20 cells. Zero-Aux boundary
conditions are assumed and the system starts from its
homogeneous steady state. The field grows by addition
of one cell at a random position after every 5000th iter-
ation. When a size of 100 cells is reached, the domain
is cut into two equal parts with zero-Aux boundaries and
the system is iterated without further growth until equi-
librium is reached.

Figure 12

The simulation is based on the set of equations (ll)—
(].4). In this picture, the field size is of 19 x 24 cells.
Boundaries are tight. Initially, the furrow substrate 8 is
uniformly distributed (s = 1) and the furrow activator

f is everywhere zero, except on four regularly spaced
cells at the bottom of the field, where f = 2 (this initial
regularity is not necessary; if f = 2 on the whole bottom
line of the field, a regular structure emerges too, but the
R8 cells need three or four rows to find their optimal
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spacing). The other activators and inhibitors all have a
very low initial concentration, say 0.01.

aRs
hRs
aM
hM
aa2
hR2

D
0.0025

0.0025
0.2
0.001
0.02
0.002
0.01

pa
0.1
0.04
0.04
0.04
0.0125
0.02
0.75
0.02

Pa
0.011

0.01

0.01

0.02

0.0004
0.0002
0.0001
0.0001

Ka Va

0.2

0.4

4.0 500

Figure 13

aM

h~
b~

0.2
0.2

pa
0.01
0.01
0.005
0.?
0.002

0.1

0.00015
0.002

0.0004

0.2222
0.2222 75

O. l

a~
hp

0.05
0.004
0.2

0.01
0.005 0.01
0.01 0.02

0.011
0.001
0.1

For m3, the value of o, should be replaced by 0.0002.
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