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Momentum-conserving lattice gases are simple, discrete, microscopic models of fluids. This review de-
scribes their hydrodynamics, with particular attention given to the derivation of macroscopic constitutive
equations from microscopic dynamics. Lattice-gas models of phase separation receive special emphasis.
The current understanding of phase transitions in these momentum-conserving models is reviewed; includ-
ed in this discussion is a summary of the dynamical properties of interfaces. Because the phase-separation
models are microscopically time irreversible, interesting questions are raised about their relationship to
real fluid mixtures. Simulation of certain complex-fluid problems, such as multiphase flow through porous
media and the interaction of phase transitions with hydrodynamics, is illustrated.
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I. INTRODUCTION

Macroscopic complexity can mask microscopic simpli-
city. For example, the swirls and bursts of a turbulent
fluid are just the collective dynamics that emerge from a
large number of molecules interacting with each other
via Newton’s equation of motion. Whereas the micro-
scopic dynamics in such a system are straightforward in
principle, the organization of these microscopic motions
to produce turbulence, or even hydrodynamics itself,
remains shrouded in mystery.

Much, however, is of course known. Both the kinetic
theory of gases and the Navier-Stokes equations of hy-
drodynamics date from the nineteenth century, while in
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this century considerable progress has been made toward
the understanding of the connections between the micro-
scopic or atomistic description of fluids and macroscopic
hydrodynamics (Chapman and Cowling, 1970). Never-
theless, some relatively simple questions concerning the
relation between these two levels of description are only
just beginning to be addressed. For example, one may
ask precisely how large a microscopic system of particles
must be for it to contain enough degrees of freedom to be
considered, at a larger scale, as a continuously varying
macroscopic medium. To answer such questions, the ad-
vent of modern computers has been essential. Among
the many achievements in the field of molecular-
dynamics simulation has been the explicit demonstration
that hydrodynamic flows can be obtained (albeit at con-
siderable computational expense) from large molecular
systems (Rapaport and Clementi, 1986; Mareschal and
Kestemont, 1987).

We now know, however, that the complexity of hydro-
dynamics not only may be described by an explicit
“averaging” of the N-body problem of molecular dynam-
ics, but that virtually the same macroscopic hydro-
dynamic equations may be obtained from a drastically
simplified version of molecular dynamics. Specifically, in
1986, Frisch, Hasslacher, and Pomeau showed that one
may derive the Navier-Stokes equations from a micro-
dynamics consisting of an artificial set of rules for col-
lision and propagation of identical particles, each of
which is constrained to move on a regular lattice in
discrete time with one of only a small, finite number of
possible velocities (Frisch et al., 1986). This remarkable
observation has not only had implications for statistical
mechanics and kinetic theory, but also for the numerical
simulation of certain hydrodynamic flows. This review is
therefore dedicated to an explication of the original work
of Frisch et al. and to a survey of some of the resulting
ramifications during the eight years since its introduc-
tion.

Because the model of Frisch et al. is constructed from
discrete dynamical variables (the velocities) that evolve
on a discrete lattice in discrete time, it is an example of a
cellular automaton (Farmer et al., 1984; Wolfram, 1986b;
Toffoli and Margolus, 1987). The idea of cellular auto-
mata, which dates back to the work of von Neumann and
Ulam in the 1940s (von Neumann, 1966), is to find simple
rules of spatial interaction and temporal evolution, from
which collective, complex behavior emerges. The early
motivations for this work came from biology: the goal,
as described in the historical perspective given by Dyson
(1979), was to provide a theory for how an artificial life
capable of reproducing itself could be constructed.
While applications of cellular automata to biology
remain of interest [see, for example, the book by Weis-
buch (1991)], in the last two to three decades much of the
interest has shifted to physics and computation. One of
the earliest works in this regard is that of Zuse (1970),
who was possibly the first to perceive the connections be-
tween cellular automata and the simulation of partial-
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differential equations. Other examples include studies of
time-reversible automata (Margolus, 1984), speculations
on the simulation of quantum-mechanical phenomena
(Feynman, 1982), creation of a ‘‘statistical mechanics’ of
cellular automata (Wolfram, 1983), and explicit con-
siderations of cellular automata as discrete dynamical
systems (Vichniac, 1984) and as an alternative to partial-
differential equations (Toffoli, 1984). Indeed, by 1985
there was a surfeit of speculation and expectation; but in
the absence of any widely known, concrete example of a
cellular-automaton model of a partial-differential equa-
tion, many were left wondering whether such models
could indeed be constructed.

In this context the model of Frisch, Hasslacher, and
Pomeau (FHP) was introduced. The model, an extension
of earlier work by Hardy, de Pazzis, and Pomeau (Hardy
et al., 1973, 1976), consisted of identical particles that
hop from site to site on a regular lattice, obeying simple
collision rules that conserve mass and momentum.
Frisch, Hasslacher, and Pomeau showed that, at a spatial
scale much larger than a lattice unit and at a temporal
scale much slower than a discrete time step, the model
asymptotically simulates the incompressible Navier-
Stokes equations.

The FHP model, the first of a wide class of models that
soon became known as lattice-gas automata, led to many
interesting ramifications. First, as already mentioned, it
demonstrated that the full details of real molecular dy-
namics are not necessary to create a microscopic model
with macroscopic hydrodynamic behavior (Kadanoff,
1986; Wolfram, 1986a; Frisch et al., 1987; Kadanoff
et al., 1989; Zanetti, 1989). Second, lattice-gas automata
were immediately considered as an alternative means for
the numerical simulation of hydrodynamic flows
(’Humieres, Pomeau, and Lallemand, 1985; d’Humieres
and Lallemand, 1986, 1987). Third, the method gave rise
to some new ideas for constructing models of certain
complex fluids, specifically, fluid mixtures including in-
terfaces, exhibiting phase transitions, and allowing for
multiphase flows (Rothman and Keller, 1988; Appert and
Zaleski, 1990). Thus lattice-gas automata have not only
become “toy models” for the exploration of the micro-
scopic basis of hydrodynamics, but also tools for the nu-
merical study of certain problems in fluid mechanics.
Both aspects of the subject are covered in this review.

In what follows, we first provide an overview of the
field. We introduce the FHP model, describe in general
terms its hydrodynamic limit, and illustrate its ability to
simulate the Navier-Stokes equations. We then intrcduce
lattice-gas models of multiphase fluids and briefly de-
scribe two examples. One is a model of a binary fluid
mixture that exhibits a phase-separation transition. The
other contains just a single species of fluid, but exhibits a
liquid-gas transition.

Following this overview, we show how one may derive
hydrodynamic equations from these microscopic models.
We first describe the hydrodynamic limit of the simplest,
single-component, models. We then review the state of
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theoretical understanding of the more complex, multi-
phase lattice gases. The hydrodynamic behavior of the
multiphase models is in one case precisely the same as,
and in the other case very close to, that of the simplest
lattice gases. Thus our emphasis on the multiphase mod-
els is concentrated on aspects of their phase
transitions—in other words, the formation of
interfaces—and on the physics of these interfaces them-
selves. We describe a catalog of results, both theoretical
and empirical, that show that the macroscopic behavior
of the multiphase models is qualitatively, if not quantita-
tively, similar to that obtained from classical models of
phase transitions and interfaces. We argue that this
agreement with classical theory is important not only for
applications, but also for a better understanding of some
of the foundations of statistical mechanics. Stated blunt-
ly, these models break many classical rules—for exam-
ple, their microdynamics is time-irreversible—but ap-
parently without significant deleterious effect. Under-
standing why this may be remains one of the more im-
portant questions to be addressed.

In the remainder of the review we provide an overview
of the variety of numerical experimentation that has been
performed with lattice gases. We describe problems of
both two- and three-dimensional flow, and of both single
and multiple fluids. While the lattice gas may, in princi-
ple, be used for nearly any problem in hydrodynamic
simulation, we emphasize that many of the most success-
ful applications have involved either a complex fluid, a
complex geometry, or both. Such complexity is perhaps
best exemplified by the problem of multiphase flow
through porous media.

Having stated the content of this review, we find it also
worthwhile to indicate some of the subjects we do not
cover. One such topic is multispeed models in which
moving particles are no longer restricted to unit speed,
thus allowing the definition of a temperature (Grosfils
et al., 1992; Molvig et al., 1992; Qian et al., 1992). Re-
lated to the internal energy transport in thermal models
are models of diffusion or passive-scalar transport.
Diffusion is relatively simple to study with lattice gases
and, indeed, has been the subject of considerable atten-
tion (Burges and Zaleski, 1987; Chopard and Droz, 1988;
d’Humieres et al., 1988; McNamara, 1990; Kong and
Cohen, 1991); it is, however, largely neglected by this re-
view. Likewise, we do not discuss recent lattice-gas mod-
els of reaction-diffusion equations (Dab et al., 1990,
1991; Kapral et al., 1991; Lawniczak et al., 1991). Last-
ly, we have chosen to devote only minimal attention to
the “lattice-Boltzmann method,” an important extension
of the lattice gas which is of both theoretical and practi-
cal interest. Whereas we derive the lattice-Boltzmann
equation from the Boolean dynamics of lattice gases in
Sec. IV, methods for solving this equation are considered
only in a brief, introductory discussion in Appendix C.
Further details of the lattice-Boltzmann method can be
found in the recent review by Benzi et al. (1992).
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Il. LATTICE-GAS MODELS OF SIMPLE FLUIDS

In this paper, the term ‘“‘lattice gas” refers to a system
of particles that move with a discrete set of velocities
from site to site on a regular lattice. This kind of lattice
gas is in some ways a generalization of the classical
lattice-gas models that have been employed, for example,
in theoretical models of the liquid-gas transition (Stanley,
1971). The major difference between the “new” lattice-
gas models and their classical counterparts is dynamical:
momentum is explicitly conserved in the new models,
thereby allowing one to obtain hydrodynamic equations
of motion. These momentum-conserving lattice gases are
thus of interest for both hydrodynamics and statistical
mechanics.

In this section, we first provide a brief historical over-
view of some specific hydrodynamic lattice-gas models.
We then introduce in some detail the lattice-gas model of
Frisch et al. (1986) and follow that discussion with some
examples of lattice-gas simulations.

A. Historical overview

From the standpoint of hydrodynamics, the essential
innovation due to momentum-conserving lattice gases is
the simultaneous discretization of space, time, velocity,
and density. Discretization of space and time is in
modern times relatively mundane, being an everyday oc-
currence in the numerical solution of partial-differential
equations by, for example, the method of finite
differences. Discretization of velocities, however, is a rel-
atively unusual idea. It seems to have first been con-
sidered for hydrodynamic flows by Broadwell, who
constructed a  discrete-velocity, continuous-time,
continuous-space, and continuous-density model to find
exact solutions to a Boltzmann equation describing shock
waves (Broadwell, 1964). Further ramifications of this
approach are described in the monograph by Gatignol
(1975).

The first discrete-velocity model in statistical mechan-
ics appears to have been proposed by Kadanoff and Swift
(1968). In an attempt to demonstrate the theoretical pos-
sibility of the divergence of transport coefficients near the
critical point, they created a version of a classical Ising
model in which positive spins acted as particles with
momentum in, say, one of four directions on a square lat-
tice, while negative spins acted as holes. Particles were
then allowed to collide with other particles or to ex-
change their positions with holes, but only if energy
(based on nearest-neighbor Ising interactions) and
momentum were exactly conserved. The model, purely
analytic in the form of a master equation, was discrete in
space, velocity, and density, but not in time. One of the
new results was that, despite its simplicity, the dynamics
led to hydrodynamics via the existence of sound waves.

A fully discrete model of hydrodynamics was first in-
troduced in the 1970s by Hardy, de Pazzis, and Pomeau
(Hardy et al., 1973, 1976). Their model consisted of
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identical particles moving from site to site on a square
lattice in discrete time, conserving particle number and
momentum upon collision. Their objective was not the
simulation of hydrodynamics in the broad sense, but
rather the study of issues in statistical mechanics, such as
ergodicity and the divergence of transport coefficients in
two dimensions. Their work used the simplest possible
model of molecular dynamics and is notable not only for
the reasons cited, but also for the interesting interplay
provided by the comparisons between theoretical predic-
tions of the model’s transport properties and the empiri-
cal results obtained from numerical simulations of it.

Although the model of Hardy et al. led to a number of
interesting results, it has had only limited applications
because its hydrodynamic limit is anisotropic. This is the
direct—and rather unsurprising—consequence of the
constraints imposed by the underlying square lattice. It
was not realized until 1986, in the aforementioned work
of Frisch, Hasslacher, and Pomeau (Frisch et al., 1986),
that a simple extension of the model to a triangular lat-
tice would suffice for isotropic hydrodynamics. We thus
turn to an introduction to the FHP model.

B. The Frisch-Hasslacher-Pomeau lattice gas

In the following, we first introduce a microdynamical
description of the FHP model. We then provide an out-
line of the derivation of the macrodynamical, or hydro-
dynamic, behavior. Full details concerning the hydro-
dynamic limit are given in Sec. IV.

1. Microdynamics

The FHP gas is constructed of discrete, identical parti-
cles which move from site to site on a triangular lattice,
colliding when they meet, always conserving particle
number and momentum. The dynamics evolves in
discrete time steps; an example of the evolution during
one time step is illustrated in Fig. 1. The initial
configuration is given in Fig. 1(a). Each arrow represents
a particle of unit mass moving with unit speed (one lat-
tice unit per time step) in one of six possible directions
given by the lattice links. No more than one particle may
reside at a given site and move with a given velocity;
thus, in this example, six bits of information suffice to ful-
ly describe the configuration at any site.

Each discrete time step of the lattice gas is composed
of two steps. In the first, each particle hops to a neigh-
boring site [Fig. 1(b)] in the direction given by its veloci-
ty. In the second step [Fig. 1(c)], the particles may col-
lide. The precise collision rules are parameters of the
model; all collisions, however, conserve mass and
momentum. Two examples of collisions that result in a
change in the velocity of particles are evident by compar-
ing the middle row in Figs. 1(b) and 1(c). The two-body
collision could just as easily have rotated counterclock-
wise as clockwise. Typical implementations perform
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FIG. 1. One time step in the evolution of the FHP lattice gas.
Each arrow represents a particle of unit mass moving in the
direction given by the arrow. (a) is the initial condition. (b)
represents the propagation, or free-streaming step: each parti-
cle has moved one lattice unit in the direction of its velocity. (c)
shows the result of collisions. The only collisions that have
changed the configuration of particles are located in the middle
row.

both with equal probability, either through the use of
random numbers or via a deterministic scheme. Explicit
examples of collisions are given in Fig. 2.

The microdynamics in Fig. 1 is expressed by

n;(x+c;,t +1)=n,(x,t)+A;[n(x,1)] . (2.1

The Boolean variables n=(n,,n,, ..., nq) indicate the
presence (1) or absence (0) of particles moving from site x
to site x+c;, where the particles move with unit speed in
the directions given by

(2.2)
]

c;=(coswi/3,sinmi/3), i=12,...,6.

AP'=an; (0,4 (1= n)(1—=n; ) (1 =1, 3)(1 =1, 45)

+(1=a)n; o0 1 s(1—n)(1—n; 4 )(1—n; 4 3)(1—

—nn 3 (1—=n; N1 —n; )X —n; )1 =0, 45)

Note that A{? allows for clockwise rotations when the
supplementary Boolean variable a (x,¢)=1, and for coun-
terclockwise rotations when a (x,#)=0. For the simplest
lattice gas, the full collision operator A; is

A, =AP+AB (2.5)
More elaborate collision operators may be formed by in-
cluding, for example, four-body collisions or by allowing
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Before After

FIG. 2. Explicit examples of some collisions that may occur in
the FHP model. The two-body head-on collision may result in
either a clockwise or a counterclockwise rotation; here we show
just one example. The two-body collision shown with nonzero
net momentum results in no change, since no other

configuration exists that conserves both the number of particles
and the net momentum.

|

The collision operator A; describes the change in 7,(x,t)
due to collisions, and takes on the values =1 and 0. It is
the sum of Boolean expressions, one for each possible col-
lision. For example, the operator for the three-body col-
lision in Fig. 2 is given by

AP =n; n; an (1= n)(1—n; ) (1=, 4y)
=R g1 =0 )(1—n;  3)(1—n; 4 5) ,
(2.3)

where the circular shift i+3=; such that
c;=—c;, j=1,...,6. The operator for the two-body
collision in Fig. 2 is

nitq)

(2.4)

[

for collisions with stationary, or “rest,” particles
(d’Humieres and Lallemand, 1987). In the usual formula-
tions, the only restrictions on A; are that it conserve
mass,

> A(n)=0, (2.6)

and that it conserve momentum,
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S c;A(n)=0. 2.7)

Using the first of these relations, one may sum the micro-
dynamical equation (2.1) over each direction i to obtain
an equation for the conservation of mass,

> ni(x+c;,t +1)=3 n,(x,1), (2.8)

and, after multiplying the same equation by c;, summing
again over 7, and using the second relation, one obtains
an equation for the conservation of momentum,

> c;ni(x+c;,t +1)=3 c;n;(x,t) . (2.9)

Equations (2.8) and (2.9) describe the evolution of mass
and momentum in the Boolean field and may be con-
sidered the microscopic mass-balance and momentum-
balance equations, respectively, of the lattice gas.

2. Macrodynamics

Conservation of mass and momentum at the micro-
scopic or molecular scale of a fluid implies the same con-
servation at a macroscopic, or continuum, scale. It is at
this scale, and partly from these conservation laws, that
the Navier-Stokes equations are derived (Landau and
Lifshitz, 1959a; Batchelor, 1967). One expects that much
the same analysis should apply to the lattice gas.

To obtain an overview of why this is possible, consider
a contiguous, enclosed set of lattice sites. Note that the
change in mass within this set is precisely balanced by
the flux of mass out of it. Consider, then, the evolution
of the average quantity {#; ), in which the average is tak-
en over an ensemble of systems prepared with different
initial conditions. We identify 3,;{n;) with the mass and
S:{n;)c; with the mass flux. Whereas the unaveraged
Boolean field is necessarily noisy at the smallest scales,
we may assume that {n; )(x,¢) is slowly varying in both
space and time. We can thus infer that temporal and
spatial scales much larger than one time step and one lat-
tice unit, but still small enough such that {n;) varies
slowly, may be defined in the limit of long times and large
lattices. Since the same balance between mass change
and mass flux that applies to n; also applies to {(n; ), we
may conclude, via the divergence theorem and the usual
arguments of continuum mechanics, that

3,3 (n)=—3,3 (n; )iy, (2.10)
1 ]
where the a component of the ith velocity vector c; is
given by c;,, and the Einstein summation convention is
assumed over indices given by Greek letters.

One may reach a similar conclusion for the momen-
tum. The change in the a component of momentum in
any region of the lattice is itself precisely balanced by the
flux of @ momentum in the B direction, 3; {7, )c;,c;p
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out of this region. Thus, by the same argument, one ob-
tains
3, 3 (n)ciu=—3p3 {n;)c,cip - (2.11)
i i
Finally, by defining the mass density p=3; {n;) and
the momentum density pu, =3, {n; )c;, and substituting

into Egs. (2.10) and (2.11), we obtain the familiar con-
tinuity equation,

9,p=—0ypu,) , (2.12)
and the macroscopic momentum-balance equation,
9,(puy)=—094ll 5, (2.13)

of hydrodynamics, where in the latter we have intro-
duced the momentum flux density tensor (Landau and
Lifshitz, 1959a)

=3 (n;)ciocip - (2.14)
1

While Eq. (2.12) is fully explicit, the writing of momen-
tum conservation as an explicit equation in terms of p
and u requires some work. Not surprisingly, the pres-
ence of an underlying lattice makes this derivation of hy-
drodynamics somewhat different from the usual fluid
case. The seminal contribution of FHP was to notice
that in a low-velocity expansion, a second-order tensor
such as II 5 is written (Frisch et al., 1986)

I 5=po(p)Bos+Augyslplu,us+0u®), (2.15)

where p, and Ay, s must be obtained from Eq. (2.14) and
the expressions for {n; ), the average populations. In or-
dinary continuous media the tensor Ag, s is readily found
to be isotropic and to preserve Galilean invariance.
However, because we work with an underlying lattice, it
is not the case for lattice gases. In fact, A,g,s acts instead
as an elasticity tensor and inherits the symmetry proper-
ties of the lattice just as elasticity tensors share the sym-
metry properties of a crystal lattice. This “memory” of
the lattice would, in fact, doom our effort to simulate a
fluid, except for a remarkable property of hexagonal lat-
tices well noticed by Landau and Lifshitz, who wrote
(Landau and Lifshitz, 1959b), “It should be noticed that
deformation in the xy-plane (.. .) is determined by only
two moduli of elasticity, as for an isotropic body; that is,
the elastic properties of a hexagonal crystal are isotropic
in the plane perpendicular to the [hexagonal] axis.” In
equations, isotropy implies the general form

Negys(P)= A (p)8 1585+ B ()8, 855+ 8,585y ) »

where 8,5 is the Kronecker delta and 4 and B are two in-
dependent “‘elastic” moduli, which must be determined
from the average populations {n; ), as is done in Sec. IV.
Once this is done, the momentum-conservation equation
takes the following form, from (2.13), (2.15), and (2.16):

3,pu o +205B (plu ug=—03,[po(p)+ A(pu?]. (2.17)

(2.16)
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This equation is close, but not quite identical, to the usu-
al Euler equation for compressible flow. Moreover, we
have not given the expression for the coefficients 4 and
B, nor for py(p). However, as we detail in Sec. IV, in the
limit of vanishing u, the lattice-gas hydrodynamical
equation is equivalent to the usual incompressible Euler
equation.

To obtain the viscous term, and therefore the Navier-
Stokes equation of the lattice gas, one need also consider
gradients of the momentum field at second order. The
fourth-rank viscous stress tensor, itself obeying the sym-
metries of Eq. (2.16), is then introduced to relate viscous
stress to velocity gradients in the lattice gas. The two
free parameters of this tensor then determine the shear
and bulk viscosities (just as they would give the Lamé pa-
rameters in elasticity theory). That the lattice gas does
indeed have a viscosity is conceptually deduced by ob-
serving that collisions and propagation control the rate at
which momentum diffuses. The relevant diffusion
coefficient, or kinematic viscosity, may then be calculated
via a Boltzmann approximation, i.e., by ignoring correla-
tions between particles (Hénon, 1987b). Each of these is-
sues is addressed in detail in Sec. IV.

Finally, we note that the derivation of hydrodynamics
in this section, crude as it is, reveals one very important
point: the precise details of the collision rules (aside from
certain pathological choices to be discussed later) do not
affect the form of the constitutive, hydrodynamic equa-
tions. Rather, they determine the values of the transport
coefficients.

C. Simulations

Before introducing models with interfaces, it is useful
to illustrate the kind of hydrodynamic simulation that is
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possible with the FHP model.

Figure 3 shows one of the first hydrodynamic flows
simulated by the lattice-gas method (d’Humieres,
Pomeau, and Lallemand, 1985). This two-dimensional
flow past a flat plate is forced by injecting particles at the
left boundary of the lattice and removing particles at the
right boundary, thus creating a pressure gradient. The
flow, at a Reynolds number of approximately 70, creates
vortices, known as von Karman streets, behind the plate.
This flow field qualitatively matches those that would be
obtained from quasi-two-dimensional experiments or oth-
er methods of numerical simulation.

As we shall discuss later, one interesting aspect of the
lattice-gas method is the ease with which one may simu-
late flows in complex geometries. An application of this
capability is the study of flows through microscopically
disordered porous media. An example of a simulation of
flow through a two-dimensional porous medium is shown
in Fig. 4 (Rothman, 1988). Flows such as these obey a
linear force-flux relation known as Darcy’s law; the simu-
lations allow estimation of the conductivity, or permea-
bility, coefficient of the bulk flow.

These and other simulational studies are described in
more detail in Sec. IX. Now, however, we turn to a con-
sideration of how the simple FHP model may be modified
to simulate the dynamics of certain multiphase fluids and
interfaces.

Ill. LATTICE-GAS MODELS
OF PHASE-SEPARATING MIXTURES

As indicated in the Introduction, one of the important
generalizations of the FHP lattice gas has been the intro-
duction of discrete models for the simulation of hydro-
dynamic mixtures. The earliest models of mixtures were
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FIG. 3. Two-dimensional flow past a flat plate, simulated using the FHP lattice gas (d’Humieres, Pomeau, and Lallemand, 1985).

The Reynolds number is approximately 70.
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conceived simply by adding a second species of particles. mixture are independent of the particular species that a
In the case of a passive scalar (Chen and Matthaeus, particle may represent; the new behavior comes instead
1987; Baudet et al., 1989), the only new dynamics of in- from the redistribution of species (i.e., mass) after per-
terest is diffusion of one species into the other. The forming the FHP collisions described in the previous sec-
second species, however, can also be active. Thus, for ex- tion. Thus a second, qualitatively different mixture mod-
ample, Burges and Zaleski (1987) created a model of a el results from creating a dynamics in which the redistri-
mixture that was not only diffusive but also buoyant. A bution of momentum depends on the distribution of mass
further generalization of this sort is the introduction of (or possibly also momentum) prior to collision. We intro-
reactive fluids (Clavin et al., 1986, 1988; d’Humieres duce two such models below. In the first case, two
et al., 1987; Dab et al., 1990, 1991; Kapral et al., 1991). species interact with each other to create interfaces with
In this case collisions involving more than one species surface tension. In the second, a single species of parti-
need not conserve the number of particles of each species cles interacts with itself and also forms interfaces; but
entering a collision. rather than separating two species of fluids, the interface

In each of the mixture models cited above, the dynam- separates a dense (liquid) phase from a less dense (vapor)
ics of collisions and propagation of the (unforced) fluid phase.
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FIG. 4. Lattice-gas simulation of flow through a two-dimensional porous medium (Rothman, 1988). The fluid is forced from left to
right.
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A. Immiscible lattice gas

The immiscible lattice gas (ILG) is a two-species vari-
ant of the FHP model (Rothman and Keller, 1988). Ata
mechanistic level, the differences from and similarities to
the FHP model are best realized from a comparison of
the microdynamics of the two models.

Figure 5 illustrates the ILG microdynamics. The ini-
tial state [Fig. 5(a)] of the lattice is the same as in Fig. 1,
but now some of the particles are colored ‘“red,” while
the others are colored “blue.” The hopping step, Fig.
5(b), is precisely as before: particles propagate to the
neighboring site in the direction of their velocity. The
collision step in Fig. 5(c), however, is different. Roughly
speaking, the ILG collision rule changes the
configuration of particles so that, as much as possible,
red particles are directed toward neighbors containing
red particles, and blue particles are directed toward
neighbors containing blue particles. The total mass, the
total momentum, and the number of red (or blue) parti-
cles are conserved. Two examples of this collision rule
are seen by comparing the middle row of Fig. 5(b) with
that of Fig. 5(c).

The ILG microdynamics may be described as follows.
Each lattice site may contain red particles, blue particles,

50
v.*
¥ N

¥

FIG. 5. Microdynamics of the immiscible lattice gas, in which
the initial condition (a), the propagation step (b), and the col-
lision step (c) are displayed as in Fig. 1. The initial condition
and propagation step are the same as before, except that now
some particles are red (bold arrows) while others are blue (dou-
ble arrows). In the collision step, the particles are rearranged so
that, as much as possible, the flux of color is in the direction of
the local gradient of color. A comparison of the middle row
here with Fig. 1 shows how ILG collisions can create a “color-
blind” microdynamics different from that created by FHP col-
lisions.
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or both, but at most one particle (red or blue) may move
in each of the six directions ¢y, ..., cqs In the usual im-
plementation, each site may also have a seventh station-
ary, or rest, particle moving with velocity c¢,=0, and sub-
ject to the same exclusion rule. The configuration at a
site x is thus described by the Boolean variables r={r,}
and b={b;}, where the roman index i again indicates the
velocity, and r; and b; cannot simultaneously equal 1.

At a site x, a color flux q is defined to be the difference
between the red momentum and the blue momentum:

6

q[r(x),b(x)]= 3 c;[r(x)—b;(x)] . (3.1)
i=1

A vector proportional to the local color gradient (or
“field”) is also defined,

f(x)=3 ¢c; 3 [rj(x+c;)—bj(x+c;)] . (3.2)
i j

The ILG collision rule is antidiffusive: it maximizes the
flux of color in the direction of the local color gradient.

The result of a collision, r—r’, b—b’, is the
configuration that maximizes
q(r’,b’')-f , (3.3)

such that the number of red particles and the number of
blue particles is conserved,

Sri=>r, >b=3b,, 4 (3.4)
and so is the total momentum:

zc[(ril+bil):2 Ci(ri+bi) . (3.5)

i i

If more than one choice for r’,b’ maximizes (3.3), then
the outcome of the collision is chosen with equal proba-
bility from among these optimal configurations.
Analogous to the discrete microdynamical equation
(2.1) for the FHP model are two coupled microdynamical
equations for the ILG —one for the red particles,

ri(x+c;,t +1)=r/(x,1), (3.6)

and another for the blue particles,

b(x+c;,t+1)=b/(x,1) , (3.7)
where

r/=Ci(r(x,1),b(x,t),f,) (3.8)
and

b =C4x(x,1),b(x,2),f,) (3.9)

are the postcollision, prepropagation states. The col-
lision operators @} and @’ assume values of either 0 or 1
and are given implicitly by the maximization of the quan-
tity (3.3). Note that both @} and @? depend not only on
the red and blue population at site x, but also on the
“color-field angle” f,, a discretization of the unit vector
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t=2000

t=1000

t=10000 t=50000

f/|f| obtained from a simplification (described in Sec.
V.C.2) of Eq. (3.2). Although here we only discuss ILG
models that obtain f, from information at neighboring
sites, ILG models without explicit dependence on neigh-
boring sites have also been proposed (Chen, Doolen
et al., 1991; Somers and Rem, 1991). These models use
colored ‘“holes” in addition to colored particles to obtain
[« using only the local state.

A salient feature of the ILG is its ability to simulate
phase separation in a binary mixture; an example is
shown in Fig. 6. Here a 256X256 lattice is initialized as
a random mixture with average density p=4.9 particles
per site, with 50% of the particles red, and 50% blue. As
time progresses, the domains of red and blue grow larger,
eventually resulting in a steady state in which one thick
blue stripe is parallel to an equally thick red stripe. Mea-
surements show that the red rich phase is virtually
(>>99%) pure red, and likewise for blue.

Later we shall discuss simulations of phase separation
in greater detail, both from a phenomenological and
theoretical point of view. We note now, however, that
the collision rule defined by Egs. (3.1)-(3.3) can differ
from the plain FHP collisions only if there is more than
one color present at the site located at x; it is only in this
case that different combinations of »; and b; can create
different values of the color flux g that can contribute
differently to the maximization of (3.3). Thus, after we
have established (in a later section) that there is indeed
surface tension at the interfaces, we shall see that, in ad-
dition to being a model of phase separation in a binary
fluid, the ILG is also a model of the hydrodynamics of
two-phase flow.

B. Liquid-gas model

In our second model of a multiphase fluid, a liguid-gas
(LG) model, there is only one species of particle, but two
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FIG. 6. Phase separation in the immiscible
lattice gas. The initial condition was a homo-
geneous random mixture, with 50% red (black)
particles, and 50% blue (gray). Time ¢ is given
in time steps. Boundaries are periodic in both
directions. From Rothman (1992).

“thermodynamic” phases (Appert and Zaleski, 1990).
One phase—liquid—has a high density of particles,
while the other phase—gas—is relatively rarefied. The
two phases result from a rule that exchanges momentum
between sites separated by one or more lattice units,
which, as we shall show later, modifies the relationship
between pressure and density (the “equation of state”) in

4 'Y

FIG. 7. Microdynamics of the liquid-gas model, in which the
initial condition (a), the propagation step (b), and the collision
step (c) are precisely the same as that shown in Fig. 1. The new,
interaction step is shown in (d). In this example, the interaction
distance r=2.
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such a way as to allow coexistence of the dense and
rarefied phases.

Figure 7 illustrates the dynamics. The initial state and
the hopping step are precisely the same as in Fig. 1.
There are, however, now two collision steps. The first
collision step, Fig. 7(c), is the same as that in the FHP
model. We write the outcome of this ““classical” collision
as

ni=n;+A;(n) . (3.10)

In the second, interacting collision step [Fig. 7(d)], sites
at locations x and x+rc; (where here we choose r =2)
trade particles moving in directions —c; and c;, respec-
tively, if and only if both particles exist prior to the ex-
change and the exchange can be performed without
violating the exclusion rule. Figure 8 illustrates the rule
in detail. In terms of Boolean variables, we define

vi=n/(X)n{  3(X)n{(x+re;)n 5 (x+re;),  (3.11)

where overbars indicate the Boolean operator “not” and
the circular shift i 43 is defined as in Egs. (2.3) and (2.4).
The ability to perform the interaction is thus given by the
Boolean variable y;, and the microdynamical equation
describing the complete sequence of propagation fol-
lowed by classical and interacting collisions becomes

n(x+c;,t +1)=n/(x,8)+v;,— V43 - (3.12)

The liquid-gas models that were originally proposed
contained more interactions, requiring a more complicat-
ed analysis and implementation (Appert and Zaleski,
1990, 1993; Appert et al., 1991). In this review, we dis-
cuss only the simpler model of Appert, d’Humieres, and
Zaleski (1993), given by Egs. (3.11) and (3.12). Though
the old and new models differ quantitatively (e.g., the
values of the transport coefficients), the qualitative
behavior remains the same.

As in the ILG, the salient feature of the liquid-gas
model is phase separation, which will occur for certain
choices of the initial density of particles. This behavior is
illustrated in Fig. 9. Unlike the ILG, phase separation in
the liquid-gas model manifests itself not as the segrega-
tion of two species of particles into separate regions, but

Before
<O eee > € o—>
After
D — o—> B G >
I r {

FIG. 8. Interacting collision in the simplest liquid-gas model.
Solid arrows represent particles; broken arrows represent the
absence of a particle. The sites on which the interaction occurs
are situated r lattice units apart.

Rev. Mod. Phys., Vol. 66, No. 4, October 1994

as the segregation of a single species of particle into re-
gions of high and low density. As we shall show, the rel-
ative volume of each region depends on the initial total
density of the single species, rather than the relative con-
centration of two species as in the ILG.

Lastly, we note that, unlike the ILG, the hydrodynam-
ic behavior of the bulk phases of the liquid-gas model
does not automatically reduce to that of the FHP model.
One must instead perform the same multiscale expansion
used to analyze the plain lattice gas; the results (detailed
in Sec. VI) are then seen to differ only in such terms as
the viscosity.

IV. THEORY OF SIMPLE LATTICE-GAS AUTOMATA

In this section we review the theory that leads from the
microscopic definition of simple, single-component lattice
gases given in Sec. IV.A to the large-scale hydrodynamic
equations. A great simplification is achieved if one uses
the Boltzmann molecular-chaos assumption, which is
equivalent to considering that the particles entering a
collision are not correlated. From this assumption, one
obtains the Fermi-Dirac equilibrium distribution for the
lattice-gas automaton. This equilibrium distribution al-
lows one to find the hydrodynamical equations. The first
result is the Euler equation for the lattice gas. The
Fermi-Dirac equilibrium and the Euler equation appear
at the lowest order of a multiple scale or Chapman-
Enskog expansion for the lattice gas. At second order,
this expansion yields the Navier-Stokes equations and ex-
plicit expressions for the viscosity of the model, as we
show in Sec. IV.B.

A more general statistical-mechanical approach aban-
dons the molecular-chaos assumption and could yield a
more rigorous theory for the lattice gas. However, this
approach is only partially developed, and we review it
only briefly in Sec. IV.C. There we show, for example,
that the equilibrium state may be obtained directly as a
solution of a Liouville equation, instead of a Boltzmann
equation. The discussion of more subtle effects of space
discretization, such as the appearance of spurious invari-
ants, is also covered in Sec. IV.C. The reader interested
only in general ideas about the derivation of the Navier-
Stokes equations may skip Sec. IV.C and lose little of im-
mediate relevance to the more complex lattice-gas models
described in the remainder of the review.

A. Some typical lattice-gas automata

We shall attempt a more precise definition for a num-
ber of lattice-gas models. These models are defined on
one- to four-dimensional lattices. We shall need a few
geometrical properties of these lattices. Only a fraction
of the theory of crystallographic lattices will be useful
here, namely, the theory of regular Bravais lattices, for
which we recall the most important facts and definitions.
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t=180 t=320

t=440 t=600

FIG. 9. Phase separation with particle removal in the 2D liquid-gas model (Appert and Zaleski, 1993). The pixels are black for more
than two particles per site and white otherwise. Thus the liquid phase is mostly black, while the gas phase is mostly white. The lat-
tice is initialized with a uniform particle distribution. As time progresses, particles are slowly removed at random. After an initial
transient, the density of the liquid and the gas remain constant, but the fraction of space covered by the dense phase is decreasing.
This leads to the formation of a 2D soap froth.
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1. Regular Bravais lattices

The term lattice denotes a set of isolated points .£ in
D-dimensional space R?. In a Bravais lattice, each point
has identical surroundings. Mathematically, this means
that the lattice is invariant by a translation that brings
any point of .L on any other point. In equations, we let
T, be a translation of space by a vector u and write the
definition

T, yL=L

for any pair (x,y) of vectors of L. A lattice is periodic if
it is invariant by a group of translations. It may be
proved that in D-dimensional space, Bravais lattices are
those periodic lattices generated by linear combinations
with integer (positive or negative) coefficients n; of D in-
dependent vectors u;, forming the set of points
nyu+ - +npup.

Bravais lattices are distinguished by their symmetry
properties. The point symmetry group § of a lattice is the
group of congruent transformations (or isometries) leaving
a lattice point fixed and the lattice globally invariant.

There is always a smallest set S of neighbors invariant
by the symmetry group ¢ and containing a set of generat-
ing vectors. This set of neighbors forms a polygon in 2D
from which the lattice draws its name (hence
monohedral, square, rectangular, and hexagonal lattices).
In 3D the set of neighbors is a polyhedron, and, in any
dimension, a polytope (Coxeter, 1977). Obviously ¢ is
also the symmetry group of a polytope associated with
the lattice. A regular Bravais lattice is a Bravais lattice in
which the set S'is a regular polytope.

The regularity of the lattice is very important in ob-
taining the desired properties of isotropy for fluid-
mechanical behavior. The connection from lattice sym-
metry to large-scale isotropy goes along the lines dis-
cussed in Sec. II.B and is discussed in more detail in Ap-
pendix A. The desire for isotropy motivates us to restrict
all developments to regular Bravais lattices. Among the
five Bravais lattices in 2D are only two regular ones, the
square and hexagonal lattices. In 3D we find three cubic
lattices—the simple cubic, the centered cubic, and the
face-centered cubic. In 4D the (regular) face-centered
hypercubic lattice also turns out to be useful. In single-
velocity models, where there is a single velocity modulus
for all particles, we shall denote by c; the set of vectors
joining a site with its set of nearest neighbors S. The vec-
tors c; have symmetry properties that are important in
the calculation of various quantities, which are derived in
Appendix A using some geometrical facts about regular
polytopes.

2. Models on the hexagonal lattice

a. Six-velocity model

The six-velocity model was described in Sec. II.B. The
collision rules given in Egs. (2.3) and (2.4) correspond to
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the original FHP-I model. It is useful when discussing
this and subsequent models to have in mind a
classification of all configurations by classes of equal
momentum and mass. Then each configuration is
characterized by three numbers (n,gx*,gy* ), where the in-

n=2

g'x=0 g'x=1 gx=2 g'x=3

9*y=2 \/

g‘y=1

9‘y=0

g'x=0 g'x=1

()

@ (2

FIG. 10. Configurations for the six-velocity FHP lattice gas.
Each entry corresponds to a given class (n,g,g, ). Other
configurations in the same class may sometimes be obtained by
rotation. The number of configurations in the class is then
shown in parentheses. Configurations for other values of
(gs,g ) may be obtained by reflections. Configurations for
n>3 are all obtained by exchanging particles with holes.
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tegers n,g,,g, label the particle number and momentum.
They are defined by

n(s)=ys; ,

D. H. Rothman and S. Zaleski: Lattice-gas models of phase separation

where g(s)=3; s;c;, is the momentum of configuration s
and the factors 2 and 2/V'3 are added to obtain integer
values for n,g;,g,".

The possible configurations for a six-velocity lattice gas
are shown in Fig. 10. It is immediately seen that the
FHP-I model does not perform all possible collisions.
There are, for instance, two members in class (3,1,1)
which could be transformed into each other by collision.

FIG. 11. Configurations for the seven-velocity
FHP lattice gas, constructed using the same
scheme as in Fig. 10. The solid circle
represents a rest particle. Notice that for
(n,gx*,gy*)=(3,0,0) there are two subclasses 4
and B. In each subclass the configurations
may be deduced from each other by rotations
and reflections.

gr(s)=2g,.(s), 4.1)
2
gy*(s)—7§—gy(s) ,
n=1
g'x=0 g'x=1 gx=2
g'y—1 /
gy=0 . —_—
g'x=0 g'x=1 g'x=2 g'x=3
g'y_2 \/
Qﬂy-"I / L
o
o —>
g'y=0 >
(3)
n=3
g'x=0 g'x=1 g'x=2 g'x=3 g'x=4
g y=2 \./ \ ‘
g*y._1 \._>
<—L )
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| A ‘
‘ ) >——> ! @ /,
g* =0 L__,_..__.,,,J
a 3 / <
|(3) «—e—>
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Including all such collisions leads to a six-velocity
collision-saturated model (d’Humieres and Lallemand,
1987). We return to the definition of these models below.

b. Seven-velocity model

Although the FHP-I model is very simple, it has cer-
tain unwelcome features. For instance, the triple col-
lision is relatively infrequent compared to the pair col-
lisions. This is unfortunate, since pair collisions conserve
not only mass and momentum but an additional invari-
ant. As we shall see, this vitiates the derivation of hydro-
dynamics. Another difficulty is that the compression
viscosity is zero for the FHP-I model (Frisch et al.,
1987). A simple improvement is to add one or several
rest particles. We shall restrict ourselves to only one rest
particle.

At this point it is useful to introduce the standard no-
tation (d’Humieres and Lallemand, 1987) for multiple-
speed models. The particle velocities now optionally car-
ry a double index i =(k,j). The speed index k is O for
rest particles and 1 for moving particles. The index j
varies from 1 to 6 and indicates the direction of the ve-
locity vector. Velocities are noted c,; or c;, where, in the
latter case, the single index i implies the two indices.
Likewise, particle Boolean variables are noted ny; Or n;,
etc. The c,; are the six unit vectors parallel to the axes
on the hexagonal lattice, and cy; =0.

The possible configurations for 7-bit models are shown
in Fig. 11. In this figure, we describe the configurations
only up to a rotation or reflection. It is seen that there
are two subgroups of class (3,0,0), which we call (3,0,0)“
and (3,0,0)%, containing two or three configurations
which can be transformed into each other by rotations.

The collision-saturated seven-velocity model (also
known as FHP-III) has the following collision rules.
Configurations are transformed into any of the other
configurations of the same class (n,g,,g,). However, in
some cases, such as class (3,0,0), the collision output is
chosen to be another member of the same subclass, either
(3,0,0)4 or (3,0,002. There are at most p =3 members of a
class or subclass in this scheme. Thus there are at most
two outputs from which to choose. The choice is
achieved with a random bit as described in Sec. I1.B.

Another model that will be useful in what follows is
the random-collision seven-velocity model. A configura-
tion in a class (n,gx*,gy"‘) is transformed into any
configuration in the same class, including the original
one. There are at most p =5 configurations from which
to choose (Fig. 11). The collision rate for state s going
into state s’ is defined to be A4 (s,s’)=1/p. More than
one random bit is now needed. In practice a random
number generator is used to choose from the p
configurations.
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3. A three-dimensional model: The face-centered
hypercubic lattice

Three-dimensional lattice-gas automata were first in-
troduced by d’Humieres et al. (1986). Three-dimensional
models are constructed on the face-centered hypercubic
(fche) lattice, a generalization to 4D of the face-
centered-cubic lattice (fcc). The fcc lattice is inadequate,
as are all other 3D Bravais lattices, because it fails to en-
sure the symmetry of fourth-order tensors such as A,z,5
defined in Sec. II. The fchc lattice is generated by the set
of 24 velocity vectors c; of the form (£1,+£1,0,0) togeth-
er with all permutations of the four components. It is
also the set of points x=(a,b,c,d) with integer coordi-
nates and a +b +c +d even. The ‘visualization” of
such a lattice is difficult, if not impossible. However, a
good grasp of the nature of the fchc lattice may be ob-
tained from an analogy with staggered lattices in 2D or
3D. In particular, the face-centered-cubic fcc lattice is
made of all the points x=(a,b,c) with a +b +c even.
Notice in Fig. 12 that the fcc lattice is not the entire cu-
bic lattice with all points of integer coordinates (a,b,c),
but just half of it. In a similar way, the fchc lattice forms
a staggered subset of the hypercubic lattice, just as the
fcc lattice is half of the cubic lattice. When projected
onto the 3D hyperplane d =0, the velocity vectors in the
fche lattice fall in the two sets depicted in Fig. 13: 12 di-
agonal vectors lie in the plane d =0, while the 12 other
vectors fall on the Cartesian axes with d ==*1. It is in-
teresting to note that the vectors c; are also vertices of
the four-dimensional polytope defined by the Schlafi sym-
bol {3,4,3}. (See Appendix A for a definition of the
Schlifi symbol.) A projection of the {3,4,3} polytope is
shown in Fig. 14.

Although the fche collisions must be performed in 4D,
simulations of 3D flow may be performed on lattices that
are only a few layers wide in the fourth dimension. Be-
cause of the staggered nature of the lattice, the thinnest
possible slab is two lattice spacings wide in the fourth di-
mension. Although such slabs are commonly used, Brito

FIG. 12. Face-centered-cubic lattice. The solid circles belong
to the face-centered lattice and correspond to coordinates
(a,b,c) of even sum. The open circles have integer coordinates
with odd sum. This lattice is the analog in three dimensions of
the fche lattice. A 2D layer of the lattice contains points of
coordinates ¢=0 or 1. Similarly, a 3D layer of the fchc lattice
spans two values of the coordinate in the fourth dimension.
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(1,0,0,£1)

(1,0,-1,0)

FIG. 13. A perspective view of the fchc primitive cell, project-
ed into 3D space. Instead of explicitly showing all 24 velocities,
only two of the 12 velocities which extend into the fourth di-
mension are shown, along with just one of the velocities with no
component in the fourth dimension.

and Ernst (1991b) pointed out that excess correlations
may appear in such thin slabs. '

Finally, we note that the definition of a collision opera-
tor for the fchc lattice with 24 velocities requires the
specification of the possibly random output for each of
2% possible configurations. Many proposals, some of
which are reviewed in Sec. IX.A.2, have been made for
the definition of such operators and the algorithms to cal-
culate them on computers.

B. A derivation of hydrodynamics
from the Boltzmann equation

In this section we derive the Euler equations and the
Navier-Stokes equations for the simple lattice gas with a
single mass and at most one rest particle.

FIG. 14. Projection of the polytope of Schlifi symbol {3,4,3}
(Coxeter, 1977). Vertices are shown as small circles. As indi-
cated by the Schlifi symbol, each face has three edges. The
eight edges attached to each vertex join it to a cube. This cube
is the Et P polytope connected to each vertex and its Schlifi
symbol {4,3}. A definition of Et P and the Schlafi symbol may
be found in Appendix A.
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1. The microdynamical equation

We consider a single- or multiple-speed model. The
velocities, equal to the distance between nearest neigh-
bors in the single-speed case, will still be denoted by c;.
The index i may denote a multiple index in the multiple-
velocity case. We denote by b the number of particles of
all velocities. The local configuration will be a Boolean
b-vector n(x,t) depending on space and time. In the col-
lision step of the dynamics, the configuration n on a
given site is transformed into a postcollision
configuration n’. The configuration n’ is selected ran-
domly among all configurations having the same value of
the invariants with probability or transition rate
A(n,n’).

It is useful to express this simple algorithm in terms of
a sequence of Boolean calculations, such as the micro-
dynamical equation of Sec. II.B. For this purpose we
define a field of “rate bits,” denoted by a ., which are
equal to 1 with probability 4 (s,s’):

(a,)=A(s,s") .

Rate bits should yield a single output for any input state s
and space-time location x,¢. This is expressed by

S ag(x,0)=1. (4.2)

Then the microdynamical equation may be generalized to
read

n(x+c;,t+1)
=n,(x,1)+3 a,(x,0)(s] —s;) [] nj(x,t)sjr_zj(x,t)fj ,

s,s’ J
(4.3)

where we use again the notation X =1—x. In the above
equation the Boolean product P =11; nj(x,t)sjﬁj(x,t)sj is
a generalization of the products given in Egs. (2.3) and
(2.4). To establish the equivalence of Eq. (4.3) and the
random algorithm, it is useful to remark that P is in fact
a logical operator that tests the equality of the Boolean
vectors s and n. Thus the right-hand side of (4.3) really
transforms n into the postcollision configuration n’.

2. The lattice-Boltzmann equation

In Boltzmann’s molecular-chaos assumption, particles
entering a collision are not correlated before they collide.
For any combination of particles a,b, ...,x entering a
collision, one assumes

(ngny - n)=(n){ny) - (n.) . 4.4)

The rate of collision can then be determined by averaging
Eq. (4.3). The resulting lattice-Boltzmann equation has
the form

Ni(x+c;,t +1)=N,(x,t)+A,[N(x,8)] , 4.5)
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where N=(N;);—, , is the population b-vector, the ele-
ments of which are N;=(#;), and A is the Boltzmann
collision operator defined by

A(N)=3 (s/—s5,) 4 (s,s") [[ N/ . (4.6)
ss’ Jj

The above equation is identical to (4.3) with the Boolean
vectors n replaced by distributions N and the random
rate bits a, replaced by the transitions rates A (s,s’).
Equations (4.5) and (4.6) are themselves the basis for
what is known as the lattice-Boltzmann method, which is
briefly described in Appendix C.

3. Equilibrium distributions

The equilibrium distributions are solutions N9 of Eq.
(4.5), uniform in time and space. They are thus the solu-
tions of

A;(N*9)=0 . 4.7)

A number of interesting results are known about these
solutions under some conditions on the transition rates,
which we explain below.

a. Semidetailed balance and uniqueness

A first condition is the conservation of probability, a
direct consequence of Eq. (4.2):

> A(s,s')=1 forall s . 4.8)

Most models introduced in Sec. II are statistically rever-
sible, in the sense that they obey detailed balance,

A(s,s')=A(s',s) . 4.9)

A weaker condition which is sometimes obeyed when de-
tailed balance does not hold (for instance, in some fchc
models) is semidetailed balance, the symmetric condition
of (4.8):

> A(s,s')=1 for all s’ . (4.10)

It may be proved (Frisch et al., 1987) that if the rates 4
are positive and obey (4.8), as befits probabilities, and if

the semidetailed balance condition (4.10) holds, then the
solutions of (4.7) are of the form

eq— 1
! 1+exp(h +q-c;)

(4.11)

The functions # and q are arbitrary parameters that
define the distributions. That the above factorized
Fermi-Dirac measure is indeed a solution of Eq. (4.7)
may be shown easily (Frisch et al., 1987). It is also the
only solution, a fact related to the H-theorem in the
kinetic theory of gases (Gatignol, 1975; Hénon, 1987a).
The parameters 4 and q are related to the observable
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properties of the distribution, i.e., the mass and momen-
tum densities. From Sec. II, mass and momentum densi-
ties are related to N; by

p=3 N 4.12)

and

pu=> Nf; . (4.13)
i

Equations (4.11), (4.12), and (4.13) define implicitly

h(p,u) and q(p,u) and thus the uniform distribution N/9.

b. Multiple velocity and models lacking semidetailed balance

The Fermi-Dirac equilibrium described in Eq. (4.11)
still holds for multiple-velocity models having as an addi-
tional invariant the kinetic energy, but.the form of the
distribution changes (Ernst, 1991) to incorporate the new
invariant. In some other models, semidetailed balance
does not hold. There are, for example, the models dis-
cussed in Sec. III as well as the models described by Du-
brulle et al. (1990) or Gerits et al. (1993). In these cases
there is no explicit distribution available to replace (4.11).
In other words, the usual construction of equilibrium
states in statistical mechanics from the Gibbs distribution
does not hold.

c. Low-velocity expansion

It is useful to represent explicitly the equilibrium dis-
tributions as the following series in powers of the velocity
w

hip,u)=hy+hu*+0w?), (4.14)
q(p,u)=q1u+(9(u3) . (4.15)

We used symmetry properties of the lattice to obtain the
above equations. Let the Fermi-Dirac function f be

defined by
1
(x)= . (4.16)
fix 1+e”
Expanding Eq. (4.11), we obtain
NH=f(ho)+f'(ho)q u-c;,+h,u?)
+1f"(hg)g?(u-c; ) +0u?) . 4.17)

From (4.12) and (4.17), estimated at u =0, we obtain
f(hy)=p/b. Using the traditional notation d =p /b for
the “reduced” density, we get
Nfd=d[1—(1—d)(gu-c;,+h,u?)
+L(1—d)(1—2d)g}(u-c;*+0O(u?)] . (4.18)

Replacing the above expansion into (4.12) and (4.13), we
obtain two relations for g; and A,. In these relations the
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tensors E‘? and E® appear, with

Eﬁ{l’._.ar=2c,~al " Cig, - (4.19)
It is shown in Appendix A that
2) _ be?
EaB = —‘B—Saﬁ ’ (4.20)

where ¢ =||c;||. Furthermore, all odd-order r tensors of
the form E'” vanish.

Using these results, ¢, and A, may be found for each
particular case. In models with a single velocity the final
result is

Nev=d |14+ 2ty + G (d)Qogu g | + 0w |
C

(4.21)

where i =1 to b, summation on repeated Greek indices is
implied, and

D* 1—2d
G(d) et 1—d
For models with b, rest particles and b,, =b —b, moving
particles such as the FHP-III model, the expressions cor-
responding to Eq. (4.21) are obtained in a similar fashion.
We assume here that the rest particles are identical and
distinguishable. (This assumption is not new, but is a
consequence of our previous assumption of the Boolean
form of the configuration vector.) We use the double-
index notation defined above in Sec. IV.A. For moving
particles,

2
and QiaB=ciaciB—%8aB . (4.22)

m

eq Db
ng—d [1+E—‘cuaua

b2 2

—i—G(d)b—2 IQjaﬁ-*- —lr)—bﬁaﬁ Uglig ]+(0(u3)

(4.23)

for j =1 to b,,, with the notations of (4.22). For rest par-
ticles,

bc?

eq —
Ngj=d Db

1—G(d)

(4.24)

u2]+(9(u2)

m

for j =1 to b,. For models with different structure, but
still of a Fermionic nature with semidetailed balance, the
low-velocity expansions may also be derived from the
Fermi-Dirac  distribution. =~ Such models include
multiple-velocity models with or without a conserved,
nontrivial kinetic energy, and models with unequal parti-
cle masses. In most of these cases the coefficients of the
low-velocity expansion are more difficult to find and do
not have simple algebraic expressions.
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4. Chapman-Enskog expansion

We now expand the solutions starting from slowly
varying equilibrium fluctuations. This Chapman-Enskog
expansion is (Chapman and Cowling, 1970)

NizNz'(O)+Nz'(1)+ +Ni<n)_|_ el (4.25)

where the zero-order term is the local equilibrium density
N{¥(x,00=f[h(p,u)+q(p,u)c,], (4.26)

and the densities p and u fluctuate in space and time.
The space and time scale of these fluctuations is large,
and thus derivatives—or gradients—of the N/ are
small. We introduce the idea of small gradients and also
the connected multiple-time concept in a heuristic way.

We postulate
NF=0(V*) .

Time derivatives are also small with 3,=O(V). More-
over, it will appear useful in what follows to couple the
gradient expansion of Eq. (4.25) with a multiple-time-
scale expansion. We let

3,=3, +8,+ -, 4.27)

where 9, =0(V), 8,2=(9(V2), etc.

Insertion of expansions (4.25) and (4.27) into the
lattice-Boltzmann equation (4.5) produces at each order b
equations. It is useful to introduce the linearized
Boltzmann collision operator

04,

1

A= .
7 AN; |n—w@

(4.28)

The above derivative is estimated at the zero-velocity
equilibrium N=(d,d, . ..,d). In Appendix B it is shown
that

Ay=3 (s/—s;)s;—d) A (s,s")d" ' (1—d)P "1 |

(4.29)

In a number of cases, for instance, when detailed balance
holds, or for single-speed models (this excludes some
models with rest particles) when semidetailed balance
holds, the operator A;; is symmetric. In addition, we
show in Appendix B that when detailed balance holds,
the linearized operator has the expression

Au':—%Z (s{ —s;)s;—s;) A (s,s)d" Y (1—d)b—n—1

(4.30)

At order 1 the following equation is obtained:

(4.31)

3, NV +¢;8,N V= A NV .
J

The operator A;; is not invertible, and a solvability condi-
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tion needs to be satisfied in order to ensure the existence
of a vector N’ obeying (4.31). As is the case in
multiple-scale expansions in other branches of physics,
the solvability conditions are associated with a continu-
ous symmetry of the solutions or a conservation law, as
we show below. From the conservation of mass and
momentum, D +1 vectors which are left null eigenvec-
tors of A,; are produced. These vectors are 1=(1,...,1)
and D vectors of the form (¢;,);—y, . , for a=1,...,D.
Indeed, mass conservation implies
> A(N)=0 (4.32)
i
for any N. Hence, setting N=N°®+¢€X with X an arbi-
trary b-vector, we find
> A;X;=0; (4.33)
ij
thus 1 is a left null eigenvector of A;;. Similarly, momen-
tum conservation implies

> cioAi(N)=0; (4.34)
hence

> ciaNiyiX; =0 (4.35)

ij

for any X. Since A;; is symmetric, we also have the right
null eigenvectors.

5. First-order conservation laws

a. Mass conservation

Multiplying Eq. (4.31) by 1, we get the first solvability
condition:

3, X N{V+853 ¢;pN{¥=0. (4.36)
i i

Using the definitions of mass and momentum and the dis-
tributions defined by Egs. (4.11), (4.12), and (4.26) order
by order, we obtain easily

> NO=p (4.37)
S NP=o0, (4.38)
and, from (4.13),
> N, = 4.39)
I i pll ’ *
> NV, =0. (4.40)

1l

From Egs. (4.36), (4.37), and (4.39), we obtain the mass-

Rev. Mod. Phys., Vol. 66, No. 4, October 1994

conservation equation

a,lp+div(pu)=0 . (4.41)

b. Euler equation

Multiplying Eq. (4.31) by the eigenvectors c;,, we ob-
tain the momentum solvability condition already indicat-
ed in Sec. I1.B.2:

9, > ciaNi(0)+a,82 Nz‘w)ciaciﬂzo . (4.42)
i i

At this order the momentum flux is expressed as
- 0
Haﬁ_z N,( )ciaciB .
i

The above equation is the momentum flux, or stress ten-
sor, in local equilibrium. Expanding Eq. (4.42) and using
Eq. (4.21), we get the momentum-conservation equation

8, P48 (plpuugl=—3,[p (p,u®) ]+ O(u*) ,
(4.43)
where we have used the following identity derived in Ap-

pendix A for hexagonal and fchc lattices:
4

b,c
zciaciﬁci5ci7= D (D +2) (8a3878+8a58B7+8a7838) .

(4.44)

The relation above expresses the isotropy of E*). The
parameter g(p) and the pressure p(p,u?) are generally
expressed in terms of the coefficients in the low-velocity
expansion (4.21). If we restrict ourselves to at most one
rest particle, they may be expressed as

__ D b 1-2d
g(p) D425, 1-d (4.45)
2 2 Csz D C2
plp,u )=csp—pg(p):2— 1+7~3—2 u?, (4.46)
CS

where ¢2>=(b,, /bD)c? is the square of the sound speed.
Equation (4.46) is a kind of equation of state, which we
discuss in more detail in the next section.

The above conservation laws have been derived within
the context of the Boltzmann molecular-chaos assump-
tion (4.4). It is interesting to note, however, that they
may be derived from the general standpoint of equilibri-
um statistics as done for single-speed gases (Frisch et al.,
1987). Indeed, the Fermi-Dirac assumption, which was
obtained from the Boltzmann equation, may also be ob-
tained from a quite general setting of statistical mechan-
ics, using Gibbs distributions (Zanetti, 1989; Ernst, 1991).
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6. Incompressible limit

The momentum-conservation equation (4.43) does not
involve viscosity. It represents inviscid flow for the lat-
tice gas and is similar to the Euler equation for gas flow
with two differences: the g (p) factor and the dependence
of the pressure on the speed. These differences disappear,
however, in the incompressible limit. The dependence of
pressure on density in Eq. (4.46) is a simplified equation
of state. It also appears in the artificial compressibility
model of Chorin (1967). Indeed, Chorin’s (finite-
difference algorithm for the numerical solution of the
Navier-Stokes equations closely resembles Egs. (4.43) and
(4.46).

To see how compressibility becomes irrelevant at low
fluid speeds, we now assume that u is small with respect
to the sound speed. Define the Mach number

e=u/c , (4.47)

where u is a typical speed scale. Temam (1969) has
shown how the incompressible limit is approached in
Chorin’s artificial compressibility model. A discussion of
the limit of small Mach number in real fluids may also be
found in Tritton (1988). In the lattice-gas context, we ex-
pand velocity and density around a constant density state
with the specific ansatz or a priori expression

u(x,t)=ev,(x,t)+ev,(x,1)+O(e)
- 2 4 (4.48)
p(x,t)=pytep(x,t)+O() -+
where at first order the density p, is a constant. This an-
satz is not the only possible one, and a different one could
lead us to an equation for acoustic waves, which, in fact,
coexist with the incompressible flow at low € (Frisch
et al., 1987).] We also define a new time scale t' =¢t. In-
serting Egs. (4.48) into (4.41), we obtain at order € the in-
compressibility condition

divv,;=0; (4.49)

inserting (4.48) into (4.43), we obtain at order € the equa-
tion
1
9,vi+glpyvyVv;=——Vp, , (4.50)
Po
where p;=c?p;. Equation (4.50) is the lattice-gas
equivalent of the Euler equation for incompressible flow.

For a given density p, such that g(p,) does not vanish,
we define

u' =g (po)v and p'=g(pyp; . (4.51)
Then,
3,u'+u - vu'=—-Lvp 4.52)
Po
and
diva'=0 . (4.53)

The above are the usual Galilean-invariant Euler equa-
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tions. It is interesting to remark that the limit e <<1 is
not relevant when the Reynolds number is small (see Sec.
5.8 of Tritton, 1988). Incompressibility is then obtained
when

€*<<Re , (4.54)

where the Reynolds number is Re=uL /v, L is a length
scale, and v is the shear viscosity. This remark may be of
some interest in the lattice-gas context, since one often
finds the lattice gas to be an interesting model at low
Reynolds numbers. When the limit of low Mach number
is obtained by letting u vanish, leaving v fixed, there is no
difficulty and Eq. (4.54) is satisfied. However, letting v
increase at constant u might create problems.

7. Navier-Stokes equation and viscous terms

Most of the derivation that follows was done by Hénon
(1987b) for models with a single particle speed. The ex-
tension to models with rest particles was done by
d’Humieres and Lallemand (1987). In this review we at-
tempt to give a full, self-contained description of the
derivation, but we limit ourselves to models with a single
rest particle, i.e., b,=1. Thus, in all the following, b,,
should read b —1. The expressions without the rest par-
ticle, however, may be easily recovered.

a. Inversion of first-order equation

Viscosity appears at the second order of the
Chapman-Enskog equation. But before we write conser-
vation equations at second order, we need to invert Eq.
(4.31) for N'V. To perform this inversion, we need to be
more specific about the operator A;; defined in Eq. (4.28).
We consider the case of a single rest particle, and we as-
sume that the conditions for the symmetry of the linear-
ized operator are fulfilled,

Aot (Ay)

A=) (4

. (4.55)

The coefficients A,; and 4;; are simply a new notation for
the coefficients A;; given by Eq. (4.30). The coefficients
A;; involve moving particles only, Ay, involves the single
rest particle, and the A;; describe the “coupling” between
the single rest particle and moving particles. These
coefficients obey two sets of constraints: @ Angle depen-
dence. The matrix A4;; is invariant under the action of
the symmetry group §. In particular, the element 4;; de-
pends only on the angle (c;,c;). All coefficients A,; are
equal. @ Conservation laws. Mass conservation expressed
in Eq. (4.33) implies that

bm
2> A;+A,=0
j=1

(4.56)

and
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Aoy by, Ay =0 4.57) N =b,,X8,:04pu,) , (4.66)
From momentum conservation as expressed in Eq. (4.35), where the coefficients 1 and X depend on the operator A.
b, Inserting these two equations into (4.61) and using (4.56),
> A;c;=0. (4.58)  we find
j=1 1
We first insert Eq. (4.21) into the left-hand side of Eq. X= b, Ay,

(4.31). Using the. equilibrium distributions (4.23) and
(4.24), the first-order mass-conservation law (4.41), and
the Euler equation (4.43) itself, we find, for moving parti-
cles,

(3, +¢,,, N 0= CZIZ,,, Qo+ blj,,. 8up |35(pua)
(4.59)
and, for rest particles,
9,N 0)————dlv(pu) . (4.60)
From the first-order equation (4.31), Egs. (4.59) and

(4.60), and definition (4.55) of the linearized operator,

D
c?b,,

QlaB+ bb aB aB(pua)

b,
_E A,jN +}\«11N
j_l

div(pu)

(1) (1)
—}\11 2 N _b )\,IINOI .

ji=1

(4.61)

We save a lot of effort if we first determine the general
form of N'¥) from symmetry. Since the left-hand side of
(4.61) depends on the symmetric part of dglpu,), N
must have the form

NV =t2b3g(pu )+t 3.p (4.62)

where tiaﬁ is a general tensor of second order, invariant
by all lattice isometries in § that leave ¢, invariant and
symmetric in the Greek indices, and t,-(;) is similarly a
vector invariant by all lattice isometries that leave c; in-
variant. In addition, N{} =K ,305(pu,) where K ;5 is a
general, symmetric second-order tensor invariant by all
lattice isometries. In Appendix A we show that such a
tensor must be of the form K ,;=Y38,; where Y is an ar-
bitrary constant. We also show in Appendix A that for
all regular Bravais lattices

tiap =1Qiap—XBop (4.63)
and

tiy) =Tey, (4.64)

with arbitrary coefficients ¥,X,7T. Using also the mass
and momentum normalizations (4.38) and (4.40), we ob-
tain X =Y and T =0. We then obtain

NV =(4Q10p—X8,5)95(pu,) , (4.65)
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(4.67)

bm
Ty QiaPalpua) =6 3 AyQiaidylpua)

Thus the b,,-vector @,z is an eigenvector of 4;; and

)\'=

P! (4.68)

is the corresponding eigenvalue.

In more complicated models, where the set of allowed
velocities contains more than nearest-neighbor lattice
vectors [e.g., the 1D, five-velocity model of Qian,
d’Humieres, and Lallemand (1992) or the 2D, 19-velocity
model of Grosfils (Grosfils et al., 1992, 1993)], the solu-
tion is a linear combination of more eigenvectors of the
same tensorial character. An explicit example can be
found in Ernst (1991).

b. Second-order equation

Substituting the general Chapman-Enskog expansion
(4.25) into (4.5), we obtain at second order

[INO(x+c;,t +1)—Nx,t)

+NV(x+e;,t +1)—N{"(x, t)]m
= (1
EAU j EaN aN N; N (4.69)
where the notation [ - - - ]®’ means that we collect all

terms of order 2 in the expression in brackets. A solva-
bility condition for momentum is obtained by multiply-
ing Eq. (4.69) by the momentum eigenvector:

S (NO(x+c;,t +1)—Nx,1)
i

Nz'(l)(X+ciyt+1)_Ni(l)(x’t)](2)cia:0 * (470)

After some manipulation, using the first-order momen-
tum balance (4.42) and the momentum normalization
condition (4.40), we obtain

9,,pu,t %atlz cioz(az1 +CiﬁaB)Ni(0)
i

+305 3 ciaCipld; +c,,,a,,)N,.(°)+aBE ciacipN; =0 .
i i

(4.71)

From the expansion of the streaming operator (4.59) and
the first order in the Chapman-Enskog expansion, Eq.
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(4.31), we obtain

atzpua %atleijcia“jgl)
ij
+ 19 —_ +————1 8.5 |0,( )
Tﬁgciaciﬁ b, Qiys bb, °1° pus

+35 3 cincipNiV=0. 4.72)
L

Then, using the existence of a null eigenvector for

momentum expressed in (4.35) and the fourth-order ten-

sor equation (4.44) again, and inserting the low-velocity

expansion (4.23) and (4.24) of N'” in the above equation,

we obtain

atzpua =03p{v1[0g(pu ) +3,(pug)l} +3,[v,divipu)],

(4.73)
where we introduce two viscosity coefficients,
b,c* c?
=— - . 4.74
=" om+2 ¥ 2012 @74
b, c? 2b,,c* 2 2
vy=—" X+ —— + £ -
D DXD +2) D(D+2) 2bD

(4.75)

The coefficient v, is the kinematic shear viscosity. The
compression viscosity is relevant only for compressible
flow, and its precise expression in terms of v, and v, re-
quires a careful discussion which we omit in this review.
A similar calculation may be performed starting from
the mass solvability condition. Multiplying (4.69) by 1
yields
a,2p=o . (4.76)

Adding (4.73) to the Euler equation (4.43) and using the
multiple-time-scale expansion (4.27), we get the full
Navier-Stokes equations

atpua+aB[g (p)puauﬁ]
=—3,[p (p,u®)]+85{v,[34(pu,)+3,(pug)l}
+9,[v,divipu)] ; 4.77)

from the first and second order of mass conservation,

Lattice-gas models of phase separation

Egs. (4.41) and (4.76), we obtain the continuity equation

9,p+div(pu)=0. (4.78)

Equations (4.77) and (4.78) are one of the main results of
lattice-gas theory. They are close to the Galilean-
invariant compressible equations for fluid flow (Landau
and Lifshitz, 1959a; Tritton, 1988). In the low-Mach-
number limit, we can perform the same changes of vari-
able as in Sec. IV.B.6 and obtain the incompressible
Navier-Stokes equations. The form of these equations is
universal. It does not depend on the collision operator,
except through the parameters ¢ and X. These equations
hold for all the lattice geometries with symmetry proper-
ties implying isotropy of fourth-order tensors.

8. Viscosity

a. Expression of the viscosity coefficients

From Egs. (4.68) and (4.74),

c? c?

ITTAUD+2) 2D +2) “.79)

From Eq. (4.67), A may be expressed as
_ 2 Qiop4ijQjap

2,- Qizaﬁ
Whenever the operator A;; may be put in the simple form
(4.30), one obtains, after some calculations (Hénon,
1987b),
D3 Alss)d" T A=d) T T Y g — Y )Y o

b,,c{D—1)

m

A (4.80)

A

’

(4.81)

where Yo3=73,5Qiapy Yop=23i5/Qiap and n=3, s;.
Several transformations of Eq. (4.80) may be found in
Hénon (1987b). In particular, it may be shown (Hénon,
1987b) that the shear viscosity v, is always positive, pro-
vided the semidetailed balance condition (4.10) is
satisfied. More elaborate expressions of the viscosity also
allow an attempt at minimization of v,, a useful endeavor
when the objective is to reach high Reynolds numbers.

The values of the shear viscosity for several classical
models are summarized in Table 1.

TABLE 1. Viscosity values for the simple models described in Sec. IV.A.2.

FHP-1 FHP-III Random seven-velocity

p 6d _ d d

¢, 1/v2 v3NnVT V3/VT

v RN 1 _1 11 1 _1 _

! 12 d(1—d)® 8 28 d(1—d) 1—8d(1—d)/7 8

vi(d=0.3) 0.685 0.0988 0.236
vi(d=0.5) 1.21 0.0750 0.191
vi(d=0.7) 428 0.0988 0.236
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b. Comparison of viscous equations with simulations

We have described the issue of the general comparison
of the viscous equations (4.77) and (4.78) with simulations
of the lattice gas in Sec. II.C. Here we only discuss simu-
lations aimed at the measurement of viscosity. One pos-
sible method is the Poiseuille viscometer experiment of
McNamara, Kadanoff, and Zanetti described in Sec.
IX.A.1.b. The measured viscosities agree within a few
percent with the predicted ones. However, the difference
is outside of the error bars. In fact, viscosity diverges
logarithmically with length in two dimensions, a fact that
precludes any agreement with the Boltzmann values. We
shall discuss this divergence further in Sec. IV.C.

Another type of measurement may be performed using
decaying shear waves (’Humieres and Lallemand, 1987).
Because the shear waves eventually decay to below noise
levels, such transient experiments cannot be sustained
indefinitely and are, in our opinion, less accurate than
Poiseuille viscometers. However, they have the advan-
tage that forcing is not required. A third method is to
use the Green-Kubo integrals discussed in Sec. IV.C. It
is then possible to estimate the viscosity from a measure-
ment of the two-time correlations in equilibrium. This
eliminates the need for forcing and for transient experi-
ments.

C. Statistical description
beyond the Boltzmann approximation

We now review the statistical description of a general
lattice gas. The statistical description has several levels.
At the level of the Liouville equation, we look for an in-
variant or equilibrium measure that would generalize the
Fermi-Dirac distribution. The description of that mea-
sure will be made following the ideas of Hardy, de Pazzis,
and Pomeau (Hardy et al., 1973), Zanetti (1989), and
Bernardin (1992).

1. Liouville equation

As in Sec. IV.A.1, let .L be the lattice, considered ei-
ther infinite in space or of very large volume. A
configuration over the entire set .L is a function n(x) of
lattice position x. We shall write functions n(-),m(-),
etc., to distinguish them from their value at x. For in-
stance, n(-,¢) is the configuration of the model at time ¢.
It is of some interest to study in detail the evolution of
n(-,¢) as given by the microdynamical equation (4.3). It
is equivalent to the composition of two operators: a
streaming operator & and a collision operator C.
Streaming is simply the propagation of particles. The
distribution n(-) yields m(-)=&n(-) if

m;(x+c;)=n;(x) . (4.82)

The collision operator is defined by m(-)=Cn(-) and
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m(x)=n,(x)+ 3 a(x)(s; —s;) [I n} (X)7(x) . (4.83)
5,8’ J

Obviously the collision operator € is a random operator.
Let A (X — Y) be the transition rate corresponding to the
random operator 6=C&. The explicit expression of
these transition rates is cumbersome and does not play a
role in the discussion that follows. The time-dependent
function P (-,t) gives the probability P [n(-),?] of observ-
ing configuration n(-) at time z. The function P(-,?) is
called the state of the lattice in the classical terminology
of statistical physics (Kadanoff and Swift, 1968) and
should not be confused with a configuration n(-). The
state obeys a Liouville or Chapman-Kolmogorov equa-
tion (Frisch et al., 1987; Zanetti, 1989):

Pln(-),t +1]1=3 A[m(-)—n(-)]P[m(-),z] .

m(-)

(4.84)

2. Equilibrium states

The invariant measures, or steady distributions, are
fixed points P of the evolution (4.84). It is not known in
general what the invariant measures are (Hardy et al.,
1973; Ernst, 1991; Bernardin, 1992). When the quantities
J;[m(-)] left invariant by the microdynamics are known
and the microscopic motion is reversible, a standard con-
jecture of statistical mechanics (Landau and Lifshitz,
1986) is that the relevant fixed points, called equilibrium
states, are the Gibbs distributions

exv[—z,-mJ,-[n(')]l
P=

Z ’ (4.85)
where the partition function
Z=7 exp [2 —u;J;[m(-)] } (4.86)
m(+) i

and the u; are chemical potentials associated with the J;.
In standard models such as FHP, D +1 invariant den-
sities have been built into the system; i.e.,

Jo[n(-)]= 3 nin(x)], J [n()]= 3 g.(n(x)),

x€L x€L

where 1<a<D, (4.87)

where the particle number n and the momentum g are
defined by

n(n)=Y n; and g(n)=3 n;c; . (4.88)

i i

A remarkable fact shared by all lattice-gas automata with
semidetailed balance is that they possess a factorized in-
variant measure. When the only invariant densities are
mass and momentum, we find the same Fermi-Dirac dis-

tribution as in Sec. IV.B. Indeed, by substituting the in-
variants of Eq. (4.87) into the Gibbs distribution (4.85),
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we find

n;(x,1) 1—n;(x,7)

b
PX)=TI IIf(h+awc,)

x€L i=1

[1—f(h +q-c;)]

(4.89)
where f is defined as in Eq. (4.16).

3. Spurious invariants

We shall call spurious invariants those invariants J;
that appear in the probabilistic Liouville dynamics (4.84)
but were not built intentionally into the model. It has
long been known, for instance, that the model of Hardy,
de Pazzis, and Pomeau (Hardy et al., 1973) conserved
the total momentum on each lattice line, creating
infinitely many spurious invariants. The FHP model has
three staggered time-dependent invariants of the form
(Zanetti, 1989)

Tp k=3 (= D=1 "g(x)-c}

X

(4.90)

for k =1 to 3 where c} is the unit vector orthogonal to
c, and b, is the reciprocal vector b, =2/v"3ci. That
these expressions are, in fact, invariant may be verified by
inspection. Notice that the local expression g(x)-c} is in-
variant by the local collision operator. The global ex-
pression in (4.90) is also invariant by the streaming
operator &, as is easily seen by inspection. Thus the
spurious invariants J; are invariant by the composition
of streaming and collision.

These invariants may be given the following meaning:
the momentum projected on directions perpendicular to
a lattice line, i.e., g(x)-c}, may be split between even-
numbered and odd-numbered lines. The odd-line
momentum is exchanged with the even-line momentum
at each time step.

Following the accidental discovery of the staggered in-
variants (4.90), several studies were made to find an ex-
haustive list of invariants. Systematic numerical searches
for linear invariants have been performed (d’Humieres
et al., 1989, 1990; Zanetti, 1991). Staggered invariants
were found in multiple-velocity square-lattice models
(Brito and Ernst, 1991a). All fchc models have 12 spuri-
ous invariants of the form (4.90) (Brito et al., 1991). In-
variants may have period higher than 2: counting
period-3 invariants, 11 invariants were found in the 4-bit
model of Qian et al. (1992). The decomposition into
streaming and collision operator used above is the source
of efficient algorithms for invariant search (d’Humieres,
1990).

A description of hydrodynamics that includes stag-
gered invariants was given by Zanetti (1989). The stan-
dard hydrodynamic description, however, which ex-
cludes staggered invariants, is, nevertheless, still con-
sidered relevant by most practitioners. The coupling be-
tween staggered invariant modes and momentum and
mass hydrodynamic modes is such that the production of
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staggered invariants is neglected in Zanetti’s (1989) full
hydrodynamic equations. Some production may, howev-
er, occur at boundaries or when shock waves form. Ex-
cluding such processes, if the staggered invariants have
initially zero density, they will remain negligible (Cornu-
bert, 1991).

4. Euler equations and the Boltzmann approximation

In a manner similar to the derivation from the
Boltzmann equation in Sec. IV.B, a Chapman-Enskog ex-
pansion of the densities N;=(n;) may be performed.
The first-order equations are obtained directly by substi-
tution of the expansion given by Eq. (4.25) in the mass-
and momentum-conservation equations. When the spuri-
ous invariants are all of vanishing density or somehow
destroyed, the zero-order distribution is the Fermi-Dirac
distribution of Eq. (4.26), and Euler equations identical to
those of Sec. IV.B are obtained. Thus the Euler equa-
tions are really independent of the Boltzmann approxi-
mation.

5. Estimations of viscosity
beyond the Boltzmann approximation

In classical kinetic theory, viscosity may be related to
fluctuations of the velocity by so-called Green-Kubo rela-
tions. For a simple fluid, the shear viscosity takes the
form (Hansen, 1976)

— B e w xy
v S (eP0o(0)) gt (4.91)
where B is the inverse temperature; m, the molecular
mass; p, the mass density; and o™(¢), the xy component
of the microscopic momentum flux tensor related to a
given particle at time z. The symbol (-)., means that
fluctuations are taken in equilibrium.

Such a relation was obtained by Rivet (1987) in the
lattice-gas context. This formalism may be a starting
point for the computations of exact expressions for the
viscosity. Another issue of interest is the behavior
of long-time correlations of the form Cy(x,t)
=(n,~(0,0)nj(x,t) ), and, in particular, the appearance of
long-time tails of the form C(x(t),t)~t %, where x(t) is
the trajectory of a particle. The study of transport
coefficients and of these correlations has prompted a lot
of work in lattice gases since the earliest times (Kadanoff
and Swift, 1968; Hardy et al., 1973, 1976; Frenkel and
Ernst, 1989; Kadanoff er al., 1989; Ernst and Dufty,
1990; Frenkel, 1990; Naitoh et al., 1990, 1991; van der
Hoef and Frenkel, 1990, 1991a, 1991b; Brito and Ernst,
1991b; Ernst, 1991; Naitoh and Ernst, 1991; Noullez and
Boon, 1991). We cannot review this topic here. Howev-
er, we note that there is a remaining quantitative
disagreement between the kinds of mode-coupling
theories used and the very precise numerical experiments
performed in the study of long-time tails.



D. H. Rothman and S. Zaleski: Lattice-gas models of phase separation 1441

Methods for the construction of systematic corrections
to the Boltzmann values of the viscosity have been pro-
posed. A ring kinetic theory expresses time correlation
functions in terms of ring-collision integrals (Kirkpatrick
and Ernst, 1991). The results for long time reduce to
those found from the phenomenological mode-coupling
theory. Other diagrammatic expansions also give auto-
correlation functions (Boghosian and Taylor, 1994).
They are found to improve the predictions of transport
coefficients for some simple one-dimensional models.

V. ON THREE LEVELS: INTRODUCTION
TO PHASE-SEPARATING SYSTEMS

Phase separation occurs when the mixed state of a
mixture is unstable, so that its components spontaneously
segregate into bulk phases composed primarily of one
species or the other (Gunton et al., 1983). If the instabil-
ity results from a finite, localized perturbation of concen-
tration in the mixture, it is known as nucleation. If, in-
stead, the perturbation is infinitesimal in amplitude, not
localized, and of sufficiently long wavelength, the insta-
bility is known as spinodal decomposition.

In the remainder of this review we concentrate on the
statistical mechanics and hydrodynamics of the lattice-
gas models of phase separation introduced in Sec. III. To
set the stage for what follows, we first briefly review cer-
tain aspects of phase separation and classify them ac-
cording to the spatial scale at which they act: macroscop-
ic, mesoscopic, or microscopic.

At a macroscopic scale and within contiguous
domains, phase separation may be described by the
partial-differential equations of continuum mechanics.
An additional complexity, however, is brought to the
problem by the presence of interfaces separating each
phase from the other. Continuum mechanics considers
these interfaces to be vanishingly thin and constructs
jump conditions to connect solutions of the partial-
differential equations across the interfaces. These jump
conditions are the postulated basis for many applications
of the fluid dynamics of multiphase systems.

At a smaller scale, interfaces have a finite thickness.
This thickness, however, is assumed to be much larger
than the microscopic length scale of the system. Thus
the fluid behavior may still be described by continuum
equations. A simple example of such an approach is the
Ginzburg-Landau model for phase transitions or the
Cahn-Hilliard equation for phase separation in a binary
mixture (Gunton et al., 1983). Such a level of descrip-
tion is intermediary between continuum mechanics and
microscopic modeling and may appropriately be deemed
mesoscopic.

At a yet smaller scale the behavior of the system is that
of a collection of discrete particles. At this level of
description we find the two lattice-gas models of phase
separation introduced in Sec. III. Although describing
the microscopic dynamics of these models is one of the
main objectives of this review, it is nevertheless useful to
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discuss the connection of these models to the two other
levels of description described above. The merit of the
connection to the macroscopic, continuum-mechanics
approach is obvious. Continuum mechanics is widely
verified experimentally and may be seen as the expression
of the fundamental conservation laws and symmetries of
classical physics. On the other hand, the usefulness of
the connection to the mesoscopic level is more subtle. At
this mesoscopic scale, we can most clearly describe our
discrete models as analogous to bifurcating dynamical
systems. Just as in such systems, our discrete particle
models may fall into either the potential or nonpotential
category. In the potential category we find those systems
that derive from a thermodynamic potential and obey
classical thermodynamic rules for phase transitions. In
the nonpotential category we find systems that may not
obey some of these rules. The applicability of such con-
cepts for partial-differential equations is well demonstrat-
ed by the theory of instabilities in extended systems out
of equilibrium (Manneville, 1990).

In what follows we discuss the three levels of descrip-
tion, beginning with the largest scale and ending with the
smallest.

A. Macroscopic description: Hydrodynamics
with jump conditions

In this section we recall how thin interfaces are classi-
cally described in the continuum mechanics of two-phase
flow (Drew, 1983). For simplicity we consider a mixture
of two phases, noted 1 and 2, with densities p; and p,.
We shall assume for the moment that no change of phase
is permitted. The vector n is the normal to the interface.
Then we expect the Navier-Stokes equation,

a,ua+u[,a,,ua=-%aap(pwiaﬁsaﬂ, (5.1)

to be valid in the bulk of each phase, where the viscous
stress tensor is

S o5 =1t g+ gt )+ Ediv ub o, (5.2)

where, for simplicity, we have taken the viscosity
coefficients u and & in each phase to be equal. The mass-
conservation or continuity equation (2.12) is also obeyed
in each phase. On the interfaces between the two fluids a
number of fields obey jump conditions. We write
[X]=X,—X, to signify the difference between the limit
of quantity X when the interface is approached from side
1 and the corresponding limit when the interface is ap-
proached from side 2. The jump conditions are then
(1) fluid velocities are equal:

[u]=0; (5.3)

(2) interface velocity is equal to the fluid velocity. This
means that

u;'n=V,, (5.4)

where V; is the velocity of the interface in the direction
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of its normal n;
(3) momentum flux across the interface is continuous
except for the capillary force term:

(PS5t Sapl=n,ngok . (5.5)

Here o is the capillary or surface tension, and
k=1/R,;+1/R, is the curvature.

A requirement for consistency (in the sense used in nu-
merical analysis) of a lattice-gas scheme for the simula-
tion of multiphase flow is that, on the large scale, it obey
the above set of equations. Although such consistency
may not always be achieved in lattice-gas models, we em-
phasize that this consistency may not be necessary (or,
indeed, desirable) if one’s objective is to gain insight into
phase transitions in such discrete systems.

B. Mesoscopic description: Continuum models
of phase transitions

In this section we discuss phase-separating systems at a
mesoscopic scale where interfaces are no longer of negli-
gible width. Nevertheless, we still work with continuum
models, under the assumption that interfaces are much
wider than the characteristic microscopic scale. After in-
troducing the classical models of thermodynamics and
statistical physics for phase-transition dynamics, we de-
scribe two analog continuum models, one for binary
fluids and the other for a liquid-gas transition.

1. Mesoscopic theory for binary mixtures

Our goal in this brief section is to demonstrate, via a
linear theory due originally to Cahn and Hilliard, the ori-
gin of the instability that leads to spinodal decomposition
in real systems (Gunton et al., 1983). As is customary in
such formulations, we begin with a definition of a free-
energy density f(60), where 6(x) is a concentration field
that may vary in both space and time. Considerations of
symmetry lead to the following equation for a double-
well potential (Landau and Lifshitz, 1986):

f(O)=—h,0*+h,06%, (5.6)

where h, >0 and, for T<T,, h,>0. The free energy F
of the system is then the integral over space of the sum of
f and an additional spatial term chosen to favor smooth
concentration fields. This results in the Ginzburg-
Landau free-energy functional

2
—2—1|V9|2+f(6)

F[01= [dx ) (5.7)

where £, is a parameter proportional to the width of in-
terfaces. A dynamical model for the evolution of the
concentration field is the continuity equation

%= —V-3(x,1), (5.8)

coupled with an expression for the current J of concen-
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tration. This expression is obtained by noticing that the
chemical potential is

_ _bF
pelx)= 50(x) (5.9)

and relating the concentration current to the gradient of
chemical potential:

—evieo+ | (510

J(x)=—MVuc=—M
(x) Vie v 30

where M >0 is a mobility, or, in other words, a dissipa-
tive coefficient. Substitution of Eq. (5.10) into Eq. (5.8)
then yields the nonlinear equation we shall call Model 4
(Hohenberg and Halperin, 1977):

90(X) _» o2 | _s29249 ., Of
=MV | —givie+ L | (5.11)

To determine the condition under which spinodal
decomposition is initiated, we consider the evolution of
small perturbations @(x) to the average concentration
field 8,. Thus we write

0(x)=6,+6(x) (5.12)
and linearize Eq. (5.11) about 6, to obtain

ag(x) — 2 222 ﬂ t

“or MV [ EVe+ 26 |o, 0(x) . (5.13)

In the initial stages of spinodal decomposition, one ex-
pects 8 to be everywhere small. Thus, for sufficiently
long wavelengths, the first term in the brackets above can
be neglected, and we obtain the diffusion equation

d30(x) _ ~

DV?*6(x) , (5.14)
ot
where the diffusion coefficient is given by
2
D=M 8_}2‘ . (5.15)
00° |g,

Since D can be either positive or negative, we see that the
initial stages of spinodal decomposition (i.e., the growth
of the fluctuations &) may be characterized by “uphill
diffusion,” which is possible everywhere inside the spino-
dal curve defined by the locus of points for which
9%f /36*=0. We return to this point in Sec. VIII.B.

2. A nonpotential model

In the context of a microscopically irreversible lattice-
gas model, or, more specifically, a model lacking semide-
tailed balance and thus not satisfying Eq. (4.10), there is
no compelling argument for the existence of a thermo-
dynamical potential. Thus we now generalize Eq. (5.10)
to illustrate an example of a nonpotential model. We
keep the symmetries of the problem intact and still limit
ourselves to second order in gradient. The resulting
model, which we call Model 4', is
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I=V[—f(0)+EV20+£3(VH)] . (5.16)

For an equilibrium interface, J=0; if this interface is per-
pendicular to the z direction, then

9%0
O —&-——&

5.17
2 ( )

2
90 | _
oz =fo>

where f is the limiting value of f(8) for 06—+ . For
&,=0, this model derives from the potential F and may
be integrated once. In this case, we obtain a pair of equa-
tions that implicitly define 8, and 6,, the equilibrium con-
centrations in phases 1 and 2, respectively:

2
[, d0Lf (O —F(6)]1=0, f(6)=f(6;). (5.18)
1

However, if £,70, then the above construction fails.

Using the terminology of dissipative dynamical sys-
tems (Pomeau, 1986; Manneville, 1990), we call “poten-
tial” those systems like Model 4, Eq. (5.11), which may
be obtained from a thermodynamic potential, while we
refer to the others as “nonpotential.” The precise condi-
tions for compatibility of a dynamical equation with a
thermodynamic potential are that this potential should
always be nonincreasing, and should decrease in the pres-
ence of dissipative processes. Indeed, it may be shown
easily from (5.11) that 3,F =0. On the other hand, there
is very little numerical evidence as to which class our
phase-separating automata belong. It would, however,
be a remarkable accident if they fell into the potential
class. We note that the nonpotential Model 4’ [Eq.
(5.16)] is related to a model recently explored by Nozieres
and Quemada (1986) in the context of diffusion of a col-
lection of blood cells. In this nonequilibrium system, a
macroscopically fluctuating suspension in a liquid, one
expects equilibrium thermodynamical constructions to
fail. However, a surviving feature of such hydrodynami-
cal systems is the uniqueness of the equilibrium inter-
faces.

3. Mesoscopic model of momentum-conserving
cellular automata

A worthy goal for future lattice-gas studies would be
to extend Models 4 and A’ to describe as accurately as
possible lattice-gas models with phase transitions. A use-
ful guide in this endeavor may be the existing models for
liquid-gas transitions and coexistence. Such models have
been proposed in both potential and nonpotential form.
The earliest proposals were nonpotential and consisted
only of a model for the stress tensor Il,; (Korteweg,
1901). Using either the derivation of hydrodynamics
from a Lagrangian functional (Felderhof, 1970; Uwaha
and Nozieres, 1985) or the principle of virtual work
(Falk, 1992), it is possible to derive various dynamic
models that do derive from a potential.
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C. Microscopic models

In this section we provide detailed definitions of the
two phase-separation models introduced in Sec. III.
Then, in Secs. VI, VII, and VIII, we consider the relation
of these microscopic models to the macroscopic and
mesoscopic theories described above.

1. Liquid-gas models

a. Minimal model

In Sec. III.B we defined a liquid-gas model in two di-
mensions with interactions between sites. The model can
be generalized to any dimension easily. To perform this
generalization we use the following notational trick. We
let the indices i and —i denote opposite pairs of veloci-
ties, such that c;= —c_;. It is also useful to define a pro-
babilistic rate of interaction. We define the interaction
condition in terms of Boolean variables,

vi=a(x,x+rc;,t)a/(x)n"_;(x)

Xn/(x+rc;)n_;(x+rc;), (5.19)

where n’ is the distribution of particles after the first local
collision step but before the interactions at a distance [see
Egs. (3.11) and (3.12)], and a/(x,x+rc;,t) is a random
Boolean variable controlling the rate of interaction. We
shall assume it corresponds to a uniform interaction rate
w ={a/(x,x+rc;,t)). The microdynamical equation of
the lattice gas is then

ni(x+c;,t+1)=n/(x,t)+y,—y_; . (5.20)

This modification of the basic FHP model is analogous to
the addition of an attractive force between distant parti-
cles. This attraction occurs only at a fixed distance r. If
we consider a one-dimensional version of the liquid-gas
model, then the corresponding interaction potential be-
tween particles is akin to a square-well potential. In that
sense the liquid-gas model is a discrete analog of the clas-
sical molecular-dynamics model of hard spheres in a
square well.

b. Other liquid-gas models

To date, most numerical studies with liquid-gas models
have been done with more complex versions of the model
stated above. In these models, transverse momentum
(parallel to x,x+rc;) is exchanged between two sites by
redistributing particles in a number of ways. Figure 15
shows a five-step model (Appert and Zaleski, 1990) in
which interactions exchange the position of particles in
full and dotted lines. These interactions imply a form of
competition between interacting pairs. While in the
minimal model calculations of y; and n; could be done in
parallel, it must now be decided in which order the pairs
must be investigated. This is a rather annoying compli-
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".

FIG. 15. A more complex interacting model. The five interac-
tions are performed in a sequence for a given pair of sites. The
diagrams represent the particles before and after the collision,
as in Fig. 8. A thin line is added between the two sites to guide
the eye.

cation of the model, which, moreover, is not as easily
tractable as the minimal model.

Yet another model is the maximal model in which the
largest possible amount of momentum is exchanged be-
tween sites (Appert et al., 1991). This model has the ad-
vantage of displaying a liquid-gas transition in 2D at
r,=2.8, a relatively low value.

2. Immiscible lattice gas

Here we describe the detailed microdynamics of the
immiscible lattice-gas model, introduced in Sec. IIL.A.
Analogous to our definition of a state in a single-
component lattice gas, for immiscible lattice gases we
define the 14-bit state

s={rb}={ror, .. b}, (5.21)

where, as described in Sec. III.A, bits with indices O
represent rest particles, and higher indices refer to the
lattice directions c; given by Eq. (2.2). Since the red bit
r; and the blue bit b; cannot both equal 1 for the same i,
we have

n;=r;+b;

R PN T ST

(5.22)

to indicate the presence of either a red or a blue particle
moving with velocity c;, i >0, or at rest (i =0).

For completeness, we restate the microdynamical
equations given in Sec. ITI.A:
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ri(x+c;,t +1)=r/(x,t), b;(x+c;,t +1)=b/(x,t) .

(5.23)

These two equations are coupled via a collision operator
that depends on the entire state s and also the
configurations at neighboring sites. Thus

rl=Cl(s(x,1),f,), b/=C%s(x,t),f,), (5.24)

where the collision operator @€ {0, 1]} takes as input the
14-bit state s(x) and the color-field angle f,, a discreti-
zation of the unit vector f/|f|, and gives as output the
state of the ith element of species j € {r,b} after col-
lisions have occurred. f, is obtained from the color dis-
tribution at neighboring sites. The “true” color field f is
given by

6
f(x)=3 c;¢;, (5.25)
i=1
where the relative color density ¢; is
6
¢;= 3 [rj(x+c;)—b;(x+c;)] (5.26)
j=0
=M(s(x+c;)) (5.27)
for i=1,...,6. Here the color-counting look-up table
M has been implicitly defined. Since
¢, €{—7,—6,...,6,7}, there are 156 possible color dis-

tributions (#;);—,, . ¢ and therefore a similarly large
number of possible values of f. For efficient construction
of collision tables, however, one may exploit the follow-
ing observations: (1) many of these distributions yield the
same f, due to lattice symmetries; (2) only the direction,
not the magnitude, of f enters into the maximization of
Eq. (3.3), and therefore the outcome of a collision; and (3)
small differences in the direction of f are insignificant for
the creation of surface tension. Thus one need only work
with a discretized version of the unit vector f/|f|, which
amounts to using a scalar angle code, which is what we
call f,. Typically, one allows for 36 values of f,, uni-
formly distributed from O to 2, plus an additional state
to allow for the case f=0 (Rothman and Keller, 1988);
more severe discretizations, however, are possible. The
transformation of the color distribution (¢;);—; . ¢ to
the discrete angle f, is then symbolically represented by
the operator (or look-up table) 7 such that

Ty rdg)=F - (5.28)

VI. MACROSCOPIC LIMIT
OF PHASE-SEPARATING AUTOMATA

In this section we review the macroscopic behavior of
lattice-gas automata for multiphase flow.
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A. Navier-Stokes equation and jump conditions
for the immiscible lattice gas

As we noted earlier, the hydrodynamic limit of the
pure red or pure blue phase in the immiscible lattice gas
(ILG) is precisely that of the plain Frisch-Hasslacher-
Pomeau (FHP) lattice gas. The collision rule for a pure
phase of the ILG is that of the random FHP model with
seven particles. Other than a specific viscosity resulting
from the random-collision rule, the hydrodynamics of a
bulk phase does not differ from what was found for the
FHP models of Sec. IV, and therefore does not require
any new theory.

The velocity of the interfaces in the ILG is equal to the
velocity of the fluid from the law of conservation of
color. This creates a problem, because it is now impossi-
ble to recover the real Galilean-invariant equation by the
change of variables (4.51). Instead, if one wishes to use
the ILG to simulate flows at significant Reynolds num-
bers, the models must be modified to let g(py)=1 for
some density (Gunstensen and Rothman, 1991a).

The continuity of stress on the interface is a conse-
quence of the conservation of momentum. We here out-
line the proof of relation (5.5) in 2D. We start by
defining a control volume ABCD around a small piece of
interface of arc length / <<R where R is the radius of
curvature. We let a=1/R. Pressure forces act on the in-
side (p;) and outside (p,) of the interface. Our control
volume is thin around the interface; so forces on the sides
AB and CD can be neglected, except the capillary forces
f. (see Fig. 16). From the definition of surface tension,
f.=on, where n is a unit vector normal to the surface of
the control volume (Rowlinson and Widom, 1982). In
the absence of velocity, these are all the stresses entering
the control volume. Thus

20 sina/2—(p;—p,)l =0. (6.1)
For small angles a, we recover Laplace’s law
pPr—Py=0/R . (6.2)

The argument follows the same lines in 3D or when
viscous stresses are added. It does not, however, give us
any way to obtain the value of the stress o. Methods for
calculating o will be discussed in the following sections.
The absence of a jump in velocity cannot be demon-
strated from first principles. It can, however, be dis-
cussed using symmetry arguments in the following way.
Consider a uniform flow, parallel to the horizontal direc-
tion x on both sides of a horizontal interface, with con-

C B
fo D A fe

FIG. 16. Control volume ABCD (bold curves) around an inter-
face (thin curve). The capillary forces f, act on the control
volume.
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stant velocity u; in each phase i. Suppose that the flow
creates a velocity discontinuity with #%;>u,. Such a
discontinuity may be interpreted loosely as meaning that
the interface has vanishing viscosity allowing one phase
to slip on the other. The symmetry of the red and blue
phases indicates that a velocity discontinuity with
u; > u, implies the existence of another solution with ve-
locities u; and u, exchanged. However, the solution for
a flow parallel to the interface is probably unique, as is
the case for pressure and color distribution in our experi-
ments and mesoscopic models. Then we may only have a
single solution with u, =u,.

We note, however, that were we to extend ILG models
to fluids with asymmetric phases, the above arguments
would cease to be valid and a velocity jump would be
conceivable. Somers (1991) has reported difficulties with
ILG models with asymmetric viscosity that may be due
to such effects, and Ginzbourg (1994) has observed such
jumps in Boltzmann ILG models.

B. Macroscopic limit for the liquid-gas model

We now turn to the macroscopic limit for the liquid-
gas model. It turns out to be much more difficult to dis-
cuss than the case of the ILG. This difficulty arises be-
cause interactions deeply modify the nature of lattice-gas
automata.

1. Hydrodynamical equations away from interfaces

In order to obtain the macroscopic behavior of the
liquid-gas model, we need to make a Boltzmann or fac-
torization assumption, and then continue with a
Chapman-Enskog expansion. Such a procedure cannot
be valid near interfaces where the gradient of density is
large; it is only useful to describe the liquid-gas model
away from interfaces. It is also a mean-field theory for
the phase transition.

a. Boltzmann approximation

The Boltzmann equation is obtained from (1) the
molecular-chaos assumption (4.4), which indicates that
incoming particles are independent, and from (2) the as-
sumption that particles on interacting sites are factor-
ized. Then the averaging of the liquid-gas microdynami-
cal equation (5.20) is

Ni(x+c;,t +1)=N,(x,8)+A,[N]

+I[N']—-T_;[N'], (6.3)
where
[;N']=w[l1-N/x)IN_(x)[1—N"_;(x+rc;)]
X N!(x+rc;) (6.4)
and
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N'=N+A[N] . (6.5)

For rest particles, the nonlocal collision term I'y; van-
ishes identically.

b. Equation of state and inviscid hydrodynamics

A Chapman-Enskog expansion in the manner of Sec.
IV.B.4 may be performed:

N=NO+ND+ .. N+ .- (6.6)

In Sec. IV the leading term of the expansion was an equi-
librium solution of the probabilistic dynamics. For the
interacting model, there is, however, no equivalent of the
existence and uniqueness results of Sec. IV, nor is there
an H-theorem in the manner of Hénon’s theorem
(Hénon, 1987a). However, we consider, instead of the
true probabilistic dynamics, the Boltzmann evolution
(6.3). The Boltzmann equation has steady state, spatially
homogeneous solutions of the form N(x,z)=N®), where
N is given by Eq. (4.11). We may also define N'* as in
Eqgs. (4.23) and (4.26).

We also need to expand the interaction terms. This
yields

L (x;7)—T _j(x;7) =wrc;, 0,70+ O(V?)

where
r2%x)=[1—-Nx)INx)[1-N2(x)IN(x) .
6.7
The postcollision distributions have the expansion
N'=NP+AND+ ... | (6.8)

and the first-order equation is obtained by inserting Egs.
(6.6) and (6.7) into Eq. (6.3) to yield

NO(x+¢;,t +1)—N{x,1)

= A;NV(x,0)+7rc,d,T;(N?) . (6.9
J

A solvability condition is obtained, as usual, by multiply-

ing Eq. (6.9) by the mass and momentum eigenvectors.

The usual mass-conservation equation,

9,p+9,(pu,)=0, (6.10)
is obtained. The momentum equation is
9,(pug)=—3,I1% , (6.11)
where the momentum flux tensor is
Y= [N —wrT;(N)]c,c; - (6.12)
i

This momentum flux tensor may be found directly, as for
the noninteracting models, by a simple count of the in-
teraction crossing an imaginary hyperplane of the model.
An important qualitative feature is that the intensity of
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the interaction term is proportional to wr.
From the momentum-balance equation (6.11) and the
momentum flux tensor (6.12), the Euler equation

atpua+aﬁ[gwr(p)puauﬁ]=—_aa[pwr(pyuz)] (6.13)

is obtained. This equation is parametrized by the interac-
tion strength z =wr. The non-Galilean factor, sound ve-
locity, and pressure may all be expressed as functions of
z:

_p D 1-2d 4zd*(1—d)?
&= b 1—a 't 1—2a |0 W
ctip)=7 'jrljl)—[l——ZZd(l—d)(l—zd)], (6.15)
b,z
pput)=chop———d*1—d)’
D
+1plg,(p)—go(p)e2 (D +2)]u?, (6.16)

where the sound speed is ¢2=dp, /dp. At r=0, one re-
covers the results for a noninteracting gas.

We notice that g,(p) contains corrections coming from
the interactions. These are due to the fact that the rate
of interaction depends on the distributions of particles
and holes in the b directions of the lattice. Depending on
the velocity and density, there may be more or less parti-
cles and holes available for interaction in a given direc-
tion.

c. Viscous equation

The viscous flow in the liquid-gas model has been stud-
ied in both the gas and the liquid phase of the maximal
model of Sec. V.C.1.b. The method of decaying sine
waves has been used (Appert and Zaleski, 1993; Gerits
et al., 1993), as well as the observation of Poiseuille flows
in 2D channels for the gas phase (Pot et al., 1993) and
for the liquid phase (di Pietro et al., 1994).

Results in both the liquid and gas phases are in agree-
ment. Viscosities may be found for the maximal model in
tables given by Appert and Zaleski (1993). An interest-
ing effect is the growth of the viscosity like the square of
the range r. This effect may be predicted in a qualitative
way by analogy with Maxwell’s estimate v~AU for the
viscosity of gases, where A is the mean free path and U
the thermal velocity. Here we may argue that interac-
tions carry momentum over distances of order r at a
speed U which is also of order 7, yielding v=r2.

Another derivation of viscosity may be made in the
framework of the minimal model. Expanding the in-
teracting terms at order 2 is straightforward, if one no-
tices the following identity for the Chapman-Enskog ex-
pansion of the interaction terms:
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T(x;r)—T_;(x;7) 1V, we obtain the Navier-Stokes equations
=r81“,- +ﬁ or; 4 +Li a"T; b 6.17) 3,pt 5 +0p[g,rPU 4t g]= — 0Dy, T [ vIglpu )]
or 2 9dr? n! 9r® D—2
+d, I l D v+E |9glpug) |
Here each term in the expansion is of the corresponding (6.18)
order in gradient such that (" /n!)(3"T; /9r™")=0O(V"). '
Writing the solvability condition at order 2, as in Sec. where
J
2wr b, wr?
=vo+ d(1—d)(1—2d) |1+ —¢ |+ ——d(1—
v=vot o d(1md1=2d) |1+ g+ 7 d (1—d) 6.19)
1
§= §0+ _z_(cszwr _cszO )
wr? 2b,, +2b(D —2)—Db,, D—2 wr?
DD +2) (1—dX1—24d) b +Xb,,(D +2)+ D b,y |+ D d(1—d) (6.20)
by, 1
Yo+ Y 2D +2) 62D
by, 1
Eo= ?X_EB+%CSZO . (6.22)

The dependence of v with 7 is the most important quali-
tative feature of this expansion. Gerits et al. (1993) de-
rived similar expressions for the transport coefficients
and compared their results with extensive computer
simulations. They obtained fair to good agreement.

We now turn to another effect of the interactions on
the viscous behavior of the model. Measurements of the
viscosity made using a Poiseuille viscometer were per-
formed by di Pietro et al. (1994). The Poiseuille viscome-
ter is set up just as the analogous device of Kadanoff
et al. (1989). The measured viscosity is plotted in Fig. 17
for various flow speeds and channel widths. A variation
of viscosity with velocity squared is observed. A similar
effect is observed in noninteracting lattice gases (Diemer

[
et al., 1990), but it is much weaker there.

Both the #2 and the strong u2 dependence of the mea-
sured viscosity are drawbacks of our model. Together
with the non-Galilean g (p) factor, they limit the possibil-
ity of leaving the region of vanishingly small Reynolds
numbers, and they limit velocities to small values, which
slows down the simulations. Further exploration of
modifications to interacting models is necessary to over-
come these difficulties.

2. Jump conditions

Mass and momentum conservation imply, as in the
case of the ILG, that the stress jump condition (5.5) is

4 T T T T
'L=31" ¢
‘L=457 +
3.5 "L=61' ©
0.84 + 3.4*u + 18*u**2 -
5 L i FIG. 17. Estimates of apparent viscosity as a
function of velocity for the liquid phase of the
}é‘ liquid-gas model (di Pietro, 1993). The viscosi-
8 2.57r T ties were obtained from simulations of
Q - Poiseuille flow in a 2D rectangular channel for
5& 2t . various velocities and channel widths. The
Lo various symbols correspond to different chan-
1.5 b B | nel widths, and the dotted curve corresponds
o grgea™® to the best-fitting quadratic function of veloci-
g ty.
1E oo™ T Y
X
O . 5 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25
velocity
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verified. In particular, surface tension exists and leads to
Laplace’s law. This has been verified in numerical exper-
iments that are reviewed in Sec. VII.A. In what follows,
we report on velocity jumps and equilibrium pressures.

a. Velocity jump

In the presence of a possible phase change, conserva-
tion of mass now takes into account the rate at which
molecules evaporate or condense on the interface. In-
stead of the continuity of normal velocity implied by Eq.
(5.3), we have the Rankine-Hugoniot condition (Whit-
ham, 1974)

[pun]=[plV;, (6.23)

where V; is the velocity of the interface. In the liquid-
gas model, this equation holds as a consequence of the
conservation of mass.

The continuity of tangential velocity is, on the other
hand, in strong doubt. Consider again, as in Sec. VL.A,
the uniform flow parallel to an interface. The symmetry
arguments invoked earlier cannot be used here. We in-
stead try to discuss in a heuristic way the possible
differences between the real-world jump conditions and
those likely to prevail in the liquid-gas model.

In steady parallel flow, the momentum flux ny =0. In
the liquid-gas model, we have not calculated the stress
I1,, on the interface. However, when interactions have a
small effect on the distribution, as in the Boltzmann case
(Appert, 1993; Ginzbourg, 1994), the noninteracting case
still holds and II,,=—v[d(pu)/dy]. Thus we obtain
[8(pu)/dy]=0. Integrating across the interface, we ob-
tain the jump condition

[pu-t]=0 (6.24)

for all tangent vectors t.

b. Equilibrium pressures and Gibbs-Thomson relations

In a real liquid-gas system in equilibrium, both phases
are constrained to have equal chemical potentials. This
results in a macroscopic condition known as the Gibbs-
Thomson relation for curved interfaces (Rocard, 1967).
Let fluid 1 be on the concave side of the interface and
fluid 2 on the convex side. Then

p1=p“itok P2 , (6.25)
P17 P2
pr,=p®+tok . (6.26)
P17 P2
By subtracting those two equations, one obtains

Laplace’s law (6.2).

These relatively little-known conditions have a major
importance in determining the rate of nucleation of phase
1 in phase 2. We have not been able, so far, to determine
their validity from first principles for the liquid-gas mod-
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FIG. 18. Measurements of equilibrium pressures on each side
of a curved interface for the liquid-gas model on the fchc lattice
(Appert, Pot, and Zaleski, 1993). Pressures are plotted as a
function of curvature 1/R. The descending curves are the equi-
librium liquid and gas pressures, stars are gas pressures, dia-
monds are liquid pressures, and the straight lines correspond to
Eq. (6.28). The ascending curve and the triangles are the
difference between the liquid and gas pressures.

el. However, numerical experiments on curved surfaces
in equilibrium have been performed in 2D (Appert and
Zaleski, 1993; Appert et al., 1993b; Pot et al., 1993).
The results in the 3D case are shown in Fig. 18. They re-
sult in a slightly different correlation,

p1=p%taok (6.27)

pi—p2

P2
P17 P2
Subtracting these two equations still yields Laplace’s law.
We believe that this disagreement with the classical

thermodynamical relation is an effect of the “nonpoten-
tial” character of our model in the sense of Sec. V.B.

1+a

py=pi+oK (6.28)

VII. INTERFACES IN PHASE-SEPARATING AUTOMATA

Having given the macroscopic description of phase-
separating automata in the previous two sections in terms
of hydrodynamics and jump conditions, we now discuss
in detail the jump conditions themselves. Specifically, in
this section, we derive expressions for surface tension for
both immiscible lattice-gas and liquid-gas models; we
present empirical measurements of surface tension; and,
where applicable, we compare theory with simulation. In
closing this section, we look briefly at interface fluctua-
tions. We find that interface fluctuations in a nonpoten-
tial lattice-gas model are partially described by classical
theory.



D. H. Rothman and S. Zaleski: Lattice-gas models of phase separation 1449

A. Surface tension in immiscible lattice gases

1. Boltzmann approximation

To obtain an estimate of surface tension in the ILG, we
first need to express Egs. (5.23) and (5.24) in terms of the
evolution of a probability field (Adler et al., 1994). In a
manner analogous to that used in Sec. IV for simple lat-
tice gases, we define the average quantities

Ri:(ri>’ B,:(b,> (7.1)
and
N;={n;)=R;+B, , (7.2)

which are, respectively, the probability of observing
r;=1, b;=1, and n;=1. We then neglect correlations, as
in the Boltzmann approximation of Sec. IV. While
necessary to simplify theoretical calculations, the neglect
of correlations is a potentially serious deficiency, because
the presence of interfaces may significantly increase
correlations. Nevertheless, such an approximation al-
lows us to make progress and serves as a useful reference
for better approximations that may follow. Thus,
specifically, for the evolution of the red particles, we
write

R,(x+c;t+1)

= 3 rAls,s, fP(s;x,0)Q(f,;x,8), (7.3)

5 f
and, for the evolution of the blue particles, we have

B;(x+c;,t+1)

= ¥ b/A(s,s",f )P(s;x,8)Q(f;x,8) . (7.4
585 f %

Here the sums are taken over all possible states s that
may enter a collision, all possible states s’ that may result
from a collision, and all possible discrete field angles f .
The factor A (s,s’,f,) represents the probability of ob-
taining state s’ when state s enters a collision at a site
with a neighborhood configuration indexed by f,. The
probability that state s actually enters the collision at
time ¢ at the site located at position x is given by
6
P(s;x,0)=T[ R'B(1—N,)' """ (7.5)
i=0

The probability that the discrete field angle is f, is

6
I1 W(¢:x)

i=1

Q(f:x)=

(8,):T(dy, - -

, (7.6

. ’¢6)=f*

where the relative color density ¢; was defined in Eq.
(5.26). Here the sum is taken over all possible combina-
tions of (é;);—; . ¢ that correspond to f,, and the
product is taken over the probabilities W (¢;) of observ-
ing the relative color density ¢; at the ith neighbor.
Specifically, W (¢;) is given by the sum of the probabili-
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ties of all states that yield the color density ¢;:

Wi(¢;;x)= >  Pls;x+c;). (7.7)

suM(s)=¢,;

2. Surface tension

To calculate the surface tension, we note that in the vi-
cinity of an interface the pressure is locally anisotropic,
since the pressure in the direction parallel to the interface
is reduced by the tension on the interface itself. For the
case of a flat interface perpendicular to the z axis, the
surface tension o is given by the integral over z of the
difference between the component P, of pressure normal
to the interface and the component Py transverse to the
interface (Rowlinson and Widom, 1982):

o= [" [Py(z2)—Pp(2))dz . (7.8)

In mechanical equilibrium, one has Py (z)=P, the (isotro-
pic) pressure far from the interface. Equation (7.8) gives
the surface tension as a function of the pressure. As
defined in Sec. IV, the pressure tensor, or momentum flux
density tensor, is

6
M= 3 cialipN; 3 (7.9)
i=0

Py and Py are therefore equivalent to II,, and II,,, re-
spectively, where the x axis is taken parallel to the inter-
face. Prediction of the surface tension is thus a problem
of predicting the distribution of the populations N; near
an interface.

Below we review a recent theoretical calculation of
surface tension and then summarize a comparison of
these theoretical results with measurements obtained
from simulations (Adler et al., 1994).

a. Theoretical calculation

Because the evaluation of Eq. (7.8) may depend on the
orientation of the interface, it has been studied both for
the case in which the interface is parallel to a lattice
direction (say, c4), and for the case in which the perpen-
dicular to the interface is parallel to a lattice direction.
We refer to the former case as the “0° interface,” while
calling the latter the “30° interface.” An example of each
is shown in Fig. 19. Here we summarize the calculation
for the 0° interface only; details of the calculation for the
30° interface are given by Adler et al. (1994).

As shown in Fig. 19(a), the center of the 0° interface is
taken to be between and parallel to two (horizontal) lat-
tice lines. The upper line is labeled y; and the lower line
is labeled y _;. We assume an average of 7d particles per
site far from the interface; in equilibrium, therefore, we
must have particles arriving at interface sites with proba-
bility d, independent of time. This fixes the boundary
conditions
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( a) interface

X2

/\
/*

interface
FIG. 19. (a) the 0° interface; (b) the 30° interface. The direc-
tions cy,..,C¢ are labeled explicitly in the former case. Note that
the 0° interface may be described by two layers, whereas that of
the 30° interface requires four layers.

N;(y,t)=d, i=4,5 V¢t (7.10)
at all sites in layer y, and

N;(y_,t)=d, i=1,2 V¢t (7.11)
at all sites in layer y_,. Here the direction index i has

the same sense as that defined in Eq. (2.2). These bound-
ary conditions require that the populations N; be sym-
metric across the center of interface after rotation
through 180°. Thus for the moving particles

N,-(yl,t):N,-+3(y_1,t), i=1,...,6, (712)

where, as before, the circular shift i +3=j such that
= 1,...,6, while for the rest particles

c;=—¢,j=
No(y,t)=Noly_y,t) . (7.13)

Thus, in this two-layer case, the dynamics of the inter-
face can be completely determined by solving only for the
populations in layer y,. Within this layer, requirements
of symmetry and mechanical stability further reduce the
remaining five populations to only two independent pop-
ulations. Specifically, mechanical stability requires that
the pressure be divergence-free, and therefore that
Py =P =3d. This gives, by virtue of the boundary condi-
tion (7.10),
N,=N,=N,=Ns=d . (7.14)

In addition, since there is no current parallel to the inter-
face (or, equivalently, by symmetry with respect to the
perpendicular to the interface), we have
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N,;=N . (7.15)

Thus the two free population variables are the rest-
particle population N, and one of the laterally moving
populations, say, N;. These populations evolve accord-
ing to

Ni(yl’t+l):Nil(yl’t)7 i=0’376) (716)
where the postcollision state is denoted by
N/(x,0)= 3 n/A(s,s",f IP(s;x,0Q(f,;x,8), (7.17)

58" f g

in which we have also used n/=r/ +b,.
The evolution of color, or concentration 6;=R;/N;,

must also be specified. In addition to the symmetry given
by Egs. (7.12) and (7.13), we also have

0,y ,)=1—0, 3y _,1), i=1,...,6, (7.18)

and

0oy, t)=1—0py_,,1) . (7.19)

Additional symmetries and stationarity of the interface
allow the seven concentration variables in layer y, to be
reduced to three independent variables. First, we note
that symmetry with respect to the perpendicular to the
interface gives

0,=05 0,=0, 0,=05. (7.20)

Together with the concentration 6, for the rest-particle
population, the first of these three pairs evolves accord-
ing to

8,(y,,t +1)=0(y,,1), i=0,3,6, (7.21)

where we have used 6;=R;/N/. The evolution of the
second pair of concentrations is determined by particles

that cross the interface; using Eq. (7.18), we obtain
0;(y,t +1)=1—0; 5(y;,0), i=12. (7.22)

Since the stationarity of the interface requires that no net
concentration cross it, in steady state we must have

9:;()’1 ):915()71)=% » (7.23)
and therefore, by Eq. (7.22),
91(}’1):92(})1)=% . (7.24)

It remains only to specify the red concentration coming
in from afar. Since in equilibrium the concentration that
leaves the interface must be equal to the concentration
that enters it, we set

9i(y1,t+1)=9;-+3(y1,t), i=4,5. (7.25)

Thus two of the three free concentration variables may
be taken to be 6, and 03, which enter via Eq. (7.21), while
the third may be taken to be 6,, which enters via Eq.
(7.25) above.



D. H. Rothman and S. Zaleski: Lattice-gas models of phase separation 1451

To complete the specification of the problem, we need
an expression for Q(f, ), the probability of the discrete
field angle f,. From Eq. (7.6), one sees that all that is re-
quired is knowledge of W(¢;), for i =1,...,6. These
quantities may each be obtained from the symmetries and
boundary conditions of the problem. Noting that W(¢,)
is the probability distribution for relative color density
for the interface site in layer y, one finds

W(d3)=W(dg)=W(¢) (7.26)
for the neighboring sites in layer y,, and

for the neighboring sites across the interface in layer y _;.
For the sites on the boundary (i.e., layer y,), one has, as-
suming that the chosen site in layer y, is at position x,,

N;(x;+c;,t)=d, i=0,...,6, j=12, (7.28)
for the populations, and
0,(x+c;,1)=0; 5(x,2), i=0,...,6, j=12,
(7.29)

for the concentrations. W (¢,;) and W(¢,) may then be
calculated directly from Egs. (7.5) and (7.7).

The dynamics of the interface is thus fully specified by
Eq. (7.16) for the two free populations N, and N, by
Egs. (7.21) and (7.25) for the three free concentrations 6,
05, and 0,, and by Egs. (7.26), (7.27), (7.28), and (7.29) for
the determination of the color-field angle. Adler et al.
(1994) solved this system by numerically determining the
steady-state postcollision populations N*. The surface
tension is then obtained from Egs. (7.8) and (7.9), which
yields

6
o=V3 3 (ch—c}N*, (7.30)
i=0
where c;, and c;; are the components of ¢; perpendicular
and parallel to the interface, respectively.

b. Comparison with simulation

Figure 20 compares results from the Boltzmann ap-
proximation for both the 0° and 30° interfaces with re-
sults from three different empirical measurements from
simulations (Adler et al., 1994). We comment first on
the theoretical predictions and then on each of the empir-
ical measurements.

Perhaps the most interesting feature of the theoretical
calculation is the phase transition at d =d_ =0.25.
Below d, surface tension vanishes, while above d, the
surface tension rises to a peak at about d =0.6 and then
falls to zero at d =1.0. (Surface tension vanishes at
d =1.0 because each N; must equal 1.) One sees also
that the 30° interface has a surface tension that is usually
greater than that of the 0° interface, with a maximum de-
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FIG. 20. Surface tension as a function of reduced density d in
the immiscible lattice gas (Adler et al., 1994). Solid curve:
Boltzmann approximation for a two-layer 0° interface; dotted
curve: Boltzmann approximation for a four-layer 30° interface;
circles: empirical results from fitting Laplace’s formula to mea-
surements made from bubbles of different sizes; squares: mea-
surements made from flat, 0°, interfaces; triangle: measure-
ments made from flat, 30°, interfaces. Error bars are smaller
than the size of the symbols.

viation of about 20%.

The first of the three empirical measurements consists
of the simulation of a red bubble of radius R in a blue box
with periodic boundary conditions, of size greater than
or equal to 4R. The pressure P;, inside the bubble is
compared to the pressure P, outside the bubble. One
expects adherence to Laplace’s formula:

—p =9

P out—.E

in (7.31)
Figure 21 shows this pressure difference as a function of
1/R for the case d =0.7. The best-fitting straight line
passing through the origin is also shown. The fit to the
straight line is good; thus the slope of this line gives the
empirical estimate of o. Similar measurements, the re-
sults of which are shown in Fig. 20, were made at other
values of d, ranging from d =0.5 to d =0.9.

While the bubble tests should, in theory, provide a
measure of the average surface tension, integrated over
all angles, one may also make measurements of the sur-
face tension on interfaces that are, on average, flat, by
numerical integration of Eq. (7.8). Figure 20 shows two
such measurements, one set for a 0° interface and the oth-
er for a 30° interface. These ‘“integral tests” display ap-
proximately the same magnitude of anisotropy that was
determined from the Boltzmann approximation, with the
30° interface usually yielding the greater surface tension,
as predicted. Moreover, within the margin of error of
the measurements, the integral tests approximately
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FIG. 21. Verification of Laplace’s law in the immiscible lattice
gas (Adler et al., 1994). Bubble radii R range from 4 to 64 lat-
tice units. An estimate of surface tension is given by the slope
of the best-fitting line that passes through the origin. Error bars
are smaller than the size of the symbols.

bracket the results of the bubble tests, as one would ex-
pect.

Although the theoretical predictions and empirical
measurements are always in qualitative agreement, quan-
titative agreement is lacking. The poor quantitative ac-
cord could be due to several reasomns. First, the
Boltzmann estimate was obtained by neglecting correla-
tions. However, correlations are likely to be strong near
an interface and thus contribute significantly to the sur-
face tension. Second, because the integral tests were
made on fluctuating, rather than purely flat, interfaces
(see Sec. VII.C), the results of these tests are necessarily
approximate. Third, the Boltzmann approximation re-
viewed here considered only the thinnest interfaces possi-
ble. Calculations with thicker interfaces for d = 0.7 show
that differences are negligible, but significant increases to
the surface tension are possible with thicker interfaces,
particularly as d approaches d. (Adler et al., 1994).
Moreover, when one layer of sites is added on each side
of the interface, d, decreases from 0.25 to 0.22.

B. Interfaces in liquid-gas models

The analysis of surface tension in liquid-gas models
also uses the Boltzmann approximation. It thus bears
some similarity to the analysis reported above. This
analysis has only been carried out for the fchc lattice gas
with minimal interactions. It is at present quite sketchy,
as only a single value of the interaction range » and of the
interface angle with the lattice has been investigated.
However, we expect on theoretical grounds that there is
a limit where r becomes large and the interfaces become
wide where the Boltzmann approximation yields a pre-
cise estimate for surface tension and density profiles.
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Thus, because interfaces in the liquid-gas model are rela-
tively wide compared to those in the ILG, this calcula-
tion brings something new compared to the previous one.
Specifically, it predicts the density profile inside the inter-
face with good accuracy.

In what follows we briefly review the existing work.
We follow closely Appert, Pot, and Zaleski (1993). A
more refined analysis is being prepared by Appert and
d’Humieres.

To simplify the calculations, we consider the fchc lat-
tice projected in 3D. All populations N; depend only on
x. The normal pressure is defined by Py =1I1,,, while the
tangential pressure is related to the other diagonal com-
ponents, i.e., Pr=1II,,=II,,. We shall find the following
notation useful. We let I'(x;,x,) be the amount of
momentum exchanged by an interaction between sites x,
and x,. From Eq. (6.4), this is

F(XI,X2)=W[1—Ni’(xl)]Nl_i(Xl)

X[1—=N"_;(x,)IN;(x;) . (7.32)

In the above definition, / is defined implicitly as the index
of the velocity direction c; parallel to x,—x;, and w is the
rate of interaction. The populations N/ are the after-
collision populations, as in Sec. VI. We consider an
imaginary surface = located at x =x, between two layers
of sites (Fig. 22). Points on these layers have abscissa
(xog—4) or (xg+1). Then

=2, cioCip {Ni(x+¢c;/2)
i

r—1

_kgol“[x—(k +L)e,x+(r—k —1)c;]

(7.33)

where x=(x,y,2) is an arbitrary point on =. This ex-
pression is obtained by noticing that, as for the usual lat-
tice gas, particle propagation contributes c;,c;z to the
momentum transfer, while an interaction contributes
—2c;4¢;p The factor of 2 disappears as interactions are

z
I
I
I
I
|
|
|
T
|
|
|
|

X x+1

FIG. 22. Setup for interface calculations in the liquid-gas mod-
el on the fchc lattice. Momentum transfer across the surface =
is calculated.
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counted twice in the sum.
From this expression a necessary condition for equilib-
rium can be written,
Py(x)=Py(x +1) . (7.34)
To solve it we make the additional assumption that the

populations are close to Fermi-Dirac equilibrium with
zero velocity. This assumption is perhaps best verified in

r—1

the limit r — o, w—0 and z =rw constant. Indeed, as
we approach this limit, the equation of state remains un-
changed while the interaction range increases.

Equation (7.34) can be developed after some
simplifications coming from the fchc lattice have been
noticed. The principal simplification is that all particles
crossing a surface 2 at x (we drop the subscript in x,
from now on) originate either from the line at x —% or
the line at x +1. Then

2

Py(x)=6[d(x —1)+d(x +1)]—12w T d(x —1—K[1—d(x —L—K)d(x +r—1—K)[1—d(x +r —1—K)].
k=

0

A solution to Egs. (7.34) and (7.35) has been found nu-
merically by a relaxation method (Appert, Pot, and
Zaleski, 1993). Solutions are found for large boxes (128
layers wide) and moderately wide interfaces (» =8 and
w =1). The result is shown in Fig. 23.

A unique solution is found by the relaxation pro-
cedure. This is not a numerical proof of the existence of
a unique stable solution of Eq. (6.3), but comes close to it,
since our relaxation procedure resembles the actual
time-stepping of the Boltzmann equation [see Appert,
Pot, and Zaleski (1993) for details]. One result of the cal-
culation is the equilibrium pressure p., and the equilibri-
um liquid and gas densities given in Table II. There is a
qualitatively good agreement for the density profile and
the equilibrium quantities, but the result is still outside
the error bars of the measurements. The possible reason
for that discrepancy is discussed below.

The resulting density profile allows one to compute, us-
ing the same Fermi-Dirac approximation and Eq. (7.33),
the other independent component P;. From that com-
ponent a value of surface tension may be calculated.

Comparison with numerical simulations is in progress.
Surface tension has been estimated using Laplace’s law
from measurements of equilibrium pressures across
curved interfaces. This measured surface tension yields
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O e
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FIG. 23. Density profile (dashed line) obtained from the resolu-
tion of Eq. (7.34) and from direct numerical simulation.
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2

(7.35)

I
o=1.5 for r=8. The theoretical surface tension is
o=1.82. Agreement here is much worse than for the
equilibrium densities and pressure. A recent unpublished
calculation of the density profile, which was performed
by Appert and d’Humieres (1994) without the assump-
tion of zero-velocity Fermi-Dirac equilibrium, yields
better agreement with the observed density profile and a
better prediction for surface tension. The same improve-
ment is also obtained if one obtains the departure from
isotropic Fermi-Dirac orientation by a higher-order
multiple-scale expansion. Interestingly, the two kinds of
corrections show that for some orientations, and assum-
ing the Boltzmann factorization, the populations are still
given by a Fermi-Dirac distribution, but with a small ve-
locity. Because of the density gradient, the small velocity
occurs without mass transport.

At this point it is interesting to notice that the origin
of surface tension in the liquid-gas model is different
from that in the ILG. In the ILG the pressure tensor
comes only from propagation. It is anisotropic because
populations are themselves anisotropic inside the inter-
face. On the other hand, in the liquid-gas model, we find
surface tension with isotropic populations estimated from
the Fermi-Dirac equilibrium. It is the nonlocal interac-
tion terms that contribute to the pressure tensor and
bring the necessary anisotropy.

C. Interface fluctuations

As emphasized in Sec. IV, the Boolean nature of lattice
gases creates statistical fluctuations that, in reversible

TABLE II. Calculations for a flat, equilibrium liquid-gas inter-
face. The values of density and pressure predicted by the theory
and measured in numerical simulations are shown.

dgasa dliq‘J pi:qc
Prediction 0.033 0.523 0.148
Measurements 0.031 0.525 0.143+0.003

*Equilibrium gas density for the 3D fchc liquid-gas model
(r=38).

®Equilibrium liquid density.

°Equilibrium pressure.
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models, may be understood as the fluctuations of Gibbs
states (Zanetti, 1989). Such a classical description is not
possible, however, in our irreversible phase-separating
automata. Thus it is of interest to ask how the fluctua-
tions of interfaces in these models compare to the fluc-
tuations predicted by classical theory. Below, after first
reviewing the classical viewpoint, we summarize a recent
empirical measurement of interface fluctuations in the
ILG (Adler et al., 1994). A related study of lattice-gas
interfaces (in which the interfaces are constructed by the
explicit definition of a flexible boundary) has been per-
formed by Burgess et al. (1989).

Classical interface fluctuations may be understood in
terms of fluctuations of surface energy (Ma, 1985). For a
one-dimensional interface in a two-dimensional space,
the energy H of the interface is proportional to its length
L. If the interface has length L, when it is flat, and its
fluctuations are sufficiently small such that they may be
decomposed into Fourier modes of amplitude | 4, much
less than the wavelength 27 /g, then the interfacial ener-
gy is, to leading order,

H=0LzaL0+—;—L02q2|Aq|2, (7.36)
q

where

q=—]1\—, 2 nexp(—ign/N) (7.37)
and h,
n=0,1,...
gives

is the height of the interface at discrete points
,N—1. The equipartition theorem then

loLoq?*| 4, *=1kT , (7.38)

or

kT

) (7.39)
Lyog

l4,1*=
Thus the power spectrum of one-dimensional interface
fluctuations decays like g ~2.

Figure 24 compares the prediction of | 4,|>*~g ~? with
measurements made from simulations of ILG interface
fluctuations. The ILG was initialized with a flat interface
of length L,=NV"3/2 dividing the red fluid from the
blue fluid in a box of height N =256, with particle densi-
ty d =0.7. The boundary conditions were periodic in the
direction parallel to the interface, while walls were placed
above and below the interface. After allowing the system
1000 time steps to relax to equilibrium, the power spec-
trum | A4, |%(¢) was computed from measurements h,(t) of
the interface heights at each time step 7 and then aver-
aged over 10° time steps. Figure 24 shows log{|4,[*) as
a function of logg, compared to a straight line with slope
—2. Comparing the two curves, one finds that the slope
of the empirical curve is indeed approximately —2 for
wave numbers below a high-wave-number cutoff.

We believe that the fact that the fluctuations scale like

g2 probably only indicates that ILG interfaces are
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FIG. 24. Log-log plot of the power spectrum (| 4,|?) obtained
from simulations (circles) compared to a straight line with slope
—2.

“rough,” in the sense that their slopes are random and
uncorrelated. In other words, 4 (x) is just a random walk
in one direction, and | 4, |2~g 2 results from the usual
considerations of diffusive processes. A more fundamen-
tal test of ILG interfaces would require an estimate of the
amplitude of the ILG’s noise, i.e., a quantity analogous to
kT. A preliminary attempt has been made (Adler et al.,
1994), but its significance is unclear.

VIIl. PHASE TRANSITIONS
IN PHASE-SEPARATING AUTOMATA

In this section we address specific aspects of phase
transitions in phase-separating automata, and, where pos-
sible, we illustrate comparisons between theoretical pre-
dictions and empirical results from computer simulations
of the models. For the case of the liquid-gas model, we
find an excellent agreement between direct measurements
of the pressure-density relation and the theoretical pre-
diction of the equation of state. This equation of state
resembles a van der Waals equation and allows predic-
tion of a phase transition. In the case of the immiscible
lattice gas, we can find, albeit qualitatively, the two-phase
region of its phase diagram by determining under which
conditions the diffusivity of the minority phase becomes
negative. In closing this section, we address dynamical
aspects of phase transitions in lattice gases by empirical
investigations of scaling properties during phase separa-
tion.
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A. Liquid-gas transition in the liquid-gas model

The equation of state was obtained for the liquid-gas
model in Sec. VI.B.1.b. For a lattice gas at rest, it reads
b, 2

c
> [d —zdX(1—d)?*], (8.1)

p(d)=

where d =p /b is the reduced density and z =rw is a con-
trol parameter that plays the role of temperature in a
classical phase-transition model. This equation of state
presents a critical point at z, ~5.2. The location of this
critical point is independent of dimension and number of
particles. It is interesting to point out the analogy be-
tween this equation and a van der Waals equation of
state. For vanishing d, we have

2

b, c

D

11

vV T y?

p(V)= (8.2)

Below the critical point, for z <z, there is a range of
values of d for which dp/dd <0 and the homogeneous
phase of density d is unstable. This range of values of d
is called the spinodal region for our model. As in a real
liquid-gas system, the model then splits into two phases,
one of high density and another of low density. The sep-
aration of the two phases occurs through the spinodal
decomposition process described in Sec. III.B.

The validity of Eq. (8.1) is verified by direct numerical
simulations (Appert, Pot, and Zaleski, 1993; Gerits et al.,
1993). In these simulations the system is initialized with
particles placed at random on the lattice. Two series of
measurements are made and the results are plotted in
Fig. 25. In the first series, measurements are made im-
mediately after initialization and show agreement with
Eq. (8.1) for all densities. The second series of measure-
ments is made after the system has gone through spino-
dal decomposition and equilibrated. These measure-

6 [ T T L N
4+ i
I
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FIG. 25. Pressure measurements for the liquid-gas model on
the fche lattice. Symbols represent estimates from numerical
simulations: stars are simulations of the noninteracting, ideal
gas; diamonds are the liquid-gas model for »=3; and triangles
and squares are the liquid-gas model for r=8. Triangles refer
to early measurements, whereas squares were plotted after equi-
librium was reached (except in the metastable region). Solid
lines correspond to Eq. (8.1). Pressures are divided by c¢2=2.

Rev. Mod. Phys., Vol. 66, No. 4, October 1994

ments show a Maxwell plateau for the pressure in the spi-
nodal region. Outside the spinodal region, the separated
equilibrium state may coexist with a homogeneous meta-
stable state. As seen in Sec. VILB, these states coexist at
a unique equilibrium pressure and corresponding equilib-
rium liquid and gas densities.

B. Spinodal decomposition in immiscible lattice gases

Classical phase separation occurs when the free energy
of mixture, F=U — TS (U is internal energy, S is entro-
py), has a minimum for two separated phases. Typical
free-energy curves are shown in Fig. 26. Above T,, the
free energy has a single minimum, corresponding to a
perfectly mixed state. In the simplest case of a sym-
metric binary fluid, this mixed state corresponds to a
thermodynamic phase in which a single fluid consists of
50% of the ‘“‘red” species and 50% of the “blue.” Below
T,, however, the free-energy curve develops a double
well; the stable state now corresponds to a new thermo-
dynamic phase in which a “red-rich” fluid coexists with a
“blue-rich” fluid. The two fluids are separated from each
other by interfaces, and the relative purity of each fluid
(i.e., the redness of the red phase) increases with decreas-
ing temperature.

Although ILG dynamics does not derive from a ther-
modynamic potential, the model exhibits to a surprising
extent much the same behavior as classical binary fluids.
For example, we have already seen in Fig. 6 how the ILG
may exhibit spontaneous phase separation from an initial
mixed state. Below, we show, both theoretically and
empirically, that the existence of the phase-separation in-
stability depends on both the population density d and
the relative concentration of the two fluids. This analysis
results in a phase diagram in the plane of density and
concentration, in which the phase boundary demarcates
the two-phase, or phase-separated, state from the one-
phase, or mixed, state. We argue that this phase bound-
ary is the athermal ILG’s analog of the classical thermo-
dynamic spinodal curve. In the classical view, summa-
rized in Sec. V.B.1, the spinodal curve is obtained from
the locus of points in the plane of temperature and con-
centration for which the free-energy density has a point
of inflection. As shown in Eq. (5.15), this corresponds to
a change in sign of the diffusivity of concentration. Thus

05
concentration

FIG. 26. Typical free-energy curve in a binary fluid mixture,
for temperatures 7, < T, < T3, where T, =T,.
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our prediction of the ILG phase diagram amounts to a
calculation of the ILG diffusivity as a function of concen-
tration and density.

Rather than representing the current of concentration
in the ILG in terms of the variation of a potential F as in
Eq. (5.10), we instead assume a Fickian, or linear, rela-
tion between concentration current and concentration
gradient:

J=—-D(d,0)dVe . (8.3)

Here J=(q), a coarse-grained average of the color flux
defined by Eq. (3.1), and D, the diffusion coefficient, de-
pend on both the particle density and concentration. In
lattice-gas models satisfying microscopic time reversibili-
ty (or, more generally, semidetailed balance), an H-
theorem exists to show that transport coefficients are
necessarily positive (Hénon, 1987a). The ILG collision
rules, however, are time-irreversible and do not satisfy
semidetailed balance; thus D may be either positive or
negative. That D can be negative is readily apparent
from the rules expressed by Egs. (3.1), (3.2), and (3.3): as
long as there are two colors present at a site, the collision
rule always chooses to maximize the alignment of the flux
q with the color gradient, or field, f. The question that
remains is whether J and V0, the coarse-grained averages
of q and f, are themselves aligned. Thus we seek an esti-
mate of D, or, more specifically, its sign, as a function of
d and 6.

1. Chapman-Enskog estimate of the diffusion coefficient

To estimate the diffusion coefficient (Rothman and
Zaleski, 1989), we first rewrite Eq. (7.3) in a way that ex-
plicitly notes changes in both space and time and that,
moreover, allows for explicit consideration of popula-
tions at neighboring sites:

R;(x+c¢;,t +1)—R;(x,?)

=3 (r/—r)A(s,s,$P(SH(S) . (8.4)
55,8
Here H(&) is the probability of neighboring

configurations &= (s’) i=1,...,6 8iven explicitly by

J
7i

HO=T] TR (x+c;,08 (x+e;,0)

X[1—N,(x+c;,0]7, (8.5)

where r/, b/, and s/ describe the state of the particle mov-
ing with velocity c¢; at site x+c;. To solve the
Boltzmann equation (8.4), one assumes that both R; and
B; may be expanded around a state of local equilibrium.
Thus we write
R,=R{+RV+---, B,=BO+BV+---,  (8.6)
where R/™ is of order n. We assume the local equilibri-
um
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R9=6d, BO=(1—6)d . 8.7
At next order in the gradient expansion, we have
R{V=vyc,,0,0d), RV=—yc,,3,6d), (8.8)

where y is a constant to be determined. We also define
PO(s) and H'9($) to be zero-order expressions obtained
by substituting Eq. (8.7) into Egs. (7.5) and (8.5).
Substituting Eq. (8.6) into the Boltzmann equation (8.4)
and equating terms of first order in gradient, one obtains

S i@ RO= (rl—r)Als,s",S)
a 5,8, 8

X [B,H () +(B,+B;)Ps)],

(8.9)
where
— _B8H(®) o —R(®
Br= 3R, (x +op) LR (K He) =R ]
and
__BH) L
B, aRj(x+ck)Rj (xFew)
_OH(S) )
3B (nrey B 5o (8.12)

The term B, does not include interactions with the neigh-
borhood distribution H (&), and is thus related to ordi-
nary lattice-gas diffusion (Burges and Zaleski, 1987). B,
is specific to the ILG. The terms in brackets in Eq. (8.11)
arise from the fact that 6 can vary in space, while B, it-
self results from the tendency of the ILG collisions to
maximize color flux in the direction of like color. Lastly,
B5 just indicates the change in neighbor configurations
due to a distortion of equilibrium at the neighboring
sites. Consideration of the symmetries in Eqgs. (8.8)
shows that terms on the right-hand side of Eq. (8.12) can-
cel, and thus B;=0.

Substitution of Eqs. (8.10) and (8.11) into Eq. (8.9) then
yields

Cia=(r Ay + AT o » ®.13)

in which A{}’ and A} are complicated expressions con-
taining contributions from B, and B,, respectively (Roth-
man and Zaleski, 1989). To calculate the evolution of 6,
and therefore the diffusivity, one notes that

6 6
S Rix+c,t +1)= R,(x,1),

i=0 i=0

(8.14)

or, in words, that collisions conserve the number of red
particles. Expanding this equation via substitution of
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Egs. (8.6), (8.7), (8.8), and (8.13), and using the scaling
3, =0(V %), one obtains

9,6=DV?0, (8.15)
where
D=—-2—-3y. (8.16)

Solution of Eq. (8.13) for y thus gives the diffusion
coefficient D. Numerical solutions for D(d,0) are de-
scribed below.

2. Immiscible lattice-gas phase diagram:
The spinodal curve

Figure 27 shows solutions to D (d,0)=0 (Rothman and
Zaleski, 1989). The region of D >0 corresponds to com-
binations of d and 6 for which the mixed state is stable,
while the region where D <0 corresponds to instability of
the mixed state, and thus to stability of the two-phase, or
phase-separated, state.

Figure 27 also compares this theoretical estimate of
the phase boundary to results of numerical domain-
growth experiments (Rothman and Zaleski, 1989). In
these experiments, the ILG was initialized as a homo-
geneous mixture for various combinations of d and 8, and
the two-dimensional power spectrum,

S(k,t)= S e 2™k X ([ (x,8)—py(x,1)]

X

nyn,
2

—p(26—1)} | , (8.17)

was computed at discrete time intervals. Here p is again
the average number of particles per site; p, and p, are the

1.0 |
0.9 |
0.8 |

0.7

red concentration

0.6 -

05

00 01 02 03 04 05 0.6 0.7
reduced density

FIG. 27. Plot of the Boltzmann approximation for D (d,0)=0
(smooth curve) vs empirical estimates of the point of marginal
stability (circles) for ILG mixtures, in the plane of concentra-
tion 0 and reduced density d (Rothman and Zaleski, 1989). Er-
rors in the empirical estimates are approximately the same size
as the symbols. The curves represent theoretical and empirical
phase diagrams, respectively, for the ILG.
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number of red particles and blue particles, respectively,
at time ¢ at a site with coordinates given by x; k is the
discrete wave vector; 6 is once again the overall fraction
of red particles; and n, and n, are the number of lattice
sites in the x and y direction, respectively. To determine
whether the mixed state is stable or unstable, the circular
average S(k,t)=(S(k,t)), where k =|k|, was computed,
from which the time-varying length scale

R ()= !

=— (8.18)
3, kS (k,1)

was obtained. Regions in the d,8 plane for which R ()
grows with time are the regions where the mixed state is
unstable, and correspond in principle to the regions
where D <0. Comparison of the empirical curve bound-
ing the region of growing R (¢) with the Boltzmann ap-
proximation of the D (d,0)=0 is seen to be qualitatively,
but not quantitatively, good.

As in the estimates of surface tension described in Sec.
VII, one factor limiting the accuracy of a quantitative
comparison of the theoretical and empirical curves in
Fig. 27 is the nature of the Boltzmann approximation:
the correlations that were neglected may play a
significant role in the mechanisms that drive phase sepa-
ration. A second limiting factor is the quality of the
empirical curve itself, which necessarily involves some
subjective judgment for the location of the points of mar-
ginal stability. However, independent empirical mea-
surements of D(d,0=0.5) qualitatively confirm the
empirical estimates of D(d,0)=0 obtained from mea-
surements of R (¢) (Rothman and Zaleski, 1989). More-
over, the same critical density, d,~0.2 for 6=0.5, was
obtained not only from the Boltzmann approximation for
D, the domain-growth experiments, and the numerical
measurements of D, but also from the theoretical
surface-tension calculation detailed in Sec. VIL.A.2. We
have thus described four independent means of quantify-
ing the phase transition from the mixed to the unmixed
state in the ILG. (A fifth method, the direct measure-
ment of surface tension, could also be cited, but its accu-
racy near the critical point is suspect.)

We believe that this phase transition is analogous to
the spinodal decomposition described in Sec. V.B.l1.
Specifically, the early stages of spinodal decomposition in
both the real world and the ILG are the result of uphill
diffusion. However, one major difference remains: real
spinodal decomposition is driven energetically, while
ILG spinodal decomposition is driven by its time-
irreversible microdynamics.

C. Isotropy and self-similarity

The characterizations of phase-separating automata
given in Secs. VIII.A and VIIL.B relate only to equilibri-
um aspects of phase transitions in these models. Below,
we consider some dynamical aspects. Specifically, we ask
whether the phase-separation patterns are self-similar
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with respect to time, as is known from both experiments
and calculations from other, nonhydrodynamic models
(Gunton et al., 1983). We also consider whether these
phase-separation patterns are isotropic. We summarize
calculations made with the ILG (Rothman, 1990a), but
note that similar results have beén obtained with the
liquid-gas model (Appert et al., 1991).

To investigate the question of isotropy, an ensemble of
1500 independent realizations of the 2D power spectrum
S(k,t) of Eq. (8.17) were computed and then averaged,
for the case n, =n,=128,d =0.7, and 6=0.33. In each
of the 1500 simulations, the initial condition was a homo-
geneous random mixture. A typical result of this averag-
ing is shown in Fig. 28(a), where here ¢t = 1000 time steps
after initialization of the simulation. Inspection of the
spectral contours shows that although at high wave num-
bers one can see a trace of the hexagonal symmetry of the
triangular lattice, at low wave numbers the contours are
circular and therefore indicative of low-wave-number
isotropy. The high-wave-number anisotropy is expected,
not only because of the anisotropy of the lattice itself, but
also because of the anisotropy of surface tension detailed
earlier in Sec. VII.LA.2. At low wave numbers the isotro-
py of viscous stress appears to win over the anisotropy of
surface tension. Indeed, one may show that in a system
with sixfold anisotropy of surface tension of a magnitude
comparable to the maximum anisotropy derived in Sec.
VII.A.2, the resulting angle dependence in radius should
be less than 1% (Appert and Zaleski, 1993).

Assuming isotropy, one may, as already detailed
above, compute circular averages S(k,t) for different
time steps ¢. A typical result is in Fig. 28(b), where the
parameters are again the same as in Fig. 28(a), and the
averages are computed at times ¢ =100,200, ..., 1000.
One sees that as time progresses, the wave number k,, of
the maximum value of S(k) decreases, while K (k,,) itself
increases.

The phase-separating mixture should be self-similar
with respect to time: small bubbles should interact with
small bubbles at early times in much the same way that
big bubbles interact with other big bubbles at late times.
In other words, given the characteristic size k,, 1 there
should be a scaling function F(k /k,,) such that (Marro
et al., 1979; Lebowitz et al., 1982; Furukawa, 1985;
Fratzl and Lebowitz, 1989)

S(k,t)= Ak At)F(k /k, (1)), (8.19)

' (@

where A is a time-independent constant chosen to make
F(1)=1. Figure 28(c) shows precisely this behavior: the
scaled structure functions A _lk,f,.’?\ (k,t) are plotted as a
function of the dimensionless wave number k/k,,(t),
showing no discernible dependence on time. The scaled
structure functions also qualitatively conform to a scaling
function F proposed recently by Fratzl and Lebowitz
(1989).

For essentially the same model on a square lattice with
the maximum density of particles (d =1) and conse-
quently no hydrodynamics, a considerably more detailed
analysis, including comparison with numerical experi-
ments, has been reported by Alexander et al. (1992).
They discuss not only the dynamical scaling of the struc-
ture functions, but also Porod’s law, the exponent a in
k, ~t% and other related issues. A similar detailed
analysis of phase separation in a hydrodynamic model
with biased collision rules has more recently been given
by Bussemaker and Ernst (1993a).

IX. NUMERICAL SIMULATIONS

As we state in the Introduction, lattice-gas models of
fluids serve not only as interesting conceptual, or ‘“toy,”
models, but also as tools for the numerical simulation of
certain problems in hydrodynamics. In this section, we
review some recent work in which numerical experiments
with lattice gases have illustrated this dual role.

Generally, computer simulations of lattice gases have
been performed either to verify theoretical predictions
for the behavior of the models, or to explore new areas of
hydrodynamics and statistical mechanics. Here we em-
phasize the latter, with particular reference to numerical
experiments with multiphase lattice gases. However, as
we have made clear in the previous sections, multiphase
lattice gases are predicated on the simpler Frisch-
Hasslacher-Pomeau models. It is thus instructive first to
review some of the simulation work that has been per-
formed with these simpler models.

A. Simulations of single-component fluids
1. Two-dimensional fluids

a. Flows in simple geometries

After the introduction of the Frisch-Hasslacher-
Pomeau (FHP) model in 1986, a flurry of papers followed

K2 (£)S(k,t)/A

FIG. 28. (a) contours of log;,S (k) at 7=1000
(©) time steps after quenching, in intervals of
10'/2, The highest contour level (near center)
is bold; (b) S(k) for z=100,200,...,1000,
where the maximum of each curve grows with
time; (c) scaled structure functions
A~ 'k28(k) for +=100,200, ...,1000. Wave
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number axes in (a) and (b) represent cycles per
lattice unit. From Rothman (1990a).



D. H. Rothman and S. Zaleski: Lattice-gas models of phase separation 1459

that demonstrated, with varying degrees of quantitative
analysis, the striking similarity between lattice-gas simu-
lations and known solutions of the Navier-Stokes equa-
tions. The first such work, an oft-referenced but unpub-
lished report by d’Humieres, Lallemand, and Shimomura
(1985), verified the Boltzmann estimates of the shear and
bulk viscosities of the FHP model, thus testing linear hy-
drodynamics. Later work by d’Humiéres and Lallemand
qualitatively verified nonlinear hydrodynamics by investi-
gating flow in the inlet length of a channel (d’Humieres
and Lallemand, 1986), flow past a backward-facing step
(d’Humieéres and Lallemand, 1987), and the von Karman
street resulting from two-dimensional flow past a flat
plate (Fig. 3; d’Humieéres, Pomeau, and Lallemand,
1985). The work on channel flow is particularly notable
for its successful quantitative comparison with the ana-
lytic solution due to Schlichting (1979).

b. Statistical mechanics and hydrodynamics

To date, probably the most precise quantitative investi-
gation of the hydrodynamic properties of the two-
dimensional FHP gas is the work of Kadanoff,
McNamara, and Zanetti (1989). By simulating Poiseuille
flow in a channel, they not only qualitatively verified
hydrodynamics—i.e., the predicted parabolic profile—
but they also probed the dependence of the shear viscosi-
ty on the size of the system. Earlier studies (Alder and
Wainwright, 1970; Dorfman and Cohen, 1970; Pomeau
and Résibois, 1975; Forster et al., 1977) had predicted a
logarithmic divergence of the viscosity of two-
dimensional fluids as the system size increases, and its
physical consequences have been experimentally verified
(Ohbayashi et al., 1983; Morkel et al., 1987; Cohen,
1993). This divergence arises from microscopic fluctua-
tions; crudely speaking, it results from the fact that fluc-
tuations create eddies, which then advect the fluctuations
elsewhere, creating new fluctuations and new eddies. The
prediction of the divergence of 2D transport coefficients
relies on a first-order perturbation theory and mode-
mode coupling (Pomeau and Résibois, 1975; Forster
et al., 1977). Though the prediction had been prompted
by observations of power-law decays of correlation func-
tions of fluctuations in molecular dynamics [the so-called
long-time tails (Alder and Wainwright, 1970)], no hydro-
dynamic simulation had even been performed to verify it.
The molecular-dynamics method contains too much de-
tail to efficiently perform such a test, whereas direct nu-
merical solutions of the Navier-Stokes equations do not
include microscopic fluctuations, making them inap-
propriate for studying such phenomena. The problem
thus appeared well suited for the lattice-gas method, and
results of the work did indeed confirm the predicted loga-
rithmic divergence. However, discrepancies between
theory and simulation found in the course of the work
were due in part to the spurious “staggered-momentum”
invariant (Sec. IV.C.3) in the two-dimensional FHP mod-
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el, and thus some reworking of the hydrodynamic theory
of lattice gases (Zanetti, 1989) was required to improve
the correspondence between the predicted logarthmic
divergence and the behavior actually obtained in the
simulations.

Simulations of a similar nature have also been per-
formed to measure the velocity-velocity autocorrelation
function for a single tagged particle (Frenkel and Ernst,
1989; van der Hoef and Frenkel, 1990; Noullez and
Boon, 1991). The lattice gas is a particularly useful tool
for such measurements because of the vast gain in
efficiency compared to classical simulations of molecular
dynamics. In particular, the fast algorithm of Frenkel
and Ernst (1989) is of general interest. To describe it,
consider the dynamics of a model with a single colored
particle. Let v;(x,¢) be the Boolean variable indicating
the presence of that particle. A Green-Kubo integral of
the form of Eq. (4.91) relates the correlation function

C,-j(t)=(Vi(x,t)vj(0,0)>eq (9.1)

to the self-diffusion coefficient (Brito et al., 1991). In col-
lisions involving the tagged particle, we consider that the
model is color-blind, i.e., that the dynamics is indistin-
guishable from that of a given one-color model. Let the
one-color model be FHP-1. In head-on collisions, the
tagged particle may leave in one of four possible direc-
tions, depending on which pair collision is chosen and
where in the pair the tagged particle goes. Consider that
the direction is chosen at random among the two possible
directions. The fast algorithm of Frenkel and Ernst may
be defined as follows.

Notice that in equilibrium, the correlation function
C;;(x,t) we want to compute is identical to the condition-
al probability W;;(x,?) of finding the particle at x at time
t, provided it was initially at x=0; thus

C,-j(x,t):Wij(X,t)(vj(0,0)) . (9.2)

This conditional probability may be approached using a
single simulation of the one-color model. To perform
such a simulation, all particle variables r; (without tags)
are defined. We know that C,,(x,0)=1 for x=0 and O
otherwise. For time 1, we may compute the probability
W,; of finding the tagged particle in one of the sites adja-
cent to 0, given the evolution of the color-blind model. At
each of the subsequent steps a real number W;; is pro-
pagated from site to site.

This method is far superior to a method that would
propagate v;, as one has to do in molecular dynamics. A
speed up of 6—10 orders of magnitude may be obtained
(Frenkel and Ernst, 1989; Frenkel, 1990). Using this
method, a 1/t decay at intermediate ranges and an
asymptotic 1/[tV'logt ] decay was found by Naitoh (Nai-
toh et al., 1990). Comparisons with Boltzmann predic-
tions at short times and mode-coupling theory at longer
times were made (Naitoh and Ernst, 1991; Naitoh et al.,
1991), and, although in qualitative agreement, they
showed a quantitative disagreement with mode-coupling
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theory. Fully four-dimensional calculations also yield
correct scaling of the correlations, which decay like ¢ ~2,
but the amplitude differs by 15-60 % from the predic-
tions of mode-coupling theory (van der Hoef et al.,
1992).

c. Flows in complex geometries

Although the original interest in lattice-gas simula-
tions was fueled in part by the desire for a new tool for
the simulation of turbulence, it soon became evident that
the method offered important advantages for the simula-
tions of flows through complex geometries, whether tur-
bulent or not. Indeed, in the first published report of
lattice-gas simulations, it was stated in the conclusion
that “the microscopic nature of collisions with walls per-
mits the placement of obstacles [in the flow] of any shape
without any difficulty (d’Humieres, Pomeau, and Lal-
lemand, 1985),” contrary, for example, to the more
“traditional” finite-element method. As introduced at
that time and studied in detail later (Cornubert et al.,
1991; Ginzbourg and Adler, 1994), the ‘“no-slip”’ bound-
ary condition is easily implemented simply by having
particles bounce back from a wall with a velocity oppo-
site to that with which they arrive at the wall.

The relative algorithmic ease with which flows through
complex geometries could be simulated soon led to two
important applications of the lattice-gas method: simula-
tions of flows through porous media (Rothman, 1988;
Chen, Diemer, et al., 1991; Kohring, 1991a, 1991b,
1991c¢), and simulations of suspensions (Ladd and Colvin,
1988; Ladd and Frenkel, 1990). In both of these applica-
tions, the emphasis has been on the empirical investiga-
tion of the dependence of bulk properties of flows on as-
pects of microscopic disorder.

In typical lattice-gas studies of flow through porous
media (for an example, see Fig. 4), one constructs a
geometric model of a disordered porous geometry, simu-
lates the flow through this complex medium, and then
measures the functional dependence of flow rate on the
applied force. The linear relation

J=£X , (9.3)
u

known as Darcy’s law, is expected to relate the flux J to
the force X, via the dynamic viscosity p and the conduc-
tivity, or permeability, coefficient k. In general, the ob-
jective is to determine how the permeability varies with
some characteristic of geometric disorder. Early two-
dimensional results served first to verify that Darcy’s law
is indeed observed in lattice-gas simulations of flow
through porous media (Rothman, 1988) and, later, to
measure, for example, the dependence of permeability on
void fraction in a random 2D array of cylinders (Kohr-
ing, 1991a). However, due to topological limitations,
studies of flow through 2D microscopic models of porous
media have limited physical significance, and the most
important work in this area has been three-dimensional
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[see, for example, the lattice-Boltzmann simulations of
Cancelliere et al. (1990)].

Work with suspensions has proceeded along similar
lines. One creates, for example, a suspension of hard
disks by allowing the boundaries of the disks to move in
response to linear and angular momentum absorbed by
the disks. The first such work resulted in a measurement
of the dependence of the bulk (suspension) viscosity on
the concentration of the suspension, and included not
only an observation of Einstein’s low-concentration esti-
mate of the viscosity, but also measurements at high con-
centrations (Ladd and Colvin, 1988). Subsequent work
(in three dimensions) has included measurements of the
drag coefficient of dilute and concentrated suspensions
(Ladd and Frenkel, 1990; Ladd, 1994a, 1994b).

2. Three-dimensional fluids

The current vanguard of lattice-gas simulations is
three-dimensional flows. Work in 3D requires consider-
ably more algorithmic sophistication than in 2D, for
many reasons. The root of the problem is the face-
centered hypercubic (fchc) lattice (Sec. IV.A.3): because
there are 24 vertices per node, there are thus
224=1.6X 107 possible configurations at each site. This
poses two practical problems. The first, and more funda-
mental, problem is to choose the collision rules. Whereas
the possible choices are relatively easily enumerated in
two dimensions, this is not the case for the fchc lattice,
nor is it a priori obvious which among the possible out-
comes of a conservative collision to choose. The second
problem is the implementation of the collision rules. A
naive formulation of a collision table would require 2%*
entries, which may be prohibitively large, particularly on
parallel computing architectures. Decomposition of the
collision rules into Boolean logic likewise appears formid-
able, though some interesting ideas have recently been
advanced (Molvig et al., 1992; Teixeira, 1992).

Fortunately, however, much progress has been made
toward the resolution of these practical problems. In a
series of early papers, Hénon showed how one may esti-
mate, via a Boltzmann approximation, the viscosity that
results from any set of collision rules for the fchc model
(Hénon, 1987b), after which he presented a method for
choosing the particular set of collision rules that mini-
mizes viscosity (and thus maximizes the Reynolds num-
ber) (Hénon, 1989). Hénon’s work also detailed many of
the symmetries inherent in the fchc lattice, thus guiding
the development of memory-efficient collision tables.
The most substantial reduction in the size of the fchc col-
lision tables, however, was achieved only recently, by So-
mers and Rem (1992). They made the remarkable obser-
vation that, because any pair of velocities ¢; and —c; is
unchanged by any isometry (i.e., any sequence of rota-
tions and inversions) of the fchc lattice, the fchc collision
rules can be encoded as a sequence of tables that are
themselves encoded by at most 12 bits of information,
rather than the naive requirement of 24 bits. This clever
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trick was then shown to result in a memory requirement
of only about 100 kilobytes for the collision tables.

Although the outlook for fchce lattice-gas simulations is
now encouraging, lattice-gas simulations to date in 3D
are much less numerous than in two dimensions. Some
work may nonetheless be noted (see also Sec. IX.B.4).
For example, following the first published simulations of
the fchc model by Rivet and his collaborators (Rivet
et al., 1988), Rivet performed an extensive lattice-gas
study of 3D flows past a cylinder (Rivet, 1991). His re-
sults show spontaneous symmetry breaking leading to ob-
lique vortex shedding.

B. Simulations of multicomponent fluids

Lattice-gas simulations of multicomponent fluids—in
particular, the interacting lattice gases discussed in the
previous sections—have, to date, generally focused on
one of two goals. In the first, interest has centered on the
statistical-mechanical properties of the models, notably
their ability to simulate phase transitions in conjunction
with hydrodynamics. In the second, the objective has
been to determine aggregate properties of flows of multi-
phase fluids, with special emphasis on multiphase flow
through porous media. In this section, we review recent
highlights of both aspects of this work. We begin with a
summary of work on pattern formation in sheared fluids
undergoing phase separation. We then review recent
lattice-gas studies of multiphase flow through porous
media. Finally, we conclude with brief remarks on how
this work may be extended to hydrodynamic applications
of greater complexity, and include in that discussion a
brief description of recently introduced 3D multiphase
lattice-gas models.

1. Phase separation and hydrodynamics

In Sec. VIII.C we discussed dynamical aspects of phase
separation in lattice-gas models. However, the patterns
of growth due to phase separation were discussed in the
absence of any external hydrodynamic forcing. It is also
interesting to ask how growth, itself a nonlinear, non-
equilibrium process, interacts with hydrodynamics. One
experimental setting in which to consider this question is
phase separation during pipe (or channel) flow. In this
case, simulations of an immiscible lattice-gas mixture of
fluids of different viscosities have demonstrated the ten-
dency of the more viscous fluid to flow in the center of
the channel (Stockman et al., 1990).

Another experimental setting of interest is phase sepa-
ration in a shear flow (Imaeda et al., 1984; Chan et al.,
1988; Hashimoto et al., 1988; Ohta et al., 1990).
Perhaps most fundamentally, one can ask whether the
role of fluctuations in initiating phase separation is
enhanced, diminished, or unchanged in the presence of a
weak or strong shear flow. Somewhat more practically,
one may also investigate rheological properties of the
sheared mixture (Onuki, 1987; Krall et al., 1989, 1992).
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Lastly, one can ask how the pattern formation due to
growth is itself affected by a shear flow (Chan et al.,
1988). Thus far, lattice-gas simulations have been per-
formed to address the latter two of these three issues
(Rothman, 1990a,1991); here we review the work on pat-
terns. i

A 2D shear flow was created with the ILG with the
geometry shown in Fig. 29 (Rothman, 1990a).
Specifically, on a lattice with L =n, lattice units in the
vertical direction and W=n,V'3 /2=ny\/ 3 lattice units
in the horizontal direction, the average y velocity in the
vertical column located at x=0 is held at u,=—u,,
while the average y velocity in the middle column, locat-
ed at x =W /2, is held at u, =u,. By making boundaries
periodic in both directions, a V-shaped velocity profile,

Clx—W/4), 0=x<W/2,

U= 1—C(x—3W/a), W/2<x<W, 9.4)

is obtained, where the shear rate C =4u,/W.

Phase-separation patterns produced in real space are
shown in Fig. 30. Here d=0.70, 6=0.35, n, =512,
n, =256, and the viscosities are equal. There are three
cases. In the first, for purposes of comparison, there is
no shear. The state of the system is shown at an early
and late time; one sees a system of circular bubbles, the
size of which grows with time. In the second case, the
shear rate C=C;=9.02X10"* results from setting
1u3=0.10, while in the third case C =1.5C,. The pat-
terns with shear are markedly different from those
without. Two features stand out in the sheared patterns.
First, after a sufficiently long time, the normally circular
bubbles are deformed into elliptical bubbles, each of
which is approximately oriented at 45° to the flow direc-
tion. This orientational order is a simple consequence of
expansion and compression along the principal axes of
strain; it manifests itself at approximately the time when
the differential velocity CR across a bubble of size R be-
comes greater than the rate of bubble growth, dR /dt.
The second, and more interesting, feature of the sheared
growth is the positional ordering that results at late times.
This structure appears as the ordered stacks of elliptical
bubbles, each stack being separated from the nearest
stack by a distance comparable to the length of the major
axis of the average ellipse.

Both the positional and the orientational ordering are
quantified by the computations of the power spectra
S (k,?) [see Eq. (8.17)] shown in Fig. 31. S (k) is comput-
ed by calculating the power spectra S; (k) and Sg (k) of

H’*%'f‘I-uq\ S

L

1 0

uy

FIG. 29. Design of numerical experiment for sheared phase
separation. Boundaries are periodic in both directions.
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1=6000, Ct=0

Ct=2.7

x

FIG. 30. Phase-separation patterns at two different times after
quenching (Rothman, 1990a): (a) no shear; (b) shear rate
C =C,; (c) shear rate C =1.5 C,. Time ¢ is in time steps; Ct is
shear strain.

the left and right halves of the box, respectively,
and then averaging the two by setting S(k)
=1[S.(k)+Sg(—k)]. Again, there are three cases, cor-
responding to the three cases of Fig. 30; now, however,
the results represent the average of 40 independent simu-
lations rather than just one. The first spectrum [Fig.
31(a)] shows the isotropic unsheared case: one sees
roughly circular contours. In the two cases of shear,
however, one sees the signature of both the orientational
and the positional ordering. The former appears simply
as elliptical contours. The latter, however, is somewhat
more subtle: it manifests itself in S'(k) as the dropoff of
spectral power in the region roughly aligned along the
major axes of the elliptical spectra. This corresponds to
a relative lack of correlation in the patterns along the
direction parallel to the minor axes of the real-space el-
liptical bubbles, and a relatively high correlation in the
direction parallel to their major axes.

kx kx !
—-0.05

—0.05 0 0.05 -0.05 0 0.105

These details of the power spectra in Fig. 31 qualita-
tively match the results from light-scattering experiments
performed by Chan, Perrot, and Beysens (1988). The
real-space patterns in Fig. 30, obtained only by simula-
tion, allow interpretation of those results. Bubbles
separated by a distance less than a bubble size will in-
teract strongly in a shear flow, causing them to be rela-
tively frozen in place compared to bubbles far from one
another. Thus one obtains the positional ordering. Simi-
lar effects are also known in sheared colloidal suspensions
(Brady and Bossis, 1988), granular fluids (Hopkins and
Louge, 1991), and molecular dynamics (Evans et al.,
1984; Loose and Hess, 1989).

2. Multiphase flow through porous media

The second principal problem area in which lattice-gas
models of fluid mixtures have provided useful tools for
simulation is multiphase flow through porous media.
Here the origin of complexity in the problem lies not so
much with the fluid mixture itself but rather with the
disordered medium through which it flows.

The problem of multiphase flow through porous media
appears in varied contexts in both the natural sciences
and engineering applications (Sheidegger, 1960; Bear,
1972). It is perhaps most ubiquitous in the earth sci-
ences, where it appears, for example, in hydrological
studies of the flow of aqueous mixtures through sand,
soil, and rocks near the earth’s surface, in geophysical
studies of the flow of magmatic mixtures in the earth’s
mantle (Richter and McKenzie, 1984), and in petroleum-
engineering studies of the flow of oil, water, and gas
through the pore space of sandstones in hydrocarbon
reservoirs. There are principally two areas of interest for
physics here. First, as summarized in the book by Feder
(1988), despite the fact that flow through porous media is
slow and viscous and the Reynolds number is quite low,
multiphase flow through porous media can result in fas-
cinating interfacial instabilities, many of which can have
a fractal geometry. Second is the estimation of constitu-
tive equations. Although it is well understood that multi-
phase flow at the pore scale obeys the Navier-Stokes
equations, the equations obeyed by the volume-averaged
multiphase flow at a scale much larger than that of a
pore remain unknown.

Of these two issues, thus far only the question of con-
stitutive equations has been addressed by lattice-gas

FIG. 31. Contours of log;,S (k) computed by

t=6000_
JCt=0

t=6000
1Ct=5.4

t=4000

(a)] 1 (b)

£y
S00 0 G0'0-

o averaging spectra from 40 independent simula-
tions of sheared phase separation (Rothman,
1990a). The contour interval is 10'/%; the
lowest level in each plot is the same, and the
highest contour in each plot is bold. Times ¢
and shear rates C in (a)-(c) correspond to
those of the real-space patterns depicted at the
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later time in (a)—(c), respectively, of Fig. 30.
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simulations. The macroscopic equation typically em-
ployed to describe immiscible multiphase flow through
porous media is based on the assumption that the
volume-averaged flow of the two fluids obeys a multi-
phase extension of Darcy’s law, Eq. (9.3), given by
(Sheidegger, 1960; Bear, 1972)

Ji(0)=l,-(9)LX,- . 9.5)
K
Here the flux J; of the ith fluid is proportional to the
force X; applied to the ith fluid as in Darcy’s law, but
with an additional prefactor 0 </; <1 that depends on the
portion 6 of the void space occupied by, .say, fluid 1.
Thus Eq. (9.5) describes a two-fluid flow in which each
fluid flows through a fictitious porous medium construct-
ed from the union of the real porous medium and the
void space occupied by the other fluid, with the same
boundary condition at solid-fluid and fluid-fluid inter-
faces. The so-called relative-permeability coefficient /; is
then thought to describe empirically how the flux of the
ith fluid depends on the portion of the void space that it
occupies.

Although Eq. (9.5) has survived as an engineering ap-
proximation (with varying degrees of success) for well
over 50 years, it has been subjected to much criticism.
For example, Adler and Brenner (1988) point out that
Eq. (9.5) implicitly assumes that fluid-fluid interfaces do
not change with increasing force (or flow rate), thereby
justifying the assumption of a linear force-flux relation.
Moreover, de Gennes (1983) remarks that Eq. (9.5) can
be valid only if contact angles are finite, in which case
neither fluid completely wets the solid surface, the fluid-
fluid interfacial area is small, and viscous fluid-fluid cou-
pling is negligible. If this were not the case, then one
would instead expect that the appropriate multiphase
generalization of Darcy’s law would be

Ji= ELU(B)XJ- , 9.6)
J
where
o k
L;(0)=1;(6)— . 9.7)
Kj

Then, by an extension of Onsager’s reciprocity principle
to a system far from equilibrium, one would expect that

L;=L (9.8)

iy o

Because of the aforementioned confusion concerning
the theoretical description of the macroscopic flow,
lattice-gas simulations have been able to make consider-
able progress. Two questions have been addressed (Roth-
man, 1990b; Gunstensen and Rothman, 1993). First is
the question of whether the force-flux relation is indeed
linear. Second is the question of whether the Onsager re-
ciprocity (9.8) holds, if there is indeed a linear regime of
the flow.

The work was carried out first in two dimensions, us-
ing the immiscible lattice gas (Rothman, 1990b), and then
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in three dimensions; using a lattice-Boltzmann model of
immiscible fluids (Gunstensen and Rothman, 1993). An
example of a 3D lattice-Boltzmann simulation of multi-
phase flow through.a porous medium is shown in Fig. 32.
The results from extensive simulations performed at con-
stant concentration were contrary to either Eq. (9.5) or
(9.3). Speciﬁcally, the simulations showed that at low
flow rates and at intermediate concentrations of nonwet-
ting fluid, the response of flux to force could be highly
nonlinear. The source of the nonlinearity is capillarity:
bubbles of a size larger than a characteristic pore size re-
quire a finite driving force to be pushed through the
porous medium; otherwise they do not move. This
behavior can be interpreted as the physical manifestation
of a failure to meet the implicit assumption, mentioned
above, of interfacial configurations that are independent
of the driving force.

Simulations did show, however, that for sufficiently
strong forcing such that the nonlinearity due to surface
tension is overcome, the fluxes are indeed related linearly
to the forces. Interestingly, in both 2D and 3D the cross
terms L,; were found to exhibit a magnitude that could
be comparable to the diagonal coefficients, showing clear-
ly that Eq. (9.6) is a better description of the macroscopic
flow than Eq. (9.5). Moreover, within the limitations of
the accuracy of the numerical experiments, the cross
terms were found to be equal, thereby confirming the ex-
pectation of the Onsager reciprocity. Previous laborato-
ry experiments by Kalaydjian (1990) had also observed
the Onsager reciprocity, allowing both results to qualita-
tively confirm each other.

3. Three-phase flow, emulsions, and sedimentation

The previous examples have shown how multiphase
lattice gases may be used to study flows of two kinds of
two-phase fluids; in one case, a phase-separating fluid
which is itself subjected to external forcing, and, in the
other case, an immiscible fluid mixture flowing through a
complex geometry. Here we discuss examples of how
fluid mixtures of an even greater complexity may be
simulated using models based on the immiscible lattice
gas (ILG).

Our point of departure for these more complex fluids is
a model of a mixture of three immiscible fluids (Gunsten-
sen and Rothman, 1991b). A three-phase model is easily
constructed from a generalization of the ILG collision
rule given by Egs. (3.1), (3.2), and (3.3). The three species
of fluids are represented by Boolean variables (n/)y<; <,
where the additional superscript j=1,2,3 is used to index
the fluid species, say, red, green, or blue, and an ex-
clusion rule holds that for any velocity i, at most one n/
may equal 1. On the two-dimensional triangular lattice,
the flux of species j is then

6
q;[nj(x),...,n{(x)]= 3 ¢;nf(x), j=1,2,3, 9.9)

i=1

while the local gradient of the jth species is proportional
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to
(9.10)

f;=2e 3 nfx+e,), j=1,23.
1

The result of a collision, (n/)—(n;7), is then the choice of
configuration that maximizes the weighted sum

Eajfj-qj(néj,.._,n'éi), (9.11)
J
subject to conservation of each species,
Sali=3nl, j=12,3, 9.12)
i i
and conservation of total momentum,
(9.13)

> Eci”i'jz > ECin;"-
i i

The coefficients a; are chosen to set the three surface ten-
sions, 0;, 013, and 0,3 If the @;’s are all equal, then so
are the surface tensions; and three-phase contact lines (or
points in two dimensions) are not only stable, but act as
the point of contact for three interfaces, each making an
angle of 277/3 with respect to the others. If, on the other
hand, the ; are chosen so that the surface tensions are
such that, say, o3+ 0, <0,3, i.e., the sum of two is less
than the third, then three-phase contact points are not
stable, and the mixture is in equilibrium when a bubble of
species 2 and another bubble of species 3 reside in a “sea”
of species 1. One choice of coefficients that yields this sit-
uation is a;=—0.5, a,=1, and a;=1 (Gunstensen and
Rothman, 1991b).

The three-fluid model has met with preliminary suc-
cess for both phase separation and flow through porous
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FIG. 32. Three-dimensional
lattice-Boltzmann simulation of
multiphase flow through porous
media (Gunstensen and Roth-
man, 1993). (See Appendix C for
a discussion of the relation of
the lattice-Boltzmann method to
the lattice-gas method.) The
porous medium is modeled by
the random placement of over-
lapping (yellow) spheres of con-
stant radius. The medium is ini-
tially filled with a transparent
wetting fluid. The nonwetting
fluid, shown in blue, is injected
into the porous medium from
behind, forcing the transparent
clear fluid to evacuate the medi-
um. The lattice size is 32°.

media (Gunstensen and Rothman, 1991b). Three-fluid
phase separation is of intrinsic interest because the pat-
tern formation can be considerably different from that in
the two-fluid counterpart, due to the influence of the rela-
tive values of the surface tensions. The problem of
three-phase flow through porous media is, on the other
hand, of significant practical interest, since it concerns
how oil, water, and gas flow in subterranean reservoirs.
Here basic questions concern the form of the three-fluid
analog of Darcy’s law, and how it depends not only on
the relative concentrations of the three fluids and their
surface tensions, but also on their wetting properties.
Some progress toward unraveling some of these issues
has been achieved with a lattice-Boltzmann version of the
three-fluid model (Gunstensen, 1992).

While three fluids may seem complicated enough, an
important extension to the three-phase model is made by
allowing for N fluids, where N is arbitrarily large (Roth-
man, 1992). Such a model follows from the observation
that, for the case of one rest particle, at most seven
different fluid species may be present at any site on the
two-dimensional triangular lattice. Then, by defining one
of the N species to always be the suspending or intersti-
tial fluid (species 1), and the two locally most numerous
species other than the interstitial fluid to be species 2 and
3, a collision may be performed using the three-fluid rule
detailed above, in which the weights a; are set to make
three-phase contact points unstable. We refer to this
model as a many-bubble model, because N —1 bubbles
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are formed in a sea of the Nth fluid.

An example of a typical unforced simulation of the
many-bubble model is shown in Fig. 33. Each bubble,
shown in black, undergoes a random walk, due to the sta-
tistical noise of the lattice gas, and is unable to coalesce
with any of the other bubbles. This model thus simulates
the hydrodynamic interactions of N —1 deformable bo-
dies, or, in other words, certain aspects of the hydro-
dynamics of emulsions. In real emulsions, chemical
agents on interfaces, such as surfactants, act to impede
the coalescence of bubbles. Here, instead, bubble coales-
cence is disallowed by the surface tension that is created
between different phases.

Figure 34 shows an application of the many-bubble
model to a problem of two-component sedimentation
(Rothman and Kadanoff, 1994). Here the red bubbles are
positively buoyant and rise, while the blue bubbles are
negatively buoyant and fall. The initial condition of the
simulation was a random mixture of red and blue bub-
bles. One finds that for this concentration of bubbles and
acceleration of gravity, the mixture is unstable and segre-
gates into regions composed primarily of red bubbles or
blue bubbles, as shown in Fig. 34. Such instabilities in
two-component sedimentation are known from experi-
ments and, to a lesser extent, from theory (Whitmore,
1955; Weiland et al., 1984; Batchelor and Janse van
Rensburg, 1986). Insight gained from an understanding

Rev. Mod. Phys,, Vol. 66, No. 4, October 1994

FIG. 33. Equilibrium configuration in the many-bubble model
(Rothman and Kadanoff, 1994). The lattice is 128 X 128; each
bubble has a radius of about 5 lattice units; and the concentra-
tion of bubbles is 0.40. The random placement of each bubble
resulted from collective Brownian motion.

of the sedimentation instability in Fig. 34 allowed the
construction of an interesting model of high-Prandtl-
number thermal convection (Rothman and Kadanoff,
1994).

FIG. 34. Simulation of two-
component sedimentation, using
the many-bubble model (Roth-
man and Kadanoff, 1994). The
lattice contains 512X 512 points.
Positively buoyant bubbles are
red, and negatively buoyant bub-
bles are blue. There are 1024
bubbles, each with a radius of
about 5 lattice units, encompass-
ing a total volume fraction of
0.4. The figure shown is 8500
time steps after initialization of
the gravitational acceleration, at
which time the distribution of
red and blue bubbles was ran-
dom. The recent motion of the
individual bubbles prior to each
snapshot is indicated by a re-
verse fade-out: the more distant
in time prior to the present
configuration, the more pale is
the shade of red or blue. If bub-
ble trajectories cross, the more
recent trajectory takes pre-
cedence. Note the appearance
of large-scale fingerlike or
columnlike structures, while
other structures look more like
the heads of plumes.



1466 D. H. Rothman and S. Zaleski: Lattice-gas models of phase separation

4. Three-dimensional flows

Three-dimensional work with the lattice-gas models of
mixtures introduced in Sec. III remains in its infancy, but
some progress may nonetheless be reported.

a. Liquid-gas model

Construction of a 3D liquid-gas model requires little
complexity beyond that of the plain fchc lattice gas (Ap-
pert et al., 1994). After performing the “standard” fchc
collisions, the interacting collisions are performed by im-
plementing Egs. (5.19) and (5.20) in the fchc geometry.

FIG. 35. Phase separation in a 3D implementation of the
liquid-gas model.
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Figure 35 illustrates an example of phase separation in
the 3D liquid-gas model. For this simulation the interac-
tion range is =8 and the box size is 64°>. Because the
range of the interaction is large, the most unstable wave-
length for the initial stage of spinodal decomposition is of
the order of the size of the box. Thus the system decom-
poses into just one lump of liquid and one lump of gas.

b. Immiscible lattice gas

In contrast to the liquid-gas model, the ILG requires
some significant reworking to allow for practical im-
plementation in three dimensions. The first 3D ILG was
proposed and implemented by Rem and Somers (1989).
They used a model, subsequently explained in more detail
in 2D (Somers and Rem, 1991), that employs colored
“holes” in addition to colored particles. The use of holes
allowed them to obtain an estimate of the color gradient
from the local site itself, rather than having to obtain in-
formation from neighboring sites as in Eq. (3.2).

An alternative model for a 3D ILG was recently pro-
posed (Olson and Rothman, 1993). If only one color is
present at a site, then the model performs the usual fche
collision. If, instead, two colors are present, then the
model splits the ILG collision into two steps in the fol-
lowing way. Colorless particle pairs n;=r;+b; and

n_;=r_;+b_; are formed, where, as in Sec. V.C.1l.a,
c;=—c_;. In the first step, occupied pairs (n;=n_;=1)
and unoccupied pairs (n;=n_;=0) are rearranged to

new values n/, n"_;, such that only exchanges between oc-
cupied and unoccupied pairs are allowed, and that the
exchange maximizes
24
2 (cizn _cizl‘ )ni' . (9.14)
i=1

The quantities ¢;; and c;, are the projection of velocity c;
on the direction parallel and perpendicular, respectively,
to a previously obtained discretized color gradient. Per-
forming this arrangement of occupied and unoccupied
pairs requires the construction of a look-up table indexed
by.only 12 bits, rather than the full 24 bits of the fchc
model itself, or the 48 bits of the colored fchc model.
The second step of the collision is the redistribution of
color (i.e., r/—>7;' and b/ —b;"). This is performed such
that the flux of color 3; c,(#/'—b/') is as much as possi-
ble in the direction of the discretized color gradient, un-
der the constraints that color be conserved and that
n{'=n;. Thus the color-blind configuration changes only
in step 1, which provides surface tension, whereas the
color is rearranged on the new color-blind configuration
in step 2, which acts to minimize the diffusivity of color.
Figure 36 shows an example of an immiscible mixture
in a shear flow simulated with the two-step 3D ILG de-
scribed above. The simulation shown is a 3D version of
the 2D sheared phase separation of Fig. 30. Due to the
competition between shear and surface tension in 3D, the
bubbles reach a characteristic size R after which, statisti-
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cally, they grow no larger. The capillary number
Ca=uRC /o ~1, where C is the shear rate and u is the
viscosity of both fluid phases.

X. CONCLUSIONS

This review has had two principal objectives. First, we
have attempted to give a broad overview of the achieve-
ments to date that have followed the introduction of
lattice-gas automata as a model of the Navier-Stokes
equations. Second, we have emphasized the contribu-
tions to the field that have come from lattice-gas models
of phase separation. It seems appropriate to objectively
evaluate the progress that has been made and to point
out some interesting areas of research that lie ahead. We
shall not repeat any bibliographic citations that have al-
ready been given; the reader is instead referred to the de-
tailed descriptions given in the body of the review.

To an extent, progress within the field of lattice-gas au-
tomata may be considered to lie within either statistical
mechanics, hydrodynamics, or both. In addition, one
may speak of purely methodological advances that create
progress in either of these two disciplines. We shall fol-
low such a categorization with the hope of creating some
order in an otherwise highly interdisciplinary field.

A. Statistical mechanics

It is perhaps easy for the casual observer of the field to
overlook the connection of lattice-gas automata to sta-
tistical mechanics in favor of its relation to hydrodynam-
ics. Nevertheless, many of the more impressive achieve-
ments to arise from the field have been of considerable

importance to statistical mechanics.

First, as already emphasized in the Introduction and
detailed in Sec. IV, lattice gases have provided a
simplified microscopic model from which the hydro-
dynamic equations may be derived. An understanding of
this “discretized” molecular dynamics then leads a
researcher to consider one of two directions. The first
path, perhaps the longer of the two, leads to gratification
that the macroscopically complex world is really not so
complicated after all, and encourages one to find equally
simple models of complexity in other fields. The second
path is somewhat more practical: it leads one to consider
what questions, if any, this simplified molecular dynam-
ics can help answer.

We have already indicated, primarily in Sec. IX.A.1.b,
how lattice-gas simulations have helped address basic
questions in statistical mechanics. We simply reiterate
here that one of the major achievements has been the ex-
perimental (i.e., numerical) verification of the prediction
of the divergence of transport coefficients in two-
dimensional fluids, while another has been the observa-
tion of long-time tails in velocity autocorrelation func-
tions. Results such as these have been possible precisely
because the lattice gas acts as a kind of midway point be-
tween molecular dynamics and the Navier-Stokes equa-
tions, and therefore serves as an efficient tool for investi-
gating problems where microscopic fluctuations interact
with macroscopic hydrodynamics.

The lattice gas is also an interesting conceptual tool
with which to consider not only the relationship between
the microscopic and macroscopic levels of hydrodynam-
ics, but also the microscopic and macroscopic descrip-
tions of phase transitions in hydrodynamic models. The
models of phase separation discussed at length in the
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FIG. 36. Simulation of sheared phase separation, using a 3D immiscible lattice-gas model (Olson and Rothman, 1993). The shear
strains Ct correspond to time steps 800, 4160, and 4240 after quenching from an initial condition of a homogeneous mixture with
10% concentration of the minority phase; the height of the lattice is 64, the width is 32, and the depth is 16. The flow is downward
on the left and upward on the right; boundary conditions in the shear direction are periodic with vertical displacement due to the
shear (Lees and Edwards, 1972) and simply periodic in the other two directions. The two later snapshots are from the steady state in
which a characteristic bubble size has evolved due to the competition between shear and surface tension. Note the bubble at the bot-

tom center for Ct=26 has broken into two bubbles by Ct=26.5.
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latter half of this review are unconventional in that they
are microscopically irreversible. Precisely what impact
this loss of reversibility has on the macroscopic aspects of
phase transitions, however, remains to be quantified.
Indeed, we find these dynamical models of phase transi-
tions to lie somewhere in an imaginary continuum be-
tween the classical phase transitions of statistical physics
and bifurcations in nonlinear dynamical systems.

As emphasized in this review, equilibrium aspects of
phase transitions in lattice-gas models of phase separa-
tion are much better understood than nonequilibrium as-
pects. To gain some insight into both aspects of the
phase transitions, and therefore to make an attempt at
understanding where the specter of irreversibility might
make itself known, models that are even simpler than the
ones we have presented here have been proposed. These
have, in one case, made it easier to prove theorems con-
cerning phase separation (Lebowitz et al., 1991), and, in
another case, have provided a somewhat greater
efficiency of simulation (Alexander et al., 1992). It is fair
to say, however, that despite much effort (see also
Bussemaker and Ernst, 1993b and Gerits et al., 1993),
the effect of irreversibility remains to be quantified.

Also not yet systematically investigated is the behavior
of lattice-gas models of phase transitions in the vicinity
of their critical points. Whereas some work on critical
exponents exists (Chan and Liang, 1990), the nature of
hydrodynamic transport at the critical point is not yet
known.

B. Hydrodynamics

Progress in lattice-gas methodology, though general in
its applicability, is most obviously intertwined with pro-
gress in hydrodynamics itself. Thus it is appropriate to
first make some observations about technical advances.

Progress in the development of lattice-gas methods has
indeed been enormous. With respect to single-phase lat-
tice gases, the lion’s share of effort has been devoted to
making 3D computations practical. This has demanded
not only a thorough understanding of the relationship of
collision rules to transport coefficients, but, even more
importantly, the invention of practical schemes for en-
coding these collision rules in lookup tables (or sequences
of logical operations) that are of manageable size. Due to
the advances reviewed in Secs. IV.A.3 and IX.A.2, we
can now say that these issues have been resolved.

One methodological issue still in its infancy, however,
is the use of special-purpose computers for lattice-gas (or,
more generally, cellular automata) computations. Early
attempts (Clouqueur and d’Humieres, 1987; Toffoli and
Margolus, 1987) led to excitement but not to wide use. A
more recent and much awaited machine (Toffoli and
Margolus, 1991) has, at the time of this writing, just led
to its first prototype; its applicability to scientific compu-
tation appears promising, but remains to be exploited.

With respect to models of phase separation, much of
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the technical progress has been devoted to the construc-
tion, and consequent understanding, of 2D models.
Three-dimensional models, however, are only beginning
to be considered and may appropriately be deemed to be
at one of the methodological forefronts of the field.
While formulations and preliminary simulations of these
models exist, their properties remain to be characterized,
both theoretically and empirically.

Given this wealth of models, a genuine practical con-
cern is their relative efficiency compared to competing
methods for the simulation of hydrodynamics. The
efficiency of a given method involves the memory usage
and CPU time required by a simulation, the flexibility of
the numerical scheme, and the cost of development and
maintenance of the computer codes. The perceived
elegance and simplicity of the method may also be of
value.

A few attempts have been made to discuss specifically
the memory and CPU costs of lattice-gas simulations.
Orszag and Yakhot (1986) arrived at pessimistic con-
clusions for high-Reynolds-number lattice-gas simula-
tions of single-phase flow. However, a different estimate
of the efficiency of the lattice gas arrived at mixed con-
clusions (Zaleski, 1989).

Aside from these semiquantitative studies of efficiency,
a consensus among workers in the field is emerging.
First, for general-purpose simulations without geometric
complexity, the lattice gas does not appear to have any
computational advantages. In fact, CPU efficiency de-
pends strongly on noise level and Mach number (Zaleski,
1989), and it is easy to reach values of these parameters
for which lattice-gas simulations become much more
costly than their classical counterparts. Second, flows in
media with complex boundaries are easier to simulate,
from the viewpoint of programming, with lattice gases,
but may not have any particular advantages in speed.
The same is probably roughly true for simulations of
multiphase flow, especially with complex boundaries.
However, compared to classical methods, there is the ad-
ditional limitation that only certain specific parameter
ranges can be simulated with lattice gases. Thus, as far
as efficiency is concerned, the status of the lattice-gas
method is not unlike that of an analog device: it is very
appealing for some specific problems, but not very flexi-
ble.

With these opinions stated, several caveats are in or-
der. As emphasized in Sec. IX, if one desires only quali-
tative results for quantities obtained by averaging over an
entire simulation box (as in, for example, many studies of
single- and multiple-phase flow through porous media),
the lattice gas may possibly be very efficient. This
efficiency arises from the tradeoff of microscopic noise
for algorithmic efficiency: in principle, one averages out
the noise at the scale of the boxsize. Secondly, particular
characteristics of lattice gases, such as fluctuations, or
the phase transitions in the models discussed here, offer a
natural framework for studying certain problems (e.g.,
the influence of fluctuations or phase transitions on hy-
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drodynamics) that are relatively difficult to approach oth-
erwise. Third, there is the hope that special-purpose
computers for lattice-gas computations may someday
lead to unprecedented efficiencies, but this has yet to be
concretely established. Lastly, we note that the lattice-
Boltzmann method (see Appendix C) overcomes many of
the inefficiencies of the lattice-gas method. This gain in
efficiency, however, comes at the cost of the loss of some
of the more interesting properties of lattice gases, such as
intrinsic fluctuations and phase transitions.

Thus we turn to the question of what has been learned
about hydrodynamics from simulations of lattice gases.
Here the results are quite positive, and perhaps reflect
less any intrinsic efficiency of the method but more the
fascination of physicists and others for its innate simplici-
ty. We have already reviewed many of the principal
achievements in Sec. IX. Here we simply restate that, in
the majority of cases, the exciting lattice-gas simulations
of hydrodynamics have exploited one of the strengths of
the method: fluctuations (to excite bifurcations), com-
plex geometries (to exploit the ease of coding boundary
conditions), and phase transitions. In these areas, we find
the field not only quite healthy, but in anticipation of
more important, three-dimensional results yet to come.

Note added in proof. A large number of preprints on
lattice-gas and lattice-Boltzmann methods may be found
on the nonlinear science bulletin board of the Los
Alamos National Laboratory World Wide Web interface
http://xyz.lanl.gov/. For instructions on using WWW,
send mail to comp-gas@xyz.lanl.gov, with subject: get
WWW.
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APPENDIX A: SYMMETRY AND RELATED
GEOMETRICAL PROPERTIES

The purpose of this appendix is to prove several useful
symmetry results. We shall prove that for regular Bra-
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vais lattices all the symmetry assumptions on tensors
necessary for the derivation of lattice-gas hydrodynamics
without isotropy are true. Moreover, we shall prove that
certain lattices also yield isotropic hydrodynamics.

1. Polytopes

There are only five regular polyhedra or Platonic
solids: the tetrahedron {3,3}, octahedron {3,4}, cube
{4,3}, dodecahedron {5,3}, and icosahedron {3,5}. The
Schldfi symbol {p,q} indicates the number p of edges
around each face and the number g of edges attached to
each vertex.

For a D-dimensional polytope P, we shall denote as
Et P(c;) (Berger, 1978) the D —1 polytope formed by all
the vertices adjacent to a given vertex c¢;. An example of
this construction is given for the cube in Fig. 37. The no-
tion of a regular polytope may be given a recursive
definition, incrementing the dimension D. For D=2, a
polygon is a set of points regularly spaced on a circle.
The polytope P is regular when all the Et P(c;) formed
about the various vertices are all regular and transformed
into each other by isometries. We may then write Et P
for EtP(c;) when orientation is not important. The
Schldfi symbol {p,q,r,...,z} of a regular polytope P is
then formed by the number of edges p of a face and the
Schlifi symbol {q,r, ...,z} of Et P.

The group of symmetries § of a regular polytope is
found, for instance, in Coxeter (1977). The polytope is
left invariant by reversal about the origin (parity trans-
formation for all the coordinates) and rotations about
pairs of opposite vertices.

2. Tensor symmetries

a. Isotropic tensors

Let R? be the matrix of any linear space transforma-
tion R. Let Ty, ..., bearank k tensor covariant in all

indices. It is transformed by R as

AN

FIG. 37. Construction of Et(P). The cube (symbol {4,3}) is
shown in this example. All the vertices attached to vertex A4
form the triangle Et P( 4) shown in the figure. The cube has
four-edged faces and thus has symbol {4,3}.
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T ... =Tp ... RE -+ RO (A1)
A tensor is isotropic if it is invariant by all congruent
transformations, i.e., all transformations in the orthogo-
nal group O (D). We now seek to determine all rank &
isotropic tensors symmetric by exchange of their k in-
dices up to rank 4. By Eq. (A1) the tensors I ,53=8,5 and
Apys= (800,51 04,085 T 8,58p,) are isotropic. We shall
show that all the sought tensors are proportional to I in
rank 2 or A in rank 4.

Consider a rank k isotropic tensor T. It inherits the
properties of cubic symmetry: invariance by parity trans-
formation of all coordinates and by permutation of coor-
dinates. The consequences of cubic symmetry are
developed in mechanics textbooks such as that by Aris
(1962). We give the derivation here for completeness. In
rank 2, cubic symmetry immediately yields T, =0 and
T,,=T, for all @ (no summation). For tensors of order
4, we find only four independent terms Ty, Ti512,
T151, and T;;5,. The last three are identical, since we
may permute the indices. Thus the general tensor invari-

ant under cubic symmetry is
T opys =M(8450,51 04,085 18,505, ) T 188,504, - (A2)
Consider now a 7/3 rotation. Using Eq. (A1), we find
Tim=1Tiun+5§Tin+ %Ta0n (A3)
and
Ty =3T 1, - (A4)

We thus find u=0 in Eq. (A2). The rotation leaves all
components other than 1 and 2 invariant. It is thus a
general D-dimensional result.

b. Tensors invariant under the lattice point symmetries

We now apply symmetry consideration to find the
form of tensors having the discrete group § of lattice
symmetries.

i. Tensor invariant under the whole group

All the lattices we consider, except the hexagonal lat-
tice, have square or cubic symmetry which readily gives
the form of the 4th-rank tensors in Eq. (A2). The hexag-
onal case is readily treated as in the section above using
parity, 7/3 and 2#/3 rotations (Landau and Lifshitz,
1959b). We find that on the hexagonal lattice, Tg,5 is
proportional to A and thus isotropic.

In the fchc case we have cubic symmetry and symme-
try about the plane defined by x,; +x, +x;+x,=0, i.e.,
the transformation

OXy—Xy=X—+ 3 xp . (AS)
B
The scalar obtained by contracting T with the vector
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y=(2,0,0,0) is also invariant by o. Thus
yayBy Yy 8Taﬁ7/5 =yp'ay ’By'yylaTaBy.S (A6)

where y'=(1,—1,—1,—1). Inserting Eq. (A2), we find
16p on the left-hand side and 4u on the right-hand side
of (A6). Thus u=0, and T4, is isotropic.

ii. Tensor attached to a given lattice vector

It is of interest to determine the general form of a ten-
sor ¢;,p attached to the lattice vector ¢; and symmetric in
the indices af3. A tensor attached to a vector is invariant
by lattice symmetries in & that leave that vector c; in-
variant. Its form is of interest to determine the general
form of perturbations at first order in the Chapman-
Enskog expansion. It is determined by the following
theorem, which is an extension of similar results by
Frisch et al. (1987) and Hénon (1987b).

Theorem 1. Let L be a regular Bravais lattice and let
c; be the vectors joining the nearest neighbors. Let S be
the symmetry group of the regular polytope formed by the
c;. Let t;,5 be a tensor symmetric in the indices and in-
variant by all symmetries in G leaving c; fixed. Then t,,,
is of the form

Ligp=MCigCipT 18, . (A7)

Proof. We first introduce a definition, then proceed
with three lemmas. The following definition is classical:
A set of transformations of space RP which leaves no
linear subspace invariant is called an irreducible family
(Boerner, 1955). To illustrate, consider a group of linear
operators transforming space R Z, parametrized by an in-
dex s, and whose matrix is A(s). If there is an invariant
linear subspace ¥ under all matrices A(s), then it may be
written in the appropriate basis in block form,

Ay(s) Ayls)

Al=1 0 Ay

> (A8)

where A;(s) is a block matrix. For instance, the continu-
ous group of rotations about an axis leaves that axis in-
variant and is thus reducible.

Lemma 1. The symmetry group S of a regular polytope
is an irreducible family.

We work by recursion on the dimension D of space.
We start the recursion in dimension D=2. Regular po-
lygons such as triangles, squares, etc., have n vertices,
n =3. The symmetry group of a regular polygon is a
group of rotations and reflections. It is obviously irre-
ducible: consider any linear subspace of R?, i.e., any
straight line, and rotate it by 277 /xn. Since no line is in-
variant, the group is irreducible.

We now continue the recursion for D>2. Consider an
arbitrary regular polytope P and the regular polytope
Et P(c;) formed around c;. By recursion the symmetry
group §; of Et P(c;) is irreducible. Moreover, Et P (c;)
is in some D —1 subspace II; of R?. We reason by the
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absurd and suppose that § is reducible. Let II' be a sub-
space of R ? invariant by §.

We shall first assume that IT’ is neither in II; nor is it
the line L; parallel to c; (see Fig. 38). Notice that § con-
tains ;. Thus II' is also invariant by §;. The action of
G, on II' is shown in Fig. 38. The intersection L of IT'
and II; must also be invariant by §;. But since L is a
subspace of II;, the assumption that &; is irreducible is
violated. Thus II' is either equal to II; or is the line
parallel to c;.

Thus if & is reducible, it may only leave II and c; in-
variant. Take now another vertex c; such that c; is in
EtP(c;). EtP(c;) has a symmetry group §; that ex-
changes c; with yet another vector ¢, as in Fig. 39. Oth-
erwise, ¢; would be invariant by §; and §; would not be
irreducible. But we assumed that c¢; was invariant—
hence a contradiction.

Comment. This lemma may be intuitively understood
in the following way. If the symmetry group of a po-
lytope leaves a subspace II invariant, this means that this
subspace is somehow ‘“‘privileged” with respect to the
others. Although it is a symmetry axis, it cannot be “ro-
tated” into another similar subspace. This contradicts
our idea of the symmetry of a regular polytope.

Lemma 2 (Schurr). If a transformation commutes with
all transformations in an irreducible family, it is propor-
tional to identity.

A proof of this famous lemma of the representation
theory of groups may be found in Boerner (1955; see also
Fulton and Harris, 1991).

Lemma 3. If a symmetric twice covariant tensor t,g is
invariant by a congruent transformation R, then the corre-
sponding linear operator M with the same matrix
M5B =t,3 commutes with R.

Indeed, we have from Eq. (A1)

tap=1tupRERE , (A9)

ME=MERZRE . (A10)

FIG. 38. Construction used in the proof of Lemma 1.
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FIG. 39. Another construction used in the proof of Lemma 1.

Since for a congruent transformation (R _‘)g=Rg, we
have

ME=RIME(R™"), (A11)

which may be written MR=RM.

Before finally proving the theorem, we need to prove
that #;,5 has the following block structure. We let A be
the linear operator whose matrix is #;,5 and consider the
decomposition of space into ¢; and an orthogonal hyper-
plane IT;. Then the linear map A is of the form

A O

A=1o B

(A12)

where A is a scalar coefficient and B is the matrix of a
transformation acting on II;.

Let us show first that A leaves c; invariant. We
reason by the absurd and consider a decomposition of the
vector Ac; into a component parallel to c¢; and another
nonzero vector v; in II;:

Ac,=Ac;+v; . (A13)

Let R be a transformation in §;. The hypothesis in the
theorem is that ¢,z is invariant by symmetries in §;,
which by Lemma 3 means that A commutes with R and
thus, from Eq. (A13),

R TARc;=Ac;+v; . (A14)
The transformation R leaves c¢; invariant; thus
Ac;=Ac;+Ryv; , (A15)

and we obtain Rv;=v; for all R in §;. The vector v;
generates a linear subspace V invariant by all transforma-
tions in §;. Thus &, is reducible. But from our above
discussion of polytopes, 9; is the symmetry group of Et P
and, from Lemma 1, §; is irreducible. We arrive at a
contradiction.
Thus A leaves c; invariant and may be written in
block form,
A O
=|A, B|’ (A1l6)
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for some matrices A; and B. Since A is symmetric, it is
of the form (A12) and thus leaves II; globally invariant.
The matrix B is then a matrix acting on II.

We may now prove the theorem. Since A commutes
with all transformations in §;, so does B. Then by
Schurr’s lemma, B=pulI for some scalar . Then from
(A 12) we find the expression in the theorem.

3. Tensors formed with generating vectors

Lattice-gas theory involves the rth-order tensors

Eﬁ;}...ar= S Cia, " Cia, - (A17)
i

r

We are now able to determine these tensors to order 3:

> =0, (A18)
i
b 2
S CiaCig= —g 8ap » (A19)
i
S, CiaCigCiy =0 . (A20)
i

Equations (A18) and (A20) are obtained by parity. It
suffices to remark that vectors c; appear in pairs: for
each c;, there is another opposed vector c;=—c;. To
derive Eq. (A19), we first remark that the tensor on the
left-hand side is invariant by the symmetry group § of
the lattice. Since all the lattices we consider have at least
hypercubic symmetry, the results of Appendix A.2.a im-
ply that E? is proportional to I. The coefficient of pro-
portionality is readily found by summation over a and .
For those lattices determined in Appendix A.2.b to

yield isotropic fourth-order tensors, we also have
EW=KA . (A21)

The proportionality constant K is determined by sum-
ming (A21) over all indices to yield

be*
E. Ciaciﬂciycm: D (D +2) (8a3578+8a7/8ﬁ8+8aﬁﬁﬁ}/) .
1

(A22)

The form of E‘4 in the square and cubic cases is given by
Eq. (A2).

APPENDIX B: THE LINEARIZED
BOLTZMANN OPERATOR

We consider the discrete Boltzmann equation of Sec.
IV.B.2,

N;(x+c;,t +1)=N;(x,t)+A;[N(x,8)] , (B1)
where A is defined by

A(N)="3 (s{—s) A (s,s "TIN/N ¥ . (B2)
ss’ j
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The linearized operator A;; is defined by
RGLY

- ON; |N;=d for all i B3)

ij
where the derivative is estimated for the uniform zero-
velocity distribution: NO=(d, ...,d).
To compute A;; more explicitly, notice first that

aNJSJ(l‘"N] )(lfsj}

3N,

=2sj—1 ,

since s; may be only O or 1. Then

Ay=3(s—s;)2s5;— 1) A(s5,s") [I N¢NE (B4

ss' k#j
=3 (s/—s;)(25;— 1) A (s, I(1—d)Tw(s)

ss’ (B5)
=2 (s{ —s5;)s;—d) A (5,5 )w(s) (B6)

where w(s)=d" " '(1—d)* " landn=S,s;.
All lattice models conserve mass: A4 (s,s’) vanishes
whenever the s, s’ have different masses. This implies

w(s)A(s,s")=w(s')A(s,s") . (B7)

It is possible to transform Eq. (B6) into an explicitly sym-
metric expression using detailed balance (4.9) and (B7)

> (si—s;)dA(s,sw(s)= 3 (s;—s/)dA(s",s)w(s')

povs pov
(B8)

=—3 (s/—s5;)dA(s,s")w(s)

po
(B9)
=0. (B10)
Similarly, using (4.9) and (B7), we obtain

(B11)

2 sisjA(s,s w(s)= 3 5;5; 4 (5,5 w(s) .
Finally, we get, from Egs. (4.9), (B7), (B6), (B10), and
(B11),

A= (s{—s;)s; A(s,s")w (s)

ss’

(B12)

== (s/—s;)s] A (5,5 w(s) . (B13)

ss’

APPENDIX C: THE LATTICE-BOLTZMANN METHOD

The lattice-Boltzmann method or Boltzmann lattice
gas is a numerical method for the solution of the
artificially compressible Navier-Stokes equations. It is
inspired by lattice gases, but is in some respects akin to
an explicit finite-difference method. It has several advan-
tages with respect to the lattice gas for the numerical
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solution of the Navier-Stokes equation. In this appendix,
we briefly describe the method and mention some of its
applications. For further details, we refer the reader to
the references, especially the recent review by Benzi
et al. (1992).

We begin with a word of caution. There is a great deal
of similarity between the Boltzmann method and the
Boltzmann theory of “Boolean” lattice gases developed in
Sec. IV. Several definitions and expressions of the
Boltzmann method have counterparts in the theory of
lattice gases based on the Boltzmann approximation.
However, the definitions in the Boltzmann method are
motivated by the construction of a simulation scheme.

1. Basic definitions

Space is discretized just as in the lattice-gas automa-
ton. A regular Bravais lattice .L is given with a set of
generating or velocity vectors (c;)y<; ;. The geometri-
cal definitions and theorem of Appendix A are relevant
here also. Typical lattices are the hexagonal and fchc lat-
tices as in the Boolean case. The basic dependent vari-
ables in the method are the population variables, written
N;(x,t), where x€.L and ¢ is discrete time. We shall not
introduce rest particles or multiple-speed models in this
appendix.

2. Evolution equations

Several evolution schemes have been proposed for the
populations N;. The simplest idea is to use the “full”
lattice-Boltzmann equation (4.5) to evolve the popula-
tions (McNamara and Zanetti, 1988). In a typical simu-
lation, hydrodynamical variables u(x,0) and p(x,0) are
given at the initial time. Then initial populations N(x,0)
are calculated using one or two terms in the multiple-
scale expansion (4.25). Populations are then evolved in
time using Eq. (4.5). Velocity and density may be
recovered at each time step.

The above method is impractical when too many col-
lision terms appear in the Boltzmann equation (4.5). An
alternative is then to define a priori a pseudolinearized
operator A4;; similar to the linearized operator defined in
Sec. IV (Higuera and Jimenez, 1989; Higuera and Succi,
1989; Succi et al., 1989; Benzi et al., 1992). To each lo-
cal population vector N, we associate a pseudoequilibri-
um distribution in the following way. First, we define the
local invariants associated with the population vector,

and momentum vector,

pu= Y N, . (C2)
i
Then the pseudoequilibrium N'* is defined by
0)— D
NV=d |1+ =it +GoQiapt o lip |» (C3)
c

where Q5 is defined as in Eq. (4.22) and G|, is an adjust-
able constant. The above equation resembles the low-
velocity expansion (4.21). However, it is not the approxi-
mation of any Fermi-Dirac distribution: The G, term is
here a constant and not a function of 4 as in Sec. IV. It
is easy to check, just as in the Boolean case, that this
pseudoequilibrium population has the same invariants as
the original populations.

The Boltzmann equation with linearized collision
operator is then

N,-(X+c,-,t+l)~N,~(x,l)
=3 4,;(N;(x,0)—N%x,0)) . (C4)
i

This equation fully defines the evolution scheme. The
pseudoequilibrium populations N }0)(x,t) that enter Eq.
(C4) are calculated from the populations N,(x,?) using
definitions (C1), (C2), and (C3). The evolution scheme
(C4) is entirely explicit, since the populations at time ¢+ 1
may be obtained without any operator inversion. The
simplest linearized operator is the scalar operator
A;;=wd;;, where o is an adjustable constant that deter-
mines the viscosity (Qian et al., 1992; Chen, Chen, and
Mathaeus, 1992).

3. Hydrodynamic limit

The hydrodynamic limit is obtained by an expansion
identical to the multiple-scale or Chapman-Enskog ex-
pansion of Sec. IV:

N=NO4+ND 4 - g N4 ... (CS)

Here the zero-order term is the pseudoequilibrium densi-
ty. Equations are obtained at each order by substituting
expansion (C5) into the evolution equation (C4). These
equations are formally identical to those derived in Sec.
IV with the equilibrium distribution and the linearized
operator replaced by their Boltzmann-method counter-
parts. The continuity equation is obtained from conser-
vation of mass. Thus the Euler and Navier-Stokes equa-
tions (4.43) and (4.77) are obtained. However, the calcu-
lation of the coefficients is slightly different. The g(p)
factor is now a constant g,. Using the continuity equa-
tion and (4.77), we obtain

POt t+gopu-Vu,=—3,[p (p,u?)]+35{vi[3glpu,)+3,(pug)l} +3,[vydivipu)] , (C6)
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where .
_ 2¢” (C7)
80=CGo5p 12)
and
2 2bc*
(p,u?)=~—p—G,—=25—u? (C8)
pip DP TP pap iy

We may choose G, in order to recover the Galilean-
invariant form with g,=1. Another choice may be to set
G,=0 when the zero Reynolds-number limit is sought.
This removes the u? dependence of the pressure and
makes the calculation of the pseudoequilibrium N fas-
ter.

The equations are again pseudocompressible and the
incompressible limit is recovered for vanishingly small
Mach numbers.

The prediction of the viscosity coefficients is simplified.
In a Boltzmann scheme the eigenvalue A is directly avail-
able, and the shear viscosity follows by Eq. (4.79). For
the simple linearized operator 4;,=wd,;, the eigenvalue
is obviously w. For the “user” of the method, choosing
the operator amounts to setting directly the viscosity.
The only restriction is one of stability: the viscosities
may not be made too small without the creation of insta-
bilities, which we discuss further below.

4. Stability

An elementary stability analysis can be performed in
the following way. Consider the special case where N, i<0)
is everywhere constant. Let the populations N, be a
homogeneous perturbation of the form

N=N©9+vs?*, (C9)

where V is an eigenvector of A. Then, inserting into Eq.
(C4), one obtains

(S—1)V=AV . (C10)

As A is symmetric, S —1 is a real eigenvalue. Linear
stability requires that |S| <1. Thus all eigenvalues & of
A must verify —2 <£<0. From Eq. (4.79), this seems to
allow all positive values of the shear viscosity; but see
below.

The above analysis of stability is, however, rather in-
complete. A more classical analysis of stability, akin to
the stability analysis performed for finite-difference
methods (Peyret and Taylor, 1983), could be made in the
following way. Let the hydrodynamical variables vary as

(C11)
(C12)

u(x,t)=uy+euexp(ik-x+st) ,
p(x,t)=p,+epexplik-x+st) ,

where k is a wave vector in the reciprocal lattice of L.
Such a full analysis is rather intricate and has been car-
ried out only in the one-dimensional case (Qian et al.,
1991). A condition very reminiscent of explicit finite-
difference schemes was found. It seems likely that it can
be generalized to all Boltzmann models to yield
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v>Cu?, (C13)

where C, is a dimensionless number depending on the
specific model considered. Our numerical experience
seems to confirm this fact in a qualitative manner.

5. Multiphase models and other applications

A multiphase version of the lattice-Boltzmann method
may be created by modifying the rules used to construct
the ILG (Gunstensen et al., 1991). The resulting 3D
models (Gunstensen and Rothman, 1992) have led to in-
teresting work on two-phase and three-phase flow in
porous media (Gunstensen, 1992; Gunstensen and Roth-
man, 1993). Extensions of the method to cover multiple
viscosities and densities have also been proposed (Grunau
et al., 1993). It is also of interest to note that the multi-
phase Boltzmann models have inspired new develop-
ments in finite-difference methods for multiphase flow
(Lafaurie et al., 1994).

The Boltzmann method may, without too much trou-
ble, also be extended to multiple speeds and square lat-
tices (Qian, 1990). The former extension is the result, in
part, of an interest in thermal models and the simulation
of shocks.

Among the other applications of the lattice-Boltzmann
method are viscous flow in 3D porous media (Cancelliere
et al., 1990), thermal convection at high Rayleigh num-
ber (Massaioli et al., 1993), flow behind a symmetric
backward-facing step (Cornubert, 1991), and particulate
suspensions (Ladd, 1994a, 1994b). In the latter case, an
extensive analysis of the accuracy of the method has been
performed (d’Humieres and Cornubert, 1993). Disper-
sion in various flow geometries has also been studied
(Flekkoy, 1993). A variety of other applications may be
found in the review article of Benzi et al. (1992).

In closing this brief review of the lattice-Boltzmann
method, we note that it has several practical advantages
with respect to Boolean lattice gases. It is easier to ex-
tend to 3D. Galilean invariance is restored easily, which
simplifies finite Reynolds-number calculations. The
surface-tension coefficient of the lattice-Boltzmann ILG
may also be predicted theoretically with accuracy (Gun-
stensen et al., 1991; Paul et al., 1993). Finally, the lack
of statistical noise in the Boltzmann method can bring a
considerable gain of efficiency in problems where fluc-
tuating hydrodynamics is neither of interest nor of any
possible use.
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FIG. 32. Three-dimensional
lattice-Boltzmann simulation of
multiphase flow through porous
media (Gunstensen and Roth-
man, 1993). (See Appendix C for
a discussion of the relation of
the lattice-Boltzmann method to
the lattice-gas method.) The
porous medium is modeled by
the random placement of over-
lapping (yellow) spheres of con-
stant radius. The medium is ini-
tially filled with a transparent
wetting fluid. The nonwetting
fluid, shown in blue, is injected
into the porous medium from
behind, forcing the transparent
clear fluid to evacuate the medi-
um. The lattice size is 32°.



FIG. 34. Simulation of two-
component sedimentation, using
the many-bubble model (Roth-
man and Kadanoff, 1994). The
lattice contains 512X 512 points.
Positively buoyant bubbles are
red, and negatively buoyant bub-
bles are blue. There are 1024
bubbles, each with a radius of
about 5 lattice units, encompass-
ing a total volume fraction of
0.4. The figure shown is 8500
time steps after initialization of
the gravitational acceleration, at
which time the distribution of
red and blue bubbles was ran-
dom. The recent motion of the
individual bubbles prior to each
snapshot is indicated by a re-
verse fade-out: the more distant
in time prior to the present
configuration, the more pale is
the shade of red or blue. If bub-
ble trajectories cross, the more
recent trajectory takes pre-
cedence. Note the appearance
of large-scale fingerlike or
columnlike structures, while
other structures look more like
the heads of plumes.



