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Spin-density waves (SDWs) are broken-symmetry ground states of metals, the name referring to the
periodic modulation of the spin density with period, ko=m/k+, determined by the Fermi wave vector k+.
The state, originally postulated by Overhauser, has been found in several organic linear-chain compounds.
The development of the SDW state opens up a gap in the single-particle excitation spectrum, and the
ground state is close to that of an antiferromagnet, as shown by a wide range of magnetic studies. Because
of the magnetic ground state and of the incommensurate periodic spin modulation (which can be thought
of as two periodic charge modulations in the two spin subbands), both collective charge and spin excita-
tions may occur. These couple to ac magnetic and electric fields, which leads to antiferromagnetic reso-
nances and frequency-dependent collective-mode conductivity. Both have been observed in the spin-
density-wave ground state. The interaction of the collective mode with impurities pins the mode to the
underlying lattice, and therefore the collective-mode charge excitations occur at finite frequencies in the
long-wavelength limit. The mode can also be induced to execute a translational motion upon the applica-
tion of a dc field which exceeds the threshold field E&. Many of the observations on the ac, and on the
nonlinear dc, response are similar to those which occur in materials with a charge-density-wave ground
state. At low temperatures a novel type of collective transport suggestive of a tunneling process is ob-
served. These low-temperature phenomena remain unexplained.
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I. INTRODUCTION

Spin-density waves are broken-symmetry ground states
of metals which are thought to arise as the consequence
of electron-electron interactions. The ground state is
characterized by a periodic modulation of the spin densi-
ty, the period being related to the Fermi wave vector k~.
This type of ground state was first proposed by
Gverhauser (1960, 1962) for isotropic metals. The spin-
density-wave ground state, which will be discussed in this
review, is somewhat different; it arises in highly aniso-

tropic, so-called quasi-one-dimensional metals, and the
ground state is schematically written as

bS(x) =bSocos(2kzx+P),

where b.S(x) denotes the spatially dependent spin modu-
lation, which occurs along the chain direction x.

The spin-density-wave state has many similarities to
other broken-symmetry ground states of metals, such as
superconductivity and charge-density waves, and these
states can be conveniently discussed within the frame-
work of various one-dimensional models (see, for exam-
ple, Solyom, 1979). Within the framework of a mean-
field description, the ground states develop below a
second-order phase-transition temperature, with the ther-
modynamics (within the framework of weak-coupling
theories) the same as that of the BCS superconducting
ground state. In all cases, a gap develops in the single-
particle excitation spectrum, with the zero-temperature
gap related (again within the framework of weak-
coupling theory) to the transition temperature through
the same relation 26= 3.5kT, . In all cases, furthermore,
the ground state is that of the coherent superposition of
pairs, pairs of electrons for the superconducting state,
pairs of electrons and holes with parallel spins for the
charge-density-wave state, and pairs of electrons and
holes with opposite spins for the spin-density-wave
ground state. Consequently, the charge-density-wave
ground state is nonmagnetic, while the spin-density-wave
ground state has a well-defined magnetic character with
associated low-lying magnetic excitations. These similari-
ties and differences are clearly borne out by various ex-
periments. Nor surprisingly, while the thermodynamics
of these states are similar, density waves are in many
respects different from superconductor s, and this
difference is most pronounced when the collective excity-
tions and the dynamics of the ground states are exam-
ined. For both density waves, the low-lying charge exci-
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tations are related to the spatial variations of the phase
and are called phasons. In addition, in the spin-density-
wave states, magnons are also the collective excitations of
the ground state, which, as expected, is associated with
two Goldstone modes, one with charge, and one with
spin excitations. Another important di6'erence lies in the
coupling mechanism which leads to these ground states:
charge-density waves occur primarily due to electron-
phonon coupling, while the spin-density-wave state is due
to electron-electron interactions. The consequence of the
phonon degrees of freedom is the large dynamical mass,
while for spin-density waves the dynamical mass is ex-
pected to be the same as the band mass. This difFerence
has important consequences as far as screening efFects
and the electrodynamics are concerned. The small
e6'ective mass may also lead to quantum efFects which are
probably absent for charge-density waves. Some of the
important characteristics of the ground states discussed
above are summarized in Table I.

This review summarizes the current state of a6'airs of
the field, with emphasis on the dynamics of spin-density
waves. A short introduction to materials, organic
linear-chain compounds that develop this ground state, is
followed by a short summary of the basic features of the
theory and parameters. The experimental evidence for a
spin-density-wave state will be summarized next, and, not
surprisingly, these experiments explore the magnetic
character of the ground state. The collective excitations
of the ground state are then reviewed with emphasis
on the magnetic excitation s sampled through
antiferromagnetic-resonance measurements. The interac-
tion of impurities with the spin-density-wave ground
state (a topic that has many similarities to
impurity charg—e-density-wave interactions) is followed

by the review of the electrodynamics of the ground state.
The discussion of nonlinear transport, again with analo-
gies to charge-density-wave transport, concludes this re-
view.

The field is by no means a closed chapter of solid-state
physics, and, in spite of spectacular progress, many im-

portant questions remain. Moreover, several important
experiments have been performed on only a limited class
of materials, and whether some of the properties found in
a restricted group of materials are the universal features
of this novel ground state remains to be seen.

II. ORGANIC LINEAR-CHAIN MATERIALS:
MODEL COMPOUNDS WITH A SPIN-DENSITY-WAVE
GROUND STATE

Planar organic molecules often form linear chains with
large overlap of the ~ orbitals along the chain direction.
When combined with counterions or molecules, the re-
sulting charge-transfer salts may have partially filled
bands leading to metallic properties. Members of these
groups of materials, based on the organic molecules M
shown in Fig. 1 and having the composition M2X, also
develop a spin-density-wave ground state at low tempera-
tures.

The crystal structure of the material (TMTSF)2PF6 is
shown in Fig. 2. The compound is composed of segregat-
ed stacks of TMTSF and PF6 molecules. TMTSF is a
good donor, and, when combined with good acceptors
like PF6 and similar species, a charge transfer occurs
from the TMTSF stack to the acceptor stack; and for a
full charge transfer (such as occurs for this compound},
the TMTSF stack in the absence of anion ordering is —,

'
filled. There is a significant overlap of the wave functions
along the chain direction on the TMTSF stack, while the
overlap is negligible along the PF6 stack; consequently,
band theory predicts metallic behavior dominated by the
wave functions on the TMTSF stack along the chains.
These materials indeed have metallic behavior down to
low temperatures, as shown in Fig. 3 for (TMTSF}zPF6
(Bechgaard et al. , 1980). The increase of the resistivity
below temperatures of about 20 K is due to the removal
of the Fermi surface upon the formation of spin-density-
wave ground states, as will be discussed later. The optical
properties of (TMTSF)2PF6 are that of a Drude metal
with high reQectivity along the chain direction, as shown
in Fig. 4. From the analysis of the optical properties, the
plasma frequency co =(4nne /mI, ) .can be extracted.
This parameter is displayed in Table II. The magnetic
susceptibility y is of Pauli type and is temperature depen-
dent down to low temperatures where the phase transi-
tion occurs (Mortensen et al. , 1981). The magnitude can
then be used together with the known band filling to
evaluate the parameters which characterize the metallic
band along the chain direction. These parameters are
also collected in Table II for the model compound
(TMTSF)2PF6.

TABLE I. Various broken-symmetry ground states of one-dimensional metals.

Single superconductor
Triplet superconductor
Charge-density wave

Spin-density wave

Pairing

el-el
el-el

el-hole

el-hole

Spin

S=0
S=l
S=0

Momentum

q=0
q=0

q =2k'

q =2k'

Broken
symmetry

gauge
gauge
translational

translational

Low-lying
collective

excitations

none
?
phasons
amplitudons
phasons
magnons
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FIG. 1. Several planar organic acceptor molecules that form
metallic charge-transfer salts and a spin-density-wave ground
state.

The electrical conductivity is highly anisotropic, and
o., when measured perpendicular to the chain directions,
is small, indicating a transfer integral smaller than the
thermal energy kT (except at low temperatures) in these
directions. This then implies nonmetallic behavior per-
pendicular to the chains. This conclusion is supported by
optical studies. The reAectivity measured in
(TMTSF)zPF6 along one direction perpendicular to the
chain (the b-axis) direction, displayed as curve E~~b in

Fig. 4, does not show a plasma edge as would be expected
for a metallic band at high temperatures. However, such
a plasma edge is observed below about 60 K. From opti-
cal conductivity and NMR studies, bandwidths of ap-
proximately 80 meV and 10 meV are inferred for the two

~00
I I I I t I I I I

101
I I I I I I ~ I I

10'

perpendicular directions (Jerome and Schultz, 1982). In
contrast, the bandwidth along the chain direction is ap-
proximately 1 eV, significantly larger than the thermal
energy.

Members of other groups of organic linear-chain com-
pounds have also been found to develop a spin-density-
wave ground state. The organic salts, (MDTTF)zX, where
MDTTF stands for methylendithio-tetr athiafulvalene
(the molecule is displayed in Fig. 1), have a crystal struc-
ture again formed of segregated stacks of donors and ac-
ceptors with a partially filled band along the donor stacks
as the consequence of charge transfer. Several members
of this group have metallic character for various
counterions, and one member of the group
(MDTTF)&Au(CN)z has a spin-density-wave transition at

temperoture ( K)

FIG. 3. dc electrical resistivity of various organic M2X salts
which develop a spin-density-wave ground state at low tempera-
tures. The DMET results are taken from Honda et al. (1989),
and the other measurements were made at UCLA.

3.6
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FIG. 2. Crystal structure of (tetramethyltetraselenoful-
valene)2PF6, (TMTSF)2PF6. The Se-Se distance is indicated in
A.

FIG. 4. Optical reflectance of (TMTSF)2PF6 at room tempera-
ture with the electric field both parallel (E~~a) and perpendicu-
lar (E~~b) to the chain direction (Jacobsen et al. , 1982).
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TABLE II. Parameters of the metallic state of materials with a spin-density-wave ground state. The
electron density has been evaluated from the band filling and from the crystal structure parameters.

x 'ACOp

Band filling (10 emu/mole) (eV)

VF n(cF)

cF (10 cm/sec) (eV )

(TMTSF)2PF6

(DMET)4Au( CN) 2

0.58'

0.51'

2.9' 1.3
2.4
2.4

6.1

6.6

0.86

1.0

0.25

'Mortensen et al. (1982); Jerome and Schultz (1982).
Jacobsen et al. (1983).

'Kanoda et al. (1988).

low temperatures (Nakarnura et al. , 1990). This leads to
the increase of the resistivity, as shown in Fig. 3, as the
development of the SDW state leads to the removal of
the Fermi surface. Like the TMTSF family, the band
structure is anisotropic, as expected from the anisotropic
overlap of the wave functions. The parameters of the
single-particle states have not, however, been evaluated
for this group of materials.

The molecule dimethylethylenedithio-diselenadithia-
fulvalene, DMET, also forms various charge-transfer
salts with different counterions, and the composition is
(DMET)zX. The structural features of these compounds
are similar to those of the previous two groups of materi-
als. Some members of this family are semiconductors,
while other members remain metals to low temperatures
where they undergo transitions to various broken-
symmetry states (Kikuchi et al. , 1987). In the compound
(DMET)2Au(CN)2, the ground state is that of a spin-
density wave, as will be discussed later.

Because of the small specimen dimensions, optical
studies have, in general, not been performed on these ma-
terials. The magnetic susceptibility, too, has been mea-
sured in only a few cases. Consequently, the parameters
of the single-particle band have been evaluated only for a
few compounds, which are collected in Table II.

III. THE SPIN-DENSITY-WAVE TRANSITION
AND GROUND STATE

The spin-density-wave ground state of metals is
thought to arise as a consequence of electron-electron in-
teractions. Questions on the detailed nature of this in-
teraction and also the consequences of this interaction on
the Fermi-liquid state have received considerable atten-
tion, and there is a vast literature on the various ground
states which develop.

The simplest possible description of this interaction is
given by the term

where U is the on-site Coulomb interaction and X is the
number of electrons per unit length. Together with the
kinetic-energy terms, the so-called Hubbard Hamiltonian
is given in one dimension by

Xek~kottko+ ~ W ~k, o~k+q, o~k, o~k' —
q, o.— —

ko k, k', q

(3.2)

A. Mean-leld theory of the spin-density-wave
ground state

The interaction between the electrons with opposite
spin, as given by Eq. (3.1), leads to an enhanced response
to an external magnetic field. This response can be sim-

ply described by using the mean-field approximation.
Assume that we apply an external magnetic field that
varies along the chain direction as

H(x)=QHqe'q" . (3.3)

The coupling to this field is described by an extra term in
the Hamiltonian

As will be discussed later, the ground state of Eq. (3.2) is
that of a spin-density-wave state, and the transition to-
gether with the parameters of the state will be described
within the framework of a mean-field theory. It is as-
sumed that U(&c,~, which is equivalent to the weak-
coupling limit for superconductors. The development of
the ground state opens up a gap at the Fermi level; conse-
quently, in the case of the complete removal of the Fermi
surface (such as expected for a highly anisotropic band
structure), a metal-insulator transition results. The
ground state also has a well-defined magnetic character.
Consequently, transport and magnetic measurements, to-
gether with local probes which sample the internal mag-
netic fields at the nuclear sites, have been used to evalu-
ate the essential characteristics of the ground state.

U
Hini =

~g "q "—
q

q, a
H'= gM H— (3.4)

X ~k, a k+q o k', o~k' q, —o- —
k, k', q

(3.1) where M is the qth component of the magnetization. As-
sume that the magnetic field is applied to the (arbitrarily
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chosen) z direction. The spin direction parallel (opposite)
to H is denoted by t'(l). Then the expectation value of
the magnetization is

1y.(x)= ye""a„.,~ k

the spin density is given as

(3.13)

with

U(&n, , &
—&n, , &)H'=H+

2pg

(3.5)

(3.6)

S(x)=—[hatt(x)gt(x) —g~(x)P~(x) ]
I

2y r t ktak't kj k', ll
k, k'

(3.14)

(3.15)

where Xo(q) is the susceptibility in the absence of
Coulomb interactions. The self-consistent equation for
the difference hnq =

& nq t &
—

& nq ~ & then is

Because of the divergent response function at q =2kF, we
assume that only terms with k'=k+2kF are important.
Thus the above equation yields

Uhnq
@~an =NXo(q) Hq+

2p&X

The magnetization from Eqs. (3.5) and (3.7) is

(3.7)

1
&S(x) &

= 2~yI &ak",ak+zk, &

k

+ l'2kFX—&ak &ak+zkF & & Ie +c.c. (3.16)

NXo(q)
Hq =NX(q)Hq,

1 —UXo(q)/2Va
(3.8)

xo(q)
x(q) =

1 —UXo(q ) /2@~
(3.9)

and the enhanced response is given by an enhanced sus-
ceptibility

We write the expectation values as

ip 1 1S=~S~e"=—&n-„t&= ~X&ak tak+2k, , t&
k

y x & ak, Jak+ 2k
k

1= ——&n 2kF $ (3.17)

For a uniform magnetization, q =0, and with

Xo(0) =2ps n (ez ), one obtains a static susceptibility

2@~n (EF )

1 —Un (ez)
(3.10)

UXo(2kF, T) l. 14eo= Un ( sF ) ln = 1,
2pg kg T

which gives

(3.11a)

enhanced by the well-known Stoner factor. For a one-
dimensional electron gas, Xo(q) is strongly peaked at

q =2kF, and the enhancement is most important for per-
turbation with this wave vector. Xo(2k+, T) is in one di-

mension strongly temperature dependent. It is given by
Xo(2k+, T)=n(eF) 1n(eo/kT) with Eo a cutoff' energy, on
the order of the Fermi energy cF. This feature leads to a
strongly temperature-dependent enhanced response, and
(with fluctuation effects neglected) to the phase transition
at temperature TsDw defined as

assuming that there is no charge-density modulation as-
sociated with the ground state. From Eq. (3.16) we obtain

&S(x) & =2iSi cos(2kFx+P) . (3.18)

&p&=gp, &S&=2@ &S&, (3.19)

and therefore the spatially dependent magnetic moment
is written as

& p(x ) &
=po cos(2k+x +P ), (3.20)

where po=4p~S. We define a complex order parameter

he'~= —S,U
(3.21)

and then the mean-field Hamiltonian becomes (dropping
a constant Hartree energy)

Therefore the spin density is spatially varying, with a
period, A,o=qrlkF, determined by the Fermi wave vector.

Using the standard mean-field approximation, the
magnetic moment p is

1
kaTsnw =1 14eF exp (3.11b)

HMF g k Eaakk+
U

2)V

ko

where the dimensionless electron-electron coupling con-
stant is defined as

+ . X~e (ak+2k, yak, 1'+ak+2k, lak, j )+H'c'ip

k

A, =Un(sz) . (3.12)
Straightforward diagonalization leads to

(3.22)

Below Tsow a static, spatially varying magnetization
develops. By introducing the spatially dependent opera-
tors

H=QEkyk yk +2N
k, o

(3.23)
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with the dispersion relation of the operators yk given by

Ek =ep+sgn(~k~ —kp )[A Vg([k~ k—~)2+ ~6~2]'~2 .

(3.24)

tions given by

pt(x)=pa 1+ cos(2kFx+p)
VF kFA,

(3.28a)

The development of the single-particle gap leads to a de-
crease of the kinetic energy, while th'e interaction term
2~8

~
/U [the second term in Eq. (3.22)] gives a positive

energy for a finite magnetization. The equilibrium gap
value is obtained from

5Z„+5E =0, (3.25)

where 5EM is the energy associated with the second term
on the right-hand side of Eq. (3.23). Straightforward alge-
bra gives

b, ( T =0)=2E exp (3.26)

E= —
—,'n(eF)ib. i

(3.27)

The temperature dependence of the single-particle gap,
and hence the amplitude of the spin-density wave, are
given by the weak-coupling BCS expression (see, for ex-
ample, Tinkham, 1975).

Crudely speaking, the SDW ground state can be
viewed as two charge-density-eave states —one for the
"spin-up" and one for the "spin-down" sub-bands as
shown in Fig. 5, with the charge-density-wave modula-

(a)

A comparison with Eq. (3.11b) leads to the weak-
coupling BCS relation 26 =3.52k~ T~~~, and the
ground-state energy is given by

pt(x) =po 1+ cos(2kFx +/+re)
VFkFX

(3.28b)

where the coupling constant A, = Un(ep).
The resulting spin-density variation p&(x) —p&(x) is

given by Eq. {3.18) with ~S~ =EN/U [see Eq. {3.21)], and
the resulting charge-density-wave variation p&+p& =p0 is
shown in Fig. 5. Both subbands, however, are tied to the
Fermi surface, and this will have important implications
on the excitations and on the dynamics of the SDW
ground state.

The above considerations are for an arbitrary spin
orientation; in the case of a continuous spin symmetry,
the condensate density can be written as

(S(x))=Socos(2kpx+P) (3.29)

where S=(S„,Sp, S, ). Consequently both the spin rota-
tion and the translational symmetry are broken in the
spin-density-wave state. This will have important conse-
quences on the magnetic properties of the ground state
and on the dynamics of the collective mode.

The description of the SDW transition and ground
state as given above is based on a strictly one-
dimensional model. The materials that develop a SDW
ground state have, however, significant transfer integrals
perpendicular to the chain directions, and models which
include this so-called quasi-one-dimensional character
are expected to be more appropriate. Taking into account
the finite bandwidth in the perpendicular directions, the
dispersion relation is given by (Yamaji, 1982, 1983;
Huang and Maki, 1990)

ek = 2t, cos(ak& ) —2tb cos(bk—2) —2t, cos(ck3) —p,
(3.30)

-k
F kF

where p is the chemical potential, and t is the transfer in-
tegral in the various directions. For t, &&tb, t„ the condi-
tion for nesting,

(3.31)

(b) p (r'I
with Q =(2kp, m/b, n/c), is nearly. , but not entirely,
satisfied. This leads to deviations from the various ex-
pressions which have been obtained on the basis of strict-
ly one-dimensional models. The transition temperature
Tso~ decreases with increasing transfer integral perpen-
dicular to the chain direction, and the transition is com-
pletely removed for

FIG. 5. The spin-density-wave state. (a) The dispersion rela-
tion for a one-dimensional SDW material below the phase tran-
sition. The opening of the gap at +a+ is clearly visible. (b) A
SDW viewed as two CD%'s—one for the spin-up subband and
another for the spin-down —which are spatially out of phase
by ~.

tb
2

b,(T=O) —go= cosak sin ak0 2t F F (3.32)

with b,(T =0) given by Eq. (3.26). In addition, the spin-
density-wave modulation is given by

Rev. Mod. Phys. , Vol. 66, No. 3, January 1994



G. Gruner: The dynamics of spin-density waves

KS(r)=ASocos(Q r+P)

with Q = (2k+, m/b. , m/c . ).

(3.33)

10'-

T(K)
500 10 5 5 2

B. Experimental evidence for the spin-der ity-wave
ground state 10o-

Evidence for transitions to spin-density-waves states
has been found in several members of organic linear-
chain compounds that have been discussed in Sec. II.
Measurements of the various thermodynamic quantities
have been performed in only a few cases„and the princi-
pal observations on the transition are those of the trans-
port and magnetic properties.

As for charge-density waves, the development of the
SDW ground state opens up a gap at the Fermi level,
leading to metal-insulator transitions. The dc conductivi-
ty measured on three compounds that develop a SDW
ground state is displayed in Fig. 6. In aH three cases
there is a well-defined transition from metallic to semi-
conducting behavior; and as for charge-density waves,
the transition temperatures, called T3D, are identified
through the measurement of the temperature derivative
d inp/d(1/T). Below T3D, the conductivities are well
described by

cr =Ooexp (3.34)

The single-particle gaps, evaluated using Eq. (3.34), to-
gether with the transition temperatures, are collected in
Table III. These values, together with the parameters
that characterize the metallic state above T3D, lead, us-

ing Eq. (3.12), to the coupling constant A, .
At low temperatures deviations from the Arrhenius

behavior are observed. These are most probably due to
hopping conduction due to impurity states in the gap.

The density of states above the transition, n(sF), has
been evaluated from the magnetic susceptibility, and the
values given in Table II lead from Eqs. (3.11) and (3.12)
to the Coulomb energies displayed in Table III, which

1
0-3—

10 '-

O.Z 0,4 0.6
1&T(K) '

FIG. 6. Temperature dependence of the dc conductivity vs the
inverse temperature for various compounds with a SDW
ground state at low temperatures.

giy-—30 A

gj, = 1 A

(3.35a)

(3.35b)

The above values of the single-particle gaps and
Coulomb energies also suggest small magnetic moments
associated with the spin-density-wave state. The ampli-
tude of the SD%' modulation may be written as

p 4/b,
/

p~ U
(3.36)

are smaller than cF. In all compounds, therefore,
Coulomb effects lead in these materials to a SD%' state,
in the so-called weak coupling limit. The measured
single-particle gap, together with the Fermi velocities,
also leads to large coherence lengths, and the zero-
temperature values poll =fiVzlrrb, are also given in Table
III. As for charge-density waves, because of the strongly
anisotropic bandwidth in the various crystallographic
directions, the coherence length is also anisotropic. This
anisotropy has been measured only for some of the
(TMTSF)2X salts; and with the anisotropic Fermi veloci-
ties, as discussed in Sec. II, one obtains

TABLE III. Parameters of the spin-density-wave state in various compounds: h~ refers to the single-article gap as evaluated from

the temperature dependence of the dc resistivity.

(TMTSF)qPFg
(MDT- TTF)2Au( CN)2
(DMET)2Au(CN)2

Tsow(k )

11.5'
20
20'

15

[Eq. (3.11)]

0.26

0.25

g(A)

320

Pa
(NMR)

0.08b'
0.1'
0.1g

p
pg

[Eq. (3.36)]

0.01

0.008

U (eV)

[Eq. (3.12)]

2.0
2.0
2.0

'Jerome and Schultz (1982).
"Takahashi et al. (1986a, 1986b).
'Delrieu, Roger, Toffano, Wope Mbougue, et al. (1986).
Nakamura et al. (1990).

'Kanoda et al. (1990).
Kikuchi et al. (1987).
Kanoda et al. (1988).
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'2

Eg(S S +, SfS—f+, ) —gpiiHQS, (3.37)

has been used to evaluate the parameters that character-
ize the SDW ground state. Here J,& is an e6'ective anti-
ferromagnetic interaction along the chains; D represents
the hard-axis anisotropy, and E the intermediate-axis an-
isotropy. The reduced moment is written as plpii, and
the easy, intermediate, and hard axes are z, y, and x, re-
spectively. The above Hamiltonian leads to an anisotrop-
ic susceptibility, with

X~~~0 ~

Xj.
Qg 2p2

2(/J, //J a )2J,ff

+g 2p2

2J.a

(3.38a)

(3.38b)

at zero temperature. Here the parallel direction refers to
the magnetic field, which is applied parallel to the axis
along which the electron spins are aligned in the absence
of an external magnetic field.

This anisotropy has been observed in (TMTSF)2X salts,

{TMTSF jz AsF6

H = 3KGauss

C)
E

E
CD

CO

H, f= 4.5KG
Hl

0 10 20 30
temperature T (K)

FICx. 7. Temperature dependence of the single-crystal spin sus-
ceptibility of {TMTSF)2AsF6 in a magnetic field (H =3 kOe)
lower than the spin-Aop field. The axes b, a, and c are, respec-
tively, the easy, intermediate, and hard axes of the SOW state
stable below 12 K after Ref. 7).

with pz the Bohr magneton. The values of 6 and U as
evaluated above lead to the reduced magnetic moments
and are given in Table III. The magnetic properties of
the SDW state in the weak-coupling limit have not been
calculated. It is expected that the magnetic response and
the collective excitation are close to that of an antifer-
romagnet with a reduced moment and e6'ective exchange
constant J,z. Therefore the Hamiltonian

r '2
Dggxgx

and the susceptibility measured (Mortensen et a/. , 1981,
1982) in the AsF6 salt is displayed in Fig. 7. The magni-
tude of Xi leads, using Eq. (3.38b), to an efFective cou-

pling constant J,&
= 1400 K. The Hamiltonian, Eq.

(3.37), also leads to a spin-fiop field, whose value is

m (2EJ,s )
'i

y
(3.39)

where y is the gyromagnetic ratio. Experiments at vari-
ous magnetic fields, again in (TMTSF)zX salts (Morten-
sen et a/. , 1982), clearly establish the existence of a spin-

Aop field, which is of the order of H,f =4.5 kG from
which an anisotropy energy of E =3X 10 K has been
estimated.

The spatial variation of the spin density, as given by
Eq. (3.18), leads to a spatial variation of the internal field
at the nuclear sites given by

5H(x) = (ao )Ho cos(2k~x +P)
Ija

(3.40)

in the presence of an external dc magnetic field Ho,
where (ao) is the hyperfine field interaction (a quantity
which, in general, can be estimated). The internal field
distribution, which is a sensitive function of the precise
spatial dependence of the spin density, can be measured
by local probes such as nuclear magnetic resonance
(NMR) and muon spin rotation (pSR). Note that for a
commensurate SDW, the distribution of the local field at
the nuclear sites is difFerent from the distribution caused
by an incommensurate SDW. Consequently such studies
can establish the incommensurate character of the densi-

ty wave, and an elaborate analysis can also establish the
nesting wave vector, Q=(Q~, 2k~). This has been done
for (TMTSF)zPF& (Andrieux et a/. , 1981; Creuzet et a/. ,
1982; Takahashi et aI., 1984, 1986a, 19861; Delrieu,
Roger, Toffano, Moradpour, and Bechgaard, 1986; Del-
rieu, Roger, Toffano, Wope Mbougue, et a/. , 1986), lead-
ing to a SDW distortion wave vector (0.5;0.24;0.6) in
units of a ', b *, and c * (with a the chain direction). Un-
like most charge-density-wave (CDW) materials, the
period is commensurate along the chain direction and is
incommensurate perpendicular to the chains. The value
of —, is still with respect to the dimerized lattice and is

therefore consistent with the 4 band filling previously
mentioned. The period measured along the chain direc-
tion is also near to the optimum nesting as arrived at by
band-structure calculations (Yamaji, 1982, 1983).The ex-
istence of an incommensurate SDW has also been estab-
lished by @SRstudies (Le et a/. , 1991). The magnitude of
the magnetic-field distribution, when measured at various
temperatures, gives directly the temperature dependence
of the order parameter, and experimental results ob-
tained by both NMR and pSR studies are displayed in

Fig. 8. The solid line in the figure is the order parameter,
obtained from the weak-coupling BCS theory. The some-
what stronger temperature dependence observed experi-
mentally may be due to the fact that the transition to the
spin-density-wave ground state is really first order. The
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FIG. 8. Temperature dependence of the normalized average
internal field at the nuclear sites as measured by nuclear mag-
netic resonance (NMR) and muon spin rotation (pSR). The bars
for the NMR points correspond to a broadening of the reso-
nance due to the incommensurate nature of the SDW (Le et al. ,
1991;Le et al. , 1993).

magnitude of the spin-density-wave modulation can also
be extracted from the experimental results, leading to a
value of p/ps which is close to that evaluated from
NMR studies. This value is in excellent agreement with
the magnetic moment evaluated from the measured
single-particle gap and Coulomb interaction energy by
using Eqs. (3.12), (3.21), and (3.26).

Magnetic susceptibility and NMR studies have also
been conducted on (MDT-TTF)2Au(CN)2 (Kanoda
et al. , 1990) and on (DMET)2Au(CN)2 (Kanoda et al. ,
1988). In both cases, the magnetic properties are similar
to those of an antiferromagnet with a small magnetic rno-
ment, and the broadened NMR signal below T3D clearly
establishes the incommensurate spin-density-wave
ground state. The parameters of the ground state, such
as p/ps, have not been evaluated. The development of
the SDW ground state also leads to an internal field,
shifting the electron-spin-resonance (ESR) frequency up
to frequencies determined by the anisotropy factors.
Consequently, the conventional ESR signal disappears at
Tsow, and this has been observed in the various materi-
als (Walsh et al. , 1980; Kanoda et al. , 1988, 1990). In
addition, spin excitations lead to a relaxation of nuclear
spins (Takahashi et al. , 1986b). The detailed mechanism
is, however, not understood at present.

!V. COLLECTIVE EXCITATIONS

Because of the magnetic character of the spin-density-
wave ground state, both spin and charge degrees of free-
dom are available, and consequently various types of am-
plitude and phase excitations may occur. With the sim-
ple description of the spin-density-wave modulation in
the two spin subbands, as given in Fig. 5, these excita-
tions in the long-wavelength limit are shown in Fig. 9.
The top part of the figure indicates the displacement of

~C r p

po

FIG. 9. Various amplitude and phase excitations for a spin-
density-wave ground state in the q =0 limit. In each case the
SDW is viewed as two CDWs —one for each spin subband-
with the solid lines ( ) indicating the initial state and the
dashed lines ( ———

) the perturbed state. (a) Both CDWs have
been displaced by the same amount in the same direction, lead-
ing to a net displacement of the SDW. This is the phason mode.
(b) A CDW amplitude excitation in each subband with a phase
di6'erence of ~ between the two is shown. As this would lead to
a time-dependent charge density, it is not allowed. (c) Same as
in {b), except the excitations are in phase. This excitation is the
SDW amplitude mode. {d) Shown is an excitation that modifies
the phase di8'erence between the two subbands. Such a distor-
tion leads to a charge buildup and is therefore forbidden.

A. Ginzburg-Landau theory of the excitations

The Quctuations of the amplitude and of the phase of
the spin-density-wave modulation are described by the
time-dependent Ginzburg-Landau free energy

both CDW modulations in the same (say, right) direc-
tion, which leads in turn to the displacement of the spin-
density-wave modulation. The excitation is analogous to
the phase excitations discussed for charge-density waves.
The next two parts of the figure describe two diferent ex-
citations, both related to the change of the amplitudes of
the density-wave modulations. The first represents the
amplitude fluctuations where the time dependence of the
fluctuations is out of phase in the two subbands. This,
however, would lead to a time-dependent charge-
density-wave component of the order parameter. This
would lead to an additional energy and is consequently
not allowed. The amplitude fluctuations may also occur
in phase, and this leads not to a charge Auctuation but to
a change of the amplitude of the spin-density-wave
modulation. This excitation corresponds to the amplitude
mode as discussed earlier. The fourth possibility, charge-
density-wave modulations oscillating in opposite phase,
would also lead to a charge-density-wave component, and
is thus forbidden.
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2

I' =n (sz) ah (T)+c +ddA dA
X dt

(4.1)
The effective coupling constant has been calculated for
itinerant electrons. In the weak-coupling limit

where the constants a and c can be derived using a micro-
scopic theory. For long-wavelength Auctuations, the or-
der parameter is written as

b, = ( 50+5)e'~ (4.2)

and the oscillations of the magnitude and phase are
decoupled. Standard evaluation of the equation of
motion leads to two modes, with the dispersion relations
(Lee, Rice, and Anderson, 1974; Psaltakis, 1984)

co~ =(2b, ) +(V~q)

for the amplitude mode and

(4.3)

(4.4)

for the phase mode at zero temperature and in the U~O
limit. These dispersion relations are different from those
obtained for charge-density waves (Lee, Rice, and Ander-
son, 1974). This difFerence is due to the fact that, in the
case of charge-density waves, the charge oscillations are
accompanied by ionic motion leading to a significantly
enhanced effective mass. No such mass enhancement
occurs for spin-density waves. As for charge-density
waves, the phase m.ode is optically active, while the am-
plitude mode is Raman active.

At finite temperatures, both the amplitude and phase
mode have a well-defined temperature dependence.
These are determined by the temperature-dependent gap
5( T) and by the temperature dependence of the conden-
sate density f (T), which has to be included in Eq. (4.1).
Both co, and the velocity of the phase mode go to zero at
the phase transition and have a characteristic mean-field

Inperature dependence near Tsow
Coulomb interactions lead to a renormalization of the

phason velocity, and the dispersion relation for U & ez is
given approximately by

co&= V~[1+Un (s~)]q, (4.5)

(4 6)

leads to the dispersion relation

(4 7)

where Vz here denotes the Fermi velocity in the absence
of Coulomb interactions (Psaltakis, 1984).

Next we turn to the spin excitations. In the absence of
spin-orbit and dipole-dipole interactions, the spin degrees
of freedom have full rotational symmetry. This leads to
excitations of a 1D Heisenberg antiferromagnet. These
excitations are described by the Harniltonian (3.37),
which accounts well for the static magnetic properties of
the SDW ground state. Consequently, results which have
been obtained for antiferromagnets can be adapted.

In the absence of magnetic anisotropy fields, the equa-
tion of motion

x„&s,) =~[(s,) xH„]

V~[1—Un (sF)]'
(4.8)

while in the strong-coupling limit, J,~ is given approxi-
mately by (Griiner and Maki, 1991)

efF 4 U
(4.9)

where 8'is the bandwidth.
Spin-orbit and dipole-dipole interactions remove the

rotational symmetry of the magnetic excitations and lead
to an energy gap in the spin-wave excitation spectrum
just as for conventional antiferromagnets. The gap and
the dispersion relation depend sensitively on the orienta-
tion of the external magnetic Geld with respect to the pre-
ferred axis of magnetization. For arbitrary D and E the
spin-wave spectrum has two branches, and for zero mag-
netic field we obtain

fico+ = J,s (D +E), (4.10)

2EJ,~ .
Pa

(4.11)

The magnetic-field dependence of the resonant frequen-
cies can be calculated for various directions of the mag-
netic Geld.

B. Collective magnetic excitations of the spin-density-
wave state: antiferromagnetic-resonance experiments

The phase and amplitude modes related to charge exci-
tations of the SDW state have not been measured, and
neutron- or Raman-scattering studies of these materials
have not been performed to date. Optical conductivity
measurements, which sample the q =0 phase excitations,
will be discussed later.

The spin excitations have been examined in various
materials through measurements of antiferromagnetic
resonance. These experiments add little to our under-
standing of the SDW state, but give clear evidence that
Eq. (3.37) is an appropriate starting point in describing
the magnetic properties of the ground state. The experi-
ments are, in general, conducted at fixed measuring fre-
quency, with varying magnetic field and/or temperature.
The temperature dependence of the resonance frequency
0+ [see Eq. (4.10)] is shown in Fig. 10, together with the
magnetic field where the resonance is observed. These
values then give, by virtue of Eqs. (4.8) and (4.9), the an-
isotropy parameters. As expected, D and E are small, be-
cause of the small moment JM. A comparison with calcu-
lated values gives a rough estimate of p/ps =0.1 —0.2, in
good agreement with NMR and pSR studies, discussed
earlier.

The thermally induced magnetic excitations also have
a profound inhuence on the temperature dependence of

Rev. Mod. Phys. , Vol. 66, No. 1, January 1994



G. Gruner: The dynamics of spin-density waves

the magnetization M ( T), in a fashion similar to that ob-
served in conventional antiferromagnets. The magnetiza-
tion is proportional to the internal field, which in turn
has been measured to high accuracy by employing muon
spin-relaxation experiments (Le et al. , 1991), and the re-
sults are displayed in Fig. 11. In order to account for the
temperature dependence, Eq. (3.37) can be used with the
extension from a one-dimensional chain to a system of
weakly coupled chains.

For weakly coupled Heisenberg chains, the dispersion
relation, keeping only the gap cu, associated with the
larger antiferromagnetic-resonance frequency, is (Kittel,
1963)

1.02

1.00

0.98

0.96C3

0.94

0.92

0.90

0.88

spin wave

BCS gaP

ro(k)=ro, [b, +k„+2a(1—cosk y)]' (4.12)

= 12.47 kOe

where co, =2J,s(p, /ps), a=J,s./J~ with J~ the perpen-
dicular coupling constant. The gap in the magnon exci-
tation spectrum, given by Eqs. (4.10) and (4.11), is here
co, h, and we have kept only one gap for the sake of sim-
plicity. Here we have assumed that the dispersion in the
third direction can be neglected. The reason for this is
the quasi-two-dimensional band structure with the
transfer integrals t of the order of 250 meV, 25 meV, and
13 meV, along the chains and in the two directions per-
pendicular to the chains. As the effective coupling con-
stants in the perpendicular directions are expected to be
proportional to t, in the light of the anisotropy of the
transfer integrals the 2D limit of the magnon spectrum is
justified. (We note that at extremely low temperatures a
crossover to a three-dimensional limit occurs. This, how-
ever, is expected to arise at temperatures significantly
lower than our lowest experimentally accessible tempera-
tures. ) The dispersion relation given by Eq. (4.12) has
different character at high and at low frequencies, and,
depending on the frequency of the magnon modes, two
regimes can be distinguished. For m —co, 6 )&ufo„
ro(k) is nearly independent of k, and the density of states
is that of a 1D magnon spectrum given by

0 2 4 6 8 10

Temper atur e (K)
FIG. 11. Comparison of pSR data at low temperatures with
model calculations. The solid line shows the 20 spin-wave cal-
culation with an average stifFness constant of 200 K, and the
dashed line represents the BCS-gap curve (Lee et al. , 1993).

(ro/co, )'
p(ro) =

4~ [(~/ )2 g2]1/2
(4.13)

for co —m, A «neo„ the dispersion relation can be ex-

panded in terms of k~ J~ and

(k)= [6+k J + k J
Consequently, the density of states is

1 co
p(ro) =

4~ ~2~~~~
CO~ CX

(4.14)

(4.15)

An approximate form of the density of states, appropri-
ate for both limits, is given by

1 co/co~
p(ro) =

4~ [(ro/co, ) —b, +a]'/2 (4.16)

The magnetization is given, at temperature T, by (Kit-
tel, 1963)

(4.17)

with the cutoff frequency defined as

M(T) =Mo 5ro
0 p(ro)

[( 2/ 2
) g2]1/2 co/kT I—

cod 5cop(co) =-
e

(4.18)

X

RE

c
= 12.5K

The magnetization calculated from Eq. (4.17) with the
parameters established earlier is displayed in Fig. 11, to-
gether with the magnetization as derived from the experi-
ments.

(0)

0 4 8 12 16

T(K)

FIG. 10. Antiferromagnetic-resonance frequencies measured
along various directions in (TMTSF)zAsF6. The solid lines are
calculated curves based on Eq. (3.37}with the parameters given
in the text (Torrance et al. , 1982).

V. IMPURITY EFFECTS

Impurities distributed randomly in the specimens have
a profound inhuence on both the static and dynamic
properties of spin-density waves. Impurity potentials
that couple directly to the phase P of the condensate des-
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troy long-range order (Imry and Ma, 1975; Sham and
Patton, 1976) and lead to a finite phase-phase correlation
length I.o. The value of I.o depends on the strength of
the impurity potentials, or the impurity concentration,
and on the properties of the density wave.

The usual treatment of the problem deals with the im-

purity effects at low temperatures where amplitude exci-
tations of the collective mode can be neglected; conse-
quently, only the phase degrees of freedom are taken into
account. Temperature-induced Auctuations, together
with quantum fluctuations of the collective mode, are
also neglected. The Hamiltonian that describes the in-
teraction is given within the framework of the
Ginzburg-Landau theory (Brazovskii and Dzyaloshinskii,
1976; Fukuyama and Lee, 1978) by

n( sF) VF
H~= fdr[(VQ) + V~ p($)],

4A

p(xj

phase matching

X

V ~

Friedel pscillation

(a)

where (VP) refers to the gradient of the phase, and an-

isotropy effects due to the anisotropic band structure are
neglected. Such effects can be included through the an-

isotropy of the Fermi velocity Vz. The first term is the
usual elastic energy, and the second is the interaction be-
tween the collective mode and impurities. As usual, the
approach is appropriate for the long-wavelength defor-
mations of the collective mode. Deformations on the
length scale L ($0=%v~/2b, cannot be discussed within
the framework of this description.

The mechanism leading to an interaction between
charge-density waves and impurities is indicated in Fig.
12(a). The impurity potential V(k;)=V05(r —R;) at RJ
induces a charge-density oscillation with period A, =+/kz
(the well-known Friedel oscillation), which is phase
matched to the density wave. For small impurity poten-
tials, this interaction can simply be written as

V; ~(P)= fdr V(r —R;)p,cos[2kFr+P(R, )],
where p, is the amplitude of the density-wave modulation
in the two spin subbands. Qbviously this is appropriate
only if the impurity potential does not lead to
modification of the amplitude of the collective mode. The
amplitude of the spin-density wave is strongly modified
near to the impurity if Vo is comparable to the single-
particle gap. The bound impurity states may occur, as
discussed in detail by Tiitto and Zawadowski (1985; see
also Zawadowski and Tiitto, 1989).

In the case of spin-density waves, the situation is
different. To first order, charged impurities do not in-
teract with the ground state. However, to second order
the interaction between the impurity and the two sub-
bands (both with a modulation of the charge density) is
diFerent, as indicated in Fig. 12(b), and this leads to an
interaction energy given by (Tua and Ruvalds, 1985;
Suzumura and Saso, 1987; Tutto and Zawadowski, 1988;
Maki and Virosztek, 1989)

V; ~(P)= fdr V(r —R; )p& cos[4k~R;+2/(R, ) ] . (5.3)

FIG. 12. Spin-density-wave-impurity interaction. (a) Interac-
tion of an electrostatic potential V(r) placed at the origin with a
charge-density-wave ground state. The electron density is de-
picted around an impurity. Between the regions dominated by
the Friedel oscillation and the CDW, mismatch regions
{hatched) are formed {Zawadowski and Tutto, 1989). (b) In-
teraction of an electrostatic potential V(r) with a spin-density-
wave ground state. The electron densities of up (solid line) and
down (dashed line) spin electrons are shown schematically near
a nonmagnetic impurity. In the immediate vicinity of the im-

purity, a charge oscillation known as a Friedel oscillation is
formed. Far from the impurity the SDW is not deformed. In
the crossover region the mismatch takes place, which is respon-
sible for the pinning {Tutto and Zawadowski, 1988).

In Eq. (5.1) the first term favors a uniform phase, with
distortions leading to the increase of the elastic energy.
The second term, however, favors local distortions of the
phase, thus decreasing the electrostatic interaction ener-

gy
The various situations that may occur have been dis-

cussed at length for charge-density waves, and therefore
only the main result will be recalled here. For an impuri-

ty concentration n;, the potential-energy gain for a com-
plete adjustment of the density wave at every impurity is
given approximately by

Vp.t= Vowed . (5.4)

2K
V,)= V~

( )
——VFn;, (5.5)

where ( I ) is the average distance between the impurities.
Consequently, the ratio

VI,.t Voei

V,) VFn;
(5.6)

This adjustment would, however, lead to an increase of
elastic energy, and from Eq. (5.1) this is approximately
given by

Rev. Mod. Phys. , Vol. 66, No. 1, January 1994



G. Gruner: The dynamics of spin-density waves 13

As the phase is completely adjusted to the impurity posi-
tions at every impurity site, the average phase coherence
length is given by

1I
rI

(5.8)

the average distance between impurities.
The case for e 1 is more interesting, and, in this limit,

scaling arguments can be used to evaluate the total ener-

gy and the phase-phase coherence length (Fukuyama and
Lee, 1978; Lee and Rice, 1979). Such arguments lead, in
three dimensions, to

(vari V~ )
o=

(3/2) Vopin;
(5.9)

and the characteristic length is inversely proportional to
the impurity concentration. From Eq. (5.9) the total-
energy gain per unit volume,

(5.10)

is proportional to the square of the impurity concentra-
tion.

With a typical impurity potential, Vo —-3X10 eV
(comparable to the single-particle gap), a Fermi velocity
VF=10 cm/sec, and p, -10 'po, as established from
NMR studies (see Sec. III), an impurity concentration of
n;=100 ppm leads to a phase-phase correlation length
I.o -1LM, a macroscopic distance not significantly smaller
than the specimen dimensions. This value refers to the
length scale of phase correlations along the chain direc-
tion. Perpendicular to the chains, the correlation length
from Eq. (5.9) is proportional to the square of the anisot-
ropy of the Fermi velocity. For the materials
(TMTSF}2X, the anisotropy is of the order of 10 and 250
in the two perpendicular directions; consequently, the
coherence length is of the order of 100 A and 1 A in the
two perpendicular directions. With g less than the dis-
tance between the chains, arguments based on a three-
dimensional anisotropic condensate such as that de-
scribed by Eq. (5.1) may not apply. This question has,
however, not been addressed to date.

The absence of long-range order, as implied by the
finite phase-phase correlation length, may have impor-
tant consequences.

tells us whether the impurity —density-wave interaction
or the elastic term. is more ixnportant. The situation
where V„«) V,i is called strong impurity pinning (the
name "pinning" refers to the fact that the collective
mode is "pinned" to the underlying lattice through the
interaction with impurities).

For e»1, the potential-energy term dominates, and
the total energy of the coupled collective mode and im-
purity is given by

(5.7}

The transition to the SDW state becomes broadened by
impurities. In addition, impurities may lead to bound
states in the gap (Zawadowski and Tiitto, 1989), which
may lead to impurity conduction at low temperatures in
a fashion similar to that observed in conventional semi-
conductors. The finite correlation length is also sugges-
tive of many metastable states, with thermally induced
transitions between these states contributing to the low-
temperature specific heat in a fashion similar to that ob-
served in charge-density waves (Biljackovich et al. ,
1986).

Vl. THE ELECTRODYNAMICS OF
SPIN-DENSITY WAVES

Spin-density-eave condensates couple to electromag-
netic fields, and the fiuctuations of the phase P of the
ground state leads to electric current. In the absence of
pinning due to impurities and lattice defects, the transla-
tional motion of the condensates would lead to a conduc-
tivity at zero frequency which, in the absence of damp-
ing, would also result in an infinite conductivity. This
possibility was first raised by Frohlich (1954) in connec-
tion with charge-density waves. Carrier excitations
across the single-particle gap may lead to electromagnet-
ic absorption, with an onset frequency of cos =2h/A' for
the absorption process. These features are similar to
those observed in superconductors. There are, however,
several important differences that lead to electrodynam-
ics fundamentally different from that of the supercon-
ducting ground state.

As discussed earlier, the interaction of the collective
mode and impurities can, to first order, be represented as
a restoring force. This leads therefore to a collective-
mode contribution to the conductivity at finite frequency,
with cr„&&=0at su=0. The interaction between the collec-
tive modes and lattice vibrations and imperfections leads
also to damping and to a finite spectral width of the
collective-mode resonances. The dynamics of the internal
deformations of the collective modes will, furthermore,
lead to long-time or low-frequency relaxational modes,
with a frequency-dependent response similar to those ob-
served in glasses and strongly disordered solids.

These aspects are well understood for charge-density
waves (Griiner, 1988), where extensive optical experi-
ments clearly identified the single-particle excitations and
the contribution of collective-mode resonances. The state
of affairs is less clear for spin-density waves, where major
disagreement between theory and experiments remains.

A. Models of the frequency-dependent conductivity

As in a superconductor, the phase P(x, t) plays an im-
portant role in the dynamics of the collective modes for
both charge- and spin-density waves. The infinite wave-
length phase modes correspond to the translational
motion of the condensed electrons. A rigid displacement
of the density wave (DW) leads to an electric current, and
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e dgjD%' (6.1)

the current density per chain is jDw = —n, evd—
nDw e (d P/dt). With P =2kpx and A, = IT/k~, we ob-

tain

conductor with a well-defined absorption edge of energy
Aco=26. In the absence of the contribution from the col-
lective mode, the optical conductivity coming from
band-to-band transitions is given by

A compression of the wave 1eads to a change of the elec-
tronic density, and therefore

o(co)= . [f(co) —f(0)],
l comb

where, for a one-dimensional electron band,

(6.10)

e dP
Il

dx
(6.2) 25 /Ef (co)= ff—dEk z(co+i') 4E—

at zero temperature. The cross derivatives of the above
equations lead to the equation of continuity, mi +ln 1 —y

1+/ (6.11)

djDw dn,+ =0. (6.3)

The electric potential couples to the gradient of the
phase, and the potential-energy density is given by

HE= —Ee dP
'lT dX

(6.4)

Here the electric 6eld E is applied along the chain direc-
tion.

The energy related to the spatial and temporal Auctua-
tions of the phase has been discussed in Sec. IV, and the
equation of motion

with E =Ek+b, , Ek=ek —ep, and y =(1 4b. /—
fi co )'~ . Because of the E '~ singularity of the density
of states in one dimension, cr(o]) has a singularity at the
gap frequency co . The low-frequency dielectric constant
is given by

4m 1 ~To]
e(co~0) =1— Imo = 1+—

co 6
(6.12)

where the plasma frequency co =(4ITne /mb)'
The relative weight of the collective mode and single-

particle contributions to the optical conductivity is deter-
mined by sum-rule arguments. The total contribution to
the sum ruledfm2d PE E(

dt m dx m
(6.5) 2—f [0' ]](co)+ctsp(co)]dco=

ne
(6.13)

in the presence of an ac electric field E(t)=Eoe'"'
leads to is the same as the sum rule in the metallic state,

2

a,»](co)= = 5(co)+j (co) m ~] ]2
E(]o) m* COD

(6.6)
2 f CT~(CO)dCO= f 2

dCO=
2 ne

mb(1+co2r )

ne
(6.14)

Here m is an effective mass associated with the dynam-
ics of the condensate. As discussed in Sec. IV, for spin-
density waves, m is expected to be the same as the
bandmass mb, and consequently co =4vrne /mb is the
plasma frequency. The real part,

The collective-mode contribution from Eq. (6.8) is

2 pfe
Ico]] ~co]](]O)d~=

m
(6.15)

while the single-particle excitations give a contribution

Reo„„(co)=,e] 5(co),
Sm*

(6.7) =2 lie
Isp IT s p( co )d To =

mb

Ple lee 1—
m* mb

mb

m

m.ne

2m
(6.8)

The imaginary part is obtained using the Kramers-
Kronig relation,

2' ~ Reo (]o')
II110'co]](CO ) 2

dco
CO CO

2
m ~p

m* 4mco
(6.9)

The contribution of single-particle excitations is ex-
pected, because of the gap, to be similar to that of a semi-

has a Dirac delta singularity at m=O, with an oscillator
strength

(6.16)

For a large effective mass, m*/mb »1 (as occurs for
charge-density waves), nearly all the contribution to the
total spectral weight comes from single-particle excita-
tions, while for m */m], =1 (the situation appropriate for
spin-density waves) all the spectral weight is associated
with the collective mode, with no contribution to the op-
tical conductivity from single-particle excitations.

The above arguments are appropriate in the clean lim-
it, 1/r «b„which is equivalent to the condition g« l.
The response for the opposite case, the so-called dirty
limit, g »]], has not been calculated. It is expected, how-
ever, that arguments advanced for superconductors apply
also for density-wave ground states. As for superconduc-
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tors, the collective-mode contribution to the spectral
weight is given by the difference

5= f [cr (co) —crsp(co)]den, (6.17)

with o m (co) given by Eq. (6.14). This difference is approx-
imately the area given by

f CO COp
o (o))dco=2cr b, =m . dc (6.18)

in the dirty limit, with od, the dc conductivity. Conse-
quently, the spectral weight due to the mode contribution
is reduced with decreasing I/g, and an empirical equa-
tion, similar to Pippard s equation for the penetration
depth (see, for example, Tinkham, 1975), of the form

IO
coll

1 +
al (6.19)

d p 1 d p+ 2~ ne. E()
dt pyz

* (6.20)

leading in the presence of an ac electric field
E(t)=Eoe' ',, to

can be anticipated. Here I„&& is the spectral weight of the
collective mode in the clean limit. The numerical factor
a, however, is expected to be different from unity, which
is appropriate for a superconductor.

The collective-mode contribution occurs at zero fre-
quency due to the translational invariance of the ground
state. As discussed in Sec. V, in the presence of impuri-
ties this translational invariance is broken, and the collec-
tive modes are tied to the underlying lattice due to in-
teractions with impurities. To first order this can be de-
scribed by an average restoring force k =coom '. Interac-
tion between the collective mode and the lattice imper-
fections, impurities, etc., may also lead to a Qnite relaxa-
tion time v.*. With these effects the equation of motion
becomes

FIG. 13. Frequency dependence of the conductivity and dielec-
tric constant for a spin-density-wave ground state. The figure is
appropriate for coo (6 and for the clean limit 1/~( h.

the dynamics of the local deformations of the collective
modes. The types of process that have been neglected are
shown in Fig. 14 for two impurities. The upper part
displays an undistorted spin-density wave, with a period
A, =m/k~, and a phase P which is constant. In the pres-
ence of impurities, the collective mode is distorted and is
adjusted to maximize the energy gain due to interaction
with the impurity potential. The resultant distorted den-
sity wave is displayed in the middle section of the figure.
A low-lying excitation, which involves the dynamics of
the internal deformations, is displayed at the bottom of
Fig. 14; here a density-wave segment has been displaced
by A, , leading to a stretched density wave to the left and
to a compressed density wave to the right of the impuri-
ty. The local deformation leads to an internal polariza-

Reer(al )= ne

CO(COO CO )

m (coo—co ) +(co/z~)
Imo (co)= n8

co /'r
m' (coo co ) +(o)/r')— (6.21a)

(6.2 lb)

For m*=mb, which is valid for a spin-density ground
state, single-particle excitations do not contribute to the
optical conductivity in the clean limit, and the
collective-mode contribution appears at co=coo with

e(co~0) = 1+ 4~ne
Pl b COO

(6.22)

having a zero crossing at the plasma frequency
co =(4nne /mb)'r . The response is shown in Fig. 13
with the important parameters also indicated on the
figure.

The effect of impurities as described by an average re-
storing force k is a gross oversimplification: it neglects

(b)

(c)

FIG. 14. Following the convention of Fig. 9, with the solid line
representing the spin density down, the dashed line the spin-up
density-wave distortion: (a) an undistorted spin-density wave.
(b) A distortion due to impurities. An expansion of the spin-
down-subband allows phase matching at the impurity site. This
distortion leads to a charge buildup about the impurity. (c) A
low-lying excitation of the spin-density-wave state in which
both subbands are stretched in the region between the impuri-
ties.
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16 G. GrUner: The dynamics of spin-density waves

tion by virtue of the displaced charge that accompanies
the stretched or compressed density wave. This polariza-
tion is given by

4' c)P(r)Pr=
c)r

(6.23)

Such processes have been described as a broad superposi-
tion of Debye-type processes, and various phenomenolog-
ical equations have been given to account for the low fre-
quency and long-time behavior of the electrical response.
Among these is the so-called Cole-Cole equation,

E,o
X(co)= 1+(i co~o)

' (6.24)

5j(k, co) =ger(k, k', co)5E(k', co) .
k'

(6.25)

Because of the local fluctuations of the internal field, the
experimentally measured conductivity o(co) that relates
the spatial averages 5E(co) and 5j(co) through the equa-
tion

5j(co)=cr(co)5E(co) (6.26)

cannot be expressed as ( cr(k, k', co) ~ =o (k co)5k, k' and a
more sophisticated treatment, which includes the k
dependence of the electric-field fluctuations, is required.
The issue is complicated, but has received considerable
attention recently (Wonneberger, 1991a and references
cited therein).

B. Frequency-dependent conductivity of (TMTSF),X salts

The frequency-dependent response of spin-density
waves is expected to be fundamentally different from the
frequency-dependent conductivity observed in the

with &x&1 and ~o an average relaxation time. c.o is the
average dielectric constant frequently used to describe
the so-called glassy behavior of a variety of random sys-
tems. While these descriptions offer little insight into the
microscopic details of the response, they are useful in es-
tablishing that it is due to a broad distribution of relaxa-
tion times and/or frequencies. They, however, do not ad-
dress the important issue of Auctuating local electric
6elds, which arise as the consequences of local deforma-
tions of the collective mode. The local deformations,
such as those shown in Fig. 14, lead to a spatially inho-
mogeneous local field 5E(k, co) and also to a current
j(k, co). The relation between the two quantities is given
by

( TMTSF)~ PF6—20K
1QK

o 5K
e 2K

3
b

2-

0
ooo ~ ~ OOoooo ooOoo bdg ohksks4iO ~ II ~ ~ 0 Jskk @s 4P+

10 10
' 10 10'

1

/

b/

o

frequency (cm ' j

102 10' 10'

FIG. 15. Frequency dependence of the conductivity measured
at various temperatures in (TMTSF)2PF6. The fit is to Eq. (6.21)
with a Drude term due to thermally excited single-particle
states (see Table IV). The single-particle gap determined from
dc resistivity measurements is indicated by the arrow (Donovan
et al. , 1993}.At each temperature the feature near 100 cm
was 6t with two oscillators (vp~ v&~ 1/2~7~ and vpp vp2 1/2~op
with c,„=2), while the low-frequency response was modeled
with both a Drude (v~, l/2mr"), and a phason (vf, v~~, 1/2m'')
contribution, where the convention v=co/2m. was used.

charge-density-wave state. Because the effective mass m

is the same as the band mass, all the spectral weight is ex-
pected to be associated with the collective mode, with
single-particle excitations not contributing to cr(co) in the
clean limit. This limit is appropriate in (TMTSF)2 salts,
the materials which have been investigated in detail by
Walsh et al. (1980), Zettl and Griiner (1982a), Janossy
et al. (1983), and Javadi et al. (1986). The frequency-
dependent conductivity measured (Quinlivan et al. , 1990;
Donovan et al. , 1993) in (TMTSF)2PF6 is shown in Fig.
15 (see also Table IV). The observed behavior is in
disagreement with the models of spin-density-wave dy-
namics discussed earlier. As for charge-density waves,
one recovers a resonance in the microwave spectral
range, and the most likely explanation is that this reso-
nance is the pinned spin-density-wave mode. The in-
crease of o(co) in the far-infrared spectral range is not
due to single-particle excitations, as suggested by various
groups (Ng et a/. , 1984; Eldridge and Bates, 1986), since
the feature has also been observed above the transition
temperature.

The resonance that occurs at frequencies near

TABLE IV. The parameters (in cm ') used in the fit to Eq. (6;21).

T=20 K:
T=10 K.
T=5 K.
T=2 K.

vp1

117
117
117
117

Vpl

9333
9333
9333
9333

1/2~&(

1433
1433
1433
1433

vpz

117
117
117
117

5333
5333
5333
5333

1/2m&2

200
200
200
200

vd

2500
1050
467

45

1/2m&"

0.067
0.1
0.2

267
233
217

0.1

0.13
0.13
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FIG. 16. Frequency dependence of the conductivity of
{TMTSF)2pF6 and Xo 3Mo03. The latter compound has a
charge-density-wave ground state {Mihaly et al. , 1991a, 1991b).

cooi2n. =3 GHz has a small and weakly ™perature-
dependent spectral weight, which is approximately two
orders of magnitude smaller than the spectral weight
which corresponds to the band mass mb (Donovan et al. ,
1992). This gross disagreement between theory and ex-
periment is unaccounted for at present. The small spec-
tral weight could be interpreted as arising because of the
large efFective mass as seen in Eq. (6.15). The efFective
mass could be enhanced by the coupling of the spin-
density wave to the phonons. This coupling, however,
would also lead to a lattice distortion, and this has not
been observed (Pouget, private communication). It has
also been suggested that long-range Coulomb interactions
shift the oscillator strength to the plasma frequency
(Maki and Gruner, 1991). This so-called Anderson-
Higgs mechanism does not, however, apply to the trans-
verse modes sampled by optical spectroscopy. It is also
conceivable that bound states created either by impurities
(Zawadowski and Tiitto, 1989) or by discommensurations
(Wonnenberger, 1991b) make a large contribution to the
spectral weight in the spin-density-wave state. Thus by
virtue of the conservation of the total spectral weight the
contribution of the pinned mode is small. Further experi-
ments on alloys and on other materials in their SDW
state are needed to clarify this point.

The dynamics of the internal deformations of the col-
lective mode have also been examined; and as for
charge-density waves, a low-frequency tail develops as
the consequence of these deformations. This is shown in
Fig. 16 where the conductivity measured (Donovan
et a/. , 1993) in the spin-density-wave state of
(TMTSF)2PF6 is compared with that measured for the
charge-density-wave state of Ko 3Mo03. Similar
behavior has been found by Trmtteberg et al. (1994).
Theories (Littlewood, 1987; Wonneberger, 1991a, 1991b)
worked out for the low-frequency dynamics of charge-
density-wave states, when extended to account for the
spin-density-wave response, are expected to give a good
account of the experimental state of affairs. The experi-
mental results obtained on (TMTSF)zAsF6 are similar
(Donovan et al. , 1993) to those obtained on the PF6 salt.

In (TMTSF)2NO3 the collective-mode contribution is not
evident, most probably because of the large single-
particle contribution to the dc conductivity below TsD~
(Donovan et al. , 1991).

The temperature dependence of the low-frequency
response has also been investigated in detail (Kriza, Kim,
et al. , 1991).The low-frequency tail, as shown in Fig. 16,
progressively freezes out at low temperatures, as expect-
ed for internal deformations, the dynamics of which are
governed by screening effects due to uncondensed elec-
trons. The long-time behavior of the ac response is given
in the time domain by ™alyand Mihaly, 1984)

P(t)=exp
'T

a

(6.27)

where the exponent a =0.73 is temperature independent.
The average relaxation time w(T) has the following ™
perature dependence,

~(T) =exp (6.28)

where 6' observed is close to the single-particle gap
6= 15 K. This suggests that the long-time relaxation
process is determined by the number of thermally excited
single-particle states which screen the internal deforma-
tions of the collective mode. These deformations, which
can have many possible metastable states close in energy
but well separated in space, also lead to hysteresis effects
and to memo)ry phenomena. Such effects have been stud-
ied extensively for materials with a charge-density-wave
ground state (Gill, 1981; Fleming and Schneemeyer,
1983). Memory efFects related to the internal deforma-
tions of the collective mode have been observed recently
in (TMTSF)2PF6 (Kriza et a/. , 1992), by driving the col-
lective mode out of equilibrium by the application of
electric pulse. During this experiment, pulse sequences,
with either the same or opposite polarity for subsequent
pulses, are applied, with an amplitude that may exceed
the so-called threshold electric field, at which the collec-
tive mode is depinned for opposite pulse sequences. The
slow discharge is due to the slow relaxation of the collec-
tive mode, which approaches equilibrium when the elec-
tric field is absent. This excess discharging process has
been observed for pulses separated by up to approximate-
ly 100 sec, i.e., for time scales orders of magnitude larger
than those which characterize the frequency of oscilla-
tions of the pinned collective mode. The most likely ex-
planation of the phenomenon is that a reversal of the ap-
plied field leads to transitions between different non-
equilibrium states, and such states also difFer in the mac-
roscopic charge displacement in the specimens. The
long-time scales involved then suggest that the relaxa-
tional processes which are related to the transitions are
extremely slow. This is not unexpected in the light of the
very long phase coherence length involved.
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Vll. NONLlNEAR TRANSPORT

4~n, e
E(a)—+0)= 1+

k
(7.1)

The pinned-node resonance, together with the low-
frequency ac response due to the internal deformations of
the collective mode, indicates a small overal1 restoring
force k associated with the pinning of the collective mode
to the ua.derlying lattice. A small restoring force k is then
suggestive of translational motion of the spin-d. ensity-
wave condensate, which could be induced by a relatively
small electric field. The consequence of such motion is a
nonlinear current-voltage characteristic. The magnitude
of the threshold field for such a translational motion may
be estimated as follows: the restoring force (k =m'coo)
is related to the low-frequency dielectric constant by
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where n, is the number of electrons per unit volume. The
intrinsic periodicity of the SDW is given by A,o. If the en-

ergy eEA, /2 provided by the applied dc field E over a
length A, /2 is larger than E„„asgiven by Eq. (5.10),
translational motion of the entire condensate can be in-
duced. Therefore the threshold field is given by

A,k
2e

which by virtue of Eq. (7.1) can also be written as

Ez E(aI +0)=4me—ni

(7.2)

(7.3)

where n j is the number of chains per unit cross section.
The above arguments neglect the role played by internal
deformations which modify both s(co~0) and the
threshold field ET. However, Eq. (7.3) was found to be
approximately obeyed for a variety of compounds with a
charge-density-wave ground state, for which similar ar-
guments apply (Wu et al , 1984; Grii. ner, 1988).

Although early observations on nonlinear transport in
the SDW state were thought to be due to spurious effects,
nonlinear transport with a well-defined threshold field
has now been found in a variety of compounds with a
SDW ground state. This finding, together with various
other experiments discussed later, directly confirms the
translational motion of the condensate. Furthermore, at
low temperatures a novel type of transport, different
from those observed at high temperatures (and in com-
pounds with a CDW ground state), has been found.

A. Nonlinear spin-density-wave conduction

Early experiments on (TMTSF)2PF6, while clearly
showing nonlinear conductivity in the spin-density-wave
state (Walsh et al. , 1980; Chaikin et al. , 1980, 1981), did
not give evidence for a sharp threshold field for the onset
of nonlinear conduction, like that observed for charge-
density waves. Consequently, the nonlinear response was
thought to arise as the consequence of hot-electron
efFects, which occur because of the long mean free path in

FIG. 17. Field dependence of the conductance at various tem-
peratures on the SDW state of (TMTSF)2C104 (Sambongi et al. ,
1989).
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FIG. 18. Differential resistance measured as a function of elec-
tric field E in the spin-density-wave state of (TMTSF)2PF6
(Tomic et al. , 1991).

these materials. Clear evidence for a sharp threshold
field was observed significantly later: (TMTSF)2N03
(Tomic et al. , 1989); (TMTSF)zPF6 (Kang et al. , 1990);
and (TMTSF)zC10„(Sambongi et al. , 1989). The non-
linear characteristics observed in the (TMTSF)zC104 are
displayed in Fig. 17, while in Fig. 18 the differential resis-
tance is displayed for (TMTSF)2AsF6 as a function of
electric field (Tomic et al. , 1991).

The behavior shown in Figs. 17 and 18 is characteristic
of the nonlinear behavior of the resistivity seen in several
materials with a CDW ground state (Griiner, 1988). The
well-defined threshold field, and the smooth rise of the
conductivity, with no divergence in the differential con-
ductivity, has been interpreted (see, for example, Gor'kov
and Griiner, 1989) as evidence for the important role
played by the internal deformations of the collective
mode. Several models account for the smooth onset of
nonlinearity, a11 based on mechanisms in which the inter-
nal mode dynamics are significant. Further evidence for
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this comes from experiments where both Ez and c
(co~0) are measured and the two experimentally ob-
served quantities are connected to each other. As dis-
cussed earlier, ET and s (co~0) are related through the
relation (7.3}, which also describes approximately the
behavior in a variety of materials with a CDW ground
state. In Fig. 19, this connection is shown for various
compounds, in all cases in the limit where internal defor-
mations of the collective modes are important (Gruner,
1988). Based on the above considerations, it is expected
that models originally worked out for CDW dynamics
will have the same success (or limitations) in describing
the dynamics of spin-density waves.

Because of the dynamics of internal deformations,
which are screened by normal electrons, it is expected
that the nonlinear conduction is influenced also by
screening effects. If screening by uncondensed electrons
is important, and they determine the damping of the col-
lective mode, the nonlinear response is proportional to
the Ohmic conductivity as first shown by Fleming et aI.
for charge-density waves in 1986. This has also been ob-
served (Chaikin et al. , 1981; Kriza, Quirion,
Trmtteberg, and Jerome, 1991) in (TMTSF)zPF6, where
the Ohmic conductivity o oh;, was changed by varying
the temperature or by applying an external magnetic
field. This close correspondence between the Ohmic and
nonlinear part of the conduction process has been ac-
counted for by Sneddon (1984) and, in more detail, by
Littlewood (1987), who showed that in the case of the dy-
namics of internal deformations, the damping arises due
to quasiparticle screening currents.

The temperature dependence of the threshold field ET
has also been investigated in detail (Shimizu et al. , 1991;
Tomic et al. , 1991)in (TMTSF)zC104 and in the PF6 salts
of TMTSF. In both cases the threshold field slowly de-
creases with decreasing temperature. The behavior has
been accounted for (Maki and Virosztek, 1990a, 1990b)

by a model where the internal deformations of the con-
densate are neglected. Consequently, this model most
probably has no direct relevance to the experimental
findings.

Direct evidence that the pinning, and consequently the
threshold field ET, is determined by impurities comes
from studies where such impurities are introduced either
by irradiation (Kang et al. , 1991; Tomic et al. , 1991}or
by alloying (Tra:tteberg et al. , 1994). In the former case
it was found that ET is proportional to the impurity con-
centration, and therefore it appears that defects created
by irradiation act as strong pinning centers. Experiments
in a series of alloys in which a fraction of the As atoms
are substituted by Sb are displayed in Fig. 20. By assum-
ing a residual impurity concentration xo for the nominal-
ly pure specimen of (TMTSF)2AsF6, the behavior can be
described, as indicated by the solid line in Fig. 20, by the
relation

ET(x)=E2(x =0)+Ax (7.4)

and, consequently, it appears that, upon alloying, weak
impurity pinning occurs as described in the previous sec-
tion.

In some cases the depinning of charge-density waves is
abrupt and is accompanied by hysteresis eFects (Zettl and
Griiner, 1982a, 1982b). This behavior is most probably
associated with extended defects, such as grain boun-
daries, and with the collapse of the order parameter at
these extended defects. Similar behavior has been ob-
served in some cases in materials with a SDW ground
state; a typical example is displayed in Fig. 21. The
behavior may also be due to the presence of macroscopic
defects, such as grain boundaries, in the specimens.

The magnitude of the nonlinear conductivity also de-
pends strongly on the impurity concentration
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FIG. 19. Low-frequency dielectric constant vs the threshold
field (normalized to one chain) for (TMTSF)2PF6 and for vari-
ous materials with a CDW ground state (Mihaly et al. , 1991a).
nj is the number of conducting chains per unit cross section.
The dashed line is a plot of E&c(co~0)=en j .

concentration, x

I

0.5

FIG. 20. Threshold field ET as the function of alloying concen-
tration in (TMTSF)2(AsF6) &, alloys. The solid line is
Tra:tteberg et al. (1994), a fit to ET(x)=E+(x =0)+ Ax with
A = 1 V/cm.

Rev. Mod. Phys. , Vol. 66, No. 1, January 1994



G. Gruner: The dynamics of spin-density waves

B. CUrrent oscillations and interference eSects

The periodicity of the SDW condensate is related to
some fundamental periodicity associated with the
translational motion. A drift velocity vd leads to a time-
average current, jsDw =n, cod, while the fundamental fre-
quency associated with a displacement of the collective
mode through one period is f0

=vd IA,o. Therefore

jsDW =n, eko;
0

and since n, =2k+I~ and A,0=m IkF, thus

(7.5)

jsDw =28 (7.6)

FIG. 21. Current-voltage characteristics observed in
(TMTSF)2C104 (Sambongi et al. , 1989).The hysteresis near the
threshold field is clearly visible.

(Tra:tteberg et al. , 1994), particularly at temperatures
close to the transition. The behavior is displayed in Fig.
22. This suggests that the damping, which is related to
the moving condensate, is strongly concentration depen-
dent, in a fashion similar to Matthiessen s rule in normal
metals. It has been suggested that the concentration-
dependent damping (which is also temperature indepen-
dent) arises as the consequence of the elastic scattering of
phasons by defects. The same applies to the low-
frequency conduction. This has also been shown by
Tra:tteberg et al. (1993).

The relation between the frequency-dependent and
nonlinear conductivity, expressed by Eq. (7.3), has also
been established in pure (TMTSF)zPF6 (Mihaly et al. ,
199la) and on alloys (Tra:tteberg et a/. , 1994).

Such oscillations have been observed directly in
(TMTSF)2C10~ (Nomura et al. , 1989; Hino et al. , 1991),
and the latter observations are displayed in Fig. 23. A
fundamental and a first harmonic (with both frequencies
increasing with the current carried by the condensate)
are observed, together with several minor peaks in the
Fourier-transformed current spectrum. Both observa-
tions, while clearly establishing the intrinsic current os-
cillation phenomena, also point to inhomogeneous
current distribution in the specimens. This may arise as
a consequence of the high anisotropy, but may also be
due to breaks that may develop during the cooldown
process.

The intrinsic frequency fo (and its harmonics) can also
be explored by applying both dc and ac electric Selds,
with the total driving force

E =Ed, +E„coscu„,t . (7.7)

When fo (or its harmonics) coincides with co,„,l2m (or
with its harmonics), interference effects occur, and they

I = 14pA

I

CI

b

0

)6p.A

Op. A

0
I

0.2
I I I

0.4
1/T {K 'j

I
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I I

100

frequency {kHzj

200

FIG. 22. Nonlinear conductivity, measured at E=2E& for
various concentrations in (TMTSF)2(AsF6)] (SbF6) alloy to-
gether with the Ohmic conductivity (solid line). (Trmtteberg
et al. )

FIG. 23. "Noise" amplitude observed by using a spectrum
analyzer for different currents in a sample of (TMTSF)2C104.
The arrows refer to the fundamental and to the first harmonic
of the oscillation frequency (Hino et al. , 1991).
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dx
2

+I' +coox=Ed, +E„e
dt

(7.8)

inhuence the dc current-voltage characteristics. Early ob-
servations of this kind made on charge-density waves
have been accounted for by a model where the internal
degrees of freedom of the condensate are neglected and
the equation of motion of the collective coordinate is de-
scribed as (Gruner et al. , 1981)

300

~ 200

O

a 100

IsDw =const Xfo . (7.9)

This relation, both for the fundamental frequency fo
and for the first harmonic and the subharmonic, corre-
sponding to 2fp is displayed in Fig. 25. The linear rela-

tion is in full agreement with Eq. (7.5). The constant that
relates the current density to the fundamental frequency
is difFerent from the value 2e given by Eq. (7.6), and the
available experimental results indicate a current that is
significantly smaller than that corresponding to Eq. (7.6).

Several explanations have been advanced to account

20

I I

10

electric field (mV/crn}

I

20

(kHz)
t700
l 400
1 t00
900
700
500
400

FIG. 24. Differential resistance observed in (TMTSF)2AsF6 in
the presence of an ac electric field of frequency v. The arrows
show the interference peaks for the fundamental, first harmonic,
and first subharmonic frequency (Kriza, Quirion, Trietteberg,
Kang, and Jerome, 1991).The inset shows the differential resis-
tance in the absence of an ac field.

The equation of motion is formally identical to the equa-
tion describing the resistively shunted Josephson junc-
tion; consequently, the interference features are referred
to as "Shapiro steps" (Shapiro, 1963; Zettl and Griiner,
1984). Such Shapiro steps have been observed in
(TMTSF)zPF6, and the experimental findings are shown
in Fig. 24. Both harmonic and subharmonic Shapiro
steps have been observed, which give clear evidence for
nonsinusoidal oscillations and for the importance of
internal degrees of freedom (Kriza, Quirion, Tra:tteberg,
Kang, and Jerome, 1991). Such studies also establish the
current dependence of the fundamental frequency and a
linear relation,

'0 500 1000 1500
External frequency v, (kHz)

FIG. 25. Frequency of the fundamental oscillation frequency
(1/1), the second harmonic (2/1), and the first subharmonic
(1/2) vs the excess current carried by the spin-density wave
(Kriza, Quirion, Trmtteberg, Kung, and Jerome, 1991).

for this discrepancy. One likely explanation is that the
difference is due to the highly anisotropic nature of the
conduction process, which leads to current only at the
surface of the material, where the voltage and current
probes are applied. Estimates of the effective area (based
on the Ohmic conductance) lead to experimental results
in broad agreement with Eq. (7.6).

C. Properties other than electrical conduction

The onset of nonlinear conduction, which leads to non-
linear current-voltage characteristics, is also accom-
panied by various anomalies. The development of the
SD% ground state and the development of a gap in the
single-particle excitation spectrum lead to a stiffening of
the underlying lattice and to an anomaly in the elastic
damping constant. Upon application of an electric field
E that exceeds ET, the lattice becomes progressively
softer, and there is an associated increase of the damping
constant (Brown et al. , 1992). Both effects are similar to
the observations made on charge-density waves (Brill and
Roark, 1984; Mozurkewich et al. , 1985). Several models
have been proposed to account for the experimental
findings made on charge-density waves, and they may
also be appropriate for spin-density-wave dynamics.
%"hile the details of the mechanism leading to changes in
the elastic properties remain unresolved, it is clear that
the spin-density-eave ground state couples to the under-
lying lattice through impurities and other lattice defects;
and this coupling is primarily responsible for the
anomalies observed in the compound (TMTSF)2PF6.

The development of the incommensurate spin-density-
wave modulation also leads to a broadening of the NMR
line measured on H nuclei. This broadening, shown in

Fig. 8, arises as a consequence of the distribution of the
internal magnetic field at the nuclear sites, and a detailed
analysis of the line shape directly gives the wave vector Q
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of the spin-density-wave modulation. When the ground
state executes a translational motion, the internal field at
the nuclear sites Quctuates in time; and for a fast enough
Suctuation (when compared with the nuclear Larmor fre-
quency), motional narrowing may occur. While the first
observations (Delrieu and Kinoshita, 1992) might be
in6uenced by heating, the e6'ect, which is regarded as
clear evidence for the translational motion of the spin-
density-wave ground state, has been observed in
(TMTSF)2PF6 (Barthel et al. , 1993; Wong et al. , 1993).
Both groups have eliminated the possibility of heating by
measuring the Knight shift (which was found to be
difFerent from the Knight shift in the metallic state) and
by measuring the nuclear-spin temperature (and conse-
quently the temperature of the specimens) directly. A de-
tailed analysis that would allow the evaluation of the
drift velocity has not been performed, to date.

0
—E /E

~oe (7.10)

The functional form of o (E) and also the
temperature-independent response are suggestive of a
current determined by a tunneling process, and indeed
Eq. (7.10) is identical to the expression that describes
single-particle Zener tunneling across the spin-density-
wave gap. For Zener tunneling the characteristic field Eo
is given by

threshold, shown by the arrow labeled Ez, is observed.
This behavior progressively disappears with decreasing
temperature, and below about 1 K a di8'erent type of
nonlinearity occurs. In this temperature range the non-
linear conduction is independent of the temperature and
can be described well, over a broad electric-field range,
by

D. Nonlinear effects at low temperatures 2 Q2
{) (7.11)

(TMTSF j~ PF6
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2.

-8-
1,

I

-4

loglOV {V

I

J

~oexp -—
I

-2

FIG. 26. Current-voltage characteristics measured in
(TMTSF)&PF6 at various temperatures. At high temperatures a
sharp onset of nonlinear conduction can be clearly seen. How-
ever, at the lowest temperatures, this sharp threshold is no
longer visible; rather, a smooth onset occurs to a tunneling type
of behavior (Mihaly et al. , 1991b).

The observations made on (TMTSF)2X salts at temper-
atures not far below their transition temperatures have
all the hallmarks of a depinning process, where the inter-
nal degrees of the condensate play an important role.
Furthermore, the existence of the well-defined threshold
field and long-time relaxational phenomena is usually in-
terpreted within the framework of models where classical
equations of motion, without tunneling steps, govern the
dynamics of the condensate (Littlewood, 1987 and refer-
ences cited therein). Upon decreasing the temperature,
this type of nonlinear transport process progressively
freezes out, and a qualitatively di6'erent nonlinear
current-voltage characteristic is observed (Mihaly et al. ,
1991b). The crossover between the high- and low-
temperature nonlinear transport is shown in Fig. 26. At
temperatures above approximately 1.5 K, a well-defined

where D is the bandwidth and a is the lattice constant.
The single-particle gap 6= 15 K, together with the
single-particle bandwidth D = 1 eV (Jerome and Schultz,
1982), leads to Eo =1.1 X 10 eV, approximately three or-
ders of magnitude larger than the value of ED=3 V/cm
obtained by fitting the experimental data to Eq. (7.10).
Studies on both (TMTSF)2PF6 and (TMTSF)zAsF6 and
their alloys indicate that Eo increases nearly linearly with
increasing impurity concentration, but the precise func-
tional dependence of Eo on n; has not yet been estab-
lished (Kim et al. , 1993; Tra:tteberg et al. , 1994). The
low-temperature response has also been examined as a
function of external magnetic field and pressure
(Tra:tteberg et al. , 1992; Kim et al. , 1993).The magnetic
field does not modify Eo, but 0.0 has a field dependence
that is similar to o (H) observed for the Ohmic conduc-
tivity due to thermally excited carriers (Chaikin et al. ,
1982). This would then suggest that the carriers created
by the tunneling process are identical to the thermally ex-
cited carriers. The applied pressure leads to a decrease of
the single-particle gap and of Eo, and one finds that, ap-
proximately, Eo —5 . Such behavior follows from any
model where the tunneling barrier is proportional to the
single-particle gap.

It is not clear at present what type of tunneling leads
to the observed nonlinear conduction at low tempera-
tures. It has been suggested that tunneling due to soli-
tons which arise as the consequence of commensurability
or near commensurability takes place (Wonneberger,
1991b), but the impurity dependence of Eo appears to
rule this out. The small observed value of Eo also rules
out simple Zener tunneling, while tunneling that involves
impurity states in the gap would not lead to a
concentration-dependent characteristic field.

Further experiments, possibly involving the joint appli-
cation of dc and ac excitations, are required to clarify the
nature of this remarkable phenomenon.
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Vill. CQNCLUSlONS

The existence of a spin-density-wave ground state is by
now firmly established in various organic linear-chain
compounds through a variety of transport and magnetic
studies. Because of the large anisotropy, the Fermi sur-
face is entirely removed by the transition to the spin-
density-wave state, and the ground state is close to that
of an antiferrornagnet described by phenomeonological
parameters such as the exchange constant J,z and mag-
netic moment p. The large magnetic coupling and small
magnetic moment are in agreement with a spin-density
wave in the weak-coupling limit.

Because of the magnetic character of the ground state,
and because of the charge modulations in the two spin
subbands, both spin and charge excitations occur; and
the magnon and phason dispersion relations are well un-
derstood. In the long-wavelength limit, these have been
explored by antiferromagnetic resonance and by ac con-
ductivity measurements. While the magnon excitations
are well understood, the phason excitations have a spec-
tral weight signi6cantly smaller than expected. The
reason for this is not understood, and other resonances
associated with the SDW ground state may account for
the missing spectral weight.

Many of the observations on nonlinear transport are
reminiscent of the nonlinear response of charge-density
waves, and models applied to the latter are expected to
account for the experimental findings summarized here.
The new type of transport that occurs at low tempera-
tures, and which is suggestive of tunneling efFects, has
not been explained to date and remains one of the major
unresolved issues of the 6eld.

One should also stress that the observations on the dy-
namics have been made on (TMTSF)zX salts, and at-
tempts to observe the dynamics of spin-density waves in
other materials with a well-de6ned SDW ground state,
discussed in Sec. III, were not successful. Clearly, further
experiments are required before the universal features of
the dynamics of this new type of collective mode are
clearly established.
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