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The stability or lack thereof of nonrelativistic fermionic systems to interactions is studied within the
renormalization-group (RG) framework, in close analogy with the study of critical phenomena using P
scalar field theory. A brief introduction to P" theory in four dimensions and the path-integral formulation
for fermions is given before turning to the problem at hand. As for the latter, the following procedure is
used. First, the modes on either side of the Fermi surface within a cutoff A are chosen for study, in analo-

gy with the modes near the origin in P" theory, and a path integral is written to describe them. Next, an
RG transformation that eliminates a part of these modes, but preserves the action of the noninteracting
system, is identified. Finally the possible perturbations of this free-field fixed point are classified as
relevant, irrelevant or marginal. A d =1 warmup calculation involving a system of fermions shows how,
in contrast to mean-field theory, which predicts a charge-density wave for arbitrarily weak repulsion, and
superconductivity for arbitrarily weak attraction, the renormalization-group approach correctly yields a
scale-invariant system (Luttinger liquid) by taking into account both instabilities. Application of the re-
normalization group in d =2 and 3, for rotationally invariant Fermi surfaces, automatically leads to
Landau s Fermi-liquid theory, which appears as a fixed point characterized by an effective mass and a
Landau function F, with the only relevant perturbations being of the superconducting (BCS) type. The
functional flow equations for the BCS couplings are derived and separated into an infinite number of flows,
one for each angular momentum. It is shown that similar results hold for rotationally noninvariant (but
time-reversal-invariant) Fermi surfaces also, with obvious loss of rotational invariance in the parametriza-
tion of the fixed-point interactions. A study of a nested Fermi surface shows an additional relevant flow
leading to charge-density-wave formation. It is pointed out that, for small A/KF, a 1!N expansion
emerges, with N =Jr F/A, which explains why one is able to solve the narrow-cutoff theory. The search
for non-Fermi liquids in d =2 using the RG is discussed. Bringing a variety of phenomena (Landau
theory, charge-density waves, BCS instability, nesting, etc.) under the one unifying principle of the RG
not only allows us to better understand and unify them, but also paves the way for generalizations and ex-
tensions. The article is pedagogical in nature and is expected to be accessible to any serious graduate stu-
dent, On the other hand, its survey of the vast literature is mostly limited to the RG approach.
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I. INTRODUCTION

This article is an expanded version of a short paper
(Shankar, 1991) in which the application of the
renormalization-group (RG) methods to interacting non-
relativistic fermions in more than one spatial dimension
was considered. It contains more technical details than
its predecessor and is much more pedagogical in tone.
Several related topics are reviewed here so that readers
with a variety of backgrounds may find the article acces-
sible and self-contained. Consequently each reader is
likely to run into some familiar topics. When this hap-
pens he or she should go through the section quickly to
ensure that this is indeed the case and get used to the no-
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130 R. Shankar: RG approach to interacting fermions

tation and conventions. Upon reading this article, the
readers with a condensed-matter background will see
how the RG allows us to synthesize a variety of seeming-
ly unrelated phenomena in condensed-matter theory,
such as Landau s Fermi-liquid theory, the BCS instabili-

ty, charge-density-wave and spin-density-wave instabili-
ties, nesting, and so on. Readers familiar with the RG,
but not these topics, will see that, by following a route
parallel to the one that led to a very successful treatment
of critical phenomena, we are automatically led to many
known results in the above-mentioned topics and newer
ways of understanding them. However, there are also
many fascinating differences between critical phenomena
and the phenomena considered here, which make this ap-
proach very interesting from the point of view of the RG.
At the time of writing, there are relatively few new re-
sults, and the emphasis is on a deeper understanding and
unification of the older results the RG affords us. How-
ever, the machinery developed here, especially for aniso-
tropic systems, has the potential for changing this state
of affairs in the not too distant future. The author is
working on a few new applications and hopes the readers
will find many more.

The concept of the RG was first introduced by Stuckel-
berg and Petermann (1953). Its implications for quantum
electrodynamics were explored in a seminal paper by
Gell-Mann and Low (1954). These concepts were extend-
ed and generalized by Callan (1970) and Symanzik (1970).

What is the RG? When we speak of a group in quan-
tum mechanics we are thinking of symmetry operations,
i.e., transformations that leave the physics invariant.
What is the transformation here? Let us consider quan-
tum electrodynamics. When we compute a physical
quantity like the scattering rate between electrons, in a
power series in the coupling constant 0,, we find that the
coeScients of the series are given by integrals over parti-
cle momenta k, and that these in turn diverge because the
allowed values of k go up to infinity. These ultI"aviolet

diuergences are at variance with experiment, which gives
finite answers for all physical quantities. Renormaliza-
tion is the way to reconcile these two facts. In this
scheme, one first cuts off all integrals at the cutoQ A.
This gives answers that are finite, but dependent on A,
which is an artifact in continuum theory. To get around
this, one asks if it is possible to choose for each cutoff A a
corresponding coupling a(A) so that the physical quanti-
ties like scattering amplitudes come out A independent.
(In quantum electrodynamics one must also renormalize
the mass of the electron with the cutoff. The word cou-
pling shall mean all such parameters that define the
theory. ) It is by no means obvious that this can be done
in every field theory. However, in the case of quantum
electrodynamics or any renormalizable field theory, one
can prove that, to any given order in perturbation theory,
it is possible to choose a handful of parameters of the
model in a cutoff-dependent way so as to make physics at
momenta much smaller than the cutoff independent of it.
Since the cutoff is eventually sent to infinity, this means

at any finite momentum. This change in the cutogby a
factor s, accompanied by a suitable change in couplings, is
an inuariance of the theory. These transformations form
a group with the composition rule that a change by a fac-
tor s, followed by a change by a factor s2 should equal a
change by a factor s

&
sz. If we write

so that

A(t) =Aoe

where Ao is some fixed number, the group composition
law is that when two transformations are implemented in
sequence the parameters t add.

A central quantity in this approach is the P function,
defined as

p(g) = dg

where g is the generic name for the coupling constant(s).
Our convention is the one used in condensed-rnatter
physics, wherein increasing t decreases the cutoff. The
field theorists use the opposite convention and differ by a
sign. To avoid all confusion let us consider the case of
Yang-Mills theory, in which

dg =cg +higher orders, c &0 .
dt

(4)

If we integrate this equation from t =0 to t = t (so that
the cutoff'changes from Ao to Aoe '), we find

g'(t) = '(0)
1 —2g (0)ct

(5)

The point to notice in all of the above is that one is in-
terested in how to vary the cutoff only with the intention
of eventually sending it to infinity, which is where it be-
longs in a continuum theory. Had the theory been free of
ultraviolet divergences, the question of changing the cou-
plings and the cutoff, keeping the physics invariant,
might never have come up. It is clear that from this van-

tage point the RG has no place in condensed-matter
physics, where the degrees of freedom live on a lattice
and there is a natural cutoff on all momenta: A=1/a,
where a is the lattice constant. (For a notable exception,
see C. DiCastro and G. Jona Lasinio, 1969.)

This point of view was dramatically altered following
the work of Kadanoff (1965) and Wilson (1971),who gave
a different and more physical interpretation of renormal-
ization. In this modern view one contemplates changing
the cutoff (and the couplings) even in a problem where
nature provides a natural cutoff, such as the inverse lat-
tice spacing, and there are no ultraviolet infinities. We

What this equation tells us is that, as we send the cutoff
to infinity (t to —ao ), we must reduce the coupling to
zero logarithmically:

(6)
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R. Shankar: RG approach to interacting fermions 131

shall now discuss an example from statistical mechanics
in which the value of such a procedure is apparent. The
discussion will be schematic, since a more detailed one
follows in the next section.

Let us consider a cubic lattice (in d dimensions) with a
real scalar field P(n) at each site labeled by the vector n
with integer coefficients. The classical statistical
mechanics of this system is described by the partition
function

Z fg dy(n)es(p(n)) (7)

This is just the usual sums over configurations with the
Boltzmann factor e ~' written in terms of the action S,
also called the Hami/tonian. (Both terms will be used in-
terchangeably to prepare the reader for what happens all
the time in the literature. ) As long as the number of sites
is finite, S is just a regular function and Z is just a multi-
ple integral. In the limit of infinite sites, S becomes a
functional and Z becomes a functional integral or a Feyn
man path integral. Feynman introduced his path integral
to describe quantum-mechanical problems in d spatial di-
mensions as a sum over classical configurations in d +1
dimensions. Thus our Z could very well stand for
Feynman's representation of a quantum problem in one
lower dimension, and the following considerations apply
to it. ' For problems with bosonic operators, the deriva-
tion of the path integral can be found in Sec. III.B of the
review by Kogut (1979). The derivation for the fermionic
problem will be given in Sec. III.

A typical quantity one is interested in is the average of
the correlation between the variables at two different
sites, also called the two point fun-ction:

6 (ni, n2) =6(ni —n2) (assuming translation invariance)

(8)

the parameters are such that the system is at a critical
point, as in the case of a magnet undergoing a Curie tran-
sition from the ferromagnetic to the paramagnetic state.
In this case it falls like a power

G(n, —n2)= 1

fn, —n, f" ' (12)

and the critical case corresponds to m =0.

A. Three stages of RG transformation

An equally complete description of the above system is
possible in terms of the Fourier transforms,

P(k) =—g e'" "P(n),
V „

(14)

where V is the volume of the system. The allowed mo-
menta k lie within a Brillouin cube of sides 2n/a in all.

directions. The partition function becomes

Z —f g dy(k)es(p(k)) (15)

and 6 (k), the Fourier transform of G (n, —n2), is given

by

where x is a critical exponent. Other critical exponents
characterize other power laws at the critical point. A re-
markable feature, which we shall address shortly, is that
several systems with microscopically distinct Hamiltoni-
ans (or actions) have the same critical exponent.

In the case of quantum problems written as path in-

tegrals, the correlation length is related to m, the mass

gap, or the lowest excitation energy above the ground
state as per

(=1/m,

f~ dy(n)es(p(n))

(9)

(10)

(P(k, )P(k, )) =(2 ) &' '(k, +k, )6(k, )

f +dP(k)P(k )P(k, )e '~'""
k

fg dy(k)es(p(k))

(16)

(17)

For long separations this correlation function typically
falls off exponentially as

tn&
—n2) /g

G(n, —nz) =e

where g is the correlation length The excepti.on is when

Dimension d+1 is of course time. One works with imagi-

nary time, with the option to continue analytically to real time
at the end if needed. In this case one often finds that all d +1
dimensions are equivalent. In this discussion of the scalar field

we shall assume that this is so.
In the fermion problem we are going to study, the (imaginary)

time and space directions are not equivalent. The correlation
length in these discussions refers to the time direction.

P& =P(k) for 0& k & A/s (slow modes),

P& =P(k) for A/s & k & A (fast modes) .

(18)

(19)

Let us now imagine that we are interested only in the
physics at long distances (compared to the lattice spacing
a), for example, in G(r) for large separations r. In
momentum space this translates to small k. To be
specific let us say we are interested only in correlations of
modes that lie within a tiny ball of size A/s (with s very
large) centered at the origin, and not interested in the
modes that lie in the rest of the Brillouin zone, taken to
be a sphere (rather than a cube) of radius 2m/a. (This
modification makes no difference to the small-k asymp-
totics. ) We shall refer to the small-k modes as "slow
modes" and the others as "fast modes. " Let us define
two sets of variables:
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132 R. Shankar: RG approach to interacting termions

where So is a quadratic function of its arguments that
separates into slow and fast pieces and SI, called the in-

teraction, is the part which mixes the two. Then

Z= f g dtt(k)
0&k &A/s

x
A/s&k &A

~(
so(p ) so(p) ) sl(p, p) )

By assumption we are going to be interested only in
correlations of P &. However, at present we are comput-
ing these objects by doing an integral over fast and slow
modes. The first step in the RG program is to ask if

S'(((t & )
there is an effective action or Boltzmann weight e
such that, when integrated over just the slow modes, it
will reproduce all the slow correlation functions. We
shall now see that the answer is affirmative.

Let the action be expressed as follows:

S(P„P )=S (P, )+S (P )+S (P„P,), (2O)

S'(P() =r'P'(+u'P"(+ (27)

(The action above is schematic. For example uP could
be ihe shorthand for

f dk, dk2dk3dk~5(k4+k, +k2+k, )

X u (k~, k3, k~, k, )p(k~ )p(k3 )p(k~ )p(k, ), (28)

where u (k~, . . . , k, ) is a coup/ing function and not just a
coupling constant. ) In any event, we are trying to com-
pare r to r', u to u', and so on. The problem with doing
that is that we are comparing apples to oranges. The old
and new theories are defined on two different kinematical
regions. For example, the coupling u (A, A, A, A) has no
counterpart in the efFective theory, which has all its mo-
menta below A/s. (In field theory, where the old and
new cutoff are both sent to infinity, this point does not
come up. ) To remedy this defect, we shall define new
momenta after mode elimination,

(21) k'=sk, (29)

= f-[dO. ]f [«.]
"" '."" ' """

=f[dP ]e ' f[dP, ]e ' 'e '

=f[d0 ]e

(22)

(23)

S (P( ) S0(f& ) S0((It & ) Sl((I(| ( f& )

So ( ljl & ) sI ( p ( (i & )

S0(P& ) & e e

f [d0)]e '

X f [dP)]e '

which defines the efjectiue action S'(P& ). Let us manipu-
late its definition a little:

which run over the same range as k did before elimina-
tion.

There is just one more problem. Consider two actions:

S(P)=rg +uP

S'(P)=4rg +16ug

(30)

(31)

which seem difFerent. They are, however, physically
equivalent because we can simply define 2$=$' in the
second action (and ignore the Jacobian in the functional
integral since it is a P-independent constant) and reduce
it to the first action. In other words, certain changes in
parameters are not of physical importance, since they can
be absorbed by field rescaling. To weed these out, we
shall follow mode elimination and momentum rescaling
by a field rescaling, defining new fields,

Z0& P'(k') =g 'P((k'/s), (32)
S0(i]5' ) Sg(4' 4'o ) i

(25)

S(P)=rg +uP +
and after,

(26)

where ( )0) denotes averages with respect to the fast
modes with action So and where the corresponding parti-
tion function Zo& has been dropped in going to the last
line, since it will merely add a constant to the effective
action independent of P&, which in turn will make no
difference to any correlation function of slow modes.

Although S'((i &) provides a good description of the
slow-mode physics, the RG transformation has two more
steps besides the above mode elimination. These steps
will now be motivated.

One aim of the RG is to see the various parameters in
the interaction evolve or Aow as the cutoff is reduced, i.e.,
to compute the P function. Suppose before mode elim-
ination we had

and choose g such that a certain coupling in the quadra-
tic part of the action has a fixed coe%cient. The final ac-
tion S' will then be expressed in terms of this new field.
Thus the three stages in the RG transformation are as
follows: Eliminate fast modes, i.e., reduce the cutoff
from A to A/s. Introduce rescaled mornenta k'=sk,
which now go all the way to A. Introduce rescaled fields
(t'(k')=g 'P&(k'/s) and express the eifective action in
terms of them. This action should have the same
coefficient for a certain quadratic term.

B. Fixed points

With this definition of the RG transformation, we have
a mapping from Hamiltonians or actions defined in a cer-
tain phase space to actions in the same space. Thus, if we
represent the initial action as a point in a coupling con-
stant space, this point will How under the RG transfor-
mation to another point in the same space. This
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R. Shankar: RG approach to interacting fermions 133

definition of the RG opens up a possibility that did not
exist without all three steps: a fixed point S* of the group
action, that is to say, the action function, which repro-
duces itself after the three-step RG transformation.
Geometrically this means that the point S does not
move or Aow under the RG action. If the system had a
correlation length g before the RG (in the old units), in
the new units (in which momenta get boosted by a factor
s) it would decrease to g/s. On the other hand, at the
fixed point, it must remain the same under the RG. This
means that the correlation length at a fixed point must
have been either zero or infinite. We shall be dealing
with the latter case here. Fixed points will dominate our
analysis.

In summary, we see that in the modern viewpoint, the
cutoff is not to be viewed as an artifact to be sent to
infinity but as the dividing line between the modes we are
interested in and the modes we are not interested in. The
preceding discussion explains how we may change the
cutoff and the couplings without affecting the slow-mode
physics even in a problem where there were no ultraviolet
infinities. Let us now understand why we would want to
do such a thing.

Consider the remarkable phenomenon of universality.
How can systems with different microscopic Hamiltoni-
ans have the same decay exponent x in their critical two-
point functions? The RG explains this as follows (Ka-
danoff, 1965, 1977; Wilson, 1971, 1975; Fisher, 1974,
1983; Wilson and Kogut, 1974). Let S„and S~ be two
critical Hamiltonians defined in the full k space. Each is
described by a set of coupling constants. Let us represent
each as a point in a space 4 (in the notation of Wilson
and Kogut, 1974, Section 12) of Hamiltonians where
along each axis we measure one coupling constant. The
fact that S„AS~ implies that they are given by distinct
points in coupling-constant space and that there are
many observables that differ in the two cases. Consider,
however, extreme long-distance physics, in particular,

the long-distance decay of two-point functions. To calcu-
late these we need just the slow modes. To this end let us
trade each Hamiltonian for its equivalent one after renor-
malization down to a very small cutoff. 8'hat me shall
find is that they both asymptotically approach the same
axed poi-nt Hamiltonian S* where the/low stops. This ex-
plains why they share the same long-distance physics and
in particular the exponent x. Although the coupling-
constant space is infinite dimensional, let us consider a
toy model in which it is three dimensional. Let all criti-
cal Hamiltonians (in particular, S„and S~) lie in the
x —y plane. Under the RG they Qow to S*, which lies
at, say, the point (1,1,0). Let us shift the origin of coordi-
nates to the fixed point. Any deviation S —S* that lies in
the critical plane is termed irrelevant in the RG terminol-
ogy, since it renormalizes to zero and hence makes no
difference to long-distance physics. The fixed point, be-
ing a special case of a critical point, will of course have a
power-law decay of correlations.

What we see is that if to this fixed point an irrelevant
perturbation is added, the perturbed system will also
have the same power-law decay. If the functional in-
tegral stands for some quantum system written as a path
integral, this means that a gapless system will remain
gapless if an irrelevant perturbation is added. This idea
will be invoked later in this article. By contrast, any de-
viation off' the critical (x —y) plane is called reieuant and
will get amplified by the RG transformation. The long-
distance behavior of correlations in this problem is un-

clear; it is controlled by the ultimate destination of this
flow and typically (but not always) corresponds to ex-
ponential decay. In the general problem there can also
be margina/ perturbations, which neither grow nor decay
under the RG transformation. They play a major role in
the nonrelativistic electron problem to which we now
turn our attention. A truly marginal perturbation does
not cause a gap.

Table I summarizes some of the above concepts.

TABLE I. Definitions of terms frequently used in connection with the RG.

Symbol Meaning

RG
z
A
s and t
Slow modes P&
Fast modes P&
P function
S
g'

Sg ol Sg
Critical system
Critical exponents
Critical surface

Relevant variable
Irrelevant variable
Marginal variable

Renormalization group.
Classical partition function or Feynman's path integral for quantum problem.
The cutoff, the maximum allowed value of momentum k.
The parameter in the RG: A=AD/s =Aoe ', where Ao is fixed.
Modes to be retained.
Modes to be integrated out.
The rate of change of couplings with t, the logarithm of the cutoff.
The action or Hamiltonian. The Boltzmann weight is e .
The space of all Hamiltonians. Each axis is used to measure one parameter.
Any two actions or Hamiltonians describing two different systems. Points in S.
A system tuned to be at a phase transition. Has power-law correlations.
Exponents for the above power laws; universal.
The locus of all actions or Hamiltonians that describe critical systems.
The fixed point of the RG transformation in the space of Hamiltonians.
Any deviation from S* which gets amplified under the RG action.
Any deviation from S which gets renormalized to zero.
Any deviation from S which remains fixed under the action of the RG.
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C. Central problem of this review

The preceding discussions have set the stage for intro-
ducing our main topic. Consider a system of nonin-
teracting fermions at zero temperature (T =0},either in
the continuum with a dispersion relation

E =E /2m (33)

or on a lattice with some energy function E(K}defined
within the Brillouin zone. In all cases, one-particle
states with E, ~ p, where p is the chemical potential, are
filled in the ground state of the many-body system. The
filled states are bounded by the Fermi surface. In the
continuum in d =2 or d =3 the Fermi surface is a circle
or sphere, respectively, of radius

EF—+2m@ . (34)

(35)

and work with modes obeying

In the case of electrons on a lattice, the wave vector ~K~

is no longer a measure of energy, and we must keep those
modes whose energy lies within some cutoff. This corn-
plication will be discussed in the sections devoted to lat-

We use the term fermion instead of simply electron to accom-
niodate spinless fermions, which do not exist in nature but snn-

plify the analysis by obviating the need for spin indices. While
the spin of the electron is certainly not ignorable when compar-
ing theory to experiment, it will be seen that it really is an
inessential complication in the RCx program to be described
here and may be incorporated readily.

4We use upper-case letters to denote momenta measured from
the origin in contrast to the preceding discussion, where lower-
case symbols were used. This is a deliberate departure from
convention and reAects the different physics that emerges here.

This ground state has gapless excitations corresponding
to the promotion of fermions from just below the Fermi
surface to just above it. The central questions we ask in
this paper are the following: If some perturbation is add-
ed to the free theory, will the system develop a gap at
once or will it remain gapless? If it remains gapless, what
is the natural way to describe the low-energy physics of
the system, in particular its response to "soft probes, "
probes of low-frequency co and momentum Q? The
answers to these questions are clearly dictated by the
modes near the Fermi surface, at least for the case of
weak perturbations. For example, in any kind of pertur-
bation theory of the ground state, these modes will come
with the lowest-energy denominators. We shall therefore
focus on modes within a bandwidth A of the Fermi sur-
face (the slow modes of this problem) and get rid of all
the modes outside this cutoff (the fast modes). In the case
of fermions in free space we define a lower-case momen-
turn

tice problems. For the present let us focus on electrons
in free space and imagine an annulus or shell (in two or
three dimensions, respectively) of thickness 2A with
mean radius XF, within which reside the slow modes of
this problem.

Let us now turn to the elimination of the fast modes
outside the cutoff. This may be done within the operator
formalism by the use of projection operators to define an
effective Hamiltonian restricted to the subspace of slow
modes. This effective quantum Hamiltonian depends on
the cutoff in such a way as to produce cutoff-independent
results for the surviving slow modes, and the fixed point,
if any, is unaffected by this transformation. This is the
approach used by Anderson and Yuval (1970), Nozieres
(1974), Wilson (1975), and Kirshna-Murthy et al. (1980)
in their treatment of the Kondo problem. However, this
problem, which is a paradigm for how the RG is to be
used in quantum problems in many-body physics, is
essentially one dimensional. By contrast the problems
we deal with here are truly two and three dimensional,
and the application of the RG to these has a short histo-
ry. Although Anderson had suggested this possibility in
his book (Anderson, 1984), no detailed analysis was car-
ried out for some time. Benfatto and Gallavotti (1990)
and Feldman et al. (Feldman and Trubowitz, 1990, 1991;
Feldman et al. , 1992, 1993) then combined the RG with
rigorous bounds to study (to all orders in perturbations)
the stability of gapless Fermi systems to perturbations.
Shankar (1991) developed the method to be described
here, which is less rigorous, more intuitive, and covers
other instabilities like charge or spin-density waves and
rotationally-noninvariant systems and which may be
easier to use for people with a background in critical phe-
nomena or modern field theory. More recently Polchin-
ski (1992) employed a very similar approach to the nonre-
lativistic fermion problem to better understand the con-
cept of effective field theories in particle physics. Wein-
berg (1993) recently derived the effective low-energy ac-
tion and RG Aow equations for superconductors with
Fermi surfaces that obeyed time-reversal symmetry and
nothing else. All these approaches are fundamentally
different in spirit from the method used by Hertz (1976),
who completely integrated the fermions in favor of some
bosonic variables. In particular, he integrated the modes
at the Fermi surface. This is analogous to integrating the
k =0 modes in critical phenomena. The effective theory
for the bosons then has singular parameters. Hertz
found a way to analyze phase transitions that can be de-
scribed by the bosonic variables. For a recent analysis of
Hertz's approach see Millis (1993) and Sachdev (1993).

The approach described in this paper is as follows. To
heighten the analogy with critical phenomena one first

5Here one deals with a conduction band of electrons interact-
ing with a single Axed impurity. By using spherical waves (in-
stead of plane waves) centered on the impurity and keeping just
the s wave, one reduces it to a quasi-one-dimensional problem
in the radial coordinate.
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shifts from the operator approach to a path-integral ap-
proach and writes down the path integral. First the
noninteracting problem is considered. Since it is gapless
one expects it to be the fixed point of a RG transforma-
tion in which the cutoff is reduced. Such a transforma-
tion is found. With respect to this transformation, per-
turbations are classified as relevant, irrelevant, or mar-
ginal. In the last two cases the system will remain gap-
less, while in the first case one can only make statements
if one assumes that the behavior seen for small perturba-
tions persists at strong coupling also. In all cases con-
sidered, this corresponds to the opening of a gap in the
spectrum. While all this sounds like critical phenomena
(and is meant to), there are crucial difFerences, which can
be traced back to the nature of the phase space for slow
modes. In critical phenomena all the action at long
wavelengths is focused on a tiny ball centered at the ori-
gin of k space, and the fixed point is characterized by a
few coUplings.

The same is true for continuum field theories like
quantum electrodynamics or quantum chromodynamics:
both fermion and boson momenta are restricted to a
sphere of radius A centered at the origin. In the problem
at hand, we renormahze not towards a single point, the
origin, but towards a surface, the Fermi surface (which
may itself change under renormalization in the nonspher-
ical case). In contrast to critical phenomena, where all
momenta and momentum transfers are small (bounded by
the cutoff), here only k =~K~ E~ is small, —and large
momentum transfers of the order of KF are possible
within the slow modes. Renormalization only reduces the
dimension normal to the Fermi surface; the tangential
part surUiUes. As for the fixed point, it is characterized by
a surface and coupling functions defined on it. Notice
that d =1 is special: here the Fermi surface is a set of
two disjoint points. Apart from this doubling (which
converts nonrelativistic fermions into Dirac fermions),
we have the same situation as in a continuum field theory
in one space dimension, and there are once again just a
few coupling constants. This is why there has been a lot
of activity and a lot of success (Solyom, 1979; Bourbon-

I thank Pierre Hohenberg for pointing out to me an

exception —a problem not involving a Fermi surface, which has
nonetheless a similar phase space after any amount of renormal-
ization: the condensation of a liquid into a nonuniform state,
studied by Brazovskii (1975}. See Swift and Hohenberg (1977)
for the study of fluctuations on an equivalent model. It is an

open question whether the methods developed here can be ap-
plied to Brazovskii's problem.

7All this can be stated in another way. In field theories or in

critical phenomena one also runs into coupling functions. But
these are functions just of k. %"hen Taylor expanded in k, only
a few terms are marginal or relevant. In the present problem,
the coupling functions depend on k as well as the coordinates of
the limiting Fermi surface. The latter never get eliminated, and
all terms in the Taylor series for the latter will be important.
This point will be discussed further as we go along.

nais and Caron, 1991) in applying the RG to one-
dimensional fermion problems in condensed matter and a
lot of resistance to going to higher dimensions.

D. Outline

We now turn to the details. In Sec. II the reader is
given a very brief review of how the RG works for a sca-
lar field theory in four dimensions. This will serve to re-
mind readers familiar with the subject of the highlights
that we shall recall frequently in our progress by analogy.
As for the newcomers, it will give them the minimum re-
quired to follow this article. References for more details
will be given.

Section III explains how a path integral can be written
for fermions and how one is to extract correlation func-
tions from it. This will require the introduction of
Grassmann variables. Readers not used to these should
kill two birds with one stone by using the pedagogical re-
view provided here to learn this tool, which is often used
in condensed-matter theory.

In Sec. IV we study the problem of spinless fermions in
one dimension at half-filling: with one particle per every
other site on the average. This section serves as a warm
up for the RG program, since, as explained above, it
resembles the run-of-the-mill field theory in one dimen-
sion. It also shows the power of the RG: whereas
mean-field theory (a self-consistent approximation to be
detailed later) predicts a gap for the smallest repulsion,
and superconductivity for the smallest attraction, the ex-
act solution tells us that the system remains gapless for a
finite range of coupling of either sign. It will be seen that
the RG gives results in agreement with the exact solu-
tion.

Sections V and VI deal with circular and spherical Fer-
mi surfaces. To lowest order in a perturbative expansion
(Sec. V) one finds that there exists a fixed point described
by two marginal coupling functions F and V, which de-
pend on the angles on the circle or sphere as the case
may be. To the next order (Sec. VI) one finds that F is
still marginal, while each coefFicient in the angular
momentum expansion of V grows to produce the super-
conducting instability if attractive, and renormalizes to
downwards if repulsive, a result originally discovered by
Morel and Anderson (1962). No new surprises come at
higher orders. This is explained in the next section. The
fixed-point theory, which exists in the absence of V, is
what is known as Landau's Fermi-liquid theory. The
Kohn-Luttinger effect, which destroys the Fermi liquid
at low temperatures, is derived in the RG language.

Section VII provides a new way of understanding why
it is possible to solve the fixed-point theory characterized
by the interaction F even though F is not necessarily
small. This is tied to the fact that certain theories with a
large number of fields can be described by an expansion
in 1/N, X being the number of components. (In other
words, the coupling need not be small as long as I/K is. )

It is shown that the Fermi system with cutoff A has a
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1/N expansion with N =E„/A. Thus a given problem in
the full momentum space can initially be renormalized to
a small A theory (without running into any singularities)
and then, when X is large enough, solved in the 1/X ap-
proximation.

Section VIII has a discussion of LandaU s Fermi-liquid
theory. Only some aspects of this extensive field are
brought up.

In Sec. IX we consider noncircular Fermi surfaces
with no special features other than time-reversal invari-
ance: if K lies on it so does —K. It is found that one
must stop using ~K~ as a measure of energy and use actu-
al equal-energy contours to define the fast and slow
modes. The net result is exactly as in the rotationally in-
variant case except for the fact that I and V now depend
on more variables due to the lack of rotational invari-
ance.

Section X deals with the very interesting case of nested
Fermi surfaces in d =2: surfaces such that, if K lies on
them, so does K+Q~, where Qiv is a fixed nesting
momentum. We choose to illustrate the ideas with spin-
less fermions on a rectangular lattice, in which case the
nesting vector Q~ has components (m, vr) (Read.ers un-

familiar with nesting may wish to peek at Fig. 17 in Sec.
X for an example. ) What we find is that to lowest order a
third coupling function 8' insinuates itself at the fixed
point. At next order it begins to Aow. One can show
that there are definitely some relevant directions if this
force is repulsive, and these tend to produce charge-
density waves: the ground state has a nonuniform charge
density which oscillates with momentum Qiv.

In Sec. XI we use the Inethods developed here to look
for non-Fermi liquids in two dimensions. Regrettably the
results are negative for the case of weakly coupled prob-
lems with a circular Fermi surface.

Section XII contains the summary and outlook. Many
of the remarks made in this preview will be repeated
there, and the reader wiH have a clearer picture of their
significance. Two Appendices deal with special topics.
Coulomb screening and the Kohn-Luttinger e6'ect as they
appear within the RG framework.

Wilson and Kogut, 1974; KadanoF, 1977) or books (Ma,
1976; Itzykson and DrouFe, 1989; Plischke and Berger-
sen, 1989; Zinn-Justin, 1989; Le Bellac, 1991; and Gol-
denfeld, 1992). Readers familiar with the subject are still
urged to skim through this section to get acquainted with
the notation and to refresh their memory, since our ap-
proach to the interacting Fermi problem will rely heavily
on analogy to this problem, for which the RG approach
has been spectacularly successful.

The partition function for this problem is

(37)

where

[dydyg ] g d Ref(k)d Imp(k)
(38)

(39)

J (k) =2[ (cosk, —1)+(cosk —1)

+(cosk, —1)+(cosk, —1)] . (40)

&(P,P*)=——g ~P(n) —P(n+i)~',
n, i

(41)

where n is the vector with integer coordinates used to la-
bel the sides of the hypercubic lattice and i is any of the
eight, unit vectors in the direction of increasing or de-
creasing coordinates. Notice that this action favors the
alignment of neighboring fields, i.e., is ferromagnetic.

Since we are interested in small-k physics, let us here-
after approximate J(k) by its leading term in the Taylor
series and write

(42)

This action is obtained by Fourier transformation of the
following nearest-neighbor interaction in coordinate
space:

II. AN EXAMPLE OF THE RG FROM d=4

The problem chosen to illustrate the RG at work in-
volves a complex scalar field in d =4. The functional in-
tegral can be viewed either as describing the quantum
field theory of a charged scalar field in three space dimen-
sions or as describing the classical statistical mechanics
of a system with one complex field or two real fields at
each point on a lattice. The Ising model which is de-
scribed by a real field is not chosen here, since the fer-
mion problem we shaH study later involves charged Fer-
mi fields. Readers new to the problem should be aware
that this section has the very limited objective of making
the rest of the paper comprehensible to them. For a
deeper introduction to critical phenomena, the reader is
directed to any of the excellent reviews (Fisher, 1974;

d Re/(k)d Img(k)
7T

d P"(k)dP(k)

ski &A
(44)

This is called the Gaussian model. The corresponding
functional integrals are the product of ordinary Gaussian
integrals, one for each k. This makes it possible to ex-
press aH the correlation functions in terms of averages in-
volving a single Gaussian integral. The only auerages
that do not vanish are products of an even number of vari
ables, wherein each P(k) is accompanied by its complex
conjugate. This is because the action and measure are in-
variant under
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P(k)~P(k)e', P*(k)~P'(k)e (45)

f (dz dz* /2~i)zz'e
(zz') =

f (dz dz /2mi)e

The other two bilinears have zero average:

(46)

where 0 can be difFerent for diFerent k's. Thus the only
integral we shall ever need follows from the simple prob-
lem involving just a pair of complex-conjugate variables z
and z

functions. The result follows from the preceding discus-
sion, upon making the change from Kronecker deltas to
Dirac delta functions in Eqs. (51) to take into account the
fact that the action in the Gaussian model is an integral
(over k) rather than a sum over variable labels.

Note that 6 has power-law behavior in momentum
space (1/k ) and hence will do so in coordinate space
(1/r ) Th. us the action of the Gaussian model is critical
and must Bow to a fixed point under the action of the
RG. We shall now see that it is itself a fixed point.

(zz &=(z*z*)=0 (47) A. RG for free field

because the action and measure are invariant under

z~ze', (48)

In the first stage of the RG transformation, we in-
tegrate out P&. Since St=0 here, we see from Eq. (25)
that

dz dz* dx dy
2 ITl

If there are two sets of variables we have

(49)

while the bilinears are not. The reader wishing to verify
the above results is asked to switch to x and y, the real
and imaginary parts of the integration variables, and to
use

(56)

P'(k') =g 'P ((k'/s)

and obtain

(57)

We now carry out the last two steps by rewriting the ac-
tion in terms of

dz&dz I dz2dz2 +
—alzlz& —a&z2z2

—oo 2&l 2&l

2

27Tl 27Tl

S'(P'( ) = —s f P((k'/s)k' P ((k'/s)
d4k'

[k'/ (A (2m)
f 2 d4k'', fs6 (2m. )

(58)

(59)

"—:(ij& .
a;

(50) =S'(P') . (60)

As for the four-point function, the reader may verify
that

If we now make the choice

=S (61)

(z;*z z„z, ) =(lJ)(kl ')'+(l l)(kj) . '
(51) we find that the Gaussian action is the fixed point:

(2m) 5 (k, —k~)
&y*(k, )y(k, ) &

=
1

—:(2n)"5 (ki —k2)G(ki)

(52)

(53)

This result makes sense. It demands that, for the answer
to be nonzero, the fields come in complex-conjugate
pairs. Since this can happen in two ways, the result is a
sum of two terms. The generalization to more variables
and longer strings is obvious.

In view of the above, the reader will not be surprised
that the two point function -in our Gaussian model is

S'(P')=$(P)=S' . (62)

d'k
5S = —f P'(k)r (k)P(k)

)kJ (w (2'�)
(63)

where the coupling function r is assumed to have a Taylor
expansion

r(k)=ro+r2k + (64)

Having found the fixed point, we next classify its pertur-
bations as relevant, irrelevant, or marginal. We shall
consider only perturbations involving an even number of
fields. Let us start with the quadratic case,

—= &»),
and likewise

&P*(k )P'(k, )P(k, )P(k, ) & =(42) &31)+(41)(32) .

(54)

2ro=mo (65)

which rejects the short-range nature of the perturbation
in coordinate space. One often writes

(55)

This is a case of 8'ick's theorem for bosons. For the case
of 2n fields, the answer is a sum over all possible pairings,
each term in the sum being a product of n two-point

and refers to mo as the mass term, since in the quantum
field theory interpretation of the functional integral, add-
ing this term to the Gaussian model yields the quantum
field theory of a particle of mass mo.
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Since this perturbation does not mix slow and fast
modes, all we have to do is replace P by P& everywhere
and reexpress the result in terms of new momenta and
fields. This gives

&S'(P'(k')) = —s I P"(k')r (k'/s)P'(k')
lkl'&A (2n )4

4 g—:—I P"(k )'r ('k )'P ('k )'
lkl'« (2m )

(66)

(67)

where in the 1ast equation we have invoked the definition
of the renormalized coupling r'(k'). By comparison, we
find

r'(k') =s r(k'/s), (68)

which implies that the Taylor coeScients obey

I
ro s ro

I
r2 =r2

2r4 =s '74,

(70)

(71)

and so on. Thus we find that ro is relevant, r2 is margin-

al, and the rest are irrelevant. This is a concrete example
of how in the low-energy physics the coupling function
r(k) reduces to a few coupling constants. (In fact r2
makes no difference, since it can be absorbed by field re-
scaling. ) In quantum field theory, where we send the
cutoff to infinity, all momenta are small compared to the

cutoff and the theory is defined by a few coupling con-
stants, We shall see that the same thing will happen for
the quartic interaction: a coupling function of four
different momenta will reduce to a single coupling con-
stant. We may understand all this as follows. In the
original Brillouin zone, of size 1/a, all these functions are
nontrivial and we need them in their entirety. As we
eliminate modes, we need their behavior in a smaller and
smaller ball near the origin; see Eq. (68). Not surprising-

ly, the function is well described by a few terms in the
Taylor series. This is the picture in fixed or "labora'tory
units. In the RG one uses sliding units t1iat constantly
change to keep the cutoff' (ball size) fixed at A, and the
same phenomenon appears as the rapid shrinkage of
higher coefficients in the Taylor series. (Of course, as we
renormalize, we are not just rewriting the original cou-
pling function in new units; the function itself changes
due to eliminated modes. But it is expected nonetheless
to be smooth in k. This is one of the points emphasized
in the modern RG theory: elimination of modes does not
introduce new singularities into the couplings. As we

shall see, this is because the effect of mode elimination
may be expressed in terms of integrals which are conver-
gent in the infrared and ultraviolet. )

B. Quartic perturbation

Let us now consider the quartic perturbation

1
4 d'k,

5S=—,I p'(k4)p ( k3)p( k2)p( ki)u (k4k3k2ki)(2') 5 (k4+k3 —k2 —ki) g
* 4 * 3 2 1 u 4321 (72)

where the coupling function obeys the symmetry condi-
tion

Next we invoke the cumulant expansion, which relates
the mean of the exponential to the exponential of means:

u (4321)=u (3421)= u (4312) . (73) n
&

[(n)+((n') —(n)')n+ (76)

S'(p & ) So(p & ) 1 5S(p &,$) ) q

So+5S'=—e '
(74)

(75)

In other words, the coupling function is invariant under
the exchange of the first two or last two arguments. Even
if we started with a function that did not have this sym

metry, the invariance of the measure and the rest of the
integrand under this symmetry would automatically pro-
ject out the symmetric part and annihilate the antisym-
metric part. The factorials up front are conventional and
are put there to prevent similar factors from arising in
subsequent calculations.

The renormalization of the quartic interaction is com-
plicated by the fact that, unlike the quartic perturbations,
it mixes up the slow and fast modes. Thus we have to use
the formula

The reader may wish to verify the correctness of this ex-
pansion to the order shown. Using this expansion we
find

ss =&as&+-,'(&ss'& —&ss&')+ . . (77)

Since 5S is linear in u, this is a weak-coupling expansion.
It is now clear what has to be done. Each term in the
series contains some monomials in fast and slow modes.
The former have to be averaged with respect to the
Boltzmann weight So(p& ) by the use of Wick's theorem.
The result of each integration wiH be to give a monomial
in the slow Inodes. When reexpressed in terms of the re-
scaled fields and Inomenta, each will renormalize the cor-
responding coupling. In principle the reader has been
given information to carry out this process. There is,
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however, no need to reinvent the wheel. There is a pro-
cedure involving Feynman diagrams which automates
this process. These rules will not be discussed here since
they may be found, for example, in Secs. III—V of Wilson
and Kogut (1974) or in any good field theory book (Itzyk-
son and Zuber, 1980; Zinn-Justin, 1989). Instead we
shall go over just the first term in the series in some detail

I

and comment on some aspects of the second term.
Readers familiar with Feynman diagrams should note
that, while these diagrams have the same multiplicity and
topology as the field theory diagrams, the momenta being
integrated out are limited to the shell being eliminated,
i.e., A/s & k & A.

The leading term has the form

&5s&=—,', f (p, +p, )4(p, +p, )3(p, +p, ),(p, +p, )~u(4321)4 ) & 3 & & 2 ) & 1
p&

(78)

The sixteen possible monomials fall into four sets: 8 terms with an odd number of fast fields; 1 term with all fast modes;
1 term with all slow modes (called the tree leveL-term); 6 terms with two slow and two fast modes.

We have no interest in the first two sets, the first since it vanishes by symmetry and the second since it makes a con-
stant contribution, independent of P&, to the effective action. Consider next the third set with all slow modes, dis-

tinguished by the fact that it requires no integration (or averaging) over fast modes. This is called the tree level t-erm in
field theory. The tree-level term is obtained from the original perturbation by simply setting P=P&. Rewriting it in

terms of new momenta and fields, we find it leads to the following quartic renormalized interaction:

4 d4k, '

, , f P"(k' )P'*(k' )P'(k' )P'(k', )u (O' Is, . . . , O', Is)(2n. )"5 (k„'+k', —k' —k', ) g . (79)
2&2f ;=i (2m)

u '( k 4, . . . , k ', ) = u ( k 4 /s, . . . , k
&
/s) . (80)

Carrying out the Taylor expansion

u =uo+O(k), (81)

The reader should note that the field rescaling factor s '

has been exactly canceled by rewriting the delta function
and integration measure in terms of new moments. (Note
that the delta function scales oppositely to the momenta. )

It is evident that the renormalized four-point coupling
is given by

we see that the constant term is marginal,

I
Qp =Qp (82)

and the rest are irrelevant. This is why the scalar field

theory in four dimensions is described by a coupling con-
stant and not a coupling function. Hereafter we shall re-
place the coupling function by the coupling constant.
The effect will be irrelevant in the RG sense.

We now pass from the tree-level term to the six terms
that have two slow and two fast modes in them. Of
these, two with P&P& or their conjugates are zero. The
others clearly renormalize the quadratic interaction:

5S2 (P, ) =—,, uo f [P', (4lP', (3)+P; (4)P",(3)][(t,(2)P, (1)+P,(2)P, (1)] (83)

If we now evaluate the averages of the fast modes we shall find that all four terms give the same contribution (which
takes care of the factorials in front), and we end up with

5S~(P, )= —uo f 4 P*,(k)P, (k) f
~k~ &A/s (277) A/s (277)

(84)

5Sq($'(k') ) = uos f — „P'*(k')P'(k')A — 1 ——
~

d k t~ 2 1 1 2&

lkl &A (2m. )" 2 s (2m )
(85)

where in the last step we have used the fact that the area
of a unit sphere in four dimensions is 2m .

Equation (85) gives us the change in ro:

QpA
5ro= (s —1) .

16m
(86)

Let us agree to measure r p in units of the cutoff squared
and drop the A from now on.

Notice that the quartic coupling has renormalized the
quadratic coupling. This is more the rule than the excep-

Qpro=s ra+ ~(1—1/s )
16m

(87)

tion. The quadratic perturbations were special in that
they did not generate new couplings. In view of this, we
must really study the problem in which both rp and up
are present from the outset. This amounts to replacing
the propagator 1/k by 1/(k +ra) in Eq. (84). Howev-

er, this only modifies the result to higher order in the ex-
pansion in rp and up ~ The How to this order is
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dQo =0
Gt

(90)

This completes our analysis of the first term in the cumu-
lant expansion. Let us see briefly how the above results
follow in the diagrammatic approach. First we associate
with each quartic perturbation 5S a four-pronged X as in
Fig. 1(a). The incoming arrows correspond to P and the
outgoing ones to P*. Each prong can stand for a P & or a

Next we do the average over the fast modes. The
prongs corresponding to the matching pairs that give a
nonzero contribution are joined and correspond to the
propagator. The diagrams in Fig. 1 tell us what happens.
The first one corresponds to all slow modes, and there is
nothing to average, i.e., no lines to join. Figure 1(b) cor-
responds to the eight terms with an odd number of fast
lines. These average to zero. Figure 1(c) describes the
case with two fast and two slow lines, with both sets com-
ing in complex-conjugate pairs. The two fast lines are
joined by the averaging, and the line joining them is the
propagator; this corresponds to the renormalization of
the quadratic term as per Eq. (84). This is called the tad
pole diagram. Finally Fig. 1(d) describes the case in
which all lines are fast and come in pairs. We now have
two propagators. We did not consider this above, since it
is a constant independent of P &.

I
Qo =Do

If we take s =1+t, with t infinitesimal, we find the
differential equations

d~o uo=2P'o +
dt Sm

Notice that although all terms are of order uo, they
have very different topologies. The tree-level term has no
loops or sum over fast modes. Figure 1(c) has one loop
and Figure 1(d) has two loops. ¹wthe correct way to or
ganize the cumulant expansion is by counting loops. The
reason is best seen in the language of quantum field

theory, where the action has the prefactor 1/A and the
number of loops measures the powers of A. In critical
phenomena this fact becomes very clear when one works
in 4—e dimensions (Wilson and Fisher, 1972). One finds
then that the loop expansion is an expansion in c. The
reader who wants to know more should consult the refer-
ences given at the beginning of this section.

C. The one-loop graphs (ZS, ZS', BCS)

At zero loops, or tree level, the equations are

dI'
7 =S r ~ =2T (91)

dQuo=u =0
dt

(92)

Equations (89)—(90) are halfway between zero and one
loop: they are good to one loop for ro and to tree level

for uo. To be consistent, we must evaluate the How of uo
to one loop also, which means going to second order in

u o via the next term in the cumulant expansion, namely,

Here we draw two crosses and do the usual pairing. All
diagrams in which no line runs from one cross to the oth-
er, i.e., all disconnected diagrams, may be dropped since
they get canceled by —( (6S) & . Of the rest, the only

graphs that affect u are shown in Fig. 2 and correspond
to the following analytical expression:

(a)

+Q

(c)
28 BCS

FIG. 1. Four types of diagrams that appear in the cumulant ex-

pansion to lowest order, corresponding to the 2 =16 choices
for the legs on the vertex to be fast (E) or slow (S). (a) corre-
sponds to all slow modes, denoted by S. This a tree graph with

no integration over fast (F) modes. {b) typifies graphs that van-

ish, since they involve an odd number of fast lines. (c) is the
tadpole graph. Here two fast lines have been joined to form a
loop. This term with two external slow lines, will renormalize
the quadratic term. (d) is a two-loop graph. It comes from a
vertex with all fast lines upon joining them in pairs. Its contri-
bution is a constant as far as the slow modes are concerned.

FIG. 2. The three one-loop graphs that renormalize the quartic
coupling of the scalar field. The names ZS, ZS', and BCS are
used to label the topology of the graphs and do not imply the
corresponding phenomena (like BCS superconductivity). In (a)
lines 1 and 3 meet at a vertex, in (b) 1 and 4 meet, while in the
last lines 1 and 2 meet. All loop momenta lie in the shell being
eliminated. The external momenta can be chosen to vanish if
we want the renormalization of the marginal part of the quartic
coupling. When this choice is made, both propagators have the
same momentum. This is true for all three graphs.
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«(2') k ~k —k3/s+k', /s~ «(2m)" k ~k k—4/s+kI/s~
ZS graph ZS' graph

1 I dk 1

2 "«(2') k
~

—k+k ~/s+k', /s~

BCS graph

(93)

Several remarks are in order. First note that, even
though we started with a constant u =up, the renormal-
ized coupling has acquired momentum dependence. If
we expand the renormalized coupling in a Taylor series,
keeping just the lowest term, we shall get the renormal-
ized uo. This is what we shall do, and ignore the ir-
relevant higher terms in the series. This in turn means
that we can set a11 external momenta to zero. Before so
doing, let us look at the three one-loop diagrams. Since
we need to refer to them individually many times, we
need a system of nomenclature. The one used here is by
no means standard. Consider the first diagram, labeled
ZS, which stands for "zero sound. " In this diagram lines
labeled 1 and 3 meet at a vertex. In Fermi-liquid theory
a graph with the same topology occurs and is very impor-
tant when Q= —k3+k& is small. The physics of the
present problem could not be more different: the lines
here stand for bosons and, unlike in Fermi-liquid theory,
the internal loop moxnenta are restricted to lie at the
cutoff rather than take all values within the cutoff. In the
second ZS' diagram, lines 1 and 4 meet at a vertex. Usu-
ally when Q is small, Q'= —k4+k, is large. This dia-
graxn is not very ixnportant in Fermi-liquid theory and
does not have a name. However, in problems with nest-
ing, this diagram can be important if Q' is the nesting
momentum. The BCS diagraxn with lines 1 and 2 meet-
ing at a vertex has a topology like one that will appear
later in our description of the superconducting instabili-
ty. The reader is once again cautioned that the names of
these diagrams are based solely on the topology and do
not generally imply the corresponding physics.

Readers familiar with Feynman diagraxns could have
easily written them down. They must, however, pay at-
tention to the symbol Jd~, which reminds us that all

internal propagator momenta (corresponding to integrat-
ed fast modes) are summed only over the modes being el-
iminated, which we take to be a she11 of thickness dA at
the cutoff.

Readers new to the subject are strongly urged to work
out the combinatorics and derive this result. They will
then see why the factorials were included in the definition
of the perturbation and why an extra factor of —,

' appears
in the BCS diagrams.

A11 readers should note that the one-loop correction
has a minus sign in front of it, rejecting the decrease of
the interaction strength as we go to the infrared modes.
(Although the one-loop graphs have a positive value,
they reduce uo, since the latter is defined to occur in the

action with a negative sign; see Eq. (79).
Let us now set all external momenta to zero, since we

are interested in just up. We are now assured that if the
loop momentum k lies in dA, so does the other momen-
tum which either equals k in the ZS and ZS' diagrams, or
equals —k in the BCS case. All the integrals are now
equal, and we get

Suo I k dkdQuo=uo
2 dA (2m)4k4

(94)

duo
dt

5uo

16m
(95)

where in the last step we have recalled

[dA[
A

and the area of a unit sphere in four dimensions (2' ).
To one-loop accuracy we have the following Bow:

dro
2ro+auo

dt
(97)

duo = —bu (),dt

where a and b are positive constants whose precise values
we are no 1onger interested in.

We shall now analyze these equations. First observe
that, besides the Gaussian 6xed point at the origin, there
are no other points where both derivatives vanish. Next,
the equation for up is readily integrated to give

u (0)
1+bu0(0)t

(99)

This means that if we start with a positive coupling uo(0)
and renormalize, the effective coupling renormalizes to
zero as 1/t =1/[ln(AO/A)]. One says uo is marginally
irrelevant. In the case of bosons a negative up is unphysi-
cal, since the functional integral over fields will then
diverge for large fields. In some ferxnion problems one
gets the same equation, and negative uo is allowed. In
that case the coupling is marginally relevant and grows.
The above equation, derived for weak coupling, will soon
have to be abandoned, in contrast to the positive uo case,
where it gets mare and more reliable at larger and larger
t. Notice that the fate of marginal couplings (unlike
relevant or irrelevant couplings) depends on the sign.

The statement that uo is marginally irrelevant at the
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Gaussian fixed point needs to be understood properly. In
particular, it does not mean that if we add a small posi-
tive uo to the Cxaussian fixed point, we shall renormalize
back to the gaussian fixed point. This is because the
small uo will generate an ro, and that will quickly grow
under renormalization. What is true is that ultimately uo
will decrease to zero, but ro can be large. In fact, to
achieve a How to the gaussian fixed point, we must start
with a particular combination of ro and uo which de-
scribes the critical surface. All this comes out of Eq. (97)
for ro, which is integrated to give

7 ~ aup(0)
rp(t)=e ' rp(0)+ I e ' dt' (100)

aup(0)
rp(0)+ J e ' dt'=0,

o 1+buo(0)t
which, for very small up(0), translates to

(101)

Let us consider large t. Typically ro will flow to infinity
exponentially fast due to the exponential prefactor, un-
less we choose ro such that the object in brackets van-
ishes:

FIG. 3. One-loop flow of the quadratic (ro} and quartic (uo)
couplings in the scalar field in d =4. Notice that, although uo
is irrelevant, a point on the uo axis does not Row to the Gauss-
ian fixed point at the origin. For this to happen, we must tune
the parameters to lie on the critical surface, shown by the arrow
Aowing into the origin.

the ro —uo plane. Any point on this line approaches the
origin as follows:

aup(0)
rp(0) =— (102) uo(t) =a/t,

aup(0)
(103)

which defines the critical surface (a line in this case) in

TABLE II. Fixed-point couplings and Aows: a summary.

Comments and relationships

(Q*(k )P(k ))=—(21)
G(k) = 1/k
Wick's Theorem

(4321)= (42)(31)+(41)(32)
Sp= —f [d4k/(2~)']P'(k)k'Q(k)

d k /(2~) *(k)~ ( k) ( k)
0

r(k)=r +r k +
5S = —(1/2!2!)j P (4)P (3)P(2)P(1)u(4321)
gg (432 $ ) = gg 0 +o ( k )

RG action

Cumulant expansion
Tree graphs
Loop graphs

Connected graphs
Tree-level RG
RG Aow to one loop

Complex scalar field and its conjugate.
Two-point function.
Propagator. (P*(k)P(k') ) =(2m) 5"(k —k')G(k).
Gives N-point functions in terms of 2-point function

in Gaussian model.
Four-point function evaluated using Wick's theorem.
G-aussian model action with cutoff A.

Quadratic perturbation.

Quadratic coupling function. '
Quartic perturbation in schematic form.

Quartic coupling function. u (4321)=u (3421)=u (4312).
Reduce A by s by integrating out fast modes.
Rewrite result in terms of P'(k')=s P(k), where k'=sk.
Field rescaling factors defined by P'(k')=gP(k).
Chosen to make Gaussian action the fixed point.

( en ) —e!n!+(!n ) —(o! )/2+

Graphs with no closed loops.
Graphs in which there are closed loops.
One works to a given number of loops.
Graphs in which there are no disjoint parts.
Calculation with zero loops in Feynman diagrams. '
dro/dt =2k'o+QQo and. duo/dt = —buo, a, b &0.

'Only ro is relevant; r2 is marginal, and the rest are irrelevant.
Only uo is marginal; higher Taylor coe%cients are irrelevant.

'Reduced to ignoring fast modes and reexpressing the perturbation in terms of new rnornenta and fields.

Rev. Mod. Phys. , Vol. 66, No. 1, January 1994



R. Shankar: RG approach to interacting fermions 143

Figure 3 depicts the state of afFairs. Table II summarizes
the results for the Gaussian fixed point and its leading
perturbations.

The analysis of couplings with more powers of the
fields is similar. All of them are irrelevant even at the
tree level, and higher loops cannot change that. For ex-
ample, the constant part of the (P*P) coupling falls like
1/$2

D. The Seld theory approach to the P function

%'e just derived the fiows in the modern approach,
which is intuitively very appealing and consists of in-
tegrating out fast modes. We shall now rederive the
one-loop Bow of uo the old way, where the aim is to ban-
ish all cutoff dependence from physical quantities. The
two approaches will then be compared and contrasted.
The reason we even bring up the field theory method is
that at higher loops it is more tractable than the modern

A d4kS = —f P*(k)(k +r )P(k) .
o (2~)' (105)

Consider now (suppressing the momentum integration
measure for variables labeled 5 —8 in the quartic cou-
pling)

approach. In the appendices we perform two calcula-
tions involving interacting fermions for which the field
theory method proves more convenient. The present dis-
cussion will be rather succinct, and readers new to dia-
grams will have to work that much harder.

Consider a field theory with two coupling constants: a
mass term ro, a quartic coupling uo, and a cutoff A. The
physical quantity we wish to hold fixed is I (k4 k, ),
called the irreducible four poin-t uertex or four poin-t func-
tion. (Arrows on vectors will be suppressed. ) It is
defined as follows. Let us define the action of a massive
free field So,

—(P*(k )P*(k )P(k, )P(k, ))

f [dP~dP][ —P~(k4)P~(k3)P(kz)P(ki )]e oexp[ —(uo/2!2!) f P~(ks)P" (k7)P(k6)P(k~ )]

f [dP dP]e exp[ —(uo/2!2!) f P*(ks)P*(k7)P(k6)P(k&)]

(( p*(k )p4*—(k )p3(k )p2(k& ))exp[ —(uo/2!2!) f p*(k8)p*(k7)p(k6)p(k5)])0

(exp[ —(uo/2!2!) f P*(k )Ps*(k )P7(k )P6(k )]5) 0

(106)

where, in going to the last equation, we have multiplied
and divided by the partition function with action So, and
( )0 stands for averages with respect to this measure.
Notice that all momentum integrals go from 0 to A. This
is because we are not eliminating modes, we are carrying
out a calculation of some correlation function in a given
theory. We now calculate the answer in a power series in
uo by expanding the exponential. We then throw out aB
disconnected diagrams (diagrams in which some lines are
not connected to the others) and delete the four propaga-
tors that link the external fields (whose momenta are la-
beled 1 —4) to the vertices that come from the exponen-
tial, and the 6 function for overall momentuxn conserva-
tion. This defines I (4321), which is the object we want
to be cutofF independent. In field theory, I (4321) is the
scattering amplitude for the process in which 1+2
—+3+4, and is a measure of the interaction between par-
ticles. In the Gaussian model it will vanish, since all dia-
grams will be disconnected, the disconnected diagrams
describing the independent propagation of noninteracting
particles.

Let us now calculate I to order uo.
If we expand the exponential in the numerator to erst

order, we get a connected piece in which the external
fields numbered 1 to 4 get paired with the quartic interac-

I

tion fields numbered 5 to 8. The factorials get neutral-
ized by the number of ways to pair, the propagators get
dropped, and the net result is that to this order

1(4321)=uo . (107)

(The denominator is set equal to unity since expanding it
to order uo will change the answer to order uo. ) The
reader new to this subject is very strongly urged to carry
out the steps using Wick's theorem and paying attention
to the combinatorics. Since to lowest order in perturba-
tion theory I (4321)=u (4321), we shall sometimes refer
to u as the amplitude for scattering. To be exact, it is
just a coupling constant in the theory, which equals I in
the weak-coupling limit. It does, however, have all the
(anti)symmetries of I" under the exchange of momentum
labels of the external (fermions) bosons.

The above answer for I is clearly cutoff independent,
and one may choose uo to match scattering experiments.
Notice that it is also independent of external momenta.

To next order we must expand the numerator to order
u o and the denominator to order uo (since I starts out at
order uo in the numerator. ) The Feynman diagrams are
exactly as before except for the fact that all loop rnomen-
ta go up to the cutoff. The result is
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~ d4k A d4k
I (4321)=uo —u o +

o (2 )' (k'+„)(~h+k, —k, ~'+, ) o (P )' (k'+, )(~k+k, k—, ~'+, )

1 p~ d4k 1

Z "o (Z~)' (k'+r, )(~ —k+k, +k, ~'+r, )
(108)

dup 50= + u
dt

(110)

from which we find

dup
/3(uo)= -= — uo .

16~'

Two points need clarification here. First: why did we
not take the implicit t derivative of the up term in Eq.
(109)'? The answer is that P is of second order in the cou-
pling, and this will give a third-order term. Next one
may wonder about I with all k's not equal to zero. Will
they also be cutoff independent if we choose uo(A) as
above to make I (0000) cutoff independent? The answer
is yes. If we expand the above integrals in the external
momenta, the integrals will become convergent and
cutofF'independent if we send the cutoff to infinity. Thus
the external momenta must be much smaller than the
cutoff for the field theory renormalization to work. (If we
want the physics to be cutofF' independent for external
momenta comparable to A, we shall need to introduce
new couplings besides up ~ )

In the same way one can derive the Bow for I'p by
demanding that the pole in the full propagator (the two-
point function in the theory with up%0) have a certain
cutoff-independent location.

Suppose we add just the quartic coupling but no mass
term rp to the Gaussian model. Then we shall find that
I (0000) has an infrared logarithmic divergence [sending
ro to zero in Eq. (109)j. This is a physical divergence in a
massless theory, analogous to the infinite cross section
for Rutherford scattering in electrodynamics. However
the P function, which involves the derivative with respect
to the upper limit of momentum integration, is still well
defined and has the same value quoted above. In the
modern approach, even if rp=0, we shall never see any
infrared divergence in the calculation of the P function,
since the loop momentum will now go from A/s to A.
This was the meaning of the earlier statement that mode
elimination does not produce singularities in the parame-
ters that appear in the effective action because the flow is
given by integrals that are well behaved at both ends.

Although the two methods gave the same answer, this

Let us now demand that I (0000) be independent of
cutoff as the latter goes to infinity. In this limit we find

5 AI (0000)=uo —uo ln
32m ~p

Let us now act on both sides with d /dt = —Ad/d A and
demand thai they vanish. This gives us

I

is a fact that needs some explanation, since the methods
are very different. In the modern approach a change in
cutoff is compensated by a change in an infinite number
of couplings, while in the latter one tries to compensate
by changing just rp and up. How can this be possible?
The answer is that in the field theory approach one al-
ways sends the cutoff to infinity (or equivalently looks at
correlation functions with external momenta very small
compared to the cutoIF), while in the modern approach
we can ask for quantities involving momenta right up to
the cutoff. If in the modern approach we limit ourselves
to momenta much smaller than the cutoff, we could trade
the complicated Hamiltonian for a simpler one at low
momenta, dominated by a few marginal and relevant
couplings.

At a graphical level there are differences in the range
of integration in the loop graphs that contribute to the
Aow. In the modern approach we demand that each
internal line lie in the shell of width dA near the cutoff.
In the field theory approach, where we take the A deriva-
tive of momentum integrals going up to A, the answer is
a sum of terms in which one of the internal propagator
momenta is at the cutoff and the others go up to the
cutoff. In our gow equation for uo this difference was
suppressed. This was because we argued that only the
lowest term in the Taylor series for the coupling was
marginal and the rest were irrelevant, allowing us to set
all external mornenta equal to zero. This meant that if
one line in the loop was at the cutoff, the other being ei-
ther equal to it (ZS and ZS') or opposite to it (BCS) also
had to be at the cutoff. Thus both lines were at the cutoQ
in both approaches to the flow. Had we been interested in
the renormalization of irrelevant operators, we would
have had to consider nonzero external momenta, and the
two schemes would have yielded different answers.

Notice that the two schemes do not have to give the
same flows, they just have to give the same physics (at
momenta much smaller than the cutofI). The bookkeep-
ing can be very different. Consider a more general graph
in the field theory approach, with many internal lines and
four external lines, so that it contributes to the renormal-
ization of the four-point coupling. Some of these internal
momenta may be at the cutoff and the rest below it. Such
a graph is forbidden in the modern approach. The effect
of these graphs (with slow and fast momenta in the loops)
will appear as follows in the modern approach. First all
internal lines (propagators) with slow momenta are
snipped, and the dangling lines are made into external
lines. This graph is then used to renormalize a higher
point function with that many more external lines, say
six lines in all if two new external lines were produced by
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snipping an internal line. Suppose we now stop renor-
malizing and compute an object, say the four-point ver-
tex of slow modes, using these couplings. The answer
will be given as integrals over slow rnomenta. The six-
point coupling that was generated by snipping will con-
tribute to the four-point function when the two lines that
got snipped get joined again. In the field theory ap-
proach such a contribution would already be sitting in-
side the efFective four-point coupling which got renor-
malized by graphs with slow and fast lines in the loop.

ill. PATH INTEG RALS FOR FERMIONS

In this section the reader is introduced to the path-
integral representation of fermion problems. Some ele-
mentary problems involving dynamics and therrno-
dynarnics will first be solved by operator methods and
then the same results will be rederived using the path-
integral methods reviewed here. For a more detailed
treatment, the reader is referred to the standard refer-
ences (Berezin, 1966; Schwinger, 1970; Negele and Or-
land, 1988; Itzykson and Drouffe, 1989).

H, =Q,% ~%, (123)

whose eigenvalues are clearly 0 and 00. We shall work
not with Ho but with

H =Ho —pN, (124)

where p is the chemica/ potentiaL For the oscillator,
since

FE =(Qo —p)%t%, (125)

this merely amounts to measuring all energies relative to
the chemical potential.

Let us now turn to thermodynamics. The grand parti-
tion function is

II+'Io& II'= &olee'lo& = &ol(1 —e'e) fo& = &olo& =1 .

(122)

It can be similarly shown that Vl 1 ) = lo) after first veri-
fying that Vl 1 ) is not a null vector, that it has unit norm.

There are no other vectors in the Hilbert space: any
attempts to produce more states are thwarted by
%'= % ~'=0.

Consider now a Fermi oscillator with Hamiltonian

A. The fermionic oscillator: dynamics
and thermodynamics via operators

—p(&0 —iMX) pg ( p) (126)

Ie', ej =e'e+ee'=1,
[e,ej = je', etj =o .

Note that the last equation tells us

(112)

(113)

Let V and 4'~ be two ferrnionic operators obeying an-
ticommutation relations:

where the trace is over any complete set of eigenstates, P
is the inverse temperature 1/T, and A is the free energy.
The latter is clearly a function of p and I3, and its
difFerential is

dA = —&N )d}uS dT,
where S is the entropy and & N ) stands for the average
particle number. Let us verify that

This equation will be used all the time without explicit
warning. The number operator

(115)

obeys

as follows:

0 lnZ

(128)

N =O' 'I'0' %=%' (1—% %)'P=+t+=N . (116) 1 TrP¹ (130)
Thus the eigenvalues of N can only be 0 or 1. The corre-
sponding normalized eigenstates obey =—&PN&=&N& . (131)

Nlo& =olo&,

We shall now prove that

(119)

A (p, P)=E(S, &N) ) ST —p&N) . —
Thus E must equal & Ho ). This is indeed so:

(132)

The free energy A is the double Legendre transform of
the internal energy E (S, & N ) ):

(120)

As for the first,

N+'lo) =e'ee'I» =+'(I —+'+) I» =+'lo), (121)

which shows that %t I 0 ) has N = 1. Its norm is unity:

(133)

8The eigenvalues of II are T =0 free energies rather than ener-
gies. We shall, however, often refer to H as the Hamiltonian.
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BAp BA
Bp B(M

8( —lnZ) ~ B lnZ'

aP P (3p,

=(a, ),

(134)

(135)

(136)

(137)

operators we can form Heisenberg operators:

%(t)=e' '%(0)e 'H'=%(0)e

+ t(r) —e IHt)lIt(0)e IHt —ggt(0) 0

(143}

U(~) =e (145)

We shall study Imaginary-time quantum mechanics, for
which the time evolution operator is

a&+& ' (138)

where the steps leading to the last line are left to the
reader. It also follows from the definition of the I.egen-
dre transform that

and in which

+(~)=%(0)e

%t(r) =%' (0)e

(146)

(147)

—P( Ao —p) (139)

from which it follows that

A = ——ln(1+e ' ),1 —p(QO —p)

so that (M is the (minimum) energy needed to add an extra
particle.

The partition function of the Fermi oscillator is easily
found (by doing the trace over eigenstates of N) to be

Note that, despite the notation, %(r) and 4 (r) are not
adjoints except at r=0 owing to the fact that U(r) is not
unitary.

Readers not familiar with imaginary-time quantum
mechanics merely have to observe how the functional
formalism reproduces the results of the operator formal-
ism. They may also wish to learn about imaginary-time
quantum mechanics using this simple example.

Next consider the time-ordering symbol T whose action
on a pair of fermionic Heisenberg operators is

which in turn implies

(x) =
P(A —p) (141)

T(+(r)+ (0))=+(r)%t(0), r)0,
= —Vt(0)%(7), ~&0 .

Note that

(148)

(149)

We shall be interested in the limit P~ oo, in which case

(K) =8(p —Qo),
K = lim —T(%(r)%"(0)) . (150)

which means the fermion is present if its energy is nega-
tive (relative to the chemical potential) and absent if it is
positive. This is to be expected, since at T =0,
A =K —p, (N ), and minimizing the free energy is the
same as minimizing &M &.

We now consider the dynamics. From the Schrodinger

G(r) =
& T(~(r)~'(0)) &, (151)

where ( ) denotes the average with respect to Z'. For our
problem we find

In field theory and many-body physics one is interested in
the Careen's function,

& 0I T(+(r)+'(») I0 &+ & 1I T(+(r)+'(0) )1»e
—P(Qo —p) (152)

—(Ao p)7. ——(Ao —p)(r+p)

—P(Q —p, )1+e
(153)

In the zero-temperature limit this reduces to

G(r)=8(r)e ' ", (L(, &Qo (154)
G((o)= 1

Qp P 1 CO
(158)

—(Qo —p)r= —8( —r)e, (L(, )Qo .

Let us define the pair of transforms

(155)
independent of which of Qo or p, is greater.

Let us calculate (N ) using Eq. (1SO) and the above
Greeri's function:

G(co)= I G(r)e'"'dr,

G(r)= I G(co)e dco
oo 2m

We find that

(157) .

&W &= —G(0-)
+

dm e'
27T l co p Qp

= 8((M —Ao),

(159)

(160)
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where in the last step we have argued that, unless the 0
function is satisfied, the contour may be closed in the
upper half plane (as dictated by the exponential) which is
free of singularities.

Consider finally a toy "Hubbard model" with two fer-
mions and a repulsive interaction U,

= 1 Qo &p & Qo+ U

=2 p)QO+U .

(168)

(169)

Table III suinmarizes results from this subsection. In the
next subsection they will be rederived using path in-
tegrals.

MD=Do(%)%(+%'24g)+ U%')'Pg'kg% (162)

where

=QoN+ N(N——1)U
2

(163)
B. Fermion coherent states

In this section we shall be using Grassmann numbers.
Here are the rules for manipulating them:

% =N, +N2=%~%, +%~2%2 . (164)

—P(Qp —P) —P(2(Qp —P)+ U)Z =1+2e +e (165)

where the factor of 2 in the middle term reQects the de-
generacy of the one-fermion states. From the above, we
obtain by diQ'erentiation

(Readers wishing to ftll in the missing steps should note
that they have to use K& =X& and likewise for %2. In
any event, they should check the correctness of the final
result for various choices of N& and N2. ) Each fermion
has the usual anticommutator of unity with its adjoint
and anticommutes with everything else including all
members of the other set.

By summing over the eigenstates of %& and N2, we ob-
tain

All Cxrassmann numbers anticornmute with each other
and with all fermionic operators.

As a result of the above, the square of any Grassmann
number is zero and the product of an even number of
Grassmann numbers wi11 commute with anything. Like-
wise any Grassmann number will commute with an even
number of fermion operators such as N =%~%. When a
Grassmann number is taken through a ket or bra con-
taining an even (odd) number of fermions it will not (will)
change sign.

One should not associate a numerical value with
Cxrassmann nurgbers. There are no large or small
Grassmann numbers. All you will need are the above
definitions.

Consider the state

(N) = ltm —P(~ —np) P() —n,,—U)
e +2+e

=0 p&Qo

(166)

(167)

(170)

where g is a Crrassmann number. This state, called a fer-
mion coherent state, is an eigenstate of 4' with eigenvalue

TABLE III. Summary of the fermion oscillators.

Symbol

10)

H, =Qp% 0
p
P= 1/T
H =Mp —~N

(HO pN)Z =Tre
( 0 ) =TrDe /Tre

"Hubbard model"

T(+(~)+'(O) )
G(~)—G(O )

G(~)

Comments or definitions

Fermion destruction and creation operators.
I%',%'] =4 '@+4'4 =1,%' =%' =0.
Number operator. N=O or 1.
State with N=O.
State with N=1.
Oscillator Hamiltonian.
Chemical potential.
Inverse temperature.
Free-energy operator. Also called Hamiltonian.
Grand partition function Q.
Average of operator Q.
Free energy. Defined by Z =e
HQ =Qpx + ( U/2)%(x 1 )
Average occupation. '
0(~)+(~)+'(O)—0( —~)4 '(O)4(~).
( T(%'(r)%' (0))). The Careen's function.

f G(r)e' 'dr= 1/(Qo p ice)——

j G(co)e ' der/2'

'At P~ ~ this becomes 8(p, —Qo) for single oscillator, g(p —Qo) +8(p —Qo —U) for "Hubbard model. "
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as is readily verified:

elq& =elo& —e@l 1 &

=0+yell &

(171)

(172)

(173)

(174)

(185)

Note that if the differentials or variables come in any oth-
er order there can be a change of sign. For example, we
shall also invoke the result

(186)

Let us now consider some Gaussian integrals. You are
urged to show the following:

where we have appealed to the fact that g anticommutes
with 4 and that f =0. If we act on both sides of Eq.
(171) with 4, the left vanishes due to %2=0 and the right
due to g =0.

It may be similarly verified that

where

& @I= «I —
& lit= &ol+@& ll (177)

(181)

Please note two points. First, the coherent-state vectors
are not from the usual complex vector space, since they
are linear combinations with Grassmann coefBcients.
Second, g is not in any sense the complex conjugate of f,
and ( 1( I is not the adjoint of

I g ) . You should therefore
be prepared to see a change of Grassmann variables in
which g and @ undergo totally unrelated transforma-
tions.

The inner product of two coherent states is

&ply&=(&ol —
& lip)(lo& —qll &)

=&olo&+ & Ilyql I &

(180)

f e '&~dpdp=a,

f e ~ ~[dgdg]=detM,

(187)

(188)

(190)

where in the second formula M is a 2X2 matrix, g is a
column vector with entries lij& and t/i2, g is a column
vector with entries g& and 1(jz, and [df d g]
=dg, dg, dgzdg2. This result is true for matrices of any
size. To prove these, simply expand the exponential and
do the integrals.

Consider next the "averages" over the Gaussian mea-
sure:

fA e'~'dPd4

f e ~~dpdp

The proof is straightforward and left as an exercise.
Consider now two sets of Cxrassmann variables (labeled

1 and 2). The reader should verify that

Any function of a Grassmann variable can be expanded
as follows: We have a Wick's theorem for fermions:

(191)

F(g) =Fo+F,p, (182)

fgdg=l (183)

there being no higher powers possible.
We shall now define integrals over Grassrnann num-

bers. These have no geometric significance and are for-
mally defined. We just have to know how to integrate 1

and g, since that takes care of all possible functions.
Here is the list of integrals:

il ~jk

ai aj a; a.

(192)

(194)

f 1 dg=0 . (184)

That is it! As you can see, selling tables of Grassmann
integrals is no way to make a living. There are no limits
on these integrals. Integration is assumed to be a linear
operation. The difFerential d@ is also a Grassmann num-
ber. Thus f

ding=

—1. The integrals for f or any other
Grassrnann variable are identical. A result we shall use
often is this:

The reader not familiar with such objects is urged strong-
ly to prove this simple case of Wick's theorem for fer-
rnions. Note the strong similarities to the bosonic case.
Qnce again we find that the answer is zero unless each
Grassrnann is accompanied by its partner. The answer is
once again a sum over all possible pairings. The only
difference comes from the minus signs, which are deter-
mined as follows. We first move each variable until it is
next to its partner. In the example above, if j =k and
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fa@d@=a . {195)

i =l, the middle two Grassmanns are already next to
each other and the ends can be brought together without
any minus signs, since they are separated by a pair of
Cxrassmanns. This is why the first term is positive in Eq.
(194). On the other hand, if i =k and j = l, we must
move j through k to meet its mate, and this produces a
minus sign. When more than four variables are aver-
aged, an obvious generalization hoMs: pair the fields in
all possible ways and put in a minus sign for every time a
variable crosses another. Although we did not see it
here, the following thing can happen and does happen in
a calculation that comes later in this section: the variable
and its partner are next to each other, but in the wrong
order, with P to the left of P. In this case an extra minus
sign is needed to rearrange these.

Finally note that Jacobians behave counterintuitively
for Cxrassmann variables. Consider

fXJ(g/X)dX=a . (197)

J(@/X)=a, (198)

while one might have expected the inverse. As an appli-
cation of this result, the reader may wish to rederive Eq.
(187) by making the change of variables from P to
X=a@. ¹tethat there is no need to transform g at the
same time.

We need two more results before we can write down
the path integral. The first is the resolution of the identi-
ty

I =f Iq&&@le ~~dydy. (199)

Assuming J is a constant we pull it out of the integral
(with no minus signs, since it involves an even number of
Grassmann variables) and use the fact that the integral of
g is unity to obtain

In terms of

(196)

In the following proof of this result we shall use all the
previously described properties and drop terms that are
not going to survive integration. (Recall that only
le= —@p has a nonzero integral. )

f l@&&@Ie "dydee= f l@&&@I(1 @g—)dfd@
=f (lo& —@11&)(&ol —&

Iles)(1

A)dyd—q
=f (Io&&ol+@Ii & & lip)(1 q@)d@dy-

= 10&&01f ( yq)dq—d@+ I
1 && ll fPgdgdg

(200)

(203)

(204)

Trn= f & PILI, I&&e— (205)

The proof is very much like the one just given and is left
to the reader.

C. The fermionic path integral

The final result we need is that for any bosonic operator
(an operator made of an even number of Fermi operators)

stand to the left and all the destruction operators to the
right. Luckily we can write down the answer by inspec-
tion:

e =1+(e —1)% %', (208)

whose correctness we can verify by considering the two
possible values of O' V. (Alternatively we could expand
the exponential and use the fact that K =K for any
nonzero k.) Now we may write

Consider the partition function for a single oscillator:
—P(Ao —p)% 4'

Z =Tre (206)

(207)

'You cannot simply replace Vt and % by —f and @, re-
spectively, in the exponential. This is because when we
expand out the exponential not all the W's will be acting
to the right on their eigenstates and neither will all %' 's

be acting to the left on their eigenstates. (Remember that
we are dealing with operators, not Grassrnann numbers.
The exponential will have an infinite number of terms in
its expansion. ) We need to convert the exponential to its
normal ordered form, in -which all the creation operators

Z= f & qll+(—e ""' "' l)~'+Iy&e ~—~dydee (209)

=f & ply&[1+—(e ' 1)( PP)]—e ~"—dgdg

= f [1—(e ' " —1)gg)e &&d @d g (211)

—p(QO —p)=1+e (212)

as expected. %'hile this is the right answer, this is not the
path-integra1 approach. As for the latter, the procedure
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is this. Consider e
—gH lim (e —(P/N)H)N

N~ oo
(214)

Z =Tre (213)

where H is a normal-ordered operator H(+t, +). We
write

(1—sH) . . (1—EH), e. =P/S, {215)
T

times

and introduce the resolution of the identity 2V —1 times:

(216)

Now we may legitimately make the replacement

&1T,.+, ll —EH(et, % )l~/, & =&@,+, ll —EH{~/, ~, , ~/J, )lt/J, &

&+i& —'II&&;+i & &=e ' 'e

where in the last step we are anticipating the limit of
infinitesimal s. Let us now define an additional pair of
variables (not to be integrated over),

I

frequencies. ) Notice also that we are replacing

H (g;+ (,@; ) =H(g(r+ e), P(~) )

1CO 1

g(r) =g P(~), (223)

by H(g(r), P(r)) in the same spirit.
Now turn to the Fourier expansions alluded to above.

Let us write

41@
——

@1 (218) 1' T

@(r)=g @(~), (224)

The first of these equations allows us to replace the left-
rnost bra in Eqs. (216), &

—
1(&l, by & fi&l. The reason for

introducing @~ will follow soon.
Putting together all the factors (including the overlap

of coherent states), we end up with

where the allowed frequencies are chosen to satisfy the
antisymmetric boundary conditions in Eqs. (218) and
(219). Thus

N —1Ie' e e (220)
(2n +1)~

(225)

N —1

exp H(4;+i 0;—) «0;d4;
where n is an integer. Note that we have chosen the
Fourier expansions as if 1( and @ were complex conju-
gates, which they are not. This choice, however, makes
the calculations easy.

The inverse transfarmations are
I y(~x sos~ n, +p)@(~)d~— —

Q (222)

where the last step needs some explanation. With all the
factors of c in place we do seem to get the continuum ex-
pression in the last formula. However, the notion of re-
placing di6'erences by derivatives is purely symbolic for
Grassmann variables. There is na sense in which
@,+,—@,. is small; in fact, the objects have no numerical
values. %'hat this really means here is the following. In
a while we shall trade 1/j(r) for 1((co) related by Fourier
transformation. At that stage we shall replace —8/B~ by
ice, while the exact answer is e'"—1. If we do not make
this replacement, the Cxrassmann integral, when evalu-
ated in terms of ordinary numbers, will give exact results
for anything one wants to calculate, say the free energy.
%'ith this approximation, only quantities insensitive to
high frequencies will be given correctly. The free energy
will come out wrong, but the correlation functions wi11 be
correctly reproduced. (This is because the latter are
given by derivatives of the free energy, and these deriva-
tives make the integrals sufficiently insensitive to high

f(co)= f g(r)e " dr,
0

@(co)=f @(r)e " dr,
0

(226)

(227)

where we use the orthogonality property

f e "e ™Tdr= . =p5
i(~n ~m )

(228)

Z =f exp f @(co)(ice Qo+p)g(co)—

X [d@(co)d@(co)] . (229)

Performing the Fourier transforms in the action and
changing the functional integration variables to g(co) and
t/r(co) (the Jacobian is unity) and going to the limit P~ co,
which converts sums over discrete frequencies ta in-
tegrals aver a continuous m, we end up with
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Although P has disappeared from the picture, it uphill ap-
pear as 2~5(0), which we know stands for the total time.
(Recall Fermi's "golden rule" calculations. ) An example
will follow shortly.

Let us first note that, just as in the case of the scalar
G-aussian xnodel, the correlation function is related to the
integral over just a single pair of variables [Eq. (187)] and
is given by

f@(co,)1i(co2)exp f (dco/2m )g(co)(i co Q—0+@)f,(co) [d P(co)d g(co ) ]
( @( , )y( ,)) =

fd f(co)d Q(co)exp f (d co/2n. )g(co)(i co Qo+—p )g(co)

2n.5(co, co2)—

l CO j QO+P

(230)

(231)

In particular,

(g(co)@(co))= .i co Qo—+iLc i co Q—o+p, (232)

Let us now calculate the mean occupation number (Ã ):
1 BZ

CO CO

P —m 2m

dCO e
2' E co Qp+P

=8(p —Qo),

(233)

(234)

(235)

(236)

as in the operator approach. Notice that we had to intro-
ia4duce the factor e™into the co integral. We understand

this as follows. If we had done the calculation using time
~ instead of frequency cu, we would have calculated the
average of %' %. This would automatically have turned
into g(~+e)@(~) when introduced into the path integral,
since the coherent state bra to the left of the operator
would have come from the next time slice compared to
the ket at the right. [Remember how H (%t, %) turned
into H(@(i+1)g(i)).] Notice that the integral over co

was not convergent, varying as den/co. It was therefore
sensitive to the high frequencies, and we had to intervene

s 0+with the factor e'~ . Later we shall deal with integrals
that have two or more powers of co in the denominator
and are hence convergent. We shall not introduce this
factor in those cases.

Our final calculation will be the determination of (N )
for the toy Hubbard model using path integrals. The
partition function is

Z =f [d@,d Q,d Pzd $2]e 'e

where
deSo= f g g;(co)(ico Qo+p)—f;(co),

OO

(238)

OO
4 ~ 67)

U f q, q,q, @,=f ~ -"
@,(,)@,(,)@,(,)11,(,)2 5(,+,—,—,) .

2n-
(239)

Notice that the Hamiltonian already was in norrnal-
ordered form: each creation operator was to the left of
its destruction operator. This allowed us to replace the
operators by their eigenvalues when the coherent states
were introduced. For notational uniformity we have fur-
ther arranged to have all creation operators to the left of
all destruction operators. This merely introduces an ex-
tra minus sign here, since operators corresponding to
diFerent oscillators anticornrnute.

Prior to calculating (K) let us calculate (N, ). This
is given by

e lc00 (240)

where (@,(co)P, (co) ) stands for the correlation function
with the full action and not just So. We may, however,
express it in terms of averages over the Gaussian measure
So, using the same trick we used for bosons: we multiply

and divide the exact Z by Zo, the partition function with
U =0, to obtain

(@ (co)y, ( )
' ' ' ')

@&(co)g&(co)

0

In principle the reader has all the information needed to
evaluate this expression to any order in perturbation
theory. The exponential is to be expanded (in the
numerator and denominator) to the desired order and all
averages done using %'ick's theorem. We shall carry out
the calculation to order U to show the details. The result
to all orders wi11 then simply be stated, and the skeptics
are encouraged to check it to higher orders. The integra-
tion measure and delta functions will occasionally be
suppressed.

To first order we find
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& fi(~@i(~)&a+ U f & it i(~)@i(~)fi(~4%2(~3%1(~2%2(~1) &0
(@i(~)@i(~))= 1+U f & @i(~4)42(~~K i(~2%2(~i) &o

(242)

In both the numerator and the denominator we have just one pair of fields with label 2; these Inust obviously be paired,
though it takes a sign change to bring them next to each other. The four fields with label 1 can be paired in two ways.
One of the ways, in which the external fields @i(m)it i(co) get paired is precisely canceled by the denominator expanded
out to order U. This corresponds to the cancellation of disconnected diagrams. Readers new to this concept are urged
to verify this. What remains may be written

+2vr5(0)
0+ 8

ICE 0
12vr5(0)

(i~—Qo+p, ) —~ 27T Ecoi Qo+fj
(243)

2ir5(0)
iso Q—o —p —U(N~ )

In going to the last step we have taken two terms of the
power series in U, assumed that they represent a
geometric series, and summed the series. This result is
undoubtedly correct to the order we are working in. 'We

have also replaced the integral over co, with (N2 ) which
is also good to this order. It turns out that both these ap-
proximations are in fact exactly what we would get if we
went to all orders, as will be explained shortly. Let us ac-
cept this for the present and see what follows. Using the
above correlation function in the formula for (N, ), Eq.
(240), we obtain

(N, ) =e[i Q, —U(N—, ) ] .

Obviously we can similarly derive another equation,

(N2 ) = 8[du —Qo —U( Ni ) ] .

Let us explore these equations for various cases. First, if
p & Qo, neither 0 function can be satisfied, since (N,. ) ~ 0.
Thus we get (N ) =0 for this case as before. Likewise if
p )Qo+ U, both 0 functions will be satisfied, since
(N; ) &1. This gives us (N) =2 as before. Finally, con-
sider Qo &p & Qo+ U. Since each (N~ ) equals a 8 func-
tion, it can equal only 0 or 1. It is readily seen from these
equations that the only two consistent choices are
(Ni ) =1, (N2) =0 and vice versa, once again in agree-
ment with the operator solution.

Now for the higher terms in the expansion. These are
best seen in diagrammatic terins. Consider Fig. 4(a).
The heavy line stands for the full propagator and the thin
line for the one computed in the G-aussian Ineasure. To
order U we kept the two diagrams shown, and these cor-
respond to the expressions in Eq. (243). The disconnect-
ed diagram that got canceled by the denominator is
shown in Fig. 4(b). If we go to higher orders, we can run
into either iterates of the one-loop diagram or embellish-
ments of it. The embellishments convert the loop in-
tegral over the free propagator of species 2 to the integral
over the full propagator, which then reduces to ( Nz ) .
The iterations produce the remaining terms in the
geometric series that was presumed in going from Eq.
(243) to the next one. This leaves us with diagrams such
as the "sunrise" diagram in Fig. 4(d). (Once again the

(244)

r-
nomenclature is from field theory. ) These diagrams and
all the rest vanish in this problem because the corre-
sponding frequency integrals are convergent and have all
the poles on the same half plane, allowing us to close the
contour the other way.

The generalization of Grassrnann integrals to many-
body problems is straightforward. The labels 1 and 2
from the toy Hubbard model can run over, say, the
modes in the Brillouin zone. The action is once again ob-
tained by replacing the normal-ordered Hamiltonian by
the corresponding function of Grassmannian coherent-
state labels. As for the coupling functions, just as the
coupling in the bosonic u(4321) was symmetric under the
exchange of the first or last two labels among themselves,
the fermionic couplings will be antisymmetric under such
an exchange due to the anticommuting nature of the

—1 = 1 1 1 ~ 1

2QQ g

Q2

FIG. 4. Graphical representation of the perturbative calcula-
tion of the type-1 fermionic propagator in the toy Hubbard
model; (a) the two terms we kept in the analysis to one loop; (b)
corrections that are grahically disconnected and ignorable,
since they get canceled by the partition function that comes in
the denominator of all averges; (c) a correction that embellishes
the type-2 propagator in the loop we did consider. The effect of
such graphs is to turn the free propagator in the loop to the ex-
act propagator for 2, which in turn means that the integral over
the loop equals the exact density K&. (d) a two-loop contribu-
tion that vanishes upon co integration. Not shown are iterates
of the connected diagrams which are part of the geometric
series, which we assumed and summed in the text.
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Cirassmann variables.
Finally a matter of notation. We shall be switching

from upper-case letters % and %~ for fermion operators
to lower-case. It will be clear from the context whether
we are referring to the operators or the Grassmann vari-
ables.

Table IV summarizes the results from the discussion
on fermionic path integrals.

IV. MOTIVATION AND WARMUP: RG IN d=1

We are now ready to turn to the main topic: applica-
tion of the RG to interacting nonrelativistic ferrnions.
The best way to explain the method is to deal with
specific problems to which it applies. We begin with the
problem of charge-density-wave (CDW) formation in a

system of spinless fermions at half Ailing. It has relative-
ly simple kinematics and illustrates the RG approach
very nicely. In fact, the methods explained here were
originally developed (Shankar, 1991) to deal with this
problem in two dimensions. Let us begin with a discus-
sion of the various terms used above in describing the
model.

%'e begin with the justification for the study of spinless
ferrnions, which are admittedly a theorist s construction.
As we progress with this paper, it will become apparent
that the RCx is primarily concerned with the symmetry
properties of the Fermi surface of the noninteracting fer-
mions. For example, the superconducting instability for
arbitrarily small attraction is due to the invariance of the
Fermi surface under time reversal: if K lies on the sur-
face, so does —K. Likewise the charge-density-wave
(CDW) instability on the square lattice, towards a ground

TABLE IV. Fermion path integrals and useful relations. @ and g are Cxrassmann numbers. They an-
ticommute with each other and with fermion creation and destruction operators. Their differentials are
also Cxrassmann numbers.

f@)=fo& —@I»
&@f=&Of—&if@

(l(f@)=coo
&yfII(~', ~) f@& =sr(@,y)

f@dl(i= 1

f ldi/i=o

f

l(disci=

1

f idy=O
d d =1=— d d

e ' 'J J d;d; =detM

k~k@kf y, @,e" Qdy dyk "—= &i'j&ga ai
(@,q, ).=

1 ides/?mieiro)(i~ —QO+p)O(cubiZ'„„ii„,p=„= [disci(a))dg(oi))e
2m 5(CO) —

CO2)
(@(coi)g(~p)) = .

(g(oi)@(co))= .
l fD Qo+ p

2~5(0)=P

( ) 1 BZ' doi e'~
PZ Bp, — 2n i~—Qo+gs

k k k
e d kd

k

(iti;iiii@i, @i )o= ——:(il ) (jk ) —(i'k ) (jl ) (Wick's theorem)
~il jk ~ik jl
a.aJ a aJ

I= e ~@d d

Trn= d d — n e

i ii —BIB —n + )o( idZ...oi.t., = f (de~~)de(&) je '
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state in which the charge density is nonuniform and os-
cillates between the sublattices, is due to nesting: if K
lies on the Fermi surface, so does K+@~,where Q& is a
fixed nesting vector. Now these very same properties of
the Fermi surface will also destabilize a system of real
electrons. The actual nature of the instability can of
course be different in the two cases. For example, the
nested Fermi surface in d =2 will cause electrons to go to
an antiferromagnetic state in which the magnetization
(rather than charge density) oscillates in magnitude be-
tween the two sublattices. Likewise, the time-Ieversal-
invariant Fermi surface will lead to superconductivity,
but (Cooper) pairing can take place for any angular
momentum, while for spinless fermions only odd orbital
angular momentum states are allowed due to antisym-
metry requirements. To summarize, spin really is an
unessential complication if we are simply trying to under-
stand how the RG works. When comparing theory to ex-
periment, we will of course have to include spin, but this
really will be straightforward.

Consider now the requirement of half-filling, which
means that the system has half the maximum number al-
lowed by the exclusion principle. For spinless fermions
this means one particle for every other site, while for
electrons it means one particle per site. Despite this, the
two problems will have the same Fermi surface in the
noninteracting case. In both cases, the Fermi surface will
enclose half the Brillouin zone and have the same shape,
decided by the lattice parameters. However, each filled
momentum state will carry two electrons (of opposite
spin) but just one spinless fermion. In other words, the
condition of half filling implies a different particle density
in the two cases, but the same Fermi surface.

%'e start here with the one-dimensional version of the
spinless fermion problem for two reasons. First, the
one-dimensional problem is ver'y interesting in itself and
shows the power of the RG approach. Secondly, as men-
tioned earlier, due to the fact that the Fermi surface in
d =1 consists of just two points, the problem resembles
quantum field theory with a few coupling constants (rath-
er than a theory with coupling functions) and affords a
painless introduction to the use of the RG for fermions.
We shall then be better prepared for the d =2 version in
Sec. VI.

A. The d =1 model: definition and mean-leld analysis

(j + 1 )P(j)+H. c.
J

(248)

where the fields obey

I@ (j),p(m)[=5, , (249)

with all other anticommutators vanishing.
The first term represents hopping. The hopping ampli-

tude has been normalized to —,'. The second term
represents nearest-neighbor repulsion of strength Uo.
The role of the —,

''s subtracted from the charge densities

nz (=@&@J ) and. nj+& is this. ~hen we open up the
brackets, it is readily seen that they represent a chemical
potential

This happens to be exactly the value needed to maintain
half filling in the presence of the repulsion Uo. To see
this, make the change @~@ at all sites. This exchanges
the site occupation number n =f @with 1 —n or changes
the sign of n —

—,'. Thus both brackets in the interaction
term change sign under this, and their product is
unaffected. As for the hopping term, it changes sign un-
der f~@t. This can be compensated by changing the
sign of @,@t on just one sublattice (which preserves the
anticommutation rules and does not affect the other
term). Thus H is invariant under exchanging particles
with holes. This means the ground state (if it is unique)
will satisfy (n ) = ( 1 —n ), which in turn means ( n ) =

—,'.
(If there is a degeneracy of the ground state, the result
still holds, but takes a little more work to establish. )

Let us understand this model in the extreme limits
Uo =0 and Uo = Oo . As for the first case let us introduce
momentum states via

Let us consider the following specific Hamiltonian for
a spinless fermion system on a d = 1 lattice labeled by an
integer n:

(247)

An aside for readers with a di8'erent background, say, particle
physics, who are troubled by the following: why bother with
e6'ects at such a special filling? Is there any chance that a gen-
eric system wi11 have Ailing factor of exactly half, as compared
to say 0.51? Yes! Consider a square lattice with an atom at each
site. Since each atom contributes an integer number of elec-
trons to the conduction band, the filling factor (the ratio of the
number of electrons to the maximum allowed number of two
per site) is bound to be a half integer or integer. For a more
complicated unit cell, or intercalated compounds, one can have
other simple fractions like 4.

P(j)=I @(K)e' '

and the inverse transform

p(K)=g e ' '@{j) .

Using X~. =2+5(0), we can verify that

I $(K),Pt(K') I
=2+ 5(K —K' ) .

In terms of these operators

(251)

(252)

(253)
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Ho= K XE K

E'(E)= —casE .

(254)

(255)

n =—'+ —'( —1)Jb, +:n:J 2 2

n. +) = —,'+ —,'( —1) 6+:n +). ,

(258)

(259)

The Fermi sea is obtained by 61ling all negative energy
states, i.e., those with ~K~ ~ I F =sr/2, which corresponds
to half 611ing. The Fermi surface consists of just two
points ~K~ =+a./2. It is clear that the ground state is a
perfect conductor, since we can move a particle just
below the Fermi surface to just above it at arbitrarily
small energy cost.

Consider now the situation in the other extreme,
Uo= ~. We now ignore the hopping term and focus on
just the interaction. It is evident that the lowest-energy
states are those in which no particle has a neighbor: thus
either the 2 sublattice, consisting of even sites, is occu-
pied or the B sublattice, made up of the odd sites, is oc-
cupied. This makes the product (n~ —

—,')(n~+, —
—,') nega-

tive on every bond. These two states, which break the
translational symmetry of the lattice are the CDW states.
The order parameter, which measures the difference be-
tween the mean occupation of the odd and even sites, is
maximal (unity). In the CDW state, the system is an in-
sulator. Any excitation of the ground state requires us to
move the charge, and this will cost an energy of order
Uo. (This is clearest as Uo~ ~.) One expects that, even
for large but finite Uo, the symmetry wi11 still be broken,
but with a smaller order parameter.

Here is the question we want to answer: 8'ill the sys-
tem deuelop the CDW order and gap for arbitrarily small
repulsion, or will it remain a conductor up to some finite

We shall use the RG to answer it. But first let us see
what a very standard tool, namely, mean ji eld theory, can
tell us. In this approach one assumes a CDW order pa-
rameter in the ground state and asks if the assumption is
self-consistent. The self-consistency check is approxi-
mate, as will be explained. Mean-field theory predicts
that charge-density waves will set in for any repulsion,
however small. Here is a short description of the calcula-
tion.

Let us begin with Eq. (248) and make the ansatz

where the normal-ordered operator:n: has no expecta-
tion value in the true ground state and represents the
Auctuations in number density. Upon making these sub-
stitutions and some rearrangements, we find

(260)

+Uo —,'g5 —b, g( —1)jn, +Uog:n::n ~,:.
J J J

(261)

Q2+ UO2n. 5(0)
4

(262)

Notice that we have halved the range of EC integration,
but doubled the number of variables at each K. The
two-by-two matrix, which is traceless due to the relation

E (K') = —cos(K +vr )= —E (X), (263)

is readily diagonalized. The one-particle energy levels
come in equal. and opposite pairs, and we fill the negative
energy states to obtain the following ground-state energy
per unit volume:

Eo
2n.5(0)

6 UoO ~dE 2

4 o 2m
(264)

where the integral comes from the filled sea. Minimizing
with respect to 6, we obtain the relation

(265)

In the mean field approximation we ignore the last
term. The rest of the Hamiltonian is quadratic and
solved by Fourier transformation. Due to the factor
( —1)~, which multiplies n, states with momentum K and
K'=E +m will mix. The Hamiltonian becomes

E (X) —Uob,
(y (&)7$ (It )) v g E(~ ) y(I, .

)

(n ) =
—,'+ —,'( —1)jh, (256)

where 4 is the CD%' order parameter. We shall now see
if the ground-state energy of the system is lowered by a
nonzero value of A. To this end, we find the ground-state
energy as a function of 4 and minimize it and see if the
minimum occurs at a nonzero h. However, this last step
will be done approximately since this is an interacting
many-body system. The approximation is the following.

We start with the interaction

Assuming 5%0, we cancel it on both sides. It is clear
that Uo (0 is not acceptable, since the two sides of the
equation would then have opposite signs.

For positive Uo, a nontrivial solution requires that

(266)

II = —
—,
' g gt(j+ 1 )@(j)+'H. c.

J
+ Uo Q ( n —

—,
' )( n +, ——,

' )
J

and make the substitution

(257)

this is called the gap equation. On the left hand is the
number 1, and on the right-hand side something of order
Uo. It appears that we will get a solution only above
some minimum Uo. This is wrong. The integrand be-
comes very large at the Fermi points ~X~ =%~=sr/2,
where E (K) vanishes. Writing
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K(K)=k,
k =[re/ —Z, ,

(267)

(268)

we approximate the gap equation as follows:

dk 1

—A ~ +k'+a'V,'
2UO

ln
EUo

(269)

where A, the upper cutoff on ~k~, is not very important.
What is important is that, due to the logarithmic
behavior of the integral near the origin in k, i.e., near the
Fermi surface, there will always be a solution to the gap
equation given by

corresponding calculation the instability will stem from
the time-reversal symmetry of the problem: E (K)
=E' ( —K).

Unfortunately both these predictions are wrong. The
error comes from the neglected quartic operator
:n -::n.+, We know all this because the present spinless
Hamiltonian, Eq. (248), can be solved exactly (Y'ang and
Yang, 1976).' The exact solution tells us that the system
remains gapless for Uo of either sign until it exceeds a
minimum value of order unity. We shall now develop the
RCx approach to this problem and obtain results in har-
rnony with this exact result.

—71 /2UO
e

U
(270) B. The RG approach for d =1 spinless ferrnions

The logarithmic divergence is also rejected in the diver-
gent susceptibility of the noninteracting system to a
probe (or perturbation) at momentum m.. [At second or-
der in perturbation theory, the perturbation will link the
ground state to states of arbitrarily low energy in which a
particle just below the right (left) Fermi point is pushed
to just above the left (right) Fermi point. The small ener-

gy denominators, summed over such states, will produce
the logarithm. ]

Mean-field theory also predicts that the same thing will

happen in d =2. In this case the nesting condition
(readers unfamiliar with this concept should consult Fig.
17, Sec. X) ensures that the perturbation at (vr, n ) will ex-
cite particles just below the Fermi surface to states just
above it on the "other side" no matter where the starting
point is on the Fermi surface Now for. any Fermi surface,
if we take some perturbation of any momentum (which is
not too large compared to the size of the surface), there
will always be some points just below sea level that will
get scattered to points just above sea level. But these
points would have to come from some special angular re-
gion of the Fermi surface which are connected by this
momentum (the angular dimensions of this region will
decrease with the energy denominators) and the integral
over the small-energy denominators will converge. If we
use a coordinate 0 on the surface and a coordinate c. nor-
mal to it, the integrals will be of the form

f p
0~'&' de. de

~~ 9&(Q, E& Q&2+g&

The cutoff A focuses on the small energy denominator re-
gion. In the absence of nesting, for a perturbation of
some given momentum Q, the range of 8 will shrink with
e and the integral will converge. Qn the other hand, at
the nesting momentum, the angular integral will spread
over the entire Fermi surface (since every point on or
near the Fermi surface gets scattered to another, as
shown in Fig. 17, Sec. X), and the integral will have a
loganthmic divergence.

Returning to d =1, mean-field theory also predicts
that the system will have a nonzero superconducting or-
der parameter for the smallest attractive coupling. In the

Our goal is to explore the stability of the noninteract-
ing spinless fermions to weak interactions. We are in-
terested not just in the fate of the model in Eq. (248) but
in a whole family of models of which this will be special
case. Our strategy, stated earlier on, is the following.
First we argue that, at weak coupling, only modes near
+AF will be activated. Thus we shall linearize the
dispersion relation K(K)= —cosIC near these points and
work with a cutoff A,

II,=y f ' "
q",. (k)1i,.(k)k, (272)

where

k= fZ/

i =L,R (left or right) .

(273)

(274)

I The reader consulting this reference will find that these au-
thors solve a problem of quantum spins on a line. This XXZ
chain is related to the spinless fermions by a Jordan Wigner
transformation.

Notice that Ho is an integral over fermionic oscillators,
which we studied in Sec. III. The frequency Qo of the os-
cillator at momentum k is simply k.

Next we shall write down a T=O partition function
for the noninteracting fermions. This wi11 be a
Grassmann integral only over the degrees of freedom
within a cutoff A of the Fermi surface. We shall then
find an RG transformation that lowers the cuto6' but
leaves the free-field action, So, invariant. With the RG
well defined, we shall look at the generic perturbations of
this fixed point and classify them as usual. If no relevant
operators show up, we shall still have a scale-invariant
gapless system. If, on the other hand, there are generic
relevant perturbations, we shall have to see to which new
fixed point the system allows. (The new one could also be
gapless. ) The stability analysis can be done perturbative-
ly. In particular, if a relevant perturbation takes us away
from the original fixed point, nothing at higher orders can
ever bring us back to this fixed point.
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Let us then begin with the partition function for our
system of fermions:

Z' = f Q Q dg;(cok)df;(cok)e ',
i =L,A )k) (A

Sp= g f f P;(cok)(ico k—)@;(cok) .—A

(275)

(276)

~ys /k[ ~~ (277)

and all co. Thus our phase space has the shape of a rect-
angle, infinite in the co direction, finite in the k direction.
This shape will be preserved under the RG transforma-
tion. Since there is no real relativistic invariance here,
we shall make no attexnpt to treat co and k on an equal
footing. Allowing ap to take all values allows us to ex-
tract an effective Hamiltonian operator at any stage in
the RG, since locality in time is assured.

Since the integral is Gaussian, the result of integrating
out fast modes is just a numerical prefactor, which we
throw out. The surviving modes now have their momen-
ta going from —A/s to A/s. To make this action a fixed
point, we define rescaled variables:

k'=sk,
CO —S6),

g,'(k'co') =s ~ @;(kco) .

(278)

Ignoring a constant that comes from rewriting the mea-
sure in terxns of the new fields, we see that So is invariant
under the xnode elimination and rescaling operations.

We can now consider the effect of perturbations on this
fixed point. Rather than turn on the perturbation corre-
sponding to the nearest-neighbor interaction we shall
perform a more general analysis. The result for the par-
ticular case will be subsumed by this analysis.

C. Quadratic perturbations

First consider perturbations that are quadratic in the
fields. These must necessarily be of the form

This is just a product of functional integrals for the Fer-
mi oscillators at each momentum with Qp(k)=k. The
first step in the RG transforxnation is to integrate out all
f(kco) and @(kco) with

iJ, '(co', k', i)=sp(co, k, i) . (280)

We get this factor s as a result of combining a factor s
from rewriting the old rnomenta and frequencies in terms
of the new and a factor s which coxnes from rewriting
the old fields in terms of the new.

Let us expand p in a Taylor series,

p(k co) ppp+p]pk +pp&ico+ +p„k "(ico) +

The constant piece is a relevant perturbation:

Pm~sPoo .

(281)

(282)

This relevant Aow reAects the readjustment of the Fermi
sea to a change in chemical potential. The correct way to
deal with this term is to include it in the free-field action
by filling the Fermi sea to a point that takes goo into ac-
count. As for the next two terms, they clearly modify
terxns that are already present in the action, can be ab-
sorbed into them, and correspond to marginal interac-
tions. When we consider quartic interactions, it will be
seen that mode elimination will produce terms of the
above form even if they were not there to begin with just
as in P theory. The way to deal with them will be dis-
cussed in due course. As for higher-order terms in Eq.
(281), they are irrelevant under the RCr mentioned above.
This is, however, a statement that is correct at the free-
field fixed point. %'e shall have occasion to discuss a
term that is irrelevant at weak coupling but gets proxnot-
ed to relevance as the interaction strength grows.

D. Quartic perturbations: the RG at tree level

We now turn on the quartic interaction whose most
general forxn is

M4=, , f g(4)@(3)@(2)@(1)u(4,3, 2, 1), (283)
%co

where

f f p(kco)@;(cok)@,.(cok),
'=L, R A 2' —oo 277

(279)

assuming symmetry between left and right Fermi points.
Since this action separates into slow and fast pieces,

the effect of mode elimination is simply to reduce A to
A/s in the integral above. Rescaling moments and fields,
we find

g(i) =g(K;, co; ), etc. ,

dE; cc d COif = Q f f [2m 5(IC, +K E Ic )2~5(co, +co ——co ——co„)']
Kcip ~ & 277 oo 2'i =1

(284)

(285)

and 5 enforces momentum conservation mod2m, as is ap-
propnate to any lattice problem. A process in which lat-
tice momentum is violated in multiples of 2m is called an
umklapp process. The delta function containing frequen-

I

cies enforces time-translation invariance. The coupling
function u is antisymmetric under the exchange of its
first or last two arguments among thexnselves, since that
is true of the Cxrassmann fields that it multiplies. Thus
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the coupling u has all the symmetries of the f'ull vertex
function I with four external lines

To get a feeling for all these ideas let us consider the
nearest-neighbor repulsion from Eq. (248) and ask what u
it generates in the action. Lei us begin with the operator

I 0 g @i@jPj +1 Pi+1

where Q is the umklapp momentum. It cannot be any
higher multiple of 2~ given that ~K; ~

~ m. This means
that

sing/2=0 .

This result and some simple trigonometry applied to Eq.
(288) lead to the coupling

and make a Fourier transformation to get

u {4,3,2, 1) E) —K2
sin

K3 —K4

dK;
H = —U +f 2~5(K+K K —K—)

i =1

X ft(K4 )p (K3 )p(K2 )li(K, )e (287)

We next use the fact that, due to the 5 function,

K)+K2=K3+K4+Q =0 or 2', (289)

i(KI —K3 )
We now antisymmetrize e ' ' with respect to 1~2
and 3~4, since the rest of the integrand is antisymmetric
under either of these operations. This gives us the result

i( x(
—K3) ) i(K) E3j- '

e ~—'(e
4

i (K2 —K3 ) i (X[—E'4) i (K2 —K4)

K) +Kq —K3 —K4
2

(291)

In arriving at this equation we have used Eq. (290) and
gone from the interaction Hamiltonian to the corre-
sponding action in the path integral in the usual way.
The integral of —Mi (with Fermi operators replaced by
Grassmann numbers) from r=O to r= ~ becomes the in-
tegral over four frequencies with one overall delta func-
tion. Notice that u has no frequency dependence.

Let us now return to the general interaction, Eqs.
(283)—(285), and restrict the rnomenta to lie within A of
either Fermi point, I or R. Using a notation in which I,
(left Fermi point) and R (right Fermi point) become
discrete, we find that a label i =I or R and 1 —4 label the
frequencies and momenta (measured from the appropri-
ate Fermi points). Equations (283)—(285) become

M~ =
, , g f @; (4)@; (3)@; (2)g; (l)u;;;; (4, 3,2, l)

~
$ I2I3i4

(292)

where

(2~) — (2m )

X[2m5(e; (K~+k, )+E, (K~+k~) —e, (K~+k3) —e; (K~+k„))] (293)

and

c,; =+1 for R,I (294)

Let us now implement the RCx transformation with
this interaction. This proceeds exactly as in P theory.
Let us recall how it goes. If schematically

Z' = Jdg dP exp[ —P —P ]exp[ —u (P +P ) ]

ute to the Row of u begin at order u .
Let us first do the order-u tree-level calculation for the

renormalization of the quartic interaction. This gives us
just Eq. (293) with A~A/ sIf we now rewrite this in
terms of new rnomenta and fields, we get an interaction
with the same kinematical limits as before, and we can
meaningfully read off the coe%cient of the quartic Fermi
operators as the new coupling function. We And

(296)

is the partition function, and we are eliminating P &, the
efFective u for P& has two origins. First, we have a term—uP&, which is there to begin with, called the tree level-
term. Next, there are terms generated by the P& integra-
tion. These are computed in a curnulant expansion and
are given by Feynman diagrams whose internal Inomenta
lie in the range being eliminated. The loops that contrib-

The reader who carries out the intermediate manipula-
tions will notice an important fact: E+ never enters any
of the 6 functions. Either all KF's cancel in the nonum-
klapp cases, or they get swallowed up in multiples of 2m

(in inverse lattice units) in the umklapp cases due to the
periodicity of the 6 function. As a result the momentum
6 functions are free of Kz and scale very nicely under the
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RCx transformation:

5(k) —+5(k'/s)

=s5(k') .

(297)

(298)

Turning now to Eq. (296), if we expand u in a Taylor
series in its arguments and compare coefficients, we find
readily that the constant term uo is marginal and the
higher coeKcients are irrelevant. Thus u depends only
on its discrete labels, and we can limit the problem to just
a few coupling constants instead of the coupling function
we started with. Furthermore, all reduce to just one cou-
pling:

u 0 uLRLR u RLRL RLLR u LRRL (299)

u (4, 3,2, 1)
212)

= UOSin
Ki —K2

sin
K3 —K4

Other couplings corresponding to IL, ~RR are wiped
out by the Pauli principle, since they have no momentum
dependence and cannot have the desired antisymmetry.

As a concrete example, consider the u that comes from
the nearest-neighbor interaction Eq. (291), reproduced
here for convenience,

E. RG at one loop: The Luttinger liquid

Let us begin with the action with the quartic interac-
tion and do a mode elimination. To order u, this leads to
an induced quadratic term represented by the tadpole
graph in Fig. 5. We set co=k =0 for the external legs
and have chosen them to lie at L„ the left Fermi point.
The integral given by the diagram produces a
momentum-independent term of the form 5p1Tjz gz. But
we began with no such term. Thus we do not have a
fixed point in this case. Instead we must begin with some
term 5@*$11(L such that, upon renormalization, it repro-
duces itself. %'e find it by demanding that

P S P Zlp
dk;~+e

2m Ass& lkl &A 2m

(304)

where we have used the zeroth-order propagator and the
fact that to this order any up =u o. The exponential con-
vergence factor is the one always introduced to get the
right answer for, say, the ground-state particle density
using ( gg). Doing the co integral, we get

X cos
A )+K2 —K3 —E4

2
(300)

5p'=s 5@*—uo I 8( —k)
&/~ & lal &A 2~

(305)

and ask what sorts of couplings are contained in it.
If 1 and 2 are both from E., we find the following factor

in the coupling:
r r

Aup=s 5@*— (1—1/s)
27T

It is evident that the fixed point is given by

(306)

sin =S1Il
k, —k

2
k) —k2

2
(301) (307)

which leads to the requisite antisymmetry but makes the
coupling irrelevant (due to the k's). There will be one
more power of k from 3 and 4, which must also come
from near just one Fermi point so as to conserve momen-
tum madulo 2m. For example, the unklapp pracess, in
which RR ~I.L, has a coupling

Alternatively, we could just as well begin with the fol-
lowing relation for the renormalized coupling:

dk;~+6p'=s 6p —u p e 7 coo

277 A/s & I kl & A 2&

(308)

NN~umklapp) =(k& k2)~k3 k4) (3O2)
which implies the flow

and is strongly irrelevant at the free-field fixed point.
On the other hand, if 1 and 2 come from opposite

sides~

dp, uo=p (309)

sin
. 1 2E. —EC

2
=sin[~/2+O (k) j (303)

and likewise for 3 and 4, and we have a marginal interac-
tion up with no k's in the coupling.

The tree-level analysis readily extends to couplings
with six or mare fields. All these are irrelevant, even if
we limit ourselves to constant (co- and k-independent)
couplings. To determine the ultimate fate of the coupling
u p marginal at tree level, we must turn to the one-loop
RG efFects.

FIG. 5. The tadpole graph which renormalizes the fermion at
one loop. It has no dependence on k (the deviation of the exter-
nal momentum from KF) or co. %'e have used this freedom to
set both these to zero on the external legs. The effect of this
graph may be neutralized by a counterterm corresponding to a
change in chemical potential. One may do this if one wants to
preserve KF.
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Auo
G —l co

2~ (310)

assuming we choose to measure p in units of A. The
fixed point of this equation reproduces Eq. (307).

We can find 5p in yet another way with no reference
to the RG. If we calculate the inverse propagator in the
cutoff theory to order u, we shall find

s =R 4=LX.
&=R 2=L

ZS

4=L 4

1 =R

(&)

2$' BCS

indicating that the Fermi point is no longer given by
k =0. To reinstate the old ICF as interactions are turned
on, we must move the chemical potential away from zero
and to the value 6p=Auo/2w. Thus the correct action
that gives us the desired KF, for this coupling, to this or-
der, is then schematically given by

s =@(ico k)—g+ @@+ (311)

An RG transformation on this action would not generate
the tadpole graph contribution.

A very important point, which will appear again, is
this: we must Pne tune the -chemical potential as a func
tion of' u, not to maintain criticality (as one does in P,
where the bare mass is varied with the interaction to
keep the system massless) but to retain the same particle
density [To b.e precise, we are keeping fixed IC~, the
momentum at which the one-particle Green's function
has its singularity. This amounts to keeping the density
fixed (Luttinger, 1960).] If we kept p at the old value of
zero, the system would Aow away from the fixed point
with KF =~/2, not to a state with a gap, but to another
gapless one with a smaller value of KF. This simply cor-
responds to the fact that, if the total energy of the
lowest-energy particle that can be added to the system,
namely p, is to equal 0, the kinetic energy at the Fermi
surface must be slightly negative so that the repulsive po-
tential energy with the others in the sea brings the total
to zero.

Now, we do not have to work with fixed density; we
could take the given p and accept whatever KF it leads

FIR. 6. The one-loop graphs for P(u) for the spinless fermions
in d =1. The loop momenta lie in the shell of width dA being
eliminated. The external frequencies being all zero, the loop
frequencies are (a) equal for ZS, (b) equal for ZS', and (c) equal
and opposite for the BCS graph. The ZS graph does not con-
tribute, since both loop momenta are equal (the momentum
transfer Q at the left vertex is 0) and lie a distance A above or
below the Fermi surface, and the co integration vanishes when
the poles lie o& the same half plane. The ZS' graph has momen-
turn transfer vr at the left and right ends. This changes the sign
of the energy of the line entering at the left vertex. The co in-
tegral is nonzero, the poles being on opposite half planes. The
BCS graph (c) also survives, since the loop momenta are equal
and opposite (because the incoming momentum is zero), and
this again makes the poles go to the opposite half planes be-
cause the lines have opposite frequencies. The labels 1, . . . , 6
refer to the master equation (312).

to. However, we shall frequently work at fixed density
for two reasons. First, there is a simple experimental
way to fix the density, namely, send in the desired num-
ber of particles and seal the system, i.e., work with the
canonical and not the grand-canonical system. (This sim-
ple and viable procedure looks rather complicated in the
grand-canonical language. ) Secondly, we shall keep XF
fixed in many two- and three-dimensional cases to make
contact with the pioneering work of Landau, done at
fixed density.

Let us now turn our attention to the order-u 0 graphs
that renormalize uo. These are shown in Fig. 6. The in-
crement in uo, hereafter simply called u, is given by the
sum of the ZS (zero-sound), ZS', and BCS graphs. The
analytical formula for the increment in u is

du (4321)=f u (6351)u (4526)G(5)G(6)5(3+6—1 —5)d5 d6 —f u (6451)u (3526)G(5)G(6)5(6+4—1 —5)d5 d6

——f u (6521)u (4365)G(5)G(6)5(5+6—1 —2)d5d6,1

2
(312)

where 1 to 4 stand for all the attributes of the (slow)
external lines, 5 and 6 stand for all the attributes of the
two (fast) internal lines —momenta (restricted to be
within the region being eliminated) and frequencies —G
are the propagators, the 5 functions are for ensuring the
conservation of momenta and frequencies, and Id5 d6
stands for sums and integrals over the attributes 5 and 6.
The couplings u are functions of all these attributes, with
all the requisite antisymmetry properties. (The order in
which the legs are labeled in u is important, due to all the
minus signs. The above equations have been written to
hold with the indicated order of arguments. In their

I

present form they are ready to be used by a reader who
wants to include spin. )

This is the master formula, which we shall invoke
often. It holds even in higher dimensions, if we suitably
modify the integration region for the momenta.

To derive this formula, we do exactly what we did in
Sec. II with bosons. We split the modes into slow and
fast ones and do the fast integral, using the cumulant ex-
pansion to collect the terms that feed back to the quartic
coupling. The calculation uses the fermionic Wick's
theorem, and exactly the same three diagrams (ZS, ZS',
and BCS) appear that we saw in the scalar field example.
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The major difference from the scalar case is in the extra
minus signs in the fermionic Wick's theorem. Qf course
the propagators now have different forms, and the range
on loop variables is different. Readers familiar with
Feynman diagrams may obtain this formula by drawing
all the diagrams to this order in the usual Feynman
graph expansion, but allowing the loop momenta to
range only over the modes being eliminated. In the
present case, these are given by the four heavy lines la-
beled a, b, c, and d in Fig. 7, where each line stands for a
region of width d A located at the cutoff, i.e., a distance A
from the Fermi points. The external momenta are
chosen to be (4321)=(LRLR), at the Fermi surface. All
the external k's and co's are set equal to zero, since the
marginal coupling u has no dependence on these. This
has two consequences. First, the loop frequencies in the
ZS and ZS' graphs are equal, while those in the BCS
graph are equal and opposite. Second, the momentum
transfers at the left vertex are Q =K, —K3=0 in the ZS
graph and Q'=Ki —Kz=m in the ZS' graph, while the
total momentum in the BCS graph is J" =A&+%@=0.
Therefore, if one loop momentum 5 =K lies in any of the

I

L
I
I

-x/2
8 b

R
I

l

7t/2
C

FIG. 7. Regions of momentum space being integrated out in
the d =1 spinless fermion problem. The thick lines stand for
slices of width dA. They lie a distance A from the Fermi points
L and R. In the ZS graph, which has zero momentum transfer,
both lines lie on the same slice and the ~ integral gives zero. In
the ZS' graph, the momentum transfer m connects a and c
(which have opposite energies), and b and d are similarly relat-
ed. In the BCS diagram the loop momenta are equal and oppo-
site and correspond to a, d or b, c.

E'(K'=A+a )= —E'(E),
leads to

(314)

four shells in Fig. 7, so does the other loop momentum 6,
which equals A, K +m, or —K in the ZS, ZS', and BCS
graphs, respectively. Thus we may safely eliminate the
momentum-conserving 6 function in Eq. (312) using

fd6. This fact, coupled with

E( —K) =E'(K), (313)

dco dK u (KRKR )u (LICLK)
y

~
y

dco dK u (K'LKR )u (RKLK')
4ir2 [ico E(K)][i—co E(K)] —— dw 4~2 [ico—E(K)][ico+E(K)]

1 i. ~ i. dco dK u ( KKLR)u (L—R KK)—'

2 "—~ "dA 4ir [ico E(K)—)[ ico E(K—)]—
=ZS+ ZS'+ BCS,

(315)

(316)

= J . [8(k)—8(k+q)], (317)

where JdA means the momentum must lie in one of the
four slices in Fig. 7.

The reader is reminded once again that the names ZS,
ZS', or BCS refer only to the topologies of the graphs.
To underscore this point, especially for readers who have
seen a similar integral in zero-sound. calculations, we
shall now discuss the ZS graph. In the present problem
the loop momentum K lies within a sliver dA of the
cutofF. Both propagators have poles at the point
co= iE'(k =+A—). No matter which half plane this lies
in, we can close the contour the other way and the co in-
tegral vanishes. This would be the case even if a small
external momentum transfer (Q =K3 —K i « A ) took
place at the left vertex, since both poles would still be on
the same side. This is very different from what happens
in zero-sound calculations, where the loop mom enta
roam freely within the cutoff and, in particular, go to the
Fermi surface. In that case, the integral becomes very
sensitive to how the external momentum transfer
Q K3 —K i and frequency transfer Q =co3

—co, are tak-
en to zero, since any nonzero Q, however small, will split
the poles and make them lie on different half planes for
k & Q, and the integral will be nonzero. It is readily seen
that

dt's dk 1

4~2 {ico k)(i co k ——Q +i A—)

where the step function 8(k) is simply related to the Fer-
mi function: f'(k) = 1 —8(k). If we keep A+0 and send
Q to zero, we get zero. On the other hand, if we set Q=0
and let Q approach zero, we get (minus) the derivative of
the (Fermi) 8 function, i.e., a 5 function at the Fermi sur-
face. Thus readers used to zero-sound physics should not
be disturbed by the fact that the ZS graph makes no con-
tribution, since the connotation here is entirely
different. "

Before we move onto the ZS' graph, let us notice another re-
lated fact. Suppose we choose to find the one-loop P function
using the field theory method. Then we calculate the four-point
function I in a cutoff theory and demand that it be cutoff in-
dependent. The same three graphs will appear in the expression
for I, but the loop integrals will in fact go all the way up to the
cutoff. Consequently the ZS graph will make a contribution
that is very sensitive to how the small external momenta and
frequencies are chosen. However, since this contribution, when
nonzero, comes from integrating a 5 function at the Fermi sur-
face, it will not have any sensitivity to the cutoff and will make
no contribution to the derivative with respect to the cutoff, i.e.,
to the P function. The situation is parallel to what we saw in
massless P theory in Sec. II. There the expression for I had an
infrared divergence when r0=0, but that did not affect the
derivative with respect to the upper cutoff A. On the other
-hand, in the modern approach one never saw any singular
behavior even in the intermediate steps.
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162 R. Shankar: RG approach to interacting ferrnions

Now for the ZS' graph, Fig. 6(b), Eq. (315). We see
that X must lie near I., since 1=A and there is no RR
scattering. As far as the coupling at the left vertex is
concerned, we may set K =I, since the marginal cou-
pling has no k dependence. Thus K +~=R and the ver-
tex becomes u (RLLR)= —u. So does the coupling at
the other vertex. Performing the co integral (which is
now nonzero, since the poles are always on opposite half

ZS'= u
dlC

dwel. 4~IE(K)l
u' diA[
2~ A

(318)

planes), using the fact that there are two shells (a and b
in Fig. 7) near L and that ~k (K)

~

= lkl = ~A I, we obtain

TABLE V. Spinless fermions in d = 1: Summary of symbols and formulas.

CDW

p. = U,

nj-= ~+ —'( —1) 6+:nj:

:Plj '.

Uo $:nj::nj+,.
j

Charge-density wave.
H = ——' g @ (j+1)g(j)+H.c.+ UD g [1t {j)1((j)——'][@(j+1)g(j+1)——']

j j
Particle number at site j.
The chemical potential that ensures half filling

for repulsion Up.

The mean-field ansatz. IJ appears as follows

in terms of 6:
H = —

2 g p (j +1)@(j)+H.c. + Uo 4 +Is. b, g( —1)~—nj +Uo g:n~::nj+,:
j j j j

Charge density at site j with mean value subtracted.
Part neglected in mean-field calculation.

E(k)= —cosK
EF=m/2
K
k =]K) K'—
Land R

Ho= —f @"(K)@(K)cosK—~ 2m'

Ho=+ f Pt{k)P„(k)k
i

X =f Q + d@,( k)dP;( k)
i =L,R lkl «

So = g f f Q; (cok)(i co k) 1t;(c—ok)
~ L R

—A 27T —co 27T

k'=sk co'=sco 1(,'(k'co') =s 3~ @;(kco)

5S2 =g f f y(kco)@;(cok)1{j;(cok)
i

~(k, m)=p, ~+I »k+p„i~+
5S4= f $(4)g(3)g(2)g(1)u (4,3, 2, 1)

CDW order parameter.
Dispersion relation for free fermions.
The Fermi momentum at half filling.

Momentum measured from origin.
Momentum measured relative to the Fermi surface (points).
Names for left and right Fermi points K =+a/2.
Free-field Hamiltonian.

Free-field Hamiltonian linearized near KF.

Free-fermion partition function.

Free-fermion action.

RG transformation.

Quadratic perturbation.

Taylor expansion of quadratic coupling. '
Quartic perturbation in schematic form.

dK; de;f = g f ' f '
[2vr5(K, +K~ —K, — K)24~5( , co+, coco, co~—)]-

K Q) ~ 77 2& oo 2'i =1

5
Umklapp process

u (4 3 2 1)=Upsin
K, —K2 K3 —K4

sin
2

Delta function for momentum conservation modulo 2m. .
A process in which momentum is changed by a multiple of 2m.

Nearest-neighbor model.

K)+%2 —I( 3
—E4

X cos
2

u;;; (k, m,')=u;;;; (k /s, co,'/s)

u 0 LRLR uRLRL RLLR uLRRL
dup =0
dt

Renormalization of quartic coupling at tree level. i =L,R.
Symmetries of marginal coupling constant.

Flow at one loop.

'Only ppp is relevant. The rest are margi. nal or irrelevant.
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du = u
2m'

u'
2m A

df

(319)

dt
=P(u)=0 . (320)

Thus we find that u is sti/l marginal. The Aow to one
loop for p and u is

dp u=p (321)

du
dt

There is a line of fixed points:

(322)

(323)

The reader may wish to check that the ZS' graph will
make the same contribution to the P function in the field
theory approach.

The BCS graph [Eq. (315), Fig. 6(c)] gives a nonzero
contribution, since the propagators have opposite fre-
quencies and opposite mamenta, but equal energies due
to time-reversal invariance E (X)=E ( —K). We notice
that the factor of —,

' is ofFset by the fact that A can now lie
in any of the four regions a, b, c, or d. We obtain a con-
tribution of the same magnitude as ZS' but opposite sign,
so that

to exist in the exact solution? The answer is as follows.
As we move along the line of fixed paints, labeled by u,
the dimensions of various operators will change from the
free-field values. Ultimately the umklapp coupling
(RR ~LL), which was suppressed by a factor
(k

&

—k2 )(k3 —k~ ), will become marginal and then
relevant. If we were not at half filling, such a term would
be ruled aut by momentum conservation, and the scale-
invariant state, called a Luttinger liquid (Luttinger, 1961;
Haldane, 1981), would persist for all u. While this liquid
provides us with an example of where the RG does better
than mean-field theory, it is rather special and seems to
occur in d = 1 systems where the two Fermi points satisfy
the conditions for both CDW and BCS instabilities. In
higher dimensions we shall find that any instability due
to a divergent susceptibility is not precisely canceled by
anather.

As an aside, note that in the ZS' and BCS diagrams,
the integrand is a function of just co +k, so that we
have rotational (Euclidean) invariance. In this case we
can, if we wish, work with a disk of radius A in co-k space
rather than the rectangle of width A and infinite height.
You may check that if we integrate aut a shell of thick-
ness d A in the co-k space, we get the same contribution to
the P function.

The main results from this section are summarized in
Table V.

u * arbitrary . (324)
V. THE RG IN d )1: ROTATIONAELY INVARIANT
CASE AT TREE LEVEL

Notice that P vanishes due to a cancellation between two
diagrams, each of which by itself would have led to the
CDW or BCS instability. When one does a mean-field
calculation for CDW, one focuses on just the ZS' dia-
gram and ignores the BCS diagram. This amounts to
taking

du
dt

u

2m
(325)

which, if correct, would imply that any positive u grows
under renormalizatian. If this growth continues, we ex-
pect a CDW. On the other hand, if just the BCS diagram
is kept, u wauld Row to large negative couplings leading
to a state with (1(1~@1)WO.

What the p function does is treat these competing in-
stabilities simultaneously and predict a scale-invariant
theory.

Is this the correct prediction for the spinless model,
which, as we saw, had the marginal interaction in its in-
teraction? Yes, the exact solution of Yang and Yang
(1976) tells us there is no gap until u is of order unity. If
the RCx analysis were extended to higher loops, we would
keep getting P=O to all orders. This follows from the
Ward identity in the cutoff continuum model (Di Castro
and Metzner, 1991;Metzner and Di Castro 1992), which
reAects the fact that, in this model, the number of fer-
mions of type I and R are separately conserved. How do
we ever reproduce the eventual CDW instability known

A. Tree level in d =2

Let us begin with a square lattice containing spinless
fermions at very low filling. In this case we can approxi-
mate the free-particle dispersian relation as

E = cosK~ casKy

= —2+% /2 .

(326)

(327)

Since the problem now has rotational invariance, it is iso-
morphic to the problem of electrons in free space with a
dispersion relation

K
2m

(328)

We now proceed to apply exactly the same approach
to spinless fermions in d ) 1. The nontrivial geometry of
the Fermi surface will play a profound role, and the ap-
plication of the RG leads to some phenomena not seen in
the usual applications to critical phenomena, which is of
course what makes it interesting. We start with the sim-
plest case of a circular Fermi surface in d =2. The ex-
tension of the analysis to spherical surfaces in d =3 is
very direct and will be explained. Only in Sec. X will we
take up the nested Fermi surface that leads to CDW for-
mation.
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164 R. Shankar: RG approach to interacting terrnions

We shall therefore study the latter, since this aOows us to
make contact with I.andau s work on it. Let us introduce
a chemical potential so that the ground state is a Fermi
circle of radius KF =&2m p. Next, we linearize the
dispersion relation near the Fermi surface:

s(K) =E (K)—p
E —KF

2m

kKF +o(k') (k =leal —Ic, )

(329)

(330)

(331)

—:vk,

where v is the Fermi velocity. The free-field action now
becomes

(333)

To obtain this, we must replace the measure A dk by
KFdk, as the difference will prove irrelevant under the
RG and absorb a factor +K~ into each of the two Fermi
fields. Mode elimination proceeds just as in d =1: we
eliminate all modes obeying A/s ~

1
k

1

~ A for all tu and 8.
The same scaling of k and to and the fields as in Eq. (278)
leaves So invariant. The only difference is that the inter-
nal index i which took just two values (L =left and
R =right) is now replaced by a continuous parameter 8.
The d =2 theory thus looks hke an Integral over one-
dimensional theories, one for each direction, each with

infinitesimal weight.
Next we dispense with rotationally invariant quadratic

interactions as in d =1: either they modify the chemical
potential, rescale existing terms, or are irrelevant. (Also
irrelevant is the difference between K and KF in the mea-
sure. ) Let us now move on to the really interesting case
of the quartic interaction. This has the general form

@(i}=@(IC;,co;, 8; }, etc. , (335)

k4=1K41 —K~ . (337)

Much of the new physics stems from this Ineasure for
quartic interactions. We shall examine it in some detail,
focusing on the factor 8(A —lk41), which plays a crucial
role.

We start with a quartic interaction that is invariant un-
der space-time translations and Fourier-transform it, get-
ting an integral over four co's subject to a 5-function con-

6S4 = J g(4)11(3)g(2)g(1)u (4, 3, 2, 1) (334)
2!2! a~0

where

straint and four momenta K, subject to a momentum-
conserving 5 function. Let us now eliminate one of the
four sets of variables, say, the one numbered 4, by in-
tegrating them against the 6 functions. The m integral is
easy: since all co's are allowed, the condition
Q)4 co $ +672 co3 is always satisfied for any choice of the
first three frequencies. The same would be true for the
momenta if all momenta were allowed. But they are not;
they are required to lie within the annulus of thickness
2A around the Fermi circle. Consequently, if one freely
chooses the first three momenta from the annulus, the
fourth could have a length as large as 3KF. The role of
8(A —1k41) in Eq. (336) is to prevent exactly this.

Now such a 8 function will arise in the P theory also if
we eliminate k4 by integrating it against the momentum-
conserving 5 function. Its effect, however, is quite
different there. For one thing, even if we ignore it, noth-
ing very serious happens, since the first three k's lie in the
tiny ball of size A and k4 can never stray too far, being
bounded by 3A. In particular, it will be controlled by A
and decrease with it. In the present case, even if the first
three momenta lie on the Fermi surface, the fourth can
be off by an amount of order KF rather than A. Second-
ly, even if we keep the 8 function in the P case, its
response to renormalization is very simple. Under the
action of A —+A/s,

8(A —lk 1) 8(A/s —lk 1)

=8(A —slk, l)

=8(A —slk, +k, —k, l)

=8(A —lk;1) .

(338)

(339)

(340)

(341)

Thus the 8 function of the old uariables goes into exactly
the same function of the new uariables. Since the rest of
the integration measure goes into itself upon rescahng
from k to k' (and absorbing factors of s into the new
fields), we get the usual result,

u'(k') =u (k'/s) . (342)

But it does not( The problem is that k4 is a function not
just of the other three little k's but also of KF..

k4 —l(rcr+ki )@i+(IcF+k2)+2 (X++k3 }Q31 ~F
(343)

where D; is a unit vector in the direction of K;:

Upon doing a Taylor series in its arguments, we get the
familiar result that the constant part uo is marginal and
the other Taylor coefficients are irrelevant in d =4.

Let us try to do the same here, starting with Eqs.
(334)—(337). We first reduce the range of each k; by a
factor s. Then we rescale all momenta to bring the range
back to the old value. We must finally see if the 0 func-
tion responds as it did above in the case of the P theory.
If it does, we could conclude that

u'(k', co', 0)=u (k'/s, co'/s, 8) .

Rev. Mod. Phys. , Vol. 66, No. 1, January 1994



R. Shankar: RG approach to interacting fermions

Q; =i cos0;+j sinO;,

where 0; is the orientation of the unit vector along
momentum K;. (In d =2, we shall use A; and 8, inter-
changeably. )

It is now easy to check that if we carry out the manip-
ulation that led to Eq. (341) we shall find

8{A—~k (k„k,k,K )~)

8(A —~k„'(k'„k', k', SK )~) . (345)

Case I: 03=0&,

04= 02

(346)

(347)

Thus the 8 function after the RG transformation is not the
same function of'the new uariables as the 8function before
the RG transformation was of the old variables, due to the
fact that KF~sKF. As mentioned earlier, we cannot ig-
nore the 8 function, since in contrast to P theory, it is
possible for very large k~ (of order Kz) to arise, even if
the first three are of order A. We have a real problem
implementing the RG program: how are we to say what
the new coupling is if the integration measure does not
come back to its old farm?

Before describing the solution to this impasse, let us re-
state the problem in more geometric terms. Imagine that
we have renormalized with a large s and are down to a
shell of very small thickness, i.e., A/KF is very tiny.
Thus all the momenta are essentially on the Fermi sur-
face, and the only freedom is in their direction, A;, or 0;.¹wthe point is that we cannot choose three of' these an
gles freely, but only two, if all Uectors are to lie on the Eer
mi circle. For example, if we choose angles 0, and 02, the
sum of the corresponding vectors lies along the bisector
of the angle between them. The only way this initial-
state momentum can equal the final-state momentum
K3 +K4 is for the final angles to equal the initial angles:

rnomenta that lie within the annulus, and add up to some
P. The construction in Fig. 8 gives all of them. First we
draw two annuli with centers separated by P. They inter-
sect in two regions (called I and II in the figure) of size of
order A in each direction. If we start at the center of the
left annulus and draw a vector to any point in I or II, and
then a vector from that point to the center of the right
annulus, we get two vectors that meet the twin require-
ments listed above. For example, the initial vectors K,
and K2 correspond to choosing this point from region II.
Since K3+K4=P, the latter pair must also stem from
this construction. The figure shows them linked to re-
gion I. It is clear that the direction of the anal vectors is
within A/KF of the initial vectors, with 03 ——92 and
04-—0, for this choice. (Had we chosen the final vectors
to come from region II also, the other pairing would have
occurred. ) The figure makes it clear that if we choose the
orientations of the first three vectors without paying at-
tention to this restriction, i.e., choosing a point outside
regions I and II but inside the annulus for terminating
K3, K4 can end up being much shorter oi longer than
KF.

The problem of the changing 0 function may be stated
as follows in terms of this figure. I.et us begin with some
cutofF and a choice of four angles that is allowed at that
cutofF as per this construction. There is some coupling u
for this choice of angles. If we reduce the cutoff, the al-
lowed choices of angles shrinks, and a coupling that was
previously allowed may no longer be allowed. Since the
angles 8 play the role of internal (isospin-like) degrees of
freedom, we have a situation in which the range of inter-
nal labels is changing under mode elimination. This
makes it impossible to make a meaningful comparison of
the couplings before and after, since certain processes are
no longer allowed. [Imagine an SU(4) theory renormaliz-

or

Case II: 03=0&,

04=0' .

(348)

(349)

In the case of identical spinless fermions, Cases I and II
are physically equivalent.

There is only one exception: if the initial angles are ex-
actly opposed to each other, leading to a total momen-
tum P=O, the final momenta are free to point in any
direction as long as they oppose each other:

Case III: 0z= —0, , (350)

04= —03 . (351)

In summary, either 3 and 4 are slaued to (requi red to be'
equal to) I and 2 or 2 and 4 are slaued to (required to be
opposite to) l and 3.

Let us now back off from the limit A/EF=O and dis-
cuss the problem when A/KF is small but not zero. Fig-
ure 8 depicts the situation. First let us ask for all pairs of

FIG. 8. The geoxnetric construction for determining the al-
lowed values of momenta. If KI and E2 add up to P, then K3
and E4 are constrained as shown, if they are to add up to P and
lie within the cuto8; Note that both the magnitude of K3 and
its direction 03 are constrained to lie within =A/K„of 8,. Had
we chosen a K3 that terminated in intersection II, 83 would
have been within A/Kz of Hz. At the fixed point, the angles be-
come equal pairwise. If the incoming momenta K& and E& are
equal and opposite, the two shells coalesce and K3 and E4 are
free to point in all directions, as long as they are equal and op-
posite.
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—]k4(/A8(~—lk, l) e (352)

for now the process is not disallowed, but only exponen-
tially suppressed as we renormalize. We may interpret
that as the exponential decay of the corresponding u un-

ing to an SU(3) theory. ]
Since we do not want the momentum or internal labels

to change their allowed range of values (if we are going to
follow the standard RG procedure of comparing the cou-
plings before and after to see how they are Ilowing), tve

take the Uiew that all the 0's are allowed, but that some
u's abruptly renormalize to zero as the cutog is reduced.

The situation is a lot clearer if we use a smooth cutofF
for k4,

der renormalization. '

Now recall

k~ —IKF(0]+02 03)+k]0]+k20$ k303I KF

(353)

where Q,. is a unit vector in the direction of K;. In what
follows we shall keep just the 6 piece and ignore the
O(k) terms. This is because the only time the latter are
comparable to the former is when both are of order A, in
which case k4 -—E~, and this region is exponentially
suppressed by the smooth cutofF Eq. (352) anyway.

Under the RG transformation at tree level,

dkl 2~ d Ol ~ d~l —(~KF /A) ~)~l
—1i

II 'e F u
1

—A 27T 0 2% —oo 2'' (354)

Let us write
—(SK /A) )]5[—1) —(K /A) ~~A ~

—
1~

—[(s —1)K /A]I~ 5) —1)F =e e F

mi circle.
For couplings that do obey this condition, Eq. (356) be-

comes

so that the measures before and after have the same fac-—(KF /A) //6/
—1)

tor e Now that the measures are identical
before and after the RG transformation, we can compare
apples to apples and identify the new quartic coupling:

'(k' '8)= I:~& ~~&F«illa —
&I k' co'

8
s s

We may conclude that the only couplings that survive
the RG transformation without any decay correspond to
the cases in which

u'( k' co'8)i ai, =u (k'/st'/s8)i~i (361)

Performing a Taylor expansion' in k and co and compar-
ing coefticients of separate powers, we conclude that the
leading term, with no dependence on either variable, is
marginal, while all the rest are irrelevant. We shall refer
to this term as u hereafter.

We see that the tree-level fixed point is characterized
by two independent functions and not a handful of cou-
plings. They are

I~l = IQ +0 —0
I

= 1 .

In d =2 this equation has only three solutions:

Case I: 03=0& (hence Q2=Q4),

Case II: Q3 =Q2 ( hence 0,=04),
Case III: 0 = —02 (hence Q3= —0~) .

(359)

(360)

This result, which was anticipated earlier, can be de-
duced algebraically or seen geometrically by considering
Fig. 8 in the limit of zero shell thickness, since this gives
the allowed region in the hard cutofF scheme after an
infinite amount of renormalization, i.e., at the fixed point.

Notice that we have an extra conservation law at the
fixed point A/K+ =0. Not only is total momentum con-
served, the set of individual momenta is also conserved.
The only exception is when the incoming momenta are
equal and opposite. Then they add up to zero, and the
final momenta can be any two opposite points on the Fer-

2Nothing is gained by using a soft cutoff for the rest.

A common concern frequently expressed by those familiar
with the many-body physics of these fermions is this: is there
not some ambiguity as to how the limit co—+0 is to be taken as
k;~0'? lf so, how does u even have a Taylor expansion at the
origin of cok space? The answer is that u is just the bare cou-
pling that goes into the cutoff theory. It is not the full four-
point function I which is calculated in the cutoff theory by
summing all Feynman diagrams with u as the coupling, A as the
cutoff, and propagators whose momenta can go right up the
Fermi space. Indeed, the I so computed has all the above-
mentioned singularities. In contrast, u is obtained by taking
some analytic (short-range) interaction in the full momentum
space and eliminating the modes outside the cutoff. This pro-
cedure cannot produce any nonanalyticity. The situation is like
that in P theory, where the bare couplings in the action are an-

alytic functions of momenta while the full Green's functions are
plagued with infrared singularities coming from the soft modes.
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u [84( 8, 8z 83)= 8z, 83= 8t, 92, 8t ]=E( 8&, 9z )=E(8t —9z ——8,2) ( rot inv ),
u [8„(8,8293)=8„83=92;92;8,]=—E(8,2) (Pauli),

u [84(8,8283) 83 83 8$ 9$ ]=V(8„83)=V(8, —83—=8i3) (rot inv) .

(362)

(363)

(364)

Note that the manifestation of the Pauli principle on I and V is somewhat subtle: I" will not be antisymmetric under
1~2 since, according to the way it is defined above, we cannot exchange 1 and 2 without exchanging 3 and 4 at the
same time. On the other hand, since 3 and 4 can be exchanged without touching 1 and 2 in the definition of V, V must
go to —V when 8&3 + 8/3+ 7T.

A concrete example is useful here. Let us begin with the nearest-neighbor interaction of spinless fermions in d =2,
transcribed into momentum space,

u(K4, . . . , K, )

2!2! Uo sin
Ki —K2

2
sin

A3 —K4
2

E i +%2„—E3 —K4
cos — +K~p

2
(365)

and expand it to second order in K (as we did in the
kinetic energy), obtaining a rotationally invariant interac-
tion:

u=(K —K ) ~ (K —K ) (366)

If we evaluate this with all ~X~ at Kz and use Eqs. (362),
(363), and (364), we obtain

E(8&2)= UO~K& —K2~ = Uo(1 —cos8&2),

V(8,3) = UOK, -K3 —Uocos8]3

(367)

(368)

B. Tree-level analysis in d =3

Let us repeat the preceding analysis in d =3, where the
Fermi surface is parametrized by two angles 8 and P. All
integrals over 8 get replaced by integrals over a solid an-
gle. The process of mode elimination and rescaling of
fields and momenta k proceeds exactly as in d = 1 or
d =2, since the coordinates on the Fermi surface play the

Observe the e6'ect of particle exchange on these func-
tions.

Let us understand the significance of the coupling
function E. If we calculate the four-point vertex I, it will
be given to lowest order by u. Since the only u's that sur-
vive require that the final directions 83 and t94 equal the
initial ones 6& and 82 up to a permutation, only forward
scattering exists at the fixed point. ' The only exception
occurs when the incoming particles have opposite direc-
tions: then they can scatter to another pair with equal
and opposite momenta, the corresponding amplitude be-
ing given, of course, by V.

When we study noncircular Fermi surfaces, we shall
find yet another coupling function 8' that survives if
there is nesting. This will correspond to processes in
which the momentum transfer equals the nesting vector

N'

i2 4'i2;34) {370)

role of internal variables (like isospin) and are unaffected
by the RCx transformation. We then end up with Eq.
(356). The equation for the couplings that survive is still
the same as Eq. (357), but now the unit vectors Q, can
point anywhere in three dimensions. This in turn means
that the condition

~
5,

~

= 1 has not only the solutions
given in Eqs. (358), (359), and (360) but a continuum of
others. First consider Eqs. (358) and (359), which tell us
that Q3 and Q4 must coincide with Q, and Qz up to a
permutation. In d =3, the former can rotate about their
sum. In other words, Fig. 8 with zero shell thickness
must now be viewed as depicting, not the intersection of
two circles, but two spheres. Thus the vectors 3 and 4 do
not have to coincide with 1 and 2 (up to a permutation),
but can rotate around a cone with opening angle equal to
that between 1 and 2. The planes containing 1 and 2 can
have an angle P, p 34 with the plane containing 3 and 4.

Let us review this. The incoming particle momenta 1

and 2 lie on the Fermi sphere. Their sum lies in the plane
they define and bisects the angle between them. The final
particles, also on the sphere, can give the same sum by ly-
ing anywhere on the cone generated by rotating the in-
coming pair around their sum

Although the individual momenta are no longer can-
served, we have the additional requirement that the angle
between the final pair be the same as the angle between the
initial pair:

Q)-Q~=Q3-Q4 . (369)
Once again the only exception is when the incoming

momenta add up to zero. In this case the final Inomenta
are free to point in any direction, as long as they are mu-
tually opposite Thus coup. lings corresponding to nonfor
ward scattering (in which the initial and ftnal directions
are not the same) do not Uanish under the RG transforma
tion, but survive as marginal couplings. The fixed point is
then characterized by a function

This is true at lowest order when j. =u. But higher orders in
the forward-scattering coupling can only give forward scatter-
ing.

E(z,P)—
of two variables,

z)q =Oi Q2

(371)
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TABLE VI. Phase space for various fixed points: Summary of symbols and formulas. In all cases the
RG transformation reduces A (limit on k or c. ) by a factor s =e

One-particle phase space

d =1: The Fermi surface is a pair of points, called I. (left) and R (right).
dk dco

phase space= g f j, k =~@ Ic'.I—.

d=2: Circular case. The Fermi surface is parametrized by angle 0.
d l9 dk dc'

phase space=, k = K —EI;.
0 2' —A 2& —co 2%

d —2:
and

phase

and E

Noncircular case. The Fermi surface is parametrized by an angle 0 if connected
by an additional label +=+1 if it has two branches.

2m' dg dE dco
space =+ J(0) , where J is the Jacobian on the Fermi surface

0 2& —A 2'lT' —co 2&
measures the energy relative to the Fermi surface.

d =3: Spherical case. The Fermi surface is parametrized by z =cos8 and P.
dQ dk ddt

phase space= where d Q=dg dz =dP d cos8.
4~ —w 2m —~ 2m'

The quartic interaction is written in schematic form as'
8S4 = f g(4)g(3)g( 2)g( 1)u (4321)

'The labels 1 and 4 stand for all the attributes of the fields: momentum, frequency, and spin if included.
The coupling obeys u (4321)= —u (3421)= —u (4312)=u (3412) due to Fermi statistics. J stands for

the integral over the above phase space for each of the four fields, restricted by delta functions that im-

pose co and momentum conservation (modulo 2m if appropriate).

and P tp. 34 which is the angle between the planes contain-
ing 12 and 34, respectively.

In addition to this we still have the V function coming
from Eq. (360) with V = V(Q, Q3).

If we go back to nearest-neighbor coupling evaluated
in this case we find

ratic term in the form of a chemical potential. To retain
the old Fermi surface, we must find an input 5p* that
will reproduce itself under the RG transformation. Car-
rying out the same analysis as in d = 1, we find

dco'dk'd8' F(8 9')—
6p* cokH =

(2' ) i co U*k—
F = Uo(1 —z,z)cosP,

V = Uoz„. (373)
(375)

Notice that, since 3 and 4 are not slaved to 1 and 2
anymore, we can exchange just the latter. This causes
P~P+~, which in turn changes the sign of F. As for V,
it changes-sign under z/3 + Z]3.

Tables VI and VII contain a list of fixed points, cou-
plings, and their Bows, including those to be discussed
later in the paper.

VI. RG IN d) 1: ROTATIONALLY INVARIANT CASE AT
ONE LOOP

We have found that the couplings I' and V are margin-
al at tree level. The next thing to do is to buckle down,
as we did in d = 1, and go to the one-loop graphs and see
if they tilt the marginal ones towards relevance or ir-
relevance or preserve marginality. We first do the
analysis in d =2 and then discuss brieAy the changes en-
countered upon going to d =3.

A. RG for the two-point function

Just as in d =1, mode elimination produces at one loop
(tadpole graph as in Fig. 5) a nonzero change in the quad-

(376)

where the last equation signifies that 6LM* is a constant in-
dependent of co, k, or 0.

We may also see this as the counterterm one must add
as the interaction is turned on, to maintain the same Fer-
mi surface. The same holds in d =3.

6p*(cokQ) =f f 2 F(z =Q'.Q, Q=O)—w 2~

(378)

Note that only the forward-scattering F (with /=0)
enters this equation.

B. The one-loop P function for F

Now we turn to the real issue: the renormalization of
the quartic couplings. The analysis will be done using
the modern approach, though a passing remark may oc-
casionally be made about the field theory approach.
Equation (312) gives in this case (suppressing vector sym-
bols)
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dtIIdK f z~dg u(K+Q, 3,K, 1)'u(4, K 2 K+ g)
dA 43r o 22r [itII E—(K)][it13 —E(K+Q)]

de dK f 2~d8 u (K +Q', 4,K, l)u (3,K, 2, K +Q')
4m o 2' [io3 E—(K) ][io3 E—(K +Q') ]

1 f" f dtIIdK 2~d8 u(P K,K—,2, 1)u(4, 3,P —K,K)
44r2 o 22r [i co E(K—) ][ i tI—3 E—(P —K) ]

=ZS+Zs'+PCS,

(379)

(380)

where Q =K3 Kl,—Q' =K4 K l, an—d P =K, +K&. The
subscript d A on f d~ reminds us that both loop momenta
must be in the shells being eliminated. Although E is re-
stricted to this region explicitly, the restriction on the
other momentum —K +Q in the ZS graph; K +Q' in the
ZS' graph, and I' —E in the BCS graph —is implicit.

The Feynman diagrams are shown in Fig. 9.
On the left-hand side of the above equation, we choose

the variables 4321 such that the corresponding coupling
survives renormalization at tree level, which means it
must be an For a V.

Let us begin with the renormalization of F. We set all

TABLE VII. Fixed-point couplings and Bows: a summary. The marginal part of coupling u depends only on the angles that
parametrize the Fermi surface. Subscript NN denotes values in nearest-neighbor model.

Fermi surface

d =2.
Circular Fermi surface

8: d =2: Noncircular
Time-reversal invariant

Assumed connected

C: d =2: Noncircular
No time-reversal invariance

D d =2 nested

n labels branch

r: hopping anisotropy

Couplings marginal at tree level and their Aow at one loop

(04 02&03 01702&01) ~ (04 01&03 02702&01) F(01&02)=1 (01 02) F(012)

F» = Uo(1 —cosO»)
dF/dt =0.
u (0 = 0 0 02= 01 01)= V(0 0 ) = V(0 )
dV(0l 03) 1 ~ d0

, f V(8, —8)V(8—8, )
dt 8~2 0 2m.

V~g = UOcos013
'd0

, V, = f e' V(8). (BCS instability if V, (0.)
dt 4~ '

0 2m

F same as in -A, but F(01,02)WF(0, —02). dF/dt =0.
V same as in A but V(03, 01)WV(03 —01)

1 "d0' ' = — ', f "
V(8, ;8)V(8;8,)J(8)

dt 8~2 0 2m

F is as in B. dF/dt =0.
No V. No BCS instability.

F defined as in 8 and dF/dt =0.
[

01 02 1 cos01cos02 a1a2
F3131= Uo sin +— 1 —

2
—

2
'tr r cos 8I+—r cos 82—

2 2 p'

V defined as in 8. Same Bow as in 8.

V Q( I8I3 8a3]la=IUII s11181sll183+ Q r '—cos 81+r ' —cos 83r2

W[82a2,'8IaI ]= u

dlV [a282a181]
dt

m„~= —U, sin'

[82+~ 2 81+2 aI 82a2 81a1] (82 a2 81 I 82a2 81 I )

8' +202''0' O' Oa01a1
J(0)d0

(2m. )

01 02 1 COS01COS02 G1CX2+—1— 3' r cos 8,&r cos 8— —
2 p2@2

E: d =3: Spherical

Q; is direction on sphere.
IflI2 ~ 34 is angle between
1 —2 and 3—4 planes

u (Q4, 03,02, Q, ) ~tI II =tl „=F(Q,. Q2;Itl\. 2 34):F(z, p). de /dt =O. —
F(z,0) is Landau's F function.
F31~= Uo(1 —zlcosg.
Q ( Q3 Q3 Q1 Q1) V(Q3 Q1)—V(z13 )

UOz13 UOQ1 +3
dVI = —cVI, c &0 and VI= f V(z)pI(z)dz
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ZS ZI)' BCS

FICx. 9. The diagrams that renormalize the marginal quartic couplings for a d =2 circular Fermi surface. A11 external frequencies
are chosen to vanish and all external moments are on the Fermi surface at angles given by A;. The couplings that are marginal at the
fixed point (at tree level) have 03=A& and 04=A2 {I'" coupling), or the above with 4~3 {coupling —I, by Fermi statistics) or
Ap A I and Q4. = —Q3 {coupling V) . All loop momenta must lie within a shell of width d A. In the first case {E), there is no
momentum transfer at the left vertex ( Q =0) of the ZS graph. No matter what direction we choose for K, the other loop momentum
K+Q =K will also lie in the shell. Thus there is no restriction on the angle of the loop momentum. However, the two propagators
have the same m, and the co integral gives zero, since the two propagators have the same momentum and hence the same energy. In
the other two graphs the loop angle is restricted to lie in a region of width dA/A. Figure 10 shows this for the ZS graph, and Fig. 8
can be used to show this for the BCS graph if we replace the annuli of thickness A by shells of thickness dA. Thus none of the dia-
grams causes a Bow of I: at the fixed point. The Aow of V receives no contribution from the ZS and ZS' diagrams because there is no
correlation between incoming and outgoing moments; both Q and Q will be of order KF, and the diagrams will be suppressed by
dA/A. The BCS diagram, however, does cause a Bow of V exactly as in d =1: the loop frequencies are equal and opposite, but the
loop energies are equal due to time-reversal invariance.

external legs at zero frequency and on the Fermi surface
(k =co=0), since the dependence on these variables is ir-
relevant. As for the angles, we chose Q&=Q3. Consider
the ZS diagram in Fig. 9 given by the first integral in Eq.
(380). Since Q =0 here, me know that, if K lies in the
shell being eliminated, so does K +Q for any direction of
K. In other words, 0 runs over the full range. However,
this diagram vanishes for the same reason it did in the
d =1 case: both poles in the ~ plane are on the same
side. Even if we put in a small momentum transfer
Q «A at the left vertex, it will not change anything.
This is because the loop momenta are near k =+A, and
it takes a minimum momentum transfer of order A to
knock something from below Xz to something above it
and vice versa. This is in accord with the general state-
ment that the bare coupling has no singular limit at small
co or Q.

Now consider the ZS' diagram. Due to the momentum
transfer Q' of order KF at the left vertex, not only is the
magnitude of the loop momentum restricted to lie within
the shell being eliminated, but also its angle is restricted
to a range of order dA/KF. This is clarified by Fig. 10.
The dark circles now represent the thin slices being in-
tegrated. The intersection regions, of order dA, give us
the allomed loop momenta for the P-function calculation.

They lie in the shell and have the right momentum
transfer K4 —K&. Of the eight intersections, only the
four marked ones satisfy the condition of being on oppo-
site sides of Kz so that the co integral survives. Since the
co integral gives a denominator of order A, the contribu-
tion to du is of order (dA/A)(dA/Kz), so that the p
function vanishes as we take the limit dt =0

~
A

~
/A~O.

It is also clear that, if Q'=0 and QAO (which obtains
if D4=D, ), we can repeat the above argument with
ZS+-+ZS'.

You may check that in the field theory approach we
mould get a P function that went as A/KF. Since we are
ultimately going to send A/K~~O, this will not matter
ln that limit.

Finally, for the same kinematical reason, the BCS dia-
gram does not renormalize I' at one loop. Consider Fig.
8 with K3 and K4 replaced by the two momenta in the

~5What if we choose to follow the field theory approach~ The
situation is exactly as in d =1. We must evaluate the one-loop
graphs contributing to I, which is sensitive to whether we take
the Q «cg or vice versa. The limit that gives a uonzero I
(co« Q) makes a contribution of the form

f d f (K)—f(K+Q)
E (K)—R(K+Q)

where f'is the Fermi function. As Q ~0, this becomes a 5 func-
tion at Kz and makes a contribution that is A independent and
hence irrelevant to the P function.

FIG. 10. Construction for determining the allowed values of
loop momenta in ZS'. The requirement that the loop rnomenta
come from the shell and ditfer by Q' forces them to lie in one of
the eight intersection regions of width {dA) . Of these, four
correspond to opposite signs of energies. But this is moot, since
the extra power of dA makes them irrelevant. (In the field
theory approach, the suppression factor will be A/KF instead of
d A/K+ and once again will be unimportant at the fixed point. )
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BCS loop, K and P —A. In each annulus we keep just
two shells of thickness dA at the cutofF corresponding to
the modes to be eliminated. The requirexnent that E and
P —X lie in these shells and also add up to P forces them
into intersection regions of order dA . This means the
diagram is just as ineffective as the ZS diagram in caus-
ing a How. Thus any E is a fixed point to this order.

C. The one-loop P function for i/

This is an interesting example of the P function for the
coupling function Fortunatel. y we can simplify the pic-
ture by going to angular momentum eigenfunctions,

J2~ dg
0 2' (382)

and obtain an infinite number of Row equations, one for
each angular momentum l:

d'V, V,'
dt 4m'

(383}

The Row tells us that the couplings V&, xnarginal at tree
level, are marginally relevant if negative, and marginally
irrelevant if positive. The former is just the BCS instabil-
ity. As for the repulsive case, if we integrate the Bow we
get

VI (0)
1+t [ V((0)/4m. ]

(384)

which is just the observation of Morel-Anderson (1962)
that interelectron repulsion is logarithmically reduced if
we develop an effective theory for the modes close to Kz.

If this analysis were to be repeated in d =3, the only
difFerence would be that the BCS P function for V(z)
would be decoupled using the Legendre polynoxnials
PI(z) with / odd. The decoupled equation would have the
same form as Eq. (383) with the same implications.

Let us now look at the evolution of V. We choose the
external momenta equal and opposite and on the Fermi
surface. The ZS and ZS' diagrams do not contribute to
any marginal flow for the same reason that BCS and ZS'
did not contribute to the flow of E: since Q and Q' are of
order ECz, they are kinematically suppressed by an extra
factor A/Kz in the field theory approach and by dA/Kz
in the xnodern approach. But the BCS diagram produces
a Row in either approach. We follow the modern ap-
proach. The fiow is due to the following factors: (i) The
loop angle can run freely over its full range because, no
matter what value E takes in the shell being eliminated,
P —K = IC automa—tically lies in the shell. (ii) The co

and k integrals behave as in d = 1 and produce a factor

We find

d V(8) —03)
dt

(381}

D. Fixed-point structure at one loop

Let us take stock: the tree-level fixed point is charac-
terized by two marginal functions E and V. The function
E is marginal at one loop also, while V is marginally
relevant in an infinite number of ways, one for each angu-
lar xnomentum l, if attractive, and marginally irrelevant
if repulsive. It appears that, even if a single VI is nega-
tive, the coupling constants run off to some other xnassive
fixed point with a BCS gap. What if all the V&'s are posi-
tive' It appears that these couplings will renormalize to
zero logarithmically and we shall end up with a fixed
point characterized by F. This turns out to be incorrect,
at least in principle, due to soxne irrelevant operators that
cannot be ignored, as first pointed out by Kohn and Lut-
tinger (196S). Here is the point. An irrelevant operator
by definition is something that renormalizes to zero, not
something you can set equal to zero at the outset without
any consequences. Before it renormalizes to zero, it can
xnodify the Qow of the relevant couplings. Reca11 the
case of uo, the scalar coupling in d =4. Although it was
irrelevant, adding it to the Gaussian fixed point generat-
ed a mass terxn ro, which then grew rapidly. A very simi-
1ar thing happens here: an irre1evant term produces a
small negative BCS coupling, which then grows rapidly.
This subtle issue is discussed in the next subsection.

We discuss here another irrelevant term, which does
not destabilize the fixed point, but modifies our descrip-
tion of it.

Consider the sunrise diagram, Fig. 11. In mode elim-
ination this diagram comes from taking two quartic
terms and seeing how they feed back on the quadratic
term. Though it is also of order u, it has two loops and
may be ignored in the one-loop discussion we are having.
But if one evaluates it, one finds it is irrelevant due to
phase-space restrictions in the limit of sma11 A/Kz. '

Before we reach this limit, it can produce interesting
effects.

Let us write its contribution as —X(kco)@t/i, where X is
called the self energy (It h-as no 8. dependence due to ro-
tational invariance. ) If we Taylor-expand X as follows,

X(kco)=X(0)+ico(1—Z )+k +irrelevant pieces,BX

ax

(385)

we see that X(00) is to be eliminated using a counterterm
6p of order u; (1—Z ') changes the coefFicient of ice to
Z '; and BX/Bk changes the coefticient of k from K~/m
to (1+(m/ICz)(BX/Bk))K~/m. At the free-field fixed
point we rescaled the field to keep the coefBcient of both
the quadratic terms fixed. Now we have seen that there
is a manifold of fixed points parametrized by nonzero u.

The details of the evaluation wi11 not be provided bere. The
interested reader is asked to do the phase-space analysis.

Rev. Mod. Phys. , Vol. 66, No. 1, January 1994



172 R. Shankar: RG approach to interacting termions .

nel graphs on the grounds that they were finite and down
by powers of A/KF, which made them unimportant in
the limit A/KF —+0. But there is a surprise waiting for us
if we go ahead and compute their contribution to the
fIow. As shown in Appendix 8, the modified How in
d =3 is (upon setting many positive numbers indepen-
dent of I and t to unity)

FICx. 11. The sunrise diagram contribution to self-energy. This
has two loops and is suppressed by a factor A/K+ or, in the
language of the 1/% expansion, by a factor of 1/%.

dv,
dt

V'( )g7/4

/ 15/2
[g7/4+ I

—7/2
]
2 (389)

In this case (co and k may receive difFerent contributions
from eliminated modes and there is no rescaling that will
keep both terms fixed, so we shall keep the coeKcient of
i co fixed at unity, i.e., define

—3/2Z —1 /2y

This has two eQects. The coefticient of k changes as fol-
lows:

K ~Z 1+ K
m KF Bk m

m

which defines the efFective mass m *.
Next, the new quartic coupling is given by

u'=(u +5u)z
where 5u is the contribution we have already discussed.
Question: does this modify the P function we calculated?
Answer: not to order u, since Z deviates from unity at
order u and this produces changes of order u in the
equation above.

How about the fact that I is now moving as we re-
normalize? Upon looking at the kinematics of the sun-
rise diagram one can tell that, as A goes to zero, its con-
tributions will vanish. Thus, although m will evolve to
m * in the early stages of renormalization, a fixed point
characterized by some m * will emerge asymptotically.

How can we have a fixed point in a theory where there
is a nonzero dimensionful parameter KF? The answer is
that the fixed-point theory described above has no
knowledge of KF: the ZS graph gets all its contribution
from the delta function at the Fermi surface, while the
other two, which know about KF, are suppressed by the
factor A/KF and vanish at the fixed point.

E. The Kohn-Luttinger effect

The Bow of VI was such that attraction led to instabili-
ty, while repulsion meant downward renormalization to
0. There is no doubt the former is true, but the latter is
incorrect in principle. The fault is not with the solution
to Eq. (383), but with the equation itself. In deriving it,
we ignored the contributions from the ZS and ZS' chan-

where V(7r) is the backward-scattering amplitude in the
BCS channel and A, =A/KF. Notice that, as A/KF~O,
the second term vanishes as (A/IC~) /, which is why we
ignored it. (The strange power comes in because the in-
tersection region scales in a special way when the
momentum transfer is =2KF, which is the region that
dominates this piece; note the backward-scattering arn-
plitude in the answer. ) Why do we care about this piece?

Let us imagine that we are just beginning our renor-
malization. The input potential is the projection on the
angular momentum l channel of some short-range poten-
tial. It follows that V1(t =0)=e ' as I~ oo in order that
the sum of such coeKcient times the P1(z) and all the
derivatives of the sum with respect to z converge to a
given analytic function V(z). By contrast, the second
term, at fixed k, goes as l ' as l~~. It is clear that,
as soon as the fIow begins, the exponentially small initial
coupling V&(0) will very quickly be driven to negative
values by the second term. Thereafter both terms will
drive the instability.

This is the RG version of the famous Kohn-Luttinger
argument, which is discussed at some length in Appendix
B. The argument implies that, at T =0, the fixed point
we studied always faces the BCS instability. However,
one is still interested in this fixed point characterized by
F. The reason is that T, for the Kohn-Luttinger super-
conductor could be very low, or the I value for pairs ab-
surdly high. Thus if we imagine a tiny nonzero tempera-
ture above this T„ the instability will disappear. (For a
recent survey of the Kohn-Luttinger e6'ect see Baranov
et al. , 1992). Recall from our analysis in Sec. III.A that
a temperature T = 1/P leads to an imaginary-time coor-
dinate of range 0 ~ r ~g. In other words a quantum sys-
tem infinite in space and at inverse temperature P is
mapped by the path-integral method to a system in d +1
dimensions which is infinite in the spatial direction and
of width P in the (imaginary) time direction. As we re-
normalize, the thickness in the time direction (in the slid-
ing units) will get reduced by s just like the correlation
length, and just unlike the momenta. Thus there is a Aow
to smaller P or larger T, the fixed point being T= ~.
But if the crossover is very slow, then in the interim the
fixed point described by F will control the physics. In-
terestingly enough there are many real-world systems de-
scribed in exactly that fashion. More on this in the sec-
tion on Landau's Fermi-liquid theory.
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VII. THE 1 /N PICTURE, THE LEAP TO ALL LOOPS

So far we have followed the RG program to one loop
in some detail. We must now see what happens at all
loops. In general this would be a formidable problem.
Luckily in the present problem a great simplification
arises in the limit A/KF —+0. The presence of this small
parameter allows us to relate the sum over all loops to
the one-loop result.

Now a similar thing happens in theories where N, the
number of species of fields, becomes very large. In this
case, in the limit 1/N —+0, it is possible to sum over all
loops, and the answer is expressed in terms of 1/N. This
is called the 1/N expansion.

We shall begin with a review of the 1/K approxima-
tion. It will then be shown that A/KF plays the role of
1/N. We begin as usual in d =2.

A. 1/Nin d=2

Consider a P theory with action
N k2 1 N N

~0= —g 0,* 2 4; ~ g & 4';4';&~)4,'4'& ~ (390)

Many integrals are suppressed, and only the internal in-
dex is highlighted, since what we are about to say is in-
dependent of dimension. All we need to note is that
there are N species of fields (or particles) and they have a
quartic interaction V. The interaction has a factor 1/N
in front of it to ensure that we have a nontrivial limit as
N~ Oo. Note that, in the interaction vertex, if an i and a
j come in, the same indices also exit, as shown in Fig. 12.

Let us look at a four-point function to one loop, as
shown in Fig. 12. Among the one-loop graphs, only the
first (ZS) is of the same order as the tree-level graph.
This is because the extra factor of 1/N coming from the
extra vertex is compensated by a sum over the loop in-
dex, which is free to take all values. This in turn was be-
cause the index i that came in went out at once, leaving
the loop index I free to roam over all values. By contrast,
the external indices have insinuated themselves into the
loops in the other two diagrams (ZS' and BCS), and there
is no sum over the indices there. These graphs are then
of order 1/N and hence suppressed by a factor 1/N rel-

ative to the tree graph. It is clear that the sum over
iterated ZS loops ("the bubble suin") gives the leading
behavior (in 1/X) of the four-point function.

Note that the P function of this theory is completely
given by the one-loop answer. This is because iterates of
the ZS loop (the bubble sum) merely produce the nth
power of lnA when iterated n times, while higher-order
terms in P come from subdominant logarithms. This
conclusion is also evident from Weinberg s (1993) discus-
sion of the graphical content of the e6'ective action.

Let us look at our theory now and consider a four-
point function I (g2, g„g2, g, ) in obvious notation with all
external m=k =0. %'e return to Fig. 12, this time using
integrals over 8's in place of a sum over discrete indices.
In the ZS graph, where the incoming "index" 0& immedi-
ately exits, there is no momentum transfer at the left (and
hence right) vertex. Thus the loop angle runs over the
full range 0—2m. . In the ZS' and BCS diagrams, on the
other hand, there is a large momentum transfer Q' or
large total momentum P (Figs. 8 or 10), which tell us that
loop angles must lie within A/KF of the external angles.
In other words, the external angles have insinuated thern-
selves into the loops and frozen the loop sum. Since the
ratio of the ZS' and BCS graphs to the ZS graphs is
A/KF, we expect that this ratio will play the role of 1/N.

It should not be too surprising that we have a 1/2V
description available here: the noninteracting d =2
theory was written as an integral over the internal index
g, which labeled pseudo two-dimensional theories (with a
phase space dkdco), one for each direction. But what
should be the 1V assigned to this integral (rather than
sum) over g? Is it infinity, since there are infinite direc-
tions, or is it of order unity, since each has infinitesimal
measure? Let us sharpen the analogy with 1/N analysis
to answer this question. As a first step let us write the
free-field action with all factors of KF intact:

(391)

Now we chop the angular integration into regions of
width 60=2A/KF, so that the annulus breaks up into
K =2~ÃF/2A cells labeled by an index i. The momen-
tum of a point within a cell i is

K =KFA; +k;Q;+kj;t;
—:KFA, +k;,

(392)

(393)

(a) (b)

2$' BCS

FIG. 12. Flow of indices in the 1/N analysis for the problem
with an 9'-type interaction. The tree-level graph is of order
1/N. The ZS graph is of the same order, since the sum over I
pays for the extra vertex. The other two graphs are of order
1/N . If we consider interactions of the V type, the BCS dia-
gram and its iterates will be favored.

where A,- is the unit radial vector at the center of cell i, t,-

is a unit tangent, and k; and k~,- are radial and angular
displacements from the cell center. We refer to the first
piece of order KF as the large momentum and the other
as the small one. The measure per cell is

dk + dO A dk & dkJ. d kf.2.f ...", f .2.—J.2. =J (, ). ~

(394)
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In this notation

N k;dt's;So= Q f g, (k,.to, )[ice —
U k, ]@,.(k, co, )

We now write down an interaction term,

S~ = — g f@,(k4co4)QJ (k2co2)P;,.@;(k,n), )f;(k,co, ),
Fij=1

Fi =E(Q;.0) )

k;dco;

6(cubi

+ co2 co3 co4 )

x S'"(k, +k, —k, —k, )(2~)' .

to V. In schematic form and the same notation used
above,

&y= g fP, (4)g, (3)V;,g;(2)P;(I) .
ij

(399)

This interaction leads to a bubble sum (iterates of the
one-loop graph) in the BCS channel. Here the coupling
V grows as % increases, since there is a Aow now. If we
want to increase N keeping V(1V) fixed, we must start
with weaker and weaker V's. If we do this, we can han-
dle the BCS problem also by summing over bubble dia-
gr ams.

Let us hereafter assume that the BCS amplitudes V are
absent in the spirit discussed earlier. Then we are left
with iterated ZS loops and F's. The physics of this is
Fermi-liquid theory, to be discussed in the next section.

Notice that the interaction conserves momentum: the
fact that the index i appears once in a @ and once in g
means the large momentum is conserved. The small one
is also conserved because of the explicit 6' ' function. If
we express all frequencies and momenta in units of A, it
will be found that the only place where A appears will be
in front of the interaction term in the form A/AF, exact-
ly playing the role of 1/%.

Now, this interaction is not exactly the one we have
dealt with so far; it forbids certain processes that were
previously allowed. Consider a process in which the ini-
tial particles have momenta K&K2 from cells i jiz, respec-
tively, adding to a total P. If we draw Fig. 8, we shall
indeed find that K3K4 lie with the same intersection re-
gions as K&K2, but this need not mean they are in the
same cells. In other words, the intersection region can
straddle more than one cell, if we imagine these cells per-
manently etched on the annulus. The old interaction
would allow the full intersection region, while the new
one would allow only the part of it in which the cell in-
dices match in pairs. But notice that the difference be-
tween the two interactions shows up only in situations
that are kinematically suppressed by a power of A/KF.
An the other hand, if we concentrate on just the sum
over iterated ZS loops, with co, Q ((A, it can be verified
that the two give identical answers.

The careful reader will find one problem with the 1/%
analogy. In the usual examples, u in Eq. (390) is held
fixed as % varies. Here % is related to the cutoff A. As
we lower the latter to increase the former, we must fol-
low the Bow of F'(A)=P(1/%). However, we have seen
that there is no Row within the I' couplings in the asymp-
totic region. Thus E; is essentially constant independent
of %for large %.

In view of the above, we employ the following two-
stage attack on the fermion problem:

Reduce the given problem in the full A space to a
small-A (large-2V) theory using the R.Cx.

Solve the resultant theory using the smallness of 1/%.
Consider now another type of coupling corresponding

We have seen that the RG- allows nonforward ampli-
tudes to survive in d =3 as marginal interactions. If we
divide the spherical Fermi surface into patches of size A
and label them by an index i, this will run over roughly
(AF/A) values. The interaction I';. will not be of the
form of Eq. (398), since non-forward-scattering ampli-
tudes are allowed. Let us, however, divide the possible
interactions into a set involving just forward scattering
and the rest. If we consider a forward-scattering four-
point function I; (with cell index conserved), it will be
given as the bare vertex plus a sum of iterated ZS dia-
grams all involving only forward-scattering amplitudes.
The insertion of a large-angle scattering anywhere will
produce a factor A/K~. [The suppression factor is not
(A/IC+) because kinematics only restricts the angle be-
tween 1 and 2 to be that between 3 and 4; the plane con-
taining the latter is still free to rotate by the angle we
called Pi2. 34 ] If we consider instead I;j', which is nonfor-
ward, we find that it is given by just the tree-level cou-
pling we put in the action. All loop corrections will be
down by powers of A/KF. If we consider any response
function to a soft (low-wave-number) probe, these ampli-
tudes will not enter the physics. If we compute the life-
times of particles, these amplitudes will play a role, but
phase space will again introduce powers of A/ICF. Thus
the nonforward amplitudes live in a shadow world,
perhaps large in magnitude but small in their effects.

As for the BCS amplitudes, we can find the stable state
with a gap, using the 1/N expansion to limit ourselves to
summing bubble graphs. Since nonforward amplitudes
never enter the computation, this explains why it is per-
missible to use the reduced BCS Hamiltonian, in which
only scattering within pair states is kept. (These ampli-
tudes are just our Vs, of course. }

Note that, as in any I/K theory, the P function at one
loop (which we have calculated) is all there is in the
large-N or small-A limit.

Rev. Mod. Phys. , Vol. 66, No. 1, January 1994



R. Shankar: RG approach to interacting fermions 175

C. Two-point functions at large N

Let us close by asking what happens to two-point func-
tions at large %. Let us look at some of the graphs con-
tributing to 6, shown in Fig. 13, if we use the one-loop
fixed-paint action Eq. (378). We see that all iterates of
the tadpole are exactly canceled by the one-loop counter-
term or fixed-point chemical potential 5@*: whenever we
can draw one Inore loop, we can also use the counterterm
which exactly kills it. The sunrise diagram, on the other
hand, brings in new corrections. But this diagram is
suppressed by 1/N and is ignored in the limit we are in-
terested in. This means that, in this theory, we know the
exact self-energy of a particie for the giuen interaction E.
This will play a big role in Fermi-liquid theory, to which
we shall turn our attention shortly. (Gne way to under-
stand the above result is the following. When the shell
thickness goes to zero, the limiting theory acquires
particle-hole symmetry. We are quite accustomed to this
symmetry's determining the chemical potential, even on
a lattice. This will continue to be true even for nonspher-
ical Fermi surfaces. )

The picture we developed in the large-N limit agrees
with rigorous calculations of Feldman et al. (Feldman
and Trubowitz, 1990, 1991;Feldman et al. , 1992, 1993),
as explained to me by E. Trubowitz. According to these
authors, the system always goes to a BCS state at T =0,
and, if the BCS diagrams are eliminated, the rest define a
convergent series with a finite radius of convergence.

Further details may be found in the references given.

Vill. LANDAU'S FERMI-LIQUID THEORY

Nearly four decades aga Landau (1956, 1957, 1959) at-
tacked the problem of interacting fermions at very low
temperatures T &&ECF. Assuming the system evolved
continuously from the noninteracting limit, he developed
a phenomenological theory that proved very successfu1,
far example, in the study of helium-3 (Pines and
Nozieres, 1963; Nozieres, 1964; Leggett, 1975; Vollhardt
and Wolfe, 1990; Baym and Pethick, 1991; Lifshitz and
Pitayevskii, 1980.) The picture he arrived at, called
Fermi-liquid theory, may be described in the terminology
of this paper as thegxed point described by I'. For inany
readers of Landau's work there was an element of mys-

FICs. 13. Role of the counterterm (shown by a cross) in G
The tadpole (order u) is canceled by the next diagram with just
a cross. The value of the cross is found by erst evaluating the
tadpole and then arranging the cancellation. The next one with
two loops is canceled exactly by the one following it, where the
cross still stands for its order-u value. The sunrise diagram
(last) will require a change in the counterterm, but this will be
of relative order 1/N and hence ignorable in the large-N or
small-A /Ez limit.

tery surrounding some of the manipulations. This had to
be so, since he substituted for forty years of subsequent
developments (the RCx in particular) with his remarkable
intuition.

Following his work, a diagrammatic derivation of
Fermi-liquid theory was provided by Abrikosov et al.
and is described in their book (Abrikosov et al. , 1963).
While the details were rather tedious, they did a lot to
clarify where everything came from. I believe the ap-
proach developed here, using the RCx, provides an even
simpler route to Fermi-liquid theory, at least for those
with a certain background.

So let us pretend we do not know what Fermi-liquid
theory is and ask how we would arrive at it. (This paper
specializes in T =0, and one expects the results to work
also for the crossover region at low T with minor
changes. ) Using the RG developed here, we would find
that, after repeated renormalization, we would have
mapped the initial problem to one with A/E+~0. Set-
ting V =0 eliminates the BCS instability, i.e., implements
Landau's requirement that there be no phase transitions,
leaving us with a Axed-point theory parametrized by the
marginal couplings m *, Ii (zP). The physics of this fixed
point is Landau's theory. The excitations of this efFective
theory are the quasipartl'cIes of Landau, in contrast to the
"bare" particles created by the fields we began with prior
to mode elimination. The fact that the quasiparticles
have in6nite lifetimes was established by Landau using
phase arguments. In the present analysis, the lifetime
terms, which appear as 0 (co ) terms in the self-energy,
are irrelevant under the RG transformation. (At the
free-field fixed point, they fall by s ' under a factor s
reduction of the cutoff. )

Is there any interesting physics in this limit A/%~~0?
If the cutofF is going to zero in laboratory units, are there
any Feynman diagrams at all, or do we just read oC' a11

the physical scattering amplitudes from the vertices in
the action, with no loop corrections, there being nothing
left to run in the loops? In other words, is the full vertex
function I the same as the (duly antisymmetrized) cou-
plings E in the action?

The answer depends on whether we are looking at
/ =0 or /%0, i.e., at processes in which the final pair lies
or does not lie in the same plane as the initial pair. As
for the latter, it is indeed true that tree-level amplitudes
in the action would not be dressed by any loops due to
the kinematics in d &1. For example, at one loop, the
loop momentum would be restricted in magnitude and
angle to size A and A/KF, respectively. This, coupled
with the fact that these diagrams have no singularities,
would make them negligible, and we would have I =F.

For forward scattering, however, the iterated loops in
the ZS channel, with only forward-scattering couplings
(E) appearing in all the vertices, would have no restric-
tion on the loop angle, which is why the graphs survived
in the large-% picture. However, the magnitude of loop
momentum k would still be bounded by A. Why would
these graphs survive in the limit of vanishing cutoft7 The
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answer is that the integrand has a 6-function singularity
at the Fermi surface (derivative of the Fermi function) if
the external frequency transfer is zero, rendering the in-
tegral insensitive to A as long as it is nonzero.

Any attempt to introduce nonfor ward amplitudes
E(QWO) into the iterated ZS loops would bring in a
suppression factor, ca11 it 1/% or A/K+. Thus the for-
ward and nonforward amplitudes do not mix. If we focus
our attention on computing responses to soft probes
[(cog) (&A], we can ignore the nonforward E's. The
resultant theory is just I andau s I'ermi-Iiquid theory.
The function E(z, P=O) is called the Landau parameter
E(z).

Landau's I' (z}can be introduced in another equivalent
way. Let us begin with our fixed-point theory (hereafter
in d =3),

s'(k Q) = u *(k —r (Q) )

de'dk'dQ' E(Q-Q')
(2m) ice' u—"(k' —r (Q'))

(404)

e(kQ)=u'k+ f E(Q.Q')r(Q') .
dQ'

(2m)
(405)

1t is evident that the integral involving E represents the
interaction between the (quasi) particle in question and
the rest. Consider now a state with 5n (kQ) quasiparti-
cles at the point (kQ), with 5n = —1 if it is a hole. In
terms of r(Q),

Doing the co integral gives us 0( —k'+r(Q')), whereas
the integral in 5@*gives 8( —k). A.s a result, the energy e
of a particle, now measured with respect to W (which
differs by u*r from e') is

+ f upgf@, (400)
5n(kQ) =0(k)0(r(Q) —k) —0( —k)8(k —r(Q)) . (406)

where u can contain nonforward amplitudes as well. We
have seen that if

The energy of such a state, with reference to the
ground state, follows from Eq. (405):

K[5n]= gu*k5n(kQ)
kQ

then there are no self-energy corrections in the limit we
are in. Imagine now a state with a macroscopic number
of (quasi) particles added to the ground state, so that all
states up to momentum k =r(Q} are occupied in the
direction Q. We can make such a state the ground state
by modifying the Hamiltonian to

(402)

The action now becomes

S = f /[ice u*(k r(Q—))]@-
(2m )

Let us now calculate the energy c.'(kQ) (associated with
H'') of a particle in a state labeled by (Qk). It is found
from 6 ', which we can calculate exactly in the large-X
limit, since we just need to evaluate the tadpole. This
gives

+ g Q 5n ( kQ) E( Q- Q') 5n ( kQ')
kA k'Q'

+O(5n~), (407)

where V is the volume, kept Gnite so we can do a sum
rather than integral over rnomenta, and I"is proportional
to I', which is how Landau introduced his I'.

Some texts (Mahan, 1981) devote some time to why
Landau went on to keep the quadratic term in 6n, and if
he did, why he did not go to higher orders. The RG ap-
proach provides its own version of the answer. Both
terms [coming from P(icy u*k)P an—d fPgg) are mar-
ginal, whereas higher powers of @ would bring in ir
releUan t operators. In particular, the term with four
powers of @competes with a term with just two, since the
latter has an extra k or co multiplying it, and these renor-
rnalize downwards under the RG transformation.

Qf course we did not have to wait for this analysis to
understand why Landau did what he did. If we go from
Eq. (405}, which gives the energy of an excitation, to the
energy of all of the excitations, we 6nd

fKgdk dQ,
(2m. )

K r(Q) u*f kdkdQ+ —ff,dQ'r(Q')E(Q Q')r(Q)
V (2~) o (2~)'

dn I
u* f r (Q) + f f r(Q')E(Q. Q')r(Q)

(2~)2 4m p~2 4m 4m
(408)
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We may view the above expression as representing the
elastic energy of a membrane or rubber band represent-
ing the Fermi surface, with r(Q) as the deformation pa-
rameter. (This equation may be found on page 54 of
Nozieres and Pines. ) It is now clear that both terms are
of the same order in the deformation. Haldane (in his
lectures, yet to be published) emphasizes this aspect of
Landau theory. He writes down the effective M as a
quadratic function of some current densities obeying an
algebra familiar in Conformal Field Theory. It is clear
that we are discussing a solvable theory. The fact that
only forward-scattering interactions [E(z,/=0)] enter
this theory is what makes it solvable and also endows it
with additiona1 symmetries. A very concrete application
of Haldane's approach may be found in the work of
Houghton and Marston (1992).

More recently Castro Neto and Fradkin (1993) used a
coherent-state path integral to sum over the
configurations of the Fermi surface.

This concludes the link between the present formalism
and Fermi-liquid theory. Ance we have the concept of
the Fermi-liquid theory, there is no need for the RG.
However, for the sake of those RG-minded readers who
have followed all these arguments but are not fax@.iliar
with Fermi-liquid theory, three sample problems will be
discussed, not only to provide some instant gratification
but also because each of them tells us something very in-
structive.

A. Landau theory for the masses

(409)

Now Galilean invariance is the statement that the boost
sects only the kinetic energy oj' the particles and not the
interaction energy. Thus the response of H to this trans-
formation is the same as in free-field theory and given by

U~Hu =H+P- + --5
PZ

(410)

where P is the total momentum operator. Thus to first

Dur fixed-point theory parametrized by v* and u*=E
has evolved from some bare theory with mass m, cou-
pling U, and so on. In the RG approach, one does not
usual1y attempt to reconstruct the bare parameters in
terms of the final fixed-point quantities due to the un-
avoidable loss of information that accompanies mode el-
imination. There is, however, an ingenious argument due
to Landau which does exactly that by relating m to m *
and I'. The reason not all information about bare quanti-
ties is irreversibly lost is due, as always, to a symmetry,
Czalilean invariance being the operative one here. Let U
be a unitary operator that acts on a state

~ @) and gives it
an infinitesimal boost with velocity

6v=5p/m .
Under this active transformation, the energy of the eigen-
state ~@) changes as

order

Let ~@) be a state containing one extra particle at the
Fermi surface. Since the ground state has zero momen-
tum, this is a state of momentum L~ in the chosen direc-
tion. Let the boost be in the same direction. The energy
change according to the right-hand side of the above
equation is

(412)

As for the 1eft-hand side, the active transformation has
three efFects, which change the energy to jirst order in the
boost:

(i) The quasiparticle momentum goes up by 5p and, by
the very definition of effective mass or Fermi velocity, its
energy goes up by A+5p /m ".

(ii) The sea gets bodily shifted by 5p. This does not
affect the kinetic energy of the sea, since the total
momentum of the sea was zero.

(iii) The interaction of the quasiparticle with the shift-
ed sea changes its energy as per Eq. (405), with
r (8)=5p cosO, where the angle 8 is measured relative to
the boost.

Adding all the pieces and equating the result to what
was given in the previous equation, we get the famous re-
lation

K~ =K~ +5@jE(z)z Qz

m pyz
~ 4~

(413)

where z =coso. In terms of the climensionless function

FICr. 14. The compressibility at small Q, co, expressed as the
correlation function of two densities. It is assumed we have re-
normalized down to a very small cutoff A, which is still larger
than the probe momentum. The p's stand for the external
probes coupling to the particle density. The first graph on the
right-hand side is what one gets in free-field theory. The rest of
the graphs are corrections due to interactions. If we try to in-
troduce any large scattering amplitudes (these are marginal in
d =3) into the graph (say, across one of the ZS bubbles), there
will be a suppression by powers of A/Kz. E)nly the ZS bubbles
survive the kinematical restrictions that all propagators lie
within the narrow cutoff.
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2M' 2& v

and the expansion in terms of Legendre polynomials

C(z)=g C,I', (z),

(414)

we obtain

rn* 1=1+—N1 .I 3
(416)

B. Zero sound

Zero sound refers to natural oscillations in a Fermi
liquid, resulting from interactions between the particles.

(2~)~5' '(0)y(Qco)= —(p(Q~), p( —Q —c0)) . (417)

We are interested in the limit Q, co«A. We shall com-
pute the correlation function by using the diagrammatic
rules we have employed so far. The first few diagrams
are given by Fig. 14. Because of the fact that the radial
part of the 5 function [5(k —k')] that we pull out of our
graphs differs from the traditional one [5(k —k')/Kz]
used in Eq. (417), we find

We find it just as we would find the natural frequencies of
an oscillator: by looking for poles in certain response
functions. In our problem this means the density-density
response function or compressibility.

Let us imagine an external probe P(Qco) which couples
to the density p( Qco) of the fermions, producing density
fluctuations. The compressibility y is given by

y(Q~) I dk diA dicoi
[—Kg ] (2'�) SCO1 V k1

1

ice)i+leo U ki v Qzig

dk, dn}d Q)1 dk2dn2d 632+ f I(co,k, ).I 4 I(co2k~)E(Q, Q2) +
(2') (2m. )

Qz igdz ig 1 Qz igdz ig 1 Qz2gdzzg 1

l CO V Z1Q 4~ l Q) V Z1Q 4~ l CO V Z2Q

(418)

(419)

where z,.g is the cosine of the angle between g and the
direction of the loop momentum K,-.

Now, we would like to study the simplest problem of
this kind and therefore would like to choose a constant I.
Unfortunately, I', although not antisymmetric under the
exchange of 1 and 2, still vanishes when the initial angles
coincide. [See the nearest-neighbor example wherein
I =(1—cos8,2). ] We shall compromise and for once in-
troduce spin. We shall assume that only up and down
particles scatter, with a constant I'0. If we now look at
Fig. 14, we see that the first 1oop gets an extra factor of 2
due to the spin sum. The second also gets only a 2, since
spins at the vertex must be opposite. This restriction
continues down the chain. Now we find that the series is
geometric. The sum gives

I

function I also, as alluded to earlier.
Clearly a pole occurs in y when

1 1 I. Zdz
Ep 4~ v s z

1 s 5+1—ln —1
2m~v*

(422)

where

(423)

In terms of the dimensionless C
&

introduced in Eq. (414),

2~zip
y(Qco) =

0 0
(420) 1 s s+1—ln —1

2 s —1
(424)

Qzdz 1
0

ro —
U "Qz 4ir

(421)

where we have chosen to look at real (rather than Matsu-
bara) frequency co since we are looking for real propaga-
ting excitations.

Notice how we get an answer that is very sensitive to
whether Q/co~0 or vice versa. In the former case Io
vanishes, whereas in the latter case it equals —I/2m v*.
This is the kind of sensitivity that plagues the four-point

For the solution to exist, we require s ) 1, i.e., the veloci-
ty of propagation co/Q must exceed the Fermi velocity

We shall not discuss the extensive physics of this
phenomenon. [For example, Mermin (1967) has showed
that we shall always have a zero-sound mode, for any
reasonable I".] The main point was to show that the
narrow-cutoC'theory has a lot of life in it.
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C. Static compressibility

To find the equilibrium compressibility, we simply set
ro —=0, Q~O in the preceding calculation. This means
that

(425)

The iterated integrals then simplify to the point that we
no longer have to introduce spin or assume 5' is a con-
stant. Cioing back to the spinless case, we find

m *K~/2m

1+No
(426)

Had we computed g in free-field theory we would have
found

mA~
+0 2'

Thus

rn '/m 1+@'i~3

yo 1+No 1+No

(427)

(428)

Now, no one will dispute that this is indeed the ratio of
(l(ggp) correlation functions in the fixed-point theory
to those of the free-field theory. But in Landau theory
one equates this to the ratio of compressibilities. This is
not so obviously correct, and I thank N. Read for forcing
me to clarify this point. The problem is this. Let us be-
gin with the full path integral over the bare fields prior to
the RG- transformation with a coupling of the bare
charge density to some external field 2:

generated (in addition to what was already there) as we
carry out the RG transformation, and this precisely can-
cels the effect just discussed. This is an example of a
Ward identity based on charge conservation. [See Abri-
kosov et al. (1963) for a discussion. ) Here is a glimpse of
how it works with no numerical factors. Let us look at
two graphs that cancel. (All loop momenta lie in the el-
iminated region and correspond to fast modes. ) Take the
sunrise diagram, Fig. 15{a),whose ice derivative at co=0
contributes to Z, the field rescaling factor:

BXlco~lco 1 —. =/coZ
l Bco

(432)

Imagine routing the external momentum through the
upper line. Taking the iso derivative clearly squares that
propagator. This is shown in Fig. 15(b), with the cross
denoting the place where the second propagator joins the
first.

Consider now the other phenomenon: generation of
new terms. In the mode elimination scheme the coupling
between A and P@ can take place via the fast modes as
shown in Fig. 15(c). Notice that this diagram coincides
with that in Fig. 15(b) in the limit when the probe brings
in zero momentum and frequency. Consequently the
field rescaling efFects (due to the self-energy diagram) pre-
cisely cancel induced terms efFects (due to the vertex
correction diagram). Although we took just a pair of dia-

(429)

S(A)= f $0(in' E(K)—)go+, , f pogpogogoU

+& oo
Now, it is certainly true that

(431)

Suppose we now perform the RCx transformation. In the
process we rescale the field: QOZ

'~ =f. (I apologize
for using Z to denote two different things. Hereafter we
sha11 only see the above definition, as the wave-function
renormalization factor. ) This means

Ago@o—+ AZf@ .

Now the partition function is preserved by mode elirnina-
tion, and we can take its second logarithmic derivative
with respect to A after the RCx transformation to find g.
But this will give Z' (@P@@),whereas we computed the
operator without the Z's in what we called y of the
fixed-point theory.

So this is the mystery. The resolution lies in the fact
that, besides the rescaling, a term of the form AP@ is

FIG. 15. Ward identity at work. The idea is to show that the
coupling of the charge density to a field 2 is unafFected by in-
teractions in the limit of vanishing probe frequency and mo-
melita. (a) represents the renorrnalization of the quadratic cou-
pling by the addition of X(k, co). (The loop rnomenta are all
fast. ) If we expand X in a power series in iso, the first derivative
will modify the quadratic piece by X'=OX/Rico. The field must
then be rescaled to neutralize this. The graph in (b) represents
X', the (external) frequency derivative of that in (a). The deriva-
tive introduces an extra propagator. The corresponding dia-
gram represents the change in the field rescaling. Consider,
however, the graph in (c), which reAects the fact that the slow
fields can couple indirectly to the external field A via fast modes
denoted by f~. This equals the graph in (b) when external
momentum and the frequency of the probe vanish. Consequent-
ly the field rescaling and modification of the coupling to the
external field exactly cancel for these two graphs. The cancella-
tion, however, is an exact statement. The physical idea is that,
while interactions may cause one quasiparticle to break up into
many, the total charge (to which the probe couples in the limit
considered) is the same, since the dissociation conserves charge.
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grams, the result is exact. It rejects the fact that, even
though the quasiparticle can break up into many parti-
cles (so that its chance of being a single particle is re-
duced), the field can couple to the fragments now, and
the total charge of the fragments (which is all the field
couples to in the limit of zero frequency and wavelength)
is that of the quasiparticle. (The careful reader will ask:
what about the c-number term of the form A in the ac-
tion that comes from integrating fast modes? These con-
tributions froxn the fast modes drop out as the external
momentum and frequency vanish, which is the limit we
are interested in. )

Thus a 1ot of Landau theory acquires its power due to
the fact that not only are many quantities (like ( ggiTQ ) )

computable in the fixed-point theory, they directly corre-
spond, with no intervening, unknown prefactors, to phys-
ical observables (like compressibility) due to Ward identi-
ties.

D. Notes for the experts

Here are some notes for readers who are familiar with
the details of one or another of the ideas invoked earlier.

(i) In the diagrammatic treatment of Fermi-liquid
theory, one organizes the graphs as follows (in the nota-
tion of Abrikosov et al. , 1963). First, one looks at the
theory in the limit where the external transfers Q, co —+0.
The full four-point function is called I and corresponds
to the limit co/Q~O. It is given as a sum of diagrams
where the bare vertex is ca11ed I ", which corresponds to
the limit Q/co~0, and is irreducible with respect to a
pair of particle-hole lines which are singular at the Fermi
surface. It is assumed that the bare vertex is analytic in
its arguments, and the troublemakers, the particle-hole
lines that produce all the singularities in the small (Q, co)
limit, are explicitly displayed.

In the RG approach, the bare vertex u contains all the
safe modes, which include particle-hale lines, with at
least one of them outside the cutoff. The only lines shourn
explicitly in the cuto+ theory are particle hole line-s, both
within the cuto+ these being the modes yet to be integrat
ed.

(ii) Couplings corresponding to nonforward scattering,
called P(z, /&0) in this paper, are very important for the
study of lifetime effects and transport properties. A nice
discussion of this may be found, for example, in Mahan's
book (1981). Note in particular the discussion of the
work of Dy and Pethick on page 947. These authors
asked how the forward-scattering Landau parameters
I'(z) may be extended to non-forward-scattering cou-
plings and argued for a certain P dependence based on
symmetry under exchange. The additional factor of cosP
they came up with is exactly what we find in Eq. (372) of
this paper.

(iii) Even though I' is a marginal coupling, there are no
anomalous dimensians for the operators, in contrast to
the fixed line in d =1 along which the fermion field and

IX. NONCIRCULAR FERMI SURFACES: GENERIC

We now discuss a Fermi surface that has no special
symmetries other than time-reversal in variance:
E (K)=Z ( —K). Once again we focus on d =2, discuss-
ing in passing the extension to d =3. A surface that
meets these conditions is an ellipse and is depicted in Fig.
16.

The first step is to set up the RCx transformation for
the noninteracting problem. Since ~K~ is no longer a
measure of energy, we must draw contours of constant
energy e (measured from the Fermi surface) and retain a
band of width A in either side of the Ferxni surface. Thus
our starting point is the action

~(. J(gs)d8d E dao
0 —A —oo (2~)

(433)

where t9 parametrizes the Fermi surface, and J is the
Jacobian for (K„K )~(8e). We shall expand

J(e8)=J(8)+eJ,(8)+ (434)

around the Fermi surface and keep just the first term; the
rest will prove irrelevant.

The RG transformation is exactly as before, with c. in
place of k. It is clear that higher-order terms in J renor-
malize to zero with respect to this RCi transformation.
The interaction term is

other operators have continuously varying dimensions.
It is worth finding out if the interaction is a redundant
operator in the sense of the RCx.

(iv) Landau theory appears very much like a classical
self-consistent theory. We understand this as coming
from the large-N saddle point, which, like any saddle
point, represents a form of classical limit.

(v) Some readers familiar with 1/1V expansions may
ask how the I's manage to change physical quantities
like y by factors of order unity, when one always thinks
of interactions as producing changes of order I/N [In.
other words, why are the dimensionless numbers N, ap-
pearing in, say Eq. (428), producing corrections of order
unity'?] The central feature of I/K expansions is that
loops of a certain kind are of order unity, since the loop
sum pays for the extra factors of the interaction. If we
compute a scattering amplitude, which exists only due to
interactions, we get a term of order 1/W, since that is the
strength of any one coupling. This is a sum of a tree-
level or bare term axed iterated loops, all of the same or-
der. In other words, the quantum corrections in the
iterated loops are of the same order as the tree-level term.
But if we compute something like the density-density
correlation function (not often done in field theory), this
is given by the polarization bubb1e, which is nonzero in
free-field theory and hence of order unity in the 1/%
series. Loop corrections to it (ZS graphs) are of the same
order as well.
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u (828]828])= —u (8]82828])=E(828]),
u (

—8383—8,8, )= V(838]),
(437)

(438)

but are no longer functions of the differences of their ar-
guments.

B. Tadpole graph

FIG. 16. A Fermi surface with time-reversal symetry but no ro-
tational invariance. The dark line may be taken to represent a
very thin shell left after a lot of renormalization. The figure
shows that once again the set of initial vectors 1 and 2 coincides
with the set of final vectors as the cutoff goes to zero. A11 the
results of the circular case hold except for one thing: E(9&,9&)
and V(83, 0&) are no longer functions of the differences of their
arguments. The only instability is the BCS instability, which re-
quires only tixne-reversal invariance. Indeed, the construction
in the figure assumes this symmetry. The solutions it gives for
K3 and K4 actually point from the surface to the center of the
second ellipse instead of the other way around. However,
time-reversal invariance assures us that, if we continue these
vectors past the origin of the second ellipse, by an equal
amount, we will hit the surface, so that K3 and K4 as shown are
acceptable solutions. In general, to Pnd the final set using the
initial set, ]oe must dra]o the time reuer-sed uersion of the second
surface and displace its center by P relative to the first. This has
not mattered so far due to the time-reversal invariance of the
surfaces. If this condition were forgotten in the noninvariant
case, one would erroneously conclude that when P=O, the two
surfaces coincide and the Cooper pairs can roam over all angles,
leading to the BCS instability. The correct construction would
show in this case that the two surfaces, even with P=0, would
intersect in only a few places of area =A .

5S4 = f@(4)g(3)gP(2)@(1)u(4, 3,2, 1), (435)

where

J(8; )d 8;d e;dco;

(2n. )

—/c i/A
e 4 (436)

A. Tree-level analysis

The analysis proceeds exactly as in the rotationally in-
variant case. As A (the cutoff in energy now) is reduced
to zero (in fixed laboratory units) by mode elimination,
we find once again that the set of initial rnomenta I and 2
must coincide with the Anal set 3 and 4. To see this, we
must simply replace figures that have intersecting circles
with, say, intersecting ellipses (Fig. 16) or whatever may
be the shape of the Fermi surface. In a smooth cutoff
only such couplings will not become exponentially small
under renormalization.

Thus once again the marginal couplings at tree level
obey 83 equal to 8& or 02 unless 9,= —82, in which case
83= —84. (The figure shows the second possibility. ) The
tree-level amplitudes are labeled as before:

We now see a new feature with the tadpole. Let us un-
derstand this without any reference to the RG. Suppose
we begin with the action equation (435) and go to one
loop. The tadpole graph, Fig. 5, makes the following
contribution to the self-energy:

X(eeoc)=A. f5'(88') =—eo(8) ., J(8')de'
(2~)2

Thus
G '=i to —E —Eo(8),

(439)

and the Fermi surface has moved to E= —sa(8). This
gene~ally inUolUes a change in shape.

Now even in the rotationally invariant problem the
Fermi surface moves; turning on interactions changes the
Fermi surface radius from ICg =&2m]M to K];(]u) such
that

(441)

In that case we can add a counterterm $p, *=co(0)= po to
the action to restore the old Fermi-surface radius. Recall
that the action (schematic)

S=f y(t~ s)q+s—,f@y+ ' f u@q@@ (442)

was invariant under the RCi at one loop and order u.
Now, it was pointed out that adding a counterterm to

maintain the radius of the Fermi surface was not fine tun-
ing, since it corresponds to maintaining a fixed density,
which is experimentally viable. It was also pointed out
that, if we did not add the counterterm, the system would
not acquire a gap, as in P theory, but would simply
move to the new radius defined in Eq. (441).

In the nonrotationally invariant problem, clinging to
the old Fermi surface is certainly a case of fine tuning.
There is no experimental way (such as sealing off the sys-
tem) to preserve the detailed shape of the Fermi surface.
We could add a constant 5]]t to keep the density (i.e.,
volume enclosed by the Fermi surface) constant, but we
will not; we shall let the system find the true Fermi sur-
face for the given p and u. We can use the RCr to deter-
mine the final Fermi surface as follows. We rewrite the
initial action by adding and subtracting a presently un-
known term s]](8):

S= i'co —a+co 8 + co 8 + u

—= f P(ico e)@+f—co(8)f/+, , f ug@@P (443)

and demand that this be a fixed point. To one loop and
order u this means
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,(8)
A 2~ dE'd8'de'J(8')E(88')

(2~) (ice F—)
(444)

which leads to

y
d8'J(8')F(8'8)

(2~)
(445)

To obtain this we have to do the co integral in Eq. (444).
Note that in that equation everything in the integral is
evaluated at order u due to an explicit E in it. This
means that the propagator in the integral has an angle-
independent E'.

Since we now have a fixed paint, it must be true that
we have found the correct Fermi surface. From the
knowledge of c.o we can reconstruct the new Fermi sur-
face. In principle one could go order by order in this "re-
normalized perturbation theory. " However, in the
large-K limit, which appears here also, the one-loop
answer gives the full self-energy correction or change in
Fermi surface.

C. One loep at order u2

d v(8„83)
dt

', 1'"" V(8, ;8)V(8;8,)J(8),
8~2 o 2m

(446)

though we can no longer use rotational invariance to
decouple this equation using angular momentum eigen-
functions. It is, however, possible to do a double Fourier
expansion. This deserves further study analytically and
numerically.

Weinberg (1993) has recently derived such a Row equa-
tion for superconductors whose Fermi surfaces obey just
time-reversal invariance, using the notion of effective ac-
tions from quantum field theory. Besides the How, his
paper has a careful derivation and analysis of the
effective action for superconductors. All the important
properties of the superconductor may be derived from its
e5'ective action and from the notion of broken gauge in-
variance (%"einberg, 1986).

If we ignore the BCS interaction, we expect the Fermi
liquid, 1/N etc., to work as before except for lack of rota-
tional invariance. The 5 function will new be a function
of two variables. We expect to find zero sound. %'e do
not expect any simple relation between m and m * due to

If we do mode elimination as in the rotationa11y invari-
ant case, we find once again that the ZS and ZS' graphs
do not contribute to the Bow of I' for the same reason:
either there is not enough momentum transfer to knock
an internal line at —A to A, or there is a kinematical
suppression factor d A/Kz. The Bow in the BCS channel
is unaffected by nonrotational invariance. As 1ong as
E(K)=E(—K) the BCS diagram, given by the third
term in Eq. (315), will make a contribution and we shall
obtain

I

a lack of G-alilean invariance.
Finally, if we consider a Fermi surface without time-

reversal symmetry, we can get rid of the BCS amplitudes
even at T =0. (However, in drawing the analog of Fig. 8,
we must draw the time-reversal inverted version of the
second Fermi surface (displaced by P ), since the previous
construction assumed that, if K is an allowed vector, so
is —K.

X. NGNCI RCU LAB FERMI SU RFACES NESTED

g gt(j)g(j')+H c. .

+U g [P (J')@(J')——,'][@(J')P(j') —
—,'],

(jj')
(448)

where j labels sites on a square lattice and the subscript
(jj') on the sums means j' is restricted to be the nearest
neighbor of j in the direction of increasing coordinates.
[Thus if j is the origin (0,0), j is restricted to be (1,0) or
(0,1).] The chemical potential (found by opening up the
brackets in the interaction term) is

p=2Uo ~ (449)

where the factor 2 comes from the number of nearest
neighbors.

At Uo=O, the half-filled system will once again be a
perfect conductor, as can be seen by going to momentum
states. Likewise at Uo = Oo there will be a charge-density
wave with more charge on one sublattice, say, the one
whose w and y coordinates (which are integers in lattice
units) add up to an even number.

Once again we shall focus not so much on the fate of
this one model but rather on a class of models described
by the same free-field fixed point and its perturbations.
Let us therefore find the fixed point describing the nonin-
teracting problem.

Let us take as the free-fermion dispersion relation

E = —cosÃ —r cosK (450)

which corresponds to the problem with unequal hopping
in the two directions. The reason for the choice r%1 wi11
follow shortly. Notice that we expect to see a CDW state
at large repulsion in the nearest-neighbor model even if
r&1 (since in this limit the hopping term is not the de-
ciding factor; the interaction term is). Notice also that,
for any r, E' still has the symmetry

E(K+@~)= —R(K), g~—:(m., m ), (451)

We are finally going to discuss spinless fermions on a
square lattice at half filling. A specific model for this
problem is the one with nearest-neighbor interaction,

(447)
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which is all we shall need. The chemical potential that
gives rise to half filling at U=0 is p=O, which means
that E' =c. and that the latter also changes sign when we
add the nesting vector:

n
Ky

E(K+Q1v) = —E(K) . (452)

The Fermi surface for r & 1 is sketched in Fig. 17. The
dark line shows the Fermi surface, which now has two
branches +=&1. Each point on the Fermi surface goes
to another point on the Fermi surface upon adding Q1v.
This means that, if we shift the figure by Q1v, the shifted
figure (in the repeated zone scheme) will fit perfectly with
the origina1 like something out of Escher's drawings. If
the momentum transfer is Q1v, the analog of Fig. 10 will
show the complete overlap of the two displaced surfaces
rather than their intersection. Also shown in Fig. 17 are
contours of energy a=+A. This is where the modes to
be eliminated under infinitesimal renormalization lie.
Points at +A are scattered to +.A upon transfer of Q1v.

For nesting to take place, we need half filling and the
symmetry in Eq. (452). The latter comes if we assume
that hopping is always from one sublattice to the other in
a bipartite lattice. Since hopping is usually just nearest
neighbor to an excellent approximation, studying the
effects of nesting once again does not constitute fine tun-
ing.

Let us write down the action for the noninteracting
problem. We shall use as the Anal coordinates c and
0=A together with a discrete index a=+1, which te11s
us which of the two branches we are on. Thus

FIG. 17. A nested Fermi surface with Q~ =(m, n ) and hopping
anisotropy r & 1. The filled states go from the origin to the dark
lines, the two-branched Fermi surface. Any point on the Fermi
surface (defined here by zero energy s=o) goes to another on
the surface upon addition of Q, which reverses the energy.
Consequently any point just below (above) the filled sea goes to
a point just above (below) the sea, leading to the failure of per-
turbation theory at second order when a peturbation of momen-
tum Q~ is introduced and to the fiow of the coupling W
through the ZS graph where the momentum transfer is Q~.
The thin lines are equal-energy contours at a=+A and stand
for the infinitesimal shells being integrated out in the RG pro-
gram. The point A at (m/2m/2) is privileged. It lies on the
Fermi surface for all r and scatters into minus itself under the
addition of Q~. The coupling for A, —A~A, —2 is an I', a
V, and a 8'and Bows for both reasons. It is conjectured that
this is probably why holes are found at these points (and two
more, obtained by reflecting on the y axis) upon doping.

So=+f I I J(EH)g„(ico E)p-
a

where

(453)

the fixed point.
As for the quartic term, there are now three sets of cou-

ph'ngs that are marginal at tree level. Besides I and V,
we also have

u [82+~ a2 81+~ al 82a2 Hlal]

J(eH) = 1

+r —(a+ cosH)
(454)

Jo(8)= 1

&r —cos 8
(455)

Henceforth the subscript on Jwill be dropped.
Mode elimination of the action in Eq. (453) and the re-

scaling of fields and c. go as before to render the action

It is clear why we introduced r %1: if it equaled unity, J
would be plagued with (van Hove) singularities on the
Fermi surface, and the expansion in c would be impossi-
b1e. Since nesting, and not van Hove singularities, is
what we are interested in here, we shall study r ) 1. In
this case the Fermi-surface value of the Jacobian is

= —u [8,+m, —a, ;82++, —a2;82;H, a, ]

—= 8'[82a2; H, a, ], (456)

which corresponds to processes wherein the momentum
transfer between 1 and 3 or 2 and 3 equals Q&. In this
case, because of the nesting property of the Fermi sur-
face, we are assured that the fourth momentum will lie
on the Fermi surface if the first three do, and this, you re-
call, is the condition for the coupling to survive the tree-
level RG transformation. Note also that 8 describes
Umklapp scattering if particles 1 and 2 start out on the
same branch and hop to the opposite one.

As for the one-loop P function, the I s do not fiow, and
Vs have the usual Sow given by

u [ K3K3 KK]u [ KK——K,K,)——
du [—K3K3 —K1K1]=——

2 — 2m' s1 e11 (2~)2 [iso —e(K) ][—i co e( —K)]— (457)

where "shell" refers to the shell being eliminated around both branches. The two contribute equally to give, in terms of
V,
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1 J(8)dOf ~
V [83u3', Oa ] V [Oa; O,a, ]dt 2 (2~)~

Since we do not have rotational invariance, we cannot separate this using the angular Inomentum variables. We can,
however, use the double Fourier transform and reduce it to discrete coefficients, which will be coupled in their evolu-
tion.

Let us now look at the flow of u [K2K',K2K, ] where K,' =K, +Q~:
u [K2KK2K']u [K'K',KKi ]

du [K2KiK2Ki]=
2rr si eu (2~)2 [i co e(K)—][ice—e(K') ]

where "shell" means that both e(K) and E(K') lie in the thin shells of width d A near +A. ' Due to the nesting proper-
ty, two interesting things happen leading to a flow: If E(K) lies in the shell, so does e(K )= —s(K). The co integral nev-
er vanishes, since the pales always lie on opposite half planes. Doing the co integral, we get, in terms of 8'

dW a~82a, O,„'' ' ' = —fy IV[,8, 8]m[8 8, , ] (2')' (460)

where (a'8') refers to K'.
To get a feel for this problem, let us evaluate the nearest-neighbor interaction on the present Fermi surface to obtain

T

0, —02 $ cosO, cos02
M[8&a&8&a&]= —Uo sin +—1— +r cos —8,&r cos —8

P
(461)

and

V[83u38iai]= Uo sinO&sin83+ ~ Q r icos Oi y r —cos 832 2 & 2 2 (462)

It is readily verified that f+" always has the same sign
for all values of its arguments —opposite to that of Uo.
Specializing to the repulsive case, it is clear from the
above equation that d~ W~/dt )0. Thus we have proven
the instability for this initial condition. (This is a weak-
coupling argument. To describe the nearest-neighbor
problem in the small-A theory it is not enough simply to
restrict the full interaction to within the cutoF; we must
take into account induced terms and renorrnalizntion due
to elimination of modes. These, however, are higher-
order eff'ects. ) As for some other interaction, if it has any
overlap with this direction we have found, it will be un-
stable. Note that, in contrast to the rotationally invari-
ant problem, we have not explicitly displayed an infinite
number of unstable directions (one for each l).

Unlike the rotationally invariant case, the present
problem has many open questions. Here is a list of some
of the more important ones.

(i} The study of (low equations [Eqs. (458)—(460)] is a
very important follow-through to the work presented
here. Calculations are being performed with Murthy in
which the couplings from the nearest-neighbor model
[Eqs. (461) and (462)] are taken as initial conditions. In
studying the Bows, it is important to remember that there
are some couplings that Aow for more than one reason.

I

An example is when the initial momenta are K and —K
and the final ones are K' and —K', where K'=K+@&.
This coupling is equal to a V and a IK The general idea
is to run the How until the cuto6' is small and then solve
the theory by sumxning over diagrams that survive in the
limit of vanishing A (our I/1V). Such a study shows the
CDW state for repulsive nearest-neighbor coupling and
more exotic order if more interactions are added.

(ii} Although the I/K formalism was discussed in con-
nection with Fermi liquids with a rotationally invariant
Fermi surface, it applies to all problems discussed here.
One can always reduce the cuto6' (keeping track of the
evolving couplings) and then use the smallness of A to do
a sum over diagrams that dominate the 1/K expansion.
For rotationally noninvariant problems, however, this
can be complicated by the constant motion of the Fermi
surface as we renormalize, even if we keep its volume
constant by modifying the chemical potential. In other
words, as the modes are eliminated, the new Fermi sur-
face and new one-particle energies must be used in
defining contours of constant energy and choosing modes
for the next round of elimination. At the one-loop level
considered here, this was a nonissue.

(iii) It is important to consider the problem just below
half-611ing. Here we expect that there will be an initial

We have defined 8 with K3 =K'„and for this choice only the ZS diagram contributes to Aow. Had we reversed the role of K3 and
K4 in the definition of 8, an extra minus sign would have entered its definition, and the ZS (rather than ZS) diagram would have
contributed to its Aow. The latter would also have had a minus sign relative to the ZS diagram.
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growth of interactions as we lower the cutoff, which wi11

then freeze once the cutoff is comparable to the deviation
of the Fermi surface from nesting. In this case one must
see whether, in the meantime, an attractive interaction is
generated in the BCS channel. If so, this coupling will
continue to grow, since it does not rely on nesting to do
so. This will be yet another test of the notion that attrac-
tion can lie hidden in models that started out repulsive.

(iv) Another topic worthy of further study is the cau-
pling u( —2, 2, —2, 2), where 2 =—,'Q~=(~/2, m/2)
and lies on the Fermi surface for any r; see Fig. 17. [The
present remarks apply equally well to the point
2'=(m. /2, —

m /2). j This coupling is a V, a 8; and an I".
It receives Aow contributions from the ZS' and BCS dia-
grams and is the forward-scattering amplitude which will
control particle self-energies. Is the distinguished nature
of this point (from the point of view of the RG) related to
why so many investigators (Trugman, 1988; Sachdev,
1989; Elser et al. , 1990; Boninsegni and Manousakis,
1990) find holes occurring at the point 2 when the half-
filled systems are doped? One could pick the initial value
for the Sow of the coupling generated by the nearest-
neighbor interaction, follow the fIow, and look at the
effective theory at very low energies to see if an answer
comes out.

(v) Consider the problem on a square lattice without
nesting, say, because of hopping within the same sublat-
tice. At very large nearest-neighbor repulsion, we can see
that a CDW will result, with more particles in one or the
other sublattice. However, there will be no instability at
infinitesimal repulsion. One expects from continuity that
the transition will take place at small coupling for small
nesting violations. One should then see this phase transi-
tion at weak coupling from the RG..

(vi) Notice that our analysis depended on the nested
Fermi surface. While the Fermi surface was nested in the
absence of any interaction, do not the interactions cause
it to move? Will not the shape change from perfect nest-
ing, even if we change the chemical potential to sit at half
filling? What happens to the CDW instability then?
First of all, this question does not affect our one-loop cal-
culation, which uses the zeroth-order propagators with
their zeroth-order formula for c.. Whether or not the
nested surface will stay nested at higher orders in the in-
teraction is an open question, which could control the
higher terms and thus decide the ultimate destination of
the Bow. It will not, however, change the fact that the
free-field fixed point is unstable, since that has been estab-
lished close to the fixed point by our one-loop calcula-
tion. However, if the CDW instability is really to take
place, the Aow Inust keep going until we reach a fixed
point with a gap. Now, it is clear in coordinate space
that, at strong coupling in a bipartite lattice, there will be
a CDW. For this to come out of the RG, nesting must be
preserved as vie renormalize. This, however, is a conjec-
ture and has not been proven.

Another interesting question is the following: if we set
the hopping coe%cient r =0, we seem to decouple the

chains. Will we then get a Luttinger liquid? No. This is
because the interaction terms coup1e the various decou-
pled chains. The exact cancellation that took place be-
tween the BCS and CDW instabilities in a one-chain
model with just one coupling will not repeat itself
anymore.

XI. NON-FERMI LIQUIDS IN d =2

So far we have seen two means by which the Fermi
liquid could be destroyed: BCS and CDW instabilities.
In both cases, the Aow came about because individual
Feynman diagrams had logarithmic singularities. Thus
the perturbation series had zero radius of convergence.
(There were essential singularities of the form e '~" in,
say, the CDW order parameter. ) If perturbation theory
can tell us about the instabilities, why follow the RCi
route? The answer, from the d =1 example, is that even
if individual diagrams diverge, it is possible for the P
function to vanish, producing novel scale-invariant
behavior. We are looking for such a state in d =2. I see
no evidence for it if the Fermi surface is spherica1, the
coupling is weak, the input interaction is short ranged,
we work in an infinite volume from the start. In particu-
lar, I have examined, together with Ruckenstein and
Schulz, the channel analyzed by Andersan (1990), in
which the incoming particles were of opposite spin at the
same momentum on or near the Fermi surface. We
found that there was no How in this coupling as the cutoff
went to zero. Indeed there was no singularity in the dia-
gram when the external (Euclidean) frequencies vanished.
Setting them to nonzero values did not help. Of course,
setting them equal to some real frequency did cause
singularities, but these correspond to propagating modes
and not instabilities of the ground state. (Recall that the
usual instabilities were seen at zero external frequency. )

But it must be pointed out that this is not at variance
with Anderson's arguments, which rely very much on do-
ing things in a finite volume and then carefully taking the
infinite-volume limit. Unfortunately the RCx in a finite
volume is not an easy prospect, and we were hoping
(despite Anderson's cautionary nate about going to
infinite volume too quickly) that if the effect showed up
in our calculation, it would be an additional corrobora-
tion to Anderson's argument, but within the standard
infinite-volume machinery. Engelbrecht and Randeria
(1991), who studied this problem in the low-density ex-
pansion, did not find any instability.

We must therefore relax some of the above conditions.
As mentioned above, Anderson dropped the infinite-
volume condition. Another possibility (Varma et al. ,
1989) is that at strong coupling a new possibility, the
marginal fermi liquid, which has impressive phenomeno-
logical success, arises. The present weak-coupling
analysis has nothing to say about it and surely cannot ex-
clude it. For example, it is possib1e for the bare coupling
that enters the action of the narrow cutoff theory t'or 1
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in the Abrikosov et aI. (1963) treatmentj to be singular.
Earlier it was stated that this would not happen because
the bare couplings were obtained from the input parame-
ters by integrating our safe modes. But this only assures
us that the individual diagrams that add up to give the
bare coupling are finite. It is certainly possible for the
infinite sum to diverge beyond some maximum coupling.
This does not contradict Landau's analysis, since the
basic assumption that the physics in question is a con-
tinuation of the noninteracting problem is invalid.

Another possibility is that, even before mode integra-
tion, the input coupling is singular. Stamp (1992, 1993)
has taken a pragmatic approach and considered the effect
of singular interactions, setting aside the question of their
origin. Let us consider the Coulomb interaction in this
light. We cannot simply say that it gets screened; this is
a picture that makes sense when a subset of diagrams in
standard perturbation theory are resummed in a certain
way to produce the screened propagator for the Coulomb
potential. The bookkeeping is different in the RG: the
coupling that goes into the action has not been screened
by particle-hole pairs at the Fermi surface. It is easy .to
see (within the sharp-cutofF scheme) that at any stage

Q ((A is unscreened. The correct procedure is to follow
the evolution of the bare coupling as the modes are elim-
inated and see where it ends up when no more integration
is left over. It is shown in Appendix A that the final po-
tential is screened. (This is a smooth-cutoff version of a
sharp-cutofF calculation devised with Murthy. ) This
analysis, however, assumes that the fermion propagator
has the standard Fermi-liquid theory form. Ideally we
should let the fermion propagator also evolve as modes
are eliminated and see if we still end up with a screened
interaction. This was recently done (Houghton et al. ,
1993).

Now there are concrete examples of non-Fermi-liquid
behavior if we are willing to consider impurity problems.
Consider, for example, the example provided by Aleck
and Ludwig (Ludwig and AIIleck, 1991a, 1991b, 1992)
from the Kondo problem. More recently Perakis et al.
(1993) have given another example from the Kondo prob-
lem which shows non-Fermi-liquid behavior for a range
of parameters.

Although the search for non-Fermi liquid did not yield
anything at weak coupling, it is a worthwhile goal, since
the copper-oxides seem to call for something different.
As pointed out by Anderson, these may not be connected
to the Fermi-liquid fixed point. Rather than reach the
novel fixed point from the Fermi liquid, one could at-
tempt writing down different fixed points. They may re-
quire additional fields besides fermions, e.g., gauge boson
(Ioffe and Kotliar, 1990; Lee and Nagaosa, 1990; Pol-
chinski, 1993). In a strong-coupling field theory the low-

energy physics may bear no simple relation to the micro-
scopic theory. Another route is to start with one or more
one-dimensional systems, which can have Luttinger
liquid behavior, and couple them perturbatively (Wen,
1990; Schulz, 1991; Di Castro and Metzner, 1992). Fi-

nally, one can study the problem in 1 ~ d & 2 (Bares and
Wen, 1993; Castellani et al. , 1993).

Xll. SUMMARY AND OUTLOOK

The main aim of this paper was to find a way to apply
the RG methods to interacting nonrelativistic fermions,
in particular to understand the various instabilities for
weak perturbations. In particular we wanted to see if the
system remained gapless. Since the RG was so successful
in dealing with critical phenomena, it was decided to fol-
low a path relying heavily on analogy to this prior appli-
cation. Since gapless systems correspond to critical sys-
tems, the idea was to use the language of fixed points and
their perturbations.

We started with a brief historical review, from the
original formulation of the RG for use in field theory to
the modern approach pioneered mainly by Kadanoff and
Wilson. It was pointed out that, while the RG has al-
ways expressed the invariance of the theory under a
change in cutoff followed by a suitable change in the pa-
rameters, the emphasis has shifted from viewing the
cutoff as an artifact to be sent to infinity (where it belongs
in a continuum theory like quantum electrodynamics) to
viewing it as a dividing line between interesting and unin-
teresting degrees of freedom (the slow and fast modes),
even in a problem where the cutoff is finite to begin with.

In Sec. II we discussed the charged (complex) scalar
field in four dimensions. It was shown how, if one want-
ed to study physics at long distances, one could work
with just the "slow" modes in the functional integral and
how the unwanted fast modes were to be eliminated and
the new couplings deduced. The Gaussian fixed point
was studied in detail and the Aows to one loop were de-
duced. It was shown how, when the cutoff is reduced to
very small values, i.e., when the phase space is reozced to
a tiny ball, the coupling functions reduce to a handful of
coupling constants, which were just the first few terms in
the Taylor series of the coupling functions about the ori-
gin. A comparison was made between the modern way to
find the fiow equations (P functions), using mode elimina-
tion, and field theory methods (trying to get rid of cutoff
dependence by proper choice of bare parameters). It was
shown that, although the two had very different book-
keeping schemes, they gave the same answer for relevant
and marginal couplings.

In Sec. III the functional integral method for fermions
was introduced. First a few simple problems in the ther-
modynamics and dynamics of fermionic oscillators were
solved using operator methods. Then the Grassmann in-
tegral formulation was introduced and the same results
were regained. The rules for calculating correlation
functions (Wick's theorem for fermions) were derived and
used in the calculations.

The stage was now set for dealing with the nonrela-
tivistic fermions. The strategy would be the following.
We would first start with noninteracting fermions and
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write a Hamiltonian that faithfully described the physics
near the Fermi surface, i.e., within a cutoff A on either
side of it. The logic was that the questions we were in-
terested in were decided by these modes, at least at weak
coupling. The corresponding functional integral would
then be written. A mode elimination process that re-
duced the cutoff and rescaled momenta and fields and left
the action invariant would be found. Cziven the RG and
its fixed point, it would then be possible to classify the
perturbations as re1evant, irrelevant, or marginal. %'hile
this closely paralleled the scalar field problem, one major
difference was anticipated: since we are renormalizing
towards the Fermi surface and not the origin, the remain-
ing phase space will be infinitesimal perpendicular to the
Fermi surface, but of fixed size in the tangential direc-
tion. Thus the fixed point would be characterized by
coupling functions that depended nontrivially on the an-
gles used to pararnetrize the Fermi surface. The case
d =1 was clearly exceptional, since the Fermi surface
consisted of just two points. This made the problem very
similar to continuum field theories wherein the phase
space for bosons and fermions is a ba11 centered at the
origin.

The study was limited to spinless fermions. At this
point the reader can surely see that the inclusion of spin
really is straightforward. Since all the interesting Bows
were due to special properties of the shape of the Fermi
surface, and since spinless ferrnions could display these
shapes, they were the clear pedagogical choice. To keep
the discussion concrete, a nearest-neighbor spinless fer-
mion problem at half filling was frequently invoked. The
question was whether it developed a CDW gap at arbi-
trarily small repulsion.

The RG scheme worked remarkably well in the d =1
warmup, described in Sec. IV. We took two slices (of
width 2A) near each Fermi point (I./R) and found a
mode elimination scheme that left the action of the free
theory invariant. We then turned on a quartic interac-
tion. At tree level it was found that only the frequency
and momentum (k =X —K~)-independent part of this
coupling was marginal. The rest were irrelevant, as were
all couplings with six or more fields. The marginal cou-
pling did depend on the discrete internal index I./R but,
due to the Pauli principle, reduced to just one indepen-
dent number. We had to go to one loop to resolve the
fate of this marginal coupling. The P-function route
avoided the CDW and BCS mean-field instabilities by
playing them against each other and giving the correct
answer: a scale-invariant system, the Luttinger liquid.
(This correctly describes the nearest-neighbor model,
which can be solved exactly. ) We also discussed the
quadratic terms that were induced by the quartic term
upon mode elimination. These meant the Fermi surface
was moving to take into account the interactions. There
were two options. We could add a counterterm, deter-
rnined order by order, to keep Kz fixed, or we could let
the surface move to the new K~. The latter would be
found by doing renormalized perturbation theory: we

split the original p into two parts, one which gives the
correct K~ in the propagators, and a counterterm that
keeps it there. The division would be revealed to us or-
der by order. It is a remarkable fact that Fermi systems,
unlike Bose systems, can remain critical for a range of p, ,
they do this by using the fact that their fixed point is
characterized by a whole surface, which can wiggle
around as interactions are turned on. This idea applies
with minor modifications in higher d, and we shall not
speak of it further.

The scheme was then extended in Secs. V and VI to ro-
tationally invariant Fermi surfaces in d =2 and d =3. In
d =2 an annulus of width 2A and radius K~ was used.
The RCx transformation was essentially the same as in
d =1 except for the fact that we had an integral over the
"internal" variab1e 0 rather than a sum over the Fermi
points I. and R. At tree level only two couplings, E(8)
and V(8), which corresponded to forward scattering and
Cooper-pair interactions, survived. They had no depen-
dence on external k or co. Cioing to one loop, we saw that
there was no How of P. This was because of the kinernat-
ics of d &1. There was, however, Aow in V. We decou-
pled the Aow into an infinite number of equations, one for
each angular momentum l. The Aow was marginally ir-
relevant for repulsion [corresponding to the findings of
Morel and Anderson (1962)] and marginally relevant for
attraction, corresponding to the BCS instability. We
then formally set V =0 and identified F with Landau's F
function. Thus the RG led us automatically to Fermi-
liquid theory. The situation in d =3 was essentially the
same, except for one significant difference: while in d =2
only forward-scattering amplitudes survived, in d =3
nonforward ones did also. However, the latter did not
have any effect on low-energy, low-momentum transfer
physics.

Having identified the Fermi liquid as the fixed point of
our RG-, we next asked why it is solvable, i.e., why,
despite the quartic interactions, one is able to calculate
many response functions. It was pointed out that, as we
eliminate modes, a 1/X expansion emerges, with
N =K+/A. Landau theory is the N = oo limit. (By using
certain collective coordinates, this limit can be made to
correspond to a saddle point which gives the exact
answer. ) This is the first example in which N really is
large in the original problem. However, a two-stage as-
sault was needed to ensure this: first use the RCx to bring
A/KF to a small value and then use 1/N. Of course the
1/N is not a new way to do Landau theory, but just a
new way to understand it. It has always been known that
bubble graphs (ZS loops) dominate the low-momentum
response. However, after the application of the RCj' there
was nothing left but ZS bubble graphs due to the kine-
matics. In the bubble graphs the loop angle ran over all
values. However, these need not have amounted to
much, since the width of k integration was going to zero.
But the graphs did survive, since the integrand had a 6-
function singularity on the Fermi surface, and the in-
tegral was oblivious to the cutofF. (This is why the graph
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survived but did not contribute to the P function, which
probes the sensitivity to cutoff. )

An RG version of the Kohn-Luttinger instability was
given. The details were relegated to Appendix B.

We briefly looked at three effects in Fermi-liquid
theory; each taught us something and also gave the
readers familiar with RCx but not Fermi-liquid theory
some instant gratification for their efforts.

By embedding Fermi-liquid theory in the framework of
the RG and 1/N we not only automate the process that
Landau had to finesse with his genius, we also prepare
ourselves better to study variants of the problem he at-
tacked, such as the problem with impurities, which is a
big field (Lee and Ramakrishnan, 1985).

We then studied generic nonrotationally invariant
problems. We found that we were led to I' and V, which
no longer depended on just the difference between their
arguments. The flow equations for V were derived. By
going to a Fermi surface with no time-reversal invari-
ance, we could eliminate the BCS instability and have a
real Fermi-liquid theory at T =0. The new feature here
was the changing shape of the Fermi surface as we renor-
malized.

Moving on to the case of a nested surface in d =2, we
found that a new coupling 8' corresponding to momen-
tum transfer Q~=(m~), survived at tree level. At one
loop this coupling began to flow. For the case of the per-
turbation corresponding to the nearest-neighbor interac-
tion (truncated to modes within the cutofI), we saw the
CDW instability. It was pointed out that the points
(+sr/2++/2) where . holes seemed to appear upon doping
the half-filled system are exceptional from the point of
view of the RG: they are forward-scattering amplitudes
that flow due to BCS and CDW diagrams. Several prob-
lems were proposed for further study.

Finally we discussed the possibility of singular Landau
parameters and non-Fermi liquids. This was surely a
possibility of strong coupling, but did not seem to happen
at weak coupling within the scheme we were employing.

Although we used the modern Kadanaoff-Wilson ap-
proach to renormalization, we frequently Inade contact
with the old field-theoretic scheme for computing the P
functions. The main difference between the two schemes
was that, in the former, all loop momenta were at the
cutoff, while in the latter, one was at the cutoff and the
rest at or below it. In Sec. II it was pointed out that in
the case of the scalar field the difference did not show up
in the flow of the marginal couplings at one loop, since
we could set all externa1 rnomenta to zero, and momen-
tum conservation meant that, if one propagator was at
the cutoff, so was the other. It was pointed out in the fer-
mion problem that, even if we set all k's to zero, there
could still be large Inomentum transfers of order Kz. Yet
we saw repeatedly that the two approaches gave the same
one-loop flow for marginal couplings. Let us recall why.
First, I' never flowed in either scheme, since it got its
contribution at the Fermi surface and did not know
about A in either scheme. As for V, when we set the in-

coming momenta on the Ferxni surface at opposite an-
gles, the total momentum vanishes, just as in the scalar
field theory, and the two propagators in the loop were
equal and opposite and at the cutoff in the BCS diagram.
The other two diagrams did have large momentum
transfers. They were suppressed in both schemes by ki-
nematics, but not equally: the suppression was by
d A/K~ in the modern scheme and by A/Kz in the field
theory scheme. This difference did not matter at the
fixed point, since both factors vanished. Finally R'
flowed due to the ZS diagram. Even though the momen-
tum transfer was large (Q~), it was such that if one prop-
agator was at the cutoff so was the other, due to the con-
dition E (K)= —A (K +Q& ). The other two diagrams
were suppressed by phase space.

The field theory scheme was the best choice for study-
ing screening and the Kohn-Luttinger e6'ect discussed in
Appendix B.

There are many possible extensions. Inclusion of spin
will produce new effects such as spin-density waves, but
no new formalism is required to incorporate it. Inclusion
of bosons is very interesting, but not discussed here due
to lack of space. Ye and Sachdev (1991) have used the
RG ideas espoused here to study a boson-fermion system
describing the metal-superconductor transition. Polchin-
ski discussed phonons in his TASI article (1992) and in a
more recent preprint (1993). Tokuyasu et al. consider
the application of the RG to finite systems like fullerenes
(Tokuyasu et al. , 1993).

We can study disordered systems using the replica
trick. Finally we can go to finite T. The fixed point dis-
cussed here will describe the crossover to T= ~ in the
early stages.

To conclude, the analysis in this paper has shown that
the RG, which has proven its worth in critical phenome-
na, chaos, etc. , is just as effective in helping us under-
stand interacting fermions. Conversely, the Fermi sys-
tems, with their novel phase space and Axed-point struc-
ture, offer us a far from ordinary manifestation of the RCx
at work.

With various phenomena such as Fermi-liquid theory,
BCS, CD%', and SDW instabilities, screening, and the
Kohn-Luttinger phenomena all under the auspices of the
RG, we have a better chance of solving extensions and
generalizations of these problems.
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APPENDIX A: COULOMB SCREENING

Here we shall use the field theory approach to study
two phenomena: in this appendix the screening of the
Coulomb potential and in Appendix 8 the Kohn-
Luttinger effect. A smooth cutoff will be used on loop
momenta.

We know that the instantaneous Couloxnb interaction,
before any mode elimination, is given by 4me K~/Q .
The extra Kz comes from the way our fields are normal-
ized. The corresponding bare vertex is

V(4321)=4vre~Kg. 1

(A3 —K) )

1

(K4 —Ei )
(A1)

Since we sha11 be focusing on K3 =K„we sha11 drop the
second term.

It is generally agreed that the Coulomb potential gets
screened. Should we be using a screened version here?
No& Screening comes from organizing diagrammatic per-
turbation theory in a certain way by first summing a class
of (RPA) diagrams. In the RG approach the organiza-
tion is different. Since the Coulomb potential or bare
coupling in the action is unambiguously known before
any mode elimination, we must see what it evolves into as
we carry out the RG transformation. In the field theory
approach, using a smooth cutofF e " where &x=1/A,
we have to second order

dk deed& —alki ~lk'l

[ —E (K) ][
' —E'(K') ]

(A2)

where K'=K +Q and where k and k'= ~K'~ —Kz run
from —ao to 00. We have not shown the ZS' and BCS
diagrams, since they do not dominate as the ZS diagram
does at small Q. Our plan is to find the P function by set-
ting the cx derivative of I to zero. But first let us evalu-
ate the former more explicitly. Doing the co integral we
obtain two equal contributions froxn processes where a
hole gets proxnoted to a particle and vice versa and end
up with

r(g)= v(ga)

f 0 f i dk dz 2me ~lkle —~l&'Ig(k )

2m. Q +2KQz

(A3)

We can now do the k and z integrals. In doing so we re-
place K by A+ wherever appropriate and use the fact that
k, k', and Q are all much smaller than Kz. For example,
we set

be

dV Vm aQ
K~~' (1+ag)' (A7)

V(ga)= 1

1 m aQ
V(QO) K~~2 1+aQ

(Ag)

where V(QO) is the input potential before mode elimina-
tion. The final answer, in terms of A, is that

Notice the fiow is strongest at aQ = 1, i.e., Q =A, which
makes sense in the sharp cutoff. We need a minimum
momentum Q =2A to scatter a particle from the shell at—A to the shell at A. When Q is too different from this
range, the Row is essentially nil. (Had we used the sharp
cutoff, the P function would have had a string of 0 func-
tions, which is why we do not. ) Integrating the flow from
a =0 to cz =ca, we obtain

Q +2KFQzk'= iK+Qi —K =k+
2K~

and so on. The result is

V m 1 —er(g)=v-
aQ

(A4)

(A5)

V(ga) = 4' KF

g 4e mKz2+
Q+A m.

4me K~

2+ O„2
Q+A

(A9)

{A10)

Vm 1

K~m' 1+ag ' (A6)

where in the last equation we have used a simpler func-
tion with the same limits at small and large values to fa-
cilitate the analysis. The P function is now computed to

where 0 is the inverse of the Thomas-Fermi screening
length.

This is the bare potential that goes into the action
when the cutoff is A. To regain the potential before
mode elimination, we must set A = ~. You may ask how
we can have a A &A+. The point is that A is defined as
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4me ECF

4e IKF2+
(A 1 1)

4me EC

Q 2+ O~2
(A 12)

Let us examine what we have above. If we fix

Q «0 «O /Q and lower A, this is what happens to the
bare charge in the action. First, at A= (x), we have the
unscreened potential 4vre K~/Q . It has this form as
long as A))O /Q. When Q «A«O /Q, it goes as
4~e Kg.A/(O Q) Finall. y when A && Q, we get the
screened form in Eq. (A12}.

We must be clear about what is done here. We tried to
understand how screening takes place in the RG scheme
as we eliminate modes. Since we assumed that the fer-
mion propagator had the Fermi-liquid theory form
throughout, we did not really verify that non-Fermi-
liquid theory is ruled out. In other words, we must study
the evolution of the fermion propagator as modified by
the Coulomb potential as we go along. This was recently
done using bosonization methods (Houghton et al. , 1993)
and it was found that the static Coulomb interaction
indeed gets screened.

APPENDIX B: THE KOHN-LUTTINGER EFFECT

Years ago Kohn and Luttinger pointed out that in
principle any system will face the BCS instability at low
temperature, even if the initial coupling is repulsive. Let
us recall their argument with no reference to the RG.
Consider the BCS amplitude to one loop as shown in Fig.
18:

I ( KK —K,K, )——:I (Q =K, —K )

= V(Q)+BCS+ZS+ZS' .

Let us compute the coefBcients of the Legendre expan-
sion

the inverse of the u in Eq. (A2} and not as the real cutoff'
for the integral. Indeed, with a=O, the integral is still
finite because it is limited by Q: for very small Q, we can-
not scatter states far below Kz to states above it, and
only such processes contribute to the ~ integral.

Now screening refers not to the bare coupling in the
action but to the full physical four-point function. It is
clear, however, that at fixed Q if we send a to ec we kill
a11 loops, and the bare coupling itself gives the full
answer, which is

r(Q) = V(Q, )

3 -3

K

—1

K$

3

ZS'

FICx. 18. The Kohn-Luttinger diagrams. I is the full BCS am-
plitude and Vis the bare vertex. The ZS and ZS' diagrams have
singularities when the momentum transfer equals 2K+, where-
upon K = —1 in ZS scatters into K +Q = 1. Thus V = V(m ).

ic in the interval —1 z 1, we must have V&—-e in or-
der that the infinite sum over polynomials and all deriva-
tives converge. Now look at the one-loop corrections.
They are nominally smaller, being of second order. How-
ever, their dependence on I is very interesting. This is be-
cause the ZS and ZS' graphs have singularities when
Q =K, —K3 =2K+ or Q

' =K i
—K4 =2KI, , respectively,

which correspond to z =+ 1. Let us focus on just ZS,
since the Pauli principle will determine ZS' for us later
on. Due to the singularity, the Legendre expansion
coefficients fall as

p'2

5I (-—
(4

(B3)

where once again a. =1/A, and the primed quantities
refer to K'=K +Q. Let us define

where V(n. ), which enters both vertices, is the
backward-scattering amplitude. (Let us see why. At the
left vertex 1 gets scattered into 3, which equals —1, so
that we have a momentum transfer 2K+ in the direction
of 1. The loop momentum K must be nearly —1, getting
knocked into +1 if it is to lie on or near the Fermi sur-
face and obey momentum conservation. A similar argu-
ment applies at the other vertex. ) It follows that, if we
hold Vexed and look at large l, the second term, which is
attractive (for odd l, which is a/l we have), will dominate
over the first, which is falling exponentially. There is no
question of hoping that V( ir )=0, since it is (up to an
overall minus sign) the sum of all the Vi's, all assumed to
be non-negative.

We are trying to reproduce this in the RCx language.
The procedure will be just as in the screening calculation,
except now we do not assume that Q is much smaller
than K~; indeed, it is nearly 2K+. Now we get, upon do-
ing the co integral and setting all unimportant factors to
unity, but paying attention to the sign,

k'

I (Q)= V(Q}—V (~r) f dk f dz
Q'+2KQz

(B2) x =2K~ —Q .

where z =Q &.Q3 and / will be odd due to the Pauli prin-
ciple.

The bare potential will make a contribution Vl, as-
sumed to be positive. Since V(z} is assumed to be analyt- e

—ak' e —a(k —x)
7 (B6}

By drawing a sketch of the Fermi surface you may verify
that since all the action is near Q =2K+,

Rev. Mod. Phys. , Vol. 66, No. 1, January 1994



R. Shankar: RG approach to interacting ferrnions 191

and that —1&z&1 for k)x, while z &z&1 for k(x,
with z being the point where k'=0. Putting all this
into Eq. (84), we obtain

L ( I /a ~ 0D ) = C

t'

l/2 (817)

(818)

I =V —V(m) e" ln e
x 2EQ Q 2E— We 6t L with a simpler function with the same limits:

dk Q +2EQ
o 2EQ 2E~k

V2
I = V — R(a/l ),al

R (x)=
1+x

(819)

(820)

By subtracting the second integral from 0 to ao, which
does not affect the singularity in question, and shifting
the origin and rescaling k, we get

I=V —V(rr)e " e ln dy.P +2x
0 /+X (88)

=2EF ( 1 —sin 8&3/2 )

=Ez( 1 —sing&3/2)( 1+sing&3/2)

=EF(1+z) . (89)

Hereafter we shall use KF = 1. We now do an integration
by parts, throw out the surface term, and obtain

V(n) ~
y 1

A 0 /+1+2
2

2P + 1+z

(810)

Now do the angular momentum transform using

Pl(z)dz
Qi(zo) =—

2 —1 Zp
—Z

to obtain

(811)

I =V+ Ql(y)[e /e / —e e ]dy .
V (rr)

n

(812)

Next we use the result that as l ~~,

Q, (y) ~&2/~Xe (813)

X =l+y —1,
to obtain for large l and cx

(814)

p'2(
V+ (~) —x+X [

—ax /2l —ax /4l ]dXal

(815)

(816)

Note that

We shall drop the e, since it does not modify the
singularity at x =0. Next we approximate as follows:

x =2EF Q—

If we calculate the P function (including a factor of 2 due
to the ZS' diagram) and also include the usual contribu-
tion from the BCS diagram, we get the result quoted in
the text:

dVI

dt

V'(~g'"
l 15/2[l 7/4+ l

—7/2]2
(821)
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