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The understanding of chaotic systems can be considerably improved with the knowledge of their
periodic-orbit structure. The identification of the low-order unstable periodic orbits embedded in a
strange attractor induces a hierarchical organization of the dynamics which is invariant under smooth
coordinate changes. The applicability of this technique is by no means limited to analytical or numerical
calculations, but has been recently extended to experimental time series. As a specific example, the au-
thors review some of the major results obtained on a nuclear-magnetic-resonance laser which have led to
an extension of the conventional (Bloch-Kirchhofg equations of motion, to the construction of approxi-
mate generating partitions, and to an efficient control of the chaotic system around various unstable
periodic orbits. The determination of the symbolic dynamics, with the precision achieved by recording all
unstable cycles up to order 9, improves the topological and metric characterization of a heteroclinic crisis.
The periodic-orbit approach permits detailed study of chaotic motion, thereby leading to an improved
classification scheme which subsumes the older ones, based on estimates of scalar quantities such as fractal
dimensions and metric entropies.
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I. INTRODUCTION

Although the discovery of deterministic chaos can be
dated back to the work of the mathematician H. Poin-
care (1892), the relevance of this phenomenon has been
recognized only recently, mainly as a result of investiga-
tions on the nature of turbulence (Lorenz, 1963; Ruelle
and Takens, 1971). For a long time, in fact, the study of

systems that are now called chaotic remained confined to
mathematics or to specialized branches of physics (Kol-
mogorov, 1954; Arnold, 1964; Sarkovskii, 1964; Smale,
1967; Arnold and Avez, 1968; Shilnikov, 1970; Metropo-
lis et al. , 1973; Moser, 1973; Chirikov, 1979). It was,
however, only with Feigenbaum's explanation of the
period-doubling transition to chaos in terms of a univer-
sal mechanism (Feigenbaum, 1978, 1979, 1980) that the
study of chaos became a popular subject of theoretical
physics. Feigenbaum's theory received widespread ac-
knowledgment after experimental confirmation (Lib-
chaber and Maurer, 1979), although its formal elegance
had already been appreciated. Since then, the study of
chaos has undergone a dramatic expansion which has
deeply inAuenced fields as diverse as hydrodynamics, op-
tics, celestial mechanics, engineering, chemistry, econo-
my, and biology (Haken, 1981; Swinney and Gollub,
1981; Cvitanovic, 1984; Serge et al. , 1986; Guckenhei-
mer and Holmes, 1986; Mayer-Kress, 1986; Schuster,
1988; Lichtenberg and Lieberman, 1992; Abarbanel
et al. , 1993). These disciplines are now commonly re-
grouped under the term "nonlinear science" (Drazin and
King, 1992; Zaslavsky et al. , 1991; Beck and Schlogl,
1993; McCauley, 1993; Nakamura, 1993). The unifying
thread among them is the nonlinearity of the forces.
Even more important, a large portion of the interesting
natural phenomena arises from nonlinearity without
necessarily being chaotic.
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1390 R. Badii et al. : Analysis of experimental chaos

The paradigm of chaos is the well-known sensitivity to
initial conditions: two orbits in phase space starting at a
distance E., much smaller than the typical size of the re-
gion visited during the motion, diverge exponentially in
time, so that their separation after a time t will be of the
order of ce ' with X a positive, real number. This makes
long-time predictions virtually impossible. A suitable
average of the exponential growth rate k, the Lyapunov
exponent, represents one of the most common indicators
of chaotic behavior (Eckmann and Ruelle, 1985). This
instability does not prevent the system trajectories from
remaining confined in a bounded domain of phase space
when the nonlinearity provides a sufficiently strong fold-
ing mechanism. Chaotic motion exhibits contraction, as
well as expansion. Accordingly, each of the d eigendirec-
tions of the linearized Aow at some point x in phase space
carries a local Lyapunov exponent k;(x) (i =1, . . . , d).
A global characterization of the stability properties of
the system'under infinitesimal perturbations is obtained
by evaluating the average Lyapunov exponents over the
chaotic trajectory (Oseledec, 1968; Pesin, 1976). The sig-
nature for chaos is the positivity of at least one of them.
The sum y of the average Lyapunov exponents
represents the volume variation rate in time, which can
be expressed as V(t)= V(0)exp(yt). It is customary to
distinguish between conservative (volume-preserving) sys-
tems, having y =0, and dissipative systems, having y (0.
Research in these two fields has evolved in parallel. We
concentrate on the dissipative case. For a review of con-
servative chaotic behavior, see MacKay and Meiss (1987)
and Lichtenberg and Lieberman (1992).

The combined effect of stretching and folding is re-
sponsible, in dissipative systems, for the creation of
strange attractors: zero-volume sets of points having lo-
cally the topology of products between continuous curves
and Cantor sets. These objects are invariant under the
dynamics and exhibit a dimension D which, besides being
smaller than that of the phase space, can take noninteger
values (Young, 1982; Eckmann and Ruelle, 1985;
Mayer-Kress, 1986). The evaluation of such a "fractal"
dimension (Mandelbrot, 1982) has been one of the most
popular characterizations of strange attractors in the last
decade (Grassberger and Procaccia, 1983, 1984; Badii
and Politi, 1984, 1985; Mayer-Kress, 1986).

Finally, the average information about the initial con-
ditions obtained by observing the motion in a unit of time
is appropriately measured by the Kolmogorov-Sinai or
metric entropy K& (Billingsley, 1965; Cornfeld et al. ,
1982; Walters, 1985). In fact, all initial conditions be-
longing to a small domain of size c & 0, below the experi-
mental resolution, will evolve into distinguishable (i.e., c
separated) states after a finite time t, because of the ex-
ponential divergence of nearby orbits (Eckmann and
Ruelle, 1985). New information is revealed by the
stretching mechanism. Relations can be found between
dimension, entropy, and Lyapunov exponents
(Grassberger et al. , 1988). Since these average indicators
only provide a global characterization of the dynamics,

extensions of them have been introduced to account for
the fIkuctuations of the associated local quantities on the
invariant set (Renyi, 1970; Grassberger and Procaccia,
1984; Grassberger et al. , 1988). In fact, measurements of
orbit divergency, dimension, and information yield
di6'erent results in different positions in phase space if
performed with a finite resolution.

It has long been recognized that, with a suitable
definition of the local domains, the averaging procedures
are equivalent to thermodynamic sums (Sinai, 1972;
Bowen, 1975; Ruelle, 1978; Halsey et al. , 1986;
Grassberger et al. , 1988; Beck and Schlogl, 1993).
Methods for the estimation of these quantities from (ex-
perimental or numerical) time series have been applied
with quite satisfactory results (Grassberger et al. , 1991).
The accuracy of the estimates is limited by the dimension
D of the invariant set (the so-called low-dimensional
chaos, with D +4, is relatively easy to handle), by the
number X of available data, and, in the case of experi-
ments, by the presence of noise. In particular, the dis-
tinction between deterministic chaos and randomness is
currently a subject of intense research (see Grassberger
et al. , 1993, for a review). The limitations of this ap-
proach are not only of a practical nature. The analysis of
data produced by nonlinear systems must be sufficiently
accurate to account also for behavior that, although not
chaotic, appears too complex to be understood with stan-
dard statistical tools such as probability distributions or
correlation functions. Often-quoted examples are fractal
aggregates (Meakin, 1990), spiral patterns in chemical re-
actions (Jahnke et a/. , 1989), quasicrystals (Steinhardt
and Ostlund, 1987), cellular automata (Wolfram, 1986),
DNA molecules (Lewin, 1990), and spin glasses (Mezard
et al. , 1987). In spite of the apparent dissimilarity of
these fields, a common description can be achieved by in-
troducing a symbolic encoding of the patterns (when they
are not already given in a discrete form). Nonlinear
dynamical systems fit into this scheme, since they exhibit
behavior ranging from periodic or quasiperiodic to
chaotic, including intermediate forms of aperiodicity ob-
served at the transition to chaos. This apparently hetero-
geneous collection of problems is now regrouped under
the heading "complex systems, " and is raising growing
interest. The coexistence of ordered and irregular
features in these systems points out the need for novel in-
dicators in order to achieve a classification of the broader
range of phenomena that are presently facing the
researcher (Grassberger, 1986; Abraham et al. , 1989;
Stein, 1989). Most of the recent definitions of complexity
(Grassberger, 1986; Badii, 1989b and 1990; Crutchfield
and Young, 1989; D'Alessandro and Politi, 1989) are
based on properties of stationary symbol sequences. In
nonlinear dynamics, such analysis is possible if the trajec-
tories of the system are suitably encoded with the help of
a finite partition of phase space. The choice of the ap-
propriate partition is a delicate matter which is still un-
resolved in its general formulation. When the symbolic
encoding is possible, the trajectories can be ordered in a
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hierarchical way.
Detailed information about the dynamics can be ob-

tained, especially in low-dimensional systems, by consid-
ering the recurrent properties of the system and, in par-
ticular, by locating its unstable periodic orbits (Auerbach
et al. , 1989; Cvitanovic, 1988; Chaos, 1992). In fact,
chaotic motion can be seen as an aperiodic wandering
among an infinity of unstable periodic orbits, remnants of
attracting cycles that bifurcated as a consequence of
some parameter change in the system. The newly gen-
erated stable cycles undergo the same fate upon further
variation of the external conditions, until a strange at-
tractor is left: this is the closure of the set of the unstable
periodic orbits (in the hyperbolic case; Eckmann and
Ruelle, 1985). The unstable cycles can be seen as a sort
of skeleton supporting the dynamics in phase space. In
particular, they provide an invariant topological charac-
terization of the dynamics. It has been proposed that
knowledge of them be used to obtain a more accurate and
complete description of the system. Among the many
possible applications of this information are the improve-
ment of the convergence of thermodynamic sums (Artuso
et a/. , 1990); the approximation of invariant measures
(Grebogi et al. , 1988); the estimate of dimensions (Gre-
bogi, Ott, and Yorke, 1987) and entropies (Lathrop and
Kostelich, 1989); the analysis of transient chaos (Cvitano-
vic, 1988; Tel, 1988; Feigenbaum et al. , 1989) and quasi-
periodic transitions to chaos (Gunaratne et al. , 1988);
finite-time predictions about the system evolution (Farm-
er and Sidorowich, 1987; Pawelzik and Schuster, 1991);
noise reduction (Kostelich and Yorke, 1988); the estimate
of geometrical features such as torsion and linking num-
bers which allow reconstruction of a three-dimensional
template of the fiow (Mindlin et al. , 1990; Tufillaro,
Holzner, Flepp, Finardi, and Badii, j.991; Tufillaro, Reil-
ly, and Abbot, 1991); and perturbation of the motion in
phase space so that it approaches a desired periodic
behavior (Ott et al. , 1990a, 1990b; Reyl et al. , 1993).
Notwithstanding the great promises of these methods,
many difficulties remain. In nonhyperbolic systems, for
example, certain thermodynamic averages based on cycle
expansions (Artuso et al. , 1990) may be less effective
than direct evaluations (Grassberger et al. , 1990).

In this work, we illustrate several successful applica-
tions of the periodic orbit analysis when applied to exper-
imental time series. Specifically, we focus on a system
characterized by good stability properties and low noise
levels which, in addition, can operate under quite
different conditions, thus allowing for several types of
chaotic behavior. This is the ruby NMR laser (Bosiger
et al. , 1977), for which a mathematical model is available
in the form of a low-dimensional set of differential equa-
tions (Bloch-Kirchhoff). Quantitative comparison be-
tween theory and experiment is hence possible, and it will
constitute the main subject of the first part of this review.
In particular, it will be shown how the identification of
the periodic orbit structure helped in the finding of an
improved model for the dynamics. After illustrating a

method for the detection of the unstable cycles, we em-
ploy their natural hierarchical organization to obtain ap-
proximate generating partitions (Badii, 1989b, 1990,
1993; Badii et al. , 1991, 1992) (Sec. II). The NMR laser
and its mathematical models are discussed in Sec. III. A
comparison of the model with experimental results, using
both standard methods and periodic orbits, is presented
in Sec. IV, where symbolic dynamics is applied to the
study of a heteroclinic crisis (Grebogi, Ott, Romeiras,
and Yorke, 1987; Finardi et al. , 1992). Control of the
chaotic flow (i.e., the systematic stabilization of the ex-
perimental system near an unstable periodic orbit) is il-
lustrated in Sec. V. A summary and an overview of fu-
ture research conclude our survey (Sec. VI).

II. PERIODIC ORBITS AND HIERARCHICAL ENCODING

The data recorded from an experiment typically con-
sist of a scalar time series Ixk I where xi, =f (kit) is the
value of an observable f at time ti, =kb, t (k =1,2, . . . ).
A faithful reconstruction of the dynamics can be ob-
tained by embedding the time series in a Euclidean space
with sufficiently large dimension E (Takens, 1981; Sauer
et al. , 1991). This is usually achieved by forming vectors
of the type x„+,=(xk+„x„+„,. . . , x„+E,), the coordi-
nates of which are delayed values of the observable
(Packard et aI. , 1980): the integer r~ 1 sets the delay
time Td =~Et. With an infinite amount of noise-free
data, this representation is diffeomorphic to the original
phase portrait if E 2D + 1, where D is the dimension of
the invariant set. Limitations in both precision and num-
ber of the data require a careful choice of the delay time
Td. Usually, a good compromise is Td Tp/4, where Tp
is the shortest characteristic time of the deterministic
(i.e., noise-free) dynamics: for example, the length of the
shortest unstable periodic orbit. In systems subjected to
a periodic external force A(t), To is just the period of A.

Unstable periodic orbits can be located most directly
by the method of close returns, i.e., by looking at orbits
that form nearly closed loops (Lathrop and Kostelich,
1989; Mindlin and Gilmore, 1992). We have implement-
ed this basic procedure with a number of improvements
aimed at reducing the number of both missed returns and
apparent returns (i.e., those that do not correspond to ac-
tual periodic orbits). In order to detect an orbit of period
T, the trajectory in embedding space has been followed
starting from some point x until it returned into a ball
B,(x) of radius c, around x after a time T(x;E) lying in
the interval [T(l —g), T(1+i))], where g is a free toler-
ance parameter. The precision c with which the detected
recurrent orbit shadows the actually periodic one has
been chosen to vary with the position in phase space in
order to minimize the relative error in the search (Finar-
di, 1993). In fact, the attractor may exhibit regions with
a high density of points, where high precision is required,
and others in which distinguishing different trajectories is
relatively easy because of the large distance among them.
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1392 R. Badii et al. : Analysis of experimental chaos

Since the data are sampled at a fixed rate v= 1/ht, con-
secutive points in the embedding space are distant from
one other where the velocity is high and close together
when the velocity is low. Accordingly, the ball radius
c,; =E(x; ) has been chosen as

i +r/2
E,; =a) Xk Xk

k =i —z/2

where a& =0.5 is a free parameter. In this way, the size
of the ball is slightly smaller than the distance between
successive data points on the trajectory: it is thus nearly
proportional to &E and independent of the 'delay time r
The balls are smaller where the speed in phase space is
smaller. The results are then consistent throughout the
physically meaningful variation range for E and ~. We
have worked with E between 6 and 16, ~ between 4 and 6,
and with a number n C [20,251 of sampled points in a
typical time To. In this way, the embedding window E~
spanned a time interval corresponding to one to three
fundamental periods To. A higher sampling rate in-
creases the accuracy in the localization of the return.
More important, however, is the total length of the time
series which, in our case, was X= 10 . With such a high
number of data, we could observe many returns around
the same periodic orbit. Once a close return point x;+„
is found, so that the distance d (x;,x,. +„) is smaller than
c, , the index i is incremented by 1 and the new relative
error p;+, =d (x;+„x,.+„+,) /E;+, is computed. The ini-
tial index i is increased as long as p keeps decreasing, in
order to find the best approximation to the unstable
periodic orbit. It is important to consider the relative er-
ror: this prevents accepting a return as a good approxi-
mation to an actually periodic orbit when it occurs with a
small absolute error but in a densely crowded region of
the attractor. Since the data are available with limited
precision (2 ' for the NMR laser; see Sec. IV) and are
affected by noise, we also set a lower cutoff Eo(E) to the
ball radius, below which no return is accepted. This
value has been chosen as Eo(E)=a&2 ' V'E (where a2 is
an adjustable constant). Finally, a test on the curvature
of the initial and final branch of the closing orbit is made.
If they do not agree within a given tolerance, the orbit is
rejected. In fact, with a proper choice of the parameters,
the probability of missing a close return can be made
very small with a consequent increase of the number of
spurious returns: i.e., of seemingly closing orbits that do
not correspond to real cycles. Comparison of the results
in different embedding dimensions helps discarding these
curves. Since several slightly different approximations to
the same actual cycle are usually found, we chose the one
which better satisfied the following characteristics:
displaying the closest return (relatively to the local pre-
cision c;, where preference was given to large c.'s because
of a reduced influence of noise); having the smallest angle
between initial and final portion of the curve; and show-
ing an overall smoother (i.e., noiseless) aspect (Finardi,
1993). The great accuracy achieved in this way has

proved very useful in our investigation of a heteroclinic
crisis, to be illustrated in Sec. IV.D.

Knowledge of the periodic orbits can be used to obtain
a symbolic encoding of the motion. Before this is dis-
cussed, we recall a few elementary notions from the
theory of nonlinear dynamics that are propaedeutic to
symbolic dynamics. In order to map continuous trajec-
tories to symbolic sequences, time t is first discretized by
introducing a Poincare surface X and considering the
successive intersections of the trajectory with it. De-
pending on the system and on X, the intersection points
can be accepted only if X is crossed in a given direction.
We first illustrate this point for the Lorenz system
(Lorenz, 1963)

x = —o.(x —y),
y = —y +rx —xz,
z= —bz+xy .

(2)

x„+,=F(x„), (3)

induced on X by the continuous-time dynamics, shares
the same symmetry as the complete flow (x denotes the
position vector on X, n is the discrete time, and F:X~X
is a generally unknown nonlinear function). For exam-
ple, the Aow possesses unstable cycles with a left-right
symmetric shape in x which yield an even number of
pairwise symmetric intersection points on X. Moreover,
it has pairs of cycles, each the mirror image of the other,
which yield sets of intersection points with the same
property. The former orbits are "even" and the latter
"odd." This would not be satisfied if the second condi-
tion for X had been just x &0 or x &0, irrespective of the
sign of x. The surface X must also be chosen in such a
way that the orbits do not touch it tangentially. The
transversality condition (1,—1,0) (x,y, z)%0 in our case
is satisfied everywhere for x =y except at x=O or at
z =r —1. These two planes pass through the three fixed
points of the system: however, the strange attractors do
not come close to such points at typical parameter
values. We studied system (2) in the "standard" case
( ro, b ) = (10,28,8/3) and at (10,28, 1). In Fig. 1, we

display a projection of the strange attractor for the
second parameter set, indicating the direction of the
motion with arrows. The Poincare section is just the line
x =y. In the standard case, a binary partition, defined by

A convenient choice in this case is X= I(x,z):
x =er(y —x) =0, x sgn(x) (OI (Badii et al. , 1992). In
fact, since the motion is bounded, the time derivative of
any of the coordinates vanishes recurrently (at irregular
intervals of time). Hence no intersection is lost, by re-
quiring that x=O. The second condition takes into ac-
count the overall direction of the fiow (2) in phase space:
the trajectory moves roughly clockwise when looked at in
the (x,z) plane for large ~x ~. It is therefore meaningful to
accept the intersections generated by downward motion
for positive x and vice versa for negative x. In this way,
the map
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cal direction of the Aow must be made for each speci c
system un ed r investigation. However, experimental low-
dimensional attractors often have a simple one- oop
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FIG. 2. Poincare section of the flow shown
' 'g.n in Fi . 1. The at-

tractor consists of four branches. The g yh lar e s mbols (0,1,2) are
in artition (left,the labels of the three elements of the generating pa

l . The horizontalmi e wo,'ddl t o and right branches, respective y . e
n its ele-segments are e or eth b rders of a refinement of the partition, i s

ments being labeled by sequences of smaller-typeface sym o s.

FIG. 1. Two-dimensional projection of the strange attractor of
the Lorenz system (2) at (o., r, b) = (10, , ).28 1). The line x =y
represents the intersection of the Poincare surface with the
(x y) plane. The arrows indicate the direction of the flow.(x,y

structure, an e c o'd th h ice of a Poincare section is nearly
straightforward.

In order to obtain a symbolic encoding of the motion
on the attractors of a map F, the space X is split into a
finite number b of disjoint domains Bk, with

=IO . . . b —1I, covering the region where the
asymptotic motion takes place (the invariant set). e
collection X=IB I is hence a partition. Each orbit

= Ix, xz, . . . , „I is associated with a symbolic signalXi~ xp~ ~ ~ ~ ~

4'=s s . . .s„consisting of the labels s; of the domains
8 visited at times i =1,2, . . . , n (Alekseev and Yakob-S.

son, 1981). In turn, subdomains are indexed by con-
catenations =sksI. . . oS = . . of symbols, all beginning with the
label s of the parent set Bk. in this way, all points in ele-aesl, o
ment B. . . for example, belong to B, at time i =s l=1 and

will be mapped inside domain B, atat time i=2. A11

points x in, pro uceB, d the same initial symbolic orbit S
under the action o, ef F b fore being spread over different
domains B.

nsists of theThe first refinement X, of X under F consists o t e
subsets 8 A F '(8, ), for all s;,s E A for which the in-

S

tersection is no emp y,t mpty its elements are labeled by pairs
s;,sI of sym os.b 1 Three-symbol sequences label the

second refinement %z, and so on. g
j

. In eneral, one has
n

V F %=XVF 'XV ' VF M, (4)i=1

where F 'X= IF '(Bo), . . . , F '(Bb i) I, and X V C

B,. flC. : 01: 0~ '
b —1 0~ j ~ c —1I is called the join of

two partitions an d C' (having b and c elements, respec-
tive y.1 ). Successive refinements of t e partition are
represente y sed b sequences S of increasing lengt (i.e.,

number of symbols) n = ~S~.

The labeling is illustrated in Fig. 2, for the Lorenz sys-
tem (2) at b = 1 again. The attractor consists of four

t th' domains. However, owing to dynamical
constraints, three symbols sufBce for the encoding. e
leftmost and rightmost branches are marked wit an
2, respective y.t' 1 The middle two branches are grouped to-

ic ofget erun er
' . , ic oh d the heading 1. In fact, no matter w ic o

them is visi e, e
' 't d the next iteration specifies it unique y: a

nch 0 andpoints in the left region are mapped to branch 0, an
those in the right region are mapped to branch 2. or
this reason, t e woh t o domains are directly coded wit a
two-symbol sequence (10 and 12, respectively). Ana o-
gous y, we in ica e
the partition, for sequence length S . p

'

element 20, for example, are mapped to branch 0 in one
iteration, t ose inh 000 to element 00, first, and to either
02 or 012 at the next step.

The phase-space dynamics given by a map F is
translated, in t e spaced,

'
th ace of all symbolic sequences

s
& sos ] ~ ~ . over the alphabet A. , into the e t

shift homeomorphism o:&(S),=s;+i wwhere s is the ith
symbol in 4). The set X of all sequences S generated by
the system is ca e e11 d the language. The study of the sym-

f 11bolic dynamical system (Xl,o ), where XL
'

e X istheseto a
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infinite sequences compatible with X, is equivalent to the
study of the map F if the partition is generating, that
is, if every infinitely long symbolic sequence corresponds
to a unique initial condition x (Alekseev and Yakobson,
1981). Partitions of this type are refined indefinitely by
the dynamics, according to Eq. (4). They also yield the
supremum of the Kolmogorov-Sinai entropy over all pos-
sible partitions (Cornfield et al. , 1982; Eckmann and
Ruelle, 1985; Guckenheimer and Holmes, 1986). Even if
the trajectory of the map is chaotic, a carelessly chosen
partition might yield a periodic symbolic sequence, with
a great loss of information on the system.

Generating partitions can be constructed systematical-
ly in hyperbolic systems (Guckenheimer and Holmes,
1986), for which stable and unstable manifolds intersect
transversally at each point (Eckmann and Ruelle, 1985).
However, it is not known how to identify a generating
partition for "generic, " nonhyperbolic dynamics, which
is characterized by the occurrence of tangencies between
stable and unstable manifolds or by the lack of exponen-
tial repulsion in certain regions of the space (correspond-
ing to the negativity of all Lyapunov exponents comput-
ed over a finite portion of the trajectory). Nonhyperbolic
motion is considered to be generic in real systems. Not-
withstanding this, the existence of a strange attractor in
such a case has been questioned for a long time: in fact,
there is an infinity of stable periodic points arbitrarily
close to the invariant curves of a nonhyperbolic map
(Newhouse, 1974). The proof that this is not incompati-
ble with the existence of a strange attractor has been
given by Benedicks and Carleson (1991).

In the special case of two-dimensional maps with
homoclinic tangencies, like Henon s (Henon, 1976), it has
been conjectured that a curve passing through the "pri-
mary" tangency points would yield the correct symbolic
dynamics (Grassberger and Kantz, 1985; Grassberger
et al. , 1990). Yet, no rigorous result has so far been es-
tablished; and a practical implementation of this idea is
itself rather problematic, since a precise definition of
"primary" tangencies is lacking (at these points the cur-
vature of both stable and unstable manifolds must be
"small" ). Moreover, even when some can be localized,
the finiteness of their number and the positions at which
they occur may prevent a "simple" joining curve from
being found (Giovannini and Politi, 1991, 1992). No
analogous procedure exists for higher-dimensional attrac-
tors.

Another method is suggested by the simple observation
that in order for a partition to be generating it must attri-
bute to all periodic points (stable or unstable) a difFerent
symbolic label: in fact, a periodic orbit y is a special,
infinitely long orbit. A partition X that fulfills this fun-
damental requirement constitutes a good approximation
to a generating one. The accuracy is limited by the max-
imum cycle length T that can be observed either experi-
mentally or numerically and, possibly, by the nonhyper-
bolicity of the map F. In fact, the set of unstable period-
ic points of F has been proved to be dense on the attrac-

tor only in the hyperbolic case (Eckmann and Ruelle,
1985; Auerbach et al. , 1987). Hence separating just the
unstable periodic orbits may not be asymptotically
sufhcient, in general.

It is well known that the minimum number b of sym-
bols necessary for the encoding is lower-bounded by the
exponential e of the topological entropy Ko (Adler

Ko

et a/. , 1965) which satisfies the asymptotic relation

KoT

X(T)— for T +~, —
KOT

where X( T) is the number of closed (i.e., periodic) orbits
with period less than T (Pollicott, 1991). Hence the
identification of the unstable cycles of the system, up to
some maximum length T, allows one to estimate the car-
dinality b of the partition. This idea was first applied to a
few planar maps (Badii, 1989b, 1990). In particular, for
the Henon map (Henon, 1976), we assigned a first trial
partition (defined by y=0) and checked it against the
periodic points of increasing order n. The partition was
modified when it failed to distinguish symbolically two
difterent periodic points (the change was in the form of a
little step). The iteration of this procedure, restarting
from n. = I after each modification, finally led to a piece-
wise constant curve which could separate all points up to
order n =23. The symbolic encoding was in perfect
agreement with that obtained in Grassberger and Kantz
(1985) and Grassberger et al. (1990). This procedure,
which has been successfully applied to the Lorenz system
and other fiows (Finardi, 1993), is particularly convenient
when dealing with experimental time series aQ'ected by
noise and embedded in a relatively high-dimensional
space. If the length X of the time series is large and, a
fortiori, if the data have been processed with some noise-
reduction algorithm (Grassberger et al. , 1993), the unsta-
ble periodic orbits can be located with good precision.
For all maps and Rows that we studied numerically, the
Kolmogorov-Sinai entropy (Cornfeld et al. , 1982) as
computed from the symbolic dynamics (see Sec. IV)
agreed with alternative estimates based on phase-space
methods or Lyapunov exponents (Grassberger et al. ,

1988). Application to experimental time series will be
discussed in Sec. IV.

Notice that the partition given in terms of periodic
points can be easily specified in any dimension and that it
is not restricted to planar maps. In fact, one may first as-
sign a symbolic label to the X(n) periodic points up to
some order n (e.g. , 1, 01, 10, for n=2), which are taken
as a reference for the next step in the procedure. All
those with the same initial symbol s EA define a set C, .
For any point x of the chaotic trajectory, one need sim-

ply find the nearest neighbor y among the X(n) reference
points: then, x is assigned the same symbol s as the set
C, containing y. The space is thus tiled according to a
Voronoi partition X= IBO, . . . , Bb, I, each element B,
containing the reference points of C, and their nearest
neighbors (i.e., all points that are closer to C, than to any
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other C, with sos'). The procedure can be rendered au-
tomatic: having classified the X(n) points with periods
i ~ n, one labels the period-(n+ 1) points according to the
neighborhoods at level n and obtains the next partition.
However, a few consistency checks are still necessary, to
avoid two different period-(n+ 1) points being attributed
the same symbolic sequence 5 =s&s2. . .s„+&. It may be
necessary to readjust the partition (through a redefinition
of the reference points y) during the scanning of the
order-(n+ 1) points and not just at the end of it.

Ill. THE NMR LASER AND ITS MATHEMATICAL MODEL

The simplest form of laser dynamics arises from the in-
teraction between a single-mode field and a medium with
a homogeneous gain line in which a population inversion
is induced by a suitable pumping process (Sargent et al. ,
1974). The laser was one of the first experimental sys-
tems to be studied in the chaotic regime (Arecchi et al. ,
1982; Abraham et a/. , 1985). At resonance, its
mathematical description is essentially equivalent to the
Lorenz model (Haken, 1975), which suggested the possi-
ble occurrence of chaotic instabilities well before the first
experiments were undertaken. In fact, early evidence of
aperiodic behavior was already given in Grasiuk and
Oraevskij (1964). Since then, chaotic laser dynamics has
been studied in a large number of systems under different
experimental arrangements (Boyd et al. , 1986).

A laser consists of two main parts: the radiating parti-
cles (atoms, molecules, electrons, nuclei) and the radia-
tion field produced by them. An external pump yields
the population inversion where the higher energy states
are more strongly populated than the lower ones. A res-
onant structure (cavity), which encloses the particles,
provides the feedback for the radiation field, thus causing
the coherent excitation and radiation of the particles.
Qualitatively similar behavior to that of optical devices

can be obtained in the nuclear-magnetic-resonance
(NMR) laser, which is able to provide radio-wave
amplification by stimulated emission of radiation (Bosiger
et al. , 1977). The lasing "particles" in this system are
represented by the nuclear spins of the Al in a ruby
(A1203.Cr +) crystal. The radiation field is a magnetic
radio-frequency (rf) field sustained by a tuned NMR coil
which forms the cavity of the laser (see Fig. 3). Spin in-
version beyond the first laser threshold is obtained by
means of dynamic nuclear polarization (DNP) at the tem-
perature of 4.2 K. DNP is achieved by shining mi-
crowaves at Cr +, thus causing electronic transitions that
pump the nuclear spins to the lasing state. The ruby
NMR laser typically operates at the central NMR fre-
quency v, =12.3 MHz of Al in a static magnetic field
So=1.1 T. The NMR cavity is usually tuned to v„so
that the system acts as a tuned, single mode, homogene-
ously broadened, unidirectional laser.

The NMR laser field induces a voltage in the receiver
coil L which can be tapped at the tuning capacitor C.
Thus the signal is the voltage V(t) across C which oscil-
lates at v . Since laser chaos primarily appears as irregu-
lar variations of the amplitude of V, the rf laser signal is
demodulated and only its envelope U(t) is recorded. We
call U (t) the laser output.

Since the first investigations of its chaotic behavior
(Meier et al. , 1982), the NMR laser has distinguished it-
self from optical devices because of the high accuracy
and good reproducibility of the measurements. More-
over, a set of dynamical equations could be derived from
fundamental laws of physics where all relevant parame-
ters are under experimental control, a prerequisite for the
comparison between theory and experiment. In particu-
lar, it has been studied in a number of different setups: as
a free-running laser (Bosiger et al. , 1977, 1979), as a
small signal detector (Derighetti et al. , 1985), with a
parametric modulation (Brun et a/. , 1983, 1984, 1985;
Brun, 1991), with an injected signal (Brun et al. , 1985,

C

output V ( t j
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microwave
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uby crystal

FIG. 3. Schematic representa-
tion of the experimental setup
for the NMR laser.

~~He
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1986), with phase-locked feedback (Holzner et a/. , 1987),
and with delayed feedback.

The early work was interpreted with a conventional
Bloch-type laser (CBL) model (Bosiger et a/. , 1978; Brun
et a/. , 1985), the analog of the optical Maxwell-Bloch
equations. However, that model could at most only qual-
itatively describe the observed behavior. In particular,
the CBL model was unable to account for the relaxation
mechanisms of the system. Therefore we focused our
work in recent years on the search for more accurate
laser equations. A systematic investigation of the tran-
sients after Q switching suggested that a small nonlinear
correction for the damping of the phase memory (trans-
verse relaxation) of the spins was most likely the key to
improved Bloch-type equations. The inclusion of such a
term in the CBL model was a breakthrough: the result-
ing extended Bloch-type laser (EBL) equations (Flepp
et a/. , 1990; Flepp, 1991) have been shown to represent a
very accurate mathematical basis for the interpretation
of N MR laser experiments. The most striking
verification of their suitability was obtained in a detailed
periodic orbit analysis of the system (Flepp et a/. , 1991;
Finardi, 1993), which will be reviewed in the next section.

It must be remarked that a general theory for the
NMR laser has not yet been formulated and that the
available models constitute just phenomenological ap-
proximations. They consist of Bloch s equations, describ-
ing the classical collective dynamics of the Al spins,
complemented by Kirchhoff's rules for the electronic cir-
cuitry that provides the "laser field. " The nuclear-spin
relaxation is treated heuristically by introducing suitable
relaxation rates. The dynamic nuclear polarization is
finally expressed by a pumping rate and a pumping level.
The resulting model describes the behavior of macro-
scopic variables that represent an average of the exceed-
ingly complicated interactions among the nuclear and
electronic spins and of their coupling to the crystal elec-
tric field and to the external microwave field which ulti-
mately pumps Al. Spin-spin interactions mediate the
energy transfer from the lasing spins to both the pumping
field and the crystal lattice. Spin-spin interactions are
also responsible for the irreversible dephasing of the radi-
ating Al nuclei.

A. Spin dynamical aspects of ruby

The activity of the ruby NMR laser strongly depends
on the coupling of the nuclear Al and electronic Cr +

spins with the magnetic and electric fields and among
themselves. The Hamiltonian of the combined nuclear
and electronic spin system can be split into terms that
represent magnetic (Zeeman), electric (crystal-field), and
spill-splI1 (cllpole-cllpole) IIltelactlolls. Tllel e appeal' Illll-

tually commuting and noncommuting terms, &, and
respectively. Each of the commuting operators

characterizes an energy reservoir with many degrees of
freedom. Since the crystal-field effects are small corn-
pared with the Zeeman interaction, we loosely speak of

the nuclear and electronic Zeeman reservoirs coupled to
the dipole-dipole interaction reservoir. In thermal equi-
librium, a spin temperature 0; may be assigned to each of
these subsystems.

The noncommuting operators describe internal cou-
plings (spin-spin, spin-lattice) or interactions with time-
dependent external fields and are treated as perturba-
tions. They are responsible for the energy Aow between
the reservoirs. The internal couplings tend to equalize
the temperatures with time constants I,k (dephasing or
relaxation and cross-relaxation times): they reQect dissi-
pation. In contrast, the interactions with coherent radia-
tion fields tend to counteract the overall thermal equilib-
rium. In fact, they may produce spin order, for example,
by contributing to the pumping of certain spin states or
by synchronizing the phases of otherwise randomly
oriented single spins.

The lasing "particles" in the NMR laser are the mag-
netic dipole moments p of the Al nuclei in ruby. They
interact with the static magnetic field Bo and with the
(transverse) radiation field B,(t) by the magnetic dipole
interaction &= —p.B, where B=Bo+B,. The Al nu-
cleus has spin 5/2, a gyromagnetic ratio g =6.97X10
s 'T ' (we use the symbol g instead of y, which is
reserved for relaxation rates; in doing so, we follow the
notation of quantum optics), and an electric quadrupole
moment. In ruby, Al occupies equivalent sites. The
nuclear Zeeman levels E = —mgA'Bo, with m H [+5/2,
+3/2, +1/2I, are thus shifted in a unique way by the
quadrupole interaction of Al with the crystal electric
field. This amounts to five generally different resonance
frequencies co," for the Am =+1 spin-flip transitions.
Since the LC circuit that forms the laser cavity has only
one resonance frequency, aI, =1/v'LC, the NMR laser
has at most five modes. Single-mode activity is possible
when the coil is tuned to a selected NMR transition. In
this case, the spin inversion should not exceed the thresh-
old beyond which multimode excitation occurs. Unless
otherwise stated, we restrict ourselves to the single-mode
activity of the strongest (1/2, —1/2) NMR transition
with frequency ~, =gBo: the central NMR mode.

The Cr impurity ions replacing the Al ions in ruby,
on the one hand, shorten the spin-lattice relaxation time
T, for Al while, on the other, they provide a mecha-
nism to polarize the spins either positively or negatively
with respect to the direction of the static magnetic field

80. The experimental optimum for short relaxation and
strong polarization was found in a specimen cut from a
single crystal with a Cr + concentration of nominally
0.02%.

The e%ciency of the dynamic nuclear polarization
technique has been tested by comparing enhanced NMR
signals with those taken at the lattice temperature OL.
The largest enhancement factor (about 400), correspond-
ing to a nuclear-spin polarization of approximately 17%%uo,

has been observed at OL =1.9 K for a crystal orientation
of about 61 between the c axis and Bo. This is the stan-
dard orientation with which all our experiments have
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been performed. At this angle, the two strongest
electron-spin resonance (ESR) transitions coincide, and
the laser behavior is optimal.

In order to research the laser threshold, the nuclear
spins have to be oriented in the direction opposite to Bo
with an overall negative polarization of the order of 10%,
which corresponds to a negative spin temperature of
some millikelvins. This condition is easily met at the lat-
tice temperature of liquid He when microwaves of fre-
quency co are supplied to the sample with ~ near an ESR
transition frequency co, of the Cr + impurity ions. Set-
ting co slightly above co, then leads to the required low,
negative spin temperature. Microwave energy is thereby
absorbed and delivered to the Cr +-Cr + spin-spin sys-
tem. Its spin temperature O„rises to negative values;
spin-spin order is thus greatly enhanced. Furthermore,
since the Al Zeeman splitting is smaller than the Cr +

linewidth, the coupling of nuclear and electronic spins al-
lows now the exchange of energy between the electronic
spin-spin and the nuclear Zeeman system. The latter is
therefore efFectively pumped by DNP to a negative spin
temperature.

M„=—y~M„+Ace, M, —s gB,M, ,

M, = —
@AM,

—hm, M„+s gB„M, ,

M, = —
y~~(M,

—M, )+g (B,M„—B„M,),
(6)

we consider the oscillating radiation field B(t) acting on
the nuclear spins. We retain only those components that
rotate in the same sense as the precessing spins and intro-
duce a reference frame (u, U, z) that similarly rotates
around Bo with frequency co. Accordingly, Ace, =u, —co

is called the NMR detuning and Ace, =~, —co represents
the coil or cavity detuning. Although co may be freely
chosen, it is convenient to set co=m, =co, for the tuned,
free-running NMR laser. In the case of an externally
driven NMR laser, we may set co=~d, with cod the fre-
quency of the injected field. The phase of the rotating
frame is still free: we fix it by letting the u and x axes
coincide at t=0. Hence we assume that the five macro-
scopic variables (M„,M„M, ) and (B„,B, ) of the single-
mode NMR system obey, in the rotating-frame represen-
tation, the conventional Bloch equations

B. Conventional Bloch equations for the NMR laser

In the single-mode NMR laser the active Al spins
may be considered as members of a two-level system to
which an averaged Bloch vector M = (M„,M, M, ) can be
assigned. The three macroscopic variables (M„,M, M, )

are the components of the nuclear magnetization M
characterizing the active spins, referred to a coordinate
system that is fixed in the laboratory, the directions x and
z being parallel to the axis of the NMR coil and to Bo, re-
spectively. The vector M, =(M,M, O) represents the
transverse component of M which, in the radiating state,
precesses about Bo. The vector (O, O, M, ) is called the
longitudinal component of M. Its value is proportional
to the population difFerence of the two Zeeman levels
that are engaged in the radiative process. Those nuclear
Zeeman levels that are not involved in the single-mode
behavior play an important role for the storage of the nu-
clear Zeeman energy that can be delivered to the active
spins. These inactive spins form a separate energy reser-
voir whose content is also controlled by the DNP pump.
It acts as a buffer, thereby drastically reducing the Que-
t'uations of the microwave pump. For our purpose, we
can lump the microwave pump and the reservoir spins
together. Thus we form an effective DNP pump system
to which we assign an operationally defined pump mag-
netization M, . With this, we imply that the effective
DNP pump tends to equalize M, and M, . Two further
macroscopic variables of the NMR laser are amplitude
and phase of the coherent radiation field B(t), the former
being proportional to the current I (t) in the NMR coil.

The dynamic equations for the macroscopic variables
of the NMR laser are the analog of the Maxwell-Bloch
equations of quantum optics. In order to obtain them,

where y~ and
y~~

are suitable damping constants (to be
discussed below) and s is a spin factor that has been in-
troduced to account for the fictitious spin-1/2 nature of
the ruby laser when it is interpreted as a two-level sys-
tem. Indeed, only two of the 2I+1 levels of the real sys-
tem are relevant. For the special case I =1/2, we have
s=1. In general, s must be calculated from quantum-
mechanical rules (Abragam, 1961). For the single-mode
ruby laser with Al as a spin-5/2 system, s takes the
values 9, 8, or 5, depending on the chosen NMR mode
(1/2, —1/2), (1/2, 3/2), or (3/2, 5/2), respectively. For
our standard NMR mode, we have s= 3.

The two characteristic time constants yz = 1/T2 and

y~~
=1/T, govern the relaxation of the three macroscopic

variables (M, M, M, ). The former characterizes the de-

cay of the transverse nuclear magnetization M, which
can be seen as a dephasing of the collective motion of the
nuclear spins, caused by spin-spin interactions. The time
constant T, can be attributed to the effective DNP pump
system (Brun et al. , 1985), since interactions among the
nuclear Al and the electronic Cr spins in ruby con-
tribute to transfer the Zeeman energy among the spins:
in particular, from the effective DNP pump system to the
lasing spins of Al. Thus T, represents the pump time
constant associated with the relaxation of M, toward the
constant pumping level M, .

It must be stressed that this drastic simplification of
the complicated spin and DNP pump dynamics in ruby is
only justified for the special operating conditions of the
NMR laser if the variations of M, are small; typically,
they are less than a few percent. In that situation, the
pumping conditions remain stable and M, is approxi-
mately constant. Hence the contribution of the slow
spin-lattice relaxation and of the dynamic nuclear polar-
ization to the decay process can be neglected. T, then
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plays the role of a Bloch-type longitudinal relaxation
time.

In order to complete the laser equations, the com-
ponents B„(t)and B„(t)of the self-induced transverse ra-
diation field B,(r) must be expressed in terms of the pa-
rameters of the NMR LC circuit. To this end, we ob-
serve that

M„=—y~M„—9gM, B, ,

M, = —y~M„+9gM, B„,
M, = —y ~~(M,

—M, )+g (B,M„B—„M,),
B„=—KB„—gM, ,

(12)

poNI (r)
B,(&)= (7)

B,= —KB, +gM„.

where I(t) is the current Ilowing in the NMR coil which
has length I and X windings. The relationship between
the induced emf V;„d and the current I is given by
Kirchhoff's law:

I+ I+co,I=—V;„d,c L Ind

where Q =R~/co, l. is the quality factor of the coil and

R~ is the effective Qhmic parallel resistance. From
Faraday's induction law we further have

V,„d= porISN —(M„cosset +M, singlet),
dt

(9)

under the assumption that the nuclear magnetization in-
side the coil is homogeneous. The parameters g and S
are the filling factor and the cross section of the NMR
coil, respectively.

By substituting Eqs. (9) and (7) into Eq. (8) and consid-
ering that our system satisfies the conditions

M, «~M maxII~~, I l~~. ll «minI~. ~, ~I

C. Extended Bloch-type laser equations

The CBL equations (12) describe the behavior of both
amplitude and phase of the transverse magnetization M,
and of the field 8, through their (u, u) components.
Hence, in order to exploit them completely, it would be
necessary to utilize a phase-sensitive detection scheme.
In this way, one could observe, for example, amplitude
and phase chaos. The latter is a phenomenon of great
potential interest in itself which, however, causes extreme
experimental difhculties because of long-time stability re-
quirements for the reference phase.

In a more modest approach, we restricted therefore
our investigation to the amplitude dynamics for which
the possible phase Auctuations are of minor importance.
In that case, the CBL model (12) can be reduced to a set
of only three differential equations by choosing a con-
venient phase of the rotating frame. For this purpose, we
retain only the variables M„M„and B„(notice that the
discarded M„and B, behave exactly as —M, and B„,re-
spectively, apart from the initial condition) to obtain

M, = —y~M, +9gM, B„,

co, )) ))1,
the second derivative in Eq. (g) can be dropped. The laser
field equations thus become

B„=—KB„—yM, .

This system can be further written in the form of the
Lorenz equations (2) by introducing the dimensionless
variables

B„=—KB„+Aco, B,—gM, ,

B,= —KB, —Aco, B„+yM„,

x= B„, y= — M„z= (M, —M ).
(14)

where the field decay constant K and the coupling con-
stant

po'9QI~x=

have been introduced. The former equals 1/Tz, where
Tz is the ringing time of the LC circuit. Hence
I~=co, /2Q. The expression for y has been obtained from
the well-known relation L =poX S/I.

Equations (6) and (10) together constitute the conven-
tional Bloch laser model. In the case of single-mode
operation involving the levels ( —1/2, 1/2) with perfect
tuning Ac@, =Ace, =0, they read

The derivatives are taken with respect to the dimension-
less time ~= ty~. The parameters

o. =&y, ', r = g~ IM, I, and b yliy
9gX
Kgg

have the values o. =4.875, r =1.807, and b =2X10
(see Table I), which do not allow for any chaotic
behavior. The system always relaxes to one of the two
asymptotically stable fixed points

x =y =xo =+&b (r —1), z =zo = r —1 (16)

with a damping constant y„&=b/2 and a frequency

~„,=+2x ~0 b2/4= 1.797 X 10 —. In physical units,
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M, = —
yq 1+—M, M, , (17)

with M, =~M, ~. Here, a is an a priori unknown fit pa-
rameter that can be considered as the coeKcient of the
lowest-order term in a Taylor expansion modeling a
nonexponential spin dephasing. Although the correction
term uM, /s is of the order of 10, the new relaxation
rule dramatically improves the accuracy of the model. It
has to be remarked that there exists at present no quanti-
tative theory that could explain assumption (17). Hence
corrections of this type remain heuristic for the time be-
ing (since M„ is closely related to B„the new contribu-

they correspond to y~~/2=2. 4 s ' and to v„~=67.7 Hz.
Early investigations (Brun et al. , 1985) have shown

that the CBL model reproduces only qualitatively the
behavior of the real system. Therefore, we reconsidered
critically the various steps of its derivation. The crucial
modification has been suggested by the observation of the
laser transients towards the stable state after an external
perturbation (Flepp, 1991). Indeed, Eqs. (6) account for
just the exponential decay of the transverse nuclear mag-
netization M, in the absence of the radiation field (free-
induction decay or FID) with the phenomenological re-
laxation time T2=1/y~. Although deviations from this
simple behavior are common in solids with complex
spin-spin and spin-lattice interactions, the single ruby
crystal of the NMR laser at standard orientation exhibits
a FID that comes close to an exponential decay when the
radiative feedback is small. However, the CBL model
does not appropriately describe transients occurring after
a perturbation of the free-running-laser conditions. Since
this appears to be the effect of a nonlinearity in the relax-
ation mechanism, we assume the following extended
Bloch equation to hold for the FID of the ruby NMR
laser:

tion might be interpreted as a dephasing effect caused by
the radiation field).

The complete extended Bloch laser model (EBL), in
the rescaled variables (14), takes the form

x = —cr(x —y),
y = —y ( 1+ay ) + rx —xz,
z = —bz+xy,

where
0!KPg =0.262 .
9gg

Finally, by further introducing the variables

X=x/xo, Y=y/xo, Z =(z —zo)/xo

and the new time ~'=~xo, we obtain

(19)

(20)

X= —o.'(X —Y),
Y= —Y(c+aY)+X(c —Z),
Z = —PZ —1+XY,

(21)

Y= —Y(a Y+Z),
Z= —PZ —1+Y

(22)

Notice that the Y variable never changes sign, since its
derivative Y is proportional to Y itself. This is in agree-
ment with the fact that Y represents the modulus of the

where 'pro� / ox=384&)1, c = I/xo =79, and P=b/xo
=1.57X10 . The values of X, Y, and ~Z~ remain in the
range [0,3] under all conditions, including chaotic
behavior (to be discussed later). Hence the term aY is
clearly small with respect to c. Moreover, the large value
of o. renders the adiabatic elimination of X possible,
yielding

TABLE I. Experimentally determined NMR laser parameters for standard running conditions. The
numerical values are used to calculate the system parameters of the EBL model.

NMR laser parameters

Gyromagnetic ratio
Lattice temperature
Quality factor
Static NMR field
Laser frequency
Pump magnetization
Threshold magnetization
Longitudinal pump rate
Transverse decay rate
EBL dephasing coe%cient
Filling factor
Coupling constant
LC ringing constant
Relaxation frequency
Relaxation rate
Bandwidth
Length of the wire
Radius of the wire
Number of windings

Bo
V~

M,
Mg

cx

arel

'Vrei

Av
l

6.97 X 10
4.2
330

1.109
12.3 X 10

—0.78
0.436
4.76

2.38 X 10"
0.607
0.42
10.19

1.17X 10
65.5+0.5
2.4+0. 1

37.2 X 10'
1.30 X 10-'
0.17X 10

30

[1/sT]
[K]

[T]
[Hz]

[A/m]
[A/m]
[1/s]
[1/s]

[m/A]

[Tm/As]

[Hz]
[1/s]
[Hz]
[m]
[m]
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transverse magnetization vector M, . Clearly, the most
suitable variable for this model is then 8'=ln K

D. Chaotic laser behavior

resolution is to be attributed to qualitative differences in
the dynamics.

A. Basic test of the extended Bloch-type laser model

The previous discussion shows that the onset of chaos
in the NMR laser is prevented within the accessible pa-
rameter space of the system. In fact, the system can be
described by a set of only two ordinary differential equa-
tions. However, if an external driving is applied, for ex-
ample, in the form of a sinusoidal modulation of a system
parameter, the additional degree of freedom makes
chaotic behavior possible. Experimentally, this has been
realized by varying a parameter p in time according to
p(t)=po(1+ 2 cosco t), where the modulation frequen-

cy v =co /27r is chosen in the range [20,150] Hz, i.e.,
close to the relaxation frequency v„&=67.7 Hz of the
free-running laser. The response of the driven laser has
been studied by acting on various parameters: DNP
pumping strength, cavity detuning, NMR linewidth y1,
and quality factor Q. In particular, the latter two ofFer

favorable operating conditions requiring relatively weak
forcing signals, with the amplitude 3 lying in the range
[0,0.03]. The yt modulation is obtained by superimpos-

ing an oscillating field gradient on the homogeneous field

B0. A detailed account of the associated phenomenology
can be found in Ravani et al. , (1988) and Flepp (1991).
In this work, we survey experiments conducted with the
Q-modulated NMR laser. This type of forcing is accom-
plished by varying the resistance of the NMR circuit.
The first equation in EBL model (18) must therefore be
modified to

x = —o(xif (t) y), —

We first discuss the effect of the inclusion of the new
parameter a in the EBL model on the relaxation of the
transverse magnetization. The most direct estimate of a
is made by inducing a transient toward the steady state
M', =(M,',M,') [corresponding to Y = Y, = 1 —aP/2,
Z =Z, = —a Y, for the rescaled system (22)] by means of
a controlled Q-switching technique. The laser is first al-
lowed to relax to M, with an initial quality factor Q.
Then, at some later time, the quality factor is abruptly
lowered to a value Q, ("Q quenching"), which is kept
constant for a time T until the original value Q is re-
stored. The output voltage v(t) ~M, (t) is recorded
thereafter.

If the laser action is completely quenched in the inter-
val T (i.e., Y'=0), the subsequent laser pulses, followed
by the relaxation to the fixed point M'„wi11 be triggered

Tq=lms

o(
0.00 0.04 0.08 0.12 0.16 0.20

& (S)

where f (t)=1+ A cosrot, and co=os !yt is the modula-
tion frequency, rescaled as explained above. The adiabat-
ic elimination now yields X = Yf (t), in transformed sys-
tem (21). In the next section, we display the phase dia-
gram of this system to illustrate the types of chaotic
behavior occurring under the usual experimental condi-
tions.

I V. MODEL-EXP ER I MENT COMPAR I SON

7]

41

3t

1I

o]

Tq = 10ms

In order to test the efficiency of the two available mod-
els for the NMR laser, it is necessary to have good
knowledge and control of the system parameters. For-
tunately, the NMR laser belongs to the rare, nontrivial
many-body systems where all relevant parameters can be
determined with good accuracy. Some of them may be
measured directly (Q factor, laser frequency); the others
(filling factor, damping constants, etc. ) can be obtained
indirectly, either by fitting the laser response after a suit-
able perturbation, or by performing appropriate supple-
mentary NMR measurements. Table I displays the pa-
rameter values that characterize the ruby NMR laser at
the temperature of liquid helium. Owing to the reliabili-
ty of these measurements, any discrepancy between the
CBL and EBL models that lies within the experimental

0.00 0.04 0.08 0.12 0. 16 0.20
t (s)

10-
Tq =30ms

6-

o]
0.00 0.04 0.08 0.12

t (s)
0.16 0.20

FIG. 4. Demodulated laser output v (t) vs t after Q quenching,
for three di5'erent quenching times Tq.
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FIG. 5. Laser transients as obtained from the
numerical simulations (a) and from the experi-
ment (b), after Q quenching. The quenching
time was T~ =—2 ms. In (a) the outcome of the
EBL model (solid line, o.=0.607) is compared
with that of the CBL model (dashed line,
a=0). Notice the striking similarity between
EBL result and experiment.
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FIG. 6. Time lengths z& and ~2 of the quiescent phases before
the first and second pulse after Q quenching, for T» =2 ms. No-
tice the strong correlation between the two for both experiment
(a) and EBL simulation (b).

by the noise Auctuations of the field in the NMR coil.
Indeed, the line Y=O is invariant for Eq. (22) and a
nonzero magnetization Y can be built up only if the sys-
tem is perturbed. Then, the trajectory in the ( Y, Z) plane
consists of a number of large loops, having a long "quies-
cent" part close to the Z axis, which become smaller and
smaller until the motion is definitely attracted by the
fixed point ( Yi, Zi ). Typical laser transients showing the
time evolution of the output voltage U (r) are displayed in

Fig. 4 for three different quenching times. Clearly, the
longer T, the longer the time interval between the first

and the second pulse. Indeed, for large T, the second
pulse is also triggered by noise, since the signal amplitude
drops nearly to zero.

The above observations show that a quatitative test of
the model can be made only by explicitly taking into ac-
count the noise. It is assumed that the major source is
due to the thermal noise current in the coil. Its rms con-
tribution B„ to the field at the absolute temperature T is

given by

8„=+@okapi TghvlIR 2m. v, , (24)

where kz is Boltzmann's constant, Av the I.C-circuit
bandwidth, v, its resonance frequency, and 8 the radius
of the wire. Inserting realistic numbers yields
B„=4.7X 10 ' T. Hence the transients can be numeri-
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FIG. 7. Correlation coefficient from a linear regression applied
to (~&,~&) plots, as in Fig. 6, obtained for 12 different quenching
times Tq. The correlation is lost for T )20 ms.

cally generated by turning Eqs. (10) into Langevin equa-
tions with two additive Gaussian noise terms with ampli-
tude B„How.ever, since the measured output signal U (t)
is proportional to the modulus of the magnetization, it is
convenient to integrate Eq. (22), rewritten for the vari-
able 8' =ln Y; and then to transform back to the physical
variable M, . In this way, we prevent noise from chang-
ing the sign of the 1' variable in Eq. (22), which should
not be allowed. Computed and experimental transient
signals are reported in Figs. 5(a) and 5(b), respectively.
The numerical simulation has been performed with the
CBL (dashed line) and EBL (solid line) models, the latter
yielding the best fit with the real data for o.=0.607 rn/A.
The quenching time was T =20 ms. The agreement
with the experiment is evident for the EBL model,
whereas the CBL model grossly fails to reproduce both
amplitude's decay and oscillation frequency (given by y„,i
and v„&, respectively). These results illustrate the enor-
mous effect of the small correction term o;M, /3
=3X 10 on the dynamics.

Finally, the noise amplitude B„could be independently
estimated by fitting the laser output with EBL simula-
tions. We recorded a sequence of 100 independent tran-
sients, all starting after a quenching time T =2 ms from
the initial state M'„and measured the times ~, and ~2 at
which the first two pulses occurred. As it is clearly seen
in Fig. 6, they are strongly correlated. The numerical
simulation from the EBL model (b) confirms the excellent
agreement between experiment and theory. The mea-
surement was then repeated for various quenching times
T . The corresponding correlation coeKcient for the
scattered data points (r&, rz) is plotted versus the quench-
ing time in Fig. 7. An evident loss of correlation occurs
for Tq ) Tq 20 ms. Beyond this value, noise disrupts
the deterministic dynamics. An estimate of 8„,obtained
by fitting the data in Fig. 7 with those obtained from the
EBL model, yielded B„=1.2X 10 ' T (at the tempera-
ture of 4.2 K).

0.01

a coordinate, measured at equally spaced times t =kit,
are reported as a function of the control parameter, after
transients have died out (Collet and Eckmann, 1980; Cvi-
tanovic, 1984). The plot in Fig. 8 has been obtained by
sweeping the amplitude 3 at a fixed frequency co. A
period-doubling cascade is clearly visible, with the first
bifurcations occurring at A =0.0047 (period 1 —+2),

0.01 0.02
tnodulation ampl

-4t '

-'~ &'(i t~~'

FICx. 8. Bifurcation diagram for the Q-modulated NMR laser
obtained by sweeping the forcing amplitude 3 downwards.

B. Conventional analysis of chaotic motion

A common visualization of the transition to chaos con-
sists of a bifurcation diagram, where a few values U (t) of

FIG. 9. Bifurcation diagrams, as in Fig. 8, but with a different
forcing frequency. The diagram from the EBL model (a) is
compared with an early experimental one (b) observed on the
oscilloscope screen.
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A =0.0105 (period 2~4), and A =0.0117 (period 4~8).
The abrupt expansions of the region visited by the trajec-
tory (at 3 =0.014 and 3 =0.018) are crises; they will be
studied in detail later. Very similar diagrams have been
obtained from the EBL model. In Fig. 9 an early experi-
mental observation on the oscilloscope screen (b) can be
compared with the corresponding simulation (a). The
agreement between experiment and EBL model is once
more confirmed. However, the CBL model yields very
similar plots.

A more significant test is provided by the comparison
between phase diagrams, i.e., graphical representations of
the types of motion (either stable periodic or chaotic) ex-
hibited by the system in an extended portion of the
(cu, A) plane. In Fig. 10, we report experimental (a) and
EBL (b) diagrams, where the main islands of stable
periodic behavior are indicated together with the large
chaotic region. Multistability occurs quite often. Most
of the structure in the two pictures coincides, although
some discrepancy exists (probably caused by uncertainty
about the value of the other model parameters a, c, or P).

0.052

0.019

0.006—

0.052

The conventional analysis of chaotic motion proceeds
with estimates of dimension, entropy, and Lyapunov ex-
ponents of typical attractors of the system (Grassberger
et al. , 1991). We briefiy review these concepts with the
purpose of illustrating further the phenomenology of the
laser. It will also be clear that such global indicators do
not represent a tool for a univocal identification of an ap-
propriate model.

The estimates have been carried out with both experi-
mental and simulated time series. In the former case, the
signal U(t) is sampled at a frequency v, to yield a se-

quence of X= 8 X 10 data points measured with a 12-bit
resolution. Usually, v, is taken about 4 times larger than
the forcing frequency ro/2' and incommensurate with it
for estimates of fractal dimensions. The delay time is ac-
cordingly ~=1. A different choice is needed for the ex-
traction of periodic orbits. The embedding dimension E
is varied between 3 and 20 or more.

Generalized dimensions (Renyi, 1970; Mandelbrot,
1982) and entropies (Grassberger and Procaccia, 1984;
Eckmann and Procaccia, 1986) have been computed with
the nearest-neighbor method (Badii and Politi, 1984a,
1984b; Broggi, 1988). A subset I y~ I of r = 10 reference
points is chosen at random from the time series with
respect to the Lebesgue measure. Since the data points
are sampled uniformly in time, this procedure is
equivalent to selecting points at random on the attractor
according to the natural invariant measure m (Eckmann
and Ruelle, 1985). For each point y, one orders its
nearest neighbors from the first to the kth as they are
found in a set of n other points of the attractor (also
chosen at random with respect to m ). The distance
5 k z ( n ) from y to the kth neighbor clearly cannot in-
crease with the number of points n. Noticing that k/n is
an approximation of the probability of finding a point in
a ball centered at yj having size 5 k E(n ), one may define
a local dimension o. in terms of the mass-volume relationJ
(Grassberger et aL, 1988)

k a.—-5 (n, ) 'j,k, E (25)

0.019
where the symbol —indicates the leading behavior in the
limit n~~ [which corresponds to 5J kz(n)~0]. An
average dimension, the dimension function D(y) (Badii
and Politi, 1984b), is then computed as

0.006

1 1 —1—ln —g 5'r„z(n) —— 1n(n /k),
D(y)

(26)

FIG. 10. Phase diagrams for the g-modulated NMR laser. Ex-
periment (a) and EBI model (b) are in good agreement, consid-
ering the uncertainty in the physical constants. The main re-
gions with stable periodic motion are indicated. The periods 2
and 4 labeled by an asterisk are distinct from the unlabeled
ones. Notice the coexistence of difFerent types of motion in a
few regions. The solid circles in (b) indicate the parameter
values for which the periodic-orbit analysis has been carried
out.

for various values of y. The implicit relation between
D(y) and the Renyi dimensions D (Renyi, 1970) is

D(y )=D, for y=(1 q)D— (27)

For the special case y =0, one obtains the information di-

mension D&. Indicating with (f ) the average of an ob-

servable f computed as in Eq. (26) by summing over r
domains, one obtains the generalized metric entropies

K(y) through the relations
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ln(5jz(n) ) — [&EK(y )
—inn] if @&0,

D(y)

(ln5k z(n) ) — [&EK(0) ln—n] if y =0,1

D(0)

in the large-n limit. Although the precision can be im-
proved when a large number of points is available, such
asymptotic estimates are disturbed by the presence of
lower-order corrections (e.g. , ln inn ) to the leading
behavior. The nonhyperbolicity, moreover, determines a
large spread in the values of the local dimensions a (and
in analogously defined local entropies). Since the proba-
bility p =k/n is the same for each ball, this method is
called fixed mass. The dual approach consists of cover-
ing the attractor with balls of constant radius E and es-
timating the probability P(E) of each of them. Accord-
ingly, one obtains the usual definition of generalized
Renyi dimension (Renyi, 1970)

cussion of this topic exceeds the purpose of the present
work, we refer the reader to the relevant literature.

In Fig. 11, we show a two-dimensional projection of a
strange attractor of the NMR laser with the log-log plot
of Eq. (26) which yields the information dimension Di
from the slopes of the curves (1n5k z(n) ) vs inn in the
asymptotic region (in the figure, an arbitrary base has
been used for the logarithm). The slopes usually exhibit
convergence for E )2D+ 1, extending over several
values of E. In this region, if the number of data points
is large enough, the dimensions Dk(y ) corresponding to
difT'erent nearest-neighbor orders k agree. The value
given by the highest k is usually taken as the estimate of
the fractal dimension. The information dimension D&

(q —1)D
(30)

in the limit c~o. The presence of balls with a very small
population renders this approach impractical for q&1
(Grassberger and Procaccia, 1983,1984; Grassberger
et al. , 1991).

By testing the scaling behavior of the probability
P(c,, n) of finding a trajectory of length n within a dis-
tance c. from a reference orbit, one can estimate the gen-
eralized metric entropy K as

—n (q —1)K(P~ '(E, n) ) -e (31)

for n~~ and sufFiciently small E. For q=1, one recov-
ers the usual Kolmogorov-Sinai entropy. The relation
between K and K(y), defined above, is analogous to Eq.
(27). The fixed-mass method is better suited for estimates
corresponding to q ~ 1 and for higher dimensions than
the fixed-size method (Kostelich and Swinney, 1987;
Broggi, 1988).

In all cases, deviation either from a pure power-law
dependence on c or 6 for dimensions or from a pure ex-
ponential dependence on n for entropies afFects the aver-
ages in such a way that convergence to the asymptotic
behavior may be very slow. This is the rule in nonhyper-
bolic systems and is particularly evident at certain "criti-
cal" values of q or y. This phenomenon has been inter-
preted in terms of phase transitions using the thermo-
dynamic formalism for dynamical systems (Halsey et al. ,
1986; Grassberger et al. , 1988; Badii, 1989a; Beck and
Schlogl, 1993).

Improved convergence can be obtained by labeling
each individual subdomain (or orbit) with the help of
symbolic dynamics. In this way, the asymptotic scaling
can be tested for each symbolic sequence separately be-
fore performing the averages. This technique is related
to the transfer-matrix method of statistical mechanics
(Feigenbaum et al. , 1986; Feigenbaum, 1988; Mayer,
1991; Badii, 1993; Beck and Schlogl, 1993). Since a dis-
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FIG. 11. (a) Two-dimensional projection of a strange attractor
in the Q-modulated case. (b) Dependence of the logarithmic
average of the nearest-neighbor distance 5 on the number n of
data points, shown for embedding dimension E between 1 and
15. Notice the smoothness and the parallelism of the curves,
especially in the asymptotic region C,to the right of the dashed
line). (c) Estimated information dimension Dj as a function of
the embedding dimension, for di6'erent nearest-neighbor order
k =2,4, . . . , 20.
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lies in the range [2.1,2.5] for all chaotic attractors in the
(co, A) plane shown in Fig. 10 (Ravani et al. , (1988).
Hence the minimum embedding dimension that ensures a
smooth reconstruction of the original phase-space dy-
namics is E;„=2D,+ 1 = 5 —6 (Sauer et a/. , 1991). The
metric entropy K, lies in the range [0,0.45] in units of
1/To, where To is the period of the forcing term. Final-
ly, the "standard" analysis was completed by the evalua-
tion of the Lyapunov exponents. We used an algorithm
adapted from those proposed in Eckmann et al. (1986)
for experimental data and in Benettin et al. (1980) for
differential equations. With increasing embedding di-
mension, the positive exponent A,

&
approaches values in

good agreement with XI (recall that K, is upper-bounded
by the sum of positive Lyapunov exponents). These re-
sults have been con6rmed using an indirect evaluation of
the positive and the negative Lyapunov exponents of the
system, based on a dimension measurement performed on
a low-pass filtered output signal (Badii et al. , 1988). In
Fig. 12, we show a bifurcation diagram (a) of the Q-
modulated laser, obtained at co = 1.8'„&, and the
Lyapunov exponents (b) in a four-dimensional embed-
ding, plotted as a function of the modulation amplitude
A.

Although the experimental results appear to be in
better agreement with the EBL model than with the con-
ventional one, the relatively low precision of these es-

timated characteristics does not permit us to discriminate
clearly between the two. Even taking into account the
spectra of the local dimensions and entropies [the latter
being defined as Ir= —1nP(E, n)/n in a small neighbor-
hood of size E around a reference orbit of length n], we
cannot distinguish them unequivocally.

C. Periodic orbits

4
+)

4
+)

The simple analysis illustrated above, although quanti-
tative, is not sharp enough to assess the suitability of the
EBL equations for a description of the NMR laser dy-
namics. A much more stringent verification is represent-
ed by the comparison of the periodic orbit structure of
the real and simulated systems. Not only must the num-
ber and length of the periodic orbits agree, but also their
shape and the probability with which the aperiodic tra-
jectory of the chaotic system visits their neighborhoods.

Time series consisting of X = 8 X 10 points were
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FKJ. 12. Upward-sweep bifurcation diagram for the Q-
modulated case (a) and corresponding average Lyapunov ex-
ponents (b) from the EBL model. The second Lyapunov ex-
ponent A.2 (not indicated) is identically zero.

FICx. 13. Two-dimensional projections of four unstable periodic
orbits (periods 1, 2, 3, and 5) extracted from the experimental
data (a) and from the EBL model (b).
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FEG. 14. Projection of the period-5 orbit of Fig. 13, superim-

posed on the strange attractor.

recorded with a sampling frequency v, =25/T0, where

TO =2m/co is the period of the forcing term: we collected
n =25 points per period. The delay time for the embed-
ding was ~= 5. Hence the embedding window E~
covered one period for an embedding dimension E=5.
All unstable periodic orbits up to order 9 (i.e., of period

9TO ) were located. A Newton method was used to detect
the periodic orbits of the EBL model. All cycles up to or-
der 9 were compared with the experimental ones and
found to agree very well for all E between 6 and 16.
Some experimental and numerical periodic orbits are
shown in Fig. 13. In Fig. 14, we show a period-5 orbit
superimposed on the corresponding strange attractor.

As a preliminary step towards a hierarchical
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FEG. 15. Two-dimensional projections of the Poincare section for A =0.018 and co=0.03168. The intersection points of the period-3

(a, b) and of a period-9 (a', b') cycle are labeled in order of their occurrence: (a,a') experiment, (b, b') EBL model. The solid line

represents the binary partition with elements labeled 0 and 1.
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classification of the dynamics of the NMR laser, we con-
structed Poincare sections X in each embedding space by
considering points x; which lie n time units apart from
one another. Two-dimensional projections of the strange
attractor in X are shown in Fig. 15. The embedded coor-
dinates from the experimental (a, a ') and numerical
(b, b') time series are shown for 3=0.018 and
co=0.03168. The intersection points of a period-3 orbit
(a, b) and of a period-9 orbit (a', b') with X are indicated
by open circles. Notice the striking similarity between
the two data sets. The CBL model is unable to reproduce
these orbits with good precision.

A symbolic dynamical encoding of the attractors was
achieved through a binary partition (Finardi, 1993
%= i B,B I which distinguishes all periodic points up to0~ 1

order 9. The curve defining X is also displayed in Fig.
15. Three orbits in a three-dimensional representation
are shown in Fig. 16 with their labels (Tufillaro, Holzner,
Flepp, Finardi, and Badii, 1991).

The language X for these parameter values can be de-
scribed by a full binary tree over the two primitive words
w =1 wan=01 (Badii, 1990), for both experiment andN1 —,W2—
model, up to hierarchical level 4 (the longest orbit of
which is 01010101). In fact, the only experimental for-
bidden sequence is 00, whereas in the numerical simula-
tion also three strings of length 9 are not allowed. There-
fore at the experimental resolution, the symbolic dynam-
ics can be represented by the 2 X 2 matrix

0 1
A (32)

with entries 2 . = 1 if the transition i —+j is allowed andlJ
43,"=0 otherwise. The row and column indices i and j

run over the symbols 0 and 1: the zero entry indicates
that S=OO is forbidden. The topological entropy E0 of
this language is just the logarithm of the largest eigenval-
ue p, of A: i.e., To=in[(1+&5)/2j=lnp, . Since other

1prohibitions exist for longer orbits, this estimate is on y
an upper bound.

The prime cycles (i.e., those which cannot be written as
88periodic repeats of shorter ones', see Cvitanovic,

have the following form: w„w2, N2W1, N2w„w2N„
2 2 4 2 3 5 3 2 2 4

W
6

W2N 1& W2W 1 N2W1 W2W 1& W2W 1& N2W 1& W2W

w 7 ~here w" denotes the nth repetitionW2N1, W2W1, w e
("power") of word tU. The tree that allocates all words in
the language X constitutes an invariant topological char-
acterization of the system. The nearly full coincidence
found between measured and numerical data (confirmed
for the other time series, which will be discussed in the
next section) clearly shows that the EBL model indeed
describes the experimental observation up to the avail-
able resolution. A further test of the reliability of the
partition is made by comparing the metric entropy K1
evaluated with the fixed-mass method and according to
its definition in terms of symbolic sequences: the latter
obtained by estimating the probability I' (S) of observing
an n-symbol sequence S =s, s2 s„ in the symbolic sig-
nal induced by % and by computing

K, = lim —— g I'(S)lnP(S),1

S:~S~=n
(33)

where the sum runs over all sequences S with length
~S~ =n. The agreement between this value and the one
obtained from Eq. (29) shows that the partition is gen-
erating within the experimental and statistical errors.

D. Crisis

(b)

(c)

FIG. 16. Three-dimensional representation of three low-order
orbits, together with their symbolic label.

The symbolic approach provides a hierarchical
description of the dynamics, which has been employed
above for a topological comparison between experiment
and model. This analysis can be extended to include the
metric features of the Poincare map F. A clear illustra-
tion of the utility of symbolic dynamics in this new con-
text appears in the study of what are called crises (Cxrebo-

gi, Ott, Romeiras, and Yorke, 1987). These are sudden
changes occurring in strange attractors when a control
parameter reaches some critical va ue The NMR
laser shows several phenomena of this type when the am-
plitude 3 is slowly increased, in a wide range of frequen-
cy values.

Three different types of crisis have been so far
identified (Grebogi, Ott, Romeiras, and Yorke, 1987). In
the first two classes, the chaotic attractor either disap-
pears or widens, respectively. In the third one, different
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strange sets merge. These transitions are associated with
a characteristic temporal scaling of trajectories above the
critical point. We mostly investigated the second case, in
which the orbit intermittently bursts out of the phase-
space region within which it was con6ned before the
crisis (core attractor). The average time r between the
bursts of this so-called crisis-induced intermittency obeys
the power law r( A)

~

A —A, ~

~ in the vicinity of the
critical value 2, . The scaling exponent y has been pre-
dicted to lie in the interval [ —,', —,

' ] (where the extrema cor-
respond to the strongly dissipative and conservative lim-

its, respectively; Grebogi, Ott, Romeiras, and Yorke,
1987).

At 3 = A„ the attractor (the closure of the unstable
manifold of some periodic orbit y, ) collides with the
stable manifold of an unstable periodic orbit yz. If yi
and y& are just the same orbit, the crisis is called homo-
clinic; otherwise, it is called heteroclinic. The exponent

y for the heteroclinic crisis is given by y= —,'+A, &/~A, 2~,

where k, and X2 are the expanding and contracting
Lyapunov exponents of the orbit y &, respectively (Grebo-
gi, Ott, Romeiras, and Yorke, 1987).

The first experimental evidence of a crisis-induced in-
termittency via a heteroclinic tangency was obtained in
the Q-modulated NMR laser (Finardi et a/. , 1992) with
modulation frequency v = 120 Hz, corresponding to
about twice the intrinsic relaxation frequency. The
modulation amplitude 3 was varied in the range
[0.0180,0.0187], where the former value lies slightly
below the crisis point A, =0.01802 and the latter well

above it. The time series were recorded at 14 diAerent 3
values by sampling the laser output with a frequency
v, =24v . They consisted of X=10 12-bit integers.
The value of the scaling exponent y could be estimated
with high accuracy by constructing the symbolic dynam-
ics of the system. The results have been confirmed
through independent calculation of the Lyapunov ex-
ponents both for the experimental data and for the EBL
model.

Once an approximate generating partition is obtained
as explained above, the mechanism of the crisis is readily
reformulated for the associated shift map &. In fact,
below the crisis, all points belonging to the subset Bo are
mapped to 8& in one iteration; the string 00 is forbidden.
At the crisis, the chaotic trajectory starts visiting a close
neighborhood of the new unstable periodic orbit y 2,

which, in our experiment, is a period 3 with label

w3 =001. Hence, after the onset of the crisis, the string
00 is no longer forbidden. The new, wider attractor is as-
sociated with the collision with the orbit y2. Recall that
the "old" period-3 orbit y& is labeled by wow& =011. In
Fig. 17, we report a two-dimensional projection of the
strange attractor of F below the crisis (a and b, corre-
sponding to experiment and EBL model, respectively),
with the points of y &, and after the crisis (a' and b', with
the same convention), with the points of yz.

The symbolic signal after the crisis consists of com-

I

k+T

0.6— k+ r'
(b)

0.2.

0.0 0 — 0
I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0 0
0

4

k+7

k+t
(b')

0.4-

0.2-

0,0- 0-
I I

0.0 O.2 0.4 0.6 O.S 1.0

FIG. 17. Poincare sections obtained from the experimental
data at 3=0.0180 (a, b), below the crisis, and at 3=0.0185
(a', b'), above the crisis, for ~=0.03168. The intersection
points (open circles) of the old, unstable period-3 orbit y &(a, b)
and of the new one, y~(a', b'}, are numbered in order of oc-
currence in time (their symbolic sequences being 011 and 001,
respectively). The solid curves indicate an approximation to a
generating partition with elements 0 and 1. The first two inter-
section points 1 and 2 in (a', b') lie on opposite sides of the par-
tition. The primed figures correspond to the EBL model.

binations of the three primitive words wi, w2, and w3.
The determination of a generating partition allows
detecting very precisely when the trajectory enters the
"new" region in phase space. In fact, if sequence 00
occurs, the second 0 is part of the new branch. All points
contained in the partition element Boo are mapped out-
side the core attractor. They can be reached only from a
small neighborhood of the point marked by a 1 in Fig. 17
(a', b'). Notice the smallness of the distance (in two-
dimensional projection) between the two period-3 points
(1 and 2) on the opposite sides of the partition line and
between the first points (1 and 1) of the two different
period-3 orbits. No comparable accuracy can be ob-
tained by simply setting a (necessarily arbitrary) thresh-
old in a time plot x (r) vs t of some system observable x
(which corresponds to embedding the data in just one di-
mension).

With our criterion, we have estimated the average time
~ spent in the core and determined the critical exponent

y from the slopes of the curves loge( A) vs log~ 3 —A, ~,

displayed in Fig. 18. The values obtained from experi-
ment and mode l are p e~p 1 o 02 0+05 and y ~od 1 e 10
+0.05, respectively. We finally computed y in terms of
the Lyapunov exponents of the orbit y&, evaluated from
the eigenvalues of a linearized map around a point of y&

in the Poincare section X. We obtained y&, =1.0+0.1
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logio (~)
3.0-

0.0—

-05-

-1.0
I

-0.5

'0~

O~

I i I

O.O 0.5 1.0
log„(A-/"-I, )

found in an s ball B,(xc) around a reference point xo on

y. For stability reasons, we required that these points
remain close to y for a whole embedding window E~
both in the past and in the future. As usual, it is assumed
that the target orbit is of the saddle type, so that its in-
variant manifolds can be identified with the eigendirec-
tions of the matrix M. Finally, the sensitivity of the
motion on the control parameter p is evaluated by com-
paring y(p=0) with the perturbed orbit y(p), which is
also to be extracted from the observed data. For the case
in which only one unstable direction exists, the required
correction is given by (Ott et a/. , 1990a)

log, o(r)
1.0—

(b)

0.5—

0.0—

I

—4.0

FIG. 18. Average time ~(A) between successive bursts as a
function of

~
A —3, ~, obtained from experiment (a) and EBL

model (b). The critical exponents y„p = 1.02+0.05 (a) and

y,d=1. 10+0.05 (b) are determined from the slopes of the
straight lines obtained by a least-squares fit in a doubly logarith-
mic scale.

(Kantz et a/. , 1993), in agreement with the direct esti-
mates.

V. CONTROL OF THE CHAOTIC FLOW

The method for the identification of the unstable
periodic orbits has been adapted to a real-time process
for possible control of the chaotic NMR laser. In this
section we report results obtained with the control pro-
cedure proposed in Ott et a/. (1990a, 1990b), applied to
the stabilization of low-order orbits in the Q-modulated
case. We illustrate the improvement obtained with a new
control method that solves some difhculties arising with
the original one (Reyl et a/. , 1993). The motion in the
chaotic regime is thereby constrained to a close neighbor-
hood of some unstable periodic orbit. This result is usu-
ally carried out by applying small, carefully chosen per-
turbations to a control parameter. The method proposed
in Ott et a/. (1990a) requires that, after the displacement,
the trajectory lie as close as possible to the stable mani-
fold of the target orbit y, which is previously located as
discussed in Sec. III. The flow around y is approximated
by means of a matrix M, estimated through a least-
squares fit. A number I of embedded data points is first

p =A, „(A,„—1) '[(g' —g'0) f„]/(g f„),
where the curve y has been cut by a Poincare section X
through xo, yielding the point g'0. The value p hence de-
pends on the current position g on X, on the unstable ei-
genvalue A,„ofM, and on the projection of the difIerence
vector g' —g'o along the contravariant basis vector f„.
The overall magnitude is finally weighted by the term

g f„,where g=Bg'0(p)/Bp~ o represents the dependence
of the system on the perturbation.

This method keeps the dynamics around the target or-
bit at the expense of very little energy input; moreover, it
can be applied, in principle, to higher-dimensional sys-
tems (Ott et a/. , 1990b). However, difficulties arise when
noise is non-negligible (Ditto et a/. , 1990) or when
several unstable or complex eigenvalues occur, which re-
quire a dift'erent equation than (34). To overcome the
latter problem, a modified technique was recently pro-
posed (Auerbach et a/. , 1992) which considers perturba-
tions of scalar quantities. No application to real experi-
ments has yet been carried out.

In the case of the NMR laser, with embedding dimen-
sion 4 to 6, the major source of inaccuracy comes from
the evaluation of the eigenvalues with the corresponding
contravariant vectors and of the "fIlow derivative" g: in
fact, they fIuctuate considerably from run to run, so that
the control is not frequently reproducible in certain re-
gions of parameter space. Therefore we have implement-
ed an algorithm that still retains the positive features of
the original method, without, however, being aA'ected ei-
ther by the occurrence of more than one unstable direc-
tion or by the possible complexity of the eigenvalues.
The control condition that replaces Eq. (34) is obtained
by requiring that the expected deviation of the orbit from
the target be minimized by our choice of p (minimal ex-
pected deviation method or MED). Our prediction is

based on the same matrix M as in Eq. (34), although the
dynamics may now be approximated by a more general
nonlinear map as well. No estimate of the eigenvalues
and of the corresponding contravariant vectors is needed,
thus yielding higher reproducibility of the control. The
vector I is, however, still determined as before. An im-

proved estimate might be obtained by recomputing it at
each visit of the control ball 8,(xo) and by averaging in

time. Finally, the new method may easily be implement-
ed with several control stations along the target orbit.
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We applied both the original and the MED methods to
the NMR laser operating with a modulation frequency
v C(100,120) Hz. Although the operating frequency
was about 120 times higher than that of previous experi-
ments (Ditto et al. , 1989, 1990; Sommerer et al. , 1991a,
1991b), control was achieved under several conditions for
the lowest-order periodic orbits. Another important
diA'erence is the higher embedding dimension used in the
present work and the high precision required for a close
return to be accepted. Time series of length
X = 1.5 X 10 have been analyzed, and the unstable
periodic orbits up to order 6 have been located during the
acquisition of data points. The dynamics around an in-
teractively chosen unstable orbit y has been approximat-
ed by means of one or more linear maps.

Indicating again with jo the control point on the Poin-
care surface through y, we can approximate the dynam-
ics from a neighborhood 8,(go) of go to itself by

k. +i —Co™[k.—4'o] (35)

where M=D&F(g'o) is the Jacobian matrix of the (re-
duced) Poincare map F: 8,(g'o)~8, (go). The matrix M
has been estimated with a least-squares procedure that
makes use of singular-value decomposition, using a col-
lection of m (m =50—100) vector pairs (g', 6$') in

8,(g' )o, where 5g=g —g'o and 6g'=F(5$).
A simple noise-reduction method can be implemented

to enhance the qua1ity of the fit by discarding the vector
pairs for which a considerable discrepancy is found be-
tween actual and predicted images of the starting point.
A new matrix M is then estimated from the "cleaned" set
of points. The same procedure can be adopted with
minor modifications to handle the case of a number I. & 1

of control stations along the target orbit y. This has
been imp1emented with I =2 to 4, obtaining considerably
better predictions of the dynamics. One then has I. ma-
trices M&. 8, (xI ) +8,(xl+, ), —with I =I, . . . , I. and

xL+& =x, . The stability properties of y are determined
by the eigenvalues of M&. At variance with the method
by Ott et a/. , we require that the perturbed point
g„+,(p) come as close as possible to the control station

go, rather than demanding that it fall onto the stable
manifold of y. Taking, for simplicity, L, =1, we first
rewrite Eq. (35) with explicit dependence of go on p as

is equivalent to asking that the next expected return on
the Poincare section, after application of perturbation p„,
lie as close as possible to the control point. No control is
attempted if the computed p overshoots these limits.
This yields

Pn =Pmln =

and the minimal distance achievable is 5
=

II
—(~ »~+&II where ~ =~~IIll N«ice that if g. is

already close to the stable manifold of g'o(0), its predicted
image will be close to the target point; and Eq. (38) will
give a small correction p„, in agreement with Eq. (34).

This procedure allows fitting the Poincare map with a
generic polynomial function, rather than with a simple
linear application, thus leading to improved predictions.
Moreover, depending on the computing time restrictions,
it is possible to complement it with noise-reduction algo-
rithms. The periodic orbits have been located with rela-
tive error d(x, , x, + )/c, , =10 under various experi-
mental conditions, whcI'c E,; is thc position-dependent
ball radius used in the search. The control stations have
been set interactively anywhere on the target y (itself
chosen out of a number of close-return orbits).

The statistical reliability of the estimated matrix M
sensibly depends on the position of xo on y, on the ball
radius E, , and on the number m of fit-points. The typical

values, rescaled to E, were in the range (10,10 '},
except in the most crowded regions of the attractors
(where the dynamics is most aff'ected by the noise), which
were not selected for control. The corresponding E

values were in the interval (50,300) for E=6 (recall that
the data are 12-bit integers: i.e., uq &[0,4096]). The fits

were usually carried out with sets of m =50—100 nearest
neighbors.

In Fig. 19, we show a portion of the time series u ( r ) (a }
and the corresponding controlling signal (b) during the
stabilization of the period-1 orbit with the method by Ott

08

0.6

k. + i
—ko(p) =M[4. —ko(p}]

where go(p )=go(0)+gp
(this relation being the operational definition of g ).
Once the trajectory enters the control ball 8,(g'o), we
seek the value p„ that minimizes the norm
~n = II4n+i(pn } 4'o(0)ll, where g„+&(p„) is the prediction
for g„+ &

obtained from Eq. (36) taken as a strict equality.
The condition that

0.0
0.0

1.2

E 0.8

CL

o 04
(3
C3

0.0
0.0 0.3

1}me & s)

0.6
time (s)

0.9

(b)

0.9

5„=lip„(g —Mg) +M[/„—go(0) ] II

(37)

be minimized over all values of p, in a range [
—p„,p, ]

FIG. 19. Time plot of the controlled period-1 orbit (a) and of
the controlling signal (b) as produced by the method proposed
in Ott et al. (1990a, 1990b}. The control was switched oA' at
t =0.15 s and restarted at t=0.4 s.
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V
k —2T

k —T

0

FIG. 20. Two- and three-dimensional repre-
sentations of the strange attractor without con-
trol (left column) and of the period-1 orbit con-
trolled as in Fig. 19 (right column). The pa-
rameter values are the same as in Fig. 19.

00
Uk

0
Uk

et aI.; in Fig. 20, we report two- and three-dimensional
projections of the strange attractor and of the controlled
orbit.

The minimal expected deviation technique, being based
on the matrix M (or on some other predictor) rather than
on the eigenvectors f„, proved to be more e%cient than
the method by Ott et ah. for the period-1 cycle. More-
over, the period-2 orbit could also be stabilized in a
reproducible way, as well as a period-4 cycle. In both
cases, it was sufficient to apply a rather small relative
perturbation 3 ~ 2 +p, with ~pi ~p,„and p,„/2

~0.02 (see Fig. 21). The recovery time upon external
disturbances was also appreciably shorter. No spontane-
ous outbursts have been observed for times of the order
of two hours or more. This technique appears to be less
sensitive to noise. The maximal deviation from the target
remained below the value 6, =300 in six dimensions.
The output and control signals are displayed in Fig. 21,
which refers to the period-2 orbit. The largest eigenvalue
of the period-1 orbit is A, '„"=—2.0+0.1 (in the Poincare
section), whereas that of the period-2 orbit is A, '„'=
—1.3+0.1. The latter orbit, however, passes very close

L
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0.0
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FIG. 21. Unstable period-2 obit stabilized
with the minimal expected deviation (MED)
method. Upper plot: controlled signal; lower
plot: controlling signal. No spontaneous out-
burst was observed for over two hours of laser
activity. Notice the smallness of the
controlling-signal amplitude.

0.0 0.2 0.4
time (s)

0.6 0.8
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to the origin, where the signal-to-noise ratio is small, and
is therefore much harder to control.

VI. SUMMARY ANI3 QUTLQGK

The characterization of low-dimensional chaotic sys-
tems has gradually moved from the evaluation of simple,
global indicators, such as fractal dimensions and entro-
pies (Cvitanovic, 1984; Eckmann and Ruelle, 1985; Berge
et al. , 1986; Guckenheimer and Holmes, 1986; Schuster,
1988), to distributions of local indicators, synthetized in
dimension and entropy spectra (Halsey et a/. , 1986;
Grassberger et a/. , 1988; Beck and Schlogl, 1993). These
quantities can be computed from scalar time series with
good accuracy (Mayer-Kress, 1989; Grassberger et al. ,
1991; Drazin and King, 1992). There are, however, open
problems such as the understanding of the symbolic dy-
namics of nonhyperbolic systems and, in particular, of
volume-preserving maps. It is believed that further im-
provement in this field can be achieved by studying the
unstable periodic orbits in the neighborhood of the in-
variant sets (Auerbach et a/. , 1987; Cvitanovic, 1988;
Chaos, 1992).

In the present work, we reviewed recent progress in
the analysis of experimental chaotic time series, inspired
by this suggestion. In particular, we discussed the re-
quirements that measurements must satisfy in terms of
precision and high statistics in order for an accurate
analysis to be feasible. The role of noise has also been
considered. We illustrated a method for the location of
the unstable periodic orbits in embedding space, with
special care for reliability tests.

The knowledge of the periodic orbits has been used for
the first time to construct approximations to a generating
partition in an experimental system. This consists of a
nuclear-magnetic-resonance laser which has been chosen
for its characteristics of stability and low sensitivity to
noise.

The first important result of this analysis was the
identification of an extremely accurate difterential model
for the dynamics, an extension of the conventional
Bloch-type description. A similar modification might
prove effective in optical lasers as well. We have further
illustrated the superiority of a periodic orbit analysis over
conventional techniques with a quantitative study of a
heteroclinic crisis. No applications of the symbolic dy-
namics to the evaluation of dimensions and entropies, via
the thermodynamic formalism of nonlinear dynamics
(Beck and Schlogl, 1993), have been reported, since this
was beyond the scope of this review. We refer the reader
to more specialistic work. Finally, a control method has
been applied to the NMR laser to show how the precise
location of the unstable orbits and a careful local model-
ing of the dynamics can be used to constrain the motion
in the vicinity of a periodic orbit, in spite of its repulsivi-
ty. The method was successful for low-order orbits (up
to period 4), notwithstanding the high "speed" of the sys-
tem (about 100 Hz).

It appears that a careful analysis based on periodic or-
bits and symbolic dynamics can be helpful in understand-
ing more general questions, such as the nature of com-
plexity (Grassberger, 1986; Stein, 1989; Badii, 1993), at
least in relatively elementary dynamical models, such as
cellular automata (Wolfram, 1986), or low-dimensional
maps and generalized shift transformations (Moore,
1990, 1991). These systems can be seen as surrogates of
spatio-temporal chaos or even turbulence: phenomena for
which, at present, no general theory exists.

Another class of systems that goes beyond that of sim-

ple low-dimensional chaos consists of delayed-feedback
processes in which the future state depends on the posi-
tion at the current time and at a previous one. Hence a
description in terms of diIterential equations requires
knowledge of all variables values in a whole time interval,
so that the dimension of the system is infinite. This is
suggestive of new phenomenology, although it can be
shown that the dimension of the attractors is always
bounded (Mallet-Paret, 1976). Therefore we have begun
an investigation of the NMR laser with delayed feedback,
as a first step toward a higher-dimensional dynamics.
The dynamics exhibits quite an interesting behavior, in-
cluding motion on incommensurate tori and strange at-
tractors with dimension D &3 or 4. The transition to
chaos and, especially, the symbolic dynamics of such sys-
tems have not been studied yet. The experimental ar-
rangement is obtained by rendering the quality factor Q
dependent on the laser output signal, suitably delayed
with an electronic device. The system is now auto-
nomous (i.e., no external periodic forcing is needed for
the onset of chaos), so that the periodic orbits do not
have time lengths that are multiples of a fundamental
one, and, in general, a distribution of characteristic times
is expected at each given order.
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