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With the high-temperature superconductors a qualitatively new regime in the phenomenology of type-II
superconductivity can be accessed. The key elements governing the statistical mechanics and the dynam-
ics of the vortex system are (dynamic) thermal and quantum fluctuations and (static) quenched disorder.
The importance of these three sources of disorder can be quantified by the Ginzburg number
Gi =(T, /H, sg ) /2, the quantum resistance Qu =(e /A'i(p„/ski, and the critical current-density ratio

j, /jo, with j, and jo denoting the depinning and depairing current densities, respectively (p„ is the
normal-state resistivity and E =m /M ( 1 denotes the anisotropy parameter). The material parameters of
the oxides conspire to produce a large Ginzburg number Gi —10 and a large quantum resistance
Qu —10 ', values which are by orders of magnitude larger than in conventional superconductors, leading
to interesting effects such as the melting of the vortex lattice, the creation of new vortex-liquid phases, and
the appearance of macroscopic quantum phenomena. Introducing quenched disorder into the system
turns the Abrikosov lattice into a vortex glass, whereas the vortex liquid remains a liquid. The terms
"glass" and "liquid" are defined in a dynamic sense, with a sublinear response p=BE/Bji c characteriz-
ing the truly superconducting vortex glass and a finite resistivity p(j~0))0 being the signature of the
liquid phase. The smallness of j, /jo allows one to discuss the influence of quenched disorder in terms of
the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to
take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media
subject to a random potential, this modern version of the weak collective pinning theory consistently ac-
counts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted
flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides
introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling
transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong
(correlated) disorder in the form of twin boundaries or columnar defects not only is technologically
relevant but also provides the framework for the physical realization of novel thermodynamic phases such
as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both
the spatial and the temporal scale accessible to experimental investigations.
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"Owl explained about flux pinning and creep. He had
explained this to Pooh and Christopher Robin once be-
fore, and had been waiting ever since for a chance to do
it again, because it is a thing you can easily explain twice
before anybody knows what you are talking about. "

A.A. Milne, 8'innie-the-Pooh

I. INTRODUCTION

The discovery of high-temperature superconductivity
by Bednorz and Miiller in 1986 opened a new chapter in
the field of solid-state physics in general and in supercon-
ductivity in particular. This review deals with the phe-
nomenological aspect of high-temperature superconduc-
tivity and, as such, it develops the physics of vortices as a
new state of matter. In fact, thanks to a set of lucky cir-
cumstances, the new high-temperature superconductors
set the stage for the physica1 realization and experimental
accessibility of the entire statistical mechanics of vortices
and thus, from a more general point of view, of interact-
ing elastic strings. Furthermore, the coupling of the vor-
tices to external currents and fields allows us to exert
forces on these strings, accessing the wide Geld of their
dynamical behavior to investigations. Finally, vortices
are susceptible to disorder such that the statistical
mechanics as well as the dynamical properties of this sys-
tern have to be understood in the presence of a random
environment. Given this outlook, it goes without saying
that the present review does not represent the final
knowledge in this field. Rather, the aim of this work is to
collect, assemble, and interpret (what the authors believe
to be) the main pieces of this puzzle as they are known
today and to work out a consistent picture of our present
knowledge.

The phenomenology of superconductivity is based on
the Ginzburg-Landau theory (Ginzburg and Landau,
1950), which provides the starting variational functional
(free energy) for the charged superconductor coupled to
electromagnetism. The two fields determining the phys-
ics of the system are the superconducting order parame-
ter 4 and the vector potential A. In its simplest version,
4= ~%'~e px(iy) is a complex order parameter describing
an s-wave superconductor, the system we shall deal with
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throughout this review. ' The new high-temperature su™
perconductors are strongly type II and, as such, their
phenomenology is dominated by the presence of vortices
over most of the phase diagram. The mean-field version
of the latter was constructed by Abrikosov back in 1957
and has proved over several decades to describe very ac-
curately the phenomenological behavior of all the con-
ventional low-temperature superconductors. This mean-
field H-T phase diagram comprises a Meissner phase
characterized by complete Aux expulsion at low magnetic
fields H (H, , separated from the mixed (or Schubnikov)

phase at higher Aelds H &H, , where the magnetic field
1

penetrates the superconductor in the form of Aux lines
(or vortices); see Fig. 1. The lower critical field H, is

1

mainly determined by the London penetration depth k,
which is the length scale determining the electromagnetic
response of the superconductor. Since the superconduct-
ing state is a macroscopic quantum Auid, the magnetic
Aux enclosed in a vortex is quantized in units of
C&, =hc/2e=2X10 Gcm, the fiux quantum. With
increasing field the density of fiux lines (which form a tri-
angular lattice) increases until the vortex cores overlap
when the upper critical Geld H, is reached. Beyond this

2

field we recover the normal metallic state. The upper
critical field H, is determined by the coherence length g2

of the superconductor, which represents the second fun-
darnental length scale in the system and which deter-
mines the (spatial) response of the macroscopic quantum
Auid 4' itself.

Now let us turn away from the mean-field phase dia-
gram and discuss the dynamic properties of the vortex
system (in order to keep the present introductory discus-
sion simple we ignore here the possibility of a large Hall
force). When an external current density j is applied to
the vortex system, the Aux lines start to move un-
der the action of the Lorentz force FL =jh8/c [or
fL =(N, /c)j 6 n for a single vortex, where n denotes the
unit vector along the vortex]. Within a perfectly homo-
geneous system the driving Lorentz force is counteracted
only by the friction force F„=—qv, where v is the
steady-state velocity of the vortex system, v=j P 8/cia.

iRecent experiments (see %'ollman et al. , 1993; Brawner and
Ott, 1994; Kirtley et ar. , 1994) suggest that the microscopic
mechanism in the new high temperature superconductors pro-
duces superconductivity with d-wave symmetry. Due to crystal
field eQects the representation is again one dimensional and the
order parameter is a scalar complex field. The Ginzburg-
Landau theory takes the same form as for an s-wave supercon-
ductor and the phenoxnenology remains essentially unchanged
(apart from specific experiments tracing the symxnetry of the or-
der parameter). Corrections appear when relating the phenom-
enological parameters in the Ginzburg-Landau functional with
the underlying microscopic parameters, with largest deviations
occurring for the dynaxnical response coe%cients due to the
presence of zero-gap excitations in special directions.

Tc

FIG. 1. Mean-field phase diagram coxnp rising a normal-
metallic phase at high fields and temperatures, separated by the
upper critical-field line H, (T) from the mixed or Shubnikov'2
phase, which in turn is separated by the lower critical-field line
H, (T) from the Meissner-Ochsenfeld phase at low tempera-

tures and fields.

The dissipation is due to the appearance of a finite elec-
tric field E as a consequence of the Aux motion,
E=B5 v/c. Since both j and E run parallel, the power
P=(j AB) /c i) is dissipated in the system and the su-
perconducting property of dissipation-free current Aow is
lost. The friction coeKcient g can be obtained from an
analysis of the dissipation processes inside and around
the vortex cores, r)=BH, /c p„(Bardeen and Stephen,

2

1965; p„ is the normal-state resistivity), hence
P=p„j (8/H, ) for jJ.B, and the dissipation is merely

reduced by the fraction B/H, as compared with a nor-

mal metal. In order to recover the desired property of
dissipation-free current Aow, the Aux lines have to be
pinned such that v =0 in spite of FLAO. In this case the
driving Lorentz force is counteracted by the pinning
force F;„. Fortunately, any static disorder affecting the
superconducting order parameter will contribute to a
finite pinning force density F;„,and thereby the techno-
logical usefulness of the type-II superconductors is rees-
tablished. However, dissipation-free Aow now has be-
come a rnatter of optimizing the pinning force density
F;„, since increasing the current density j beyond

j,=cF;„/B (again we assume jlB) leads to the depin-
ning of the vortices and hence to the reappearance of dis-
sipation. The current density j, is the critical depinning
current density, which is always bounded by the depair-
ing current density j, =cH, /3v'6iri, determined by the
thermodynamic critical field H„j,(j, . The dimension-
less critical current-density ratio j, /j, is a measure of
the strength of the pinning force density F;„and as such
can be very conveniently used as the fundamental param-
eter in the phenomenology of type-II superconductors,
characterizing the strength of the quenched disorder in
the system. Disorder not only affects the dynamical
behavior of the vortices, it also has important conse-
quences for the H-T phase diagram because the triangu-
lar vortex lattice is destroyed. As was shown by Larkin
in 1970, in fewer than four dimensions quenched disorder
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always destroys the translational long-range order of the
Abrikosov vortex lattice.

We emphasize that the accurate description of
quenched disorder and the understanding of its conse-
quences are not merely an interesting scientific exercise,
but technologically unavoidable: Superconductivity in
type-I superconductors suffers from small thermodynam-
ic critical fields H„and hence both large current Aows

(creating large self-fields) and large external fields are de-
trimental. Similarly, the Meissner phase in type II super-
conductors is bounded by the (even smaller) lower critical
field H, , hence all technologically relevant materials are

hard type-II superconductors operating in the mixed
state.

Once we understand that quenched disorder is a prere-
quisite for obtaining the (at least phenomenologically)
fundamental property of dissipation-free Aow, the ques-
tion arises what effects other kinds of "disorder" might
have on the vortex system. Going then beyond the tradi-
tional mean-field picture, the most obvious type of disor-
der is introduced into the system in the form of thermal
Auctuations. A very crucial difference between quenched
and thermal disorder is that the latter is dynamical
whereas the former is static. Again, thermal disorder has
severe consequences both for the phase diagram of the
vortex system and for its dynamical properties. Regard-
ing the statistical mechanics of the vortex lattice, one
could think of a melting transition transforming the vor-
tex solid into a vortex-liquid phase. Such a melting tran-
sition can be understood in terms of large thermal Auc-
tuations [of the order of the lattice constant
a. =(@./B )'~ ] of the positions of the vortex lines and
hence as fiuctuations in the phase field y(r) of the super-
conducting order parameter 0'(r)= ~%'(r)~exp[i'(r)].
Near the normal-superconducting transition, not only
the phase but also the modulus of the order parameter is
subject to large (thermal) fiuctuations, thereby establish-
ing the so-called critical region of the transition.

The inclusion of thermal Auctuations in the phenome-
nology of type-II superconductors also affects the dynam-
ical behavior of the vortex system in various ways. First
of all, the vortex lines can move due to thermally activat-
ed jumps over the pinning barriers, even at current densi-
ties j(j, (Anderson, 1962), leading to the famous creep
phenomenon in type-II superconductors. Creep of vor-
tex lines is equivalent to a small but finite directed
motion of the vortex lines and thus reestablishes dissipa-
tion in the system. One then could ask if true "trans-
verse" superconductivity exists at all in the thermo-
dynamic sense (note that longitudinal superconductivity
with j~~B produces a force-free configuration, at least in
the thermodynamic sense, with j—+0 where self-fields can
be neglected). The crucial question is whether creep per-
sists down to the limit of zero driving force: Does the
dissipation and hence the resistivity p vanish in the limit

j~0 or does a superconductor in the mixed phase finally
end up in a resistive state? Note that probing the super-
conductor with a vanishing current density j~0

amounts to investigating the thermodynamic state of the
vortex system. The kind of response the system develops
for j~0 then determines whether the vortex system con-
stitutes a glass, characterized by infinite barriers against
creep and hence p(j~0)~0, or whether the vortex sys-
tern is in a liquid state with finite creep barriers, allowing
vortex motion at any nonzero temperature such that
p(j~0)) 0.

The interplay between quenched and thermal Auctua-
tions rnanifests itself in other ways than the phenomenon
of creep. Thermal Auctuations of the individual vortex
lines lead to a dynamical sampling and hence averaging
of the disorder potential over the spatial extent of the
thermal displacement (u ),'h~ . Thermal disorder hence
opposes quenched disorder via a smoothing of the disor-
der potential and thereby reduces the critical current
density j, in the system. The smoothing of the quenched
disorder potential due to thermal Auctuations has come
to be known as thermal de@inning, though one must un-
derstand that the phenomenon of thermal depinning is
not an abrupt transition but rather a continuous cross-
over from a pinned to an unpinned situation.

It turns out that the fundamental parameter governing
the strength of thermal Auctuations in all of the
above phenomena is the Ginzburg number
Gi =[T,/H, (0) ge(0)] /2, which measures the relative
size of the minimal ( T=0) condensation energy
H, (0)Eg (0) within a coherence volume and the critical
temperature T, . A few examples illustrating the impor-
tance and- universality of the Ginzburg number Gi in
describing phenomena related to thermal Auctuations can
be found in the width of the critical regime,
~T, —T~ (T,G;, in the melting line B (T)
=(5.6cL /Gi )H, (0)(1—T/T, ), or in the depinning line

2

Bdz(T)=8Gi H, (0)(T/T, ) . (Here cL =0.2 is the Lin-

demann number; for a derivation and discussion of these
results, see below). With increasing Ginzburg number Gi
the critical Auctuation region and those parts of the H-T
phase diagram where the vortex lattice is melted or dep-
inned become larger.

A third kind of "disorder" able to change the mean-
field phase diagram as well as the dynamical behavior of
the system are (macroscopic) quantum fiuctuations.
Similar to thermal Auctuations, quantum Auctuations can
affect superconductivity via Auctuations in the order-
parameter modulus as well as fluctuations in the phase of
the order parameter, e.g. , via quantum motion of vortices
(quantum creep). In fact, classical and quantum process-
es can be mapped onto one another via the simultaneous
interchange of the energy U and the action S of the pro-
cess together with the exchange of the basic units T and
A governing classical and quantum Auctuations, respec-
tively (here and in the following we measure the tempera-
ture in units of energy or vice versa, i.e., we set the
Boltzmann constant k~ equal to unity). With this point
of view, a quantum process is a (d + 1)-dimensional gen-
eralization of a d-dimensional classical process, where the
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additional dimension describes nothing but the (imagi-
nary) time evolution of the process. Since quantum pro-
cesses are virtual, the appearance of the time evolution in
the formalism can be naturally understood. Again, the
importance of quantum fIuctuations can be expressed by
a dimensionless parameter. Since the time evolution of
the process is relevant, this parameter depends on wheth-
er the dynamics of the system is massive, damped, or of
the Hall type. For the massive case the fundamental pa-
rameter is given by the ratio I/kFg, where kF denotes
the Fermi wave vector in the underlying electronic sys-
tem. In the overdamped limit the fundamental parame-
ter governing the appearance of macroscopic quantum
processes is the quantum resistance Qu =(e /fi)(p„/Eg).
Since macroscopic quantum processes are usually strong-
ly coupled to the environment, the overdamped limit is
usually the physically most relevant case. However, in a
super-clean system (with a mean free path 1)gcF/T„
where eF is the Fermi energy) at low temperatures the
Hall term dominates the vortex equation of motion, and
the relevant parameter takes the form Qu = 1/n Eg,
where n denotes the carrier density.

With the three fundamental parameters quantifying
the strengths of quenched disorder (j,/j, ), of thermal
fluctuations (Gi ), and of quantum fluctuations (Qu ), we
are in a position to express the difference between the
conventional low-T, superconductors and the new high-
temperature superconductors in a very compact way: In
conventional superconductors pinning is usually strong,
j, /j, =10 —10 ', whereas both thermal and quantum
fluctuations are weak, Gi =10 and Qu =10 . In gen-
eric high-temperature super conductors such as
YBazCu3O7 (YBCO), pinning is usually weak,

j, /j, = 10 —10, whereas therma1 and quantum Auc-

tuations are large, Gi =10 and Qu = 10 ' (similar con-
siderations apply to the layered Bi- and Tl-based materi-
als). This change in the relative importance of static and
dynamic disorder is a consequence of the extreme materi-
al parameters characterizing the oxide superconductors:
First of all, the transition temperature T, is very large
and hence the coherence length g~fiu~/T, is small.
Since the oxide superconductors are doped insulators
rather than generic metals, the electronic density is
small, hence UF is small, and the resistivity p„as well as
the penetration depth A, tend to be large (provided we can
still use Fermi-liquid concepts for these crude estimates).
In addition, the layered structure of the oxides introduces
a large uniaxial anisotropy in the system, which reduces
the coherence length along the anisotropy axis (the c axis
of the material) by an additional factor e =(m /M )'~ (1.
Here, m and M denote the (small and large) effective elec-
tronic masses in the ab plane and along the c axis, respec-
tively. The anisotropy strongly promotes the thermal
and quantum fluctuations, since Gi ~ 1/e and Qu ~ 1/e.
All the above shifts in the material parameters tend to in-
crease the importance of the fluctuations in the high-
temperature superconductors. Whereas the mean-field
description was quite sufhcient for the understanding of

the conventional low-temperature superconductors, this
is no longer the case for the new materials. In particular,
the increase of Gi by roughly six orders of magnitude im-
plies that the vortex lattice should be melted over a large
portion of the phase diagram (Nelson, 1988). The com-
plete statistical mechanics description, including vortex
fjuctuations, becomes mandatory, and a phase transition
between a vortex solid and a vortex-liquid phase not only
is possible in principle but has probably been experimen-
tally observed in the new materials (Farrell, Rice, and
Ginsberg, 1991; Safar, Gammel, Huse, et al. , 1992).
Similarly, the increase of Qu by 2 orders of magnitude
renders macroscopic quantum effects relevant and ob-
servable in the new superconductors (Fruchter et al. ,
1991; Griessen et al. , 1991; Mota et al. , 1991). We wish
to point out that these novel effects are not unique to
high-temperature superconductivity; they are present as
well in the conventional low T, mat-erials (Rossel et al. ,

1991; Suenaga et al. , 1991; Berghuis and Kes, 1993). It
is the special set of material parameters in the oxides,
however, which render these phenomena physically im-
portant and accessible to experimental investigations.

The special material properties of high-temperature su-
perconductors not only accentuate the importance of
Auctuations, they also tend to render pinning in these
materials weak. The weak pinning (small j, /j, ) is a
consequence both of the small coherence length g and of
the absence of generic extended pinning sites in these ma-
terials, such as precipitates or grain boundaries occurring
in conventional superconductors. Again, this cir-
cumstance is a consequence of the oxides' being doped in-
sulators rather than conventional metals; hence pinning
centers are mainly provided by point defects, e.g. , oxygen
vacancies (Tinkham, 1988). An important exception are
the twin boundaries in YBCO, which provide extended
pinning sites upon proper alignment of the magnetic
field, leading to enhanced pinning, as observed in several
experiments (Gyorgy et al. , 1990; Kwok et al. , 1990; Liu
et al. , 1991).

The weakness of the pinning in the high-temperature
superconductors is extremely interesting from a theoreti-
cal point of view as it allows us to treat the effects of
quenched disorder perturbatively. In particular, weak
pinning implies the existence of a well-defined starting
Hamiltonian in the form of a continuum elastic descrip-
tion of the vortex lattice, upon which effects due to disor-
der can be studied in a well-defined fashion. The dynami-
cal behavior of the vortex system in the presence of
quenched disorder then can be studied within the frame-
work of the weak collective pinning theory introduced by
Larkin and Ovchinnikov (1973 and 1979). Furthermore,
if the pinning is weak enough in the sense Gid &&Gi,
where Giz=(j, /jo ), the melting transition between the
vortex solid and the vortex-liquid phase will be only
weakly perturbed by the presence of quenched disorder,
allowing for the possibility of observing a generic melting
transition in the vortex system.

From the above discussion we see that we can expect a

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



Blatter et al. : Vortices in high-temperature superconductors 1133

wealth of novel phenomena in type-II superconductors to
be experimentally accessible for the first time and to be
theoretically tractable in a well-defined fashion, allowing
for a mutual exchange of experimental and theoretical re-
sults. On the experimental side, such novel phenomena
include the broadening of the resistive transition in a
finite magnetic field (Eye et a/. , 1988; Palstra et al. ,
1988b; Tinkham, 1988a), the existence of a distinct ir-
reversibility line far below H, (Miiller, Takashige, and

2

Bednorz, 1987), which often is associated with a melting
or glass transition (Koch, Foglietti, and Fisher, 1990;
Farrell, Rice, and Ginsberg, 1991), the presence of giant
creep (Yeshurun and Malozemoff, 1988; Yeshurun et al. ,
1989) even at temperatures far below T„manifesting it-
self in a fast magnetic relaxation which furthermore
proceeds nonlinearly in the time logarithm (Svedlindh
et al. , 1991; Thompson, Sun, and Holtzberg, 1991), a
rapid decrease in the critical current density j, with in-
creasing temperature even far below the superconducting
transition (Senoussi et al. , 1988), and the appearance of
quantum effects on approaching zero temperature (Mota,
Pollini, Visani, et al. , 1988; Lensink et al. , 1989;
Fruchter et al. , 1991).

On the theoretical side, the statistical mechanics and
the dynamics of individual vortices and of the vortex lat-
tice are being studied in homogeneous and in disordered
environments. These studies have led to the postulation
of new phases such as the entangled and the disentangled
vortex liquids (Nelson, 1988), the vortex-glass phase
(Fisher, 1989), and the Bose-glass phase (Lyuksyutov,
1992, Nelson and Vinokur, 1992). The corresponding
phase transitions have also been studied, e.g. , via scaling
analysis (Fisher, Fisher, and Huse, 1991) or numerical
simulations (Huse and Seung, 1990; Hetzel, Sudbd, and
Huse, 1992). The dynamical behavior of the vortices is
very different in these various phases and therefore can
be used as a possible characterization of the new vortex-
liquid and vortex-glass phases (Feigel'man et al. , 1989;
Nattermann, 1990; Vinokur et al. , 1990; Fisher, Fisher,
and Huse, 1991; Fischer and Nattermann, 1991). The
study of classical motion has also been extended to the
quantum case (Blatter, Geshkenbein, and Vinokur, 1991).

A second source of novel phenomena is associated with
the layered structure of the new oxides. %"hereas the
YBCO compound still can be described reasonably well
within a continuum anisotropic model, the more strongly
layered Bi- and Tl-based compounds have to be described
by a discrete Lawrence-Doniach model. Superconduc-
tivity in these materials can then become quasi-two-
dimensional over a large part of the H-T phase diagram,
and many experiments exhibit a characteristic
Berezinskii-Kosterlitz- Thouless (BKT)-type behavior;
see, for example, Artemenko, Gorlova, and Latyshev
(1989a, 1989b) and Martin et al. (1989). Furthermore,
the simple rectilinear vortex may have to be replaced by
a more complicated object consisting of an array of two-
dimensional (2D) pancake vortices interconnected by
(careless) Josephson vortices running parallel in between

two superconducting planes (Efetov, 1979; Doniach,
1990; Clem, 1991). Strong layering also introduces new
features in the dynamical behavior of the vortices due to
the appearance of intrinsic pinning and creep (Tachiki
and Takahashi, 1989; Ivlev and Kopnin, 1990a; Roas,
Schultz, and Saemann-Ischenko, 1990; Schmitt et al. ,
1991). The statistical mechanics of the vortex system
(Glazman and Koshelev, 1990) can be affected by layer-
ing, not only via the presence of large (quasi-2D) Auctua-
tions, but also through the appearance or suppression of
phase transitions, e.g. , the possibility of a layer-
decoupling transition for a field H directed perpendicular
to the layers (Feigel'man, Geshkenbein, and Larkin,
1990; Glazman and Koshelev, 1991a) or the possible ab-
sence of a melting transition when H is directed parallel
to the layers (intrinsic pinning; Korshunov, 1991; Mi-
kheev and Kolomeisky, 1991).

Two additional fields of broad interest driven strongly
by the technological relevance of high-temperature su-

perconductors are attempts to increase the critical
current density via the artificial introduction of strong
pinning centers (e.g. , columnar defects, Civale et al
1991) and the investigation of the macroscopic properties
of the new materials. It is very exciting to notice that
these seemingly technological issues illuminate a wealth
of fundamental questions, e.g., the replacement of the
vortex-glass phase by the Bose-glass phase in the case
where the disorder is correlated. A second example is
found in the connection of the macroscopic behavior of a
type-II superconductor in a magnetic field with the idea
of self-organized criticality (De Gennes, 1966; Vinokur,
Feigel'man, and Geshkenbein, 1991), a concept that has
attracted a lot of interest recently (Bak, Tang, and
Wiesenfeld, 1988).

In order to give a theoretical description of these very
diverse phenomena, one has to gather together various
concepts and results from different branches of modern
theoretical physics, such as the theory of elastic mani-
folds in quenched random media, polymer physics, spin-
glass theory, Auctuation theory of phase transitions,
strongly correlated quantum systems, disordered quan-
turn Bose liquids, macroscopic quantum tunneling, hop-
ping conductivity in semiconductors, and self-organized
criticality. This list illustrates the richness and complexi-
ty we encounter when dealing with the physics of vor-
tices in high-temperature superconductors.

The main philosophy followed in this review is to base
all the discussions on some sort of "basic Hamiltonian. "
The requirement we impose on this Hamiltonian is that it
describe the vortex system accurately in all its details and
thus be close to reality. In particular, all the internal
structure existing in the vortex system (e.g. , the vortex
lattice) as well as the interactions present in the system
(e.g., between the vortices and the static disorder poten-
tial) shall be accurately described by the model Hamil-
tonian. Examples of the kind of "microscopic Hamil-
tonians" we consider in this review are the (continuous
anisotropic) Ginzburg-Landau and London free-energy
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functionals, the discrete Lawrence-Doniach model, and
the continuum elastic free-energy functional for the vor-
tex lattice. In our terminology the term "microscopic"
refers to length scales ~g, with the coherence length g
denoting the smallest scale in our problem. The calcula-
tion of g itself is the subject of truly microscopic con-
siderations involving the solution of a very complicated
many-body problem. Here we shall treat g as a phenom-
enological parameter. We shall also require our starting
Hamiltonians to describe a minimal model. In particu-
lar, we shaH introduce the simplest possible type of disor-
der in the system which is of the short-ranged Gaussian
type. It turns out that the physics described by such a
minimal model is already extremely rich and in fact able
to account for a wealth of experimental observations in a
very consistent manner. Such an approach is in contrast
to more phenomenological approaches, such as that
developed by Hagen and Griessen (1989, see also
Cxriessen, 1990) to account for problems related to pin-
ning and creep, or the droplet model going back to Fish-
er, Fisher, and Huse (1991) and designed to give a
description of the vortex-glass phase. It wiH be our aim
to describe various diverse phenomena such as vortex-
lattice melting, the resulting liquid phases, pinning and
creep (classical as well as quantum), loss of long-range or-
der, and glassiness, aH within the same framework, start-
ing from the most convenient of the set of (roughly
equivalent) Hamiltonians mentioned above. Our ap-
proach is, moreover, not specific to the high-temperature
superconductors, and the results obtained should equally
well describe the conventional low-temperature super-
conductors if the correct limits are considered in parame-
ter space. In this way the crucial differences between the
conventional low- and the new high-T, superconductors
can be accurately discussed.

Of course, starting out with these still very complex
Hamiltonians we cannot hope to develop exact solutions
to our questions. We thus have to resort to approximate
methods in dealing with the vortex system, such as the
method of dimensional estimates or perturbative methods
such as the dynamic approach. Since a vortex system
subject to quenched, thermal, and quantum disorder and
possibly driven by external forces is an extremely com-
plex object, the structure of the answers we derive below
is not simple but involves many regimes in which the
behavior of the system is di6'erent. The reader will be re-
warded for his patience by the richness of the physics he
will find in this system.

Let us turn, then, to the main results, i.e., the general
picture we obtain for vortex systems in the high-
temperature superconductors. We start out with a dis-
cussion of the statistical mechanics in a homogeneous
system and discuss the various phase transitions, the
form of the transition lines, and the physical properties of
the resulting new phases. Next we introduce disorder
into the system and discuss its e6'ects on the (dynamic)
properties of the various phases. The main additional
new features appearing as a consequence of strong layer-

ing will be summarized as well. Third, we extend the dis-
cussion to the case in which the disorder is correlated
and strong, e.g., the artificial introduction of pining
centers in the form of columnar defects.

Let us begin with the statistical mechamcs of the Aux-

line system in a homogeneous superconductor. We first
have to specify the region of phase space where our re-
sults are valid, which lies outside the regime of critical
fluctuations. The latter is determined by the Ginzburg
number Gi =(T, /H, Eg ) /2. The largeness of T, and
the smallness of the anisotropy parameter c. enhance Gi
in the high-temperature superconductors by factors of
—10 —10 and —10, respectively (note that g~ 1/T, ),
and hence Gi takes the value —10 in YBCO. The crit-
ical region at zero magnetic field then is of the order of 1

K wide and increases weakly with field,
Gi(H)=Gi' (H/H, ) . In spite of the largeness of Gi

the critical region around the mean-field transition line
H, (T), where fluctuations in the amplitude of the order

2

parameter become relevant, is stiH rather narrow. Out-
side of this region all the fluctuation degrees of freedom
involve only the phase of the order parameter, which can
be described by Auctuations in the positions of the vor-
tices. It is this part of the phase diagram where our re-
sults can be applied. In the strongly layered Bi- and Tl-
based superconductors, the situation is slightly compli-
cated by the appearance of strong quasi-2D Auctuations.
The 2D Ginzburg number Gi is given by the expres-
sion Gi =T, / /i2 Ed, with E, =(@,/4@A, ), and is of
the order of 0.1, implying that the critical region of
strong 2D fluctuations is roughly 10 K wide. The 3D
Ginzburg number Gi then should be considered as a (still
very useful, see below) combination of parameters.

The main new result in the statistical mechanics of
vortices in the high T, 's is the appearance of a vortex-
liquid phase occupying a substantial portion of the phase
diagram below the H, ( T) line; see Figs. 2(a) and 2(b). A

2

consistent theory for a 3D bulk melting transition is still
lacking at present, so the position and the shape of the
vortex-lattice melting line is usually determined by the
Lindemann criterion (u (T )),h-cuba, . In the
intermediate-field range H, «B «H, , the transition

1 '2'
line takes the form B (T)=(5.6cl /Gi )H, (0)(1

2—T/T, ), where cL -—0. 1 —0.4 is the Lindemann num-
ber. The fact that the melting line is outside of the criti-
cal regime is merely the consequence of the Lindemann
number cl being small. The large extent of the vortex-
liquid phase, on the other hand, is due to the largeness of
the Ginzburg number Gi. It is very interesting that the
vortex lattice can melt not only as a consequence of in-
creasing the temperature but also as a consequence of de-
creasing the magnetic field near H, (T); see Figs. 2(a)

1

and 2(b). With decreasing field, the distance between the
vortices increases and eventually grows beyond the Lon-
don penetration depth A, . In this region, the vortex-
vortex interaction is exponentially small, and consequent-
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ly the shear modulus c66 ~ exp( —a, /A. ) decays rapidly,
leading to a melting of the Aux-line lattice. As a result,
the melting line develops the interesting reentrant
behavior shown in Figs. 2(a) and 2(b). Note that the
width of the vortex-liquid phase close to H, is extremely

narrow, of the order of 1 G. Unfortunately, in the aniso-
tropic YBCO superconductor we cannot trace out the en-
tire melting line, as the latter enters the critical regime
where fluctuations in the amp1itude of the order parame-
ter have to be considered [see Fig. 2(a)]. The correspond-
ing part of the melting line is, however, rather small.
Note that the H, (T) line now is merely a crossover line

and no longer describes a thermodynamic phase transi-
tion. Nevertheless, close to the line H, (T) the modulus'2
of the order parameter increases rapidly, so that the
"jump" in the specific heat takes place near the crossover
line H, (T).

2

In the more strongly layered Bi- and Tl-based super-

FIG. 2. Phenomenological phase diagram for the anisotropic
high-temperature superconductors [parameters for YBCO,
H, (0)=730 G, H, (0)=230 T, values extrapolated linearly to

1 '2
zero, see also Sec. II.C]: (a) The Abrikosov vortex lattice is
melted over a substantial part of the phase diagram. The vortex
lattice can melt with increasing temperature (thermal Auctua-
tions) or with decreasing field (exponentially vanishing shear
modulus), leading to a reentrant behavior of the melting line
B (T). The thermodynamic phase transition is shifted to the
melting line B (T), with the upper critical-field line H, (T)'2
marking only a crossover line where the modulus of the order
parameter increases rapidly. The regime of large critical Auc-

tuations where the description in terms of vortex (phase) Auc-
tuations breaks down and amplitude Auctuations become im-
portant is confined to a rather narrow ( —1 K wide) region close
to H, (T). The drawing is not to scale, but emphasizes the'2
main structures appearing in the phase diagram. (b) Shape of
the melting line 8 (T) for YBCO with parameters discs=16 A,
A.L =1400 A, and an anisotropy parameter E =M/m =1/25;
drawing is to scale. Note that the extent of the dilute vortex-
liquid phase along the field axis is only of the order of a few
gauss.
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FIG, 3. Phenomenological phase diagram for the strongly lay-
ered high-temperature superconductors [parameters for
BiSCCO, H, (0)=650 G, H, (0)=100 T, values extrapolated

1 '2
linearly to zero, see also Sec. II.C]: (a) The part of the phase di-
agram occupied by the liquid phase is substantially larger than
for the anisotropic YBCO material. Furthermore, the phase di-
agram separates into two regimes, a low-field regime with
B &B» where the melting process is well described by a 30
continuous anisotropic model, and a high-field region with
B & B», where the melting is quasi-two-dimensional. T
denotes the Berezinskii-Kosterlitz- Thouless dislocation-
mediated melting temperature, which is the asymptotic for the
melting line B (T) at large fields. Drawing not to scale. (b)
Shape of the melting lines B ( T) and the lower critical-field line
H, (T) for BiSCCO, with parameters gacs=25 A, A,I =1400 A,

1

and an anisotropy parameter c =M/m = 1/2500; drawing is to
scale. The point (T*,B*) denotes the turning point of the
lower melting line B ( T).

conductors, the extent of the vortex-liquid phase is even
larger; see Figs. 3(a) and 3(b). Within the intermediate-
field range H, «8 «H, the melting line consists of

1 2

two parts, which join up at the characteristic field

BzD =(trC&, /A )in(A/g). Here A=d/s denotes the
Josephson screening length in the layered system, and d
is the layer separation. At low fields H, «B &B2D the

1

vortices constitute well-defined line objects, and the melt-
ing transition is of the 30 type with Gi =1. At higher
fields B,D &8 «8, the melting transition is quasi-two-

dimensional in nature and approaches the field-
independent value T =e.d /4+3tr =25 K.

The melting line 8 (T) separates the vortex-lattice
phase at low temperatures from the vortex-liquid phase
above 8 (T). It is interesting to note that, when going
from the high-temperature normal-metallic phase to the
Abrikosov vortex lattice, two symmetries are broken.
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These two symmetries are the translation invariance,
which is broken in the lattice phase, and the gauge sym-
metry producing longitudinal superconductivity (due to
the absence of pinning in the present thermodynamic
considerations, the response of the vortex lattice to a
transverse current density jlH is that of a normal metal).
The question then arises whether these two symmetries
are broken simultaneously or sequentially. If the latter
possibility is realized, then the vortex-liquid phase ap-
pearing just above B (T) will be a disentangled vortex
liquid, which still exhibits longitudinal superconductivi-
ty. A second phase transition then is needed to trans-
form this disentangled vortex-liquid phase into an entan-
gled vortex liquid which is equivalent to the normal me-
tallic phase; see Fig. 24 below. On the other hand, if the
two symmetries are strictly coupled, then the vortex
liquid appearing above the melting line B ( T) will

directly be the entangled phase, and the system will de-
velop a single phase transition only.

Again the situation is somewhat different in the case of
strongly layered superconductors (see Fig. 39 below). At
small fields H, «8 &BzD the situation is analogous to

1

the anisotropic situation discussed above, since the sys-
tem exhibits well-defined vortex lines. At higher fields,
however, it appears that the two transitions discussed
above may reverse their order. If this scenario is indeed
realized in these materials, then the 3D lattice phase at
low temperatures would undergo a decoupling transition
in which longitudinal superconductivity is lost, while the
long-range translational order of the vortex lattice sur-
vives. The latter then would disappear only at the melt-
ing transition close to T . The two transition lines cross
one another at ( —T,BzD). The above discussion of
the possible existence of intermediate liquid phases is still
quite speculative at present, and more work is certainly
needed to confirm or reject these ideas.

Next, let us introduce disorder into the system and
study the consequences. The most simply accessible phe-
nomenological parameter describing the strength of the
disorder is the critical current-density ratio j, /j. . If
j, /j, is small, the disorder potential is weak, and the
concept of weak collective pinning can be applied. The
idea of weak collective pinning can be most easily illus-
trated using the example of a single vortex line subject to
weak disorder; see Fig. 4 (we consider an isotropic super-
conductor here): Since the vortex line is an elastic object,
the individual point pins acting on the Aux line will com-
pete with one another. When we sum up the individual
pinning forces acting on the vortex line, the various pins
will add up only randomly, i.e., only fluctuations in the
density and force of the defects will pin the Aux line in a
definite position. Assuming a density n; of pins acting
with an individual force f;„on the vortex line, the total
force accumulated along a segment of length L is

Pz,„(L) =(fz,„n;g L )', where we have taken the coher-
ence length g to be the physical length scale of the disor-
der potential (the extent of the point pins themselves is

Lc

FIG. 4. Single vortex line pinned by the collective action of
many weak pointlike pinning centers. Only fluctuations in the
pin density are able to pin the vortex. In order to accommodate
optimally to the pinning potential, the vortex line deforms by g
{the minimal transverse length scale the vortex core is able to
resolve equals the scale of the pinning potential) on a longitudi-
nal length scale L„the collective pinning length.

less than g; however, the vortex line cannot resolve
lengths smaller than g).

The pinning force V;„(L) competes with the Lorentz
force VI (L)=j @oL/c, which grows linearly with dis-

tance, whereas 9';„(L)~&L shows only a square-root
growth due to the random addition of the individual pin-
ning forces. These dependencies would imply that, over
long distances, the Lorentz force always wins and a (stiffl
vortex would remain unpinned. On the other hand, as
the vortex can accommodate itself to the pinning poten-
tial by elastic deformation, the Aux line can bend in order
to find the most favorable position in the random poten-
tial. Such a deformation will cost an elastic energy

E&(g/L-—) L, which in turn is in competition with the
pinning energy 6'~;„(L)= V~;„(L)g [here
=(4', /4m', ) is the vortex line tension]. At distances
L )L„where the length L, is defined by the equality

8,&(L, ) = 8~;„(L,), the vortex can readjust itself elastical-

ly to the optimal local configuration, and the square-root
growth in 8;„(L)is cut off. The vortex then "breaks up"
into segments of length L„each of which is pinned in-

dependently and competes as one unit with the Lorentz
force VI (L, )=j @,L, /c L, =(E..g /y)'~ is called the
collective pinning length. Here y =f;„n,g parametrizes
the disorder strength. Inserting L, back into 6;„,we ob-
tain the collective pinning energy U, =(c,.g y)'~ and
equating 9~;„(L,) with the Lorentz force Vl (L, ) one
finds the critical current density j,=j.( g y /E. )

Given the disorder parameter y, the longitudinal and
transverse lengths L, and g', the energy U„ the action
S, =(fi/Qu )(L, /g ) for quantum processes, and the criti-
cal current density j, constitute a set of basic scales for
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the discussion of the statistical mechanics and of the dy-
namics of the vortex line subject to a quenched disorder
potential. Since the disorder parameter y is not directly
accessible in an experiment, one usually considers the
critical current-density ratio j, /j, as the fundamental
quantity characterizing the strength of the disorder po-
tential. Expressing L,and U, in terms of j, /j, , one ob-
tains L, =g(j, /j, )'~, U, =H, g (j, /j, )' =[j,(1 t)/—
j,Gi ]'~ T„and S, =(A'/Qu )(j, /j, )'~, where j, /j, &&1
is the weak pinning condition. The generalization of
these results to the anisotropic case with H~~c is
L;=a/(j, Ij, )'~, U, =H, sg (j,'Ij, )'~ =[j;(1 t)/—
j,Gi ]' T„and S,'=(A'/Qu )(j, /j,')'~ (j,' denotes
the planar critical current density in the orthogonal
configuration where H~~c).

In the above illustrative example for the Inechanism of
collective pinning we have considered only the simplest
case of an isolated vortex line. This case is actually real-
ized for weak enough fields where the distance between
the vortex lines is large and their mutual interaction is
small as compared with the interaction between the vor-
tices and the quenched random potential. At higher
fields the intervortex interaction becomes dominant, and
the collectively pinned object will be a three-dimensional
vortex bundle. %"hereas the starting point in the single-
vortex case discussed above was the elastic string, the
starting point at higher fields is the elastic vortex lattice
with its we11-defined compression, shear, and tilt proper-
ties. Considerations similar to those introduced above al-
low us to determine the transverse and longitudinal di-
mensions of the bundle R, and I.„the collective pinning
energy U„and the critical current density j, . It turns
out that the bundle volume V, =R,L, (i.e., R, and L, )
and the energy U, both increase with the magnetic-field
strength, whereas the critical current density j, decreases
with increasing field. The latter can be understood'
noting that U, ~ QV„whereas j, ~ U, /V, ~ 1/QV, .
Note that the vortex-lattice order is still rather well
preserved within the volume V, as distortions u of the
lattice which accumulated at the distances R, and L, are
of the order of /&a, , where a, is the lattice constant.
The long-range order is lost only over larger distances
R, ~ R, and L, ~L„where u(R„L, ) =a, . This regime,
however, lies outside of the perturbatively accessible re-
gion discussed above, and new. scaling concepts have to
be considered in order to treat distances beyond the
lengths R, and L,„' see the discussion below.

One of the most fascinating issues in the physics of
vortices is the interplay between quenched and thermal
disorder. Thermal Auctuations will interfere with
quenched disorder in two ways. First of all, small intra-
valley oscillations of the vortices will lead to an averaging
of the disorder potential over the mean amplitude of
thermal displacements (u ),'h . As this amplitude in-
creases beyond the scale g of the disorder potential,
thermal fluctuations will smooth the disorder potential so
that the pinning is reduced and the critical current densi-

ty rapidly decreases with increasing temperature. The
condition ( u ( Tdz ) ),&

——g determines the so-called de-
pinning line, which takes the form Bd„(T )

=8Gi H, (0)(T/T, ) in the H-T phase diagram (see Fig.
18 below). Note that Bd (T) is not a transition line but
marks the crossover to that region of phase space where
thermal disorder strongly interferes with pinning. Again,
the crucial parameter entering the expression for Bd is
the Ginzburg number Gi. With increasing Gi, the region
of phase space where the pinning properties of the vortex
lattice are strongly affected by thermal fluctuations be-
comes larger. At small enough temperatures and fields,
the depinning line enters the regime where the vortices
are pinned individually. The depinning line then bends
and becomes independent of the magnetic field, ap-
proaching the single-vortex depinning temperature Td,
see Fig. 18. The extent of the single-vortex pinning re-
gime depends on the strength of disorder and so does
Td~, Td =0.7(j, /j. Gi)' T, . Above Td the pinning of
the vortices always involves vortex bundles, which
expresses the fact that the interaction among the vortices
is relevant and short-range lattice order persists over
several lattice constants R, ~ R, )ao. The weak pinning
condition j, /j, &Gi then guarantees that the melting
transition, with its characteristic length a, , is only weak-

ly perturbed by the quenched disorder, characterized by
the elastic length R, . Closer inspection shows that the
weak-pinning condition for the melting line is even less
stringent: Requiring that the single-vortex pinning re-
gime nowhere touch the melting line and taking all the
temperature dependencies into account, one obtains (for
not too large Gi) the condition j,/j, & Gi ' /4 = 5 X 10
(parameters for YBCO), such that the weak-pinning con-
dition can indeed be fulfilled in the high-temperature su-
perconductors. Note that the above condition is difticult
to fulfill in low-T, material where Gi —10 . Further, it
turns out that the reentrant part of the melting line near
H, (T) is characterized by a thermal fiuctuation parame-

1

ter Gi /x inst, which is smaller than Gi by several orders
of magnitude. . The reentrant part of the melting line
8 (T) then is always strongly affected by the quenched
disorder potential.

Thermal fluctuations not only affect the pinning poten-
tial; most importantly they also change the dynamics in
the system. Better, they produce a creep-type motion of
the vortex system for current densities j &j, where the
vortices still are pinned. Following the classical ideas of
Anderson (1962) and of Anderson and Kim (1964), we see
that thermal fluctuations induce intervalley hops of vor-
tex segments and of vortex bundles so that the whole vor-
tex system is driven by an external current density
j to move with a finite creep velocity
U =2U, exp( —U, /T)sinh[( U, /T)(j /j, )]. At small
current densities j—+0 we can expand and obtain v ~ j,
i.e., the system shows Ohmic behavior with a resistance
p(T) ~ p„exp( —U, /T). One can immediately think of
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several limits which all seem to be realized and experi-
mentally accessible in the high-temperature superconduc-
tors: If the pinning barriers U, in the system become
small as compared with the temperature T, U, && T, the
vortex motion is essentially unaffected by the disorder
and can develop a free How under the action of a driving
force. The resistivity p is then given by the Aux Aow
resistivity p=p„, =p„(B/H, ); see Fig. 5. This flux

flow (FF) behavior is the dynamic response of the un

pI nned vortex liquid at high temperatures near the
H, (T) crossover line; see Fig. 6. For large pinning bar-

2

riers U, )&T the resistivity becomes exponentially small,

p(T)=(ps, „/& )exp( —U. /T), A «1, and shows an ac-
tivated behavior. This is the dynamic response of the
pInned vortex liquid at high temperatures near the melt-
ing line B (T). The corresponding regime is now com-
monly known as the TAFF regime for thermally assisted
tlux Bow (Kes et al. , 1989). Within this regime the vor-
tex system is modeled as a very viscous liquid with a
(plastic) relaxation time t

&
that is large compared with

the typical pinning time t;„=ao /u, in the problem (U, is
the critical velocity, where the current-voltage charac-
teristic turns away from the linear behavior,
u, =j,B /inc). With increasing temperature the plastic re-
laxation time t„, decreases, and when t

&

——t„;„the TAFF
regime crosses over to the FF regime.

The question then arises what type of barriers do we
expect in the system at low temperatures below the melt-
ing line B (T), where the elastic properties of the vortex
lattice are established (i.e., the shear modulus c66 of the
vortex system becomes finite). It can be shown that, as a
direct consequence of the elasticity, the pinning barriers
in the vortex system diverge in the limit of vanishing
current density j~0. In this case the small-current ex-
pansion, as used above in the traditional Anderson-
Kim —type approach to vortex creep, cannot be done any
more, and the response of the system to an external
current density j remains sub-Ohmic for all j~0. In
fact, the current-voltage characteristic develops an essen-
tial singularity in the limit j~0, with the electric field E
vanishing according to E ~exp[ —(U, /T)(j, /j)"]. The
vortex system is then in a vortex-glass phase, which can
be characterized by the value of the glassy exponent p.
Since p(j~0)~0, the vortex glass is a truly supercon-
ducting phase in the thermodynamic sense. Here we
have defined the glass in a dynamic way, neither via the
absence of long-range translational order nor via the ap-
pearance of some Edwards-Anderson —type order param-
eter. The crucial feature of the vortex-glass phase as we
have introduced it here is the divergence of the barriers

2We avoid here identifying the barrier Uo with the collective
pinning barrier U„which is always of elastic origin; under cer-
tain conditions the relevant barriers against vortex motion can
be due to other processes, e.g., plastic deformations of the vor-
tex system, as is the case in a vortex liquid.

FF

TAFF

log j

FIG. 5. Resistivity p vs current density j for three different re-
gions within the phenomenological phase diagram. At large
temperatures the barriers against vortex motion are small,
U, 5 T, and the vortex system is in the Aux-How (FF) regime
with pfl,„=p„(8/H, ). Close to the melting line, T ~ T, the

barriers in the system become large but finite, T« U. & ~, and
the system enters the thermally assisted Aux-How (TAFF) re-
gime, where the finite linear-response resistivity is activated,

p (pfl „/~ )exp( —Uo /T), with A && 1. Below the melting
line, T & T, we enter the vortex-glass regime, where the bar-
riers diverge, U(j—+0)~ ao, leading to a truly superconducting
phase with p(j~0)—+0.

U( j) when the probing current density j becomes vanish-

ingly small (and hence does not alter the thermodynamic
phase by its own presence). Note that the appearance of
infinite dislocation loops (if thermodynamically possible
at all) is not expected to renormalize the shear modulus
to zero at large distances, since such elastic objects would

H vortex
glass

0 I CI

qU I Cl

&pinned liquid&

H, (T)

0 T T Tc

FIG. 6. Phenomenological phase diagram for the high-
temperature superconductors including the effects of thermal
Quctuations and of quenched disorder (pinning). For the vortex
lattice with its finite shear modulus the disorder is relevant, and
the lattice turns into a vortex glass, which is a true supercon-
ductor with p(j~0)~0. For the vortex liquid the disorder is
perturbatively irrelevant, and the liquid remains a liquid. Close
to the melting line 8 (T) the (finite) barriers against vortex
motion are still large, T« Uo & ac, and the vortex liquid is
pinned (TAFF regime), whereas close to the upper critical-field
line H, (T) the barriers are small, Uo ~ T, and the vortex liquid'2
cannot be pinned (FF regime). The low-field/low-temperature
part of the dilute vortex liquid is probably in a pinned state, and
an unpinned entangled vortex liquid (EVL) appears only close
to T, . Note that the importance of thermal fluctuations is
strongly suppressed in the diluted vortex-liquid phase close to
0, (T). Drawing is not to scale.

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



Blatter et al. : Vortices in high-temperature supereonduetors

themselves be pinned by the underlying disorder poten-
tial. The theory of weak collective pinning, combined
with the modern scaling concepts describing the behavior
of elastic manifolds subject to a quenched disorder poten-
tial, appears to be particularly apt for the description of
the vortex-glass phase. Whereas the (perturbative) col-
lective pinning approach allows us to determine all the
basic scales, such as R„L„U„and S„ in the system,
the (nonperturbative) scaling concepts applying to elastic
manifolds in random media provide the relevant scaling
exponents (e.g. , the glassy exponent p) in the problem.
The interplay of quenched and thermal disorder can be
expressed most compactly by the following diagram (see
also Figs. 2 and 6):

& disorder

vortex lattice = vortex glass,

dk disorder
vortex liquid: vortex liquid .

In other words, disorder transforms a vortex lattice into
a vortex glass and hence is perturbatively relevant,
whereas disorder is perturbatively irrelevant for the
vortex-liquid phase, which remains a liquid.

In the strongly layered situation, the possibility arises
that pinning and creep do not involve either vortex lines
or vortex bundles, but that single pancake vortices can
become pinned individually or that a 2D collective pin-
ning regime appears. In fact, if pinning is strong enough
that the collective pinning length I., drops below the in-
terlayer distance d, the pancake vortices become individ-
ually pinned at low magnetic fields. When the magnetic
field is increased, the interaction between the pancake
vortices within one layer starts to dominate over the in-
teraction between the pancake vortices and the disorder
potential, and a 2D bundle of pancake vortices becomes
pinned collectively. When the field is further increased,
the dimension of these bundles increases and so does the
(Josephson) coupling energy between 2D bundles in
neighboring layers. Eventually the coupling into the
third dimension becomes dominant, and the collectively
pinned object takes the shape of a 3D vortex bundle
again. If the weak-pinning condition I., &d is fulfilled,
however, pinning and creep will mainly involve either
lines or bundles, as. in the continuous anisotropic case.

A second interesting feature of the strongly layered su-
perconductors concerns glassiness at low temperatures.
It turns out that in a two-dimensional vortex system the
vortex-glass phase cannot exist at finite temperatures.
This is due to the presence of dislocation pairs, which
can carry a finite amount of fIux and whose barriers
against creep, being a zero-dimensional object, always
remains finite. The finite barriers against plastic defor-
mations therefore will always cut ofF glassiness in two di-
mensions. Note that the corresponding object is topolog-
ically forbidden in a 3D vortex lattice, since dislocation
loops are bound to lie within the gliding plane of the edge
dislocations and hence they cannot carry Aux. In a lay-
ered superconductor the finite-temperature vortex-glass

phase is reestablished due to the finite Josephson cou-
pling between the layers, which punishes dislocation
pairs carrying Aux within one layer with an infinite
creation energy. Hence the layered case appears to be
equal to the continuous anisotropic one, which in fact is
true at low fields 8 &B~D. For larger fields 8 &820 the
possibility arises of a decoupling transition's taking place
below the melting transition. In this case, the glassy
phase would give way to a liquid phase as soon as the
temperature was raised above the decoupling transition
line (see Fig. 42 below).

Finally, let us brieAy discuss the main consequences of
strong pinning, examples of which are given by the twin
boundaries in YBCO, by screw dislocations produced in
thin films during growth, or by artificially introduced
columnar defects. The type of strong pinning that is
technologically most relevant (and which is physically
very interesting) is obtained by irradiating the material
with high-energy ions. The linear tracks of damaged ma-
terial then introduce strongly correlated disorder into the
(aligned) vortex system. At low magnetic fields such that
a, »d„, where d„denotes the mean distance between the
tracks, each vortex is individually pinned by a columnar
defect. Since the pinning energy now grows linearly with
distance, pinning becomes strong, and the critical current,
density j, takes values close to its upper bound, j, j, .
Whereas at low temperatures each vortex line is bound to
its line defect, the vortices tend to delocalize with in-
creasing temperature. As the mean thermal displace-
ment (u ),'h becomes equal to the distance d„between
the tracks, the vortex becomes collectively pinned by an
assembly of line defects. Pinning then is reduced, since
only Quctuations in the density of tracks lead to the pin-
ning of the vortex line. It is interesting to compare the
competition between quenched and thermal disorder for
the two cases where a single vortex line is pinned collec-
tively by uncorrelated (pointlike) disorder and by corre-
lated disorder (line defects): A vortex line subject to un-
correlated pointlike disorder and thermal fluctuations is
only marginally pinned in 3D, and thus the critical
current density j, vanishes exponentially with increasing
temperature. On the other hand, correlated disorder
competes more efhciently with thermal fluctuations, re-
suiting in a weaker algebraic decay of the critical current
density with increasing temperature. Another interesting
difFerence between uncorrelated and correlated disorder
is that in the former case the statistical mechanics of the
vortex is characterized by line wandering, whereas in the
latter case the characteristic feature is localization.

When the temperature is further iricreased, the interac-
tion between the vortex lines becomes important, and the
collectively pinned object takes the form of a vortex bun-
dle. It turns out that for typical parameter values
(YBCO), the melting line of the pure system is situated
close to the boundary of the single-vortex pinning re-
gime. For the case in which the melting line lies entirely
within the bundle pinning regime, the largest energy in
the problem is given by the intervortex interaction, and
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the disorder does not strongly perturb the melting transi-
tion of the vortex lattice. The actual situation depends
rather sensitively on the numerical values of the parame-
ters, and a strong-pinning situation turning the melting
transition continuous can arise equally well. Finally, the
investigation of the vortex system at high fields involves
taking into account the interaction between the vortex
lines from the beginning, and plastic as well as elastic
barriers are relevant in difFerent regimes.

The study of vortex creep in the presence of columnar
defects reveals again a variety of cases, including a
(nonglassy) percolation-type motion for a finite-thickness,
low-disorder sample, a (glassy) variable-range hopping re-
gime for more strongly disordered or thick samples, as
well as plastic and collective creep regimes at higher
fields where interaction between the vortices is relevant.
In the thermodynamic limit the phase below the melting
line is always a glass; however, its properties difFer from
the vortex-glass phase characteristic of the case of un-
correlated disorder. Whereas the latter promotes line
wandering, the Bose-glass phase typical of the correlated
disorder discussed here promotes localization of the fIIux

lines. Also, the glassy exponent p difFers for these two
cases.

Let us close this introduction with a summary of the
contents of the review. The simplest system we can con-
sider when studying vortices in the high-temperature su-
perconductors is the single vortex. All the basic concepts
of (weak collective) pinning and creep, thermal depin-
ning, and the complications arising due to the anisotropy
of the material can best be illustrated in a discussion of
this simplest case. Furthermore, the physics of the indi-
vidual vortex line is also realized in the low-fieldjlow-
temperature part of the H-T phase diagram, and thus it is
an important subject to be studied first. In Sec. III we in-
troduce a set of general tools that will be used later in the
discussion of the vortex system. These tools comprise the
continuum elastic theory of the vortex lattice and the
scaling approach to the problem of anisotropy. In this
section we also study the origin and the size of the ele-
mentary pinning force, which is treated as a phenomeno-
logical parameter in the other sections of the review (the
discussion is based on an s-wave BCS superconductor). It
turns out that weak collective pinning by pointlike oxy-
gen disorder is well able to account for the experimental-
ly observed critical current densities in the high-T, su-
perconductors. The dynamic approach discussed in Sec.
III.D is one of the most important tools in the discussion
of the physics of vortices subject to quenched disorder, as
it allows us to obtain at least semiquantitative results.
The statistical mechanics and the dynamics of elastic
manifolds subject to periodic and random disorder are
studied in Secs. III.E and F. The discussion in Sec. III.E
illustrates that (dynamic) glassiness is a consequence of
elasticity and not of randomness. The nonperturbative
scaling approach to the statistical mechanics and dynam-
ics of elastic manifolds subject to a disorder potential is
thoroughly discussed in Sec. III.F. In particular, Sec.

III.F explains those concepts needed later in the discus-
sion of the glassiness of the vortex system below the melt-
ing line. Section IV is devoted to the physics of the vor-
tex lattice subject to quenched disorder, external force
fields, and thermal as well as quantum fluctuations. The
structure of this section is very similar to that of Sec. II,
as it generalizes all the basic ideas introduced there to the
case of the interacting vortex lattice. In addition, ques-
tions regarding the destruction of long-range order by the
disorder potential are discussed in Sec. IV.E.

Section V deals with the thermodynamic properties of
the vortex system. This section is rather independent of
Secs. II and IV, but it draws from the ideas introduced in
Secs. III.A and B. In Sec. V.A we present a detailed dis-
cussion of the phenomenon of vortex lattice melting and
determine the shape of the melting line for the low-,
intermediate-, and large-field regimes. The possible ex-
istence of two vortex-liquid phases is discussed in Sec.
V.B.

In Sec. VI we investigate the consequences of the pres-
ence of quenched disorder on the vortex-liquid phase.
The difFerent role quenched disorder plays for the
vortex-solid and vortex-liquid phases is clearly explained
here, and the concepts of pinned and unpinned liquids
(TAFF and FF regimes) are introduced and explained.

Section VII gives a discussion of the vortex-glass
phase. The basic glass problematics are first summarized
in Sec. VII.A, where we discuss various types of glasses,
the spin, the gauge, and the vortex glass. Section VII.B
is devoted to the idea of vortex-glass scaling close to the
glass transition line, though gauge-glass scaling may ac-
tually be a more accurate heading for this section. Sec-
tion VII.C finally discusses the various approaches to the
vortex-glass phase and its dynamics away from the tran-
sition line. In particular, a thorough discussion is given
of the relationship between the ideas of collective creep
and the vortex glass.

Section VIII is devoted to layered superconductors.
The first two sections treat the structure of the individual
Aux lines and of the vortex lattice (Sec. VIII.A), as well as
the (quasi-two-dimensional) thermodynamic properties
(Sec. VIII.B). The second part of the section then con-
centrates on pinning and creep, both intrinsic (Sec.
VIII.C) and collective (Sec. VIII.D).

Strong pinning due to correlated disorder is discussed
in Sec. IX, where we treat the two most relevant cases of
pinning by twin boundaries and by columnar defects.

Section X deals with the macroscopic properties of
type-II superconductors for the two cases in which the
vortex system is in a liquid phase (Sec. X.A) or in a glass
phase (Sec. X.B). The main issues discussed here are the
ac-susceptibility experiments and their relation to the
possible observation of the melting transition, and the de-
cay of a trapped magnetic moment as a consequence of
creep and its relation to the concept of self-organized cri-
ticality.

Finally, in Sec. XI we conclude with a list of unsolved
problems. A summary of the main results has already
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been given above. The main emphasis of this review is on
the theory of the statistical mechanics and of the dynam-
ics of vortices. Contact with experiments will be made
only as an illustration of the theoretical results, and we
make no attempt to present a complete list and discus-
sion of the experimental situation.

II. SINGLE-VORTEX PINNING

The basic frame for the phenomenological description
of superconductivity is given by the Ginzburg-Landau
(GL) free-energy functional

d 2e g2 H B
i dx„c " 8m. 4~

(2.1)

where %(r) is the order parameter, A is the vector poten-
tial, B=V 5, A is the microscopic magnetic field, and H
is the applied external field. The GL parameter
a= —a(0)(1—T/T, ) changes sign at the transition tem-
perature T„whereas P is taken to be constant in temper-
ature. We choose the charge unit e to be positive, e )0,
and the charge of the electron therefore is —e. The pa-
rameters m„, p = 1,2, 3, denote the effective masses along
the main axes of the crystal. Here we are interested in
the two cases of isotropic and of uniaxially anisotropic
material. Our interest in the isotropic case (m„=m,
p = 1,2, 3 ) derives mainly from the simplicity of the
situation —new ideas and concepts can be developed
without having to deal with complications due to addi-
tional parameters and reduced symmetry. On the other
hand, when applying our results to the new high-
temperature superconductors, we have to take the anisot-
ropy of the material into account. For the sake of simpli-
city and because the oxide superconductors are within
high accuracy uniaxial (axis IIz) materials, we chooseI =m =m, m, =M and denote the mass anisotropy ra-
tio by

Vh(V'h A)+ A=— Vy . (2.4)

These two differential equations are characterized by the
GL coherence length g(T) and the penetration depth
A, ( T) determining the scale of variations in the order pa-
rameter and in the magnetic field, respectively. In terms
of the GL parameters these length scales are given by

2m Ia(T) I
1 —T/T,

(2.5)

and

H, /8m=a /2I3. , with H, the thermodynamic critical
field. Variation of the GL functional (2.1) with respect to
the order parameter %'* and the vector potential A fur-
nishes the equations determining the spatial variations of
'p = I%'Ie xp(iy) and A in the inhomogeneous situation,

2
Iqg 2

V+ A ip+4 —
2

%'=0, (2.3)

c =m/M &1 . (2.2)

In anisotropic materials an additional degree of freedom
is the angle between the external magnetic field H and
the superconducting planes. The external field H is then
chosen to lie in the yz plane and to enclose an angle
B~( =~/2 —

OH ) with the y axis; see Fig. 7. Pinning is in-

troduced into the model via spatial disorder in the GL
coefficient a(r) describing disorder in the transition tem-
perature T„and/or by spatial variation of the effective
mass m (r) describing disorder in the mean free path I.
To be specific, we shall concentrate mainly on short-scale
disorder characterized by Gaussian white noise:
o;(r)=ao+5a(r) with (5a) =0 and (5a(r)5a(r') )
=y 5(r —r'), and similarly m„(r)=m, „+5m„(r) with
(5m ) =0 and (5m„(r)5m (r')) =y &5„(r—r'). Pin-
ning by extended defects will be discussed in Sec. IX. In
the following we shall consider the isotropic case and re-
turn to the anisotropic situation in Sec. II.C.

The homogeneous solutions of Eq. (2.1) are given by
+,=0 (normal state) and

I 4, I

=
I
a I /p (superconducting

state). The energy gain in the superconducting state
(a & 0) is given by the condensation energy

FIG. 7. Main coordinate systems used throughout this review.
The axes x, y, and z are aligned with the crystal symmetry axes
a, b, and c, with c denoting the axis of (roughly) uniaxial anisot-
ropy and the ab plane containing the superconducting CuO
planes. The magnetic field H lies in the yz plane and encloses
an angle OH =m/2 —88 with the c axis (an angle 8~ with the ab
plane). The induction B (also lying in the yz plane) is in general
not aligned with the magnetic field H and encloses an angle 6
with the ab plane. The coordinate system x',y', z' is aligned
with the induction B and has a common x axis with the crystal
system, x' =x.
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k (T)= =A, (0) (2.6)
critical field is determined by the line energy e1 of a single
vortex, which is given by

In the following we use the zero-temperature values of
the length scales g and A, for the characterization of the
superconductor rather than the original GL parameters.
Note that we distinguish between the extrapolated zero-
temperature parameters g(0) and A, (0) and the micro-
scopic quantities gBcs[=1.36$(0)] and Al [=1.41k(0)];
see Sec. III.C. The expression for the thermodynamic
critical field takes the form

where N, =bc /2e is the Aux quantum.
In this review we focus on the class of strongly type-II

materials characterized by a large Ginzburg-Landau pa-
rameter ~=X/g)) 1, to which the new oxide supercon-
ductors belong. In this case the London theory provides
a good approximation to the phenomenological descrip-
tion of superconductivity. Within the London theory the
free energy of the system is obtained by summation of the
energy of the currents Aowing in the superconductor and
the magnetic-field energy 8 /8~. By variation of Eq.
(2.1) with respect to the vector potential A we obtain for
the current density the expression

e, =co ln —= H,
4m

(2.13)

Here we have introduced the important energy scale

4nk
(2.14)

1/2
0

1/2

(2.15)

which determines the self-energy of the vortex lines as
well as their mutual interaction. The isolated vortex line
is a topological excitation of the superconductor charac-
terized by a line singularity in the phase y of the order
parameter: encircling the vortex line once, the phase y
changes by 2~. As a result, the order parameter 4 is
suppressed within the core region extending a length g
away from the singularity. Second, the gauge-invariant
phase gradient Vy drives a circular screening current
j= —(2efi/m ) ~'I'~ 7@ extending a distance A, away from
the core and trapping a Aux 4, . Above H, the external

1

magnetic field penetrates into a homogeneous supercon-
ductor by setting up a triangular lattice of vortex lines
with a lattice constant

. [O'*V%' —O'V%'* ]— 0'*4 A,
mi fpzc

2eR
~@~q

fPZ

(2.8)

(2.9)

For later convenience we also introduce the inverse
square root of the vortex density,

1/2

where we have introduced the gauge-invariant phase gra-
dient

Vy=Vy+ A .2'
(2.10)

0

Within the London approximation we ignore the spatial
variations in the modulus of the order parameter, and the
London free-energy functional then takes the form

(2.16)

H, =
2 277

(2.17)

For large external fields, the vortex cores start to overlap
and superconductivity disappears above the upper criti-
cal field 0, ,'2'

VL = Jd r[AL(V'hB) +8 ], Let us now concentrate on a single vortex: In general
terms, a vortex can be considered as an elastic string
which, compared with a pointlike object, exhibits addi-
tional interesting static and dynamic properties due to its
one-dimensional extended nature. The vortex line is an
elastic object, and therefore we first have to determine its
line tension, the quantity describing the elastic response.
Consider, then, a vortex aligned with the z axis of our
coordinate system. In an isotropic material the elastic
energy of a deformed vortex is simply determined by the
increase of the vortex length,

(2.11)

with the London penetration depth A.L given by

2IC
L 24~ne

(2.12)

O'„= J dz e&I [1+(B,u) ]' —1],

1 BU= fdz
2 Bz

where u(z) =(u, u ) denotes the displacement field of the
vortex. We thus obtain the simple result that the (long-

n being the density of superconducting electrons. In con-
trast to the GL theory with its regime of applicability re-
stricted near the superconducting transition temperature
T„the London theory is valid within the whole tempera-
ture range 0& T & T„as long as the magnetic field does
not lead to a significant suppression of the order parame-
ter.

In a type-II superconductor the (mean-field) H Tphase-
diagram is divided up into two phases with very diA'erent

phenomenological properties, a Meissner regime at small
applied fields below the lower critical field H, and the

1

Abrikosov Inixed phase above H, ; see Fig. 1. The lower
I
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1
e, (k) =e.ln (2.18)

This logarithmic dispersion has the following physical
origin: The line energy of a vortex consists of a part due
to the energy of the circular currents set up by the phase
gradient V'y and a second contribution which originates
from the magnetic-field energy. The contribution from
the currents is largest near the vortex core and cut off
due to screening at a distance A, for the case of a straight
vortex. A short-wavelength distortion of the vortex
affects mainly the current pattern in the vicinity of the
vortex core. The line tension is then due to this redistri-
bution in the current density, which we have to cut off on
the scale 1/k, thereby producing the logarithmic disper-
sion (2.18). In the following we shall deal mainly with
the problem of vortex pinning, which involves short-
wavelength distortions k —1/I. of the vortex line with
g&L «A, . In this case we shall drop the logarithmic
correction of order unity ln(1/A:g') in the line tension
(2.18) and use the approximation ci(k —1/L ) =Eo.

There are three main sources of force acting on an indi-
vidual vortex line: First, a vortex at rest with respect to
the laboratory frame of reference and exposed to a lami-
nar current How j is subject to the Lorentz force,

Here, n is a vector of unit length along which the vortex
is directed. As the vortex line starts to move, only veloci-
ty relative to the motion of the condensate contributes to
the driving force, and by Galilean invariance we obtain
(see, for example, Vinen, 1969)

C
(v, —v, )hn, (2.20)

where p, =2e~+~ denotes the charge density of the su-

perconducting condensate and v, and v, are the veloci-
ties of the condensate and of the vortex line with respect
to the laboratory frame, respectively. The force (2.20)
can be derived from hydrodynamic considerations [and
thus is also present in an uncharged superfluid (Vinen,
1969)] and is usually called the Magnus force. A very
modern derivation of this force in terms of a Berry phase
argument has recently been given by Haldane and Wu
(1985) and by Ao and Thouless (1993). In a perfect sys-
tem, (2.20) is the. only force acting on the vortex. When a
transport current density j=p, v, is applied to the sys-

wavelength) line tension E& is equal to the line energy eI
in an isotropic material, c.&=e&. This is no longer the
case in an anisotropic material, where the line energy of
the vortex depends on the angle 8 between the vortex
and the superconducting planes, thereby generating an
additional contribution to the line tension (Sudbd and
Brandt, 1991a, 1991b). Deviations from the simple ex-
pression (2.13) for the line tension are also possible in an
isotropic material: a short-wavelength distortion with
k ) I/A, leads to a dispersive line tension (Brandt, 1977b)

jh, n=qlv, +alv, hn . (2.21)

The transport coefficients q& and e& take the form

+0 6)o r„
c I+~ P

coo 2
c 1+coo7 p

(2.22)

with the characteristic frequency co, given by the level
separation of the quasiparticle states bound to the vortex
core (see, for example, Caroli, de Gennes, and Matricon,
1964), where A'co, =5e /ez, and r„ is the scattering relax-
ation time. Here, 5E=AU+/mg denotes the confinement

energy, U~ is the Fermi velocity, and c.z denotes the Fer-
mi energy. Note that in Eq. (2.21) no term of the form
q'I v, appears —such terms would lead to the deceleration
of the superflow even for vortices at rest (Vinokur et al. ,
1993). Also, no term describing a vortex mass appears in
Eq. (2.21). Such a term would involve taking the finite
frequency response of the vortex into account; see, for ex-
ample, Kopnin and Salomaa (1991).

We present a simple (heuristic) argument for the form
of the vortex equation of motion (2.21) in the presence of
scattering. The argument is based on the requirement
that the resulting vortex velocity v„be consistent with
the carrier motion inside the vortex core (Bardeen and
Sherman, 1975; Kopnin and Salomaa, 1991; Volovik,
1993). The latter is described by the generalized law of
conductivity in the presence of both an electric (E) and a
magnetic (B) field; for 8~~n and j, Eln we can write

(2.23)

tern, the vortex simply is dragged along with the Aow
such that f~=0.

The second class of forces acting on a vortex is due to
the presence of (microscopic) scattering processes in an
otherwise homogeneous system. The determination of
the equation of motion for the vortex then becomes a
very difFicult issue, and the final answer in this matter is
still unknown to date. A major problem, as yet unsolved,
is a curious change of sign in the Hall voltage appearing
in various materials as they enter the superconducting
state. Such observations have been reported for various
high-temperature superconductors (Galffy and Zirgiebl,
1988; Artemenko, Gorlova, and Latyshev, 1989c; Iye,
Nakamura, and Tamegai, 1989b; Hagen et al. , 1991) as
well as for some conventional materials (in niobium: Van
Beelen et al. , 1967; in vanadium: Usui, Ogaswara,
and Yasukochi, 1968; Usui et al. , 1969). A microscopic
derivation of the vortex equation of motion in the pres-
ence of scattering has been given by Kopnin and
Kravtsov (1976a, 1976b) and by Kopnin and Salomaa
(1991). In their equation the driving Lorentz force
(N, /c)jhn is balanced against the sum of the friction
force gI v, and the Hall force aI v, A n,
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with

1 V
0ii

—0, 0j —0
1+v 1+v

(2.24)

and the conductivity is given by o„=e nr„/m .The re-
laxation time ~„accounts for all the scattering processes,
and the parameter v=co, ~„relates to the Hall efFect with
co, =eB /mc the cyclotron frequency. Rewriting the elec-
tric field E in terms of the vortex velocity v„
E=Bh v„/c and taking the cross product of (2.23) with
N, n/c, we obtain the force equation

j Q n=F/)v +cxlv Q n (2.25)

with p„ the normal-state resistivity of the material.
Equation (2.26) describes well the situation at low fields
and low temperatures, whereas corrections become im-
portant near the transition temperature and for high
magnetic fields (Cxor'kov and Kopnin, 1973; Larkin and
Ovchinnikov, 1986). In the limit ai « gi, Eq. (2.21) then
simplifies to

qlv, = jRn,c
(2.27)

and the vortex moves at right angles to the external
current density j. On the other hand, in very pure ma-
terial such that co, r„)&1 [note that this corresponds to
the super-clean limit l )&g( e~ /b, ), where l =uzi„
denotes the mean free path and 5 is the gap parameter,
thus guaranteeing the existence of well-defined quasipar-
ticle states in the core], the Hall term becomes the dom-
inant one, with

with the two transport coefficients gi=vrhnv/(1+v )

and czar = vrRn—, v /(I+v ) describing the dissipative and
the Hall component of the motion (we have used
o „C&,K/c =Mnv) For. an electron in a magnetic field

B, the parameter v is determined by the cyclotron motion
and hence involves the cyclotron frequency ~, =eB/mc.
On the other hand, the corresponding frequency for an
electron orbiting within the core of a vortex is given by
the level spacing A~, . Substituting co, —+co, and

en ~—p, =2e
~

qI~ (T=O) in the expressions for the
coefficients gi and ai, we recover the result (2.21) and
(2.22) derived from microscopic calculations [note that
the substitution en ~p—, =2e ~@, ~

(T=O) is consistent
with the derivation of the phenomenological Ginzburg-
Landau equations from the microscopic Gor'kov equa-
tions, as discussed below in Sec. III.C].

Let us briefly discuss the various types of motion a vor-
tex can perform on the basis of Eq. (2.21). In most cases
the parameter coo~„&&1 is small, and the equation of
motion is dominated by the dissipative term, with the
viscous drag coefFicient q& given by the Bardeen-Stephen
(1965) expression

N, H,
Il— (2.26)

pnc

Ps . (2.28)

In this case we recover the Magnus force (2.20) as the
only force acting on the vortex, which thus is dragged
along with the superflow (see also Vinen and Warren,
1967), the typical situation for a vortex in an uncharged
super Auid.

The more conventional situation in a superconductor
involves a large dissipative and only a small Hall com-
ponent in the vortex motion. However, as shown in Sec.
III.C, in the oxide superconductors the smallness of g
and c~ and the largeness of l =U~~, and 6 open up the
possibility that these materials may be close to or even
within the super-clean limit, so that the Hall term be-
comes relevant. The Hall angle OH, » then describes the
appearance of a field component E perpendicular to the
current Aow j and is determined by the ratio cxI /gI,

U CX I
H ll J

Here u,', (u„) denote the velocity component of the vortex
parallel (perpendicular) to the current density j. Usually
(ai «gi) the Hall angle is small, 8H, ii=0, and becomes
large (OH, ii~m. /2) only in the super-clean limit. In the
following, if not otherwise stated, we shall ignore the
Hall efFect and set 6H,»=0. Note that the issue of a pos-
sible sign change in the Hall angle involves the calcula-
tion of the sign of col from microscopic considerations.

Finally, let us turn to the third type of force acting on
a vortex: in an inhomogeneous material the vortex can
become pinned by the action of the defects. This pinning
allows for the formation of a static vortex density gra-
dient, or Bean critical state (see Bean, 1962, 1964), which
in turn is equivalent to a bulk-transport current density

j=(c/4')V'/i B fiowing free of dissipation, an important
goal where applications are concerned. The maximal
vortex density gradient is obtained when the pinning
force f;„acting on a vortex becomes equal to the driving
Lorentz force, the resulting current density being the
critical or depinning current density j„

j, R, n=f;„.
C

(2.29)

Usually, this critical current density is considerably re-
duced with respect to the depairing current density jo,
which can be estimated from Maxwell's equation
7'AB=(4'/c)j to be of the order of j, =cK, /4m', . The
exact result from GL theory is

cd 4. cco

3&6ml, 3&3 g@.
(2.30)

From a thermodynamic point of view the critical state is
only a metastable state and thus bound to decay either by
thermal activation or by tunneling, phenomena known
under the name of "creep." The critical current density
as well as the rates for classical and quantum creep de-
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pend strongly on the strength of the pinning force. Since
the Lorentz force actually is a force per unit length, pin-
ning has to produce a force per unit length, too. Thus we
are faced with a summation problem for individual pin-
ning forces. For the case of weak pointlike pinning
centers, this summation problem was first solved by Lar-
kin and 0vchinnikov within their collective pinning
theory (1973). In the following sections, we determine
the critical current density and the classical and quantum
creep rates within weak collective pinning theory for the
situation in which the interaction between vortices can be
neglected. The results then apply to the regime of small
fields and small temperatures within the II-T phase dia-
gram. The general situation treating both large fields and
higher temperatures is discussed in Sec. IV below.

pinning is due to point defects perturbing the supercon-
ductor on a scale smaller than the coherence length g. In
the new oxide superconductors, such pinning sites are
produced by oxygen defects (Tinkham, 1988b), and we
shall show in Sec. III.C that this source of pinning can
indeed account for the experimentally observed critical
current densities. In this case the disorder correlation
length along the vortex is given by the size of the defect,
which we assume to be zero here. Qn the other hand, the
smaHest transverse length scale that can be resolved by
the vortex core is the coherence length g, hence r =g
defines the disorder correlation length in the transverse
direction. To be more specific, let us compare Eq. (2.31)
with the GL equation (2.1) and relate the pinning poten-
tial c,„;„to the disorder in the coefficients a and I,

E;„(z,u)= f d R U;„(r)p(R —u), (2.33)
A. Collective pinning theory

1. Single vortex in a random potential

Consider an isolated vortex line directed along the z
axis of our coordinate system in the presence of a weak
random pinning potential c,„;„and subject to the Lorentz
force fI =No j h e, /c with the current density
j=(0,j,O) directed along the y axis. The Lorentz force
is then directed along the x axis. The free-energy func-
tional describing this situation is

E(
V[u]= fdz —(B,u) +a~;„(z,u) —fL u (2.31)

( c, ;„(z,u) s;„(z',u') ) =A'(z —z', u —u' ) . (2.32)

The correlator W(z, u) depends on the nature of the dis-
order: When the disorder is produced by an extended de-
fect, e.g. , precipitates, twinning or grain boundaries, or
columnar defects such as dislocation lines, the pinning
potential is correlated over the size of the defect r&, and
hence A' decays on this same length scale. We shall come
back to this case in Sec. IX below. Here we assume that

where u(z) denotes the displacement vector of the vortex
line and c,I is the elastic tension. The random pinning po-
tential c, ;„acting on the vortex line can be characterized
by a correlation function W,

with U,„(r)=~%,
~

5a(r) for the case of 5T, disorder
and U;„(r)=a~%.

~
5m(r)/m for disorder in the mean

free path l. We denote the two-dimensional coordinate in
the plane orthogonal to the vortex by R. Note that we
denote the pinning potential acting on the vortex by
s~;„(z,u), whereas U;„(r) describes the material defects
generating the pinning. For the two kinds of disorder,
the relevant form factors for a single vortex are

1 —
~ 1t „(R ) ~, 5 T, pinning,

g ~V'P, (R )~, 51 pinning .p(R)= ' (2.34)

P„ is the solution of the GL equations for a straight vor-
tex aligned with the z axis and normalized by the homo-
geneous solution qj, . In future calculations involving tp,
we shaH use a simple but very accurate model for the vor-
tex core in a type-II superconductor which has been pro-
posed by Schmid (1966; see also Clem, 1975) on the basis
of a variational ansatz: In the large-a limit the
model core function for a vortex directed along the
z axis takes the form g, (R ) =f(R )exp[i@], with
f(R)=R/(R +2/ )' . Note that for pinning due to
short-scale disorder we can neglect the (long-range)
screening effects by the vector potential in the form fac-
tor for 6l pinning.

Using Eq. (2.33) we obtain for the correlation function
%' the expression

%'(z —z', u —u')= f d R d R'( U~;„(r)U~;„(r'))p(R—u)p(R' —u')

=y&5(z —z') f d'R p(R —u)p(R —u'), (2.35)

This 1973 work took the dynamic approach. The scaling ap-
proach was introduced by Fukuyama and Lee (1978) in connec-
tion with the pinning problem in 1D charge-density-wave sys-
tems {see also Efetov and Larkin, 1977) and was applied to the
vortex problem by Larkin and Ovchinnikov (1979) and to the
3D charge-density-wave system by Lee and Rice (1979).

where we have assumed short-scale correlated disorder in

Upin &

(Up, „(r)Up,„(r'))=yU5(r —r') . (2.36)

A'(z, u) =yg 5(z)k(u ), (2.37)

Evaluating the integral over the form function, we obtain
the final result

Rev. Mod. Phys. , vol. 66, No. 4, October 1994



1146 Blatter et al. : Vortices in high-temperature superconductors

with 2. Basic idea of collective pinning theory

2 2

y H,
277

4m.
for 6T, pinning,

2 2

14m 'Vm ~c
15 I 2 4m

for 6I pinning,

(2.38)

and

k(u)= .

1 u=0,
(2.39)

Note that k(u) differs for the two cases of 5T, and 51 pin-
ning, but is normalized to 1/g at u =0 and shows the
same asymptotic behavior as u ~ ao. Let us now consid-
er the interaction of a stiQ vortex line with a random pin-
ning potential. In this case, the average pinning energy
(6'p,.„(L)) of a vortex segment of length L is zero. On
the other hand, the fluctuations of the pinning energy do
not vanish, and using Eqs. (2.32) and (2.37) we obtain

(A;„(L))= f dz dz'(e~;„(z, 0)s;„(z',0))

=Xk'L ~

(2.40)

(2.41)

( @2 (L) ) 1/2 (f2 g2L )1/2g (2.42)

allowing us to relate the disorder parameter y to the indi-
vidual pinning force f,„and the impurity density n, ,

The sublinear growth of ( 6~;„(L)) '/ has its origin in the
competition between the individual pinning centers. Let
us characterize the disorder potential by the density of
pins n; and the individual pinning force f;„. Only de-
fects within a distance g away from the vortex core con-
tribute to the pinning energy. Due to competition be-
tween the pins, the individual pinning forces add up only
randomly within the volume V =g L, and the Auctua-
tions in the pinning energy ( 6;„(L))'/ can be written
as

V( uL)= .e(yg L)'/ —jLu . —
L C

(2.44)

The collective pinning length L, is obtained by minimiz-

ing the energy density V(u =g, L ) /L with respect to L at
zero current density,

1/3

L (2.45)

The result (2.41) implies that the pinning force acting
on an individual sti6' vortex grows only sublinearly.
Since the driving Lorentz force increases linearly with
length, we have to conclude that a stiQ vortex is never
pinned, and hence the critical current density vanishes in
this limit. On the other hand, a real vortex is character-
ized by a finite elasticity such that the vortex line can ac-
commodate to the pinning potential on some large
enough length scale. The basic idea of weak collective
pinning theory, then, is to cut o6' the sublinear growth in
(8~;„(L))'/ at the collectiue pinning length L, above
which the displacement u of the vortex increases beyond
the characteristic length r of fluctuations in the random
potential c, ;„. Each vortex segment of length L, is then
pinned independently, and balancing the Lorentz force
against the pinning force acting on the individual seg-
ments generates a Anite critical current density j,. Our
final task is to determine the collective pinning length I,
This is accomplished by minimizing the free energy of
the vortex with respect to the length L over which the
pinning forces add up randomly, and we shall do this by
using the method of dimensional estimates. In particu-
lar, we shall consistently drop all numerical factors
within this approach.

Let us consider the following simple estimate for the
free energy (2.31): A vortex segment of length L and dis-
torted with an amplitude u contributes an elastic energy
s.u /L to the free energy of the string. Second, we have
to add the energy gain —(yg L )'/ from the random pin-
ning potential, and finally the contribution to Eq. (2.31)
from the Lorentz force is j+,t.u/c. Collecting all the
terms, we obtain

y=f;„n;j (2.43) and the resulting collective pinning energy is

Thus we have two possible alternatives for the determina-
tion of y: First, the random potential producing the pin-
ning can be described by short-scale disorder in the GL
coeKcients o.'and m. Our task then is to determine their
spatial variation due to the point defects present in the
material. This approach is followed in Sec. III.C below,
where we determine the disorder parameter y from mi-
croscopic considerations. The second method is to calcu-
late [again from microscopic considerations; see, for ex-
ample, Thuneberg (1989)] the individual pinning force
f~;„of one defect and then use Eq. (2.43) for the deter-
mination of the pinning parameter y. This approach has
been taken by van der Beck and Kes (1991).

(yg2L )1/2 (y g4)1/3

H2(~ k
L, ' Gi

' 1/2

L,
(2.46)

16~'~' (&, )' =10
H, (0) H, (0) ' (2.47)

where we have expressed U, via the elastic energy,
U, =Eog /L, Here G. i denotes the Ginzburg number

(Ginzburg, 1960),

1 Tc

H, (0)g (0)
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as defined by the condition ~M'/0'~ (Tf ) =1,
(1—Tf /T, ) =Gi .Here 5% denotes the (critical) fiuctua-
tion of the superconducting order parameter; hence Gi is
a measure of the importance of thermal fluctuations. In
Eq. (2.47), the thermodynamic field H, (0) is related via
the equation H, (0)=H, (0)/&2a to the upper critical

field H, (T~O) linearly extrapolated to zero tempera-
2

ture. In the last formula, the transition temperature T,
has to be expressed in Kelvin, and the upper critical field

H, (0) is measured in Cxauss. Whereas in conventional
2

superconductors Gi is a very small number, of the order
of 10, the Ginzburg number is quite large in the new
high-temperature superconductors, of the order of 10
(Lobb, 1987). Note that, for the anisotropic oxide super-
conductors, Gi is enhanced by the anisotropy parameter
1/e ))1,

1 Tc
Gi =—

H, (0)eg (0)
(2.48)

A very useful relation between the transition temperature
T„ the energy sca1e of the vortex interaction c.„and the
Ginzburg number Gi is

1 —T/T,
(2.49)

The results (2.45) and (2.46) apply to the limit of an
isolated vortex, i.e., for weak enough magnetic fields that
we can neglect the interaction between neighboring vor-
tices. For this case, each segment of length L,, of this
vortex is pinned by the collective action of all the defects
within the collective pinning volume V, =g L„which
then act to produce a finite pinning potential U, .

Experimentally, the collective pinning length I, is
difFicult to determine, one possibility being to investigate
the thickness dependence of the critical curent density in
a thin film (Wordenweber and Kes, 1985, 1986; Brandt,
1986a; Kes and Wordenweber, 1987). On the other hand,
the collective pinning energy U, can be determined more
directly in a relaxation experiment by measuring the
creep rate. The simplest quantity to be determined in an
experiment, however, is the critical current density j,.

3. Critical current density

' 1/2
y

Jc
L

2

I, (2.50)

with the depairing current density j, introduced above,
Eq. (2.30). The regime of weak collective pinning is
characterized by a large suppression of the critical
current density j, with respect to the depairing value j, ,

From the above considerations the critical current
density j, is simply determined by equating the pinning
force (yL, )' with the Lorentz forcej,@,L, /c. We ob-
tain

j,«j, . Using Eq. (2.50), this implies that the collective
pinning length I,, should be much larger than the coher-
ence length g, L, ))g. The latter condition is consistent
with our use of elasticity theory in the determination of
the collective pinning length. For L, =g the distortion of
the vortex line is large, simple elasticity theory breaks
down, and the pinning should be considered to be strong.
According to the result (2.45) for the collective pinning
length I.„the condition for weak pinning is then fulfilled
for a weak enough pinning potential characterized by a
small disorder parameter y.

A comparison of the critical current density j, with ex-
perimental results provides the simplest check for the va-
lidity of collective pinning theory. As already mentioned
above, we are then forced to study the microscopic origin
of the disorder in order to determine the parameter y.
Alternatively, we can take a more phenomenological
point of view and regard j, as the simplest experimental-
ly accessible quantity which we can use for the character-
ization of the disorder potential. Taking the latter point
of view we express the collective pinning length L, and
the collective pinning energy U, by the critical current
density j, and obtain

1/2
Jo

L =g
JC

U, =H, g

1/2
JC

Jo

1 —t
Gi

1/2
JC

Jo

1/2

(2.5 la)

(2.51b)

The plan, then, is to determine various physical quanti-
ties from weak collective pinning theory and to check
whether a consistent picture emerges in the comparison
with experimental data. Should we use the critical
current density j, for the characterization of the disorder
strength we in fact lose one of the possible "tests" of our
theory. In Sec. III.C we shall show how the disorder
strength can be determined from other experimental data
outside the realm of collective pinning theory, and thus
we recover this additional check on our theory.

4. Classical creep

The property of hard type-II superconductors that is
technologically most interesting is their ability to carry a
bulk current density j with essentially no dissipation.
This current density is related via Maxwell's equation
V h B= (4m /c )j to the vortex density gradient which is
the result of pinning. Therefore a sample carrying a mac-
roscopic screening or transport current is in a state
which, from a thermodynamic point of view, is only
metastable and thus bound to decay due to thermally ac-
tivated motion of the vortices. The latter phenomenon,
known as creep, was introduced by Anderson (1962) and
by Anderson and Kim (1964) (see also Kramers, 1940, for
his pioneering work describing the decay of metastable
states, as well as the review of Hanggi, Talkner, and Bor-
kovec, 1990). The basic equations determining the decay
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of the current density j are given by Maxwell's equation,
B,S= —cB E, where we are using the same geometrical
arrangement as above with the field 8 (~z, the current j ~~y,

and with the electric field generated by the vortex motion

tant in the determination of a. Using Eq. (2.58) with an
exponent a=1 in accordance with Anderson's original
proposal, we obtain the famous logarithmic time decay of
the (diamagnetic) current,

j(r)=j, 1 — ln 1+T
U, ~o

(2.59)

also parallel to the y axis. The velocity of the vortices is
parallel to the Lorentz force, v=(u, 0,0). Using Eq.
(2.52) in Faraday's law, we obtain the equation of con-
tinuity for the vortex lines,

B,B=—B„(uB) . (2.53)

Relating the magnetic field and the current via
V'h8=(4~/c)j, we obtain the corresponding dynamic
equation for the current,

(2.54)

The dynamic equations (2.53) and (2.54) describe a non-
linear diffusion process that we shall discuss in more de-
tail in Sec. X. The important factor in the above equa-
tions is the velocity U of the vortices, which is due to
thermal activation over the pinning barrier U( j),

—U( j)/T
0

jc U( j)e
70

(2.56)

(We measure energies in units of Kelvin and thus put the
Boltzmann constant equal to unity. ) The above equation
can be solved with logarithmic accuracy, and we obtain
(Geshkenbein and Larkin, 1989)

U(j)= T ln 1+
~o

(2.57)

with t, =r.T/j, ~B~U~. From Eq. (2.57) we can find the
time evolution of the screening current density j(t) by
simple inversion.

The important quantity that we need to know is the ac-
tivation energy U(j), in particular, its functional depen-
dence on the current density j. The energy scale for the
pinning barrier U is determined by the collective pinning
energy U, . Furthermore, the dependence of U on the
transport current density j is due to the Lorentz force, so
that the barrier vanishes at the critical current density j„

Up until now no theory has existed for the exponent a,
and its calculation poses a very interesting problem relat-
ed to the theory of phase transitions and self-organized
criticality. We shall comment on this point later (see Sec.
III.E) since the interaction between the vortices is impor-

leading to a dynamic equation for the current density j of
the form

The temporal decay of the transport current is thus
determined by the ratio T/U„which can be found ex-
perimentally by measuring the relaxation of the diamag-
netic moment of a sample in the critical state. The ac-
tivation energy U, is therefore an experimentally accessi-
ble quantity and provides one test for the validity of the
weak collective pinning theory. Typical experimental re-
sults for the activation energy U„obtained in magnetic
relaxation experiments at low temperatures, are in the
range U, —100—1000 K (Yeshurun and Malozemoff',
1988; Yeshurun et a/. , 1988, 1989; Hagen and Griessen,
1989; Campbell, Fruchter, and Cabanel, 1990; Lairson
et al. , 1991;Malozemoff, 1991).

So far we have considered only the case in which j is
close to its critical value j„arestriction that happened to
be reasonably justified in conventional hard type-II su-
perconductors with typical decay coefficients T/U, of
the order of 10 (Kim et al. , 1962; Beasley, Labusch,
and Webb, 1969). In the new oxide superconductors,
however, the corresponding decay coefficients turn out to
be much larger, reaching values of the order of 5%%uo at
temperatures T =20 K (see, for example, Campbell,
Fruchter, and Cabanel, 1990). These large logarithmic
decay rates are a result of various factors, such as the
high temperatures available in an experiment, the small
pinning energies U„which in turn are a consequence of
the small coherence length g, and the large anisotropy of
the oxides; see Sec. C below. Combining the large decay
coe%cients with a typical logarithmic time factor
ln(t/t. ) of the order of 20 (waiting time t = 1 minute; see
Sec. X for a discussion of the normalization time r, ), we
have to conclude that the experimentally measured
current density j has been roughly halved due to creep, as
compared with the critical current density j, even at
such low temperatures as T-10 K [see Eq. (2.59)].
Therefore, it is important to realize that the determina-
tion of the critical current density in the oxides is always
affected by the presence of creep, and the condition
j,—j«j, is no longer fulfilled. The expression "giant
creep" was therefore introduced by Yeshurun and
MalozemofF (1988) to describe this phenomenon of very
large creep rates characteristic of the oxide superconduc-
tors. From a scientific point of view, the case j«j, and
in particular the limit j—+0 is very interesting, too: If we
wish to probe the thermodynamic state of the vortex
structure, we should perturb the system only
infinitesimally and record its response. For a truly super-
conducting state we would expect to observe a vanishing
resistivity p in the limit j~0 or, to put it somewhat
differently, to see a sublinear "glassy" response of the
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vortex structure. In fact, we shall see below that the bar-
riers U( j) against creep diverge algebraically with van-
ishing current density j,

't p
jc

U(j) = U,
J

which implies a strongly subohmic current-voltage
characteristic of the form

C

P
U, j,
T j (2.61)

The above ideas are susceptible to experimental
verification if the sample can be prepared in a state
characterized by a small transport current Aow. A
method for reaching small nonequilibrium transport
current densities within experimentally accessible times
was proposed by Feigel'man et al. (1989). Independent-
ly, the corresponding experiment was carried out by Ma-
ley et al. (1990): By warming up a sample in the critical
state, one can increase the decay rate of the shielding
current by several orders of magnitude, so that the
current density j drops far below its critical value j,
within experimentally accessible time scales, and the
small current regime j«j, can be probed. Let us then
proceed with our analysis and consider the case j «j,.

The classical creep-type motion of a vortex can be
visualized as a thermal diffusion process in which
different segments of the vortex move between metastable
states. In the absence of an external current density j, a
vortex segment lowers its energy by finding the optimal
low-energy state among its neighboring metastable states.
Under the action of an apphed current density j, some
other metastable state becomes more favorable and the
vortex starts to move. The new optimal states are deter-
mined by the condition that the energy gain due to the
driving Lorentz force be equal to the deformation and
pinning energies of the vortex. For a current density
near the critical value j, this condition is already fulfilled
for the neighboring metastable state, which is a distance
-g away. However, when the current density j is de-
creased, the Lorentz force is reduced and the next favor-
able metastable state is moved a larger distance away. As
a consequence, the thermal motion of the vortex will in-
volve hops of /armer segments by longer distances in order
to reach the next optimal low-energy state; see Fig. 8.
For a quantitative analysis, then, we need to know more
about the low-lying metastable states of the vortex in its
random pinning environment.

Recently, considerable insight has been gained into the
problem of diverse manifolds in quenched random media,
of which our vortex is a typical example. Let us consider
for the moment an elastic string (d =1 denotes the di-
mension of the optimal manifold, which is one for the
vortex) which can move in n transverse directions (for a
vortex in three-dimensional space, n =2). Investigation
of the statistical mechanics of this object has shown (for a
recent overview, see Fisher and Huse, 1991) that, for di-

mensions n 2, the string is always in a pinned phase
characterized by a wandering exponent g & 1/2,

2g

(( [u(L ) —u(0)] )) -u, , L & L, ,
C

(2.62)

where I is the distance along the vortex and u, and L,,
are transverse and longitudinal scaling parameters, re-
spectively. For the single-vortex pinning problem dis-
cussed above, these two length scales are given by the
characterized scale rz —-g of the disorder potential and
the collective pinning length L, . Here
(( )) =(( ),z)d;, denotes the full statistical aver-
age to be taken over dynamical variables first and then
over the quenched variables describing the disorder. For
n = 1 (vortex confined to move in a plane) it has been
proven exactly (Huse, Henley, and Fisher, 1985; Kardar,
1987a) that g= —', , whereas numerical simulations (e.g. ,
Wolf and Kertesz, 1987; Forrest and Tang, 1990) suggest
that for n =2, g= —,'. We shall come back to the question
of the numerical values for the line-wandering exponents
in Sec. III.F below, where we present additional support-
ing arguments for this value.

Furthermore, it has been found that competing meta-
stable states that differ from one another on a length
scale I. are separated by a typical distance

u(L)-u, (2.63)

and a typical energy barrier

FIG. 8. Effective tilted random potential felt by the Aux line in
the presence of quenched disorder and of a driving transport
current density j. The elastic vortex line relaxes into a low-

lying metastable state. Close to the critical driving force, j j„
the next metastable state is very near the original state and
separated from the latter by only a small barrier
U{j)= U, (1—j/j, ) . At low driving currents j«j, the closest
favorable metastable state is far away from the original state
and separated from the latter by a large barrier,
U(j)= U, (j,/j)". Hops to the closest valleys are not favorable
and represent only an intermediate step in the diffusion motion
of the vortex to its next optimal state.
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'2g —1

h(L )- U,
C

L&L, , (2.64)

C'0

Lop (&) L

FIG. 9. Free-energy functional vs length L of the hopping seg-
ment, which plays the role of a generalized coordinate. The
free energy is made up of two terms, the barrier energy
U, (L/L, ) ~ ', growing slowly with L, and the energy gain due
to the Lorentz force, (j/j, ) U, (L /L, )'+ &, with a small prefactor
j/j, «1 but a more rapid growth in L. For a fixed driving
current density j, a minimal segment of length L pt(j) has to
overcome the barrier U(j) in order to reach the next favorable
metastable state. With decreasing j, both the length of the op-
timal segment and the barrier diverge, L,p, (j)=L,(j, /j)' '

and U(j )= U, (j, /j)", with p=(2$ —1)/(2 P).

with U, denoting the scaling parameter for the energy.
In the single-vortex pinning problem this typical energy
scale reduces to the collective pinning energy U, . Note
that the results (2.63) and (2.64) describe the jluctuations
in position and energy of the string under variation over
different low lying-metastable states. The result (2.64)
can be understood rather simply by noting that the elas-
tic energy change in going from one metastable minimum
to the neighboring one is of the order of Eiu (L)/L,
where c.I denotes the appropriate elasticity of the string.

For dimensions n & 2, on the other hand, it has been
found (Imbrie, and Spencer, 1988) that there exists a
high-temperature "free" phase in which the quenched
disorder is irrelevant at long length scales, implying a
minimal line-wandering exponent g= —,

' characteristic of
a random walk. At small enough temperatures the
thermal fluctuations become irrelevant and the string be-
comes pinned by the quenched disorder (Cook and Derri-
da, 1989), leading to a finite "freezing" temperature.
However, for the physically relevant case discussed here,
n=2, and a single vortex is always in a pinned or
"glassy" state.

Let us return now to our original problem and apply
the above results to the discussion of vortex creep. %'e
normalize the scaling laws for the distance (2.63) and for
the energy barrier (2.64) to take the values g and U, at
L -L„u(L)-g(L/L, )& and 6'(L) —U, (L/L, ) &

The free-energy functional at 1ow driving currents,
j ((j„becomes (see Fig. 9)

'2$ —1 (+1
P(L) —U, —j L,g . (2.65)

L . L
L, c ' L,

Equation (2.65) reduces the present analysis to a simple
nucleation problem (Langer, 1967): Whereas nuclei with
lengths L smaller than some critical length L, , will col-
lapse back to zero length and thus are undercritical, a11

activated segments with a length L &L,pt remain stable
(due to pinning) and contribute to the motion of the vor-
tex. The critical size of the nucleus is found by calculat-
ing the minimal barrier in Eq. (2.65) through the condi-
tion Bt "J(L)~L t =0, and we find the result

opt

1/(2 —g)

L (j)-L JC
(2.66)

The size of the critical nucleus depends nontrivially on
the driving current j. Inserting the result (2.66) back into
the free-energy functional (2.65), we obtain the minimal
barrier for creep increasing algebraically for decreasing
driving current (see Fig. 9),

with

JCU(j)- U,
J

2g —1p=
2 —

g

(2.67)

(2.68)

Correspondingly, the current-voltage characteristic
shows the "glassy" behavior

V~ exp (2.69)

For current densities close to critical the result (2.59) is
more appropriate, and interpolating between these two
formulas we obtain the general behavior

—1/p

j (t) =j, 1+ ln 1+ (2.72)
U, to

Using the above estimate g= —', for a single vortex in three
dimensions, we obtain (Feigel'man et al. , 1989)

1/7

U(j) —U,
JC

(2.70)
J

Note that the energy functionals (2.44) and (2.65) are
very different. Whereas (2.44) is sufficient for determin-
ing the minimal hopping length L„which is the relevant
length for current densities near j„we have to consider
the more complicated functional (2.65) when treating the
problem of creep away from the critical current density.
A nonlinear increase of the creep barrier with decreasing
current density has been observed experimentally by vari-
ous groups, e.g. , Zeldov et al. (1989), Maley et al. (1990),
Lairson et al. (1991),Ossandon et al. (1992), and van der
Beck, Kes, Maley, et al. (1992).

Combining Eqs. (2.67) and (2.57), we obtain a non-
linear logarithmic time decay of the current density,

—1/p

(2.71)
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which is valid close to j, as well as for j ((j, (Geshken-
bein et a/. , 1989; Malozemoff and Fisher, 1990; Natter-
mann, 1990; Feigel'man et a/. , 1991). Note that the
slightly di6'erent forms of the above relaxation rates,
(2.71) and (2.72), are due to the difFerent extrapolation
schemes used. The barrier U(j) has been extrapolated to
take the value U, at j=j, in (2.70), whereas Eq. (2.72)
produces a barrier U, /p in the extrapolation to j=j„
which difFers from (2.70) by a numerical factor. A non-
linear logarithmic time decay of the trapped diamagnetic
moment has indeed been observed in several experiments,
e.g., Svedlindh et a/. (1991), Thompson, Sun, and
Holtzberg (1991),Sandvold and Rossel (1992).

Within the single-vortex pinning regime the exponent
1/p=7 is large and, for small enough temperatures or
small enough times, we can rewrite the solution (2.72) in
an exponential form,

Tj(t)=j,exp — ln
U,

Tln &7U, .
to

(2.73)

with a temperature-dependent exponent T/U, . On the
other hand, Eq. (2.73) also predicts an interesting depen-
dence of the screening current density on temperature:

Tj(T)=j,exp
0

(2.75)

with

(2.76)

A sample prepared in a critical state at t =0 will carry a
strongly reduced screening current j«j, after only a
few seconds of waiting time. The quantity measured in a
relaxation experiment is not the critical current density

j, but the strongly reduced value j(T). Such an exponen-
tial decrease of the apparent critical current density has
indeed been observed in the new oxide superconductors,
and the characteristic temperature T, has been measured
to be of the order of 10 K (Senoussi et a/. , 1988). Typical
experimental values for the activation energy U, are of
the order of 10 —10 K (Yeshurun et a/. , 1988, 1989; Ma-
ley et a/. , 1990; Zavaritsky, 1992). Combining these re-
sults with a typical experimental waiting time t/t, —10'
(see Sec. X for a discussion of the normalization time t, ),
we find that the relation (2.76) between the characteristic
temperature T, and the activation energy U, is fulfilled,
thus providing an additional confirmation of the weak
collective pinning idea.

Let us return to the more general result, Eq. (2.72), and
determine the pormalized creep rate S=—d lnj/d lnt,
which di6'ers from Anderson's result T/U, due to the

The time decay of the current then is roughly algebraic,
T/U

(2.74)

nonlinear dependence of the activation barrier U(j) on
the current density j,

T
U, +pT ln(1+ t/t, )

(2.77)

Equation (2.77) shows two very interesting features,
which are a direct consequence of collective creep
behavior with its characteristic strong increase of the
pinning barrier (2.67) with decreasing current density:
First, the decay rate S decreases with increasing time,
producing an upward curvature in a plot of the logarith-
mic time decay of the diamagnetic current (Svedlindh
et a/. , 1991, Thompson et a/. , 1991). Second, the decay
rate S saturates for temperatures T) U, /p ln(t /t. ),

S„,= 1/p ln(t/t, ). Both these effects are due to the in-
crease in the relevant barriers in the system as time
evolves and the current density j in the system decays
due to creep. In fact, such a saturation in S has been ob-
served, and a careful analysis of a number of representa-
tive experimental results has been given by Malozemoff
and Fisher (1990). However, we cannot expect this satu-
ration to take place within the single-vortex pinning re-
gime. Near saturation the ratio pT ln(t /t, )/U, in (2.72)
has become larger than unity, so that the current density
has decayed by a factor —10 by then. At such small
current densities the interaction between neighboring
vortices can no longer be neglected (see below), and the
vortex motion proceeds by the di6'usion of vortex bundles
rather than independent single vortices. As we shall
show in Sec. IV, creep due to vortex bundles is character-
ized by an exponent p of order unity, such that we should
expect a saturation to a level S„,=1/ln(t/r, ) of a few

percent, in agreement with experimental results. More-
over, experiments show a saturation appearing for tem-
peratures T) 10 K, which is in agreement with a value of
the collective pinning energy of the order of 10 K, as ob-
tained above. On the other hand, some experiments have
been analyzed using the Anderson result S= T/U, . For
an underlying collective creep mechanism, such an
analysis produces a pinning barrier U, =T/S which in-
c~eases with temperature. An increase of the creep bar-
rier with temperature has indeed been reported in several
experimental studies using this kind of analysis (e.g.,
Stollman et al. , 1989; Xu et al'. , 1989; Campbell,
Fruchter, and Cabanel, 1990).

As we have already mentioned above, the analysis of
collective creep in terms of individually moving vortices
applies only for a limited regime of current densities j,
the reason being that the pinning energy grows only sub-
linearly in the length L„whereas the interaction energy
between neighboring vortices grows linearly in L. Thus
with decreasing current density j the relative importance
of the interaction between the vortices grows. The length
scale associated with intervortex interaction is the lattice
constant a, and, as we shall show below (see Sec. D), the
boundary of the single-vortex pinning regime is deter-
mined by the condition 1.,~, (j,b) =a, . Using Eqs. (2.66),
(2.5 la), and the definition (2.17) of the upper critical field,
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we obtain

Jsb =Je
0

(2 —g) /2Jo

PbH, j, (2.78)

and with g= —,'the exponent becomes (2 —g)/2= —,', . The
above analysis of single-vortex collective creep is then
limited to currents j,„-j &j,. Note that the limiting
current density j,b depends on the strength of the mag-
netic field B. For current densities j=j, the condition
(2.78) transforms into a condition for the magnitude of
the applied magnetic field. Using the definition

e

JcB,b=P,b . H,
J 2

(2.79)

the single-vortex pinning regime is restricted to weak
enough magnetic fields, B &B,b. In principle the prefac-
tor p,b can be estimated by keeping all the numerical fac-
tors in the above dimensional estimates. A more reliable
result can be obtained within the framework of the
dynamical approach (see Sec. VI.A.3 below), and the re-
sult of such an analysis gives P,b =5.

For smaller current densities, j &j,b, or larger field
values, B &B,b, the interaction between vortices is im-

portant and the minimal barrier for Aux motion is real-
ized for a small bundle of vortices instead of a single Uor-

tex. The index "sb" for the crossover current density j,b

and the crossover field B,b then indicates that we are
entering the small-bundle regime upon decreasing the
current density j &j,b or increasing the field B & B,b. We
shall come back to this question in Sec. I3.

5. Quantum creep

We have analyzed above the decay of a vortex density
gradient due to thermal activation of the vortices out of
their metastable states. According to this classical pic-
ture, the decay rate S should vanish in the zero-
temperature limit; see Eq. (2.77). However, in a number
of recent experiments the low-temperature relaxation
rate has been found not to extrapolate to zero, suggesting
the existence of vortex motion by quantum tunneling.
Particularly careful experiments have been done on the
oxide superconductors (Mota, Pollini, et al. , 1988; Len-
sink et al. , 1989; Cxriessen et al. , 1990 and 1991;
Fruchter et al. , 1991;Mota, Juri, et al. , 1991)and on the
organic superconductor (BEDT-TTF)2Cu(NCS)2 (Mota,
Pollini, et al. , 1990a; Mota, Juri, et al. , 1991). However,
even before, similar results were reported for the Chevrel
phase PbMo6S8 (Mitin, 1987) and for the heavy-fermion
compounds CeCuzSiz (Mota, Visani, et a/. , 1988) and
UPt3 (Mota, Pollini, et al. , 1990b). The possibility of
vortex motion by quantum tunneling in thin films was
proposed by Glazman and Fogel (1984; see also Liu

et al. , 1992), and, quantum motion of vortices in
Josephson-junction arrays was studied by Larkin,
Ovchinnikov, and Schmid (1988). More recently, Fisher,
Tokuyasu, and Young (1991) have discussed quantum
creep of vortices in disordered thin-film superconductors
and have found a variable-range hopping resistivity with
a non-Arrhenius low-temperature behavior. Vortex tun-
neling in bulk superconductors has been analyzed by
Blatter, Geshkenbein, and Vinokur (1991) within the
framework of weak collective pinning theory. Further-
more, quantum motion of individual vortex lines across
the intrinsic pinning barrier in layered superconductors
(H~~ab-planes) has been studied by Ivlev, Ovchinnikov,
and Thompson (1991) and more details concerning this
interesting case are given in Sec. VIII.C below.

Macroscopic tunneling phenomena have always at-
tracted a good deal of interest, as they touch the bound-
ary between quantum and classical physics in a natural
way. Macroscopic systems are always coupled to their
environment and are therefore inherently dissipative. Up
until now the most carefully studied system, both experi-
mentally (see, for example, Martinis, Devoret, and
Clarke, 1987) and theoretically (Caldeira and Leggett,
1981, 1983; Larkin and Ovchinnikov, 1983a, 1983b; Eck-
ern, Schon, and Ambegaokar, 1984; Grabert, Weiss, and
Hanggi, 1984) has been the (rf) superconducting quantum
interference device (SQUID), which has become a model
system in the field of macroscopic quantum tunneling. In
particular, Caldeira and Leggett have shown that the
quantum description can be extended to macroscopic sys-
tems, the main e6'ect of dissipation being to suppress the
probability of the tunneling process. Here we mainly fol-
low their description, which we generalize to describe the
tunneling of a string instead of a pointlike particle.

The decay of a metastable state due to tunneling is ac-
tually very similar to the classical decay process via
thermal activation. The additional feature to be taken
care of in a tunneling process is the time component of
the motion. In the case of thermal activation, the time is
irrelevant since the vortex is activated over the energy
barrier, hence the process is real. The probability for the
process then is given by the saddle-point solution of the
free energy (2.31). During tunneling, the vortex moves
under the barrier, hence the process is forbidden (virtual),
and the longer the time that the string has to spend under
the barrier, the fewer chances there are for the process to
happen. The functional for which we have to find the
saddle-point solution is the Euclidean action (Iordanskii
and Finkel'shtein, 1972; Lifshitz and Kagan, 1972;
Banks, Bender, and Wu, 1973; Callan and Coleman,
1977; Coleman, 1977; Caldeira and Leggett, 1983). The
quantum problem then is a (d+1)-dimensional generali-
zation of the d-dimensional classical problem, where d
again denotes the dimension of the object, which is d = 1

for the string.
From the above discussion we conclude that the addi-

tional new feature that enters all quantum descriptions,
be they statistical mechanical or dynamical as in the
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present case, is the dynamics of the system. The most
general equation of motion for a vortex in a superconduc-
tor comprises a massive (mI), a dissipative (g&), and a
Hall (aI ) term,

m&v„+glv, +a&v, ha= f,„, , (2.80)

where f,„, denotes the sum of all the "external" forces
acting on the vortex, such as the Lorentz force
fI =@,jhn/c or the pinning force f~;„. The question
then arises under what circumstances each of the three
dynamical terms is the dominant one. In charged super-
conductors this is usually the dissipative term gIv„with
r)& given by the Bardeen-Stephen expression (2.26). How-
ever, as discussed in the introduction of Sec. II above, in
super-clean material with a mean free path I )pc~/b, the
Hall term becomes the dominant one (here b, denotes the
gap parameter and E~ is the Fermi energy). It turns out
(see Sec. III.C) that the high-temperature superconduc-
tors are indeed potential candidates for the realization of
this super-clean limit: %ith c.F /5-20 and l of the order

0
of a few hundred A at low temperature (an estimate
l =700 A is obtained in Sec. III.C), we obtain lh/e+-35
0
A ~ g. Finally, the massive term is small and usually can
be neglected as compared to either the dissipative or the
Hall term.

There are at least two reasons, however, to start our
discussion below with the case of a massive dynamics: (i)
The massive string is by far the simplest and most trans-
parent example to treat, and we use it as an introduction
to the new concepts associated with the phenomenon of
quantum creep. (ii) In addition to the electronic contri-
bution to the vortex mass, additional components of elec-
tromagnetic origin (Suhl, 1965; Coffey and Clem, 1991a)
and due to strain fields (Coffey, 1994; Duan and Simanek,
1994) can be found. Both these contributions are usually
much smaller than the electronic contribution. However,
the electromagnetic mass can become large under special
circumstances, e.g., for a Josephson vortex in an indivi-
dual junction or for an intrinsic pinning configuration in
a layered superconductor where the magnetic field is
aligned parallel to the layers. The vortex mass is then
due to capacitive effects and can be enhanced by a large
dielectric constant of the (insulating) buffer layers enclos-
ing the superconducting layers/contacts. A related
mechanism producing an enhanced electromagnetic vor-
tex mass within a homogeneous superconductor close to
the superconductor-insulator transition has been pro-
posed by Doniach and Inui (1990). In the following we
first discuss the tunneling of a massive string and then in-
clude the effects of dissipation. Next, we analyze the
pure Hall tunneling case; the inclusion of dissipation for
the Hall-dominated motion is more difBcult, and we shall
confine ourselves to qualitative considerations.

The Lagrangian generating the classical equation of
motion for a massive vortex is

=2mI=
3 m~kF ~

77
(2.82)

in agreement with the results of Suhl and of Kupriyanov
and Likharev. In addition to this electronic contribution,
a second term m, [=(@,/4m. cg) ] of electromagnetic
origin contributes to the vortex mass (Suhl, 1965). Typi-
cally m, &)&m, , and in the following we use the esti-
mate m&

——m, I.
As already mentioned above, macroscopic quantum

tunneling is always a dissipative process, and we should
ask ourselves if the problem at hand belongs to the ballis-
tic or to the dissipative limit. Below we compare the
kinetic energy and the dissipative contribution to the ac-
tion and show that, for the limit of weak pinning, we
shall always find ourselves in the dissipative limit. Thus
our qualitative estimate for the vortex mass will not
inhuence the accuracy of our final results.

From Eq. (2.81) we immediately obtain the Euclidean
action by going over to imaginary time, t —+ —it,

SE=f dt . f dz
'

(B,u)'+P[u] .
, (2.83)

with the free-energy functional V given by Eq. (2.31).
The displacement vector u(z, t ) plays the role of the mi-
croscopic variable. The new parameter m& denotes the
mass per unit length of the vortex, which has to be found
by going to a microscopic description. For example, an
expression for the vortex mass m& can be obtained by cal-
culating the kinetic energy of a moving vortex or by
studying the response of the vortex to an external force.
Using different kinds of time-dependent Ginzburg-
Landau theories, corresponding calculations have been
carried out by Suhl (1965) and by Kupriyanov and Li-
kharev (1975) with similar results. Such an approach is
strictly valid only for a gapless superconductor (Gor'kov
and Eliashberg, 1968), the applicability of the results to a
superconductor with a finite gap at low temperatures be-
ing unclear. However, a simple estimate of the vortex
mass can be made involving very general arguments
which should hold, as well, for a finite-gap superconduc-
tor at low temperatures, the situation we are interested in
here. This rough estimate in fact reproduces the more
elaborate results of Suhl and of Kupriyanov and Li-
kharev: The basic idea is that the electronic contribution
to the vortex mass is due to the local change in dispersion
within the vortex core. The number of electrons ex-
periencing this change is 2n.g N( EF )5E. Here
5s=A'U~/mg is the change in energy due to confinement
to the vortex core, N(E~) =m, k~/2A m is the density of
states (per spin) at the Fermi level, m, denotes the
effective mass, and kF and UF are the Fermi wave vector
and Fermi velocity, respectively. The effective mass of
the electrons confined to the core will be modified by an
amount of the order of m, 5E/EF, and we obtain the mass

mh of the vortex

X[u]=f dz (B,u) —V[u], (2.81)
for which we have to find the saddle-point solution. The
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C

saddle-point solution is given by the classical bounce tra-
jectory (Callan and Coleman, 1977, Coleman, 1977),
where the string moves through the inverted potential
and bounces back to its origin along a homoclinic orbit.
Here we are interested in the scale of the action, i.e., we
wish to determine the quantity corresponding to U„and
thus we set the driving force equal to zero, j=O. Equa-
tion (2.83) then has to be minimized with respect to the
form (length) and the duration of the bounce, and we do
this using again the method of dimensional estimates. At
this point we should note that the tunneling process in-
volves the same initial and final states as encountered
above in the determination of the classical creep rate.
The additional new feature of the quantum problem is
the relevance of the time evolution of the vortex motion.
In fact, the determination of the optimal length for the
bounce solution involves only the free-energy part of Eq.
(2.83), and the result has been found above, Eq. (2.45).
The optimal length of the bounce is the collective pinning
length I, The estimate for the tunneling time t, is ob-
tained by equating the elastic and the kinetic energy den-
sities, m, (j/t, ) =s, (g/L, ),

1/2

Lc ~ (2.84)
E

Thus we find that, for vanishing dissipation, the action
does not depend on the collective pinning length L, and
hence is independent of the pinning potential. Note that
if T, -s~ or equivalently g-1/k~ the superconducting
coherence will be destroyed due to strong quantum Auc-
tuations, as has been recognized by Imry (1991).

Next we generalize our result to include dissipation in
the model. Here we restrict ourselves to the simplest
case of ohmic dissipation with the viscous drag
coefficient (2.26). As shown by Caldeira and Leggett
(1983), such an interaction with the environment can be
accounted for by adding a term

2lt, u(z, t )
—u(z, t')

dt dt' dz4. t —t' (2.86)

to the Euclidean action (2.83), resulting in the so-called
efFective action Sz for the vortex. The expression (2.86)
is nonlocal in time, and in order to treat this term we
transform the effective action to Fourier space,

and the resulting minimal action for the tunneling pro-
cess is

1/2

(2.85)

@Cg f dt's f dq 1 1+ ql

2' 2n 2
I
~

I mI
co +E.q Iu(q, co)I +c, ;„(q,u) . . (2.87)

The friction is seen to produce an enhanced and disper-
sive effective mass m, tt=mI(l+g(/IcoIm() )m(. The in-

verse tunneling time m, is again determined by equating
the kinetic and elastic energy densities,
m, ft(co, )g co, =Eog q, , with q, =1/I., the inverse length
of the tunneling segment. In the most general case we
have to solve a quadratic equation for co, . However, the
situation simplifies considerably if the dissipative part is
dominant, ql /Ico, Im& ))1. In this case the equation for
co, is trivially solved, and we obtain a tunneling time

S q g'1.,
r

fi g Jo
2

Pn JC

1/2
1 Jo

Qu j,
1/2

d lnj A'

d lnt
(2.91)

(2.90)

where we have used the definition Qu = (ez/fi)(p„/g) for
the dimensionless quantum resistance in the last equa-
tion. The normalized creep rate S near j, takes the form

t = LIl
C C

0
(2.88)

Inserting this expression back into the equation for the
mass enhancement factor and using the result (2.51a) for
the collective pinning length, we obtain

11tc @~3
(kFg)

e p„kF j, (2.89)

In the limit of weak pinning, j, «j, , the mass enhance-
ment factor will be larger than unity, and the dissipative
term in the action will be dominant. The final result for
the effective Euclidean action in the dissipative limit be-
comes

The main parameter determining the action and thereby
also the tunneling rate is the ratio p„/g. A small action
favoring tunneling is obtained in materials characterized
by a large normal-state resistivity p„and a small coher-
ence length g. The quantum unit of resistance is
A'/e =4. 1 kQ. Thus the phenomenon of quantum creep
should become experimentally observable for ratios
p„/$) 1 kQ. Note, however, that the decrease of the
effective action Sz with increasing ratio p„ /g is cut ofF at
the value SE as we cross over to the ballistic regime; see
Eq. (2.89). The disorder potential enters the result (2.90)
via the critical current density j,. With the square-root
dependence on j, the Anal result depends only weakly on
the pinning potential.

An alternative viewpoint regarding the relevance of
dissipation starts from a purely dissipative dynamic equa-
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tion and considers the inertia of the vortex as a correc-
tion. In this approach we expand the dispersive friction
coefficient rii(co) for small frequencies, ~co~ &&b, /i', and
obtain a term of the form [g&(0)/2](1+fi~co~/h)~co~u in
the Euclidean Lagrangian. Inserting the tunneling time
(2.88) into the second term, we find again that the ballis-
tic contribution is irrelevant for a weak-pinning poten-
tial, A/b, t, =j, /jo «1. For a dirty superconductor the
kinetic term in the expansion of il&(co) is consistent with
Eq. (2.82) for the vortex mass m&.

Let us now consider the case of a pure Hall-type dy-
namics for a vortex, as it is relevant in a super-clean su-
perconductor (the Hall dynamics is also relevant for the
tunneling of vortices in superfiuid He; see Volovik, 1972).
Here, we mainly follow the discussion of Feigel'man
et al. (1993; see also Ao and Thouless, 1994). We then
have to replace the dissipative dynamical term gi~co~u

by the Hall term alcou in the action for the tunneling
process. Proceeding on the level of dimensional esti-
mates we immediately reproduce the result (2.90) above,
but with gI replaced by al,

1 /2Sz a&( L, j,
=ng j,

There is a good deal of interesting physics associated
with the Hall tunneling of vortices. In particular, the
geometry of the "bounce" solution is very difFerent from
that found in the massive or in the dissipative situation.
In the following we present a model calculation that
highlights the important difFerences and that is also
relevant for the tunneling motion of a (collectively)
pinned vortex.

To keep the discussion simple, we first concentrate on
the 2D situation, describing, for example, a vortex in a
thin film (of thickness d) or a pancake vortex in a strong-
ly layered superconductor (see Sec. VIII.A.2 below).
When we rewrite the external force f,„, in Eq. (2.80) in
terms of a potential U(r), the equation of motion reads

(2.92)

advhn= —VU(r), (2.93)

with ad =aid =@,p, d /c [see Eq. (2.28)]. Equation (2.93)
is the equation of motion of a charged (e) particle with
zero mass in a magnetic field B=(0,0,adc/e). Such a
particle always follows the equipotential lines defined by
the potential U, v=VUAn/ad. Expressing Eq. (2.93) in

components, we obtain the set of equations

dx BU(x,y )" dt ay

dy BU(x,y )

dt Bx

(2.94)

The action that produces the equation of motion (2.93) is

g= f dt[adyx —U(x,y)], (2.95)

where the first term is just the Lagrangian j A/c of a
charged particle moving in a magnetic field B produced
by the vector potential A=(By, 0,0). The interesting

feature is that the set (2.94) of dynamical equations is of
the Hamiltonian form (see also Volovik, 1972, and Jain
and Kivelson, 1987 and 1988, who have used the same
approach in the calculation of a tunneling vortex in a
superAuid and for a particle tunneling in the presence of
a strong magnetic field). If we define the coordinate
q =Qadx, the momentum p =lady, and the Hamil-
tonian &(q,p)= U(x,y), we find that (2.94) is equivalent
to

dq BA'(q, p )

dt Bp

dp Wf(q, p )

dt Bq

(2.96)

The Hamilton equations (2.96) now describe a particle
moving in one dimension with a dynamics defined by the
y dependence of the potential U(x,y). The coordinates x
and y play the role of canonical variables, and we can im-
mediately quantize the theory by imposing the commuta-
tion relation

Ix,y]= [q p]=
0,'d ad m'nd

(2.97)

(2.98)

we can now easily go over to the imaginary-time formal-
ism and obtain the Euclidean action (t~ it)—

An alternative way to go over to a quantum description
makes use of the action (2.95) in a path-integral formula-
tion, and below we follow this line of thought.

In order to describe the tunneling motion of the vortex
we have to go over to an imaginary-time formalism.
However, a mere substitution t —& it in (2—.9S), as used in

Eq. (2.83), leads us to an action describing a particle
moving in an imaginary magnetic field [only one time
derivative appears in the dynamical part of (2.95)]. On
the other hand, if we perform a simultaneous rotation of
both the time t and the y axis, t~ —it and y~iy, the
dynamical term in (2.9S) becomes real again. If addition-
ally the potential U(x,y) is even in the coordinate y, we
recover a real Lagrangian. Finding a saddle point of the
original action describing the decay of the metastable
state then becomes equivalent once again to solving a real
classical mechanical problem. In fact, this scheme for
obtaining the desired saddle-point solution can be put on
firmer ground by exploiting the equivalence between the
original 2D Hall problem and the 1D Hamiltonian prob-
lem. We assume that the original potential U(x,y) can
be rewritten in a form U (x,y ) = (f /2)y + U (x ). The
resulting 1D problem is that of a massive particle (with
mass m =ad/f ) in a potential U„(q/+ad ):—Ui(q).
[Note that close to a (local) minimum we can expand any
potential U(x, y) into the above form if we choose the
appropriate axes. ] Writing down the action for the 1D
particle problem,

g= f dt q' —U, (q) =f dt[pq &(q,p)], —.1 . 2
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(2.105)

and integrate over the y variable. After Fourier transformation the effective action for the x component then becomes

de &d~~~ CXd QP d~'
gE ——

2vr 2 2(gd ~ +2U /g ) g g' 2n
+

2
+

2 X~X Q) 3
X Q)X X Q)

and we end up with a one-dimensional problem with a
dispersive kinetic term and a potential term nonlocal in
co. An exact solution is complicated by the nonlocal term
arising from the cubic potential, but we can easily under-
stand a few qualitative features of the solution. The
relevant frequency scale is given by
co = (2U, /g) /(gd +

~ ad ~
). For vanishing dissipation

gd=0 the trajectory is a circular one, which narrows
along the y direction as we enhance the friction. The
scale along the y direction is

y =xadco/(gd ~co +2U, /g ); inserting the result for co,

we obtain the ratio y/x=1/(1+gd/~ad~). Comparing
the contributions to the dynamical term, we find the
corrections to the pure Hall motion for small gd to be of
order gd/ad, whereas in the opposite case the Hall
corrections to the dissipative motion are of order ad /gd.
The latter result follows from the general observation
that o.d refers to an axial vector, and the lowest-order
corrections should only involve o.d, which is independent
of the sign.

The generalization of the result (2.103) to three dimen-
sions (tunneling of a vortex line) is straightforward: The
area enclosed by the trajectory simply has to be replaced
by the enclosed volume,

S~ a)H

V=~nV . (2.106)

Within the framework of collective pinning (a vortex line
segment of length L, tunnehng through a distance -g),
we immediately reproduce the result (2.92).

An important question is how to distinguish experi-
mentally between the different types of tunneling. One
possibility is to compare the various dependencies on the
disorder potential. For the tunneling of a vortex line the
result (2.85) for the massive case remains independent of
the disorder potential, whereas for the dissipative case
[Eq. (2.90)] and for Hall-type dynamics [Eq. (2.92)] we
obtain the same dependence SE ~ L, ~ (j, /j, )'~ on dis-
order. A second distinction between the various dynam-
ics can be made by considering the initial corrections of
the tunneling action due to finite temperatures: For the
nondissipative case the finite-temperature corrections to
the T=0 result show an exponential behavior
~ exp( —T, /T ), whereas for the dissipative situation the
corrections are of order (T/To ) (see Larkin and
Qvchinnikov, 1983; Grabert and Weiss, 1984; Hida,
1985; Blatter and Geshkenbein, 1993; Morais-Smith
et al. , 1995). The relevant temperature scale is deter-
mined by the crossover temperature T, =AU, /SE.

Finally, let us consider the dependence of the action on

the current density j. Here we concentrate on the case
j,b &j «j„where the single-vortex tunneling concept
can be applied. The situation very close to the critical
current density is complicated by interaction among the
vortices, and we shall comment on this problem in Sec.
IV. Above we noticed a strong similarity between the
problems of classical and quantum creep, where the latter
is just a (4+1)-dimensional generalization of the classi-
cal d-dimensional problem. However, there are also im-
portant differences, for example, concerning the nature of
the disorder potential, which fluctuates in space but not
along the time axis in the (d+1)-dimensional extension
of the problem. In fact, the solution of the quantum
creep problem at low current densities differs in an im-
portant way from the corresponding classical analysis.
Whereas the string jumps over the potential barriers for
the classical creep motion, it has to tunnel through the
potential landscape in order to reach its final state in the
quantum case. As a consequence, the time needed for the
jump is irrelevant for the classical case but does enter the
quantum problem. This has an important effect on the
barriers entering the motion. For the classical motion
the string can choose optimal barriers, scaling with dis-
tance according to U, (L/L, ) ~ '; see Eq. (2.64). This is
no longer the case in the quantum creep problem, where
the vortex has to tunnel under all the barriers within a
finite time period, the latter entering the action for the
tunneling process. The relevant barrier under which the
vortex tunnels therefore scales like the average barrier
U, (L /L, ) rather than the optimal barrier U, (L /L, )z.
To be specific, we concentrate first on the case of a mas-
sive string.

We consider a string trapped in a favorable minimum
of the potential landscape. Due to the pinning, the line
energy of the string is renormalized downwards by the
value s~;„=—U, /L, . Choosing this state as our zero-
energy reference, we find that the potential landscape is
given by c, ;„(z,u) —K;„and the Euclidean action takes
the form

Sz= fdzdt (B,u) +—(B,u) +E;„(z,u) —s;„2 ' 2

(2.107)

where we have ignored the small tilt due to the driving
force. We replace the time integral by an integration
over the displacement field u, dt = ~Bu /Bt

~

'du, and ob-
tain
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1Sz= Jdz du

mL,
1/2

U,

2 ' 2
(B,u) +—(B,u) +E~;„(z,u) —e;„

dzdu (B,u) +—(B,u) +E„;„(z,u) —
E~;„

mE FE

' 2 ' 2
(2.108)

where we have replaced the velocity ~B, u
~ by its short-

wavelength limit ~B,u ~,„="(/ U, /mL, in the last equa-
tion. Now the u integration over the random potential
E~;„(z,u) averages to zero, and we are left with the ex-
pression

1 /2
mL,

g
C

mE cE U,
Jdz du (B,u) +—(B,u) +

C

(2.109)

containing only positive terms and hence directly provid-
ing a lower estimate for the tunneling action. The
remaining task is to find the scales u and L for the closest
favorable metastable state. These quantities are deter-
mined by the usual consideration that optimal metastable
states for segments of length L are separated by a dis-
tance u(L)=g(L/L, )~. Combining this result with Eq.
(2.109), we obtain the action

S~ = Lu(L ) =S~
L, U, L,

( &+g) /(2 —g)
jC

(2.110)j
In the last equation we have used Eq. (2.66) relating the
length L of the hopping segment to the driving current
density j, as it is the driving force j @oL /c which has to
compensate for the elastic energy e&u /L. Using the
line-wandering exponent g= —,'for a string moving in

three-dimensional space, we obtain the exponent 7
for

the dependence of the action (2.110) upon the current
density j.

Within the present approximation the dynamics of the
string enters the formalism only via the velocity

~ B,u
~

which for the dissipative case takes the value U, /rtI/L,
and for the Hall motion has a corresponding result with

gE replaced by the Hall parameter o, E. As a result, the ac-
tions for the dissipative and for the Hall-type motion
take the same form as for the massive case (2.110), with
only the prefactor Sz replaced by SE and by Sz, see Eqs.
(2.90) and (2.92). Note that the assumption of a constant
"local" velocity implies that the total tunneling time
scales with the distance u between the metastable states,
and the action involves the area Lu (L) swept by the tun-
neling object. In Sec. VIII.C.2 we shall discuss the case
of intrinsic quantum creep, both for the massive and for
the dissipative string. The tunneling actions can be cal-
culated to higher accuracy in this specific example, with
the result that the actions differ by logarithmic
factors, SE ~j ' and SE ~j 'lnj '. The origin

of these log corrections can be traced back to the
different dynamical terms -M f dt(B, u ) and
—g J dt dt'(d, u )(B,.u )In~t t'~ —in the actions, a feature
independent of the specific pinning potential and hence
very possibly a general result. We point out again that
the regime of validity of the above results is limited to
currents j,„j(j, with j,b given by Eq. (2.78).

The result (2.110) differs from that obtained in a pre-
print version of this work. Let us brieAy recapitulate our
previous approach in order to illuminate the difference in
our present understanding of this problem. The most ob-
vious approach to quantum collective creep at low driv-

ing force would be to generalize the concept of classical
collective creep in a straightforward manner, i.e., to
determine the tunneling time via equating the dynamical
and elastic energies, for the massive case
m&(u!t ) =E&(u /L ), from which follows
t =Qml /e&L = t, (j, /j )'~' &', and to choose as the
relevant tunneling barrier the optimal barrier
U(j ) = U, (j, /j )". This approach assumes that the string
can take advantage of the optimal barriers not only for
the classical hopping process but also during tunneling.
The action then scales with current according to
S=S,(j, /j) ~ ~, and the result depends on the
specific dynamics chosen for the string. However, it
turns out that this approach leads to conAicting results
with known solutions in more regular situations, e.g. , a
massive elastic manifold trapped in a metastable state of
a tilted washboard potential (a scaling law S o- r, '~ is
obtained instead of the known result S o-r, , where r, is
the radius of the critical nucleus; see Sec. III.E.1 below).
A careful analysis of the same problem also shows that
the manifold cannot profit by creating a thin-wall
configuration in the tunneling process (Sec. III.E.1): the
tunneling as a rigid object provides the same action as
the tunneling via creation of a thin wall. A simple inter-
pretation of these findings is that the manifold has to tun-
nel under the average potential and not under the op-
timal one. Second, since the manifold cannot take advan-
tage of the global properties during tunneling, the tunnel-
ing time is not determined by the optimal scale L for the
tunneling segment but by the distance u. Note that the
difficulties mentioned above arise within the context of
tunneling at loto driuing forces, where a complicated po-
tential landscape with many metastable states has to be
considered and where the question of optimal barriers be-
comes relevant. Quantum creep close to criticality [see
Eqs. (2.85), (2.90), and (2.92)] involves only the barrier to
the neighboring metastable state, and thus the calcula-
tion of the appropriate action is not affected by these new
considerations.
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B. Thermal depinning

The new oxide superconductors are characterized by a
high transition temperature T„which implies that the
experimentally accessible range of temperatures is large.
Therefore we expect that thermal fluctuations of the vor-
tex lines will become important at elevated temperatures.
In general, we have to distinguish between two types of
thermal motion of the vortex lines: Phonon-like small-
amplitude fluctuations restricted to the individual pin-
ning valleys (intra valley fluctuations) will lead to a
smoothing of the pinning potential and thereby affect the
pinning strength and the critical current density. This
has to be contrasted with the large intervalley Quctua-
tions that produce the phenomenon of Aux creep dis-
cussed above in Sec. II.A.4. In the present section we
concentrate on the intravalley motion and analyze the in-
terplay between thermal fluctuations and quenched disor-
der in the single-vortex pinning regime, where we can
neglect interactions between the vortices.

As already mentioned above, the relative importance
of thermal fluctuations and of disorder depends on the
dimensionality of the problem. Of course, at small length
scales, thermal Auctuations are always dominant. At
larger length scales, however, disorder can become
relevant: For n = 1 (string confined to a plane) the disor-
der always becomes relevant at large length scales L (see,

for example, Kardar, 1985). For n =3 (string in four-
dimensional space), disorder is irrelevant at high enough
temperatures and thermal fluctuations determine the
behavior of the string (Imbrie and Spencer, 1988). The
most physical case, n =2 (string in three-dimensional
space), is special: Again, disorder always becomes
relevant at large length scales, but its importance is only
marginal. Below we shall see that this marginal
relevance of disorder for n =2 will lead to a considerable
complication of the analysis, as the method of dimension-
al estimates turns out to be too rough to produce the
desired results.

The important effect of thermal fluctuations is a
smoothing of the quenched disorder potential producing
the pinning. Due to thermal motion of the vortex line,
the vortex core will sample the disorder potential over an
extended spatial region. As the amplitude of the thermal
fluctuations (u )„'i, increases beyond the extent of the
vortex core, (u ),i, & g, the vortex will experience an
averaged disorder potential, and thereby pinning will be
reduced. Let us calculate the mean-squared pinning po-
tential in the presence of thermal fluctuations. Before
taking the average over the disorder potential [see Eq.
(2.40)] we perform a time average

of the vortex position,

(( C~;„(L ) ), ) = f dz f dz'( e~;„[z,u(z, t ) ]e~;„[z',u(z', t') ] )
to to

I=y UL f f d "Rp [R—u(t) ]p [R—u(t') ] .
to to

(2.111)

After Fourier transformation and using the relation

eiK [u(t) —u(t )) eXp[
'i ~2( u 2(t) ) ]

~
~

dt'
t0

characteristic for Gaussian fluctuations, we obtain

d "K
((8„„(L)»', =y UL f ~pz ~ exp[ ,'lC (u (t) &,„]—.—

(2m. )"

(2.112)

Here we have introduced the definition
( u (t) ),i, = ( [u(t) —u(0)] ),i, and we have taken the lim-
it t, ~ ~, i.e., in Eq. (2.112) we should take the asymp-
totic value of (u (t)),i, at large times. The latter step
can be done as long as the string remains pinned and does
not diffuse away at large times, so that the Debye-%'aller
factor remains finite in the asymptotic limit. It remains
to determine the amplitude of thermal Auctuations for
which a simple dimensional estimate comparing the elas-
tic energy e&(u (L, )),i,/L, with the thermal energy T
gives the result (u (L, )),i,-—TL, /Ei. A more rigorous
derivation of this result is obtained by using the

fluctuation-dissipation theorem (Landau and Lifshitz,
1958b) relating the thermal amplitude (u (t)),b to the
Green's function G(q, co) for a single vortex,

Here IrnG denotes the imaginary part of G. Using the
single-vortex Green's function,

G(q, co) =
l'g)OJ +CI q

(2.114)

we obtain after integration over frequencies

(u (t)&,b= f 1 —exp —
q t2T dq 1 I 2

2 q Yf

(2.115)

In the absence of disorder we have to integrate over all q
modes and find for the diffusion behavior of a string the

( u (t) ) =2'f [1 cos(co—t )]cath ImG(z =O, co),

dt's

'Ado

th 2T

=4Tf [1—cos(cot)]—ImG(z =O, co) .dc' 1

2m' CO

(2.113)
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law
' 1/2

(2.116)

If disorder is present, we should cut off the q integra-
tion in Eq. (2.115) at the length L, (T) where the disorder
becomes relevant, q )2m/L, (T. ), and we obtain for the
fluctuation amplitude in the limit t ~ (x&

TL, (T)
(2.117)

Inserting (2.117) back into our expression for the mean-
squared pinning energy (2.112), we obtain the result

n/2,

Y C

C

n/2

(2.118)

where we have assumed ( u ( t ~ ~ ) ),h= ( u (L, ) ),h & g
so that the short-wavelength cutoff in Eq. (2.112) is pro-
duced by the exponential factor exp[ —K ( u (L, ) ),„/2],
hence K &1/(u (L, )),'h . Note that, for the opposite
case, ( u (L, ) ),h & g, the relevant cutoff is due to the fac-
tor ~px. ~, i.e., E & 1/g, and we recover the zero-
temperature result (2.41).

The Gnal step consists in determining the
temperature-dependent collective pinning length L,(T).
For n =1 the method of dimensional estimates works
fine, and by equating the pinning energy (2.118) to the
elastic energy e, ( u (L, ) ),h/L, = T we can easily obtain
the collective pinning length

T5
L,(T)= (2.119)

p ~o

Again, we have substituted the short-wavelength limit E,
for the dispersive line tension E, [q —1/L, (T)]. Defining
the (temperature-dependent) depinning energy
Td =(ye, g )' for a single vortex in two dimensions,
we can rewrite Eqs. (2.117) and (2.119) in the simple form
(u (L, )),h—-g (T/Td ) and L,(T)=L,(0)(T/Td )5,

with L,(0)=(e,g /y) ~ . A strong decrease in the pin-
ning strength due to thermal smoothing is expected
above the depinning temperature Td~, which is defined by
the self-consistency equation Td~ = Td„(Td~ ), with
T d( T)= T zd( )0(1 —T/T, )' (note that the disorder pa-
rarneter y is itself also temperature dependent; see Sec.

which is suppressed as compared with the di6'usion law
for a pointlike object,

(u'(t)),„~t .

III.C. The T dependence given here applies to the case
of 5T, pinning). The temperature-dependent activation
energy becomes U, (T) Tz ) = T, and the depinning crit-
ical current density decays with increasing temperature
according to j,( T ) =jo [g/L, (0) ] ( Td~ /T ) (Feigel'man,
1983; see also Ioffe and Vinokur, 1987).

On the other hand, for n =2 the length I., drops out of
the problem, and we cannot use the method of dimen-
sional estimates for the determination of the collective
pinning length. The deeper reason for this failure can be
found in the marginal relevance of disorder for the
three-dimensional single-vortex problem: The transverse
fluctuations in the vortex position due to thermal disor-
der, (u (L)),z=([u(L, t) —u(O, t)] ),h, compete with
those due to quenched disorder, (( u~ ))= (( [u~ (L, t ) —u~ (0, t ) ] )), where u~ denotes the dis-
placement field due to the pinning potential. Of course,
((uz(L) )) & (u (L)),h for L &L,(T), since for n &2 dis-
order is always relevant at large length scales. On the
other hand, at small length scales, L &L, (T), thermal
fluctuations are dominant, ((u (L))) & (u (L)),„, and
hence we expect that the disorder fluctuations ((u (L) ))
should grow faster with I than the thermal Auctuations
in this regime. Whereas ((u (L)))/(u (L)),h~L'~
grows algebraically with distance L & L, ( T) for n = 1, as
we shall show below, the corresponding ratio depends
only logarithmically on L for the case of n =2. This log-
arithmic dependence on I. is beyond the realm of the
method of dimensional estimates. However, an alterna-
tive way to determine the collective pinning length L, (T)
is to use the length dependence of the disorder Auctua-
tions ((u (L))) themselves. As L approaches L, (T) the
disorder fluctuations ((u~(L))) grow as large as the
thermal fluctuations ( u (L ) ),h, and hence the condition
((u~(L, ))) =(u (L, )),h determines the collective pin-
ning length L, (T). The amplitude of thermal fluctua-
tions has been calculated above [see Eq. (2.117) with L
substituted for L,], and the remaining task is to deter-
mine the fluctuation amplitude ((u (L)))' due to the
pinning potential.

Again we can use the (real-space) single-vortex Careen's
function in order to relate the displacement field u (z, t )

to the disorder potential U;„,
u~(z, t ) = f d "R' dz' dt'G(z, z', t, t')

X U;„(R',z')V [R' —u(z', t')] . (2.120)

We split the total displacement Geld u into a part u, h due
to thermal Auctuations and a contribution u due to
quenched disorder. For L & L, ( T) the disorder can be
treated as a perturbation, and we can expand the right-
hand side of (2.120) in u . To lowest order the mean-
square displacement field then becomes

((u'(L))) =7 ~ f d"R'dz' f dt'dt"[G(L, z';t, t') G(O, z', t, t')]V, [R—' u,h(z', t')]-
X [G(L,z', t, t") G(O, z';t, t")]V' [R' u,h(z—', t")], — (2.121)
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and after Fourier transformation

e

ldll

te l Ci)f,

X[1 co—s(qL)]~px-~ E exp[ —
—,'K (u (t' t—")),h],

(( p(L) ))
d EC dq d s d si dc' dc''
(2'.)" 2~ 2~ 2ir i—rjlco+ siq —i pleo'+ eiq

(2.122)

where we have used the definition of the single-vortex Green s function (2.114). Performing the (contour) integrations
over the frequencies as well as one of the time integrals, we arrive at

ri&E& (2~)" 2n q~
(2.123)

For large enough temperatures the cutoff in the transverse wave vector K is given by the amplitude of thermal Auctua-
tions, and using the result Eq. (2.116) we find

z
~~

yg"
y

dq ~1—cos(qL)
2'7T q

1
for n=2 .

t

T
+s! /I

q t
Il

1/2

for n =1,t'"
(2.124)

For the case n =1 all the remaining integra1s converge,
and we obtain for the fluctuations due to disorder the
final expression

L, (T) =g exp
lg 13

1/2

((u,'(L)))=yg', , n=l,
CI T

(2.125)

((u (L)))= L ln, n =2,TI.
P Tz s g2' (2.126)

which indeed grows faster than the thermal fluctuations
(u (L)),h—-TL/e& by a factor ~L'~ . Moreover, using
the condition (( u (L, ) )) = ( u (L, ) ),h, we obtain the
temperature-dependent pinning length L, ( T)
=T /y E,g, in agreement with the previous result
(2.119) based on the method of dimensional estimates.
Note that for L)L,(T) our perturbative approach,
which has been based on the smallness of u~, u~ & u,h,
breaks down.

For the case n =2, we have to cut off the time integral
in (2.124) at small times where (u (t ) ),h-g, as for
smaller times the cutoff in the K integration in (2.123) is
provided by the factor ~px ~

rather than by the Debye-
Waller factor. Using Eq. (2.116), we obtain a lower cutoff
on the time integral in (2.124) given by t =its, g IT .
After subsequent integration over time t and wave vec-
tors q, the disorder-induced mean-squared amplitude of
Auctuations becomes

dp=L,(0) exp c n =2, (2.127)
Tdp

which grows exponentially in temperature. Here we have
introduced the thermal depinning energy Td,

1/2 . 1/2

=(ye.P)' '= U, =T, . ', (2.128)

Tdp=Tdp(Tdp) . (2.130)

For 5T, pinning we have Td (T)=Td (0)(1—T/T, )'
see Sec. III.C. Once the collective pinning length L, (T)
has been determined, the calculation of the activation en-
ergy U, (T) for classical creep and the critical current
density j,(T) is easy, and the results are (Feigel'man and
Vinokur, 1990)

E. (u'(L, )),„
U, (T)= =T,

L, (T)
(2.131)

for a single vortex embedded in three dimensions. In
terms of the depinning energy Td the fluctuation ampli-
tude at L, ( T ) takes the simple form

(u (L, )),h-—g exp c T
(2.129)

Tdp

Again, the depinning temperature Tdp itself is given by
the self-consistency equation

which is growing only logarithmically faster than the
corresponding thermal amplitude. At the collective pin-
ning length L, ( T) disorder becomes dominant, and we
find the result

T '
3=j,(0) exp ——c

Ts
dp dp

(2.132)
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P H 1/3

T & Tdp lndp (2.133)

with c a constant of order unity. Note that
U, (T=Td )=Td =U„ in agreement with Eq. (2.46).
With decreasing temperature the T dependence in the
above results has to be cut o6'at T=Td, and we obtain a
smooth crossover to the corresponding zero-temperature
expressions. The most remarkable result of this section is
the exponential decay of the critical current density with
temperature, which is a consequence of the marginal
relevance of disorder for a string in three-dimensional
space.

Finally, we remark that the range of applicability of
the single-vortex pinning results derived in this section is
reduced with respect to the situation at zero temperature:
Using the condition I., (T) (a, , we find that the above
results are valid in a temperature-field region character-
ized by the relation

1400 A
b

YB C 0 4cs=12—18 A

d=l2 A,
1 1

5 7

(2.134)

(Cava, Batlogg, van Dover, et al. , 1987; Worthington
et a/. , 1987; Farrell et a/. , 1988; Harshman et a/. , 1989;
Krusin-Elbaum et al. , 1989; Welp et al. , 1989),

use the convention g, =Eg and A,, =A, /E to describe the
corresponding scales along the c axis. Note that the
penetration depth characterizes the decay length of
currents rather than magnetic fields: a current density j
directed along the ab plane (along the c axis) can be
modified on a scale A, (A,, ). The new oxide superconduc-
tors are characterized by the following set of parameters
(at vanishing temperatures):

C. Anisotropy

In this section we generalize to the anisotropic situa-
tion the concept of weak collective pinning theory
developed above for the simplest case of an isotropic su-
perconductor. This will enable us to make a direct com-
parison between our theoretical analysis and experimen-
tal results on the oxide superconductors with their pro-
nounced anisotropy. The more extreme case of layered
superconductivity will be extensively discussed in Sec.
VIII. However, we wish to point out that, for many im-
portant questions, the layered structure of the material
turns out to be irrelevant and a description in terms of an
anisotropic GL theory based on Eq. (2.1) is appropriate.
In particular, this is the case for single-vortex pinning
and creep in layered superconductors within a wide an-
gular regime when the direction of the magnetic field H
is not too closely aligned with the superconducting
planes. In this section we follow the work of Blatter and
Geshkenbein (1992) and present the traditional approach
for obtaining results in an anisotropic situation. This ap-
proach starts from the anisotropic GL functional (2.1)
and calculates all the quantities following the same line of
argument as in the isotropic case. In Sec. III.A we intro-
duce a more elegant scaling approach due to Blatter,
Geshkenbein, and Larkin (1992), which allows us to
derive the results of this section in a much simpler way.
However, we believe that the traditional approach also
has its merits, as it is more physical and allows for a
deeper understanding of the results.

Let us recall the anisotropic GL free-energy functional
(2.1), which can be characterized by the two length scales
g and A, describing the (planar) coherence of the conden-
sate and the (planar) electromagnetic response, respec-
tively, and the anisotropy ratio c. =m/M «1; see Eq.
(2.2). In our notation, g and A, denote the characteristic
scales within the superconducting planes, and we shall

1400-2000 A
0

B' S C C O giics 20—40 A

d=15 A,
1 1

50 200

(2.135)

(Hazen et al. , 1988; Naughton et al. , 1988; Palstra et al. ,
1988a; Sunshine et a/. , 1988; Farrell et a/. , 1989; Uemura
et a/. , 1989; Chikumoto et a/. , 1992a; Martinez et a/. ,
1992). The Ginzburg-Landau values extrapolated to zero
temperature are obtained out of A,L and g'Bcs via the rela-
tions A, (0)=A,L /2 and g (0)=0.54$iics (clean limit; see
also Sec. III.C below). Here we have added the interpla-
nar distance d to the list of characteristic parameters.
Note that sgBcs (d for both materials, so that a descrip-
tion in terms of a Lawrence-Doniach model (1971) is ac-
tually more appropriate within a large temperature
range. However, as already mentioned above, the aniso-
tropic CxL description is able to capture all of the essen-
tial physics in many important cases of interest.

1. Collective pinning length and energy

Let us consider an anisotropic superconductor charac-
terized by the planar coherence length g, the in-plane
London penetration depth A, , and a mass anisotropy ratio
c'=m /I & 1. We choose a coordinate system where the
z axis is aligned parallel to the crystal c axis. A magnetic
field H enclosing an angle 8H with the ab plane (an angle
OH=A/2 —6H with the c axis) is applied to the sample;
see Fig. 7. To be explicit, we assume H to lie in the yz
plane of our coordinate system. The magnitude of H is
chosen to be much larger than the lower critical field
H, (8~). The correct angular dependence of H, (OH)

1 1

still seems to be a rather controversial issue. A particu-
larly simple expression can be obtained within the Lon-
don approximation (Balatskii, Burlachkov, and Gor'kov,
1986),
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H, (OH)= ln
e„

(2.136)

Here we have introduced the angle-dependent anisotropy
parameter

Ee=e (8)=c, cos 8+sin 8, (2.137)

which is the main parameter describing the angular
dependencies of physical quantities in an anisotropic su-
perconductor. An analysis based on the Ginzburg-
Landau theory provides the additional angular depen-
dence in the logarithm (plus additional non-logarithmic
corrections), which can lead to modifications of the above
simple result (Klemm and Clem, 1980; Klemm, 1990,
1993). Whereas the following analysis does not rely on a
precise value for H, , the expression (2.136) allows for an

1

order-of-magnitude estimate for the regime of applicabili-
ty of our results.

In general, the direction of the external magnetic field

6H deviates from the direction 8 of the vortices, where
the angle 8 is again measured with respect to the ab
plane; see Fig. 7. For an Abrikosov lattice in an equilib-
rium state, this deviation is given by (Balatskii, Bur-
lachkov, and Gor'kov, 1986; Kogan, 1988; Bulaevskii,
1991)

sample will be directed along the external magnetic-field
direction at the surface, though, it is unclear along which
direction the vortices will point within the interior of the
sample, as this is the result of Aux Aow and creep during
the creation time of the critical state itself. In the follow-
ing we shall concentrate on a specific part of this prob-
lem, which is the pinning and creep in anisotropic and
layered material due to classical and quantum motion.
We therefore express all quantities by the (local) internal
field angle 8 and leave the problem of relating internal
and external angles under nonequilibrium conditions for
future studies.

Vortices entering the sample will minimize their ener-
gies with respect to the weak random pinning potential

cp Here we restrict our analysis to the case of scalar
disorder as produced, for example, by a spatial fIuctua-
tion of the transition temperature T, . As we shall show
below (Sec. III.C), this type of disorder seems to predom-
inate over the disorder in the mean free path, which in
general is of tensorial character. Again, for not too large
fields, the interaction between the vortices is small com-
pared with the interaction of a single vortex with pinning
centers, so that we can study the single-vortex free ener-
gy

",(a)
V[u]= f dz' (B, , u ) + (B, u )

H E 2 ln(A, /g) +e;„(z',u) —fL u (2.140)

Here H,' is the lower critical field along the c axis and

H, (8)=
2~seg

(2.138)

is the upper critical field along 8. For large enough
fields,

H'
C)H»

Ey
(2.139)

the relative di6'erence between the external angle 8H and
the internal angle 8 becomes small, and we can neglect
this complication in the following analysis, where we ex-
press all quantities by the internal field variable 8. For
small field values the situation is more diScult. Here our
main focus is on pinning, thus the vortices go into a
metastable critical state rather than to a stable equilibri-
um configuration. The internal angle 8 then depends on
the condition under which the critical state is formed. If
the field is switched off after field-cooling (magnetic
remanence), initially the vortices are pinned in a direc-
tion parallel to the former external field. This initial an-
gle is changed due to Aux Bow and creep as the metasta-
ble critical state evolves in time, as has been shown, for
example, by Tuominen et al. (1990), who observe an
alignment of the remanent diamagnetic moment with the
c axis after the external field is switched oK On the other
hand, in a zero-field-cooled situation vortices entering the

Equation (2.140) is the generalization of the single-vortex
free-energy functional (2.31) to the anisotropic situation.
Here we have introduced a rotated coordinate system
with z' pointing along the external field H and a common
x axis, x =x'.

The elasticities EI(8) and Ei(8) for in-plane and for
out-of-plane motion can be obtained in the following
way: The line energy of a vortex segment of length L en-
closing an angle 8 with the ab plane is

e&(L, B)=E,EeL ln
Ee

(2.141)

(Klemm and Clem, 1980; Balatskii, Burlachkov, and
Gor'kov, 1986) with E, =(@,/4m', ) . The tilt modulus is
determined by the increase in energy due to a transverse
fluctuation of the vortex position. When the vortex is
symmetrically deformed over a distance 2I. by an ampli-
tude L5$, the energy increase of one segment with length
Lis

&el (jet 1
5ei = 5L+ 58+— (M)2 .

aL aa 2 gy2
(2.142)

l
—'ei(8)L(58) = 5L+ — (M)

3L 2 gy2
(2.143)

For an out-of-plane tilt by an angle 5/=58, the length of
the segment L is increased by 5L =L(M)2/2. The out-
of-plane elasticity is defined by the relation

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



1164 BIatter et al. : Vortices in high-temperature superconductors

Here the linear term in (2.142) has dropped out as the to-
tal deformation involves two segments of length L with
opposite angular corrections +66-. After a few algebraic
manipulations we obtain the result

& ~0
E'(&) =

Ey
(2.144)

As before, we ignore the logarithmic dispersion (Brandt,
1977b) of the line tension here, since we are interested in

pinning phenomena involving only short-wavelength dis-
tortions with k =1/L, .

For an in-plane tilt by an angle 5P, the length of the
segment L is increased by 5L =L ( 5P ) /2, whereas the
change in the angle 8 is given by the equation
tan(8+M) =L sing/[(L cos8) +( L5$) ]'/, resulting
in M= —(tanB)(5$) /2. The in-plane elasticity is
defined by

8OI Bci
—,'EI(8)L(5$) = 5L+ 58,

aL
(2.145)

where we have dropped the term quadratic in 66, as the
angular correction M is already of second order in 5P.
The final result for the in-plane elasticity is

(2.146)

Again, our task is to minimize the free-energy func-
tional (2.140) and to find the collective pinning lengths
and energies. In anisotropic materials we have to consid-
er two types of relaxation: (i) the in-plane relaxation with
u=(u, 0,0) involving the elasticity modulus sI(8) and
the length scale g, and (ii) the out-of-plane relaxation
with u=(0, u~, 0), elasticity e&(8), and the relevant
length scale for pinning Ezg; see Fig. 11. Pinning is due
to fluctuations in the potential c„;„,and in analogy with
Eq. (2.41) above we obtain

This result can also be obtained from an analysis similar
to that leading to Eq. (2.42). For the case of in-plane re-
laxation the individual pinning force remains unchanged,
the pinning volume is reduced to V, =Ezra L, and the
lengt'h scale of the disorder is g. On the other hand, in
the case of out-of-plane relaxation, the pinning force is
enhanced, f~;„~f;„/Ez, the pinning volume is again
V, =Ezra L, and the disorder involves the reduced length
scale Ezg. Both relaxation modes then lead to the same
result for the mean-squared pinning energy, which is
identical with (2.147) if we use the equality (2.43).

Using the method of dimensional estimates, the collec-
tive pinning length is obtained by equating the mean pin-
ning energy ( E;„(L)) ' to the elastic energy accumulat-
ed along the length L. The relevant length scale for re-
laxation in the ab plane is g, and thus the elastic energy
becomes EI(8)g /L,". Solving for the collective pinning
length L,~, we obtain

2gZ 4

C 3
/CAN

(2.148)

Lc
L,(6)=, L;=

E,y

2(2 4 1/3

(2.149)

The result (2.148) has to be compared with the out-of-
plane relaxation mode, where the relevant length scale
is given by Ezg and the elastic energy becomes
Ei(8)(E&g) /L, The. collective pinning length L, then
turns out to be identical to the result for in-plane motion.
In general, the vortex relaxes to the pinning potential by
choosing the mode characterized by the smaller collec-
tive pinning length. Here, the two collective pinning
lengths for in-plane and for out-of-plane relaxation agree
with each other, and thus the relaxation of the vortex in-
volves both in-plane and out-of-plane motion. The final
result for the collective pinning length in an anisotropic
superconductor is

&.,',„(L))=y.,g'L . (2.147) where L,' denotes the collective pinning length for a field

applied parallel to the c axis of the crystal. Note that L,'
is reduced by a factor c. with respect to the isotropic
result (2.45). The collective pinning energy is

Uc (~g2L c)1/2 E2/3(1/E g4)i/3

Lc
C

Gi

1/2
sg
Lc

C

(2.150)

which is independent of the angle 8 and reduced by a fac-
tor E / with respect to the isotropic result (2.46).

FIG. 11. Abrikosov vortex in an anisotropic superconductor
tilted away from the main axis. The vortex core is deformed
into an elliptic shape with the main axes extending a distance g
and aqua along the x and y' axes, respectively. These two lengths
then also de6ne the relevant distances for the relaxation of the
vortex to the pinning potential and for creep-type motion
within the ab plane (x axis) and in the out-of-plane direction (y
axis).

2. Critical current density

Once the collective pinning length L, (8), Eq. (2.149),
and the pinning energy U,', Eq. (2.150), have been deter-
mined, it is trivial to find the critical current densities.
I.et us first consider a current Aowing in the ab plane or-
thogonal to the field direction, i.e., along the x axis. The
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J.C~ C
C C (y

C

1/2

—Jo
Eg

L C

C

(2.151)

vortex density gradient is directed along the y' axis and
the relevant length scale of the pinning potential is Beg.
The critical current density j,Il is then found by equating
the Lorentz force j,~'N, L; /sec to the pinning force
U;/Beg. The anisotropy parameter Ee drops out, and we
obtain a planar critical current density that does not de-
pend on the angle 8,

L, (8) &
Ey

(2.154)

B&pb . H, (6) .Jc

J 2
(2.155)

Using Eqs. (2.149) and (2.151) for the collective pinning
length and the in-plane critical current density, we find
that Eq. (2.154) transforms to

j,'(&)=s&j; (2.152)

and thus is suppressed by a factor c. for a field aligned
with the superconducting planes. Note that in the latter
case the current Aow is parallel to the c axis.

The above theoretical results for the critical current
densities j,~~ and j, (8) have been experimentally observed
by Cxyorgy et al. (1989). Depending on the shape of the
sample, the measurement of the diamagnetic moment
determines the critical current density j," (thin platelet-
shaped sample) or j, ( -square cross section perpendicu-
lar to the superconducting planes). Using a Bean critical
state analysis for the diamagnetic moment, Gyorgy et al.
found that j,'~=j,' and j,(8)=j,'sin8, in agreement with
our results (2.151) and (2.152).

Again, we can use the in-plane critical current density

j,' as a convenient phenomenological parameter for the
characterization of the disorder potential c;„.We should
then express the collective pinning length I.,' and the pin-
ning energy U; in terms of the ratio j;/j, , and the result
1s

1/2
JoL;=sf
JC

(2.153)

U'=H c,g

~ c 1/2
JC

Jo

1 —t
C G

~

1/2 .c 1/2
JC

Jo

Regarding the regime of validity, we should compare
the interaction energy between the vortex and the pin-
ning potential with the interaction energy between two
neighboring vortices. This can be done, for example, by
comparing the elastic tilt energy of one vortex with the
shear energy within the volume a,L, (8). The result (see
below) of such an analysis leads to the condition

and that coincides with the in-plane critical current den-
sity j, for a magnetic field aligned with the c axis. Here
j, denotes the in-plane depairing current density (2.30).
Note that the critical current density j,' is enhanced by a
factor of c with respect to the isotropic result.
Second, we consider the critical current density j, for a
current Row along the y' axis which has to cross the su-
perconducting planes. The vortex density gradient is
now directed along the x axis. The length scale of the
pinning potential is g, producing a pinning force U, /g in-

dependent of the angle 8. The critical current density
then becomes

3. Creep

With the determination of the collective pinning ener-

gy U,', Eq. (2.150), we have also found the activation en-

ergy for (classical) creep in an anisotropic superconduc-
tor. The main results here are the suppression of the ac-
tivation energy by a factor c, , leading to a further
enhancement of the classical creep rate, and the angular
independence of the activation energy. The latter result
shows that relaxation measurements on powdered or on
polycrystalline material actually determine the same
quantity U; as an experiment done on a single crystal (ex-
cept for possible changes due to the presence of grain
boundaries in polycrystalline material). Let us turn now
to quantum motion. Similarly to Eq. (2.140) we have to
generalize the Lagrangian generating the classical equa-
tion of motion for the vortex to the anisotropic situation,

(2.156)

Equation (2.156) describes the limit of vanishing dissipa-
tion. The vortex masses m)~ and mI for in-plane and
out-of-plane motion can be determined, for example, by
calculating the kinetic energy of a moving vortex.
Indeed, it turns out to be rather simple to generalize
Suhl's (1965) analysis to the anisotropic case: The elec-
tronic part of the mass is determined by the time-
derivative term l, in the Lagrange density, which has the
form (Suhl, 1965)

where g„denotes the (normalized) order parameter in the
presence of an Abrikosov vortex pointing along z' and
positioned at the origin of the (rotated) coordinate sys-
tem. Here v' is the velocity of the vortex in the rotated
frame of reference. Using 8, =v„B„+vz 8 ~ and the ap-
proximations ~B P, ~

=1/g'and ~B .f, ~
=1/sag within the

core region, we obtain the results

(2.157)

for the angular dependencies of the vortex masses. Here
mI' is the vortex mass for the case of a magnetic field ap-
plied parallel to the crystal c axis,
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2
mI' —— m, kF,~3

(2.158)

with kF' denoting the Fermi wave vector along the c axis.
The result (2.158) can be obtained by repeating the argu-
ments leading to Eq. (2.82) above and noting that the
density of states is given by N(E~ ) =m, kF'/2A ~ A. gain,
m, denotes the planar effective mass of the electrons.
The angular dependencies of the in-plane and out-of-
plane masses (2.157) can be understood by noting the fol-
lowing two points: (i) The vortex core size Eg depends
on the angle 8, so that the vortex mass is reduced by a
factor se for motion along x. (ii) For motion along y' the
effective mass of the electrons is increased by a factor
c&, leading to an increase in the vortex mass by a factor
Ez

' for this case, in agreement with Eq. (2.157).
Let us turn now to the tunneling process. In the ab-

sence of dissipation we have to determine the saddle-
point solution of the Euclidean action

Z, = fdt fdz'

mi (8)+ (c),u ) + V[u] . (2.159)
2

Again we have to determine the geometrical shape and
the duration of the bounce. The length of the tunneling
segment has already been found above, Eq. (2.149), and
the result has turned out to be independent of the type of

motion. It remains to determine the tunneling time,
which can be obtained by equating the kinetic-energy
density involved in the tunneling motion to the elastic-
energy density. Performing these dimensional estimates
for both in-plane and out-of-plane motion, we observe
that all the angular dependencies c.& drop out, and we
find a tunneling time t, that is independent of the angle
8 and of the type of motion,

c '/' LeII C

C (2.160)

gc tM
U gekFK—F (2.161)

Here we have used standard formulas to relate the Lon-
don penetration depth X to the density of electrons
n =KFk~/3~ (with K~ denoting the in-plane Fermi
wave vector). For a dirty superconductor an additional
factor (1/g')'~ appears in the last expression in Eq.
(2.161). For a free-electron-like parabolic dispersion, the
above formula can be further simplified by using
ckF KF o

The above discussion applies to the limit of vanishing
dissipation. Coupling our macroscopic variable u(z, t ) to
the environment, we have to add a term

The Euclidean action for the bounce solution has the
same characteristics —it is independent of the angle 8
and of the direction of motion,

n)'(8) u (z', t) —u (z', t') rli(8) u (z', t) —uy. (z', t')
dt dt' dz'', +

4~ 4n t —t' (2.162)

to the Euclidean action (2.159), where we have assumed
that the dissipation is Ohmic. The viscous drag
coefficients gI(8 ) and q&(8 ) depend on the direction 8 of
the applied field and on the direction of motion. Again
the two effects of vortex core size E&g and of the elec-
tronic mass m, /se compete with each other, resulting in

11
rlI(8) =serli, g, (8)=

Cy
(2.163)

Here g& =N, /2vrc g p„ is the viscous drag coefficient for
a vortex aligned with the c axis of the crystal, which
agrees with the isotropic expression (2.26) if we simply
interpret all the parameters as planar quantities. As we
redirect the field along 8, the vortex core size j changes
to Ezg, producing a correction factor se '. For the case

I

of out-of-plane motion the electric field generated by the
moving vortex points along x, so that we have to use the
in-plane resistivity p„. On the other hand, in-plane
motion of the vortex produces an electric field along y',
and we have to use the corresponding resistivity p„/Ee in
our expression for g&. Here we assume that the anisotro-

py in the normal-state resistivity p„agrees with the an-
isotropy of the superconducting parameters g and A, , an
assumption that is fulfilled if the anisotropy is due to the
effective mass anisotropy of the carriers. Experiments
show that the anisotropy in the normal-state resistivity is
usually somewhat larger (Tozer et al. , 1987; Martin
et al. , 1988, 1990).

The correction (2.162) is nonlocal in time, and in order
to treat this term we transform the effective action to
Fourier space,

SP= f — m)'(8)+ co +eI(8)q ~u„(q, co)~eff d co dg
2~ 2~ 2

+ — mI (8)+ co +ez(8)q iu (q, co)i +Ep,„(q,u) ' . (2.164)
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The inclusion of dissipation leads to renormalized
dispersive masses M" =m)'(1+ i) I /m)'

~

co
~
) and

M,s =m~ (1+i)~/m~ ~co~ ). Again, the tunneling times for
in-plane and out-of-plane motion are obtained by equat-
ing the corresponding kinetic-energy and elastic-energy
densities. For weak enough pinning, the dissipative con-
tribution to the action is always dominant, and we con-
centrate on this limit here. As in the dissipation-free lim-
it, the tunneling times turn out to be independent of the
angle 8 and the direction of motion,

2c Lc
t~= (2.165)

Eo

presence of other vortices, the elastic tilt energy 6'„&, ac-
cumulated along an individual vortex line competes with
the energy of interaction with the other vortices. The
latter becomes increasingly important with increasing
magnetic-field strength B, as the distance ao between ad-
jacent vortices shrinks. Let us estimate the interaction
energy 8;„, between neighboring vortices. The energy
scale determining the interaction (per unit length) be-
tween two neighboring vortices is co, and the relevant
length scale is the lattice constant a, . Displacing a vor-
tex by a distance u out of its equilibrium position then in-
volves an energy

The final expression for the effective action in an aniso-
tropic superconductor is

L, (2.169)

Sea;e
E tg 1/2rc, fi eg Jo 1 Jo

Qu j;
1/2

(2.166)

which in fact is nothing but the shear energy, with
c66-—e. /a. an estimate for the shear modulus (see Sec.
III.B below). On the other hand, the elastic tilt energy of
an individual vortex subject to the same displacement
field u is

independent of the angle 8 and the direction of motion.
Note that Qu ~ 1/E in the anisotropic situation,

u
t 1t ~o L

(2.170)

e2 pn
(2.167)

For the Hall tunneling motion the result has the same
structure as Eq. (2.166),

' 1/2
Jo

QuH Je
SH, c

E (2.168)

D. Regime of applicability

with Qu = I/nEg . As we did for the classical activa-
tion energy U,', we find a suppression of the effective ac-
tion due to anisotropy. Here the suppression factor c.

is even larger than for classical creep.
Equations (2.149)—(2.152), (2.161), (2.166), and (2.168)

are the main results of our discussion of weak collective
pinning theory in anisotropic superconductors. They ap-
ply to the single-vortex pinning regime at small enough
temperatures and magnetic-field strengths and allow us
to make direct comparison with experimental results on
the new oxide superconductors for the first time. It is in-
teresting to note that the activation energy U,' and the
actions SE, SE ', and SE ' turn out to take such a simple
form, independent of the angle 8 and of the direction of
motion. The deeper reason behind this result is the fact
that these quantities are scalar objects and independent
of the magnetic-field strength (within the single-vortex
pinning regime). In our discussion of the scaling ap-
proach to the problem of anisotropy in Sec. III.A this in-
teresting result will become clearer.

L&a, . (2.171)

Let us apply this result to the problems of pinning and
creep. The relevant length scale for pinning, as well as
the length determining creep near criticality, is the col-
lective pinning length L, . Applying the general result
(2.171), we see that the interaction between the vortices
becomes relevant for large enough fields with a lattice
constant

a, &L, . (2.172)

With the help of Eqs. (2.16) and (2.51a), the condition
(2.172) transforms to

JcB&Pb . H, =B»,
J 2

(2.173)

which is the result (2.79) cited above. The prefactor p»
can be estimated either by keeping track of all the factors
in the dimensional estimates or, more reliably, by using
the dynamic approach, in which case one obtains p»=5;
see Sec. VI.A.3 below. In order to generalize the result
(2.172) to anisotropic materials, we have to determine the
elastic shear energies for the two cases of in-plane and
out-of-plane motion. The in-plane shear modulus c)6(8)
is suppressed by a factor Ez (Kogan and Campbell, 1989)
and the relevant lattice constant is rescaled to a value

+cuba, , leading to a shear energy

Comparing the two energies (2.169) and (2.170), we see
that we have to take the interaction between the vortices
into account on large length scales

In this section we have presented a detailed discussion
of the theory of weak collective pinning for a single vor-
tex interacting with a quenched random potential. In the

I

3
'

t =c66c.
Q&yao

'2
a.L=c66c~u I .2 2 2 (2.174)
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Second, the tilt energy N„.lt for an in-plane motion be-
comes

E Q
tilt

c~ L,

a. (L;(T),
jC

8)P,bH, (8) 1+
C2 TS

=B,b(6, T),

T
exp —2c a+

dp

(2.178)

Combining the two results (2.174) and (2.175), we obtain
as the condition for the relevance of the vortex-vortex in-
teraction

QoI. &
Cg

(2.176)

a &I;. (2.177)

When we include thermal Auctuations as well, Eqs.
(2.172) and (2.173) are generalized to

For the case of an out-of-plane shear motion, the (isotro-
pic) shear modulus is enhanced by a factor 1/E&, and the
relevant lattice constant is equal to a, /Qs&. Similarly,
the tilt modulus is enhanced by a factor 1/c&. All these
changes combine so as to leave the ratio of the two ener-
gies and hence the general condition (2.176) unchanged.
Applying the result (2.176) to the pinning problem, we
have to substitute the angular-dependent collective pin-
ning length L, (8)=L;/E& [see Eq. (2.149)], for the length
L, and the generalization of (2.172) to the anisotropic
case becomes

where the single-vortex depinning energy in an anisotrop-
ic material is given by (2.175) with the characteristic
lengths g and L, (6') substituted for u and L,

g2

C

(2.179)

The parameter a is of order unity and has been intro-
duced in order to produce the correct low-temperature
correction to the T=O result (finite-temperature correc-
tions appear in the form of a Debye-Wailer factor, and its
expansion produces a correction that is linear in T).

On the other hand, for smaller driving currents,
j ((j„ the relevant length scale for creep is
L, ,(j)=L,(j, /j )' ' ' [see Eq. (2.66)], and we obtain
the condition

=jsb

2 —
g - . 7/10

(2.180)
Jc sb c2

for the relevance of the interaction between the vortices
in the creep process, which is the same result as Eq.
(2.78). The general condition including anisotropy and
thermal fluctuations depends on the direction of
the current How. For a current density Rowing
along the planes, we have to use the condition (2.177) in
combination with the expression L,~, (B,T,j )

=L,(B,T)[j,'(T)/j ]'~' ~' for the optimal length of the
hopping segment. The result is

QE~ L,'(T)j &j,'(T)
a, E

jo=j;(T) j' pbH, (8)

2

Tdp 2c(a+ T/Td )

T

7/10

=g,'b(&, T) (2.181)

j&s~y'b(g T) J b(y T) (2.182)

Thus we see that increasing the magnetic-Geld strength
B, increasing the temperature T, or decreasing the driv-
ing current density j eventually places the system in a re-
gime where interaction between the vortices becomes ful-

ly as important as interaction with the disorder potential.
This is the regime of pinning and creep of vortex bundles,
which we are going to discuss in Sec. IV below.

For the case of an out-of-plane current Aow, the
optimal length is given by L, ,(8, T,j )

=L,(B,T)[s&j;(T)/j ]' ' ~, and we obtain the condi-
tion

III ~ GENERAL TOOLS

In the last section we introduced most of the ideas and
concepts that make up the modern theory of weak collec-
tive pinning. In order to keep the discussion simple, we
restricted ourselves to the case of single-vortex pinning,
which describes well the situation in the new high-
temperature superconductors at low enough tempera-
tures, T(Td [ln[(p,bH, /8)(j, /j, )]]'~, and low

enough fields, 8 & (j, /j, )p,bH, . At larger temperatures
2

and fields the interaction between vortices becomes im-
portant, which implies that we have to generalize the
concepts derived in Sec. II to the case of a vortex lattice.
Our interest then moves from the physics of an elastic
string to the behavior of a three-dimensional elastic
medium. In this section we present some general and
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preparatory material, which we shall use later in Sec. IV
when we discuss the problem of pinning of vortex bun-
dles. The topics treated include the scaling approach to
the problem of anisotropy, Sec. III.A; the theory of elas-
ticity of the vortex lattice, Sec. III.B; the determination
of elementary pinning forces in the oxide superconduc-
tors, Sec. III.C; the dynamic approach to the calculation
of the critical current density, Sec. III.D; ihe behavior of
an elastic medium in a periodic pinning potential, Sec.
III E; and the behavior of an elastic medium in a
quenched random potential, Sec. III.F.

A. Anisotropy

With the discovery of high-temperature superconduc-
tivity, the phenomenology of type-II superconductors ac-
quired a broader perspective in two respects. First of all,
many new subjects for study have appeared in the physics
of vortices in general, among which are the proposed new
thermodynamic phases such as vortex glass (Fisher, 1989;
Fisher, Fisher, and Huse, 1991) or difFerent kinds of vor-
tex liquids (Nelson, 1988; Nelson and Seung, 1989;
Feigel'man, Geshkenbein, and Vinokur, 1990), the
inAuence of thermal fluctuations leading to thermal de-
pinning (Feigel'man and Vinokur, 1990) and vortex-
lattice melting (Nelson, 1988; Brandt, 1989; Houghton,
Pelcovits, and Sudbs(, 1989), and the investigation of pin-
ning and creep, both classical (Feigel'man, Geshkenbein,
Larkin, and Vinokur, 1989; Kes, Aarts, van den Berg,
Van der Beck, and Mydosh, 1989; Fisher, Fisher, and
Huse, 1991) and quantum (Blatter, Geshkenbein, and Vi-
nokur, 1991; Ivlev, Gvchinnikov, and Thompson, 1991).
Second, since the new high-temperature superconductors
are characterized by a large anisotropy, we are forced to
develop the phenomenology for the case of anisotropic
materials. The latter refers not only to the novel phe-
nomena mentioned above, but also to more established
aspects of the phenomenological theory of type-II super-
conductors, such as the theory of elasticity developed by
Brandt (1977a—1977d) for the case of isotropic materials,
which has been generalized to anisotropic materials only
recently (Houghton, Pelcovits, and Sudbgf, 1989; Kogan
and Campbell, 1989; Sudbs( and Brandt, 1991a, 1991b;
Sardella, 1992). In this section we concentrate on the
second of these two aspects and discuss a scaling ap-
proach to the problem of anisotropy developed by
Blatter, Geshkenbein, and Larkin (1992), which allows us
to generalize known results for isotropic superconductors
to anisotropic materials in a simple way, including the
case of an arbitrary direction of the magnetic field with
respect to the anisotropic axes.

The traditional way to incorporate anisotropy into the
phenomenological description of superconductivity is to
introduce an anisotropic efFective-mass tensor into the
Ginzburg-Landau or London equations. In the conven-
tional approach one then repeats all the calculations that
usually have been done for the isotropic case before. %'e
followed this conventional approach throughout all of

Bash Equations
(GL a' London)

Il
W

Isotroplc: An|sotroplc
acalhe

rural

FIG. 12. Schematic comparison of the traditional and the new
scaling approaches for obtaining physical results in the aniso-
tropic situation. The traditional approach starts from an aniso-
tropic Ginzburg-Landau or London free-energy functional and
determines the desired quantity Q by performing all the steps
done previously for the isotropic case, but now under more
difficult conditions. In the scaling approach the desired quanti-
ty Q is obtained by a simple rescaling of the isotropic result Q.
The scaling rules are determined only once by a rescaling of the
anisotropic functional to an isotropic one.

Sec. II, where we first derived the results for the isotro-
pic situation and then rederived the corresponding re-
sults for anisotropic material along the same lines; see
Sec. II.C. Due to the appearance of additional parame-
ters and the breaking of spherical symmetry, the analysis
becomes very tedious for the anisotropic problem. As a
consequence, new results become available first for the
isotropic case and then for the case of cylindrical symme-
try, where the magnetic field is aligned with the c axis.
Few results are known for the general case of arbitrary
field direction. The scaling approach introduced below
provides simple and direct access to the most general an-
isotropic result by rescaling the anisotropic problem to a
corresponding isotropic one on the initial level of
Ginzburg-Landau or London equations. The scaling
rules extracted out of this mapping can be used to gen-
eralize the isotropic results to the anisotropic situation
with essentially no effort. The two approaches are
schematically illustrated in Fig. 12.

Let us consider the Gibbs free energy (2.1) for an an-
isotropic superconductor with m„=m =m, m, =M )m.
As usual we denote the mass anisotropy ratio by
s =m /M (1 and we choose a coordinate system where
the external field H is chosen to lie in the yz plane, en-
closing an angle 8 with the y axis; see Fig. 7. In addition,
we shall make strong use of the angle-dependent anisot-
ropy parameter sz, which is given in Eq. (2.137) above.

Several years ago, Klemm and Clem (1980) introduced
a transformation that mapped Eq. (2.1) onto an isotropic
form. Their approach allows us to isotropize all terms in
the Gibbs energy, although the transformation is rather
complicated and limited to unidirectional fields. In par-
ticular, Kogan (1981) pointed out that the magnetic field
around a vortex also involves transverse components,
which the scaling approach fails to take into account.
Later, Kogan and Clem (1981) and Hao and Clem (1991)
used a scaling transformation in their calculation of the
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reversible magnetization and of the torque. In particular,
they showed that the scaling approach is valid for large
~=A, /g and large magnetic fields, H ))H', . However, it

is important to realize that, for strong type-II supercon-
ductors with K »1, fluctuations in the magnetic field can
be neglected altogether in most applications. This idea
allows us to use the scaling approach in a much wider
context, as will be demonstrated below in detail.

In Eq. (2.1) the anisotropy enters only in the gauge-
invariant gradient term. A simple rescaling of the coor-
dinate axes (we denote a quantity q in the rescaled isotro-
pic system by q),

8= ( EH, sH», H, ), corresponding to 8=H in the origi-
nal system. Thus in the rescaled system the magnetic
field is reduced to

(3.5)

as compared with the field in the original system. Next,
let us transform energy and temperature. Since the
volume scales as

(3.6)

all energies 8 scale as

(3.7)
x =x, y =y, z=cz,

together with a scaling of the vector potential,

(3.1)
and for the temperature determining the strength of
thermal fluctuations we obtain the rule

A =A, (3.2)
T=ET (3.8)

will render this term isotropic. As a consequence, we ob-
tain the following scaling rule for the magnetic field:

By
y B,=B, . (3.3)

Inserting this result back into the free-energy functional
(2.1), we find that the last two terms describing the
magnetic-field energy are transformed to

Bj.Hq +B,H,

(3.4)

In short, we have removed the anisotropy from the gra-
dient term but reintroduced it in the magnetic-energy
term. In general it is not possible to isotropize both
terms in the Gibbs energy simultaneously. However, de-
pending on the physical question addressed, we can
neglect fluctuations in the magnetic field. For example,
the problems of vortex pinning or of vortex-lattice melt-
ing involve the coherence length g or the intervortex dis-
tance a, =(@,/8)'~ as their natural length scales. The
latter are small compared with the scale of Auctuations of
the magnetic field k, if the superconductor is strongly
type II or if the magnetic fields are large enough, with

a, (A, , respectively. In such situations the magnetic field

is uniform on the natural length scale of the problem, and
we can adopt a mean-field decoupling scheme, in which
we first minimize the magnetic-field energy 9 with
respect to 8 and then insert the resulting uniform field
back into the free energy. More rigorously, let us consid-
er the case ~~~ or, equivalently, charge e~O. The
coupling between the order parameter 4 and the gauge
field A is given by the gradient term
~[V/i+(2e/A'c) A]%'~ and vanishes in the limit e~0.
The external magnetic field then merely fixes the average
density of vortices. Hence the approach is exact for the
case of an uncharged superAuid.

Minimizing the magnetic-field energy 9, we obtain

Xa=~7a . (3.9)

A second type of disorder is generated by the spatial vari-
ation of the mean free path (Larkin, 1970; Larkin and
Ovchinnikov, 1979), which can be described by a varia-
tion of the effective masses m(r) and M(r). For a layered
superconductor, the disorder in m and M is due to disor-
der within the conducting plane and between adjacent
planes, respectively, and thus in general the two need not
be the same after rescaling. The difFerence between the
disorder in m and M is relevant only in the small-angle
regime, ~8~ ( c,, since for angles larger than E the vortices
are redirected mainly along the c axis after rescaling, and
thus disorder in M can be neglected. Except for this
small-angle regime, the disorder in the mean free path
can be treated as scalar and therefore transforms in the

This rule can be easily understood from the
in variance condition on the 8oltzmann factor,
exp( —9/T)=exp(g/T). An interesting subtlety is the
distinction between the microscopic temperature entering
the Ginzburg-Landau functional via the parameter e and
the Auctuation temperature T entering in the Boltzmann
factor. The appearance of an additional tempera-
ture dependence in the "e6'ective Hamiltonian"
(=Ginzburg-Landau functional) is a consequence of the
partial summation over microscopic degrees of freedom
in the partition function when going over from the mi-
croscopic formulation in terms of electronic degrees of
freedom to the phenomenological description in terms of
the order parameter %. According to the above deriva-
tion it is only the fluctuation temperature T, determining
the statistical mechanics of the macroscopic wave func-
tion 4, which is rescaled, whereas the microscopic tem-
perature determining the size of a and hence of %„A,,
and g remains unchanged.

Finally, we have to find the scaling rule for the disor-
der. We consider first the case of disorder in T„5a(r).
In the isotropized system the cor relator reads
(5a(F)5a(F')) = (5a[r(F)]5a[r(F')]) = (y /e)5(F —F');
thus the disorder strength y scales as
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r=~x (3.10)

same manner as the disorder in T, . We then obtain the
more general rule (5u ).I(a)

(5u„)=FE, I

we obtain the relation

(3.13)

which is valid as long as the discreteness of-the layered
structure is not important. Note that, when we define
the scale transformation according to Eq. (3.1), the pa-
rameters A, and g are not rescaled, as the planar coordi-
nates are ncpt affected by the transformation,

A, =X and g=g . (3.11)

We are now in a position to set up the general scaling
rule for transferring results from isotropic superconduc-
tors to anisotropic materials. Consider a uniaxially an-
isotropic superconductor (axis ~~z) characterized by the
planar coherence length g and London penetration depth
A, , the anisotropy c, and the scalar disorder strength y, in
an applied magnetic field H enclosing an angle 8 with the
xy plane, at a temperature T. Let Q be the desired quan-
tity for which the isotropic result Q is known. Then we
obtain Q for the anisotropic superconductor by the scal-
ing rule:

Q(B,H, T, g, k, , E, y) =s&Q e~, —,g, A, , (3.12)

Typical scaling factors are sz =sE =sz =sT = c. for
volumes, energies, actions, and temperatures, and
ss =s~ = I /ez for magnetic fields. The scaling rule (3.12)
is the main result of this section.

We wish to point out that the scaling rule (3.12) is not
unique. It is defined out of a mathematical construction,
which renders the gauge-invariant gradient term in the
Ginzburg-Landau functional isotropic. It is clear that
there exist alternative transformation rules achieving the
same goal. In particular, here we have chosen a transfor-
mation that leaves the main planar parameters g and A, of
the superconductor invariant, with the consequence that
volume, energy, temperature, and disorder are rescaled.
Another transformation (that used by Klemm and Clem,
1980) leaves the volume (and hence also energy, tempera-
ture, and disorder) invariant, while rescaling the planar
parameters g and I,. The important point is that all these
consistent sets of rescaling rules are equiualent to the orig-
inal rule (3.12) [see also the discussion between Hao and
Clem (1993) and Blatter, Geshkenbein, and Larkin
(1993)].

In the remainder of this section we present a few illus-
trative examples of how to use the scaling formalism to
transfer results from the isotropic to the anisotropic situ-
ation. In doing so, we concentrate mainly on the results
obtained for the single-vortex pinning regime above and
demonstrate how the expressions derived in Sec. II.C for
the anisotropic material can be obtained in an elegant
fashion by use of the scaling approach. Let us start with
the elasticity coe%cients for a single vortex. The elastic
energy of a single vortex is given by Eq. (2.140). Trans-
forming the in-plane tilt energy to the isotropic system,

Since A, is invariant, E&
-—(N, /4+A, ) =E„where we again

concentrate on the short-wavelength limit of the elastic
modulus. Furthermore, the amplitude 5u is not affected
by the rescaling and therefore 5u /6u = 1. On the other
hand, the length 5z' is affected by the transformation
(3.1). Let us consider a segment of length ll directed
along the z' axis and let us transform this "longitudinal
length" to the rescaled system. In the rescaled system we
have II = l + l» + l, . Using Eq. (3.1), we obtain
I& =l& (cos 8+sin 0'/s ). Using the definition (2.137) for
the angle-dependent anisotropy parameter e&, we find
that all longitudinal lengths II scale according to the rule

(3.14)

and therefore 5z'/5z'=s/Ez. The final expression for
the in-plane elasticity is then EI(8)=e,e /ez, in agree-
ment with the result (2.146) of the conventional ap-
proach. When transforming the out-of-plane tilt energy,
we should take care about the change of angles due to the
scale transformation. The transformed vectors
56=5u (0, —sin@, cos8/E) and 5z=5z'(O, cosB,sin8/c. )

are no longer orthogonal. Orthogonalizing, we obtain

25"»' ~5uh 5z~
1 5 i I=EE (3.15)

and the final expression for the out-of-plane line tension
is then E&(8)=E,E /Ez, in agreement with Eq. (2.144).
Here we have used 5z =5z'= (ez/E)5z'. As an additional
result, we obtain the scaling rule for "transverse
lengths, "

I, =s&l„ I,IB, T,IB, 1„1,le„. (3.16)

Next we discuss the problem of single-vortex pinning
and creep in anisotropic superconductors. For isotropic
superconductors we have found above that a vortex seg-
ment of length L, =(E,g /y)' is pinned collectively.
We have determined the pinning potential to be
U, =(yg L, )'~, the effective action governing quantum
motion to be SE =(A/e ) (g/p„)( j, /j, )' (limit of
strong damping), and the critical current density against
depinning to be j,=j, (g/L, ) . Furthermore, the single-
vortex pinning regime is limited to fields 8 &B,b, with

8,b
——(j, /j, )P,„H, . Using our scaling rule (3.12) we ob-

2

tain the following results for the anisotropic supercon-
ductor: The collective pinning length I, is a longitudinal
length, therefore L, (8)=(E/e&)L. In, order to obtain
L, =(E.g /y)' we have to express all rescaled material
parameters ( A, , g, y ) by the original parameters
(X,=l., g=g, y=y/e, ), hence L, =(e,g E/y)'» . We then
obtain the final result L, (g) =L,'/Ez, where
L;=(e,g E"/y)' =E» L,'" is the collective pinning
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length for the case where the magnetic field is aligned
with the c axis, in agreement with Eq. (2.149) above. L,'"
denotes the collective pinning length in an equivalent iso-
tropic material characterized by identical material pa-
rameters 1,, g, and y, but with E= l. The scaling factor
for the pinning potential U, is sE=c. Rewriting U, in

terms of the original material parameters, we obtain the
result U;=c, (ye, P)'~ =E ~ U,"', independent of the
angle 8 and in agreement with the previous result (2.150).
Similarly, the action becomes SE '=c. SE "",again in-

dependent of 8. In the anisotropic material we have to
distinguish between two critical current densities, the in-
plane critical current density j,"~~x involving a Lorentz
force along y', and j, ~~y', the out-of-plane critical current
density, pushing the vortices along the direction of the x
axis. The in-plane critical current density is obtained
from rescaling the force balance equation between the
pinning and the Lorentz force, j,C&,L,g= U, . The in-

plane critical current density then scales like a planar
length and thus j ~~ =j =c. j,'"=j,'. On the other
hand, for the out-of-plane critical current density we
have to orthogonalize the Lorentz force after rescaling
such that j, scales like a transverse length, therefore

j, =ezj„and we obtain the result j,(8)=E~J,'. »nally,
the field B,b limiting the regime of single-vortex collec-
tive pinning becomes B,b(8)=(j,'/j. )p,bH, (6), where

2

we have used the scaling rule for magnetic fields (3.5) and
the above result for the transformation of the in-plane
critical current density j,.

Next, let us discuss collective creep at low driving
forces, j« j„with j Aowing in the plane. Within the
single-vortex pinning regime, the relevant length L, , (j )

(size of the critical nucleus) increases with decreasing
current density j according to L,~,(j)= L(8)(j,' j/)
and similar results apply for the thermal activation bar-
rier (classical creep), U(j) = U,'(j,'/j)'~, and for the tun-

neling action (quantum creep), for the overdamped case,
S(j)=SE '(j;/j) . The boundary of the single-vortex
pinning regime is reached when the current density j
drops below j»(8,8)=j,'(QE+,'/Ea. ) ~, a result ob-
tained from rescaling the condition L, ,(j)=a.. If the
vortex lattice is subject to an out-of-plane current density

j (j~~y'), the creep motion is directed along the supercon-
ducting planes. For this case we have to replace the in-

plane current-density ratio j, /j in the above expressions,
as well as the boundary j,b, by their out-of-plane counter-
parts, Ezj,'/j and E&j,„, respectively. All these results
agree with those obtained following the conventional ap-
proach, but involve essentially no calculations at all.

In anisotropic materials an additional degree of free-
dom is the angle 8 between the magnetic-field direction
and the superconducting planes. Here the scaling rule
(3.12) predicts the angular dependence of physical quanti-
ties to be expected due to the anisotropy of the material.
For example, the scaling behavior of the in-plane resis-
tivity as measured by Iye et a1. (1989a) and interpreted
by Kes et al. (1990) finds a natural explanation within

the scaling approach: The scaling factor for the in-plane
resistivity is s = 1, and using Eq. (3.12) we obtain

p(B,H)=p(E~)=p(sinBH), without making any spe-
cial assumptions about a possible breakdown of the con-
cept of a fiux-line lattice in layered superconductors (Kes
et al. , 1990). In addition, for 8) E, after rescaling, the
magnetic field is directed mainly along the c axis, and
thus the Lorentz force is essentially independent of the
direction of the current in the plane. Going back to the
original system, one then expects that the in-plane resis-
tivity shouM be independent of the angle between the
magnetic field and the current. The latter observation
offers a very natural explanation for the angular indepen-
dence of the dissipation as reported by Iye, Nakamura,
and Tamegai (1989a) for the case in which both the
current and the magnetic field are aligned with the super-
conducting planes, if a slight misalignment of the field is
assumed. Similarly, the anisotropy of the critical current
density as measured by Roas, Schultz, and Saemann-
Ischenko (1990) in YBazCu307 and by Schmitt et al.
(1991) in Bi2Sr2CaCu20s+~ thin films exhibits all the
features predicted by the scaling rule (3.12). In large
magnetic fields, H &B,b, the critical current density j,'
starts to decrease with increasing field strength H; see
Sec. IV.B.1 below. Changing the direction of the mag-
netic field then leads to a dependence of the in-plane crit-
ical current density j, on the angle 8. In particular, the
scaling rule (3.12) predicts that this angular dependence
of the planar current density j,'~(6) is only through the
combination, E~, j,"(8)=j,'(E~), resulting in sharp
maxima of j)'(8) when the field is aligned with the super-
conducting planes and a sharpening of these maxima
with increasing field amplitude H (see also Pokrovsky,
Lyuksyutov, and Nattermann, 1992). A detailed discus-
sion of the angular dependencies of thermodynamic and
electromagnetic properties in anisotropic superconduc-
tors, as predicted by Eq. (3.12) and observed in various
experiments, can be found in Hao and Clem (1992).

Regarding the regime of applicability, we wish to point
out that, in spite of starting from a GL-type description,
the scaling approach is not limited to the regime near T, .
In fact, the above scaling rules can be obtained as well by
starting from the London equations, which are valid
throughout the entire temperature regime. The scaling
rules for the disorder will not be changed as long as the
anisotropy in the penetration depths and in the vortex
core size remain the same. Moreover, the scaling ap-
proach can be used for the case of layered superconduc-
tors as long as the discreteness of the structure is not im-

portant. The crossover between quasi-2D and 3D aniso-
tropic behavior depends on the physical quantity of in-

terest, although the regime in which the anisotropic
description is valid is usually large.

Finally, the scaling rule (3.12) clarifies the following
features of anisotropic superconductivity: First, the
effect of anisotropy is to reduce the field component in
the superconducting planes and to enhance the effective
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strength of the pinning, both favorable effects in view of
technological applications of the new materials. On the
other hand, anisotropy increases the temperature of
thermal fluctuations, favoring phenomena such as
thermal depinning and melting of the vortex lattice,
effects which are scientifically very interesting but rather
undesirable in view of applications.

B. Elasticity

1. Isotropic material

The theory of elasticity of a vortex lattice in an isotro-
pic superconductor was worked out several years ago by
Brandt (1977a, 1977b; see also 1977c, 1977d) using the
GL description at high inductions, 8 0.6H, (Brandt,

2

1977a), and the London theory for small fields,
8 ~ 0.2H, (Brandt, 1977b). These results were later

2

confirmed by Larkin and Ovchinnikov (1979), who based
their calculation on the BCS-Gor'kov theory and thus ex-
tended the validity of the results to the entire tempera-
ture range 0 & T & T, .

When a type-II superconductor is placed in a magnetic
field H) H, , the field starts to penetrate the supercon-

1

ductor in the form of vortices (or fiux lines). In a homo-
geneous material, a triangular lattice with a lattice con-
stant aa given by Eq. (2.15) is formed. We assume the
vortices to be aligned with the z axis such that we can de-
scribe their equilibrium positions R„=[n i/3a z /2,
(2m+n)az/2], v=(m, n), by a planar coordinate. In
general, the vortex lattice is not in its equilibrium
configuration but in some distorted state, which we can
characterize by the two-component displacement field
u (z) or its Fourier transform [r„=(R,z)],

u(k) =a. f dz g e '"'u (z) . (3.17)

The transformation back to real space is then

k skru„(z)= f 3
e' 'u(k),» (2m)'

(3.18)

—fp(k)up( —k)], (3.19)

where @(k) denotes the elastic matrix of the vortex lat-
tice and f(k) is the Fourier transform of the force field
f (z) that generates the distortion u (z). We adopt the
convention that indices appearing twice are summed

where the integration runs over the two-dimensional Bril-
louin zone (BZ) of the vortex lattice, IC ~ If» =v'4m /ao
(= radius of the circularized BZ), and the integration
along k, is cut off at the inverse core radius,

~ k, ~
8 2'/g

Within linear elasticity theory the energy of such a dis-
torted state is given by

P[u] =—f 3 [u (k)C& p(k)u p(
—k)1 d k

2 az (2')

over. Variation of Eq. (3.19) with respect to up(
—k) pro-

vides us with the equation of motion

[ —icoil5 p+N p(k)]u (k)=fp(k), (3.20)

from which we immediately obtain the Green's function
for the vortex lattice by simple matrix inversion,

G p(k, co)=[—icoilI+%(k)] p' . (3.21)

=4& p(
—k)=@ p(k+K„), (3.22)

where K„=2'[(2n —m )/(v'3az), m /a&], v=(m, n ) is a
reciprocal-lattice vector. For magnetic fields near the
upper critical field, 8 ~0.6H, , the Abrikosov solution'2'
for the order parameter 4'& can be used as a starting
point, where 4'z is a solution of the linearized CxL equa-
tions. However, a simple shift of the zeros in '0& to the
new positions R„+u„(z) results in unphysical divergen-
cies for long-wavelength distortions u(k) with k~0.
These divergencies can be removed by appropriately re-
laxing the new order parameter using a variational An-
satz and taking the quartic term in the GL functional
into account (Brandt, 1977c). Evaluation of the free en-

ergy to second order in the displacement field u(k) then
provides us with an expression for the elastic matrix
(Brandt and Essmann, 1987; Brandt, 1991a).

A somewhat simpler approach can be taken at small
fields, 8 ~0.2H, , where the vortex cores do not overlap'2'
and therefore the London theory is applicable. For the
new high-temperature superconductors this regime is
large, covering most of the experimentally accessible field
range, as H, is of the order of 50—150 T. The elastic en-

ergy stored in a distorted vortex lattice can then be found
by an integration of the interaction potential V'"' over all
pairs of vortex segments d s„,

V[u]= g f ds„ds„V'"'(s& —s ),
p, v

(3.23)

where the s„=r„+u„(z)denotes the positions of the vor-
tices in the distorted state. Note that the terms p=v are
also included in the sum in Eq. (3.23) and produce the
self-energies of the individual vortex lines. Within simple
London theory, the interaction potential V'"' between
two vortex segments takes the form

y'"'(r ) =—e r li1

r
with an appropriate short-distance cutoff at small length
scales r (g, provided, for example, by the model poten-
tial

(3.24)

In Eq. (3.20) we have added a term —icoilu in order to
account for the damped motion of the vortices. The
viscous drag coefficient for the vortex lattice is il=ili/a „
with il& given by the Bardeen-Stephen formula (2.26).

It remains to determine the elastic matrix @ p(k),
which is characterized by the following symmetries:

@ p(k)=@p (k)=+*p(k)
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d kpint( r ) 4~g2 j e ikr pint(k )
(2n. )

/2k 2

pint(k)
1+k'k' (3.25)

Expansion of Eq. (3.23) in the small displacement field
u (z ) provides an expression for the elastic matrix,

jp 2
4& p(k)= g [f p(k+K ) —f p(K, )], (3.26)

with

f p(k) =(k kp+5 pk, ) V'"'(k) . (3.27)

For large fields, the GL theory produces an expression
for the elastic matrix that is similar to the London result
(3.26) but that involves a double sum over reciprocal lat-

tice vectors K„and Q„. Moreover, the reduction of the
order parameter at large fields renormalizes the length
scales A, and g to A, '=A, /(1 b—)' and g'=g/(1 b—)'
with the reduced field b:B—/H, (T) (Brandt, 1986b,
1991a).

The result (3.26) provides us with expressions for all
the elastic moduli for the vortex lattice. Various approx-
imations can be adopted in dealing with this result, and
we shall discuss them very briefly in the following.
Within the nonlocaI continuum limit, the elastic matrix is
written in the form

@ p(k) = [c»(k) —c«]K Kp+5 pfc«K +c44(k)k, ],
(3.28)

with cii(k) and c44(k) denoting the dispersiue compres-
sion and tilt moduli and c66 the nondispersive shear
modulus. Using Eq. (3.28), the elastic free energy (3.19)
takes the simple form

d kV[u]= —f tc»(k)[K u(k)] +c [K u(k)] +c (k)[k u(k)] —f( —k) u(k)]
(2m. )

with Ki =(k~, —k ), and the elastic Green's function (3.21) becomes

P p(K) P p(K)6 p(k, co)= .+
irico+c—»(k)K +c4~(k)k, igco+c—«K +c44(k)k,

(3.29)

(3.30)

with the projection operators P p(K)=K Kp/It: and
P p(K)=5 p KKp/K —. Within the continuum isotro
pic approximation, we restrict the sum over reciprocal
lattice vectors in Eq. (3.26) to the v=O term and obtain
for the compression and tilt moduli

so that we can write

c„4(k)=c4&(k)+c44(k),

with c&4 (k) given by Eq. (3.31) and

(3.34)

g 2

c» (k) =c44(k) =
4~

(3.31)

1
c4~(k) = ln

a2 k,

Within this approximation (v=O) the shear modulus is
zero, so this description applies to a vortex-liquid phase.
The terms vAO then add up to produce a finite shear
modulus

(3.32)
(8+i, )

which is essentially nondispersive. In addition, the terms
vAO produce a (nonisotropic) correction to the tilt and
compression moduli as K approaches the BZ boundary,
which reflects the hexagonal symmetry of the vortex lat-
tice. This "geometric" dispersion depends only on the
product a k and thus is much weaker than the "essen-
tial" dispersion which originates from the v=O term and
involves the parameter A,k. More important, when we
take terms v&0 into account the tilt modulus c44(k)
crosses over to the single-vortex result in a large part
of the Brillouin zone, It; )IC, =KBz /[1n(1/gK, ) ]'
(Brandt, 1977b; Sudbd and Brandt, 1991b),

B(H B)—
for k~0,

4m.

c44(k)= .
~o K

ln for E&X, .
2ao 1+A (EBz+k )

(3.35)

Here the correction B(H B)/4 hydras b—een introduced
in order to produce the correct expression c44(0) for the
uniform tilt modulus, which can be obtained from ther-
modynamic considerations (Campbell and Evetts, 1972).

At very small field values, B &H, /in', the compres-
1

sional and shear moduli become exponentially small,
c» =3c66 tt-exp( —a, /1, ) (Labusch, 1967, 1969; Larkin,
1970),

1/2
Ea

1 /2 —a, /A,
e (3.36)

whereas the tilt modulus goes over into the single-vortex
expression (3.33). Finally, at large inductions the renor-
malization of the length scales due to the suppression of
the order parameter should be taken into account and A,

'

should be substituted for A, in Eqs. (3.31) and (3.32).
However, close to the upper critical field H, the shear

2
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+.„(0)(a,u)'], (3.37)

with Vi=(B», —B„) and c»(0)=c4„(0)=8 /4m. , should
therefore be used with caution. Since c»(0) »c66, Eq.
(3.37) essentially describes an incompressible solid.

2. Anisotropic material

The generalization of the theory of elasticity to aniso-
tropic superconductors is a rather tedious undertaking.
As outlined in Sec. III.A above, we can follow the tradi-
tional approach and recalculate all the moduli starting
from the Ginzburg-Landau or London free-energy func-
tional or we can use the scaling approach and start
directly from the isotropic results. Whereas the former
method provides us, at least in principle, with the most
general expressions for the elastic moduli, their deriva-
tion along this traditional path is very cumbersome, and
not all the moduli have as yet been derived. On the other
hand, the scaling approach allows one to find all the
moduli in a simple and straightforward way, but the re-
sults obtained are limited to the regime A,k & 1 (here k
denotes the wave-vector modulus in the isotropized sys-
tem), since it neglects fiuctuations in the magnetic field.
The limited applicability of the method to the dispersive
regime is not a severe restriction, however, since this re-
gime makes-up a large part of the Brillouin zone, and fur-
thermore the results for the uniform limit k —+0 are
known from thermodynamic considerations.

modulus vanishes as (1 b—), so that Eq. (3.32) with A,
'

substituted for A, should not be used beyond b =0.5
(Brandt, 1977b).

The dispersive behavior of the compression and tilt
moduli cii(k) and c44(k) leads to a considerable soften-
ing of the vortex lattice. Near the BZ boundary,
XBz ——v'4m/a, , a suppression factor (AKBz )

=Blnsc/H, is obtained with respect to the value at k =0
describing a uniform distortion. In the new high-
temperature superconductors the GL parameter ~ is of
the order of 100, the lower critical field H, is small, typi-

1

cally a few hundred Gauss, and thus the softening of the
vortex lattice is an important effect in a large field range.
On the other hand, the shear modulus is essentially free
of dispersion and always small, in fact,
c66-—(1/4)c»(KBz). The physical origin of the disper-
sion in c] i and in c44 is found in the long-range interac-
tion potential V'"', Eq. (3.24): For fields 8 &H, /in', the

1

nearest-neighbor distance a, drops below the potential
range A, and the vortex-vortex interaction extends beyond
the nearest neighbors. The local limit described by the
functional

V[u]= —f d r[c„(0)(V' u) +c66(V'i u)
1

2

As the (internal) magnetic field is tilted away from the
c axis, the (equilateral) triangular lattice defining the
equilibrium configuration is deformed and the new basis
vectors become

R' = [n &3a& /(2+v&), (2m + n )+E&a&/2]

with the corresponding lattice vectors
K'„=2ir[(2n —I )QEz/(&3az ), m /(+spaz )] (Camp-
bell, Doria, and Kogan, 1988). Here we have used the
same coordinate system as was introduced in Sec. II
above (see Fig. 7), with 8 denoting the angle enclosed be-
tween the internal magnetic field and the superconduct-
ing planes. The angle-dependent anisotropy parameter
E& is given by Eq. (2.137). Rescaling of the transverse
length y'=y'/c& reproduces the equilateral triangular
Abrikosov lattice at the rescaled field B=Bc&, i.e.,
a& = a& /QE&. Note that the equilibrium lattice
configuration is characterized by a short lattice vector
R[& o~ pointing along the y' axis and that the planar rota-
tional degeneracy present for H~~c is removed as the field
is tilted away from the c axis (Campbell, Doria, and Ko-
gan, 1988). The above configuration describes the equi-
librium state of the vortex lattice at large enough mag-
netic fields, H & H,' /sz. For low fields, H (H; /c. &, the

1 1

equilibrium state for the tilted lattice is realized by the
so-called chain state (Buzdin and Simonov, 1990; Grishin
et a/. , 1990; Bolle et al. , 1991; Ivlev and Kopnin, 1991;
Garnmel et al. , 1992; see also Ivlev, Kopnin, and
Salomaa, 1991), where the vortex lines rearrange them-
selves into parallel running chains defining planes of high
Aux density oriented parallel to the yz plane containing
the c axis and the magnetic-field vector. This instability
arises from an attractive interaction between the tilted
vortex lines, which has its origin in the tendency of the
screening currents to Aow in the ab planes. It is interest-
ing to realize that the transition line H, /Ez between the

1

usual triangular state and the chain state coincides with
the boundary of the regime where the scaling approach
to the problem of anisotropy can be used. In the follow-
ing we concentrate on the elastic properties of the tri-
angular lattice, which corresponds to the equilibrium
state for large enough fields. Note that the elastic prop-
erties of the chain state are different. In particular, the
relative shear between the planes containing the vortex
chains is exponentia11y small due to the increase in the
field homogeneity within the planes (Ivlev and Kopnin,
1991).

The elastic properties of the vortex lattice are known
once we have found an expression for the elastic matrix
N &(k). The most compact formulation can be given
within the London theory, which, for the new high-
temperature superconductors with their large GL param-
eter ~, covers most of the experimentally accessible field
range. For the anisotropic case the formulas (3.25) and
(3.27) then have to be replaced by the more general ex-
pressions (Sudbd and Brandt, 1991a; Sardella, 1992)
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(X' —X'}J: rc
Vint(1 ) g

c ia lP

1+A, k 1+A, k +(X —X )K
(3.38)

and

f p(k)=k kpV,',"'(k)+k, V 13(k.) 2k—,kpV,'"„"(k), (3.39)

with K=(k„k ) and K~ =kh c=(k», —k, ), where c denotes the unit vector along the c axis. We remind the reader
that g', =eg is the coherence length along the c axis and A,, =A, /s denotes the screening length for currents fiowing
parallel to the c axis. In an anisotropic material the number of elastic moduli increases dramatically. The linear elastic
energy within the nonlocal continuum approximation takes the form

d kV[u]= —I 3 [cI&(k)(k„u ) +c»(k)(k u ) +2c'I', (k)(k u„k.u». )+c)~(k)(k, u, ) +c44(k)(k, u . )

+2c,4(k)(k .k, .u )+2cv~ (k)(k„u„k,.u )+c)6(k u„) +c66(k, u . ) +2c)~(k k, u, )] . (3.40)

In addition, the vortex lattice in the anisotropic material
exhibits rotational modes, which are discussed in the
work of Kogan and Campbell (1989). Note that the x
axis is common to both the vortex- and lattice-related
coordinate systems, hence x =x'.

The first anisotropic moduli were calculated by Kogan
and Campbell (1989), who determined the soft in-plane
shear modulus c)6(8) and the hard out-of-plane shear
modulus c«(8) for all angles 8. Basing their calcula-
tions on the London theory, they found

c/6(~) =c66ea c66(&)= (3.41)

g2 1

4~ 1+a,2X'+a'k, ' ' (3.42a)

with c«=C&,B/(8~A. ), the isotropic result evaluated
with the planar screening parameter k.

The tilt moduli cQ~ and c44 for the in-plane and for the
out-of-plane tilt modes have been determined for the spe-
cial cases where the magnetic field is aligned with one of
the main axes of the material by Houghton, Pelcovits,
and Sudbd (1989; B~~c, calculation based on the GL
theory) and by Sudbd and Brandt (199la; B~~c and Blc,
calculation based on the London theory). Very recently,
Sardella (1992) calculated the full angular dependence of
the tilt moduli within the London approximation.
Again, the results can be written in a form
c44(k) =c44(k)+c44(k), with c44(k) the strongly disper-
sive contribution arising from the term v=O in Eq. (3.26)
and c44(k) denoting the correction due to the remaining
terms in the sum. The results for c~(k) take the form
(note that 9=sr/2 8, e&=csin —8+cos, 8)

~o
c44(k, ) =

2Qo

2

21
C

""1+~,K.,+:k.
A, k+ ln 1+

g2k 2 1+g2~2 (3.43}

where v, =~/s (see Glazman and Koshelev, 1991a). The
second term in Eq. (3.43) is due to the electromagnetic
interaction. The first term is only weakly dispersive, de-
pends strongly on the anisotropy c, and vanishes in the
limit c,~O; the electromagnetic contribution is strongly
dispersive but independent of c and hence always remains
finite. A particularly interesting limit is the single-
vortex line tension, which becomes strongly dispersive as
a consequence of the anisotropy,

1/2

E,(k, }=8'E.ln
1+k k

+E, ln(1+ k, A, ~)'»21

kk,
(3.44)

For large wave vectors, k, & 1/EA, , the line tension is
small, cI ——c c, Within the intermediate regime
1/A. & k, & 1/c.X the line tension rapidly increases,
c&

——c., /k, A, , and reaches the long-wavelength limit

term c44(k) again becomes important at large k vectors
and essentially describes the crossover from the lattice
modulus to the (dispersive) single-vortex line tension as
the interaction between neighboring vortices becomes
small, for B(~c:

c~„(k~O)= 8(H B), —1

1+(Esi,,k )
c44 (k)= c44" (k) .

1+A, k
(3.42b)

For a uniform tilt, the isotropic result c44(k =0)=B /4'
is recovered. Note that again the out-of-plane tilt
modulus c44 (k) is in general larger ("harder") than the
corresponding in-plane quantity c44" (k). The correction

4Within the language of layered superconductors, the first
term is due to the Josephson coupling between the layers and
vanishes as the layers decouple; in contrast, the electromagnetic
contribution remains finite even for a completely decoupled sys-
tern.
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1+(egA, ,k )

1+A, k
(3.45)

El ——Eo for k, & I /A, . This separation into a small line ten-
sion due to the Josephson coupling and a strongly disper-
sive component due to electromagnetic coupling is
specific to the anisotropic situation. In the isotropic situ-
ation there is no suppression of the first term, and the
dispersion is only weak. For additional details we refer
the reader to the work of Sudbd and Brandt (1991a; see
also Brandt and Sudbd, 1991a) and of Glazman and
Koshelev (1991a).

The compression moduli cI&, c», and c'J'& have been
determined for the special cases mentioned above by
Houghton, Pelcovits, and Sudb& (1989) and by Sudbef and
Brandt (1991a), and the complete angular dependence
has been obtained by Sardella (1992),

cI$(k)

=cd)�(k)

=cI'$ (k)

the displacement field u and the wave vector k. Let us
define the rotation operator

A(a) = 0 cosa
0 —sinA

and the scaling operator

1 0 0
S(s)= 0 1 0

0 0 s

sinA

COSA

(3.49)

(3.50)

The transformation of the displacement vector
u=(u, Q~ ) (expressed in the isotropized coordinate sys-
tem with the z' axis pointing along the field direction) to
the displacement vector u =(u, u~ ) (expressed in the
original coordinate system with the z' axis pointing along
the field direction) involves the sequence of operations
(8=m /2 —0 )

Finally, the mixed compression-tilt moduli c,4 and c I4
have been found by Sardella to take the form

u=%( —8)$(e)%(8)u . (3.51)

QEgEg E A, k~
c (k)=cv' (k)= c '"(k) .14 4 )+~2k2 44 (3.46)

The mixed shear-tilt modulus c )~ arises from terms v@0
in the sum (3.26). In addition, corrections to the above
moduli due to the admixing of the shear mode to the tilt
and compression modes can only be obtained by consid-
ering terms v&0 in the sum over reciprocal lattice vec-
tors in Eq. (3.26). A complete analysis of these terms has
not yet been carried out.

Let us turn now to the scaling approach introduced in
Sec. III.A (Schonenberger, Geshkenbein, and Blatter,
1993). Using this very efficient method, we shall obtain
all the desired results for the elastic moduli provided that
after rescaling the condition A,k) 1 is fulfilled. This is
not a severe restriction, since we already know the results
for the uniform limit from thermodynamic considera-
tions,

The angle 8 in the isotropized system is related to the an-
gle 8 in the original system by

1tan8 =—tan8- .
E

(3.52)

Evaluating (3.51) and using the relations cosB
=(e/Eg)cosd and sinB=(1/Eg)sind following from Eq.
(3.52), we obtain the result

u =u and u .=X X 3' (3.53)

k=%( —8)4(1/E)A(8)k,

and we obtain, after trivial i~version,

(3.54)

In a similar way we transform the wave vector k. The
transformation rule now reads

B2

c„(0)=c44(0) =
4m

(3.47)
Eying E,

k .=E~k .+ k.. .
Ey

(3.55)

+c~(k)(k, G) ] . (3.48)

The goal is to express the above isotropized elastic energy
by the parameters and variables of the original anisotrop-
ic system and to extract the elastic moduli for the aniso-
tropic situation from a comparison with Eq. (3.40). To
this end we first have to find the transformation rule for

independent of the angle 8 and the direction of the dis-
placement vector. In order to obtain the elastic moduli
in the anisotropic situation, we have to transform the iso-
tropic elastic free-energy functional (3.29) to fit the aniso-
tropic system with the help of the scaling rule (3.12). To
begin with, let us rewrite (3.29) in the isotropized system,

d k7[6]=—J 3 [c„(k)(K6) +c66(K 6)
2 (2') COBE'

(Sere, )'

(3.56)

The rescaled wave vector k is trivially obtained from
the transformation rule (3.55) and reads

k 2=k2+sgk, +sgk, +2+sgsg —c, ky k,

=E k +(1—E )& (3.57)

E,

k, .= k,
Ey

Next, we have to rescale the isotropized moduli c», c44,
and c66. Using the scaling rule (3.12) we obtain

8 2 2

c),(k) =c44(k) =
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Q 2

4~ g2k2+(g2 g2)~2

2

c44 (k) = c44" (k),
g2

(3.58)

(3.59)

where the last equation has been obtained by expressing
k in the lattice frame of reference with the z axis parallel
to the c axis of the uniaxially anisotropic material. As
usual, K denotes the planar component of k,
K=(k„k ). Finally, we combine (3.48) with Eqs. (3.53),
(3.55), and (3.56) and compare the resulting expression
with the free-energy functional (3.40). Dropping the
small correction from the admixing of the shear mode
with the compression mode, c» —c« ——c», we obtain the
results

can this apparent discrepancy be understood? Within the
isotropized system the relevant wave vectors at crossover
all are large and of the same order, —1/a, . Mapping
back to the anisotropic system, again both k ~ and k, be-
come large but of opposite sign. Hence the energies aris-
ing from the bulk tilt, compression, and mixed tilt-
compression modes all are large but roughly cancel one
another, since the contribution from the mixed mode is
negative. What remains is the single-vortex energy,
which determines the relevant physics as discussed in
Sec. II.C above. In order to extract the relevant physics,
it is therefore much more convenient to study the prob-
lem within the isotropized system than to carry out the
analysis in the anisotropic-vortex frame of reference,
where the elastic energy is no longer diagonal.

c I, (k) =c„(k)=c I'", (k) = c '" (k),2 (3.60) C. Elementary pinning forces

E,yC6) E
c,4(k) =c'[4 (k) = c44" (k),2

c ~6
——~ac

(8~A, )
(3.62)

(3.63)

The comparison with Eqs. (3.42), (3.45), and (3.46) de-
rived in the traditional way verifies that the two results
agree within the dispersive regime. Finally, rescaling of
the correction term c 44(k), Eq. (3.33), provides the
single-vortex line tensions already derived in Sec. A
above. Taking the logarithmic correction factor into ac-
count, we obtain EI(k,. ) =(c,.E /ez)ln(E&/Ek, g) and

eI(k, .)=(E,e /e&)ln(E&/Ek, g), wh. ich is valid in the re-
girne k, .) c~/gk.

It is interesting to note that the ratio of the bulk tilt
moduli c44 /c44~~ shows a difFerent angular dependence
from that of the single-vortex tilt moduli E&/EI: whereas
c~~ /c~" =E2&/e~, the single-vortex result is EI IEI = I /s~.
This difFerence is due to the admixing of the bulk
modulus with the tilt mode c44 . It is important to note
that the elastic theory for an anisotropic superconductor
for angles 6 away from the main axes is very cumber-
some, since the elastic energy is no longer diagonal in the
vortex frame of reference. Consider as an example the
study of single-vortex pinning as carried out in Sec. II.C
above. In view of the difFerence in the angular depen-
dence of the lattice and the single-vortex tilt moduli, one
may ask where the crossover from lattice to single-
vortex-type behavior takes place. Is the physics at low
fields determined by the single-vortex tilt modulus or by
the lattice tilt modulus? At first sight it appears that the
regime where the single-vortex line tension dominates the
physics is only small. On the other hand, when going
over to the isotropized system, the regime where the
single-vortex elasticity dominates is rather large. How

In the previous section we have determined a number
of important quantities characterizing Aux motion in
type-II superconductors under low-temperature/low-field
conditions: the collective pinning length L„ the activa-
tion energy U„and the action SE for creep, as well as
the critical current density j,. These characteristic quan-
tities have been calculated within weak collective pinning
theory, where the pinning potential is due to weak short-
range disorder. In the high-T, superconductors this type
of disorder is expected to occur as a consequence of oxy-
gen doping, producing point defects interacting weakly
with the vortex cores (Tinkham, 1988b). The above re-
sults for the pinning length L„ the pinning energy U„
the action Sz, and the critical current density j, are ex-
pressed in terms of the disorder parameters y for 6T,
pinning and 51 pinning, Eq. (2.38). In the following we
determine these disorder parameters from microscopic
considerations and show that oxygen point defects are
indeed an important source of pinning. Using indepen-
dent experimental data on the dependence of T, on hole
concentration and on the normal-state resistivity, we
reproduce the experimentally observed magnitude of the
critical current density in the oxide superconductors as
we11 as the typical values of the other characteristic quan-
tities determined by the weak collective pinning model.

In the following we first relate the GI. parameters to
microscopic quantities in order to relate disorder in a
and in m to disorder in T, and I, respectively. Since no
microscopic theory of high-temperature superconductivi-
ty is available as yet, we have to base our analysis on the
BCS theory. This simplification will probably have only
a minor inhuence on the case of 6T, pinning, whereas the
consequences for the case of 5l pinning are less clear. We
then investigate, first, the pinning strength produced by
disorder in the transition temperature T„and, second,
pinning due to disorder in the mean free path l. The
latter case has been studied by van der Beck and Kes
(1991)using the results of the microscopic calculation of
the pinning force by Thuneberg, Kurkijarvi, and Rainer
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(1984; see also Thuneberg, 1989). Here we follow a
difII'erent approach, using GL theory with coefficients
determined by the expansion of the Gor'kov equations
near T, for the clean-limit case. Our results essentially
agree with those obtained by van der Beck and Kes
(1991). Numerical examples are discussed for the case of
YBa2Cu 307

In order to relate the GL parameters to microscopic
quantities, we use the result of the microscopic derivation
of the GL equations by Gor'kov (1959). A consistent set
of GL coefBcients that is particularly useful for the dis-
cussion of the pinning problem is

velocity and bBcs denotes the (zero-temperature) BCS
gap parameter. %'e have also used the equality
Apcs/T, =me . Similarly, the GL order parameter
becomes ~'P, (T)~ =n(1 —T/T, )/2. The BCS zero-
temperature thermodynamic critical field

H, Bcs=@,/3/2/3n gacsA, L differs from the correspond-
ing zero-temperature extrapolated value from GL theory,
H& ( T=0)= 1.74H& iics.

Let us return to the problem of pinning and determine
the disorder coefficients y for 5T, and 51 pinning [see Eq.
(2.38)]. First, we define the dimensionless pinning param-
eters""'T T-

7$(3) e~
(3.64a) 1 Xcx

2m' 122(3
(3.71)

18m 1

7g(3) N(EF)
(3.64b)

me

x(p)
(3.64c)

g(p) = 8 1

7g(3) „o (2n + 1) (2n + 1+p)

with the disorder parameter

flV F
2~T, I '

(3.65)

(3.66)

I being the mean free path. The numerical value of the
zero function is g(3) =1.202. In the clean limit (to which
the new oxide superconductors seem to belong), the
Gor'kov function becomes

Here N(e~) denotes the density of states [N(e~)
=3n /4EF, n =carrier density, EF =Fermi energy] and T,
is the transition temperature. The Gor'kov function y(p)
is given by

7 Vm

302r m2$3
(3.72)

Seff
5

—1/3 ~ —~ 52/3
fg e2

(3.73)

and the corresponding quantities in the anisotropic su-
perconductor for the case of a magnetic field aligned
along the c axis are

—1/3
5L; =Eg U'=H Eg

1/3
6

Seff, c
E

—1/3
eg 5

Jc Jo
e P„

' 2/3
6

(3.74)

for 6T, and 5l pinning, respectively. In terms of the new
dimensionless pinning parameter 5 ( =5 or 5 ), the
characteristic quantities L,„U„SE,and j, become

—1/3 U H 2(351/3

m4
y(p~0) =1—

84$(3) p, clean limit,

whereas the dirty limit is characterized by

(3.67) It remains to determine the dimensionless pinning pa-
rameters, and we begin our discussion with the case of
5T, pinning. Using Eqs. (3.64a) and (3.71) and the
definition (5T,(r)5T, (r') ) =y T T, 5(r —r'), we obtain

1
y(p —+ oo ) = —, dirty limit .

7g(3) p
' (3.68)

T=o 544csr(p)
c

(3.69)

A, (T)=—
AL

2 1 2 1—T
2 y(p) T,

(3.70)

with C=0.577 the Euler constant. Here vF is the Fermi

Using Eqs. (3.64a) to (3.64c) we can express the GL
length scales g' and A, by the zero-temperature BCS coher-
ence length gBcs=iriUF/mb, Bcs and the zero-temPerature
London penetration depth XL =(mc /4rtne )'/,

2 T —1

e c

1 48
2~ 7g(3)

' 3/2 3
e 7T 1

4cs (1—t )'" (3.75)

where we have introduced the reduced temperature
t = T/T, . The transition temperature T, is determined
by the mean hole concentration within the coherence
volume V&

=ngBcsd, d being the interlayer distance.
Due to the quenched disorder produced by (charged) ox-
ygen defects, the hole concentration also exhibits spatial
fluctuations. For example, assuming the oxygen defects
to be mainly concentrated within the CuO chains, the
metallic planes will tend to screen the charged defects
within a distance =d /2 & gacs. The additional holes in-
volved in the screening process then set up a fluctuating
hole density 5n, which is correlated with the oxygen dis-
order 6n;, where we denote the oxygen impurity density
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by ni. We can thus write the spatial Auctuations of T,

dT — 1 d T
T, (r) = T, + 5n;(r )+— 5n;(r)

n, 2 dn; n,.

5n, (r)= f d uP(r —u)5n, (u) .

(3.76)

(3.77)

where we assume short-scale disorder in the impurity dis-
tribution, (5n,.(r)5n;(r') ) =n, 5(r —r'). In particular, we
have used here the decomposition rule for the fourth-
order moment,

Here P(r —u) is a normalized test function, which is
nonzero within the coherence volume V&. Good material
is usually conditioned so as to maximize the transition
temperature T„hence B„T,~„=0. For YBa2Cu307

t

the corresponding doping concentration typically is

y ~ 0. 1 or n,. =y /V« ——5 X 10' cm ', with V« the u»i
cell volume, whereas for Bi2Sr2CaCu208+, y =0. 15.
The quadratic term in Eq. (3.76) then produces the disor-
der strength in 5T, /T„

1 ni d Tc 1

2 Tc dn
L

1 1

1000 (1—t)'~' (3.79)

It is interesting to consider the case of nonoptimal
doping, where the term linear in 6n; essentially deter-
mines the fiuctuations in T, due to oxygen disorder [see
Eq. (3.76)]. In this case, which has been considered also
by Fisher, Fisher, and Huse (1991), the calculation
simplifies considerably and the disorder strength in
6T, /T, is immediately found to be

n; dT
'VT= (3.80)

Tc dni n

The final result for the pinning parameter 5 is then

n; dT

T, dn; (3Bcsn,. ( 1 —t )
~ ~~ (3.81)

and using typical values for YBCO (Cava, Batlogg, Chen,
et al. , 1987), assuming an oxygen defect concentration
y =0.2, around which a fluctuation of 5y =0.1 produces
a variation in T, of the order of 5T, =10 K, we obtain a
numerical value

( 5n;(r, )5n; (rz)5n;(r3 )5n, (r4) )
1 1

100 (1 t )»'— (3.82)

=g „„(5n;(r;)5n,.(r ) ) (5n, (r )5n, (r„))

characteristic of Gaussian white noise. In addition, we
have made the approximations

@(r)=Jd uP(u)P(r —u)=5(r),

@ (r) = 5(r) .1

V~

Combining Eqs. (3.75) and (3.77), we obtain the final ex-
pression for the pinning parameter

3/2 e~ n; d T

dn;

1 48
7g(3)

1 1

acsd (1 t )'i—
=0.063

n; d T

dn, ' gB'csd (1 —t)'" (3.78)

For anisotropic materials, this result is increased by a
factor 1/c, 5 —+5 /E. Typically, a variation in the oxy-
gen concentration 5y =0.15 produces a change in T, of
the order of 5T, =10 K (Cava, Batlogg, Chen, et al. ,
1987). Thus (n, /T, )(d T, /dn; ) =(2y/5y )(5T, /
T, ) V„, = V„, , where we have used n, =y /V„, and we
have assumed a mean doping concentration y =0.1. The
mean number of oxygen defects within the coherence
volume V& is of the order of n, V&

——5, hence fluctuations
are indeed important. The final numerical estimate for
the dimensionless pinning parameter due to 6T, pinning
then becomes

As expected, the linear variation of T, with doping con-
centration, relevant in materials with nonoptimal doping
with respect to a maximal transition temperature, is able
to produce stronger pinning. A systematic experimental
study of the correlation between oxygen defect concen-
tration n; and the critical current density j, would be
highly desirable.

Next we discuss pinning due to disorder in the mean
free path l. In a clean-limit superconductor,
5m =m, [~ /84((3)]5p, where 5p ~5(1/l ); see Eq.
(3.66). The mean free path l is related to the impurity
density n, and the scattering cross section o.;, l =1/n;o. ;.
Assuming again short-scale disorder in the impurity dis-
tribution, (5n, (r)5n, (r') ) =n, 5(r r'), we o—btain the fol-
lowing expression for 5

7 7T

30&3 &7g(3)

=0.13 "
4csI'n;

7 ec (1—t)3/2
24csI n;

(3.83)

Combining Eqs. (2.40) and (3.83), we obtain
( 6'~;„(L ) ) ~ s2(gBcs/g) (L /n, l2), which agrees with the
result of van der Beck and Kes (1991). Whereas the
latter authors base their analysis on the microscopic cal-
culation of the pinning force by Thuneberg, Kurkijarvi,
and Rainer (1984), in our case the connection to the mi-
croscopic theory has been made by Gor'kov's (1959)
derivation of the GL equations. It is important to realize
that the analysis of Thuneberg et al. corresponds to the
case of a clean-limit superconductor, where di6'erent de-

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



Blatter et aj.: Vortices in high-temperature superconductors 1181

5m
(

)(1 t)—3/2

c. 1000
(3.84)

Let us compare the results (3.79) and (3.84) for 5T, and
5l pinning. In both cases we have obtained a low-
temperature pinning parameter 5/E of the order of 10
for both 5T, and 5l pinning. In spite of our rather care-
ful analysis, in which we have tried to keep track of all
the important numerical factors, we had to introduce es-
timates in order to make connection to experimentally
observable quantities. We thus are unable to decide with
certainty which of the two pinning mechanisms is really
the more important one. The only statement that can be
made is that 5T, pinning becomes dominant at high
enough temperature due to the different temperature
dependencies of the two mechanisms; see Eqs. (3.79) and
(3.84).

Finally, let us return to collective pinning theory and
estimate the (low-temperature) collective pinning length

fects do not interfere. The agreement between the two
approaches shows that the analysis of Gor'kov is indeed
complete, as it accounts correctly for the results of
Thuneberg et al. (the same conclusion has also been
found by Thuneberg, 1984).

Let us continue with the numerical estimate of the pin-
ning parameter 5 . The mean free path l can be related
to the residual resistivity p„and the hole density n,
l=(A/e )(3m /n )' /p„; using typical values for the
normal-state resistivity extrapolated to zero temperature,
p„(T~O)=10 pQcm, and for the hole density,
n =2.5 X 10 ' cm, we find a mean free path l =700 A,
placing the oxides definitely in the clean-limit regime.
Note that in our discussion of pinning we are interested
in the quenched disorder potential producing residual
resistivity, and therefore we should not use the high-
temperature normal-state resistivity, which also contains
contributions from inelastic processes.

Finally, we have to estimate the active defect density
n;. An upper limit for n; is given by the doping concen-
tration n; '"=y/V„, (note that in general n;An) The.

upper limit of n, is physically realized in Eq. (3.83) if all
scattering centers are equivalent, i.e., all oxygen defects
are concentrated either in the CuO plane or in the CuO
chains. Using y =0.1 as a typical value for the defect
concentration, we find an active defect density
n; '"=5X10 cm . Qn the other hand, the scattering
defects may be distributed among the planes and the in-
termediate layers, thus reducing the value of n; below the
doping concentration n, '". A lower bound for n; is then
given by the expression ni; '"=1/la; '" with o; '" an
upper limit for the scattering cross section. Using
cr, '"=2mR;,„,R;,„=1.4 A ( = half the oxygen spacing),
we obtain an estimated lower bound n; '"=10 cm for
the active defect density. For the coherence length we

0
use a value (Bcs-—16 A. We then find typical numerical
values for the dimensionless pinning parameter 5 /s of
the order of

L,', the pinning potential U,', the effective action SE ',
and the critical current density j,. From the above dis-
cussion we have seen that the value 5/8=10 is a
reasonable estimate for the dimensionless pinning param-
eter; using Eqs. (3.74) we obtain

L;= 10sg,

U'=50 K,
Se~ ~ —10 $

j,'= 10 j,

(3.85a)

(3.85b)

(3.85c)

(3.85d)

Here the following estimates have been used: for the
thermodynamic critical field, H, = 10 G, for the residual
resistivity p„, p„=10 pQ cm, and for the depairing
current density at low temperatures, j, =3X 10 A cm
Note that we have used the residual resistivity p„(T~O)
because of the low temperatures needed for the observa-
tion of the quantum creep phenomenon. For the case of
Hall tunneling in a super-clean material, the estimate for
the action is SE'-—1', one order of magnitude smaller
than the result for the dissipative dynamics.

In the analysis of pinning and creep presented in Sec.
II.A above we did not distinguish between the minimum
and the saddle-point solution of the free-energy function-
al (2.44). This is consistent with our convention of drop-
ping a11 the numerical factors and with the fact that there
is only one transverse/longitudinal length (g and L„re-
spectively) and one energy scale ( U, ) in the problem.
However, a more careful analysis shows that the
minimum solution of Eq. (2.44), which determines the
critical current density j„differs from the saddle-point
solution, determining the activation energy for creep, by
a numerical factor in their amplitude u which is not of
order unity. As a consequence, the intravalley energy
U,', which determines quantities such as j,' or T'„, differs
by a numerical factor from the activation energy deter-
mining the rate of creep near j,. One way of obtaining
an estimate for this numerical factor is discussed in Sec.
III.E.3 below, where we consider the activation energy
for creep of a string pinned by a periodic potential.
From this analysis we obtain a numerical factor of the or-
der of 10, such that the activation energy for creep near
criticality is of the order of 500 K. The same discussion
also applies to the effective action for the tunneling pro-
cess. The obtained values for U, , SE ', and j,' then com-
pare quite favorably with experimental results on the
YBCO compound (for U;, see Yeshurun et al. , 1988,
1989; for SE ', see Griessen et al. , 1991 and Mota et al. ,
1991; for j,', see Dinger et al. , 1987, Worthington et al. ,
1987, Krusin-Elbaum et al. , 1992, and Tamegai et al. ,
1992).

The above results have been obtained using GL equa-
tions with coefficients determined by the BCS theory.
However, the basic mechanism of superconductivity in
the high-T, materials is still unknown at present, and the
question may be asked how strongly our results depend
on the underlying microscopic theory. Regarding the
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case of 5T, pinning, we are confident that our results are
quite generally valid. Every basic mechanism generating
a GL-type phenomenological theory will produce pinning
due to spatial Auctuations in the transition temperature
T„on which the GL parameter o. depends explicitly.
Since we are using experimental data for the T, depen-
dence on carrier density n, we circumvent the problem of
calculating the fluctuations of T, from first principles-
the basic mechanism of superconductivity is taken care
of in the dependence T, (n) as obtained from experiment.
The situation for the case of 5I pinning is much less clear.
The coefficient of the gradient term [1/m in Eq. (2.1)] de-
pends on the effect of (nonmagnetic) impurity scattering
on the pairing of the carriers, so an exotic type of pairing
mechanism may lead to a dependence of the coherence
length on impurity scattering that differs from Gor'kov's
(1959) result. However, the above analysis shows that at
least one pinning mechanism (and seemingly the more
important and robust one produced by 5T, ffuctuations)
is strong enough to account for the experimentally ob-
served critical current densities in the oxides, putting the
assumption of weak collective pinning by point defects
on firm ground.

D. Dynamic approach

In this section we introduce the dynamic approach to
the problem of Aux pinning in superconductors. This
technique was introduced by Schmid and Hauger (1973)
and by Larkin and Ovchinnikov (1973), who also applied
it to the calculation of the critical current density and the
current-voltage characteristic (CVC) of an inhomogene-
ous superconductor in the mixed state. Feigel'man and
Vinokur (1990) then improved this approach to include
thermal Auctuations of the Aux lines. Here we follow the
paper of Vinokur et al. (1991), where this method has
been generalized to describe the situation in the vortex-
liquid state. In order to treat the pinning problem in a
(viscous) vortex liquid, we need a formalism that ac-
counts for the time evolution of the liquid structure.
Indeed, the dynamic approach can be formulated in a
very general way that can be used for a11 the different
thermodynamic vortex phases. The dynamic approach is
also more reliable than the method of dimensional esti-
mates discussed above. In fact, the first calculation of the
critical current density in the presence of a weak-pinning
potential (Larkin and Ovchinnikov, 1973; Schmid and
Hauger, 1973) was carried out within the framework of
the dynamic approach rather than using the method of
dimensional estimates. A perturbative approach is also
very useful for determining the properties of the vortex
structure itself. In this case the behavior of the correc-
tions gives information about the relevance of the ran-
dom pinning potential within the different thermodynam-
ic vortex phases. For example, Nelson and Le Doussal
(1990) used perturbation theory in their calculation of the
structure factor for the vortex-liquid state and found a
"Lorentzian-squared" correction due to the presence of

weak quenched disorder. Note that all results concern-
ing the relevance of disorder in the different thermo-
dynamic vortex phases are equivalent and independent of
which quantity is actually calculated from the perturba-
tion theory.

Within the dynamic approach we investigate the
motion of the entire vortex structure under the action of
the constant Lorentz force jhB/c produced by an ap-
plied current density j &j, in the presence of a weak ran-
dom potential. The latter is treated as a small perturba-
tion; thus the approach is a perturbative one. At large
current densities, j»j„the random potential is not im-
portant, and the vortices move with a velocity

jB
C'g

(3.86)

where g is the viscous drag coefficient (Bardeen and
Stephen, 1965) for the vortex lattice, rl= rli /a,
=BH, /p„c . The current-voltage curve is linear and

can be characterized by the Aux Aow resistivity

B
pftow=pn H

Cp

(3.87)

The presence of quenched disorder will lead to a correc-
tion 5U to the velocity v, , which we can determine using
a perturbative approach. The key question then is how
this correction will depend on the velocity U, or on the
driving current density j. Let us start out at large veloci-
ties U, , where these corrections are small, and monitor
the size of the perturbation 6U as we reduce the velocity.
If the correction 5U remains small compared to the veloc-
ity U, itself for arbitrarily small velocity v, ,
5v(v. ~0) &(v. , the current-voltage characteristic
remains linear with a constant resistivity pz, , and the
effect of pinning is unobservable. A more complicated
scenario is encountered in the vortex solid: Here the
corrections 6U always diverge as v, ~0. Pinning then be-
comes relevant as the correction to the velocity becomes
of the order of the velocity itself, 5v(v, )-v„and the
condition 5v(v, )=v, can be used to determine the criti-
cal current density,

Ujc B c (3.88)

E~;„(r,u ) =g U~;„(r )p [R—R„(z,t ) v t —u „(z,t ) ]—,

(3.89)

This actually corresponds to a definition of the critical
current density j, as marking the onset of nonlinearity in
the current-voltage characteristic, 5p(j, ) =p„, . For
current densities j &j, the random potential cannot be
treated as a small perturbation any longer, and the dy-
namic approach breaks down in this regime.

The interaction energy (per unit volume) of the moving
vortex structure with the random potential can be writ-
ten as
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with U~;„(r) the disorder potential and p(R) the single-
vortex form factors introduced above, Eqs. (2.33) and
(2.34). The time dependence of the vortex positions due
to thermal fluctuations has been included in the
definition of R„(z,t), R„(z,t)=R„+u,h „(z,t), whereas
the corrections due to the presence of the disorder poten-
tial are described by the displacement amplitude

uz „(z,t). The velocity v of the moving vortex structure
is given by

v=v, —5v

with

jhB
XJC

(3.90)

and internal forces due to intervortex interactions. Upon
averaging over the disorder, we find that only the term
nonlinear in u „present in the pinning force F„;„will
survive, whereas the term describing the intervortex in-
teraction, which is linear in uz, will vanish. By
Newton's third law the force equation then becomes

the velocity of the unpinned structure generated by the
Lorentz force, and 5v denotes the small correction to the
velocity caused by the disorder potential.

Let us consider the forces acting on a sample unit
volume of the moving vortex structure: The Lorentz
force density FL =j h B/c is counteracted by the viscous
friction force density F„=—gv, the pinning force density

Bp [R—R„(z,t ) v t —u„(z, t )]-
F~;„(r,u) = —g U~;„(r)

V V

(3.91)

(( FL +F„+Fp,„))=0, (3.92)

;„rV R—R
V

(3.93)

Here we consider weak pinning, in which the interaction
of the vortices with the disorder potential is much small-
er than the intervortex interaction. In this case the dis-
placement field u due to pinning varies slowly on the
scale of the intervortex distance, and we can drop the
subscript v. Expanding F&,„in the displacement field uz,
we obtain

g5v= U~;„r u~. V Vp R—R —vt (3.94)

Within a linear approximation the displacement field u
due to the disorder potential is related to the pinning
force F„;„by

u (r, t)= fd r' dt' G &(r, r';t, t')F;„&(r', t'),
(3.95)

where G &
is the response function of the system. Substi-

tuting Eq. (3.95) into (3.94) and performing the
average over the quenched disorder using
( U,„(r)U;„(r') ) =y U5(r —r'), we obtain

where (( . )) denotes average over both thermal and
quenched disorder. Substituting in (3.92) the expressions
for all the forces and using the definition (3.90) of the un-
perturbed velocity v„we obtain the following equation
determining the correction 6v to the velocity v, :

g5v= —«F„,„))

g5v=yU f dt'G(O, t —t')g ((Vp[R R„(t') vt—'].V )Vp[R——R,(t) —vt] ),„, (3.96)

where we have used G p(r, r;t, t')=5 &G(O, t t'). After Fourier—transformation with respect to the planar coordinate
R we find

g5v= —
yU f dt'G(O, t —t')(K'. K)p(K')iKp(K) g (exp[iK' (R—R vt')+i—K (R—R —vt)]),h .

(2m) (2m)

Finally, we have to take the average over the planar coordinate R,

1
dz d R e' + ' = 5(K'+K) f dz

(2m )

VL VL

with VL =%a,L, the volume of the sample with dimension I.along the z axis, and obtain the result

(3.97)

d Ef dt K K„~p(K)~ G(O, t)S(K', t)
ga, (2m )

sin(K, Ut )
(3.98)

Here a, is the average distance (2.16) between the vortices and K„ is the component of K along the fiow direction v, of
the vortices. The structure factor S(K, t ) is given by the expression

S(K,t)= f dz g (exp[iK [R„(z,O) —R (z, t)]] ),„,1
(3.99)
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where X is the total number of vortices and I. is the
length of the sample along the z axis.

For the case of an individual vortex line, the same type
of analysis can be carried through with the simple result
that Eq. (3.98) for the relative velocity correction 5v /U is
still valid if we replace G(O, t) by the Careen's function
(2.114) for a single vortex [G(O, t) =e(t)(1/4~8. g&t)'~ j
and use the expression S(K, t)=exp( —X (u (t)),h/2)
with ( u (t ) ),& given by Eq. (2.116) for the structure fac-
tor. Note that gao =g&, hence Eq. (3.98) can be rewrit-
ten to contain only single-vortex quantities.

Equation (3.98), which is the main result of this sec-
tion, relates the behavior of the vortex system in a disor-
dered potential to the intrinsic properties of the system
described by the Green's function G(O, t) and the struc-
ture factor S(K,t). In the following sections we shall
make use of this result in the study of the pinning proper-
ties of the vortex solid and the vortex-liquid phase.

E. Elastic manifolds in periodic potentials

The main focus in this review is on the statistical
mechanics and the dynamics of vortices in type-II super-
conductors subject to a disorder potential producing
efFects such as pinning and creep. A particularly interest-
ing phenomenon in this respect is the "glassy" response
of the system at low driving fields, which is characteristic
of a true superconducting state with a vanishing resistivi-
ty at vanishing driving force. It is important to realize
that the phenomenon of "glassy" response is not speciGc
to the randomness of the pinning potential but is rather a
consequence of the interplay between the pinning poten-
tial and the elasticity of the manifold considered. In par-
ticular, pinning, creep, and a "glassy" response of an
elastic manifold can be realized as well if the potential is
periodic. A typical example is given by the intrinsic pin-
ning of the vortex lattice in layered superconductors for
the case where the magnetic field is directed along the
planes and the Lorentz force acts to push the vortices
across the superconducting layers (Chakravarty, Ivlev,
and Ovchinnikov, 1990a, 1990b).

In this section we investigate the phenomena of pin-
ning and creep of an elastic manifold driven by an exter-
nal force Geld and subject to a one-dimensional periodic
potential (washboard potential). our aim is threefold:
First, we wish to investigate the dynamic behavior of the
manifold in the limit of a vanishing driving force, as well
as for driving forces near criticality. The response of the
system under small driving forces crucially depends on
the dimensionality d of the manifold. We shall see that
"glassy" behavior is not specific to random systems, but
occurs in the present toy model as well for d ~2. This
"glassy" response at small driving force is a consequence
of the diverging radius of the critical nucleus placing the
manifold into the neighboring pinning valley; see Fig. 13.
Interestingly, the size of the critical nucleus diverges not
only for low driving forces but also near criticality. Us-
ing dimensional estimates, we shall determine the ex-

FIG. 13. Elastic manifold trapped in a (tilted) washboard po-
tential. Top: One-dimensional elastic string with a finite seg-
ment (nucleus) activated to the next valley. The activation ener-

gy 2Ek involves the production of two kinks and remains al-

ways finite —the string is never in a "glassy" state. Bottom:
Two-dimensional elastic surface with a finite nucleus activated
to the next valley. The activation energy involves the creation
of a one-dimensional (thin) wall, which costs an energy 2~rEk,
where r is the radius of the nucleus. If the nucleus is large
enough, r & r„ it expands and the elastic manifold moves on to
the next valley. The critical radius r, increases with decreasing
driving force F, r, =Ek/uoF, and the manifold shows glassy
behavior with a diverging activation energy at vanishing driving
force, U(F) =mEk/uoF.

ponents a and a, describing the vanishing of the activa-
tion energy and the action near criticality [see Eq. (2.58)j.
Second, we investigate the behavior of our system by
means of the dynamic approach. We shall see that the
dynamic approach is a very useful tool in determining
the response of the system under an applied force. In
spite of being a perturbative approach starting from the
free limit at large forces, the dynamic approach clearly
distinguishes between a glassy or a liquid phase, which is
a thermodynamic property defined by the response under
vanishing force. The experience gained with the dynamic
approach in this well-deGned situation will then be very
helpful for the interpretation of the results obtained for
the case of the vortex liquid subject to random disorder,
as presented in Sec. VI below. Third, the periodic pin-
ning potential allows for a quantitative determination of
various quantities such as the critical force or the activa-
tion energy for creep. An analysis of the periodic pin-
ning potential can therefore be used for obtaining an esti-

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



Blatter et a/. : Vortices in high-temperature superconductors 1185

mate of the numerical factor quantifying the activation
energy for creep.

3/2

V=V 1— and uF = 3u 0

2'

1. Droplet model

Let us consider a d-dimensional elastic manifold (elas-
ticity C) embedded in a (d+1)-dimensional space and
subject to the tilted washboard potential V(u ),

V(u) = V, (1—cosk, u )
—Fu . (3.100)

U(F) = U,
F
F (3.101)

S(F)=S, 1—
S

(3.102)

The original theory of classical creep (Anderson, 1962;
Anderson and Kim, 1964) assumes a =1 for the case of a
three-dimensional vortex lattice pinned by a random po-
tential. The actual values of the exponents a and az for
a random pinning potential are not known. The present
discussion of the periodic washboard potential may shed
some light on this very nontrivial issue.

The dynamic behavior of the system is determined by
the size of the critical nucleus (Langer, 1967), which we
can determine by the method of dimensional estimates.
%'ith a free energy given by

V[u ]= f d "x —{Vu ) + V{ u )
C
2

(3.103)

the energy of a distortion of the elastic manifold by u on
a scale I. is estimated to be

8(u, L)= —— + V(u ) LC u d

2 I. (3.104)

We call u the transverse dimension. V, characterizes the
strength of the pinning potential, and k, is related to the
distance u, between neighboring minima via
k, =2m/u, . Finally, F is the applied force driving the
manifold along the transverse direction u. The critical
force F, is determined by the condition B„V(u) 0, i.e. ,
F, =k, V, is the maximal force for which metastable
minima can exist.

Let us first consider creep near criticality, F + F„and
determine the behavior of the activation energy U(F) for
classical creep as well as the action S(F) for quantum
creep. At criticality, both these quantities vanish, and
the manifold depins:

(3.106)

The critical displacement uF, which depins the manifold,
scales with the applied force F according to
(1—F/F, )'~ . The barrier V~ to be overcome
(potential-energy density) scales with u ~ (1 F/—F, )3~2

and competes with the elastic-energy density C(u/L) .
This competition determines the length scale I. of the
saddle-point configuration, which becomes

1/2 —1/4

I.=uo
V,

(3.107)

Finally, the energy barrier for thermal activation of the
manifold out of the pinning potential is

1/2

U(F) =u."V. (3.108)
V, F

with

6—d
4

(3.109)

Sz(u)= fdt ~ f d x— +V[u]M du

2 dt
(3.110)

Equation (3.110) is a (2+1)-dimensional uniaxially an-
isotropic generalization of Eq. (3.103), and simple rescal-
ing of the (imaginary) time axis t +(C/M)' t —renders
the problem isotropic again. Substitution of d —+0+1 in
Eq. (3.108) and multiplication with the scaling factor
{M/C )

' leads to the result
d/ 1/2

S (F)=u. +'V.
0 0

S
1—

with

5 —d
a&=, massive manifold .

4

(3.111)

(3.112)

Note that the tunneling time t also diverges at criticality,
1/2 —1/4

V
(3.113)

In order to obtain the exponent cx, governing quantum
creep near criticality, we have to determine the time evo-
lution of the critical nucleus, and hence we have to con-
sider the (Euclidean) action for the process, which for the
massive manifold is given by

'2

V(u) = V~
45

2
u

3

(3.105)

with

Close to the critical force F, we can expand the potential
V(u),

(3.114)

For the overdamped situation we have to replace the
kinetic energy in Eq. (3.110) by a term (Caldeira and Leg-
gett, 1981, 1983)

2 2
M du
2 dt
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leading to a tunneling time t ~ I. , more precisely,
—i /2F

The total energy for formation of a nucleus of size r is
then

A(r) =EkSd(r) —u, FVd(r), (3.119)

The action for quantum creep is given by SE(F)= tU(F),
and we obtain

d/2

Seff(F ) ~ d +2 V
V,

F
V. 'F, (3.116)

with

4—d
az=, overdamped manifold . (3.117)

Ek = (CV, )'i8

0
(3.118)

Hence the exponent for quantum creep is reduced due to
the appearance of the additional divergent time scale
near criticality.

The Hall tunneling case is somewhat special. Here we
additionally need the scaling behavior for the transverse
distance u traced out during the tunneling motion. For
the model potential (2.102), this scaling behavior is easily
obtained by comparing the transverse energy fu~ /2 with
the height Vo(F) of the potential; see Eq. (3.106). With
u ~(1 F/F, )

~—we obtain for a point vortex the result

SE (j)=Sz (1 j lj, )
~"—and for a vortex line SF (j )

=Sz(l —j /j, ). Note that the result for a pointlike par-
ticle is identical with the result for a massive particle
(d=0) moving in a 1D potential. The scaling behavior
of u (as well as that of u„) depends on the specific form
of the potential close to the saddle.

The scaling analysis of the creep near criticality shows
that the relevant spatial scales of the critical nucleus
diverge at criticality. It would be very interesting to
study whether this feature is specific to our model poten-
tial or is a general characteristic of the critical state and
hence would also be present for the case of a random pin-
ning potentia1.

Next, let us turn to small driving forces, F ((F,. As
the driving force F approaches zero, the energy gain of
the manifold due to transverse motion decreases. On the
other hand, the energy cost to throw a finite part of the
manifold into the neighboring pinning valley (see Fig. 13)
remains large, i.e., it is not reduced by a small parameter.
However, the energy gain due to the driving force is a
volume effect, whereas the energy cost to deform the
manifold scales only with the surface of the nucleus.
Hence, for a small driving force F~0, we expect that the
critical nucleus will be large, and we can adopt the thin-
wall approximation, which assumes that the distorted re-
gime of the manifold (surface of the nucleus) is small as
compared with the size of the nucleus itself. For the iso-
tropic situation considered here, the nucleus is spherical-
ly symmetric and the energy Ek of the wall is obtained by
a simple integration of the Euler-Lagrange equations of
(3.103),

where Vd =sr" r"/f'(1+2/2) [I (x) denotes the gamma
function] and Sd =B„Vd denote the volume and the sur-
face of the d-dimensional nucleus, respectively. The
second term in Eq. (3.119), favoring formation of the nu-
cleus, is the energy gain due to the displacement of the
manifold by a distance u, in the force field F. The saddle
point is determined by the extremal condition c}„6(r) =0,
from which we obtain

(d —1 )EI,

u F (3.120)

When we insert this result back into Eq. (3.119), the ac-
tivation energy becomes

&riE„
U(F) = (d —1 )&n.

I (1+d/2) u, F (3.121)

The action for the tunneling of a massive manifold is
easily obtained from the classical result (3.121) by going
over to the corresponding (d+1)-dimensional problem
with a proper scaling of the time axis, and we find

d&~M /C Ek EkSF= d &n.
I (3/2+d /2) u, F (3.122)

The result (3.122) shows an interesting feature: Express-
ing the action through the radius r, of the nucleus, we
find that S ~r,". This result can be obtained by letting
the manifold tunnel as a "solid" object, in which case the
total mass Mr, has to tunnel under the barrier V, r,", re-
sulting in the action u, (Mr,"V, r, )' ~r," Alternati. vely,
the manifold can exploit its elastic properties and create
a thin-wall nucleus of mass Mr" ', the mass of the wall,
which tunnels under the potential V, r" '. The wall
then has to move a distance ~ r„and hence the total ac-
tion is again f dr(Mr 'V, r" ')' o- r, . This result is

very different from the thermal case, where we have to
pay an energy —V, r," if we lift the manifold as a "solid"
object over the barrier; the motion via creation of a thin-
wall nucleus involves only an activation energy ~ r,"
The reason behind this difference is that time is irrelevant
in classical motion, but relevant in quantum motion.
Hence an elastic manifold can take more advantage of its
elasticity in classical creep than in the quantum creep
case.

Let us return to the classical case (3.121) and consider
dimensions d & 2: For vanishing driving force, F~0, the
activation energy for creep diverges, U(F) ~ F
and the manifold is in a "glassy" state, i.e., its low-field
dynamic response is highly sublinear. This result is not
changed by thermal fluctuations, as in dimensions d &2
the correlator ([u(r, t) —u(0, 0)] ),h never diverges. On
the other hand, in one dimension (the string problem) the
surface of the nucleus consists of two kinks, which are
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pointlike objects, and therefore the activation energy is
always finite. As a result, the string is in a "liquid" state,
where the term "liquid" here is used to describe a system
with a characteristic linear response under small driving
forces. The two-dimensional case is marginal. Here
thermal fiuctuations lead to a roughening transition (Bur-
ton, Cabrera, and Frank, 1951; Chui and Weeks, 1976) at
a finite temperature Tz . This transition is of the
Berezinskii-Kosterlitz-Thouless type (Berezinskii, 1971;
Kosterlitz and Thouless, 1973; Pokrovskii and Uimin,
1973; Kosterlitz, 1974; Jose et al. , 1977) and can be
characterized by a change in the long-distance behavior
of the correlator ([u(r, t) —u(0, 0)] ),h. At small tem-

peratures this correlator remains finite, whereas for
T) Tz the periodic potential V, cosk, u becomes ir-
relevant, and the correlator diverges logarithmically. As
a consequence, the manifold is in a "glassy" state at low
temperatures, T(T~ [with diverging barriers; see Eq.
(3.121)],and undergoes a finite-temperature phase transi-
tion to a liquid at T= Tz. In summary, we conclude that
"dynamic glassiness" is not specific to randomness but
rather a consequence of the competition between the
elasticity of the manifold and the pinning potential.

2. Oynamic approach

g5u = V[ut+u, (hxt) +u~( xt)],= a
Bup

(3.123)

with u the correction to the displacement field u due to
the presence of the pinning potential, to lowest order,

In this section we investigate the dynamic approach as
applied to the problem of pinning in a periodic potential.
In particular, we are interested in understanding how far
the dynamic approach is able to reproduce the results ob-
tained above, where we followed a more conventional
line of thought. This will provide us with an understand-
ing of the predictive power of the dynamic approach,
which will be very helpful in the analysis of the liquid-
vortex phase in Sec. VI below.

Let us start by writing down the expression for the per-
turbative correction 6v to the velocity v. Following the
analysis in Sec. D above, we obtain

Vok,2 3

f d x dt G(x, t)
V 2'g

sinvk, t
exp[ —

—,
' k, ( u,„(x,r ) ) ],

V2I 2

2Y/ v

The condition

6v 1

v 2

(3.127)

(3.128)

then results in a critical force gv, = Voko, which agrees
with the value F, = V, k, as obtained from the usual con-
dition B„V(u ) ~~ ~ 0 for criticality.

C

Next let us discuss the effects of finite temperature.
Using the fluctuation-dissipation theorem (Landau and
Lifshitz, 1958b), we find that the thermal displacement
correlator (u,h(r, t)) becomes

ddt
(uth(x, t)) =4Tf d [1—cos(qx —cot)]

(2~)" 2m

X —ImG(q, cu),
1 (3.129)

which, after integration over frequency, reduces to

( 2
( r)) — '0 R [1 iqx —(c/q)q t]2T d 1

C (2n) q

(3.130)

Integration over q then leads to the result

s(x, t), d=1,
(u~&(x, t)) = „x, 1n[s(x, t)], d=2,

m Cx,"
1— 1 d=3

s(x, t)

(3.126)

with ( u, h (x, t ) ) = ( [u,h(x, t )
—u,h(0, 0) ] ).

Consider first the zero-temperature limit, where
( u, h (x, t ) ) =0. Using the elastic Green's function

G(q, co)=1/( ig—co+Cq ), we obtain, after integration
over space and time, the final result

u~( tx)= —fd'x'dt'G(x, x', t, t')

Xa„V[ur'+u, „( rx)] . (3.124)

Vp(k)=~V, [25(k)+5(k+k. )+5(k —k. )] (3.125)

for the pinning potential Vz, we arrive at

Here G(x, x';t, t') denotes the (real-space) Green's func-
tion of the d-dimensional elastic manifold. Expanding
Eq. (3.123) to lowest order in u and using the Fourier
representation

(3.131)

where s can be approximated by

x +(C/rl)t
s x~r

xo
(3.132)

An exact result for the interpolation formula (3.132) has
been given by Koshelev and Vinokur (1993) for the case
d=1. Here x, denotes a short-distance cutoff given by
the internal structure of the manifold. The simplest case
to analyze is that of three dimensions and higher, where
the displacement correlator (u,z(r, t)) converges to a
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finite value. The relative correlation 5v /v is then
merely reduced by the 0ebye-Wailer factor,
exp( —Tkoxo /2m. Cxo ), and hence still diverges as the
driving force is reduced to zero; see Fig. 14. Let us com-
pare this result with the analysis in Sec. III.E.1. There
we found [see Eq. (3.121)] that the activation energy
U(I') of the critical nucleus for motion across the pin-
ning barrier diverges as the driving force I' vanishes, and
hence the manifold is in a glassy state. Thus we conclude
that a velocity ratio 5U /v, as obtained from the dynamic
approach, which diverges at small velocities, U —+0, is
indeed characteristic of a glassy state. If this is true, then
in one dimension the dynamic approach should produce
a finite correction 5U/v at vanishing driving force, since
the critical nucleus involves only a finite energy
U(F)=2Ek in this case. At any nonzero temperature
this nucleus can be thermally activated at a finite rate,
and the string will move with a velocity proportional to
the driving force. The one-dimensional string in a
periodic pinning potential then is not in a glassy state, in

Sv
V

Xexp — [x +(C/rl)t]'2&T 2

u, C
(3.133)

As the velocity v approaches zero, the cuto6' in the time
integral is provided by the last factor, allowing for expan-
sion of the velocity-dependent factor sin(uk, t)/U =k, t.
The (finite) result of the integration is independent of ve-
locity, and thus 5v/U is finite for all velocities, which is
the characteristic feature of a nonglassy or liquid state.
For small temperatures, 5U/U )) 1 as U vanishes, indicat-
ing a strongly suppressed linear response to the driving
force, whereas at high temperatures 5u/v is always small
and the string is essentially free; see Fig. 14. The results
of the dynamic approach can be understood in the fol-
lowing way: For the one-dimensional case, the activation
barrier for motion is finite, and hence for temperatures
T)2Ek the pinning potential is irrelevant. On the other
hand, for the three-dimensional situation, the barrier
diverges with vanishing force, and pinning is relevant at
all temperatures.

Finally, let us consider the two-dimensional marginal
case. The relative correction to the velocity is given by

2

d B( )
exp( —gx /4Ct)

2g 4m Ct

contrast to the string subject to random disorder. In fact,
the dynamic approach provides a result fully consistent
with this scenario. The relative correction to the velocity
is given by

V, k, exp( rlx —/4Ct) sinvko t
dx dtB(t)

2' &4mCrlt .
U

Sv
V

sinok, t

x +(C/rl)t
(3.134)

with P=Tk. /4~C. Integration over the space coordi-
nate provides an additional factor t such that the decisive
final integration over time becomes

Sv
V

P(2,
Jdr B(r)t' ~~ ' (3.135)

FICi. 14. Relative velocity correction 6v/v vs velocity v of a
driven elastic manifold as calculated via the dynamic approach.
In the one-dimensional situation, the relative correction 6v/v
remains finite, which is consistent with the finite activation bar-
rier 2Ek against creep. For a three-dimensional manifold, the
ratio 6v/v diverges at vanishing driving force {v ~0), signalling
the divergence of the corresponding activation barrier against
creep. The two-dimensional case is intermediate between the
two extreme cases discussed above. Below the roughening tran-
sition ( T & T& ), the response 6v /v diverges and the system is in
a glassy state, whereas above the roughening transition
( T) T& ) the relative correction 5v/v remains finite and hence
the surface shows the response of a liquid.

where we have again expanded the factor sinvk, t =Uk, t
for v~0. At low temperatures, T(Tz =BC'/k„ the
manifold is in a glassy state, whereas at high tempera-
tures the manifold will exhibit nonglassy creep; see Fig.
14. The finite transition temperature Tz for depinning is
nothing but an estimate for the roughening transition
temperature of a two-dimensional interface trapped in a
cosine potential (Chui and Weeks, 1976). Hence, in the
two-dimensional case, the dynamic approach exactly

5Note that during the mapping of the roughening problem to
the Coulomb gas problem of Kosterlitz and Thouless (1973), the
temperature is inverted; hence the low-temperature Coulomb

gas phase (Berezinskii phase) corresponds to the high-
temperature rough phase in the roughening problem.
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reproduces our knowledge about the dynamic behavior of
an elastic manifold in a periodic potential as derived via
the conventional approach.

We obtain the following consistent picture (Fig. 14):
The thermodynamic state of the manifold can be found
by determining the relative velocity correction 5v /v un-
der infinitesimal driving force ( v ~0). If this ratio
diverges, the manifold is in a glassy state characterized
by infinite barriers against motion under vanishing ap-
plied driving forces. This is the result found in three and
higher dimensions. A finite ratio 5v/v, on the other
hand, is the characteristic of a liquid state, where the
response under an external force field is linear at small
fields. The string in a periodic potential therefore is al-
ways in a liquid state, in strong contrast to the situation
in a random pinning potential, where the single string is
characterized by a "glassy" response (Feigel'inan, 1983).
Finally, in two dimensions, the manifold is in a glassy
state at low temperatures, T & Tz (nonlinear, i.e., glassy
response), and performs a transition to a liquid state
(with a linear response) at a finite temperature Tli. The
transition from the "glassy" to the "liquid" state is noth-
ing but the roughening transition.

3. Intervalley and intravalley energy scales

As has already been mentioned in Sec. C above, we
have to distinguish between two different types of "pin-
ning energies" U, . Let us concentrate on a single vortex.
If we are interested in the behavior of the vortex within
its pinning valley, the relevant transverse length scale we
should consider is the typical extent of the valley, which
is given by the core radius &2$. Quantities involving
this Intravalley pinning energy are the critical current
density j, and the depinning energy Tz . On the other
hand, the process of creep involves thermal activation of
the vortex to the neighboring valley, which is further
away than &2g' and therefore involves larger distances
and thus larger elastic energies. The creep process then
involves the intervalley pinning energy which we expect
to be larger than its intravalley counterpart by a numeri-
cal factor. Here we shall use the well defined situation of
a vortex trapped within a periodic pinning potential in
order to obtain an estimate for this numerical factor,
which enhances the intervalley pinning energy relevant
for creep over the intravalley energy relevant for j, .

The activation energy U(F) for thermal creep of an
elastic string in a washboard potential has been discussed
in detail in the work of Buttiker and Landauer (1981). At
small driving forces, I ~0, the saddle-point solution to
the free energy is given by two well separated kinks of en-
ergy Ek=8(CVo )' /k, , interacting only weakly, hence
U(F)=2Ek, which is a special case of the above result
(3.121). Near the critical force F„the thin-wall approxi-
mation breaks down and the activation energy U(F) has
to be calculated by integration of the differential equation
determining the saddle-point configuration. The result is

5/4

U(F)=U 1—
C

C

(3.136)

with
1/2

U, =—2 Ek= 2
6 $/4 24 $/4 ojc
5 5m 2&C

(3.137)

Here we have replaced C by the elasticity E, of the vortex
and expressed the amplitude V, of the periodic pinning
potential via the critical force I', =k, Vo =j,N, /c, where
the last equation relates the critical force I, to the depin-
ning current density j,. The final step is to relate the
length scales u, and g of the periodic and the random
pinning potentials. This is done by requiring that the
length scales defined by the mean energy-to-force ratio be
the same for both potentials,

(3.138)

The forces generated by the two potentials are easily
found to be & (B„v) &

=
& V &k. and & (B„A'~,„) &

=
& 6';„&/6g, hence

u. =2&6m.g . (3.139)

Inserting Eq. (3.139) into (3.137), we obtain for the inter-
valley energy scale of the random potential the result

1/2

U, =20II, g (3.140)

Hence the energy scale for creep (saddle point of the
free-energy functional) difFers from the energy scale for
pinning (minimum of the free-energy functional) by a nu-
merical factor of the order of 10. In comparing our
theoretical results with experiments, we always have to
analyze which energy scale is involved in the quantity
measured. For example, the critical current density j,
and the depinning energy Tz are determined by the in-
travalley energy scale, U, =II,g(j, /j, )'~, wh'ereas the
logarithmic decay rate of the magnetization involves the
intervalley energy scale, —10U, .

F. Elastic rnanifolds in quenched random media

During the past decade a great variety of physical sys-
tems has emerged that can be subsumed under the title of
elastic manifolds in quenched random media. A first
straightforward classification of these systems is given by
the dimensionalities d and n of the elastic manifold itself
and of its motional degrees of freedom, respectively. The
most prominent examples are the "domain-wall prob-
lems" (DW, n =1), where a d-dimensional elastic inter-
face is roughened in a nontrivial manner due to the pres-
ence of randomness, and the "directed-polymer prob-
lems" (DP, d = 1), where a one-dimensional elastic string
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performs large transverse excursions induced by an un-
derlying random potential. Typical physical realizations
are domain walls in Ising systems (Huse and Henley,
198S), limiting interfaces in Bow problems (Huse and
Guyer, 1979; Rhyner and Blatter, 1989), growth of
directed polymers (Kardar and Zhang, 1987), the motion
of dislocations in disordered media (loft'e and Vinokur,
1987), the pinning of individual vortex lines in inhomo-
geneous superconductors (Nattermann and Lipowsky,
1988), or, via mapping to the Burgers equation (Kardar,
Parisi, and Zhang, 1986; Medina et al. , 1989), the growth
of Eden clusters (Wolf and Kertesz, 1987) and ballistic
deposition (Kim and Kosterlitz, 1989). In D =2 space di-
mensions, DW and DP problems become equivalent.
Other systems combining features of DW with d ~ 1 and
DP with n ~ 1 are pinned charge-density waves (d =D,
n =1; Nattermann, 1990) and vortex lattices in bulk su-
perconductors (d =D, n =2, Feigel'man et a/. , 1989;
Nattermann, 1990). All these systems can be described
by a generic Hamiltonian

&=f d"x —(Vu) +Ed(x, u) (3.141)

where u(x) denotes the n-component displacement field
of the elastic manifold. The manifold itself is character-
ized by an elasticity modulus C and subject to the disor-
der potential Ed. The latter is usually characterized by
correlated randomness of the Gaussian type, with mean
zero and a variance

(Ed(x, u)Ed(x', u'))=55 (x—x')R "(u—u') .

The disorder correlator R "(u) is assumed to show an
asymptotic power-law behavior, R "(u ) —u

For the special case of short-range correlated disorder,
R" becomes a 5 function, R "(u—u')=5"(u —u'), i.e.,
P(n)=n from scaling arguments. A prototype example
for this case is the Ising model with random-bond disor-
der; see, for example, Huse and Henley (1985).

On the other hand, R "(u) can be long ranged, as is the
case in the random-field disordered Ising model, where
P(n)= —n (Grinstein and Ma, 1983). For the single-
vortex problem, d = 1, n =2, C =Ei, Ed = E~;„, P(2) =2,
and Eq. (3.141) is equivalent to (2.31) with fL =0. Simi-
larly, for a vortex lattice, d =3, n =2, and Ed is given by
the random pinning potential E;„with v=0 [see Eq.
(3.89)], whereas the elastic term is slightly more compli-
cated [see Eq. (3.29) or (3.37)].

Here we shall concentrate on two main aspects of elas-
tic manifolds. First we discuss the statistical mechanics
of elastic interfaces subject to quenched random disorder.
We shall see that the statistical mechanics of these ob-
jects is strongly affected by the competition between
many metastable minima, which leads to a nontrivial
scaling behavior of the low-energy states of the manifold
regarding Auctuations in their displacement field and in
their energy. In subsection III.F.2 we focus on the dy-
namic behavior of these manifolds. Here we follow the

ideas of Ioffe and Vinokur (1987; see also Nattermann,
Shapir, and Vilfan, 1990), who describe the creep-type
dynamics of the manifold as a nucleation process, in
which a finite cell of the manifold (nucleus) has to be ac-
tivated across the pinning barrier to the next low-lying
metastable state. This approach is very similar in spirit
to that used in the problem of metastability in a first-
order phase transition, as studied by Langer (1967; see
also Langer and Fisher, 1976; Lifshitz and Pitaevskii,
1981). Langer found that, to exponential accuracy, the
transition rate is determined by a single generalized coor-
dinate of the system, which is the size of the critical nu-
cleus. This idea is also at the basis of our discussion of
the dynamic behavior of elastic manifolds in a periodic
potential, as presented in Sec. III.E above. However, for
a random pinning potential it is crucial to account for the
nontrivial scaling results characterizing the statistical
mechanics properties of the manifold. In particular, our
analysis of the dynamics will rely on the very basic as-
sumption that an elastic manifold in a random potential
develops only a single scale describing all the energy Auc-
tuations at large distances, and therefore the barriers
separating low-lying metastable states scale in the same
manner as the Auctuations in energy between the low-
lying states themselves (Ioffe and Vinokur, 1987).

1. Statistical mechanics

One of the major issues in the field of elastic manifolds
in random media concerns the (large-distance, L &L,)

scaling behavior of the transverse fluctuations of the
manifold (see Fig. 15),

(( [Qii (I ) ]
2 )) 1/2 —(( [u( L ) u( () ) ]

2 )) i /2 ~ I ~d, «

(3.143)

as well as the scaling of the Auctuations in free energy
V(L ),

L

FIG. 15. Elastic string in a quenched random environment.
Two low-lying metastable states di6'ering from one another on a
length L are shown. The crucial quantities to be found are the
transverse distance u (L) between the two states and the energy
barrier 8 separating them. Of particular relevance is the non-
trivial scaling behavior u ~ L ~ and 6"~ L ~ of these two quanti-
ties.
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(( [Qcy(L ) ]2 )) 1/2 —(( [y(L ) (( P(L ) )) ]2 )) 1/2

ux ae
—&I 0(X)]/T (3.145)

At low temperatures, the main contribution to the aver-
age (( ~ )) is due to the low-lying metastable states in
the system. Therefore the behavior of the manifold is
affected in a nontrivial manner by the presence of disor-
der. In particular, for the case d =n =1, the interface or
string subject to a short-range correlated disorder poten-
tial fiuctuates strongly with an exponent g»= —', (Huse
and Henley, 1985; see also Kardar, 1985), which is bigger
than the (thermal) random-walk value g =

—,
' expected

in the absence of disorder. The determination of the ex-
ponents gd „ is far from trivial, the only exact result to
date being the above random-bond example for n =d = 1

(Huse, Henley, and Fisher, 1985; see also Forster, Nel-
son, and Stephen, 1977; Kardar and Nelson, 1985; Kar-
dar, 1987a). Once the wandering exponent gd „ is known,
simple scaling arguments can be used to determine the
value of the second exponent gd „. Assuming that the
fiuctuations in the disorder energy 56d [short notation
for (( [5@d] ))'/ ] scale in the same way as the fiuctua-
tions in the elastic energy 58,&~ (( [5u ] ))L", the ex-
ponent gd „ takes the value

yd „=2(„„+d—2 . (3.146)

An additional complication arises at Gnite temperatures,
where fluctuations due to quenched randomness compete
with those induced therma11y. In the following we first
consider the zero-temperature case and then comment on
finite-temperature effects.

Various analytical and numerical methods have been
devised for tackling the problem of disorder-roughened
elastic manifolds. For the random-bond directed-
polymer problem, a very successful approach is mapping
to a particle problem, where the string u(x ) corresponds
to the world line of a particle in a D =(n+1)-
dimensional space. The path integral

(x ,0 )

'lV(x, , u, ) = f 2)[u(x )] e ("~"~)

(0,0)

then obeys the dynamic equation

V +E„(x,u) (3.148)

which is identical to the imaginary-time Schrodinger
equation for a particle moving in ( n + 1 )-dimensional
space and subject to a random potential fluctuating in
both space and time. When we define the velocity field
v= —(I/C)Vln'N, the dynamic equation (3.148) can be
mapped to the Burgers equation for a randomly stirred

(3.144)

Here (( )) denotes an average taken over both dy-
namic and quenched variables,

vorticity-free (Vi v=0) fiuid (Huse, Henley, and Fisher,
1985),

= 1 2 1
8 v= V v —(v V)v — V—Ex (3.149)

In one dimension, an invariant distribution for U is
known, as a consequence of which a second scaling rela-
tion, 2y» =g», can be obtained, implying the (exact) re-
sults g»= —', and y»= —,'. Unfortunately, no invariant
distribution is known in higher dimensions.

Again starting. from Eq. (3.141), an alternative ap-
proach was taken by Kardar (1987a; see also Kardar and
Zhang, 1987; Mezard, 1990) by using the replica
method in dealing with the problem of disorder. The
averaging over randomness produces an interaction
V;„,(u —u')=DR "(u—u') between particles belonging to
the N different replicas, which is attractive for the case of
a short-range correlated disorder potential. Such an at-
tractive interaction in the random-bond problem leads to
a clustering of the particles into an N-body bound state,
which is the signature of the relevance of disorder in the
particle formulation (for the long-ranged random-field
case the interaction between the replicas is repulsive).
For n (2 space dimensions, an arbitrarily weak attrac-
tion leads to a bound state; thus disorder is always
relevant. On the other hand, for n &2, only strong at-
traction is able to produce a bound state, implying that
only strong disorder is relevant for dimensions n )2.
The case n =2 is marginal: Since any attractive interac-
tion still produces a bound state (though it may be ex-
ponentially weak), disorder is always (marginally)
relevant. Again, the one-dimensional case can be solved
exactly: A short-range correlated disorder potential pro-
duces a 5-function-type interaction between the replicat-
ed particles, and the problem can be solved exactly by
means of the Bethe ansatz technique (Bethe, 1931). The
quantity to be determined is the ground-state energy of
the N-particle system, which takes the form
E, (N)=E, N+E3N +. . . , E3 (0. The mapping to the
original directed-polymer problem is then established by
the relation

( ~~) E, (X)1. —
(3.150)

—E, (X)L=e (3.151)

Obviously, the expression exp[ E, (N)L ] is nothin—g but
the Laplace transform of the distribution function P( V)
which, once the ground-state energy E, (N) of the N

with the partition function Z =%V(L,O) equivalent to the
propagator (3.147). As usual, the brackets ( . . ) denote
the average over disorder. With respect to the latter,
V= —lnZ can be viewed as a random variable. Intro-
ducing the probability distribution function P(9') for the
random variable P, we can rewrite Eq. (3.150) in the
form

( ZN) —( e Nv) —J d

clap(

y)—e —xv
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particle system is known, can be obtained by simple in-
version (Zhang, 1990). The linear term E i L in the
ground-state energy E, (N ) provides us with the free en-

ergy ( V(L) ) of the string,

(3.152)

P(V) 0)o-exp aLr, (3.153)

from which one easily obtains the scaling behavior for
the fluctuations in the free energy 2 of the string,

59(L ) =56'„(L ) ~ L ~~ (3.154)

For a string (d = 1) moving in one dimension (n = 1) we
have y= 1 and a=3, hence 56d(L) ~L', and we ob-
tain the desired exponent y, , = —,

' (Kardar, 1987a). Gen-

eralizing this scheme to higher dimensions n, one would
again expect the N-body ground-state energy to be of the

form E.(N)=E, N+Ek N ", with some positive integer
n

k„, implying that the exponent describing the Auctua-
tions in the energy of the string subject to short-ranged
disorder should have the form yd „=1/k„. The latter
furnishes a simple check on which analytical expressions
for the exponents gd „and yd „can be tested.

The result (3.152) implies that the correction in the line

energy of the strin. g due to the presence of the disorder
potential does not vanish. At first sight this seems to be
in contradiction with the statement made in Sec. II.A.2
that the energy contribution linear in the disorder poten-
tial Ed vanishes. However, in Sec. II above, our analysis
was concerned with a stiff vortex, and the finite elasticity
was only introduced in a second step in order to provide
the necessary cutofF producing a finite pinning force den-
sity. Here we consider only elastic strings.

Let us analyze more carefully the relation between the
two approaches. Consider a (straight) string in a homo-
geneous medium and choose the energy of its ground-
state configuration as our zero-energy reference point.
When we turn on a disorder potential Ed [notably with

(Ed ) =0], the elastic string will relax to the new environ-
ment by choosing favorable regions where Ed &0; thus
the new ground-state configuration is characterized by a
finite correction to the line energy. On the other hand, a
stiff vortex cannot accommodate to the disorder poten-
tial, and its correction to the line energy due to disorder

Note that, due to the presence of the disorder potential
Ed, the line energy E& of the string is lowered as com-
pared with the homogeneous situation, since the string
accommodates to the random potential by choosing
favorable regions where Ed (0.

Next, let us concentrate on the cubic term E3% which
determines the fluctuations of the free energy X In order
to simplify the analysis we can assume, without loss of
generality, that the line energy E& vanishes. The inverse
Laplace transform of exp(aN Lr) takes the form (Ko-
lomeisky, 1992)

1/(a —1)

x ux'= —and u'= (3.155)

where g is an abbreviation for gd „. The (coupling) pa-
rameters in (3.141) then scale according to

O'=C b and 5'=5 b (3.156)

with

yc =2g+d —2 and y~ =d gP(n ) . — (3.157)

In the absence of any disorder, a scale-invariant theory
necessitates ye =0 and hence g. =(2—d)/2, the thermal
exponent in the absence of disorder. Disorder is pertur-
batively relevant if y& )0 at this free fixed point, imply-
ing that d )d, =2p(n)/[2+ f3(n)] or p(n) (p(n, )

=2d /(2 —d ), 2 —d )0. For the random-bond domain-

remains zero. Consider, then, fluctuations in this (correc-
tion to the) line energy. To be precise we have to distin-
guish between two types of fluctuations. Taking the Quc-
tuations over all states, we obtain a fluctuation amplitude
growing linearly with the length L, ( [6 (L )—( 8 '"(L ) ) ] ) ' ~ L. In fact, these fluctuations are of
the same order as the correction to the line energy of the
elastic string itself. This type of Auctuation then leads to
the finite pinning force density which determines the criti-
cal current density j, in Sec. II.A.2 above. For small
scales, L =L„ the elasticity is not important, and
we can calculate the amplitude of these fluctuations
perturbatively with the result ( [6 (L, )
—(8 '"(L, )) ] )'~ =([8(L,)] )'~ = U, . The calcula-
tion presented in Sec. II.A.2 was nothing but the deter-
mination of this type of fluctuation in the line energy of
the string, leading to the phenomenon ofpinning. On the
other hand, we can consider the fluctuations in the mini-
ma of the line energies, 5A'(L )—:( [6 '"(L )—( 8 '"(L ) ) ] ) '~ . According to the above results these
fluctuations grow much more slowly with distance, i.e.,
56(L ) ~ L '~ in 1+1 dimensions. The physical
relevance of this latter type of fluctuation comes into play
when we are interested in the phenomenon of creep,
which is related to the barriers separating two low-lying
states on long scales, L ))L,: We can make the reason-
able assumption (Ioffe and Vinokur, 1987) that there is
only one relevant scale for Quctuations in energy in the
system, and therefore we expect that the typical barriers
( 6 (L ) ) separating two low-lying metastable states scale
in the same manner as the typical energy differences be-
tween the two states, hence ( 8"(L)) ~ L '~ . These bar-
riers become relevant in the discussion of the disorder-
dominated dynamics of elastic manifolds, and we shall
come back to this question in the next section.

One of the most successful analytic tools for dealing
with the present problem is the scaling technique,
with investigations ranging from simple Flory-type
scaling estimates to very sophisticated (functional)
renormalization-group analyses. Let us rewrite the Ham-
iltonian (3.141) in the new rescaled variables
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wall problem, d, =
—,
' (Huse and Henley, 1985; Kardar,

1987b), whereas for directed polymers with d = 1 and
short-range correlated disorder we obtain n, =2. The
simplest Flory-type result for the desired wandering ex-
ponent g is then obtained by requiring both terms in Eq.
(3.141) to scale in the same way, 2yc =yz, resulting in the
Flory exponent

4 —d
4+P(n)

(3.158)

A quick comparison with the exact result g, , = —,
' shows

that this simple argument is too naive in general, since
where we have used P(1)=1, the value for

short-range correlated disorder. The reason for the
failure lies in our implicit assumption that the disorder
correlator R "(u) remains unchanged under rescaling.
This is not the case in general, as can be shown explicitly
by studying the scaling behavior of R "(u) in a functional
renormalization-group (FRG) analysis. Within the repli-
cated particle picture described above, the FRG analysis
corresponds to determining the behavior of the interac-
tion potential between the particles under rescaling. This
is done by calculating the free energy of the system to
one-loop order, followed by a rescaling of the lengths x
and u with b =1+5b. The result is a nonlinear partial
differential equation describing the behavior of the corre-
lator (interaction) R "(u ) under rescaling (see, for exam-
ple, Halpin-Healy, 1990),

abR "(u)=f(d, n, g, R ",a„R ",a„R ") . (3.159)

To one-loop order, f takes the form

f=(4 d 4$)R +—Qua„R ——a'„R (0) a'„R +,'(a'„R )'

B„R n —1 B„R—(n —1)a„R(0) +
u 2 u

(3.160)

5 2

R * (u) -u -"+"-"-'"~'exp—
2(4 —d )

(3.161)

The numerical result for g found by Fisher is

gd, =0.2083(4—d ), which produces a value g, , =0.625,

where we have written R for R "(u). The task then is to
find the fixed-point function R '(u), abR *(u)=0, from
which we can obtain the correct scaling behavior of the
correlator at large distances and hence the relevant value
of P*(n) to be used in the Flory formula (3.158). Unfor-
tunately, the FRG equation (3.159) cannot be solved
analytically, and approximate methods have to be used.
The first analysis of Eq. (3.159) for the case n =1 goes
back to Fisher (1986), who interpreted the fixed-point
condition f(d, g, R,a„R,a„R )=0 as an eigenvalue prob-
lem, the solution of which depends on the boundary con-
ditions at infinity. For the random-bond problem a
short-ranged fixed-point function R sR(u) is expected to
exist. In fact, it can be shown that (for general n) the
fixed-point condition allows for a solution that behaves
asymptotically like a Gaussian damped power law,

4—d
P, =4+n— (3.162)

we now have obtained an expression for the relevant ex-
ponent P to be inserted into the Flory formula (3.158). In
fact, the Flory result is expected to be correct as we ap-
proach the critical value P, from below. Combining Eqs.
(3.158) and (3.162), we obtain the results

P, (n)=-n (3.163)

for the critical exponent P, and

~sR 2(4—d )
dn g+ i' c (3.164)

for the short-range wandering exponent gd „. In sum-

quite close to the exact value —', . On the other hand, as
pointed out by Fisher (1986), for the random-field prob-
lem with P(l)= —1, Eq. (3.159) also allows for a long-
ranged fixed-point function R i R ( u ) —u growing linearly
at large distances and producing the eigenvalue

gd i
= (4—d ) /3, in agreement with the Flory result

(3.158). In fact, the FRG analysis contributed substan-
tially to a better understanding of how and why field-
theoretic perturbative methods (Aharony et al. , 1976;
Grinstein, 1976; Efetov and Larkin, 1977; Parisi and
Sourlas, 1979), which produce a wandering exponent
gd, =(4—d)/2, fail to give the correct solution to the
random-field domain-wall problem, while simple Imry-
Ma or Flory-type arguments are better suited to capture
the essential physics of the problem (Imry and Ma, 1975;
Imbrie, 1984). However, recently, Mezard and Parisi
(1991) have been able to take into account the existence
of the many metastable states for the manifold by using
the replica method in combination with a variational ap-
proach and a hierarchical breaking of the replica symme-
try. This improved field-theoretic analysis is able to
reproduce the Flory exponent (3.158).

The following general scenario for the behavior of the
fixed-point solutions of Eq. (3.159) has been proposed by
Halpin-Healy (1989): For the case of long-range interac-
tions with P( n ) smaller than some critical value P, ( n ), a
fixed-point function R LR(u)-u ~'"' exists and produces
an eigenvalue g consistent with the Flory result (3.158).
%'e can conclude that for long-range disorder correla-
tions, the correlator R "(u) remains asymptotically un-
changed under rescaling and mean-field-like Flory-type
arguments leading to the result (3.158) are correct. I.et
us then decrease the range of interactions by increasing
the exponent f3(n). According to Halpin-Healy (1989),
the system will change its behavior as we cross the criti-
cal value P, . For P(n))P„ the FRG equation will re-
scale the initial correlator R "(u) to a new short-ranged
and universal [i.e., independent of P(n))P, (n)] fixed-

point function RsR(u) with an asymptotic Gaussian
damped power-law behavior of the form (3.161). Inter-
preting this asymptotic behavior as a Gaussian damping—Pof the critical power law u ' with
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mary, for the case of long-range disorder correlations
characterized by the condition 13( n) (n/2, the simple
Flory result (3.158) is exact, whereas for short-range
correlations in the disorder potential with P(n) n/2,
the wandering exponent sticks to the value (3.164). This
remarkable analysis due to Halpin-Healy (1989) thus pro-
duces the exact result g, , =—', for the random-bond prob-
lem in 1+1 dimensions.

The two approaches of Fisher and of Halpin-Healy de-
scribed above use the basic FRG equation (3.159) in quite
a different manner. Fisher's numerical search for the
eigenfunction implies an integration of the fixed-point
condition f(d, g, R, d„R,B„R)=0 from the origin u =0
to some asymptotic value where R*(u)~0 for the
correct eigenvalue g. Since the variation of the initial
value R "(0) corresponds to a variation in the (guessed)
eigenvalue g, one has to rely on the correctness of the
FRG equation (3.159) close to the origin. This reliance
has been criticized by Halpin-Healy (1989, 1990), who
pointed out that higher-order terms in the expansion
leading to Eq. (3.160) are expected to be important close
to the origin and can be neglected only in the asymptotic
regime. On the other hand, since Eq. (3.160) is expected
to be asymptotically exact, we can hope that the above
derivation of the wandering exponent g will be exact if
the important information determining the value of g is
indeed contained only in the asymptotic behavior of the
fixed-point function R sR ( u ).

An intermediate point of view has been taken by Nat-
termann and Leschhorn (1991), who use the moments of
the FRG equation (3.159) in their three-parameter
renormalization-group analysis of the problem, thereby
basing their results on the global behavior of the fixed-
point function R sR(u). In their analysis of the domain-
wall problem, Nattermann and Leschhorn use a two-
parameter ansatz for the correlator R '(u),

R (u)= r-u (3.165)

with r(z) a normalized smooth function with a peak at
the origin [note that here we have included the disorder
parameter b. in the definition of the correlator R '(u)].
By an integration over small-wavelength fluctuations,
renormalization-group (RG) equations for the parameters
b, (b) and g(b) [and for the temperature T(b)] are ob-
tained, which have a stable fixed-point solution if we
choose the (domain-wall) wandering exponent g to take
the form gd, =(4—d ) /( 5 —c& /c& ). The two unknown
coefficients cz and c& entering the RG equations for b, (b)
and g(b), respectively, then are determined by use of the
FRG equation (3.159). In fact, inserting the ansatz
(3.165) for the correlator R '(u) and the RG equations for
6(b) and g'(b) into Eq. (3.159), we obtain a functional re-
lation that involves the two unknown parameters cz and
c&. When we use a model function r(z)=exp( —z /2),
each pair of moments of this functional relation provides
us with a solution for c& and c& and thence with a value

for the wandering exponent gd i. It turns out that the
solution is very stable with respect to the particular
choice of moments, and the final result

gd, =0.2078(4—d) is obtained from the second and
fourth moment of Eq. (3.159), a value close to Fisher's
previous result.

A very interesting approach combining the ideas of
replica-analysis and scaling analysis (replica-scaling
analysis) has recently been proposed by Zhang (1990) and
further elaborated by Kolomeisky (1992). In this ap-
proach the ground-state energy E, (N ) of the replicated
system, instead of being determined exactly, as is possible
for the case n =d= 1 (Kardar, 1987a), is estimated with
the help of scaling concepts. The method reproduces the
exact result g»= —', for the n =1 directed-polymer (or
d = 1 domain-wall) problem. However, other findings are
in contradiction to traditional experience. To summa-
rize, for an attractive interaction between the replicated
manifolds (the random-bond situation), Kolomeisky
(1992) finds that at zero temperature gd „=(4—d )/4 in-
dependent of n. This expression coincides with the
Imry-Ma-type result obtained by Nattermann (1985) for
the random-bond problem. For finite temperatures and
small internal dimensions, 0 (d (2n /(2+ n ), of the
manifold, the Gaussian result gd „=g, = (2 —d ) /2 is
recovered (note that the critical dimension d, above
which disorder is perturbatively relevant is d, =—', for the
d = n = 1 random-bond problem, in agreement with
Kolomeisky's result). For d )2n /(2+n ), the wandering
exponent turns out to be gd „=2/(n+1) independent of
the internal dimension d. The latter result implies a
super-universal wandering exponent gd, =—', for the
domain-wall problem. For large d the zero-temperature
exponent gd „=(4—d )/4 drops below the finite T result

gd „=2/(2+n), in disagreement with common expecta-
tions. Finally, within the replica-scaling approach, the
critical exponent P, separating long-range (random-field)
and short-range (random bond) disorder turns out to be
/3, =0 independent of n: at P=P, the interaction be-
tween replicas changes from attractive (random-bond) to
repulsive (random-field), giving a physically very appeal-
ing interpretation of the fundamental difference between
short- and long-range disorder.

Scaling analysis of the problem, then, leaves us in a
somewhat undetermined situation: we have a remark-
ably consistent scenario proposed by Halpin-Healy and
an interesting replica-scaling analysis by Zhang and by
Kolomeisky, which both reproduce the only known exact
result in 1+1 dimensions. Then there are the two calcu-
1ations of Fisher and of Nattermann and Leschhorn,
which, however, produce somewhat different results from
those of Halpin-Healy. It is instructive to consider the
analysis of Feigel'man et al. (1989), based on scaling ar-
guments and purely physical considerations, which pro-
duces results in full agreement with those of Halpin-
Healy without relying on the FRG equation (3.159).

The analysis of Feigel'man et al. is also based on
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5 '
P(n)/2

56'd(L ) = U,
C

(3.166)

Flory-type arguments, assuming that the wandering ex-
ponent g is determined by the equal-scaling condition for
fluctuations in the elastic energy 56,&(L) and the disorder
energy 5@d(L). We then have to set up the correspond-
ing scaling expressions for the two types of energy Auc-
tuations 56„and 56d. First, we make the assumption
that, due to their different physical origins, we can in-
dependently set up the scaling laws for the two energies
56,~

and 5@d. The elastic energy involves only intrinsic
properties of the manifold itself, which are its dimen-
sionality d and the elastic modulus C. The usual scaling
ansatz 56,&—-C(u /L ) L ~L, with yc =2/+ d —2, is
entirely consistent with the above requirement. Similar-
ly, we expect 56d to depend only on quantities describing
the interaction of the manifold with the disorder poten-
tial. Thus 5@d should depend on the dimensionalities d
and n and on the disorder strength 6, but not on the elas-
ticity C of the manifold. Following Feigel'man et al. , we
then make the following scaling ansatz for fluctuations in
the disorder energy,

C2

b,R "(0)
(3.168)C

Our remaining task is then the determination of the ex-
ponents 5 and p(n). The volume exponent 5 is deter-
mined by the condition that the disorder energy (3.166)
should not depend on the elasticity modulus C of the
manifold. Thus we have to determine the scales U, and

V, and their dependence on C. For u ~ g, simple pertur-
bation theory is appropriate, and our method of dimen-
sional estimates can be applied straightforwardly: The
elastic energy within the volume V=L", 6,&

-—Cu L
competes with the disorder energy for a sti+ manifold,
bd-[b, L "R"(0)]'/, where we have used Eq. (3.142).
Note that, for the vortex problem, n =2, and
hR "(0)/g =b,g is the mean squared random force den-
sity W acting on a single vortex (b, =yg ) or on a vortex
lattice (b, =yg /a, ). For an elastic manifold, we have to
cut off the above dependencies on L when the displace-
ment u becomes of the order of the characteristic length

g of the disorder potential Ed. The length scale L, is
then obtained by equating 8,&

and 8d at the maximal dis-
placement u =g, and we obtain

1/(4 —d )

4—2d(1 —5)
4+p(n )

(3.167)

Here U„V„and g are the relevant scales of energy,
volume, and length in the problem. In particular, g de-
scribes the relevant length scale of the disorder potential,
i.e., of the correlator R "(u) discussed above. Our second
step is to combine the two expressions for 5D,

&
and 5d

and require them to scale in the same way, from which
we will obtain the desired wandering exponent g. Note
that here 5 and p(n ) are unknown exponents to be deter-
mined below.

The ansatz (3.166), which is the main result of this sub-
section, provides a basis for determination of the wander-
ing exponent g. Its main message is that energy fluctua-
tions due to disorder can be factorized into a pure
volume factor ( V/V, ), which contains all the informa-
tion about the dimensionality of the elastic manifold, and
a linear factor (g/u )@"'/, which describes the influence
of the n transverse motional degrees of freedom of the
elastic manifold and does not depend on its dimensionali-

ty d. Physically, this second factor describes the reduc-
tion of fluctuations in 5@d as the manifold can choose be-
tween a large number of metastable states in the n trans-
verse dimensions describing its motional degrees of free-
dom. The ansatz (3.166) thus separates the dependence
of the wandering exponent gd „on d from its dependence
on n. Once the exponent gd for a pair d and n is

known, the exponents gd for arbitrary dimensions d fol-
low immediately. From our ansatz (3.166) we obtain the

pg /2
scaling behavior for the disorder energy, 5@d ~L
with y~ =2d5 —gp(n ). Requiring the elastic and the dis-
order energy fIuctuations to scale in the same way, we
find the wandering exponent

Inserting this result back into the expression for 4d, we
find for the energy scale U, the result

(Cg2)d/(4 —d)[gR n(0) )(4—2d)/[2(4 —d~] (3. 169)

Finally, inserting U, and V, =L," back into our ansatz
(3.166), we obtain the dependence 56'd ~ C "
and therefore the exponent 5 becomes 5=—,'.

Second, we have to find the exponent p(n) describing
the inhuence of the transverse motional degrees of free-
dom on the disorder energy 5@d. Within the simplest
Flory-type analysis introduced at the beginning of this
section, the exponent P(n) is given by the asymptotic
behavior of the disorder correlator R "(u)-u ~'"', i.e.,
p(n ) =p(n). Here we are interested in short-range corre-
lated disorder, where the correlator is expected to be re-
normalized at large distances, hence p(n) is not known a
priori. For a rigid manifold, the dependence of the disor-
der energy on the length L is entirely due to the random
addition of forces, which produces the simple square-root
dependence on volume, 56d ~L" . Therefore a stiff
manifold is characterized by an exponent p(n)=0. The
finite elasticity allows the medium to wander in the trans-
verse dimensions and to explore all the metastable states
within the transverse volume Vz=u". The number of
available low-lying metastable states should scale with
the transverse volume V~, hence p(n)=p, n, with p, a
fixed constant independent of d and n. Using the exact
result g, , = —,', we obtain Po =P, =

—,', hence

P(n) =P, (n) =n /2, and the expression (3.167) becomes
identical with the wandering exponent gd „as obtained
by Halpin-Healy. Without relying on the approxima-
tions necessary in dealing with the functional
renormalization-group approach, the very general ideas
of Feigel'man et al. , based only on physical arguments,
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then lead to the same final answer for the wandering ex-
ponent g as obtained by Halpin-Healy and therefore
strongly support the result (3.164).

Considerable effort has been invested in numerical in-
vestigations of the behavior of elastic manifolds subject
to a quenched disorder potential. In their pioneering
work on the domain-wall problem in the (1+1)-
dimensional random-bond Ising model, Huse and Henley
(1985; see also Kardar, 1985) numerically obtained the
wandering exponent g» =0.66+0.02, which agrees very
accurately with the exact result g& &

= —', found later. Kar-
dar and Zhang (1987) then investigated the directed-
polymer problem in higher dimensions, n 3. Their re-
sults, g& 2=0.62+0.04 and g& 3=0.64+0.07, led them to
suggest that g, „might be a super-universal exponent,
taking the value g& „=—', independent of n Mo. re precise
simulations on Eden growth by Wolf and Kertesz (1987)
produced the values 0.'2=0. 33+0.01 and a3=0.24+0.02
for the scaling exponent u of the surface width, which is
related to the directed-polymer wandering exponent via

g& „=1/(2—a„). From their numerical results on a„,
Wolf and Kertesz conjectured that a„=I/(n+ 1), which
transforms to a wandering exponent

(wK. n +1
2n +1 (3.170)

in disagreement with superuniversality. Similarly, a nu-
merical study of ballistic deposition by Kim and Koster-
litz (1989) produced the values y, =0.332+0.005,
y2=0. 250+0.005 and y =0.20+0.01 for the dynamic
exponent y characterizing the time evolution of the sur-
face width at short times. From their conjecture
y„=1/(n+2) and using the relation g& „=(1+y„)/2 to
the directed-polymer wandering exponent, they obtain
for the latter the general result

n+3
n

=
2 +4 (3.171)

Recently, Forrest and Tang (1990), however, found the
somewhat smaller exponents y2 =0.240+0.001 and
y3=0. 180+0.005, indicating that Eq. (3.171) overesti-
mates the true value of the line-wandering exponent g, „.

We have to conclude that the numerical results unfor-
tunately add to our confusion about the true value of the
directed-polymer wandering exponent g, „rather than
resolve it. Moreover, the following argument fails to im-
prove the situation: As discussed above, the true energy
fluctuation exponent y& „ in the directed-polymer prob-
lem is expected to be of the form y& „=1/k„, with k„a
positive integer. Surprisingly, all three results, (3.164),
(3.170), and (3.171), for the line-wandering exponent g& „
do in fact produce an energy Auctuation exponent y& „
consistent with this requirement, and thus none of the
above results can be rejected on the basis of this simple
test. On the other hand, in the analysis of the behavior of
vortices subject to a disorder potential, we need the two
exponents g, 2 (single-vortex pinning) and g3 z (pinning of

vortex bundles). At least for the single-vortex problem,
we can rely on the rather consistent numerical value

g, z= —', , since g, @=(, z
=

—,
' and g, 2 =0.625 close to the

other results.
I.et us turn finally to the problem of competing

thermally by induced and disorder-induced fluctuations
at finite temperature. From the scaling behavior of the
elastic energy in Eq. (3.141) we immediately see that tem-
perature is relevant for small dimensions d where
yc=2$d „+d—2&0. In fact, the RG equation for the
temperature is (Fisher, 1986)

(3.172)

hence T scales to zero for yc)0. The only interesting
case, then, is d=1, i.e., the directed-polymer problem.
In this case the thermal wandering exponent obtained
from the condition ye=0, g. =(d —2)/2= —,', competes
with the disorder exponent g, „. Let us start at small n

values, where the Harris criterion (Harris, 1974) can be
used to show that the infinite-temperature fixed point is
unstable to disorder for n &2 (Halpin-Healy, 1990), and
hence the elastic string is always in a "glassy, " i.e.,
disorder-dominated state. From the analysis of the
Burgers equation (Forster, Nelson, and Stephen, 1977;
Kardar, Parisi, and Zhang, 1986) it is known that n =2 is
the marginal dimension, with arbitrarily weak disorder
still relevant asymptotically. For n )2, a phase transi-
tion is known to exist (Imbrie and Spencer, 1988) separat-
ing disorder- and temperature-dominated phases at low
and high temperatures, respectively. The question then
is, does there exist an upper critical dimension n, ( ~ of
the directed-polymer problem, where the temperature is
always dominant, i.e., yc &0? Taking the results (3.170)
and (3.171) due to Wolf and Kertesz (1987) and Kim and
Kosterlitz (1989), we obtain g, „)g, =

—,
' in all dimen-

sions n. Thus there exists no finite upper critical dirnen-
sion for these two results. On the other hand, using Eq.
(3.164) for the short-range line-wandering exponent as
obtained by Halpin-Healy (1989) and by Feigel'man
et al. (1989), we find g, =g, ~ and thus n,"=4 The ex-.
istence of a finite upper critical dimension to the
directed-polymer problem is also consistent with the re-
sults of 1/D expansions performed by Cook and Derrida
(1990). To summarize, a consistent picture has emerged
for the dimensions n ~ 3, which has also been confirmed
by numerical work (Renz and Nattermann, 1990). On
the other hand, the physics for n )3, in particular the ex-
istence of a finite upper critical dimension to the
directed-polymer problem, remains unclear.

In the following, we shall use Eq. (3.164) for the
wandering exponent gd „as proposed by Halpin-Healy
and by Feigel'man et al. and for which we believe we
have presented quite a number of supporting arguments.
We also wish to point out that the precise numerical
value of the wandering exponent affects the specific form
of the results but does not change the basic physical con-
cepts discussed below.
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2. Dynamics U,
C P p' (3.174)

In this last subsection of Sec. III we wish to investigate
the dynamic behavior of a "pinned" manifold subject to
an external force field F (force per unit volume L" of the
manifold). If a large force field is applied to the mani-
fold, the dynamic response will be determined by what
we call its intrinsic properties, such as the mass density
M or the friction coefticient g. The latter is due to cou-
pling to the environment and is therefore, strictly speak-
ing, an extrinsic property. However, here we wish to dis-
tinguish between effects arising from the quenched disor-
der potential (extrinsic) and those also present in the
absence of disorder (intrinsic); hence we call friction that
is independent of disorder an intrinsic property of the
manifold. For a mass-dominated dynamic response, the
manifold will be accelerated to higher velocities, whereas
in the friction-dominated regime the velocity saturates
and we obtain a Aow-type motion of the manifold. On
the other hand, in a small force field F, the manifold,
which originally is trapped in some low-lying rnetastable
state, will start to move either due to thermal activation
or, depending on the intrinsic dynamic behavior of the
manifold, by quantum tunneling. Due to the presence of
many rnetastable states generated by the disorder poten-
tial, the dynamic response of the manifold will be deter-
mined mainly by extrinsic properties (the disorder poten-
tial) and only to a lesser degree by intrinsic ones (mass
density, friction). In fact, the motion will be of the creep
type and proceed in terms of elementary jumps, where a
finite and optimal cell (nucleus) of the manifold will hop
into a neighboring favorable metastable state. The
volume V, , of the optimal cell, the optimal hopping dis-
tance u, „and, in the quantum case, the optimal hop-
ping time t,pt depend strongly on the size of the external
driving force density F. As a consequence, the.activation
barrier and the action, the quantities determining the
probability for the hop and therefore the creep rate, also
depend strongly on the applied force E, and the motion
becomes highly nonlinear in character.

Let us, then, qualitatively determine the characteristic
creep-type motion of the manifold at small driving forces
F, where the motion is determined by the disorder poten-
tial. The free-energy functional we have to study is

U(F)=U 1—
C

C

(3.175)

The exponent a is not known for the case of a random
pinning potential. For a smooth periodic pinning poten-
tial, this exponent has been derived in Sec. III.E above
[see Eq. (3.109)], but it is still unclear how far this result
can be transferred to the random situation discussed
here. Let us turn to small driving forces F «E, . The
next favorable low-lying state has now moved farther
away, and we should find the new spatial dimensions for
the critical nucleus, i.e., we have to determine the saddle
point of the effective free-energy functional. According
to the above analysis, the distance u to the next favorable

low-lying state scales like u(L)=g(L/L, ) ", whereas
the energy barrier Ed separating the two low-lying states

scales with Ed(L)= U, (L/L, ) '". Here we have made+d» n

the assumption that the disorder potential produces only
one relevant scale of Auctuations in the energy at large
distance, 5Ed(L ), and hence the height of the energy bar-
riers should scale accordingly (Ioffe and Vinokur, 1987).
We can then write for the effective free-energy functional
the expression

V(L)= U,
+d» n F I +&~ n

F, L,
(3.176)

Whereas small nuclei are bound to decay, all cells with
dimension L )L,p, (F) will be overcritical and remain
stable (due to pinning) after activation, thus producing a
finite motion of the manifold. The critical nucleus is
found by determining the extremum of (3.176) (the saddle
point). We obtain the characteristic size and hopping
distance

As the driving force F drops below F„ the character of
the motion changes from a Aow to a creep-type behavior
(Dong, Marchetti, Middleton, and Vinokur, 1993).

We first concentrate on classical creep. For E ~ F, the
saddle point for the motion to the next metastable state,
which is a minimal distance g away, is given by a cell of
volume I.,"and involves an activation energy

7= Jd"x —(Vu) +Ed(x, u) —F u . .
2

(3.173)
F,

L, ,(F)=L,
1/(2 —

gd „)
(3.177)

We shall again use scaling methods in order to obtain an
estimate for the saddle point. First, we have to find the
critical force density F„below which disorder becomes
relevant. Above, we have determined the elementary en-
ergy and volume scales U, and V, =I.," produced by the
disorder potential; see Eqs. (3.168) and (3.169). The criti-
cal force density F, is then obtained by balancing E,
against the pinning force density Fp =U, /V, g produced
by the disorder potential,

and

u, (Fp) =g
~dn ~dn

(3.178)

F,U(F)= U, , p= 2gd „+d—2
(3.179)

Combining the above results, we find for the activation
energy describing classical creep close to a vanishing
driving force F«F,
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For quantum motion we have to determine the saddle
point of the (Euclidean) action. Consider a massive
manifold trapped within a favorable state. The energy of
the manifold is then lowered by the pinning energy densi-
ty —U, /V„which we choose as our zero-energy refer-
ence [see also the discussion in Sec. II.A.5, Eq. (2.107)].
The action then takes the form

g= f d x dt (B,u) +—(Vu)
M 2 C

)"s

S(F)=S, (3.185)

with the exponent

L via the relation u (L) =g(L /L, )
'" characterizing op-

timal metastable states. The connection to the driving
force (providing for the elastic energy Cu L ) is fur-
ther described by (3.177), resulting in the following ex-
pression for the Euclidean action governing quantum
creep at small driving forces:

U,+ Ez(x, u)+
V,

—F.u . . (3.180) d+g~ „
IJs (3.186)

Equation (3.180) can be understood as a (d+ 1)-
dimensional anisotropic generalization of the d-
dimensional free-energy functional (3.173), where the ad-
ditional dimension is given by the time axis and the an-
isotropy is determined by the ratio C/M. Note, howev-
er, that the random potential does not depend on time;
therefore simple rescaling of the time axis and substitu-
tion of d for d+ 1 in the above results is not appropriate.
First we determine the basic time scale t, in the problem
(the tunneling time to the neighboring state), which can
be obtained by equating the kinetic-energy density
M(gjt, ) to the elastic one, C(g/L, ), resulting in

1/2
M

(3.181)L, .

The action for quantum motion close to the critical force
F~F, is

S
$(F)=S 1—

C

C

(3.182)

(3.183)

where we used the short-wavelength limit for the velocity
~B, u ~,„=+U, /MV, . The integration over u then aver-
ages the random potential Ez(x, u) to zero, and using

U, = Cg L," we obtain the estimate for the action
d

S~S, (3.184)
L,

Finally, the hopping distance is related to the bundle size

with S, =t, U, . The critical exponent az close to the de-

pinning threshold is not known for the present situation
involving a random potential [for the periodic pinning
potential, see Eq. (3.117)].

At small driving forces, F «F„we follow the ideas
outlined in Sec. II.A.5 above and replace the time in-
tegral by an integration over the displacement u,

1/2

f d x du (B,u) +—(Vu)
MVc g M 2 C

U, 2 ' 2

U,+ Ez(x, u)+
V,

For an overdamped manifold, we have to replace the
kinetic energy in Eq. (3.180) by a term describing damp-
ing, which for the case of Ohmic dissipation is given by
(3.114) above. The elementary tunneling time r, becomes

aF=—
+0

—U(F)/Te (3.188)

For the quantum case we have to substitute S(F)jfi for
U(F)/T. To exponential accuracy, the solution of Eq.
(3.188) is given by

U(F)=Tin 1+
~o

(3.189)

with the normalization time to = ro T /F, ~ B~U
~

(Gesh-
kenbein and Larkin, 1989; see also Sec. X). An
equivalent expression is valid for the quantum case. Us-
ing the results (3.179) and (3.185) and inverting the solu-
tion (3.189), we find that the trapped force field F relaxes
only on a logarithmic time scale,

F(r)= '

F =0
T ln(r jro)

S,
iii 1 (rjr )

classical creep,

quantum creep .

(3.190)

t, =~L, , overdamped motion . (3.187)

The effective action close to criticality is again of the
form (3.182) with an unknown exponent as. Similarly,
the effective action at small driving force takes the form
(3.185) with the same exponent (3.186), the different dy-
namics entering only in the prefactor S, within the
present approximation (it seems that replacing massive
by dissipative dynamics introduces logarithmic correc-
tions to the above results; see Sec. VIII.C.2). A similar
analysis provides results for the case of Hall motion
[rj~a in (3.187)].

Finally, we discuss the dynamic evolution of the force
Geld F itself. Consider a manifold prepared in a non-
equilibrium (e.g., critical) state and relaxing back to equi-
librium. The dynamic equation determining the evolu-
tion of the system is given by
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The above results for the disorder-dominated creep-type
dynamics of elastic manifolds apply to various physical
systems, among which we cite the motion of domain
walls in disordered Ising models (Huse and Henley, 1985;
Fisher, 1986), the motion of dislocations in solids (Ioffe
and Vinokur, 1987), the motion of pinned charge-density
waves (Nattermann, 1990), and, of course, the creep of
vortices in type-II superconductors (Feigel'man et al. ,
1989; Feigel'man and Vinokur, 1990; Nattermann, 1990;
Fisher, Fisher, and Hose, 1991;Fischer and Nattermann,
1991).

IV. PINNING OF VORTEX BUNDLES

Collective pinning and creep of the vortex lattice in a
type-II superconductor presents quite a formidable prob-
lem if studied in its full complexity. The basic reason for
this is found in the large number of length scales that are
relevant for an accurate description of the physics. In-
terestingly, these different length scales are properties of
the vortex lattice, i.e., of the elastic manifold itself, and
are not related to the disorder potential producing the
pinning.

The smallest length scale involved is the coherence
length g, which describes the extent of the vortex cores
responsible for the coupling of the manifold to the pin-
ning potential. g' therefore also defines the basic scale r
of the disorder potential for the case of weak pinning by
point defects.

Next, the intervortex distance a, sets the scale for in-

teraction between the vortices, which leads to the forma-
tion of collectively pinned vortex bundles. This scale also
determines the internal structure of the elastic manifold
formed by the discrete Aux lines. This internal structure
becomes relevant for creep involving large transverse dis-
placements, u )a, , of the lattice and opens up the possi-
bility of an internal phase transition (melting), which
changes drastically the elastic properties of the manifold
itself (vanishing shear modulus).

Third, the penetration depth k defines the range of the
interaction between the vortices: For distances R & A, the
interaction is logarithmic, whereas for large distances,
R )A, , the interaction between the vortices becomes ex-
ponentially small. The range A, of the interaction enters
the theory in the specific form of the d&spersive elastic
moduli c»(k) and c44(k), with a strong suppression of
these moduli for large wave numbers, k ) 1/A, . With
respect to the problem of pinning and creep, the scale A,

plays an important role in the determination of the size of
the vortex bundles, which in turn affects quantities such
as the critical current density j, and the barrier U,
against creep.

At elevated temperatures, a fourth intermediate length
scale (between g and a, ) comes into play when thermal
Auctuations in the vortex lattice lead to an effective
smearing of the vortex cores over distances (u ),'„
where ( u ),'&~ denotes the mean thermal displacement of
the individual vortices. These thermal Auctuations in-

teract with the disorder potential, leading to a smoothing
corresponding to an increase in the basic length r of the
disorder potential from its low-temperature value
r~(0)=g to r~(T)=(u ),'h . Note that the vortex lattice
will melt when the mean displacement due to thermal
fluctuations becomes of the order of the lattice constant
a, , hence g & rz(T) & ao. Simplifying theories based on a
single (universal) length scale (Nattermann, 1990; Fisher,
Fisher, and Huse, 1991)are then very useful in explaining
the basic features of the system and are also physically
relevant in the vicinity of the melting transition, where
many of these length scales merge into the single scale
a, (=r~ =('; the latter estimate applies for the case in
which the melting transition is close to the mean-field
transition line H, ). However, within a large portion of

2

the phase diagram away from this transition, the full
complexity of the system should be taken into account.

Here, we concentrate on the theory of weak collective
pinning and creep as formulated by Larkin (1970) and by
Larkin and Ovchinnikov (1973, 1979), and refined later
by Feigel'man et al. (1989) and Nattermann (1990) (ex-
tensions to small current densities), by Feigel'man and
Vinokur (1990, thermal fiuctuations), and by Blatter
et al. (1991, quantum creep; 1992, anisotropy). Follow-
ing closely the ideas presented in Sec. III.F above, we
first concentrate on the statistical mechanics of the vor-
tex lattice subject to a quenched random potential (Sec.
IV.A). We shall see that, due to the existence of the vari-
ous internal length scales of the manifold, the statistical
mechanics of the vortex lattice becomes much richer.
Equipped with this knowledge we then turn to the dy-
namic behavior of the vortex lattice (Sec. IV.B); we deter-
mine the critical current density as a function of the ap-
plied magnetic field and discuss creep, classical and quan-
tum, near criticality and near vanishing driving force,
where we shall find the "glassy" behavior typical of an
elastic manifold subject to a quenched disorder potential.
In Sec. IV.C we generalize the discussion to include the
effects of thermal Auctuations. Section IV.D is devoted
to the problem of anisotropy. Finally, we briefly discuss
the issue of 1ong-range order in Sec. IV.E.

A. Statistical mechanics

We begin with the investigation of the spatial Auctua-
tions (u (r))'—:([u(r) —u(0)j )'~ of the vortex lat-
tice subject to a quenched random potential. Let us fol-
low the evolution of the displacement field from the
smallest to the largest length scales. First, consider a
weak-pinning situation where g & L, & a, . The latter
condition guarantees that the system starts out in the
single-vortex pinning regime at weak enough magnetic
fields. As shown above (Sec. II.D), for lengths L & a, we

can neglect interaction with the other vortices, and the
displacement field is determined by the competition be-
tween the disorder potential and the elasticity of the indi-
vidual vortices. We then summarize the results obtained
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in Sec. II above: At the smallest scale, I &L„ the per-
turbative approach of Larkin and Ovchinnikov is correct,
and we obtain

3/2(u'(L))'~'=g, u &g, L &L, .
C

(4.1)

3/5

(u'(L))' '=g
L,

ao
g&u &g

L,

3/5

L, &L &a. . (4.2)

As L becomes larger than the lattice constant a, , interac-
tions between the vortices become relevant and we have
to investigate the full three-dimensional problem. Within
weak collective pinning theory we adopt a continuuxn
elastic description of the Aux-line lattice, with a free ener-

gy given by the combination of the elastic energy (3.37),
the pinning energy (3.89) with v=0, and the action of the
Lorentz force,

P[u]= f d r (V.u) + (7'~ u)2

+ (B,u) +E;„(r,u) —FI u (4 3)

The result (4.1) can be obtained via dimensional estimates
by comparing the elastic energy c,u /L with the pinning
energy (yLg )' (u/g) due to the restoring force
(yL)' . Going beyond L„ the displacement u becomes
larger than the extent of the individual pinning valley,
and the string can choose between many metastable
states. Therefore, following the general ideas of Sec.
III.F, the Auctuations of the string grow much more
slowly,

with the disorder parameter y( =b,a, /g ) and the corre-
lator k(u) given by Eqs. (2.38) and (2.39), respectively.
In the following we express the correlator (4.4) via the
parameter b, [see Eq. (3.142)], which determines the am-
plitude of the energy fluctuations in the disorder poten-
tial and is not related to the spatial fluctuations of the po-
tential. In particular, a change in the basic length scale
of the disorder potential will acct the pinning force, but
not the Auctuations in the energy as described by k.

The above description in terms of the continuum elas-
tic theory of the vortex lattice is valid within a regime
characterized by the condition u &a, , where the lattice
structure is only weakly perturbed by the disorder poten-
tial E;„. Below we present estimates for the transverse
and longitudinal lattice correlation lengths R, and L,
defined by the conditions u (R, ) = u (L, ) =a, , which
turn out to be quite large for typical parameters ap-
propriate for the oxide superconductors. For large dis-
placements, u ~ a, , we have to take the internal structure
of the periodic Aux-line lattice into account, and we shall
come back to this point later in this section. Also,
despite our writing the simple local expression for the
elastic energy of the vortex lattice in Eq. (4.3), we shall
take the nonlocality of the elastic moduli c

& &
(k) and

c44(k) properly into account.
Again, we wish to start out with the smallest possible

scale, u &g. In order to make sure that the lattice
description is valid we have to consider larger fields such
that a. & L, For sma. ll displacements, u & g, the pertur-
bative approach of Larkin and Ovchinnikov is valid, and
we can rigorously calculate the displacement field

(u (r))': Using the (static) elastic Careen's function
(3.21), we can relate the displacement field u(r) to the
force field F~;„(r) due to the disorder potential, in Fourier
representation,

For small displacements, u (r) &a, , the disorder poten-
tial E;„can be taken to be short-scale correlated,

u (k)=G p(kco 0, )F=;„p(k) . (4.5)

(E;„(r,u)E„;„(r',u')) =y 5(r —r')k(u —u'),
a,

(4.4)

The pinning force density F;„(r) is given by Eq. (3.91)
with v=O and, again using short-range disorder in U;„
[see Eq. (2.36)], we find

(F;„(k)F;„&(k'))=2vry 5(k, +k,')g f d Re ' + ' 8 p(R —R„)B&p(R— ) . (4.6)

Going over to Fourier representation of the form factors p and evaluating the lattice sums over p and v, we arrive at

(Fp,„(k)Fp,„p(k')) = 2~yU5(k, +k.')—4 g f d Re ' e " "
p, &ac„,ppx„.

ao p, v

(4.7)

( F;„( )kF;„p(k')) =(2m) 5 p5(k+k')W,

with the mean-squared force density-

(4.8)

We average the rapidly oscillating factor
exp[ —i(K„+K„)R]over the unit cell and obtain the
final result

XG p(k)G p(
—k), (4.10)

I

The displacement correlation function (u (r))
—= ( [u(r) —u(0) ] ) can then be written in the form

d3k
(u (r)) =2&f (1—coskr)(2')'

1 2 2 VUW= YU 4 Q K„lpx
0 p ao

(4.9) where we have used Eq. (4.S) as well as the result (4.8) for
the force™forcecorrelator. The main contribution to the
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displacement field is due to the transverse part in the
Green's function (3.30), and we have to evaluate the ex-
pression

d k (1—coskr)
(2m) [c66K +c«(k)k, ]

(4.1 1)

The largest contribution to the integral originates from
the long-wavelength regime k~O, where the denomina-

tor vanishes. The resulting divergence is then cut off on

the scale k —1/r by the numerator. Depending on the
distance r=(R, L &0), the dispersion in c44(k) [see Eq.
(3.31)] will be relevant (a, &R &A, , a. &L &A, /a, ) or
can be neglected (R & A, , L & A, /a, ).

Let us consider first the case of large distances, where
we can approximate the tilt modulus by the expression
for uniform tilt, c«(k~0)=c«, within the relevant re-
gime. After performing the average over angles in the
plane and res caling the k, axis according to
(c«/c66)k, ~k„we arrive at

&u (r)&= 2W
~ J~

C66 V C44C66

d k 1
3 4

- 1 —J0 KR c os
(2~)' k' c44

1/2

k,L (4.12)

&u'(r) & =
1/2

R2 a,L+
2% C66+C«C66

(4.13)

Second, we concentrate on the dispersive regime,
where we have to keep the factor (1+A, k } ' in the tilt

The combination of the Bessel function Jo(KR) and the
factor cos[(c66/c«)' k,L] provides the cutofF
k, =2[R +(a,L/A, ) ]

' for the divergence at small
wave vectors, and we obtain the final result

I

modulus c«(k). Again, the main contribution arises
from the small-wave-vector regime around the cutoff
K, =(R +aoL) '~, where the relevant values of
k, -(c66/c«)' AK —[a. /(R +a, L)' ]K are small
compared to L itself. Hence we can approximate
1+A, k =A, K, and the integral in Eq. (4.11) simplifies
to

2( )& 2~f d k (1 coskl)A K
(4 14)(2') [c66A, K"+c«k, ]2

Performing the (contour) integration over k, and the an-
gular integration in the plane, we arrive at

2
—(,c«/P~)'/ K A,L

pre g (x sz 1 Jo(KR }e
dE

4~ ac66 0 1/ c«c66K
(4.15)

&u'(. ) &= Wk 1 R L—ln
2 2 ao

(4.16)

The results (4.13) and (4.16) then can be combined into
the general expression

3
' 1/2

L, g2 g4
+

R+ln 1+', +'
a2 a,

u &g,

a, &L, , (4.17)

first obtained by Larkin and Ovchinnikov [1979; a mis-
take in the last term of Eq. (4.17) in the original paper
was later corrected by Brandt, 1986]. This result was
generalized to films of finite thickness by Brandt (1986)
and by Wordenweber and Kes (1987). In Eq. (4.17) we

The logarithmic divergence is cut o6'by the numerator at
K, =(R +a, L) ', and we obtain the final result for the
dispersive regime

&u'(R, )&=g', &u'(L,")&=/'. (4.18)

The two length scales R, and L, determine the real-space
boundaries for the region of small spatial Auctuations
u &g. They are usually called elastic or collective pin-
ning lengths and are quantities corresponding to the col-
lective pinning length L, in the single-vortex pinning re-
gime. Note that we exphcitly distinguish between the
single-vortex collective pinning length L, and the longi-
tudinal elastic length L, in the vortex lattice. Inverting
the condition (4.18), we can easily determine the depen-

I

have expressed the prefactor in terms of the more famil-
iar length scales g, a. , and the single Uortex colle-ctive

pinning length L„using Eqs. (3.31), (3.32), and (2.45).
Within the context of pinning of vortex bundles, the
single-vortex collective pinning length L, does not have
the meaning of a physical length scale but is used as a
convenient measure for the strength of the pinning po-
tential.

The result (4.17) is applicable within a regime bounded

by the conditions

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



1202 Baatter et al. : Vortices in high-temperature superconductors

a, &R, &A, , (4.19)R, =a, exp c
ao

dence of the elastic lengths R, and L, on magnetic field
and on the disorder strength. Within the dispersive re-
gime (small length scales), we obtain an exponential
dependence of the elastic lengths on the size of the mag-
netic field (c is a constant of order unity),

L,

L, = R„a.&L, &b Rc b

a, " ' a, (4.20)

Note that the strength of the disorder potential is
parametrized by the single-vortex collective pinning
length L„whereas the magnetic field enters through the
lattice constant a, . Within the nondispersive regime, in-
verting Eq. (4.18) with the help of (4.13) leads to

L,
R, =A, , k&R, , (4.21)a,

and

Lb=
C c~a, ' a,

g&Lb (4.22)

The crossover between the dispersive and the nondisper-
sive regime takes place when R, =k, and using the result
(4.19) we obtain the condition

1a, =L —ln0 C c c

' —1/3

&L, , (4.23)

which differs only by a small logarithmic factor from the
condition a, =L, defining the boundary of the single-
vortex pinning regime. Hence, in general, the dispersive
regime is quite narrow. In order to obtain the explicit
dependence on the magnetic-field strength B, we can use
Eq. (2.45) above and express the ratio L, /a, via the mag-
netic field B and the single-vortex depinning critical
current density j„

L,
a,

jo B
j, p,bH,

1/2

(4.24)

The length scales R, and L, define a characteristic
volume, which is elongated along the field direction and
grows with increasing magnetic field. Within this
volume, a maximal displacement u =g is accumulated
due to elastic deformation produced by the pinning po-
tential, and thus the vortex lattice is collectively pinned
within a single metastable state. Outside of this volume
the mean displacement u grows beyond the elementary
scale g and the lattice is subject to competing metastable
states. We call such a collectively pinned object a small
vortex bundle if its transverse size is R, &X, and a large
vortex bundle if R, & A, ; see Fig. 16. At the crossover be-
tween the single-vortex pinning regime and the lattice
pinning regime all length scales are equal,

W

FIG. 16. Different pinning regimes appearing in a realistic
description of a vortex lattice subject to quenched disorder.
The innermost ellipsoid symbolizes the perturbative region
where L & L„u & g, and where the transverse displacement field
is growing according to u ~L . Next follows the single-
vortex pinning regime L, & L & ao, u )g, where u ~ L '~'. As L
grows beyond the lattice constant ao, the system enters the
small-bundle pinning regime, where dispersion in the elastic
moduli is relevant. The transverse dimension is limited by
ao & R & A. and the displacement correlator grows only logarith-
mically, u ~ lnR. Within the large-bundle pinning regime
(A, & R & R, ), the dispersion is irrelevant and u scales according
to u ~ L ' ', which is the behavior of a conventional elastic man-
ifold with n =2, d =3. At large distances, R )R„ the effect of
the disorder becomes weak with u ~ lnR (CDW-type pinning re-
gime).

L, =a, =R, =L„and hence the small bundles grow con-
tinuously out of the collectively pinned single-vortex seg-
ments at the crossover point.

For large distances, R &R, and L &L,", the displace-
ment field ( u (r) ) '~ will grow beyond the elementary
scale g of the disorder potential, and we should take the
existence of many metastable states into account. To be
specific, in the above derivation we made two approxima-
tions that break down at large distances: First, the ran-
dom potential was replaced by a random force indepen-
dent of the displacement u in Eq. (4.5), which is correct
in an expansion near the equilibrium position but breaks
down when the displacement u grows beyond the typical
length scale g of the random potential. Second, in the
derivation of Eq. (4.10) we performed only an average
over disorder but dropped the thermal average over all
possible configurations for u; see Eq. (3.145). Again, this
approximation is correct in the vicinity of the equilibri-
um state, since only one minimal state is important. For
large distances, however, the above procedure performs
an average over all extremal states with the same weight,
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(u (r))=g
a,
L,

3 2 2 1/2a,L
X4

+

which is inappropriate, since the main contribution
should originate from the low-lying metastable states
only. According to the results of Sec. III.F.1, the large-
distance behavior of (u (r) ) should follow a power law
with an exponent f32 —,

' Assuming a general large-
distance scaling behavior described by

spectively. The ratio c44/c6s determining the aspect ra-
tio L/R depends on the length scale considered. For
small distances involving deformations on a transverse
length R &A., the modulus c44(k =0)=c~ for uniform
tilt will be reduced by a factor 1/(1+A. /R )=R /1, ,
whereas at large distances we can approximate the tilt
modulus by its uniform limit c44. Inserting this result
back into Eq. (4.26), we find

R+ln 1+', +'
ap ao

(&u &a. , (4.25)

R
a,

L= '

R,a,

a, &R &A, ,

A, &R,
(4.27)

then allows us to interpolate smoothly between the vari-
ous expressions for the displacement correlation func-
tion. In particular, note that at large distances, where we
can neglect effects due to dispersion, we correctly obtain

2/3 2(u (r) ) 0- r ". The interpolation formula (4.25) allows
us to take the effect of dispersion in the elastic moduli
into account. The weak logarithmic growth of the dis-
placement field (u (r))'~ within the dispersive regime
changes the effective wandering exponent of the vortex
lattice to the new value, /=0. We remark also that no
condition on the magnetic-field strength has been associ-
ated with (4.25). For the case of weak fields, a, & L„Eq.
(4.25) describes the growth of the displacernent field at
large distances, following Eq. (4.2). For higher fields
with a, &L„ the result (4.25) simply provides the con-
tinuation of the Larkin-Ovchinnikov result (4.17) for
u &g.

At this point one may ask whether the above rather in-
volved determination of the displacement field could not
be obtained in a much simpler way by using dimensional
estimates. The answer is "yes" and "no." In fact, the re-
sult for the nondispersive regime involving large dis-
tances, R & A. and L & A, /a, , can be obtained via simple
estimates; however, the logarithmic growth of (u (r) ) '

within the dispersive regime cannot. The following
rederivation of the result (4.13) by means of dimensional
estimates serves as an illustration of the above statement
and provides a better understanding of the result (4.17).

In the absence of an external force field, the vortex lat-
tice adjusts itself to the underlying disorder potential via
shear and tilt deformations alone. Due to the anisotropic
elastic properties of the vortex lattice, the displacement
field (u (r))' grows faster along the transverse
dimension: the surfaces of constant amplitude
(u (r) ) '~ =const are cigar shaped, with axis L (longitu-
dinal dimension, along the field) and R (transverse dimen-
sion, perpendicular to the field) related via

1/2

R&R. (4.26)

Equation (4.26) is a consequence of the competition be-
tween the shear and tilt deformations of the lattice in-
volving energy densities c44(u/L) and c66(u/R), re-

which is consistent with the result (4.17). Note that the
aspect ratio L/R grows rapidly within the dispersive re-
gime. In addition, the shear and tilt energies have to
compete with the pinning energy. Again, only Auctua-
tions will lead to a finite pinning energy, and we have to
determine

(6~;„(V))= f d r d r'(E;„(r,0)E;„(r',0)) . (4.28)

For a deformation with amplitude u & g we obtain the es-
timate

VbV u
(4.29)

with V=R L and 6 the disorder parameter describing
energy fluctuations in the disorder potential; see Eq.
(3.142). Balancing the pinning energy against the elastic
(shear) energy within the volume V, we obtain

@pin

&AL R
(4.30)

and inserting the result (4.27) we find for the nondisper-
sive regime

3

u
L,

(4.31)

in agreement with the Larkin-Ovchinnikov formula
(4.17). Note that the exponents —', and —,

' in Eqs. (4.1) and

(4.31), characterizing the small-distance fiuctuations in
the displacement field u, are in agreement with the Flory
result (3.158) with a random-field exponent P(2)= —2.
Within the dispersive regime the distance R drops out of
the equation, and we obtain (u (r) ) =const; instead of a
weak logarithmic growth the method of dimensional esti-
mates produces a constant value for (u (r) ). In fact, the
situation is quite similar to that encountered in Sec. II.B
above, where dimensional estimates failed to produce the
temperature-dependent collective pinning length L,(T)
for a vortex embedded in three-dimensional space. Cal-
culating the displacement ((u~(L))) from perturbation
theory produced a logarithmic dependence on the length
L, and thus we could trace back the failure of simple di-
mensional estimates to the marginality of the disorder for
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a single vortex in three dimensions.
The above results are applicable within a regime where

the typical displacement u is less than the lattice constant
a, of the Aux-line lattice. On the other hand, the spatial
fluctuations of the vortex lattice can grow well beyond
this value, implying quite a drastic change in the nature
of its interaction with the disorder potential. In order to
understand this change, we should realize that in our
analysis above we made two very basic assumptions that
we have to abandon when the displacement u increases
beyond a. : (i) adopting a continuum elastic description,
we actually treat the lattice as a homogeneous, structure-
less medium, and (ii) the pinning of this structureless
medium was achieved by assuming that a shifted vortex
lattice is exposed to a diferent disorder potential, i.e., un-
correlated with the disorder potential at the initial posi-
tion. Very briefly, above we studied a five-dimensiona1
problem, where the three-dimensional vortex lattice
moves within the additional two transverse dimensions
uncorrelated with the original space. For displacements
larger than the lattice constant, we cannot ignore the fact
that the two transverse dimensions belong to our original
three-dimensional space, and we have to return to the
three-dimensional problem. With this point of view, for
u )a, the displacement becomes "longitudinal, " and
therefore we should expect that the importance of the
disorder potential will be drastically reduced. To be
more specific, consider Eq. (4.28) describing fiuctuations
in the pinning energy within a volume V. The basic
definition of the pinning energy implies the calculation of

[(8;„[u,(r)+5u(r) ]—8;„[u.(r) ] ) ],

taken over different metastable states with the same un-
derlying disorder potential. Equation (4.28) is equivalent
to the above definition if, after a displacement by a dis-
tance 5u(r), the vortex lattice is subject to a different ran-
dom environment, i.e., the disorder potential is uncorre-
lated over the distance 5u(r). This assumption of un-
correlated disorder is indeed legitimate as long as the dis-
placement of the lattice is small, u (ao, but breaks down
when u increases beyond a, , as the Aux-line lattice will
roughly feel the same disorder potential after the dis-
placement. As a consequence, the vortex lattice cannot
be pinned within the homogeneous continuum approxi-
mation for the vortex lattice. On the other hand, taking
the periodically modulated internal structure of the vor-
tex lattice into account, we again recover a finite pinning
effect, which we should expect to be different from pin-
ning due to uncorrelated disorder involving small trans-
verse displacements u &a, . In fact, Nattermann (1990)
has shown that the pinning of the Aux-line lattice for dis-
placements on the scale of the lattice constant a, is in the
universality class of the charge-density-wave (CDW)
problem, with a wandering exponent /=0.

Let us follow Nattermann and consider the pinning en-
ergy

6~;„[u(r)]=f d r E;„(r,u)

= f d r U&,„(r)g p [R—R„—u(R„,z)] .

(4.32)

Using the identity

with u, (r) a displacement field describing some low-lying
metastable state and 5u(r) a typical excursion from u, (r)
within the volume V. The average I

.
I then has to be

+5(p —R )= ge
V Qo

we can transform Eq. (4.32) to

p6';„[u(r)]=fd'R dz U;„(R,z)f, p [R—p —u(p, z)] 1+2 g cosK, p
Qg v&0

(4.33)

Performing the transformation of variables p+u(p, z) ~p and approximating the sharply peaked form function p (R) by
a delta function p (R)=f 5(R), we arrive at

2

8,„[u(r)]= f d R dz U~;„(R,z)(l —Vu) 1+2 g cosK [R—u(R, z)]a.' v&0
(4.34)

Since the displacement field u(r) is a smoothly varying
function, Vu is small and the first term in the curly
brackets produces only a weak dependence of 4;„on the
displacement field u, hence we drop it. This is tan-
tamount to saying that, within the homogeneous continu-
um approximation, the vortex lattice cannot be pinned.
Restricting the sum over v in the second term to the two
primitive reciprocal-lattice vectors and assuming for sim-
plicity a square lattice, we obtain an effective pinning en-
ergy density of the form

2/2
E~;„(r,u) = U;„(r) cos

Q~

277
[x —u„(r)]

a

+cos [Z
—u, (r)]

0

(4.35)

which is roughly equivalent to the pinning potential in
the COW problem. Next, consider the fluctuations
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56~,„(V) in the pinning energy, for which we take as a reasonable measure the quantity

{6';„(V) ) —J d r d r ' {E;„(r, u )E;„(r', u ) ), (4.36)

where u (u) denotes the minimal solution corresponding to the realization E;„(E;„).Inserting the result (4.35), we
obtain

4

(8q,,(V)) —y fd'r( cos
0

27K (u„(r)—u„(r) )
ao

+ 0 ~ ~

4 '2

Vexp —— {[5u] )
2 ao

J

where we have assumed Gaussian fluctuations in order to
evaluate the average over the displacement fields. Using
Flory-type arguments, we equate the Auctuations in the
elastic and the pinning energies in order to find the
wandering exponent gcDw. Note that on these large
length scales one should take into account the possible
existence of dislocations, which can destroy the elastic
properties of the lattice. Later (see Sec. VII.C) we shall
argue that, due to the presence of finite dislocation loops,
the shear modulus will be renormalized but remain finite
at large distances, so that elastic theory is still applicable.
Within this elastic approach we then obtain a logarith-
mic behavior for the displacement correlator at large dis-
tances,

(u'(R))' '= ln
a, R

R cDw
(4.38)

with RCDw =A,(L, /g) (a. /g'), implying a wandering ex-
ponent gcDw=0. The weak logarithmic growth of the
displacement correlator indicates that the effect of the
disorder potential becomes very weak at large distances,
where displacements on the scale of the lattice constant
a, become relevant. This is in agreement with the above
remark that pinning at large distances takes on a "longi-
tudinal" character and should therefore be weak. The
wandering of the manifold is the result of the competi-
tion between the energy gain from the disorder potential
and the energy cost due to elastic distortion. At large
distances, u )a, , the cost in elastic energy remains the
same, but the possible gain in the pinning energy is
strongly restricted, as the vortex lattice experiences the
same disorder potential after a shift by the lattice con-
stant ao. We also draw attention to the recent work of
Bouchaud, Mezard, and Yedidia (1991, 1992), who arrive
at somewhat different conclusions: Within their varia-
tional theory of the disordered vortex lattice they obtain
a Flory exponent g= —,

' at small displaceinents, u &a. ,
and a larger value g= —' for large displacements, u )a
hence their results produce larger Auctuations at large
distances. Two very recent studies by Korshunov (1993)
and by Giamarchi and Le Doussal (1994) based on the
variational approach of Bouchaud et a/. report finding
the logarithmic large-distance behavior (4.38) for the dis-
placement correlator.

The crossover to a charge-density-wave (CDW)-type

(4.37)

I

pinning regime takes place at length scales R, and L„
where the conditions

{u (R, )) =ao and {u (L, )) =a, (4.39)

are fulfilled. Approaching these lengths from below, it is
easy to see that within the framework of weak collective
pinning theory this condition is always encountered
within the lattice pinning regime. Within the single-
vortex pinning regime the transverse fluctuations of the
string scale with distance according to

3 /5(u'(L))'/'=g, g &L, &L &a. ,
C

(4.40)

and hence the boundary in u-space terminating the
single-vortex pinning regime, is given by the relation

3/5
a~

u„
C

& g2/Sg 3/5 (g (4.41)

For the case of rather strong disorder with
L, (g(g/a. ) [In(A, /a. )]'/, the condition (4.39) is met
within the dispersive regime, so that a, &R, &A, . More
precisely,

R, =a, exp c
L,

3 a, 2

a, &R, &A, , (4.42)

where we have used Eq. (4.25), as is appropriate for the
large displacement u =a. )g. The dispersive regime is
very narrow in u space [u grows only by a factor
In(A, /ao )], so that the condition (4.39) is usually fulfilled
within the nondispersive regime at very large distances.
In such a weak-pinning situation R, )A. and, inverting
Eq. (4.39) with the help of (4.25), we obtain

a, 2

k &Ra (4.43)

The longitudinal length L, is trivially determined with
the help of Eq. (4.27). The length R, differs from RcDw,
the cutoff parameter obtained when approaching the
boundary to the lattice pinning regime from above.
However, we cannot hope to find the correct result when
starting from the CDW regime, where u depends only
logarithmically on distance, and we should modify the re-
sult (4.38) to read
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a, a,I
ln 1+ +

2&2~
(4 44)

const O IC

Within the lattice pinning regime, this quantity is deter-
mined in an analogous way: For a relaxed vortex lattice
the tilt, shear, and pinning energies are al1 equal, and we
use the shear energy c66(u/R) V for expressing the basic
energy scale in the problem. The latter is obtained by
considering an elementary elastic domain characterized
by a displacement u =g on a scale R, within the collec-
tive pinning volume V, =R,L,",

2

C

V, . (4.45)

Inserting the results (4.19) and (4.20) (dispersive regime)
and (4.21), (4.22) (nondispersive regime) into the expres-
sion for the shear energy, we obtain

This completes our discussion of disorder-induced spa-
tial Auctuations in the vortex lattice. The various re-
gimes of single-vortex, small-bundle, large-bundle, and
CDW-type relaxation of the vortex lattice to the disorder
potential are illustrated in Fig. 16.

In the remainder of this section, let us turn to the Auc-
tuations in energy. Having found all the important
length scales in the problem, as we11 as the relevant
wandering exponents we are able to calculate these quite
simply. First we have to determine the basic energy scale
in the problem, which is called the elastic or collective
pinning energy. For the single-vortex pinning regime
this energy ( U„=U, ) was found in Sec. II.A, and the re-
sult is [Eq. (2.46)]

~c

jsv

Ub

Usv

0 Bsb Blb Hc,

(L, & ao ), the fiuctuations in energy evolve with increas-
ing size according to

L,

1/5

L, &L &a. ,

a.
L,

U(R) = U a,
L,,

1/5
R a, &R &A. ,

L

1/5

a,

A
'R

ao

7/5
(4.47)

A&R &R, ,

a,
L,

1/5
a

a,

7/5

R, &R,R

a

FIG. 17. Magnetic-field dependence of the critical current den-
sity j, and of the activation energy U, against creep. For low
fields, B & 8,&, the interaction between the vortices is irrelevant
and neither j, nor U, depends on the magnetic field. Within
the small-bundle pinning regime, B,& &B &B», where disper-
sion in the elastic moduli is relevant, the critical current density
decreases exponentially, whereas the activation energy shows an
exponential growth. Finally, in the large-bundle pinning re-
gime, B)B», the field dependence of j, and of U, turns alge-
braic, with j, ~B and U, ~B

C

'4
C

SV a, a, a. & L[l (nA, /L) /c ]

(4.46)

U, (a, ) is called the collective pinning energy. Within
the small-bundle pinning regime at intermediate field
strengths the pinning energy U, ~exp(8 ~

) grows ex-
ponentially with field, whereas the further increase of U,
in the large-bundle pinning regime turns algebraic,
U, ~B; see Fig. 17.

Our next step is to write down the long-distance scal-
ing behavior of the energy Auctuations of competing
low-lying metastable states. We believe that these scaling
laws also describe the energy barriers separating different
metastable states. Assuming a weak-pinning situation

2c(L /a )

U, = . U,„e ' ', L [In(k/L )/c] ' &a. &L, ,"a,

U(R)=U, .

ao
R, &R &A, ,

2 7/5
R

A, &R &R. , (4.48)

R

a,

7/5
R R &R,
R, '

where we have used relation (3.146) between the ex-
ponents yd „and gd „and have enforced continuity
across the various boundaries. Note that within the
dispersive regime the exponent yd „differs from Eq.
(3.146), since the longitudinal length L of the small bun-
dle scales with R; see Eq. (4.27) above. Starting out at
higher fields such that a, & L,„we find that the elementa-

ry scale U, becomes field dependent [see Eq. (4.46)] and
the scaling behavior begins within the lattice pinning re-
gime itself. In particular, for L, [ln(A, /L, )] '~ & a, &L,
the result is
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with U, = U,„(L,/a, ) exp[2c(L, /a, ) ], and the remain-

ing cases are treated in an analogous fashion.
Within the present section we have presented a de-

tailed discussion of the statistical mechanics of a Aux-line
lattice subject to quenched random disorder. Due to its
nontrivial internal structure (length scales g and a. ) and
the long-range interaction between the individual vortex
lines (length scales a, and A, ), the statistical mechanics of
a vortex lattice is much richer than that of a simple elas-
tic manifold. This richness presents itself in a large num-
ber of different regimes, across which the interaction of
the lattice with the quenched random potential changes
in nature. The single-vortex pinning regime, which is
relevant for low fields, a, &I.„and small distances,
I. (I.„gives way to the small-bundle pinning regime,
where dispersion in the elastic moduli renders the effect
of the pinning potential marginal ((=0). The small bun-
dles grow rapidly (exponentially) with increasing field
strength, and the system enters the nondispersive regime
as the lattice constant a, drops below
L, [l n(A, /L, ) /c] '~ or if transverse distances 8 ) A, are

considered. Within the large-bundle pinning regime, the
vortex lattice behaves like a conventional anisotropic
three-dimensional elastic manifold with a wandering ex-
ponent g3 2 5

When we go to large distances, R )8,
(note that the lattice correlation length R, can be smaller
than A, if the disorder is strong enough), the internal
structure of the vortex lattice becomes important and we
enter the CDW-type pinning regime. Here pinning is
again marginally relevant (/=0), which we believe is a
consequence of the "longitudinal" character of the trans-
verse displacement u & a, at these large distances.

B. Dynamics

In analogy to Sec. III.F.2 above, we shall now investi-
gate the dynamic behavior of the vortex lattice under an
applied force field. The field can be imposed by a trans-
port current density j, Aowing through the sample and
generating a Lorentz force density j,B/c acting on the
Aux-line lattice. An alternative way to expose the rnani-
fold to a driving force field is by turning on a magnetic
field and thereby forcing the sample into a critical state.

I

The resulting density gradient in the Aux-line lattice is,
via Maxwell's equations, equivalent to a screening
current density j„generating again a Lorentz force den-
sity j,8/c acting on the lattice. Below, we follow the
general discussion in Sec. III.F.2, but the rich structure
present in the statistical mechanics of a vortex lattice, as
outlined above, will also strongly inhuence its dynamic
behavior. This can be understood by noting that the ele-
mentary scales of length (R, and L, ) and of energy ( U, )

in the problem strongly depend on the strength of the
magnetic field, i.e., on the internal length scale a, of the
elastic manifold. These field-dependent elastic lengths
then determine the critical force or current density.
Second, a driving force field F=jBjc defines an addition-
al length scale R,„,~R, in the system, which is the size
of the critical nucleus determining the rate of creep. De-
pending on the relative position of this length with
respect to the other length scales in the problem, the na-
ture of creep will change. Let us, then, first determine
the relevant scale of the driving force, i.e., the critical
force or critical current density.

1. Critical current density

c'=B Vg =~" ' (4.49)

where we have used the definition of U, in terms of the
elastic shear energy; see Eq. (4.45). The result has been
expressed via the depairing current density j, given by
Eq. (2.30). Inserting Eqs. (4.19) and (4.21) for the small-
bundle and large-bundle transverse dimension R„we ob-
tain the field-dependent critical current density (see Fig.
17),

The critical force F, leading to the depinning of the
manifold is given by Eq. (3.174). Each vortex bundle of
volume V, =R,I., is collectively pinned with an energy
U, given by Eq. (4.46), and the relevant length scale for
pinning is the core diameter g. Therefore the pinning
force is F = U, /g. In order to obtain the critical current
density j„we have to balance the pinning force F
against the Lorentz force FL ——j,BV, /c, and we obtain

Jsv —
2 J&, L, &a,I,

3
~ ~ CA= Jsv a,

2

exp —2c

4

a, L, [ln( A, /L, ) /c ] ' i & a, & L, , (4.50)

Jsv
ao

a, & L, [ln( A, /L, ) /c ]

As discussed above in detail, the bundle volume increases
with magnetic-field strength. Since the individual pin-
ning centers add up only randomly within the collective
pinning volume, we then obtain a decrease in the critical

l

current density with increasing field. The decrease in the
critical current density with increasing field strength
shows an exponential dependence, j, CC exp[ —B ~ ],
within the small-bundle pinning regime and turns alge-
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braic (j, o-1/B ) in the regime of large-bundle pinning;
see Fig. 17. The crossover from the single-vortex pinning
regime to the small-bundle pinning region takes place at
a current density j, -(g/a. ) j., whereas the crossover to
the large-bundle regime is given by the estimate

j,—j, /a . In an anisotropic superconductor the latter
result remains unchanged, whereas the former one takes
the form j,—(g/sa. ) j, .

Let us also remind ourselves that, in order to express
the above results via the magnetic-field strength 8, we
simply have to make the substitution

1 /2
C

a, Bb

in the above formulas. In particular, the crossover field
from small-bundle to large-bundle pinning is given by

2/3

2. Creep near criticality

In the above discussion of the behavior of the vortex
lattice in the presence of a disorder potential, we con-
sidered only tilt and shear deformations. For large mag-
netic fields, the compression modulus is much larger than
the shear modulus, and the accommodation of the mani-
fold to the random potential is due to the softer shear
mode and does not involve compression. In the present
section, we are interested in the process of creep at
current densities j j„where a small portion of the vor-
tex lattice, the vortex bundle, jumps into a neighboring
favorable metastable state, while the remaining part of
the lattice remains in place. In order to gain energy from
the driving Lorentz force, the lattice then has to undergo
a compression. Consider a displacement field u(r) re-
stricted to the bundle volume V. The energy gain 6L ( V)
due to the Lorentz force is given by

jsv 2 Jsv
B&t, ——

P&t,H, ln
~ Jo Ja

(4.51) Cl ( V) =—f d V[j h 8] u,1

which can be transformed to

(4.52)

Blb

large bundle

Bsb

Td Tdp Tc

FIG. 18. Various pinning regimes and their relative position
within the B-Tplane. The single-vortex pinning regime at small
fields and temperatures is bounded by B,„and by the single-
vortex depinning temperature Tdp. All quantities within this re-
gime are independent of field. Within the small-bundle pinning
regime, limited by B» and by Tdp, the field and temperature
dependence is exponential, a consequence of dispersion in the
elastic moduli. At large temperatures and fields, the system
enters the large-bundle pinning regime, where dispersion is ir-
relevant and the dependence on T and on B is algebraic. With
increasing temperature T, the crossover lines B,&( T) and B»(T)
drop rapidly after crossing the depinning line Bdp(T) for the
vortex lattice. For weak enough pinning, the melting line
B (T) is within the large-bundle pinning region and hence the
melting of the vortex lattice is only weakly perturbed by the dis-
order. Parameters chosen apply to YBCO with B,t, =6 T,
B&b = 10 T, Tdp 60 K, and Tdp =70 K.

and difFers from the field B»=P»(j,„/j, )H, , P»=5,
limiting the single-vortex pinning regime only by a loga-
rithmic factor. The prefactor p&& can be estimated using
the dynamic approach, and the result is p»=2 (see Sec.
VI.A.3 below). The arrangement of the various crossover
fields is illustrated in Fig. 18.

Cl (V)=—fdV[jh8 r](V u),1
(4.53)

and one obtains the scaling relation

RII ——
Qo

(4.54b)

between the parallel and perpendicular dimensions of the
superbundle. In the original treatments of classical col-

and the lattice indeed has to undergo a finite compression
in order to gain energy out of its motion in the force field.
For fields 8 &8,b, the interaction among the vortices is
essential, and the hop of a vortex bundle will involve con-
siderable compression energy, which we should take into
account in our determination of the activation energy. If
we then allow a number of bundles to jump simultaneous-
ly, we can lower the compressional energy involved in the
creep process. The idea is that an elongated (along the
direction of the jump) bundle of bundles, a superbundle
with dimensions R~~ (parallel to the jump direction),
Ri =R, (transverse to the field and the jump direction),
and I. (along the field direction), will constitute the ele-
mentary unit in the creep process; see Fig. 19. The di-
mensions of this superbundle have to be determined by
minimizing the total elastic energy involved in the jump,
including the compression energy as well. The following
simple estimate works well in the nondispersive regime,
where the vortex-vortex interaction is effectively short
ranged. Comparing the compression and shear energy
densities c»(u/R~~) =c66(u/Ri), the parallel dimen-
sion R

~~

can be expressed through the perpendicular size

R~,

1/2

(4.54a)
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RJ

Lb

and the comparison with the shear energy

2 2

E,„„,= 2 z d r d r'5(r —r')(Viu)(Viu)
B a,

64m. A.

B a, RzRIIL
Q

R
provides the estimates

R~
RII ——L = 2, Rj &RII —L &A, ,

0

(4.55c)

(4.56a)

lective creep by Feigel'man et al. (1989) and of quantum
collective creep by Blatter et al. (1991) the same ap-
proach has been used in the nonlocal regime by account-
ing for the dispersive nature of the compression modulus
via the substitution c» ~c»(1/R i ) in (4.54a), producing
the scaling R

~~

——R i /a, . It has been pointed out by
Koshelev (1994) that this simple treatment cannot be ap-
plied in the region where the two planar scales R~ and
R

II
become different and that a more careful analysis pro-

duces the diff'erent scaling behavior R~~-—Ri/a, within
the (fully) dispersive regime. In the following we adopt
the approach by Koshelev (1994) and present a deriva-
tion of the superbundle dimensions valid for any size and
form of the superbundle.

For small bundles we have to account for the long-
range nature of the vortex-vortex interaction (dispersion
in the elastic moduli) and we obtain the following esti-
mates for the tilt and compression energies

B2 e
—Ir —r I/~

, , Jd"d" ',
, a, a, ,

32~'A, ' ~r —r'

II„2B2 R~R
Q (4.55a)

where we have assumed that R
II

is the largest dimension
of the bundle. Similarly, we obtain for the compression
energy

e
—Ir —«'I/'~

jd rd r', ,
I

(Vu)(V'u)
32m'X2 )r —r

R 2(L b)2
Q

RII
(4.55b)

Equating tilt and compression energy we find L =RII

FICJ. 19. Superbundle made up of collectively pinned bundles.
Due to the compression of the vortex lattice in the direction of
the jump, the optimal configuration for creep involves an
elongated superbundle with dimensions R& (perpendicular), RII
(parallel to the hop), and L (parallel to the field). Close to cri-
ticality, the jump involves (RII /R, )(L /L, ) =(R, /ao) collec-
tively pinned bundles.

for the superbundle dimensions in the fully dispersive re-
gime (small superbundle). Note, that the scaling (4.56a)
differs from the previous result (4.27), L =R /a, , which
applies to the elementary bundle where no compression is
involved and hence R

II

——R z =R, . The corresponding re-
sult can be obtained from a comparison of (4.55a) with
(4.55c), taking into account that in this case the largest
dimension is L rather than R II.

As the largest dimensions L and RII increase beyond
the screening length A, we should cut the corresponding
lengths in (4.55a) and (4.55b) on the scale A, and find
6'„i,—-(B /I, )(RiAR~~/L )u and the same result with
R

1
and L interchanged for O'„. The size of the super-

bundle in this semidispersive regime (intermediate super-
bundle} is then given by

R
R =L

II
Ri & A, &R

II
L . (4.56b)

Finally, as the smallest length scale R ~ crosses the
screening length A, as well, we enter the nondispersive re-
gime where the vortex interaction is effectively short
ranged and we find the (large) superbundle dimensions
Isee also the result (4.54b) above]

b
RI~I=L = Rl' k&Rl(RII=La,

The activation energy of a superbundle in the creep pro-
cess near j, is given by

(4.56c)

U, =c66 R~RIIL = U, .Q II

Rq R, Lb
(4.57}

The important point to note here is that the individual
subbundles are formed independently via the competition
between the elastic tilt and shear energies and the disor-
der potential (the transverse size R„=R, follows from
this optimization of the subbundles). For the creep pro-
cess, the large value of the compression modulus,

c&& &)c66, prohibits the hopping of individual subbundles
and therefore the latter are coupled together, leading to
the hop of a large superbundle. The activation energy U,
for such a correlated hop is then roughly given by the
sum of the activation energies for the subbundles.

Inserting in (4.57) the above results for the
(super)bundle dimensions we obtain the following final re-
sult for the activation energy U, of a vortex bundle near

A:
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U,„=H,( jsv

jo
L, &a, ,

CU„ a,
e ' ', L, [ln(A, /L, )/3c] ' (a. (L, ,

U, —
U,„e ', L, [ln(A, /L, )/c] '~ &a. &L, [in(A, /L, )/3c]a,

(4.58)

U„ a,
L, a. (L, [l n(A, /L, )/c]

The case of quantum creep can be handled in an analo-
gous fashion. The additional quantity to be determined
is the duration of the hop, the collective tunneling time
t, . The dynamic behavior of a vortex lattice is usually
dominated by dissipation; hence we can estimate the en-
ergy density stored in the damped motion to be gg /t,
Equating this result to the (shear) elastic energy density,

we obtain a tunneling time t, = (r)/c66 )R, , and the action
for quantum creep becomes

(4.59)

Making use of Eqs. (4.19), (4.21), and (4.56a) —(4.56c), and
using the Bardeen-Stephen result (2.26) for the friction
coeKcient, we obtain the final results

fi g Jo
sv 2 ~

pn jsv

jo
Q& Jsv

1/2

I., &a,

S,„e ' ', L[l n(A /L) /3c] '~ &a. &L, ,
C

S,"= '

S,„e ' ', L, [l n( J /L, )/c] '~ (a. (L, [l (nA/L, )/3c]
C

(4.60)

L,S„
ao

a, &L, [ln( A. /L, ) /c ]

and

U(j)= U, 1—
jC

aS

(4.61)

S(j)=S, 1—
Jc

J

(4.62)

Unfortunately, the exponents a and a& are not known for
the random pinning potential. For the periodic pinning
potential the exponents were found in Sec. III.E above;
see Eqs. (3.109) and (3.117). For the periodic potential
the dimensions of the critical nucleus diverge near criti-
cality. If this divergence were also present for the ran-
dorn pinning potential, the system would show a very in-
teresting behavior by exploring all the di6'erent pinning
regimes as the critical nucleus expands to infinity on ap-
proaching j,.

3. Greep at small driving forces

Next we want to investigate the dynamic response of
the system at small current densities, j«j,(a. ), where

At criticality the activation energy for classical creep and
the action for quantum creep vanish according to

[a

the hopping distance u for optimal jumps grows beyond
the elementary length scale r =g of the disorder poten-
tial. The original discussion of pinning and creep by Lar-
kin (1970) and by Larkin and Ovchinnikov (1973, 1979)
was based on the perturbative approach, which is valid
for displacements u smaller than the characteristic length
scale r of the pinning potential. As the displacernents
grow beyond this limit, the perturbative approach breaks
down in two respects: First of all, due to the presence of
many metastable minima, the elastic medium can choose
among many low-lying states, which then leads to a
di6'erent scaling behavior of the mean displacement field
and of the energy fluctuations, as discussed in detail in
Sec. III.E. Second, pinning is due to the presence of a
random potential rather than a random force field. For
small distances, u & r, this distinction is not important,
as the random pinning potential can be expanded and be-
comes equivalent to a random force field. However, this
expansion breaks down for displacements going beyond
the scale r of the pinning potential. As shown above in
Sec. III.F, the scaling behavior of an elastic manifold
subject to a random field difters quite appreciably from
the scaling behavior induced by a short-range correlated
random potential. Instead of a random pinning force we
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then have to consider a random pinning potential in our
discussion of creep at small current densities. In the fol-
lowing we shall analyze collective creep in a vortex lat-
tice as outlined in the work of Feigel'man et al. (1989).

As pointed out in Sec. III.F.2 above, the present case
of vortex creep can be considered as a special application
of the general theory of disorder-dominated creep-type
motion of elastic manifolds subject to an external force
field I'. Therefore all the results obtained in Sec. III.F.2
above can be adapted to the vortex lattice with only
minor modifications. These modifications are due to the
long-range nature of the interaction among the vortices
and also due to the internal structure of the vortex lattice
itself. We should expect deviations from the standard re-
sults within the small- (and intermediate-)bundle regime
at distances, a, & R, L & A, (where the long-range interac-
tion leads to dispersive elastic moduli c» and c44) and
again within the CDW-type pinning regime at large dis-
tances, R )R, (where the displacement field takes on a
"longitudinal" character and only the internal structure
of the lattice produces pinning).

'

To begin with, consider a sample prepared in a critical
state at low temperature and magnetic-field values,
T & Td 1n[(j,„/j, )(p,bH, /B)]', 8 &B,b, where we

can apply the results of the single-vortex collective pin-
ning theory. According to Eqs. (2.71) and (2.78), the
current density j will decay with a nonlinear logarithmic
time law

j(t)-j,„ ln
T t

U,„ t,

—7

(4.63)

until the current density j,b -j,„[(B/p,b~, )(j, /j, „)] /'

has been reached, where the interaction between the vor-
tices becomes important. These results, of course, are in
agreement with the more general results of Sec. III.F.2 if
we identify F=fL =j@,/c, F, =j,„@,/c, and use the
value gi 2= —,

' for the line-wandering exponent. As the
current drops below j,b, we enter the lattice pinning re-
gime, and the critical nucleus for creep will be a small
vortex bundle elongated along the direction both of the

4
ps ps+, small bundles .

2 —g'
1p~p+

2 —
g

1
ps ~ps+, intermediate bundles .

2 —g'

(4.64a)

(4.64b)

A second complication concerns the wandering ex-
ponent g: Within the small-bundle pinning regime, the
generalized Larkin-Ovchinnikov result (4.25) for the dis-
placement correlation function (u (r)) depends only
logarithmically on the distances R and I., and hence the
wandering exponent changes to the new value /=0
within the small-bundle creep regime. This reduced ex-
ponent remains also valid within the intermediate-bundle
creep regime where the transverse length Rz due to the
shear relaxation in the subbundles is still smaller than the
screening length k. Combining the results of Sec. III.F.2
with the above considerations, we obtain the following
exponents p and ps (overdamped motion) characterizing
creep of vortex bundles within the lattice pinning regime:

field and of the motion. The general results (3.179),
(3.185), and (3.190), with the appropriate values for the
exponents p and pz, then have to be modified due to the
dispersive nature of the elastic rnoduli.

Within the small-bundle pinning regime, the bundle di-
mensions along the field as well as along the direction of
the hop grow very fast, I. =RII—-Rj /a, . Using the
scaling behavior of R ~ with current density j, Eq.
(3.177), Ri(j) ~(jo/j)' ' ~', we find the scaling laws
Lb-Rll "(j /j)3/(2-~) for the bundle dimensions in
the field/force plane. For intermediate size bundles we
have L =R

~

-(R—ik/a. )'/ and hence L -R~~
0- (j, /j) ' ~'. Finally, for large bundles, L =R

~~

=(A, /a, )Ri, and no additional scaling factors arise. To
summarize, we have to modify the results of Sec. III.F
within the small- (and intermediate-)bundle pinning re-
gime by changing the exponents p and p&,

4
p —+p+

—,', —,
' small bundles, a, &R~, R'II —Lr

p, pz= -1,2 intermediate bundles, a, &RJ &X&R~~ —I-

—,', —", large bundles, A, &Ri, R~~
-L—

The above results are applicable within a lattice pin-
ning regime where the typical hopping distance u is less
than the lattice constant ao of the Aux-line lattice. On
the other hand, the relevant hopping distance u can grow
well beyond this value, e.g., when the current density j is
decreased or when relaxation is simply considered on
very large scales (see Sec. IV.E), implying a crossover to
CDW-type pinning as discussed in Sec. IV.A above.
Within this regime, the line-wandering exponent g is
again reduced to zero, so that the exponents p and pz be-

(4.65)

I

come

p, ps= —,', —', CDW-type pinning, R, &R . (4.66)

We are now ready to collect the results describing
creep at small driving forces, j«j,. Let us assume that
our sample initially was prepared in a critical state be-
longing to the single-vortex pinning regime, that is,
L, & a, . As the current j decays due to creep, the activa-
tion barrier U( j), the action S(j), and the current j itself,
evolve according to the following scheme:
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' 1/7
Jsv

SV ~

5 2

Jsb &J «Jsv

J sb (a () /A, ) &j & jkb

/
Jsb

sb

U(j ) = . U» . , j» &j & jsb(a. /k, )
Jsb 2/3

a, j
7/9

(4.67)
Bib

Bsb

Jlb
lb

UCDW

1/2
JcDW 0&J & jcDw ~

JcDw &J &Jlb ~

O log (k /i) ~/~& log(k i )

log(k /i)

I og —".

l

log{k i /~)

8/7
Jsv

Sv

7 2

Jlb
lb

2

Jsb &J Jsv

J&b &J &J.b(ao /~)

JcDw &J &Jlb ~

3/2
JcDW 0&J &JcDw ~

/
Jsb

sb ~ ~

S(j)= S,b
0

' 16/9

(4.68)

FIG. 20. Various creep regimes and their relative position
within the B-j plane. The B-j plane is divided up into a large-
field/large-current part, where the disorder is irrelevant (Aux-
Aow regime), and a low-field/low-current portion be1ow the
critical current density j,(B), where the vortex system moves
only via creep. The Aux-creep regime is divided up into a
single-vortex creep regime at large current densities (creep via
activation of individual vortex segments) followed by the small
to intermediate and large-bundle creep regimes at lower current
densities (larger fields), where the nucleus for creep consists of a
three-dimensional vortex bundle. At very low current densities
the system enters the CDW creep regime. Note that the CDW
regime cannot be reached by increasing the field, but only by
decreasing the current density, i.e., by approaching equilibrium
(j~O).

9/5

T
jsv ln—

U, to
Jsb &j «Jsv ~

JCDW J b L3aoL,

Tj(t)= j b ln
ao Ub t Jlb &J &j b(ao /~)

T t
ln

lb

' —9/7

JcDw &J &Jlb ~

T
JCDW UCDW

ln
to

—2

0&J &JcDw .

The parameters
1/5 8/5

(4.69)

a. ao
U,b ——U„ S,b ——S„

C

7/5
~ ~ C

Jsb =Jsv Ul =U.b ao

2

—2/5

j,b ln
T t j,b(a. /A, ) &j &j b,2/3 ~ ~

U,b t,

are determined by the condition of continuity at the
crossover between the various regimes. The dependen-
cies j,(B), j,b(B), j&b(B), and jcDw(B) and the resulting
partition of the 8-j plane into the various dynamic re-
gimes is illustrated in Fig. 20. The time evolution of the
screening current density j for the case of quantum creep
is obtained by simple inversion of the relation
5 (j)=Pi ln(t /t, ) and use of Eq. (4.68).

The glass exponents p derived above differ from those
obtained by Feigel'man et al. (1989) within the nonlocal
regime: The exponent p= —,

' characterizing the small-

bundle regime has to be substituted by p= —,'. Further-
more, an additional intermediate regime appears which is
characterized by the exponent p=1. The mistake in the
original derivation is due to the oversimplified derivation
of the superbundle dimensions based on (4.54a), a fact
pointed out by Koshelev (1994). The same mistake has
been done in a preprint version of this work with conse-
quences for the results on both the classical as well as on
the quantum collective creep.

Slb ——S,b a,

UCDW Ulb

Ju =jsb

2L 3a,
5

ao

2L3aoL,
SCDW Slb

g5

(4.70) C. Thermal depinning

In close analogy to the case of single-vortex pinning,
thermal fluctuations will also lead to a smoothing of the
disorder potential for a pinned three-dimensional vortex
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lattice. Hence we expect an increase in the collective pin-
ning volume V, with temperature and, consequently, an
increase in the activation energy U, and a decrease in the
critical current density j,.

The first discussion of thermal smoothing of the disor-
der potential was that of Feigel'man and Vinokur (1990),
who based their calculation on the dynamic approach.

Later, Koshelev (1990) used the method of dimensional
estimates in his analysis of the interplay between thermal
fluctuations and pinning in a two-dimensional vortex lat-
tice. Here we shall concentrate on the simpler approach
using dimensional estimates. I.et us follow the discussion
in Sec. II.B and determine the time-averaged pinning en-
ergy to lowest order in the disorder parameter y U,

d
(& @;„(V)», = f d r f d r'(Ep, .„[r,u(r, t)]E;„[r',u(r', t')] &,

to to
(4.71)

with the pinning energy density E;„given by Eq. (3.89) with v=o and u =0. Assuming a short-scale correlated disor-
der potential and going over to Fourier representation for the form factors p, we obtain

(( )2) dt dt' d K
~

~2
iK(R —R„) iK(u ( )i—u„(i')]

p}u i Y U
( )2 PK

jM, V

(4.72)

The largest contribution is obtained from the terms with p =v. Assuming Gaussian thermal fluctuations, we arrive at

((~ (v) &') — ' vPlu f 2 (2 )2
PK (4.73)

Compared with the one-dimensional case studied in Sec.
II.B above, the discussion of thermal fluctuations in the
vortex lattice is considerably simplified by the finiteness
of the mean-squared thermal displacement
&u (t~~)&,h=2(u ),h, with (u ),h=(u (r, t)„h, in-

dependent of position and time. At small temperatures,
where (u ),h(g, the K integral in Eq. (4.73) is cut off
by the factor ~pK~ at a wave vector K —1/g,

(4.74)

At higher temperatures, where (u ),h) g, the Debye-
Waller factor exp[ —K (u ),h] provides the cutoff at
K —1/(u ),'h~ and

G(t), we obtain

( u'( )t),„=4 Tf 2'
X f dt' [1—cos(cot) ]6(r=0, t'),

(4.77)

which can be further simplified to

(u (t) ),„=2Tfdt'G(t') f —[sina)t' —
—,'sinco(t'+t)

—T(sina)(t' —t) ] .

(4.78)

a. u, }, u The integral over frequencies produces the cutoff func-
tion

T) Tdp (4.75)
signt —

—,
' sign( t '+ t) ——,

' sign( t t)— (4.79)
Here we have introduced the depinning temperature Td
for a vortex lattice defined by the crossover condition

(4.76)

and we obtain

(4.80)

Next, let us determine the mean-square amplitude of
thermal fiuctuations (u )(h. We first relate the correla-
tor ( u ),h to the static elastic Careen's function 6 (co=0):
Expressing the Green's function 6 (co) in the fluctuation-
dissipation theorem (2.113) by its Fourier transform and hence

(4.81)

Going back to Fourier space and taking the limit t —+ co,
we immediately find [note that G (t (0)=0]

(u ),„=(u +uy ),h= Tf g 6 (k, co=0)= Tf +d k d k 1

(2~) (2m)' c„(k)K +c44(k)k,
1

c66K +c44(k)k,

(4.82)
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where we have used the Green's function (3.30) for the
vortex lattice. A very accurate calculation of the correla-
tor & u &,h has been given by Houghton, Pelcovits, and
Sudbd (1989). Here we present only a rough estimate for
illustrative purposes. The main contribution to the in-
tegral originates from the second term and is concentrat-
ed in the region K-KBz, k, —(c66/c44)' XK -K/2.
Hence we can drop the k, term in comparison with K
[we remind reader that c«=c«(k=O) is the elastic
modulus for a uniform tilt ]. The integral then simplifies
to

J.(0)
=Gi B b(0)j,„(0) '" T,

(4.88)

smaller than 0.1 for the Bi- and Tl- based compounds
where Gi -0.1 —1. In conventional superconductors, the
corresponding quality is much larger due to the smallness
of Gi. Hence we obtain the important result that the de-
pinning line in the H-T phase diagram

B~p=PdpGi H, (0)
T
T

dK dk k K
&u'&,„=T

2~ c66~2X4+c44k,2

The integration over k, leads to
K

&u'&,„= j "dK',
8n+c66.c«

(4.83)

(4.84) pd =8. (4.89)

rises much more steeply with temperature than in con-
ventional superconductors, emphasizing the important
role of thermal fluctuations. Using the results of
Houghton, Pelcovits, and Sudbg (1989) for the thermal
displacement amplitude & u &,h, we obtain the prefactor

which indeed is dominated by the large-K wave vectors
near the Brillouin-zone boundary. The Anal result can be
written in a particularly simple form,

1 1&u'&,„=,a.' =
c66a() 2+m eoao

2ao (4.85)

This result can be interpreted in the following way: Con-
sider a large-amplitude deformation of the vortex lattice
with 5u =ao on a length a, . Such a deformation costs a
typical energy c66a, =c.,a, /4. As T reaches this charac-
teristic energy, the thermal amplitude of Auctuations be-
comes of the order of the lattice constant a, .

Combining the result (4.85) with the definition (4.76),
we obtain the depinning temperature

1/2

T„=2i/Yr E.g' (4.86)

Tc B
i/G; P„H, (0)

B
Bgb

1 j,„(0)
Gi j.(0) B,b(0)

where we have made use of the definition (2.79) of the
crossover field B,b in the last relation. The ratio
j,„(0)/(j, (0)Gi) is of the order of unity in YBCO and is

Note that right-hand side of (4.86) does not depend on
temperature. Moreover, Eq. (4.86) for the depinning
temperature of the vortex lattice crosses over to the re-
sult (2.130) for the single-vortex depinning temperature
as the Geld B drops below B,b,

' see Fig. 18. It is con-
venient to express the depinning temperature in terms of
the ratio of the two parameters characterizing the
strength of thermal Auctuations Gi and of the disorder
potential j,„/jo. Using the definition (4.86) for the de-
pinning temperature and Eq. (2.47) for the Ginzburg
number Gi, we obtain (4.90)

38' 1 ao~r (T)
c66+c44c66

(4.91)

hence the transverse pinning length R, determined by the
condition & u (r) & = r~( T) becomes

The shape of the depinning line is illustrated in Fig. 18.
Let us return to the pinning problem and discuss the

e6'ect of thermal fluctuations on the smoothing of the dis-
order potential. Comparison between the low- and high-
temperature results (4.74) and (4.75) shows that, if we
Arst express the disorder strength by the parameter 5,
then the high-temperature result (4.75) can be obtained
from the low-temperature equation (4.74) by a simple
substitution of & u &,h for g . Here we should remember
that the disorder parameter 5 describes Auctuations in
energy [see Eq. (3.142)] and therefore is not rescaled due
to thermal smoothing, which a6'ects only the pinning
forces via the change in the basic length scale r of the
disorder potential and leaves the basic energy scale un-
changed. Second, in all the expressions for the shear, tilt,
and compression energy densities, as well as in the energy
gain due to the Lorentz force, we have to substitute for
the length scale r (T~O)=g of the disorder potential
the thermal length r~(T) Td )=&u &,'h~, as the latter
represents the new minimal length scale that can be
resolved by the individual vortices. This recipe of substi-
tuting & u &,h for g then allows us to generalize the re-
sults of Secs. IV.A and 8 in a simple way so as to include
the eQ'ects of thermal fluctuations. In particular, we can
combine the low- and high-temperature results into one
expression by deAning the temperature-dependent
effective length scale r„(T) of the disorder potential,

r (T)=g 1+
g2 T

1+

Let us concentrate first on the collective pinning length
R, . Substituting b, /g for the mean-squared force densi-
ty W in the Larkin-Ovchinnikov result (4.17), we obtain
the new prefactor
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a, , L, (T) &a,

L, r(T)
R, = a exp c

a g2
L, [rz(T)/g ]Iin[kg /L, r (T)]] '~ &a, &L,(T), (4.92)

L

L, r(T)
ao

a. &L, [r (T)/g ]Iln[A(2/L, r2(T)]I

L, r(T)
a, $2 B,b

' 2 1/2

1+ T
dp

(4.93)

in the above formulas. In particular, the temperature-
dependent crossover fields 8,„(T) and 8»(T) are given

by

In order to obtain the explicit dependence on the magnet-
ic field B and on temperature, we have to substitute

2
Jsv Tdp

Blb( T) ~lb ~ HC2 T + TTdp+ T
4

2 Jsv
X ln

Jo

dp

Td +T
2 2/3

(4.95)

and decrease with increasing temperature T; see Fig. 18.
Next, let us determine the complete temperature and

field dependence of the critical current density j,(B,T)
and of the activation energy U,"(8,T) for creep. The gen-
eralization of Eq. (4.49) to arbitrary temperatures reads

'2
Jsv T8 q(T)=P,b . H, 1+
Jo Tdp

T'
exp —2c a+

Tdp

gr (T)
j,(B,T)=, j. .

C

(4.96)

[see Eq. (2.178)] and

(4.94) Note that the product gj, is independent of g in the
above expression. The final result for the critical current
density is

B,b
Jo

P,bH,

j,(B,T)= .j.
sb c2

T1+ exp
T dp

1/2+2m /c

1+
dp

3c T

B
exp ~ 2c

Bsb

8 &B,b(T),

2 3/2

1+
dp

B,b(T)(8 (Blb(T), (4.97)

1 Bsb
Jo

3

Tdp

T +T
11/2

Blb(T) &8,

where we have already substituted the scaled tempera-
ture, field, and disorder variables T/Td„, B/B,„, and
j,„/j, for the corresponding length scales r (T), a, , and
I, Care has been taken to smoothly connect the single-
vortex and small-bundle pinning regimes. The results
(4.97) are in agreement with those obtained by
Feigel'man and Vinokur (1990) based on the dynamic ap-
proach. The parameter a (of order unity) has been intro-
duced in order to interpolate properly between the T=O
and the T ) Tdp results. In particular, as follows from
the dynamic approach (see Sec. VI.A. 1), finite-

r~(T)
U(8, T) =c66 2 V, ,

R,
(4.98)

and the activation energy for creep becomes

temperature corrections enter the formalism via a
Debye-Wailer factor exp( —X ( u ),b/2). Expanding
this factor, we find that the lowest-order correction,
K ( u ),b ~ T, is linear in the temperature.

Similarly, we obtain the basic expression for the pin-
ning energy U, (8, T) of an elementary bundle in the form
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1+, 8 &B,b(T),T
Tdp

U,'(8) = U,„, B
sb

B
H,

2 1/2

1+
dp

3/2 2 2

1+
Tdp

8)b(T) (8 .
B,b

' 2 3/2

-P3- ' 1+T
sb dp

B,b(T) &8 &B,b(T), (4.99)

Note that the ratio of current densities j„/jo entering
the right-hand side of Eqs. (4.92), (4.97), and (4.99) via L,
or B» describes the disorder strength and can be re-
placed by the dimensionless disorder parameter 6 intro-
duced in Sec. III.C, j„/j, =5

The high-temperature limit T ) Td of the results
(4.92), (4.97), and (4.99) can be simplified considerably by
noting that

perature Td does not depend on T/T, .
At sxnaller temperatures, T & Td, we have to expand

the temperature-dependent factor (1+T/Td )"
=1+nT/Td, and the leading temperature dependence
is determined by the ratio T/To with

3/2
B,b

To —Td

B
B,b

L, r(T) TC PTd„a. g T' Bb

1/2
I 1 j,„(0) B,b(0)

Gi j.(0) 8
T1—
T.

(4.102)

(4.100)

For T ) Tdp, the first term on the right-hand side of Eq.
(4.100), which does not depend on the magnetic field, is
dominant. However, the residual dependence on the
magnetic field described by the second term is not neces-
sarily small, and we must be careful in dropping this
term. With this proviso we can obtain a very simple re-
sult for the relevant length scale of a collectively pinned
object at high temperatures, to leading order,

L,(T)=L,e ', L, (T) (a. ,
(T/Td

T
L,exp + . . .

T dp

3

a. &R,(T) &A, ,

R, (T)= '
3

+ . , A, (R,(T),T
T dp

(4.101)

where we have substituted I., for the prefactor a. in the
expression for the radius R, (T) within the small-bundle

pinning regime in order to guarantee continuity. Most
interestingly, to leading order in the parameter T/T d~,
all these lengths become independent of the magnetic
field B at high temperatures. The corresponding expres-
sions for the critical current density j, and for the activa-
tion energy U, in the high-temperature limit can be ob-
tained straightforwardly. Note that we have to take the
additional temperature dependence of the microscopic
parameters g(T) and A, (T) as well as the temperature
dependence of the disorder parameter 5 into account as
we approach the transition temperature T, . For the case
of 5T, pinning, the latter is given by Eq. (3.78),
5( T) ~ (1—T/T, ) ' . The temperature dependence of
the single-vortex depinning energy T~~ (which is the
relevant parameter at high temperatures) then becomes
Td&=Tdz(0)(1 —T/T, )', whereas the depinning tem-

where we have used the definition (2.79) for the field 8»
limiting the single-vortex pinning regime and we have ex-
pressed the depinning temperature via the ratio j, /j, Gi

measuring the relative strengths of quenched and thermal
disorder; see Eq. (4.87). In the high-temperature super-
conductors, typical values for the combination
j„(0)/j, (0)Gi are of the order of unity (for conventional
superconductors, the corresponding quantity is much
larger due to the smallness of the Ginzburg number), and
hence for large enough fields, B»B,b, we shall obtain an
appreciable temperature dependence of the various
characteristic scales (R„j„U,) even at low temperatures
T &&T,. In particular, within the small-bundle pinning
regime the critical current density will decay exponential-
ly with

—T/T, (B)j (BT) e ', Bb(8(Bb. (4.103)

Close to the transition temperature (but still above the
depinning line), the temperature dependence of the criti-
cal density will be dominated by the leading term in the
expansion of (1+T/Td ) (i.e., 1) and hence

—(&I&,b(o)) [Tcl(&c—&)]

(4.103')
Finally, let us brieAy discuss how the various pinning

regimes fit into the H-T phase diagram. Here we should
offer a word of warning: The boundaries B,b( T) and
8»(T) are quantities relevant at critical current densities

j=j, and therefore do not belong to the equilibrium
phase diagram, which is characterized by a vanishing
current density j=o. In order to describe the relevant
physics of the vortex lattice, we therefore should consider
a three-dimensional diagram 0-T-j as shown in Fig.
21. The numerical estimates for the various characteris-
tic quantities as they typically apply to the new high-
temperature superconductors will be presented at the end
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of Sec. IV.D below, after the discussion of effects due to
anisotropy. Let us first concentrate on the equilibrium
phase diagram at j=0. Here the important lines are the
mean-field transition line H, (T), separating regions with

zero and finite local order parameter, and the line mark-
ing the lower critical field H, , separating the Meissner-

Ochsenfeld regime from the mixed state. As we shall dis-
cuss in more detail in Sec. V, thermal Quctuations can
lead to melting of the vortex lattice at temperatures still
well below the mean-field transition line H, (T), thus

2

defining a melting line B (T) which separates the vortex
solid from the vortex liquid phase. The latter can be es-
timated by the Lindemann criterion (Lindemann, 1910),
which predicts a melting transition as the thermal Auc-
tuations (u )Ih in the vortex lattice grow to a substan-
tial fraction of the lattice constant a, ,

(ti (T )),„=cl.~. , (4.104)

with the Lindemann number CL -0. 1 —0.2. Making use
of the result (4.85), we obtain a melting temperature
T (B)

' 1/2

T (B)=2&ms, cl 8
1/2

p C22
CL Tc (4.105)

pinning

ib T,

0 T
equilibrium

FIG. 21. Three-dimensional phenomenological phase diagram
H-T-j for an anisotropic high-temperature superconductor. Pa-
rameters for YBCO have been chosen. The different regimes of
pinning, creep, and flow divide the phase space into separate re-
gions. The various pinning regimes relevant at j=j, are shown
in the back; see also Fig. 18. When the current density j is de-
creased, the system probes the various creep regimes on ap-
proaching equilibrium; see also Fig. 20. Under equilibrium con-
ditions (front) the currents in the system vanish. The current
axis also can be understood as a time axis via the relation
j (t) ~ [ln{t/to)] '~". The path of a typical magnetic relaxation
experiment is illustrated, in which a sample is cooled under
zero-field conditions to the point A. When a magnetic field is
switched on, a critical state is formed (B), which subsequently
decays via creep ( y ) to the equilibrium vortex-glass state ( C).

with
(4.106)

Inverting Eq. (4.105), we obtain the melting line in the
H-T diagram (for a more detailed discussion, see Sec. V,
below)

CI T
'

B~(T)=P H, (0) 1—
m 6 c2

C

(4.107)

where H, (0) again denotes the upper critical field extra-
2

polated linearly to zero. Using the more accurate results
of Houghton, Pelcovits, and Sudbd (1989), we see that
the coefficient P takes the value

p =5.6 . (4.108)

For the oxide superconductors, the main part of the
phase diagram is covered by the mixed phase with an ex-
tremely steep H, line and a correspondingly Bat H,

2 1

boundary. For anisotropic (as opposed to strongly lay-
ered) superconductors, the melting temperature T is
still close to the transition temperature T, .

On the opposite side at j=j, we first concentrate on
the depinning line. Typically, the melting temperature is
close to T, and the intersection of the depinning line with
the melting line takes place at a temperature T*= T, and
a field H*=Pd Gi H, (0) =8Gi H, (0); see Eq. (4.88)

above. Next let us insert the various pinning regimes
into the diagram. Consider a case in which the pinning is
very weak so that

T ((T1 jsv
dP dP (4.109)

Gi j.
with ud =0.7 if we base the determination of Td on the
more reliable dynamic approach (see Sec. VI.A.3 below).
Note that the condition (4.109) clearly distinguishes the
new high-temperature superconductor s, which are
characterized by a rather large Ginzburg number, from
the conventional superconductors with a small value for
Gi. The weak-pinning condition (4.109) is usually
satisfied by the Bi- and Tl-based compounds with
Gi-0. 1 —1 and is on the borderline for YBCO; however,
it is very dificult to fulfill in conventional materials. The
single-vortex pinning regime is always located below the
melting line B (T). Note that the two boundaries limit-
ing the single-vortex pinning regime in temperature
( T & Td& ) and in field (B & B» ) always intersect on the
depinning line; see Fig. 18. The same is true for the
boundaries limiting the small-bundle pinning regime.
Evaluating Bib( T) for T & Tdz, we obtain
B»(T)=P»(j»/j, )Iin[~ (j,„/j. )]J H, , hence Bib fol-

lows the shape of the upper critical field until it intersects
with the depinning line. The logarithmic correction fac-
tor is usually small, so that B&b closely follows the bound-
ary B,„of the single-vortex pinning regime. The extent
of the dispersive regime is rather narrow. When we ex-
pand Bib( T) for temperatures T )Td, the field drops out
of the equation, and hence the small-bundle regime
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ib
dpis bounded by a straight line at

= [in[a (j,„/jo )]] Td ', see Figs. 18 and 21.
As we move away from the critical current density to-

wards thermodynamic equilibrium (where j=0), we cross
the various regimes of single-vortex creep, small-bundle
creep, and the large-bundle creep regime. Finally, at
very small current densities the system enters the CDW-
type creep regime; see Fig. 21. The three-dimensional di-
agram is very useful for the understanding of the time
evolution of the system. Consider for example a typical
magnetic relaxation experiment, where a sample is first
cooled in zero field to a point A =(j =O, H =0, T & T, )

within the phase diagram. Upon switching on a field H„
a critical state is established within the sample, and the
system jumps to the point B = (j =j„H=H„T). After
this, the critical state decays slowly in time and the sys-
tern evolves gradually through the various creep regimes
as indicated by the line y until it reaches equilibrium (C).
Note that by the time the system reaches the CDW-type
creep regime a "glassy" order, as discussed in Sec. A,
above has been established within the sample.

If the pinning is rather "strong, " so that Tdp ap-
proaches the transition temperature T„we have to ac-
count for the various temperature dependencies appear-
ing in the expression for T d [see Eq. (2.128)]. Let us
first concentrate on the limit of vanishing field. Using
Eqs. (3.73) and (3.79) we obtain an implicit equation for
the depi 11Iling temp eratuf e Tdp

j,„(0) 1— (4.110)
Gi jo 0

1/3
dp

T.
Tdp

T.

which can be trivially solved near T, to give

.(0) 'n
T' = T 1 — GidP C j,„(0)

(4.111)

The condition for Td to lie outside of the critical regime
of fiuctuations is 1 —Td /T, )Gi and thus we obtain the
weak-pinning condition

j,„(0)
& GLj. 0

(4.112)

Since (j,„/j. ) «j,„/j, , we then find that if pinning in
the high-temperature superconductors is relatively large,
so that Tdp is driven close to T„ the weaker condition
(4.112) is usually easy to fulfill and hence, due to the
largeness of Gi, we expect Tdp to lie outside of the critical
regime. On the other hand, in conventional supercon-
ductors with a rather small Ginzburg number, the condi-
tion (4.112) may not be fulfilled and therefore the pinning
can be strong.

Let us consider such a strong-pinning situation where
the depinning temperature Td is driven into the critical
regime. Again using Eqs. (3.73) and (3.79), we can deter-
mine the temperature Td, where disorder becomes strong
in the sense that j,„(Td ) =j.( Td ). For the present situa-
tion of strong disorder with [j,„(0)/j.(0) ] )Gi, the tem-

perature Td-—1 —[j„(0)/j.(0)] then comes to lie out
side the critical regime as defined by T/T, ) 1 —Gi.
Therefore fluctuations induced by the quenched disorder
potential are larger than those induced by thermal disor-
der within the entire critical regime. As a consequence,
the transition itself will change its nature from a homo-
geneous transition dominated by thermal fluctuations to
an inhomogeneous, percolation-type transition dominat-
ed by the strong disorder potential (Ioff'e and Larkin,
1981).

Let us turn now to finite values of the magnetic field
and determine the condition which guarantees that the
entire single-vortex pinning regime is located below the
melting line. The latter is a necessary requirement for
the melting transition itself not to be strongly inAuenced

by disorder. The depinning line crosses the melting line
at the field value H*=Pd~Gi H, (0)=8Gi H, (0), and in

2 2

order for the single-vortex pinning regime not to touch
the melting line the condition B (Tz ))H* has to be
fulfilled. The melting line Bm(T) depends quadratically
on 1 —T/T, [see Eq. (4.107) above]. Evaluating the melt-

ing field at the depinning temperature,

4

B (Td )=pm .H, (0) 1—
s 2
dp

C

(4.113)

and using the result (4.111) for the single-vortex depin-
ning temperature near T, (for the case where Td is far
below T, the single-vortex pinning regime terminates far
below the melting line), we obtain the condition

j,„(0)
(4.114)j.(o)

4pm 56 . 4& GE CL — GE CL
pd 8

Again, in the high-temperature superconductors this
condition is still easy to fulfill due to the largeness of the
Ginzburg number Gi, and thus we expect that the melt-
ing line is not strongly influenced by the quenched disor-
der potential.

D. Anisotropy

Since the oxide superconductors are all highly aniso-
tropic, there is an obvious need to generalize our results
to anisotropic materials. We have a choice between two
alternative methods, the traditional approach used in
Sec. II.C for the regime of single-vortex pinning and the
scaling approach introduced in Sec. III.A. Pinning of
vortex bundles is concerned with length scales that can
grow beyond the London penetration depth; therefore we
cannot hope to obtain all the desired results from the
scaling approach. On the other hand, the scaling ap-
proach provides simpler and more direct access to the
desired results. We shall therefore split the discussion of
anisotropy into two parts: In Sec. IV.D. 1 we use the
scaling approach in order to find the results within the
dispersive regime involving length scales R &A,. Since
the dispersive moduli also contain the larger penetration
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depth A, /e, the above condition does not enclose all of the
dispersive regime, let alone the nondispersive one. In
Sec. IV.D.2, we then demonstrate how to obtain the re-
sults for all length scales for the special case in which the
magnetic field is pointing along the high-symmetry axis
of the crystal. It turns out that the analysis of even this
simple situation is already very tedious, and we therefore
refrain from presenting the most general results here.
Neither of the two regimes discussed below covers the
small but interesting regime of small fields, H &H; /se,

1

away from the c axis, where very interesting phenomena
such as lattice instabilities (formation of vortex chains)
have been observed (Bolle et at. , 1991; Gammel et al. ,
1992; see the discussion in Sec. III.B).

1. Scaling results

Jc
B„=H, (8)

2 J

'C
1 2Jsv

ln
2c Jo

2/3

(4.115)

Here, jsv is the planar critical current density in the
single-vortex pinning regime for the case H~~c,

j;„=E ~~ j",„', and H, (8) is the angle-dependent upper

critical field, H, (8)=4&, /2~szg . For creep the condi-

tion R
~~

——A, /E translates to (Ri/a, ) =A, /Ea, (see below;
we assume here that B~~c) and we have to replace the
coefficient 2c in (4.115) by 6c. The in-plane critical
current density j,"(8) (jlH) and the activation energy
and action for creep near criticality are obtained by ap-
plying the scaling rule (3.12) to the results (4.50), (4.58),
and (4.60), and we find

c 2
Ee L,'

C SV exp 2c
E ao

(4.116a)

For the regime of single-vortex pinning the generaliza-
tion of the results to anisotropic materials has been dis-
cussed in Secs. II.C, II.D, and III.A. Here we concen-
trate on the lattice pinning regime where we can use our
scaling approach in the small but important regime of
small-bundle pinning. Let us first determine the bound-
ary restricting the applicability of the scaling method.
Unfortunately, the scaling approach is not able to cover
all of the dispersive regime limited by the condition
R j =A, jc, but has to be restricted to length scales
R, =Rj &A, for the case of pinning and to R~~ &A, for
creep. Here, RI~ denotes the dimension of the superbun-
dle along the direction of the hop. In fact, we will see
that the scaling results are valid even in the larger regime
characterized by the condition R

~~

& k/c, =A, First con-
centrate on pinning: Inserting for R~ the collective pin-
ning length R, =a, exp[c(L, /ao ) ] and rescaling the
condition Ri ——A, with the help of Eq. (3.12), we find that
the scaling results are restricted to fields B &B„,with

QEe L,;
U (8)=U'

C SV

T 3

exp 5c
a~

(4.116b)
L

T

Ca.
S, (8)=S;„exp 7c (4.116c)

W&th I c &4/3L Iso U c 2/3 Ulso and gc 4/3glso
C c ~ sv sv ~ sv sv

out-of-plane critical current density J, (8) has to be
scaled with the scaling factor for transverse lengths and
thus becomes j, (8)=Eej,"(8). All these results are trivi-
ally obtained out of the isotropic results by the substitu-

a, c. a,

1/2B
B,b(6)

(4.117)

In order to include the e8'ects of thermal fluctuations, we
should also have an expression for the depinning temper-
ature, in particular, its angular dependence. The relevant
length scale for depinning is rz(T) & a, & A, , and thus our
scaling method can be applied. Using the scaling rule
(3.12) and the isotropic results (2.128) and (4.86) for the
single-vortex depinning energy and the lattice depinning
temperature, we obtain

T d (8)= e e, = U;.„
C

(4.118a)

Td~(8) =2&~Es, g
0

L

(4.118b)

The temperature-dependent results (4.97) and (4.99) then
are generalized to the anisotropic situation by the substi-
tution rules

.C
Jsv J sv

U„~U,', ,

H, ~H, (8)=
2mseg

Tdp~ Tdp(6) .

(4.119)

Let us turn to collective creep at small driving forces,
j«j„,with j directed along the planes, jlH. Here we
assume that the system has started out in the single-
vortex pinning regime, so that L,' & sa, /Q e&. We

briefly repeat the results of the single-vortex pinning re-
gime: with decreasing current density j, the relevant
length L», (j) increases according to L», (j)
=L,(8)(j,'„/j ), with L,(8)=L;/Ee, and so does the
activation barrier for creep, U(j)=U;„(j,'„/j)'~, and
the action for quantum creep, S(j)=S,'„(j,'„/j)
As the current density j drops below

j,b(B,B)=j,'„(Qs+;/Ea. ), we enter the lattice pin-
ning regime where the activation barrier increases
rapidly, U(8j,B)=~Ub(B, B)[j,b(B,B)/j ] ~, with
U,b(B,B)= U;„(Ea, /+EEL;)', obtained by requiring
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2. High symmetry:. H~ic

Now let us consider pinning and creep in a uniaxially
anisotropic superconductor with the magnetic Beld ap-
plied along the high-symmetry direction. Our analysis
will proceed along the traditional path, using dimension-
al estimates in order to obtain the desired results. The
most simple quantities to calculate are the collective pin-
ning energy U, and the critical current density j„as
these quantities are determined by the tilt and shear re-
laxation alone. The collective pinning radius R, can be
obtained from the Larkin-Ovchinnikov result for the dis-
placement correlator

aoE
(u'(r)) =g' L'

C

3 2 2 '/
a L

2+

R+ln1+, + '-
ao Eao

(4.120)

which can be easily obtained by repeating the derivation
of (4.17) above with the appropriate expression (3.42) for
the tilt modulus. The bundle dimensions R, and L, are
found to be

R C

Lc
a, exp c

Eao

L'
C

E Eao

3

a, &R, & —,
E,

—&R, ,
E,

(4.121)

and

continuity across the boundary between the single-vortex
and the lattice pinning regimes. Similarly, the action
for quantum creep increases according to
S(8,j,B)=S,~(B,B)[j,b(B,B)/j ] ~, with S,b(B,B)
=S;„(Ea./QE+;) . The boundary j„(B,B), within
which our scaling theory can be applied, is found by re-
scaling the condition Rii(j„)=a,(j,b/j„) =A/c, , and
we obtain j„(B,B)=j,b(B,B)(Ea. /QE+A, ) ~ . Note that

j„ is larger than the current density j&b limiting the
small/intermediate-bundle pinning regime. For a current
density j directed along the y' axis (out-of-plane current),
the creep motion is directed along the superconducting
planes, and we have to replace the in-plane current-
density ratios j„/j and j,b/j by their out-of-plane coun-
terparts ezj,„/j and Ezj,b/j in the above formulas.

2
E

J —Jo
C

Lc

L,'& E.ao,

Lc
C

exp 2cJC= ' JSV
0 E.a,

2

a, &R, & —,
E,

'C
Jsv

Eao Eao

Lc
C

—&R, .
E

g 2 1
c44(k) =

4~ I+(A, /E )IC +k k,
(4.124a)

c „(k)=a(k)c44(k),

I+(A, /s )ka(k) =
1+k k

(4.124b)

(4.124c)

The shear modulus is not dispersive and remains un-
changed with respect to the isotropic result (3.32). The
dispersive regime now extends to the larger scale,
R (A, /E=A, Again, we follow the technique proposed
by Koshelev (1994) for the determination of the super-
bundle dimensions in the dispersive regime.

Modeling the superbundle by a Gaussian of widths R
~~

and R~ along and transverse to the jump and L along
the field direction, we have to estimate the following ex-
pressions for the compression and tilt energies (for the
isotropic situation discussed in Sec. B.2 above, a real
space analysis is more convenient; in the present aniso-
tropic situation it is advantageous to go over to Fourier
space)

2I d k ]~ +2 &
—KgRg —

KiiRii
—k, L3 c (k) 2 2 2 2 2 b

@comp (2'�)3
EC t(Q e

(4.125)

(4.123)

Next we wish to calculate the creep rate in an aniso-
tropic superconductor. Since creep involves also
compression of the bundle, we have to determine the
bundle dimensions by minimizing simultaneously the
compression, tilt, and shear energies involved in the hop.
Our first concern then is the calculation of the length
scales R~, Rii, and I. determining the (super)bundle di-
mensions. The major complication arises from the non-
trivial dispersive behavior of the elastic moduli c44(k)
and c

& &
(k), which renders the calculation of the compres-

sion and tilt energies a bit cumbersome. For the case
H~~c studied here, the tilt and compression moduli take
the form (see Sec. III.B.2)

R
ao

bL, =
R

ao

a, &R, & —,
E

—&R, ,
E

(4.122)
=V c44(k) —K R —K R —k Lk2u2e

tilt (2 )3 2 z

allowing us to determine the pinning energy U, of an ele-
mentary bundle and the planar critical current density j„

(4.126)

where V=R)I~R~L" denotes the superbundle volume. In

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



Blatter et al. : Vortices in high-temperature superconductors 1221

the following discussion it is helpful to use the ordering
R~R~~, which follows from simple physical arguments
and which can easily be checked at the end of the calcu-
lation.

Let us then first concentrate on the compression ener-
gy. The integration over K~~ is dominated by the large
wave vector XII

—1/R
II

and using the abbreviation
c» =c»(k=0) we obtain

[1+~'(R '+&'+ k ') ]
dKidk,

z

«~P R3 [1+g2(R —2+~2+k2)] [1+g2(R —2+~2)+g2k2] (4.127)

u V b
comp Cll 3 2, R

II
~c~

R
(4.128)

In the regime RII)A, , we also have L )A, [see Eqs.
(4.135) and (4.136)] and we can drop all terms ICII -R

II

and k, —(L ) in (4.127). After integration over k, the
remaining integral can be written as a sum of two terms,

In the regime R
~~

& A,„L"& A, the first factor in the in-
tegral reduces to 1/s and we can drop the term
1+A,, /R

~~

in the second factor. The remaining integra-
tion provides only a logarithmic dependence on the
lengths L and R~ which we ignore, hence

I

The final result for the compression energy then depends
on the relative ordering of the lengths R~ and L with
respect to the various screening lengths:

R, &X&Lb&&u, ,I b

R, &X&Qu, , &L. ',
2 V2

R ))L L

A, &R, &QA, ,R, &L',R~'
2 2

R L [1+AIL ]
2 2—K~R ~

+
L [1+1,K ][1+XIC ]

u V l"'
RIIL Rll+~ Lb (Rl+A. )

(4.129)

&R &LbRq'

(4.130)

The last result in(4. 130) is identical to the nondispersive
limit E„—c» (u /R

II
) V.

Along the same lines the tilt energy can be determined
for the various regimes. The integration over k, contrib-

butes a factor 1/L

2V2
44 b3 ~ II [1+g2(lt 2+~2)+/2(Lb) —

2]
(4.131)

and for RI~ &A,, (note that A. /L &A., /R~) we find up to
logarithmic corrections

u V b6tit —c44, RII &A, , L &A, . (4.132)Lb'X2
c

In the regime R
II

)A,, we can drop the term A,,R
II

and
perform the integral over K~~,

I

Again, the last result is the nondispersive limit
6'„&,—c44(u /L ) V. Finally, the calculation of the shear
energy is trivial as the shear modulus c66 is nondisper-
sive,

2

2 2 e
44 b3 ~ [1+g2~2+g2(Lb) —2]

u
@shear 66 Rj

V. (4.134)

The final integration over E~ provides the result

1
Ri &A,, &Ril,

c
@tilt 44

(4.133a)

(4.133b)

Note that c» = c44-ebb(A. /ao ) .
The scaling of the bundle dimensions can now be ob-

tained from the comparison of the three elastic energies

p
6 t lt 8 h Here we quote only the final result

expressing R~~ and L in terms of the transverse length
R g ~ For the longitudinal length L we find
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R ~RELb
ao

' 1/3
Q A,

R~
ERII E. , a, &R~ &

ao

1/3
Qp k

&Rg &Ac

Ek &ao:

Rq
ao (Ri&

a,
1/3

Qo A,

&Rg &
a,

1/3
Q I,

(4.136b)

X, &R~ .
a,

Qp

ao
&Ri .

E

For the parallel dimension R
~I

we have to distinguish be-
tween two field regimes:

We are now in a position to calculate the activation en-

ergy U, for the creep motion. Close to criticality (j j, )

the activation energy can be obtained from the general
expI ession

a, &EA, :

Rq
Qo (Rg&

ao
1/3

Q A,

1/3
Q A,

&Ri(
1/3

aok

Lb
V'E Qp

1/3
Qp A,

Rq, k&R~ .
ao

(4.136a)

bU, =c«
R,

L

2

V= U,'„
Eao Ea, R,

(4.137)

where Ri=R, is given by Eq. (4.121) above. However,
contrary to the determination of the pinning energy U„
the activation energy U,b for creep involves the dimen-
sions of the superbundle which takes the compression of
the Aux lattice into account and hence the volume V is
given by V =R zR

II
L, with R

II

and L given by Eqs.
(4.135) and (4.136) above. Consider first the strong field
CaSe With ao &EA, . The aCtiVatiOn energy U, then takeS
the form

3 EZ

L,'
U,', exp 5c"Ea,

Lc
C

Eao
a, (R, (

1/3
Qo A,

Lc
UC

E,Qp E.a,

3/2 3

Eao

1/3
ap X

&R, &

' 1/3
ap A,

C Lc
C

EQp

3c
3/2Lc

Uc c
SV a, Ea,

exp
2 Ea,

C
L'U;„—exp 2c'" Ea, Ea,

3

1/3
Q, A,

&R, &k,
E,

A&Re & —,
E

(4.138)

Eao

Lc
C —&R, .

E,

For the opposite case of weak magnetic field with a. ) EA, we should use the expressions (4.136b) for the parallel dimen-

sion R
~~

and obtain the following changes for the activation energy U, within the region a. (R, (A, /c, :

Lc
U,', exp 5c

E,Qo

I C
e a, (R, &

1/3
Qp A,

Lc
Ub Ue

c sv

3/2

exp
L,'
Eao

1/3
ao A,

&R, & (4.139)

L c
Uc c

"a. Ea,

v 3/2
3c

exp
Eap

3
Qp

&R, &—
E E,
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Within the regime a, & R
~~

& A, /e the above results agree
with those found previously via the scaling approach.
Note that the results for the nondispersive regime
R i )A, /e, are independent of the parameter E, as has to be
expected. Given the disorder strength, e.g., through the
parameter L,', and the magnetic field, the appropriate ex-
pression for the activation energy can be obtained from

the above results (4.138) and (4.139).
For completeness, we also present the results for the

action determining quantum creep, concentrating on the
more relevant overdamped situation. The result can be
most easily derived from the general expression
S,"=S;„(Ea,/L;)( V/ea, ). For large magnetic fields
with a, & ci, we obtain

sg
SV a C

Pn JSV

E,&o
S,', exp 7csv Lc

1/2

L'
C

C.ao

L,'& c.ao,

a, &R, &

' 1/3
ao~

maoS'
SV

C
mao

3/2
5c
2 Cao

'3 ' 1/3
&o~

1/3
aors,

Sb
C

CaoS;„exp 4c
L; Ea.

L'
C

C.ao

1/3
aors,

&R, &k,
(4.140)

&oS'
sv Lc

3/2 C

7c
A, &R, & —,

CQo

L,'
eao

—&R, ,

whereas for the weak field case a, ) EA, the results are modified within the intermediate regime a, & R, & A, /c, ,

exp 7cL'
C

L'
C

mao
a, &R, &

1/3
ao~

S,"=S,', C.ao

I ' ca,

3/2 3
5c

exp
Cao

1/3
&o~

&R, & (4.141)

c. a,
Lc &ao

3/2 3

7c
exp

ca

a,
&R, &—

E,

3/5a, e
u=g L'

C

2 2 1/2a,L
2+ 4

1/5

a2 Ca,
(4.142)

hence u ~R~ with /=0 within the dispersive regime,
where a, & R & A, /E, and /= 1/5 within the nondisper-
sive region R )A, /c. . The dependence of the bundle size

Next we discuss the evolution of collective creep as we
decrease the current density j. Since the displacement u

now grows beyond the scale g of the disorder potential,
the Larkin-Gvchinnikov result (4.120) has to be replaced
by

Ri on the current density j is given by Eq. (3.177),
R i (j ) =R, (j, /j) '~' ~', with R, and j, determined by
continuity across the various regimes. The length scales
L" and R~~ are related to Ri(j) via Eqs. (4.135) and
(4.136). Let us consider again a situation in which the
system starts out within the single-vortex pinning regime
(L; & Ea, ) and follow the evolution of the main scale pa-
rameter L(j) or Ri(j) as the current decreases below j,'„.
Within the single-vortex pinning regime,

5/7

L(P=L; . j.b &j «J.', ,
J

(4.143)

with j,b j,'„(L,'/ea, ——) ~ obtained from the condition
L (j,b ) =ca. . As j drops below j,b we go over to the bun-
dle pinning regime and the relevant scale is R i(j),
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a,
1/2

Jsb

J
' 5/9

JlbR (j)=
J

JcDw

J

Jlb J &Jsb

JcDw (J &Jlb»~

1/2

J (JCDw ~

(4.144)

with jn, ——(Ea, /A)~ja and jcDw=(E 0'/a. L; ) j&& ob-
tained from the conditions of continuity Rz(j&b)=A, /E
and Rj (jcDw) =R, . For weak enough Pinning, the lat-

tice correlation length R, is larger than A, /E,
3

L,' a,
(4.145)

which in fact is independent of c and therefore equivalent
to the isotropic expression (4.43) upon substitution of
e ~ L, for L;. The growth of the activation barrier U(j)
with decreasing current density j is complicated by the
dispersive nature of the compression and tilt moduli.
Consider first the case of large fields with ao &cA,. The
activation barrier U(j)=c66(u/R~) V=U»(V/Ea, R~)
evolves according to

CjSV

SV

1/7

j,b(j(&j,', ,

Jsb
sb

5/2
Eao

Jsb J (Jsb

3/2
Jsb

sb J

2/3
c. a c,a, 2/3

Jsb ~

U(j)= Ub
Jsb

' &Ea. j '
ag

2 2/3ca,
(4.146)

U,'b c.
&ao

7/9

3/2
Jsb

3/4
ao

b
L

jib
lb JCDW (J (Jlb

UcDw

1/2
JCDW O(J (JCDW

with U;b-—U;„(Ea, /L,')', Ufb-—U;be(A, /Ea, ), and UcDw—- Uf (ab.L,' /c, g ) ~. For small fields with a, &el, , R~~ is
given by Eq. (4.136b), and we obtain for the current range j» &j &j,b the behavior

Jsb
sb

5/2 2/3

Jsb (J & Jsb ~

U(j)= U;b ca,

3/2
Jsb

C Jsb
c.a

' 2/3
4

Jsb ~ (4.147)

U,'b C
ca,

- 3/2 3/4
Jsb

Jlb (J «jsb .

The results for the high (j &j,„)and for the low current-density regimes (j &j» ) remain unchanged. The same analysis
can be carried through for the action, and we quote the results for the more relevant overdamped situation here: For
large fields
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s 1b JcDw &J &Jib ~

SCDw

3/2
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0&J &JcDw ~

with S;b —-S;„(Ea./L;), Sfb -—S,'be(A, /Ea, ), and SCDw =Si'b(aoL; /e g )' . For small fields with a, ) eA, , the in-
termediate current range j&b &j &j,b is described by

Jsb
sb

' 7/2 ' 2/3

Jsb &J &Jsb ~

S(j)=
c,a,

3/2
Jsb

C j,b&j&
ca,

' 2/3

Jsb (4.149)

S,'b c,
ca,

- 3/2 . 7/4
Jsb

jib&j & J.b.

The time decay of the screening current j due to classical
creep is straightforwardly obtained using the relation
U(j)=Tin(t/t, ) in combination with Eqs. (4.146) and
(4.147), and accordingly the results for the quantum case
can be obtained.

Let us finally discuss more quantitatively the
H —T —j phase diagram for the prototype anisotropic
oxide superconductor YBCO for the case H~~c; see Fig.
21. The main parameters determining the position of the
various crossover lines in the phase diagram are the crit-
ical current-density ratio j,„/jo, which measures the
strength of the disorder and typically is of the order of
10, and the Cxinzburg number Gi, which determines
the importance of thermal fluctuations and takes values
of the order of 10 . The single-vortex pinning regime
then is bounded by Td =ad„(j s„/j, Gi)'~ T, =60 K and
by B,b=P,b(j;„/j )H, =6 T. This large value for the

single-vortex pinning boundary, below which the critical
current density j, is expected to be independent of the
magnetic field, is in good agreement with the experimen-
tal findings of Dinger et al. (1987) and of Tamegai et al.
(1992). The logarithmic correction factor ln(~ j,'„/e j. )

I

determining the width of the small-bundle pinning re-
gime is —8, so that Bib=4(pp, /p, b)B» =10 T [see Eqs.
(4.94) and (4.95)] and Td =Td (Bib)=0.8T, =70 K.
The melting temperature is still close to the transition
temperature and the intersection of the melting line with
the depinning line is located at ( T,H" )
= [T„Bd ( T, ) ] = ( T„10T). A first attempt to map out
the various regimes in the weak collective pinning theory
has been undertaken by Krusin-Elbaum et al. (1992)
based on the analysis of magnetic hysteresis data
M (H, T) taken on a single crystal of YBCO.

Using the above set of parameters, we find that on ap-
proaching the melting line the vortex lattice ends up in
the large-bundle pinning regime. Hence close to the
melting transition the interaction between vortices dom-
inates over the interaction of vortices with the pinning
potential, so that the melting transition itself is only
weakly affected by the presence of disorder. However, it
is important to realize that the character of the phase di-
agram depends strongly on the basic material parameters
j,'„/j, and Gi, which are not very accurately known and
also depend on sample preparation. In particular, Gi ~ ~
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and typical uncertainties in ~ of the order of 2 can drasti-
cally change the character of the phase diagram. An ac-
curate determination of the basic material parameters is
therefore a prerequisite for the construction of the
overall phase diagram.

E. Loss of long-range order

In real type-II superconductors the Abrikosov vortex
lattice is subject to disorder, both thermal and quenched.
Both types of disorder will tend to destroy the long-range
order (LRO) of the ideal Aux-line lattice, and it is the aim
of the present section to discuss these effects in more de-
tail. In doing so, we have to distinguish between two
types of LRO, the translational (TLRO), which is usually
characterized by the correlator

(4.150)

Here 0(r) is the (hexatic) bond-angle field describing the
local orientation of the vortex lattice in the position r rel-
ative to some reference orientation. Within a continuum
approximation of the vortex lattice, 9(r) can be expressed
by the displacement field u(r) via

BQy
8(r)=—

2 Bx
(4.152)

The correlator (4.150) is closely related to the structure
factor of the lattice.

Loss of long-range order in the Abrikosov lattice of the
oxide superconductors has attracted a good deal of in-
terest, both from the experimental and from the theoreti-
cal side. The most obvious way of losing LRO is, of
course, via melting of the Aux-line lattice due to thermal
fluctuations (Nelson, 1988), a phenomenon which we
shall discuss in detail in Sec. V below. Here we wish to
concentrate on the solid phase, where, by definition,
thermal fluctuations lead only to a damping of the Bragg
peaks in the structure factor but do not destroy LRO.
The main question we wish to address, then, is the com-
petition between LRO and the quenched random poten-
tial.

Larkin (1970) was the first to show that arbitrarily
weak disorder is sufficient to destroy the translational
LRO of the Abrikosov lattice. Later, Larkin and
Ovchinnikov (1979) improved upon the original discus-
sion by taking the nonlocal character of the elastic medi-
um into account. The perturbative treatment of Larkin
(1970) and of Larkin and Ovchinnikov (1979), however, is
not appropriate for the discussion of long-range order if
the displacements grow beyond the characteristic scale
r =g of the pinning potential. Feigel'man et al. (1989)
generalized the older perturbative results, valid at small

and the orientational long-range order (OLRO), which,
in a hexagonal symmetry, is characterized by (Halperin
and Nelson, 1978; Nelson and Halperin, 1979)

o(6 r) (( ~ l6[8(r) —()(0)] ))

distances, to arbitrary distances by determining the
relevant exponents describing the large-scale behavior of
the system. Recently, Chudnovsky (1989, 1990) dis-
cussed the loss of LRO in the oxide superconductors,
again based on the perturbative approach of Larkin and
Ovchinnikov. In particular, he suggested that the low-
temperature phase of disordered type-II superconductors
is a hexatic vortex glass, which is characterized by the
absence of translational LRO but has finite orientational
LRO (Chudnovsky, 1989). By including the presence of
disorder-induced dislocations (which were neglected in
Chudnovsky's 1989 analysis), Toner (1991a) showed that
arbitrarily weak disorder will also destroy orientational
LRO in d(4 space dimensions. On the other hand,
orientational LRO can be restored by the interaction of
the Aux-line lattice with the underlying crystal lattice
(Toner, 1991a). Experiinental evidence for the existence
of a hexatic vortex glass in the oxides has been obtained
by the Bitter decoration technique (Murray et al. , 1990;
Grier et al. , 1991), which allows a direct imaging of the
Aux-line lattice over large spatial regions, at least for
small enough magnetic fields, B ~100 G. Such Bitter
decoration patterns also provide an alternative (to j,
measurements) approach to measuring the strength of the
disorder potential in a type-II superconductor (Dolan
et a/. , 1989; Chudnovsky, 1990; Murray et al. , 1990;
Grier et al. , 1991). Recently, Houghton, Pelcovits, and
Sudbd (1992) improved the analysis of Chudnovsky
(1990) by taking into account both the effects of nonlocal-
ity and the important effects of anisotropy.

After this introductory overview we present a more de-
tailed discussion of the loss of long-range order in the
Abrikosov Aux-line lattice. We shall concentrate first on
translational LRO and defer the discussion of orienta-
tional LRO to Sec. IV.E.2. Two of the main messages we
wish to convey here are that (i) loss of LRO should not be
treated perturbatively, i.e., the existence of many compet-
ing low-lying metastable states for the vortex lattice has
to be taken into account in the relaxation to the disorder
potential, and (ii) in comparing theoretical predictions, in
particular line shapes, with experiments, the dynamic as-
pects of the relaxation cannot be ignored.

1. Translational LRO

The discussion of translational LRO is synonymous
with a discussion of the correlator g'(K„,r) given by Eq.
(4.150). We divide the displacement field u into a
thermal part u, h and a disorder-induced contribution u~.
Note that the intravalley internal fluctuations will lead to
a smoothing of the disorder potential, and it is this
effective pinning potential which determines the long-
distance behavior of u and, due to the finiteness of
(u )„h, also of u. The correlator g' then factorizes into a
thermal part (Debye-Wailer factor) g,'„and a disorder-
induced part g', g'=g,'hg'. Assuming Gaussian Auctua-
tions, these two factors take the form
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—( i /2)K „([uth(r) —uth(0) ]2 }
(4.153)

and
—()/2)K„{[u (r) —u (0)] }

(4.154)

Within the solid phase, the mean-squared thermal dis-
placement amplitude remains finite asymptotically [see
Eq. (4.85)] and thus merely introduces a damping of the
Bragg peaks in the structure factor. Let us, then, con-
centrate on the disorder-induced factor g~ ( K„,r ). The
decisive quantity here is the displacement correlator
(uz(r) ), which was studied in detail in Sec. IV.A above

in the 1ow-temperature limit. Due to the long-range in-
teraction between the vortices and the internal structure
of the vortex lattice, the correlator (u (r))exhibits a
quite nontrivial behavior as a function of distance r. Let
us brieAy summarize the evolution of the correlator
(u (r) ) as it grows with increasing distance r from the
Larkin-Ovchinnikov single-vortex pinning regime
through various stages up to the regime of CDW-type
pinning at large distances; see Fig. 16. We consider a
case in which the magnetic field is small or the disorder
strong enough that the condition L, & a, is fulfilled; for
arbitrary temperature we obtain [r=(R,L)]

3/2

L &L„T«TdL
L,

L
L,(0)

L, (T)
~$

L,(0)

1/2

L &L,(T), T & Td

3/5

L, (T)(L (a,
C

(u'(r) ) '"=
ao

r
r~(T) L,

ao

r(T) L,

3/5

1-1+', +'
a2 a,

2L 2
R a,+

X4

a, (R &X,
a, &L&k /a,

A, &R &R, (T),
A, &a, L/A, &R,(T),

(4.155)

R, (T) (R,
a ln 1+ +-

R'(T) A, 'R'(T)

Here we have introduced the relevant length scale of the
disorder potential for the single-vortex pinning regime,

rz ——g (1+T/Td ), which is obtained from r via the
substitution Td ~T d . The temperature-dependent
crossover lengths are given by

(4.156)T

dp

L, (T)=L, (0)exp

ao exp
L, a,

2

a. & R. ( T) & A. ,

R (T)= '
0

C

3 a, 2

A, &R, (T) .
(4.157)

Note that the regime of pinning of small bundles is very
narrow regarding the change of the displacernent ampli-
tude but is in general quite wide with respect to the dis-
tances R and L.

The relevant scale for the loss of crystalline order is
the length R, (T) marking the borderline to the CDW-
type creep regime and defined by the condition
(u~(R, (T)))=a, . Beyond this distance, the displace-
ment field (u (r)) / grows beyond the lattice constant
ao, and dislocations may become relevant. Note that

I

typical displacement amplitudes produced by disloca-
tions hre of the order of a, . Also, R, (T) defines the
length scale on which the correlator g'(K, r) starts to
decay for the two primitive reciprocal-lattice vectors
with lengths of the order of 1/a. . Our result (4.157) for
the lattice correlation length shows a different field
dependence than the one obtained by Chudnovsky (1990;
he obtains R, rr ')/B ), the reason being the modified scal-
ing behavior of the displacement field u within the non-
dispersive regime at long distances, Eq. (4.155), involving
a power —,

' rather than the perturbative result —,
' [see the

discussion about the breakdown of the perturbative ap-
proach given above Eq. (4.25)].

Let us discuss the result (4.157) for the lattice correla-
tion length R, and concentrate first on high tempera-
tures. For the case of weak collective pinning in the
sense that j,„/j. &Gi, thermal depinning of single vor-
tices takes place before the melting line is reached, so
that the melting line itself is limiting the lattice pinning
regime throughout all of the phase diagram. The lattice
correlation length R, (T) is always large as compared
with the lattice constant a, since each of the three fac-
tors on the right-hand side of Eq. (4.157) is equal to or
larger than unity. Near the melting transition ( T = T ),
the above result simplifies to
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R, (T )=.
a, e '", ao &R (T )&A, ,

v(j /j, „)

3/2
Jo

JSV

(4.158)

(-lattice order on scale R, ) as described by Eq. (4.155)
above. The important question is whether the lattice or-
der will be frozen in at low temperatures T on the scale
R, ( T ) =R, ( T ) or whether the relaxation to the glass
order changes the lattice order to the scale R, (T). The
relaxation is determined by the relation

where we have used rz(T )=a, =g and the latter esti-
mate applies if the melting line is still close to the mean-
field transition line H, (T). This is the case for large

2

enough magnetic fields; see Sec. V.A. In these rough esti-
mates we have dropped the Lindemann number in the re-
lation r (T )=a, . Note that for small magnetic fields
the above results are modified by the appearance of an
additional factor H, (T )/B. For 5T, pinning, which

2

we expect to be dominant at high temperatures, the re-
sult for the large-bundle regime, R, (T )=A.(j./j, „)
does not depend on T/T„since j./j„
=5 ~ ~(1—T/T, )'~, and thus the result becomes
universal, i.e., independent of field (as long as H )H, )

1

and temperature. For a quantitative estimate of the lat-
tice correlation length near the melting transition, we
should also take the anisotropy of the material into ac-
count, for H~~c,

U(R) = T ln
to

(4.160)

saying that within a time t the barriers U(R) which can
be overcome are of the order of Tln(t/t, ). We then
need to know the dependence of the "glassy" barriers on
distance R as well as the available energy T ln(t /r, ). Let
us consider the most favorable case (for relaxation) and
evaluate the latter quantity at high temperatures. For
typical experimental time scales we obtain Ug
= T ln(t/t, )-3000 K. Second, let us estimate the glassy
barriers at low temperatures, where they are smallest.
The relevant barrier for uniform relaxation is U(R) [not
U (R ) ] as no compression is involved; it was obtained in
Sec. A above, Eq. (4.47). With U,„=10 K,
(a. /1. , )'~ —1, we find that the radius of glassy relaxa-
tion R typically is located within the bundle pinning re-
gime,

~( /. c )3/2
a, e

R (T )=, - . . 3gz
Jo

j A/ E&R( T) .
(4.159)

U

U„

U a,' U„A

R &k,

3/5 5/7 (4.161)

Near the melting transition the lattice correlation radius
R, (T ) is larger than —(~/E)(j. /j,'„) a. , e.g., taking
as an example the YBCQ compound with a typical criti-
cal current ratio jo/j,'„=10, we find the lattice order
preserved over distances of the order of 10 A, (0)/e. Since
the melting transition itself involves the scale ao «R„
we have to conclude that disorder only weakly perturbs
the melting transition itself.

The second important issue we wish to discuss is the
dynamic evolution of the system into the glassy state. To
be specific, consider a sample immersed in a magnetic
field and cooled through the melting transition. Below
the transition the vortex structure is frozen in by forming
lattice-correlated bundles of size R, (T ). The displace-
ment field accumulated within the individual bundles is
of the order of u =a, . As we investigate distances
beyond the individual bundles, we expect the displace-

ent field to grow ~~~d~~ly, that is, u =~, (R /
The elastic length R, (T ) and the lattice correlation
length R, (T ) are roughly equal, since r (T )=a, and
no further lattice order is established at this high temper-
ature. When the sample is cooled down, R, starts to de-
viate from R„the lattice correlation length R, becoming
increasingly large as compared with the elastic length R, .
This behavior confronts us with the problem of the dy-
namic evolution of the lattice towards the glass order

and thus is only a few lattice constants in size. Going
over to an anisotropic material, the above result remains
essentially unchanged,

a,

ao

Ug

U,,
U ca, (4.162)3/5 - 5/7

&R. .

Let us compare this result with the lattice correlation ra-
dius R, ( T): at small temperatures and for weak pinning,
R, =A, (jo /j, „) (H, /B), which is much larger than the

2

glassy radius Rg. Thus we find that even under these op-
timized conditions the relaxation to the glassy state is
strongly limited by the slow dynamics of the relaxation
process, and the system essentially exhibits lattice order
as it has been frozen in near the melting transition.

2. Orientational LRO

Orientational long-range order is determined by the
bond-angle correlator (8 (r)) =([0(r)—8(0)] ), and a
first straightforward way to tackle the problem is to cal-
culate this quantity within the Larkin (1970) model. Ex-
pressing the bond-angle field via the displacement vector
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u(r) [see Eq. (4.152)], and relating the latter via the lat-
tice Green's function (3.30) to the random force density
F;„[seeEq. (4.5)], we obtain

(8~(r)) =—I,(1 c—oskr)ECi Ki ~6 ~Gp ~ ~,
(2m )'

(4.163)

where we have assumed a short-scale correlation for the
random force density, Eq. (4.8). Only the transverse part
of the Careen's function, i.e., only shear relaxation, affects
the bond-angle correlator, and we have to calculate

spaced impurities, singling out a preferred local orienta-
tional axis for the Aux-line lattice. Obviously, the final
answer whether orientational LRO is preserved or not
crucially depends on our choice of Hamiltonian describ-
ing the fluctuations of the bond-angle field.

The simplest way to obtain Toner's result is to consid-
er a Larkin-type formulation of the problem, modified to
describe the bond angle rather than the displacement
field. The elastic Hamiltonian for the bond-angle field
8(r) in the presence of a random torque field ~(r) takes
the form (Toner, 1991a)

W I d k (1—coskr)X
(2m } [c66IC +c44(k)k, ]

(4.164)

~(2) K,Jy= J d p (p'~ ~8) + (g 8) +Ed(r 8)

Since the bond-angle field is given by the derivative of the
displacement field, the singularity at small wave vectors
is removed, and the above integral converges without the
help of the factor (1—coskr) depending on distance. The
main contribution to the integral in Eq. (4.164) originates
from the Brillouin-zone boundary, so that we should
use the dispersive limit for the tilt modulus
c~(k) =c44/A, X . Repeating all the steps in the calcula-
tion of the displacement correlator above, we arrive at
the result

3a,
a, I.,

(4.165)

Thus we see that, within the present model, orientational
LRO is preserved for a vortex lattice subject to a disorder
potential coupling to the displacement field u(r), a result
first obtained by Chudnovsky (1989). Since at the same
time the translational LRO is destroyed, the resulting
phase is called a hexatic vortex glass. Note, that in two
dimensions, orientational LRO decays algebraically (Nel-
son, Rubinstein, and Spaepen, 1982; Chudnovsky, 1986).

The above perturbative derivation (4.165) can be ex-
pected to be correct if disorder is not driving the bond-
angle correlator (8 (r) ) '~ beyond an individual pinning
valley, that is, (8 (r) ) '~ Sg/a, , which is the case for
small disorder and large enough fields, a, (I,. Other-
wise, we should again substitute for the random force the
more appropriate random pinning potential and deter-
mine the correct long-distance scaling behavior for the
correlator. An additional difEculty arises if we want to
prove the existence of orientational LRO rather than its
destruction. While to demonstrate the destruction of
LRO it is sufFicient to come up with some particular type
of fluctuation, to demonstrate the preservation of LRO it
is necessary to show stability against all possible types of
fiuctuations. This has been pointed out by Toner (1991a),
who showed that orientational LRO is destroyed in d &4
space dimensions by a quenched random torque field
which couples directly to the bond-angle field 8(r). The
latter possibility has also been suggested by Marchetti
and Nelson (1990a), who argued that such a torque field
could be set up by randomly oriented pairs of closely

(4.166)

with

Ed(r, 8)=~(r)8(r) . (4.167)

The random torque field in Eq. (4.167) is taken to be
short-range correlated (on a scale a, ) with
(r(r)w(r'} ) =y, 5(r —r'). Such a random torque field has
to be expected to occur due to correlations in the disor-
der potential on the scale a, ; it is reduced in strength
compared with the original disorder potential due to the
small parameter g/a, (see also Toner, 1991c; Chudnov-
sky, 1991). However, this Hamiltonian suffers from the
same deficiencies as the usual Larkin model if we wish to
investigate the large-distance behavior for the bond-angle
field 8(r). First, the distortion of the lattice is produced
by a random potential rather than by a random torque,
and second, the perturbative approach breaks down at
large length scales, where the bond orientation field has
grown beyond the critical value g/a, . In order to im-
prove upon Eq. (4.166), a random potential should be
substituted for the last term Ed. Taking the symmetries
of the problem into account, the random potential

E„(r,8)=E6cos[68(r }—a(r) ], (4.168)

with a(r) a short-range correlated random-phase field, is
expected to give a more appropriate description of the
problem. For small angles (small distances), Ed(r, 8)
reduces to the random torque field used in Toner's ap-
proach. However, with the random potential E& substi-
tuted for the random torque field Ed, the Hamiltonian
(4.166) is in the universality class of the charge-density-
wave problem. As a consequence, we then expect the
bond-angle correlator ( 8 (r) ) '~ to grow logarithmically
with distance in d & 4 space dimensions and the orienta-
tional correlator g'(6, r) to decay algebraically. In fact,
such behavior is also in better agreement with the experi-
mental findings; see the discussion below.

While a random torque field coupling directly to the
bond-angle field, as well as its large-scale generalization
involving a random potential Ed, will ultimately lead to
the destruction of orientational LRO, one would still ex-
pect orientational order to be preserved over large dis-
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tances compared with the translational lattice order. Al-
ternatively, orientational LRO can be restored rigorously
by coupling the Aux lattice to the underlying crystal lat-
tice. As shown by Toner, any crystal/fiux-lattice cou-
pling of the form V cosp8, with p an even integer, will
produce a finite correlator g'(p, r~ ~ ) )0. A particular-
ly interesting situation occurs when the magnetic field is
directed along a high-symmetry axis of the crystal, as is
the case in the oxides when 8 is pointing along the c axis.
In this case the fourfold symmetry of the lattice cannot
couple directly to the sixfold symmetry of the Aux-line
lattice, allowing for a hexatic transition at finite tempera-
ture, where g'(p, r~ oo ) goes to zero (Toner, 199la).

Qf course, the issue of the dynamic evolution of the re-
laxation to the disorder potential is also relevant for the
question of orientational LRO. In particular, the ques-
tion arises whether the defect structure of the low-
temperature solid phase is due to dislocations induced
thermally at high temperatures and trapped in part by
the disorder as the system goes through the melting tran-
sition, or whether the lattice defects are rather a true
reAection of the disorder potential with the dislocations
induced by the disorder itself. The case in which the
dislocations are induced thermally has been discussed in
detail by Marchetti and Nelson (1990a). In their theory
of the vortex-liquid phase, they show that a finite density
of thermally induced dislocations does destroy transla-
tional LRO but leaves the orientational LRO intact, re-
sulting in a hexatic vortex-liquid phase. Upon cooling,
this thermally induced defect structure may become part-
ly frozen in by the quenched disorder or, alternatively,
the vortex lattice may relax to the disorder potential and
transform into a true hexatic vortex glass, where the de-
fect structure is induced by the quenched disorder. From
our estimates above we would expect glassy radii of the
order of a few lattice constants, which indeed is much
smaller than the observed regimes of orientational LRQ
extending over —10 pm (Murray et al. , 1990; Grier
et al. , 1991);hence one would conclude that the observed
order is frozen in upon cooling rather than induced by
the quenched disorder potential.

Finally, let us comment on the experimental findings
(Murray et al. , 1990; Grier et al. , 1991) concerning the
measurement of both translational and orientation al
long-range order. Bitter decoration analysis of the lattice
structure requires the internal magnetic-field strength 8
to be small, typically less than 100 G. Typical length
scales measured for the lattice correlation length change
from R, (10 G.)=a, to roughly 10 a, at the maximal
available field values of —100 G (Grier et al. , 1991).
From the above considerations, we can assume that the
measured quantity is the frozen-in bundle correlation ra-
dius R, ( T ) rather than the relaxed low-temperature lat-
tice correlation radius R, (T). However, we should not
simply use the result (4.159) in a comparison with the ex-
periments discussed here, as these experiments were per-
formed at very small field values, 8 (H, , whereas the

1

result (4.159) applies to fields 8 ))H, , where Eq. (3.32)
1

for the shear modulus is valid. Below H, , the shear
1

modulus c66 decays exponentially with decreasing field
(Labusch, 1967, 1969; Larkin, 1970),

1/2 - 1/2
Eo —a, /1,

C 66 e (3.36)

leading to a rapid decrease of the lattice correlation ra-
dius R, with decreasing field. Let us analyze this low-
field situation in more detail for an anisotropic supercon-
ductor with B~~c, which corresponds to the actual experi-
mental situation. A comparison of the elastic tilt and
shear energy densities shows that the interaction between
the vortices becomes important on length scales

1 /2 1/4
~44 a,

ao —EA, e ', (4.169)

where we have used the single-vortex limit of the tilt
modulus c~—- c, s. /ao. In the calculation of the dis-
placement field u we should note that for anisotropic su-

perconductors the dispersive regime extends down to the
region K s/A, , so that dispersion is still relevant in the
field regime defined by the condition k (ao (A, /E, that is,
E &8/M, & 1. Since the displacement field is dominated

1

by long-wavelength Auctuations, we then have to take
into account the dispersion in the tilt modulus c44(k),
and c44 ——(B /4')(E /iPK ) Thus th. e displacement
field u grows with distance according to

3/5

I.;&I. &I.. .
L C

C

L,
u

LC

L,
L,'

Rln, a, &R & —,
ao E,

3/5
ER

1/5

—&R
E

(4.170)

with K =1/R in the dispersive regime and K =1/a, at
large distances, R ) A, /s. Lattice order can only be es-
tablished if the condition u -a, is met within the bun-
dle pinning regime, which implies that [see Eq. (4.170)]

4 17a, &a =A, ln +—ln~+ ln
~ C 3 6

(4.171)

The crossover from single-vortex pinning to small-bundle
pinning then takes place at fields corresponding to
a, =a„—10K,, i.e., a few Gauss. Above this crossover
field, the lattice correlation length R, as obtained from
Eq. (4.170) is

and the longitudinal and transverse length scales are re-
lated by

I, =(c44/c66)'~ R =E(X/a. )' (R/a. K)exp(a. /2A, ),
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Ra

a, exp c

Lc
C

c, L,

3
L,' a,

5
a,

5

a, &R, & —,
(4.172)

—&R. .
E

3
L,' a,

5
a, 17/4

3 ao a~
exp

2
(4.173)

Due to the exponential dependence of the shear modulus
on the lattice constant, c« ~ exp( —a, /A, ), the combina-
tion

the sample thickness, which typically is —10—100 pm).
Due to the smallness of these barriers as compared to the
typical glassy barriers U~=Tlnt/t, =3.103 K, which
can be overcome within experimental time scales t, we
find that the lattice order will be destroyed due to creep
at fields B &B .

Let us now turn to larger fields, B )8„(here we
neglect the small-field regime where the dispersion is
relevant). I.ow-temperature lattice order can be estab-
lished if U (R, ) ~ Ug. Expressing the result (4.174)
through the lattice correlation length R, itself, we obtain

' 4/3

U (R, ) = U,'„'"' (4.175)
increases rapidly with field, leading to a steep increase in
the lattice correlation length R, above the crossover field
8 =N, /a„. In fact, due to the extremely sharp rise of
R, just above the crossover field B, the extent of the
dispersive regime is very narrow, and R, increases from
R, /ao = 1 to R, /a. =A, /Ea„= 1/10E at crossover. Note
that for k/a&a the single-vortex pinning regime goes
directly over into the large-bundle pinning regime, and
the intermediate dispersive regime is absent.

In a next step we have to analyze the question of the
relaxation towards the glassy state discussed above.
When the sample is cooled down (at fixed induction 8)
through the melting line, lattice order is established on a
scale R, (T ) just below T . Since the melting line is lo-
cated above the lower critical field H, (T), the interac-

1

tion between the vortices is strong, and the lattice corre-
lation length is large, R, (T ) =(A, /c, )(j. /j ',„) (H, /&)

[we consider a weak-pinning situation here where
R, (T )) A, /E]. Upon cooling, the radius A, of the vor-
tices drops below their mean separation a, , and their
mutual interaction, which produced the lattice at T, de-
creases exponentially. The crucial question again is
whether the high-temperature lattice order is preserved
upon cooling to below H, (T) or whether this lattice or-

1

der will be destroyed by creep. We therefore have to
determine the relaxation barriers for this weak-field situa-
tion,

L,'
1/5

L,'&L &L, ,

U(R)= U;, .
L, 1/5

R
L,' ao

a, &R & —,
C

I C ca,

2 7/5
c,R —&R &R. .

E

(4.174)

First, we estimate the barrier for creep at crossover,
Uc (L /L c)1/5 Uc (a /g)1/3 Uc ( 10')1/3 For

BiSCCO, we obtain U,', =c U,""= 10 K, hence
U = 10 K at crossover. (Note that, at crossover,
L, =L,'(a„ /g) / =L;(10m), hence L, is of the order of

a, ao

In the absence of a fast-relaxation dynamics the liquid order
prevailing at high temperatures is frozen in at low tempera-
tures.

Assuming typical parameters for U and U,',"",we find
that the highly correlated initial state is relaxed to the
low-temperature glassy state with a reduced lattice corre-
lation length R, for R, /a, ~ 10.

In summary, then, the following picture emerges: A
highly correlated vortex lattice state is frozen in at T
upon cooling, the large lattice correlation length R, (T )

being a consequence of the melting line's lying above
H, (T). Cooling the sample to below the lower critical

1

field H, (T) causes the interaction between the vortices
1

to decrease exponentially, hence the natural tendency to
produce a lattice is lost. Due to creep, the highly corre-
lated state that was frozen in at T then transforms to
the less correlated low-temperature glassy state at small
enough fields. For fields B &B„, where the crossover
field B is of the order of a few Gauss, lattice order is
completely lost. At higher fields, B )B, lattice order
starts to increase and the system relaxes to a state with
R, given by Eq. (4.172) for R, /ao 5 10. Finally, at even
higher fields, complete relaxation to the low-temperature
glassy phase is no longer possible due to the largeness of
the creep barriers at large length scales, R, /a, ) 10, and
the high-temperature highly correlated lattice phase is
preserved. Hence we obtain a lattice correlation length
R, that increases with field at small fields, in agreement
with the experimental findings of Grier et al. (1991).

Regarding orientational LRO, the experimental situa-
tion can be summarized as follows: First observations of
hexagonally correlated vortices in YBCO have been re-
ported by Gammel et al. (1987). Quantitative analyses
on the extent of both translational and orientational
LRO in BiSCCO have been performed by Murray et al.
(1990) and by Grier et al. (1991). It has been observed
that the long-distance behavior of the orientational corre-
lator can be fit by an algebraic decay law, g'(6, r) o- r
which is consistent with the result obtained for the ran-
dom potential of the form (4.168). However, note that
theories on 2D hexatics, liquids (Halperin and Nelson,
1978; Nelson and Halperin, 1979), or glasses (Nelson,
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Rubinstein, and Spaepen, 1982; Chudnovsky, 1986) also
predict an algebraic decay of the correlator g'(6, r). Typ-
ical values for g6 are around 0.05 (8 =30—100 G), close
to the experimental resolution, with a rather sharp in-
crease to values around 1 below fields of the order of 10
G. The sharp rise in g6 for small magnetic fields is ac-
companied by a sharp drop in the translational correla-
tion length, a feature clearly observable at least for the
more disordered sample in the report by Grier et al.
(1991). This is consistent with the expected crossover to
single-vortex pinning at very low fields, where R, drops
below one lattice constant and the phase becomes dom-
inated by disorder.

generality of our discussion. In particular, we have
shown above that we expect the relevant lattice correla-
tion length R, (T ) to be much larger than the mean vor-
tex spacing a, , and thus disorder will only weakly affect
the melting transition itself. Moreover, we shall concen-
trate on the continuous anisotropic description of super-
conductivity here, so that the discussion is pertinent to
YBa2Cu307 y like systems or to those regions of the
phase diagram of the strongly layered Bi- and Tl-based
materials where an anisotropic description is valid. Typi-
cal effects of layering will be discussed in Sec. VIII below.

A. Vortex-lattice melting

V. THERMODYNAMIC PROPERTIES

Several basic parameters of the new high-temperature
superconductors conspire to enhance dramatically the
importance of thermal Auctuations. First of all, accord-
ing to our scaling analysis in Sec. III.A, the large transi-
tion temperature T, combines with the anisotropy c. to
produce an effective fiuctuation temperature of the order
of T,ff —T, /E-1—0 K—10 K. This energy scale then has
to be compared with the relevant elastic energy scale
c,ao in the vortex lattice. The ratio of these two energies
can be written in terms of the Ginzburg number,
T,z/E, a, = I Gi/[H, ( T)/B j(1—T/T, ) J

'~2. Obviously,

for fields B close enough to the upper critical-field line

H, (T) and temperatures T near the critical temperature
2

T„ this ratio becomes of the order of unity. In the high-
temperature superconductors the Ginzburg number is
rather large, and therefore thermal Auctuations are able
to melt the vortex lattice over a significant portion of the
B-T phase diagram. In this section we first discuss the
melting transition of the vortex lattice and then analyze
in some detail the resulting high-temperature vortex-
liquid phase. The melting transition depends strongly on
the value of the applied field B, and below we shall sepa-
rately discuss the three cases of low, B &H, , intermedi-

1

ate, H, «B «H, , and high B -H, , fields. Regarding
1 '2' '2'

the thermodynamic nature of the vortex-liquid phase, we
shall concentrate mainly on the question of whether the
vortex liquid is a genuine new thermodynamic state that
is qualitatively different from the normal metal. Alterna-
tively, the vortex liquid could merely differ quantitatively
from the normal state, in which case the upper critical-
field line H, (T) would only inark a crossover from the

2

normal metal to a strongly Auctuating superconducting
state, with no real phase transition taking place until the
melting line is reached.

Within the present section we shall neglect the
inAuence of the quenched disorder potential on the ther-
modynamic properties of the vortex system. As we al-
ways consider the case of weak disorder, this approxima-
tion does not seem to impose a severe restriction on the

1. Moderate magnetic fields: H, «B «H,
1 2

Depending on the value of the magnetic field B as com-
pared with the lower and upper critical fields H, and

1

H, , the elastic properties of the vortex lattice and hence'2'
its stability with respect to thermal fluctuations are rath-
er different (see, for example, Brandt, 1977a, 1977b; Lar-
kin and Ovchinnikov, 1979). To begin with, we concen-
trate on the intermediate regime characterized by the
conditions

H, «B &0.2H,
1 2

(5.1)

(u'(T )~ h=cl. a (5.2)

With a Lindemann number cL =0.1 —0.2 depending only
weakly on the specific material, the criterion (5.2) pro-
vides a reasonable estimate for the melting temperature

For high-~ materials, such as the high-temperature su-
perconductors, the relation H, =2~ H, /ln~ shows that

this regime is very large and covers most of the experi-
mentally accessible field range. The first inequality in
(5.1) guarantees that the mean vortex separation a, is
small as compared with the London penetration depth k;
hence the interaction between the individual vortex lines
is large and strongly nonlocal. The second inequality
makes sure that the vortex cores do not overlap, and thus
the London approximation can be used to determine the
energy of the elastically deformed vortex lattice (Brandt,
1977b). Unfortunately, even for this well-defined situa-
tion, no consistent theory of vortex-lattice melting is
known today. Various approaches have been used to
tackle the problem of vortex-lattice melting. The two
most prominent methods are based on the Lindemann
criterion and on Monte Carlo simulations.

The semiquantitative approach based on the Lin-
demann criterion (Lindemann, 1910) assumes that a crys-
talline lattice becomes unstable with respect to thermal
fiuctuations of its constitutive elements (atoms, vortex
lines, etc. ) as the mean-squared amplitude of fluctuations
(u ),h increases beyond a certain fraction cL of the lat-
tice constant a, ,
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V[u]= g f
pv lsy,

(5.3)

where the positions s„are measured in units of a, . The
statistical mechanics of the vortex system then is com-
pletely determined by the parameter ratio c,ao /T con-
taining all the dependencies on field B and on the temper-
ature T. Therefore the melting line will be determined by
some universal constant related to the Lindemann num-
ber CL . More elaborate theories of the melting transition
are able to predict the numerical value of this universal
constant, whereas the functional dependence of the melt-
ing line on the parameters B and T can already be read
off the representation of the free energy (5.3).

Recently, the problem of the vortex-liquid/
Abrikosov-lattice transition has been addressed by a
variety of more basic approaches not relying on the Lin-
demann criterion Ma and Chui (1991) have presented a
mechanism for the Aux lattice melting in terms of a pro-
liferation of edge dislocations. They find that the interac-
tion of a dislocation with the thermal fluctuations of the
Aux lines produces a negative contribution to the energy
of the dislocation, which grows in magnitude with in-
creasing temperature, so that the overall energy of the
dislocation vanishes at the melting transition. The
effective Lindemann number that they find is approxi-
mately cL =0.3. Sengupta et al. (1991) find a first-order
melting transition within their density-functional ap-
proach to the solid-liquid transition in the Aux-line lat-
tice, and their Lindemann number is cL =0.2. Further,
the melting transition has been studied by means of
Monte Carlo simulations by Li and Teitel (1991,1993)
and by Ryu et al. (1992). Whereas Li and Teitel base
their analysis on an anisotropic, uniformly frustrated XY
model, a Lawrence-Doniach model of stacked supercon-
ducting layers is studied in the simulations of Ryu et al.
The Lindemann number obtained within the latter model

T for a large variety of three-dimensional solid-liquid
transitions. Moreover, it has been found that the same
criterion holds approximately for the quantum melting of
a two-dimensional solid at T=O (Ceperley, 1978), with
cL =0.3 (Xing and Tesanovic, 1990) somewhat larger
than for the conventional melting transitio~ of a three-
dimensional solid. For the present discussion of vortex-
lattice melting, the use of the Lindemann criterion (5.2) is
particularly fruitful, as it allows us to determine the
shape of the melting line T (B) over a broad range of
magnetic-field values by assuming a constant value for cL
over the entire range H, «B &0.2H, . As both the

1 2

type of lattice and the (long-range) nature of the interac-
tion are unchanged throughout this regime, such an as-
sumption seems to be quite reasonable: Indeed, since
a «A, within the present regime of interest, we can
neglect screening effects in the determination of the melt-
ing line, and the relevant free energy of the vortex system
can be written in terms of an unscreened interaction po-
tential V'"'(r) = 1/r in the energy functional (3.23),

4(v'2 —1) +1
1 b(t) v —

1 t +I—b (t)—
2&cL

v'Gi
(5.4)

with b (t)=B (T)/H, (T), t =T/T„and Gi the

Ginzburg number introduced in Eq. (2.47) above, which
determines the width of the Auctuationa1 region close to
the upper critical-field line H, (T); see Fig. 2. For tem-

2

peratures close to T„ the melting line is far below the
upper critical field H, (T), b (t) «1, and the implicit

2

equation (5.4) can be simplified considerably to produce a
melting line (see Fig. 2),

CL T
'

B (T)=P . H, (0) 1—
C

(5.5)

with

p =5.6 . (5.6)

Again, we denote by H, (0) the upper critical field extra-
2

polated linearly to zero. Note that the Ginzburg number
depends on the anisotropy parameter c in general. The
results (5.5) and (4.107) differ slightly in their numerical
prefactors, as we used our rough estimate (4.85) for the
displacement field (u ),h above, whereas here we have

turned out to be different for very low (cL =0. 1 for
B—50 G) and for high (cL =0.4 for B —50 T) fields, with
a large intermediate regime between -0.1 and 10 T
where cI =0.2 is roughly constant, in agreement with our
discussion above. A very interesting result has been ob-
tained by Hetzel, Sudbe(, and Huse (1992), who find
strong numerical evidence for the melting transition be-
ing first order. Their Monte Carlo analysis is also based
on the anisotropic, uniformly frustrated XY model. It
shows a clear hysteretic behavior and thus a finite latent
heat (0.3T per vortex and layer) as the temperature is
varied across the melting transition. Experimental evi-
dence for a first-order melting transition has been report-
ed by Safar, Gammel, Huse, et al. (1992b, 1993}, by
Charalambous (1992; see also Charalambous et al. ,
1993), and by Kwok et al. (1994a, 1994b) based on the
observation of a sharp transition combined with a hys-
teretic trace in the linear-response resistance as a func-
tion of temperature. In the following we shall concen-
trate on the analysis based on the Lindemann criterion
and determine the shape of the melting line within the
various field ranges.

In order to make use of the Lindemann criterion (5.2),
we have to determine the mean-squared amplitude of
fiuctuations (u (T)),h for the vortex lattice. This has
been calculated by Houghton, Pelcovits, and Sudbg
(1989) and by Brandt (1989), and a rough estimate has
also been given in Sec. IV.C above. For an isotropic ma-
terial or for the special case of an anisotropic supercon-
ductor with H~~c, we have to solve the following implicit
equation for the melting line (Houghton, Pelcovits, and
Sudbe(, 1989}:
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based our analysis on the more accurate result of
Houghton, Pelcovits, and Sudbd (1989). Note also that,
since the main contribution to the displacement field

(u ),'i~ originates from wave vectors close to the Bril-
louin zone, the strong1y dispersive part of the tilt
modulus c44 competes with the single-vortex contribution
c44', see Sec. III.B, c~4(K =KBz ) =(E c,./a. )[1
+ln(H, /8)' ] A.s long as the melting line 8 is not

suppressed too far below the mean-field critical line H, ,'2'
we can safely ignore the single-vortex contribution. This
is the case for YBCO within the intermediate-field regime
H, «B «H, . However, at low fields, B & H, , and for

1 2 1

strongly layered superconductors where B «H, , the

single-vortex contribution becomes dominant (see Glaz-
man and Koshelev, 199la).

An important feature of the result (5.5) is the quadratic
dependence of B on T, —T upon approaching the tran-
sition temperature T„guaranteeing that the melting line
B (T) is indeed situated far below the mean-field transi-
tion line H, (T), in agreement with our original assump-

2

tion (5.1). Using a very-high-precision low-frequency
torsional-oscillator technique on an untwinned single
crystal of YBa2Cu307, Farrell, Rice, and Ginsberg
(1991) have observed a sharp dissipation peak, whose po-
sition shows a (T, —T) dependence when plotted in the
H-T phase diagram. This dissipation peak has been in-
terpreted as the signature of the melting transition of the
vortex lattice, and the resulting transition line is in good
agreement with the theoretical prediction for the shape
of the Aux-lattice melting line.

A word of caution is appropriate here: As wi11 be
shown in Sec. VI.B below, the resistivity within the
thermally activated fiux-fiow regime [T)T (8)] is
determined by the plastic barriers U„i ~ (T, —T)l&8
and hence is expected to be constant along the lines
B ~(T —T, ) . As discussed in Sec. X, the dissipation
peak in this type of measurement is most straight-
forwardly explained through a combination of the skin
effect and the finite size effect, whereby the peak arises
when the ac field exactly penetrates the entire sample
cross section. In this sense, the observed 8 ~(T —T, )

behavior can also be interpreted as simply measuring a
constant-resistivity curve without the concomitant associ-
ation with a melting transition. We point out that the re-
cent results found by Safar, Gammel, Huse et al. (1992b,
1993), by Charalambous (1992; see also Charalambous
et al. , 1993), and by Kwok et al. (1994a, 1994b) do give
strong support for the melting scenario (see Geshkenbein,
Ioffe, and Larkin, 1994, for a discussion of the hysteretic
effects observed in connection with the melting transi-
tion).

Let us discuss the range of applicability of the result
(5.5). First of all, we require the temperature T to lie out-
side of the fluctuation regime, hence 1 —T/T, ~ GI,. At
the borderline of this region (marked by a superscript)
the result (5.5) becomes

B' =5ciH,' «H,' (5.7)

1 — «0.2
T Gi

p cL
(5.8)

With typical values for Gi —10 (YBazCu307 ) and a
Lindemann number cL =0.2, we obtain a parameter
Gi /P cL = 1, and our result (5.5) should be valid near T, .
Away from T„ the melting line moves closer to the

H, (T) line, and the suppression of the order parameter
2

due to overlapping vortex cores becomes relevant. Hence
the full equation (5.4) (Houghton, Pelcovits, and Sudbd,
1989) has to be used for the determination of the melting
line. In fact, for YBa2Cu307 ~ the simple power-law re-
sult (5.5) is limited to a regime extending only a few Kel-
vin below T, (see, for example, Blatter and Ivlev, 1994).
The main correction to the simple power-law result can
be obtained by accounting for the suppression of the
order parameter via the substitution
=A/[ I b(t)]' [—see Sec. III.B.1; b (t) =B/H, (T)
is the reduced field],

CL
4 T.8 (T)=P . H, (0)

Gi '2 T

2
T1—
Tc

B
H, (0)

(5.9)

[the factor T, /T accounts for the proportionality
( u ),i, ~ T]. Equation (5.9) can be easily solved for
8 (T), and we find the improved result

4g28 (T)=H, (0)
(I+Ql+48T, /T )

(5.10)

with the new temperature variable

T.
O=cL Q(p /Gi)

' —1 (5.11)

and

T, =T cl +p /Gi (5.12)

The result (5.10) describes a melting line that is shifted
towards smaller temperatures and fields and that can no
longer be expressed in terms of a simple power law. In
fact,

where we have used that H, (T)=H, (0)(1—T/T, ).
2 2

Evidently, the suppression of the melting line B ( T) with

respect to the H, (T) line upon leaving the critical re-

gime is due to the smallness of the Lindemann number cl
and does not depend on Gi. In other words, it is the
smallness of cL which guarantees that the melting line
comes to lie outside of the critical Auctuation regime; see
Fig. 2.

Second, the regime of applicability of the result (5.5)
from above, i.e., at small temperatures, is given by the
condition B ((0.2H, (T), leading to

2
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H, (0)8, 8~0,
(5.13)

filr„
H, T (5.15)

4M'.,
ga4

(5.14)

and with increasing field (decreasing temperature) the
"effective" power decreases. This result is in agreement
with various experimental determinations of the melting
line. Whereas Farrell, Rice, and Cxinzberg (1991) ob-
tained an exponent 2 on a field range of the order of 2 T,
the measurements of Krusin-Elbaum et al. (1991),Schil-
ling, Ott, and Wolf (1992), and Safar et al. (1993) cover-
ing a field range between 6 and 10 T produce "effective"
power-law exponents in the range 1.35—1.45. Hence the
attribution of a power law to the melting line is a com-
pact way of describing the data rather than a deep physi-
cal concept.

For the strongly layered Bi- and Tl-based compounds,
the Ginzburg number is of the order of Gi —1, so that
Gi/P ct ))I and the result (5.5) is valid over a very
wide regime in temperatures below T„' see Fig. 3. Its ap-
plicability is limited by the occurrence of specific effects
of two-dimensionality at field strengths B ~ 4&, /A ( —1

T for BiSSCO), with A=d/E (d=interlayer spacing) the
length scale characterizing the strength of the interlayer
Josephson coupling. Note that, for the case of the
strongly layered superconductors, the Ginzburg number
(2.47) should not be understood as describing the width
of the fiuctuation regime (which rather is given by the
two-dimensional analog of the Ginzburg number; see Sec.
VIII.B.2), but simply as a useful combination of phenom-
enological parameters making sense in the description of
properties that can be addressed within a 3D continuum
anisotropic model.

In all the calculations of the mean displacement ampli-
tude ( u ) discussed so far we have neglected quantum
effects. For exainple, in expressing ( u ) via the
fluctuation-dissipation theorem we have always substitut-
ed the factor ctgh(A'co/2T) via its high-temperature ex-
pansion 2T/Rro [see Eq. (2.113) above]. Such an expan-
sion is appropriate if the energy scale of the fluctuations
is small compared with the temperature, so that all
modes behave classically. Comparison of the elastic en-
ergy scale e,&„,

——(e, /ao )XBzu with the typical dynami-
cal energy ed„„=ii co~u gives us the typical frequency
scale

With the estimate A/~„= T, we finally obtain

B Tc

H, T
2

(5.16)

(5.17)

The prediction (5.17) for the angular dependence of the
melting line is in excellent agreement with the experi-
mental findings of Beck et al. (1992; see also Kwok
et al. , 1992), who determined the melting line in an
untwinned YBa2Cu307 y single crystal for arbitrary
direction of the magnetic field.

Quantum effects, then, should play a role at high enough
fields and low enough temperatures (note that the relaxa-
tion time r„ is itself also temperature dependent, filr„= T
at high temperatures, and a saturation is expected as
T~O). The effects of quantum fiuctuations on the melt-
ing line in YBCO have been investigated by Blatter and
Ivlev (1993; the suppression of the order parameter close
to H, was neglected in this work, which led the authors

2

to overestimate the effect of quantum fiuctuations) and by
Blatter and Ivlev (1994). By taking into account the
effects of the order-parameter suppression close to H,

2

and of quantum fiuctuations (Blatter and Ivlev, 1994) one
can obtain a very good fit to the experimentally measured
melting line. The experimentally accessible part of the
melting line (B & 15 T, T )70 K) is too narrow, however,
to allow for an unambiguous determination of quantum
statistical effects. Other systems (e.g. , the vortex lattice
in thin-film superconductor s with high normal-state
resistivity) may be more promising candidates for the ob-
servation of a quantum melting transition (Blatter et al. ,
1994).

Finally, we generalize the above results to the situation
in which the applied magnetic field B encloses an arbi-
trary angle 6 with the superconducting planes (here we
concentrate on uniaxially anisotropic materials such as
the oxide superconductors). Within the present regime,
the melting line B (T) always passes above the lower
critical field H, (T), hence the relevant scale for melting,

1

which is the lattice constant ao, is smaller than the
penetration depth A, , and our scaling approach (see Sec.
III.A) can be applied. Using the scaling rule (3.12), we
obtain (Blatter, Geshkenbein, and Larkin, 1992)

[Equation (5.14) defines the thermal relaxation time in
the vortex lattice; see Sec. VI.A. 1). Using a simple
Bar deen-Stephen expression for the viscous drag
coefficient, as well as the relations o.„=~ ~, /4m,

=4~ne /gyes, and k =q /~, which seem to be well
fulfilled for the YBCO material (Batlogg et a/. , 1990), we
obtain the dimensionless ratio

2. Low magnetic fields: B 5 H,
1

For low inductions B ~H, the shape of the melting
1

line B (T) changes drastically and becomes an increasing
function of B (at least for small temperatures). As a
consequence, the B-T phase diagram will exhibit reen-
trance as a function of B. When the magnetic field is de-
creased, we will observe a sequence of phases: normal-

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



1236 Blatter et al. : Vortices in high-temperature superconductors

1+
&2+ c „/c66
7/4

0.5 T' V'in~ eE.&

a, /2A,
e ' (5.18)

metal/vortex-liquid/vortex-lattice/vortex-liquid; see
Figs. 2 and 3. The origin of this interesting behavior is
found in the dependence of the interaction between the
vortex lines on the field strength B. For B ~H, the in-

1

tervortex spacing increases beyond the penetration depth
A, , and the vortex-vortex interaction decreases exponen-
tially. The melting transition in this field regime and its
analogy with the transition between a crystalline and a
superAuid phase in a system of two-dimensional bosons
has been discussed extensively by Nelson (1988) and by
Nelson and Seung (1989). A mean-field-theory of such a
transition has also been developed recently by Feigel'man
and Ziegler (1992). Here we restrict ourselves to a dis-
cussion of the melting line in the low-field regime as ob-
tained from a Lindemann criterion and defer detailed
analysis of the resulting liquid phase to the next section.

Due to the exponential dependence of the interaction
between the vortex lines in the present low-density re-
gime, the applicability of the Lindemann criterion based
on a density-independent Lindemann number cl is much
less obvious. However, we expect that the approach is
still useful for providing an order-of-magnitude estimate
for the melting transition.

In order to estimate the mean-squared amplitude of
thermal fiuctuations ( u ( T) ),h, we have to use the ap-
propriate expressions for the elastic moduli valid in the
low-density regime B ~ H, . The relevant wave vectors E

1

and k, are then small, e.g. , X ~ 1/a, (1/X, and for an

isotropic situation the dispersion in the elastic moduli
can be neglected and simple, nondispersive expressions
(Labusch, 1967, 1969; Larkin and Ovchinnikov, 1973)
can be used. However, the situation is more complicated
in an anisotropic superconductor, where the dispersive
regime for the tilt elastic modulus c44(k) extends down to
very small wave vectors, c, /A, &E &1/a. (Sudbd and
Brandt, 1991a). Since ( u ( T) ),h is mainly determined by
short-wavelength fiuctuations with K =KBz—-&47rla. ,

the reduction of the tilt modulus due to the dispersion in
c«( k ) can be neglected only for very small fields,
8 &E H', /in'. Within the interesting range of fields

1

with A, & a. & 1,/E, we can use the single-vortex limit of
the tilt modulus, c«(EBz)=E E.ln(H, /8)/2a. as deter-

2

mined by Sudbg and Brandt (1991a). The shear modulus
as given by Eq. (3.36) is exponentially suppressed within
this regime, and the compression modulus c» =3c66 is
nondispersive and unaffected by the anisotropy (Sudb@
and Brandt, 199lb). Using this set of (nondispersive)
elastic moduli and following the same steps as in the
derivation of Eq. (4.85) above, we obtain the following re-
sult for the mean-squared displacement amplitude (Nat-
termann, Feigel'man, and Lyuksyutov, 1991):

T
a && +47r c«c 66

Combining this result with the Lindemann criterion (5.2),
we obtain the implicit equation determining the melting
line 8 ( T) at low inductions,

7/2 I4 2
a, /g CL, K lnK Tc

e ' =p' (5.19)
T1—
T.Gi

with

P' =0.5 . (5.20)

Here we have introduced the Lindemann number cL in
order to emphasize the possibility of having di6'erent pa-
rameters cI for the three regimes of low, intermediate,
and high inductions B. We have also used the approxi-
mation ln(H, /B)=21ni~. A comparison of Eq. (5.19)

2

with its intermediate-field counterpart (5.5) shows that
the role of thermal fluctuations parametrized by the
Ginzburg number Gi is significantly suppressed within
the present weak-field regime, as indicated by the re-
placement of Gi by the much smaller e6'ective parameter
Gi /ii in'. Using parameters appropriate for
Yaa2Cu307 and assuming a Lindemann number
cL =0.2, we obtain an estimate for P' =P' cL s. 1nii/Gi
of P' =2.5X10 .

Let us analyze the result (5.19) in more detail.
Defining x =A, (0)la, , we have to solve the implicit equa-
tion

f(x t) x7/2e/1 —t/x P~ t )11/4
(5.21)

8*= H, (T")
4 ln~

4
lni~ cL, 1,

)
10 cL t 2

(5.22)

(5.23)

As a result, the intersection of the melting line (5.5) com-
ing from above with the low-field melting line (5.19) is
close to the turning point (B*,T ) if we assume that
cL = cL (see Fig. 22), and thus the intermediate-field melt-

which becomes trivial in the limit t —+0. We then obtain
a melting line 8 (T~O)=H, (0)[ln(TIT, )],which

1

indeed increases with increasing temperature, producing
a reentrant behavior, as discussed above; see Figs. 2 and
3. The solution of Eq. (5.21) for arbitrary values of t is
more complicated and can only be done numerically.
Since f (x, t) has a minimum at x =(2/7)(1 —t)'/, Eq.
(5.21) either has two solutions (xi &x2) or no solution at
all. The solution x2 is above the H, (T) line and thus ir-

1

relevant. No solution is found for high temperatures
where (1—t)/t &(1—t*)/t" =(2/7) exp(7/2)/
p ' =0.41 Ip ' . At t * the right-hand side of Eq. (5.19)
is of the order of unity, implying that a," =4k,(T*)at the
turning point of the low-field melting line. A comparison
of 8'=N. /ao* with the values of the lower critical field

H, (T*) and of the extrapolated melting point 8 (T*)
1

as given by Eq. (5.5) produces the relations
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FIG. 22. Equilibrium phase diagram showing the low-field part
of the melting lines B (T) as well as the lower critical field

0, (T). A set of parameters for BiSCCO as quoted by Kapitul-
1

nik [(1991; g(0) = 15 A, A,(0)= 2000 A, c. = 1/5000, and

cL =0.1] has been chosen. The form of the melting line de-
pends quite substantially on the numerical value of the chosen
parameters, as a comparison with Fig. 3 clearly demonstrates.
The drawing is to scale.

ing line smoothly crosses over to the low-field melting
line at M, (T ). The width of the low-density liquid re-

gime is rather narrow; using parameters appropriate for
YBCO or BiSCCO, the maximum of the low-field melting
line is found to be of the order of a few Gauss; see Figs. 2,
3 and22.

In order for the above analysis to be correct, we have
to make sure that the melting line stays away from the
Auctuation regime, which is the case if the condition
1 —t )Gi is fulfilled. Interestingly, our ability to treat
the entire melting transition within a mean-field descrip-
tion does not depend on the width of the Auctuation re-
gime as given by Gi, but is determined by the relative
sizes of the Ginzburg-Landau and Lindemann parame-
ters ~ and CL. The melting line passes outside of the Auc-
tuation regime if

K lnK (CL (5.24)

With cl =0.2, the largest possible value for ~ is around
20. For high-~ materials such as the oxide superconduc-
tors, the melting lines obtained from Eqs. (5.5) and (5.19)
enter the fiuctuation regime before they intersect, and
hence the reentrance point T* lies outside the regime
where the mean-field-type approach is valid. Close to T„
in addition to fluctuations in the phase of the order pa-
rameter (which are correctly treated in our approach),
fluctuations in the amplitude of the order parameter be-
come strong and can no longer be neglected.

The above discussion indicates that for the oxide su-
perconductors the reentrant behavior of the melting line
cannot be analyzed completely without exploring the
properties of the vortex lattice within the Auctuation re-
gime. This seems to be the case at least for the
YBa2Cu307 „compound, for which the anisotropic
three-dimensional description is valid. A discussion of
the (scaling) behavior of the melting line within the Quc-

tuation regime has been given by Fisher, Fisher, and
Huse (1991). Qn approaching T„ the superconductor is
expected to enter a regime where the fluctuations in the
order parameter '0 are essentially those of an unchanged
superAuid or XFmodel. Within this regime, the two fun-
damental length scales g and A, cc p, '~ " (where p, is the
superfluid density) are expected to scale according to
(=g, (1—t) and X, =X,(1—t) ~, with
A. , /g, =yA, (0)/g(0) and y= I/2mc, &. 2Gi ) 1. Within
the mean-field regime, the ratio A, /( grows with
(1 —t) '~ until it reaches the value X, /g, marking the
borderline of the XY' critical region; hence 1 —t'ai, = 1/y .
Using the estimates of Fisher, Fisher, and Huse (1991),
we see that the Auctuation regime becomes very large
(they used a parameter c, =0.4, whereas the conventional
Cxinzburg criterion would correspond to a value c, =0.1),
of the order of 10 K. This value appears to be much
larger than the broadening of the transition due to Auc-

tuations under zero-field conditions, which is of the order
of 1 K. We wish to point out that a width for the Auc-
tuation regime of the order of 1 K in fact is in agreement
with the predictions of the conventional Ginzburg cri-
terion, and thus we prefer to use a value =0.1 for the pa-
rameter c, . Finally, it has been argued (Fisher, Fisher,
and Huse, 1991) that, within the XY critical regime, the
melting line is expected to scale according to g, hence
B ( T) cc ( T, —T)" . However, this result should be in-

terpreted with some care, since the scaling behavior for
the parameters g and X was obtained for a zero-field
phase transition. On the other hand, the melting transi-
tion under consideration here is intrinsically associated
with a finite magnetic field, thus possibly leading to a
diff'erent type of phase transition, and further investiga-
tions are required to resolve these subtle questions (see,
for example, Bre.zin, Nelson, and Thia ville, 1985;
Tesanovic, 1991;Tesanovic and Xing, 1991).

The situation is difFerent for the strongly layered Bi-
and Tl-based materials. Here the Cxinzburg number Gi (a
quantity characterizing a three-dimensional supercon-
ductor) does not coincide with the actual width of the
transition region, which appears to be much narrower
than predicted from the rather large value Gi =0. 1 —1.0.
On the other hand, for weak enough fields, B (N, /A,
the melting line can still be described by the above three-
dimensional anisotropic theory, and hence the descrip-
tion of the reentrant melting line as outlined above
should be fully applicable to these materials. Monte Car-
lo simulations of vortex-lattice melting in a layered su-
perconductor have been presented by Kapitulnik (1991)
and by Ryu et al. (1992). In their study, which covers a
field range from 10 G to 50 T, they find a reentrant
behavior at low fields with a turning point given by
T*=0.5T, and B'=@,/1, (T*), i.e., the ratio of a. /A,

is approximately unity at (B*,T*). These Monte Carlo
results for (B*,T* ) are in reasonable agreement with our
estimates obtained from the matching of the low- and
high-field branches of the melting line if we use the set of
phenomenological parameters for BiSCCO quoted by
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Kapitulnik [1991;g(0) = 15 A, A, (0)=2000 A, E = 1/5000,
cL =0.1]; see Fig. 22. On the other hand, using a slightly
diff'erent set of parameters [g(0)=18 A, A, (0)=1000 A,
E =1/2500, cL =0.2; see Eq. (2.135)], we obtain a value

for T' much closer to T„' see Fig. 3. Hence the actual
shape of the melting line depends strongly on the set of
material parameters, even within the rather small family
of the oxide superconductors. Alternatively, an accurate
determination of the melting line makes it possible to ob-
tain the phenomenological parameters of these materials
with a higher accuracy.

3. Large magnetic fields: B-H,

The melting transition of the vortex lattice under
high-field conditions has been studied by Hikami, Fujita,
and Larkin (1991), for both the two- and the three-
dimensional situation (see also Tesanovic and Xing,
1991). Their calculation was based on the lowest
Landau-level approximation, which is valid for high
magnetic fields, and makes use of an asymptotic high-
temperature expansion for the free energy (up to 11th or-
der for the two-dimensional case and up to 9th order for
a three-dimensional bulk superconductor). This series
expansion was then analyzed by means of Pade and
Borel-Pade summation methods, and the Abrikosov ratio
Pz =(~%'~ )/( ~%' ~) was determined as a function of
the reduced temperature y = [ T —T, (B)]/Gi (B) for

T (T, (B). Here, T, (B) denotes the inverse of the
2 '2

H, (T) function and Gi (B) is the field-dependent width

of the fiuctuation region, Gi (B)=Gi '~ [B/H, (0)]
))Gi tB ))GiH, (0) within the field regime considered

2

here]. Extrapolating the Abrikosov ratio for the liquid
high-temperature phase down to the low-temperature re-
gime (y —+ —~', we consider the three-dimensional case
here), one arrives at an asymptotic value p~ =1.28 at
best, a value that is still considerably higher than the cor-
responding ratio for the Abrikosov lattice, which is
p„=1.16. Since the lowest-energy state of the vortex
system is realized by the configuration with the smallest
Abrikosov ratio p~ (Abrikosov, 1957), the above result
indicates that the high-temperature liquid phase becomes
unstable at low temperatures and will undergo a transi-
tion to a vortex-lattice phase. The melting temperature
T (B) was determined by a comparison between the free
energies of the Abrikosov lattice as determined by Thou-
less (1975), and of the liquid phase as obtained from the
Fade analysis of the high-temperature series expansion.
The transition turns out to be first order (finite intersec-
tion angle at the transition) and occurs at a value y = —7,
that is, an appreciable distance away from the critical
Quctuation regime. Additional support for a first-order
melting transition stems from Monte Carlo simulations
(Hetzel et a/. 1992). The first experimental results hint-

ing at a discontinuous transition have been reported by
Safar, Gammel, Huse, et a/. (1992b, 1993), by Charalam-
bous (1992; see also Charalambous et a/. , 1993), and by
Kwok et a/. (1994a). The comparison between the above
high-field result and the high-field portion of the melting
line obtained by Houghton, Pelcovits, and Sudb& (1989)
produces an estimate cL =0.14 for the Lindemann num-
ber.

In the above analysis we have assumed that no inter-
mediate vortex-liquid phase is present between the high-
temperature (entangled) vortex liquid or metallic phase
and the low-temperature Abrikosov-lattice phase. In the
following section we present some arguments in favor of
the existence of such an intermediate phase within the
field regime B &0.28, (T), where the melting line is far

2

away from the upper critical-field line, B (T) (&M, (T).
2

The arguments in favor of such an intermediate state,
however, cannot be applied to the high-field situation dis-
cussed here.

B. Vortex-liquid phase: 2D bosons

In the previous section we saw that under certain con-
ditions encountered in the high-temperature supercon-
ductors the vortex lattice can be melted due to thermal
Auctuations over a significant portion of the B-T phase
diagram. Within this regime, crystalline long-range or-
der is absent, but since the magnetic field B is much
lower than 0, the superconducting order parameter is

2

still preserved locally, i.e., on length scales less than the
mean vortex spacing. The question that we wish to ad-
dress in this section concerns the thermodynamic nature
of the resulting vortex-liquid state: is the vortex-liquid a
genuine new thermodynamic phase with macroscopic
properties diA'erent from those of the normal metal? Is
the transition to the vortex liquid a true thermodynamic
phase transition or is there merely a crossover line, where
the macroscopic properties of the normal metal are
changed in a quantitative way only'? Starting from the
notion of symmetry breaking, the above questions can be
formulated in a very transparent way: Consider the sym-
metries that are broken when passing from the high-
temperature normal-metal phase at high fields and tem-
peratures to the mixed state at low temperatures and
fields. In fact, there are turbo symmetries that are broken.
The longitudinal gauge symmetry is broken due to the
appearance of a superAuid density, and the transverse
translation symmetry is broken due to the appearance of
the Abrikosov lattice (note that there is no transverse su-
perconducting response in the mixed state in the absence
of pinning, as a test current jlB will induce vortex
motion and hence dissipation). The question, then, is
whether these two symmetries are broken simultaneously
or sequentially. In the former case the superconductor
turns normal upon melting of the vortex system, i.e., the
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vortex liquid does not represent a genuine new thermo-
dynamic phase and there is no phase transition in the sys-
tem except the melting transition of the vortex lattice.
By contrast, if the two symmetries are broken sequential-
ly, we shall have a new intermediate vortex-liquid state
with continuous translational symmetry but one that is
still superconducting along the direction of the magnetic
field. Only after a further phase transition in which the
longitudinal superAuid density vanishes will we enter the
well-known normal-metallic phase at high fields and tem-
peratures.

In order to address these questions, we should analyze
the partition function for a system of arbitrarily curved
Aux lines and determine the response of the system to the
presence of an external electromagnetic field A. The first
step in this program was carried out by Nelson (1988; see
also Fisher and Lee, 1989; Nelson and Seung, 1989), who
proposed to make use of the formal correspondence be-
tween the partition functions of a system of directed lines
and the Feynman path representation of the partition
function of a system of two-dimensional Bose particles.
The basic ideas underlying this correspondence are that
(i) the fiux lines cannot terminate inside the sample, i.e.,
in each plane of constant z (z denotes the axis directed
along the field) their number is a conserved quantity, a
statement which maps to the particle conservation along
the imaginary time axis r in the Bose problem, and (ii) all
configurations of the vortex system give a positive contri-
bution to the partition function, so that the correspond-
ing particles are indeed bosons, and not, say, fermions or
anyons. With the z axis identified with the (imaginary)
time direction ~ of the quantum system, we have to iden-
tify the physical temperature T in the vortex system with
the "Planck constant" i' of the Bose system (to avoid
confusion, note that the parameter A' in the Bose system
has no relation whatsoever to the usual Planck constant
fi, and the latter will not appear throughout the present
section. In particular, our A carries the dimension of en-

ergy here instead of that of an action). The thickness L
of the superconductor along the z direction has to be
identified with the imaginary time period, i.e., the inverse
temperature A /T, T being the effective temperature
of the Bose system (in units of energy/length). The last
point, however, requires some care: the imaginary-time
representation of the quantum statistics of bosons in-
volves periodic boundary conditions along the
imaginary-time axis (Abrikosov, for'kov, and Dzy-
aloshinski, 1975; Popov, 1987), implying that the vortex
configurations in the planes z=0 and z =L should be
identical up to permutations. This condition is rather
unnatural for the vortex system, where free boundary
conditions are usually the relevant ones, whereas the
periodic boundary conditions would correspond to the
somewhat artificial situation of a toroidal-shaped sample
with the Aux lines following the torus. As a consequence
we should not use the fIux-line/2D-boson analogy when
the properties of the system substantially depend on the
specific nature of the boundary conditions. On the other

hand, for infinitely long (bulk) samples, corresponding to
the ground-state (T =0) configuration of the Bose sys-
tem, the difference in the boundary conditions should
play no role. In the thermodynamic limit (L~ oo ), the
finite-temperature statistical mechanics problem of the
vortex system then maps to the T =0 quantum-
mechanical ground-state problem in the Bose system,
where the role of thermal fluctuations in the vortex pic-
ture is played by the quantum Auctuations of the bosons.
Being interested in the thermodynamic behavior of the
vortex system, we shall concentrate on the limit L ~ ~
or T =0 in the following.

A further requirement to be fulfilled in order to exploit
the fiux-line/2D boson analogy is the finiteness of the en-

ergy barriers for vortex crossing. Since all trajectories
contribute to the partition function in the Bose problem,
the same must be true for the vortex system. However,
infinite barriers for vortex line crossing would severely
restrict the phase space in the vortex system, and our
analogy would fail, whereas possibly high but finite bar-
riers allow the vortex system to explore the entire phase
space.

Below we discuss the mapping of the vortex system to
an equivalent 2D liquid of (charged) bosons, concentrat-
ing first on the low-field regime, B «H, (Sec. V.B.1,

1

"uncharged" bosons with instantaneous short-range
repulsion) and second on the intermediate-field regime,
H, «B «H, (Sec. V.B.2), where the interaction be-

1 2

tween the bosons is long-ranged (but screened) and re-
tarded ("charged" bosons). In Sec. V.B.3 we discuss the
duality between the Bose liquid and the vortex liquid and
show that a superAuid ground state in the Bose system
produces a normal-metal behavior in the vortex system,
whereas a normal ground state for the bosons results in a
superconducting response in the direction parallel to the
magnetic field for the vortex system. The question of
whether there exists a genuine vortex-liquid phase that is
different from the normal-metal phase and separated
from the latter by a true phase transition then reduces to
the question of whether the "charged" 2D Bose system
does or does not develop a normal ground state. In Sec.
V.B.4 we present some arguments supporting the idea of
the existence of an intermediate normal ground state for
the "charged" Bose system.

1. Low magnetic fields: B & H,

After this introduction, let us be more specific and con-
sider the energy of a system of vortex lines within the
London approximation (which is valid due to the condi-
tion B «H, ). For an isotropic superconductor in a

2

magnetic field H, we obtain

o e ' '
3 HB(r)

&[sp] g Idsp'ds~
~ ~

f cE

|M, V

(5.25)
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where the sums runs over all Aux lines and we have to cut
off the integration at small distances ~s„—s

l

& g.
We first concentrate on the simplest case of a low vor-

tex density, B «H, , corresponding to a dilute 2D Bose
1

gas. The terms p=v in Eq. (S.25) provide the self-

energies of the vortex lines,

&,[s„]=E,in~+ J ds„, (5.26)

where ds„denotes the length of a line element of the pth
vortex line. Here we have assumed only long-wavelength
~&1jX distortions of the vortex line, which is a well

justified approximation for the relevant configurations in
the low-density limit [otherwise a dispersive line tension
(2.18) has to be considered in Eq. (5.26)]. Expanding Eq.
(5.26) in B,s& and changing notation z~r, E,in' —+I
we see that the self-energy part of the Aux-line system
transforms to the action (in imaginary-time representa-
tion) of a system of free nonrelativistic particles (bosons)
of mass I moving in two-dimensional space,

dR„(r)S.[s„]=J dr g " —p, (5.27)
2 d7

with p =H@,j4m —E in~ the chemical potential of the
Bose system. We have used the decomposition
s„=(R&(r),r) with R„(r) denoting the actual position of
the vortex lines.

The remaining terms pWv in Eq. (5.25) then provide
the interactions between the Bose particles. Due to the
low-density condition n =8/N, «A, , this interaction
can be reduced to an instantaneous [5(r—r')] short-
range repulsion with an integrated strength

2mB n 1

m lnln(5I ') (5.30)

which is in agreement with the absence of superQuidity in
an ideal (5&=0) 2D Bose gas at finite temperatures,
T~) 0.

Going back to the original vortex problem, the above
results led Nelson (1988; see also Nelson and Seung,
1989) to the conclusion that the transition from the
Meissner state to the vortex-lattice state should go via an
intermediate Uortex-liquid phase corresponding to the
superAuid ground state of the 2D bosons. This new
vortex-liquid phase has been named an entangled Uortex

liquid (EVL). The superfiuid phase in the boson problem
is characterized by the presence of (-equal-r) coopera-
tive ring-exchange processes involving arbitrarily large
numbers of bosons. In the original vortex problem, these
quantum fiuctuations correspond to (-equal-z) vortex-
loop excitations of arbitrarily large diameter. As a conse-
quence, both the boson world lines and the vortex lines

g 2
malized down to the eftective value u „„=4m% /
[m in(5~ ')]=u, 8Gi j[a 1ntcln(51 ')] &&u, , where
51=n A, «1 is a dimensionless density parameter; and
(iii) the transition temperature to the superfiuid state T,
goes to zero with 5I —+0,

R
u =2m d RE2

0 0

(p2
(S.28)

lattice

with Ko the zero-order modified Bessel function describ-
ing the interaction between two straight vortex lines.
Thus we have mapped our original classical statistical
mechanics problem (5.2S) to the quantum ground-state
problem of a dilute 2D Bose gas characterized by the ac-
tion (Nelson, 1989; see also Nelson and Le Doussal,
1990),

isentangled liquid

+u. g 5q[R„(r)—R„(r)] . , (5.29)
pXv

with 5& a two-dimensional 5 function smeared over a
scale A, .

The dilute Bose gas with short-range repulsion has
been studied in detail by Popov (1972) and by Fisher and
Hohenberg (1988). The main results of this analysis are
(i) the ground state of the dilute Bose gas is superfluid,
with a superAuid density n, equal to the total density of
bosons n; (ii) the bare interaction strength u. is renor-

entangled tiqui d

FIG. 23. Various equilibrium phases for a vortex system
comprising a vortex-lattice phase (a "Wigner crystal" in the
equivalent Bose system), a disentangled vortex-liquid phase
(normal ground state), and an entangled vortex-liquid phase
(superAuid groundstate) which is equivalent to the normal-metal
phase. A vortex-loop excitation (cooperative ring-exchange
process) is illustrated in the bottom picture.
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are strongly entangled, hence the same "entangled vortex
liquid. " In analogy to the well-known solid-to-superAuid
transition taking place in He when the density of parti-
cles is decreased (see, for example, Feynman, 1972), it is
reasonable to assume that the vortex system transforms
to an entangled-vortex-liquid phase below the melting
line B (T) as given by the low-induction formula (5.19)
(Nelson, 1988). Two characteristic vortex configurations,
for the solid and for the entangled-liquid phase, are illus-
trated in Fig. 23.

In order to gain a complete understanding of the phase
diagram of a type-II superconductor, we have to address
the following two questions (Feigel'man, Cxeshkenbein,
and Vinokur, 1990): (i) How can we generalize the above
analysis valid for small inductions, 8 «H, , to the im-

1

portant regime of moderate fields, H, «8 «H,
1 '22'

where the interaction between the vortices is long
ranged? and (ii) what are the physical properties of the
vortex-liquid phase? In particular, how does it compare
with the normal-metal and vortex-lattice phases between
which it interpolates? In order to answer these questions,
we shall now consider the full nonlocal expression (5.25)
for the energy of the vortex system and map it to the La-
grangian of a 2D "charged" Bose liquid.

2. Moderate magnetic fields: H, «B «H,
1 2

To begin with, let us neglect screening and consider
the limit k~ co of the energy (5.25), while keeping E,
constant. We can map this problem to a system of 2D
"charged" bosons by introducing the fictitious gauge field
a(R, r) (see also Popov, 1987, where this mapping was

I

carried out for vortices in a two-dimensional Bose sys-
tem),

S„[s„,a]=S,+ f drd R ij a+ (Vha)~ . ,
1

2g

(5.31)

p = g 5[R—R„(r)],

J = Q (BQ„)5[R—R„(r)],
(5.32)

the three-dimensional current produced by the Bose par-
ticles. Number conservation then implies V'j =0. The
coupling constant g is given by g =4~v, The two sys-
tems, (5.25) with A, = ~ and (5.31), are easily found to be
equivalent by considering their partition functions Z in a
Feynman path representation over vortex/world lines
and integrating out the fictitious gauge field a,

Z' —f~[s (z)]e
—&[s(z)]/T

—4[ (~), ]/fi
IJ (5.33)

Next we introduce screening by coupling the system to
a true electromagnetic field. In the Bose picture, this is
equivalent to giving a finite mass (I/A, ) to the fictitious
gauge field a, a task that can be accomplished by cou-
pling the true electromagnetic vector potential A via a
Chem-Simons-like term to the fictitious gauge field a.
When we include the self-energy (Vh A) /8m of the
electromagnetic field, the full action for the Bose system
then becomes

S[s,a, A]=p, + fdrd~R ~ i j~— Vh A) a+ (Vha) + (Vh A)pl 2g 2 8m'
(5.34)

Note that in 4'. we should now use everywhere the bare
mass m, =E, instead of the dressed mass m =c,, in~ (the
corresponding terms in S, describe only the contribution
from the vortex core). In the low-density limit, the re-
tarded self-interaction between bosons and their self-
generated gauge field then produces the "bosonic mass
renormalization" m. —+m (i.e., the enhancement of the
vortex line energy and line tension due to the currents).
The functional (5.25) can then be obtained from Eq.
(5.34) by first integrating out the fiuctuations of the elec-
tromagnetic field A in the partition function. As a re-
sult, an additional term ai/2(gA, ) will appear in the
efFective action, producing a gauge-invariant mass 1/A,

for the mediating gauge field a [here ai denotes the trans-

I

verse component of a, in Fourier representation,
ai(k)=(kha) hk/k ]. A second functional integration
over the now massive gauge field a produces the original
functional (5.25).

Finally, we go over to a coherent-state formulation of
the boson problem (534) (see, for example, Popov, 1987,
or Negele and Orland, 1988). Instead of an integration
over world lines s„(r) we then have to integrate over the
complex Bose field P in the partition function, with an
action now given by

S[P,a, A]= f drd R [Xz[P,a]+X [a, A]] (5.35)

and the Lagrange densities

Xz[P,a]=P* (A 8,+iao) — (R V' '+ia' ') —p P+ V„(P*P)+ z (V ha)
~ 1 B (2) ~ (2) 2 B

0 2g
(5.36)
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and

X [a, A]= — (7'ha) A+ (V'h A)
2 mug

(5.37)

(S.38)

With the action (5.35) we have arrived at a field-theoretic
representation of the original vortex problem (5.2S). The
action (5.35) takes the nonlocal nature of the interaction
between the vortices fully into account. Its regime of va-
lidity is limited only by the requirement 8 « II, (so that

2

the London approximation is valid), producing relevant
space scales in the boson problem which are larger than
the cutoff length g. The interaction in the 2D "charged"
boson problem, to which the original problem has been
mapped, is mediated by the fictitious gauge field a, whose
component ao produces the static (i.e., equal-time) in-
teraction between the Bose particles (in analogy to the
scalar electromagnetic potential), whereas ai mediates
the dynamic (i.e., nonlocal in r) part of the interaction.
Finally, the coupling of the true electromagnetic field A
to the fictitious field a leads to the screening of the in-
teraction between the bosons on the scale k. Thus we
have generalized the mapping "vortices~20 bosons" to
the regime H, «8 «H, .

1 '2
In the following we concentrate on the second of the

above questions: What is the correspondence between
the physical properties of the diFerent possible ground
states in the Bose system and the corresponding thermo-
dynamic phases in the vortex system?

3. Bose-liquid/vortex-liquid duality

In this subsection we shall show that the superAuid
ground state of the Bose system, and hence the entangled
vortex liquid (EVL), is equivalent to the normal-metal
phase. More specifically, we shaH show that the large-
scale electromagnetic response of the EVL is that of a
normal metal. On the other hand, we shaH demonstrate
that if the Bose system develops a nonsuperfi'uid ground
state, then the corresponding disentangled vortex-liquid
phase (DVL) is a new thermodynamic phase different
both from the normal metal and from the vortex lattice.
The characteristic features of this new phase are the ab-
sence of long-range translational order (no vortex lattice)
combined with superconducting properties along the field

Here V' ' and a' ' denote the planar components of V' and
a=(ao, a' '). The chemical potential p has to be deter-
mined such that the boson density n =8/+, reproduces
the appropriate induction B in a given external field H.
The term V„represents a short-range repulsion on the
scale g between the bosons, allowing for the possibility of
a finite-temperature phase transition into the superAuid
state. The free energy of the system takes the form

V= —T ln jX)[P]2)[P*]2)[a]23[A]e

1
(j,(q)j, (

—q) ),
c T

(5.39)

where the second equality follows from coupling the test
field A' via a term j A'/c to the Hamiltonian of the
electronic system, with c denoting the speed of light.
Note that in a diagrammatic representation of the
current-current correlator no diagrams appear that can
be disconnected by cutting a single photon propagator,
which is due to the fact that A' is only a test field.

Going over to the Bose representation of the problem
and taking the second derivative of the free energy V
with respect to the test field A', we obtain for the
superfluid density

p,"(K,co) = (ho(K, co)ho( —K, oi) ),1 1

A~ 4~g'X'
(S.40)

with h o
=B,a 2

—82a, the two-dimensional "magnetic
field" generated by the gauge field a. We have also,
decomposed the three-component vector q into a fre-
quency co and wave vector K part, q=(K, co). Since we
are interested in the long-wavelength static properties of
the system, we shall concentrate on the limit q~0. Note
that in Eq. (5.40) the external vector potential A' is only
a test field, which is not integrated over. With (5.40) we
have established the correspondence between the
response p", (K, co) of the superconducting system and the
ground-state Auctuations of the two-dimensional "mag-
netic" field ho(K, co) in the Bose system, the latter being
strongly dependent on the nature (superfiuid or normal)
of the ground state.

Consider a first a superAuid ground state for the Bose
liquid with some finite density n, . Integration over the
Bose field P produces an additional polarization term
(I/2) Il~ai,

n,~
rr&=

mo
(5.41)

direction [i.e. , a transverse external field is screened due
to the dissipation-free Aow of longitudinal screening
currents j=(0,0,j, )]. The (potential) ground states of
the Bose system, with their analogs in the vortex picture,
are illustrated in Fig. 23. The question of whether this
new thermodynamic state can exist will be addressed in
Sec. B.4 below.

Following Feigel'man, Geshkenbein, and Vinokur
(1990), we consider the response of the system under a
variation of an external electromagnetic vector potential
A'. In particular, we are interested in the response to
the variation of a longitudinal field A,

' producing a trans-
verse field H'lH and thus a screening current
j' = (0,0,j,'). Note that we expect the same qualitative
response of the vortex system and of the normal-metal
phase for a transverse test field A' ' in the absence of
any pinning potential. The quantity of interest is the
superAuid density p,

"in the vortex system,

p,"(q)—: a27
8 A,'(q)B 3,'( —q)
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(5.42)

The static response of the superconductor then is given

by

p,"(K,O) =yd K

with the diamagnetic susceptibility

(5.43)

+d ~, 16~21,28
(5.44)

Here v, =n, /n denotes the superfluid fraction in the
Bose system, and we have returned to the superconduc-
tor notation in expressing yd. The result (5.43) indicates
that the vortex system does not show a superconducting
response at large scales K —+0; instead, the system
possesses a finite diamagnetic susceptibility gd. This can
be rigorously seen by calculating the correlator
D„(K)= ( A, (K)A, ( —K)) of the electromagnetic vec-
tor potential A: Using the Dyson equation

D,', (K)
D„(K)=

1+D,', (K)II(K)
(5.45)

with D,', (K)=4'/X and II(K)=p,"(K), the polariza-
tion of the combined boson and gauge fields, we obtain
the diamagnetic response

D„(K)= ~2 1+4'„' (5.46)

with the diamagnetic permeability of the medium given
by pd = I/( I+4ngd ). Hence the entangled vortex liquid
qualitatively has the same properties as the normal-metal
phase. In a dilute vortex liquid with n A, «1 the di-
amagnetism is very strong, pd «1, which is a natural
consequence of the system's being nearly free of vortices
with a correspondingly large superconducting screening.
Nevertheless, the strong entanglement of the vortex lines
will eventually make the system appear normal on large
enough length scales. In the opposite case of a dense vor-
tex liquid the diamagnetism is weak, gd «1, which can
be understood as a result of superconducting fluctuations
in the normal-metal phase.

Second, let us study the consequences of a normal
ground state for the Bose system, that is, n, =0. In this
case, integration over the boson field produces a polariza-
tion term (1/2)II~ai, with

11~(K 0,~=0)= 4~ (5.47)

in the e6'ective Lagrangian for the gauge field a. Com-
bining this term with the field energy (V ha) /2g and
using ho(q) =K ha' ', we obtain for the correlator of the

ho field after integration over a

( ho(K, ro)ho(K', co') ) =R 5(K+K')
+2 2

X 5(co+co') K2+~2+g 2n'ym

B
p"(K,o)= ",

4m'
(5.48)

for the superAuid density along z in the original vortex
problem. Here p is the magnetic permeability of the
Bose system,

1
p 1+4' (5.49)

The key result is the finite superAuid density p,", which
allows supercurrents to How along the z axis. In fact, the
electromagnetic response function now reads

D„(K)=
K +A.

(5.50)

that is, the vector potential 3, has become massive with
an effective penetration depth A,,a=A, /p . Hence the
disentangled vortex liquid, which corresponds to the nor-
mal ground state in the Bose system, exhibits fluctuations
of the vector potential A, like those in the Meissner state
with a renormalized penetration depth k,ff.

In summary, we have obtained the following duality
between the physical properties of a vortex liquid and
those of a dual Bose system: The vortices (i.e., the bo-
sons) are topological defects of the superconductor. Off-
diagonal long-range order, i.e., superAuidity, in the Bose
system then introduces disorder in the original vortex
system, which therefore is in an entangled phase. Quan-
titatively, the order in the superAuid is measured by its
superAuid density n, , which polarizes the gauge potential
a, II~ ~ n, =const. In turn, this polarization of the gauge
potential produces a diamagnetic polarization
II=p,"=ad% of the electromagnetic potential A„such
that the final response of the vortex system is diamagnet-
ic, with yd ~ 1/II~; see Eqs. (5.41), (5.43), and (5.46). On
the other hand, a finite diamagnetic susceptibility g of
the Bose liquid (i.e., a normal ground state) produces a
polarization H~ ~y E in the gauge field a, which in turn
leads to a finite superAuid density in the superconductor,
II=p,"~p, with p =(1+4rrg ) '. The electromagnet-
ic vector potential 2, therefore becomes massive,

ff
~p, and transverse magnetic-field Auctuations are

screened (Meissner effect); see Eqs. (5.47), (5.48), and
(5.50).

Let us finally discuss the above rather formal results
for the vortex-boson duality in more phenomenological
terms. We should remind ourselves that the main
difference between the superAuid and the normal ground

in the e6'ective Lagrangian for the a field. Equation
(5.47) for the polarization function II~ is the simplest ex-
pression taking the requirements of a vanishing

superAuid density n, =0 and the analyticity in K into ac-
count. The factor 4~/g has been chosen in order to ob-
tain the definition of the diamagnetic susceptibility g of
the Bose system in its usual form; see below. Integration
over the gauge field provides us with thePnite (in the lim-
it K—&0) result
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V(R,j, ) =2irR E, ——j,@,irR1. (5.51)

and hence the critical radius for the nucleation of such a
loop is R, =cE, /(N, j, ). As a result the electric field due
to thermally activated vortex loops is

(5.52)

with jz —j, (c,,g/T). Therefore p"(j,~0)=0, and the
disentangled phase shows true superconductivity in the
longitudinal direction (i.e., parallel to the field 8) in
agreement with the above conclusion about the existence
of superconducting screening of Auctuations in A, .

Thus we have shown that if a nonsuperftuid ground
state of the Bose system really exists, then the corre-
sponding phase in the vortex system would introduce an
additional true thermodynamic vortex-liquid phase inter-
mediate between the normal-metal and the vortex-lattice

state of the Bose system is the existence (in the
superfluid) of cooperative ring-exchange processes in-
volving an arbitrarily large number of bosons (see Pol-
lock and Ceperley, 1987, and Ceperley and Pollock, 1989,
who discuss the superAuid properties of the Bose system
in terms of particle trajectories). Within the vortex sys-
tern, these cooperative ring-exchange processes corre-
spond to planar closed vortex loops of arbitrary size,
which represent the characteristic feature of the
entangled-vortex-liquid phase; see Fig. 23. On the other
hand, only simple two-particle exchange processes are
present in the normal ground state of the Bose system,
which then maps to the disentangled-vortex-liquid phase
exhibiting only a low density of small loops. Note that
the crucial difference between the entangled and the
disentangled phases is not the presence or absence of vor-
tex loops but the existence of arbitrarily large loops in
the entangled phase (thus the disentangled vortex liquid
is also entangled in some weak sense due to neighboring
vortices' interchanging positions; however, such a
"mechanical" entanglement is also present in the vortex-
lattice phase).

Let us consider the effect of the presence or absence of
arbitrarily large (transverse) vortex loops on the resistivi-
ty p" of the mixed state. The energy dissipated by a
current Aow j, along the field direction z is due to the
creation and subsequent expansion of transverse vortex
loops. In the entangled liquid, such loops of arbitrary
size are already present in thermal equilibrium, hence the
current j, will merely shift the thermodynamic equilibri-
um between loops of positive and negative circulation
and thereby produce a finite electric field E, ~ j,. Thus
the linear resistivity is nonzero, p"(j„—+0)
=dE, /dj, ~~ o%0. On the other hand, within the disen-

z

tangled phase, the formation of large loops with charac-
teristic radii R ))a. costs a free energy V(R) ~ R, which
has to be provided by the current density j,. The free en-

ergy of a vortex-loop excitation in the presence of an
external driving current j, is

( )
Eg(0) 1

( )
c

1
TT

L v'Gi '2 T T,
(5.53)

At low enough fields a disentangled liquid may be real-
ized within an intermediate regime, based on geometrical
reasons. At high fields the entanglement field Bz(T)
crosses the melting line 8 ( T) [at T, /T —1

=(sg(0)/L)(&Gi /cL )] and the vortex liquid is always
entangled. In the limit L~~ the disentangled phase
vanishes altogether from the phase diagram.

Let us investigate in more detail the possibility of the
existence of a nonsuperAuid ground state in the Bose sys-
tem.

4. Possible existence of a nonsuperfluid ground state
in the Bose liquid

A system of interacting bosons at T =0 is known to
be either a crystal or a superAuid, with a well-known ex-
ample found in He, which shows a first-order phase
transition between a crystalline and a superAuid phase as
a function of pressure (which acts to change the strength
of quantum fluctuations). It has been speculated (An-
dreev and Lifshitz, 1969; Kirzhnits and Nepomnyashii,
1970; Liu and Fisher, 1973) that under certain cir-
cumstances there exists a kind of mixed phase, in which
both crystalline and superAuid order are present simul-
taneously. Here we wish to consider another alternative,
which in our opinion, is relevant for a 2D Bose system
with long-range interactions. Following Feigel man,
Geshkenbein, Ioff'e, and Larkin (1993), we shall argue
that in such a system there exists an intermediate regime
of densities, where both the crystalline and the superAuid
order are unstable with respect to quantum fluctuations,
so that a new normal ground state is established for the
Bose liquid. Since the long-range nature of the interac-
tion is at the heart of the argument, we expect the follow-
ing discussion to be relevant for a dense vortex liquid
with n A, &&1. We then can adopt the approximation

while keeping the coupling g constant, i.e., we

phases at high and low temperatures, respectively; see
Fig. 23. The transition from the normal-metal to the
vortex-lattice phase would then proceed via two separate
generic phase transitions, where first longitudinal super-
conductivity and second (transverse) long-range order
would be established.

On the other hand, if such a normal ground state does
not exist in the Bose system, then there is only one phase
transition, where both longitudinal superconductivity
and transverse long-range order appear simultaneously.
In this case a crossover from a disentangled vortex liquid
to an entangled liquid is expected to occur in a sample of
jtnite thickness (see Nelson, 1991). This crossover occurs
when the entanglement length LE ——E E.a. /T (the length
a vortex line diffuses along the z axis before colliding with
its nearest neighbors, s&a, /Lz —T) is of the order of the
sample thickness L; hence we obtain a crossover line to
an entangled-vortex phase of the form
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shall neglect the screening of the gauge field a mediating
the interaction between the bosons. Such an approxima-
tion seems to be reasonable at high densities, n A, »1,
where the basic properties of the ground state can hardly

I

be changed by a modification of the interaction between
the particles on scales much larger than the interparticle
distance. Thus, in the following, we concentrate on the
reduced Lagrangian

2

X~[/, a]=P* (fi d, +iao) — (A' V( '+ia( ') —p (])+V„(P*P)+ (e, +e2)+ ho,
0

(5.54)

with e =Boa —8 ao and ho =B,a2 —82a, . The func-
tional (5.54) reduces to X~ [P,a] as given by Eq. (5.36) in
the limit cz = 1. With cz an additional parameter, we are
free to study a more general situation, where the strength
of the scalar interaction differs from the transverse one.
The case cz+1 is also physically relevant in the discus-
sion of the microscopic origin of high-temperature super-
conductivity based on the gauge-field approach to the
Mott insulator (see Anderson, 1987; Baskaran and An-
derson, 1988; Ioffe, Kalmeyer, and Wiegmann, 1991;
Ioffe and Kalmeyer, 1991).

The system defined by Eq. (5.54) can be characterized
by two dimensionless coupling constants,

2 mpg
w —— e 28am p c~

(5.55)

where the numerical factors have been introduced for
later convenience. In terms of the original parameters

characterizing the vortex liquid, these coupling constants
take the values a, = —,

' and ac =(E,a, /2v r(T) .
In the following we present arguments supporting the

idea that, in the presence of both Coulomb and trans-
verse interactions, an intermediate density range exists
where the Bose system is neither crystalline nor
superAuid, since both these phases are destroyed by
quantum fluctuations. Let us look first at the case of a
pure static scalar Coulomb interaction. Consider the limit
cia ~~ in Eq. (5.55) and assume that a superfiuid ground
state is realized for the Bose liquid at high densities n
(note that in a system with long-range Coulomb interac-
tions a crystalline phase is expected to exist at low densi-
ties, as is well known for the Wigner crystal). The impor-
tant degrees of freedom of the superQuid system are given
by the (quantum) fiuctuations in the phase 8(R,r) and in
the density n(R, &)= n(R, &)—n, where 8 and m are
conjugated variables. The effective action for these Auc-
tuations can be written in the form

g
2 A~'n~

e5'[rr, 8]=Jdr $ z n(K, r)m( K, r)+ — [r(K, r)8( —K, r)+H. c. ]+ E 8(K,&)8( —K,r), (5.56)
K 2 2' p

where I9 denotes the derivative of 0 with respect to time ~ and where a wave-vector representation has been introduced.
The long-wavelength fluctuations in the density m are suppressed due to the long-range Coulomb interaction [producing
the I/K singularity in the first term of Eq. (5.56)] and hence the fiuctuations in the phase 8 are enhanced. Indeed, in-
tegrating out the density fluctuations and determining the correlation function for the phase fluctuations, we obtain

(8(K,co)8(K', co')) = 5(co+co') fi( K+K')[1 /K (n /m, +co /g )] .
1

(5.57)

The Coulomb interaction thus produces a 1/K singulari-
ty in the phase correlator (88), which remains efFective
at finite frequencies co [contrary to the usual situation,
where (88) o-(co +c K ) ']. As a result, the ground-
state correlation function of the superfluid will exhibit a
power-law behavior asymptotically (Ioffe and Larkin,
1990),

(y(0)ye(R) ) ~ ( i[a(0)—8(R)] ) ~ ~ i c (5.58)

Such a result is well known for superQuidity in 2D, where
thermal fluctuations tend to reduce the order at finite
temperatures T —the peculiarity of the Coulomb in-
teraction then is to extend this result even down to zero &max +4 (5.59)

I

temperature, T =0. Thus we can see that superAuid
long-range order is absent in the ground state of a
"charged" Bose liquid. For a small enough exponent,
ac &&1, we still expect the presence of superAuidity in
the system, but, as ac becomes large with decreasing
density n [see Eq. (5.55)], we expect that superfiuidity
will be destroyed, in analogy to the finite-temperature
Berezinsky-Kosterlitz-Thouless transition in an "un-
charged" Bose system. In fact, it is possible to show that
an upper bound for the possible existence of superfluidity
in a "charged" Bose liquid is given by
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mog 2

n~&
2

64~2m'
(5.60)

Hence a phase transition to a normal state is expected (at
least) at sinall densities,

where

D„.=D (K, t)(5„.—K„K./K'),
2

D (K t) — g e l—co(K)(t(

2'(K)

(5.64)

G(K, t)= 1

2e(K)
A~ X2 g2n~+
2m,

+—sgnt e "~'I'~1

2
(5.61)

F(K t) g —i (K)E(t(1 n

2E(K)
(5.62)

g 2
where e (K)=(vari K /2m, ) +g n Im, [note that the
result (5.58) for the equal-time Green's function goes
beyond the mean-field result (5.61)]. The main correction
II~& to the bare transverse polarization function
II]=n /mo is given by

II/= —,f,dt D(K, t)[G(K, t)+Z(K, t)],271 d

m. (2m)

The condition (5.59) can be understood in a simple way:
for large couplings, ec & 2, the Fourier transform
N(K)=G(K, t=0), where G(K, t) denotes the Green's
function of the interacting Bose system, becomes non-
singular as K~O. Such a result seems to be inconsistent
with the existence of a finite superfluid density [note that
N(K) is nothing but the quasiparticle momentum distri-
bution, which has a 5-function singularity at K=O in the
usual Bose condensed state with ofF-diagonal long-range
order].

Next, let us include the eftects of transverse interactions
on the superAuid ground state of a "charged' Bose liquid.
As an immediate consequence of this nonlocal (in time)
interaction, one can no longer argue that at T=O the
superAuid density n, should coincide with the total den-

sity n of the bosons (the relation n, =n is a conse-
quence of Galilei invariance, which is broken explicitly
by the coupling to the gauge field). Let us then estimate
the perturbative correction to the superAuid density n,,
due to the finite transverse interaction (coupling constant
a, ) in the Bose system. We start from the "bare"
system's ground state, which includes the eAects of the
instantaneous Coulomb interaction in the high-density
regime, o.z «1, and determine the Green's functions.
These Green's functions can be constructed in a manner
similar to the usual Bogoliubov solution for a low-density
Bose gas (e.g. , Popov, 1983). The condition ac ((1 en-
sures that the number of particles within the Debye
length is large, and thus a mean-field approximation is
reasonable [note that the high-density regime of a
"charged" Bose system is similar to the low-density re-
gion of a Bose system with short-range interaction; see
Eq. (5.59)]. The result for the normal and the anomalous
Green's functions is conveniently expressed in a (K, t)
representation and reads

is the gauge-field propagator with co (K)=c~K
+g n /m. . Note that within the present perturbative
approach one has to take into account the gap in the
photon spectrum produced by the finite superAuid densi-
ty. The expression for the relative correction II(/II) can
be recast in the form

II( = —2a, uJ(u),
II)

(5.65)

where u =+ac/a, measures the relative strength of the
transverse and the Coulomb interaction, and

J(u)= f +1+x &1+ux ((/1+x +&1+ux )

2
ln —, u «1,

9
1

ln(2u ), 1((u .
2Q

(5.66)

With decreasing density n (increasing scalar coupling
ac), the corrections become large. For a moderately
small parameter a, (note that a, is fixed to the value

a, = —,
' in the vortex liquid), the relative correction (5.65)

to the superAuid density becomes substantial, even for
small parameters, n& «1, where our perturbative ap-
proach is still valid. In order to estimate the density n

or the coupling strength ac ~ 1/n [see Eq. (5.55)] where
Auctuations completely suppress the superAuidity in the
sense II( =II/+II~&=0, we have to solve the implicit
equation 2a, u "J(u ) = 1 for u *. The critical coupling
strength ac is given by ac=(u*a, ), and for the case
e, =

—,
' relevant for the vortex liquid we obtain the result

0.&=0.1. This value of the critical coupling strength is
considerably smaller than the purely Coulombic estimate
(5.59) found above and thus indicates that transverse
gauge-field Auctuations assist the scalar interaction in
suppressing superAuidity in the Bose system. Clearly the
above estimate cannot serve as a proof of the destruction
of superAuidity at ec +0.1, but at least it provides a
strong argument for the loss of superAuidity within the
r g'm ac &1

Let us discuss the deeper physical reason for the de-
struction of superAuidity by the coupling to a gauge field.
We refer to the work of Halperin, Lubensky, and Ma
(1974), who have shown that the phase transition be-
tween a normal metal and a type-I superconductor is
driven first-order by the Auctuations of the electromag-
netic field. The long-wavelength Auctuations in the elec-
tromagnetic field are suppressed in the presence of a
finite superfluid density p, —~%'~ as compared with the
normal state. This suppression leads to the appearance
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and then substitute the melting temperature T [see Eq.
(5.5)j for the temperature T. As a result we obtain a
melting or solidification transition at a critical value
ac =(3cL ) . Rewriting both conditions, ac )ac where

ac & 1 (condition for nonsuperfluid state) and ac &ac
where ac) 1 (condition for liquid state) in terms of the
original parameters of the vortex system, we find that an
intermediate disentangled vortex liquid can exist within
the regime

8 (T)&8 &
1 1

3cL

4

(5.68)

The resulting phase diagram is illustrated in Fig. 24. Re-
cently, Li and Teitel (1993) have found evidence for the
existence of an intermediate disentangled-vortex-liquid
phase in their Monte Carlo simulation of the vortex sys-
tem. Experimental results by Steel, White, and Graybeal
(1993) and by Safar et al. (1994) also point to the ex-
istence of an intermediate vortex-liquid phase within an
artificially grown layered material.

VI. PINNING IN VORTEX LIQUIDS

In this section we discuss the inAuence of disorder on
the properties of the vortex-liquid phase. We shall base
our discussion on the dynamic approach introduced in
Sec. III.D above. Since it is very instructive to under-
stand in greater depth the crucial difference between a
vortex solid and a vortex liquid, we shall discuss both

of two additional terms in the free-energy functional
describing the transition: The first is a cubic term

which drives the transition first order. The
second one is ~ ~%'~ and leads to a reduction of the tran-
sition temperature. It is this latter effect in which we are
interested here. The idea is that, for strong enough cou-
pling of the bosons to the gauge field a, and for not too
high density n, the energy gain due to Bose condensa-
tion can become smaller than the energy loss due to
suppression of the gauge-field Auctuations produced by a
finite n, . Therefore we consider the large perturbative
corrections to the polarization function II~ calculated
above as a signature of a complete suppression of
superAuidity in the density regime characterized by the
condition o,& & ac with cx& ~ 1. For densities n corre-
sponding to ac) az, the Bose liquid is in a "normal"
(i.e., nonsuperfluid) state even at T =0.

On the other hand, upon further decreasing the density
n, we expect a second instability to occur in the
"charged" Bose system, in which the normal liquid trans-
forms into a Wigner crystal. In order to obtain the
relevant value for the parameter ac, we can rewrite this
coupling constant in terms of the original parameters of
the vortex system,

2
c.,a,

(5.67)
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FIG. 24. Equilibrium phase diagram for a vortex system for the
case in which an intermediate disentangled vortex-liquid phase
does exist. In decreasing the temperature, we cross the cross-
over line H, (T) (the entangled vortex liquid has the same sym-'2
metrics as the normal-metal phase) and subsequently the first
phase-transition line 8 (T) to the disentangled vortex liquid,
which exhibits a longitudinal (parallel to the magnetic field) su-
perconducting response. A second phase transition at 8 (T)
transforms the liquid into a solid, where continuous translation
symmetry is now also broken.

A. Role of disorder in the solid and liquid states

In Secs. II.B and IV.C above we have discussed the
inAuence of thermal Auctuations on the pinning proper-
ties of a single vortex line (II.B) and of a vortex lattice
(IV.B). We have demonstrated that, for both cases,
thermal Auctuations lead to a partial smearing of the ran-

these cases and point out where the main differences have
to be located (Sec. VI.A). In particular, we shall show
that the dynamic approach distinguishes between the
solid and the liquid vortex phase via the presence or the
absence of a divergence in the relative velocity correction
factor 6U/U~„o. The presence or absence of such a
divergence gives additional support to the existence or
absence of infinite barriers in the thermodynamic equilib-
rium phases of the solid and the liquid, respectively.
Therefore, when disorder is introduced into the system,
the vortex solid turns into a glass, whereas the liquid
remains a liquid. In Sec. VI.B we concentrate on the
characteristic feature of a pinned liquid, which is the ex-
istence of two Ohmic regimes, one at high current densi-
ties (flux flow) and the other at low current densities,
where the resistivity is exponentially suppressed due to
pinning (thermally assisted flux flow, or TAFF). We
determine the resistivity in the TAFF regime and the
crossover current density where the Ohmic Aux-Aow

behavior at high current densities becomes strongly
modified due to the presence of disorder. Finally, in Sec.
VI.C we consider the inAuence of quenched disorder on
the dilute vortex liquid which is present in the vicinity of
the lower critical field H, .

1
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dom potential and thus to a decrease in the critical
current density. However, the basic feature of the pinned
state, the divergence of the energy barriers U(j) deter-
mining the rate of fIIux creep at small current densities

j—+0, has been found to persist in the presence of
thermal Auctuations, and thus the current-voltage
characteristic (CVC) remains strongly nonlinear for van-
ishing j. Here we present some general arguments show-
ing that this result is a generic feature of a vortex solid
interacting with weak disorder. By contrast, we show
that a very different result is obtained in a vortex-liquid
phase: whereas the presence of a random potential can
lead to a substantial decrease of the linear resistivity
p&;„=dE/dj~ o with respect to its flux-flow value, it will
still remain J7nite, p„„)0, throughout all of the liquid
phase. Note that here we do not consider the inhuence of
disorder on the overall thermodynamic properties of the
vortex system, e.g. , we neglect a possible shift of the
melting line due to the presence of disorder. Such an ap-
proximation is appropriate for the case of weak disorder
if the melting transition is of first order in the pure sys-
tem. Otherwise our approach should not be used close to
the melting line. Theoretical support for the existence of
a first-order melting transition has been found in numeri-
cal simulations by Hetzel, Sudbe(, and Huse (1992), and
experimental evidence has been obtained by Safar, Gam-
mel, Huse, et al. (1992), Charalambous (1992), and
Kwok et al. (1994a). For a more detailed discussion of
the infIuence of strong disorder on the transition into the
superconducting state, see Sec. VII.A.3 below.

Let us point out that the existence of a substantial pin-
ning effect in a vortex-liquid state is not at all obvious.
Indeed, in a dense liquid the interaction between the vor-
tex lines and the random potential is much weaker than
the interaction between the vortex lines themselves, the
latter also being relatively weak compared with the tem-
perature, since the pure system is considered to be a
liquid. Therefore a naive guess would be that a weak
random potential is always irrelevant for a vortex liquid.
On the other hand, for a single vortex line, disorder is al-
ways relevant (cf. Sec. II.B), hence the ineffectiveness of
the random potential in pinning a vortex liquid is a non-
trivial issue.

In order to clarify the situation, let us start with some
qualitative considerations concerning the inhuence of
thermal fluctuations on the pinning of a vortex solid (Vi-
nokur et al. , 1990, 1991). Above the depinning tempera-
ture Td, the mean-squared value of the thermal displace-
ment ( u ),h becomes larger than the core size g, and the
thermal motion of the vortices averages the pinning po-
tential over the area (u ),h. The characteristic averaged
range of the random potential can be approximated by
rz—- (g +(u ),h)', and the critical current decreases
rapidly with increasing temperature. In deriving an ex-
pression for j„the averaging process was initially carried
out over the thermal Auctuations and only afterwards
performed over the random potential; see Secs. II.B and
IV.C. Such an approach can only be used if the charac-

teristic time t,h of the thermal fluctuations is much small-
er than the characteristic time scale for pinning tp . We
determine these time scales below and will show that

pin jo
tt jc

(6.1)

Hence, for the case of weak pinning, j,«j, , we obtain
t

p
))t th and, consequently, the procedure employed in

Secs. II.B and IV.C is justified.
Pinning occurs as a direct result of the inhomogeneous

vortex structure. The point to be noted here is that, al-
though the thermal Auctuations lead to a considerable
smearing of the vortex cores, the vortex lattice preserves
its periodicity, and the interaction of this periodic, i.e.,
inhomogeneous, structure with the disorder potential
provides pinning at all temperatures lower than the melt-
ing temperature T

Let us turn to the vortex-liquid state. In a "conven-
tional" liquid, all the characteristic times are of the same
order as t,h, and thus after averaging over thermal Quc-
tuations during the time t„;„))t,h one obtains a com-
pletely smoothed homogeneous vortex structure, which
cannot be pinned. Such a consideration does not hold for
a very viscous liquid, which is characterized by two time
scales, t,& and tp& ))t,&, where tp& denotes the time scale
of plastic deformations. The crucial point is that, in a
viscous liquid, an inhomogeneous structure is preserved
over time scales t & t„&. If this characteristic smoothing
time of the structure is large compared with the pinning
time t„;„,t j ))tp the thermal averaging over the pin-
ning time is not complete, and the vortex liquid retains
its homogeneous structure, which then can be pinned by
the random potential. As a result, depending on the rela-
tive size of the plastic time tp& and of the pinning time
t;„, the vortex liquid either can be pinned or unpinned;
see Fig. 25.

A possible origin of the exponentially large smoothing
time t„& in the vortex liquid is the presence of the energy
barriers Up& associated with the thermally activated plas-
tic motion of the vortex structure, in which case we ob-
tain t~~-t,hexp(U~~/T). The size of the characteristic
plastic barriers has been estimated by Geshkenbein et al.
(1989) and by Vinokur et al. (1990, 1991). The basic idea
in estimating these barriers is that the relevant excita-
tions all involve deformations of the vortex lines on a
scale a, . The elastic moduli describing such short-
wavelength deformations all are of the same order and
produce the plastic deformation energy

Tc T
Up)

—E,Coao o=

&II (6.2)

Note that the same basic energy scale appears in the
free-energy functional (5.3) relevant in the description of
the vortex-lattice melting transition; see Sec. V.A. In
fact, the melting temperature T as obtained from the
Lindemann criterion can be expressed via the plastic en-

ergy barrier U &,
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T =2CLUpl (6.3)

which demonstrates that the large barriers against (plas-
tic) vortex motion are retained in the liquid phase due to
the smallness of the Lindemann number cL,
U &(T )»T

Typical vortex configurations involving the barrier
(6.2) occur in connection with the dynamic behavior of
the entangled vortex liquid. DifFerent mechanisms have
been proposed to be relevant for the vortex motion in
such a liquid. The relative motion of the vortices can
take place either by reptation (Nelson and Seung, 1989;
Obukhov and Rubinstein, 1990) or via cutting and recon-
nection of the vortex lines. The latter mechanism seems
to be preferable, since the characteristic relaxation time
for reptation grows very rapidly with the dimension I. of
the sample, t„„~I. according to Nelson and Seung
(1989) and even t„~exp[( TL /E, a, ) ] according to
Obukhov and Rubinstein (1990). On the other hand, the
reconnection barriers for fields H »H, are given by Eq.

1

(6.2), since U
&

corresponds to the energy needed to dis-
tort two vortex lines on a scale a, . Hence T„,-t &,

which usually is much smaller than t„. Note that the
energy (6.2) relevant for the vortex cutting process
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FIG. 25. Equilibrium phase diagram for a vortex system in-
cluding the effects of thermal fluctuations and of quenched dis-
order. Disorder is always relevant in the vortex-lattice phase
(finite shear modulus), which is transformed to a vortex-glass
phase with p(j —+0)~0. Disorder is irrelevant in the vortex-
liquid phase above the melting line 8 (T), which remains a
liquid with a linear-response characteristic p(j —+0) &0. Close
to the melting line the liquid is still very viscous, with a plastic
relaxation time tp] exceeding the pinning time tp ', hence the
liquid can be pinned and p(j~0) poexp( —Up]/T) &&pfl,„
(TAFF regime). As the plastic time approaches the pinning
time with increasing temperature, t»(Tk)=tp;„(Tk), the system
crosses over to an unpinned liquid with p(j~0)=p&,„(FFre-
gime). The crossover line Bk appears as a kink in the resistive
transition. Recent experiments (Kwok et a/. , 1994a and 1994b)
suggest that this kink develops into a sharp first-order transition
in very clean samples. Within the dilute vortex-liquid phase at
low fields, the role of thermal fluctuations is suppressed and dis-
order can strongly alter the behavior of the pure system. At
low temperatures, disorder is expected to transform the entan-
gled vortex-liquid phase into a (pinned) disentangled liquid or
even into a glass phase. The entangled liquid survives only
close to the transition temperature T, . Drawing is not to scale.

roughly corresponds to the energy of a vortex segment of
length a, rather than g, the value suggested by Nelson
and Seung (1989) and by Obukhov and Rubinstein (1990),
since, in order for the vortices to reconnect, they have to
bend, and the characteristic length scale along c for bend-
ing is of the order of the lattice constant a, (in the aniso-
tropic case —sa. ). Therefore the core interaction energy
is only a small part (a fraction -g/a, ) of the total ener-

gy (6.2). In fact, as has been pointed out by Brandt and
Sudbgf (1991b; see also Obukhov and Rubinstein, 1991)
and by Sudbgf and Brandt (1991c), the core contribution
can be even smaller if the vortices will cross each other
under a small angle.

The inhomogeneities in the vortex liquid are relevant
as long as t„;„&t

&
holds. With increasing temperature

the size of the characteristic plastic barriers decreases,
and a crossover from a pinned to an unpinned regime
takes place at a temperature Tk, where

(Tk) t 1(Tk) rth(Tk)e (6.4)

(see Fig. 25). This crossover can manifest itself as a
"kink" or "shoulder" in the resistive curve p(T) (Iye
et al. , 1987; MalozemofF'et a/. , 1989; Kwok et ah. , 1990;
Worthington et al. , 1990). Note that, due to the weak-
ness of the pinning, tp » tth and therefore the plastic
barriers present in the system at Tk are still large com-
pared to temperature, U~&( Tk ) && Tk, in agreement with
experimental findings (Liu et al. , 1989; Palstra et al. ,

1989, 1990; Worthington, Holtzberg, and Feild, 1990;
Chien et al. , 1991; Iye, Terashima, and Bando). After
the above heuristic introduction, let us turn to a quanti-
tative analysis —based on the dynamic approach —of the
disorder-induced efFects in the vortex system. We start
with the simplest case of a vortex solid.

1. Vortex solid subject to
disorder —the dynamic approach

In order to calculate the effect of the underlying disor-
der potential on the dynamic properties of the mixed
state, we shall follow the general approach presented in
Sec. III.D above. In this approach we consider a vortex
system driven by a high current density j and calculate
the correction 6U to the fIow velocity v of the vortex sys-
tem due to the presence of a random potential. Within
this perturbative approach, we can express this correc-
tion in terms of the intrinsic properties of the vortex sys-
tem in the absence ofpinning, as expressed by the Green's
function 6 (0, r) and the structure factor S (K, t),

sin(X„Ut)
X 6 (0, t)S(K, t) (6.&)

As the current density j decreases, the relative correction
5U/U to the velocity grows, and eventually becomes of
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$(K, t)=

where the K„are the reciprocal vectors of the vortex lat-
tice and the exponential factor in Eq. (6.6) is the Debye-
Waller factor. The Green's function 6(O, t) can be ob-
tained from its Fourier representation, Eq. (3.21) [below
we neglect a term in 6 (0, t) corresponding to bulk
compression modes, since this term is usually much
smaller than the term involving shear modes],

d k d
G(O, t)= J ~

6 (k, co)e
(2~)' 2~

O~(r) d k —[c66Ic +c4&(k)k, )tip
3

e
(2vr )' (6.7)

The remaining integration over the Brillouin zone is
complicated due to the dispersive nature of the tilt
modulus c44(k), and we shall do it separately for the two
asymptotic time regions where the dispersion can be
neglected and where it is relevant. For large time scales
the spatial dispersion of the tilt modulus can be neglect-
ed, c&4(k) =B /4vr, and with c66 given by Eq. (3.32) we

obtain
3/2

6(0 )
O(t)

4&7rrjka 2

(6.8)

tth « t,
ag

L

where we have defined

8K2a 2

the order of unity for some value of j which we identify
with the critical current density j,. Let us calculate the
relative velocity correction (6.5) for a vortex lattice. Of
course, the results obtained via this method are in agree-
ment with those derived in Sec. IV above based on di-
mensional estimates.

In the vortex-lattice state the structure factor S(K, t)
as defined in Eq. (3.99) is given by a sum of 5 functions
reAecting the presence of crystalline long-range order,

—(1/2~+

ao

6(0 )
O(t)
2ga,

tth
(6.11)

With the expressions for the structure factor (6.6) and for
the Green's function (6.8), (6.10), and (6.11), we can
determine the relative correction to the velocity 5v /v as
given by Eq. (6.5). In the limit of small driving forces,
the velocity v drops to zero, and we can replace the sine
function in (6.5) by its argument. The integral over d K
is replaced by the sum over reciprocal lattice vectors K„,
which is dominated by the wave vectors K„=1/g at low
temperatures [cutoF provided by the single-vortex form
factor p(K)] and by 1/(u ),'z at high temperatures,
T))Td [cf. Eq. (4.86)]. For both cases, the structure
factor does not depend on time t, and the remaining in-
tegral over time reduces to

~ Jdt t6(O, t) .
U O

(6.12)

Using Eq. (6.8) for the long-time asymptotics of the
Careen's function, we find that the right-hand side of Eq.
(6.12) and hence the relative velocity correction 5u/v
diverges in the limit v —+0; see Fig. 26. On the other
hand, for finite values of v, this divergence will be cut off
by the factor sin(K„vt) at t -r /v, with
r =(g~+(u ),„)'r . For small enough velocities u, this
cutoff is realized deep within the nondispersive regime
(large t), and using Eq. (6.8) we obtain

Sv
V

shear mode in (6.7) becomes irrelevant, and the lattice tilt
mode goes over into the single-vortex tilt mode —at very
small times, the lattice structure is irrelevant, and the
response of the system is determined by the individual
vortex lines (see Sec. III.D). The Green's function then
takes the form

' 1/2

th
C 66K BZ

2~ Pn
(6.9)

as the characteristic time for short-scale elastic deforma-
tions. At times t ((t,h(k, /a. ) (but still much longer
than r,h ), the spatial dispersion of the tilt modulus has to
be taken into account, g44 ——8 /4~ E, and the result is

2
v'vr 8(t) tth6 O, t =

4 rla 3 t
(6.10)

tth &(t «
ao

Finally, for very short times, t ( t,h, the K integration in
Eq. (6.7) is not cut oF by the exponential function but by
the finiteness of the Brillouin zone. For this case the

FIG. 26. Relative velocity correction 5v/v vs velocity v, as cal-
culated via the dynamic approach. Whereas for the vortex lat-
tice the response 6u/u diverges with vanishing driving force,
signalling the appearance of infinite barriers in the system, the
relative velocity correction 5v/u remains always finite within
the vortex-liquid phase. The crucial difference between the
solid and the liquid phases leading to this different behavior is
not the presence or absence of translational long-range order
but their different dynamic properties, as manifested in the time
dependence of the structure factor S(K, t).
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5v 1 r
v' '

A,
L

2

(6.13)

For higher velocities the time integral is cut off within
the dispersive regime, so that the Green's function is
given by Eq. (6.10), and we obtain a logarithmic depen-
dence for the relative velocity correction,

2

5v 1~ ln —,
v v

r ao r«u «
tth

(6.14)

For even higher velocities v & r /t, h, the cutoff in the
time integral drops below the thermal time t,h, and the
response is determined by the individual vortex lines,

5v

V

rp &(u,1

3/2 ~ dP'
V tth

3
ln —, Tdp & T, « u

(6.15)

The above results show that, with decreasing velocity v,
the relative correction 5V increases and eventually be-
comes of the order of unity; hence disorder cannot be
treated perturbatively for V~O. It is possible to show
(Larkin and Ovchinnikov, 1973) that higher-order
corrections to the velocity also become of order unity,
within the same velocity range as does the lowest-order
correction. Therefore one can identify the value of the
velocity determined by the condition

v=v

with the critical velocity u„and the corresponding value
of the current density

C'g
(3.88)

with the critical value. The values of j, as obtained via
the present dynamic approach then agree (up to factors
of the order of unity) with those obtained previously
within the static approach (cf. Secs. II.A, II.B, IV.B, and
IV.C). Note that due to the weak pinning condition,

j, «j, , the characteristic pinning time t;„=r /u„
which corresponds to the cutoff time at v =v, and gives
the main contribution to the integral (6.5), turns out to be
much longer than the thermal time t,h,

jp rp

j, a.
1/2

T
tth, Tdp (T,

U„)
(6.17)

thus verifying a posteriori the correctness of taking a
sequential average first over thermal fIuctuations and
second over the disorder potential in our determination
of the dynamical behavior of the vortex lattice. The
same analysis carried out for the single-vortex pinning re-
gime gives tp' /tth 1 Tdp & T. Note that the single-
vortex thermal time t,„=( gI /c.

& )L, differs from the

thermal time in the vortex lattice.
Let us discuss the physical meaning of the critical

current density j, as obtained within the present dynamic
approach. Obviously, j, provides an estimate for the
current density below which the current-voltage charac-
teristic of the superconductor deviates strongly from
Ohmic Aux-Aow behavior. At zero temperatures and
neglecting the possibility of quantum motion, one could
conclude (as was done by Larkin and Ovchinnikov, 1973)
that as j decreases below j, the motion of the vortex lines
is stopped, u=O, and hence the electric field along the
current direction vanishes, E=O. This is obviously not
the case at finite temperatures, T& 0, where the vortices
can jurnp over the energy barriers due to thermal activa-
tion. In Sec. IV above we have shown that the free-
energy barriers U( j) relevant for creep driven by a
current density j grow indefinitely as j decreases, imply-
ing that the pinning equilibrium state with j=0 is
characterized by the presence of arbitrarily high barriers.
The dynamic approach then provides us with an indepen-
dent and more general argument in favor of the existence
of arbitrarily high free-energy barriers in the vortex sys-
tern and thus gives additional support for the existence of
a true vortex-glass phase. Suppose, by contrast, that the
pinning energy barriers are high but finite, such that
there are no barriers higher than some value U „.At
high enough temperatures, T» U,„, these barriers be-
come ineffective and the current-voltage characteristic
turns Ohmic in the limit j—+0. However, this cannot be
the case for a vortex lattice whose current-voltage
characteristic shows strong deviations from linearity at
j j,(T), with j,(T) remaining finite at any value of T
(though decreasing with increasing T). Thus we have to
conclude that to assume the existence of an upper cutoff
U,„ for the barrier energy distribution is wrong, and the
height of the barriers grows indefinitely as the driving
force goes to zero. Note also that, for the solvable model
of an elastic manifold in a periodic potential (Sec. III.E),
the above "dynamic" criterion for the existence of arbi-
trarily high barriers has been shown to be valid. The im-
portant implicit point in the above argument is the ex-
istence of the vortex lattice itself —which is clearly not
fulfilled for arbitrarily high temperatures. Therefore the
above conclusion has to be interpreted in the following
way: a vortex lattice subject to a weak random potential
is pinned due to the presence of arbitrarily high barriers
between metastable states until the lattice itself becomes
unstable with respect to thermal fluctuations and melts.

Let us generalize the above arguments. First of all,
they apply equally well for the case of a single-vortex
line. At high temperatures, T))Td [see Eq. (2.130)] the
relative correction to the velocity behaves as
6v/U ~ T ln(1/U) (Feigel'man and Vinokur, 1990), and
the result (2.132) forj,( T) as well as the conclusion about
the existence of arbitrarily high-energy barriers follows.
Note that the latter result is quite nontrivial, as it holds
for d 3 dimensions only; in higher dimensions, d & 3,
the relative correction 5v /u remains finite at u —+0, and
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we conclude that the barriers should be finite for this
case. Returning to the discussion of the vortex solid, the
important point to note here is that the existence of crys-
talline long-range order has in no way been crucial to our
arguments. Indeed, if we consider instead a kind of vor-
tex glass characterized by a structure factor S(K, t), with
the Bragg-peaks replaced by a smooth maximum at
K=K0=2n. /ao, the above analysis would go through
without any changes apart from a numerical constant of
the order of unity in our estimate for the velocity ratio
6U/U. The only important point in our derivation is that
we are dealing with a vortex solid that possesses a finite
t~ ~ limit for the structure factor S(K, t) The. refore
the possible existence of some low density of disorder-
induced dislocations in the vortex solid would not affect
our conclusion about the existence of infinitely high pin-
ning barriers, since the dislocations themselves would be
pinned by the random potential. On the other hand, the

properties of the vortex-liquid phase are quite different,
as we shall now show.

2. Vortex liquid subject to quenched disorder

Consider a vortex liquid at a temperature close to the
melting line T (B). For the very viscous liquid con-
sidered above, the liquid nature reveals itself only on
rather long time scales, t i))t,h, whereas on intermedi-
ate time scales between t,h and t i the vortex system
looks more like a solid. In particular, the large viscosity
implies that the structure factor S(K, t) is almost time in-
dependent for t &(t i and possesses a smooth maximum
at K=K0=2~/a, , whereas for long times, t +t i, the
amplitude of that maximum vanishes rapidly,
S(Ko, t » t~, )—+0. Let us use these assumptions and es-
timate the relative correction 5U /v to the velocity in the
limit U ~0. From Eq. (6.5) we obtain

d K
,—f,K'K,'ipxi'f dt tG(O, t)S(K, t) .

qa.' (2~)'
(6.18)

For a simple order-of-magnitude estimate of the integrals in Eq. (6.18) we can assume that the main contribution comes
from the region K -Ko (we shall verify this assumption later on) and t —t ~. Then we can approximate (6.18) by

,f,K'K,'ip ~'S(K, O)t, , f '
dt G(o, t)

VUk KO (u (tpl))th
2 4~ T v& ' (6.19)

where the last line was obtained by making use of the
fluctuation-dissipation theorem in the form [see Eq.
(4.80)]

(u2(t)),h=2T f dt'G(O, t') .
0

Finally, assuming that (u (t~, ) ),h-a. , we obtain

~6
6U TU~ 0

(6.20)
U U 0 'QT 4&

The most important feature of the result (6.20) is that the
relative correction to the velocity is finite in the limit
U —+0 and proportional to t i

—the time necessary to
discriminate between the viscous liquid and the solid
phase; see Fig. 26. For weak disorder and a not too large
plastic time t &, the correction (6.20) is small, and disor-
der has no significant effect on the vortex liquid. For this
case the current-voltage characteristic essentially follows
its Aux-Aow behavior down to vanishing current densities
j~0; see Fig. 26. In the opposite case of a very long
plastic relaxation time t i and/or su%ciently strong pin-
ning strength y~, the correction (6.20) is much larger
than unity (see Fig. 26). The low current-density part of
the current-voltage characteristic is then strongly
affected by the presence of disorder, and the linear resis-

tivity p&;„ is strongly suppressed as compared with the
Aux-Aow value pz, ——p„H/H, . However, contrary to

the case of a vortex solid, we do not expect the existence
of arbitrarily high pinning barriers in the liquid phase,
which would lead. to a vanishing linear resistivity in the
limit j~0, the reason simply being the finiteness of the
correction (6.20) (an analogous situation was discussed in
Sec. III.E in connection with the pinning of a one-
dimensional string in a periodic potential at finite tem-
peratures). Below we shall argue that p&;„ follows the
behavior of the thermal activation rate 1/t, for plastic
deformations, with a characteristic energy barrier that
depends only weakly on the disorder strength.

Before proceeding further, let us verify that the region
of small wave vectors K is indeed irrelevant in the evalu-
ation of the integral (6.18). For K «Ko we can use a hy-

drodynamic approximation for the structure factor
S(K, t). The hydrodynamic theory of the vortex liquid
has been developed by Nelson and Le Doussal (1990),
Marchetti and Nelson (1990b, 1991), and Marchetti
(1991). They have shown that the static structure factor
S(k, O) at small k can be expressed via the correlation
function (5n (k)5n ( —k) ) for the density fluctuation
5n (k)=n K u(k), where n. =B/4&, denotes the aver-
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age vortex density in the system. The liquid state differs
from the solid in its response under shear involving trans-
verse displacements with K.u(k)=0. The structure fac-
tor, however, is determined by longitudinal modes in-
volving compression, which do not differ essentially for
the. solid and liquid phases. Therefore we can relate the
static structure factor to the correlator of the longitudi-
nal component of the displacement field in the solid and
obtain [see Eq. (3.21)]

T~2n 2

S(k, O) =
c„(k)K +c4~(k)k,

(6.21)

y(k ) =—[c„(k)K +c44(k)k, ] .1

7l
(6.22)

Combining Eq. (6.21) with (6.22), we obtain the dynamic
structure factor S(k, t)=S(k, O)exp[ —y(k)t]. Note that
the structure factor S(K, t) appearing in Eq. (6.5) corre-
lates equal z values, and hence it involves an additional
integration over k„

S(K,t)= f dk, S(k,O)e (6.23)

Using the result (6.23) and neglecting the time depen-
dence of the Green's function G(O, t), we can obtain an
upper estimate for the hydrodynamic contribution to the
integral (6.18),

V hydr

cc Tf d K dk, K [c„(k)K +c4~(k)k, ]

(6.24)

The integral in (6.24) is rapidly converging at small k,
and the contribution of that region is indeed small.

The time dependence of the structure factor in the hydro-
dynamic region can be inferred from the relaxation rate
y(k) of the long-wavelength density fluctuations (Mar-
chetti and Nelson, 1991)

small-bundle Green's function, and we enter the small-
bundle pinning regime. Similarly, as t;„ increases
beyond (A, /ao ) t,h, large bundles are collectively pinned.

First, we have to find the relevant K vector entering
the expression for the pinning time t„;„. The K integra-
tion in Eq. (6.5) involves the form factor p (K), which can
be easily calculated for the case of 5T, pinning. Using
Eq. (2.34) and Clem's (1975) variational wave function to
model the vortex core, we obtain

p (K) =4~$~KO(v'2/K) . (6.25)

where we have split the integral into a contribution con-
taining the single-vortex Green's function and a second
term involving the small-bundle propagator. As we enter
the small-bundle pinning regime, the second term be-
comes dominant, and we obtain the criterion

ln
1

+max c th 3&~
' (6.26)

Here we have made use of the fact that the relevant ve-
locity where pinning starts to become important is the
critical velocity u, . Using u, =j,8/gc as well as Eq. (6.9)
for the thermal Auctuation time, we obtain the following
final form for the crossover criterion:

The K integration involves the function f (K)
=K [Ko(v 2/K)], which has a maximum at
K,„=V 2/g. The relevant K vector in the cutoff factor
sin(K„vt) is then chosen to be K =K,„. In a second
step we have to find a precise criterion for the crossover
between the single-vortex and the small-bundle pinning
regime. We therefore consider the time integral in Eq.
(6.5) which involves the expression

f dt sin(K, „ut)G(O, t)

3. Numerical factors

a,
c66KBz 2+2&c+sb

(6.27)

In this short section we brieAy sketch the derivation of
the prefactors p,b [see Eqs. (2.79) and (2.155)],p» [see Eq.
(4.51)], and ad~ [see Eq. (4.109)] used in Secs. II and IV
above. The following analysis is based on the dynamic
approach. Concentrating first on p,b and p», the basic
idea is to compare the time scale for pinning, t;„=g/v„
with the crossover times t,h and (A, /a, ) t,h, where the
Green's function changes from the single-vortex propaga-
tor (6.11) at small times, t ( t,h, to the small-bundle prop-
agator (6.10) at intermediate times, t,h (t &(A, /a. ) t,„,
and Anally to the large-bundle propagator (6.8) for large
times, t,„(A,/a. ) &t. Single-vortex pinning is realized if
the time cutoff t~;„pr viode bdy the factor sin(K, ut) in
Eq. (6.5) is smaller than t,„, so that the time integration
involves only the single-vortex Green's function. If t~;„
becomes larger than t,h the integration involves the

JcB,b=5 H,
J 2

(6.28)

and hence p,b=5. A similar analysis can be carried out
in order to find the crossover field B&b to the large-bundle
pinning regime. The criterion now reads

2
1 a

max c th 2 g 1 (g/ )
(6.29)

Using the result for the critical current density as ob-
tained from the dynamic approach (Feigel'man and Vi-
nokur, 1990), we can estimate the factor p»=2.

Finally, the a&~ determining the value of the single-
vortex depinning temperature Td„[see Eq. (4.109)] can be

from which we can extract the limiting field 8,b for
single-vortex pinning,
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extracted from the result of the dynamic approach as ob-
tained by Feigel'man and Vinokur (1990). Relating the
disorder parameter y (note that yFv corresponds to
yg =y„v in the present notation) to the single-vortex
critical current density j„we obtain Td

=0.7(j, /j. Gi)'~ T, if we use a critical current-density
ratio of the order of j, /j. =10 and hence ad =0.7.

B. Resistivity and critical current densities

Equation (6.20) is the result of a perturbative analysis
and is correct in the limit 5v «v, which holds at high
enough temperatures where t

&
is not very large. Within

this region the disorder leads only to small corrections to
the resistivity and hence p=p„, =p„H/H, ; see Figs. 5

and 27. From the smallness of the relative velocity
correction 5v /v at high temperatures, we have drawn the
conclusion that the barriers suppressing vortex motion in
the low-temperature pinned liquid (where the corrections
5v/v become large and our perturbative approach cannot
be used any longer) remain finite at all current densities,
and hence vortex motion is characterized by thermally
assisted flux flow (TAFF; Kes et al. , 1989; see Figs. 5

and 27). The characteristic time which controls the vor-
tex motion in the liquid phase is the plastic relaxation
time t~i -—t,hexp(U i/T), and thus it seems natural to

identify the activation barriers relevant for TAFF with
U &. The resistivity within the TAFF regime can be writ-
ten in the form

—U )/Tp~p e» (6.30)

The preexponential factor po in Eq. (6.30) can be estimat-
ed by making use of the result (6.20) and noting that the
crossover from Aux Aow to TAFF behavior takes place
when the correction (6.20) becomes of order unity. As-
suming that the behavior of p follows the behavior of
1/t &, a simple interpolation gives

p =paow

7'Uk' &o
P

pa, ow

U /T'1+He' " (6.31)

j,(0)= i/2''Gi j.(0)Gi

3/2 8
M, (T)

(6.32)

The preexponential p, to the resistivity in the TAFF re-
gime then is given by

with the coefFicient 3 [note that ) U =y/2~ for the case
of oT, pinning; see Eq. (2.38)],

4 2

)6
PUB

@,T ao

pro~ 1

vr'i/2Gi

j.(0)Gi

j,(0)
(6.33)

log E

The exact determination of the resistivity in the TAFF
regime would involve a summation over higher-order
terms in the perturbation series, since the correction
6v/v becomes large. The summation of this series is a
dificult problem and has not yet been done. On the oth-
er hand, the following simple analysis gives additional
support for the correctness of the interpolation formula
(6.31). The equation of motion for a pinned vortex liquid
can be written in the simple form (we neglect a possible
finite Hall angle here)

qv= fI +f;„. (6.34)

log j

FIG. 27. Current-voltage characteristic in a lin-lin and in a
log-log plot for the three difFerent dynamic regimes of Aux Aow

(FF), thermally assisted Aux How (TAFF), and glassy response.
The di6'erent response is due to the di6'erent types of barriers
appearing in the vortex system, with small ( U» —T) and large
but finite (T« U» & ~ ) plastic barriers in the FF and in the
TAFF regimes and diverging elastic barriers [ U (j~0)~ ~ ] in
the glass phase.

paow

1 +5v /v
(6.35)

Symmetry arguments require the pinning force to be
directed along v, and hence we can write
f;„=—i);„(v)v. The coefficient i)„;„(v)can be expressed
through the relative velocity correction 5v /v,
i);„=i)(5v/v) and should be determined via summation
of the perturbation series. The pinning force f„;„ in
(6.34) renormalizes the friction coefficient to become
il(v) =q+g;„(v) Making use. of the relation E =(v/c)B
between the electric field E and the velocity v, we im-
mediately obtain for the resistivity
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which is our interpolation formula (6.31). Instead of hav-
ing to deal with a series expansion of the pinning force in
Eq. (6.34), we have now arrived at an expression in which
the relative velocity correction 5U /U appears in the
denominator, and hence the result (6.35) makes sense
even in the regime where 5U/U) 1. Finally, as an ap-
proximation to the true value of the relative velocity
correction 5v /U, we use the lowest-order result (6.20).

Equation (6.31) shows that a regime of thermally as-
sisted Aux-Aow behavior at weak current densities j actu-
ally can exist if the condition

»1
~th

(6.36)

is fulfilled. Below we show that this condition coincides
with the criterion t 1))t;„,which we discussed in our
qualitative analysis of the pinning problem at the begin-
ning of Sec. VI.A. If this condition holds, the current-
voltage characteristic of the pinned liquid will exhibit
two ohmic regimes at low and at high current densities,
with the resistivities p(j~0)=p exp( —

U~& /T) ~ 1/t~~
and p(j &j„)=p„, ; see Figs. 5 and 27. The value of the
crossover current density j„can be estimated in the
same manner as the critical current density for a pinned
vortex lattice. From the above arguments we know that
the correction 5U/U, 0 is large in the TAFF regime.
Therefore, if we are to obtain a correction of the order of

I

unity, the sine factor present in our basic equation (6.5)
has to cut ofF the time integral at times t —1/KOU « tp],
and we can neglect the time dependence of the structure
factor S(K, t),

EK„p K S Kt=0
qa.' (2~)'

X —1m6 (0, co =UK ),1

U
(6.37)

c6,(~)= 1+l /coI;p1
(6.38)

For high frequencies, cot
&
&)1, Eq. (6.38) reduces to the

ordinary shear modulus c«of the vortex lattice, whereas
(6.38) describes a liquid with a shear viscosity v= t &c66 in
the opposite limit of low frequencies. The Green's func-
tion for this viscoelastic medium is given by

with G(O, co) the Fourier transform of the response func-
tion G(O, t). In order to estimate the integral (6.37), we
need an explicit form for the Green's function G (co) of a
viscous liquid. Here we make use of the Maxwell model
(Landau-Lifshitz, 1959a), i.e., we assume that the transi-
tion from an elastic to a viscous behavior can be de-
scribed by replacing the shear modulus of the medium by
an interpolating expression of the type

1

c44(K, )t„h

EQ)

c44(0)
I

4~c«

d IC dk 1G(co)= 2' 2~ l 67'l7+c«co K +c44 k k
1/2 1/2 '

. 1+
coI'

1/2

(6.39)

Within the frequency range t, «co« t,z of interest here, the imaginary part ImG of the Green s function (6.39)
shows two main competing contributions,

r 1/2 .
2COt th+
c44(0)

ImG (co)= 1

8&C«
1

COt ) QC44(ICo )
(6.40)

where the second term ~~' describes the lattice properties of the medium at high frequencies, while the first term
~co reflects the breakdown of the crystalline order over large time scales (note that for large times, t ) t &, thermal
Iluctuations produce a diffusive motion of the liquid, (u (t)),„=(u ),h(t/t„&)'~ ). The crossover from elastic to liquid
behavior takes place at frequencies co =t, '(A/a, ) (t~&/t, h)' . Evaluating Eq. (6.37) within the liquid regime
(co & co ), we obtain

8vrc66ao rtt&hc44(&a )

1/2

2
2E2S K t 0t, u (2~)

T 1 1
2 2'

a,
«U « a,

t 1 a,

. 2/3
~p1 (6.41)

The high current-density part of the current-voltage
characteristic of the weakly pinned fIux liquid then takes
the form

with the characteristic crossover current density j„
marking the onset of nonlinear behavior given by

~ 2
jarE =pillow j 1 j (6.42)

j,(0)
jcr =J~ +Gi j.(0)Gi

' 3/4
T ~h

Tm ~pl

1/2

(6.43)
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Note that j„grows with decreasing plastic time t i
—a

smaller plastic relaxation time allows the vortices to
adapt themselves more easily to the pinning potential,
and hence pinning is improved.

From the above derivation it becomes clear that the
crossover current density j„describes the deviation of
the linear current-voltage characteristic in the TAFF re-
gime when coming from above, i.e., from high current
densities. Qn the other hand, within the TAFF regime a
second Ohmic regime with an exponentially suppressed
resistivity exists at low current densities. The determina-
tion of the crossover current density jT &j„,where the
linear current-voltage characteristic turns nonlinear from
below (see Fig. 27), is a dificult task, as it requires a de-
tailed analysis of the Aux-How mechanism within the
TAFF regime, and we shall not go into this any further
here.

In summary, then, it seems that the concept of collec-
tive pinning of a very viscous liquid by weak disorder is
able to explain the temperature dependence of the linear
resistivity p(T) in the presence of a strong magnetic field,
as found in the new high-temperature superconductors.
The main experimentally observed features of this
broadened resistive transition involve a sharp crossover
from a Aux-Bow regime to a thermally assisted Aux-fl. ow
regime at a temperature Tk )T (see Fig. 25), where the
latter regime is characterized by an activated behavior
for the resistivity, p( T)=p. exp( —U, /T), T (T (Tk.
The crossover temperature Tk is determined by the equa-
tion

the superconductor in the presence of twin boundaries is
reduced to the hydrodynamic How problem of a viscous
liquid enclosed between parallel plates (of mean distance
d), providing the boundary conditions for the How (for
strong pinning a boundary condition v=0 is chosen).
For a high enough viscosity v, v»d g, the vortices
move with a velocity U ~1/v=1/t~, c66, and hence a
resistivity proportional to the inverse plastic time t i is
obtained. In this model the large value of the pre-
exponential factor to the activated resistivity is related to
the large separation between the twin boundaries.

Very recently, the sample quality has been strongly im-
proved (e.g. , twin free YBCO single crystals), and very
sharp (and hysteretic) first-order-type transitions from a
resistive vortex-liquid state to a pinned vortex solid
characterized by a nonlinear response have been observed
(Charalambous, 1992; Safar, Gammel, Huse, et al. , 1992,
1993; Charalambous et al. , 1993; Kwok et al. , 1994a,
1994b). From these observations it appears that the
"kink" at Tk develops into the transition temperature for
the first-order melting transition of the vortex lattice.
Artificially increasing the disorder via electron irradia-
tion, producing point defects, smears this transition and
leads to the appearance of "kink" or "shoulder" in the
resistive transition. Subsequent annealing restores the
sharp transition. Hence the appearance of the pinned
liquid phase can be directly inAuenced by the amount of
disorder in the sample.

C. Diluted vortex liquids subject to disorder

=A exp
tth

with the coe%cient A given by Eq. (6.32). The condition
(6.44) coincides with the condition t~;„(Tk ) = t~, ( Ti, ) ob-
tained above [see Eq. (6.4)] on the basis of qualitative ar-
guments if we determine the pinning time t;„via the re-
lation t„;„=a,/v„with v, the critical velocity obtained
from setting the relative velocity correction (6.41) equal
to unity. The sharpness of the crossover at Tl, is predict-
ed by the inequality A ((1, which is attributed to the
weakness of the pinning. Note that Eq. (6.44) predicts a
weak (logarithmic) increase of Tk with increasing
strength of the disorder. The preexponential factor
p, =pz, /A »pz, to the resistivity in the TAFF regime
is large, which again is a consequence of the weak pin-
ning condition. Such a large preexponential factor has
indeed been observed experimentally (Palstra et al. ,
1988a, 1989, 1990; Liu et al. , 1989; MalozemoF et al. ,
1989).

An interesting alternative model describing the resis-
tive transition in the oxides and addressing the origin of
the "kink" in the resistivity curve p(T) at Tk has been
proposed by Marchetti and Nelson (1990b). Again, the
vortex Quid is modeled as a very viscous liquid, which
then is strongly pinned by the presence of twin boun-
daries in YBCQ. The problem of the vortex motion in

In this section we discuss the inAuence of quenched
disorder on a dilute (that is, a, )&A, ) vortex-liquid phase.
In a pure system, such a liquid phase has been shown to
exist below the low-field branch of the melting line; see
Sec. V.A.2 above and Figs. 2, 3, and 24. Most probably
this liquid is in an entangled phase, as first proposed by
Nelson (1988) and discussed in more detail by Nelson and
Seung (1989) and Nelson and Le Doussal (1990). The
large-scale thermodynamic properties of the entangled
vortex-liquid state coincide with those of the normal met-
al (see the discussion in Sec. V.B.3). However, the pres-
ence of even weak disorder can considerably modify the
properties of this phase or even lead to a qualitative
change of the 8-T phase diagram in its low-field regime.
The important point to note is that the e6'ective strength
of thermal Auctuations is considerably reduced in the
low-field branch of the melting line, as the relevant pa-
rameter describing the strength of thermal Auctuations is
Gi/~ ln~ rather than the usual value Gi, which is ap-
propriate for the upper part of the melting line. There-
fore condition (4.114) guarantees neither the stability of
the low-density part of the melting line nor that of the re-
sulting dilute liquid phase under the inhuence of disor-
der.

In order to investigate the significance of disorder for
an entangled vortex liquid, we start from a comparison of
the two relevant length scales, LE(T) and L, (T), corre-
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sponding to the length over which the vortices entangle
in a pure phase and to the single-vortex collective pin-
ning length (we consider either an isotropic or an aniso-
tropic situation with B~~c axis here). In order to obtain
the entanglement length LE(T), we can remind ourselves
that the entangled vortex liquid corresponds to the
superfluid ground state of a system of 2D bosons with a

B Btransition temperature given by T, =2rrn fi /m, with
A' =T, m =e coins. , and n =8/@.=a, . Since the
length along z in the vortex system maps to the tempera-
ture in the Bose formulation, L =A /T, the critical
temperature T, for the superfluidity of the bosons maps
to the entanglement length in the original vortex picture,
and hence

(6.45)

Thus the large-scale properties of the pure entangled-
vortex-liquid phase develop on scales L )L,E(T) (along
the c axis) and R )a, (within the superconducting
planes). On the other hand, the interaction of a single
vortex line with the disorder potential becomes strong on
a scale L, ( T), which is given by [see Eq. (2.127)j

L, ( T)=L,(0) exp c a+dp T
T T s (6.46)

The relative importance of the random potential for the
entangled-vortex-liquid phase can be inferred from a
comparison between the two lengths L, and LE. When
LE «L„ the macroscopic properties of the entangled
liquid are developed before the random potential becomes
relevant for a single-vortex line. Since the entangled vor-
tex liquid is simply a normal-metal phase on scales
L ))LE, the random potential never becomes relevant
for the weak-pinning case in which LE «L, . These
qualitati. ve arguments are supported by renormalization-
group calculations (Nelson and Le Doussal, 1990) show-
ing that the effective coupling to the random potential is
always weak as long as LE «I, On the other hand, for
strong disorder in the sense that LE))L„ the effect of
disorder becomes strong before the collective properties
of the multivortex system can develop, i.e., the dominant
effect to be considered first is the pinning of the individu-
al vortex lines by the disorder potential. An interesting
reformulation of the above arguments is obtained within
the Bose picture: The isotropic random potential maps
to a white-noise disorder potential fluctuating in both
space and in time. These fluctuations tend to destroy the
phase coherence of the boson wave function, with the
length L, now playing the role of a dephasing time. If
this "phase-breaking" time is larger than the time
LE =A /T, needed to establish superfluidity, phase-
breaking effects are irrelevant, and superfluidity survives.
On the other hand, if LE «L„ the phase coherence be-
tween the bosons is strongly suppressed, and the ex-
istence of superfluidity is rather improbable.

At present it is unclear what type of thermodynamic
state is formed when disorder is relevant (L, «Lz). In
the most natural scenario, the Bose system adopts a
nonsuperfluid ground state, which then would map to a
disentangled vortex-liquid phase in the original vortex
picture. However, the formation of a vortex-glass phase
is also a viable alternative, and even the survival of some
(strongly suppressed) superfluidity cannot be ruled out,
though it seems quite improbable. A few words of addi-
tional explanation are in order here. At first glance the
isotropic random potential enhances the transverse
wandering of the vortex lines and thus seems to assist the
thermal fluctuations in their tendency to entangle the
vortex lines. However, we should distinguish between
entanglement as a synonym for superfluidity in the
equivalent Bose system and the simple "mechanical" en-
tanglement of the vortex lines, which does not establish a
new thermodynamic phase (see the discussion at the end
of Sec. V.B.3). The diFerence between these two types of
entanglement is that, in the first case, many topologically
diFerent configurations (connected via vortex line cutting
and reconnection processes) contribute substantially to
the partition function, whereas in the second case such
cutting and reconnection processes are ineffective and the
system is trapped within a small subspace of all the possi-
ble configurations. Such a configuration can turn out to
be quite heavily entangled in the mechanical sense, but
this entanglement has nothing in common with the
superfluidity of the equivalent Bose system. Correspond-
ingly, such a mechanically entangled phase does not im-
ply the presence of a normal-metal phase.

The above discussion serves as a motivation to use the
condition LE ——L, to define a characteristic line in the B-
B phase diagram marking the transition between a low-
density entangled-vortex-liquid phase and some other
phase, probably a disentangled liquid or a vortex glass.
In the following we discuss the shape of this transition
line as it arises from a comparison of LE and L, as given
by Eqs. (6.45) and (6.46). To begin with, suppose that the
temperature T is below the single-vortex depinning tem-
perature Td, as given by Eq. (2.130). Expressing L,
through the critical current density j„(2.5la), we obtain
the ratio

L

L, v'2 2+i (0)

j,(0)
X

Gi j, (0)
( 1 t)4/3

(6.47)

Let us remind ourselves that here we discuss the low-
density vortex liquid with the field B lying below the
melting line, as given by Eq. (5.19); see Figs. 2, 3, and 24.
Using typical parameter values for YBCO, we find that
the ratio LE/L, as given by Eq. (6.47) is always much
larger than unity. In other words, we find that the
entangled-vortex-liquid phase is unstable everywhere
below the single-vortex depinning temperature Tdp, and
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pinning is dominant. When the temperature is increased
beyond Td, the thermal fluctuations smooth out the pin-
ning potential considerably, and L, ( T) increases ex-
ponentially. Substituting the full temperature depen-
dence of L, (T), as given by Eq. (2.127), into our equation
for the transition line, we obtain the implicit equation

3 j,(0)
=ln~ +—ln

2 j.(0)GiS
tdp

Hc (T) (1 )]/3
+ln +ln8 tdp

Note that here we adopt the simplified model introduced
in Sec. V.B above, which describes the interaction be-
tween the vortex lines in the dilute liquid via a hard-core
repulsive potential on the scale k. Hence we always
remain in the single-vortex pinning regime within the
present model. For a rough estimate of the form of the
phase diagram, we can assume a typical thermal versus
quenched disorder ratio j,(0)/j. (0)Gi —1. The lowest
temperature (highest field 8 -H, ) where Eq. (6.48) can

j.

be fulfilled is then given by the condition
t —(tdz) [in/c +ln(1 —t)' ], from which we obtain a
transition temperature T very close to T, . Above T
the transition line drops very fast towards small values
for the magnetic field as the temperature increases to-
wards T, . The corresponding shape of the phase dia-
gram is sketched in Fig. 25.

Vll. VORTEX GLASS

A. Zoology of glasses

1&=——QJS S
2 lJ l J

l, J
(7.1)

Probably the most straightforward association with the
notion "glass" is the ordinary windom glass encountered
in everyday life. Due to its characteristic property of un-
dergoing a transition or crossover from a high-
temperature liquid to a low-temperature "solid" phase
without an apparent breaking of any symmetry, (window)
glass has lent its name to a whole class of materials ex-
hibiting an equivalent behavior. Over the past two de-
cades, much effort, both experimental and theoretical,
has been devoted to investigating and understanding the
physics of glassy systems, the nature of the transition,
and the properties of the glass state itself. Interestingly,
the most carefully studied system is not the ancestor of
all glassy materials, window glass, but rather a system
known as spin glass. This is due mainly to the lack of a
simple model able to capture the essential physics of win-
dow glass. On the other hand, spin glasses, such as those
obtained by a dilute solution of magnetic transition-metal
impurities in noble-metal hosts (e.g. , Mn in Cu, Ag, or
Au), can be described by a simple model Hamiltonian
(Edwards and Anderson, 1975),

of the Heisenberg form. Here the spins S; are con-
strained to lie on a regular translationally invariant lat-
tice, and the crucial element of randomness responsible
for the glassy behavior is introduced via the random cou-
plings J;, which are characterized by a distribution func-
tion P(J;j ), for example, of Gaussian shape,

—J /2A
p( J )

— ij ij (7.2)

with the variance 5; depending on distance in general.
In nature, such random couplings between spins can be
realized by positional disorder in the magnetic impurities
combined with the RKKY exchange interaction between
the spins mediated via the conduction electrons of the
host material. An even simpler variant of this model sys-
tem is the Ising model with spin variables restricted to
S, H I

—1,1I. Other systems closely related to the spin
glasses are the so-called dipolar glasses, such as mixtures
of RbH2PO4 and NH4H2PO4, or quadrupolar glasses,
e.g., (KCN )„(KBr),

An alternative system exhibiting glassy behavior is po-
lymer glass. In this system the constitutive objects are
lines as opposed to the pointlike objects relevant in a spin
glass. Quite naturally, then, the idea arises that a system
of vortices subject to quenched disorder can exhibit
glassy behavior, too. In fact, glassy features exhibited by
various experiments on high-temperature superconduc-
tors, as well as fundamental considerations regarding loss
of long-range order in a vortex "lattice" subject to
quenched disorder, have led to the suggestion that the
vortices in a superconductor find themselves in a glass
state at low temperatures (Fisher, 1989), thus adding the
Uortex glass to the list of systems exhibiting glassy char-
acter.

What is the characteristic property of a vortex glass?
Let us define here the thermodynamic equilibrium state
of the superconductor via its (dynamic) response proper-
ties. Extrapolating the Kim-Anderson result for
thermally activated creep down to vanishing driving
forces with j—+0, we are confronted with the fact that
transport in type-II superconductors is always associated
with dissipation. Hence "true" superconductivity in the
sense of dissipation-free transport of charge is never real-
ized. A "true" superconductor, on the other hand, is re-
quired to approach zero resistivity at vanishing driving
force; see Figs. 5 and 27 (since we are discussing the ex-
istence of a thermodynamic equilibrium phase, we are in-
terested in a system response under the application of a
vanishing force that does not drive the system out of its
equilibrium state). Within this context the "true" super-
conductor is realized by the vortex-glass state, as pro-
posed by Fisher (1989).

An alternative approach to glassiness in a supercon-
ductor starts from the notion of the phase y, of the order
parameter. Consider a granular superconductor in the
presence of a magnetic field H (Shih, Ebner, and Stroud,
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1984). For small enough grains, the modulus of the or-
der parameter can be taken to be a constant, leaving only
the phases y; of the individual grains as dynamical de-
grees of freedom. A model Hamiltonian describing this
system is then given by

&= g J; cos(y; —y. —A;~), (7.3)

with

I A.dl (7.4)

7For very small grains charging effects become relevant and
the phase becomes a dynamic variable. We do not consider this
limit here.

denoting the line integral of the vector potential A be-
tween sites I, and j, where J,. is the Josephson coupling
energy between neighboring grains. Usually, screening is
weak and Auctuations in the vector potential can be
neglected. Disorder can be introduced into the model via
randomness in the (nearest-neighbor) couplings J; .
However, since the coupling constants do not change
sign, they cannot produce the necessary frustration cru-
cial for obtaining spin-glass behavior. In this sense the
couplings J; are usually taken to be uniformly equal to J.
Another way to introduce randomness and frustration
into the system is via the vector potential 2;., for exam-
ple, through positional disorder of the individual grains.
For high enough fields, 3;. will vary over the entire in-
terval [0,2m. ], leading to sign changes in the effective cou-
pling between neighboring grains and thus to strong frus-
tration between the phases y;. The model system de-
scribed by Eq. (7.3) is known as a gauge glass. Glassy
behavior in a type-II superconductor, then, can be associ-
ated with the phase degree of freedom or with the zeros
of the order parameter (vortices), and it is an interesting
and important question whether these two points of view
are equivalent or different.

The characteristic properties of the above systems as-
sociating them with glassiness is the existence of a finite-
temperature freezing transition, in which the distribution
of relaxation times extends to macroscopic time scales.
Furthermore, the resulting low-temperature phase shows
specific dynamic signatures such as (slowly decaying)
remanence and irreversibility. Dynamic response func-
tions such as the magnetic ac susceptibility in spin glasses
also show a cusp at the freezing transition. Identifying
this cusp with the freezing temperature Tg we are im-
mediately confronted with two problems. First, the posi-
tion of the cusp depends on frequency, hence Tg = T (co),
and second, the cusp is not completely sharp. This
brings us to the most fundamental que~'. ion in the theory
of glasses: Is the glass state a true thermodynamic equi-
librium phase set apart from the high-temperature
"liquid" phase by a generic thermodynamic phase transi-
tion, or, is the glassy phase merely a frozen "liquid" with

T marking only a crossover to a very high viscosity.
Probably the answer to this question will depend on the
particular system under consideration. For example, it
seems likely that window glass itself is not a thermo-
dynamic state, but is unstable to decay into the lower-
energy crystalline state at very long but finite time scales.
On the other hand, depending on dimensionality and
symmetry, the spin-glass system is generally believed to
undergo a finite-temperature thermodynamic phase tran-
sition into a true glass phase. It has been suggested that
vortex glass also is a generic thermodynamic phase and
thus is fundamentally different from the high-
temperature liquid state (Fisher, 1989). In the following
we concentrate on three systems: spin glass, gauge glass,
and the vortex glass. As spin glass is the most carefully
studied system, we briefly summarize and discuss the
basic questions and concepts by means of this simple
model system. A finite-temperature glass transition in
the gauge glass is usually interpreted as supporting evi-
dence for the existence of the vortex-glass phase, and
thus we shall discuss this system in some detail. Finally,
our ultimate interest is of course the existence of a true
thermodynamic vortex-glass phase, and we shall summa-
rize the various aspects in the current discussion of this
interesting proposal.

3. Spin glasses

To set the stage for the later discussion of the gauge
glass and of the vortex glass we summarize in some detail
the theory of spin glasses, the best understood model sys-
tem for a glass today. We shall concentrate on two as-
pects of the theory, the mean-field picture and the scaling
approach. For a more detailed discussion of the physics
of spin glasses we refer the reader to the reviews of
Binder and Young (1986), Mezard, Parisi, and Virasoro
(1987), Dotsenko, Feigel'man, and Ioffe (1990), and
Fischer and Hertz (1991).

The most basic concept in the theory of phase transi-
tions is the concept of broken symmetry. The simplest
example is the Ising ferromagnet described by a model
Hamiltonian of the form (7.1) with spin variables
S, E [

—1,1] and uniform couplings J;.=J)0 restricted
to nearest neighbors. In the high-temperature (paramag-
netic) phase the (inversion) symmetry of the Hamiltonian
is preserved, whereas the low-temperature (ferromagnet-
ic) phase breaks this symmetry. Since a symmetry has
been broken, we need an additional variable in order to
describe the low-temperature phase, the order parameter,
which for the above example of an Ising ferromagnet is
the spontaneous magnetization m ( T) =N ' g; (S;),
with N the number of spins in the system and ( . . )
denoting thermodynamic average. Let us analyze in
more detail the precise meaning we associate with this
description. If we took the definition of averaging over
the entire phase space in ( ) literally, the resulting
order parameter m (T) would always be zero, since the
weights in the statistical sum for the two inversion-
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qEA
= lim q(t),t~ oo

with the time correlator q (t) defined by

q(t)= lim ((S,(r. )S, (r. +t)»,„„,.
N —+ oo

(7.6)

Here we denote the disorder average by the bracket
( &d;, in order to express the appropriate sequence of
taking the averages over statistical ( ( .

&,h) and
quenched (( .

&d;, ) variables.
Spin-glass order implies the development of local spon-

taneous magnetization in the system, for which the order
parameter (7.5) gives a quantitative measure. If the sys-
tem develops many equivalent phases a (corresponding to
the two phases "up" and "down" in the Ising ferromag-
net), we can write

symmetric phases with m) 0 and m (0 are equal. Thus
the broken symmetry has to be introduced by hand, e.g. ,
via application of an infinitesimal symmetry-breaking
field H, adding a term g; H S; to the system Hamil-
tonian. For H+ )0, the phase with m (0 is favored over
the "down" phase by a factor exp(2KB+m). Taking the
two limits lim . + lim& in this sequence, we obtain

the desired finite order parameter describing the low-
temperature phase. Essentially what we did was to break
the ergodicity of the system as a consequence of breaking
its symmetry. In the low-temperature phase, the two
phases with spins "up" and "down" are separated from
each other by infinite barriers (X~~ ), and the phase
space splits into two (energetically) disjoint parts. There-
fore a system finding itself in one valley at some time will
never find itself in the opposite valley at a later time, and
hence we can replace time averages (the relevant quantity
in an experiment) by a statistical average ( & if we
first break the symmetry of the system by hand, leading
to the desired breaking of ergodicity. In a (spin) glass the
symmetry of the Hamiltonian is never broken. Both the
high- and the low-temperature phase are paramagnetic
phases from the point of view of symmetry. However, er-
godicity is broken in the low-temperature phase of a spin
glass. Spin glasses, then, show broken ergodicity without
an accompanying broken symmetry. Broken ergodicity
implies the existence of a low-temperature phase de-
scribed by a restricted phase space, separated from other
parts of phase space by infinite barriers. The order pa-
rameter describing this phase therefore will not be the
signature of a broken symmetry, but only testify to the
presence of broken ergodicity. Such a spin-glass order
parameter has been introduced by Edwards and Ander-
son (1975),

square single-valley local spontaneous magnetization, in
general is different from the equilibrium or statistical
mechanics order parameter q for a spin glass, which is
given by

q =((S, »,'„„,= g P.Pbm, 'm, '
ab dis

(7.8)

The statistical mechanics order parameter q differs from
qEA in having additional "intervalley" contributions, so
that the difference 5q —=qEA —

q ~0 is a measure of the
degree of broken ergodicity, with 5q=0 if the system de-
velops a unique low-temperature phase, P, =5,o. In gen-
eral, however, one has to expect a more complicated
structure of the phase space, with many valleys present
describing different phases. The correlation between
these phases is measured by the "overlap" distribution
function

P(q)= QP, Pb5(q —q' )
ab d1s

(7.9)

with

ab m'm' .I I

C,, = (S,S, &,„—(S, &,„(S,&,„, (7.10)

(7.11)

Clearly, the statistical mechanics order parameter is sim-
ply the first moment of P(q). As the correlations be-
tween the phases cannot exceed the mean-square magne-
tization of a single phase, we can identify the Edwards-
Anderson order parameter with the maximal q for which
P(q) is finite.

The experimentally measured uniform susceptibility y
showing a cusp at the freezing temperature Tg is related
to the order parameter q via y = ( 1 q) /T (for s—ymmetri-
cally distributed interactions between different spins;
Fischer, 1976). More precisely, in a "short-time" experi-
ment in which the system finds itself in a single valley, we
measure a susceptibility y=(1 —qE~)/T, whereas if the
barriers separating different valleys are finite (e.g., due to
the finite sample dimensions) and the experimental time
scale is large enough, the equilibrium value y=(1 q)/T—
is measured. A very useful quantity is the spin-glass sus-
ceptibility iso, which corresponds to the ordinary sus-
ceptibility in a ferrornagnet. Turning on a random field
h;, we can induce a nonzero order parameter q even
above the glass transition, q =gsGh, with h the vari-
ance of the random field h;. The spin-glass susceptibility
can be calculated from the correlator C;,

qEA ~a mi (7.7)

where P, =exp( E, /T) denotes the—statistical weight of
the phase a with free energy F„and where m is the lo-
cal moment in phase a, (S; &

= g, P, m . The Edwards-
Anderson order parameter, which describes the mean-

and diverges as the glass transition is approached from
above. The analytical or numerical determination of gsG
then allows for a simple determination of the glass transi-
tion temperature.

How can we determine the size of the order parameter
of the system? The simplest standard method in the
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theory of phase transitions consists in breaking the sym-
metry by hand and calculating the order parameter in
mean-field theory. In spin glasses, both of these steps are
far from trivial. First of all, since there is no broken sym-
metry in the spin-glass phase, we do not know the spatial
form of the magnetic field h;+ singling out a particular
valley. However, although this field is not known to us,
it is known to the system itself (Blandin, 1978). Hence by
introducing a second replica of the system (with identical
quenched variables) and coupling the two systems by a
term —H+ g; S; S~, we can evaluate the order parame-
ter from

q
~= lim lim ((S, S~),h)d;, ,a+ 0&

(7.12)

where the superscripts a and P refer to difFerent replicas.
Furthermore, introducing replicas is also the standard
tool for dealing with the average over the quenched vari-
ables. Evaluation of the thermodynamic potential
F = —T(lnZ )d;, is elegantly done by use of the replica
trick, consisting in calculating the averaged partition
function ( Z" )d;, for an n-fold replicated system and per-
forming the limit

(lnZ)d, ,= hm
n~0

(7.13)

afterwards. Application of this replica idea allows us to
arrive at a consistent mean-Geld solution for the Ising
spin glass. One expects the mean-field theory for the
transition to become exact in the infinite range limit for
the interaction, a circumstance which motivated Sher-
rington and Kirkpatrick (1975) to study the Ising limit of
Eq. (7.1) with b, ;J. =(J;~ )d;, =J /X independent of dis-
tance. Using .the replica trick one arrives at a self-
consistency condition for the order parameter q ~. As-
suming a replica-symmetric solution q =q ~, aAP, this
equation takes the form

dx ~&yp 2 J+qx
q = e " tanh

277
(7.14)

with a solution q=O at high temperatures T) Tg J,
approaching unity for zero temperature, and vanishing at
T according to &q ~(T —T)'~ . Unfortunately, this
solution turned out to be unstable below Tg (negative ei-
genvalues in the Iluctuation spectrum, negative entropy),
more generally, below a line HAT in the H-T phase dia-
gram if a finite magnetic field H is present. The line
HAr(T) is called the de Almeida-Thouless line (de Almei-
da and Thouless, 1978) and is associated with the oc-
currence of irreversibility and remanence for tempera-
tures and magnetic fields below this line. It was Parisi
(1979, 1980) who first presented a consistent solution of
the Sherrington-Kirkpatrick model which breaks the re-
plica symmetry. The order parameter of the system is
described by a monotonically increasing order-parameter
function q (x, T,H), 0 ~ x ~ 1. The susceptibility y is
given by

1 —f dx q(x)
1

T 0
(7.15)

and the Edwards-Anderson order parameter can be ob-
tained from the maximum value of q (x), due to mono-
tonicity,

qE& =q (1) . (7.16)

In fact, q(x) describes the temporal evolution of the or-
der parameter q (t) as given by Eq. (7.6) on different time
scales, which all diverge in the thermodynamic limit,
with t„ i the shortest and t 0 the largest diverging time
(Sompolinsky, 1981). For zero magnetic field,
q(x=O)=0 and hence q(t 0)=0, that is, q(t) is finite
for the smallest, but zero for the largest diverging time
scale in the system.

The second important quantity in the Parisi solution is
the overlap distribution function (7.9), which is related to
the order parameter function q (x) via

P(q)= f dx 5[q —q(x)]=
0

(7.17)

The Parisi solution for P(q) consists in a sharp 5 peak at
qEA( T), with a smooth continuation extending down to
q=O at zero applied field. This solution is interpreted in
the following way: As a finite fraction of the total weight
is in the 6 peak at qEA, the statistical mechanics of the
system is dominated by a single phase. The remaining
finite weight extending to smaller q values indicates the
presence of many valleys with configurations resembling
each other to all possible degrees. For finite fields H the
weight in the continuous part decreases and is shifted to
the peak at qEA until all of the weight has been accumu-
lated in the peak as we cross the de Almeida-Thouless
line. This scenario naturally explains the occurrence of
e6'ects such as remanence and irreversibility as the conse-
quence of the splitting of the phase space into distinct
valleys below the de Almeida-Thouless line.

The mean-field picture of the spin glass describes the
glass transition as a generic thermodynamic phase transi-
tion into a phase with a nontrivial broken ergodicity
characterized by the existence of many competing
ground states separated by infinite barriers. We cannot
go deeper into the analysis of the structure of the phase
space here, which would lead us to the notions of
hierarchical structures and ultrametricity (Mezard et al. ,
1984a, 1984b; Rammal et al. , 1986). Instead, we turn to
an alternative approach to describing the physics of spin
glasses, based on scaling ideas, an approach that goes
back to McMillan (1984a, 1984b, 1984c), Bray and
Moore (1984, 1985), and Fisher and Huse (1986; see also
1988a, 1988b). Let us make clear from the beginning
that the scaling approach di6'ers from the exact mean-
field treatment discussed above by its essentially phenom-
enological character. To date, no first-principles micro-
scopic justification for the scaling approach to the spin-
glass problem has been presented.

Real spin glasses are characterized by short-range in-
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J(L)=F(L) F„(L) . — (7.18)

The above procedure introduces a domain wall into the
sample. For an ordered system (e.g. , an Ising ferromag-
net), J (L) scales with system size according to J (L) ~ L,
O=d —1, producing a lower critical dimension dI =1. In
a disordered sample, the domain wall adjusts to the ener-

gy landscape in a nontrival way (see Sec. IV.F above),
leading to a reduction of the exponent 0&d —1 and
hence to an increase in the lower critical dimensionality
of the system. The task then is to determine the scaling
exponent 9 for the eff'ective coupling constant J(L); for
0&0 the coupling decreases with increasing length L,
and the system is in a disordered (paramagnetic, high-
temperature) phase, while a positive exponent 6 )0 is the
signature of an ordered (rigid) low-temperature phase. In
a disordered system the situation is somewhat more com-
plicated, as the couplings J(L) are random objects, and
the decisive quantity to study is the distribution function
P [J(L)]. For large L this distribution function takes the
scaling form

tP(JL)]= e f (7.19)

teractions, and their physical realization involves d=2 or
d=3 space dimensions. On the other hand, the mean-
field approach is expected to become exact for infinite-
range interactions or in higher dimensions (in fact, the
upper critical dimensionality for spin glasses is d„=6).
Hence typical experimental realizations are quite far
away from the region where mean-field theory is a good
guide. A very helpful tool for dealing with this situation
is found in the renormalization or scaling approach, and
we brieAy discuss the main achievements of this method.

The basic idea of the scaling approach is to investigate
the How of the coupling constants in the Hamiltonian un-
der iterative integration over short-wavelength degrees of
freedom. This idea suggests that we study the effective
coupling J(L) across the sample as the basic quantity
describing the phase of the system. Consider a short-
range (nearest-neighbor) coupled Ising spin glass of size
L" in d space dimensions. The free energy under free
boundary conditions is denoted by F(L). Reversing the
L" ' spins on one end of the block while keeping those
on the opposite side fixed, and denoting the correspond-
ing free energy by F„(L),we obtain the effective coupling
J(L) across the sample from

renormalization-group calculation produces similar re-
sults (Southern and Young, 1977), with 0= [d
—1+log2( 1 —2/ir) ] /2, resulting in g(d =2) = —0.23
and 0(d =3)=0.26. As argued by Fisher and Huse
(1986), the expression (d —1)/2 in fact provides an upper
bound for the exponent 8, 8~(d —1)/2. For vector
spins (XI' model, Heisenberg model), numerical results
indicate that the lower critical dimension is dI =4
(Morris et a/. , 1986).

Following Fisher and Huse (1986; see also 1988a,
1988b), we can describe the spin-glass phase by studying
the low-lying excitations in the system. Fisher and Huse
hypothesize that these excitations consist in compact
droplets of size L, with of the order of L" spins Ripped
relative to the ground state, which is assumed to be
uniquely defined (up to the trivial inversion symmetry
S;~—S; ), in contrast to the mean-field solution put for-
ward by Parisi. The surface of these droplets is presum-
ably fractal, with a dimension d —1 ~ d, ~d. The excita-
tion energy of the droplets scales in the same manner as
the domain wall introduced above, Fd(L)- JL, whereas
the barriers to be surpassed in order to create such a
droplet scale with a diff'erent exponent g, Ud(L)-L~.
The probability distribution for droplets of energy Fd(L)
finally has the scaling form (7.19). The finite weight of
the scaling function f (x) for small x then implies a
nonzero density of states at arbitrarily low energies. Of
all the available low-energy droplets of size L with ener-
gies distributed according to Eq. (7.19), only a fraction
T/JL (those with energies less than, or of the order of,
T) are thermally active at low temperatures. It is these
droplets which determine the spatial and temporal evolu-
tion of the spin-glass phase at low temperatures. In par-
ticular, the spin-glass correlation function ( C;~ )d;„with
C; given by Eq. (7.10), vanishes algebraically in the
spin-glass phase. The finite contributions to C; are pro-
vided by those droplets which contain both spins i and j,
hence

(7.20)

The stiffness of the spin-glass phase producing barriers
Ud(L)-JL~ against droplet excitations leads to a very
slow, i.e., logarithmic, dynamics. At time t, the relevant
barriers in the system are of size Tln(t/t, ), allowing
rearrangement of spatial regions of size

As the critical point, 0=0 and thus P (J)=f (J) indepen-
dent of L. The exponent 8 and the scaling function f can
be determined by numerical simulations or by some re-
normalization procedure. Numerical results for the Ising
model (Bray and Moore, 1984) indicate that the lower
critical dimensionality of this system is between d =2 and
d=3. Bray and Moore find for the exponent (9 the values
0= —0.291+0.002 for d=2 and 0=0.19+0.01 for d=3.
Furthermore, the scaling function f (x) turns out to be
continuous with a finite weight as x —+0. A

T tL(t) ~ —lnJ (7.21)

C(t) ~ J 1

T ln(t/t. )
(7.22)

Again, the fraction of active droplets scales according toL, and hence the temporal correlation function
C(t)=((S;(0)S,.(t)),„—(S;),i, )d;, decays on a logarith-
mic time scale,
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The trivially broken ergodicity in the droplet model
leads to quite different predictions for the physics of the
spin-glass phase than does the mean-field theory. For ex-
ample, there is no de Almeida-Thouless line within the
scaling theory of spin glasses; the spin-glass phase transi-
tion gives way to a simple crossover at finite magnetic
fields. However, a fundamental feature of the mean-field
theory, the extreme sensitivity of the energy landscape in
phase space to changes of external variables such as tem-
perature or magnetic field, is also present in the scaling
theory of spin glasses. Consider a perturbation changing
the bond strength by an amount of order 6J. This per-
turbation will then change the wall energy of the droplet

d /2
by an amount of the order of 5JL ' . For 0(d, /2 this
perturbation will always dominate the original wall ener-
gy JL at large length scales, implying that on scales

1/(d /2 —0)

L )L*~ J
6J (7.24)

the ground state of the spin glass and its low-lying excita-
tions will be completely changed. Since 8~(d —1)/2
(Fisher and Huse, 1986) this sensitivity to external fields
always has to be expected in spin glasses.

A few remarks about the (continuous) glass transition
itself. Within the scaling approach, the static and dy-
namic features of the transition are described by a spin-
glass correlation length /so(T) and a relaxation time
rsvp( T), which both diverge as the glass transition Tg is
approached,

(7.25)

(7.26)

while the order parameter q and its associated suscepti-
bility ps' behave according to

(7.27)

(7.28)

Within mean-field theory the exponents take the values
v= 1/2, z =4, /3=1, and y= l. Corrections to these
mean-field results have been calculated within c=d„—d
expansion. Due to the appearance of a cubic term in the
effective Hamiltonian, the upper critical dimensionality
d„of the system is shifted to d„=6. As d drops below
d„, the exponents v and z both increase. However, extra-
polation down to d=3 seems of little use. Numerical
work for the d=3 Ising model consistently produces
values v=1.2—1.4, z=5 —6, P=0.5, and y=3 (Young,
1984; Bhatt and Young, 1985; Ogielski, 1985; Ogielski
and Morgenstern, 1985). The last two exponents were
obtained from the scaling relations y =v(2 —g ) and

The Fourier transform of Eq. (7.22), i.e., the noise spec-
trum of spin fluctuations, then exhibits 1/f behavior up
to logarithmic corrections,

(7.23)

p =v( d —2+ il ) /2, with g = —0.25 the exponent for the
spin correlator (S(0)S(r) ) ~ r

Above, we have reviewed two quite different ap-
proaches to spin-glass theory, the mean-field theory,
which is an exact description for a model with an infinite
range of interactions or in high dimensions, and the
droplet model, which, it is hoped, describes the situation
in real three-dimensional spin glasses with short-range in-
teractions, but which is based on rather strong assump-
tions and cannot be derived from some microscopic
Harniltonian. A natural question to ask, then, is, which
of the two approaches is more appropriate for an accu-
rate description of real spin glasses? The different organ-
ization of the phase space obtained/assumed in these two
models makes this a very interesting question. At
present, there is no clear answer, but most probably both
approaches capture some essential features of the
relevant physics of real spin glasses. Neither of the two
models is fully consistent with the experimental data, and
hence an appropriate synthesis of them remains to be
found. In the following, we briefly describe one possible
approach to this synthesis by concentrating on the criti-
cal behavior of spin glasses. This synthesis will comprise
features from both the mean-field solution (hierarchical
organization of relaxation times) and the droplet model
(superspins).

Let us first recall some well established features of the
glass transition in real spin glasses. Above T, this tran-
sition has been explored experimentally both by static
magnetization experiments [in which case the relevant
quantity is the nonlinear magnetic susceptibility
y„, ='d M/dh

I =[y —2/(3T )]/T (T —T ) r]
and by ac magnetic susceptibility measurements, from
which the exponent vz of the spin-glass relaxation time
rsvp~(T —T )

' (critical slowing down) can be deter-
mined. The results from both kinds of experiment are
fairly consistent with the heutristically proposed scaling
behavior (7.28) and (7.26), and the values for the ex-
ponents y and vz drawn from experiments agree fairly
well with those obtained from Monte Carlo simulations
(see, for example, the review of Binder and Young, 1986).
Whereas mean-field theory at least does make a predic-
tion for such a scaling behavior, the results for the ex-
ponents differ considerably from the data. A natural way
to improve upon the mean-field values is by means of
c=d„—d expansion around d„=6; however, extrapola-
tion down to d=3 cannot be hoped to be even qualita-
tively reliable. On the other hand, the droplet model
does not make any prediction concerning these ex-
ponents, since it concentrates on the glass phase itself
rather than on the critical regime.

A semiquantitative analytical approach for the calcula-
tion of the critical exponents in real, three-dimensional
spin glasses has been developed by Ioffe and Feigel'man
(1985) and further improved by Dotsenko, Feigel'man,
and Ioffe (1990). The basic idea of this approach is to
consider an Edwards-Anderson model with a large num-
ber of nearest neighbors z (so that it goes over to a

Rev. Mod. Phys. , Voa. 66, No. 4, October 1994



1264 Blatter et al. : Vortices in high-temperature superconductors

m;= gmzoz(i) . (7.30)

Here, ( . )f„, denotes the average over the fast, i.e.,
noncritical, modes. The most relevant eigenmodes with
large m& near the transition T correspond to localized
eigenfunctions o &(i), with eigenvalues J& close to the mo-

bility edge J, . At a moderate distance ( T —T )/Tg away
from the transition point, the system behaves like a su-

perparamagnet, with sup erspins corresponding to the
spin clusters as defined by the relevant localized modes
oz(i). The crucial difference between the present situa-
tion and a conventional superparamagnet is that the ex-
tent of the superspins, as given by the localization lengths
of the wave functions oz(i), is much larger than that of
the rigid spin clusters relevant in the conventional case.
As a consequence, these superspins are strongly overlap-
ping in real space, and the value of the local magnetiza-
tion m,. is determined by a large number of such fractal
clusters. Upon decreasing the temperature, we find that
the interaction between these clusters becomes strong
and random in sign, so that they can be described again
by an Edwards-Anderson model, and the renormalization
step is completed. Hence we have constructed a discrete
renorrnalization-group transformation from the original
spins S, to the new "superspins" S~&"=sgn(m & ). Further
decrease of the temperature T then introduces new gen-
erations of superspins. The sequence of temperatures T„
marking the appearance of a new generation of supers-
pins converges to a finite value, which is identified with
the glass transition temperature, lim„T„=T, since
both the spin-glass susceptibility iso(T) and the relaxa-
tion time iso( T) diverge at this point. Within the
present analysis, the critical exponents y and vz are relat-
ed to exponents characterizing the singular behavior of
the eigenfunctions o &(i) close to the mobility edge,
J&=J,. By determining these "localization" exponents
from a numerical diagonalization of a large (20 ) random
matrix J," (nearest-neighbor coupling; see Dotsenko,
Feigel'man, and Ioffe, 1990), Dotsenko et al. have found
spin-glass critical exponents for the Ising model with re-
sults that are in reasonable agreement with the experi-
mental and with the Monte Carlo values.

The most interesting feature emerging from the above
analysis, however, is the hierarchical nature of the slowly
relaxing magnetization modes relevant for the critical
behavior near T . At some intermediate temperature

T„+i& T & T„, the long-time decay of the magnetization
S;(t) in some site i is governed by all those modes S&"
having a considerable amplitude at this site. In turn, the

Sherrington-Kirkpatrick model in the limit z~ co ), and
to construct a renormalization-group procedure. The
starting point is an expansion of the slowly decaying
components I;=(S;)f„,of the magnetization field in
terms of the eigenmodes o z(i) of the coupling matrix J, ,

(7.29)

long-time relaxation of the superspin S&"(t) is governed
by a large number of modes on the next hierarchy level
S&2'(r), and so on. The longest relaxation time rsvp(T) in
the system is then given by the effective dynamic time
scale of the nth-level superspin SI„"'(t). The crucial
difference between the picture presented here and the
simplest droplet approach is the hierarchical organiza-
tion of the relaxation. VA'thin the droplet model, drop-
lets of different sizes L [and correspondingly difFerent re-
laxation times rL ~exp(JL~/T)] do not overlap and
hence fIkip independently of each other. By contrast, the
hierarchical organization of the modes implies that fast
modes are strongly coupled to slow ones as the former
are "embedded" into the latter. The origin of the critical
hierarchy as developed by Ioffe and Feigel'man (1985)
seems to be rather generic for a strongly frustrated sys-
tern in the absence of any apparent spatially regular
structure, i.e., when the breaking of ergodicity is not ac-
companied by a breaking of symmetry (see also Palmer
et QI. , 1984, where the appearance of a hierarchically
constrained dynamics is discussed from a very general
point of view). It seems very reasonable that the same
kind of hierarchical organization should also survive at
low temperatures, T (T, within the glass phase itself (at
least for the case of a suKciently large coordination num-
ber z). However, a quantitative theory corresponding to
the renormalization-group approach discussed above and
extending these ideas to T & T still has to be developed.
Qualitatively, a first step in this direction has been taken
by Villain (1986), who noticed that within a generalized
droplet-like approach one can assume that droplets are
not just simple compact objects but rather are organized
in a hierarchical way, with smaller droplets embedded
within bigger ones. Based on some rather plausible as-
sumptions, he showed that in such a generalized droplet
model a de Almeida-Thouless line is recovered, i.e., the
model shows a true spin-glass transition in a finite mag-
netic field, in contrast to the simplest droplet model pro-
posed by Fisher and Huse (1986).

Let us remember that the hierarchical organization of
phase space into valleys is an intrinsic feature of the
mean-field solution with replica symmetry breaking,
which, combined with the above discussion, gives some
credit to the idea that a kind of hierarchical organization
might indeed be relevant in the low-temperature phase of
a real three-dimensional spin glass. Moreover, this point
of view is also supported by recent experiments on insu-
lating spin glasses by LeAoch, Hamman, Ocio, and Vin-
cent (1992, ac magnetic susceptibility) and in mesoscopic
samples of metallic spin glasses by Israeloff, Alers, and
Weissman (1991;second spectrum of the magnetic noise,
i.e., spectrum of calculation in the noise power; see also
Weissman et a1. , 1992). In both cases it has been shown
that the data are in much better agreement with a
hierarchical model of relaxation than with a parallel dy-
namics as produced by the simplest droplet model of
Fisher and Huse (1986). However, it should be noted
that on a general level both the simple droplet picture
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and the hierarchical model produce roughly similar
answers. In this sense, the above-mentioned experiments,
which are able to distinguish between the two ap-
proaches, are highly nontrivial.

The main challenge in this field then is to develop a
consistent theory of the spin-glass phase for a realistic
three-dimensional spin-glass model, which reproduces
the hierarchical organization of states. Still, in the ab-
sence of such a theory, important insights can be gained
from the mean-field theory if one accepts the idea that
the hierarchical organization of valleys is relevant for a
real spin-glass system.

2. Gauge glass

It seems that the interest in gauge glasses is an out-
growth of studies of spin glasses, particularly the XF spin
glass, in connection with the problem of "trivial" disor-
der, i.e., disorder that can be removed by a gauge trans-
formation (Fradkin et al. , 1978). Here we are interested
in the gauge glass as a model system for granular super-
conductors and as a simplified model for studying glassi-
ness in bulk superconductors. Within this context, the
first (numerical) study of three-dimensional granular su-
perconductors in a magnetic field was that of Shih,
Ebner, and Stroud (1984, see also Ebner and Stroud,
1985). Upon an increase of the magnetic field H, they
found a transition from a "ferromagnetic" to a "spin-
glass"-type phase. The crossover between these two
phases took place at field values H producing of the or-
der of one Aux quantum per plaquette, leading to a large
frustration between the phases y;. The transition tem-
perature Tg(H) into the superconducting state, as ob-
tained from a calculation of the stiffness of the phase un-
der a change of boundary conditions (helicity modulus),
dropped rapidly with increasing field and saturated above
the critical field Hg. Below the freezing temperature

Tg (H )H~ ), typical glassy effects such as remanence and
irreversibility appeared. However, no definite conclusion
about the existence of a generic thermodynamic phase
transition could be given.

The mean-field phase diagram for a disordered granu-
lar superconductor near percolation was worked out by
John and Lubensky (1985, 1986). In addition to the usual
Meissner phase at very low field and an Abrikosov phase
at intermediate field values, they found a glass phase for
fields exceeding the critical value Hg -—4, /gz, with gz
the percolation coherence length. This glass phase was
characterized by a vanishing averaged condensate wave
function (( 4 ),i, )d;,

=0, but a finite Edwards-Anderson
order parameter (

~ ( 4 ),i, ~
)~;,. The applied magnetic

field penetrated completely, with Auctuations due to
frozen Josephson current loops decaying only as a power
law with distance. A glass phase was also present locally
within the cores of the individual vortices in the Abriko-
sov phase. Qualitatively, the transition to the glass at
H =H~ can be understood as being due to the overlap of

the individual vortex cores, with H adopting the role of
the upper critical field H, in the mean-field phase dia-

gram of the homogeneous bulk superconductor. The cal-
culation was carried out in a replica field-theoretic
language, with a solution that did not break the replica
symmetry. The upper critical dimension above which
these mean-field results are expected to become exact is
d„=6.

The use of the (unstable) replica-symmetric solution
leads to the disappearance of superconductivity in the
gauge glass in terms of a vanishing of the superAuid den-

sity p„as defined by the relation 5j= —p, 6A. A con-
nection between the absence of replica symmetry break-
ing and the vanishing superAuid density can be conclud-
ed from a comparison of the present problem with a
study of the XP spin glass by Sompolinsky, Kotliar, and
Zippelius (1984), who find a finite transverse stiffness (the
analog of p, ) in the glass phase within a replica
symmetry-breaking approach. A consistent mean-field
theory of the gauge glass exhibiting superconductivity
has been developed by Vinokur, Ioffe, Larkin, and
Feigel'man (1987). Instead of using the replica formal-
ism, they developed an alternative method capable of
handling a nontrivially broken ergodicity. Within this
approach, an actual state [characterized by the point
(H„T, ) in the phase diagram] of the system is con-
sidered to be a functional of the path in the (H, T) plane
along which this point has been reached. The common
view that a state within the glass phase depends on its de-
tailed history is borne out quite naturally within this ap-
proach. The simplest example of such a history depen-
dence is the difference between the field-cooled (FC) and
zero-field-cooled (ZFC) magnetic susceptibilities, as ob-
tained within a replica symmetry-breaking mean-field
solution for the spin glass, +pc gzFc ~ ( Tg T) . Tile
method developed by Vinokur et al. allows one to study
this kind of phenomenon within a very general context,
i.e., without the limitation of having to remain within the
linear-response regime. The basic quantities to be deter-
mined are the correlation function q(t, t')
= ((S; )'(S;*)' )d;„where S; =exp(iy, ) and the average

( )' denotes a thermal average taken with fixed exter-
nal parameters (H(t), T(t)), and the long-time response
function h(t, t')=(a(S, )'gas, .')d;, . Here h; is not a real
magnetic field that couples via the gauge potential to the
phases y;, but is a fictitious external field, which is linear-

ly coupled to the spins, && = —g,. h;(S;+S;"). The or-
der parameter q(t, t') then measures the overlap between
frozen spin configurations at different times t and I, ". The
very existence of the response function h(t, t'), which
does not decay to zero in the long-time limit t —t' —+ ao,
reAects the presence of a nontrivially broken ergodicity in
the system, and hence the approach is indeed qualitative-
ly equivalent to a replica symmetry-breaking solution.
Given a cooling path (H(t), T(t)), the task then consists
in solving the pair of coupled nonlinear integral equa-
tions for the two functions q (t, t') and b(t, t') and there-

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



1266 Blatter et BI.: Vortices in high-temperature superconductors

bM =Mp M~ —bH(Ts —T)— (7.31)

Hence there is diamagnetic screening in the system. The
result (7.31) then implies a finite value p, ~ (T —T) for
the superAuid density, in agreement with the result of
Sompolinsky, Kotliar, and Zippelius (1984) obtained via
a replica symmetry-breaking approach. Note that the
present method allows us to go beyond the linear-
response regime and explore the fu11 nonlinear depen-
dence of M;„. The general expression for the irreversible
magnetic response is (Vinokur et al. , 1987)

—M,„(r)~ f dr'q(r, r')b(r, t')[H(r) II(t)'], —(7.32)
0

by obtaining a complete description of the history-
dependent final state. The same method can be used, as
well, in the spin-glass problem (Ioffe, 1988; Freixa-
Pascual and Horner, 1990). In fact, as has been shown by
Freixa-Pascual and Horner (1990), the corresponding
equations in the spin-glass problem can be reduced to the
Parisi equations if one assumes that both q and 6 depend
only on the time difference t —I;, which implies an addi-
tional thermodynamic averaging over all possible valleys.
The basic difference between the "path-dependent"
mean-field approach and the Parisi solution is that, in the
former case, the system is considered to be trapped in
some specific valley in phase space and follows the evolu-
tion of this valley as the external parameters H and T are
changed, whereas in the latter case a complete equilibra-
tion is considered to have occurred.

An explicit calculation of the solutions q and 6 has
been carried out for the two simplest cooling paths
shown in Fig. 28. Along path o., the sample is cooled
down to T, at fixed field H„whereas along P, cooling to
T~ is done in a field H

&

—AH with a subsequent increase
AH in field at T&. The final magnetization M as ob-
tained along o. turns out to be zero, hence there is no
Meissner ejfect in the gauge glass. On the other hand, a
finite magnetization M& is found when following path P,
with

M;„(r) ~ ln
~o

(7.33)

where the functions q(t, t') and b, (t, t') have to be deter-
mined for the given cooling path [H(t), T(t)]. In the
limit b,H~0, the result (7.32) reduces to the linear-
response formula (7.31). As shown by Dotsenko,
Feigel'man, and Ioffe (1990), the linear-response regime
extends up to fields AH =H„I o- T —T, whereas for
AH))H„& the irreversible magnetization approaches a
maximum value b,M, ~ (Tz —T), which is the analog of
the critical current density.

The history dependence of the magnetic response is the
main qualitative feature of glassy superconductivity. The
first observation of this kind of behavior in the new
high-temperature superconductors is due to Muller,
Takashige, and Bednorz (1987). In their investigations
on ceramic samples of La2 Ba Cu04, they observed
that the result MFC(H, T) of a field-cooled magnetization
differs from the zero-field-cooled value MzFC(H, T) for a
final state (H; T) below some characteristic line
H ( T) ~ (T —T), which therefore was identified with
a transition line separating ergodic from nonergodic
(glassy) behavior. Note that the two values M„c(H, T)
and Mz„c(H, T) are just the magnetization values for the
two paths a and 13 discussed above, with hH =H, and
the nonergodic response M;„=Mp —M is expected to
be a nonlinear one.

The general status of the mean-field theory of gauge
glass is analogous to that for the spin-glass problem: The
mean-field analysis applies to the case of high dimensions
d )d„=6 or to a model with an infinite interaction
range. Again, a droplet-like model can also be formulat-
ed for the gauge glass, and again it will differ quite appre-
ciably in its predictions regarding the behavior of the sys-
tem below the irreversibility line. In particular, within a
droplet approach the irreversible magnetization M;„will
not remain stationary, but will decay on a logarithmic
time scale according to

—1/p

gouge gloss normal metal

H
I

0 TI Tc

FIG. 28. Two cooling paths leading to a di6'erent response in
the gauge glass. The final magnetization along path cz is zero,
whereas a finite diamagnetic moment appears along P. Hence
the gauge glass shows no Meissner eFect but finite diamagnetic
screening, i.e., the superAuid density is nonzero.

thus reflecting one of the crucial differences between the
two approaches —the presence or absence of a nontrivial-

ly broken ergodicity. At the moment it is unclear wheth-
er a hierarchically organized droplet model, like that dis-
cussed for the spin-glass problem above, will show an ir-
reversible magnetic moment that decays asymptotically
to zero. Hence the description of real gauge glasses as
realized by a three-dimensional superconducting network
in a magnetic field suffers from the same problems as
does the description of the spin-glass systems. In addi-
tion, the very existence of a three-dimensional gauge-
glass phase can be questioned. An analytical treatment
of this problem along the lines of the renormalization-
group approach described in Sec. VII.A. 1 above shows
that the gauge-glass transition in 3D is very similar to the
Ising spin-glass transition (Dotsenko, Feigel'man, and
Ioffe, 1990). The main difference between the two models
consists in the replacement of the real symmetric cou-
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( ~(q, —y )) (7.34)

In their comparative study of the Ising spin glass
(p; H IO, m. ], 2; H IO,vrI), the XY spin glass ( 2; C IO,m. I),
and the gauge glass, Huse and Seung find that gauge glass
is more similar to the Ising than to the XY model, in
agreement with the analytical results of Dotsenko,
Feigel'man, and Ioffe (1990). Since the Ising model seems
to have a finite-temperature glass transition in 3D,
whereas the XY model does not (see the discussion in Sec.
VII.A. 1 above), this result provides some evidence for the
existence of a generic thermodynamic glass phase in the
d=3 gauge-glass model. As pointed out by Huse and
Seung, this result is actually rather unexpected, since at
first sight the gauge glass looks much more like the XY
than the Ising model. The XY spin-glass Hamiltonian is
invariant under global proper and improper rotations in
spin space, whereas the gauge glass has a smaller syrnrne-
try group, restricted to global proper rotations (due to
the presence of the magnetic field, the time-reversal sym-
metry or reflection symmetry y;~ —y, is broken). The
Ising spin-glass Hamiltonian, on the other hand, is only
symmetric under global inversion of the spins, corre-
sponding to a proper rotation cp, —+qp;+~, which is again
a subgroup of the symmetry group of the gauge glass.
Hence the absence or presence of continuous rotational
symmetry seems to be of less importance than the break-
ing of time-reversal symmetry in the gauge glass.

A difFerent approach was taken by Reger et al. (1991;
see also Fisher, Tokuyasu, and Young, 1991), who con-
centrate on the gauge glass and base their analysis on the
determination of the scaling behavior of the domain-wall
energy J(L) ~L . A zero-temperature calculation pro-
vides results consistent with g(d =3)=0, indicating that
the 3D gauge glass is more marginal than the Ising spin
glass, which is characterized by an exponent
8(d =3)=0.2. Second, a finite-temperature Monte Carlo

pling matrix J; in the spin-glass case by a Herrnitian ran-
dom matrix for the gauge glass. Accordingly, the eigen-
modes oi(i) constituting an orthogonal ensemble in the
spin-glass model are then replaced by a unitary ensemble
in the gauge glass. Remarkably enough, the same kind of
analysis carried out for an XY (or any other n-vector)
spin glass turns out to be significantly different from the
Ising case. Thus analysis of the 3D gauge glass and of
the XY spin glass shows that the two models belong to
different universality classes, in spite of their close simi-
larity within a mean-field theory.

Very recently, much effort has been invested in the
determination of the lower critical dimension of the
gauge glass, with a strong emphasis on numerical
methods. The first numerical study addressing the ex-
istence of a true phase transition in the gauge glass is that
of Huse and Seung (1990), who concentrate on the (possi-
ble) divergence of the gauge-glass susceptibility

Xoo = gj (
~ C;J ~ )d;, on approaching the phase transi-

tion, where in correspondence to Eq. (7.10),

simulation was carried out in order to investigate the
scaling behavior of the current I =BJ/BO and the
stiffness Y =8 J/BO under an infinitesimal rotation S of
the boundary conditions [in this terminology the
domain-wall energy J(L ) involves a finite rotation
0=n]. Near the glass transition temperature one ex-
pects a scaling behavior I(L, T)=i [L/g'&G(T)], with

goo(T) ~(T —T ) the gauge-glass correlation length.
The current I(L, T) then is expected to become indepen-
dent of L at T and to "splay out" for different L at tern-
peratures below and above the transition temperature T .
Such behavior indeed could be observed in the analysis of
Reger et al. , with T =0.45+0.05 (in units of the elemen-
tary coupling J between the grains). A scaling plot of
I(L, T) produces an exponent v=1.3+0.4 for the glass
correlation length, close to the Ising value. From a scal-
ing analysis of the time needed to reach equilibrium at
Tg, a dynamic exponent z =4.7+0.7 is obtained.

It is well known that the universality class of spin
(glass) systems depends on the spatial as well as the spin
dimensionality of the model. That symmetry also is a
relevant issue in the search for a true thermodynamic
glass phase has become clear in comparative studies in-
volving different types of spin glasses by Cieplak et ah.
(1991, 1992) and by Gingras (1992). The models studied
within the present context are of the XY or Ising type
and involve the Ising and XY spin glasses themselves (I
and XY'), the gauge glass with random gauge field

A;~(GG), the gauge glass with site disorder in a large
magnetic field (SGG; note that this model has the correct
spatial symmetry, which is broken by the presence of the
magnetic field), and the XY spin glass with
Dzyaloshinsky-Moriya interaction and Gaussian ran-
domness (XYDMG) and with bimodal randomness
(XYDMB). These five models can be classified according
to their symmetry properties: the models I, GG, SGG,
and XYDMG all show local gauge invariance, whereas
the models XY and XYDMB do not. Second, the models
GG, SGG, XYDMG, and XYDMB break time-reversal (or
reflection) symmetry, whereas I and XY do not. Both
studies concentrate on the scaling behavior of the
effective coupling J(L) and involve a Migdal-Kadanoff
renormalization scheme (Cieplak et al. , 1992) as well as a
zero-temperature finite size scaling analysis (Cieplak
et al. , 1991; Gingras, 1992). Cieplak et al. (1991, study-
ing the models XY, SGG, and GG; 1992, studying XY,
XYDMG, GG) then propose that the decisive feature for
the existence of a finite-temperature glass transition is the
presence of local gauge invariance in the model, as they
find that all models showing gauge invariance are charac-
terized by a common exponent 0=0.26) 0, whereas the
XY model does not show spin-glass order in d=3. On
the other hand, Gingras (1992, studying the models GG,
SGG, XYDMG, and XYDMB) concludes that the impor-
tant difference between the various XY-type spin-glass
models is the breaking of time-reversal symmetry (see
also Gingras, 199lb): The results for the two-
dimensional case consistently give 0= —0.45 for all four
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models studied, hence dh )2. The numerical analysis in

3D is limited to two relevant sizes, 1.=3 and I.=4; how-

ever, the results again consistently produce an exponent
0=0.05 for the four models, indicating a lower critical
dimension d& below but close to three. In addition, real-

space Migdal-Kadanoff renormalization-group analysis
(for the gauge glass and for an XY spin-glass model with
random Dzyaloshinsky-Moriya interaction; see Gingras,
1991a), as well as numerical studies on Ising (Bray and
Moore, 1984) and on vector spin-glass models (Morris
et al. , 1986), indicate that 8(d =3)=8(d =2)+0.5, lend-

ing additional support for the results found by Gingras.
Note that this "gauge-glass" universality class is different
both from the Ising spin glass with 8(d =3 ) =0.2 and
from the XY spin glass with 8(d =3)= —0.5. Hence one
is tempted to conclude that the gauge-glass model does
indeed show a finite-temperature glass transition in three
dimensions and that the important difference from the
XF spin glass is the breaking of time-reversal invariance.
An additional interesting and important result provided
by the studies of Cieplak et al. (1991) and of Gingras
(1992) is that the breaking of spatial symmetry by the
magnetic field in a realistic gauge glass does not appear
to be crucial, since the two models SGG and GG produce
nearly identical results.

The early experiments on the history dependence of
the magnetization (e.g. , Muller, Takashige, and Bednorz,
1987) were interpreted in terms of the gauge-glass (or su-
perconductive glass) model (Morgenstern, Miiller, and
Bednorz, 1987). Later, the concept of pinning and (giant)
creep of vortices was invoked in order to analyze the
magnetic behavior of the new oxide superconductors
(Yeshurun and MalozemoS; 1988), which finally led to
the notion of the vortex glass (Fisher, 1989). Arguments
favoring the vortex picture over the superconductive
glass picture has been presented by Malozemoff, Krusin-
Elboum, et al. (1988) based on a careful analysis of ex-
perimental data in terms of the two models.

3. Vortex glass

Disorder plays a crucial role in the Abrikosov phase of
type-II superconductors. First of all, disorder destroys
the long-range order of the vortex lattice, and thus there
is no conventional off-diagonal long-range order in this
phase. Second, disorder leads to pinning of the vortex
lines and thereby produces a highly nonlinear dynamic
response of the system with a current-voltage charac-
teristic exhibiting a critical current density below which
dissipation is strongly reduced. Within the Kim-
Anderson theory, however, dissipation remains finite
down to vanishing driving forces. Hence the resulting
phase has the dynamic properties of a highly viscous
liquid. Alternatively, following the seminal work of Fish-
er (1989), the low-temperature phase of a bulk disordered
superconductor is a Uortex glass, which is a true thermo-
dynamic phase, characterized statically by the existence
of a nonvanishing Edwards-Anderson order parameter

(7.35)

with the gauge-invariant order parameter t(r)
=%(r)exp[i(2nl@o) f'A dl]. Dynamically this phase
is characterized by a zero resistivity p at vanishing driv-

ing force, p(j~0)~0. These two requirements can be
understood as a consequence of the development of
infinite barrievs in the system, which lock the vortices
into a specific state.

One of the most important questions then is whether
the vortex-glass exists in a bulk three-dimensional super-
conductor. In one attempt to answer this question it is
assumed that vortex glass and gauge glass belong to the
same universality class, since both models possess the
same kind of Edwards-Anderson order parameter. If this
is true, the results obtained for gauge glass could be
transferred to the vortex-glass problem and vice versa,
and numerical results indicating the existence of a
gauge-glass phase in 3D could be interpreted as giving
evidence for the existence of a vortex-glass phase in 3D.
However, in spite of being closely related, the two models
need not to be identical, as the following discussion
shows.

First, in studying the vortex-glass problem we should
start from a system with vortices, i.e., a system of line ob-
jects, directed along the external magnetic field on aver-
age. Hence there is no obvious reason for such a system
to be isotropic (even without the anisotropy of the oxide
superconductors taken into account). In the absence of
disorder, both the vortex lattice and the disentangled
vortex liquid discussed in Sec. V.B above are clearly an-
isotropic phases, within a finite superconducting response

j,= —p", A, present along the direction of the magnetic
field, but with a metallic behavior in response to a trans-
verse current density jlH. On the other hand, isotropy is
restored in an entangled vortex liquid, which has the
same large-scale properties as a normal metal; see Sec.
V.B. Second, let us introduce disorder into the system
and characterize its strength by the zero-temperature
critical current density ratio j, /jo « 1. When the disor-
der is weak with respect to the strength of thermal Auc-

tuations, j, /jo «Gi', the melting line is not strongly
affected by the presence of disorder, and therefore the
vortex-glass phase should continuously grow out of the
vortex lattice, which is anisotropic. Moreover, the non-
linear vortex-glass current-voltage characteristic at low
current densities is clearly anisotropic. The energy bar-
riers U(ji) for a transverse current density ji scale as
U( ji ) ~ ji " with p & 1, whereas the barriers for a longi-
tudinal current j~~ scale as U(j~~) j~~ even in the ab-

sence of pinning. Therefore it is quite natural to suspect
that the vortex-glass phase itself, as well as its critical
behavior near the transition (assuming that the latter is

Here we are not addressing the stability of the low-field part
of the melting line (see Sec. V.A.2 above) with respect to disor-
der. See Sec. VI.C for a discussion of this point.
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continuous), should be anisotropic. On the other hand, if
the disorder is sufficiently strong, with Gid
=(j, /j, ) ))Gi (which is definitely not the case in the
high-temperature superconductors but which can be real-
ized quite naturally in conventional type-II superconduc-
tors), the vortex-glass transition can arise directly out of
the isotropic entangled-vortex-liquid (i.e., normal) phase,
in which case there is no reason for the vortex-glass tran-
sition to be anisotropic, and thus it should indeed be
equivalent to the gauge-glass transition. Such a strongly
disordered situation has been considered by Fujita, Hi-
kami, and Larkin (1991), who obtained a gauge-glass
transition of the percolation type for a three-dimensional
dirty superconductor in fields H~GidH, (0) [the ratio

2

8'/5 in the paper of Fujita et a/. is equivalent to
(Gid /Gi)' in our notation].

Let us mention an additional argument why the low-
disorder vortex glass could be different from the strongly
disordered gauge glass. In spite of the absence of posi-
tional long-range order in the vortex-glass phase, there is
still a considerable amount of short-range crystalline or-
der present (see Sec. IV.F). This feature, which seems to
be irrelevant in the droplet approach, does make a
difference within a mean-field theory involving replica
symmetry breaking, such as the one developed by
Bouchaud, Mezard, and Yedidia (1991). In fact, their
variational mean-field-like approach to describing the
pinned vortex lattice looks rather different from the ap-
proach of Parisi (1980) and Mezard et al. (1984) for the
spin-glass problem, whereas the corresponding approach
to the gauge glass is equivalent to the spin-glass problem.
Finally, one should also keep in mind that the effect of
screening has been neglected in all of the gauge-glass
models considered so far (i.e., the magnetic field inside
the sample is considered to be uniform and equal to its
external value), whereas in a system of vortices the
penetration depth X is finite. On approaching the transi-
tion, this finite penetration length clearly becomes short-
er than the vortex-glass correlation length gv~, and
hence screening will change the nature of the interaction
on scales smaller than /vs. To summarize, it therefore
seems quite possible that the vortex glass in a weakly
disordered superconductor is not in the same universality
class as the gauge glass.

Another way of providing evidence for the existence of
a true vortex-glass phase has been proposed by Fisher
(1989). His attempt is based on a dimensional reduction
of the problem to two dimensions and consideration of a
toy model of vortices confined within a plane. Physical-
ly, such a model corresponds roughly to an extended
Josephson junction with the magnetic field applied paral-
lel to the junction plane. Once the existence of a glass
phase in the 2D toy model has been shown, one could
then argue that a corresponding phase should also exist
in three dimensions, where the effect of (thermal) fiuctua-
tions is reduced. Let us give a brief summary of the main
steps involved in this approach. First, the three-
dimensional vortex problem is mapped to a system of in-

teracting bosons in 2D at T=O (corresponding to a bulk
superconductor with L ~ oo ), where the boson world
lines R„(t) play the role of the vortex position R„(z); see
also Sec. V.B. The 3D disorder potential in the vortex
problem then maps to a random potential in the boson
problem, Auctuating both in space and in time. Calculat-
ing the ensemble average of the free energy by introduc-
ing n replicas (Kardar, 1987), one arrives at an effective
replicated boson Hamiltonian which, due to the presence
of the disorder potential, contains an attractive interac-
tion h~ between bosons belonging to different replicas
(see Sec. IV.F above). In 2D the bosons are expected to
bind into n-molecules. At T =0 the system will undergo
a Bose condensation, and it is argued that disorder is
relevant if the n-molecules survive this transition. Such a
scenario of course is very difficult to prove. However, as
pointed out by Fisher (1989), when reducing the model to
1+ 1 dimensions (corresponding to vortices confined to a
plane), the problem can be mapped to the two-
dimensional random-field XY model without vortices,
which has been studied by Cardy and Ostlund (1982). A
renormalization analysis shows that, depending on tem-
perature, the disorder parameter A~ will scale either to
zero (high temperatures, T )T ) or to infinity (T (T ).
In his analysis, Fisher (1989) obtains a finite T~ and cor-
respondingly a finite-temperature glass transition in the
original Aux-line model. On the other hand, Natter-
mann, Lyuksyutov, and Schwartz (1991) have shown
that, at least in the weak-field limit with ao ))A, , the sys-
tem always scales to a disorder-dominated phase, and
therefore the two-dimensional system is always in a
glassy phase (i.e., T = oo). Thus the question whether
the 1+1 vortex model exhibits a finite-temperature glass
transition or whether it remains within the glass phase at
all temperatures has not been settled at present. This
question is closely related to the possible decoupling tran-
sition of a layered superconductor in a parallel-field
configuration; see Sec. VIII.B.5: A finite-temperature
decoupling transition is equivalent to a finite-temperature
glass transition in the disordered 1+ 1 model. According
to Nelson (1993), both scenarios might actually be real-
ized at different field values, with a finite-temperature
transition T & ~ taking place at high field values and
T ~oo as the vortex density goes to zero (see Sec.
VIII.B.5 for more details).

The resulting glassy order in the 1+1 model turns out
to be marginal, with energy barriers scaling with lnl.
[Nattermann, Lyuksyutov, and Schwartz, 1991; Tsai and
Shapir, 1992; see also Toner, 1991b, who obtains a scal-
ing behavior (lnL)'~ for this model, and the discussion
between Toner, 1992, and Nattermann and Lyuksyutov,
1992]. Since the vortex-glass phase is stable in 2D, one
would expect on general arguments that such a phase
should also exist in a three-dimensional system. Howev-
er, for the present problem this conclusion seems to be
rather dangerous: First of all, the two- and three-
dimensional systems differ quite appreciably in that the
three-dimensional vortex lattice can suffer from disloca-
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tions and can even melt, whereas neither of these two
features is present in the two-dimensional toy model (see
also the discussion in Sec. VIII.B.5 below concerning the
absence of a melting transition in this system). Second,
the usual argument that thermal disorder is less impor-
tant in higher dimensions and therefore a thermodynam-
ic phase should be more stable does not trivially apply to
the present glass problem. Since the vortex glass is creat-
ed by a quenched disorder potential, it is important that
the effects of randomness remain strong as we go to
higher dimensions. However, as shown by Larkin (1970),
disorder becomes irrelevant in dimensions d )4, hence it
is unclear whether the quenched or the thermal disorder
is more strongly reduced as we go to higher dimensions.

We have discussed two approaches to the existence of
the vortex-glass phase in a 3D bulk superconductor-
one based on the similarity of the vortex-glass problem
and the gauge-glass model and a second based on a di-
mensional reduction scheme. Neither of these ap-
proaches seems to be able to provide convincing evidence
for the existence of the 3D vortex-glass phase and, even
worse, the results of the two approaches are in some
sense contradictory if they are not treated with the neces-
sary care. Let us discuss the problem in more detail.

Consider the approach based on dimensional reduc-
tion. The original 3D vortex problem can be viewed as a
problem in (2+1)-dimensional space, where we have split
the original three-dimensional space into a two-
dimensional planar component perpendicular to the field
direction and a timelike axis along the field itself. This
notation naturally bears out the anisotropy in the vortex
problem. When dimensionally reducing the problem, we
obviously can do it in two very different ways,
2+ 1 —+2+0 or 2+ 1~1+1. The 2+0 problem corre-
sponds to an assembly of vortices in a film with the exter-
nal field directed perpendicular to the film plane. This
system is known neUer to be in a glassy state, i.e., T =0
(see Sec. VIII.D.3 for details), hence the lower critical di-
mension is dI )2. Note that this 2+0 problem is isotro-
pic on large scales and probably equivalent to the gauge-
glass model in 2D. The 1+1 problem is completely
different: this system corresponds to the toy model de-
scribed above with the vortex lines confined to a plane.
The system is always in a glassy state, since T = ~,
hence dI ~ 2 (in fact D=2 is just the marginal dimension
for this problem, hence dI =2; see the above discussion).
Regarding symmetry, the system is obviously anisotropic.
Now, let us to back to 3D. The 2+0 problem can be ex-
tended to 3D in two ways: Using 2+0~3+0, we pro-
duce an isotropic three-dimensional model corresponding
to the gauge glass in 3D. This scenario is consistent with
a lower critical dimension larger than 2 for the gauge
glass, as shown in various numerical studies. The alter-
native way to go over to a three-dimensional model is via
2+0~2+1, producing an anisotropic model which we
associate with the vortex glass. The same model is ob-
tained when extending the 1+1 model to three dimen-
sions, 1+1~2+1. The lower critical dimension for this

—c(j,/j)"Ecce (7.36)

Equation (7.36) indicates that the dc resistance vanishes
in the vortex-glass phase and hence the latter can be
called a true superconductor; see Figs. 5 and 27. Second,
the result (7.36) immediately leads to the slow

model then seems to be dI=2. Hence again we obtain
strong indications that the vortex-glass model and the
gauge-glass model are not necessarily equivalent.

Finally, the existence of a true thermodynamic vortex-
glass phase in three-dimensional bulk superconductors
seems to be clearer for the situation where the pinning
potential consists of columnar defects, as they can be
created by irradiation with heavy ions (Civale et al. ,
1991; Gerhauser et al. , 1992; see Sec. IX.B). For the
case of vortices lined up with such columnar defects, the
disorder potential is mapped to a static random potential
in the boson problem (Nelson and Vinokur, 1992).
Strong arguments have been presented (Fisher et al. ,
1989b) that a glassy phase exists in the two-dimensional
disordered Bose system, thus indicating the existence of a
true thermodynamic vortex-glass phase for this special
defect structure.

After this discussion about the possible existence of a
true thermodynamic glass phase in bulk 3D supercon-
ductors, let us study the physical consequences of such a
state. Following Fisher (1989), the existence of a glass
phase has very interesting consequences for the (dynam-
ic) response properties of the system. Consider again the
2D toy model with vortices confined to a plane. The po-
sitions of the individual vortex lines can be specified by
the condition 2 (x,z) =2ml, i=integer, with 2 the vector
potential, 8 A =B(x,z). Within the vortex-glass phase
the symmetry 2 ~ A +2vrN, N =integer, producing a
shift of the vortex system by N lines, is broken. Hence
neighboring phases with N differing by unity are separat-
ed from each other by infinite barriers. For a finite
current density j producing a Lorentz force jB/c acting
on the vortices in phase N, droplets of phase N+1 can be
created by thermal activation over barriers Uz(L) which
diverge as the droplet size I goes to infinity. Creation of
such droplets can conveniently be interpreted as the for-
mation of a vortex loop. Assuming the vortex-loop area
S to scale with an exponent ~) 1, S ~ L, the energy of
the loop scales with L, where 0~ 9~a./2. The largest
exponent 0=~/2 is realized for a loop with nonzero line
tension and no relaxation of the other vortices. Expan-
sion of this loop finally requires overcoming barriers scal-
ing according to L ~, 8 ~ P & I~/2. Under the action of the
Lorentz force ~ jI ', the saddle point for the loop expan-
sion has a size L, , ~ j ' ' ', and hence the barriers
against droplet expansion (i.e., vortex motion) scale ac-
cording to Uz(j ) ~ j ", with p=g/(a. —8) (Fisher, 1989;
Fisher, Fisher, and Huse, 1991). Finally, droplet or loop
expansion produces a finite creep velocity of the vortices
and hence an electric field E that decreases dramatically
with vanishing driving force j,
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logarithmic-in-time relaxation typical of a glassy phase,
e.g. , the diamagnetic screening current j itself decays ac-
cording to j(r) ~ [ln(t/to )] '~" as t woo—(Fisher, 1989).

Assuming the existence of a true thermodynamic
vortex-glass phase in a disordered bulk type-II supercon-
ductor, the next question to be addressed is the nature of
the transition into this phase itself. At present, the order
of this transition seems rather unclear. Although the
transition to the Abrikosov lattice is continuous in
mean-field theory, according to Brezin, Nelson, and
Thiaville (1985; see also Aleck and Brezin, 1985), fluc-
tuations drive this transition first order in dimensions
d(6. Similarly, a dislocation-mediated melting transi-
tion of the Abrikosov lattice is also expected to be first
order (Marchetti and Nelson, 1990). Numerical evidence
for a first-order melting transition has been given by
Hetzel, Sudbd, and Huse (1992), while recent experiments
by Charalambous (1992), by Safar, Gammel, Huse, et al.
(1992b), and by Kwok et al. (1994a) support the presence
of a first-order transition. When a 6 T magnetic field is
applied to a clean untwinned YBCO single crystal, a hys-
teretic behavior is found in the linear-response resistance
measured as a function of temperature. Whereas weak
disorder is not expected to change the nature of the tran-
sition (Imry and Wortis, 1979; Pentegov and Feigel'man,
1988), the presence of strong disorder may turn the first-
order melting transition between the vortex lattice and
the vortex liquid into a continuous glass transition. If
this is the case, one can use a scaling analysis to describe
the static and dynamic behavior of the system within the
critical region around the transition (Koch et al. , 1989;
Fisher, Fisher, and Huse, 1991).

B. Vortex-glass scaling near Tg

In the following we discuss the transition into the
vortex-glass state as presented by Fisher, Fisher, and
Huse (1991). Following these authors, we assume a con-
tinuous glass transition at T, where the vortex-glass
correlation length gvo(T) ~ T —

T~~
" and the charac-

teristic relaxation time rvo(T) o- Pvo( T) both diverge [cf.
Eqs. (7.25) and (7.26)]. Furthermore, we assume that the
scaling behavior of the system is isotropic. Hence instead
of having two exponents v~~ and v~, describing separately
the divergence of the correlation length gvo(T~ Tg ) for
directions parallel and orthogonal to the magnetic field,
the following analysis will consider only one exponent
v=

v~~
=v~. Therefore the present discussion does not

contain any feature reminiscent of vortex lines, and we
believe that the results described below apply rather to
the isotropic gauge glass, while their application to the
anisotropic vortex glass seems less evident. The glass
correlation length gvo determines the long-distance
behavior of the vortex-glass correlation function

(7.37)

A mean-field analysis of this transition has been carried

out by Dorsey, Huang, and Fisher (1992). They find a
glass transition that is isotropic and characterized by the
mean-field exponents v=-,' and z=4. The upper critical
dimension above which these results are expected to be-
come exact is d„=6. In terms of these characteristic pa-
rameters, then, the vortex glass is very similar to the Is-
ing spin and to the gauge glass. In the approach of Dor-
sey et al. , no short-range structures such as vortex lines
are present, explaining why their glass transition appears
to be isotropic. Moreover, the glass transition tempera-
ture Tg(H) obtained by Dorsey, Huang, and Fisher ap-
proaches zero in the limit of small disorder and not the
melting line T (H), which again can be attributed to the
absence of any short-range structure. However, some
caution is in order here. Since their analysis is based on
the first Landau-level-approximation, it is unclear wheth-
er the extrapolation to zero temperatures can be carried
out, as this approximation usually works best close to the
upper critical-field line.

The assumption of a continuous transition character-
ized by the diverging length and time scales g'vo and rvo
allows us to predict the response of the system in the vi-
cinity of the critical regime. Let us first concentrate on
the transition itself. The following scaling analysis pre-
dicts an algebraic current-voltage characteristic at the
transition. Since the vector potential A scales as an in-
verse length, the electric field E ~B, A is expected to
scale like 1//volvo, hence Egvo' is an appropriate scal-
ing combination. On the other hand, since j ~ d~ f, with

f denoting the free-energy density, the scaling combina-
tion for the current density is jgvo'. Hence we obtain
the scaling ansatz

E "4o'+"e+(Jkvr, ') . (7.38)

Let us first concentrate on the current-voltage charac-
teristic (7.38). Above T, we expect the response to be
ohmic at large scales, L )gvo. Large distances, L )gvo,
are probed with small current densities, j (j+ ~gvo".
Hence the scaling function e+(x) vanishes linearly in x,
e+(x~0)-x. Below T~, the system shows a glassy
response at large scales, L )gvo (i.e., small current den-
sities j (j ~ gvo"), and the scaling function e takes
the form e (x —+0)—exp( —a /x ~). Approaching the
transition, the diverging length scale in Eq. (7.38) has to
cancel out, and hence e+ (x ~ ao ) -x with
a = (z + 1 ) /(d —1 ). We then obtain the following gen-
eral behavior for the current-voltage characteristic in the
vicinity of the glass transition: Right at the transition
the current-voltage characteristic shows power-law
behavior, with

The ansatz (7.38) is consistent with that obtained for the
complex conductivity o(~)=p, /( ice+a) —Since .the
superAuid density p, scales with length according to

p, ~ g
" (Fisher, Barber, and Jasnow, 1973), we expect a

scaling law for the complex conductivity of the form

(7.39)
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~ (z+1)/(d —1). (7.40) t::'.:-l liquid vrouw glass

Since we expect z & 4 in 0=3, an exponent a & 2. 5 is pre-
dicted. Above the transition, the characteristic should
change from ohmic behavior, with log E Tg

p ( 7) o ( T T )
v( z + 2 —d ) (7.41)

at small current densities, j (j, to power-law behavior
at large current densities, j & j„+. The crossover current
density j„+ vanishes on approaching the transition tem-
perature according to

j+ ~(T T )v(d —1)
X (7.42)

Below the transition, the crossover between the small and
large current density regimes separated by j changes
the characteristic from glassy

—~(j, Ij)"E face (7.43)

at low current densities to (critical) power-law behavior
at large current densities. Again, the crossover current
density j scales according to

~ ( T T)v(d —1)
X g (7.44)

An (experimental) analysis of the current-voltage charac-
teristic in the vicinity of the transition into the glass
phase can then be used to extract the scaling exponents z
and v (see Fig. 29). The slope of the power-law charac-
teristic at T in a log-log plot provides a measure of the
dynamic exponent z. Determining the crossover current
densities j and j makes possible an estimate of the
static exponent v. Finally, a measurement of the resis-
tivity p(T) above T provides a consistency check for the
two exponents z and v. The vortex-glass exponent p
determining the response below T is usually dificult to
measure.

The first analysis of this type providing experimental
evidence for a continuous transition into a vortex-glass
phase was performed by Koch et al. (1989). The experi-
ments were carried out on epitaxial thin films of
YBazCu3Q7 y deposited by laser ablation onto SrTiQ3
substrates. The large critical current densities, j,(T=77
K, H =0)) 10 A cm, indicate the presence of rather
strong pinning (large disorder) in these samples.
Magnetic-field values ranging from 0.5 T to 4 T were
studied. The exponents z and v, as determined from the
power-law characteristic at Tg and the crossover current
densities j„and j above and below the transition, are
z=4.8+0.2, v =1.7+0.4, and v =1.5 —2.0. The con-
sistency check on p(T) provides z =4.8, v=1.7, in good
agreement with the previous independent measurements
of z and v. The vortex-glass exponent p, obtained by
fitting the characteristic to a form (7.43) takes the value
p=0.4+0.2. Qne should remark that a large dynamic
range is needed in order to distinguish vortex-glass
behavior (7.43) from a simple power-law characteristic.
As pointed out by Coppersmith, Inui, and Littlewood
(1990), the evidence for a vortex-glass transition provided

log j

FIG. 29. Current-voltage characteristic of a superconductor in
the mixed state, taking thermal as well as quenched disorder
into account. The plot contains all the relevant information on
the dynamic response of the vortex system, allowing us to ex-
tract from it the vortex-glass scaling laws for E(j), p(T), and

j—(T), as well as the glass exponent p. At the glass transition

Tg the characteristic is algebraic, E ~j, with
o.=(z+ 1)/(d —1). Above T~ the system is a liquid over large
distances, with p ~ (T—

Tg )"'+ "', and critical at small dis-
tances. Below T~ we have a glassy response at large distances,
E ~exp[ —c(j,/jP'], and again a critical behavior at small
scales. The crossover current densities j—separating the criti-
cal behavior at small scales (probed by large current densities)
from the liquid/glassy response at large distances (probed by
small current densities) scale as j„—~ ~T —T

~

"d ". Typical
values for the correlation length exponent v[gvo~ ~T —T

~

"]
and the dynamic exponent z [rvo ~ go] are v= 1/2, z =4 in the
mean-field approximation and v = 1—2, z =4—5 as extracted from
various experiments.

by the experiment of Koch et al. (1989) is not conclusive,
as their data can be reinterpreted in terms of a standard
Anderson-Kim Aux-creep model. However, according to
Koch, Foglietti, and Fisher (1990), the analysis based on
the Aux-creep model relies on a rather strong tempera-
ture dependence of the activation barrier
U( T) ~ ( T, —T) and also produces a systematic smear-

ing in a scaling plot near criticality, a feature that is not
present in the experimental data. The data of Koch
et al. have also been reanalyzed by Jensen and
Minnhagen (1991) in terms of a vortex-unbinding transi-
tion with a surprisingly good agreement between theory
and experiment.

Additional support for the existence of a vortex-glass
transition has been provided by Czammel, Schneemeyer,
and Bishop (1991). Their experiments were carried out
on microtwinned crystals of YBazCu307 using SQUID
picovoltometry, allowing for an extension of the dynamic
range of the experiment by about four orders of magni-
tude in current density and about six orders of magnitude
in electric field as compared with the original experiment
by Koch et al. (1989). Magnetic-field values in the range
1 —6 T were analyzed. The exponents z and v, obtained
from the current-voltage characteristic at T and the
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crossover current density j„+, were z =3.4+1.5 and
v+ =2.0+1.0. The consistency check based on the scal-
ing behavior of the resistivity (7.41) gave v=2. 0+1.0 and
z =4.3+1.5. Transforming the crossover current j„+ to a
length scale for thermally active droplets

gd -(cT—/C&,j„+)', Gammel et al. found typical scales

gd
—15 )Mm, which is about 50 times larger than the

length scales probed in the experiment of Koch et al.
(1989). Finally, a scaling plot of the data,

0( T)
1

7 vo.
(7.48)

E ~ j(z+1)/(d —1)
( gd

—1 (7.49)

The dynamical analysis of the current-voltage charac-
teristic at Tg produces a crossover current density

j„~co /'. Following Olsson et al. (1991), we recall that
the current-voltage characteristic at Tg is expected to
obey the scaling law

jp
(7.45)

with p+(x ~0)~0 and p+(x ~ m )~vr(2 d+z)/2z-
(Dorsey, 1991),so that at the transition,

a(~) ~ ( —iso)'" (7.47)

Above the glass transition temperature T, a crossover
from a frequency-independent to a frequency-dependent
response is expected for co )0( T), with

provides evidence that the experiment cannot be inter-
preted in terms of thermally assisted Aux Aow. Unfor-
tunately, a plot of the data by Koch et al. within the
same graph shows considerable disagreement with the
data of Gammel et al. , which can be interpreted as a
lack of universality. More recent data by Yeh et al.
(1992) carried out on YBCO single crystals produce
somewhat smaller values for the critical exponents v and
z. Based on dc and (low-frequency) ac transport mea-
surements, Yeh et al. find the values v=0. 9+0.2 and
z =2.0+0.2. Given the rather large error bars in the re-
sult of Gammel et al. , the two sets of exponents are not
inconsistent.

SQUID piocvoltometry has also been used to investi-

gate the glass transition in a strongly layered BiSCCO
single crystal (Safar, Gammel, Bishop, et al. , 1992), with
results compatible with those obtained in the YBCO sin-

gle crystal. The analysis of the resistance above T yields
the product v(z —1)=7+1, which is close to the value
6.5+1.5 observed in the microtwinned YBCO single crys-
tal. Finally, a scaling analysis of the glass transition per-
formed on a polycrystalline (i.e., ceramic) YBCO sample
by Worthington et al. (1991) yields a set of exponents
consistent with those obtained by Koch et al. (1989) for
the thin film: z =4.6+0.2 and v=1.1+0.2.

Let us turn to the dynamic behavior of the system near
the transition. Analysis of Eq. (7.39) above, below, and
at the transition suggests the following behavior for the
scaling functions s+ and s (Dorsey, 1991; Fisher, Fish-
er, and Huse 1991): Above the transition,
0 (co—+0) —const and hence s+ (x —+0)—const. Below
the transition, (T(co~0) ~ 1/co and thus
s (x~0) o-1/( —ix). At the transition, /vs~~ and
hence s~(x~~ )~x with a=(d —z —2)/z. In addi-

tion, causality requires the phase angle y of
0 = ~o ~exp(iy ) to scale as

(7.46)

In order to obtain a finite result at T, the scaling func-
tion e (x,y) should depend only on the combination
xy ', so that

(7.50)

with e (x ~0)-x, a=(d —2 —z)/(d —1), and
e (x ~ ~ ) —const. We then expect the following dynam-
ic behavior characteristic of a vortex-glass transition:
Above the transition temperature Tg, we expect a finite
complex impedance Z(co) = 1/cr(co) at small current den-
sities, which becomes frequency dependent for co) 0( T).
At the transition, Z (1J) shows power-law behavior in fre-
quency, with Z(co) ~co' " ', and the phase angle takes
the universal value (n./2)(z —1)/z. Finally, mapping out
the current-voltage characteristic at T for finite frequen-
cies, one expects a power-law behavior at large current
densities, j )j ~ca ~', turning linear for current densi-
ties dropping below the crossover density j .

This scenario for the dynamic response of the system
in the critical regime has been experimentally analyzed
by Olsson et al. (1991). Again, the experiments were
carried out on a thin film characterized by a high critical
current density of the order of j,(77 K) ) 10 A cm in a
magnetic field H=0.55 T. The current-voltage charac-
teristic at T produced a dynamic exponent z=5.2, and
from an analysis of the crossover current density j+ an
exponent v=1.1 was extracted. The power-law depen-
dence of the impedance Z(co) ~co' "/' at T led to an
exponent z =5.9, whereas the determination of the phase
angle y gave a result z =5.6. A consistency check based
on the crossover frequency 0( T) produced the exponents
v=1.1 and z =5.2, and from the scaling of the crossover
current density j with frequency at Tg an exponent
z =5.2 was found. To summarize, analysis of the dynam-
ic behavior near T provides scaling exponents
z =5.2+0.6 and v=1. 1+0.4, which are consistent with
those obtained from static measurements.

To complete the discussion we also mention the nu-
merical work of Lee and Stroud (1991), who study the
current-voltage characteristic within a gauge-glass mod-
el. Performing a scaling analysis according to Eq. (7.45),
they find that their data collapse to a universal scaling
function if they use the parameter set, Tg 0 4 0 5 z 4,
and v=0.5. These exponents coincide with the mean-
field values and are somewhat smaller than those found
experimentally.

The above experiments lending support to the ex-
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istence of a continuous phase transition into the glass
phase were all carried out on (strongly) disordered sam-
ples, either thin epitaxial films with high critical current
densities or heavily twinned crystals or polycrystalline
material. Also, one should note that, in spite of the very
high sensitivity achieved in the experiment of Gammel
et al. (1991), the vortex-glass transition in the current-
voltage characteristic is rather dificult to observe in a
single crystal as compared with the thin-film data
presented by Koch et al. (1989). The idea of relating the
continuous glass transition with strong disorder finds ad-
ditional support from the experiments of Worthington,
Holtzberg, and Feild (1990). In their experiments on a
single crystal characterized by a smaller critical current
density (i.e., weaker pinning) than that for thin films,
they find no indication of vortex-glass scaling whatsoev-
er.

C. Vortex-glass dynamics —collective creep

The fundamental feature of the vortex-glass phase is
the existence of diverging barriers which lead to the
quenching of the dynamical degrees of freedom into a
specific state. As a consequence, the vortices become im-
mobile and the resistivity at vanishing driving force is
zero. Hence the glass phase describes a true supercon-
ductor. Since the vortices are frozen into their positions,
the topological part of the phase of the wave functions is
also quenched, and only the nontopological component
can produce (Gaussian) fluctuations. However, the latter
are not expected to lead to dissipation, as they do not
contribute to the reduction of the overall phase gradient
set up by a macroscopic transport current.

Barriers diverging for vanishing driving forces have
been predicted by several authors (Feigel'man, Geshken-
bein, Larkin, and Vinokur, 1989; Fisher, 1989; Natter-
mann, 1990; Fisher, Fisher, and Huse, 1991). Here one
should distinguish between the phenomenological scaling
approach of Fisher (1989) and of Fisher, Fisher, and
Huse (1991), which is based on the droplet model, and
the analysis of Feigel'man et al. (1989) and of Natter-
mann (1990), who develop their theory starting from an
elastic Hamiltonian, which is perturbed by the presence
of a quenched disorder potential. The droplet model of
Fisher, Fisher, and Huse (1991) provides a very general
approach to the problem. The only starting assumption
to be made is the rigidity of the vortex-glass phase, pro-
ducing a positive scaling exponent 0 for the wall or drop-
let energy Ed(L}~L (we express all the scaling laws
through the longitudinal length L ). Introducing two
more scaling exponents, one of the droplet volume (loop
area) Sd ~L and a third describing the scaling behavior
of the energy barriers Ud(L) ~L&, allows for the deter-
mination of the barrier dependence on the driving
current density j. Balancing the Lorentz force energy
~ jI. against the droplet energy ~I. , one arrives at an
optimal droplet (loop) size L, , ~ j '~' ', and inserting
this result back into the expression for the barrier Ud,
one arrives at

v=
~—0

(7.51)

2$d „+d—2
(7.52)

depending on only one exponent gd „as compared to
three in the droplet model. Furthermore, this exponent is
at least approximately known through general considera-
tions regarding the statistical mechanics of elastic mani-
folds subject to quenched disorder; see Sec. III.F. The
price to be payed for this very specific result lies in the
assumptions to be made about the elasticity of the lattice
and the existencc of a unique energy scale in the problem.
Here, one should point out that the result (7.52) is not the
primary consequence of randomness in the problem, but
rather is due to the elasticity of the manifold. Random-
ness plays an important role in the determination of the

The allowed values for the exponents ir, 8, and g are con-
strained by the conditions ir) 1 (loop area), 8)0 (rigidi-
ty), 0~1'/2 (maximal energy cost of a loop excitation
with no relaxation), and 8~ P~v/2 (barriers between
metastable states), hence 0 (p ~ 1. It has been argued
(e.g. , Dekker, Eidelloth, and Koch, 1992) that a small ex-
ponent, p &(1, is obtained if the vortex glass is close to
its lower critical dimensionality, where by definition 0
vanishes. However, in order to reach this conclusion one
has to assume that / =8, which is exactly the assumption
made by Ioffe and Vinokur (1987), saying that at a given
length scale the system develops only one relevant scale
in energy. Furthermore, the closeness of the vortex-glass
problem in three dimensions to its lower critical dimen-
sion is usually concluded from numerical studies of gauge
glass, and it seems rather unclear at this stage if and un-
der which circumstances (e.g. , strong disorder) the above
results can be applied to the vortex-glass problem.

The starting point of weak collective pinning theory is
the elastic free energy [Eq. (4.3)]. The approach is per-
turbative, as one starts with an elastic property for the
vortex lattice which then is assumed to be preserved in
the presence of weak disorder. Viewing the vortex lattice
in its pinning potential as an elastic manifold subject to a
quenched disorder potential, one can draw from the
many results obtained in this field concerning the
wandering exponent gd „and the stiffness exponent

yd „=2(d„+d—2. Following Ioffe and Vinokur (1987),
we make the additional assumption that at a given length
scale there is a unique energy scale in the system, hence
the barriers between metastable states are expected to
scale in the same manner as the Auctuations in the energy
of the metastable states themselves, that is, /=8 in the
notation of the droplet model. Thus no additional ex-
ponent occurs, but the barriers, too, are expected to scale
with the sti6'ness exponent gd „. Determining the dimen-
sions of the saddle point and their dependence on the
driving current density j by the usual dimensional esti-
mates, and inserting the result back into the scaling ex-
pression for the energy barriers, one arrives at (non-
dispersive regime)
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numerical value for the exponent gd „,but, it is not cru-
cial for the existence of diverging barriers in the system
(see Sec. IV.E). The numerical values for the glassy ex-
ponent p, obtained within the elastic theory, are p= —,', —,',
9 and —,', depending on the length seal e probed by the
current j. This dependence on external parameters such
as magnetic field, temperature, and current density is due
to the rich internal structure of the vortex lattice, as dis-
cussed in Sec. IV.B. The smallness of the exponent —,

'

within the single-vortex pinning regime is a consequence
of the closeness to marginality of the string problem in
3D. The value p= —,

' seems to be a lower bound for the
elastic manifold in 3D. The elastic energy C(u/L) L
scales at least with L. From the competition with the
Lorentz force one obtains the minimal scaling
L, , ~j '~, hence U(j) CC j '~ . The largeness of the
exponent p= —,

' for the small-bundle regime is mainly a

consequence of the rapid growth of the bundle with de-
creasing current density, due to dispersion in the elastic
moduli. Finally, p= —', is the result for a homogeneous,
elastic manifold. A variation of the glass exponent p
with temperature, current, and field in rough agreement
with the predictions of collective creep theory, has been
observed by Thompson et al (1991 . and unpublished
work).

One should note that both the collective creep model
and the phenomenological scaling approach proposed by
Fisher, Fisher, and Huse (1991) belong to some kind of
droplet model, with the consequences (e.g., regarding the
structure of the phase space) known from our discussion
of the spin-glass and gauge-glass problems above. In par-
ticular, we can ask ourselves what predictions will be
made by a mean-field theory of vortex glass and how
these predictions compare with experiment. A very in-

teresting approach to a mean-field-like theory for the
vortex-glass phase has been developed by Bouchaud,
Mezard, and Yedidia (1991, 1992). In order to solve the
statistical mechanics problem of a system of vortices sub-

ject to a weak random potential, they apply the replica
formalism and use a self-consistent variational technique
to find the best quadratic approximation to the resulting
Hamiltonian in the replicated system. The solution that
preserves the replica symmetry essentially reproduces the
perturbative results of the Larkin model. More impor-
tantly, they present a replica symmetry-breaking solution
that produces results in qualitative agreement with those
of the collective creep theory as developed by Feigel'man
et al. (1989), at least within the intermediate regime,
where a simple continuum elastic theory can be applied.
In particular, they obtain the Flory exponent gi z= —' pro-
ducing a glassy exponent p= —,', , whereas the correspond-

ing results of the collective creep theory in the nondisper-
sive regime are f32= —,

' and p= —,'. At larger length

scales, however, there is a qualitative disagreement be-
tween the results obtained by Bouchaud, Mezard, and
Yedidia and those of Nattermann (1990). The mean-field
theory produces g3 2= —,

' and p= —'„whereas Nattermann

C11

c44

1/2 (7.53)

finds (32=0 and p= —,'. The results f32 g and p= —',
describing the large-scale asymptotics of the system ap-
pear to be rather strange, since the natural expectation is
to find smaller exponents as the disorder becomes less
relevant, when the Auctuations in the displacement field
( u~(r) ) grow beyond the lattice constant a, at large dis-
tances. We suspect that the above unexpected result
could be due to an incorrect treatment of the lattice
periodicity in the mean-field approach. In fact, most re-
cently, Giarnarchi and Le Doussal (1993) and Korshunov
(1993), using the method of Bouchaud, Mezard, and
Yedidia, have obtained results in agreement with those of
Nattermann (1990). The analytical approach developed
by Bouchaud, Mezard, and Yedidia seems to be very use-
ful and promising, as it actually allows us to derive the
important relations between the relevant space and ener-

gy scales of the fluctuations in the system. Moreover, it
produces the first derivation of the hierarchical structure
of valleys in a system with well developed local order (as
opposed to models with complete randomness, such as
spin glass and gauge glass).

Experimental investigations on the properties of the
vortex-glass phase have been carried out by Dekker,
Eidelloth, and Koch (1992). The experiments involve
three different films characterized by a high critical
current density of j,(77 K) —10 Acm, and thus the
films are expected to be highly disordered. A scaling
analysis of the glass transition provides the exponents
v=1.8+0.2 and z=6+2. An analysis of the current-
voltage characteristic at low temperature leads to a glass
exponent p that depends on current density j and that
decreases from a value p= 1 at high current density to
p=0. 2 at low j. Elastic theory predicts first an increase
in the glass exponent from —.',— to —,', followed by a decrease
in p via —,

' to —,
' with decreasing current density j. For

fields H )B,b=6 T, the initial rise in p is cut off.
Whereas the decrease of p with decreasing current densi-
ty seems consistent with elastic theory, the numerical
values found in the experiment clearly lie below expecta-
tions. Under certain conditions (assuming 0=/ as well
as equivalence between gauge glass and vortex glass), one
might argue that the droplet model, which allows for ar-
bitrarily small values of p (restricted only by the close-
ness of the system to its lower critical dimension), fits the
experiment better. On the other hand, smaller glass ex-
ponents are obtained within collective pinning theory if
one allows for a decay of the shear modulus on large
length scales. Let us assume that at very large length
scales, R )R„ the shear modulus is renormalized to
c«(E) ~E ~, say, by the presence of dislocations. At
large length scales, R )k, the elastic moduli are non-
dispersive and we obtain

1/2c66(Z')
LO=Rj ~L,

C44
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Using Nattermann's result for the scaling behavior of the
pinning energy, 6„;„~&V exp[ —(5u/a. }~j at large dis-
tances, R )R„we obtain a wandering exponent /=0.
From a comparison of the compression energy
c

& ~ ( u /R
~~

) V with the energy gain due to the I.orentz
force, we find the scaling behavior R~~(j) ~j '; hence
the activation energy c

& & ( u /R
~~

) R
l
R iL depends on the

driving current density j according to U(j) ~j " with
p= I/2(1+13). Thus we see that a renormalization of the
shear modulus at large distances does lead to a reduction
of the glass exponent p. However, it is important to real-
ize that the exponent P cannot be arbitrarily large. In
fact, there exists an upper bound on P beyond which the
structure factor will vanish rapidly enough at large time
scales to transform the glass phase into a liquid. The pre-
cise value of this upper bound is not known at the mo-
ment, but it seems that it should be less than 2, hence

p ~ —' at very low current densities.
Let us return to the elastic theory of the vortex-glass

phase and ask ourselves if this theory is consistent. Does
disorder destroy the elasticity of the manifold and turn it
into a liquid or are the elastic properties also preserved in
the disordered glass phase? It has been argued (Fisher,
Fisher, and Huse, 1991) that disorder leads to the appear-
ance of dislocations in the lattice at scales R )R, [=lat-
tice correlation length, ( u (R, ) ) =a, ], so that the sys-
tem may turn into liquid at large length scales. We then
have to distinguish between dislocation loops and infinite
dislocation lines. The presence of dislocation loops,
(which are thermodynamic objects, in that they can be
excited by thermal fiuctuations) will renormalize the
shear modulus at large distances to a smaller but finite
value. Hence one expects the elastic properties of the lat-
tice to be preserved. Note that dislocation loops in the
vortex lattice do not carry magnetic Aux, since the two
edge dislocations (directed along the field) are bound to
lie within the same sliding plane for topological reasons
(no magnetic monopoles). To drive the shear modulus all
the way to zero requires a finite density of injtnite dislo-
cation loops. We then have to address two problems:
First, we should ask ourselves whether infinite disloca-
tion loops are thermodynamic objects, i.e., is the energy
necessary to create such an object finite or infinite? In
order to obtain a finite energy of creation, the energy
gain due to a favorable accommodation of the vortices to
the disorder potential has to match the elastic energy to
be paid for the creation of the dislocation line. It seems
to us that for weak disorder the total line energy (energy
per unit length) is nonzero, and therefore infinite disloca-
tion lines are not thermodynamic objects. A proof of this
statement seems to be possible within the approach
developed by Bouchaud, Mezard, and Yedidia (1991).
Second, if contrary to our expectations, disorder is
indeed able to generate infinite dislocations in the system,
or if such infinite dislocations have been frozen in upon
cooling the system from the high-temperature vortex-
liquid phase through the melting transition, these objects
will appear in definite places where the vortices can ac-

commodate favorably to the disorder potential. Howev-
er, this is tantamount to saying that the dislocation lines
will be pinned by the disorder potential. Pinned disloca-
tion lines are unable to drive the shear modulus to zero,
and hence we expect that the elastic properties of the
original vortex lattice are not destroyed by weak disor-
der.

Additional support for the correctness of the above ar-
guments can be drawn from an analysis of the results
provided by the dynamic approach, results which provide
information about the perturbative relevance of disorder.
Starting out with a liquid phase, we find that the relative
velocity correction 5v/v remains finite (see Sec. VI.A),
hence disorder is perturbatively irrelevant, and the sys-
tem remains a (pinned) liquid. This has to be contrasted
with the situation in which we start out with a vortex lat-
tice. Here the correction 5U/U diverges, which signals
that disorder, however weak, will drive the static vortex
lattice into a glass. One could then argue that extrapola-
tion down to zero driving force U is dangerous and that
the resulting phase is not a solid glass but again a liquid.
However, it seems that such an argumentation is in-
correct and that it fails to capture the essential physical
difference between the two starting points, the liquid and
the lattice. Let us discuss this important difference in
more detail.

It is generally believed that a single vortex in three-
dimensional space is in a glassy state. Going over to a
vortex lattice, the interactions between the vortices
suppress the effect of thermal fluctuations, and hence one
would expect the instability to be stronger for a lattice
than for a single line. The question to be asked then is
"why is there a liquid?" The basic reason for the ex-
istence of a liquid phase is found in its dynamical proper-
ties. In a vortex liquid the vortex lines Auctuate in such a
way as to completely average out the effect of the disor-
der potential; hence the liquid cannot be pinned. By con-
trast, a vortex lattice develops a spatially inhomogeneous
structure that can be pinned by the disorder potential.
Accordingly the translational symmetry properties of the
lattice play no role whatsoever. Any spatially inhomo-
geneous static structure will do. Therefore the crucial
difference between the lattice and the liquid is not the ex-
istence of LRO but their different dynamical properties.
This can be nicely understood by a closer inspection of
the dynamic approach. A careful analysis of the origin of
the divergence in 5v/v shows that it is the dynamic
behavior of the structure factor that is decisive for the re-
sult. We then should ask ourselves what effect the (static)
disorder potential can have on the dynamic properties of
the Aux-line lattice. It seems rather unlikely that static
disorder enhances the dynamic Auctuations. On the con-
trary, it seems that disorder tends to suppress the dynami-
cal degrees of freedom of the vortex lattice. At least, this
is obviously the case for the diffusive behavior of a single
string in a disordered potential, which is reduced from
an algebraic ( u ),I, o- t '~ to a logarithmic
((u )) ~ [lnt] ~ ~ ~ ' behavior in the presence of disor-
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der. This result follows trivially from rewriting the
relevant barriers for creep motion as a function of dis-

dnplacement, U ( u ) =E, u /L with L ~ u '", and using
the connection between the relevant barriers for different
times scales, U(u)= T ln(tlt, ). Since we do not expect
that static disorder will change the dynamic properties of
the vortex lattice, we argue that the divergence in the
response as obtained within the dynamical approach
indeed signals the transition of the lattice into the glass
phase. In summary, then, we believe that the perturba-
tive approach to the vortex-glass phase based on elastic
theory is internally consistent and that elasticity, which
is the crucial requirement in this theory, is preserved in
the glass phase.

Vill. LAYERED SUPERCONDUCTORS

From the materials point of view, the new oxide super-
conductors are layered compounds with building blocks
made out of conducting (metallic) CuO planes separated
by buffer layers which serve as a charge reservoir. The
transport properties are roughly uniaxial, with a large
anisotropy between the c axis and the ab planes due to
the layered structure and essentially isotropic behavior
within the CuO planes. For not too large anisotropy, a
description in terms of a continuous anisotropic
Ginzburg-Landau or London theory is applicable. On
the other hand, for very large anisotropy the discreteness
of the structure becomes relevant, and a description in
terms of a set of weakly coupled superconducting layers
is more appropriate. Such a description is provided by
the discrete Lawrence-Doniach (1971) model, which will
provide the basis for the discussion of the physics of lay-
ered superconductors presented in this section.

The criterion usually adopted to go from a continuous
anisotropic to a discrete layered description is the small-
ness of the coherence length g, along the c axis with
respect to the layer separation d as expressed by the di-
mensionless ratio r„=2/, (0)ld The ratio .r„ch r aca-

terizes the crossover from quasi-2D layered to continu-
ous 3D anisotropic behavior: For a large coherence
length g', (0), i.e., r„))1, the continuous description is al-
ways appropriate. On the other hand, for small z„«1,
a crossover will take place at a temperature
T„=(1 ~„)T,(T„where the—system behaves in a
quasi-two-dimensional manner at low temperatures,
T & T„, and exhibits 3D anisotropic behavior above T„
(Farrell et al. , 1990). In general, a continuous anisotrop-
ic description is app1icable to YBCO over a large temper-
ature regime, whereas the more strongly layered Bi and
Tl compounds belong to the class of materials with
w„« 1, and hence the Lawrence-Doniach model applies.
The layered organic superconductors of the BEDT-TTF
family are other candidates requiring a discrete descrip-
tion, and the most extreme members of this class of ma-
terials are the artificially grown multilayer structures of
PrBa2Cu307 and YBa2Cu307 (Triscone et al. , 1989,

1990; Li et al. , 1990; Lowndes et al. , 1990; Brunner
et al. , 1991; Jakob et al. , 1992) and the Mo Ge, „ICxe
system (White, Kapitulnik, and Beasley, 1991; Urbach
et al. , 1992).

It should be pointed out that the continuous anisotrop-
ic Ginzburg-Landau or London-based analysis often can
provide a rather good description of the physics of lay-
ered materials. For example, this is the case for the dis-
cussion of the elastic properties of the vortex lattice
within a wide angular regime, the reason being that the
nonlinear term in the Lawrence-Doniach model depend-
ing on the gauge-invariant phase difference between the
layers can be linearized in many situations (Brandt,
1992c). Other properties, e.g. , the thermodynamic prop-
erties of the superAuid or of the vortex lattice, can more
closely resemble those of a 2D superconducting film (with
a Berezinskii-Kosterlitz- Thouless-type behavior) than
those of a 3D bulk material. The question of continuous
anisotropic description versus discrete layered descrip-
tion therefore not only has to be decided by the smallness
of the coherence length g, with respect to the layer spac-
ing d, but depends strongly on the specific physical ques-
tion at hand.

In the following, we attempt to present the most prom-
inent additional features of the phenomenology of super-
conductivity that confront us when dealing with layered
materials. We start (Sec. VIII.A) with a description of
the vortex structure, which can differ quite appreciably
from the continuous Abrikosov vortex system. We then
proceed to the analysis of the thermodynamic properties
of layered superconductors in Sec. VIII.B. Section
VIII.C is devoted to the question of intrinsic pinning and
creep as originating from the layered structure, whereas
we concentrate on pinning by pointlike defects in Sec.
VIII.D.

A. Vortex structure

In a layered superconductor, the structure of the indi-
vidual vortices as well as that of the vortex lattice can be

pancake vortex

Qosephson string

FIG. 30. Single Aux-line structure in a strongly layered super-
conductor. The vortex line can be viewed as an array of pan-
cake vortices threading the individual superconducting layers
and interconnected by Josephson strings.
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strongly modified. In what follows, we first concentrate
on an individual vortex line which, unlike the continuous
Abrikosov vortex, is not a rectilinear object, but rather is
composed of so-called pancake vortices directed along
the c axis and joined by Josephson vortices whose axes
thread through the junctions between the superconduct-
ing layers [see Fig. 30 and Doniach (1989)]. After dis-
cussing the nature of Josephson and pancake vortices, we
shall concentrate on the lock-in transition. For magnetic
fields H nearly aligned with the superconducting planes
(but still a finite angle 8H )0 away from the planar direc-

tion), the vortices prefer to match up with the layered
structure so that the internal field is perfectly aligned,
6=0. Finally, we brieAy discuss the modifications of the
vortex-lattice structure in layered superconductors.

The basis for the phenomenological description of lay-
ered superconductors is given by the Lawrence-Doniach
model (1971; see also Bulaevskii, 1973; Klemm, Luther,
and Beasley, 1975; Efetov, 1979). The (Gibbs) free-
energy functional describes a discrete set of supercon-
ducting layers with order parameter %'„separated by a
distance d and coupled together by a Josephson term,

S[e„,A]= fd'Z. d y ~~+„~'+—~e„~'+
(2) 2'7T A( 2 )

i

(n+1)d+ %', + &exp dz 3,
2Md 0 nd

2 g2+Jd. ~

The above formulation allows us to make direct contact with the continuous anisotropic Ginzburg-Landau functional
(2.1) upon approximation of the discrete coupling term as a derivative along z; M denotes the effective mass along z, m is
the corresponding planar parameter, and s =m/M is the usual anisotropy parameter. The full functional (8.1) can be
treated in a London-type approximation by assuming a constant modulus %'„within the planes and allowing only for
phase degrees of freedom (currents),

2

Q[y„, A]= Jd R g V' 'y„+ A' ' + 1 —cos y„+,—y„+ j dZ 3,

8 BH
8m 4~

(8.2)

where we use

2m
(8.3)

With Eq. (8.3) we have adopted a particularly simple
description of the layered structure, in which we express
the (superconducting) properties of the CuO layers by the
period d of the layer structure and the planar bulk
penetration depth k. An alternative description is based
on the thickness d, of the superconducting layers them-
selves combined with the actual penetration depth k, of
the layer material. The two descriptions are related
through the equality d /A, =d, /A, , starting that the
superAuid sheet density has to be equal in the two ap-
proaches. For layered superconductors, the two quanti-

ties d and A, are well known, and it is appropriate to use
the first description in this case. On the other hand, for
artificially grown superstructures (such as the
Mo Gei /Ge system), the experimentally known pa-
rameters are d, and A,„and the second approach may be
more straightforward. The present description (in terms
of d and A, ) is appropriate as long as we are not interested
in variations (e.g. , of the magnetic field) on a scale z & d.
Furthermore, a splitting of the distance d into a layer
thickness d, and a layer separation d —d, would require
a more precise knowledge of the behavior of the order
parameter along the z axis, a subject that requires micro-
scopic considerations.

Variation of Eq. (8.2) with respect to the vector poten-
tial A and the phases y„provides us with the fundamen-
tal di6'erential equations for A and y„:

=0: X'~A"'=d y|(z —nd) A"'+ V"'
S A") 2~n

5Q' 4m .=0: 5A, = jJsin@„+& „,
Z C

(8.4)

(8.5)
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=0 A2 Q[2~y + V[2~ A[2~ =sin@ 1
—sin(p +1

59 2m'

2

0'n 0
(8.6)

Here, N„+1 „ is the gauge-invariant phase difference be-
tween the layers n and n+1,

(n + l)d
+n+1, n 0 n+1 9 n + dzA, ;

nd
(8.7)

c+o&»=
8 2~2A

=j'
A

(8.8)

A is the relevant phase screening length where nonlinear-
ities in the coupling between the layers are important,

' I/2

A=d (8.9)

jJ is the Josephson-coupling current density between the
layers,

and we have used a gauge with VA=O. Note that V' ',
6' ', and A' ' denote the planar components of V, 6, and
A. Equation (8.6) is equivalent to the current conserva-
tion law Vj=0. We now concentrate on (8.6) and study
in more detail the structure of a Josephson vortex.

1. Josephson vortices

We consider a magnetic Geld in the ab plane pointing
along the y direction and investigate the structure of an
individual Josephson vortex aligned with the y axis (Bu-
laevskii, 1973; Efetov, 1979; Clem and Coffey, 1990; Car-
ton, 1991). We choose a gauge with A =0 and A

depending only on x and z. Subtracting the phase equa-
tions (8.6) for n+ 1 and for n from each other and rewrit-
ing

2

t) (y„+,—p„)+ [8 A (nd d) —8 A„(nd)]=8„@„+,„— sin@„+,„,
0

we obtain a coupled set of equations for the gauge-invariant phase differences @„+,„(Bulaevskii and Clem, 1991),

Q 4&„+,„= [2sin@„+,„—stnC&„+2 „+&—sin@„„,]+ 2
sinC&„+, „. (8.10)

Outside a core region with dimensions A and d, the non-
linearities in the above equations and their discreteness
become irrelevant, and (8.10) can be approximated by the
continuum differential equation

p
2

B +E 8 — C&(r)=0 .X Z (8.11)

Indeed, it is easy to see that the screening current density
along the z axis in the continuum anisotropic description,

j,= (2eA!m)—~'Il~ sB,y=(c@,E/8vrkx), ,

becomes equal to the Josephson current density jJ at
x =A; hence, for distances x )A, the linearized continu-

um approximation provides a good description of the sit-
uation. On the other hand, for small distances, x & A, a
further increase in the current density j, is cut off by the
condition ~j, ~

(jJ, and the discreteness of the problem
becomes relevant. The second critical dimension d along
the z axis follows trivially from the scaling of z,
z =EA=d.

Equation (8.11) tells us that the driving (gauge-
invariant) phase diff'erences vanish due to screening on a
length scale A, /E along the x axis and on a scale A, along
the z direction. Since the phase difference is the quantity
driving the currents, we obtain a magnetic extent, A. /c,
(along x) and A, (along z), for the Josephson vortex (see
Fig. 31). On these magnetic length scales the Josephson

FIG. 31. Josephson vortex in a strongly lay-
ered superconductor. The usual normal core
of the Abrikosov vortex (dimensions sg and g
along z and x, respectively) is replaced by the
phase core (dimensions d and A=d/c along z
and x, respectively) within which the non-
linearity and the discreteness of the situation
are relevant. The region outside the phase
core is roughly equivalent to the correspond-
ing regime in an Abrikosov vortex with screen-
ing currents extending a distance A, along z and
A, /c, along x.
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I g'[b, ' —(v'"q „)']+1—I% „I'] Ie„ I

=0 . (8.13)

If a Josephson vortex directed along the y axis is present
between the nth and the (n+1)th layers, the phase y„(x)
will rapidly change on the scale A and we can approxi-
mate the derivative of the phase 8 y„=1/A. Combining
this estimate with (8.13), we obtain a suppression of the
order parameter %„ofthe order of

2

(8.14)

at the center (x=0) of the Josephson vortex. Thus, in
contrast to the Abrikosov vortex, where the large current
Aow near the core leads to complete suppression of the
order parameter, the suppression of the order parameter
in the superconducting layers is only weak when a
Josephson vortex is present.

In summary, within the core region A, d, the full non-
linearity and discreteness of the problem are relevant; the
gauge-invariant phase difference is large and changes rap-
idly; the current density reaches its maximum value jJ,
and the order parameter in the adjacent layers is (weakly)
suppressed. We call this region the phase core of the
Josephson vortex (see Fig. 31). We point out that this
core region differs substantiaHy from the core of an Abri-
kosov vortex, where the order parameter goes to zero on
the scales g' and Eg (note the equivalent ratio of length
scales d /A =Eg/g= E).

One should point out that the set of equations (8.10)
for the gauge-invariant phase differences is not specific to
the situation in which a field is applied parallel to the lay-
ers, but can be written in a more general form (Bu-
laevskii, Ledvij, and Kogan, 1992) if we replace the
derivative 8„ in (8.10) by the planar Laplacian 8 +c} .
The resulting equations have to be supplemented by
boundary conditions that describe the singularities in the

and Abrikosov vortices in an anisotropic superconductor
are roughly equivalent (Bulaevskii, 1973; Efetov, 1979),
apart from tiny corrections in the current Bow and the
magnetic-field pattern due to the layered structure (see,
for example, Coffey and Clem, 1990). Within the dis-
tances A (along x) and d (along z), we have to take into
account the nonlinearity and the discreteness of Eq.
(8.10). On these scales the phase is changing rapidly and
the current density j, reaches its maximum value jz at a
distance =0.88A away from the axis of the vortex (Clem
and Coffey, 1990). Furthermore, within this region the
order parameter is weakly suppressed in the layers adja-
cent to the axis of the Josephson vortex. We can deter-
mine this suppression perturbatively (Blatter and Gesh-
kenbein, 1992). The Ginzburg-Landau equation for the
order parameter %„(%'„"= 1) in the nth layer reads

'"v'(I+. Ie '")+ I+„I—I+„I'=0,
where we ignore the coupling to the other layers for the
time being. Separating Eq. (8.12) into real and imagi-
nary parts, we obtain for the real part

phase field produced by the vortices,

V'" r (V'"e„,„)—=a.a, C„,„—a,a„e„,„
=2' g [5(r—s„+) )—5(r —s„)],

(8.15)

where s„denotes the position of the singularity in the
phase y„corresponding to the vth vortex in the nth lay-
er. Note that a straight vortex with s„=s„+i pro-
duces no driving singularity for the phase differences

N„+& „,i.e., no screening currents crossing the layers are
set up. It is quite remarkable that such a closed set of
equations involving only the gauge-invariant phase
differences @„+&„can be found.

It is interesting to note that the Josephson vortex in a
layered superconductor is characterized by two length
scales, A =d /E and A,, =A, /E, along the x axis. This has
to be contrasted with the case of a Josephson vortex
placed in the junction between two weakly coupled bulk
superconductors, for which there is only one characteris-
tic length scale, AJ = [c@./16~ AjJ ]'», with A, being the
penetration depth of the bulk superconductors and jJ the
coupling current density of the junction. The difference
between these two cases can be understood in the follow-
ing way: Consider two bulk superconductors joined via a
junction characterized by its coupling current density jJ.
Let us place a vortex line in the junction and analyze its
evolution from an Abrikosov vortex at strong coupling
(jJ=j. ) to a Josephson vortex at weak coupling, jz ((j.
(Gurevich, 1992; see also Likharev, 1979). For jJ very
close to the bulk depairing current density jo, the Abri-
kosov vortex survives with a weakly distorted normal
core elongated along the plane of the junction. The pres-
ence of a normal core is due to the large screening
currents, j=j., fiowing within the region R (g around
the vortex center. As jJ drops below O.jJ, with the pre-
factor n ~ 1 still of the order of unity, the large screening
currents are cut off by jJ and the normal core disappears.
Instead, a phase core appears of size gJ —-g(j. /jJ) along
the junction, inside of which the screening currents are
large, of the order of jJ. As long as the core remains
smaller than k, the screening currents are only weakly
modified, and we still have two length scales along the
junction, with (J characterizing the width of the core
and the scale A. describing the How of the screening
currents. With a decrease in jJ, the phase core expands
until it becomes larger than the magnetic screening
length A, by the time the coupling current density has
reached a value jJ——j, /sc. As jJ drops below this critical
value, the transformation to the Josephson vortex, with
only one length scale kJ describing the phase, the
currents, and the field across the junction, has been
completed. The analogous discussion for a layered super-
conductor produces quite a different result. In a layered
material, the screening currents Aowing perpendicular to
the planes not only have to cross a single junction, but
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eg —E,co ln
d

(8.16)

where the inner and outer cutoff lengths in the logarithm
are provided by the magnetic (A,„A,) and phase core
(A, d) extent of the Josephson vortex. The calculation of
Clem, Coffey, and Hao (1991)gives the more accurate re-
sult

eJ =ca, ln —+1.12 (8.17)

The corresponding result for an Abrikosov vortex in an
anisotropic superconductor and directed along the planes
is (Hu, 1972)

eI =ac, ln +0.50
E

(8.18)

have to overcome the large number of A, /d junctions.
When the coupling strength between the 1ayers is de-
creased, the screening current density along the c axis is
also reduced so that the current pattern of the original
Abrikosov vortex immediately starts to expand along the
junction. As a result, the ratio between the magnetic ex-
tent of the vortex and the size of its phase core remains
always the same, A/A, , =d/A, =const, independent of the
coupling strength, and we always keep the two length
scales describing the core and the magnetic size of the
Josephson vortex.

From this discussion we can understand that a Joseph-
son vortex is very similar to an Abrikosov vortex, but
with a difFerent core size and structure. This conclusion
is also confirmed by the calculation of the Josephson vor-
tex line energy by Bulaevskii (1973) and by Efetov (1979).
The line energy of a vortex can be obtained from an in-
tegration of the kinetic energy of the currents. Making
use of the analogy between the Abrikosov vortex and the
Josephson vortex, we obtain the line energy

where p„ is the normal-state resistivity along the c axis.
The corresponding Bardeen-Stephen result for an Abri-
kosov vortex under equivalent conditions is

Q2
Il

2mp'„c Eg
(8.20)

It appears that the Josephson vortex is very similar to the
corresponding Abrikosov vortex, if we carefully take into
account the modifications due to the different core sizes
and core structures.

2. Pancake vortices

Here we discuss the structure of a vortex and its con-
stituents (pancake vortices) for the case when the field is
aligned with the c axis of the material. It is very interest-
ing to understand the similarities and difFerences between
the three cases of an isolated thin film (Pearl, 1964), an
uncoupled stack of parallel films, i.e., a layered material
with jr=0 (Efetov, 1979; Artemenko and Kruglov, 1990;
Buzdin and Feinberg, 1990; Feigel'man, Geshkenbein,
and Larkin, 1990; Clem, 1991; Fischer, 1991), and a lay-
ered superconductor with jz &0 (Artemenko and Kru-
glov, 1990; Chakravarty, Ivlev, and Ovchinnikov, 1990a;
Feigel'man, Geshkenbein, and Larkin, 1990; Bulaevskii,
Ledvij, and Kogan, 1992). We therefore start with the
simplest case of a 2D thin film of thickness d. Again we
choose k to denote the penetration depth of the corre-
sponding bulk material such that the effective penetra-
tion depth of the film becomes A,,&=2k /d. The solution
for a vortex positioned at the origin of the coordinate sys-
tem is given by the Pearl solution (Pearl, 1964; see also de
Gennes, 1966 and Abrikosov, 1988). The magnetic field
follows from the vector potential

Note the different temperature dependence for the two
results (8.17) and (8.18), arising from the replacement of
g, (T)=Eg(T) by the layer distance d under the loga-
rithm. With result (8.17) for the line energy, the equation
for the lower critical field along the planes follows trivial-
ly, H, (0 =0)=4meJ/0&, . The elastic tension of a

Josephson vortex is equal to its line energy, due to the
isotropy within the planar dimension.

A quantity depending on the core structure rather
than on the current Aow outside the core is the viscous
drag coe%cient. This coefticient has been calculated by
Clem and Coffey (1990), and they find a result that differs
only by a numerical factor from the corresponding
(Bardeen-Stephen) expression for an Abrikosov vortex in
which the appropriate dimensions for the phase core has
been substituted,

(8.21)

[Ji (x ) is a Bessel function of integer order] by taking
derivatives, and its asymptotic behavior resembles that of
a magnetic monopole generating a magnetic fIux
within the upper half-space,

(8.22)

see Fig. 32. The magnetic fIux crossing the film within a
circle of radius E. is

R «Keg,R

eft

(8.23)

@2
g~ =2.226 2''„c cA

(8.19) and approaches the unit Aux quantum No at large dis-
tances. The current density in the film is given by
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(8.27)

FIG. 32. Pearl solution for a vortex in a superconducting film

taking the form of a magnetic monopole asymptotically.

N, cJ (R)=
4m. A,,ff

jef
R «A, ff,R '

jef
R

2

X~ff &&R

jef1n, R «A, ff,R
V'"'(R)=2dE. '

&

R '

(8.25)

The logarithmic interaction potential for distances
R «A.,ff generates a Berezinskii-Kosterlitz-Thouless
transition, which is cut off due to screening on a scale

For very thin films, A,,ff~ 1/d can become larger
than the size of the film, and the sharp transition is cut
off (rounded) due only to the finiteness of the sample.

Next, let us consider the ease of an array of parallel
thin films where the coupling is of pure electromagnetic
origin, jJ=0 (Artemenko and Kruglov, 1990; Buzdin and
Feinberg, 1990; Feigel'man, Geshkenbein, and Larkin,
1990; Clem, 1991; Fischer, 1991). The basic equation
describing this situation is (8.4). Ignoring the small vari-
ations on the scale d, we can rewrite (8.4) in the form

(We denote a current per unit length by J in order to dis-
tinguish it from the usual current density j. ) In terms of
the depairing current density j, of the bulk material,
the current scale in (8.24) is given by
4, c/4m. A,,fr=dj. (3&3/4)(gd/k, ).

Finally, the Lorentz force FI (R)=J (R)&b, /c acting
on a second vortex with the same vorticity a distance R
away generates the interaction potential

in response to which a screening current starts to How in
this layer. Equation (8.26) couples the nth layer elec-
tromagnetically to all the other layers; hence screening
currents in response to a vortex core in the nth layer will
also be set up within the other layers of the stack. Since
(8.26) is a set of linear equations, we can easily determine
the building blocks of the vortex line. Consider a single-
vortex core V' ~y„(R)= —e /R placed at the origin of
the nth layer (positioned at z=0), with all the other driv-
ing terms vanishing. Such a building block is called a
pancake vortex (Clem, 1991) and furnishes the Green's
function of the problem. The solution of (8.26) is easily
obtained by going over to Fourier space, and we find

id&, K R, n

K (I+A, k )
(8.28)

The magnetic field then follows from Fourier-
transforming the expression kh, A~ ~, and the result is
(Artemenko and Kruglov, 1990; Feigel'man et al. , 1990;
Clem, 1991)

(8.29)

R

The shape of the magnetic-field distribution differs quite
drastically from the monopole-like Pearl solution (see
Fig. 33). The screemng effect due to the other layers in
the stack squeezes the field into a narrow strip of size A,

along the z axis, and the magnetic field has to escape
parallel to the layers rather than spreading out uniformly
over the entire solid angle. This field redistribution due
to screening has important consequences. First, the
squeezing of the field reduces the Aux threading the cen-
tral layer n to

d@o
g2Q A(2) A(2) g g(z ~d)g(2)~

2&
(8.26)

An individual vortex line threading the stack is charac-
terized by the positions R„of the vortex cores within
each layer. Each core generates a driving phase field

FIG. 33. Pancake vortex in a layered superconductor with van-
ishing interlayer Josephson coupling. The screening currents
present in the neighboring layers squeeze the magnetic field into
the planar direction. The screening current density in the cen-
tral layer decays like j ~ 1/R to all length scales, resulting in a
true Berezinskii-Kosterlitz-Thouless behavior at all scales.
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@(R)=N. (1—e );d
'2A, (8.30)

and therefore the logarithmic dependence of the interac-
tion potential V'"' between two vortices placed in the
same layer persists to infinity,

V',"'(R,z =0)=2ds, in++0(d/A)

g&R & ~ . (8.32)

Here we have used the planar coherence length g of the
bulk layered material as a short-distance cutoff. As a re-
sult, the system of parallel decoupled superconducting
layers is expected to develop a true Berezinskii-
Kosterlitz-Thouless transition at TBKT =c..d/2 on all
length scales.

Instead of placing the second pancake vortex in the
same layer, we can equally well probe the field generated
by a vortex at the origin r=0 in a different layer with
zAO. The interaction between two vortices of the same
vorticity is then attractive and reduced by the small fac-
tor d/A, «1,

ized «R «A, ,
R

V',"'(R,z&0) =—ds, —'

2 X —Izl/'xl
(8.33)

Let us return to the full vortex line where a phase
singularity is present in each layer. The calculation of
the field distribution, the line energy, and the lower criti-
cal field H; (Clem, 1991) gives results that are in com-

1

piete agreement with the continuous anisotropic descrip-
tion,

hence the current Row is never able to screen the driving
phase field in the central layer. Indeed, the current den-
sity of the central layer decays like 1/R to all length
scales,

@oc jef dJ (R,z =0)= 1 — (1—e ~
)

2A,eff J

(8.31)

decoupled layers with c =0.
An interesting property of the vortex line in a decou-

pled layered system is its finite "evaporation" tempera-
ture T, . As the temperature rises beyond T„ the vortex
line disintegrates into a gas of free pancake vortices. It
turns out that an individual pancake vortex is harmoni-
cally bound to the vortex line at small distances, R &A, ,
but only logarithmically attracted to the line at large dis-
tances, R ) A, (Clem, 1991; Fischer, 1991). The weak
(logarithmic) binding of an individual pancake vortex to
the vortex line, then, leads to a divergence of the mean-
squared thermal displacement of an individual pancake
vortex at a temperature T, =T~KT. This result can be un-
derstood in a simple way: A vortex line with one pan-
cake moved a distance R away is equivalent to a vortex
line plus a vortex-antivortex pair of separation R. At
TaKT, the pair becomes free (unbinding transition, see
Sec. VIII.B); hence the vortex line evaporates.

Finally, let us turn on the Josephson coupling between
the superconducting layers and study the consequences
(Artemenko and Kruglov, 1990; Chakravarty et al. ,
1990; Feigel'man et al. , 1990; Bulaevskii et al. , 1992). It
now becomes impossible to introduce a single pancake
vortex into the system. In addition to the electromagnet-
ic interaction between the layers, we now have a contri-
bution

d&o d R
1 cos@n+1 n (8.36)

from the Josephson coupling to the total energy of the
system. Introducing an individual pancake vortex into
the system leads to a phase difFerence @„+,„WO between
the plane containing the vortex and its two neighbors,
and the coupling energy to these two 'layers becomes
infinite. Ignoring a possible relaxation of the phase pat-
tern, we find that Eq. (8.36) would predict an energy of
an individual pancake vortex that grows with the area of
the sample. However, the phase pattern due to a single
pancake vortex can relax to a state with an energy grow-
ing only linearly in the same size, with the linear energy
arising from the Josephson strings that take the Aux to
and away from the pancake vortex. Let us therefore in-
troduce a pair of oppositely "charged" vortices into the
same plane. The energy contribution from the Josephson
coupling is then (2 vortices, layers n+1)

(8.34) d R
V =2dE. f [1—cosC&„, „(R')] .

~A
(8.37)

Similarly, the line energy e&(8) for a vortex tilted an an-
gle 8=m/2 —8 away from the c axis agrees (to logarith-
mic accuracy) with the continuous anisotropic result
(2.141) in the limit e~O,

The phase differences 4&„+, „(R') are determined by the
coupled set of equations (8.6). In order to truncate this
system of equations, we assume the phases cp„+& to be
undisturbed; only the phase y„ is distorted due to the
presence of the pair in layer n. The phase difference
N=y„+, —y„=y„,—y„, then, is a solution of

1+sin8
e, (8)=s,sin8 ln

sin8- 2 A 6' 'N= —2sin@, (8.38)

Note that c&=sin8 for the present case of perfectly where we have neglected the additional screening term
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R.V(')q —— ",'O', R «R «A,@(R')= . R'
-e ~'~, A «R',

where y=arctan(y/x) is the azimuthal angle in the
plane. For small phase differences @, we can expand the
cosine in Eq. (8.37), and a trivial integration supplies us
with the Josephson interaction energy of the pair,

2

V'"'(R)=de. — ln —,R «A . (8.39)

due to the vector potential, which becomes relevant on
large scales, R &A, /c, , only. For small phase differences
@, we can expand the sine in (8.38) and obtain the natu-
ral length scale (screening length) A=d/e of the prob-
lem. On scales R &A, the Josephson currents cannot
build up, and the system essentially behaves like an un-
coupled layered material with its ideal 20 behavior. On
the other hand, for distances R )A, the currents along z
are no longer hampered by the discreteness of the rnateri-
al, and a continuous anisotropic 30 behavior results.

Let us first study the case of two pancake vortices close
to each other with a separation R «A. The solution of
(8.38) then behaves as

same layer of a Josephson-coupled system: At small dis-
tances, R &A, the Josephson currents have not yet built
up, the electromagnetic energy is dominant, and we ob-
tain a logarithmic interaction. As R grows beyond A, the
Josephson currents have been established, the magnetic
field between the two vortices has been redirected into
two Josephson strings, and the interaction grows linearly;
i.e., the pair becomes confined,

ln —,g&R &A,R

V'"'(R, z =0)=2dE, ——,A &R &A/s,R A
A 4R'

A/E&R .
R
A'

(8.42)

As a result, the Berezinskii-Kosterlitz-Thouless transi-
tion is cut off at the length scale A introduced into the
system due to the finite Josephson coupling.

For completeness, let us also present the results for a
double-kink structure in a vortex line directed parallel to
the layers (see Fig. 34). For two oppositely charged vor-
tices (the vortex line remains in the same plane asymptot-
ically), we obtain, following Chakravarty, Ivlev, and
Ovchinnikov (1990a),

VJ"'(R)=2dE. a——,A«R «A. /e,
A 4R

(8.40)

For large separations R )&A, two Josephson strings con-
necting the pair are created between the layers n and
n+1. The interaction between the two pancake vortices
is dominated by the energies of the two strings and takes
the form [see Eq. (8.17)]

ln —,g&R &A,R

A
4R ' A&R &I,/s,

1/E &R .

V =2dc, ln ——int A
K —x — o

A
ln —,

(8.43)

with a a factor of order unity arising from cutting off the
logarithm in Eq. (8.17) at a distance of the order of the
separation d between the Josephson strings (Cataudella
and Minnhagen, 1990; Glazman and Koshelev, 1990).
The last term in Eq. (8.39) is a higher-order correction to
the leading string term arising from the Josephson cou-
pling. It was obtained by Chakrav arty, Ivlev, and
Ovchinnikov (1990a) within the London approximation
for kinked vortices, which describes well the situation for
distances ~z~ &d and R & A away from the core region.
The correction term decays like a power law ~ 1/R for
distances R &I,/c and exponentially fast for distances
R & LIE; hence at very large distances, R & A, /E, only the
linear string term remains and

This configuration corresponds to the nucleus for creep
motion along the c axis (see Sec. III.E.1). The leading
term for R & A is due to the currents Bowing within the
plane containing the two kinks, and we have ignored the
additional contribution arising from the Josephson cou-
pling to the neighboring planes [Eq. (8.38)j. The long-
distance behavior at A & R can be calculated using the

VJ"'(R)=2dEoa —,A/E«R .
R

(8.41)
(b)

The comparison of the Josephson interaction energies
(8.39) and (8.40) with the electromagnetic energy (8.30) of
the pair shows that the electromagnetic contribution is
larger at small distances, R & A, and that the Josephson
term becomes dominant for large distances, R & A.

In summary, we obtain the following picture for the in-
teraction between iwo pancake vortices placed in the

R

FIG. 34. Kinked vortex configurations in a strongly layered su-

perconductor: (a) Double-kink configuration representing the
building block of a vortex line tilted at a small angle 8 (e with
respect to the planes. (b) Kink-antikink configuration
representing the nucleus for vortex motion across the supercon-
ducting layers.

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



Blatter et al. : Vortices in high-temperature superconductors I 285

London approximation for kinked vortices and consists
of the (in-plane current) core contributions of the two
kinks plus the correction term due to Josephson coupling
to the neighboring layers. Since the string connecting the
two kinks is only shifted by a distance d and not newly
created, there is no linear confinement term in Eq. (8.43).

Two equally charged kinks lead to a shift of the vortex
line by a distance 2d along the c axis (see Fig. 34). This
configuration can be considered as providing the building
block of a tilted vortex. The interaction between the two
kinks is (Artemenko and Kruglov, 1990)

Ei(6)=

1 0&8&a, ,
cos 8

c. &g&-
sin6 2 '

(8.47)

and

for EI(8) above, we well as the expressions for the change
in length 6L and angle 58, we obtain the following re-
sults (to logarithmic accuracy) for the out-of-plane and
the in-plane line tensions in a layered material:

~x, rc =dEo .
A

2R ' A&R &A/c,
(8.44)

d R 1 R A—+—— ln —,g&R &A,
2A, A, 2 A R' cos8-, 0&8&c,

e (6)=sE.
C

sin8 '
2

(8.48)

with the two terms at short distances, R & A, arising
from the electromagnetic and the Josephson coupling be-
tween the vortices.

The above discussion allows us to study arbitrary
single-vortex configurations in layered superconductors
and their configurational energies in terms of sets of
pointlike particles interacting via their interaction poten-
tial. As an example, we calculate below the elastic line
tensions (to logarithmic accuracy only) for the in-plane
and for the out-of-plane tilt modes of a single-vortex line
in a layered material.

The line energy of a vortex enclosing an angle 8 with
the superconducting layers is obtained by summing up
the energies of the individual pancake vortices, including
their interactions as given by Eq. (8.44) and the contribu-
tions from the Josephson strings [Eq. (8.16)]. The in-
teraction term contains contributions from both the mag-
netic and the Josephson couplings, and we concentrate
on the leading contribution arising here from the Joseph-
son coupling between the layers. For large angles 6 & c.,
the separation between neighboring pancake vortices is
less than A, and the line energy becomes (Blatter and
Geshkenbein, 1992; Bulaevskii, Ledvij, and Kogan, 1992)

E,(8)E)=e.sin8 ln . + ln
eA, c o."A, tan8
sln6

(8.45)

where a and a' are prefactors of order unity. %within this
angular regime the Josephson strings have not yet
developed, and the interlayer coupling produces the term
(8.39) only. For small angles 0&8 &E, the Josephson
string gives a large contribution to the energy, and the
combination of Eq. (8.40) with (8.44) results in

A c X 1ei(0&8 & v, ) =c.,sin6 ln —+ ln —+ tan8
tan6 d 28

(8.46)

Using again definitions (2.143) and (2.145) for e&(B) and

Note that, due to the intrinsic pinning (lock-in transition,
see below), the out-of-plane tilt modulus diverges as the
angle 8 goes to zero. In the above calculation of the tilt
modulus, we have ignored this effect, which, however, be-
comes relevant when the vortex segment to be tilted is
locked to the plane along its entire length. On the other
hand, in the presence of kinks, the tilt modulus becomes
finite due to the mobility of the pancake vortices along
the planes. Using p~=g cos 8+sin 8, we find that the
elasticities for an anisotropic and for a layered supercon-
ductor are roughly identical. This can be understood
from the fact that the line tension is dominated by the
current Aow in the vortex, which is equal for discrete and
continuous cases outside the (rather small) core region.
The different sizes of the core regions would produce de-
viations in the logarithmic factors, which we have ig-
nored in the above analysis.

3. Vortex lattice and lock-in transition

In this section we turn our attention to the behavior of
the vortex lattice in layered superconductors. In general,
the continuous anisotropic description provides a rather
good first approximation of the properties of the vortices
and their lattice in a layered superconductor. The
discreteness of the material and the weak Josephson-type
coupling, however, introduce two important
modifications into the free energy of the system, which
lead to very interesting effects. These two corrections in-
troduced by the layering consist of /ogarithmic correc-
tions due to the different core structure of the kinked vor-
tices from those of the rectilinear Abrikosov vortices and
the appearance of a hnear term ~ 8 due to the trapping
of the vortex line in the region between the supercon-
ducting layers. To illustrate, let us consider an individual
vortex line and compare the line energies of a rectilinear
Abrikosov vortex (described by a continuous anisotropic
model) with that of a kinked vortex (based on a
Lawrence-Doniach description). Including, as well, the
contributions from the core condensation energies, we
obtain (8 & E)
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e&"=e, Ez ln +0.5
Ey

e, =E,

ecosoc

ln —+ ~sin8~ ln —+0.5k A
(8.50)

p2
eI Eo F +

2E
ln +0.5 (8.51)

e =E. sin —+~6~ ln —+0.5
A

(8.52)

Equations (8.51) and (8.52) exhibit the two features men-
tioned previously: The terms order (8) have different
logarithmic arguments, which is the result of the
different cutoff lengths d and Eg' introduced by the
different core structures. In addition, a normal core is

40it 2D-core (A)
core(g)

~l

phase core (d, A)

FIG. 35. Building block of a vortex line tilted at a small angle
8(c with respect to the layers. The 2D core region of the pan-
cake vortex as well as the phase core of the Josephson string are
fully developed.

The line energy of the Abrikosov vortex comprises a con-
tribution from the screening currents (of extent A, ) and a
second term due to the loss of condensation energy in the
core region. The various terms in Eq. (8.50) arise from
the Josephson and pancake vortex segments (see Fig. 35).
The Josephson vortex contributes only a part arising
from the screening currents, since there is no normal
core. The pancake vortices contribute a term due to the
20 core region of size A, where the Josephson currents
have not yet fully developed, and a second term due to
the normal core of size g. Note that Eq. (8.50) is valid at
small angles, 6& v. For large angles with d/g&tan6, the
screening currents mainly Bow in the planes, the contri-
bution from the pancake vortices changes to
Eosin6[ln(A, /g)+0. 5], and no Josephson vortex segment
is present. As a result, the continuous description applies
well to this large-angle regime, and no new phenomena
due to the layered structure are expected here. Within
the intermediate regime, E & tan6 & d /g, a crossover
takes place where the kinked structure is developed and
the screening currents shift from predominantly planar
to Josephson. Within this region, both the 20 pancake
core and the Josephson segments are built up and the
planar screening currents disappear.

Let us expand the line energies e&' and e& for small an-

gles,

present in the Abrikosov vortex, whereas the correspond-
ing object is absent in the Josephson vortex. The loga-
rithmic corrections to the free energy of the vortex lattice
thus may lead to new physical effects such as the transi-
tion from the tilted, kinked vortex lattice to a combined
lattice of independent Josephson and Abrikosov vortices
running parallel and orthogonal to the planes (see Kes
et al. , 1990; Theodorakis, 1990; Bulaevskii, Ledvij, and
Kogan, 1992). Second, a term linear in the angle o- ~8~

appears as a result of the kinked structure of the vortex.
The linear term in the energy is a typical characteristic of
the trapping of the vortex in a more favorable direction
and leads to the lock-in transition (Feinberg and Villard,
1990; Bulaevskii, 1991; Ivlev, Ovchinnikov, and Pokrov-
sky, 1991; Maslov and Pokrovsky, 1991). Such a linear
term is not peculiar to the present situation, but appears
elsewhere, i.e., when one considers the trapping of vortex
lines within the attractive potential wells of extended de-
fects such as twin boundaries or columnar defects (see
Sec. IX). No such term is present for the Abrikosov vor-
tex [see Eq. (8.51)], where the corrections are of order
(8); hence no lock-in transition can be obtained within
an approximate continuous anisotropic description of the
layered material.

The appearance of the three angular regimes —a
large-angle region (d/g&tan8) where the normal cores
of the pancake vortices still overlap (line core) and
the physics of the vortex system is well described by a
continuum description; an intermediate regime
(8&tan8&d/g) where the screening currents change
from planar to Josephson; and a small-angle region
(6 & E) where the kinked vortex structure is fully
developed —is not specific to the single-vortex situation
described in detail above but also applies to the discus-
sion of the vortex lattice in layered superconductors. In
addition, a fourth, very interesting angular "regime" ap-
pears in the discussion of the vortex lattice in layered ma-
terial, which is given by the condition 8=0, i.e., for a
perfectly aligned vortex system. In this situation the vor-
tices are pinned by the discrete structure. While they are
still free to arrange themselves via intraplanar motion,
relaxations involving a crossing of layers (motion along z)
is strongly suppressed. This phenomenon of intrinsic
pinning leads to interesting effects based on a shear insta-
bility developed in the vortex lattice (Ivlev, Kopnin, and
Pokrovsky, 1990; Levitov, 1991; Ivlev and Campbell,
1993). In the following we present a more detailed dis-
cussion of the lock-in transition and the appearance of a
combined vortex lattice at small angles, 8(c.. We also
briefly describe the origin and consequences of shear in-
stability in a perfectly aligned vortex lattice.

Much attention has been devoted to the new
phenomenon of the lock-in transition (Feinberg and Vil-
lard, 1990; Ivlev, Ovchinnikov, and Pokrovsky, 1990; Bu-
laevskii, 1991; Maslov and Pokrovsky, 1991). At small
angles, 0-~ (8L, of the external field H„ the vortex lat-

a

tice can gain energy by aligning itself with the ab planes,
thereby creating a pure lattice of Josephson vortices and
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H =4~ BF
(8.53)

avoiding strong perturbations of the superconductor in
the layers. In the following we present a quantitative
determination of the lock-in angle 8L. We first study the
continuous anisotropic situation and determine the
misalignment between the internal magnetic field H and
the magnetic induction B. We then proceed to the lay-
ered case where this misalignment is modified due to the
presence of an additional linear term in the free energy of
the vortex system. Third, we determine the lock-in angle
in layered superconductors, taking demagnetization
e6ects properly into account.

Within an anisotropic superconductor, the magnetic
induction B (enclosing an angle 8 with the planes) and
the magnetic field H directed along 6~ are generally not
parallel, 8(6~. Under equilibrium conditions (no pin-
ning), both the magnitude H and the direction 8H of the
magnetic field are determined by the free-energy density
F(B)of the system via

4,8c.cos8F= + ln
2(4m A, )

2~ tan8 a"A+ ln
c.B F

(8.56)

where we define the magnetic field HA by

H~=
A

(8.57)

The first two terms (with the modifications ez~c, cos8,
H,' /e+~HAIEB) are also present in the continuous

2

anisotropic description (8.54). An additional feature aris-
ing due to the layering is the term linear in the angle
accounting for the energies E,d 1n(a"A/g) of the 2D
pancake (current) cores. Determining the magnetic field
H from Eq. (8.56), we obtain a new behavior for the
misfit angle BH —6 between the magnetic field H and the
magnetic induction B when the fields are closely aligned
with the planes,

For magnetic fields H, «H «H, , the free-energy den-
1 '2'

sity takes the form (Campbell, Doria, and Kogan, 1988;
Kogan, 1988)

0,

8~ —6'+0(6),
with the critical angle 8* given by

(8.58)

AH,'
(8.54)

H''i ln( a"A/g )

H 1n(A /g)
(8.59)

where o. is a factor of order unity. The first term in Eq.
(8.54) is the usual magnetic energy contribution, whereas
the second term arises from the line energies of the vor-
tices with a large-distance cutoff under the l~oarithm
provided by the mean vortex separation ao /QE& rather
than the screening length A, relevant for fields H, «H.

1

Neglecting the angular dependence under the logarithm,
we obtain the misfit angle 8H —8 as a solution to [use
sin(BH —8)=(H h B)/BH j

(1—E )sin8cos8
sin 8-H —8 =

Ey

1n(aH; /c+)
X

2 lnK
(8.55)

(Balatskii, Burlachkov, and Gor'kov, 1986; Kogan, 1988;
Bulaevskii, 1991). Obviously, the vortex lattice has a ten-
dency to align itself with the superconducting planes, but
is restricted by the directing action of the magnetic field
H to tilt far away from 8~. The misfit is of order
8~ —8~H,' /H and vanishes smoothly for both 8=0
and 8=+/2.

Now let us move to the discrete layered case. A de-
tailed calculation of the free-energy density was carried
out by Ivlev, Ovchinnikov, and Pokrovsky (1991) and by
Bulaevskii, Ledvij, and Kogan (1992). The result for
small angles, 8 & c., and intermediate fields,
H, «H «H, , takes the form

1 '2'

Hence we understand that in an anisotropy or layered su-
perconductor the magnetic field H and the magnetic in-
duction B are not aligned under general conditions. The
lock-in transition is related to the above phenomenon,
but involves the external magnetic field H, as a driving
force. For a correct description of the lock-in transition,
it is therefore necessary to take into account the demag-
netization fields (Maslov and Pokrovsky, 1991). We con-
sider a sample in the form of a rotational ellipsoid with
demagnetization factors v =v =v=L, /Ly «1 and
v, =1—2v. The appropriate thermodynamic potential
depends on the external applied field H, and is given by

(B—H, )M6 =F(B)— +
8~ 2

(8.60)

The magnetization M, the inductance B, and the applied
field H, are related by

H, =B—4m(l —v)M, (8.61)

(B H,y ) (B, H„—)—
8'(1 —v) 16m v

(8.62)

with respect to B and B„and we obtain B„=H
8, =H„—2v(C&0/4vrA)ln(a "A/g) B, elow the lo. ck-in

where v is the tensor of demagnetization factors. Com-
bining Eqs. (8.56), (8.60), and (8.61) requires us to mini-
mize

NB c a'Hz +8,
G =

2
ln +

2
ln

2(4~A, )' E& (4' A, )'
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transition the component B, vanishes, and we find the
locking angle

H''i 1n(a"A/g)
H, 1n(A, /g)

(8.63)

For angles 6~ &BL, the vortex lattice is locked to the
a

planes of the layered material, 6=0. Note that III =8*
when 8~ =PL. The transition corresponds to a second-

a

order phase transition, with the external angle 8H play-
a

ing the role of the driving parameter and the internal an-
gle 8 corresponding to the order parameter going con-
tinuously from 6 =0 for 8~ & BL to finite values

for 8~ & 81. With typical ratios
a a

L, /L —10 —10 ', and H; /H, 510 ', lock-in angles
1

of the order of 0.1'—1 can be expected (Kwok et al. ,
1991).

Another more traditional efFect arising from the
misalignment of the external magnetic field H, and the
induction B is the appearance of a finite torque,
T=MR, H„acting on the sample. Within the regime
H, )&H, which we are interested in here, the magneti-

1

zation M ~ H, is always small as compared with the ap-

plied magnetic field, and demagnetization efFects are not
important in the calculation of the torque. For an aniso-
tropic superconductor, we obtain

H, H; (1 p) ~ ~ ln(aH; /c+)
4m E,y 2 lnK

. (8.64)

The torque shows a maximum as a function of angle 6,

max

aH,'
c.', 1 «c ln

c,B
c 1/2

o.H,'
2

E 111
c.B

aH,'

and thus provides an excellent tool for the determination
of the anisotropy parameter E of the material (Farrell
et al. , 1989, 1990; Tuominen et al. , 1990; Martinez
et al. , 1992). In layered superconductors the torque is
modified at small angles,

H, H,'
1

8H H,
II &I,2vH'

C)

6 H (8.65)
ln(a"A/g)

2vH' lnK
1

Compared with the anisotropic case, the torque in a lay-
ered superconductor is shifted upward at small angles
and drops rapidly to zero within the narrow angular in-
terval below the lock-in angle 8L.

Let us turn to the structure of the vortex lattice at
small angles tan8 (d/g. Away from the lock-in transi-
tion, we expect to find a kinked vortex lattice, which has

to be characterized by three unit vectors instead of only
two as for the continuous anisotropic description. The
reason for the appearance of a third lattice vector is
found in the structure of an individual vortex line, which
is no longer a simple rectilinear object. The London free
energy of the kinked vortex lattice as a function of the
lattice parameters was determined by Ivlev, Ovchinni-
kov, and Pokrovsky (1991). However, the explicit equi-
librium configuration is still unknown. An interesting
proposal regarding a complete rearrangement of the vor-
tex lattice was oft'ered by Kes et al. (1990) and Theo-
dorakis (1990) and has recently been studied in more de-
tail by Bulaevski, Ledvij, and Kogan (1992): It was pro-
posed that in layered superconductors the field com-
ponents parallel and perpendicular to the planes can
penetrate independently from one another and set up a
combined vortex lattice, made up of coexisting Abriko-
sov (J. ab planes) and Josephson (~~ ab planes) vortices.
As the two lattices are mutually orthogonal, they do not
interact with each other; thus they correspond to
separate degrees of freedom of the vortex system. As
shown by Bulaevskii et al. (1992), such a new vortex-
lattice phase is expected to occur within the
intermediate-field range H, &H, &HJ =N, /dA for

1

small enough coupling, c&d/A, ; i.e., the 2D screening
scale A has to become larger than the 3D screening
length A, , A) A, . Under these extreme conditions the crit-
ical field H,' drops below (4, /4m', )in(A/g) and the

lock-in angle becomes equal to BL =2vH,' /H, . With an
1

increase in BII beyond 8L, the parallel lattice evolves
a

into a combined lattice via a second-order transition.
The transition between the combined and the conven-
tional tilted lattice is of first order and takes places at an
angle below 8=arctan(d/g). It has been argued (Bu-
laevskii et a/. , 1992) that for high fields, H, )H&, and
small angles, 6&v, the Josephson cores in neighboring
layers start to overlap, and the combined lattice should
always be favored irrespective of the ratio A/A. . In order
to test the correctness of these ideas and to find the posi-
tions of the phase boundaries, one needs to determine the
free energies of the various phases beyond logarithmic ac-
curacy. In addition, one should note that it is not
suIIIicient to show that a specific vortex arrangement is a
solution of the Euler-Lagrange equations derived from
the free-energy functional as done by Theodorakis (1990).
As a simple example, consider two Abrikosov vortices ar-
ranged in an orthogonal configuration, which is a solu-
tion of the London equation; however, the configuration
is not force-free, as the vortices will arrange themselves
into an antiparallel state with lower energy. Similarly, it
appears that the configuration comprising two pancake
vortices placed above and below a Josephson vortex is
unstable (see Fig. 36): The Lorentz force exerted by the
screening currents of the Josephson vortex drives the
pancake vortices apart, and a kinked structure appears.

Let us finally turn to the case of a strictly parallel field
where the vortices are intrinsically pinned by the layered
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o

0 Io

FIG. 36. Configuration with two pancake vor-
tices enclosing a Josephson vortex. This
configuration is unstable, so that the combined
configuration decays into a kinked one.

structure. To be explicit, we consider a situation in
which the superconductor is cooled in the presence of a
parallel magnetic field. At low enough temperatures, the
vortex lattice will adjust itself to the periodic potential
produced by the layered structure with a lattice constant
z, =Int(&ca&/d)d, an integer multiple of the layer spac-
ing d along the z axis. Here Int(x) denotes the integer
part of x, and we neglect additional e6ects arising from
the commensuration problem. The remaining degrees of
freedom (including variations of the field strength) are
changes in the lattice constant xo along the x axis and
the in-plane shear distortion qx, of the vortex lattice (see
Fig. 37). Experimentally, a change of x, can be realized
by 1owering the external Geld, which leads to an increase
in the lattice constant xo. We are interested in the equi-
librium configuration and the stability of the vortex lat-
tice and therefore have to determine the free energy of
the vortex configuration as a function of x, and q.
Within the intermediate-Geld regime H, «H «H, , we

1 '2'
can use the London approximation; the result is (Ivlev,
Kopnin, and Pokrovsky, 1990; see also Ivlev, Kopnin,
and Salomaa, 1991)

2 sinhpn p—1 —1np +-
, n coshpn cos—2n.qn 6

and

zd
p =2m, x,z, B =N, .

Xd~

(8.67)

Equation (8.66) for the free-energy density applies, pro-
vided that cx, ,z, «A, . Note that the parameters p and q
are pure geometrical quantities determining the form of
the vortex lattice; i.e., simultaneous scaling of x, and z,
leaves p and q invariant but changes the magnetic field B.
For a rescaled (z~z=z/E) equilateral triangular Abri-
kosov lattice, q =1/2 and p =&3m or p =sr/v'3, where
the latter lattice is rotated by 30' with respect to the
former when drawn in the isotropized system with
z~z=z/E. The stability of the lattice under shear dis-
tortions is obtained by calculating the shear modulus c )6,

2
Zd

c) =2c s' y
6 66

q

with

4,Ba aH&F = + ln +y(p, q), (8.66)
8~ 2(4vrA ) EB

where c66 =N, B /( 8m i, ) and we have used

B,u =(xo /z, )5q. It turns out that 8 y is always nega-
tive for q=0; hence the rectangular lattice is always un-
stable. The other candidate for a stable lattice is the
rhombic configuration with q =1/2. For this case the
shear modulus becomes (Ivlev et al. , 1990)

3
C 6

—C66E

2~' 1
p «1,

3 p
2(2p) e P, 1 «p, (8.68)

X

XO

FIG. 37. Parallel-field vortex configuration in a strongly lay-
ered superconductor. The z axis has been rescaled according to
2 =z/c (expansion along z). The configuration can be described
by the coordinates xd, zd and the geometry parameter q. Shown
is the stable equilibrium configuration with q = 1/2 and

p =27Tzo /EXo =+3&.

with e)6 becoming negative for p &p, =1.51. Hence lat-
tices that are dense along the x axis (x, &4. 16z. /E) are
stable under shear distortions, whereas lattices diluted
along the x axis become unstable.

The next question, then, is which rhombic lattices are
equilibrium configurations. A plot of y(p, q = 1/2)
shows two minima, at p =i 3m and at p =m/v'3, and a
maximum at p =rj in between; hence the (rescaled) equi-
lateral triangular Abrikosov lattices indeed are stable
configurations. Note that the true equilibrium state is
unique and corresponds to a configuration with p =v 3m-,

i.e., the hexagons of the triangular lattice point along the
z axis (Campbell, Doria, and Kogan, 1988). The max-
imum at p =~ corresponds to a square lattice in the iso-
tropized system, which has a slightly higher energy than
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the triangular lattice.
Now imagine decreasing the external magnetic field 8.

As vortices start to leave the sample, the lattice constant
x, increases while z, remains constant; hence p de-
creases. As p drops below p„ the shear instability drives
the vortex lattice into new states, thereby avoiding all
configurations with a finite lattice constant along the z
axis, an effect which is due to the dominance of the repul-
sion between the vortices along the z axis. In fact,
as shown by Levitov (1991), the parameter q ) —,

'

continuously evolves towards the golden mean
r=(&5 —1)/2=0.618, thereby avoiding all the fractions

q =F„/F„+, made from Fibonacci numbers

(F„+,=F„+F„„FO=0,F, =1) which correspond to
lattices with a short lattice constant along the z axis.

On the other hand, for the case 8 &HJ =4), /dA, the
initial lattice constant 2z, along the z axis is already
minimal, z, =d, and it is possible to squeeze the lattice
by further increasing the external field (note that increas-
ing the field starting from smaller fields, 8 &HJ, intro-
duces vortices into different layers, and our original as-
sumptions regarding the structure of the vortex lattice
break down). Result (8.68) shows that such a squeezed
lattice has an exponentially small shear modulus,

c)6 ~ exp( 2mB/HJ —). In addition, as shown by Bu-
laevskii and Clem (1991), the magnetization of this
squeezed state vanishes more rapidly, M (H)
~ EH; (HJ /H), than the usual logarithmic behavior

M(H) ~EH; ln(H", /EH) obtained within the London

model for the intermediate-field region H, «H «H, .
1 2

Note that the upper critical field H, in the present situa-

tion is determined by the paramagnetic effect,
H, —0&, /gA, z, with A,z ((g the Fermi wavelength; hence

2

H, )&HJ. At smaller fields, H &HJ, interesting com-
2

mensuration effects are expected to appear (Bulaevskii
and Clem, 1991; Burkov, 1991), but we shall not go into
this here. Instead we mention another interesting appli-
cation of the shear instability of the vortex lattice, which
has been used to explain (Ivlev and Campbell, 1993) the
fiux chain buckling found by Dolan et al. (1989) in
decoration experiments with the field applied parallel to
the layers (see also Sec. III.B).

B. Thermodynamic properties

The thermodynamic properties of layered supercon-
ductors can be quite strongly inAuenced by the weakness
of the interlayer coupling and the resulting quasi-two-
dimensionality of the system. For very weak interlayer
coupling, as it is realized in the Bi- and Tl-based corn-
pounds, a good starting point is to consider the thermo-
dynamic properties of an individual layer first and then
to study the infIuence of the finite coupling perturbative-
ly. We have to study the thermodynamics of two-
dimensional systems first, with their enhanced fluctua-
tions preventing a true phase transition from taking place

in the system. Instead, the phase transitions we are in-
terested in (superconducting coherence, vortex-lattice
melting) are topological ones and of the Berezinskii-
Kosterlitz-Thouless (BKT) type. In the following we
shall first briefly review the main elements of the BKT
theory. In Sec. VIII.B.2 we apply the results of the gen-
eral theory to the case of charged superfiuids (H=O), first
to the individual 2D layers and second to the coupled
system. We then study the behavior of the system in a
finite field (H~~c), where we again concentrate first on the
2D situation and second on the melting transition of the
vortex lattice in a layered system, which can be predom-
inantly 3D (small fields) as well as 2D (large fields) in na-
ture. In Sec. VIII.B.3 we discuss the possibility of the ex-
istence of a decoupling transition along the field direction
with the field applied parallel to the c axis of the materi-
al. This section is more speculative in nature, and the
final answers to this very interesting body of problems
are not yet clear. Finally, In Sec. VIII.B.4, we concen-
trate on the parallel-field case (H~~ab plane), where the in-
trinsic pinning provided by the layered structure leads to
new physical effects, such as the absence of melting of the
Josephson vortex lattice due to a dimensional reduction
of the fluctuations.

1. BKT transition in planar degenerate systems

(8.69)

vanishes at all finite temperatures. On the other hand,
such systems still develop a finite-temperature phase
transition where the resulting low-temperature phase is
characterized by a finite transverse stiffness v, )0. Ex-
arnples of such systems are the XY Heisenberg model
(4+-+S, v, ~ helicity modulus r); the neutral and, with
some provisos, the charged superfluid [%'~~%~exp(iy),
v, ~ superfiuid density p, ]; and the crystal (%'~u, v, ~
shear modulus c66). Restricting ourselves to two-
component "order parameters" of the form
%'= 4 exp(iy), we find that the generic Hamiltonian
describing the phenomena we are interested in is (we
chose

~
4

~

= 1 in the following)

2= —J g %*(R„)%(R,)
(p, ~)

cos[y(R„)—y(R )],
(p, ~&

(8.70)

with (p, v) denoting the summation over nearest neigh-
bors and 2& 0. The low-energy excitations of the system
are characterized by smoothly varying phase fields y(R),
and we can pass to a continuum description,

It is well known that in two dimensions a degenerate
system, i.e., a system described by a multicomponent "or-
der parameter" 4= If (R)~a=1, . . . , n j and thus pos-
sessing a continuous symmetry, does not exhibit conven-
tional long-range order (Mermin and Wagner, 1966;
Hohenberg, 1967), meaning that the expectation value of
the putative "order parameter"
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&=—fd'&(Vy)' .
2

(8.71)

With Eq. (8.71) we have actually established the relation
to the problem we are interested in here. Comparing Eq.
(8.71) with (8.2), we see that (8.71) describes a thin-film
superconductor if we set

Eod
(8.72)

and a singular (qr, ) component with

fVy„dl=0 and fVy, dl=2nvr, (8.73)

where the contour is taken to be a small circle of the size
of the cutoff radius Ro in the problem. The singular part
of the phase field is most conveniently expressed by the
vortex distribution function n, (R), which is related to p,
via Poisson's equation,

and take the limit e —+0, with the latter condition allow-
ing us to neglect screening effects so that we can replace
the gauge-invariant phase difference y in (8.2) by the
phase y of the superconductor (uncharged superconduc-
tor). The phase field q& can be split into a regular (y„)

bu, (R)=2mn, (R), where Vhnu, =Vy, . (8.74)

The total energy of a configuration y(R) can then be
written as

r

R —R'&=—f d R(Vy„) AS f d—R d R'n, (R) ln —ln n, (R'), (8.75)

f d R n, (R)=0 . (8.76)

The main physics going on in degenerate 2D systems can
be conveniently described in terms of the generic Hamil-
tonian (8.75), and the following interesting picture has
emerged as the result of many investigations (Berezinskii,
1970, 1971; Kosterlitz and Thouless, 1973; Kosterlitz,
1974; Pokrovskii and Uimin, 1974; Jose et al. , 1977; Nel-
son and Kosterlitz, 1977; Wiegmann, 1978):

The system develops a low-temperature phase exhibit-
ing topological order. This low-temperature phase can
be described by the Gaussian part of (8.75) with a renor-
malized coupling v, ( T)J',

f d R(Vy), 0&v, &1, (8.77)

with the role of the vortex excitations being to suppress
the coupling 2 to the renormalized value v, 2 [Jose et al. ,
1977; a similar result is obtained within a self-consistent
harmonic approximation (see Pokrovskii and Uirnin,
1974j. The topological order expresses itself in the corre-
lator of the order parameter,

where I, denotes the system dimension. The first term in
Eq. (8.75) describes the energy content of (nonsingular)
Gaussian fluctuations in the system (note that the range
of g„ is —~ &y„& oo; see Berezinskii, 1970), whereas
the second term describes the energy of the topological
excitations (vortices; note that m J =E,d for the supercon-
ductor). The term ln(L/R. ) requires that the vortex sys-
tem remain "uncharged" (in the thermodynamic limit),
i.e.,

~z~
2T f d I(. 1 —cosKR

(2rr)' K'
T R

harv, S Ro
(8.79)

which implies an algebraic decay of the order-parameter
correlator,

Ro

21Tvg 2 (8.80)

7T QQ

TBKr =—v, 9, v, =v, ( TBKT ) )0,
2

(8.81)

and the topological order is lost, meaning that the order-
parameter correlator decays exponentially for T ) TBKT,

(q*(R)e(0))=e (8.82)

hence the system appears to be scale invariant (critical) at
all temperatures where (8.80) is valid. Result (8.80) has
to be contrasted with the behavior of an analogous sys-
tem in three dimensions, which develops a finite order
parameter ((p)%0 in the low-temperature phase and
where the correlator (8.80) decays exponentially with dis-
tance in the high-temperature phase; the power-law
dependence for the correlator is restricted to the critical
point.

If we could restrict ourselves to Gaussian fluctuations,
the topologically ordered phase would persist throughout
the entire regime of temperatures. However, it turns out
that vortex excitations renormalize the stiffness v, to zero
above a temperature TBKT,

( qy*(R)qg(0) ) —e
—([q(R)—y(0)] )/2 (8.78)

with the coherence length

Evaluating the phase correlator ( [y(R) —y(0)]2) in the
usual path-integral formulation, we obtain the logarith-
mic dependence

TBKT
gBKr(T) ~ exP b

BKT

1/2 ",

(8.83)
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diverging on approaching TBKT from above (and remain-
ing infinite throughout the entire low-temperature
phase). The parameter b is nonuniversal, and typical
values obtained in thin superconducting films are in the
range 2—16 (Fiory, Hebard, and Glaberson, 1983; Kadin,
Epstein, and Cxoldman, 1983).

Whereas the low-temperature phase is, with renormal-
ized coupling, well described by the Gaussian part of
Hamiltonian (8.75), it is the vortex part in (8.75) that
drives the transition into the high-temperature disor-
dered phase. The vortex part in Hamiltonian (8.75) is
nothing but the Hamiltonian of a Coulomb gas in two di-
mensions, which thus provides a prototype system for the
Berezinskii-Kosterlitz-Thouless transition itself (see Kos-
terlitz and Thouless, 1973; Minnhagen, 1987). The origin
of this analogy lies in the fact that the singular phase field

y, (R) as well as the potential V(R) in the Coulomb gas
problem are solutions of the Poisson equation (8.74) with
the vortex or charge density acting as a source term. The
transition is due to an unbinding of vortex pair excita-
tions and can be understood in a simple heuristic picture
(Kosterlitz and Thouless, 1973) as being driven by the en-
tropic part of the free energy of the system. In fact, the
free energy of an individual vortex excitation is

1.—Tln
R,

7T I.=2 —2—T ln
2 R, (8.84)

and changes sign when T crosses the transition point at
~J/2. It is quite surprising that this simple result sur-
vives throughout all the more elaborate theories (involv-
ing renormalization-group analysis of the transition), if
we replace the coupling 2 by the renormalized coupling
v, 7 in the above equation for the transition point, lead-
ing to result (8.81).

The following general picture emerges: Below the
Berezinski-Kosterlitz-Thouless transition, T & T~KT, the
system is in a topologically ordered state with algebrai-
cally decaying correlations, ( %(R)%'(0) ) ~ (R. /R )",
where g = T/2+v, ( T)J depends on temperature and
adopts the universal value g= —,

' at TBKT. In this phase,
the vortex excitations are bound into pairs interacting
logarithmically like Coulomb charges in two dimensions.
These vortex excitations can be polarized, and the con-
comitant screening effect leads to a downward renormal-
ization of the coupling constant J to v, (T)J. The phase
is scale invariant and well described by the Gaussian part
of (8.75) with renormalized coupling v, t. At T=TBKT
the logarithmically bound pairs dissociate and the trans-
verse stiffness of the low-temperature phase v, J is lost as

v, (T) jumps to zero. This jump at TBKT is universal in
the sense v,"2/Ts~T =2/m, which, upon use of Eqs. (8.3)
and (8.72), transforms to the famous universal jump in
the superfluid density p, =dv, ~%~ at TBKT (Nelson and
Kosterlitz, 1977),

Ps ( TBKT ) 2m

TBK.T
(8.85)

The transition itself is continuous with a singular part in
the free energy V„„(T~TBKT) gBKT, and thus all
derivatives are continuous. Note that the jump in the
transverse stiffness does not correspond to a first-order
transition, since v, is not an order parameter. Within
the high-temperature phase T & T~KT, the correlations
decay exponentially with (4'(R)%'(0) ) ~ exp[ —R /
(BKT(T)] and a correlation length gBKT(T)
~ exp[Qb/( I —T/TBKT ) ] diverging rapidly on ap-
proaching TB~T from above. On scales R (gsK T( T), the
vortex pairs are still bound, whereas the individual vor-
tices become free on scales R & gB~T( T); hence the densi-

ty of free vortices is

gsKT( T) (8.86)

The presence of free vortices in the system leads to
the screening of the transverse stiffness v, 2 on the
scale gs~T; hence 2v, (K) ~ I/[1+(KgBKT) ] and
Jv, (K =0)=0.

2. BKT behavior in charged superfiuids (H=O)

2 cm
~e4 TBKT )

Ta~T (in K)
(8.87)

demonstrating that finite sample dimensions usually pro-
vide the more stringent condition for the sharpness of the
transition.

The first important caveat to be made when discussing
the relation between BKT behavior and charged
superAuids is the problem of screening: As follows from
the Pearl solution for a vortex in a finite-thickness 2D
film (see Sec. VIII.A.2), the logarithmic interaction be-
tween the vortices is cut off on the scale A,,&=2k, /d
where screening becomes important [see Eq. (8.25)]. Due
to this cutoff, the creation energy of a free vortex be-
comes finite, 6, =E,d ln(A, ,&/g); hence we shall have a
finite density of free vortices present at any nonzero tem-
perature. This statement also applies to any finite system
in the absence of screening (XY model or uncharged
superfiuid), since the logarithmic growth of the self-
energy of a topological excitation is cut off at the sample
size, 6, = m J ln(1. /R, ). In both cases, the (sharp) phase
transition expected for an unscreened and infinite system
is transformed into a (smooth) crossover as the diver-
gence of the correlation length gBKT( T~TsKT ) is cut off
at the screening length A,,z or at the sample size I.. Since
any sample has finite dimensions, it is interesting to know
if the transition in a charged superconductor is cut off by
the screening length A,,z or by the sample size I,. Making
use of the universality of the jump in the superAuid densi-
ty p, =v, d~'Il~ =TsKT2m/fi m, one obtains (Beasley,
Mooij, and Orlando, 1979)
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&s

2
E~ ( TBKT ) TBKT (8.88)

resulting in the approximate expression

The second important aspect to be taken into account
in the discussion of superAuids is the strong temperature
dependence of the superAuid density due to the vicinity
of TBKT to the mean-field transition temperature T,
below which a finite superfluid density p= ( ~4~ ) )0 is
established locally [note that we distinguish between the
superAuid density p, =v, p describing the transverse
stiffness of the low-temperature phase and the local den-
sity of the condensate p: Whereas p ~ ( T, —T) within

mean-field theory, p, remains zero until TBKT is reached
from above, where it jumps to (2m/h m)TBKT. ]. As a
consequence, the transition temperature TBKT has to be
found from a self-consistent solution of

RC (8.92)

and the activation energy

J,
U, =2v, c,d ln (8.93)

The rate of production of free vortices is
I CC exp( —U, /T), and their mutual annihilation is deter-
mined by the rate equation

p2
B,n, =I — n, ,

grec
(8.94)

with g /r„, denoting the recombination parameter. Un-
der steady-state conditions, we obtain n, ~ I' . Using
the Bardeen-Stephen formula for the Aux-Row resistivity,
we find a resistance

v E, d/T

2Tc p=2~$ p„n„~ (8.95)
TBKT Tc

v, de. (0)
(8.89)

Another interesting feature of charged superAuids is
the interplay between the BKT behavior of the system
and its dynamic response (see, for example, Halperin and
Nelson, 1979 and Minnhagen, 1987).9 At low tempera-
tures the bound vortex pairs can dissociate in the pres-
ence of an applied current density J ( =jd). The free en-

ergy of a vortex pair separated by a distance R and
directed perpendicular to the current How is

Note that the suppression of TBKT due to the renormal-
ization v, & 1 is usually small, as typical values of v, are
=0.5 —0.9 for the systems considered here (Nelson and
Kosterlitz, 1977; Fiory, Hebard, and Glaberson, 1983;
Kadin, Epstein, and Goldman, 1983). Similarly, care
must be taken in the discussion of the temperature
dependence of the coherence length gii~T(T) due to the
underlying presence of the Ginzburg-I. andau coherence
length g(T), which itself diverges algebraically as T ap-
proaches T, from below. A useful interpolation formula

0

for the superfluid is (Minnhagen, 1981)

T —T
g'BKr( T)=g( T)exp b (8.90)

TBKT

P =pl oc
J
J, (8.96)

with a temperature-dependent exponent

vscoda(T)=1+
T

(8.97)

adopting the universal value a(TB~T ) =3 at the transi-
tion TBKr The finit. e density of free vortices n, =gBKT
above the transition induces Ohmic behavior at small
current densities, J &J,
p(T) C

=2m. — =2m exp —2 b
Pn kBKT TBKT

1/2

(8.98)

and the exponent n jumps to unit. At the crossover
current density J the probed length scale is the correla-
tion length gBKT,

' hence

where p„ is the normal-state resistivity (=resistance) of
the film. The resulting current-voltage characteristic is
algebraic,

R J R
V(R) =2v, c,,d ln —— (8.91)

J =J, (8.99)

with the current J.=(v, 3v'3/2) j,d being of the order of
the depairing critical current. The saddle point deter-
mining the activation energy for the current-assisted
thermal unbinding is given by the critical distance

9See Ambegaokar et al. (1978, 1980) for a description of dissi-

pation in uncharged superAuids.

For currents J )J the vortices are still bound on the
probed length scales and the current-voltage characteris-
tic is algebraic. The phase transition has been experi-
mentally mapped out in a set of beautiful studies by Ka-
din, Epstein, and Goldman (1983) using Hg-Xe alloy
films and by Fiory, Hebard, and Glaberson (1983) on
In/In-O films.

Focusing now on layered material, we see a variety of
new features appearing in the discussion. The simplest
situation is that of a decoupled stack of parallel films.
Due to the screening effects provided by neighboring lay-

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



1294 Blatter et al. : Vortices in high-temperature superconductors

b ( Tc. TaxT )

I lil[ A/g( TsKT ) ] ]
(8.100)

Above T, the vortex plasma is rather dense, with a mean
vortex separation less than A; hence the system behaves
in an essentially two-dimensional way. This scenario is
confirmed by numerical simulations (Minnhagen and
Olsson, 1991a;Weber and Jensen, 1991).

The width 6T& of the 3D fluctuational regime can be
estimated from the condition (Feigel'man, 1979)

ers, the interaction potential of a vortex pair in an indivi-
dual layer remains logarithmic to all length scales [see
Eq. (8.32)]. Therefore a true BKT transition can be ex-
pected to take place in a decoupled system. Turning on
the Josephson interaction between the layers will change
this simple picture considerably (Hikami and Tsuneto,
1980; Glazman and Koshelev, 1990). First of all, we
have to distinguish between the two cases of strongly and
weakly coupled layered materials. Such a distinction can
be made on the basis of a comparison of the relative
width of the 2D fluctuation regime 2& =(T, —

T& )/T,
and the relative width r,„=(T, —T„)/T, of the 3D
bulk coupled regime around the mean-field transition
temperature T, . For a strongly coupled material, the

0

3D bulk regime is large, r„))H&, and the crossover
from 3D bulk to 2D layered behavior can be discussed
within a mean-field description. Here we are interested
in weakly coupled material with ~„&&~&, where the
transition is strongly influenced by the 2D fluctuations.
Whereas the conventional superconductors as well as the
YBCO compound (r„=0.15) belong to the first class of
materials, the strongly layered Bi- and Tl-based materi-
als, in which we are mainly interested within this section,
clearly are members of the second group with ~„-10

Let us look, then, at a weakly coupled layered super-
conductor for which the behavior of an individual layer
provides a good starting point. Due to the coupling be-
tween the layers, the logarithmic interaction between a
vortex pair is replaced by a linear confinement potential
on scales R )A [see Eq. (8.42)], which leads to a cutoff in
the BKT behavior of the system. However, the cutoff in
the present situation is of an entirely different origin and
has drastically different consequences from the cutoff of
the BKT transition due to finite screening in a thin-film
superconductor, encountered before. In the film, the log-
arithmic interaction is replaced by a 1/R power-law de-
cay such that pairs become free on large scales, leading to
a stabilization of the high-temperature phase. In the cou-
pled layer system, the logarithmic interaction is replaced
by a linearly increasing potential leading to the
confinement of vortex pairs and inducing a 3D bulk tran-
sition into a superconducting state possessing a finite or-
der parameter and true off-diagonal long-range order.
Obviously, this 3D bulk transition (which we denote by
T, ) occurs when the BKT coherence length becomes of
the order of A; hence

and we obtain

2(T TiiKT) ( C HKT)

»[A/g( TB~T ) ] [in[A/g( TB~T ) ] ]

(8.101)

Below the bulk transition at T„and outside the 3D fIuc-
tuation regime, the system still develops strong 2D Auc-
tuations. On length scales R & A, the interlayer coupling
is not yet effective, and a 2D description in terms of the
(renormalized) Gaussian part of Eq. (8.75) is appropriate.
The phase correlator of the order parameter is given by
Eq. (8.79),

([y(R)—y(0)] ) = ln-
v, E.d

(8.102)

Strong 2D phase fluctuations are present on scales R ~ A
at temperatures above T&, which we define by the con-
dition

([q(A) —q(0)]'&l T2Df
Using (8.102), we easily find

Tf ——T, ——(T, —TsKT)lil2D A

2 TBKT

(8.103)

=T 1—
C

C A
ln

v, dE, (0) g(TB~T)
(8.104)

T.
G2D ' +D

v'2E. (0)d
(8.105)

In summary, a layered system goes through various re-
gimes when the temperature T is lowered; (see Fig. 38).
At T, the local order parameter p increases rapidly out

0

of the fluctuating background (finite mean-field order pa-

720
f
I

I

p T3D

I I

TBKT Tc

I

I

CO

FIG. 38. Arrangement of the various (zero-field) temperature
regimes in a strongly layered superconductor. A finite mean-
field order parameter is established at T, within the individual

0

layers. %'hen the temperature is decreased, the 2D-BKT transi-
tion building up below T, is cut ofF at T, due to the finite inter-

0

layer Josephson coupling, and a 3D superconducting state is es-
tablished. The region of strong 3D Auctuations is denoted by
5Tg . In an equivalent uncoupled system a true BKT transition
would appear at T&KT. Strong 2D fluctuations survive down to
the temperature T& .

Note that Eq. (8.104) describing fluctuations in the phase
is larger than the result for the fluctuation regime ob-
tained by Bulaevskii, Ginzburg, and Sobyanin (1988) on
the basis of a Ginzburg criterion,
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rameter). Then the system starts to undergo a
Berezinskii-Kosterlitz-Thouless transition on approach-
ing T~KT & T, . This transition, however, is interrupted

0

by the transition into a 3D bulk superconducting state at
T, with TBKT & T, (T, . Strong 3D superconducting

fluctuations are present within a region 6Tf around T, .
Outside this regime, strong 2D fluctuations persist until
the temperature Tf & TBKT is reached. Below Tf
Anally, only weak 2D fluctuations are present in the sys-
tem. Numerical estimates for the various temperatures
for a strongly layered BiSCCQ superconductor are
[T, = 100 K, d = 15 A, giics=25 A, AL =2000 A,
e=1/150, resulting in E.(0)d =1500 K, and we choose
v, —1]

Tc TgKT=13 K

Tc TBKT

gT'D=O SS K
(8.106)

c, f

The results depend strongly on the chosen numerical
values for the material parameters, and our poor
knowledge of the parameter b renders the estimate for
the position of the bulk transition temperature T, very
uncertain.

An interesting proposal regarding the transition of a
layered material into its bulk superconducting state was
offered by Friedel (1988), who suggested that the prolifer-
ation of low-energy in-plane Josephson vortex-loop exci-
tations should lead to a decoupling of the layers above
some critical temperature T, . In particular, it was con-
jectured that this transition should approach zero tem-
perature as the coupling Ez=j~@,/2mc =E c., /md be-
tween the layers vanished, aHowing for the possibility of
pure 2D behavior of the decoupled layer system within
the temperature interval T, & T (TBKT & T, . Later,

0

Korshunov (1990) showed, however, that this interesting
scenario is never realized and the bulk transition temper-
ature T, is always jl nite and above the Berezinskii-
Kosterlitz-Thouless transition temperatures TBKr (see
also Minnhagen and Olsson, 199lb). In fact, it turns out
that the statistical mechanics of a system of Josephson
loops can be mapped to a Coulomb gas problem with
charges interacting logarithmically both within the indi-
vidual layers and in different layers (Korshunov, 1990).
The transition turns out to be very similar to the BKT
transition in a purely two-dimensional system, with a
transition temperature Tz determined implicitly by the
relation Tz =4E, ( T~ )d ) TBKr; hence the zero-field
decoupling transition into a set of independent two-
dimensional superconducting layers is never realized.
The results of Korshunov (1990) were later confirmed by
Horovitz (1991), who also extended the analysis to in-
clude the disordering effect of pancake vortices, which

tend to suppress the effective coupling between the lay-
ers.

The 3D coupling of the layers turns the system into a
bulk superconductor below T, . In the absence of Auctua-
tions (thermal or quantum), the system is expected to
have a finite critical current density. Indeed, on scales
R &A, the Lorentz force jd+, /c has to compete with
the confinement force 2E, E [see Eq. (8.41); the
confinement is simply due to the two Josephson strings
created during the expansion of the pair], and we obtain
the (planar) critical current density (see also Glazman
and Koshelev, 1990; Jensen and Minnhagen, 1991)

jcon (8.107)

3. BKT-type vortex-lattice rneiting (H& 0)

As already mentioned in Sec. VIII.B.l, the 2D crystal
in general, and thus the 2D vortex lattice in particular, is
a further example exhibiting a Berezinskii phase at low
temperature and a Kosterlitz-Thouless transition into a
liquid phase at some elevated temperature. In this sys-
tem, the role of the logarithmically interacting topologi-
cal excitations is played by the edge dislocations. Using a
continuum description, we find that the displacement
field belonging to an edge dislocation with a Burgers vec-
tor b=(b, 0) pointing along the x axis is given by (Nabar-
ro, 1979; Brandt, 1986b)

b xy Xu= +arctan —,—
2m' x g~ (8.108)

and the energy associated with this defect is

The critical current density along the c axis is given by
the Josephson coupling jJ [see Eq. (8.8)j and is reduced
by a factor E as compared with the above result for the
confinement critical current density j„„.As the (planar)
current density is increased beyond j„„,we are probing
length scales smaller than A, and the current-voltage
characteristic becomes algebraic. At finite temperatures,
dissipation due to vortex-loop creation will lead to an ad-
ditional experimentally small voltage ~ exp( —jz./j),jr-j, (E,sg/T), in the system. Strong 2D fiuctuations
above Tf will produce an additional temperature depen-
dence in the bulk screening length A, and in the critical
current densities j„„and jJ, as can be found in the work
of Glazman and Koshelev (1990). Evidence for BKT-
type behavior in YBCO and in Bi- and Tl-based high-
temperature superconductors has been reported by
Stamp, Forro, and Ayache (1988; see also Yeh and Tsuei,
1989), Artemenko, Gorlova, and Latyshev (1989a, 1989b;
see also Gorlova and Latyshev, 1990), Kim et al. (1989),
and Martin et al. (1989). Surprisingly, in the work of
Artemenko et al. the algebraic form of the current-
voltage characteristic remains present even for low
current densities, j &j„„,where the theoretical analysis
predicts an exponential behavior.
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ed(R)=d J d'R' (V',u)'
0

db Rc„ln2' 0
(8.109)

The lower cutoff R, is provided by the lattice constant
a, of the vortex lattice, whereas the upper cutoff R is

given either by the sample dimension I. ( —+self-energy of
the topological defect) or by the distance R to the nearest
dislocation with an opposite Burgers vector (~logarith-
mic interaction between two oppositely "charged" topo-
logical excitations). Note that the distortion (8.108) does
not involve compression (Vu =0) but only shear, which is
a consequence of the incompressibility of the vortex lat-
tice, c» )&c66. For an elementary dislocation, the
Burgers vector (=misfit vector when encircling the dislo-
cation) is equal to a unit lattice vector, and ed(R) be-
comes

Eod
e, (R)= ln

4 3' &o
(8.110)

d+5 c66(cll c66)2

T2D (8.112)

Taking into account that the vortex lattice is essentially
incompressible, c66 «c&&, and using c66 =c., /4a„we re-2

cover Eq. (8.111). The observation of dislocation-
mediated melting in thin Nb3Ge films has been reported
by Berghuis, van der Slot, and Kes (1990).

Let us estimate the 2D melting temperature T in the
strongly layered Bi- and Tl-based compounds. Since
T « TB&T, we have to take into account the change in
the coupling constant e, (T) due to the temperature
dependence of A.,

T2D
m

TBKT

4+3 ir Tc TBKT

C 772

TBKT

TaKT /Te.
(8.113)

which is a factor 4vr&3 = 7m smaller than the correspond-
ing energy for the vortex excitation itself. The BKT-type
dislocation-mediated melting transition of the 2D vortex
lattice then takes place at a temperature (Huberman and
Doniach, 1979)

da gc66 d E,
(8.111)

4~ 8

Of course, the presence of bound dislocation pairs again
leads to a renormalization of the shear modulus c66.
From here on we do not explicitly note this renormaliza-
tion of the coupling constants in the formulas, but we re-
mind the reader that such effects are present. Equation
(8.111) is also in agreement with the general equation for
the melting temperature of a 2D crystal as obtained by
Kosterlitz and Thouless (1973) and by Halperin and Nel-
son (1978; see also Nelson and Halperin, 1979, and Fish-
er, 1980),

g'(K„r) = (p~(R)pK(0) ) ~ R

where the density wave p&(R) is given by

(R ) e iK[R+u(R)]
PK

(8.114)

(8.115)

and

TK„(c»+c«)
47TC 66C 11 4~c«

(8.116)

This algebraic decay is a consequence of logarithmic
divergence in the displacement field ( [u(R)
—u(0) ] ) ~ lnR [see Eq. (3.131); the factor of 2
discrepancy between Eq. (3.131) and the above result is
due to the different model used for the elastic manifold in
Sec. III.E, where the displacement is transverse to the
manifold]. As a result, the 5-function Bragg peaks
present in the structure factor of a crystal exhibiting true
long-range order are replaced by power-law singularities,

S(K)~ K—K (8.117)

Whereas true long-range order is absent in the position
(density) of the atoms, it is present, however, in the orien-
tation order parameter %'„(R)=exp[in8(R)], with the
bond-angle field 8(R) given by 8(R)=(B„u~—B~u„)/2
(for a triangular lattice, n=6) The orienta. tional correla-
tor

g'(6, r) = ('P (R)+,*(0)) (8.118)

approaches a nonzero constant value asymptotically,
g'(6, R ~~ ) =exp( 9T/2m'. d). Th—e melting of the
crystal then proceeds in two steps (Nelson and Halperin,
1979): First, the dislocations unbind at T, as given by
Eq. (8.111). Within the resulting phase, the density-
density correlator decays exponentially, g'(K„,R)
~exp[ —R/gii&T(T)], with gi7&T given by the modified
expression

T2D

gBxT(T) ~ exp b, v=0. 36963 .
T2D

(8.119)

We briefly summarize the new additional elements
relevant in the discussion of BKT behavior in a 2D crys-
tal (Nelson and Halperin, 1979; Strandburg, 1988). First,
we should point out that the basic Hamiltonian of the
system is slightly more complicated than our prototype
Hamiltonian (8.75), owing to the fact that the "charge" is
now a vectorial quantity (Burgers vector) and owing to
the appearance of an additional angular term in the
Hamiltonian. As a consequence, several results will be
slightly modi6ed with respect to the standard theory,
such as the exponent g and the coherence length gB&T
(see below).

The low-temperature phase is characterized by topo-
logical order, with a density-density correlator decaying
algebraically (Jancovici, 1967; Imry and Gunther, 1971;
Nelson and Halperin, 1979),
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The gas of free dislocations allows the shear stress to re-
lax in this phase, and we obtain a finite viscosity

via
' 1/2

~"4KT'(T) ' (8.120) c44
&Bz . (8.122)

hence the resulting phase is indeed a liquid. On the other
hand, the orientational order is not yet completely des-
troyed and decays only with a power law,—q6(T)g'(6, R) ~R ', with the exponent g6(T) determined
by the stiffness Kz (Franck constant) of the bond-angle
field [see Eq. (4.166)], g6=18T/mK„. Due to the gas of
free dislocations, the orientation stiffness K„(T) is
strongly temperature dependent. On approaching the
melting temperature T from above, the free disloca-
tions bind into pairs [on the scale giiKT(T)] and the
stiffness K~(T +T )—diverges. As a result, the ex-
ponent g6 goes to zero as T—+T, and in this manner
orientational long-range order is established. The inter-
mediate phase above T, lacking translational but still
possessing orientational order, is called a hexatic liquid.
Obviously, free dislocations are able to destroy the
translational order completely, but are less efFective in
destroying orientational order. The excitations that do,
however, destroy orientational order are the disclina-
tions, topological defects that rotate the triangular unit
cell by +60' when encircling the defect. A dislocation
can be viewed as a tightly bound pair of (oppositely
"charged") disclinations and hence does not influence the
bond-orientational order. Within the hexatic phase all
disclinations are paired up and form a gas of free disloca-
tions. The interaction between two disclinations is again
logarithmic, with the coupling constant 2 in Eq. (8.75)
given by the Franck constant, X=K~ /36. Hence, on ap-
proaching the temperature Tz =n.K„/72, the disclina-
tions unbind, and orientational order disappears. At the
transition the exponent g6 takes the universal value
g6= 4. Above the hexatic transition the BKT correlation
length shows the usual exponential behavior,
gBxr(T) ~ exp[(bT& )/(T —Th )]'~, with the disclina-
tions bound into pairs on scales R &gBxT(T) and the
correlator g'(6, R) ~ exp[ —R /gBzT( T) ] decaying ex-
ponentially with distance. Hence, at temperatures
T )Th, a true liquid is established with all correlations
decaying exponentially with distance.

As we move on to layered superconductors, the melt-
ing transition of the 3D vortex lattice can retain the 2D
character of the melting transition in the layers. Let us
remind ourselves about the Lindemann criterion for the

melting of the vortex lattice as discussed in Sec. V.A, say-
ing that thermal fluctuations will melt the lattice when
the mean displacement (u ),'„~ grows beyond a fraction
cL of the lattice constant ao,

(8.121)

Inspection of the derivation of (u ),h [see Eq. (4.83)]
shows that the main contribution to thermal displace-
ment (u ),'z~ originates from wave vectors near the
Brillouin-zone boundary K=K~z, with k, related to E

For wave vectors close to the Brillouin-zone boundary,
the tilt modulus c44 is dominated by the single-vortex
limit (s s, /2a, )ln(H, /8) (Glazman and Koshelev,

1991a), and, using the standard expression (3.32) for the
shear modulus, we obtain

1 2m.

sa. ln[H, /8]

1/2

(8.123)

for the relevant wave vectors in the z direction. From
Eq. (8.123) we can extract a crossover field 82D,

B2D =m ln —, (8.124)

below which k, is small, k, & m/d, and layering is unim-

portant. Within this weak-field regime, B CB2D, the in-

teraction of pancake vortices along the z axis (as mea-
sured by the tilt energy) is larger than the in-plane (shear)
interaction; hence the pancake vortices constitute well
defined vortex lines. The melting transition can then be
described via the usual Lindemann criterion, and we ob-
tain a melting line of the form (Glazman and Koshelev,
199la)

0,
T (8)= —lnm CCo CL

1/2

8 & B~D (8.125)

d&0
T~ = —,82D &8

8 3n
(8.126)

(see Fig. 39). The matching of the two melting lines
(8.125) and (8.126) at (T,BzD ) provides us with an esti-
rnate for the Lindemann number,

5
(8.127)

The crossover field B2D not only separates the two re-
gimes where the character of the melting changes be-
tween 3D and 2D behavior, but, as would be expected,
also sets the boundary between the regimes of 3D and 2D
fluctuations in the vortex lattice. Whereas the Auctua-
tions ( u ),'h~ saturate in a 3D lattice [see Eq. (4.85)],

(see Fig. 39). Note that in Eq. (8.125) we have accounted
for the strong suppression of the melting line far below
the mean-field critical line H, , rendering the single-

vortex contribution to the tilt modulus dominant. At
higher fields, B )B2D, the planar interaction between the
pancake vortices is dominant, and the melting transition
becomes essentially 2D in character, with a field-
independent melting line given by
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FICx. 39. Equilibrium phase diagram of a strongly layered
high-temperature superconductor. The melting line 8 ( T) and
the corresponding transition is 3D like below 8» and of quasi-
tw o-dimensional character above 8». The low-field/low-
temperature phase is a normal solid with a longitudinal super-
conducting response and a broken continuous translational
symmetry transverse to the field direction. When T is in-
creased, the solid melts into a line liquid (normal liquid), which
transforms to a point liquid (superQuid liquid) at even higher
temperatures. 8, and 8 denote the vortex evaporation line
and the 3D disentangled-entangled transition line, respectively.
A.t large fields, 8 & 8», the layers first decouple and the system
transforms into a super Quid solid with a normal metallic
response, even in the field direction, but still broken continuous
translational symmetry transverse to the field. When the tem-
perature across the melting line is increased, the supersolid
transforms to a superliquid phase, which is equivalent to the
normal-metal phase.

(u'(R) &,„= a.', (8.128)

they grow logarithmically in 2D,

(u (R)),h-— ln
T

4~~„d ao
(8.129)

The finite Josephson coupling between the layers will cut
off the logarithmic growth in (8.129) at a distance R =A.
Hence we find that at small fields, B &B2D, the Auctua-
tions are given by Eq. (8.128) and are of a 3D nature,
whereas at high fields the fluctuations are of a 2D charac-
ter (a, & A) and given by Eq. (8.129). At crossover
(B =B2D and hence a, =A), the Auctuations are equal,
thus providing an alternative (and equivalent) criterion
for the determination of B2D. Note, too, that up to loga-
rithmic corrections, BzD-M~ as defined in Eq. (8.57).
For the Bi-based compounds with E=1/150 and d =15
0

A, typical values for the crossover field B20 are of the or-
der of B2D =0.5 T. The exact value of the crossover field

B2D depends sensitively on the anisotropy parameter c..
The experiments by Martinez et al. (1992) indicate that s
could be as small as e ( 1/1SO.

It has been argued (Fischer, 1992) that the 3D-2D
crossover at B20 is suppressed by the magnetic interlayer
coupling, which renders the system always 3D-like. This

conclusion was reached by a comparison of the magnetic
interlayer energy with the 2D vortex-lattice melting tem-
perature T . In particular, a thermal distortion of the
vortex lattice by u -a, /2 between neighboring planes
costs a magnetic energy of the order of

=2dE. (d/A, )ln(ao /2g) (two vortex-antivortex pairs
of size R -a, /2 placed in adjacent layers). This energy
contains the small factor d /X and is not important in the
discussion of the BKT-like transition into the supercon-
ducting state. However, the melting temperature (8.126)
contains the small numerical factor 1/8&3vr and can be
even smaller than 8, ; thus one could argue that the
electromagnetic coupling is always important for the 2D
vortex-lattice melting transition. The problem with this
argument is that one is comparing two energy scales be-
longing to two different systems. The BKT melting tem-
perature refers to dislocations in the 2D vortex lattice
which, as already pointed out, live on an energy scale re-
duced by a factor of -7~ with respect to the planar
vortex-vortex interaction scale itself. On the other hand,
the magnetic interlayer coupling energy considered by
Fischer refers to the vortices themselves and not to the
dislocations; hence one should not compare these two
quantities, which refer to different objects, dislocations,
and vortices. The correct procedure involves a compar-
ison of energy scales on the level of vortices or on the lev-
el of dislocations. With the former method, we have to
compare the Josephson interaction energy and the mag-
netic interaction energy between the vortices, with the re-
sult that the Josephson term is dominant; thus the above
analysis leading to the crossover field B2D seems to be
correct. The alternative is to compare the interaction en-
ergies between two dislocations in different planes due to
Josephson and magnetic coupling, which is a much more
diFicult task.

In a further step, we can determine the upward shift of
the 2D melting line (8.126) due to Josephson coupling be-
tween the layers. The present discussion is completely
analogous to that of the BKT-like transition in layered
superconductors (see Sec. VIII.B.2), where the coupling
between the layers leads to a cutoff of the 2D transition
at T, ) TBKT and the occurrence of a true 3D transition
with a finite order parameter. Consider the high-
temperature liquid phase at large fields, T )T and
B )B20. Under these conditions the vortex liquid is a
liquid of 2D pancake vortices (rather than of vortex lines,
as is expected at lower fields, B &BzD). The largest in-
teraction energy in the system is the in-plane repulsion
between the pancake vortices. When the temperature is
lowered towards the melting temperature T, the gas of
free dislocations in each plane starts to bind into pairs on
scales R &g'BKT. Lattice coherent regions of size gii~T
can couple via the Josephson interaction between the lay-
ers and gain an energy of the order of Ez(gsKT), where
EJ=jJN, /2mc =c. c /~d is the coupling energy density
between two layers. As this energy becomes comparable
to T, the 2D melting transition starts to couple into the
third dimension, and we obtain a 3D transition. This
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coupling into the third dimension then leads to an up-
ward shift of the Inelting line, and we obtain the correct-
ed result (see Fig. 39)

T (B)=T 1+2D B20 &B .
[ln(B /B2D)]'

(8.130)

Here we have ignored a possible downward renormaliza-
tion of the Josephson-coupling energy density EJ due to
thermal fiuctuations (see Sec. VIII.B.4).

The high-temperature phase above T (B) is expected
to be quite difFerent in the two field regimes below and
above B2D. Whereas a liquid of vortex lines is expected
to exist below B2D, a liquid of 20 pancakes will be more
appropriate for describing the high-field phase at
B )B2D. Some hexatic order is expected to survive in
both of these liquids up to the disclination unbinding
temperature (Marchetti and Nelson, 1990a). The vortex
lines surviving the melting transition in the low-field re-
gime, B &B2D, are expected to break up into individual
pancake vortices at a temperature T, [evaporation tem-
perature (see Sec. VIII.A.2); note, however, that here we
have to take into account the presence of other vortices].
An estimate for this evaporation temperature is obtained
from the condition ([u(O, d) —u(0, 0)] =ao and the use
of Eq. (3.131), from which we find T, (B)-E E.a. /d. At
B2D the evaporation temperature should be equal to the
melting temperature, T, (B z)D= T; combining these
two results, we obtain (see also Glazman and Koshelev,
1991a)

' 1/2

T, (B)=T (B) B (8.131)

The resistivity changeover observed in artificial multilay-
ers by White, Kapitulnik and Beasley (1991) may find a
natural explanation in terms of this vortex evaporation
phenomenon.

Equation (8.131) is expected to describe well the situa-
tion close to the crossover field B2D. At low magnetic
fields the condition ( [u(O, d) —u(0, 0)] & =a, is too
stringent. Since the line T, (B) describes nothing but the
loss of superconducting coherence along the field direc-
tion, we expect T, (B) to merge into the disentangled-
entangled vortex-liquid transition line at low fields, where
the anisotropic description works well (see Sec. V.B and
Fig. 39).

The above scenario for the melting transition in lay-
ered superconductors agrees quite well with the experi-
mental analysis of the melting line in layered BiSCCG su-
perconductors by Gammel et al. (1988) and by Durin
et al. (1991)and with the results of Monte Carlo simula-
tions of the melting of the vortex lattice in layered super-
conductors by Ryu et al. (1992).

Finally, the existence and the character of the (finite-
temperature) melting transition in a two-dimensional vor-
tex system seem not to be completely settled yet. In par-

ticular, O' Neill and Moore (1992) do not find evidence
for a finite-temperature transition into the vortex-lattice
phase in their recent Monte Carlo simulations. Qn the
other hand, a finite-temperature melting transition far
below the mean-field upper critical-field line M, (T) has

been found by Tesanovic and Xing (1991) in their
analysis of critical fluctuations in (quasi-) two-
dimensional superconductors; however, from their results
they cannot conclude whether the transition is continu-
ous (HKT-type) or weakly first order. In very recent
work, Kato and Nagaosa (1993) report finding a first-
order melting transition for the two-dimensional vortex
lattice close to the transition temperature T predicted
by the BKT scenario.

4. Decoupling transition

Quite a while ago it was proposed that thermal fiuctua-
tions of the vortex lattice lead to a destruction of super-
condueting long-range order in the Abrikosov phase
above H, (Maki and Takayama, 1971). This suggestion

1

was recently reconsidered by Moore (1989, 1992), who
found that the phase correlator ((p (r) &,h
=([(p(r)—(p(0)] & diverges in fewer than four dimen-
sions. In three dimensions the decay of the order-
parameter correlator

(+(r)+*(0)&-e (8.133)

with I. -c, a, X/T. Typical values for I., are of the or-
der of millimeters; thus the destruction of the ofF-

diagonal long-range order would take place only on very
large length scales. The results of Moore (1989) and of
Maki and Takayama (1971) have been criticized by
Houghton, Pelcovits, and Sudbo (1990) who argue that
the appropriate quantity to study is the gauge-invariant
correlator (4(r)(p*(0) &

~ exp[S(r)], with

(8.134)

The origin of the divergence in the phase correlator,
found by Moore, is easily traced to the singular behavior
of the long-wavelength modes of the phase field qr(r) un-
der (shear) distortions u(R) of the vortex lattice,

. B [u(k) h K].n
(8.135)

The correlator of the phase Auctuations 5y can be related
to the correlator of the transverse lattice distortions [see
Eq. (4.82)], and the result is

(8.132)

was found to be highly anisotropic and faster along the
direction perpendicular to the field, where it takes the
form
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([5g(r) —5y(0)] )
r

2m. d k K 1 —coskr
a, (2m) k c66K +c44(k)k,

(8.136)

Due to the additional factor K /k, the phase correlator
turns out to be more singular than the displacement
correlator, and the possibility arises of obtaining a diver-
gence in ( [5y(r) —5q&(0) ] ) while the vortex lattice
still preserves translational long-range order,
([u(r) —u(0)] ) & ~. Houghton, Pelcovits, and Sudbo
(1990) argued that, by going over to a gauge-invariant
phase y, the divergence in 5qr=5y+(2~/4&, )f 5Adl is

removed and the gauge-invariant phase correlator
remains finite in three dimensions. However, the results
of Houghton, Pelcovits, and Sudbo (1990) are at variance
with the more recent findings of Glazman and Koshelev
(1991a, 1991b) and of Moore (1992), who report obtain-
ing divergences in the gauge-invariant phase correlators,
too; thus the situation is rather confusing at present.
[Definition (8.134) of the phase correlator is not unprob-
lematic either, as this quantity is divergent even in the
Meissner phase if all fluctuations are accounted for. In
order to avoid overcounting, one should fix a gauge, say,
V'A=O. This particular choice produces just the phase
correlator for the (geometric) phase of the order parame-
ter; see Moore (1992) for more details. ] Furthermore, the
physical meaning of the phase correlator itself and of its
possible divergence is somewhat unclear in the following
sense: Within the mixed phase of a type-II superconduc-
tor, the relevant objects that determine the physics of the
system are the vortices, and their spatial Auctuations can
be understood as representing topological fluctuations of
the phase field. The phase field as defined Eq. (8.135) is
tied to the position of the vortices and hence does not
represent an additional degree of freedom in the system.
In fact, restricting ourselves to two dimensions, we can
construct an equivalent "phase correlator" ( [58(r)
—58(0] ) in the following way (see Landau and Lifshitz,
1959a): We idealize the vortex lattice as being in-
compressible; hence Vu=O, and u is a pure transverse
field. Thus there exists a scalar field 8(R) such that
u(K)=Ki8(K), where Ki=(K~, —K ). The scalar field

8(K), being just a mathematical construct for expressing
the vector field u in terms of a scalar field 0, has the same
properties as the phase field 5y, but should not be inter-
preted as a new and independent degree of freedom in the
system. In particular, the ( [58(R)] ) correlator
diverges at infinity, but has no relation whatsoever with a
thermodynamic phase transition in the vortex system.
Moreover, Gaussian (as opposed to topological) fiuctua-
tions cannot relax the strain in the phase field and hence
cannot lead to dissipation of energy (cf. Huse, Fisher, and
Fisher, 1992). A somewhat different point of view was
proposed by Moore (1992): Instead of taking the finite-
ness of the displacement correlator (u ),h as evidence
for the stability of the vortex lattice against thermal Auc-

tuations, and hence arguing that a vortex-lattice phase
indeed exists, one could take the divergence of the phase
correlator as evidence for the nonexistence of a vortex-
lattice phase. In fact, such an argument is based on the
result obtained by O' Neill and Moore (1992), who report-
ed finding no vortex lattice at all in a 2D system (see the
discussion above).

Whereas the properties of the long-range behavior of
the phase correlator ( [5y(r) —5p(0)] ) and its physical
interpretation are still rather unclear at present, the
short-distance analogy of this quantity is much more use-
ful. In particular, in layered superconductors the phase
correlator ([5y(0,d) —5p(0, 0)] ) gives information on
the effective coupling strength between two neighboring
superconducting layers. With increasing temperature,
thermal fluctuations of the vortex positions can lead to a
reduction of the interlayer coupling and even to a phase
transition in which the layers decouple and the supercon-
ducting coherence along the field direction (z axis) is lost.
A simple derivation of the decoupling temperature
proceeds as follows (Glazman and Koshelev, 1991b): The
elastic energy density contained in the shear motion of
the vortex lattice is

'2

5E(K)=c66dK (8.137)

5E (K) =c66d (a, K)4
2m'

(8.138)

Calculating the phase correlator along the field direction
in the path-integral formulation and using Eq. (8.138), we
obtain the estimate

& [5+(0,d) —5+(0,0)]'&- ', J.c66da, min E
(8.139)

with the lower cutoff X;„determined by the require-
ment that the planar shear mode not couple into the
third dimension. This is the case if
5E(K,5y-l) &EJ=s c, /m. d, from which we obtain the
condition K )K;„=I/Qa, A. The final result for the
phase correlator then reads

( [5y(0, d ) —5y(0, 0) ]~)—
(&)

(8.140)

with the decoupling temperature
' 1/2

B2D
Td, (B)=me, a, =T B20 &B . (8.141)

As the temperature T increases beyond Tz, (8), the
thermal phase fluctuations become large and the indivi-
dual layers start to decouple. Since this phenomenon is
tied to the discreteness of the material along the z axis,
the decoupling is expected to be restricted to the high-
field regime, B & B20. The decoupling temperature

Substitution of Eq. (8.135) for the displacement field u
leads to the expression

2
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(4.150)

where P(R, z) and P*(R,z) are destruction and creation
operators for either 2D bosons moving in imaginary time
[see Eq. (5.35)] or fiux lines extending along z. Within
the vortex picture, the correlator g~(R, R';z, z') describes
the termination of a vortex line at (R,z) and the creation
of a new line at (R', z'). For z (z', a vacancy is intro-
duced into the vortex system, whereas the case z )z' de-
scribes an interstitial. The two end points of the vortex
lines correspond to magnetic monopoles. A typical reali-
zation of these types of defects can easily be envisaged for
a layered superconductor in a parallel-field configuration
[see Blatter, Rhyner, and Ivlev (1991)and Sec. VIII.B.5].

In analogy with the above discussion, we introduce the

thermal Auctuations of the vortex lines. In the end, prob-
ably both Gaussian and topological fluctuations of the
quasi-two-dimensional vortex lattice are important in the
decoupling transition. The situation, in fact, resembles
the BKT phase transition: the Gaussian fluctuations re-
normalize the stifTness of the phase, whereas the topologi-
cal fluctuations trigger the phase transition itself. Since
the interlayer coupling is strongly renormalized above
Td, (B) (and hence A —+ ~ ), we can expect the true
decoupling phase-transition line Td, (B} to be close to
Td, (B).

Similar ideas have been put forward by Nelson (1991)
and by Frey, Nelson, and Fisher (1994). Instead of study-
ing quartets in layered superconductors, they consider
interstitial-vacancy loops within an Abrikosov Aux lat-
tice. Such interstitial-vacancy loops are direct generali-
zations of the quartets to the continuous situation. They
can be viewed as a combination of four ( —+quartets)
dislocations, with one pair introducing an interstitial and
the other a vacancy into the vortex array. Within the
vortex-lattice phase, the energy for creating this defect
scales linearly with its total length, and thus free intersti-
tials or vacancies are not thermodynamic quantities at
low temperatures. However, with increasing tempera-
tures, the entropic contribution to the free energy, which
also scales linearly with the length of the defect, can neu-
tralize the line energy, and vacancy-interstitial loops of
all length scales start to proliferate. If this transition
takes place below the melting temperature of the crystal,
the resulting phase will be an entangled vortex lattice,
showing translational long-range order in the vortex po-
sitions and normal metallic properties in the direction
parallel to the vortices. In the phraseology of boson sys-
tems we then have a supersolid quantum crystal. The bo-
sons make up a 2D phase-coherent crystal with a finite
density of inter stitials and/or vacancies forming a
super Quid.

In order to be more specific, we introduce the two
relevant correlation functions, g'(K, r) describing the
translational correlations,

t(K r) (( iK(u(r) —u(0)) ))

and g~(R, R', z, z') describing the boson coherence,

g&(R, R', z, z') = (P(R,z)P*(R',z') ), (8.145)

temperature Td, at which the free energy

fd
=ed —( T/l. )ln W of the line defect turns negative and

the defects (interstitials/vacancies) start to proliferate.
Here, ed is the line energy of the defect, l, is the (longitu-
dinal) length scale for (transverse) fiuctuations, and W
denotes the number of available positions.

Let us consider the various possible phases and their
properties. Within the solid phase (T (T ), the correla-
tor g' shows a finite asymptotic value, indicating the
presence of translational long-range order, whereas g' de-
cays exponentially to zero in the liquid phase above T
On the other hand, g~-exp[ fdl/—T], with
I =V (R—R'} +(z —z') the length of the defect, decays
exponentially in the low-temperature phase, T ( Td, .
Above Td„ fd changes sign and off-diagonal long-range
order is established in the boson system. Following the
discussion in Sec. V.B.3, the corresponding vortex phase
shows a normal (dissipative) response along the magnetic
field. The arrangement of these two transitions possess
an interesting question. The conventional scenario is to
assume that the defect energy will turn negative at the
melting transition, and hence longitudinal superconduc-
tivity and translational long-range order will be lost at
the same time. In boson language, the translational order
is lost at the same temperature T where quantum
coherence appears. On the other hand, an interesting al-
ternative appears when the defect proliferation tempera-
ture Td, is smaller than the melting temperature T
Td, &T . In this case, boson coherence appears while
the translational order is still present, and the resulting
phase in which both correlators exhibit long-range order
is a supersolid. In vortex language, this phase exhibits a
vortex lattice that is entangled (due to the presence of
vacancies/interstitials) and thus is not superconducting
along the field direction. The corresponding phase dia-
gram shows similarities to the phase diagram of a type-II
superconductor. In both cases an intermediate phase
with line defects appears before the underlying broken
symmetry disappears at higher temperatures —in a type-
II superconductor, the underlying broken symmetry is
that of gauge, and the defected phase is the Schubnikov
phase; in the present case, the underlying broken symme-
try is the translational lattice order, and the defected
phase is the supersolid. On the other hand, the situation
in which translational order is lost at the same tempera-
ture T as quantum coherence appears produces a phase
diagram that is similar to that of a type-I superconductor
where no intermediate phase is present.

The above melting scenario involving an intermediate
supersolid phase corresponds to the existence of a decou-
pling transition below the melting transition for the vor-
tex lattice, as discussed above for a layered superconduc-
tor. When viewed in this manner we obtain
Td, =—Td, =—Td, =—T«. In fact, calculating Td, from the
sign change in the defect free energy fd for high-field sit-
uation, B )B2D, in a layered superconductor (ed ——ac. ; a
a prefactor of order 0.1; I. =d; W =A ~a, ), we obtain
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B20f =aEo ——ln
d B (8.146)

and using the definition fd ( Td„B) =0, we reproduce the
result (8.144) up to a numerical factor. The existence of a
supersolid phase depends critically on the defect line free
energy. In a layered superconductor, there is an addi-
tional length scale present (the interlayer distance d),
which helps in the creation of these topological defects.
No corresponding scale is present within a continuous
anisotropic superconductor, and the chances for this in-
termediate phase to exist in this case are low. In fact,
calculations of the defect energies in a continuous aniso-
tropic superconductor by Frey, Nelson, and Fisher (1994)
do not support the existence of a supersolid phase for this
case.

I.et us finally summarize the present views regarding
the various phases and phase transitions appearing in the
vortex system of a continuous anisotropic superconduc-
tor as well as in a discrete layered superconductor. In
Sec. V.B we saw that we have to destroy turbo types of or-
der when going from the low-temperature Abrikosov
phase to the high-temperature normal-metal phase.
These two types of order are the translational long-range
order in a vortex lattice perpendicular to the field direc-
tion and the superconducting long-range order along the
field. In Sec. V.B we discussed the possibility that these
two properties are lost sequentially in two transitions:
within a continuous anisotropic superconductor, first the
translational order is lost (~disentangled liquid), and in
a second transition the longitudinal superconductivity
disappears (~entangled vortex liquid). A moment of
thought shows that the decoupling transition discussed
above is nothing but the inversion of the order of these
two transitions. While the longitudinal superconductivi-
ty is lost at Td, (8), the lattice translational order persists
until we reach the higher temperature T (8)) Td, (8).
This sequence of transitions is realized within a layered
superconductor at high fields, B &BzD. For low fields,
B &BzD, the conventional 3D picture seems to apply,
and lattice order is lost before the longitudinal supercon-
ductivity disappears. Quite naturally, then, in a layered
superconductor, the transition lines for loss of transla-
tional order and for loss of longitudinal superconductivi-
ty cross at the point [T (82D), 82D] in the phase dia-
gram (see Fig. 39). Whether a similar crossing can be
realized in a continuous anisotropic superconductor
remains an open problem. A simple and consistent
nomenclature for the various phases we expect to exist in
a layered superconductor can be obtained by combining
the vortex picture and its 2D-boson analogy. The longi-
tudinal superconductivity is described in the Bose pic-
ture: superfluidity of bosons is equivalent to normal lon-
gitudinal response in the vortex lattice, whereas a normal
Bose liquid is tantamount to superconducting coherence
along the field. The perpendicular lattice order is de-
scribed in the vortex picture: we have a solid, if transla-
tional long-range order exists, and a liquid in its absence.

We then encounter the following phases in a layered su-
perconductor as we raise the temperature. At low fields
we start out with a normal solid, which first transforms
to a normal liquid and, afterwards, to a superliquid (see
Sec. V.B). At high fields, 8 )82D, the system also starts
out in a normal-solid phase, then goes over into a superso-
lid phase at Td, (8), and finally transforms to the high-
temperature- superliquid phase. Though this picture is
still quite speculative, it provides a very consistent and
complete phase diagram for the layered superconductors,
emphasizing again the richness we can expect to en-
counter in the phenomenology of high-temperature su-
perconductors.

5. Parallel magnetic fields

As discussed in Sec. VIII.A.2, layered superconductors
are potentiaHy ideal BKT systems with an infinite-range
logarithmic interaction in the limit of zero interlayer
coupling. The hope that a decoupling transition in zero
field below TBKT could take place due to the proliferation
of Josephson-loop excitations (Friedel, 1988) was never
realized (Korshunov, 1990). The question then arose
whether such a decoupled state could be reached with the
help of a magnetic field applied parallel to the layers,
which tends to suppress the interlayer coupling. The first
to address this interesting question was Efetov (1979),
who indeed found a decoupled state under high-field con-
ditions, H )Hz =N, /d A, by means of a high-
temperature expansion. The two phases found by Efetov
can be described as a vortex solid and a smectic vortex
liquid at low and at high temperatures, respectively
(Blatter, Ivlev, and Rhyner, 1991). The low-energy exci-
tations of the system consist of double-kink excitations in
which a finite segment of a Josephson vortex is thrown
over to a neighboring layer, thereby creating two oppo-
sitely "charged" pancake vortices. Moving these pan-
cake vortices around in the plane leaves behind a trail of
dislocations in the vortex lattice. Within the low-
temperature solid phase, the dislocation string has a
linear energy and the excitation is confined, whereas in
the high-temperature phase the string has "melted" and
the linear interaction between the pancakes turns loga-
rithmic, leading to true BKT behavior (Blatter, Ivlev,
and Rhyner, 1991).

The question of whether there indeed exists a finite-
temperature decoupling transition in the parallel-field
configuration apparently remains open. This question is
related to the presence of a finite-temperature glass tran-
sition (as opposed to a glass phase extending over all tem-
peratures) in the (1+1)-dimensional vortex model (see
the discussion in Sec. VII.A.3). According to Mikheev
and Kolomeisky (1991),a vortex lattice that is intrinsical-
ly pinned by the layered structure cannot melt via a
second order phase transition-. Qualitatively, the intrinsic
pinning leads to a dimensional reduction of the Auctua-
tional degrees of freedom, as the vortices can move only
along one direction, that parallel to the planes. Similar
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&=—fd R[c~4(B~u) +c»(B u) ] .
1

2
(8.147)

The Hamiltonian (8.147) accounts for the tilt and the
compression energy in the system, with u =u, (R) denot-
ing the displacement field directed along the x axis and
with the strings pointing in the y direction. The
compression modulus originating from the entropic
repulsion takes the form (Pokrovsky and Talapov, 1979)

results have been reported by Korshunov and Larkin
(Korshunov, 1991; Korshunov and Larkin, 1992). Here
we concentrate on the analysis presented by Mikheev and
Kolomeisky (1991),who consider the low-density limit of
the problem, where the intraplanar repulsion between the
vortices is provided by collisions due to line wandering.
Whereas some consensus seems to exist on this low-
density result, the high-density situation is less obvious
(Nelson, 1993).

We consider a (1+1)-dimensional array of lines de-
scribed within a continuum elastic model by the func-
tional

For q) 2 the integral is finite, and once the temperature
T can compete with DJ, the layers should decouple into a
system of independent 20 superconductors.

In this low-density analysis the exponent g appears to
be bounded by 2, and we find that no decoupling transi-
tion takes place —the coupling between the layers, no
matter how weak, always remains relevant. The above
simple arguments are in agreement with the more ela-
borate renormalization-group arguments by Mikheev and
Kolomeisky (1991). We thus have to conclude that, at
least in the weak-field limit, the parallel vortex lattice in a
layered superconductor cannot transform to a smectic
vortex liquid via a second-order phase transition.

The main factor responsible for the above result is the
dependence of the compression modulus c11 on tempera-
ture, c» ~ T at low fields, a consequence of the entropic
repulsion between the lines. Using a renormalization-
group analysis, we find that the generalization of the
above result to higher densities takes the form (Nelson
and Seung, 1989; Nelson, 1993)

c 11

2T2 4

c44

1

(1 Dn I
)— (8.148) c44

mT nl nla1+ (m —v)
U

(8.155)

with

&=f d R—(Vu)
C
2

(8.149)

1C = ( c ) ) c44 ) = 77 Tn I
1 Dnl

(8.150)

The displacement correlator (u (R) ),h for this 2D elas-
tic model grows logarithmically [see Eq. (3.131)],

( u (R ) ) th
= ln( n IR ),T

th C
(8.151)

so that the planar density-density correlator
[p=exp(2niun& )] decays only algebraically,

with the exponent q given by

g=2~Tn& /C =2(1 Dn&) . — (8.153)

For a planar array of vortices within a layered supercon-
ductor, the tilt modulus is given by c44=nlcl =n&cc., and
the mean line density is nr= 1/a~~, with a~~ =ao /&s the
in-plane lattice constant. The interaction range between
two Josephson vortices is D =k/c. Calculating pertur-
batively the interaction energy between two neighboring
layers of vortices, we obtain

A~~ fd R(p( R) p( )0), =hfdRR' (8.154)

where nl denotes the mean line density. The second fac-
tor represents a correction due to the finite collision
length D (=interaction range) of two lines. Rescaling the
coordinate y,y~y(c»/c~4)', one arrives at the isotro-
pic Hamiltonian

with v =v. E,D/T . The parameter v, is the interaction
parameter [corresponding to u, in Eq. (5.29)]; for
Josephson vortices with a line energy c.c, and a range
D =k/E, U, =c,oA.. For large densities the compression
modulus scales to c» =nl U, , and the exponent g can be-
come larger than 2, suggesting a finite-temperature
glass transition in the disordered 1+ 1 model
(quasiglass~quasisolid) as well as the existence of a
finite-temperature decoupling transition in a layered su-
perconductor (3D solid —+3D smectic). Equation (8.155)
was obtained within the lowest-order v=2 —d expansion;
however, the small thermal renormalization of the high-
density result is expected always to be correct.

On the other hand, no such transition was obtained by
Korshunov (1991) or by Korshunov and Larkin (1992),
who investigated the possibility of a parallel-vortex-
lattice melting transition due to a proliferation of disloca-
tions in the crystal at intermediate and at high magnetic-
field values. Both an approximate local elastic descrip-
tion and the nonlocal description accounting for the
long-range nature of the vortex-vortex interaction led to
the result that a potential melting transition lies aboue
the bulk phase transition into the superconducting state
in the absence of the field, T )T, . In fact, it remains to
be shown whether the finite-temperature glass transition
or the solid-to-smectic transition discussed above really
take place below T, if real vortices are considered in the
line model.

Finally, we mention the work of Horovitz (1991),who
studies the transition regime in the (H; T) plane via a
mapping to a fermionic problem. Within this formula-
tion, the vortex lines are mapped onto chains of fermions
that are separated l layers apart, with l determined by the
strength of the applied field. Thus the system splits into
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superlayers of thickness Id, where the individual super-
layer is free from vortices, whereas neighboring super-
layers are separated by an array of Josephson vortices.
Again, the decoupling transition due to

fluctuating

Josephson vortices competes with the BKT transition
due to the unbinding of "pancake" vortices, where the
"pancake" vortices now refer to the superlayers and thus
extend over a distance ld. The two (bare) transition tem-
peratures turn out to scale differently with the superlayer
thickness ld: whereas decoupling takes place at
TJ ( l ) = sod /2l, the BKT transition temperature for l
layers is TBKT(l)=cadi/2. Hence, for l&8, we have

TBKT (TJ and the transition is always three dimensional.
On the other hand, for l ) 8, the decoupling temperature
drops below the BKT transition temperature, Tz & TBKT,
implying that a narrow 20 regime exists close to T„
where the system decouples into a set of internally
coherent superlayers. Note that this scenario can work
only if the coupling between the layers is not too weak, so
that the 3D transitions are close to TJ(l).

In summary, the question of the existence of a decou-
pling transition for the parallel-field configuration in a
layered superconductor and the related problem of a
finite-temperature glass transition in the 1+1 model have
yet to be definitely settled. Whereas agreement between
the various approaches exists in the dilute limit, the ques-
tion remains controversial at high fields. The crucial
question in this context is how the interaction between
the vortices scales, where the interaction is a combina-
tion of bare, thermal, and disorder-induced.

C. Intrinsic pinning and creep

In this section we concentrate on the phenomenon of
strong intrinsic pinning in layered superconductors. In-
trinsic pinning in the oxides is a consequence of the lay-
ered structure of the material, with strong superconduc-
tivity present in the metallic CuO planes and only weak
or vanishing superconductivity found in the intermediate
buffer layers. Therefore the superconducting order pa-
rameter (and, together with it, the condensation energy)
is expected to exhibit strong oscillations with period d,
the interlayer distance. With the magnetic-field H
aligned parallel to the ab planes (y axis), the vortex lat-
tice tries to accommodate itself to the layer structure so
that the vortex cores come to lie in between the strongly
superconducting CuO planes. A current density j (~~ x
axis) fiowing along the planes will exert a Lorentz force
on the vortices which is pointing along the c axis (z axis
of the coordinate system). In order to move, the vortices
have to cross the strongly superconducting layers, which
involves a large expenditure of condensation energy, thus
creating the intrinsic pinning barriers. It is this special
geometry and its consequences in which we are interested
in this section. Note that a current density running along
the c axis will push the vortices to move along the planes
(x axis) where no barriers are inhibiting the How. In this

1. Intrinsic pinning

The first quantitative analysis of intrinsic pinning in
layered sup erconductors was that of Tachiki and
Takahashi (1989). In their model the modulus of the or-
der parameter 4 =f exp(ip) is assumed to exhibit a
periodic spatial variation of the form

f (z) =fo+f, cos2n. — (8.156)

with 0 &f, &fo. The strength of the layering is
parametrized by the ratio 5=f, Ifo. A vortex running
parallel to the planes (y direction) and positioned at a
height z =z, wi11 modify the order parameter according
to

2 1/2
Z Zp

f, (r;z, ) =f (z)tanh — + (8.157)

I

leading to a periodically changing cost in the condensa-
tion energy density (H, /8n)I1 —tf„(r;z, )If (z)] I. A
simple integration in the xz plane provides the intrinsic
pinning potential u;„, and the intrinsic pinning force
f;„(z,) is obtained by taking the derivative

f;„(z,)=—du;„(z, )/dz, . The intrinsic critical current
density, finally, is determined by the maximum pinning
force and takes the form

3&3 A 8
8 g H,

(8.158)

with the parameter q depending on the modulation pa-
rameter 5 and on the length ratio g/A. The factor
1 —B/H, originates from the suppression of the order

parameter on approaching the upper critical field H, .
2

Note that the length ratio A/g=d/sg strongly depends
on the anisotropy c of the system. Assuming 6=0.4—0.8
and using A//=4 appropriate to YBCO, the numerical
parameter g is of the order of 0.2 and the intrinsic depin-
ning current density j,'" is close to the depairing current
density j, , j,'"=(j, /2)(1 —8/H, ).

case, point defects are essential for producing a finite crit-
ical current density.

In Sec. VIII.C.1 we first evaluate the intrinsic critical
current density j,'", following Tachiki and Takahashi
(1989), Barone, Larkin, and Ovchinnikov (1990), and
Ivlev and Kopnin (1989, 1990a). The determination of
j,'" will allow us tp obtain the intrinsic pinning potential
U;„ from which we can find the commensurability condi-
tion for a vortex lattice with a layered structure. In Sec.
VIII.C.2, we shall discuss the problem of creep, both for
the case of weak layering (Ivlev and Kopnin, 1990b),
where we can make use of the results obtained in Sec.
III.E, and for the strongly layered situation, where we
shall mainly follow the analysis of Chakravarty, Ivlev,
and Ovchinnikov (1990a, 1990b).
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A more microscopic approach to the intrinsic pinning
problem of a single vortex has been taken by Barone,
Larkin, and Ovchinnikov (1990), who base their analysis
on the Lawrence-Doniach model [Eq. (8.1)]. Such an ap-
proach allows one to relate the parameters of the theory
more directly to the experimentally accessible (phenome-
nological) parameters of the layered material. For the
case of weak layering with A «g, the structure %', (x,z)
of the vortex can be calculated in the continuum aniso-
tropic approximation. The intrinsic pinning energy is
then obtained by inserting the solution %,(x,z —z, ) back
into the discrete Lawrence-Doniach free-energy expres-
sion (8.1) and determining its variation with the parame-
ter z, . Since the order parameter 4, is a smooth func-
tion of position, the energy difFerence between the contin-
uum anisotropic free energy (giving no intrinsic pinning)
and the discrete layered free energy is exponentially small
in the parameter g/A; we obtain an exponentially small
pinning energy

'P„(x)= g c)e '"' g x+
1=1

(8.162)

where we assume that the vortex lattice relaxes to a state
that is commensurate (a) =a.3/E=Nd=lattice constant
along the c axis) with the layer structure. The Bloch
functions 1t/ satisfy the Schrodinger equation

A2 d 2 1 Bxd+ 1 —cos2~dx' A' 1)'j~(x)=e (p)g~(x) .

(8.163)

Equation (8.163) has been solved in the two limits of
weak [A«g(T)] and intermediate [A(g(T)] layering.
In the case of weak layering, the potential term in (8.163)
is dominant, and g can be expanded into Wannier func-
tions. On the other hand, for intermediate layering, a
free-electron ansatz is appropriate,

5/2

U;„=5.10 sEO

i.

e
—2~a(/A (8.159)

g e P(x —x ), A «g(T),
(x)= . m

u~(x)e'~, A(g(T), (8.164)

with the factor &x=2.51. The intrinsic critical current
density is then small, too,

' 7/2

J in 4 I ()3 + e
—2n ap/AJ

A
(8.160)

with j, denoting the depairing critical current density
(2.30). In the opposite case of strong layering with
A))g, the critical current density is of the order of the
depairing current density j, itself. An expression for j,'"
is obtained by looking for the largest possible in-plane
current Aow across a Josephson vortex that still allows
for a static solution of the Ginzburg-Landau equations.
Hereby the suppression of the order parameter within the
layers due to the current Row is taken into account. Such
a calculation leads to the estimate

2/ 2

P(x) o-e (8.165)

with a~~=a. /V's the planar lattice constant, for the
Wannier function P(x). Due to the small overlap of the
neighboring "atomic" functions, the lowest eigenvalue
e. =Pi m/ma

~~

broaden. s into a narrow band,

f1 17 83/2 ~~~
—(4/n. )(n /A ) @OPe(p)= 1— cos

ma
II

Bd

(8.166)

with x =m4, /Bd. For weak layering, we can approxi-
mate the potential term as a harmonic well and use the
lowest eigenfunction of the harmonic oscillator,

g«A, (8.161)

The lowest eigenvalue determines the upper critical field
H, ; in the absence of a current fiow, e(0)= lul, leading

to

for the intrinsic critical current density in a strongly lay-
ered situation.

The problem of intrinsic pinning in large fields,
B (H, ( T), has bee'n studied by Ivlev and Kopnin (1989,

2

1990a; see also Ivlev and Kopnin, 1990b). The basis of
their analysis is again the Lawrence-Doniach-model free
energy (8.1). Both the weakly layered system with
d ((Eg (A (&g) and the more strongly layered case
(d (Eg or A ( g') have been studied. In the vicinity of the
upper critical-field line H, ( T), the order parameter

2

)p„(R) can be obtained from the solution of a linear ei-
genvalue problem, where the lowest eigenvalue deter-
mines the upper critical field H, itself. For a field 8
pointing along the y axis and a current density j directed
along the x axis, we can make the ansatz

+0
H, =

21rEg
(8.167)

The planar current density Aowing in the system is deter-
mined by the quasimomentum Ap of the wave function,

~c B
& le„l &

= g Ic) I

=
81r e, A. p~ B

(8.169)

with p~ =
& l@„l &/& l%'„ l & =1.16. The intrinsic criti-

cal current density close to H, can be calculated as the
2

j=2e& fe„l2&— (8.168)
dp

where the normalization & l%„ l & of the order parameter
is determined by the quartic term (p/2) l%„ l

in Eq. (8.1)
(Ivlev and Kopnin, 1990b),
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8$
C A

81—
H,

—8(g/A) ~

jo

maximum value of Eq. (8.168), and the result is

(8.170)

Having determined U;„, we can go back one step and
check the validity of our initial assumption of having a
commensurate vortex lattice. When we denote by
a~~ =a~/&E and ai =a~i/s the lattice constants along
the x and z axes, the condition for finding a commensu-
rate vortex lattice is

Obviously, reducing the layering by increasing the length
ratio g/A leads to an exponential decrease of the intrin-
sic critical current density.

The same analysis can be carried out for the more
strongly layered situation [A& /(T); see Ivlev and Kop-
nin, 1989]. In this case we can use a nearly-free-electron
approximation for the wave function gz(x), with a
periodic part uz(x)-1 and a free-electron-like spectrum
e (p) —const+ A' p /2m. On approaching the limiting
value 2g =A, the upper critical field H, diverges ac-

cording to

0, = 1

2msg V 1 —A /2g

(8.175)

where the maximal possible shear displacement u, (z. ) is
determined by the energy balance

u
C66

Q()

Using Eqs. (3.41) for the hard shear mode,
c66 =c66(1 b) /—s, as well as Eq. (8.174), we obtain the
region of attraction for the commensurate state with lat-
tice constant Xd along z,

3/2

1 — Jo
Cp

and the superconducting state becomes Pauli limited (see
Klemm, Luther, and Beasley, 1975). The intrinsic criti-
cal current density is given by

9 3/2
8 + A

P~ A

1/2
B1—

H,

' —1/2

e
—4(g/A)

(8.177)

(8.171)

4,p
J —

JC sin (8.172)

We can easily generalize Eq. (8.172) to the situation in
which the vortex lattice is shifted by u, along the c axis.
Such a shift changes the vector potential by 6 A =u h, B,
and for u=(0, 0,u, ) we obtain 6A„=—Q,B~. Replacing
the quasimomentum Pip in (8.172) by its gauge-invariant
form Pip+ (2e/c) A, we obtain

Note the different field dependence for the intrinsic criti-
cal current densities in the weakly layered [Eq. (8.170)]
and in the more strongly layered [Eq. (8.171)] cases. Ex-
tending the above analysis to the time-dependent situa-
tion allows us to study the problem of Aux How near the
upper critical field, and we refer the reader to the work of
Ivlev and Kopnin (1989, 1990c, 1991a) for details.

Having determined the intrinsic critical current densi-
ty, we can immediately proceed to obtain the pinning po-
tential U;„acting on the vortex lattice. For' the weakly
layered case, we have [see Eqs. (8.166) and (8.168)]

with ai=ai, v E=Nd. Here we have also accounted for
the suppression of the shear mode close to the upper
critical-field line H, (see Sec. III.A). For fields such that

2

(8.177) is fulfilled for some integer N, one expects that the
critical current density will reach a large value close to
Eq. (8.170). In a similar way, the higher-order commen-
surability condition for the case a i = (EC /N)d,
K,N=integers, is expected to provide a local maximum
in the depinning current density.

The intrinsic pinning potential (U;„) as given by Eq.
(8.174) applies to the weakly layered case. For strongly
layered superconductors, the vortices develop sharp
kinks as they cross a superconducting layer, which re-
quires an expenditure of energy sod 1n(A/g) for the for-
mation of a pancake vortex. In the following section we
make use of these results in our determination of the
creep rate for a parallel field in a layered superconductor.

2. Creep

N, p u,j =j,'"sin —2m (8.173)

U;„(p, u, )=—j,'"Bd

27TC

+,p u,
cos —277 (8.174)

Finally, making use of the relation j =2eBU;„/BAp, we
obtain the intrinsic pinning potential

Let us first concentrate on a weakly layered supercon-
ductor. To simplify matters, we shall restrict ourselves
to the case of a thin sample with a thickness I small as
compared with the extent of the vortex bundle along the
c axis, L &d(c»/U;„)'~ . We can then neglect varia-
tions of u, along the c axis, and the problem becomes
effectively two dimensional (Ivlev and Kopnin, 1990a,
1990b). The free energy describing this situation is
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V=L f d R (B,u) + (8 u) +U;„(u)

(8.178)
For weak enough layering we can neglect the dispersion
in cd, allowing us to isotropize the free energy such that

J 25X2'"m e'

A

Qu

5/2
Jo

J in

and the eQ'ective action

1/2 3/4
1—J

J in (8.184)

3/4
'1/ Ei/U;„

V=L f d R —(Vu) + U;„(u) (8.179)

with C =(c«c44)' and U;„=(c44/c«)' U;„. The free
energy (8.179) describes nothing but the energy of a two-
dimensional elastic manifold subject to a periodic poten-
tial, a problem which we discussed in detail in Sec. III.E.
Carrying over the results (3.108) and (3.121), we immedi-
ately obtain the expressions for the creep activation ener-
gy near j,'" and at low current densities, j«J,'", U(j «j,'")=—d+Ei U;„

8
(8.185)

where we have used Eqs. (3.136), (3.116), and (8.20), as
well as the definitions of Gi [Eq. (2.48)] and Qu [Eq.
(2.167)]. The out-of-plane elasticity eii is given by
Ei ——E. /s. The above results, in particular, the numerical
prefactor in (8.184), were obtained by Ivlev, Ovchinni-
kov, and Thompson (1991). The opposite limit j~0 pro-
duces a nondivergent activation barrier,

d2L H, (H, —B)
U(j)=

K 8~

1—J
~ in J -JC [see Eq. (3.121)], whereas the Euclidean action takes the

form

j «j,'n .
&E(j « j,'")=,d' t/ E,'m, ' '.

7r'
(8.186)

(8.180)
At low current densities, j «j,'", we obtain a glassy
behavior with a barrier diverging according to
U(j~0) ~1/j. The two (weak-pinning) conditions for
the applicability of the above results are

' 1/2

L, &I. ,„=d
in

for the case of a massive string [see Eq. (3.122) and use
U;„=j,4,d/2mc]. The dissipative limit is more difficult
to obtain, and the result for the action diverges according
to (Morais-Smith et al. , 1995)

2 ~ in ~ in,s(,.„2 fi A Ed ~ i Jc jc

3/2
1/2 (8.187)

H —8
C2

4|', g/A) (8.181)

(thin enough sample thickness L ) and

3/2
C2 —4(g/A)

H —8'
C2

(8.182)

= T,v'(1 —t)/Gi A
in

JC

Jo

5/4
J
in

[neglect of dispersion, k„=(c44/c«)L,'„«E/A, ,s; with
A,,s.=l. /(1 B/H, ) the e—ff'ective screening length near

the upper critical field K, ].
2

For a stronger intrinsic pinning potential (and for
weak enough fields), the possibility of single-vortex pin-
ning arises. We are then back to the pinning problem of
an isolated string in a periodic potential and thus can
ma.ke use of the results obtained in Sec. III.E.l. In par-
ticular, close to j,'", we obtain for the relevant quantities
describing creep the activation barrier

24X2'" 5/4
24 X 2

JC

The results for the massive and the dissipative cases
agree up to logarithmic corrections, which arise from the
difFerent dynamical terms Mf d-t (B,u) and

gf dt -dt'(B, u)(B, u)ln~t t'~ in the action; t—he appear-
ance of such logarithmic corrections for the dissipative
case may be a general feature. Note that, very close to
J,'" and in the limit j~0, the interaction between vortices
always becomes relevant and the single-vortex behavior
will cross over to the pinning of a higher-dimensional
manifold.

Finally, let us turn to the strongly layered case with
g & A. Depending on the size of the driving current den-
sity, creep can again proceed via the activation of a
single-vortex line or via the formation of an activated
vortex bundle. We begin with a (relatively) high current
density and thus concentrate on single-vortex creep. The
activated nucleus consists of a double-kink excitation in
which a line segment is thrown to the adjacent layer,
thereby creating two (oppositely "charged" ) pancake vor-
tices. The. energy of formation 8 of these pancake vor-
tices plays the role of the intrinsic pinning potential here
[6~ =E,d In(A/g)~Ek =d+Ei U~„]. The free energy
describing this situation is (see Fig. 41'

(8.183)
&(R)= &«' «(R) — (j —ji, )@.dR, —1

C
(8.188)
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1c, =—c„(k,—1/a~) a, =+v'EE.
a, ao

(8.189)

and the corresponding shear energy is

1 JC6= C6
2 a)(

1 Gj
(8.190)

Here we have assumed that, due to the strong layering,
the deformation u =d is limited to the minimal possible
distances, which are the lattice constant a~ =a.&E along
the c axis in the case of compression and a

~~

=a, /v'E, the
planar lattice constant, for shear distortion. The elastic

where V&' z is the interaction energy between two oppo-
sitely "charged" kinks as given by Eq. (8.43). The
confinement current density jb is determined by a corn-
bination of the compression and shear energies in the
vortex lattice arising from local distortion due to the ac-
tivated nucleus. Both energies can be obtained from sim-
ple dimensional estimates. Using the dispersive limit for
c», we obtain a compressional energy per unit area,

confinement energy for the single-vortex activation is
given by

a,
(8.191)

leading to the current density

3&3~ g d
Jb =

4 d J» (8.192)

below which single-vortex creep becomes impossible and
creep proceeds via the activation of vortex bundles. For
large current densities j with jb &j«j,'"=j., the critical
size R, of the nucleus is given by the condition
Bz V(R ) ~z z =0. Using Eq. (8.43) for the potential
Vx"' x, we obtain (Chakravarty, Ivlev, and Ovchinnikov,
1990a)

compression
I(

Xp

1/2
1 A

R, =g '2 (I (8.193)

c A A c—ln, , 0&I &—
a

where we have introduced the current ratio

2 J Jb

3&3 j. (8.194)

The corresponding activation energies are

U( j)=2E,d ln ——A
1/2

AI AE
A

A
ln ——scI c, A A cln, , 0&I & ——

rc2 gI

(8.195)

FIG. 41. Nuclei for flux motion across the intrinsic pinning
barrier in a strongly layered superconductor: Top, double-kink
excitation of a single-vortex line involving shear and compres-
sion in addition to the double-kink formation energy. Bottom,
vortex bundle excitation relevant at low current densities,
where the single-vortex excitation is forbidden due to its (rela-
tively) large compression and shear energies. Whereas the
compression, shear, and tilt (=kink formation) energies grow
only with the bundle surface, the gain out of the Lorentz force
grows with the volume of the bundle. The intrinsic creep at low
current densities leads to a glassy response with an exponent

p =2.

As the current density drops below jb, a single-vortex
line can no longer be activated, due to the confinement
energy provided by the vortex lattice. The nucleus for
creep-type motion of the Aux then becomes a vortex bun-
dle, the idea being that the expenditure in elastic energy
grows only with the surface of nucleus, whereas the ener-

gy gain due to the Lorentz force is a volume term. The
appropriate free energy to be studied can be written as
(see Fig. 41)

P(w, h, R ) =2c4wh +2c, wR +2c6hR — jBdwhR, —1 .
c

(8.196)

where w denotes the width (along x), h the height (along
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z), and R the length (along y) of the bundle. The "tilt"
energy per unit area c4 is due to the creation of
pancake vortices and therefore takes the value
c„=(E.d/a. )In(A/g). The dimensions w, Ii, and R of
the vortex bundle are easily found by minimization of Eq.
(8.196),

3v'3 Jo
1

A

On the other hand, if we increase instead the pinning pa-
rameter y such that I.,' drops below the interlayer dis-
tance d, the system enters the single-pancake pinning re-
gime. An additional condition for each pancake to be
pinned individually is c66$ d & U, =+@de; i.e., the
interplanar interaction energy between the pancake vor-
tices has to be smaller than the pinning energy U, of an
individual pancake vortex. Combining these results, we
obtain the requirements for single-pancake pinning,

1 d 1
W = R (&R,

8 ai 1n(A/g) U, a,
L,'(d &d

E,gd
zero-dimensional pinning .

These results combine into an activation energy
2

A JbU(J) =E.d ln— (8.198)

D. Collective pinning and creep

and we find a typical low-current glassy behavior with an
exponent p =2.

With an increase in the magnetic field B such that
a, & gQd E. /U „the possibility of 2D collective pinning
arises. In this case all the pancake vortices within a ra-
dius R, )a, relax collectively to the underlying pinning
potential. The collective pinning radius R, is obtained
from the elastic-disorder energy balance,
c66d(g/R, ) R, =(R, /a. )U~, ; hence

U, a,

Collective pinning and creep in layered superconduc-
tors require special discussion, as the discreteness of the
structure can modify the results obtained for an aniso-
tropic (i.e., continuous) description. The problem of pin-
ning and creep in two-dimensional systems, i.e., thin
films, also deserves special attention due to its technologi-
cal relevance and because of the appearance of new phys-
ical efFects. Again we assume that pinning is weak and is
due to the collective action of point defects such as oxy-
gen vacancies (see Sec. III.C). Depending on the strength

y of the pinning and on the direction and magnitude of
the magnetic field 8, the collectively pinned object and
the nucleus for creep-type motion can take any form
from a zero-dimensional pancake vortex for a three-
dimensional vortex bundle in a layered superconductor.
To be specific, consider a weak magnetic field 8 directed
along the c axis such that each vortex line is pinned indi-
vidually. Since in this geometry the line tension c&

——c E,
remains unchanged as compared with a continuous an-
isotropic description [see Eqs. (8.47) and (8.48)], the
length of the collectively pinned segment is given by Eq.
(2.149), L; =(E,g E /y)'~ . For weak enough pinning (y
small), we will have L; )d, and the collectively pinned
object is a line segment. Qn the other hand, in order to
neglect the interaction between the vortex lines, the mag-
netic field has to be weak enough that L,'& Eao [see Eq.
(2.154)j. Putting these limits together, we find the re-
quirements for single-vortex line pinning to be

d (I,'&ca, , 1D pinning .

When we increase the magnetic field B so that Eao &I.,',
the system enters the regime of 3D bulk pinning,

d, ca, &I.. . 3D pinning .

A second requirement for the existence of a 2D collective
pinning regime is given by the smallness of the interlayer
coupling

U;„,=c44(~-~/R, )(g/d) dR,

=E.d (g/A)'(R, /~. )

as compared with the intraplanar energy U;„, =c66dg .
The two conditions define the boundaries of the 2D col-
lective pinning regime,

L,'&d, a. &R, &Qa. A, 2D pinning .

For a thin film, A~ co and R, can extend to arbitrary
distances.

Finally, for even larger fields such that R, )Qao A,
we enter the 3D collective pinning regime,

L,' & d, Qa, A & R„3D pinning .

This condition is equivalent to the previous condition
c,a, (1.,'. The boundary of the 3D collective pinning re-
gime does not depend on the interlayer distance d and is
the same whether it is reached from the 1D or from the
2D pinning regime.

In summary, for B~~c, we find that at high fields,
ca &I.,', pinning always involves 3D bundles. At small
fields, however, the layering becomes important and pin-
ning can involve either vortex lines, if the disorder is
weak (d & L;), or vortex points/planar vortex ensembles
if the disorder is strong (L,'&d). Below, we first discuss
the weak-pinning situation in which both pinning and
creep involve only vortex lines (Sec. VIII.D.1). In Sec.
VIII.D.2 we turn our attention to the case of strong dis-
order and analyze the regime of 2D pinning and creep.
Finally, in Sec. VIII.D.3, we concentrate on the role of
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dislocations and show how they destroy glassiness in the
two-dimensional situation.

1. Single-vortex pinning and creep (d & L;)

The problem of single-vortex pinning and creep (both
classical and quantum) in layered superconductors was
investigated by Blatter and Geshkenbein (1992) for the
general case in which the magnetic field 8 encloses an an-
gle 6 with the ab plane. Within the angular regime
v&8&m/2, the results for a layered superconductor
coincide with those obtained within an anisotropic con-
tinuum description, and therefore all the results obtained
in Secs. II.C, II.D, III.A, and IV.D involving only single
vortices can be applied directly to the layered case. This
coincidence is based on two facts: First, within the angu-
lar regime 8) E, we have ez ——~sin8~, and the single-line
tensions given by Eqs. (8.47) and (8.48) agree with those
obtained in a continuum anisotropic description [see Eqs.
(2.144) and (2.146)]. Second, the pinning energy of a
line segment of length I. involves only the pancake
vortices and thus is given by 6'p;„(L,8)
=(f;„n,g L~sind~)' g=(yL~sin8~)' g', where we have
used Eq. (2.43). Again, since Ez ——~sin8 ~, this pinning en-
ergy coincides with the continuum anisotropic result
(2.147). Whereas in the anisotropic case the volume of
the vortex core decreases with angle 8 according to
Lg e&, for the layered case the concentration of the pin-
ning to the pancakes has the same net effect of reducing
the volume to L g'

~
sin8 ~.

The analysis becomes more dificult, however, as we go
to the small-angle regime, ~8~ (E. Let us concentrate
first on the case 8=0, in which the field B is aligned with
the ab planes. The presence of intrinsic pinning prevent-
ing vortex motion along the c direction is discussed in de-
tail in Sec. VIII.C. Here we take the intrinsic pinning to
be infinite and concentrate on the efFect of point pins
hampering vortex motion along the ab planes. %'e first
have to determine the magnitude of the elementary pin-
ning force acting on a Josephson vortex. We shall as-
sume that the pinning is due to the presence of pointlike
defects suppressing the magnitude of the order parameter
within the superconducting CuO planes. As a reference,
we shall use the elementary pinning force f;„[see Eq.
(2.43)] experienced by a vortex directed along the c axis
(stack of pancake vortices). Pinning can be due to disor-
der in T, or in the mean free path l (Larkin, 1970) and in-
volves either the modulus ~ql~ or the gradient term
~V%~ of the order parameter [see Eqs. (2.33) and (2.34)
and Sec. III.C]. Close to the center of an Abrikosov vor-
tex, the order parameter ~V„~ goes to zero on a scale g.
On the other hand, a Josephson vortex only weakly per-
turbs the order parameter in the adjacent superconduct-
ing layers. As follows from the discussion in Sec.
VIII.A. 1, the order parameter is suppressed, Eq. (8.14),
by a factor —[1—(g/A) ] on a scale A. For the case of
5T, pinning, we thus find that the condensation energy

gain due to the presence of a point defect is reduced by a
factor —(g/A) as compared with the Abrikosov vortex.
In addition, the length scale on which the Josephson vor-
tex can experience this (small) energy gain is A and thus
is a factor A/g larger than for the Abrikosov vortex.
Combining these factors, we therefore find that the ele-
mentary pinning force fp;„acting on a Josephson vortex
is reduced by a factor -(g/A) as compared with the
force f„;„acting on an Abrikosov vortex. The same re-
sult is obtained for the case of 5/ pinning, since the gra-
dient acting on the phase of the order parameter leads to

I /A, which is again reduced by a factor
(g/A) as compared with the corresponding result for the
Abrikosov vortex. In summary, we find that the same
point defect acts differently on a Josephson vortex than it
does on an Abrikosov vortex, with the elementary pin-
ning forces related via (Perruchoud, 1991)

3Jfpin

fpin 5T&
(8.199)0.66A

Jfpin

f;„si 0.71A

3

(8.200)

Within the phenomenological approach, fp;„can be
determined from a measurement of j; (the in-plane,
single-vortex critical current density with B~~c, B small),
and f;„can then be obtained by scaling,
fp;„=(g/0. 7A) fp;„. Another source of pinning (which
we do not consider here) is a spatial inhomogeneity in the
Josephson coupling. Such a disorder will act only on the
Josephson vortices and will not affect the pancake vor-
tices in the system.

The knowledge of f;„allows us to determine all the
relevant quantities necessary for a description of the dy-
namic behavior of a Josephson vortex. Since here we as-
sume the intrinsic pinning to be infinite, the only remain-
ing degree of freedom is motion within the ab plane. The
collective pinning length I., is obtained from the energy
balance

A
e,, c, =U, =[(f;„)n;L, Ad]' A

C

(8.201)

where we have used the elasticity eJ =e, p, Eq. (8.16), of
the Josephson vortex. The results for L„for the collec-
tive pinning energy U„and for the critical current densi-
ty j, are

C
A

(8.202a)

UJ UC
C C

T 3

(8.202b)

(8.202c)

where we express the results in terms of the basic quanti-
ties I.,', U,', and j,' characterizing single-vortex pinning
for B//c.
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The action for quantum creep involves the massIJ ——c.m&' and/or the viscous friction coefFicient

rlJ —-Ei)i(g/A) [see Eqs. (2.26) and (8.19)], of the Joseph-
son vortex. Note that, in the calculation of IJ, the
different (phase) core size dA of the Josephson vortex
from that of an equivalent Abrikosov vortex (core size

eg ) exactly compensates for the reduced suppression of
the order parameter, 5l+, l =(g/A) l%'

l
. Moreover,

the electromagnetic contribution to the vortex mass,
M, =(EEd/2nd )(A' /e ), can become large for the
Josephson vortex due to increased capacitive eAects
present in the layered structure (large dielectric constant
Ed of the buffer layers). Following the steps outlined in

Sec. II.A.5, we obtain the (effective) Euclidean action
determining the quantum creep rate for a Josephson vor-
tex,

2

5 =5 A
E E (8.203a)

2

cF, A
E E

@~~ (a)=.I(a)g'/L»

b,i(6.) =E&(8)(gsin8) /L

8„„(a)=(f'„„n,O'List»l)'"g .

The elasticities EI(8) and El(6) are given by Eqs. (8.47)
and (8.48). Note that only pancake vortices (with a total
length LlsinBl) contribute to the pinning energy. For
out-of-plane relaxation, only the component glsin8l
along the y' axis enters the elastic energy 6„. Dimen-
sional estimates than provide the pinning lengths

1/3
L,' c.~

e~ [sinai
(8.204a)

Lc' lsin8l

Cy Cy
(8.204b)

Having discussed the angular regimes 8 & E and 8 =0,
we are left with the (usually small) intermediate region
0& 8 & c, where the kinked structure of the vortex line is
relevant. Since the vortex line breaks up into Josephson
and pancake vortices, we should take into account the
pinning of both types of segments. However, due to the
smallness of the pinning forces acting on the Josephson
vortex, the pinning of the pancake vortices is dominant
over most of the angular region 0 (6(c. We therefore
concentrate first on pinning of the pancake vortices and
discuss later the crossover to Josephson vortex pinning at
very small angles.

First of all, we have to determine the relevant mode of
relaxation, which can involve either in-plane or out-of-
plane motion of the pancake vortices (or a combination
thereof). The two corresponding pinning lengths L," and

L, are determined by the energy balance between the
elastic and the pinning energies,

Obviously, L,l =L, =L,(8) within the regime 6) s, as
must be expected. On the other hand, for small angles,
l8l (E, we have L, /L"=(l6l/E) (1, and therefore
out-of-plane relaxation becomes dominant. The relevant
collective pinning length is L, (8)=L', (0 ) =L;

l 8l /E,
leading to a pinning energy U, (0 ) = U;l 8l /E and to criti-
cal current densities j," =j;(E/l8l ) and j, =Ej;. These re-
sults are valid, provided that the pinning length L, (8 ) is
still enclosing many pancake vortices, L,(8))d/l6l;
otherwise, each pancake vortex is pinned' individually
with an energy Uz,

='
U,'(d/L, ')'~ . The critical current

densities within the single-pancake pinning regime be-
come j"=j '(L'/d)' and j,=j,'(L;/d)'~ l8l. The con-
dition for single-pancake pinning, L,(8)(d/l6l, can be
rewritten as 8l (E(d/L;)', with d/L;(1, the weak-

pinning condition, applying throughout the present sec-
tion. With a further decrease in the angle 8, the total
pinning force acting on the vortex due to the pinning of
the pancake vortices becomes smaller, and the pinning of
the Josephson vortex segments becomes relevant. As a
crossover criteri'on, we can use the condition j, =j, ,
which defines the angle BJ——e(d/L;)'~ (g/A) .

In summary, the pinning properties of a kinked vortex
within the angular regime 0&8 (E. can be characterized
as follows:

L,(0)= '

L;
E,

E L,'
&8&8,

(8.205)

C

1/2

U (&)= '

U =U'
PC C

L,'
1/2

L c
C

1/2

lal(E
C

(8.206)

C

1/2L'
'C C

JC

Lc

1/2

lb[(E
L,'

(8.207)

j'(&)= .

Ej, E Lc
C

1/2Lc
'C C

E.J

' 1/2

&8&v. ,

8-J &6-(c
Lc

C

1/2

(8.208)

For very small angles, l8l (BJ=s(d/L, ')' (g/A), Eqs.
(8.202) for the Josephson vortex apply. The angular
dependence of the critical current density in layered su-
perconductors has also been treated by Pokrovsky, Lyuk-
syutov, and Nattermann (1992).
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It remains to study the creep process at small angles,
In the following, we first derive the results for

the case of classical creep and then present the main re-
sults for the quantum case. For a derivation and a com-
plete list of the quantum results, we refer the reader to
the work of Blatter and Cxeshkenbein (1992). Creep can
again proceed either along the planes (driving current
j~~y axis) or in the out-of-plane direction (driving current
density j in the ab plane). Since relaxation to the pinning
potential involves mainly out-of-plane motion, the corre-
sponding activation energy for creep is given simply by
the collective pinning energy. Qn the other hand, for the
case of in-plane motion, we have to recalculate the op-
timal segment L)~ for the hop. Equating the elastic ener-

gy density involved in the hop, sI(8)(g/LII)2, with the
elastic energy density ei(8)(g8/L, ) of the relaxed vor-
tex, we obtain the hopping length

I C

(8.209)

which exceeds the collective pinning length L,(8).

Therefore the activation energy for in-plane creep di8'ers
from the collective pinning energy U, (8) and reads
U, (8)(L//L, )=U,'. Note that, due to the increase in
the length of the hopping segment L)~, the regime of col-
lective creep involving many pancakes extends down to
smaller angles. For angles ~8~ (E(d/L;)', pinning is
due to single vortices with a mean pinning energy density
U;(d!L;)' ~8~/d. Equating this energy density to the
elastic energy density involved in the hop, we obtain
LII /L, = ( ~8~ /E )

' (L,'/d ),where L, =d /~ 8~. The re-
sulting activation energy becomes

U,'(d/L')' (LI,'/L, ') = U'(L'/d)'"( I&l /e)'"
and is valid down to the single-pancake creep regime at
~6~ &s(d/L;), where the length of the hopping seg-
ment LI,' becomes larger than the separation d/~8~ be-
tween two pancakes. %"ithin the single-pancake creep re-
gime, the activation energy is U,'(d/L;)'~, independent
of the angle and of the direction of motion. %'e can thus
summarize the activation energies for classical creep in
the small-angle regime:

U (8)= '

C

L, 'C

1/2

/8f(e

E,

L,,'
' 1/2 ' 1/2 (8.210)

L c
C

' 1/4
LC

U~~(a) = U'

1/2

&8&v,

I C

3/2 1/2

(4(c
L c

C

(8.211)

' 1/2

U,.=U. "
PC C IC

C L C
C

' 3/2

The determination of the quantum creep rate proceeds along the same lines. Again, we have to distinguish between
out-of-plane (I) and in-plane ( ~~

) motion, and the results for a mass-dominated dynamics are

SE(8)= '

'E

3/4
S'

C

' 1/2

L c
C

&8&v. ,

1/2

f8/ (e I.,'
(8.212)

sg(a) =
SE, c

L C
C

3/4
S'E

C

3/2

&g(p,
1/2 ' 3/2

gJ (g(g
L c

(8.213)

The corresponding results in the dissipative limit are
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yes'(y) s"' d
E

C

1/2

E
L C

C

L C

C

&8(c, ,

1/2 (8.214)

pedi(y)

LC
C

L C
C

2

Cff CSg'
A

3/2

E, I C

C

' 3/2

I C

' 1/2

(8&
LC

C

(8.215)

~.tr, . d
A

One should point out that all the above results usually
apply to a very narrow angular regime, and it may be
very difficult to distinguish between the difIIerent
behaviors. On the other hand, the analysis presented
here illustrates what elements enter the discussion of pin-
ning and creep in layered superconductors and what
types of new results we can expect to find in the small-
angle regime, 0&8&m, where the discreteness of the
structure is really important.

Finally, a word concerning the regime of applicability
of the above results. Within the large-angle regime,
8) c, the continuum anisotropic description can be ap-
plied, and thus the single-vortex pinning regime is re-
stricted to fields B &IB,I,H, (B)(j,'/j o ) with p, b =5. Re-

2

peating the corresponding analysis at small angles,
~ 8~ & E, leads to the same result. Note that creep process-
es involving larger length scales (e.g. , in-plane creep or
creep at small current densities) already couple to neigh-
boring vortices at smaller fields.

teraction is given by the shear energy buildup during the
relaxation process and involves mutual displacements be-
tween the vortices of the order of u =g,

r 2 2

U,„,=.„d -& (8.216)
a 2a

For the "strong" pinning situation Uzc & U;„„we can
neglect all interactions between the vortices, and each
pancake vortex is pinned individually. The collective
pinning energy for a single pancake vortex is

( y g2d )1/2 (8.217)

and the planar critical current density becomes equal to

Upc
Jpg jo

Co CG

(8.218)

Expressing the activation energy U, via the Ginzburg
number Gi and the experimentally accessible critical
current density j „we obtain

2. 2D collective pinning and creep (L; & d)

The problem of collective pinning and creep in thin
films and in strongly layered superconductors has been
analyzed by Feigel'man, Geshkenbein, and Larkin (1990),
by Koshelev (1990, and by Vinokur, Kes, and Koshelev
(1990). Throughout the following discussion we shall re-
strict ourselves to the case in which the magnetic field is
pointing along the c axis. To begin with, let us consider a
weak magnetic field so that we can neglect the interac-
tion between the vortices within the plane (the "strong"
pinning condition I,, & d allows us to ignore the interac-
tion between neighboring pancake vortices in difFerent
layers). An estimate for the intraplanar vortex-vortex in-

U, = T,v'(1 —t) /Gi — = T, (8.219). A Jpc 1 —t Jpc
PC C

Note that the applicability of the weak-collective-pinning
idea to single pancakes requires U, to be small in the
sense U, & E,d, whereas neglect of all interactions neces-
sitates strong pinning with U, ) sod (g'/A) (from
I.,'&d) and U„,)E.d(g/2a. ) (from U~, ) U;„, ). Hence
the conditions for (collective) single-pancake pinning are

Cod
min(2a, , A)

& U„, (c,d . (8.220)

With increasing magnetic field, the intraplanar interac-
tion becomes increasingly important, and the vortex sys-
tem crosses over to 20 collective pinning. In this case all
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The resulting critical current density for the 2D collec-
tive pinning regime is

a, U„,
Jc =Jpc R

=Jo
~o

2
2ao

'2
Jpc—Jo
Jo

2
2ao

pancake vortices within the radius R, & a, are pinned
collectively. The collective pinning radius R, is obtained
by balancing the total pinning energy UP, (R, /a. )

against the elastic energy U;„„and we obtain

sod
R, =a, (8.221)

U , 2a,

measurement of j, [see Eqs. (8.217) and (8.218) and the
definition (2.149) in terms of the disorder parameter y],

d J

' 2/3 4/3

(8.226)

Now, let us generalize the above results to include the
smoothing of the disorder potential due to thermal Auc-
tuations of the vortices. First, the e6'ective length scale
r~(T) of the disorder potential becomes temperature
dependent,

(8.222) r, 2( T) =g'+(u'), „. (8.227)

The magnetic field Bb limiting the single-pancake pin-
ning regime is determined by the condition U, = U;„,
(which is equivalent to R, =a, ),

U,a2D=p "8' =p "8
b b d c2 b c2

0 Jo
(8.223)

2

U;„,=dc« ~ R =de
R

C

a, (8.224)

where we have used the nonlocal limit
c«- (8 /4~)(ER—, /mA, ) for the tilt modulus. The 2D
collective pinning region is limited by the condition
U;„, = U;„„from which we obtain the crossover field Bb
to the regime of three-dimensional collectively pinned
bundles,

2 U
1/3

3D B2D A Pc

e d

1/2
B2D

b Lc
C

(8.225)

The size of the 2D collectively pinned vortex bundles is
restricted by the condition R, (Qa, A=a. (d/L;)'
i.e., the strong-pinning parameter d/L, '&1 determines
the maximal number of 2D collectively pinned vortices.
For fields B &Bb, the relevant length scale along the c
axis is larger than the interlayer spacing d, and the re-
sults of the continuum anisotropic description (see Sec.
IV.D.2) can be applied. Note that in the above formulas
the length I, plays the role of a disorder parameter and
has no direct physical meaning. Within a phenomenolog-
ical approach, the ratio L,'/d can be determined from a

where pb is a numerical factor of the order of 10.
With a further increase in the field, the collective pin-

ning radius R, grows and, together with it, the Josephson
coupling of the 2D bundle to the neighboring layers. An
estimate for the energy coupling the collectively pinned
area into the third dimension is obtained from the tilt en-
ergy

U, (T)=
Pc

( 1 + ( ~ 2 ) /g2) 1/2 (8.228)

The strength of thermal fiuctuations (u ),h is given by
[see Eqs. (8.128) and (8.129)]

2 T(u'),„=g'
dp

(8.229)

with the depinning temperature

Pb
Td —— Upc

&&&2D

Bb

B
B2D &B .B2D '

(8.230)

Here we neglect the small corrections on (u ),h due to
logarithmic dependence on distance, which is relevant at
large fields, B &B2D. These have been taken into ac-
count in the work of Koshelev (1990) and of Vinokur,
Kes, and Koshelev (1990). The temperature dependence
of the 2D collective pinning radius R, (T) is given by

3/2

R, (T)=R, 1+ T
(8.231)

dp

and the critical current density j, (T) becomes
—5/2

T2D( T) 2D

Tdp
(8.232)

Finally, the criterion R, ( T) & Qao A limiting the regime
of 2D collective pinning can be written in the form

Second, from Eq. (2.119) we find that the pinning energy
scales with the thermal displacement (u ),'„according
to 6P,„—-ydg /(u ),h, and we obtain the temperature
dependence of U „

T3D(g) P~Pb U

B2D
b

B +++2D~ + ++2D
b —1B B, B2D(B . (8.233)
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&2, 2

u(R, )=g
R,

(8.234)

The high-field expression develops a maximum of
Tb —U—,(d/L;)' at B =-Bb /4, whereas the low-field
expression approaches the finite value Tb

=(Pi, I2) Uz, (d/L;)' (BzD/Bb )'~ at vanishing field.
The regime of applicability of Eq. (8.233) is bounded by
the single-pancake pinning regime T & Up at low tem-
peratures and by the melting line T at high tempera-
tures. Taking typical parameters for BiSCCO [see Eq.
(2.135)] and assuming a zero-field/low-temperature criti-
cal current density of the order of j„,=10 Acm, we
obtain the following set of estimates: j, =2 X 10
Acm U =10 K d/I. '=10 B„=5T and B =-10
T. The high-field expression for the 2D-3D crossover
line T& (B) then has its maximum at B =2.5 T, where

Tb ——3U, . A qualitative phase diagram is shown in
Fig. 42.

Let us turn next to the problem of 2D collective creep.
Consider a field large enough that R, )a, . The follow-

ing analysis proceeds along the lines introduced in Sec.
III.F. With decreasing current density j«j, , both the
size of the 2D bundle and the hopping distance between
metastable minima become large. Due to the compres-
sion of the vortex lattice during creep, the transverse size
Rt( j) becomes different from the longitudinal size R

~~(j).
Let us calculate first Ri(j). Using the results character-
izing the behavior of an elastic manifold subject to a dis-
order potential„we can relate the hopping distance u and
the size R~ of the bundle,

Using Eq. (3.164) for the wandering exponent g2 z, we ob-
tain g2 2=2/5. The length scales u and Ri can be related
to the current density j by determining the saddle of the
effective free-energy density,

1——jB du,
c

u

R~

and we find

.2D 1/4
Jc

u (j)=g
J

Ri(j) =R,
2D

Jc
(8.235)

f d rd r'1 n[~r —r'~/g](gu)(P"'u)
jef

Rq
GC11 2

u
jef

and we obtain

(8.236)

Note that in a thin film the screening length is exceeding-
ly large, A,,s =2k, /d, and the dispersive regime extends to
very large scales. Combining the above results we obtain
the activation energy for creep,

The longitudinal length R
~~(j) is obtained by balancing

the shear and compression energies [see also Sec. IV.B.2;
here we follow the analysis proposed by Koshelev (1994)],
@ h c66d(u/R ) RJR~(

I

B =B~
BsD dc g

l

'i$D

2D
82D

~2O

OD

2D
Upc Tm

l

l

l

Tc

FICx. 42. Equilibrium phase diagram for a strongly layered su-
perconductor including e8'ects of thermal and of quenched dis-
order. The vortex-glass transition line follows the melting line
B (T) at low fields, B &B», and the decoupling line B&,(T) at
large fields, B)BzD [the high-field part of the melting line
B (T) &B» marks only a crossover line below which pinning
effects increase rapidly] Also shown .are the various collective
pinning regimes for the case in which disorder is rather strong,
I., &d. A single-pancake pinning regime at low temperatures
and fields (zero dimension) is followed by a regime of 20 collec-
tive pinning, which in turn crosses over to 30 bundle pinning
above the line Bb ( T). Below the depinning line B&„(T),
thermal fluctuations smooth the pinning potential and the criti-
cal current density j,(T) decreases rapidly with increasing tern-
perature.

U(j) =

2D
D Jc

sb

~ 2D ~ 2D
JCDw, JcDw

UcDW . 'n . ~ J &JcDW ~

J J

~ 2D ~ ~ 2D
jcDW &J «Jc

(8.237)

with U,b =E,d(E, d/U„, ) (g/a, ) and UPDw
=E,d(Eod/U~, ) (a, /g). At the current density
jcDw-—j,' (g/a. )' the hopping distance u increases
beyond the lattice constant a and the system enters the
CDW-type creep regime. The transverse length Rz then
scales with cu.rrent density according to
Rij()=R, (ao /g) (j /j )' . Note that in the absence
of dispersion the barriers for creep grow only logarith-
mically (Nattermann, 1990); here we have accounted for
the compression energy involved in the creep which to-
gether with the long range interaction potential between
the vortices (dispersion in c» ) leads to the more singular
growth U(j)~ (1/j) ln(1/j) of the activation barrier.

For the case of a layered material (as opposed to a thin
film) the coupling into the third dimension usually cuts
o6' the two-dimensional behavior before the CDW-type
creep regime has been reached. Using the tilt energy
(4.132) with L =d as an estimate for the interlayer cou-
pling energy and comparing this expression with the in-
tralayer shear energy above, we obtain the condition
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R~=(a. A)'~ for the crossover to the 3D collective
creep regime [note the difFerence to the crossover condi-
tion R~ =(a.A)'~ to the 3D collective pinning regime].
The corresponding current density takes the value

2D(R 3/a 2 A)8/15

The result of the above analysis, particularly the glass
exponent p=7/4 in Eq. (8.236), ditfers from the original
result obtained by Feigel'man, Geshkenbein, and Larkin
(1990) and by Vinokur, Kes, and Koshelev (1990) due to
the oversimplified treatment in the determination of the
superbundle dimension in the original papers (see Sec.
IV.B.2 for a more detailed discussion of this point): The
exponent p=9/8 in the original papers should be substi-
tuted by the value p=7/4 derived above following the
correct treatment of the compression energy as proposed
by Koshelev (1994).

In the above discussion we have explicitly assumed
that the magnetic field is large or that the disorder is
weak enough to guarantee that R, &a, . On the other
hand, for weak fields, B &B&, and small temperatures,
T & Up the system may wel 1 start out within the single-
pancake pinning regime, as is the case in the above exam-
ple for a Bi-based superconductor, provided that B ~ 4 T
and T ~20 K. As the current j drops below its critical
value j, , we expect creep to involve only single pan-
cakes, so that the activation energy U( j) remains con-
stant, U( j)= U, . However, this seems to be in contra-
diction with the results of experiments carried out in this
strong-pinning regime, where an increase in the activa-
tion barrier U(j) with decreasing current density has
been observed (van der Beck, Kes, Maley, et al. , 1992).
The question then poses itself how the individual pancake
vortices can be coupled to a 2D elastic manifold. The
basic idea leading to the coupling of the pancake vortices
into an elastic plane with decreasing current density is
the concept of variable-range hopping (VRH; Mott, 1969;
for a detailed review, see Shklovskii and Efros, 1984).
Due to randomness in the energies of the metastable
states, the pancake vortices will hop a larger distance U
as the current density j decreases. Such long-distance
jumps produce a larger interaction energy c66du, and
the pancake vortex starts to couple to its neighbors as u

becomes large enough. For a qualitative analysis, let us
assume a distribution of final-state energies characterized
by the density of states g= I/U, g . The typical energy
difference 6D that a pancake vortex hopping a distance U
has to overcome is of the order of 6N
=1/gu = U~, (g/u) . In the presence of a current densi-

ty j, this energy can be provided by the Lorentz force,
56 =j@odu/c, from which we find the optimal hopping
distance

density j and becomes equal to the disorder energy Up,
when

& —& VRH —ao

1/2
PC &ao ~

Cod

J =JVRH jpc
g~ E(& d

2ao Upc

(8.239)
R

=Jpc
0

&j c

~ VRH

1/4
JVRH

(8.240)
~ 2D ~ ~

JcDW &J &JvRH ~

R~(j)= .
a,

JVRH j & jp
5/8

JvRH ~ 2D ~ ~

JCDW &J &JVRH ~

(8.241)

pc~ JVRH j Jpc
7/4 (8.242)

Up,
JvRH ~ 2D ~ ~

JcDw &J &JVRH

with jcDw JvRH(uvRH /a.—)
~ 2D 4

%"e close this section with a few remarks concerning
quantum creep in the single-pancake pinning limit and
for the case of 2D collective pinning (see also Cxlazman
and Fogel, 1984; Fisher, Tokuyasu, and Young, 1991).
For the (physically more relevant) dissipative limit, we
obtain the following expression for the effective action:
For a single pancake vortex, the tunneling time is deter-
mined by the energy balance ri&dg /t, = U „whereas for
a 2D collectively pinned bundle we have
gdg /t, =c66d(g'/R, ) with g=g&/a, . For a single pan-
cake, we then obtain

SE t Up g d & & Spc

fz e2 p„gu g A'
(8.243)

which agrees with the previously obtained result (8.214)
within the angular regime where the pancakes are pinned
individually. Creep at low current densities is described
by

1/3

Below jvRH, the pancake vortices are coupled to a 2D
elastic medium, and creep proceeds via the activation of
vortex bundles. In summary, starting out at low
fields/low temperatures, the vortex system first goes
through a VRH regime, which is followed by a 2D collec-
tive creep regime at lower current densities,

1/3

~VRH &J &Jpc ~

1/3
Jpc

J
(8.238)

The barrier that the pancake vortex has to overcome
remains independent from j, U(j) = U, . However, the
interaction energy c«du grows with decreasing current

s' (j)= '

Jpc
pc ~

a,
Pc R

C

JVRH &J &Jpc

1/2
JvRH

11/4

(8.244)

~ 2D ~ ~

JCDW &J &JVRH

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



1318 Blatter et a/. : Vortices in high-temperature superconductors

where R, /a. =(e.d/U~, )(g'/2a. ) (I should be under-
stood only as a convenient parameter. In the case of 2D
collective creep (R, & a. ), we have

SE fc C66d
2

Rq

R, S,
(8.245)a,

and the dependence on small driving forces is given by
-4 '

2D 11/4
JcR,S' (j)=S,

0

~ 2D ~ ~ 2D
JCDW &J «&c

(8.246)

In the CDW regime the exponent decreases to the value

Ps

3. Absence ot glassiness in 2D

As we pointed out in Sec. VIII.B.4 (see Fig. 40), in a
2D vortex lattice the structure of allowed topological ex-
citations is very different from the 3D bulk case. In fact,
in a 2D vortex lattice, dislocation pairs adding or remov-
ing Aux from the vortex lattice are energetically allowed,
whereas the corresponding object would acquire an
infinite energy in a bulk superconductor. A dislocation
pair with gliding planes (directed along the x axis)
separated by a distance R encloses a total additional flux

Nd, which, under the action of an external current densi-

ty j, is given with the force

(8.247)

=1
c

n dp v dp 4'dp

as well as the dissipated energy,

W =q, n„y U,'=q, n„U'„y (a, u, )'

R
I ndp v dpln2~ 3m a, (8.249)

with gI=N, H, /p„c . Here we have used
2

QB u, „= fd RB„u„

= ', fdy~u„=
a, 0

g (B„u;) = fd R(B,u) = — ln
ao 2 3n uo

Ignoring any pinning of the dislocations for the time be-
illg, we flIld that the motion of the ~ux +dp is determined
by the viscosity in the system. Assuming a density ndp of
dislocation pairs with size R moving with a velocity vdp,
we can determine the resulting electric field,

1 =1E =—Cond~ g U;
= nd~@.—u~~ g B„u,

where the latter sum is dominated by the near-field dis-
tortion (8 u) =(at, /ir) (xy/R ) [see Eq. (8.108)],
which has to be cut off at a distance Rg. The resistivity p
in the system is easily obtained from p=E /8' and, us-
ing the above results for E and 8' we find

2
nd R

p plow (8.250)

with p„,„=p„B/H, . The concentration of pairs of size
2

Rg Is
—2e (R )/T —2@ /T

n —a 8 C

dp 0 (8.251)

with ed(R) =(E,d /4&3vr)ln(R /a, ) and 2 8, the interac-
tion and core energies of the two dislocations. The ex-
pectation value of the moment (nd&R~ In(Rgla, )) be-
comes

2
nd R

In(Rg /a. ) )
—2@ITf dR R m

2—4T /T

2a, a,

T —2e, /T
e

T2D
m

(8.252)

leading to the final result for the dislocation-pair-induced
resistivity

—26 /T
S (» =&os.

Tm
(8.253)

with the numerical factor a of the order of 10.
Thus at low temperatures we obtain an activated resis-

tivity p-ps, exp( —M, /T), which becomes large on ap-
proaching the 2D melting temperature T and goes
over into the Aux-Aow resistivity p-pz, above T
The core energy 2A', =Eod/2&3m. plays the role of a
plastic creep barrier in the system, which we should com-
pare with the elastic barriers U( j) for 2D collective creep
found in Sec. VIII.D.2. As the current density drops
below j~„where (j~, ) =26'„plastic creep becomes dom-
inant and the finite plastic barrier cuts off the glassiness
in the system. The absence of a finite-temperature glass
transition in 2D has its implications for a layered super-
conductor, too. Assuming a magnetic field B )B2D and
lowering the temperature T below the melting transition
B (T), we find that the system remains decoupled and
hence effectively two dimensional until we reach the
decoupling transition line, Bd, (T) (B (T). Hence for
B )B2D the melting transition transforms into a cross-
over line, where the pinning properties become strong,
and the true phase transition into the vortex glass takes
place at ihe lower transition line Bd, (T); see Fig. 42. It
appears that the experiments of Safar, Gammel, Bishop,
et al. (1992; see also van der Beck, Kes, Maley, et al. ,
1992) on BiSCCO single crystals showing evidence for a
glass transition are in good agreement with this scenario.

In the above analysis we have ignored all the effects of
energy barriers restricting the free motion of the disloca-
tions. In fact, the Peierls barriers experienced by the

Res Mod. Phys. , Vol. 66, No. 4, October 1994



BIatter et a/. : Vortices in high-temperature superconductors 1319

dislocations will lead to an additional reduction in the
resistivity p, which can be accounted for via a (small)
correction of the core energy 6„8,~6, +6'p„„„. In
addition, the disorder potential will also lead to an addi-
tional pinning barrier for the dislocation pairs. For a
small pair with Rg =a, , this disorder-induced barrier is
of the order of 5U= U~, (a, /g)'~ [moving the pair a dis-
tance a. produces a displacement field 5u =a, (a, /R)
such that all vortices within the radius R =ao (ao /g)'~
shift by more than g]. With U~;„&&s,d, the main tem-
perature dependence in the resistivity is again due to the
plastic barrier 28, .

An additional consequence of the disorder potential is
the creation of a finite density of dislocation pairs even at
zero temperature. The local concentration of small pairs
with Rs =a, (Aux vacancies or interstitials) is given by
n d~

-—a, exp[ —(26', +5 U) /T j. Taking an average over
the disorder field (Balatskii and Vinokur, 1984), one ob-
tains

2ec T +o /2T
nd —ao e

P
(8.254)

with o'= ((5U) ) ' = Uz, (a, /g)' the variance of the
random pinning potential experienced by the dislocation
pair. Upon a lowering of the temperature, the correction
to nd„due to the quenched disorder becomes as impor-
tant as the thermal disorder at a value T =o /4@„ for
T & o /46 „disorder-induced dislocations will dominate,
resulting in a low-temperature dislocation-pair density

—86 /o.
nd ——ao e

P

and a corresponding resistivity
—8@ /o. —o./T2

p =paowe

(8.255)

(8.256)

An instability of the 2D vortex lattice subject to a
quenched pinning potential against formation of disloca-
tions has also been found by Shi and Berlinsky (1991),
and their contribution to the dynamic response of the
vortex system has been investigated analytically as well
as numerically (Jensen et al. , 1990; Shi and Berlinsky,
1991).

Finally, let us consider the zero-temperature limit of
the problem. It has been proposed that a zero-
temperature vortex-glass phase could exist in two dimen-
sions (Fisher, 1989; Fisher, Fisher, and Huse, 1991), and
a detailed analysis of the low-temperature behavior of a
strongly disordered system has been given by Fisher,
Tokuyasu, and Young (1991). Recent experiments by
Dekker et al. (1992) on thin YBCO films provide the first
experimental evidence for a finite two-dimensional
vortex-glass correlation length that diverges on ap-
proaching zero temperature, indicating the possible ex-
istence of a T=O vortex-glass phase. From the above ar-
guments, one would expect that, due to the presence of
disorder, the density of dislocation pairs in the 2D vortex
lattice would not vanish at T=O. The question then
arises how these defects will move as the temperature de-

creases. First, the classical thermally activated motion
will be replaced by some kind of tunneling motion. Due
to the presence of disorder, a variable-range hopping type
of motion (Shklovskii and Efros, 1984) is expected to take
place at low but finite temperatures, leading to a vanish-
ing of the resistivity p(T~O)~0 which is different from
the classical Arrhenius behavior. The exact form of p(T)
depends on the details of the saddle-point configuration
describing the creep-type motion and involves taking into
account the interaction between different dislocation
pairs as well as the appropriate expression for the tunnel-
ing dynamics (massive or dissipative dynamics).

IX. STRONG PINNING

Whereas in the previous sections we have concentrated
on weak pointlike pins (uncorrelated disorder), here we
focus our interest on the pinning properties of extended
defects (correlated disorder). Typical examples of such
extended pinning centers are one-dimensional screw
dislocations, like those observed in thin films of YBCO
(Hawley et al. , 1991; Schlom et al. , 1992; Mannhart
et al. , 1992), and the artificially produced columnar de-
fect structure resulting from energetic heavy-ion irradia-
tion (Roas, Hensel et al. , 1990; Civale et al. , 1991; Har-
dy et a/. , 1991; Konczykowski, Rullier-Albenque et al. ,
1991;Gerhauser et al. , 1992). Examples of planar defect
structures are the twin boundaries in YBCO and, in a
wider sense, also the layering in the strongly anisotropic
Bi- and Tl-based compounds (intrinsic pinning). The
main feature setting apart these extended defects from
the previously discussed pointlike defects is their exten-
sive pinning character, i.e., the pinning energy grows
linearly with the distance along the vortex for the case in
which the vortex system is properly aligned with the de-
fect structure. This strong anisotropic pinning has to be
contrasted with the weak isotropic pinning produced by
pointlike defects that compete with one another, leading
to a mere square-root growth of the pinning energy along
the vortex line.

Enhanced pinning due to the presence of twin boun-
daries has been observed in a variety of experiments.
When the magnetic field is aligned with the twinning
planes, enhanced pinning due to twin boundaries shows
up as a drop in the resistivity within the thermally assist-
ed flux-(low regime (Kwok et al. , 1990; Iye et al. , 1990;
Fleshier et al. , 1992), and as an increase in the critical
density in the glassy regime, measured in a torque experi-
ment (Cxyorgy et al. , 1990). Furthermore, a magnetiza-
tion anisotropy is observed in the glassy regime for fields
directed normal to the c axis, with stronger pinning
(larger magnetization) realized when the field is parallel
to the twinning planes (Liu et al. , 1991; see also
Swartzendruber et al. , 1990 and Roitburd et al. , 1990).
The enhancement of pinning due to the presence of twin
boundaries has been investigated by Blatter, Rhyner, and
Vinokur (1991) within the framework of weak collective
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pinning theory. Enhanced pinning by twin boundaries
and its consequences for resistivity in the vortex-liquid
state has been considered by Marchetti and Nelson
(1990). Finally, the properties of vortices trapped by
twin boundaries and subject to a transverse force (current
parallel to the twinning planes) have been investigated by
Nelson (1991),by Nelson and Vinokur (1992, 1993), and
by Marchetti and Vinokur (1994).

The most prominent type of strong pinning to date is
pinning by columnar defects. Whereas the twinning
phenomenon is particular to YBCO, columnar defects
can be introduced artificially into every material and are
thus much more versatile. Furthermore, it appears that
suppression of the order parameter within the columnar
tracks produced by the irradiation beam is much
stronger than perturbation of the order parameter due to
the presence of twinning planes. As a consequence, the
introduction of columnar defects leads to a marked in-
crease in the critical current density and also shifts the
experimentally observed irreversibility line towards
higher temperatures and fields (Civale et al. , 1991;
Konczykowski, Rullier-Albenque et al. , 1991). Note
that proton irradiation producing either pointlike defects
or defect clusters leads to an increase in the critical
current density but leaves the irreversibility line un-
changed (Civale et al. , 1990). Recent experiments by
Worthington et al. (1992) on heavy-ion-irradiated sam-
ples suggest that the thermodynamic phase-transition
line into the glass state itself remains unaffected. The ex-
perimentally measured shift in the irreversibility line,
then, could be due to a change in the nonlinear behavior
of the system upon irradiation. Since the experiments are
usually carried out at finite frequencies and/or finite am-
plitude, this change would easily manifest itself as an ap-
parent shift of the irreversibility line.

Similar results have been obtained for strongly layered
BiSCCO material subject to heavy-ion irradiation
(Gerhauser et al. , 1992; Thompson et al. , 1992). The
columnar defect structure produces an enhanced critical
current density, and a shift in the irreversibility line has
been observed by Thompson et al. (1992). However, the
angular sensitivity of the magnetization loop with respect
to the field-track orientation turns out to be much weaker
for the BiSCCO compound (Thompson et al. , 1992) than
for YBCO, on which the identical experiment was car-
ried out (Civale et al. , 1991). The different behavior be-
tween the anisotropic YBCO and the layered BiSCCO su-
perconductor has been attributed to the large difference
in anisotropy between these materials, with each pancake
vortex being pinning individually for the case of the
BiSCCO compound (Gerhauser et al. , 1992; Brandt,
1992a and 1992b). The interplay between the vortex sys-
tem and a columnar defect structure has been analyzed
by Nelson and Vinokur (1992 and 1993), by Lyuksyutov
(1992), and by Brandt (1992a, 1992b). The competition
between point disorder and columnar defects has been in-
vestigated by Hwa, Nelson, and Vinokur (1993). In the
following we first study the effects of twin boundaries and

then those of the columnar defects on the pinning prop-
erties of the oxides.

A. Twin boundaries

The first observations that twin boundaries do
inAuence the pinning of vortices in YBCO go back to
Vinnikov et al. (1988) and to Dolan et al. (1989). In
their Bitter decoration analysis of the low-field vortex
structure, the attraction of the vortices to the twinning
planes manifests itself directly in a higher concentration
of Aux lines within the twin planes than in the bulk. The
attraction of the vortices to the twin boundaries produces
a variety of interesting effects, such as vortex trapping
and locking when the field is turned towards the direc-
tion of the twin boundary planes, enhanced pinning for
vortex motion orthogonal to the twin planes, and in-
teresting creep phenomena (Marchetti and Vinokur,
1994). Below we shall discuss in some detail the origin
and the magnitude of the attractive twin boundary poten-
tial well, the associated trapping and locking phenomena,
as well as transverse pinning and creep.

Not only are the vortices attracted to the twin boun-
daries; their motion along the twin planes seems to be
influenced by the twin boundaries as well. In particular,
for both the field and the current density directed along
the ab plane (i.e., Lorentz force and hence vortex motion
directed along the c axis) the motion of the flux lines ap-
pears to be more strongly hindered than in the bulk, an
effect which we attribute to the presence of enhanced pin-
ning within the twin planes. This conclusion can be
drawn from the experiments of Kwok et al. (1990), who
observe a sharp ( —5' wide) drop in resistivity within the
TAFF regime when the magnetic field is aligned with the
twin boundaries. The same conclusion can be obtained
from the torque experiments of Gyorgy et al. (1989) and
from the magnetization experiments of Liu et al. (1991),
who observe an increase in the critical current density
within the glass regime whenever the field is directed
along the twinning planes. On the other hand, for a mag-
netic field directed along the c axis, recent experiments of
Duran et al. (1992) suggest that the pinning along the
twin boundaries is reduced. This conclusion is based on
the analysis of real-time imaging experiments of Aux

profiles, which suggest that the twinning planes provide
favorable channels for Aux penetration into the sample.
Recent magneto-optical experiments by Vlasko-Vlasov
et al. (1994) show that the twin boundaries act as obsta-
cles for the Aux entering the sample, leading to an accu-
mulation of vortices along one side of the twinning planes
and a depletion on the other (shadowing effect). Whereas
some Aux enters the sample in a narrow channel along
the twin boundary potential well, their main effect is to
guide the vortices on one side of the twin planes into the
sample.

It thus appears that vortices trapped in the potential
well of a twin boundary and moving along the twin
planes experience enhanced pinning in one case (e.g. ,
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Kwok et al. , 1990), and reduced pinning in other situa-
tions. In fact, the following two phenomena affect the
in-plane pinning strength of the twin boundaries in oppo-
site ways. Due to the reduction of the order parameter in
the twin plane (which follows from the observed attrac-
tion of the vortices to the plane), the vortex core is
elongated along the plane (Cxurevich, 1992), and hence
pinning is reduced. On the other hand, thermal Auctua-
tions (which are particularly important in these materi-
als) leading to a smearing of the pinning potential at high
temperatures, are reduced when the vortex is trapped in
the potential well of the twin boundary, leading to an
enhanced pinning force in the planes. %'hereas the
thermal effect should be dominant at high temperatures,
reduced pinning may be more relevant at low tempera-
tures. The direction of motion (along or perpendicular to
the c axis) may influence the result as well, since in one
case the intrinsic pinning potential of the layered struc-
ture is relevant. Below we shall discuss in more detail the
dimensional reduction of thermal Auctuations, leading to
an enhanced pinning force along the twin planes.

Enhanced pinning by twin boundaries, as observed in
the experiments of Kwok et al. , Gyorgy et al. , and Liu
et al. , can be understood as a two-step process: Consider
a magnetic field directed along the ab planes. As the vor-
tices are turned towards the twinning planes, the attrac-
tive interaction between the vortices and the twin boun-
daries leads to a deformation of the vortices, with in-
creasingly large segments r (y) of the vortices trapped in
the potential wells of the twin boundaries; see Fig. 43.
Under the action of a driving current j ~~~ah, the vortices
are forced to move along the c direction, with the
trapped segments moving within the twin boundary po-
tential well. Due to the partial trapping of the vortex in
the potential well, transverse thermal fluctuations of the
vortex line are suppressed (dimensional reduction of the
fluctuations), leading quite naturally to enhanced pinning
for those vortex segments trapped by the twin boun-
daries.

In the following we first discuss the accommodation of
the vortices to the twin boundaries (Sec. EX.A. 1) and
determine the trapping angle y, below which the vortex
starts to deform. The size of the trapping angle y, is
determined by the ratio of the twin boundary potential-
well depth and the vortex line energy. In Sec. IX.A.2 we
discuss in more detail the origin and size of the twin
boundary potential well. Section IX.A.3 is devoted to a
discussion of enhanced pinning due to the dimensional
reduction of thermal fluctuations. Finally, in Sec. IX.A.4
we treat the problem of pinning and creep for the special
case in which the vortex line is aligned with the twin
boundary and the driving force acts to liberate the vortex
line from its trapping potential.

field H applied parallel to the ab plane, enclosing an an-
gle y with the twin planes. We neglect the inhuence of
point pins for the time being and concentrate on the ac-
commodation of the vortices to the attractive potential of
the twinning array. This situation is closely related to
the problem of intrinsic pinning in a layered supercon-
ductor, with the twinning planes playing the role of the
buffer regions between superconducting planes and the
magnetic field tilted an angle 8 away from the planes.

To begin with, consider a single vortex line. In order
to minimize its energy, the Aux line will deform and gain
energy from the attractive potential wells produced by
the twinning array; see Fig. 43. The attraction of the
vortex by the twin planes can be described in terms of a
reduction cTP in the vortex line energy. The energy gain
—rc,Tp of a trapped segment of length r is balanced by
the energy cost eI (0)r +eI (y')s e&—(y)t due to elastic de-
formation (y' denotes the angle between a segment of
length s and the twin planes). The elastic energy can be
rewritten as the product of the line tension and the total
length change, such that we have to optimize the energy,

8(r, q&) =(r +s t)E, (y) r—erp, — (9.1)

2y —rETp . (9.2)

The final result (9.2) expressed in terms of the line tension
cI is general and applicable in other cases; see Sec. IX.B.4
below. Variation of Eq. (9.2) with respect to r at fixed an-

gle y provides us with an expression for the trapped
length r (p),

with respect to the length r of the trapped segment (for
the present case with H|c the line energy e& does not de-

pend on the angle y, and thus the line energy
et =Ee.ln(~/E) is equal to the line tension Et ). From sim-

ple trigonometry we have t =dTp/sing and
s =[dTp+(dTp/tang& —r) ]', and expanding Eq. (9.1)
for small angles y we arrive at

1. Vortex trapping

We consider an idealized situation with a periodic ar-
ray of twin boundaries (with spacing drp ) and a magnetic

FICs. 43. Accommodation of an individual vortex line to an ar-
ray of twinning planes. With both the magnetic field 8 and the
current j directed along the ab planes, the Lorentz force fI acts
in the direction of the c axis.
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1 $(y, —p) . (9.3)
1E(y)= const+ +2elETp~p~+O(y ) .

&2
(9.10)

Inserting this result back into Eq. (9.2), we obtain the en-

ergy gain

The critical trapping angle y, below which the vortex
starts to deform is given by

I /2
2CTp

(9.5)

and becomes smaller as the attraction zTp turns weaker.
The accommodation of the vortex line to the twinning

array and the concomitant lowering of energy leads to a
lock-in transition. We consider a finite but small density
of vortices such that our result (9.4) is still applicable.
Due to the presence of the twinning planes we then ob-
tain an additional contribution,

E(q)=, @[r(y),q]
1

a, t

(9.6)

to the total free-energy density g of the vortex system,

OBpa c2
a'

g= + ln
2(4~A, )'

This linear term corresponds to the deformation energy
density produced by the kinked vortex structure. With
the kink energy given by Ek ——dTp+E&ETp, the number of
kinks per vortex L~y~/dTp, and the volume per vortex
La, (L =sample dimension along the field), we can im-
mediately reproduce the linear term in (9.10). In the re-
lated problem of a lock-in transition due to intrinsic pin-
ning (see Sec. VIII.A.3), the kink energy is much larger,
Ek —-dEo (with d denoting the layer distance here), and
hence the lock-in angle becomes much larger. Note,
however, that demagnetization eKects much be taken into
account in a discussion of the lock-in transition due to in-
trinsic pinning, where the magnetic field moves out of the
superconducting planes (see Sec. VIII.A.3 above and
Maslov and Pokrovski, 1991). These demagnetizing
eAects are irrelevant in the present discussion, where the
Geld always remains aligned with the planes.

The above analysis describes well the situation for low
magnetic fields, where the vortices relax individually to
the twinning array without any further restrictions due
to interaction with other vortices. At high magnetic
fields, we have to take into account the interaction be-
tween the Aux lines and we have to analyze the relaxation
of the whole lattice. The simplest quantity to determine
is the trapping angle y, . Near y„ the elastic deformation
energy is compensated for by the energy gain due to trap-
ping of the Aux lines by the twin boundaries, and we find
the condition

B
2 (Vi —V') «Vi

0

—cj~(k)q, =
2 f,1 2

a, (9.11)

BH
cos(V —O'H) . (9.7)

0'a +O'I. ~

O'II~ V'~ +0'a .

Minimization of g with respect to qv provides us with the
dependence q&(yH ) of the internal field direction y on the
direction yH of the external Geld,

with f the fraction of trapped vortices. For large fields
with a, /&E((drp, the fraction of trapped vortices is

f=a, /(dTpV'E), and the relevant wave vector is given
by K=~/dTp (K perpendicular to the twinning planes).
Using Eq. (3.58) for the in-plane tilt modulus, we obtain a
reduced critical angle

1/2 3 1/2
2ETp '

g a
ln (9.12)

C( drpi E

For small fields with a, /&8) dTp, the result (9.12) goes
over to the single-vortex result (9.5).

The lock-in angle y~ is given by

4mcl
O'L =

@ ~V'r ~ (9.9)

This transition is analogous to a second-order phase tran-
sition, with y and y~ playing the roles of the order pa-
rameter and of the external driving variable, respectively.
The lock-in transition goes hand in hand with a diver=
gence of the tilt modulus for angles y~O, both efFects
arising from the linear term in (9.6),

2. Twin boundary pinning potential

An evaluation of the size of the critical trapping angle
cp, requires knowledge of the potential-well depth cTp
produced by the twinning planes. An estimate of the ra-
tio cyp/El can be obtained from analysis of the decora-
tion experiments by Dolan et al. (1989). The increased
repulsive energy between the more densely spaced vor-
tices in the twin planes has to be compensated for by the
attractive potential cTp, hence,
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eTp= V(a ) —V(a, ), (9.13)

The result (9.14) applies to low temperatures and to mag-
netic fields pointing along the c axis. In order to obtain
the dependence of ETP on temperature and on the direc-
tion of the magnetic field, we have to adopt some model
assumptions for the origin of the vortex attraction to the
twin boundary. Here we assume that the creation of an
attractive potential well is due to a (weak) suppression of
the order parameter at the twin boundary. A vortex
aligned parallel to the twin boundary and placed a dis-
tance x away experiences an energy gain (per unit length)

H,
eTp(x)= 52&2/ Jdy[1 —Ig, (x,y)I ]

E.5i/2$
x &A, ,+x +2/

(9.15)

where 5 = 1 —
I 4 I /I 4

I
quantifies the (small) relative

suppression of the order parameter at the twinning
planes and where we have assumed that this suppression
affects a region of width -i/2g away from the plane.
The suppression of the order parameter due to the vortex
has been modeled by the variational ansatz described by
Schmid (1966) [see Eq. (2.34)]. In the following we use
the abbreviation eTp=ETp(x =0)=E.5. Turning the field

direction into the plane, then simply rescaling (see Sec.
III.A) results in a reduction of the potential well by a fac-
tor s combined with an enhanced range IxI & A, /E. Since
the line energy eI ——cc., also picks up an additional factor

the ratio eTp/eI remains unchanged [note that
ETp/ei-eTp/El for Hlc, whereas the corresponding re-
sult is more complicated when HIIc; see Eq. (3.44)].

Next, we wish to discuss the temperature dependence
of the result (9.14). The magnitude of the suppression of
the order parameter is determined by the boundary con-
dition dV/dx =4/b at the twin boundary. Here the
length parameter b is roughly given by b =g (0)/a, with
a the lattice constant of the crystal lattice (de Gennes,
1966). For b/g(T)))1, the suppression of the order pa-
rameter is weak, I%' /4

I
=1 and 5«1, whereas for

b /g( T) « 1 the suppression can become large,
/4 „I

=b /g ( T) and 5 & 1. It has been pointed out
(Deutscher and Miiller, 1987) that due to the smallness of
the coherence length g in the high-temperature supercon-
ductors the latter case can become relevant over an ap-

where V(R)=2E.Ão(R/A. ) is the repulsive interaction
energy between two straight vortices (ICo is the modified
Bessel function of order zero) and where a, and a, are
the separations between neighboring vortex lines in the
twinning planes and in the bulk, respectively. In the ex-
periment of Dolan et al. (1989; see also Vinnikov et al. ,
1990), the field H =40 G is directed along the c axis, and
the mean vortex separations are a, =0.7 pm and
a, =1.3 pm; hence

2ICo(5)
(HIIc, T =4.2 K) = — =2 X 10 . (9.14)

c,
' ln~

E~ =
2 J dxU(x)

2A
(9.16)

The long-range nature of the potential (9.15) can be ac-
counted for by cutting the integral in (9.16) at
IxI=&2gU(0)/E~. Making use of the above transcrip-
tion rules, we obtain the result

FIG. 44. Half-loop excitation of a vortex line out of the twin-
boundary potential well for the case in which the driving
current density j is parallel to the twinning plane.

preciable regime of temperatures close to T„ in particu-
lar for a boundary perpendicular to the c axis. For the
present case of twin boundaries running parallel to the e
axis we can expect a rather weak temperature depen-
dence of 5 at low temperatures and an increase on ap-
proaching T, .

A second source of temperature dependence in the pin-
ning potential c,Tp is the presence of thermal Quctuations
smoothing the twin boundary potential well. In order to
estimate this effect, we make use of the analogy between
the statistical mechanics of a vortex line and the quan-
tum mechanics of a particle in 2D, introduced in Sec.
V.B above. The statistical mechanics (T) of the present
single-vortex problem is mapped to the quantum
mechanics (A= T) of a particle of mass m =E& (EI denotes
the elasticity of the vortex line) trapped in a one-
dimensional potential well U (x ) =ETP(x ). Along the
twinning plane (y axis) the problem is translation invari-
ant; see Fig. 44. For a field directed along the c axis the
elasticity is c&-—c. c,„whereas for a field parallel to the
planes we have cI —-cc.o. Note that the possibility of such
a "vortex~particle" mapping arises as a consequence of
the translational in variance of the pinning potential
along the direction of the vortex line. Furthermore,
translational invariance along y renders the particle prob-
lem effectively one-dimensional. The simplest approach
to finding the binding energy makes use of the perturba-
tion result for a one-dimensional shallow well (Landau
and Lifschitz, 1958a),

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



1324 Blatter et al. : Vortices in high-temperature superconductors

ETp(T) =
cTp, T( TdTp

~TP 2

dp

T
T"

ln
dp

Tdp &T.

Here we have to distinguish between the parameter
Td (T), which is a function of temperature,

Tdp =2M Ei ETp ~ (9.18)

and the actual depinning temperature Td, which is
determined by the implicit equation

TTP TTP(TTP )

i/2 '
TP &/2

Tdp

2Gi T,
(9.19)

In a more elaborate approach (see also Sec. IX.B.1 below)
one solves the di6'erential equation

resulting in a trapping angle of the order of a few degrees
at low temperatures. Close to T, we have to expect two
competing e6'ects to occur, an increase in 6 due to a
larger suppression of the order parameter at the twin
boundary and a smoothing of the potential due to
thermal fluctuations of the vortex line. A more precise
estimate requires more detailed knowledge of the temper-
ature dependence of 5. Regarding the field dependence
of the trapping angle, we can assume the typical distance
between the twinning planes to be of the order of

0

dTp —10 A and a further decrease of the critical angle y,
has to be expected for Gelds above —1 T. These results
are in good qualitative agreement with the experiments
of Kwok et al. (1990), Iye et al. (1990), Gyorgy et al.
(1990), and Fleshier et al. (1992), who observe a change
in resistivity or critical current density (torque) when the
magnetic field is aligned with the twin planes within a
few degrees.

a.'+ %(x)=0,
Qx'+X.'

(9.20) 3. Longitudinal motion:
enhanced pinning and dimensional reduction

with

pxo =(2mx. /fi )U(0)=(Td /T) «1,
~ =(2m/A )Eii,

x. =&2/,
in the three regions

ixi &xo ['p-cos(Qp/X, X)],
x. &x &X*=P/~ ('0-&x [J,(2&PX )

+CA, (2&PX )]),
x (x [% exp( Kx)]

and equates the logarithmic derivatives d ln%'/dx at the
various boundaries (with C an integration constant and

J& and X, are Bessel functions). This procedure leads
(up to numerical factors of order unity) to the same result
as the previous simplified approach (note that quasiclassi-
cal approximation is not applicable to this problem). The
result (9.17) diA'ers only in the appearance of logarithmic
correction factors from the result obtained on the basis of
the most simple model assumption using a square-well
potential of depth U =ETp and extent a =2&2/.

When the field is turned into the ab plane, cTp picks up
an additional factor c., and the product clcTp remains in-
variant. Using the result (9.14) (5/Ing =2X 10
Gi = 10 ), we obtain the numerical estimate
Tz =0.5T, . Combining Eqs. (9.5), (9.17), and (9.19), we
obtain for the trapping angle the expression

T(TTP,
dpln~

(9.21)
5

&Gi Inv

Having discussed the relaxation of the vortices to the
twinning array, we now study their dynamic behavior in
an applied force field directed parallel to the twinning
planes. The situation in which the vortices are locked to
the twinning planes and the current Aow is directed along
the twin boundaries (force acting perpendicular to the
twinning planes) is discussed in Sec. IX.A.4 below. With
the force acting parallel to the twin planes, the presence
of twin boundaries alone does not lead to a pinning of the
fIux lines —in order to prevent the vortices from Rowing
we have to introduce additional pinning sites breaking
the translation invariance along the planes. This type of
enhanced pinning by twin boundaries has also been con-
sidered by Marchetti and Nelson (1990), who describe a
vortex Auid Aowing in channels parallel to the twinning
array. Within their hydrodynamic formulation of the
problem the twin boundaries produce a zero-velocity
boundary condition on the Aow due to enhanced pinning
along the planes. In the following we concentrate on the
case in which the field is along the CuO planes and the
force is directed along the c axis, the situation realized in
many of the above experiments, and discuss the interplay
between twin boundary trapping and generic pinning due
to point defects.

Enhanced pinning of vortices moving along the twin
boundaries can have an extrinsic as well as an intrinsic
origin. Extrinsically, the strain fields associated with the
twin boundaries make them probable locations for atom-
ic defects. The enhanced density of point-pinning centers
then directly leads to the increased pinning properties of
the twin boundaries. The intrinsic enhancement of the
pinning forces acting within the twinning planes has its
origin in the (dimensionally reduced) thermal Iluctua-
tions, which tend to smooth the pinning potential. Con-
sider the case of single-vortex collective pinning at tem-
peratures T)Td, where the mean-squared amplitude of
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rgTP+sg"
T+S (9.22)

with r and s denoting the lengths of the trapped and free
vortex segments, respectively. In writing Eq. (9.22) we
take into account that the resistive measurements by
Kwok et al. were carried out in the ohmic regime. Note
that the q's denote effective friction coefficients enhanced
by pinning; see Eq. (6.34). Assuming for simplicity that
the critical trapping angle y, is small, one obtains for the
angular dependence of the effective friction

eff bi@I + TP (9.23)

Since the resistivity p ~ 1/q', one immediately finds the
angular behavior of the resistivity at small angles,

p(y) o- 1 — 1—
TP TP

thermal fluctuations becomes large, (u (T) ),h) g . Ac-
cording to the discussion in Sec. II.C above, the srnooth-
ing of the pinning potential and the resulting decrease in
the critical current density with increasing temperature
depends strongly on the dimensionality of the system. In
two dimensions, corresponding to a vortex trapped
within the twin boundary potential well, the critical den-
sity decays only algebraically, j, (T) =j, (0)(Td„/T) .
On the other hand, a single vortex line is only marginally
pinned in three dimensions, and therefore the critical
current density decays exponentially fast in this case,
j, (T)=j, (0)exp[ —

( T/Td ) ]. Hence, due to a di-
mensional reduction of the thermal Auctuations, one ex-
pects to find enhanced pinning for a vortex line trapped
within a twin boundary, as compared with one pinned in
the bulk, as soon as T ) Td . From Eq. (2.130) we can es-
timate a value Td„=50 K for the depinning temperature
in YBCO.

Enhanced pinning by the twin boundaries manifests it-
self in a rather sharp structure in the angular dependence
of the resistivity, for the geometry in which the vortex
lines are moving along the twin boundaries (Kwok et al. ,

1990). Let us denote by q and q the effective friction
coefficients for a vortex line moving in the bulk and
within the twin boundary potential well, respectively.
The friction force experienced by a vortex moving paral-
lel (along c) to the twin planes is

~ 3Djc Lc ~TP
~ 2D U,

a'

(9.25)

with a=20/13=3/2 and a'=28/13=2. An estimate
for the escape current density j„,can be obtained by ex-
pressing the collective pinning energy U, due to point de-
fects in terms of the elastic energy Erg /2L, . The factor
L Gyp/U measuring the relative strength of the trapping
energy in the twin-boundary potential well versus the col-
lective pinning energy due to the point defects becomes

2
2cTP L, H,'

2—27TCpt
c,B (9.26)

where the last equation is fulfilled at the depinning tem-
perature Td„. The critical current-density ratio j, /j,
can be estimated from the experiments of Liu et al.
(1991) to be of the order of 2, whereas Gyorgy et al.
(1989) obtain a somewhat larger value —6 from their
torque measurements. For a field B =1 T, we can con-
clude that at Td„ the escape current density is large, of
the order of the critical current density j, , and thus
creep proceeds with the vortices remaining trapped in-
side the potential well of the twin boundaries. With in-
creasing temperature, the collective pinning length in-
creases rapidly, and one expects the effects of trapping by
the twin boundaries to become stronger. However, a
more quantitative discussion would require us to take
into account the formation of collectively pinned vortex
bundles.

jump out of the twin boundary potential well and contin-
ue its creep-type motion within the bulk, in which case
the enhanced pinning properties of the twin boundaries
would be rendered ineffective. According to the general
theory outlined in Sec. III.F.2, creep motion within the
planes is determined by the activation barriers
U (j)= U, (j, /j) ' . On the other hand, the motion in
the bulk would proceed via jumps of optimal segments of
length L,~, (j)=L,(j, /j )

~ . In order for the vortex to
move in the bulk, a segment of length L, , (j) has to be li-

berated from the twinning planes, requiring the vortex to
overcome a barrier U»b( j)=L,~, (j )erp .For large
current densities, j)j„„such that U„b(j)(U (j), the
vortex escapes from the twin boundary and moves within
the bulk, where it is less pinned. The criterion for this
dynamic instability is obtained from the condition
U~;b(j„, )= U (j„,), and we find

TP . TP (9.24)
4. Transverse motion: critical current density and creep

A quantitative analysis requires that we take dynamic
effects into account as well (Fleshier et al. , 1992).

Finally, we concentrate on the problem of (longitudi-
nal, i.e., parallel to the twinning planes) vortex creep and
ask ourselves if and under what conditions the vortex line
remains trapped by the twin boundary potential during
vortex motion. As an alternative, the vortex line could

In this section we concentrate on transverse pinning
and creep as it results from a geometrical arrangement
with the magnetic field parallel to the c axis and a planar
current density j running parallel to the twinning planes.
This geometry has been investigated by Nelson (1991)
and by Nelson and Vinokur (1993). The low-temperature
critical current density for this configuration is easily cal-
culated to be
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~ Tp j T( TTP0 7 dp (9.27)

and we can make use of the result (9.14) to find that the
critical current density is of the same order of magnitude
as the depinning current density expected due to the col-
lective pinning action of the pointlike oxygen defects. At
large temperatures thermal Auctuations lead to a renor-
malization of the pinning energy [see Eq. (9.17)], as well
as the pinning length. The latter is given by the thermal
Auctuation amplitude

1/2

Tdp

(9.28)

as determined from the quantum analog I =A /IEB
[here we ignore the logarithmic correction factors ob-
tained in Eq. (9.17)]. The resulting critical current densi-
ty decays only algebraically with increasing temperature,

-Tp 4

Tp TP dp . Tpj., TT' & T & T„, (9.29)
Eg

(&2)1/2
th loc TP

c4 TP

2/3 4/3

dp

(9.30)

where the delocalization temperature Td] is given as the
solution of the implicit equation

as opposed to the exponential dependence on tempera-
ture obtained for pinning by point disorder (see Sec.
II.B), rendering the twin-boundary pinning increasingly
important at higher temperatures. As the temperature
rises beyond the delocalization temperature Td&, as
defined by the condition ( u ( Tdi ) ),h ——d rp, the vortex
samples aIl ensemble of twiIlniIlg planes and is only
pinned by the fluctuations in the pinning potential. The
fiuctuation amplitude I&„——( u ),'h is obtained by
balancing the elastic energy T /s&(u ),h obtained from
the quantum-kinetic energy A' /mli„(see Sec. IX.B.2 for
more details) against the pinning energy
eTpV lio& /dTp(g/I~&&& ) where the first factor accounts for
the random addition of the 1&„/dTP twin-boundary po-
tential wells and the second factor for the relative contri-
bution of each twin-boundary potential well over the dis-
tance l&„. The resulting Auctuation amplitude grows
with temperature according to

A2 d2% + [E—U(x)+Fx]%'=0 .
dx

(9.33)

In the absence of the electric field, the solution is

mU, a
EB=U, —E=

2A

i'. (x )0)=v'k exp( —kx),

1 IU, a
k =—(2mE )'B g2

(9.34)

(9.35)

(9.36)

where the potential well has been placed between x = —a
and x =0. For a finite electric field we can again solve
the problem in the quasiclassical approximation and ob-
tain for the wave function

X)
exp f ~q~dx, x &x, ,

q X

C X—exp l +l qdx, xi &x
4 x,

(9.37)

where q =2IFx/A —k and x& =EB/I". The normali-
zation constant C is obtained by requiring 'Ii(0) =Co(0).
The ionization rate is given by w = ~%(x, )

~ Aq/m, and
the final result is

2Ea 4 &Zm
w = exp ——— EB

3 AI'
(9.38)

Transforming back to the vortex picture, we obtain the
activation probability per unit length of the trapped vor-
tex,

In order to discuss creep we can again use the
"vortex~particle" analogy introduced in Sec. IX.A.2
above. The vortex motion (creep) away from the twin
boundary proceeds via a half-loop excitation of the vor-
tex line out of the potential well; see Fig. 44. The corre-
sponding process in the particle picture is the field-
induced emission of the particle (ionization) out of its
trapping potential, whereby the driving current density j
producing a Lorentz force fl =j@./c maps to the elec-
tronic field 6' producing a force F =eh' on the particle.
The half-loop excitation of the vortex itself maps to the
instanton solution for the field-emission process. We
thus have to solve the quantum-mechanical problem of a
charged particle trapped in a (shallow) rectangular poten-
tial well U(x) and subject to an external electric field 6,

Tdl Tdl( Tdl ) TTP
dp (9.31)

jc
Eo dTp

The critical current density follows from balancing the
Lorentz force j,@,/c against the pinning force (the
relevant length scale is l„,), and we obtain again an alge-
braic decrease with temperature,

~Tp 2

T j(), Td)(T . (9.32)

2ETp( T)

T
g+e&erp(T) ETp(T) j

exp —&6
T &a j

(9.39)

Of course, to exponential accuracy, the result (9.39) can
be most simply obtained by dimensional estimates; see
Sec. IX.B.3 below. A comparison of the probability (9.39)
with the bulk activation rate w ~ exp[ —( U,„/T)(j,„
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/j)' ] shows that, at low enough current density, libera-
tion from the twin boundary is always the limiting factor
in creep motion.

B. Columnar defects

Pinning in a type-II superconductor can be optimized
by introducing defects that trap the individual vortex
lines all along their linear dimensions while simultane-
ously destroying a minimal-volume fraction of the super-
conducting material itself. Clearly, a defect structure
reaching this goal can be obtained by introducing colum-
nar defects into the material with cylinders of nonsuper-
conducting material of diameter -g, the vortex core size.
The resulting pinning properties will be highly anisotrop-
ic, with optimal pinning obtained for a configuration in
which the magnetic field is aligned with the linear defect
structure. For this situation each trapped vortex gains
an energy U„=aH, g L, where L is the size of the system
along the direction of the magnetic field and a is a
geometry factor. For fields weak enough that defects
outnumber vortices and the interaction between vortices
is negligible compared to U„, we can expect to obtain a
critical current density j,=ojo, a-0. 1 —1, of the order
of the depairing current density j, . Second, since
thermal softening of the linear pinning potential is much
more gradual than for the pointlike pins, one can also ex-
pect less of a decrease in the critical current density with
increasing temperature. Both these effects have been ob-
served by Civale et al. (1991) and by Konczykowski,
Rullier-Albenque et al. (1991) on samples of YBCO irra-
diated with high-energy ( —GeV) Sn and Pb ions. The
fast heavy ions produce linear tracks of damaged materi-
al due to their large ionization energy-loss rate, exceeding

0
a few keV/A. High-resolution electron microscopy
indeed confirms the formation of linear tracks of highly
defected material aligned with the beam direction. The
resulting defect structure can be modeled as a random ar-

0

ray of parallel normal cylinders of diameter 50—70 A em-
bedded in a matrix of superconducting material. The
density of these columns is conveniently measured in
terms of the field B@ (the "matching field" ) producing an
equivalent density of vortex lines in the superconductor.
Typical irradiation doses used in the experiments pro-
duce values for B+ between 1 and 5 T.

From a theoretical point of view, we can distinguish
between two major limiting cases regarding the impor-
tance of the vortex-vortex interaction in our discussion of
the pinning problem: (i) If the interaction of the indivi-
dual vortex lines with the columnar defects outweighs the
intervortex interaction, we essentially are dealing with a
single-vortex problem, which is conveniently mapped to
the problem of a single particle in two dimensions mov-
ing in a random potential; see Sec. V.B. Due to the
translation invariance of the defect structure along the
direction of the magnetic field, the resulting random po-
tential as seen by the 2D particle is a static one. (ii)
When the vortex-vortex interaction becomes essential for

1. Vortexi2D-boson analogy

We consider a system of vortex lines in the presence of
a columnar defect structure. For small and intermediate
values of the magnetic field, B «H, , we can make use'2'
of the London approximation and write the energy of the
vortex system in terms of the trajectories
s„(z)=(R„(z),z) (see also Sec. V.B),

d R„(z)
&[s (z)]=f dz g — " —pP o 2 GZ

, P

+—g V'"'[R„(z)—R (z)]
pWv

+g U„[R„(z)]
P

(9.40)

where E.
&

is the tilt modulus of the individual vortex lines,
p, =HC&, /4' s.in~ is t—he chemical potential, V'"'(R)
denotes the interaction between the vortex lines and
U„(R) is the z-independent random pinning potential due
to the rods of damaged material. I. is the thickness of the
sample along the z direction. To simplify matters we
choose an interaction potential local in z, say,
V'"'(R) =28.Ko(R/A, ), which is appropriate in the limit
of small fiuctuations with (B,R) (( I/s . To make these
ideas explicit, we concentrate on the case of an isotropic
material [Ei =E.ln(1/k, g)] or on the situation in which
the fieM is aligned with the c axis of the anisotropic ma-
terial [Ei=a c,, ln(1/k, E(')]—the results for the general
anisotropic case can be obtained by means of the scaling
method described in Sec. III.A. Note that the line ten-
sion Ei(k, ) is dispersive, and we should use the relevant
longitudinal length scale as a cutoff in the logarithm.

We model the pinning potential U„(R) by a random
array of identical cylindrical traps of average spacing d„,

high values of the magnetic field, the quantum-
mechanical analog of the vortex pinning problem is the
pinning of a 2D Wigner crystal. Note that the extent of
the above "single-vortex" and "many-vortex" pinning re-
gimes depends on the question under consideration,
whether it is a static or a dynamic one. We start out with
a description of the vortex/2D-boson analogy (Sec.
IX.B.1; the exchange of two particles involves Bose rath-
er than Fermi statistics) and then proceed to determine
the pinning potential and the critical current density for
various temperature and field regimes (Sec. IX.B.2). Sec-
tion IX.B.3 is devoted to the problem of creep. In Sec.
IX.B.4 we discuss various aspects of the Bose-glass tran-
sition, its shift with respect to the melting line in a pure
system, and the application of Bose-glass scaling laws to
a continuous phase transition. Finally, in Sec. IX.B.5, we
concentrate on the lock-in phenomenon originating from
directed pinning due to columnar defects and the stabili-
ty of the Bose-glass phase when the magnetic field is tilt-
ed away from the tracks.
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effective radius

b. =max(r„, &2g),

( U„(R)U„(R') ) =b, „5(R—R'), (9.42)

where the weight 4, can be expressed in terms of the
above parameters characterizing the defect structure,

(9.43)

and a potential-well depth e„(r„is the geometrical radius
of the normal cylinder). The columnar defects are as-
sumed to pass through the entire sample. When the vor-
tices wander over many rods, pinning will be due to Auc-
tuations in the rod density only and hence be similar in
nature to the collective pinning of vortices by pointlike
defects. It is convenient to describe this situation in
terms of the correlation function for the pinning poten-
tial,

the Bose problem back to the vortex system via the usual
substitution of parameters A ~T, A /T ~L, I ~c.&.

In this sense, the present discussion can be understood as
indicating that the vortex/213-boson analogy has an even
wider regime of applicability than one might expect.

In the following, we first look at the magnetic-field re-
gime where the interaction between vortices does not
strongly affect a possible shift of a vortex line by the
mean spacing d„between rods. Second, we consider pin-
ning and creep at higher fields, where the intervortex in-
teraction plays an important role. Pinning and creep
then involve vortex bundles and can be both plastic and
collective in nature. In order to obtain an estimate for
the crossover field B,b separating the single-vortex re-
gime from the bundle regime, we can compare the shear
energy per unit length c66(d„/a. ) a. due to a displace-
ment d„with the pinning energy c,. Making use of Eq.
(3.32) for the shear modulus c66, we find

[in terms of a pinning energy density the correlator is
(E„;„(R)E„;„(R')) =(e„/d„)(bo /a. )5(R—R'); see
Eq. (4.4) and use U„;„=U„/b, ]. Note that quantitative
accuracy requires the pinning to be weak in the sense
c„«E&, in which case a simple description of the vortex
elasticity in terms of an expansion in the small quantity
(B,R) is appropriate. However, we assume that for a
qualitative analysis we can still use such a description,
even for somewhat stronger pinning, with c„=c„asis
the case for rods with a radius r„exceeding the vortex
core radius. For the anisotropic case the regime of valid-
ity of the elastic theory requires only (B,R) 5 1/E in-
stead of the more stringent condition (c),R) & 1 (Brandt,
1992b). The enhanced regime of applicability can be
easily understood within the scaling approach, which
maps the angle tanO =B,R = 1/c back to unity
(tanO=Etan0, 0=angle measured from the c axis) in the
isotropized system. Therefore the analysis presented
below is also qualitatively correct for the case of maximal
trapping energy c„=c, in the anisotropic situation,
where strong deformations (B,R) —1/E of the vortex
line have to be expected. In all the results below the an-
isotropy is contained in the line tension c& ~ c, .

Following the ideas outlined in Sec. V.B, we note that
the classical statistical mechanics of the system (9.40) is
equivalent to the quantum mechanics of interacting bo-
sons in two dimensions subject to a static random poten-
tial U„(R). However, here we are also interested in the
case of finite sample thickness with L & ~, correspond-
ing to a finite temperature T )0 in the Bose system. We
then have to make sure that the periodic boundary condi-
tions imposed on the Bose system do not dominate the
physics of the problem. Here we should point out that
the vortex/213-boson analogy will be used mainly as a
guideline to our results, whereas the actual calculations
will be done within the vortex picture. On the other
hand, it turns out that the results obtained within the
original formulation, in terms of vortices, agree with
those expressions obtained by mapping the final results in

Bb=
4c„

B@, (9.44)

~= —g p+ata„—g t„„(a„a„+aa )

p pWv

+g u. n„n„. (9.45)

Here a~ and a„are boson creation and annihilation
operators at the site R„", n„=a~a„ is the number opera-
tor, p =p is the chemical potential that fixes the vortex
line density in the original model, and uo =N, /4m. is the
on-site interaction potential. An estimate for the hop-
ping matrix element t„connecting the sites R„" and R'
separated by a distance d„=

~

R„"—R"
~

is given by the
expression

where Bz, =@,/d„ is the field-equivalent irradiation dose
(matching field). The result (9.44) applies to low temper-
atures; with increasing temperatures we have to take into
account not only the temperature dependence of the pin-
ning potential well c„but also its thermal renormaliza-
tion; see below. For fields B &B,b, each vortex can ad-
just to the pinning potential (which involves displace-
ments u (d„/2 on average) without interference with the
other vortices present in the system. The field B,b thus
separates that portion of the H-T plane where the vor-
tices are individually pinned (by one or by many tracks)
from the region where the pinning involves vortex bun-
dles; see Fig. 45. Assuming a pinning efficiency
o;=c„/c, =j,/j, -0.1, we have B,b ~B@=+,/d„, and
thus the rods outnumber the vortices for fields B & B,b.

Within the field range B & B,b the vortices can accom-
modate freely to the pinning sites, and therefore the bo-
son Hamiltonian associated with Eq. (9.40) can be re-
placed by a tight-binding model defined on a lattice of
sites determined by the positions R„' of the rods,
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with

plastic pinning

Using the transcription A —+ T, m —+ c.l, U, ~c„, and
a ~2b, , we obtain the pinning potential E„(T) renormal-
ized due to thermal fluctuations,

8 Brb

single vor tex pinni
with

s„(T)=E„f T

dp

(9.49)

sing I e rod
many Td (T) =b.+E,s„ (9.50)

0 T Tr g Td& Tdl Tc

FICy. 45. Equilibrium and pinning diagram of a high-
temperature superconductor taking into account thermal fluc-
tuations and correlated quenched disorder (columnar defects).
The melting line B ( T) of the pure sample is transformed into a
Bose-glass transition line in the presence of a correlated static
disorder potential. Also shown are the various pinning regimes
with a single-vortex/single-rod pinning region at low fields and
temperatures, followed by a region where the individual Aux

lines are pinned collectively by an assembly of rods at high tem-
peratures, T & Tdi. Above the crossover line B,&(T), the largest
energy in the problem is the intervortex interaction, and pin-
ning involves vortex bundles.

t„~=2s„(T)
' 1/2

2T —E /Tpv

mE„„
(9.46)

$2
E~ ——Uo 1 —c

2Nza
(9.47)

with c a constant of order unity. If the potential is shal-
low, the corresponding result is (Landau and Lifshitz,
1958a)

H««&„=d&„[2s~s„(T)]' is the kink energy involved
in the activation process where the vortex jumps between
the rods at R„" and R"„, and e„(T) denotes the effective
pinning potential as renormalized by thermal Auctua-
tions. Note that we distinguish between the unrenormal-
ized quantity s„(where s„ itself depends on temperature
through the usual 1 —T/T, dependence of the GL pa-
rameters) and the renormalized energy s„(T).

The effective depth E„(T) of the potential well and the
hopping matrix element t„„can be determined by solving
the two quantum-mechanical problems of a particle
trapped within a potential well in two dimensions and of
a particle tunneling between two wells separated by a dis-
tance d&„(see, for example, Landau and Lifshitz, 1958a;
Baz', Zeldovich, and Perelomov, 1969; Nelson, 1991;
Nelson and Vinokur, 1993). The binding energy Es for a
particle of mass m trapped in a potential U(R) of depth
Uo and extent a is given by

and

At temperatures T ) Td (T) the effective potential depth
goes rapidly to zero, and we call the solution Td of the
self-consistency equation Td~ = Td„( Td ) the depinning
temperature [note that we distinguish between the
temperature-dependent depinning energy Td~(T) and the
depinning temperature Td„]. In the above transcription
the quantum fluctuations leading to a decrease in binding
energy transform into thermal (entropic) fluctuations of
the vortex line. The loss in entropy due to the confining
potential then leads to a reduction in the pinning energy
for the vortex. The result (9.49) applies to a short-range
potential that can be modeled as a local potential well of
finite extent. Below we derive a more accurate expres-
sion for the pinning potential E„(R) produced by a
columnar defect, which turns out to be long range,
s„(R)~ 1/R . As a consequence, the effect of thermal

fluctuations is reduced, with a potential renormalization
given by f~„(x ) 1)=exp( —x).

The hopping matrix element t for a two-column system
separated by a distance d can be found by solving for the
ground state —Ed of the corresponding quantum-

mechanical double-well tunneling problem: For a
square-well potential, the wave function away from the
tracks (tracks positioned at the origin and in Rd ) is given

by

4(R)=Ko(xR)+Ko(s ~R —Rd ~ ),

= —ln(~R )+ 2
KKd

' 1/2
Kde (9.51)

I dR RU(R),
dR g =, &2a 0

(9.52)

whereas we assume %(R).=1 inside the (shallow) well.

The ground-state energy —Ed„ is related to the wave

vector K via the usual relation, Ed =A K /2m. Integra-
tion of the Schrodinger equation inside the well deter-
mines the derivative at the well boundary,

E —R /mA2e
ma

(9.48)
and matching the (logarithmic) derivatives at the bound-
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$2

ma U,
Kd—In(~d )+

ary a provides us with the implicit equation for K',

1/2

(9.53)

detail and determine the dynamic properties of the vortex
system subject to an aligned columnar defect structure.

2. Pinning potential and critical current density
For the single-well problem we can neglect the small ex-
ponential correction, and we recover the binding energy
for the shallow well (9.48). Inserting this solution in Eq.
(9.53) and expanding, we obtain the binding energy for
the double-well problem,

1/2
2A

Edw E~ I+2 e
k

Ek =d +2mEii

(9.54)

The hopping matrix element t is then given by the energy
difference t =Ed —Ez. Using the above transformation
rules we easily recover the result (9.46).

The system described by a Hamiltonian of the form
(9.45) with the positions R„on a regular lattice but with
on-site (i.e. , diagonal) randomness has been discussed by
Fisher et al. (1989) within the context of boson localiza-
tion. Fisher et al. present qualitative arguments giving
strong evidence for a localization of the Bose particles
and propose a phase diagram involving a superAuid
phase, a Mott insulator (number of sites=number of par-
ticles), and what has been called a Bose-glass phase,
separating the first two phases. The corresponding three
phases are expected to occur in the vortex system as well:
starting with the localized phase, the vortex system con-
sidered here is characterized by structural (i.e., off-
diagonal) disorder, and thus some kind of localization of
the vortices to the tracks is expected to occur, leading to
a Bose-glass phase at low enough temperatures. As we
shall show below, this localization phenomenon gives rise
to the occurrence of infinite barriers against vortex
motion in the system, and hence the term "Bose glass"
seems to be appropriate for the description of a vortex
system localized on the columnar defects, too. At higher
temperatures we expect a delocalization of the vortex sys-
tem from the tracks, resulting in a vortex-liquid phase,
the analog of the superAuid phase in the Bose system.
The Mott insulator, finally, corresponds to a vortex den-
sity in which every columnar defect is occupied by a sin-
gle vortex line. As a result, the vortex density is pinned
over some field regime 8 =8+, leading to a Meissner-
Ochsenfeld-like effect at a finite magnetic field. Note that
the Bose-glass phase introduced here within the context
of correlated disorder is quite distinct from the vortex-
glass phase discussed in Sec. VII above. Whereas the dy-
namic properties of the two glass phases are similar (al-
beit, with difFerent exponents p involved), their statistical
mechanics properties are very different. The uncorrelat-
ed disorder in the vortex-glass phase induces line wander-
ing, whereas the correlated disorder due to columnar de-
fects or due to twin boundaries promotes localization of
the vortex lines.

After this general discussion, let us now go into more

To begin with, let us consider the simplest case which
is realized at low temperatures T & Td„and fields
B &8,b, where each vortex is pinned by its own individu-
al rod (no jumps of the vortex between rods). In order to
obtain an estimate for the pinning potential E,„and for
the critical current density j, we have to compare the to-
tal vortex line energies in the presence and absence of a
columnar defect. Consider first the case &2$ & r„, the sit-
uation at low temperatures. In this case we can use the
analysis of Mkrtchyan and Schmidt (1972), who deter-
mined the pinning force acting on a vortex due to the
presence of a cylindrical cavity' with radius
r„,+2$&r„&A,, within the London approximation. The
energy gain (per unit length) of the vortex at a distance
R ) r„away from the center of the cylinder is

'2
rr

e (R)= —s.ln 1—
p' 0

R (9.55)

from which the maximal pinning force per unit length of
the vortex line is easily found to be

R =r +V'2g
(9.56)

Hence we find that the critical current density j, is
indeed given by the depairing current density jo,

3v'3 .
Jc ~—Jo -Ja (9.57)

and an upper estimate for the pinning potential —s„(R)
1s

c,„(R)= .

r„
e. ln —,R &r„,

2g
(9.58)

—gin 1—
R +g/&2 r, &R &A, .

This analysis provides an upper estimate for the pinning
energy/farce/critical current density.

At 1ow temperatures, where the pinning energy c„ is of
the order of co, the fie1d B,b limiting the regime where
the individual vortices can freely accommodate to the de-
fect structure is roughly given by the matching field 8@,
JB b

—8+
At higher temperatures we have r„&&2$ and the ener-

gy gain for the vortex can be simply calculated from the
reduction in the order parameter as given by (2.34), lead-
ing to a pinning potential —s„(R) of the form
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H
E„(R)= '

~r,'[I —le(R) I']

c~ r„
0&R &A, .2R+2g' (9.59)

A useful interpolation formula for the depth of the pin-
ning potential e„=E„(R=0) is given by

2r„c„= ln 1+
2 2g

(9.60)

Both the low-temperature expression (9.58) and the
high-temperature result (9.59) are characterized by a long
tail, E„(R)=E,r„/R, b, &R &1,. The critical current
density j, can be estimated from the force balance equa-
tion, and we obtain

1 1 = tan i/p ln +5
i/P in(~R */2) vR,

(9.65)

(here we assume that T ) T„e). Again, simple quasiclassi-
cal approximation is not applicable, and we have to solve
(9.64) explicitly. For R &R. we can approximate
p/(R +R, ) —~ =p/Ro and obtain the solution
0'(R)- Jo(i pR/R, ). The solution in the intermediate
regime Ro &R &R *=i/p/~, where we can use

P/(R +R, ) x—=P/R, is given by
%(R)-cos[VPln(R/R, )+5], with the phase
5=i/p/2«1 determined by equating the logarithmic
derivatives of %(R) at R. . In the region R )R *, we can
neglect the potential term in Eq. (9.64), and the solution
is 0'(R)-ICo(~R). Again equating logarithmic deriva-
tives at R, we find the relation

2
27&2

J — J(), T„g& T (9.61)
With —i ping/p«1 the left-hand side of Eq. (9.65) is

large, and using 6 && 1 we obtain the binding energy

The crossover temperature separating the low- and
high-temperature limits, (9.58) and (9.59), is defined by
the relation &2$(T„&)=r„,

Try 2g' (0)
r 2 (9.62)

Using parameters appropriate for YBCO [g(0)=12 A,
r„=35 A], we obtain the estimate T„&=0.76T, =70 K.
Note the different scaling behavior of c, with tempera-
ture; on approaching T, the potential depth c„scales ac-
cording to E„(R =0) ~ ( T, —T), and hence the crossover
field B,b limiting the free accommodation of the individu-
al vortex lines to the columnar pins decreases above T,&,

2
r TB = —B ~ 1—

rb T,

a', + P —~' e(R)=0,R2+R2 (9.64)

with

At large temperatures, T & Tdz, the single-vortex pinning
potential energy is strongly renormalized by thermal Auc-
tuations. Taking account of the slow decay of the pin-
ning potential, —e„(R)= E.r„/R, w—e should cut off
the radial integral in (9.48) at a distance
R *=b, QU(0)/E~, leading to a renormalization of the
pinning energy by a factor -exp( —T/Td ). For an ac-
curate determination of the depinning energy Td, this
simple analysis is not sufhcient. After mapping the vor-
tex problem to the corresponding 2D quantum problem,
we need to solve the Schrodinger equation for a particle
in a shallow, long-range potential,

2A' p
B e

4m(
(9.66)

Transcribing back to the vortex language, we obtain the
thermally renormalized pinning energy

—T/T"
e„(T)=E,e (9.67)

with the depinning energy given by

r„
Tdp QE(E0 = bo QE(E„ (9.68)

2r, —T/TdB.b(T)=,B~e (9.69)

Similarly, thermal Auctuations lead to a strong reduction
in the critical current density. Increasing the tempera-
ture beyond the depinning temperature Td, we find that
the vortex line starts to wander away from its columnar
defect. In order to find the mean amplitude of thermal
fluctuations (u (T)),b, we consider again the 2D quan-
tum problem of a particle trapped in a shallow potential

The result (9.68) difFers from the short-range result (9.50)
only by the numerical factor i/2/m. More importantly,
the exponent in Eq. (9.49) changes from (T/Td&) to
T/Td„, reducing the effect of thermal fluctuations for the
long-range potential e„(R)-c„r„/R . A T -type depen-
dence in the exponent is only recovered when the ampli-
tude of thermal fluctuations (or, correspondingly, the ex-
tent of the wave function) grows beyond the range A, of
the potential. "

The renormalization of the pinning energy due to
thermal fluctuations implies a corresponding reduction in
the crossover field,

P=(2mRo /I )U(0)=(r„+cia, /T) «1, .

~ =(2m/R )Eii,

R. =V2g'

The inhuence of the long-range nature of the pinning poten-
tial on its thermal renormalization was not accounted for in the
preprint version of this work.
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well (Nelson, 1991). The binding energy E~ is easily con-
verted to a localization length I&„ for the wave function,
I&„-—A /mE&, and using our mapping rules connecting
the 2D Bose system and the vortex system, we immedi-
ately obtain

(u (T))' =I =b e
T TI2T"

Tdp
(9.70)

Tdl dl( dl ) Tdp( dl )ln
0

(9.72)

We then have to determine the amplitude ( u ( T) ) „'z~ (lo-

calization length) within the high-temperature regime
T & Td&, and we do so by using the method of dimension-
al estimates. Going over to the 2Q quantum analog of
the vortex problem, our task is to find the localization
length of a particle satisfying the Schrodinger equation
(Nelson, 1991)

T2 (v"')'+U„(R) q(R)=em(R),
2c

(9.73)

with U„(R) the random potential set up by the columnar
defect structure. The localization length l&„can be ob-
tained by balancing the kinetic energy T /2c, &l&„against
the mean potential energy s„(b. /l«, ) (l«, /d„), where

Combining Eqs. (9.67) and (9.70), we obtain the
Auctuation-corrected critical current density, for

T„g& Td„,
2
r dp —(3/2)(TITd ) .
2 T

"j., T," &T&Td, . (9.71)

As the thermal amplitude (u (T)),'h~ grows beyond the
mean rod spacing d„, the vortex line cannot be pinned by
an individual rod any longer, but rather is pinned collec-
tively by Auctuations in the density of columnar defects;
see Fig. 46. The temperature at which (u (T) ),„=d„ is

called the delocalization temperature Td& and can be es-

timated from the implicit equation

the factor (b, /I«, ) describes the relative contribution
from each rod and the second factor arises from the ran-
dom addition of the (l«, /d„) rods within the localiza-
tion area (note that the individual rods compete with
each other, hence the energy grows only with the square
root of the number of relevant rods. Here, the pinning
energy involves the unrenormalized potential-well depth
E„). The final result for the localization length l«, and
hence for the mean amplitude of thermal fluctuations is

(u (T)),'h =1«, —-d„
T

(9.74)
d1

T&Td, .

Above Td& the pinning energy decreases only slowly with
temperature,

b,
EPIn= r

-2 — 2

Tdl
T&Td, . (9.75)

The critical current density for temperatures T & Td& can
be most simply obtained by means of dimensional esti-
mates. Comparing the pinning energy (9.75) with the en-

ergy gain j,4.(u ),'h /c due to the Lorentz force acting
on the vortex line, we obtain the critical current density

4

E„g bo Tdij (T)= j, , T) Tdi . (9 76)
r r

Equations (9.57), (9.61), (9.71), and (9.76) describe the de-
crease of the single-Uortex critical current density with in-
creasing temperature. At low temperatures, T & T„&, the
critical current density is of the order of the depairing
current density Eq. (9.57). Above T„&, the critical current
density decreases, first due to the reduction in c.„, Eq.
(9.61), then, above Td~, due to thermal fiuctuations, Eq.
(9.71), and finally, above Td„due to delocalization from
the individual rods and crossover to collective pinning by
many rods, Eq. (9.76).

Before turning to a discussion of the high-field regime
with B & B,b, we briefly estimate the various crossover
temperatures introduced above and determine the cross-
over field B,b at high temperatures. The above results for
the pinning potential E„(R) allow us to calculate a more
reliable estimate for the depinning temperature Td . As-
suming Td ) T„& and making use of the result Eq. (9.68),
we obtain the following implicit equation for Td .

1
Td =Td (Td~)= r„+siEo-

1T
"

"r ln(L /c, g)
2V2vrg(0)

' Gi

1I2

1— dp

C

(9.77)

T & Tdi Tdi & T

FIG. 46. Vortex line pinned by an individual columnar defect
( T & Td„( u ),'h & d„) and by the collective action of many rods
(T) Td~, (u ),'h &d, ). In the latter case, only iluctuations in
the track density are able to pin the vortex.

The length scale L of the thermal fluctuations is deter-
mined by the relation si l i„/L =E„(T), balancing the
elastic energy against the pinning energy. The localiza-
tion length 1«, and the binding energy s„(T) are given by
Eqs. (9.70) and (9.49), respectively. Evaluating the length
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L, at the depinning temperature Tdp we obtain the result
I.=&2Eg&ln(1. /Eg), of the order of Eg, and we can drop
the logarithmic correction in Eq. (9.77). For small tem-
peratures (where b, = r„), a similar result with a slightly
different numerical prefactor is obtained. Using parame-
ters appropriate for YBCO, Gi = 10, g(0) = 12 A, and
choosing the defect radius r„=35 A, we obtain the esti-
mate Td =0.77T, =70 K for the depinning temperature.
Combining Eqs. (9.77) and (9.72) and using the same pa-
rameters as above (we choose d„=400 A corresponding
to 8+ = 1 T), we obtain the estimate Tdi =0.93T, = 85 K
for the delocalization temperature. Note that these esti-
mates assume maximal pinning, i.e., a=1. Experimen-
tally one finds j, /j, -0. 1 in the low-temperature/weak-
field regime, indicating that a & 1 and thus also reducing
the above estimates for Td„and for Td&.

The single-vortex pinning regime extends up to fields
where the thermal amplitude of the individual lines
(u (T)),'h remains smaller than the thermal amplitude
of fluctuations of the vortex lattice as given by (4.85).
Making use of Eq. (4.I)5) for the vortex lattice, we find
that the regime of single-vortex collective pinning is lim-
ited by the condition

d Kf dz dr G (z, r)K2K, ip (K) ~'
(2~)

sinK, vt
th (9.80)

C1
z + t

I1
(9.81)

and the single-vortex Green's function in real space,

exp[ g&z
—/4E&t]

G(z, r)=O(r)
+4~v, g, t. (9.82)

Here we have expressed the pinning potential U„(R) via
the usual convolution of the disorder potential U„~;„(R)
and the form factor p (R) of an individual vortex,

U„(R)=fd'R'U„, „(R')p(R—R') . (9.83)

The correlator for the potential U„„;„(R')takes the form

( U„;„(R)U„;„(R')) =y„5(R—R'), (9.84)

with the mean-squared amplitude of thermal Auctuations
given by [see Eq. (3.131)]

1/2

b,
B &B,b-—B~

r

2
Er Td)

6

T & Tdi . (9.78)
with y„and h„related via

c.„
'Yr=

b4 d
(9.85)

In the vicinity of T, we can use
b =&2/, E„=Eo(r,/2g) and obtain the following scal-
ing behavior close to T, :

We first perform the integration over z, neglecting the z
dependence in ( u ),h, rind obtain

d.
X ln

2g

6

2
1 ~r

rb 2~ Gi &2$(0)
6

Tc

6

(9.79)

2

d K K K
(2~)'

sinK, vt
X exp

K T
2' Qr/s, il, (9.86)

The large wave-vector cutoff is provided by the Debye-
Waller factor, K &K „,with

1/4

The result (9.78) can be obtained equally well by compar-
ing the shear energy involving a displacement ( u ( T) ),'h~

with the total pinning energy as given by Eq. (9.75). To
summarize, we find a crossover field B,b of the order of
the matching field Bc, at low temperatures. Above T„&,
the field B,„decreases with temperature as described by
Eq. (9.63). Within the small-temperature interval
Td & T & Tdi, the crossover line B,b(T)=(4E„(T)/E, )Bq,
decreases exponentially with increasing temperature until
it reaches the high-temperature branch as given by Eq.
(9.78); see Fig. 45.

It is both instructive and useful to check the above re-
sults obtained via simple dimensional estimates by means
of the dynamic approach. Following the steps outlined
in Sec. III.D and applying them to the case of a single
vortex subject to a columnar defect structure, one arrives
at the following expression for the relative correction
5v /v to the vortex velocity v:

Kmax
2w ~1 91 (9.87)

T
2'

2

4
E1'7/1 v

1/3

(9.88)

The final result reads

2/3
6v

~,vT4
(9.89)

The condition

The main contribution to the K integral comes from the
region of large wave vectors, K -K,„. Second, we per-
form the integration over time t, which again is dominat-
ed by large times, the cutoff being provided by the factor
sinK„vt at K „vt „—1, hence
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v=v
C

(9.90)

determines the critical velocity U„and using

j,=c2)iv, /@ we recover the expression (9.76) for the
critical current density j,.

Analyzing the origin of Eq. (9.89) in more detail, we
can independently rederive many of the previously stated
results. First of all, an alternative derivation of Eq. (9.72)
for the delocalization temperature Td& proceeds as fol-
lows. As we decrease the temperature, the main contri-
bution to the K integral comes from progressively larger
wave vectors K,„. With K „increasing beyond 1/dr9
the condition for the applicability of collective pinning is
violated, and we enter the single-vortex/single-rod pin-
ning regime. The characteristic crossover temperature
Td& can be obtained from the condition

(9.91)

with the relevant time scale t given byt,„(v =v, )=T i)i/Eih„. Using the definition (9.87) of
K „,we obtain the delocalization temperature

Td, =(E 6 d )' =b QE E (9.92)

6'„;„(R,u) =
2

u
y„Ra, Q

(9.93)

which agrees up to logarithmic accuracy with the esti-
mate (9.72) for Tz&. Second, an expression for the delo-
calization length l&„ is obtained again from the cutofF

K,„. Defining li, ——1/K, „and inserting the relevant
time scale t,„(v =v, ) given above, we recover the result
(9.74) for I&„, thus confirming the correctness of the pre-
vious derivation of the localization length.

Finally, let us leave the single-vortex pinning regime
and consider fields B,b &8 &BB& intermediate between
the crossover field B,b and the Bose-glass line BB~(T)
(see Fig. 45), where the lattice is not yet melted (see Sec.
IX.B.4 for a discussion of the Bose-glass line). Within
this field regime the vortices form a lattice, and the in-
teraction between Aux lines is dominant, leading either to
weak collective pinning of vortex bundles or to plastic
pinning. Let us first consider the case of collective pin-
ning at low temperatures. Balancing the elastic energy
c66(u /R) R against the pinning energy

The critical current density j, is obtained by balancing
the Lorentz force j,BR, /c against the elastic force c66b, ,

and we find the low-temperature/high-field result
(8„=@./r„')

B„
1/2

Brb,
T&T„g 9

(9.96)

Jpi =
JQ 9 B&b ~B

. a. g B,b
, j.=, B,b &8 &8, .

QBH,

(9.97)

Equation (9.97) approaches the depairing current at the
low-field boundary 8+ and correctly matches the collec-
tive pinning result (9.96) at the upper boundary 8„.

At higher temperatures we should take the thermal
smearing of the potential into account. The appropriate
criterion is given by ( u ),h & b„and for T & T„t we re-
cover the usual lattice depinning temperature
Td~-—Ec,,g lao. At high temperatures, T & Td, the pin-
ning energy 6„~;„is reduced by the factor b, /(u ),'h/

[see Eq. (2.118)]. Balancing 8„;„against the shear ener-

gy c66 ( u ),h, we obtain the collective pinning radius

For temperatures T& T„&, Eq. (9.96) matches the low-
field result (9.61) at 8 =B,b.

At low temperatures, T& T„&, the collective pinning
radius R, =r„(d„la, ) is of the order of r„((d„ ta the
crossover field B,b =Bc, and becomes large (of the order
of d„) only at very high fields, B„=C&,/r„. Within the

intermediate-field regime B,b &8 & 8„ the vortex lattice

is plastically pinned. The fraction 8@/8 of the vortices
is firmly pinned by columnar defects, whereas the rest is
merely fixed by the shear force within the lattice. The
Lorentz force j &Bd„(1 B~/8) l—c acting on the remain-

ing vortices competes with the pinning force c66a, pro-
duced by the shear and leads to the critical current densi-
ty

[see Eq. (4.29)], we obtain the disorder-induced displace-
ment field

E.„aQu(R)= R, R (b. .
F-Q

(9.94)

Using the definition u (R, ) =b, , we find the collective
pinning radius

( 2)3/2 ( 2)3/2
Rc dr 2

—dra. g a. r„

R, =dr
r

Rewriting ( u ),h ——a, r„(T/Td ), we find that
' 1/2

9

dp

(9.98)

(9.99)

E, b,
R, =d,'

c.„aQ
(9.95)

hence R, )d, for temperatures T) Tdp and plastic pin-
ning is irrelevant in this regime. The critical current den-
sity then takes the form
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Qo 1„
d' g' (u2)

5/2

Jo—

5/2' 1/2

gr„

d„' Bb

1/4 Tr
dp

T jo TdpB,b
1/4 r

dp
Joy Tdi (T,

(9.100)

d K
2 f 2

dz dt G (z, t)K K, tp (K))
ga.2 (2~)2

sinK, vt
X S(Kzr), (9.101)

with G(z, t) and S(K,z, t) the Green's function and the
dynamic structure factor for the vortex lattice. We ex-
press the Green's function G(r, t) by its Fourier represen-
tation G(q, co). Again neglecting z dependence in the
structure factor and performing the integrations over z
and t, we obtain

~2( g2) h/2
Vr d'K d Q K KUe

a~ 2m 2m c66 + jBK„c
(9.102)

The remaining integrations over Q and K can easily be
done, and we find for the relative velocity correction

where we have neglected small logarithmic corrections in
the last formulas. Using (u ),b-—Ta, /ee. , we obtain
the temperature/field dependence j, ~B'~"/T ~ [note
that B,b ~ T in the high-temperature regime T) Td, ;
see Eq. (9.78)].

Equation (9.100) likewise follows from the dynamic ap-
proach. The relative correction 5v/U to the Bow velocity
in the dynamic approach, for a vortex lattice in the pres-
ence of a columnar defect structure, is given by

3. Vortex creep at j«j,
Here we discuss the response of the vortex system to a

small current density, j &&j„applied transverse to the
field direction. Again we shall find various regimes of
different behavior as the current density probes different
length scales in the system. We shall also consider sam-
ples of finite thickness I.. Hence the barriers against
motion will always be cut off at small current densities,
due to the finiteness of the sample. True Bose-glass
behavior with diverging barriers in the limit j—+0 will be
found only in the limit L, —+ ao. We first concentrate on
single-vortex creep and then treat the creep of vortex
bundles.

The liberation of a vortex line from its rod takes place
via thermal activation of a finite segment of length /b& out
of the pinning well, creating a half-loop excitation of the
string; see Fig. 47. It is interesting to compare the
present situation with the problem of pinning in a period-
ic potential, as discussed in Sec. III.E above. The impor-
tant difference is that in this problem the transverse size
ub1 of the half-loop is not simply given by the periodicity
u, , but is determined by competition between the elastic
energy e&uz&/lM and the pinning energy c,„(T)l„,. As a
result we shall find that a vortex trapped by a columnar
defect will show glassiness, whereas a string trapped in a

ch„
c66J~'o (" ~th

(9.103)

resulting in a critical current density

cA„

g ( 2)S/2 (9.104)

in agreement with Eq. (9.100) above. Note that, due to
the translational invariance of the problem along the z
axis, the tilt mode is not relevant in the relaxation of the
vortex lattice to the pinning potential. In particular, the
dimension along the z axis of the collectively pinned bun-
dle is simply I. Therefore the dispersion is not relevant
in the present problem of a vortex lattice pinned by
columnar defects, and we do not have to distinguish be-
tween small and large collectively pinned bundles in our
discussion of the critical current density (dispersion does,
however, become relevant in the problem of creep of vor-
tex bundles; see below).

half —loop dpub I e kink d —super kink

FIG. 47. Typical excitations of a vortex line from its pinning
track, leading to vortex creep. The half-loop excitations are
relevant at high current densities j, where the critical nucleus
does not yet reach out to the neighboring columns. %"ith de-
creasing current density, the nucleus grows, and double-kink
excitations to the neighboring track become relevant. Finally,
dispersion in the pinning energies becomes important for small
current densities and large sample length L, and the vortex
motion proceeds, via the formation of double-superkink excita-
tions, to the next optimal track (variable-range hopping).
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periodic potential does not.
The geometrical shape of all the possible half-loop exci-

tations is given by the relation uh, ——[LE„(T)IEt]' lh, . It
remains to determine the size of the loop excitation. This
is obtained by balancing the cost in elastic energy against
the energy gain from the Lorentz force, jC.lz&uM/c.
The final results for the size and the activation energy of
the critical nucleus are

and subject to an electric field. The problem is analogous
to that encountered above in the discussion of the libera-
tion of a vortex from twin boundaries; see Sec. A.4. We
shall not go into the details of the calculation here, which
proceeds along the same lines, but merely give the result
for the activation probability of the vortex line per unit
length,

1/2

lhl( j)=0
s, E„(T) j.

~o J
(9.105)

(9.106)

j 1 so

3v'3 j. eg E( T)

&3 E/E„(T) E„(T) j.
X exp u'2 T s. j (9.112)

EtE„(T) J
Uhl( j)=s,(»0

~o
(9.107)

E„(T)
Jd= Jo

E,o
(9.108)

At j=jd, the activation energy U( jd ) becomes equal to
the mean kink energy

Ek —-d„+etE„(T),
and hence we can write instead of (9.107)

(9.109)

Jd
Uhl(j) +Q . Jd &j « j,J

(9.110)

The half-loop barrier increases with decreasing current
density j, and hence the system exhibits a glassy response
(p= 1) with a strongly nonlinear current-voltage charac-
teristic,

E ~exp
Ek jd

J
jd&j«j, . (9.111)

For strongly anisotropic (layered) material such as the
Bi- and Tl-based compounds, the size lh, (j)jd )

&d„+Et/c, „(T) of the critical nucleus can drop below
the interlayer distance d, resulting in (nonglassy) creep
and thermal depinning of individual pancakes (see also
Brandt, 1992a, 1992b).

A more quantitative analysis of the liberation of a sin-
gle vortex from a columnar defect can be done by map-
ping the problem to the quantum mechanics of a charged
particle in two dimensions, trapped by a compact defect

At low temperatures T & T,&
and for an isotropic situa-

tion we obtain a circular half-loop excitation (uh&-lh&),
whereas for the anisotropic case with li„——cuz& the form
of the nucleus changes to an ellipse [see also Brandt
(1992b) for a detailed discussion of the shape of the criti-
cal nucleus]. The rescaling of the length lh~ along the z
axis follows trivially from the scaling rule (3.12). The
above analysis works in a regime of currents j & jd such
that the presence of other columnar defects is irrelevant,
which is the case for uh, (j) & d„. The relation u h&(jd ) =d„
then determines the crosso-, er current density jd,

The simple estimate (9.111) reproduces the exponential
dependence of (9.112) very accurately.

For currents j« jd, the transverse displacement uh~( j)
of the liberated vortex segment exceeds the mean dis-
tance d„between the rods (see Fig. 47), and the motion of
the vortex line from one rod to another takes place via a
thermally activated critical nucleus with dimensions d„
(transverse to the columns) and d„+Et/e„(T)ln(j, /j)
(along the columns). The Pnite activation energy
U =2Ek is determined by the kink energy Ek, as given by
Eq. (9.109). The individual kinks have a width
wk —-d„Qs& /E„( T), and the logarithmic factor appearing
in the longitudinal extent of the critical nucleus has its
origin in the weak attraction between the two kinks (see
Landauer and Biittiker, 1981; here we shall neglect this
logarithmic correction). Since the activation energy for
the nucleus is finite for this case, we will not obtain a
glassy behavior within this regime. Once such a critical
nucleus has been formed, the nucleus expands and the
vortex moves to the next rod. Hence the dynamics of an
elementary hop from one rod to the next is completely
analogous to the motion of the vortex line in a periodic
pinning potential, as discussed in Sec. III.E above, if we
simply substitute d, for u. . However, this type of vortex
motion is only possible if the neighboring track provides
a favorable final state, e.g., one with a lower energy than
the original defect. Otherwise, the nucleus cannot ex-
pand, and the vortex remains trapped. We then have to
consider dispersion in the energy levels provided by the
columnar defects. Such a spread in the distribution of
trapping energies arises, for example, from randomness
in the irradiation process generating the tracks (intrinsic
dispersion). Let us assume that the well depths E„are
distributed around some mean value c,„with a width y.

0

We then can distinguish between two regimes of small
and large dispersion y, where the nature of the vortex
motion turns out to be quite different. For small disper-
sion, yI. & Ek, the activated nucleus can expand, and the
motion will proceed via nearest-neighbor hopping. On
the other hand, for a large dispersion, yI. &Ek, the
neighboring track does not provide a favorable final state,
and the vortex line has to find a better low-energy track a
further distance away. The optimal jump will then in-
volve a compromise in finding a good final-state

Rev. Mod. Phys. , Vol. 66, No. 4, October 1994



Blatter et al. : Vortices in high-temperature superconductors 1337

c EkE~j exp T J ((Jd (9.113)

where the constant c is obtained explicitly from 2D per-
colation theory (Shklovskii and Efros, 1984). With Eq.
(9.113) we find that the glassy behavior above jd is re-
placed by an ohmic characteristic below jd if the disper-
sion y or the sample thickness L is small, yL & Ek,' hence
such a sample is not in a glassy phase. The precise value
of c depends on the distribution of distances d„and on
the type of lattice chosen to model the positions of the
rods. Assuming a uniform distribution of activation en-
ergies Ei, (d„„) between zero (d„„=0) and
2Ek-—2d„[s&E„(T)]' (d~„=2d„), we obtain a constant
c =1 if we model the sites of the rods by a square lattice
and c =0.695 for a triangular lattice; thus we can expect
a constant c& of order unity.

Now let us consider the case of larger samples/larger
dispersion, where yL )Ek and small currents j « jd.
Before discussing the dynamic properties of this system,
we wish to analyze in more detail the origin of the disper-
sion y in the energy well depths. It is interesting to note
that in addition to the intrinsic dispersion y; arising from
the randomness of the irradiation process, there is a
second intrinsic source of dispersion, of an entropic ori-
gin, which arises due to structural disorder in the posi-
tions of the irradiation tracks. Consider a thermodynam-
ically large system in equilibrium. A typical equilibrium
configuration of a vortex line consists of long straight
segments trapped by different rods and interconnected by
kinks. The probability per unit length for a kink to occur
is proportional to exp( Ek /T), hence the mean —separa-
tion lk between kinks depends exponentially on the kink
energy, lk o-exp(Ek/T). As the kink energy depends on
the distance d„between the rods,
Ek(d„„)=d„„[sos„(T)]'~,the (negative) contribution to
the free energy of a vortex line due to the entropy is larg-

configuration at a larger distance, while spending the
least possible amount of elastic energy for the creation of
the nucleus reaching this state. The resulting dynamical
behavior of the vortices then shows all the features of the
variable-range hopping motion first introduced by Mott
(1969) for the description of electronic transport in disor-
dered semiconductors. In the following we discuss these
two types of motion in more detail.

Let us first consider the simpler case with weak disper-
sion, yL & Ek. %'e then can neglect the fIuctuations in c.„
altogether and assume that all rods have the same poten-
tial well depth. Disorder is purely structural, with only
the distances d„„being random quantities. The random-
ness in the distances produces randomness in the activa-
tion energies Ek(d„„)=d& [Eie„(T))', and hence the
vortex motion is equivalent to the nearest-neighbor per-
colative hopping conductivity in a 2D semiconductor
(see, for example, Shklovskii and Efros, 1984). The re-
sulting vortex velocity and the current-voltage charac-
teristic are given by

est for those vortices localized at two neighboring rods
with minimal spacing d„. The structural disorder in the
rod separations d„„ therefore leads to an intrinsic
(temperature-dependent) dispersion in the free binding
energies for the vortices. The phenomenon described
above is an exact transcription of Lifshitz localization in
a quantum system, where the breakdown of the reso-
nances and the level repulsion due to the presence of
structural disorder lead to the localization of the wave
function. We can obtain an estimate for the dispersion y
in terms of the bandwidth t appearing in the boson Ham-
iltonian (9.45) by evaluating the hopping matrix element

t„„for a typical distance d„=d„between the rods and
at high temperatures where tunneling is effective,

1/2

t(d„)=s„(T)
k

(9.114)

The dispersion y then is given by the combination of the
site disorder y; and the structural disorder t (d„),

y=y, +t(d„) . (9.115)

The dispersion y in the well energies gives rise to a
variable-range hopping (VRH) transport of the vortex
lines, similar to the phenomenon of the quantum VRH
conductivity in a doped semiconductor (Mott, 1969; Am-
begaokar, Halperin, and Langer, 1971;Shklovskii, 1972a;
Shklovskii and Efros, 1984). This variable-range hopping
concept can be applied to the charge carriers in a doped
semiconductor, as originally done by Mott (1969), or, al-
ternatively, we can derive all the results remaining al-
ways in the vortex picture. Since below we wish to gen-
eralize Mott's idea to take into account interaction effects
(Coulomb gap; see, for example, Shklovskii and Efros,
1984), we choose here to present first a brief description
of Mott's original argument. Consider a doped semicon-
ductor with localized impurity states in the gap (without
external bias applied). The task is to calculate the mobili-

ty of the electrons at the Fermi level. This is determined
by optimal hops to unoccupied neighbors. At low tem-
peratures, thermal activation to the conduction band is
exponentially suppressed, and the motion proceeds via
tunneling. The tunneling probability to a level a distance
r away is given by p, ~ exp( —2r/li„), with l~„ the locali-
zation length of the impurity state. The process can hap-
pen only if an equal-energy final state is available
(dissipation-free tunneling is assumed). Such unoccupied
equal-energy states are rare, and hence the hop necessari-
ly involves a large distance r. On the other hand,
thermal activation followed by a tunneling process to a
closer state involving an energy difference 6E enhances p,
but reduces the total probability by the thermal factor
exp( 5E/T). The optimal —hop arises out of competition
between the tunneling component and the thermal ac-
tivation process. The missing energy 5E depends on the
jump distance. Within the volume r" the number of
available states per energy interval is gr ", where g
denotes the density of states at the Fermi level. The
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(9.116)

The optimal jump distance is found by minimizing the
effective free energy,

P[u]=2 Ek+
dr gu

giving

Ld,
uM, „(L)= =d„

gE " E

(9.117)

(9.118)

and the corresponding energy

mean level separation within this volume then is
5E (r) =1/gr, and the optimal hop is obtained by max-
imizing the total probability (per unit time)
p=vexp[ —2rjl„, oE—(r)IT] with respect to the dis-
tance I. The result for the optimal hopping distance is
r, , = ( l ~„Ig T) ' ~~ +". Defining the diffusion coefficient
D =p (r,~, )r,~„one obtains the famous Mott conductivi-
ty law cr ~exp[ —(T. /T)'~'"+"] via the usual Einstein
relation p =eD /T for the mobility p.

The above hopping mechanism can be transcribed to
the problem of vortex creep in the presence of columnar
defects; on the other hand, we can equally well derive the
same results while always remaining in the vortex pic-
ture. Let us briefly go through the derivation. Whereas
the original conductivity problem involves the electrons
located at the Fermi level, in the vortex system the VRH
motion involves the most weakly bound fIIux lines with all
the lower-energy states filled (here we again assume that
repulsive intervortex interaction effectively excludes dou-
ble occupancy of pinning sites). The vortex motion re-
quires hopping of a vortex segment (via double superkink
formation; see Fig. 47) to an optimal, in general distant,
defect with nearly the same energy. The activation ener-

gy involved in the hopping process is given by
2u [eiE„(T)]'~ =2(uId„)Ek, with u the distance to the
chosen rod. This term is also an exact transcription of
the tunneling term 2r/l1„ in the original Mott problem
(the kinks along the z axis correspond to the imaginary-
time tunneling paths in the particle problem). The
characteristic energy difference between initial and final
vortex states is given by 6E =L/gu, with g the density
of states that has to be determined from the Hamiltonian
(9.45) (alternatively we can use the transcription T~ 1 /L
between the bosons and vortices to arrive at the same re-
sult). A simple estimate for the density of states g is
given in terms of the energy dispersion y [see Eq.
(9.115)],

current density j. The corresponding semiconductor
transport problem involves an electric field leading to a
nonlinear current-voltage characteristic, investigated first
by Shklovskii (1972b). Here we present the derivation in
the vortex picture: The energy involved in the creation
of a loop of dimensions u (hopping distance) and l (hop-
ping segment) takes the form

P[u, l] =2 Ek+
dr gu

juI .
C

(9.120)

The critical loop size has been reached when both forces
B„V and Bl V turn negative. First consider the condition
BiV=1/gu —4.ju lc =0, saying that the loop can ex-
pand along the z axis as soon as the current density j can
provide the "missing energy" L/gu . We then obtain
the current-dependent hopping distance

1/3 1/3
C

d
Jv

(9.121)
g+oJ J

uvRH(j) =

with the current density j, given by

C

gN, d„c,gd„
(9.122)

The activation energy for the hop depends only on the
hopping distance u vRH

1/3
Jv

UvRH(J) =Ek
J

(9.123)

Second, we have to make sure that the loop does not col-
lapse in the transverse direction. The condition
B„V=2Ek /d„—21 /gu —@.jl /c =0 then defines the
critical length IvRH of the loop

IvRH(J')=l„, (j)=L . =d„., jI &j
J drFr J

(9.124)

with the current density jI given by

cEk g Ek

d„+,L L d„c,
(9.125)

As the current density j drops below jl, the sample
width L cuts off the loop, and we obtain a crossover to
the ohmic Mott regime. Note that by inserting Eq.
(9.125) into (9.123) we recover the original Mott law
(9.119), using a derivation based solely on the vortex pic-
ture.

In summary, at high current densities, jL &j, the vor-
tex motion involves the creation of a critical loop of di-
mensions uvRH and IVRH equiring an activatio~ e~e~gy
UvRH and producing a non-Ohmic current-voltage
characteristic' 1/3

UM„, (L) =2Ek ——2Ek
uM tt«) yL

T k
(9.119)

' 1/3
Ek

T J JL, &J ~ (9.126)

Let us go one step further and generalize these results to
the case in which the system is driven by an applied

For small current densities, j &jl, on the other hand, the
vortex has to be thermally activated to its final state a
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E~j exp

with

(9.128)

distance u M,«away, and the barrier UM, «does not de-
pend on the current density j, resulting in an ohmic
current-voltage characteristic

1/3

J&JL ~ (9.127)
T

grows beyond the value

1/4

uy —Qa(& d„
&o

3/2
T

Jxb =
a, a,

producing a crossover current density
3/4

(9.130)

jxs

(9.131)

(9.129)Jxs =

As I.~~ in the thermodynamic limit, jL ~0, and glas-
siness [Eq. (9.126)] with the characteristic exponent p= —,

'

extends down to vanishing current densities.
The crossover between the variable-range hopping re-

gime at low current densities and the half-loop regime at
high current densities depends on the ratio
j d /j„=s„(T)d„g=e„(T)/y. For a strongly dispersive sit-
uation with E„(T) /y & 1, the activation energy for the
VRH process drops below the activation energy for the
half-loop process at the crossover current density j „

1/2 3/2
e„(T) E„(T)

and a crossover length
3/2

Ek a,
y d,

3/4

dressed
L vor tices

VRH

y &e„(T)

The two criteria match at
jL, (L),jr (Lb) =j z,' see Figs. 48 and 49.

(9.132)

the boundary

Lb holf - loops
with j, & jd &j, ; hence the crossover from half-loops to
VRH takes place below jd,j,. For small sample thick-
ness, L & L» = lh&(j x, ) =wk [y/E„( T)]', and small
current densities, j & jL, the creep process involves a rig-
id translation of a vortex segment [the activation energy
L e„(T) for a rigid translation is smaller than the half-
loop activation energy Ek(jd/j) up to lengths L„,]. No
nearest-neighbor hopping regime exists in the strongly
d1spc1slvc case. Thc various CI ccp 1cglmcs aI'c summa-
rized in Fig. 48.

For the case of weak dispersion with E„(T)/y ) 1, we
have the sequence j, &jd &j „and the VRH activation
energy drops below the half-loop energy even above
j„jd. However, the hopping distance needed in the pro-
cess of sup erkink formation becomes large enough
(uvRH )d„) only below j„and thus the crossover
between the VRH and half-loop regimes takes place only
at j„. For small enough sample length,
L & Ek /y =wk [s„(T) /y ], a nearest-neighbor hopping re-
gime is realized. Here wk —Ek/E„(T) is th—e extent of an
individual kink along the vortex axis. This nearest-
neighbor hopping regime extends down to the length
I, =uk, below which creep again proceeds via a rigid
translation of vortices. Note that lh, (jd ) =wk and

lh, (j, ) =wk [E„(T)/y]. The creep regimes for the weakly
dispersive situation are illustrated in Fig. 49.

Finally, let us return to the original free energy (9.120)
and consider the effect of vortex-vortex interactions. For
large hopping distances u we have to account for the
competition between the shear energy c,, (u /a, ) involv-
ing neighboring vortices and the disorder energy 1/gu .
The crossover to the regime where vortex interactions be-
come relevant takes place as the hopping distance u

Mott

Lxs

rIgld

I I I

&xb &xs

FIG. 48. Creep diagram for the strongly dispersive case
y&c,„(T). For large currents and not too thin samples, the
creep motion proceeds through the generation of half-loop exci-
tations. When the current density is decreased at small sample
length, L &L, =wi, [y/s„(T)]', the energy for the half-loop
excitation grows beyond that for a rigid translation and creep
proceeds via rigid motion of vortex segments. When the
current density is decreased at large sample size, L &L „the
half-loop excitations extend beyond the separation d„between
rods, and creep proceeds via the variable-range hopping (VRH)
mechanism, where the vortex chooses an optimal neighbor. At
even smaller current densities it is more pro6table to provide
the missing energy L/gR through thermal activation of the
vortex line rather than via the Lorentz-force, and the system
enters the Mott regime. Finally, the interactions between the
vortex lines become important as the hopping distance grows
beyond the critical value uq ——Qao d„() /Ea )'~". These interac-
tions can be accounted for via a renormalization of the density
of available pinning sites {Coulomb gap), leading to the notion
of "dressed" vortices. Here Ek =d„+e,s„(T) is the kink ener-

gy, jd and j„are the relevant current scales for half-loop and
VRH motion, j, is the crossover current density where the
half-loop activation energy grows beyond the VRH activation
energy, and at the crossover current density j & the transverse
loop size has reached the critical distance u =ub where interac-
tions between the vortices become relevant.
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dressed
vortices

y «„(T)
d„E~Seff, c(j)E hl

4/3
JU

[ J
(9.135)

Lb VRH

Mott

Ld

rigid translation

jxb

l

Jy ld jxs

FICx. 49. Creep diagram for the weakly dispersive case

y (c„(T). An additional intermediate regime arises for sample
lengths Ld =w, & L & I., =m„[E, ( T)!y ], where creep proceeds
via nearest-neighbor percolative hopping. Here wj, is the extent
of a kink along the vortex axis.

Once the hopping distance increases beyond ub we
cannot neglect the interaction between the vortices any
longer. In this case we have to take into account the
presence of the neighboring vortices in our description of
vortex creep, and we refer the reader to the discussion
following Eq. (9.150), where interaction effects are dis-
cussed in more detail.

At very low temperatures the possibility of quantum
creep arises, and we brieAy discuss this possibility before
turning to large magnetic fields and interaction e6'ects.
We first consider the case of a half-loop nucleus. For dis-
sipative dynamics we determine the tunneling time t by
balancing the dynamic term gIu /t against the elastic en-

ergy E&u /I, thus relating the tunneling time r to the
length l of the half-loop,

11
th) -— lb

C(
(9.133)

JoSP'(j) = th) Uhl —S
J

(9.134)

with Shi -—(A'/e )(sg/p„). Here we have used E„=E, at
the low temperatures where quantum tunneling is
relevant. At low current densities a crossover to the
variable-range tunneling regime takes place. The action
for the tunneling process then is given by the expression
Sz ——v,'„c.„lvRHuvRH, with the short-wavelength limit
of the velocity determined by the tunneling process to the
neighboring column, U,„=E. /rjd„(see Sec. II.A.5).
Making use of the results (9.121) and (9.124), we find the
tunneling action

The length I is given by Eq. (9.105). Combining Eq.
(9.133) and the half-loop energy (9.107) we obtain the ac-
tion

3

The two equations (9.134) and (9.135) match at a current
density j', =j,(so/y), marking the crossover from
half-1oop tunneling to the variable-range tunneling re-
gime. Equation (9.135) differs from that obtained by Vi-
nokur (1993), who followed our earlier approach to the
quantum collective creep problem (see the detailed dis-
cussion at the end of Sec. II.A.5).

The above results are valid as long as the vortex-vortex
interaction is negligible, i.e., within a temperature-field
regime bounded by the condition B &B,b(T), as well as
for large enough current densities. Our remaining task,
then, is to investigate the various regimes where the in-
tervortex interaction dominates the creep process. In
close analogy to the discussion of the critical current den-
sity in the previous subsection, we have to consider vari-
ous types of creep —plastic, collective, and CDW-type.
We can take advantage of the translation invariance
along the z axis and map the present classical 3D creep
problem to the problem of quantum creep of a 2D sys-
tem, where the imaginary-time axis of the quantum prob-
lem maps to the z axis of the classical one. The appropri-
ate dynamics for the quantum problem is given by the tilt.
energy density and hence involves a dispersive mass.
Rewriting the free energy for the creation of a nucleus as
the action of a 2D quantum creep problem, we obtain the
functional [see Eq. (3.180)]

V= f d R dz ' [B,u] + [B,u] + [t)~u]

+E;„(R,u)+E;„ (9.136)

=Qc~Ep, „uR~~Ri, (9.137)

where v „denotes the short-wavelength limit of the "ve-
locity" ~B,u~,

V max
Epin

The hopping distance u is determined by the competition
between the elasticity of the vortex lattice and the pin-
ning potential. For the case of plastic creep, the next
favorable metastable state is a distance u =a, away,

Here the term E;„accounts for the lowering of the vor-
tices' energy as they are trapped in a metastable state of
the pinning potential. For the case of plastic pinning,
Ep c66a, /d„, whereas for collective pinning
E;„=c66r /R, . After replacing the integration over the
z axis by one along the displacement u, we find that the
random potential E;„drops out of the problem, and we
arrive at the following estimate for the activation energy:

1
Ub Epjn uR

~)

R
v max
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whereas for a short-range correlated 2D disorder poten-
tial the distance to the next optimal state depends on the
bundle size R~,

R~
uo

2/5

u &ao

u(Ri)= '

a, ln, ao &u
0

(9.138)
max

[see Eq. (3.143), gz 2= —,', and (4.38), (2 2=0; the logarith-
mic growth of the displacement with increasing distance
holds for any dimension 2&d &4 (Nattermann, 1990)j.
The parameters u, and R, depend on the specific situa-
tion and a few examples are mentioned below.

The competition between the shear and compression
energies determines the relation between the transverse
dimensions R~ and R~~ of the bundle. Following the
analysis suggested by Koshelev (1994; see also the discus-
sion in Sec. IV.B.2), we can estimate the compression en-

ergy involved in the hop: Taking the 2D limit I,"~ao in
the compression modulus (4.124b) we find

f d2r d2r'e ' ' ~~in( ~r —r'~ /g)(Vu)(V'u)

from which we obtain the following result for the bundle
size R )(,

R
a. &R, &(a.'X)'",

a,

L

FIG. 50. Double-kink configuration for the creep of vortex
bundles. The jump length u is determined by the distance be-
tween optixnal 2D configurations and scales with the bundle di-

mension R~ like u ~ R ~ . The kink shape is determined by the
competition between the tilt and the pinning energy density.
The Lorentz force balances the energy difference between the
initial and final states of the vortex bundle arising from the
shear deformation of the 2D bundle. Once the double-kink
configuration has been created, the nucleus expands and the
bundle moves to the final state.

Rii
——'

R~, k&R~ .
aa

(9.139) Let us first consider the case of plastic creep which is
realized at high fields and low temperatures. Using
u =a, in Eq. (9.140) we obtain the following relation be-
tween the transverse dimension R ~ and the current densi-

ty j:
1/2

Finally, the required elastic energy c66u /R~ has to be
provided by the energy gain from the Lorentz force, al-
lowing us to relate the various lengths to the driving
current density j,

1/2

Ri =i/up
J

(9.140)

The creep process for vortex bundles in the presence of
columnar disorder is illustrated in Fig. 50. As usual,
dispersion in the elastic moduli c4&(k) and cii(k) has to
be taken into account (note, however, that c44 involves
the smallest length scale in the problem, whereas the
dispersion in c» involves the larger scales Ri and R

~~

).

Ri(j)=d„
J

(9.141)

3/2

U ~(j)=EE,d„
B Jp1

Brb J

2

(9.142)

For larger bundles with (a, 1,)'~ & Ri & A, and in the non-
dispersive regime R ~ )k the corresponding results are

with j,

=(aors/d„)j,

the plastic critical current density
found above, Eq. (9.97). Taking the dispersion in c44 and

c» into account [c44(1/d„)=E s,d„/ao ] and using Eq.
(9.137) we find the plastic barrier

Upi(j) =

B Jp1
c,hodr

d, Brb

GFo~ . ~ Rg & ~

B Jp1

B,b

5/4

(a'A. )' '&R, &A, ,

(9.143)
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Note that plastic creep crosses over to collective —in fact CDW-type —creep when R ~ & d„.
Second, we turn to collective creep of vortex bundles. Combining Eqs. (9.140) and (9.138},we can relate the trans-

verse bundle dimension R z to the current density j,
5/8

R~(j) =R,
J

(9.144)

where the (crossover) current density j & can be expressed in terms of u, and R, ,

uo

0
(9.145)

Again, taking the dispersion in the elastic moduli into account (we assume here that R, & A. /s and hence
c44(1/R, ) =s E,oR, /a. ) and making use of Eq. (9.137), we obtain the activation energy in terms of the parameters uo,
R, , andj b

11/4
Jxb a. &R, &(a.'X)'",

u, R,4
U( j}=me. r

0
(a.' A, )'~' & R, & X,

Ro J
3/2

a A, J b
A, (R~ .R2 j

. 1/2
' 29/16

aors Jxb
(9.146)

R~(j)=R.
uo

Finally, for the CDW-type creep the corresponding expressions for the transverse bundle dimension R ~(j) and for the
crossover current density j b are

5/2 . ' 1/2

(9.147)

with

a. g u.
Jb —

R20 0

5

Jo (9.148)

(we neglect logarithmic corrections here and in the following). When calculating the activation energy, one needs to be
careful from which regime the CDW-type creep is entered. Coming from the collective creep regime the activation en-
ergy is given by the expression

10
Jxb a. &R~ &(a, k)'~

U(j) =BE.r
0 R, uo

a, A, a,
R,

1/2
ao A, ao

' 25/4
Jxb

5/4

(9.149)

Entering the CDW-type creep region from the plastic
creep regime we have to substitute the plastic deforma-
tion energy Ep &66a, /d„ for Ep &66pp/R
suit (9.149) then is still applicable if we choose r =a, for
the pinning length. If R, &A, /c, the tilt modulus is no
longer dispersive, and Eqs. (9.146) and (9.149) have to be
multiplied by the factor 1,/ER, ; as expected, the anisotro-

py drops out (the corresponding crossover for the plastic
~ CDW creep regime when d„)A, /E is rather unrealis-

tic as the appropriate irradiation doses turn out to be ex-
tremely small).

Let us consider a few prominent examples of the above
general results. At high fields, B )B,&, we start out from
the bundle pinning regime. At low temperatures, plastic
creep involves displacements u, =a, and we obtain a
crossover to CDW creep with decreasing current density.
Using Eq. (9.149) with u =a. , R, =d„, and j,g

—jp, we

reproduce the result (9.142) for the CDW creep regime.
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For large temperatures T) Td, creep starts out from the
collective pinning regime with u, = ( u ) th

——a, r„(T/
Td ), R, =R, =d„(u )tb /a, r„, producing [see (9.145)]
the crossover current density j„b ——j,. The collective
creep barrier at high temperatures T) Td and fields
B)B,b( T) then takes the form

11/4
B jcU(j)=T B.b( T) j (9.150)

where we have again dropped small logarithmic correc-
tions. %'ith decreasing current density the barrier
changes according to the general results (9.146) and
(9.149). The derivation of the activation barriers for the
high-field creep problem producing Eqs. (9.142), (9.146),
and (9.149) difFers from that presented by Nelson and Vi-
nokur (1993) based on our previous approach to the
quantum collective creep problem (see the detailed dis-
cussion at the end of Sec. II.A.5).

Finally, let us turn to low fields with B (B,&( T). Here
we concentrate on the low-temperature regime, where
each vortex is individually pinned by a single defect. For
small current densities, j(j„b [see Eq. (9.131)],and thick
samples, L )Lb [see Eq. (9.132)], we have to take into ac-
count in our description of variable-range hopping of
vortex lines the interaction e8'ects between the vortices.
Usually the presence of other vortices has been account-
ed for by going over to the creep of vortex bundles; see
Sec. IV.B.3. However, in the present (weak-field) situa-
tion the pinning potential is neither weak nor short-range
correlated, and a straightforward generalization of the
conventional approach seems difBcult. Alternatively, we
can appeal to the previously mentioned equivalence be-
tween the present vortex creep problem and the problem
of hopping conductivity in a doped semiconductor. In
the latter case the interaction between charged particles
is taken into account by a renormalization of the density
of states near the Fermi surface, leading to the appear-
ance of a Coulomb gap (see, for example, Shklovskii and
Efros, 1984). Similarly, we can treat the interaction with
other vortices in the present case by an appropriate re-
normalization of g. Let us briefly repeat the original
Coulomb gap argument for a general algebraic interac-
tion V'"'(r) = V. (r, /r) between the particles. An exci-
tation involving displacement of a particle by a distance r
(equivalent to creating a particle-hole excitation of extent
r) involves an energy 5E —V, (r. Ir) )0, with 5E the
di6'erence between the single-particle energies. An upper
bound on the density of states within a bandwidth 5E is
then given by n = 1/r =(5E/V. )

/ Ir,". Taking the
derivative with respect to 6E, we obtain the density of
states g (5E)=g, (5E/V, )" with g, = 1/V, r, and
n =d/o. —1&0. For a Coulomb interaction, o.=1 and
g(5E) is strongly suppressed at low excitation energies
(Coulomb gap ), so that g ac(5E) (g aa ~5E~) in d =3
(d =2) dimensions. Repeating the Mott argument with
this energy-dependent density of states, we find that the
optimal hopping distance takes the form

( V IT)(n + i)/(n + i+d)(r /l )d/(n + i+6) [Theropt= 10c O 1oc

missing energy 5E(r) to be paid in a hop of range r is
determined by the relation 5E(r)=1/g(5E)r", and we

obtain 5E(r) = V, (g, V, r )
' '"+",the optimal distance

is obtained by minimizing the expression
2r/li„5E—(r)/T. ] For n =0 we reproduce the result
for the noninteracting case, whereas we obtain the simple
expression ra~t=li„(V, /T)' "+ '(r. /l»a) "+ ' in-

dependent of the dimension d for the interacting case.
Going over to the vortex problem, we should replace

the algebraic form of the interaction by a logarithmic one
and correspondingly take the limit o. =0 in the above re-
lations. The interaction energy and distance scales are
given by V, =c«ub E,——(ub/ao) and r. =d„, with the

hopping distance ub at crossover given by Eq. (9.130).
The asymptotic density of states remains

g (5E ) V, ) =g, = I /yd„. The optimal hopping distance
then is found to be (note that AI T~L)

L
Matt( ) b L b Matt

b

(9.151)

with the crossover length Lb given by Eq. (9.132). Equa-
tion (9.151) replaces (9.118) for the noninteracting case as
the hopping distance grows beyond ub. Similarly, we can
generalize Eq. (9.121) to the interacting case [the missing

energy 5E(r)~c«ub(ub/u) '"+" now is provided by
the Lorentz force and uvRH(j) oc j '"+" '"+'+"'] and
obtain

jxb
VRH(J) b ~ ub + VRHj (9.152)

with the crossover current density j b given by Eq.
(9.131). The crossover current density separating the
ohmic Mott regime from the non-ohmic VRH regime is

given again by jI', see Eq. (9.125). The activation ener-

gies for the creep of these "dressed" vortices take the
form

UMott(L) = UMott(Lb ) Lb
L

b

(9.153)

and

Ab
UVRH J) UVRH Jxb ) ~ & J Jxbj (9.154)

generalizing the results (9.119) and (9.123) to the interact-
ing case. The increase of the exponents from —,

' to unity is

a consequence of the vortex interactions. Instead of iso-
lated vortex hops, the creep in the present regime leads
to a rearrangement of the environment, producing the
"dressing" of the hopping vortex. The situation is simi-
lar to the creep of vortex bundles; however, in the present
case, the excitation involves a plastic deformation of the
lattice. This concludes our discussion of creep in the in-

teracting vortex system.
Let us make a few concluding remarks. Equation

(9.127) for the resistivity in the system looks like the origi-
nal Mott law for the conductivity in the semiconducting
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20 bosons Vortices

g ~ p

analog. In fact, it turns out that using the transcription the pinning potential and the interaction between the
vortices.

At very low magnetic fields B ~ N, /k the intervortex
interaction is short range I V(r) ~ exp( —r/A, )], and we
can consider the motion of an individual vortex in the
presence of columnar tracks. For temperatures T) Td&,

each vortex is localized within a tube of radius
I&„-—d„(T/Td, ); see Eq. (9.74). Delocalization of the
vortex lines takes place as these tubes start to overlap
with increasing field, providing us with an estimate for
the Bose-glass transition line via the condition
a. =I„,(Tso),

Bc, r,
BBo(T)= 2 ~( )

4 4
C (9.156)

(9.155)

between the 20-particle and vortex systems, we can map
the results obtained in the particle system to the corre-
sponding results in the vortex system. (Note that the
time coordinate in the vortex picture has no analog
within the Bose picture, and hence we cannot determine
the preexponential factor in any dynamic quantity for the
vortices. That is, the determination of dynamic quanti-
ties is limited to the saddle-point approximation. ) Hence
we find that, as long as Bose statistics play no essential
role, the mapping of the vortex system to a 20-particle
system works well and produces the correct results ir-
respective of the boundary conditions.

A second remark concerns an experimental conse-
quence of VRH-type vortex motion. The relevant quan-
tity determining the vortex motion is the kink or super-
kink energy, which grows with increasing distance be-
tween the defects. Hence we obtain the interesting result
that the creep rate will increase with an increase in the
density of rods, as long as the creep is dominated by the
hopping transport mechanism. Such an increase in the
creep rate with increasing ion Auence has been observed
recently by Konczykowski et al. (1994).

8th=
Eao

(9.157)

and a mean-squared amplitude

(9.158)

At higher fields, 8 )4. /A, , Eq. (9.79) shows that close
to the "melting" line the interaction between the vortices
is the main energy in the problem. We can then use a
perturbative scheme to find the (upward) shift from the
melting line in an unirradiated system to the Bose-glass
line in the strongly disordered system. As a first step we
reformulate the usual Lindemann criterion
(u 2(T ) ) =cLa, into an equivalent energy criterion.

Consider a vortex trapped in the potential well created
by its surrounding neighbors. In the Bose language, the
thermal Auctuations of this vortex correspond to the
zero-point oscillations of a particle trapped in a well.
Within a harmonic approximation I V(R)=fR /2] the
ground-state energy of the particle (with mass m) is given
by fico/2, co=v'f/I, and its fluctuation amplitude is
(R ) =Ace/f. For the vortex problem the correspond-
ing quantities are f~E, la. , m ~E&, A'~ T,
co~+E. /st /a, = 1/Ea. , producing a thermal energy

4. Bose-glass transition

In the previous paragraphs we have concentrated on
the low-temperature Bose-glass phase of the vortex sys-
tem, which is characterized by the localization of the vor-
tex lines onto a single columnar defect or into an assem-
bly of rods. This has to be contrasted with the usual
low-temperature vortex-glass phase due to the presence of
pointlike disorder, which is characterized by the
enhanced wandering of the vortex lines. According to
the analogy between our vortex system and the physics of
2D bosons subject to a (static) disorder potential (Fisher
et a/. , 1989), we expect a phase transition to occur at
higher temperatures when the vortex system goes over
into an entangled vortex-liquid phase (superfluid bosons).
In order to find the position of the phase transition line
Bno(T), we have to consider the relative importance of

The Lindemann criterion ( R ) =cl a, produces the
melting temperature T =cL Ec,ao, in agreement with

Eq. (4.105). On the other hand, we can make use of an
equivalent energy argument: The vortex lattice melts as
the thermal energy c,h grows beyond the fraction cL c., of
the potential barrier c, produced by the neighboring vor-
tices. Indeed, the condition

sa( I)= I ~
2 (9.159)

reproduces the above expression for T
The energy criterion (9.159) can now easily be used for

an estimate of the shift in the melting line due to colum-
nar disorder. Consider first the weak-field situation with

cL d, & a, & A, , The presence of columnar defects within
the potential well leads to a lowering of the ground-state
energy. Within the area (R2) the (R )/d„defects pro-
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Eth( TBG )
TBG

Eao
(9.160)

resulting in a Bose-glass line TB~ shifted to higher tem-
peratures as compared to the melting temperature T in
the unirradiated material,

duce the pinning energy E„Q(R ) /d„(b, /(R ) ),
where the last factor gives the relative contribution of
each trap. The Lindemann criterion then reads

i, =l„,(T) ~(TBG —T) (9.166)

enough fields, where the disorder is relevant, we expect
that the first-order melting line is replaced by a continu-
ous Bose-glass transition. We can then construct a scal-
ing theory of the dynamical behavior of the system in the
vicinity of the transition, in close analogy with the
vortex-glass scaling described in Sec. VII.B above. Fol-
lowing Nelson and Vinokur (1992, 1993), we introduce
the two diverging length scales

T2
CL Q Tdp

TBG —Tm 1+
Tm

(9.161)
and

i„-1', /D (9.167)

Rewriting the melting temperature in the form

Q T
g(0) v'Gi T,

81—
H,

(9.162)

and making use of Eq. (9.77), we can cast the shift of the
melting line in a convenient form containing only a single
parameter y describing the effect of disorder,

TBo(B)=y T (B)+(1—y ) T, 1—,(9.163)
8

H, (0)

with the disorder parameter

ry= 1+
16cl 3/Gi g(0)d„

(9.164)

—1

] a 7~

16&Gi g(0) d„
y(a, )= 1+ (9.165)

At high fields y(a, ) goes to unity, and hence TBo(B) ap-
proaches T (B). The expected shape for the Bose-glass
line is illustrated in Fig. 45.

Next we turn to the scaling properties of the system
close to the proposed Bose-glass transition line. At low

Equation (9.163) shows all the correct limits, for
y= 1, TBo(B)= T (B) in the absence of disorder and for
y ~0, TaG(B)~ T, (B) in the presence of strong disor-

der, and is also in good agreement with experiments on
irradiated YBCO single crystals (Krusin-Elbaum et al. ,
1994).

The above analysis is valid as long as the vortex sam-
ples many traps within the potential well produced by its
neighboring vortices, i.e., as long as (8 ) =cja, )d„.
For higher fields, a, (d„/cL, we have either none or of
the order of one trap available in each vortex potential
well. We then should expect the Bose-glass line to ap-
proach the original melting line in a smooth way. The
mean energy lowering over many vortices due to the
presence of columnar traps is given by
e„((8 ) /d„)(b, /( R ) ), where the second factor gives
the probability of having a defect available and the last
factor gives the mean contribution of this defect. Equa-
tion (9.163) is then reproduced with a field-dependent pa-
rameter y(a, ) given by

where D, is a short-distance "diffusion" constant. Hence
we explicitly take into account here the possibility of an-
isotropic scaling, in contrast to the discussion of the vor-
tex (gauge)-glass scaling in Sec. VII.B. In the simplest
scenario, D, remains finite on approaching the phase
transition, so that the scaling exponent of

l~~ takes the
value

v~~
=2vi. From numerical simulations (Krauth,

Trivedi, and Ceperley, 1991; Sorensen et al. , 1992; Wal-
lin et al. , 1994) one obtains the estimate vi= l. Second,
we introduce the dynamic scaling exponent z' via

BG lJ
Let us concentrate on the electric response of the sys-

tem in the critical regime. The appropriate scaling com-
binations are E/ J+' and jl i I

~~

(from E ~ 8, 3 and

j o- 8„f), and we obtain the scaling ansatz for the
current-voltage characteristic

E ~ I
—(z'+i)

( i3 ) (9.168)

with e+ (x ~0)-x, e (x ~0) -exp( —a /x '~
), and

e+(x ~~ )-x, a=(z'+ I)/3. The current-voltage
characteristic at the transition is algebraic,

.(z'+ j. )/3 (9.169)

and the resistivity in the thermally assisted fIux-Row re-
gimes vanishes according to

(9.170)

on approaching the transition. The crossover current
densities separating the critical region explored at large
current densities from the noncritical glassy (below TiiG )

or TAFF (above TsG) regimes at low current densities
are

j„+— (l~lll ) ~
I
T Tiic; I (9.171)

5. Lock-in transition

In close analogy with the lock-in transitions due to in-
trinsic pinning by the layered structure (Sec. VIII.A.3)

These results have to be compared with those of the (iso-
tropic) vortex-glass scaling, which read E ~j'+ "~,
P~(T —Tso) ' ", and j,*~ ~T —TBo~, with z and v
the vortex-glass scaling exponents introduced in Sec.
VII.B above.
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and due to trapping by an array of twin boundaries (Sec.
IX.A), a lock-in transition is expected to occur due to the
presence of a columnar defect structure. The analysis in
the present case is completely analogous to that present-
ed in Sec. IX.A above, and we simply can take over the
results: The important quantity driving the singularity in
the tilt modulus and leading to the lock-in transition is
the linear contribution to the energy density gained from
vortex trapping [see Eq. (9.6)],

(9.172)

The trapping (8, ) and the lock-in angle 8I then take the
form [see Eq. (9.9)]

2s, (T) 4~v, )
and 0L —— 0, , (9.173)

QEI e„(T)
H, =0LH= H, (9.174)

where both angles are measured from the c axis. In the
anisotropic case the trapping angle is larger than in the
isotropic case, by a factor 1/c, which is a consequence of
the reduced line tension (reduced kink energy) of the vor-
tex lines. The relevant angle for pinning by columnar de-
fects is the trapping angle rather than the lock-in angle.
From the larger anisotropy in BiSCCO as compared with
YBCO one would expect to find an enhanced angular
pinning range due to columnar defects in the BiSCCO
material. This expectation is confirmed by the experi-
ments of Thompson et al. (1992) and of Civale et al.
(1991), in which the magnetic hysteresis loop was mea-
sured for two samples of BiSCCO and of YBCO irradiat-
ed under a finite angle 0,d away from the c axis. Choos-
ing the direction of the magnetic field first to be aligned
with the tracks (8~=8,d) and a second time symmetri-
cally opposed (8~= —8,d) to the tracks, they found
essence, ially no change in the magnetization loop in the
case of the BiSCCO sample, whereas for the case of
YBCO the magnetic loop was much reduced when the
field was turned away from the columnar defects. Hence
one concludes that in the case of BiSCCO the vortices
still remain trapped by the defects and pinning remains
large. Note that this effect can be easily understood in
terms of the scaling approach. After rescaling
(cot8=s cot8), the angle between the magnetic field and
the columnar tracks becomes small and the vortices
remain trapped by the columnar defects, even for the
case in which the field and the tracks are symmetrically
inclined with respect to each other.

The result (9.173) is valid for fields B (B,b. At higher
fields, a, «d„and only a fraction of the vortex lines can
gain energy from trapping by the columnar defect struc-
ture, leading to a reduction in the trapping and lock-in
angles.

A further interesting feature is the stability of the
Bose-glass phase under small tilts. The locking angle 0I,
Eq. (9.173), translates into a transverse critical field

8L(T)

0L
1—

TBG
(9.175)

This result follows from the scaling behavior of the trans-
verse field H&=B Ai/&& 1/Ii&~~, with &, 1/&& and
z ~

I~~, making H, /~I~~ the appropriate scaling combina-

tion. The resulting cusp in the irreversibility line when
traced as a function of angle distinguishes the Bose-glass
phase from the vortex-glass phase, for which a smooth
behavior is expected.

X. THERMAL DIFFUSION OF VORTICES

%'ithin the previous sections we have analyzed the dy-
namic properties of the vortex system on what we call the
"microscopic" level. Typical objectives have been to cal-
culate the critical current density j„separating the linear
from the nonlinear part of the current-voltage charac-
teristic, or the characteristic creep barriers U, or S& for
the cases of classical and quantum motion. The present
section is devoted to the macroscopic description of the
mixed state in type-II superconductors. Our principal
objective is to solve the set of dynamic equations that de-
scribe the behavior of the vortex system on a macroscop-
ic scale, i.e., on length and time scales exceeding the
characteristic scales associated with pinning. The equa-
tions we have to deal with are the Maxwell equations

V 8=0,
1 dBVAE= ——
c dt

Vhs= "3,
C

(10.la)

(10.1b)

(10.1c)

combined with the materials equation j(E,B) describing
the electromagnetic response of a superconductor, which
depends on the dynamic behavior of the vortex system.

The simplest situation is encountered in the Aux-flow
regime, where the barriers U inhibiting vortex motion
can be neglected, U & T, and the material can be charac-
terized by the relation

(10.2)

with p„, =p„B/H, . On the other hand, within the ac-
2

tivated regime the (creep) barriers are relevant, and the
material is conveniently described by the set of equations

1E=—Sh, v,
C

(10.3)

v=v e0 (10.4)

below which the vortex system exhibits a transverse
Meissner-Ochsenfeld effect, i.e., a transverse field

H~ &H, is perfectly screened from the sample. As the
1

Bose-glass transition is approached, the locking angle 0L
and thus also the transverse critical field H, vanishes ac-

cordmg to
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where the activation barriers U additionally can depend
on the magnetic field B and on the temperature T; see
Sec. IV. At very small temperatures Eq. (10.4) is re-
placed by its quantum analog

—s(j)/A
0 (10.S)

with S the appropriate action describing the tunneling
motion of the vortices; see again Sec. IV. Note that the
dynamic properties of the vortex system also depend on
the time scale under consideration. For example, at high
enough frequencies the intervalley motion considered
above is replaced by the (dissipative) intravalley response
of the vortices. The "microscopic" velocity v, can be es-
timated from the critical velocity u, =j,B/c g
=j,pz, c/B, v, =A.u, . The numerical factor A is of or-
der unity for a pointlike object. Its precise structure is as
yet unknown for the general problem of an elastic mani-
fold pinned by a random potential; however, based on the
analysis of the thermally activated motion of a string in a
periodic potential (Biittiker and Landauer, 1981), one
would expect that A increases with the volume of the
vortex bundle. A comparison of Eq. (10.4) with (10.5)
shows that the two cases of classical and quantum
motion are equivalent, and we shall restrict ourselves to
thermally activated processes in the following. The re-
sults for the case of quantum tunneling can be obtained
by the simple replacement U~S and T~A.

The problem posed by the set of equations (10.1) and
(10.2) or (10.4) can be either linear or nonlinear. The cru-
cial parameter distinguishing between these two cases is
the quantity

BU(j) 5j
BJ T

(10.6)

A. Linear response: thermally assisted flux flow

The basic assumption on which the results of this sec-
tion rely is the finiteness of the activation barrier U(j) in

where 5j denotes the typical current scale involved in the
problem. For o, «1, the problem is a linear one and the
vortex dynamics is diffusive, whereas in the opposite
case, a &&1, we are confronted with a dificult nonlinear
problem. Let us consider the system response at small
current densities with both 5j and j=5j small. In an
Anderson-Kim-type model with finite activation barriers,
we have a=(U, /T)(j /j, ), and the response is always
linear (diffusive) at small enough current densities j. By
contrast, for a glassy response a=p, U(j)/T always be-
comes large at small current densities j, rendering the
response highly nonlinear. Below we first concentrate on
the simpler linear behavior (Sec. X.A) and then come
back to the discussion of the glassy response in Sec. X.B.
Throughout the following discussion we should keep in
mind that we are always solving the same problem [the
set of equations (10.1) and (10.4) plus boundary condi-
tions], but are using different approaches depending on
the value of a.

the small-current-density limit, U(j—+0)= U, ( ~.
Such behavior of the creep barriers is expected to be real-
ized in a vortex liquid at high temperatures, T )T (see
Secs. VI.A.2 and VI.B), where the finite barriers against
plastic motion cut off the diverging elastic barriers in the
vortex system. At small current densities j~O we can
expand,

(10.7)

and the expression for the thermally activated velocity
including both forward (current-assisted) and backward
(current-impeded) hops takes the form

BU j
v =v, e ' 2sinh

Bj pT
(10.8)

The smallness of the parameter a= (BU/Bj )(j /T) allows
us to expand Eq. (10.8) and combining the result with
(10.3) we obtain the ohmic response

pj (10.9)

2uoB BU —U. /T
e

cT Bj p

(10.10)

for a vortex system in the liquid state. When we use
v. =Av, and (BU/Bj)~o—"= U. /j„ the result (10.10) fur-
ther simplifies to

—U, /T
p =2Ap„, e

T
(10.11)

With Eq. (10.9) the vortex system develops a difFusive dy-
namics that has been studied in detail by Kes et al.
(1989) and by Brandt (1990, 1991, 1992d). The important
point to be noted here is that the electrodynamics of a
type-II superconductor in the TAFF regime where (10.9)
is valid is nothing but the electrodynamics of a normal
metal, albeit with an exponentially small resistivity
(Geshkenbein, Vinokur, and Fehrenbacher, 1991).

In order to obtain the equation governing the behavior
of the magnetic field B, we combine the Maxwell equa-
tions with Ohm's law and obtain

CaB= paB .
4~

(10.12)

Equation (10.12) is a linear diff'usion equation determin-
ing the spatio-temporal evolution of the magnetic field
8 (r, t) In the fo.llowing we use Eq. (10.12) to analyze the
response of a superconductor to the presence of a small
ac field. This type of experiment has found widespread
use in the field of high-temperature superconductivity as
a means of determining the irreversibility line (or, with
some provisos, melting line); see, for example,
Malozemoff, Worthington et al. (1988).

It is well known that the electrodynamics of a norma1
metal in an ac field is governed by the skin effect; see, for
example, Landau and Lifshitz (1959b). Assuming a per-
turbation ~ exp(idiot), Eq. (10.12) can be written as
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(10.13)

from which we immediately obtain the basic length scale
in the problem,

with
1/2

CO 2' d

,
p c

(10.19)

pc
2&co

I /2

(10.14)

the skin depth. Let us compare 5, with the basic length
scale of a superconducting electrodynamic response, the
London penetration depth A, . For a BCS superconductor
in the dirty limit we have (see Abrikosov, 1988)

(10.15)
%co pn 2T

where 6 denotes the superconducting gap. For a typical
high-temperature superconductor we have 25-10' Hz,
whereas typical experimental frequencies are in the range
between 10 Hz and 10 Hz. With the resistivity ratio
p/p„—10 —1 we find 5, ))A, . Note that our use of the
averaged equations (10.9) and (10.13) requires the scale 5,
to be larger than the microscopic length determining the
resistivity. For very high frequencies (co-GHz) the skin
depth 5, can drop below the London depth A, , and we
should take the London screening into account. Also, at
high frequencies the contribution of the vortices to the
system response changes its nature from inter- to intra-
valley dominated motion. A detailed analysis of the latter
regimes has been given by Brandt (1991b, 1991c),
Koshelev and Vinokur (1991), and Coffey and Clem
(1991, 1992a, 1992b). Here we restrict ourselves to the
low-frequency regime such that 5, »k.

Depending on the value of the resistivity p and hence
on the temperature, the skin depth 5, can be either larger
(high-temperature T) or smaller (low T, small p) than the
sample size. At the temperature where 5, becomes of the
order of the sample size d, the imaginary part of the sus-
ceptibility y" measuring the absorption of the system de-
velops a maximum. To be specific, let us consider the
simplest case of a slab geometry, O~x ~d, Blitz. Taking
into account the boundary conditions
8(x =O, d;t)=Pi„exp( icot) at the sam—ple surfaces, we
obtain for the ac component of the magnetic field inside
the sample

In Fig. 51 we plot both y' and y" as a function of p/co (as
expressed in units of 2r~d /c ). The absorptivity y" at-
tains a maximum at up„k =2.25, which transforms to the
condition

C
2

co „„=0.8 p(H, T)
p k (10.20)

under the use of Eq. (10.19). The physical interpretation
of the origin of the peak in y" is very simple (Landau and
Lifshitz, 1959b). For a large penetration depth 5, ~~
(p large, T high), the field penetrates the sample com-
pletely and the out-of-phase signal y" disappears. In the
opposite limit, 5, ~0 (p small, low temperature), the
screening is complete, y'~ —1/4~, and y" vanishes
again. The result (10.20) contains only the measurable
quantities mz„k, p, and d. Note that the slab geometry
applies we11 to experiments carried out on high-
temperature superconductors in the form of p1atelike-
shaped single crystals for the case where the ac field is in
the ab plane. The particular direction of the large dc
component of the magnetic field is not important, as it
enters the analysis only via the value of the resistivity
p(H, T).

Equation (10.20) can be used for a contact-free deter-
mination of the resistivity p(H, T) by means of an ac ab-
sorption measurement. When H and T are kept fixed, the
position of the peak in y"(c0) corresponds to a definition
level of resistivity,

p( T,H ) = 1.2 5' „„
p[pQ cm] =7.6 X 10 d [cm ]v~„„[Hz],

(10.21)

with v=cu/2n. For v-1, kHz and d —100 pm we obtain
p-10 pQ, cm. The half-width of the absorption peak
corresponds to a drop in resistivity by a factor =0.06
which, together with the exponential dependence of the
resistivity on temperature, leads to a narrow absorption
peak in y"(T). With increasing field the resistive transi-

ikx+ ik (d —x)
8( tx)=h„

1+e ikd (10.16)

4vry= f dx 8 (x) —1,1 d

A~~d 0

resulting in the real and imaginary parts

1 sinhu +sinu4~y' =—
u coshu +cosu

(10.17)

with k = (1+i)/5, . The ac susceptibility y is given by

1.0

0.8

0.2

0.0
10 10

I
I
I

I
l
I

I

10

00

-0.2

-0.4

-0.6

-0.8

-- 2-1.0
10

1 sinhu —sinu
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(10.18) FIG. 51. Real (g') and imaginary {y")part of the ac suscepti-
bility vs p/co expressed in units of 2nd /c with d the sample
dimension.
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tion broadens and so does the absorption peak in the ac
response, in agreement with the experiments of
Worthington, Gallagher, and Dinger (1987). By decreas-
ing the measuring frequency v, one can extend the deter-
mination of the resistivity p(H, T) to those regions where

p becomes too small to be determined in a direct trans-
port experiment. Simultaneous measurements of p using
both direct resistive transport and ac absorption tech-
niques have been carried out by Steel and Czraybeal
(1992), and good agreement between the results has been
obtained.

Another type of experiment that is equivalent to the
measurement of the ac absorption is the mechanical os-
cillator experiment (Gammel et al. , 1988, Gupta et al. ,
1989, Kober et al. , 1991, Farrell et al. , 1991). In this
case the dissipation is due to small rotations of the sam-
ple with respect to the magnetic field (Brandt, Esquinazi,
and Weiss, 1989; Brandt, 1990, 1991a; Esquinazi, 1991).
Within a reference frame moving with the sample, the
magnetic field performs small angle-rotations of ampli-
tude 0, and hence the measurement corresponds to an ab-
sorption experiment with a transverse ac field

paper by Kes et al. (1988)' and in that of Landau and
Lifshitz (1959b).' The analysis for the ellipsoidal
geometry which comes closest to the usual sample shape
seems not yet to be available.

The above analysis shows that the electromagnetic
response of a high-temperature superconductor in the
TAFF regime is not very different from that of a "chick-
en in a microwave oven. "Of course, it is also very attrac-
tive to relate the appearance of sharp absorption peaks to
the direct observation of a possible phase transition in the
vortex system (Gammel et al. , 1988; Duran et al. , 1991;
Farrel et a/. , 1991). However, before doing so, one
should rule out simple electrodynamical explanations like
those offered above.

B. Nonlinear response: self-organized criticality

%'ithin the glassy regime at temperatures T below the
melting line T (H) the system response is highly non-
linear, as the parameter a always diverges in the small-
current-density limit. The linear diffusion equation
(10.12) then has to be replaced by the nonlinear equation

h„lH, h„=He exp(2mivt) (10.22) [ g —U(J)/T] (10.23)

and an ac frequency given by the period of the oscillator,
v=1/~„. Keeping the measuring frequency v fixed and
determining the position of the absorption peak in the
(H, T) plane allows one to map out an irreversibility line
T;„(H) along which the resistivity p exhibits a constant
(small) value. The limiting line for v~0 is often inter-
preted as the melting line of the vortex lattice (Gammel
et al. , 1988; Duran et al. , 1991; Farrell et a/. , 1991).
However, since the experiment determines only the trace
of a possible phase transition (vanishing of the linear
resistivity p), such an interpretation is not compelling
(Brandt, Esquinazi, and Weiss, 1989; Kleiman et al. ,
1989; Esquinazi, 1991;Kober et al. , 1991).

More general experimental geometries involving mag-
netic fields inclined with the main axes of the crystal have
been analyzed by Brandt (1992b). In this case the ac field
component can penetrate the sample from different sur-
faces, and an appropriate sample dimension has to be
substituted for the length d in Eq. (10.20). Furthermore,
subsequent full penetration of the various components of
the ac field along the different axes can lead to the ap-
pearance of multiple (up to three) absorption peaks in the
ac susceptibility, as the condition (10.20) is sequentially
satisfied for individual field components. An analogous
discussion applies to the mechanical oscillator experi-
ments for the case in which the dc magnetic field is in-
clined with the sample axis. The appearance of two
peaks and their transformation into each other with vari-
ation of the angle between the field and the crystal axes
has indeed been observed experimentally (Duran et al. ,
1991), and an interpretation along the above lines has
been given by Brandt (1992b). Finally, a discussion of the
absorption phenomenon for other sample shapes and
sample field configurations can be found in the original

where we consider again a simple slab geometry with
B~~z, E, j~~y, and v~~x. Differentiation of (10.23) with
respect to the coordinate x provides us with a nonlinear
diffusion equation for the current density j,

(10.24)

Below we consider two types of (very commonly used) ex-
perimental situations, the magnetic relaxation experi-
ment with a steplike change in time of the external mag-
netic field and the ac absorption experiment with a
periodic change in time of the boundary conditions. In
our discussion of magnetic relaxation we closely follow
the analysis of Beasley, Labusch, and Webb (1969; they
discuss the limit j,—j«j, ), which we generalize to ar-
bitrary values for the current density j (see also
Feigel'man, Geshkenbein, and Vinokur, 1991; Fischer
and Nattermann, 1991). The highly nonlinear equations
(10.23) and (10.24) can be solved perturbatively to loga-
rithmic accuracy and in special cases [U(j) ~in(j, /j)]
even exactly (see below). To illustrate the main ideas we
consider the simplest nontrivial situation of complete
field penetration for the case of single-vortex pinning
where the barrier U( j) does not depend on the magnetic
field. The subsequent extension to the general case poses
no major additional difhculties.

Keeping in mind that for the Bean model the current
density Aowing in the sample is independent of x, we look
for a solution of (10.24) of the form

~2For a cyHndrical sample with h„~~cylinder axis; see also
Clem, Kerchner, and Sekula (1976).

For a sphere and cylinder with h„lcylinder axis.
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j (x, t) =i o(t)+J (x, t), lji I «jo (10.2S)

Note that both the space and the time dependence of j
are a consequence of creep, which is neglected in the
original Bean model. Substituting (10.2S) into (10.24)
and using the expansion U(j)= U(jo)+BJ U~J j„we ar-

rive at the form

with

U[jo(t)]= T ln 1+
to

Td
2 (B, U(cu. H

(10.32)

(10.33)

—U~j ~/'T 2 BU J1
7T J jo

(10.26)

which concentrates all of the space dependence into the
second factor, hence

aU8 exp
J zo

=C&(t) . (10.27)

Combining the boundary condition B,B (x =0, t) =0 with
Eq. (10.23), we find

aUB„Bexp
Bj j T

=0

and therefore

T C, +(C2/2)x
(10.28)

Finally, the boundary condition B(x =O, t)=H [with
ji(x =O, t)=0) determines Ci=H, whereas the integra-
tion constant C2 is Gxed by the condition of Aux conser-
vation across the sample surface,

vH=B, f dx B(x)=— f « f dx'&,j,
0 C 0

(10.29)

from which we obtain Cz = —8H /d . The solution

j, (x, t) takes the final form

T 4x H' =
)a, U('" '

d2 B(x)

and the time evolution ofj0(t) is given by

2CU& H
B,j0= — e

~d

(10.30)

(10.31)

Note that ji —T/(B U) —( T/U)j o « jo in the strongly
nonlinear regime discussed here (an exception is the nar-
row regime near the center of the sample, where j
changes sign), and hence the straight-line approximation
for the field profile works well throughout most of the
sample region (see also Griessen et al. , 1990; van der
Beck, Nieuwenhuys, and Kes, 1991; van der Beck et al. ,
1992b). Equation (10.31) has already been discussed in
Sec. II.A.4 with an unknown prefactor j, /~, . Solving
Eq. (10.31) to logarithmic accuracy with the initial condi-
tion U[j 0(t =0)]=0,we find

t. [s]= 10 ' T d[cm]
A U, p„,„[pQ cm]

(10.34)

which amounts to t, = 10 for typical values
T/U, —10 ', H, /8=10, d-0. 1 cm, p„—100 pAcm.

2

Note that, for the case in which the remanent magnetiza-
tion is measured, we have H =0 and a direct application
of Eq. (10.33) is not possible. However, it seems reason-
able to estimate the e6'ective value H,& to be inserted into
the expression for t, as the value of the magnetic field a
hopping distance u away from the sample surface,
H, tt=B (x =u) =(u/d)B„where B, denotes the magnet-
ic field trapped in the center of the sample. Obviously,
the time constant t, is much larger in a measurement of
the remanent magnetization than in a zero-Geld-cooled
magnetic relaxation experiment. Such an eAect has to be
expected, since the rate of change of the magnetic field
inside the sample is proportional to the number of vor-
tices leaving (entering) the sample through its surface.

The relaxation of the screening current can be ob-
tained from Eq. (10.32). Although the time constant t,
depends on various parameters (H, Tj o ), the correspond-

The result (10.32) is the main equation governing the
temporal evolution of the screening current j0. Its physi-
cal interpretation is very simple and straightforward.
Since we are dealing with an activated dynamics,
u ~exp[ —U(j )/T], the barriers U which can be over-
come within the time t are given by U = T ln(t /t, ). An
important fact to be noticed is that the time scale t, in
the problem is a macroscopic rather than a microscopic
time. In particular, t, depends on the sample size d,
which is the consequence of the magnetization's being
proportional to the sample volume, whereas its rate of
change is proportional to the surface area of the sample
(any change in the total trapped fiux involves vortices
entering or leaving the sample through its surface). As a
result the actual value for t, is much bigger than the mi-
croscopic time ( —10 " s) used in the analysis of the ear-
ly relaxation experiments on giant fiux creep (Yeshurun
and Malozemoff, 1988; Malozemoff and Fisher, 1990). In
fact, more recent experiments (Konczykowski,
MalozemoA; and Holtzberg, 1991;Svedlindh et al. , 1991;
Zavaritsky and Zavaritsky, 1991; Brawner, Ong, and
Wang, 1993) produce much larger values for the time
scale t, , of the order of —10 —1 s. This compares well
with the theoretical estimate [see Eq. (10.33) and use
u. =Av, =Aj,B/cg]

1 T
A U, C2p~,
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ing dependence appears only in the logarithm and thus
can be neglected. For the case of full penetration,
differentiation of Eq. (10.32) with respect to lnt provides
us with the normalized relaxation rate

1 dj T
j d lnt jlB.Ul

(10.35)

On the other hand, assuming that all the temperature
dependence in the problem is due to flux creep only (i.e.,
assuming that there is no intrinsic dependence on tem-
perature for ffux pinning), differentiation of Eq. (10.32)
with respect to T leads to

ln(1+t /t. )

j dT jlB, Ul
(10.36)

and combining Eq. (10.35) with (10.36) we obtain the re-
lation (Cieshkenbein and Larkin, 1989)

t dj dj
t, d lnt dT (10.37)

U(B,j)=Tin 1+
tO

(10.38)

Note that for this general case the straight-line approxi-
mation for the magnetic-field profile in the sample breaks
down. The quantity that remain constant throughout the
sample is now the activation energy U(B,j) rather than
the current density j (van der Beck, Nieuwenhuys, and
Kes, 1991;van der Beck, Nieuwenhuys et al. , 1992).

From a very general point of view the dynamical
behavior of the critical state in a type-II superconductor
provides an example of self-organized criticality (De
Gennes, 1966; Vinokur, Feigel'man, and Geshkenbein,
1991; Pla and Nori, 1991). Such phenomena have at-
tracted much attention recently; see, for example, Bak,
Tang, and Wiesenfeld (1988). The self-organization of
the vortices is a consequence of the strongly nonlinear

Equation (10.37) expresses the fact that the combination
Tln(t/t. ) is a scaling variable. Independent measure-
ment of dj/d lnt and dj /dT allows for the determination
of the important parameter ln(t/t, ). Moreover, since
the relevant barrier U is given by the combination
T ln( t /t, ), the function U (j) can be mapped out by
changing either T or the time window ln(t/t. ) (Maley
et al. , 1990; van der Beck, Nieuwenhuys et al. , 1992).

The generalization of the above calculation to the case
of partial penetration is very simple and requires the re-
placement of the sample size d by the penetration depth
d =cH/4mjo(t) in Eqs. (10.30), (10.31), and (10.33). In
order to include an arbitrary field dependence of the ac-
tivation barrier U(B,j), one has to use the expansion

U(Bj ) = U(Boj )+0B,(x, t)+ . j, (x, t)
aU aU.
BB ' '

Bj

and solve self-consistently for the two corrections B
&

and

j,=(c/4~)d„B, . The result for the relevant activation
barriers then generalizes to

Jc
U (j)= U. ln-j (10.39)

thus providing an exact solution for a self-organizing
critical system (Vinokur, Feigel man, and Geshkenbein,
1991). A logarithmic dependence of the activation bar-
rier on current density j is close to a power law (j,/j)"
with p « 1 expected to describe single-vortex creep
within weak collective creep theory and has also been
measured experimentally by Zeldov et al. (1989). In this
case the basic equations (10.23) and (10.24) can be written
in the form

a, b =a.(a.bla. bl ),
~,J=a,'(JIJI ),

(10.40)

(10.41)

with o =U. /T, b =5B/B. , J=j /j„and where we
have introduced the dimensionless coordinates x ~x/d,
tutu, /d, d =cB, /4rrj, We have also .introduced an
additional factor j/j, in the expression for the velocity U,

u =u, (j/j, )exp[ —U(j )/T]=u, Jl Jl

in order to provide a gradual crossover to the viscous
ffux-ffow regime (u ~ J) at high temperatures, T) U.
The two fields B, and 6B denote the underlying homo-
geneous induction in the sample and the small superim-
posed field 5B, switched on at t =0, respectively.

For the case of full penetration, 6B, )H*=2mj, d/c,
Eq. (10.41) can be solved by separating variables, and the
solution for the current density takes the form (cr ))1)

4~ 2/d 2

(10.42)1+t/t,J(x, t) =

with the time scale t, given by

(exponential) character of the diffusion equation (10.24).
Near the critical current density the activation barriers in
the system are given by U(j)= U, (1 —jlj, ) [see Eq.
(3.175)], so that at time t =0 we have a Bean critical state
with j =j„see Eq. (10.32). The decay of this state is re-
gulated by the activation barriers U(j). A local pertur-
bation 5j & 0 in the current density leads to an increase in
the barrier, whereas in the opposite case, 6j )0, the bar-
rier decreases. Correspondingly, a perturbation with
5j & 0 "waits" until the average current level has decayed
to the same value, whereas a perturbation 5j )0 decays
faster until it reaches the average current level. The
dynamical behavior of the system then tends to eliminate
all the Auctuations in the system, so that the relaxation
rate and hence U(j) becomes constant throughout the
sample. As a consequence, the straight-line approxima-
tion provides a good description of the field profile inside
the sample [Cxriessen, 1990; van der Beck, Nieuwenhuys,
and Kes, 1991; van der Beck, Nieuwenhuys et a/. , 1992;
see also the discussion above where we obtained
j, (x, t)«jo(t)]. Interestingly, the nonlinear diffusion
equation (10.24) can be solved exactly everywhere in the
sample for the case of a logarithmic barrier dependence
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2 Td Jct, =
8' 2 U, cuo 6Bo

The solution for the magnetic field is

X db(x, t)=b. — O~x~ —.(1+t/t. )"

(10.43)

(10.44)

with j, (x, t)= jo(t)+j,(x, t) the current density corre-
sponding to the field B.(x, t) and given by Eqs. (10.31)
and (10.30). Making use of this solution, we find that Eq.
(10.51) takes the form (Geshkenbein, Feigel'man, and Vi-
nokur, 1991)

(10.52)

Note that the result (10.42) is also valid in the sample
center (x =d/2) where the current density changes sign.
The analysis of the magnetic relaxation data by Brawner,
Ong, and Wang (1993) agrees very favorably with the
scaling law (10.44).

For the case of partial field penetration, Eq. (10.40) can
be solved with the help of the scaling ansatz

with

b(x, t) =b (g), (10.45)

(10.46)

b (x, t)=bo —~ J dy [1—Cg (y)]'
X 0

(10.47)

with C =o /2(o+1)(cr+2) and develops a fiux front
[b (xf, t)=0] at the position

The scale t„—1 denotes the time needed to establish the
scaling behavior of the system. The magnetic field is
given by

with the universal resistivity

p(x) =— —1—md 1 4x
2 t d2

(10.53)

The resistivity p(x) is entirely determined by the (self-
organized critical) state of the vortex system and depends
neither on the initial magnetic field nor on temperature
or any intrinsic parameter of the superconductor, such as
the critical current density j, or the activation barrier U.
The evolution of the perturbation is determined com-
pletely by the geometry of the sample and by the charac-
teristic time t during which the initial critical state has
decayed. The origin of the universal behavior of the per-
turbation 5B can be understood as follows: After a time t
the relevant barriers U(j) in the system have grown to a
value T In(t/t, ). In order for the small perturbation oB
to evolve in time, the system has to difFuse over its
relevant barriers, leading to a difFusion coeKcient

D ~ p=(U, B/cT)(U, /j, )exp[ —U(j )/T)

xf =(1+t/r„)" b. . (10.48)
~ (d'/c')( I /r) .

Taking the spatial derivative of (10.47), one obtains the
screening current density

(10.49)

The two Aux fronts entering the sample from x =0 and
x =d meet after a time

c
4' Jc vo

2&dJc
c5B,

(10.50)

B,5B = — 8,
cUo Bo QU (j)
4m ', T BJ

—U(j, )/&

J,

(10.51)

and the solution goes over into the form (10.42) and
(10.44).

Finally, let us discuss the second type of experiment in
which an ac Geld is applied to a glassy vortex system. We
first consider the small-amplitude response (a &1), then
close the section with a discussion of the behavior for
large amplitudes.

Consider a sample put into the critical state at a time
t =0. We are interested in the dynamic evolution of a
perturbation M on top of the field Bo (x, t), which is the
solution of Eq. (10.23) with constant boundary condi-
tions. The linearized equation governing the evolution of
M is

14m'" =
2+cot~

(10.54)

explicitly exhibiting universal behavior. Note that in or-
der for the system to evolve in the linear regime, both the
perturbation 6B and the associated current density 5j
have to be small in the sense 5j &((T/U)jo, where the
latter condition (equivalent to a (& 1 ) is the more
stringent one.

We now turn to the opposite case of a large ac ampli-

tude, for which the response of the system is highly non-
linear. In this case the decay of the critical state com-

Note that since p~ 1/t, Eq. (10.52) has the form of a
difFusion equation with respect to the logarithmic time"
~=lnt and thus resembles the equation governing the log-
arithmic decay of the critical state due to Aux creep itself.

With the linear diff'usion equation (10.52) we can im-

mediately obtain the ac response of the superconductor
by taking over the results from Sec. X.A; see Eq. (10.12).
Consider the following experiment: After an initial criti-
cal state has been created at time t =0 (e.g. , by switching
on a magnetic field after zero-field cooling), a small ac
field 5B ~exp( —icot) is turned on at time t and the ac
susceptibility is measured. For a frequency co much
bigger than the inverse waiting time 1/t, the skin
penetration depth (10.14) becomes 5s=d/2+cot «d,
and for the ac susceptibility we obtain
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petes with the time scale imposed on the system by the
external ac field. Consider than an. experiment in which
the sample is taken through a complete hysteretic loop
within the time period t =2m. /co, where t instead of being
of the order of hours is now of the order of —10 —10
s (Campbell and Evetts, 1972). In this case the decay of
the magnetization is cut on the time scale t —1/co, so
that the screening currents Aowing in the sample are
given by

valid in the nonlinear case, but with a resistivity p that
depends on the amplitude h„of the ac field.

In summary, by varying the frequency co and the am-
plitude h„of the ac field, one can use the results of the
ac susceptibility to reconstruct the current-voltage
characteristic of the sample (Krusin-Elbaum et al. ,
1991). The general basic equation that describes both the
linear and the nonlinear case is (van der Beck, Geshken-
bein, and Vinokur, 1993)

U(j)=T ln
1

cot,
(10.55) ch„

U j=,H, T =Tin
27Td

'
peakto

(10.59)

The hysteretic losses are proportional to the area of the
magnetization loop, and the maximum in the susceptibili-
ty y" will occur when the Aux front reaches the center of
the sample. Thus the discussion proceeds along the same
lines as the Bean analysis of the critical state, except that
the screening current density, instead of being the critical
value j„is now reduced to j(co)= U '[T In(1/cot, )] due
to creep. Accordingly the penetration depth for the Aux
profile is now given by

(10.56)

and thus the position of the peak in g" will strongly de-
pend on the amplitude h„of the ac field. The criterion
for the peak in the susceptibility is

ch„
U j=

27rd
=Tin

~peakt&
(10.57)

At first sight, both the physical origin and the peak cri-
terion (10.57) appear to be very different from the skin-
effect approach and its result (10.20) derived for the
TAFF regime in Sec. X.A. However, the two approaches
in fact are very similar, and closer inspection of the cri-
terion (10.20) shows that it can be rewritten in the form

U, (H, T)=Tin (10.58)

~4Note that for maximal dissipation the current density
Jp k (c/2m )(h„/d) in both cases, but U = U(j) only in the
glassy regime.

which exactly coincides with the condition (10.57) for the
nonlinear case. In the derivation of Eq. (10.58) we made
use of Eqs. (10.10) and (10.33). The only difference be-
tween the two criteria (10.57) and (10.58) is that, for the
case of linear diff'usion, the barrier U, (H, T) does not de-
pend on the amplitude of the ac field, while in the non-
linear regime the barrier U(j, H, T) strongly depends on
the current density and hence on the amplitude h„.'

With decreasing amplitude h„, the energy U(j) is in-
creased and the temperature where the dissipation peak
occurs is shifted to higher values, which is in agreement
with experimental data of Krusin-Elbaum et al. (1991)
and of Sagdahl et al. (1991). Note that, reversing the
above argumentation, we can also say that Eq. (10.20) is

Plotting —T ln(co „zt, ) versus the amplitude ch„/2vrd,
one can reconstruct the current dependence of the activa-
tion barrier U(j). On the other hand, a plot of
j =ch „/2md as a function of —Imo~„kt, is nothing but a
measurement of the magnetic relaxation j(t) ~ (Int)
Using the ac method, one can overcome the usual
difFiculty in conventional relaxation measurements of
having only a very limited time window (typically 1 —10
s) by extending the latter to smaller values 10 4 —10 2 s
and thereby can increase the dynamic range of In(t/t. )

considerably [note that U(j, H, T) ) U, (H, T) is a limiting
condition on the smallness of co]. It would be very in-
teresting to combine both dc and ac methods within the
same setup, which would allow us to measure the relaxa-
tion over roughly 10 decades in time and would make it
possible to determine the exponent p describing the dy-
namics of the glassy phase with high accuracy.

X1. CONCLUSION

Since the main results discussed in this review have al-
ready been summarized in the introduction, we conclude
this work with a list of the main unsolved problems in
this field. Let us start with

(a) Thermodynamics of the mixed state in pure type II-
superconductors. The major unsolved problems here con-
cern the nature of the melting transition, as well as the
physics of the resulting vortex-liquid phase(s); cf. the dis-
cussion in Sec. V above.

(i) An important issue is the order of the phase transi
tion; is the melting a first-order transition or is it of
second order, so that scaling concepts can be applied?
Recent results of Monte Carlo simulations by Hetzel,
Sudbd, and Huse (1992) seem to favor a first-order transi-
tion. Moreover, detailed investigations of the resistive
transition by Safar, Gammel, Huse et al. (1992; see also
Charalambous, 1992 and Charalarnbous et al. , 1993;
Kwok et ol. , 1994a and 1994b) exhibit a sharp and hys-
teretic behavior in p( T), thus also providing evidence for
a first-order transition. However, the identification of the
observed hysteretic behavior with a possible melting
transition still needs to be clarified.

(ii) Regarding the nature of the vortex-liquid phase, we
need to explore the possible existence of an intermediate
disentangled phase. Furthermore, in which respects
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would such a disentangled liquid differ from the hexatic
vortex-liquid phase proposed by Marchetti and Nelson
(1990a, 1990b) and observed in the Monte Carlo simula-
tions by Ryu et al. (1992). The results by Hetzel et al. ,

Safar et al. , and Kwok et al. could as well be interpreted
as a first-order transition between such an intermediate
(disentangled) vortex-liquid state and the high-
temperature entangled vortex-liquid phase, which is ther-
modynamically equivalent to a normal metal. Direct ex-
perimental evidence for the existence of the proposed
disentangled phase would involve simultaneous measure-
ment of the response both parallel and transverse to the
magnetic field B, with a determination of the zero-
current asymptotics of the longitudinal and transverse
resistivity p'~(j~O) and p (j~O), respectively. The in-

termediate phase would then manifest itself by a finite

p (0))0, while the longitudinal response would be super-
conducting, p"(0)=0. Recent developments within this
area are documented in the work of Steel, White, and
Graybeal (1993), Safar et al. (1994), and Feigel'man and
Ioff'e (1995).

(iii) An analogous problem is posed by the possible ex-
istence of a supersolid phase in the case of layered super-
conductors at large enough fields 8 )B2D. In this case,
too, the existence of a phase intermediate between the

low-temperature Abrikosov lattice phase and the high-
temperature normal metal has been suggested
(Feigel'man, Geshkenbein, and Larkin, 1990; Glazman
and Koshelev, 1991a), but a reliable proof for its ex-

istence (see Sec. VII.B.4) is still missing. The characteris-
tics of this supersolid intermediate phase di6er from
those of the normal-liquid phase discussed above. Here
the phase constitutes a 3D lattice of pancake vortices
without superconducting coherence between the layers,
hence p"(0))0. Related experiments have been carried
out by Safar, Gammel, Bishop, et al. (1992).

(iv) In layered materials a very interesting crossover re-

gime could exist in the vicinity of (T,Bzo), where the
four phases (normal-solid, supersolid, normal-liquid, su-

perliquid) join up. The details of this crossover regime
have not as yet been addressed.

(b) The second group of open questions concerns the
problematics of quenched disorder, i.e., pinning. Again, it
is the further development in our understanding of the
vortex-glass phase itself, as well as of the vortex-glass
transition, which has to be mentioned first. The vortex-
glass phase is formed at low temperatures due to the
presence of quenched disorder, which can be either weak
or strong. By weak disorder we refer to the situation in
which the basic shape of the thermodynamic phase dia-

gram, e.g., the melting line, is only weakly affected by the
disorder and the new thermodynamic phases developed
in the presence of disorder possess the same kind of
short-range order as the "pure" phases from which they
originate. By contrast, in a strongly disordered situation
a significant change in the overall shape of the phase dia-
gram is expected to occur. Whereas it seems that many
single crystals of the new high-temperature superconduc-

tors belong to the first class of weakly disordered sys-
tems, the corresponding thin-film samples appear to be-
long to the second, strongly disordered case.

In the case of weak disorder, the remaining outstand-
ing questions are: (i) Does the vortex-glass transition line
at intermediate fields H, «B «H, essentially (up to

1 2

corrections of the order of j, /j, ) coincide with the melt-
ing line of the pure system, or, on the contrary, does the
transition shift below the melting line and approach the
limit T =0 for vanishing disorder strength j, /j. ~0? In
Sec. VII.C we have presented arguments in favor of the
first scenario. However, the subject is still controversial;
see, for example, Dorsey, Huang, and Fisher (1992) and
Worthington et al. (1992). A promising way to resolve
this controversy would be to study in more detail the pos-
sible occurrence and the behavior of dislocation lines in a
weakly pinned vortex lattice. (ii) How does the vortex-
glass phase relate to gauge glass, which is supposed to ex-
ist in strongly disordered systems such as a random
Josephson network in a magnetic field? This question is
of very practical importance, since many Monte Carlo
simulations have been carried out on the gauge-glass
model and have been interpreted in relation to the
vortex-glass problem. (iii) Is the vortex-glass phase essen-
tially anisotropic with respect to the angle P between the
current density j and the magnetic field 8? In particular,
does the glass exponent p depend on P? What are the
consequences of such an anisotropy for the vortex-glass
transition? (iv) Is the vortex-glass transition a first- or
second-order transition or could it even be triggered to
change between these two options by varying the
strength of disorder?

For the strongly disordered case one has to distinguish
between isotropic and anisotropic disorder. Examples of
the latter are found in samples with columnar defects or
twin planes. The first case (isotropic strong disorder) is
probably irrelevant for the new oxide superconductors in
single-crystal form, in which isotropic disorder always
seems to be weak; however, it may be relevant for thin-
film samples. It is still unclear what type of model sys-
tem should be used to describe the latter case. Disorder
due to columnar defects is a particularly important and
interesting case, since it can be introduced in a controll-
able fashion and can also be theoretically investigated in
a simpler way via the mapping to a 2D Bose system sub-
ject to static disorder. This system has already been
studied quite extensively (Fisher et al. 1989), and the
concept of the Bose-glass phase has been developed. On
the other hand, the actual investigation of the Bose-glass
problem in relation to the problem of pinning of vortices
in type-II superconductors has only been undertaken re-
cently (Nelson and Vinokur, 1992 and 1993; Brandt,
1992c; Lyuksyutov, 1992), and the number of accurate
quantitative predictions is still quite limited.

(c) In the above we have concentrated on the theoreti-
cal problems related with thermal and quenched disorder
in the bulk of a type-II superconductor in ihe mixed
phase. However, as suggested by recent experiments
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(Burlachkov, et al. , 1991; Konczykowski, Burlachkov,
et al. , 1991, 1992; Chikumoto et al. , 1992a, 1992b), in
some cases both pinning and creep seem to be dominated
by surface effects. The theoretical investigation of
surface-dominated Aux creep at elevated temperatures is
still in its infancy (Burlachkov et al. , 1991; Koshelev,
1992), and more work is needed in order to obtain a
correct interpretation of the experimental results on mag-
netic relaxation. Interesting recent developments have
been reported by Zeldov et al. (1994) and Schuster et al.
(1994).

(d) A further problem, also related to the interpreta-
tion of experimental data, concerns the measurements of
the response to a weak ac magnetic field superimposed on
a dc background field H. Such measurements contain
much valuable information about pinning and creep of
vortices, particularly if the nonlinear, i.e., higher har-
monic, response is also measured. However, at present
no clear predictions for these kinds of experiments exist
on the basis of collective creep or vortex-glass-like
theories.

(e) The results concerning the (relative) strength of
(static and thermal) disorder and the overall shape of the
phase diagram depend on the values of the phenomenolog
ical parameters of superconductivity, such as the coher-
ence length g, the penetration depth A, , and the anisotro-
py c.. However, it is less obvious that these dependencies
can become quite subtle, i.e., a variation of the above pa-
rameters by 20%%uo can easily result in a quantitative
change of the vortex-glass/vortex-liquid phase diagram.
Therefore a reliable comparison between theory and ex-
periment requires not only an accurate knowledge of the
numerical factors on the theoretical side but also a very
precise determination of all the relevant phenomenologi-
cal parameters of the superconductor.

(f) A number of topics have only been mentioned
briefly or have not been discussed at all in the present re-
view: A very interesting recent development concerns
the Hall motion of the vortices Here we .have discussed
the equation of motion and the phenomenon of Hall tun-
neling in a super-clean material (see Harris et al. , 1994,
for evidence of superclean YBCO) but have left out other
topics such as the observed sign change in the Hall volt-
age as the sample goes superconducting. The issues con-
cerning ceramic or polycrystalline material have not been
addressed. Finally, topics related more closely with the
microscopic theory of superconductivity, such as the de-
tails of the vortex core structure or the possibility of un-
conventional superconductivity (see Wollman et al. ,
1993; Brawner and Ott, 1994; Kirtley et al. , 1994), have
not been touched upon.

Tote added. Within the time span between the first
preprint version of this work and its final printed version
two major corrections have been introduced: (i) As dis-
cussed in more detail in Sec. II.A.5 we have revised our
understanding of the quantum collective creep process.
As a consequence, the scaling behavior of the action at
small driving forces, S(j«j, )=S,(jo /j), has been

modified as compared to the preprint version of this text
(Secs. II.A.5, III.F.2, IV.B.3, IV.D, VIII.D.2, and
IX.B.3). (ii) As pointed out by Koshelev (1994) the sim-
ple estimates of the superbundle dimension based on the
smallest length scale in the problem is not correct in the
nonlocal regime and one has to take account of all three
diferent lengths R~~, R~, and I. in the determination of
the elastic tilt and shear energies (see the more detailed
discussion in Sec. IV.B.2). As a consequence, the scaling
behavior of the barriers and actions at low driving forces,
U(j «j, )=U. (j, /j) and S(j «j, )=S,(jo/j) (in
particular, the glass exponents p and ps ), have been
modified as compared with the preprint version (Secs.
IV.B.2 and IV.B.3, IV.D, VIII.D.2, and IX.B.3). We
thank Alex Koshelev for pointing out to us the error in
the argument.
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TABLE I. Basic formulas for a type-II superconductor.

Description Formal expression

Coherence length g' (T)= 1

2m~a(T)~ 1 —T/T,
=g'(0) (2.S)

BCS coherence length kBCS
2

2
AUF =1.85/ (0)

~~acs X(p)
(3.69)

GL penetration depth

London penetration depth

Anisotropy

GL parameter

Energy scale

k (T)=
2

=k (0)
16me ~'Pa(T)~ 1 —TIT,

p
=2k (0)y(p)

4mne

c =m/M &1

2

(2.6)

(3.70)

(2.2)

(2.14)

Th. dyn. critical field

Lower critical field

Upper critical field

Ginzburg number

Co
H, =

2&Z~Xg

Co
H, = ln—

+o
H, =

2m.g

1 Tc

H2(0) sf'(0)

'2
1 —I; T~

8 EEog

(2.7)

(2.13)

(2.17)

(2.47)

Quantum resistance

Lattice constant
2az—

e pnQ—

1/2
0

1/2 1/2
4o

=ao

(2.167)

(2.1S)

Line tension c.I =coln— (2.13)

Dispersive line tension

Friction coefficient

cl{k) 1/A, ) =c,Din
1

k

+oH,
2=Yfao

pnC

(2.18)

(2.26)

Hall coefficient

Green's function

Current density

Depairing current density

p, =Mn
C

G(q, a)) = 1

l 'g)67+ E(g

/e/' vq+
7?2 4o

cH~ 4

ciao

3&6vrA3&3 g@o,

(2.114)

(2.9)

(2.30)
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TABLE II. Single-vortex pinning.

Description

Disorder correlator

Pinning potential

Form factors (6T„5l)

Pinning parameter (5T, )

Formal expression

( Up, „(r)Up, „(r') ) =y U5(r —r')

c~;„(z,u)= Jd R U~;„(r)p(R—u)

p(Z) =1—[@,(Z)[', g'[V@,(Z)['
2

2

y H,
2&( U 2&

u 4m

Eq.

(2.36)

(2.33)

(2.34)

(2.38)

Pinning parameter (5l) 14m 14m 'Vm

15 15 yn

H,
(2.38)

Pinning parameter

Pinning energy

Collective pinning length

y=fp, „n;g'

(~'„„(L,) ) =yg'L
1/3

E2 $2
L

1/2
Jo

Jc

(2.43)

(2.40)

(2.45)

Collective pinning energy U, =(ycog )'~'=H, g = T,&(1 t)/Gi-
C

1/2
Jc

Jo
(2.46)

Critical current density

Action

yJc= @

~i~ A'

e2 p

Jo

Jc

1/2

L,
' 1/2

Jo

Qu j,

(2.50)

(2.90)

Activation barrier (j j, )

Activation barrier (j~0)
Glass exponent

Relevant barrier after t

Line wandering (L &L, )

Optimal hopping length

Wandering exponents

Relaxation

Relaxation rate

U(j) = U, (1—j/j, )

U(j)= U, (j,Ij)"
p = (2g —1)/(2 —g)

TdU(j)=Tin 1+—,to =

0 (L)—0, , 6'(L) —U,
C C

L.„(j)—L (j /j) '"'
ki, &=3~5

j(t)=j, 1+ ln 1+—pT t

U, to
J

d lnj T
d lnt U, +pTln(1+tIto )

(2.58)

(2.60)

(2.68)

(2.57)

(2.63)

(2.66)

(2.66)

(2.72)

(2.77)
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TABLE III. Materials parameters, anisotropy.

Description

Material parameters (YBCO)

Formal expression

0
gacs=12-18 A

Eq.

Material parameters (BiSCCO)

Anisotropy parameter

d 12 A, 8

A, L, =1400-2000 A, gscs=20-40 A

d —15 A, c, -so zm

c =c (y) =6 cos2y+sin

(2.134)

(2.134)

(2.137)

Scaling rule Q (B,H, T,g, A, c, y ,) =s&Q
T

(3.12)

Scaling factors Sy =SE—SS —ST —E, ,
—1

$8 —SH =6 (3.12)

Lower critical field (approximative)

Upper critical field

Line tensions (approximative)

Friction coefficients

Pinning energy

Collective pinning length

o

H, (OH)= ln4' keg,H

+o
H, (8)=

2~c~g'

ci(8) =c'co/cg, cI(8)=c'co Icy

qI(8) =
c qadi, gi(8) =g;/c~

(6';„(I.) ) =yegg I. .

L;
L c 4/3L 1so

(2.136)

(2.138)

(2.144)

(2.163)

(2.147)

(2.149)

Collective pinning energy Uc c2/3 Uiso 82cg3 0 T Q( 1 t)/G&c c c Lc c
c c

(2.150)

Action

jef, c
E 4y3 ~E ' A' cg

e2 p„

1/2
Jo
'c

Jc

' 1/2
Jo

Qu j; (2.166)

Critical current density jc ~ 2/3jlSO~ J'

2
c(
L; (2.151)

Critical current density

Optimal hopping length

Activation barrier

Action

L opt (J') =L, ( 6- )(J / J )

U(j) = U, (j,'/j)'
g (j) jef, c(jcd )8/7

(2.152)
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TABLE IV. Single-vortex pinning: thermal fluctuations.

Description Formal expression

Diffusion law (2.116)

Thermal displacement

Pinning energy
n/2

(2.117)

(2.118)

Collective pinning length (1+1)
1/2

Ja
L, (T)=g

Je ap

Collective pinning length (2+1)
~$ '3

L, (T)=L,(0) exp cap T
T T

(2.127)

Depinning energy (1+1)
1/2

Gl d jo
T.Gl2D

c&(0)d

Depinning energy (2+1) and
anisotropy

Depinning temperature

Collective pinning energy

Critical-current density (1+1)

Critical current density (2+1)

' 1/2

Tap cxppT++( 1 t /Gi)
Jo

T$2/3 $, iso
ap =&

ap

ap= ap( api

c, & u 2(L, ) &,„
U, (T)= =T

L,(T)
~$
Tap

T

exp

map =0.7

3

Tap

(2.128)

(2.179)

(2.130)

(2.131)

(2.132)

(2.132)
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TABLE V. Boundaries of pinning regimes.

Description Formal expression Eq.

Single-vortex pinning reg.

JcB&B,b=p, b . H—, , p,b=5
o 2

(2.172)

(2.173)

and anisotropy and tempera-
ture dependence

L, (T)( ao
Qc~

8 (B,b{g,T)

=p,bH, (8)—.
Je

jo

—2c(a+ T/Td )1+, e
Tdp

(2.178)

Temperature dependence
B,bT & Tdp ln

1/3

(2.133)

Current dependence

and anisotropy and tempera-
ture dependence

2—
g

c
J &Jsb=Je

&o

j)j,'I (8, T) =j;(T)

7/10

=Jc B,b

QEp I.;(T)
ao

(2.18O)

(2.181)

Small-bundle pinning

j )J,b(a, T) =E,j'l, (a, T)
—1/3

1
a &L, —ln

c L

Jsv , JsvB (Bg, ——p]bH
2 Jo jo

2/3

p~b 2

(2.182)

(4.23)

(4.S1)

and temperature dependence B&b( T) pibj-
H, jo'2

Td p

Tdp+ T

2 2 ~

K Jsv

Jo

2 ' 2/3
Tdp

Tdp+ T
(4.95)

and anisotropy H~~c
B,b( T) p,bj,„
0, jo'2

2 2
Tdp K Jsv

ln
Tdp+ T f Jo

2 '2/3

T +T

Depinning temperature
Te 8

VGi PgpH, (0)

1/2

dp= 8 (4.87)
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TABLE VI. Continuum elastic theory.

Description

Elastic energy

Elastic matrix

Green's function

Projectors

Compression modulus

Tilt modulus

Shear modulus

Formal expression

P p{K)
—i go)+ c66K'+ c44(k)k,

P p(K)=

B 1

1+/2k 2

c44(k) =C44(k)+ c44(k)

4 1 +$2k2

c (k 0)—B(H B
4m.

Bo K
c44(X KBz k, )= 2 ln

2ao 1+A, (KBz+k )

+oB
(8m.i, )

1 d'k
P[u] = —f 3

u (k)@ p(k)u p(
—k)

2 Bz (2~)
4& p(k) = [cia(k) —ct g]X~Kp+5 p[cggK +c44(k)k, ]

P.'p(K)
G p(k, co)= +—igco+c))(k)K +c44(k)k,

KXp 5p —KEpP p(K)

Eq.

(3.19)

(3.28)

{3.30)

(3.31)

(3.34)

(3.31)

(3.35)

(3.35)

(3.32)

Small 6elds A, (ao =1
C66 C ].

3

1/2 —&, /A—2e6 ao
(3.36)
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TABLE VII. Elastic moduli, anisotropic case.

Description Formal expression Eq.

Conventions displacement parallel to CuO planes

displacement perpendicular to CuO planes

Anisotropy parameter

0=m/2 —8

Compression moduli (anisotropic)

Tilt moduli {anisotropic)

cq=c (8)=c cos @+sin 8-

E, =E sin 8+cos 8
1+(Egk,,k)

cI, (k) =c'„{k)=cI, (k) = c1+k k

c«(k) =c44(k)+c44(k),

~' ll(k)= 1

1 +g2k 2+ ( g2 g2)~ 2

1+(Egk,,k)
1+k k

1
c44{k—+0) =- 8 (H —8)

4m

(2.137)

(2.137)

(3.4S)

(3.42a)

(3.42b)

Co
e«(K KBz, k, ) =

200

2

1+~2,&s2z+ ~2k,2

A, k,+ ln 1+
A, k, 1+1,K

(3.43)

Single-vortex limit

Shear moduli (anisotropic}

Mixed compression-tilt moduli

1 /2

2
'c

E.z(k, ) =c coin
1+A, k,

c(6(~)=c66ea c66(&)=c66«a

+Eo ln(1+k A, )'~1

A, k,

Qsyeg s inc k
c )4(k) =c Ig {k)= c44" (k)

1+A. k

{3.44}

(3.41)

(3.46)

Mixed shear-tilt moduli (3.63)
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TABLE VIII. Microscopic origin of pinning.

Description Formal expression Eq.

GL parameters
12m c

( )

2 T
7g(3) cF

18m 1

7g(3) N(E~)

m, 8 1
m =, y(p)=

g(p)
'

7g(3) 0 (2n+1)'(2n+1+p)
f1Upp=, g(3) = 1.202

2~T, I '

(3.64a)

(3.64b)

(3.64c)

(3.66)

Order parameter

Dimensionless pinning parameters

Single-vortex pinning

1 ga
2m a/

6L;=Eg

—1/3

2/3

(3.71)

6T, pinning

6T, pinning

5I pinning

2
1 1 10

gs d (1 t)l/2 (1 t)1/2

1 1 10
( 1 t) ( 1 t)

Jc =J&

5 0063 n; d T,
8 E T, dn;

5 04 n; dT,
E E T dn;

6m 0. 13 (1—t)' =(0.2 —1)10 '(1—t)'
3/2

4csi'n

(3.74)

(3.78)

(3.81)

(3.83)
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TABLE IX. Dynamic approach, thermal displacements, Green's functions.

Description Formal expression Eq.

Dynamic approach 5v= Jdt'G(O, t —t')g ((Vp [R—R„(t')—vt'] V)Vp [R—R„(t)—vt] ),„(3.96)
YU

sin(K, ut)j dt K IC„~p(J )~ G(O, t)S(K, t) (3.98)

Structure factor

Washboard potential

Mean thermal displacement

Green's function (simple)

Mean thermal displacements

1

l'@CO+ Cg

(u,h(x, t)) = [x'+(C/g)t]'i, d =1T
mC

G(q, co) =

1/2(, )) T
)

x'+(C/g)t
~C" xo

( u( tx))=, d =3T
mCxo

'

S(K,t)= Jdz g (exp[iK [R„(z,O) —R„(z,t)]] ),h
1

XL

Voko Sin Uko t —k, & ~,h(x, ~])/2d"x dt G(x, t) th

U 2'g U

(u~~h(x, t)) =4T „[1—cos(qx —cot)]—ImG(q, co)
d g dc' 1

(2w)" 2n.

(3.99)

(3.126)

(3.129)

(3.130)

(3.130)

(3.130)

Green's function (lattice)
0{t) th

2gao
2

Q~ O(t) t h
tth « t «

4 pao'

3/2

2

tth
ao

(6.11)

(6.10)

O(t)
4&~gka.2

tth

ao
(6.8)

Thermal time t =
th

C66KBZ

8K ao

&Pn
(6.9)
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TABLE X. Elastic manifolds in quenched random media.

Description Formal expression Eq.

Line wandering

Energy fluctuations

Energy exponent

Random-field and random bond problems

Flory exponent

Short-range exponent

Critical exponent

« [5Q (L)]2»—:« [11(L)—B(0)] » M L

« [&&(L)]'»=—« [&(L)—« &(L)»]'» "L
yd „=2gd „+d—2

RF: P(n) = n, R—B: P(n) =n

F 4—d
fig II 4 +p( )

1 p pC

gsR 2(4—d)
dn —

8+ ) & c

n
p (n)=-

C

(3.143)

(3.144)

(3.146)

(3.158)

(3.164)

(3.163)

Classical creep

Optimal hopping length

Optimal hopping distance

P(L) = U, L,

L, ,(F)=L,

F,
u,p, (F)=g F

+d, n

F
1/(2 —gd, n

~d n ~d n

L,

d+gd

(3.176)

(3.177)

(3.178)

Activation energy
F,U(F)= U,

2gd „+d—2
P (3.179)

Action
F,S(F)=S, g„„+d

Ps (3.185)

Relaxation, classical
U,F(t) =F(t =0)
T ln(toto )

(3.190)

Relaxation, quantum
S,F(t)=F(t =0)

1n(t/to )
(3.190)
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TABLE XI. Pinning of vortex lattice: statistical mechanics.

Description

Displacement & "(L))'"=g L
L,

Formal expression

' 3/2

u&g, L&L,

Eq.

(4.1)

' 3/5
L
L,

3/2

3/5
ao

g&u &g, L, &L &a.
L,

2L2
+ln 1+ +

Q2 a.

(4.2)

(4.17)

u&g, a, &L,

3 1/2
R2 aLR

l 1
R + L

X4 ao Qo

4, 2

(4.25)

g&u &ao

Crossover lengths

a. &R, &A,, L, = R„a.&L, &
R, b A

ao ao

&u (r))'~ = 1n 1+ +, ao &u
2&2m. R, A R,

&u'(&, )) =g', &u'(L,')) =g'
c(L /0 )

Rc aoe

(4 44)

(4.18)

(4.19)

L,
R, =A,

Qo
g&R Lb R g&Lb

ao
" ao

(4.21)

Crossover lengths

)

ao &R, &A,
23

&u (R, ))=a2, &u (L, ))=a~
C(L /g) (0 /g

R, =aoe

(4.39)

(4.42)

L,
R, =A,

Q&
A. &R. (4.43)
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TABLE XII. Pinning of vortex lattice: energy barriers.

Description Formal expression Eq.

Collective pinning energy U, =c «( g /R, ) V,

U, = U„=H, g'
L, '

L,= U,„exp 2c'"
ao

ao
1

L,
ao

[1n(A, /L, )/c] 'i3«1
C

(4.45)

(4.46)

Energy barriers (j-0)

=U,„
r '2

ao

U(R) LU„L,

L,
ao

1/5

& [1n(A, /L, )/c]
C

L, &L &a. (4.47)

(L, &ao )
ao

L,

1/5
R

ao &R &A,
ao

ao

L,

ao

L,

1/5

ao

2,7/5
R

7/5
R,

A, &R &R,

R R. &R
R, '

Activation energy (j ~j, ) U, =c«(g/R, ) V, =(R1/R, )(L /L, )U,
a

U(j)= U, 1 —~
JC

1/2

U, = U,„=T+(1—t)/Gi . , 1 &
jo L,

(4.S7)

(4.61)

(4.58)

Anisotropic case,

see (4.138) and (4.139)

L, L,= U,„exp 5c'"
ao ao

A,L, L,=U„2 exp 2c"
ao ao

[ln(A, /L, )/3c ]
'~3 ( ( 1

C

L,=U,„ ao ao

[1n(A, /L, )/c] '~ & & [1n(k/L, )/3c]
C

& [1n(A, /L, )/c ]
C

Activation energy (j « j, ) U(j)= U„
J

Jsb= Usb
J

5/2

Jsb J J

j,b(ao /A, ) &j & jsb

(4.67)

U b ~ jib &J &j b(a
Jsb 2/3

ao j'
' 7/9

Anisotropic case,

see (4.146) and (4.147)

Jlb= Ulb
J

= UGDw

ao
Usb Usv L,

JGDw

J
' 1/5

JCDW &J &Jlb

1/2

0&J &JGDw

Ulb = Usb
ao

' 7/5
aoL,

) UCDW Ulb
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TABLE XIII. Pinning of vortex lattice: critical current densities, actions.

Description

Critical current density

Formal expression

j, =cU, /BV, g=(g/R, ) jo

Eq.

(4.49)

C

=Jsv
Qo

exp

2

j,=j..=(VL. )'j

L

1&ao/L

L,—2c
ao

4

[1n(A, /L, )/c] '~3 & & 1
C

(4.50)

Qa
=Jsv

ao

L,
—7

& [1n(A, /L, )/c]
C

Relaxation j(t)=j„ T
ln

U, to
j,b&j«j,v (4.69)

T t=jb ln-
Usb to

—2/5

J,b(ao/k) '&j &j,b

T tln-
Usb ta

—9/7

=Jsb ao

T=jib ln-
Ulb to

Jlb &J &J b(Q

JCDW &J & Jlb

T—JCDW ln-
UCDw to

7/5
C

—2

ao

0&J & JCDw

Jsb =Jsv
Qo

J lb Jsb JCDW Jlb 2L 3aoL,

Action (j 5j, } S,"=t,U, =q( V, (Rii/R, )(L /L, )
' aS

S(j)=Sb 1 —~
JC

1/2
J'o ao

S,'=S„=, 1 &
Qu j,„' L,

(4.59)

(4.62)

(4.60)

Anisotropic case,

see (4.140) and (4.141)

3
ao L,=S„exp 7V"L, Qo

L,=S„exp 4c"L, ao

[1n(A, /L, )/3c] ' '« 1
C

L,
=Ssv

Qo

8/7

[1n(A./L, )/c] '~ & & [1n(A, /L, )/3c]
C

& [ln(A, /L, )/0']
C

Action (j«j, ) S(j)=Ssv

=S,b

Jsv

J
7/2

Jsb

Jsb &J «Jsv

Jsb(aa /~)'" &j &j,b

(4.68)

=S,b ao

'2
Jsb

J
16/9

jib &j &Jsb(Qo /k)

Anisotropic case, =Slb
Jlb

JCDW &J & Jlb

see (4.148) and (4.149) =ScDw

ao
S,b ——S„ L,

JcDw

J
8/5

3/2

0&J &JCDW

Slb -S,b ao

16/5
Q 2L 3

SCDW Slb
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TABLEXIV. Vortex lattice: thermal Auctuations.

Description Formal expression Eq.

Thermal displacement

Depinning condition

Depinning temperature

T 1 T 2 1 T
3

Qo Qo
2g~ Qc c 8+77 c66QO 2 /7T

(u'(T, p) ),h—-g'
' 1/2

T,p
——2&ma. g

B
4o

(4.85)

(4.76)

(4.86)

Tc B
&Gi pdpH, (0)

j„(0)
Gi jo (0)

1/2

B
B,b(0)

B,b
' 1/2

' 1/2

Tdp

T„pd =8

(4.87)

Single-vortex depinning Td =0.7 1 jsv

Gl Jo

j,„(0)
Gl Jo (0)

(4.109)

(4.111)

Weak-pinning condition
56 . 4Gl CI (4.114)

Depinning field

Melting condition

Melting temperature

Bdp =pdpGi H, (0)
T

C

jo (0)
=Gi . B b(0)j,„(0)

(Q (T ))~h cgQo

@o
T (B)=2&mcocgm B

CL Tc

QP Gi

T
T. Pap= 8

' 1/2

H, (0)
p =5.6

(4.88)

(4.104)

(4.105)

Melting field B (T)=P .H (0) 1—CL B
C C2

(4.107)

(5.10)

T.
O=cl +p /Gi —1, T, = T,cI +p /Gi

T
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TABLE XV. Vortex-glass scaling.

Description Formal expression Eq.

Correlation length

Relaxation time

Typical exponents (exp. )

Scaling laws

Characteristic at Tg

Conductivity at Tg

Resistivity above Tg

Glassy response below Tg

Crossover current densities

Crossover frequency Q(T)—
+VG

~(T —T~) '

g'vG~T~~ IT —T, I

~vG~ Ti" (kvG~T)]'" IT —T, I

"'

v=1 —2, z=3 —6

& "CvG*+ "e+Ukv~ ', ~~vG)

o'~~~ ~ kvG s+(conc ~

E o- .(z+1)/(d —1)

~(~) ~ ( )~)(d z 2)/z

p( T) ~ ( T T )v(z+2 d)

—~(j /j)~Ecce

(7.25)

(7.26)

(7.38)

(7.39)

(7.40)

(7.47)

(7.41)

(7.43)

(7.42)

(7.48)
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TABLE XVI. Layered superconductors: Josephson and pancake vortices.

Description

Josephson length

Formal expression

1/2
M dA=d

Eq.

(8.9)

Josephson current density
c@os

JJ=
8 g~2A

=Jo
A

(8.8)

Deconfinement current density

bacon

Jo (8.107)

Line energy Josephson vortex

Friction coefficient Josephson vortex

Pancake interaction

A,
e =ceo ln —+1.12

d

@o
gJ =2.226

2mp'„c c.A

V'"'(R, z =0)=2dsoln —,g & R & A
R

=2dc,o ——,A &R &A, /c.
R A
A 4R'

2dEO, k/6 & RR
A'

(8.17)

(8.19)

(8.42)

Kink-antikink interaction V»' » ——2dsoln —,g&R &A

=2dc&ln ——,A&R &A, /cA A
4R '

=2dc&ln —,A, /c &RA

8.43

Kink-kink interaction

Line tensions (approximative)

d R 1 R AV»'»-—dso —+—— ln —,g&R &A
2A, k 2 A R'

=dao, A&R &A/c
A

2R '

Go ]sI(8)=—,, 0&8&a
cos 8

3

E c&8&-
sin8 2

s)(8)=ssocos8, 0 & 8 & E

E 1j
sin8 ' 2

(8.44)

(8.47)

(8.48)

Lock-in angle
'i ln(A/g)

H, ln(A, /g)
' I.»

(8.63)
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TABLE XVII. Layered superconductors: statistical mechanics.

Description Formal expression Eq.

BKT temperature

BKT coherence length

BKT charact. (T& TBKT)

Vs
TBKT = Co( TBKT )d

2

2T.
TBKT Tc

V=pl ~ J
Jo

vc d!T
S

V,"dco(0)
1/2

C

gBKT( T) =g( T)BKP b
BKT

a
vs E.od

a(T) =1+

(8.88)

(8.89)

(8.90)

(8.96)

Nonlinear resistivity (T & TBKT) p =2m@'p„n„~
Jo

(8.95)

BKT resistivity (T& TBKT)

3D transition temperature

3D Auctuation region

2D fluctuation region

Numerical estimates (BiSCCO)

2D melting

T T 1/2
c

=2m exp —2 b T TBKT

2

Tc TBKT 4 5 K, Tc TBKT 6 K

5Tf =0.8b K, T, —Tf =5 K
0

daze«dc, o
2 « TBKT4~ 8v'3~

T T T-"
BKT

4V3~ T, —TBKT
=25 K

Pn gBKT

b(Tc TBKT )

Tc TBKT +
{»[A/P TBKT)l]

2( Tc TBKT ) 2b ( Tc TBKT )
5Tf

1n[A/g( TBKT )] {1n[A/g( TBKT ) ] ]

Tf ——T, ——(T, —TBKT)ln2D 1 A

BKT

(8.98)

(8.100)

(8.101)

(8.104)

{8.106)

(8.111)

(8.113)

Crossover field

3D melting

B =a ln—2D
A

1/2

T {B)= —ln
'2

2 B

1/2
4o

CEo Cg B &B2D

(8.124)

(8.125)

=T 1+ b
B2D &B

[in(a/a, )]"" '

1/2

(8.130)

Evaporation temperature

Decoupling temperature

T, (B)= T (B) B

Tdc (8)—EEo Qo —Tm B

B &B2D

1/2

B2D &B

(8.131)

(8.141)
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TABLE XVIII. Layered superconductors: pinning.

Description Formal expression Eq.

Single vortex intrinsic pinning

Activation energy

Action

'3/2 . ' 1/2

U(j ~j, )=T,&(1—t)/Gi
A Jc

jo

1n
''/

U(j «J,in) = T,&(1—t)/Gi
A Jc

Jo

3/4
J

J 111

' 5/4
J
~ in (8.183)

(8.185)

(8.184)

Bundle strong intrinsic pinning

Activation energy

' 5/2
joSefF( ~ «

Qu g j,'"

T 2

A JeU(j « j, )=cod ln—

~ in in
Jc Jc

. ln
J J

(8.187)

(8.198)

Single pancake pinning

Activation energy

Action

2D collective pinning

Collective pinning radius

Activation energy

Fad
R, =ao

Up, 2ao

3

ao &R,
R,

U, =Up,
ao

Up T +( 1 —t)/Gi —. = T,
. A Jpc 1 —t Jpc

Jo E Jo

Sp t Up A d 1 A
e' p„gu

(8.219)

(8.241)

(8.221)

' 7/4

U(j) = U'b
J JCDW &J «Jc (8.237)

(cod) ao
CDW

Up,

4
ao

j2D J j2D j2D

2D ~ 2DJ CDW JCDW
UcDw ln . J &JcDwJ J

{cod}'
U2D

Upc
'

ao

Action
SE Sp,

fi

R,
ao

ao &R, (8.245)

4 .2
- 11/4

R,
SE (j)=S,

ao JCDW &J «Jc (8.246)
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TABLE XIX. Strong pinning: twinning planes.

Description Formal expression Eq.

Pinning potential
iqyTPi2

TP

Renormalized pinning potential cTP( T}= cTP, T & Td„ (9.17)

-TP
dp

T

'2

ln
T

-TP
dp

T &T

Depinning energy

Depinning temperature

-Tp C

Tdp —2(+El PTP — QETP/Eo
&2Gi

TTP TT ( TTP )

1/2
T1—
T.

(9.19)

(9.19)

Critical current density JTP J T& TTP
Eo

(9.27)

Eo

dp ~ Tp

T jo, Tdp &T&Td(, (9.29)

Eo dTP

dp

T Jo, Td) &T, (9.32)

Creep

Trapping angle

~TP( T) Jo
Uhl~i ~ 5+~l ~TP~ T~

Co J
' 1/2

2ETP

(9.39)

(9.5)

Lock-in angle
4+el
c a~' (9.9)
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TABLE XX. Strong pinning: columnar defects.

Description Formal expression Eq

Pinning potential

Renormalized pinning potential

Energy dispersion

Depinning energy

Eo r„2
E„=—ln 1+

2 2/2

T
E„(T)=e„f„

Tdp

fi, (x)=1—x'(x & 1), =e " (x ) 1)

y =y,-+t(d, )

B
H, (0)

(9.60)

(9.67)

(9.67)

(9.115)

(9.77)

Depinning temperature

Delocalization temperature

Single vortex regime

Tdp Tdp ( Tdp )

Tdl = Tdl( Tdl ) Tdp( Tdl )ln(dr j bo )

4E,„(T)
B &B b= B@, T& Tdl

Eo

6

(9.72)

(9.44)

bo

Eo

6

Tdl
Tdl & T (9.78)

Single vortex properties

Critical current densities
3&3 .

Jc Jo Jo &
T& Try4~2

2

27&2 ja, Tg& T & Tdp2

(9.S7)

(9.61)

~r
r„Tdp

exp
g2 T

3 T
Jo,

dp

Td & T & Tdl (9.71)

Eo

'4
Tdl

Jo ~ Tdl & T (9.71)

Creep U„„=E„=d, V'Ei c„(T)

jd . E (T)
U„,(j)=E„—,j„= j, &j «j,

J d, Eo

I

1/3

UVRH(J) Ek . ~ JL &J & JU 3 Jo
J Eogd„

(9.113)

(9.110)

(9.123)

Quantum creep

Crossover current density

Trapping/locking angle

see (9.134) and (9.135)

j-=jdI E,(T)J'r ]'"=j.
I E,(T)&y]'"

0
2E„(T) 4mE. ,

0

2 inUM„, (L)=(yLEk)', j&j L = joL d~ea
(9.119)

(9.129)

(9.173)

Vortage bundles

Plastic pinning, T& T„& Jpl —Jo, BI'b B
ao Bb

, J.=, B,b&B&B„
+BH, ' (9.97)
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TABLE XX. (Continued).

Description Formal expression Eq.

Collective pinning
H,

B,b
B jo, T& Tg

H,

B, B
(9.96)

B.b

. 1/4 '

Tdp
jo, Tdp & T& Td1

gr„'

d„' Bb

' 1/4 -r 4

dp jo, Tg1 (T

Plastic creep
B

Up1( j)= E,Eod„
Bb

3/2 . 2

Jp1
RJ &(ao k)' (9.142)

—FEodr d„B,b
5/4

Jp1

Collective creep

B Jp1—EEoA, , ~ &R
B,b j'

11/4
uo Ro Jxb

U(j) =EEor~
ao J

ao &Rg &(a g)

(9.143)

uoRo3

—EEo rp 4ao Ro

uo AR o Jxb= C.co r~ 4ao J

1/2
Jxb

't 3/2

' 29/16

(a21)'/3 &R

(9.146)

with

CDW creep

uo
Jxb — Jo

R

Ro ao4

U(j) =Ecor~ 4ao uo

10
Jxb

ao (R~ &(ao~)2 1/3

J

(9.14S)

Ro
U(j) =EEor~' a.' R. uo

. 25/4 ' . 5/4
Jxb

(ao A)' &RJ

XRo= EC,o r~
ao

ao

uo

Jxb

J
(9.149)

with
a, f

Jxb =
R20

uo

ao

5

Jo

"dressed" vortices

with

3/2
Eo

JvJxb =

Jxb
UVRH (J ) UVRH (Jxb ) ~ & J Jxb

J
3/4

(9.154)

(9.131)

"dressed" vortices UM.««) = UM.«(Lb )
L
Lb

' (9.1S3)

with Lb-—
y

3/2 - - 3/4
ao

d.
(9.132)
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TABLE XX. (Continued).

Description Formal expression Eq.

Bose-glass transition

Low magnetic fields
B~ r„

B~G(T)= ~ ~( )

4 4o
1—,B&

k2
(9.156)

Shift of transition T (B)=y T (B)+(1—y)T 1—BG m H (0)c2

(9.163)

intermediate fields d„/cL &ao (9.164)

high fields

Bose-glass scali ng

Anisotropic scaling

Dynamic scaling

Scaling laws

Characteristic at TBG

Resistivity above T&G

Crossover current densities

2
—1

ao r„
16&Gi g(O) d

l~=l1oc(T) ~(TBG —T), vg-1

li)
—l ~/Do

l, z'-5 —9

E ~ l
—(z'+1)

( l3 )

~ (z'+ 1)/3

vi(z' —2)
P ~ (T—T~G) '

i.*"(.i~~) '"IT—T~~l '

ao &d„/cL (9.165)

(9.166)

(9.167)

(9.168)

(9.169)

(9.170)

(9.171)
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TABLE XXI. Macroscpic linear and nonlinear response.

Description Formal expression Eq.

Nonlinearity parameter

Linear response

BU(j) 6j
Bj T

{10.6)

OFF, a«1

Resistivity

DifFusion equation

Skin depth

Uo
p=2Ap„, -- expT

C2
BtB = phB

4m
1/2

~c

2'ITCHY

Ua

(10.12)

(10.14)

Peak frequency (10.20)

Resistivity

Xon1inear response, a »1
DifFusion equations

p{T,H) 1.25copeak
C

p[pQ cm] =7.6X 10 'd'[cm')v~„„[Hz]

a,B = a, [u.Be —"'"T]

B g
= ' 8' [u.Be 'J'")-

t 4 x

(10.21)

(10.23)

(1O.24)

Solution (j =jo+j&) U[jo(t)]=Tin 1+—
to

(10.32)

Characteristic time

4x H
d2 g (x)

T
BJ U~

Td
2 iB, Ui eHu

1 T d
A U, c2pq, „

10 ' T 1[em)
to [S]= A U, pg, „[p,Q cm]

(10.30)

(1O.33)

(10.34)

Relevant barriers

Self-organized critical state

Current, full penetration

U(a, j)=Tin 1+—
to

J(x, t) =

B,b =B„(B„bi)„bc' ), B,J=B,(JiJi )

1 —4x /d
I /a

1+t/t. T je

(1O.38)

(lo.4o)

(10.42)

Field, full penetration b(x, t) =be—,/, b =58/8~(1+t/t. )" ' (10.44)

General peak criterion
ch„

U j=,HT =Tin
2Nd ~peakto

(1O.59)
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TABLE XXII. Some useful numerical expressions.

Quantity Numerical expression Fq

1 eV

4o [CJ]

o„[s "]

[cm's I]
me

11605 K

2.068 X 10

0.9X 10'
p„Q cm

2.5327 X 10

I.„[s]

kF [cm ']

BF [e&]

UF [CII1 S ]

I =UFO'„[A]

~BCS

[A]

4cs [Al

Hoses [C-I]

3.9484X 10
n[cm '] '

m,

[ 3vr'n [cm '] ]
' ~'

(k„cm '
)

3 g11X10-"

1.158
kF[cm ']

10' UF [cm/s] ~, [s]

1.52X10 T, [K]

5. 134X10'1+m*/n [cm ']

S UF CIII/S
2.095 X 10

~Bcs[e+]

@a 2 566X 10
+2/3~ ~1.4cs ~I, [A l 4cs[A]

1 (clean limit), 1.33 (dirty limit)

(3.70)

(3.69)

(3.65)

X(0) [A]

g(0) [A.]

H, (0) [CI]

H, (0) [Cx]

H, (0) [G]

&~x
AI [A]

0.73g5v'q4„[A]
2.327. 10'

2&2~&(0)g(0) A(0)[A] g(0)[A]
1nII A,(0)

1ns = — H, (0),
4m.k. (0) &2n (0)

40 =&2~H, (0)
2m'(0)

(2.6)

(2.7)

(2.13)

(2.17)

So [K/A]

V'h B= j
C

jo [Acm ]

7.253X10 [KA ']
1.964X 10

(A,[A])
1 T

ss. (0)g(0)

—"~" =2 434 X10'~"
sg'[A]

B[CI], j[Acm ], length [cm], c =10

cH, H, [Cx]=0.433-—
3v'6'& '

A. [cm]

(2.14)

(2.47)

(2.167)

(2.30)
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