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Self-avoiding walks, lattice trees, and related geometrical models provide a link between the physics of po-
lymers and the study of critical phenomena. In particular, these models in the presence of a surface pro-
vide insight into surface adsorption in dilute polymer systems in a good solvent. The theme of this review
is the influence of polymer structure (topology) on the critical properties of these models. Emphasis is
placed on recent results by rigorous methods, scaling theory, and conformal covariance theory. Numeri-
cal results that may be used to test the predictions of scaling and conformal covariance theories are also
summarized. Related topics such as the adsorption of directed polymers, the semidilute regime, the theta
point and theta solvents, and percolation (polymer gels) are briefly discussed in the final section.
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A. Motivation

*Permanent address: Department of Physics, Trent Universi-
ty, Peterborough, Ontario, Canada K9J 788.

It is well known that self-avoiding walks (SAWs) pro-
vide a model of linear polymers in a dilute, good solution

(de Gennes, 1979a; Freed, 1987). The term "good solu-
tion" is used to imply that the attraction between the
monomers and solvent molecules is greater than the
monomer-monomer attraction. This may be modeled as
an effective repulsive monomer-monomer interaction.
The self-avoiding constraint is necessary to represent the
excluded volume effect of the monomers forming the po-
lymer chain. Self-avoiding walks also behave in a
manner analogous to magnetic (and other) systems un-
dergoing a second-order phase transition. This analogy
may be formulated as a formal equivalence between
SAWs and the n ~0 limit of an n-component spin model
(Sec. I.C). The study of SAWs close to an impenetrable
wall provides a model for the study of phase transitions
in the presence of a surface and indicates that adsorbed
polymers may provide experimental tests of our under-
standing of critical behavior of surfaces. The model of a
SAW in contact with a surface is perhaps the best known
example of a "geometrical" phase transition at a surface.
Recently, other polymer structures such as stars, combs,
and more intricate networks have also been studied sub-
ject to a variety of constraints. In this review we shall at-
tempt to summarize the advances that have been made in
this area of geometrical phase transitions at surfaces. We
shall explore, in particular, the inAuence of polymer ar-
chitecture on the configurational properties in a lattice
and on the adsorption transition. Our focus will be on
rigorous results (Sec. II), the application of scaling theory
(Sec. III), and conformal covariance theory (Sec. IV).
Numerical tests of the scaling theories and the predic-
tions of conformal covariance theory are summarized in
Sec. V. Although the emphasis of this work is on surface
phase transitions in dilute polymer systems, related to-
pics are briefly outlined in Sec. VI. Surface critical phe-
nomena in magnetic systems are reviewed by Binder
(1983). Although certain results of the application of the
renormalization group are discussed, a detailed treatment
of this technique is beyond the scope of this article. For
a general description of the application of the renormal-
ization group to polymers, we refer the reader to the
book by Freed (1987). A general review of the renormal-
ization group for systems with a surface has been given
by Diehl (1986). The review by Duplantier (1989) de-
scribes the application of the renormalization group to
general polymer networks (including those attached to
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88 K. De'Bell and T. Lookrnan: Surface phase transitions in polymer systems

surfaces) and provides an interpretation in this context of
the scaling theory described in Sec. III.

B. Polymer structures and topologies

~ 3 is of degree f. However, all the vertices of degree f
are connected in sequence by a walk with no backsteps.
An H comb is a comb with exactly two vertices of degree
3.

The ability of chemists to produce specific polymer
structures (Roovers, Hadjichristidis, and Fetters, 1983;
Roovers, Toporowski, and Martin, 1989) has generated
interest in the properties of geometric models with a
variety of topologies that retain the self-avoiding con-
straint. An example of such a structure is the star poly-
mer formed by joining the terminal vertices of f linear
polymers at a vertex of degree f. (See Fig. 1 for typical
polymer structures. ) Since we shall be interested in a
large number of monomers in the polymer, represented
by taking the limit N —+ ~, we specify our use of the fol-
lowing terms.

(i) A chain is a set of vertices of degree 2 connected in
sequence by single edges and with terminal vertices of de-
gree W2, the number of vertices in the chain being 0 (X).
A chain with terminal vertices of degree 1 is a walk.

(ii) A leg is a chain with one terminal vertex of degree
1 and one terminal vertex of degree ~ 3.

(iii) A topology is any structure formed by joining
chains at vertices of degree + 3 and suppressing vertices
of degree 2.

(iv) An f star is a topology of f legs with a single com-
mon (terminal) vertex of degree f.

(v) A tree is any topology with no loops. In consider-
ing the problem of lattice trees we shall consider the
embeddings of all possible trees on a given lattice. This
provides a model of branched polymers in a good, dilute
solution. The problem of lattice animals, in which lattice
embeddings of all possible graphs are considered, is be-
lieved to be in the same universality class as the lattice-
tree problem. Site animals or trees are those in which
nearest-neighbor vertices are considered to be connected
by an edge and all such edges are part of the animal
(tree). In bond animals or trees only the specified bonds
or edges are part of the animal (tree).

(vi) A comb is a tree in which every vertex of degree

(a)

C. Connection with critical phenomena

where the second sum is performed over all nearest-
neighbor pairs on the lattice such that both the site la-
beled by i and that labeled by j are on the surface and the
erst sum is performed over all other nearest-neighbor
pairs on the lattice. We may choose the z =0 plane as
the surface and restrict all sites to be in the half space
z)0

Following de Gennes (1979a, 1979b), we choose the
normalization of the n-component spin vector to be

fs, t'=n

and note that the properties of the trace (i.e., integration
over s subject to this normalization) of a product of spin
components s s~ . may be obtained from the generat-
ing function g (k ) defined by

i — =Trs s~ - s",8 g(k)
ak . ak" —,=,

(3)

where

g ( k ) =Tr exp( ik s ) . —

The normalization of s then leads to

(4)

7 g=g = —QTrs exp(ik s) .
a. ak ak

Performing the sum, we obtain

In the presence of a surface, the derivation of the for-
mal relation between a self-avoiding-walk model and the
n ~0 limit of an interacting-spin model follows that for
the corresponding bulk problem. The weight given to
surface contacts, modeling a surface interaction, corre-
sponds to an enhanced (or degraded) nearest-neighbor in-
teraction in the surface of the spin model. The Hamil-
tonian of the interacting spin systems is

PH =—g Ks; s~ +g K, s; .sj,

Vg= —ng .

(c)

(e)

(d)
Since g (k ) involves a trace over s, g depends only on k.

Thus

Bg k Bg

ak k ak '

a'g iag k" a ~eg
k Bk k Bk k Bk ' (8)

FICx. 1. Typical polymer structures: (a) a 4 star; (b) a tree; (c)
an II comb; (d) a comb; (e) a watermelon; (f) a general topology
with 5 cycles.

a2g+
ak ak' (9)

The second-order differential equation is solved subject
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to the boundary conditions

g(k =0)=1,
8 g
ak"

(10)

The second of these boundary conditions follows from
the normalization of s and the symmetry of the Hamil-
tonian. Taking the limit n~0 and solving the second-
order equation, we obtain

g(k)=1+k /2,
from which we conclude

Trs s~=5
&

(12)

(13)

and that the trace of any other product of spin com-
ponents is zero.

Consider now the correlation function

stars embeddable on the lattice (apart from a trivial pre-
factor).

That all topologies may be related to the correlation
functions of a single n —+0 model (for a given) lattice has
an immediate corollary. If we assume that the generating
function is divergent on a phase boundary (X,K, ), this
phase boundary is independent of the topology, since we
do not expect it to depend on which correlation function
we examine. We shall show in Sec. II that this result can
be established rigorously. Moreover, the exponent
describing the divergence of the mean-square distance be-
tween points in the structure (corresponding to the corre-
lation length of the magnetic system) must be indepen-
dent of topology, since our current understanding of
second-order phase transitions requires that only a single
diverging length scale appear at a second-order phase
transition.

Trs; s sk SPexp( —PH)(SaSa. . . Scosru ) Tr exp( PH)— (14)
II. EXACT RESULTS

in which the component labels a . . m are assumed to be
distinct. The right-hand side may then be expressed as a
double expansion in the variables K and K&. Each term
in the expansion is evaluated in the limit n —+0 by apply-
ing the rules for the trace derived above. It can be
verified that only products that may be graphically
represented by a set of chains connecting pairwise those
sites assigned the same component label in the argument
of the correlation function have nonzero weight. More-
over, each such graph embedding on the lattice has
weight 1. In particular,

(15)

where C„ is the number of (n +m)-step self-avoiding
walks with nz steps in the surface connecting sites i and j.

The application of this formal equivalence to other po-
lymer topologies follows from our interest only in the
limit X—+ ao, since in this limit we may treat a group off
vertices of degree 1, which are maintained within a short
distance of each other, as a single (renormalized) vertex
of degree f (Duplantier, 1986; Ohno and Binder, 1988).
Thus any topology may be generated by specifying the
lattice site labels of the correlation function in a suitable
way. For example, consider the correlation function

(s, s s~s~s(s~ ) (16)

defined so that the sites labeled 1, 3, and 5 are all neigh-
bors of a central site labeled 0. The coeKcients appearing
in the expansion of the correlation function will then sim-

ply be the number of 3 stars with a central vertex at site 0
and vertices of degree 1 at sites labeled 2, 4, and 6.
Moreover, if label 0 is kept fixed and a sum performed
over the labels 2, 4, and 6 (corresponding to a generalized
susceptibility in the magnetic model), the resultant ex-
pansion is the generating function for the number of 3

A. Random walks

G(rQ rN) X CN(rQ rN)P
N

(17)

It is determined by

G (&Q &N ) =py(rQ rN )+p f y(rQ rJ )G (rJ rN )de

where y is the indicator function defined by

(18)

1 if r' is in the capture region of r
0 otherwise . (19)

The generating function for the total number of walks
originating at ro is then

y(rQ)= fG(rQ, rN)drN,

=PV+p f y(rQ, rN)y(r )dr. (20)

In this subsection we remove the self-avoiding con-
straint from the walk, thus obtaining a model for which
the surface critical properties may be calculated exactly.
The approach used here follows that of De'Bell (1980a),
in which the random-walk model provides an approxima-
tion for percolation in the low-density regime (see also
De'Bell and Essam, 1981).

A random walk (rQ, r &, . . . , rN ) consists of an initial
point ro and X steps determined by their end points r, :
1 ~i ~ N, such that r; is in the capture region of r; &

for
all 1 i ~X. Here we define the capture region of r; to
be a d-dimensional hypercube of side 2a centered on r;,
thus allowing a continuum formulation of the problem.
The corresponding lattice problem is obtained by re-
stricting the r, to the lattice sites and assuming the cap-
ture region of r; to be the neighboring lattice sites.

In the bulk system with complete translational invari-
ance, the generating function G(r~, rN), for CN(rQ, rN),
the number of X-step walks from ro to rN, is defined by
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90 K. De'Bell and T. Lookman: Surface phase transitions in polymer systems

V =(2a)" . (21)

or

The translational invariance of the bulk system now gives

X(r ) =Lb =p V/(1 p—V)

to the special transition is the adsorption transition (and
is referred to as such in this review) at which the polymer
collapses onto the surface.

If p&) 2p, the surface transition, defined by a diver-
gence in y(0) while yb remains finite, occurs when the
denominator in Eq. (29) vanishes at 5p =5p, . In this case

X (1 pV) r (23) y(0) -(5p, —5p) (32)

with the usual identification of the random-walk critical
exponent y = 1.

We now introduce a surface at z =0 by restricting the
coordinates of ro, r~, and r~ in Eq. (18) to the half space
z 0. In addition, we allow the possibility of a z-
dependent "density" p(z) such that

p, z)aP"= p„o(.(a.

y(z)=pV+p(2a)" ' f y(z")dz",
Z Q

(25)

with the solution (De'Bell, 1980a; De'Bell and Essam,
1981)

In terms of the polymer this allows for an additional at-
tractive or repulsive potential experienced by monomers
close to the surface.

y(r) is now explicitly dependent on z, so that, for
z) 2a,

with y, =1. The value of 6p, in the region 6p=O varies
as

5p, -(pi —2p)' . (33)

e5p = (2/ V —p, ) —25p (34)

In terms of the polymer system, the surface transition
corresponds to a polymer that has adsorbed onto the sur-
face due to the attractive potential experienced by mono-
mers in the vicinity of the surface. Consequently, in this
case, the monomers of the polymer are all within a
"small" distance from the surface.

In the language of critical phenomena, the adsorption
transition point is a bicritical point. We shall show that
g(0) for the random walks can be written in terms of a
crossover function with the expected scaling form for
such a bicritical point (Sec. III).

Noting that if the adsorption transition point is ap-
proached along the line p, =2p then y(0) =yb, we define

y(z) = A exp( kz)+yb

A, =2p(2a)" 'sinh(aA, ) .

(26)

(27)

and expanding y(0) in powers of e5p, we obtain

The solution is of the same form at z =0 if the boundary
condition

p J y(z')dz' —p, f g(z')dz'= V(p, —2p)/2(2a)"—a 0

X(0)=Lb 1+
)
1/2

This then has the form

g(0) —x '4(y/x ~),

(35)

(36)

is met. Hence

X(0)=Lb
1 —exp( —a A, )

—sinh(a A, )

1 —exp( —a A, )
—2(p/p, )sinh(a A, )

Writing 6p= V ' —p and noting that A, -6p as 6p~O,
we obtain

g(0)-5p ' as 5p~O if p, (2p,
y(0)-5p ' as 5p~O if p, =2p .

(30)

(31)

This divergence of the generating function for walks with
initial vertex in the surface as 6p~O, with an exponent
y, =

—,
' &y if p, &2p and with an exponent yI=y=1 if

p, =2p, corresponds to the ordinary and special transi-
tions, respectively, identified by Mills (1971) in the
mean-field theory of magnetic systems. In polymer sys-
tems the ordinary transition may be regarded as the case
in which the polymer, though attached to the surface, ex-
tends a large distance (= the radius of gyration of the
polymer) into the solvent above the surface. In much of
this review, this case is typified by the zero-surface-
interaction case. The polymer transition corresponding

where x =6p and y =e6p are the deviations from the
scaling axes (see Sec. III).

The values of y and p &
found here for random walks

are equivalent to the mean-field values of y and y, for the
corresponding susceptibilities in the n-vector model.
Cardy (1983) has extended the mean-field theory to sys-
tems confined to a wedge by two surfaces meeting at an
angle o.. At the ordinary transition the exponent describ-
ing the divergence of the generating function for walks
with an initial vertex in the edge of the wedge is

y(a)=1 ~/2a . — (37)

This is a special case of the relationship between the
wedge exponent y(a) and the surface exponent y„which
results from the assumption of conformal invariance at a
phase transition, derived in Sec. III.

When the space is bounded by two infinite parallel
(d —1)-dimensional planes, so that the walks are restrict-
ed to a slab of thickness L„ the ordinary transition no
longer occurs at 6p=0 but at a critical value of 6p that is
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dependent on I. (De'Bell, 1980a). In the limit of large L,
this dependence has the form

5p -I. (38)

where 2v is the exponent for the divergence of the mean-
square end-to-end distance in the d-dimensional bulk sys-
tem. That is,

(R') =g (r r')'G(r—, r') lyb

This is in accordance with general arguments for the crit-
ical point in slabs of finite thickness (Barber, 1983),
which show that the shift in the critical point is given by

(39)

surface (taken to be the z =0 plane), we define C~ to be
the number of ¹tep SAWs with fixed ro such that
zo=0, and C&' to be the number of %-step SAWs with
fixed ro such that zo=z&=0. We shall now show that
the limits for C& and C~ corresponding to Eq. (41) exist
and are equal to the bulk connective constant a (Whit-
tington, 1975, 1983).

To obtain this result, consider any polygon (weakly)
embedded on the bulk lattice. Let z, denote the z coordi-
nate of the ith vertex in the polygon and define the in-
teger q by

z~=min(z;: 0(i N) .

(If more than one possible choice of q exists we choose
the smallest value. ) Now translate the polygon vertically,

(40)
z; —+z =z; —z for all i (43)

The exponent v may easily be shown to be v= —,
' for ran-

dom walks.
(leaving all other coordinates unchanged). On the hyper-
cubic lattice one of the following cases must occur:

B. Self-avoiding walks

1. Configurational properties

(i) zq+, =zq i =0,
(ii) z +, =0, z, :=1,
(ul) zq~i=l, z i=0 .

(44)

(45)

(46)

lim X 'lnC~= lim X 'lnP~=&
Q~ oo N~ oo

(41)

has been proved (Hammersley, 1957). Here Civ denotes
the number of SAWs with fixed ro and P~ denotes the
number of polygons (SAWs with rz in the capture region
of ro) with fixed ro. i~ is called the connective constant
[note that some authors refer to @=exp(v) as the connec-
tive constant]. The techniques developed by Hammers-
ley, Whittington, and others have been used to determine
the behavior of the connective constant in a variety of re-
stricted geometries. In the rest of this section, we illus-
trate the techniques and summarize some of the main re-
sults obtained.

For the problem of self-avoiding walks attached to a

When one considers a walk as a simple model of a
linear polymer it is clear that the random walk ignores
the physical characteristic that each monomer has an as-
sociated volume which may not be occupied by any other
monomer. This may readily be incorporated into the
model by associating with each step end r; an excluded
volume Q(i) centered on r; and such that A(i) is wholly
within but does not fill the capture region of r, . In this
subsection we take the walk to be defined on a simple hy-
percubic lattice so that r; must correspond to exactly one
lattice site. The excluded volume Q(i) is the lattice site
itself, and the remaining capture region is the set of
neighboring sites. The walk is then constrained so that,
for any pair (0(i (j(X), r EQ(i). Th. is simple addi-
tional constraint generates a suSciently diScult
mathematical problem that few exact results are available
for the resulting self-avoiding-walk (SAW) problem. For
bulk SAWs, the existence of the limit

In cases (i) and (ii) the edge (q, q+ 1) is deleted, and in
case (iii) the edge (q —l, q) is deleted to obtain a walk
confined to the half space z ~ 0 and with zo =z~ =0. Po-
lygons that differ by more than a vertical translation each
generate a distinct walk in this way, and the normaliza-
tion of P& ensures that each distinct walk receives weight
1. Therefore

Pg Cg Cg Cg (47)

and, using the bulk result [Eq. (41)], we obtain

lim X 'lnC&'= lim X 'lnC&=a. .
&—+ oo Q~ oo

(48)

2. Interaction with a surface and surface adsorption

An important feature that arises in the adsorption
problem is that the part of the SAW that lies in the sur-
face must be taken into account. This means that any
translation or body shift has to leave the configurations
unchanged, not only with respect to the bulk, but also in
the surface. Hammersley, Torrie, and Whittington
(1982) studied the SAW model of a linear polymer in-

teracting with a surface. They established that, if the
monorners interact with the surface with energy co, there
exists a critical value co, at which the SAW undergoes a
phase transition. Moreover, it can be shown that the
transition is from d-dimensional to (d —I)-dimensional
behavior. This result can be extended to more general

polymer topologies for which it can be proved that the
behavior of the limiting entropy per monomer is the
same as for a SAW interacting with a surface (Zhao and
Lookman, 1991a, 1991b; Whittington and Soteros, 1992).
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92 K. De'Bell and T. Lookrnan: Surface phase transitions in polymer systems

We therefore outline the proof for the existence of the
transition for SAWs defined on a d-dimensional Euclide-
an space with integer coordinates, where the surface is
the hyperplane z =0. The idea behind the proof is the
use of a simple "squeeze" law. We consider the number
C„(m) of SAWs in the d-dimensional lattice starting at
the origin, with no vertex, with negative z coordinate and
with I +1 visits to the surface. The partition function is
given by

Z„(co)= g C„(m)e"
m=0

and the reduced limiting free energy per monomer is

A (co)= lim —InZ„(co) .
1

n~oo n
(50)

The limit can be shown to exist for all cu. Positive values
of ~ correspond to an attractive interaction with the sur-
face z =0. With co=0, we have

Z (0)= g C„(m)= C„' .
m=0

Z„(co)~ C„' . (52)

Clearly,

For co ~0, since Z„(co) is a monotone increasing func-
tion of co,

dimensional to (d —1)-dimensional behavior in the mod-
el. In particular, Hammersley, Torrie, and Whittington
(1982) showed that the limit

A (co)= lim A~(co)

exists for all co and is bounded by

max(~, ~„,+~) & A (~) max(~, ~+~) .

Moreover, there exists a critical value of m defined by

(61)

co, =sup[co: A (co) =I~]

and bounded by

0~co, ~~—~d (63)

Physically, these results imply the existence of the ordi-
nary, adsorption, and surface transitions for linear poly-
mers modeled by SAWs (see Fig. 2). For co (co„the con-
nective constant for a polymer attached to the surface re-
tains the value for a polymer in the bulk solution. For
~ )cu„ the connective constant decreases and has a lower
limit given by the connective constant for the corre-
sponding (d —1)-dimensional bulk problem. The value
of ~, then corresponds to the critical value of the attrac-
tive interaction of the monomers with the surface at
which the surface adsorption transition occurs.

The crossover exponent P at co, is defined by

Z„(co)~ C„(0) .
A (co) —A (coo)-(co—coo)'i~ . (64)

Moreover,

C„(0)= C„'

or

A (co) =ad Vco ~0, (56)

where ~d is the connective constant of the d-dimensional
lattice. For cu~O,

if we remove the first step and translate the walk by unit
distance in the negative x direction. Then

C„', ~Z„(co) ~C„'

Zhao, Lookman, and De'Bell (1990) have used two vari-
able Pade approximants to obtain precise estimates of P
and ru, (Sec. V.C). It has been shown that SAWs
confined to a wedge and interacting with a surface have
the same reduced limiting entropy per monomer as a
SAW interacting with a surface (Whittington and
Soteros, 1990). The method outlined above can be ap-
plied to a variety of other geometrical constraints and po-
lymer structures such as stars, combs, and other topolo-
gies (Sec. II.D).

Z„(co)~ C„(n)e

so that

A (co) ~ lim —InC„(n)+co1

n ~ oo

or

A (co) Kd ~+co (59)

where ~d, is the connective constant of the (d —1)-
dimensional lattice.

Thus A (co) has a constant value (=ed ) for all co~ 0,
but is greater than vd for co) Kd Kg ~ so that A (co) is

nonanalytic at some value co, . This means that there is a
phase transition (the adsorption transition) from d-

FIG. 2. The phase diagram for SAWs interacting with a sur-
face, with 0 and S referring to the ordinary and surface transi-
tions, respectively. The function A (co) is plotted against co and
approaches the broken line ~d &+co. The other broken line is

Kd + CO.

Rev. Rod. Phys. , Vol. 65, No. 1, January 1993



K. De'Bell and T. Lookman: Surface phase transitions in polymer systems 93

C. SAWs in wedges and slabs (a)

The problem of walks restricted to a wedge and termi-
nally attached to the apex of the wedge may be general-
ized by considering walks that are restricted so that for
each (b)

(65)

in the walk

r'~0 and 0&r &f (r') for 2&j &d . (66)

Denoting the number of X-step walks starting from the
origin by CN(f), it may be shown (Hammersley and
Whittington, 1985), that for any f such that

FIG. 3. Conversion of walks from one subset to another: (a) a
member of C (i) is converted to a member of D (ii) by an unfold-
ing transformation; (b) a walk (i) belonging to the subset D is
converted to a member (ii) of 8.

f~(x)~~ as x~~ for 2&j&d,
the limit

lim CN (f ) =x.
Q —+ oo

(67)

(68)

and rejecting the vertices labeled by 1, . . . , q
—1 in the

plane y =y . By iterating this procedure and similar
rejections in the plane

exists and is equal to the bulk connective constant.
This result is of considerable importance since it en-

ables us to show that the connective constant for other
structures, in many cases of interest, is equal to the bulk
connective constant for SAWs (see Sec. II.D).

Proving the existence of the corresponding limit for
walks confined between two parallel (d —1)-dimensional
planes illustrates many of the techniques required to ob-
tain the exact results described in this and the next sub-
section. The required result for walks restricted to a slab
of thickness L is obtained by noting that a limit may be
obtained for a subset of the possible walks (Whittington,
1983). Let C N(L, zo) be the set of X-step walks beginning
at an origin with z coordinate zo and let 2)N(L, zo ) be the
subset of C N (L,zo ) such that

y =ye=max(y;) (73)

DN(L) & CN(L) &DN(L)exp(q)X'~2) . (74)

From the relationship between the members of 2)N(L, zo)
and %N(L)

BN( L ) —DN (L ) —BN +2L +4( (75)

Therefore we have the limit

one generates a member of 2)N(L, zo). Since it is known
that there exists a constant y such that not more than
exp(yX' ) members of PN(l, zo) generate the same
member of 2)N(L, zo) by this transformation, if CN(L)
and DN(L) denote the number of walks in C N(L, zo) and
2)N (L,zo ), respectively,

yp —y —y~ (69) lim lnCN(L) =a—(L) .1

N
(76)

where y is a chosen coordinate not equal to z. The subset
of 2)N(L, O) that have zN=O is denoted by XN(L) A.
member of XN(L) and a member of %M(L) can be com-
bined by translating the initial vertex of the M-step walk
to coincide with the Anal vertex of the X-step walk. If
BN is the number of walks in the SN(L) we have

Using Kesten's pattern theorem (Kesten, 1963), one can
show (Hammersley and Whittington, 1985) that a(L) (x
and as L ~ Oo, v(L) —+a. This provides a useful guideline
when performing numerical calculations for finite slabs.

&++~ —&w&M

and since BN is bounded above by (2d) we have

(70) D. Stars and other topologies

0( lim 1nBN(L)=~(L) &ln(2d) .
N~ oo

(71)
1. Configurational properties

y~ =min(y; ) (72)

Any member of 2)N(L, zo) can be converted to a member
of XN(L) by adding L +2 edges at each end of the walk

(Whittington, 1983) using the procedure illustrated in

Fig. 3(b). A member of CN(L, zo) can be converted to a
member of 2)N(L, zo) by an unfolding transformation
[Fig. 3(a)]. This transformation consists of selecting the
smallest integer q such that

In this section we examine the inQuence of polymer ar-

chitecture and geometrical constraints on the connective
constant ~, which is also the limiting entropy per mono-

mer of the polymer.
Consider a star with f legs, each containing X edges,

embedded in the bulk in such a way that its central ver-

tex is at a chosen origin. The space may be divided into

f equal wedges which meet at the origin. Let DN(f) be

the number of possible embeddings if each leg of the star
is restricted to one of the wedges, so that each leg is a
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SAW restricted to a wedge. We then have

DN(» C—N(» —(CN )f

and using Eqs. (41) and (68)

lim 1 /X 1n C~ (f)=fa,
Q~ oo

(78)

where D&(V') and D&(f) are the restricted number of
embeddings for 7' and the f star, respectively, and b is
the number of chains in T. Since any tree may be con-
structed by a concatenation of stars and SAWs, it follows
that

lim —lnC&( V) =b~ .
1

Pf~ oo n
(80)

where ~ is the self-avoiding-walk connective constant
(Wilkinson, Gaunt, Lipson, and Whittington, 1986).
That the corresponding limit for f stars attached to a
surface or the edge of a wedge is also K follows in exactly
the same way, since the space can again be divided into f
wedges (Whittington, 1987). A similar result for trees
(topologies with no closed loops) of fixed topology can be
obtained by an inductive argument. We assume here that
each chain in the tree has X edges. Let T denote the to-
pology of the tree. A branch point is a vertex of degree
~3. We choose one vertex to be fixed at the origin.
Then from the vertex at the origin to any branch point
there is a single path involving no backsteps. Choose any
branch point such that dividing the tree at this vertex re-
sults in a tree of topology V' and an f star (f +1 being
the degree of the chosen vertex), only the chosen vertex
being common to both the tree V' and the f star. Now
locate the chosen vertex at the origin and draw a
(d —1)-dimensional plane x =0. Consider embeddings
of T such that members of "T' are restricted to x )0 (ex-
cept the vertex at the origin) and members of the f star
are restricted to the space x + 0. Then

D~(&')D~(f) ~ C~(T) ~ (C~)",

lim X 'lna&=~, ,Pf~ oo
(82)

where ~, is independent of the wedge angle and equal to
the corresponding bulk limit (Whittington and Soteros,
1990).

For a polymer network g„(c,n3, . . . , n2d ), defined on a
d-dimensional hypercubic lattice where the topology is
specified in terms of c cycles, n3 vertices of degree
3, . . . , n2d vertices of degree 2d, Gaunt, Lipson, Torrie,
Whittington, and Wilkinson (1984) have shown that, for
such networks with total length X, the connective con-
stant is the same as that for SAWs. Zhao and Lookman
(1991b) have considered such specified topologies
confined to one side of a surface and have shown that ~ is
again the same as walks for uniform networks.

In conclusion, we see that a polymer network has the
same connective constant as a SAW in the infinite bulk,
but there are interesting differences in behavior depend-
ing on the geometrical constraints used to confine the po-
lymer.

2. Critical exponents

The influence of topology on the critical exponent y,
of polymer networks with the self-avoiding constraint has
been previously investigated (Gaunt et al. , 1984; Duplan-
tier, 1986). The results of scaling and renormalization
theory hold for the uniform or "pseudouniform" network
for which the number of monomers in each of the chains
is expected to be of 0 (X). Few rigorous results exist for
uniform networks. For nonuniform networks, Zhao and
Lookman (1992a) have proved that, for the case of simple
networks with cut edges (Fig. 4), the subdominant ex-
ponent y, satisfies the conjecture y, =y+b —1 (Gaunt
et al. , 1984), where b is the number of cut edges. A cut
edge of a graph is one which, if deleted, disconnects the
graph. They also consider the exponent v„characteriz-
ing the divergence of the mean-square end-to-end dis-

(This result is valid for trees embedded in the bulk or at-
tached to a surface or wedge edge. In the case of a sur-
face or wedge, the plane x =0 must be parallel to the sur-
face or wedge edge and each embedding must be com-
bined with a translation perpendicular to this plane so
that a specified vertex is in the surface or edge. )

Stars embedded in a slab, infinite in d —1 dimensions
and of finite thickness I., have been considered by Chee
and Whittington (1987). They conclude that in three or
more dimensions the limit

lim X 'lnC&(f)=v(L, f)Pf~ oo

(b) {c)

is independent of f, but in two dimensions the limit de-
pends on f (Chee and Whittington, 1987; see also Soteros
and Whittington, 1989).

For lattice animals, which may be regarded as models
of branched polymers with general topology, the limiting
value of the number of lattice animals of X vertices con-
tained in a wedge of angle a obeys

FIG. 4. Examples of simple topologies: (a) tadpole, (b)
dombbell, (c) twin-tailed tadpole, (d) 3-twin-tailed tadpole, (e)

figure eight.
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tance of a chain within the network, and prove that it is
equal to v, the self-avoiding exponent. Similar results for
the subdominant exponents hold for the half-space prob-
lem if these topologies have their initial, or both initial
and terminal, vertices attached to the surface. Conse-
quently the scaling relations involving the bulk and sur-
face exponents (y —y, and y —y») are the same as for
SAWs, a result that was previously conjectured only for
uniform networks (see Sec. III.B). Moreover, by assign-
ing an interaction energy to a nearest-neighbor contact,
one can prove that the collapse transition for these topo-
logies is the same as that for SAWs (Sec. VI.C). For the
figure-eight topology (which does not have a cut edge),
the subdominant exponent e is equal to a, the exponent
for polygons and the collapse transition is the same as
that for polygons. The asymptotic forms p„-n e"
and e„-n' 'e" are assumed for the number of polygons
and figure eights, respectively.

The study of such networks is also related to the prob-
lem of lattice trails, which are random walks on a lattice
in which edges are not allowed to overlap. Zhao and
Lookman (1992b) show that for trails in a hypercubic lat-
tice with c cycles (a c trial), y, =y+c and v, =v.

(a)

4E 4L
%F '%F

FIG. 5. Examples of topologies with the same

[ c n 3 n 4 112d I: (a) a 0 graph and a dumbbell with

[2,2, 0,0, . . . ); (b) a tree andI a comb with [0,4, 0,0, . . . , 0I.

However, for certain values of [c,n3, n4, . . . , nod l

unique topologies are obtained. For example, nf =1,
n; =0 for fbi refers to an f star, while n3 =2, n; =0,
i ~4 refers to an H comb. The topology contains Kn
edges, since each of the IC chains is an n-step SAW. We
denote by gz„ the number of networks with a total of
m edges in the surface x, =0. The generating function is

then defined by

3. Interaction with a surface

En

G„(c,n3, . . . , n2d, cg)= g gz e
m=0

(85)

2d
2c =2 n, + g (—i —2)n;

1=3
(83)

and

2d
2a.=n, + g in, ,

1 —3

(84)

where n,- is the number of vertices with degree i and K is
the number of chains connecting the branch points of de-
gree i. Each of the chains is an n-step SAW. The ver-
tices of degree 2 are suppressed, since they do not affect
the topology. The case c =0 refers to treelike structures
in general. More than one topology can have the same
set of values for [c,n3, n4, . . . , nzdj (Fig. 5). The values

[c,n3, n4, . . . , n2d I therefore do not specify a unique to-
pology, since the connectivity is not uniquely determined.

For a general polymer network attached to a surface
and in a number of restricted geometries, Duplantier and
Saleur (1986) have conjectured the dependence of the
critical exponent y on polymer topology (Sec. IV.C).
Ohno and Binder (1988) have rederived the scaling
theory for a polymer network by using the equivalence
between the generating function for the number of
configurations and the correlation function for the classi-
cal n-vector model in the limit n~0. It is of interest to
examine the effects of an interaction between an adsorp-
tion surface and such polymer networks and to determine
how adsorption depends on the polymer architecture. As
introduced in Sec. II.D.1, the general polymer network
may be represented by g„(c,n3, . . . , n2d ). Using Euler's
law of edges, we have

Zhao and Lookman (1991b) and Soteros (1992) have
shown that for d )2

1
hm lnG„(c, n3 n2d co)= A (co),

n Kn
(86)

E. Lattice animals

Lattice animals and trees have been considered as
models of branched polymers with excluded volume, and

where A (co) is the reduced free energy of SAWs in terms
of the number of edges in the surface. For d =2 and for
topologies with cut edges, the free energy is not the same
as for SAWs (Whittington and Soteros, 1992; Soteros,
1992). However, it can be shown that the transition
point and crossover behavior are the same (Zhao, 1992).
The particular case of a k loop in which nk =2, k &2,
n; =0, i Wk is considered in detail in Zhao and Lookman
(1991a). The results also imply that the connective con-
stant ~ for nonuniform networks is the same as for
SAWs, since the uniform case provides a lower bound.

In summary, the specified polymer topology has the
same reduced free energy and hence critical point and
crossover behavior as that for SAWs interacting with a
surface, either penetrable or impenetrable. There thus
appears to be a universality in the free energy brought
about by a surface interaction. Moreover, it is known
that /=1 —v for the penetrable surface problem (i.e.,
when the polymer is able to cross the surface; Diehl,
1986). Since the above requires that P be the same for all
fixed topologies, v is also the same as for SAWs, a result
generally assumed in scaling arguments.
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X= lim a' " (87)

A= lim A' " (88)

Xp= lim t„"",
pg~ oo

gp= lim T„' "
pf ~ oo

(89)

the techniques used to handle the animal problem are
closely related to techniques in the theory of self-avoiding
walks (Hammersley, 1957; Kesten, 1963). Lattice an-
imals are closely related to percolation clusters, although
the associated weights are di6'erent in the two problems
(Kesten, 1982). The results available on configurational
properties have been reviewed by Whittington and
Soteros (1990). If a„and A„are the number of bond and
site animals with n vertices, and t„and T, are the num-
ber of bond and site trees with n vertices, then the limits

proved that the result

O, =I9+ 1 (97)

is valid for all dimensions d 2. To obtain this result, we
note that

nC„~ t„, (98)

t„+,~ (n +1)C„+i» (99)

since we can always generate a one-rooted tree by allow-
ing the surface to approach the unrooted bulk tree from
below and rooting the tree at the vertex that the surface
first touches. However, in some cases more than one ver-
tex can touch the surface in this way. On the other hand,
a subset of the bulk embeddings will result in rooted sur-
face embeddings in which only one vertex (the root) is in
the surface.

We therefore have

can be established. Moreover,

Ap&A(kp&A. . (91)

where C„+, &
indicates the number of embeddings in

which only the root is in the surface. Moreover,

For lattice animals confined in a wedge of angle o, , Whit-
tington and Soteros (1990) show that

1
lim —lna„= A,

+—woo n

where A, is independent of the wedge angle and equal to
the corresponding bulk limit.

It is believed that

(n + 1)C +i i=nC (100)

since from any tree of n vertices rooted in the surface we
may generate a tree of n +1 vertices by displacing the
surface by one lattice layer. The additional vertex is then
placed in the new surface directly below the previous
root and an additional edge is added adjacent to the pre-
vious root and the new root in the new surface. Hence
we have the bounds

a„-Xn ', n (93) t„+,~ nC„~ t„ (101)

where 0 is the subdominant exponent. Similarly, for
trees it is expected that

—8
nn

Renormalization-group arguments and numerical results
(Lubensky and Isaacson, 1979; Gaunt et a/. , 1982) sug-
gest that O=I9p. A connection between lattice animals
with cyclomatic index c and trees was provided by
Soteros and Whittington (1988), who proved that

and, assuming t„-A,"n, n —+ ~, the required result fol-
lows.

Zhao and Lookman (1992a) have recently studied two
lattice models for c animals. The models are (a) c animals
with an interaction energy o. between nearest-neighbor
pairs of vertices and (b) c animals as in (a) but with an ad-
ditional interaction energy co between the vertices of the
animal and an adsorption surface. By assuming that the
partition functions satisfy

0 =8 —c.c 0 (95)
~c~~~ nA„(c,a) -n '

A.,"(a) (102)

The adsorption transition for lattice trees has recently
been considered by Lookman, Zhao, and De'Bell (1991),
who, following the arguments of Hammersley, Torrie,
and Whittington (1982) for walks, established the ex-
istence of a transition. Estimates of the critical point,
based on an exact enumeration study, have also been
given.

If the asymptotic form for the number of lattice trees
rooted to the surface, nC„, is assumed to be

and
—0 (a,~)

A„(c, aco)-n ' '
A,,"(a,co)

as n ~ ~ with c fixed, they show that

0,(a)=80(a) —c for —oo &a& oo

8, (a, co)=Ho(a, co) —c for —oo &a, co& oo,

(103)

(104)

(105)

—8C„-A,"n (96)

where 0, is the critical exponent describing the subdorn-
inant behavior, De'Bell, Lookman, and Zhao (1991)have

where Oo(a) and Oo(a, co) are the corresponding ex-
ponents for trees. The result 8, (co) =Ho(co) —c was previ-
ously obtained by Zhao and Lookman (1991c). These re-
sults are generalizations of the bulk result 0, =Op —c.

The irrelevance of cycles on the properties of lattice
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ill. SCALING THEORY

A. Self-avoiding walks

While the subdominant behavior of CN as X~ Oo has
not been determined rigorously, it is widely supposed
that for SAWs in the bulk

C~ —exp(N, )Nr (106)

and we therefore expect the generating function for
SAWs to exhibit critical behavior of the form

(107)

animals has been considered previously using
renormalization-group methods (Lubensky and Isaacson,
1979, Family, 1980). Zhao, Wu, and Lookman (1992)
have recently proved the result v, =vo, where v, is the
exponent characterizing the mean-square radius of gyra-
tion of lattice bond c animals with cyclomatic index c and

vo is the exponent for lattice bond trees. The proof
makes use of a pattern theorem for lattice animals (Ma-
dras, 1988).

functions to be generalized homogeneous functions of
their arguments (Binder, 1983). This assumption allows a
set of relationships to be derived such that for the ordi-
nary transition, if any one local exponent is known, the
remaining local exponents may be obtained from this and
the bulk exponents. In this and the following two subsec-
tions we deal principally with the ordinary transition and
therefore set p, =p, deferring a discussion of the special
transition to Sec. III.D.

In Sec. III.B we shall show that a set of relationships
between bulk and surface polymer exponents may be ob-
tained from geometric arguments. These arguments as-
sume that there is a single diverging length scale g„which
characterizes the critical behavior and which diverges in
the same manner as the average distance between vertices
in a chain. That is,

As an example, we consider how the amplitude of the
generating function X(z) for SAWs with initial vertex
fixed at a perpendicular distance z from the surface de-
pends on z. In the limit of large N we expect C~(z), the
number of X-step walks with initial vertex distance z
from the surface, to have the following properties:

where

p, =exp( —ic) .

Cz(z) —3 (z)p N ' for z (&g,N

C~(z)- Ap N~ ' for z)&g .

(115)

(116)

Consider SAWs confined to the half space z ~0 which in-
teract with the surface in the way described in Sec. II.B.
The generating function is then

Since 2 (z) is dimensionless, 2 (z) = 3 (z/g), and there-
fore

G, (p, co)=g C~,p exp(tco)=g Cz,p (109)
2 (z)—(z/g) (117)

N, t N, t

A~(co) —exp[ic(co)N]N~' (110)

If a subdominant form, similar to that for bulk walks, is
assumed,

Hence

(y —y) ) l~X(z)-z ' for z &(g, p~p, .

Consider now the global surface function

(118)

this combined with the results of Sec. II.B implies that
G, (p, co ) will diverge at the bulk critical point
p, =exp( —ic) for all co&co, . However, for co) co, the
divergence occurs at p(co) &p, . Thus the SAW problem
is expected to exhibit ordinary, adsorption, and surface
transitions as found in the random-walk case (Sec. II.A).

Renormalization-group arguments (Kremer, 1983;
Diehl, 1986) indicate that there is a single value of y(co)
for each of these transitions as follows:

X =g (X X(z)) . (119)

X =EX g X(z)
z=0

(120)

Substituting Eq. (118) for X(z) in the sum, we find

Assuming that the contribution from SAWs with end-to-
end distance & g may be neglected, we have

ordinary co & co„y(co)=y, ,

adsorption co =co„y(co ) =y i

surface co & co„y(co)=y', .

(112)

(113)

with

X, -(p, —p) (121)

(122)

Moreover, these arguments show that r &
is equal to the

value of y for a (d —1)-dimensional system.
It is necessary to make further assumptions in order to

determine relationships between the local surface ex-
ponents and bulk exponents for the ordinary and adsorp-
tion transitions. Scaling theory assumes the generating

Thus the global surface exponent r, is completely deter-
mined in terms of the bulk critical exponents. However,
some caution is necessary since Eq. (118) is valid only if
z «g'. It has recently been pointed out that the correc-
tion term resulting from summing over the region z =g
in the construction of g, may make the determination of
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TABLE I. Examples of scaling relations obtained from the geometric scaling arguments given in the
text (f denotes an f star, SX denotes an H comb, and G denotes a general topology having L loops and B
surface bridges).

y =2o.i+1
yj =o.l+o )+1

y~=o~+2o )+ 1

y21 y2+ y 1 1 y l

y(f)=af+fo, + 1

yf(f)=of+ fo, +1
r «f) = r(f)+ r11 r1+—v

r»(f) =r(f)+r» —r

y(H) =2y(3) —y
y)(H) =2y(3)+y& —2y
y 1 1(H) =2y(3)+ y»
y,

'( )=.( )+. (')-y
y33(H) =2y 3( 3 ) —y —v
y. . . (G)=g, n;o; —g, n o,' —L dv B~-
y (G)—y, (G)=y —y +~

the leading exponent difficult (De'Bell, Loolcman, and
Whittington, 1990).

We therefore write

y(f) 1 =cr—f+fcr, . (126)

B. Geometric derivation of scaling theory

We now demonstrate the derivation of scaling relations
between the local surface exponents and the bulk ex-
ponents. The geometric derivation given here is that
developed by Duplantier (1988) and provides consider-
able insight into the underlying reasons for the scaling re-
lations between the critical exponents of different poly-
mer topologies and different arrangements of surface-
attached polymers. Typical scaling relations derived in
this way are listed in Table I, and some corresponding
surface attached configurations are illustrated in Fig. 6.

Begin by considering SAWs embedded in the bulk, for
which we expect

NNy(1) —1 (123)

The argument of CN and y indicates that the SAW is to
be considered a 1 star. We write

y(1) —1=2cr1, (124)

that is, with each vertex of degree 1 we associate a 0,
By analogy, the asymptotic behavior of f stars with N

vertices in each leg is expected to be

02+20 i =2'

that is,

(127)

0.2=0 . (128)

The utility of this approach becomes apparent if we con-
sider the exponent of a more complex topology. For ex-
ample, an H comb may be constructed by bringing to-
gether two 3 stars in such a way that two vertices of de-
gree 1 are replaced by a vertex of degree 2. Assuming the
asymptotic behavior of the number of H combs with N
edges in each chain to be

CN(H) 5NNy(H) —I (129)

we have

y(H) 1=2o 3+4o1—=2[y(3)—1 j —[y(1)—1], (130)

Thus with the central vertex of degree f there is associat-
ed a 0.f, which may be determined from the properties of
the f star.

Notice that a 2 star is also a SAW, and therefore we re-
quire

fNNy( f)—1

N, f P (125)
y(H)=2y(3) —y(1) . (131)

(a)

(c)

FIG. 6. Some surface-attached configurations. The
configurations contribute to the following exponents: (a) y&, (b)

y )(3), (c) y ) ), (d) y2, (e) y3(3), (f) y )3(3).

Therefore no additional information, other than that
available from the 3 stars and SAWs, is required to evalu-
ate y(H). Similarly, the critical exponent for any fixed
topology 0 may be constructed from the exponents for f
stars.

To clarify, this remarkable property may be thought of
as a consequence of our assumption that vertices separat-
ed by a distance of 0 (g) are distinct and do not interfere
with each other, while vertices at closer distances must
be grouped into a single renormalized vertex.

Topologies that contain loops require special attention.
To see this, consider any chain in a fixed topology.
Choose one of the terminal vertices to be fixed and con-
sider an arbitrarily chosen vertex i of degree 2 in the
chain N' steps from the fixed terminal vertex and such
that N N'=O(1). Note t—hat in general this vertex i
can occupy any site in a volume of 0 (g ). We therefore
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y(Q) —1=g n;0; .Ldv—, (132)

expect the number of configurations to contain a corre-
sponding factor of X" . However, if the chain closes a
loop by connecting to a terminal vertex that is already
fixed (embedded), the sites available to site i occupy a re-
gion of O(l). As the of's are generated from stars, they
are generated for structures with chains in which one of
the ends is "free" during embedding. Consequently,
when forming the exponent for a general topology, we
must subtract a term dv for each chain that closes a loop
(and therefore for each loop).

Hence the exponent for a topology 9' with L indepen-
dent loops (cycles) will be

y y» (137)

which may be obtained from the self-avoiding walk
series. More generally, if the chosen topology 0 is con-
nected to the surface by n legs, the di6'erence between the
bulk and surface exponents can be expressed as

Other di6'erences that depend on the number and type of
vertices embedded in the surface, but that are indepen-
dent of 9, are easily obtained. The difFerence in two ex-
ponents expresses the asymptotic behavior of the ratio of
the number of configurations for a topology 0 with n&

and n2 legs attached to the surface. In particular, if
n

&
=0 and n2 = 1, this is

y(Q) —y„(Q)=n (y —y, )+(n —1)v . (138)
where n; is the number of vertices of degree i in Q. In
particular, we obtain the we11-known hyperscaling rela-
tion for the polygon exponent o., that is,

2 cx —dv . (133)

y ( Q ) =g n; o; +g n o '; Ld v Bv,— —(134)

where n is the number of vertices of degree i embedded
in the surface, n,- is the number embedded in the bulk,
and B is the number of surface bridges. In addition to
showing that the exponents for any topology may be ob-
tained from those for SAWs and stars, Eqs. (132) and
(134) allow us to obtain scaling relations between local
surface and bulk exponents. For example, denoting by
y» the exponent for walks attached to the surface by
both the initial and final vertex, we immediately obtain
the well-known scaling relation

The extension to polymers attached to a surface is
straightforward. For each vertex of degree i attached to
the surface we introduce a o.

,
'. (and note that o2 is not

necessarily 0). All of the required cr'; may be obtained by
studying f stars attached to the surface by the vertex of
degree f. A correction, similar to that required for
loops, is necessary if there exists a surface bridge, that is,
an independent pathway which begins and ends on the
surface. Other monomers in the bridge are restricted to a
region ((g in a direction perpendicular to the surface.
Consequently a term —v in the exponent must be intro-
duced for each such bridge.

Thus, for a topology 9 attached to the surface by one
or more vertices, the critical exponent is

The above scaling relations can also be derived from
the direct renormalization approach (Duplantier, 1986;
Duplantier and Saleur, 1986).

In the above discussion we have assumed that G is uni-
form in that all chains in the network contain O(N)
monomers. However, Zhao and Lookman (1992a) have
recently proved that, for nonuniform simple topologies,
the scaling relations y —y, and y —y» are also indepen-
dent of G. That is, they have the same value as the self-
avoiding walk (Sec. II.D.2). It would be interesting to ex-
plore whether this result is generally true for nonuniform
networks.

The exponents yG and yG, for a directed network in
bulk and one attached to a surface, respectively, may be
obtained rigorously through an interesting connection
between the directed connected polymer network in two
dimensions and the problem of N random walkers or "vi-
cious walkers, " whose paths do not cross (Fisher, 1984;
Duplantier, 1989; Zhao, Lookman, and Essam, 1992). A
directed polymer chain may be represented by the t-step
trajectory of a lock-step random walker in a one-
dimensional lattice, who, at each tick of a clock, moves
one step to the left or one step to the right. The N chains
then correspond to the Xvicious walkers, and asymptotic
formulae may be obtained for the number N of vicious
walkers. The topology of a connected polymer network
G, consisting of I' uniform interacting chains, is specified
by nf, the number of f-leg vertices connecting f chains,
and L, the number of loops. These quantities satisfy

(139)

y+ v=2y i y» (135) (140)

If we denote by y(Q, n; ) the exponent for a topology 0 at-
tached to the surface by n; vertices of degree 1, then

y(Q, n, ) —y(Q, n2) (136)

is independent of the topology 9 (De'Bell, Lookman, and
Whittington, 1990). This is a fascinating result, since it
provides a set of numbers that are independent of topolo-
gy. Tests of this independence would provide strong evi-
dence in support of or against the scaling hypothesis.

%e consider connected networks of fully directed
chains in which each link has a positive component
parallel to some chosen direction. In the semi-infinite
system this direction is parallel to the surface. At an f-
leg vertex of such a network, chains Aowing in and chains
emanating from it are totally independent of each other.
In other words, we can decompose an f-leg vertex into an

f, -leg vertex and an f2-leg vertex with f, +f2
=f. Each

of them would be expected to make its own contribution
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to the critical exponents.
It can be shown that the total number of

configurations 8'„(t) of a network 6 in which all chains
have length t has the asymptotic form

W~(t)=C2 't (141)

yG
—1= ,'(L + V—, ——1)——,

' g nff (f —1)
f

—
—,
' gnff

f
(143)

If we let nf be the total number of both incoming and
outgoing f-leg fans in the bulk, then it can be shown
(Zhao, Lookman, and Essam, 1992) that the critical ex-
ponent y& is given by

y G
—1 = —

—,
' L —

—,
' g nff (f —1 ) .

f
Thus, for a p-star polymer, L =0, f, =p, fz =1 for

i =2, . . . ,p+1, and hence yG
—1=—4p(p —1), in

agreement with Fisher [1984„Eq.(4.2)]. Similarly, for a p
watermelon, L =p —1, f ~ =f2 =p,
= —

—,'(p —1) [cf. Fisher, 1984, Eq. (4.3)].
Similarly, the configurations of a network G in which

V, of the vertices are fixed near a surface may be
identified as the problem of vicious random walkers in
the presence of an adsorbing wall (Forrester, 1990). It
can be shown that

C. The scaling function

The scaling theory of Sec. III.B may be reformulated
in terms of a generalized homogeneous function (Ohno
and Binder, 1988) by exploiting the equivalence with the
n~0 limit of the n-vector model. A correlation func-
tion, of the type introduced in Sec. I.B, may be written as
a derivative of the free energy, that is,

with

Q P7lF

&s, s
Bh Bh

1 J
(144)

I' = ln Tr exp( PH) . — (145)

In the magnetic system the h,. is the a component of the
local magnetic field, and the derivative is to be evaluated
in the limit of zero external field. If we associate with
each renormalized vertex of degree f a local external field

h(f), then the scaling hypothesis asserts that the free en-

ergy may be written as

where nf is the total number of both incoming and out-
going f-leg fans in the surface. Thus, for a p star in
which the vertex of degree p is embedded in the surface,

yG
—1=—

—,'p [cf. Forrester, 1989, Eq. (31)] and for the

p watermelon y G
—1 = —(3p +p —2) /4 [Forrester,

1989, Eq. (28)].

(146)

(147)

(148)

(A prime indicates that a quantity refers only to vertices
embedded in the surface. )

F, is the surface free energy. The scaling relations de-

rived in Sec. III.B may now be obtained by considering
appropriate derivatives of F and identifying

o.; =5, (149)

and

(150)

The corrections of —dv and v for loops and surface
bridges, respectively, arise from restrictions on the sites
that are to be summed over in the present formulation.

The geometric derivation of the scaling 1aws for poly-
mer networks, described in Sec. III.B, provides consider-
able insight into the physics of the polymer network.
However, it should be emphasized that this approach
contains several assumptions. Within the geometric pic-
ture, the principal assumption is that "starlike" vertices
(vertices of degree 1 or ~ 3) have an associated exponent
crf which is independent of the precise structure of the

chains attached to the vertex and independent of the to-
pology of the network. This is also the underlying as-
sumption when writing the free energy in the scaling
form given above [Eqs. (146), (147), (148)]. This assump-
tion is closely linked to our restriction to networks in
which all chains have 0 (N) steps in them (Sec. I.B). For
such networks, we expect the star vertices (typically) to
be separated by a distance 0 (g) which tends to infinity as
X becomes large. However, if networks in which some
chains have 0 (N) steps in them are considered, the as-
sumption of an independent exponent associated with
each starlike vertex may no longer be valid. Indeed, in
line with the arguments in Sec. I.C it might be expected
that the effect of two vertices separated by such a chain is
that of a (composite) vertex of higher degree.

The foundation for this underlying assumption has
been carefully considered by Schafer, von Ferber, Lehr,
and Duplantier (1992), who analyzed the corresponding
renormalization-group theory. Although it is not strictly
necessary for the work of Schafer, von Ferber, Lehr, and
Duplantier, it is convenient to think of the polymer net-
work as the limiting case (n —+0) of a more general class
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of field theories. The assumption that the o.f's are in-

dependent of the network structure is equivalent to the
assumption that the correlation functions for the com-
posite operators (associated with the starlike vertices) of
the field theory are multiplicatively renormalizable.

Schafer, von Ferber, Lehr, and Duplantier conclude
that this assumption is valid in the polymer (n —+0) case
when only long chains are allowed (although not in the
more general case). However, if short chains are allowed,
additional additive renormalizations are required, invali-
dating the assumption of independent o.f's in such cases.
Therefore the conclusions of Schafer, von Ferber, Lehr,
and Duplantier validate the intuitive arguments for the
scaling theory of Sec. III.B.

D. The adsorption transition

The scaling theory developed so far is appropriate to
the ordinary transition, which is characterized by the
divergence of the length g with an exponent equal to the
bulk exponent v. Much of this scaling theory can also be
applied to the adsorption transition, where the length g is
again expected to diverge with its bulk exponent (Kre-
mer, 1983; Diehl, 1986). However, in the language of
critical phenomena, the adsorption transition occurs at a
bicritical point. In Sec. II.A we saw that, for random
walks attached to a surface, the generating function has
the scaling form

g- aN'4(N~5 ) . (153)
S

The thickness of an adsorbed polymer chain, measured
parallel to the surface will then be

D-g( ad sorbed )-a 5 '/~ W ( N ~5 ) . (154)

Assume that, due to the presence of the surface, the
monomers have a concentration profile

c(z)=c,(a/z} V(z/D), (155)

where m is to be determined. The change in the free en-

ergy due to the surface is

F —F0
kT

s5—+B(a/D)' (156)

The last term is a confinement energy, which can be
determined up to the constant 8 by requiring that the
change in entropy be extensive (de Gennes, 1979b, 1981).
The fraction of monomers in contact with the surface s is
given by

s =ac, f c(z)dz =(a/D)'
0

Minimizing F with respect to D we obtain

(& /D)m
—1+1/v

(157)

(158)

Comparing this and the previous relation between 5 and
D, we get

ad

y(0)-x ' N(y/x~), (151)
(159)

x =(p, —p),
IV. CONFORMAL COVARIANCE

152

and y is a linear combination of (p, —p) and (p P —p, ).
This form is expected to remain valid for any bicritical

point (Pfeuty, Jasnow, and Fisher, 1974). Thus two ex-
ponents are required to characterize the special transition
point.

The physical meaning of P for polymer solutions is best
seen in a picture developed by de Gennes (1981), who
identifies three regions of the system according to dis-
tance from an adsorbing surface,

proximal z (&g,
central z=g,
distal z ))g .

Within this picture, the dependence of the monomer
density in the proximal region is expected to be a singular
function of the distance from the surface (Eisenriegler,
Kremer, and Binder, 1982), as indicated by Eq. (155)
below. In terms of the polymer, it is information about
this singular behavior which is provided by the crossover
exponent P. Following de Cxennes and Pincus (1983), we
consider a single polymer chain adsorbed on the surface
and assume that for each monomer on the surface there
is an additional energy —kT5. To make contact with
our scaling theory of bicritical points, we assume that

A. Angular dependence of the generating functions

The assumed scaling form for the free energy and
correlation functions derived from it are closely related
to the assumption of scale covariance of the correlation
functions at the critical point. In particular, all of the
scaling relations between exponents can be derived from
the application of renormalization group theory. Recent-
ly, it has been shown that considerable information about
the nature of the correlation functions results from the
assumption that the critical correlation functions are co-
variant under a conformal transformation of the space in
which they are embedded. The application of conformal
covariance theory to critical phenomena has been re-
viewed by Cardy (1987) where a detailed account may be
found. Here we demonstrate the application of this tech-
nique to the surface problem by a derivation of the angu-
lar dependence of the SAW generating functions given by
Cardy (1984).

Consider a two-dimensional system restricted to the
half space y )0. Let G(r;r')=G(z&, z&, z2, z2 ) be the
generating function for SAWs with initial vertex at r and
final vertex at r'. The plane z =x+iy, z'=x —Iy is a
continuum and the assumption of conformal covariance
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is written

G(z1,z1,z2, z2 ) —Ito'(z1)I "Iw'(z2)I G(w„u1»w2, u1z )

translational invariance. Let

a =(e,0) with e—+0; (162)

(160) then to order e

where z —+to (z) is any conformal transformation, Iw'(z)
I

is the Jacobian of the transformation.
Following Cardy (1984), we consider the special con-

formal transformation

x'=x —e(x2 —y2),

y
' =y —e(2xy ),

and the Jacobian is

(163)

(164)

r'/r' =r/r +a, (161)

which maps hyperspheres into hyperspheres. a must be
chosen parallel to the surface in order to maintain

1 —4@x+0(e ) .

Therefore from the basic assumption we have

(165)

G(x, —x2,y„y2)=(1—4@x, ) (1—4ex2) G(x', —x2,y', ,y2) .

Expanding the right-hand side to O(e) and writing u =x, —x2, we obtain

[u (x, +x2) —y, +y2 ] + [(x, +x2)+ u]y, + [(x, +x2) —u]y2 +2b(x, +x2)G =0 .
BG BG BG
BQ Bg )

Since G does not depend on (x, +x2), we may separate this into two equations,

.'G+, 'G+ 'G +ZbG =O
Bu '

y, By2

BG BG BG
(y2 y1)g ++ yl g y2$BQ Bp i

(166)

(167)

(168)

(169)

The first of these requires that G have the scaling form

G(»y1, y2) ~ 4(yl /~ y2/~) .

Substituting this form into the second equation and writing g, =y, /u and $2=y2/u, we obtain an equation for g,

I
1+0'+ 0')0 W /~0 —

I
1 —0'+ 0']4~4/~4= »

(170)

(171)

We shall restrict ourselves to the case in which
IuI = Ix, —x2I is large. The term on the right-hand side

may then be replaced by zero, and the resulting homo-
geneous equation has a solution

G(R, 9)-R (176)

Similarly, if only the initial vertex is restricted to be close
to the surface [y, =O(1)] and y2=R cos8 and
u =R sinO with R large, we expect

1+ +
1t(01 02)=W'

1 2

(172) This determines the large-x behavior of f'(x),

and '(x)-x 7l 7l
(177)

[~ '+y'+y' ]
G(u, y„y2)=u

3' i3'2
(173)

Comparison of Eqs. (175) and (177) provides us with the
result

Consider now the case in which the initial and final ver-
tices of the walk are restricted to be close to the surface
[y, =O(1), y2=0(1), and the separation between them,
u, is large]. We then expect

G(u, y„y2)-u
Comparison with Eq. (173) then determines the behavior
of g'(x) for large values of its argument:

2&,——&+&~r . (178)

This result may be obtained from scaling theory alone
(Binder, 1983). However, conformal covariance theory
also determines the angular dependence of G (R, O).
From Eq. (175) we obtain

g'(x)-x P(R, O) ~ (cosH) (179)
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B. Application to wedges and slabs

Conformal covariance also provides a relationship be-
tween the surface exponents and the wedge exponents if
we note that the wedge coordinates are related to those
of the half space by the conformal transformation

nonintersecting. This structure is represented by the
watermelon graph of Fig. 1 in the case of f =3. In the
bulk we expect

(187)

(180) Lw(g) =
Gw(g) r r'

r
(188)

(where a is the wedge angle). Then

G(z z*.z z*)= iz '-'i'iz'"-'i'
XG(wi, wi', wz)wz ) (181)

where W(f) denotes the watermelon with two vertices of
degree f.

In keeping with our previous scaling arguments (Sec.
III.A), we restrict the integration to a sphere of radius g
to obtain

Consider now the behavior of G (w„w i,'wz, w z ) as w, is
kept fixed near the origin [w, =O(1) J and the real and
imaginary parts of w2 become large. This corresponds to
z, fixed near the surface and real and imaginary parts of
z2 becoming large in the half space. Therefore

with

G(w„w f;wz, wz')-~wz~ (182)

z)(a) =z)/2+ irz)~, /(2a) . (183)

Similarly, the properties of the generating function for
walks in a slab of finite thickness I., with periodic bound-
ary conditions, may be related to those in the bulk
through the transformation

w =(2m. /L)lnz . (184)

—2 cos(2my, z /L ) J

The generating function for walks in a slab (at the bulk
critical point) is found to be

G(x„y„xz,yz) ~(2n/L) "[2cosh. (2 rxi, z/L)

fd 2x
Xw(f)

y( W'(f)) =v(d —2X&) .

(189)

(190)

y( W(f) ) =2cr/+ I —(f —1)dv+ (f —1) . (191)

The third term is the subtraction required for the (f —1)
loops, and the fourth term allows for the polydisperse na-
ture of the watermelons. Comparing the two forms for
y( W(f)), we obtain

dv —1cT/= f xIv .
2

(192)

Similarly, if r and r' denote points in the surface,

In the formulation of the problem given by Duplantier
and Saleur (1986), the watermelons are quasi-
polydisperse [i.e., the number of monomers in each chain
is allowed to fluctuate but, in accordance with the discus-
sion in Sec. III.C, the number in each chain must remain
O(X) J. This gives rise to an additional factor of X'/
in the number of configurations. Allowing for this,
y( W(f) ) may also be written in terms of cr&, that is,

x12 x1 x2 +12 +1 3 2

(185)

(186)

(193)

Integrating over a region of surface of radius g and again
allowing for the polydispersity, we obtain

C. Exact results in two dimensions
dv I

ct/ — f xIv
2

(194)

The general forms for the generating functions ob-
tained above may be extended to d )2. For d =2, as a
result of the correspondence between the set of confor-
mal transformations and the set of analytic functions,
conformal covariance theory is particularly powerful and
leads to the conclusion that any given exponent must be
one of a set of identifiable rational fractions. Before sum-
marizing the results obtained for two-dimensional sys-
tems, we write down the relations between the exponents
used in this section (z), etc.) and those used in previous
sections (y, v, etc. ) and generalize G so that the appropri-
ate exponents for the f stars may be derived (Duplantier,
1988).

Let G&(r, r') be the generating function for structures
consisting off self-avoiding chains with a common initial
vertex at r and a common final vertex at r' but otherwise

(3p —2q) —1
P~9 24 (195)

In particular, the exponents y and v for bulk self-
avoiding walks are obtained by making the identification
(Cardy, 1987)

Having established the relationship between the x&
used here (z) and

z)~~ being special cases of these) and the
exponents introduced in previous sections, we continue
with the predictions for the x& in two dimensions ob-
tained by conformal covariance theory. The essential
step in obtaining these exponents is the identification of
the operators of the conformal theory with those of the
Virasoro algebra (Cardy, 1987). This allows all of the ex-
ponents to be identified with the zeros of the Kac deter-
minant,
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2h &/2, 0 ~

x2=2h) o

(196) V. NUMERICAL RESULTS

(197)
A. $elf-avoiding walks

(v is obtained by requiring that cr2=0)
Duplantier and Saleur (1986) have proposed the exten-

sion to bulk f stars, that is,

xf 2hf /2 0 ~ (198)

Xf =hf, , (199)

Typical values of the exponents derived from these
identifications are listed in Table II.

Duplantier (1987) has also studied the ordinary transi-
tion in dense polymers in which the monomers occupy a
finite fraction of the lattice sites. He identifies this model
with the low-temperature regime of the n ~0 limit of the
n-vector model and determines that

Similarly, the exponents for topologies attached to a sur-
face are obtained from the identification (Duplantier and
Saleur, 1986)

Self-avoiding walks terminally attached to a lattice sur-
face have been extensively studied by numerical tech-
niques, including series-expansion analysis of exact
enumeration data, Monte Carlo simulation, and transfer
matrix methods. As well as providing results which may
be directly compared with experimental results, such
techniques provide important tests of the results summa-
rized in Secs. III and IV.

The numerical values obtained for various critical ex-
ponents are summarized in Table III. The predicted ex-
act values obtained from conformal covariance theory
are consistent with the numerical values in two dimen-
sions. In three dimensions, such predictions of the exact
results are not available. However, the numerical results
may be used to test the surface scaling relations. The
scaling relation

xf 2kQ f /2

xf A] f+]

(200)

for dense polymers.
The above identification thus allows predictions of the

exact critical exponents for two-dimensional systems. A
small caveat must be added. The Kac determinant re-
sults are known to be valid for theories with unitarity. In
general, h is of the form

[p (m + 1)—mq] —1
(202)

4m (m +1)

'7+~=2'V i 'V i& (204)

is consistent with the numerical results in both two and
three dimensions. Verification of the scaling relation

x, =x+~ (205)

has proved more elusive.
De'Bell and Jan (1989) have tested the expected depen-

dence of the number of SAW configurations on the dis-
tance z of the fixed-terminal vertex from the surface.
They concluded that their results were consistent with
the form

where for a unitary theory m is an integer m ~ 3 and p
and q are integers and belong to the minimal block (Car-
dy, 1987)

1~q&p~m .
for

C~"(z)=p N 'C(z/g)

a ((z ((g,

(206)

(207)

The values of m =2, p, and q for polymer models do not
correspond to a unitary theory, and p and q are not re-
stricted to integer values in the minimal block. The pre-
cise role of unitarity in the application of conformal
theories to critical phenomena appears to be an open
question. Cv —g Cx —Cx"(z) (208)

but this analysis is difficult because of the restricted range
of z available.

As noted in Sec. III, if it is assumed that Cz" has this
form throughout the range of the sum

1 48
5

=2X2=
3

=77X3 ——
8

15X 1
—

24

X2 =2
99X3= 24

= 33
192

29
64

I 7

O2= —1

75
32

y=
32—3V=—
4

61
64
11r2= 32

(3)— 53

y(6) —y1(6)= —',4
y(G) —y 1(G)= —",,

TABLE II. Typical values of the exponents in two dimensions
obtained from the conformal covariance theory.

g
—m(z (g'+m,

where

(209)

(210)

may be expected to give rise to a term

Cm N~y —1 (211)

for z (g, and if the contribution from the upper end of
the sum is neglected, the scaling relation [Eq. (205)] im-
mediately follows. However, De'Bell, Lookman, and
Whittington (1990) have recently pointed out that the re-
gion
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TABLE III. Numerical results for self-avoiding walks attached
to a surface.

/11
Xl

'V

P I I +2V

Vs

7$

d =2

1.34361+0.00013'

0.7500+0.0013

0 9549+0.001 1

0.953+0.006

—0.19+0.02
0.393+0.006'

1.56+0.06'
1.53+0 04"

1.323+0.013'
1.81+0.02
0.75+0.03"

1.162+0.002'
1.160+0.004
1.162+0.001'
0.592+0.002'
0.588+0.001
0.592+0.002'
0.676+0.009
0.718+0.008+ 136hx, g

0.70+0.02"
0.675 —0.680'
—0.4+0.3
0.468+0.002
1.515+0.015

2.10+0.01
0.60+0.01"

in the sum. Expressing this in terms of the generating
function

(212)

we expect G' to have a dominant singularity with ex-
ponent y+v and a conAuence with exponent y. De'Bell,
Lookman, and Whittington (1990) concluded that their
results were consistent with the scaling relation if this
conAuence was explicitly taken into account.

As described in Sec. III, conformal covariance theory
predicts the angular dependence of the correlation func-
tion for self-avoiding walks terminally attached to a sur-
face. Cardy and Redner (1984) have tested these predic-
tions numerically and obtained results fully consistent
with the predictions.

The dependence of the exponent y(a) for SAWs
confined to a wedge of angle a on the wedge angle has
been investigated by analysis of exact enumeration data
by Cardy and Redner (1984), Guttmann and Torrie
(1984), and De'Bell and Lookman (1985a). Again, the re-

'Guttmann, 1987.
"LeCxuillou and Zinn-Justin, 1985.
'Lookman and De'Bell, 1987.
"De'Bell, Lookman, and Whittington, 1990.
'Rappaport, 1985.
Guttmann and Torrie, 1984.
De'Bell and Lookman, 1985b hx, represents the change in x,

from its central estimate of 0.0995.
"Ishinabe and Whittington, 1981.
'Eisenriegler, Kremer, and Binder, 1982.
'De'Bell, Lookman, and Whittington, 1990 square lattice,
Baker-Hunter analysis.
"Seno and Stella, 1988b.
'De'Bell and Lookman, 1985b.

Whittington, Torrie, and Guttmann, 1980.
"De'Bell, Lookman, and Whittington, 1990, square lattice, ratio
analysis of modified series.

suits are fully consistent with conformal covariance
theory. [Indeed, Guttmann and Torrie (1984) were able
to predict correctly the exact relation between y(a) and
a from their numerical results. )

B. Other problems

y I(f ) = l.0513—0.272 63f —0.075 7 1f (213)

If a cubic term is added to the fitted function the
coefficient of this term is O (10 ).

For lattice trees attached to a surface, 0, is given in
terms of the bulk exponent by the exact result (see Sec.
II.D.3)

0i =0+1, (214)

a result first indicated for two-dimensional systems by an
analysis of exact enumeration data (De'Bell and Look-
man, 1985c).

De'Bell and Lookman (1985a) have investigated the
properties of lattice trees confined to a two-dimensional
wedge. They found that for large wedge angles o. the ex-
ponents approximately obey the relation

9(a)= 1+—
A

(215)

However, at smaller angles the results significantly devi-

TABLE IV. Exponents for stars attached to a surface and in a
wedge of angle a in two dimensions (Colby, Flaunt, Torrie, and
Whittington, 1987).

Attached to a surface In a wedge

y2
j ~(3)

y3(3)

0.35+0.05
0.68+0.05

—0.82+0.05

Wedge angle a=2m/3
—0.40+0.05

Wedge angle a =m /2—1.15+0.05

The numerical results available for testing the predic-
tions for other fixed topologies attached to a surface are
much more restricted. The properties of f stars confined
to a two-dimensional wedge have been investigated by
Colby, Gaunt, Torrie, and Whittington (1987) using ex-
act enumeration and Monte Carlo methods. The results,
although restricted to f =2 and f =3, are in excellent
agreement with the predicted values (Table IV).

Gaunt and Colby (1990) have generated Monte Carlo
data for f stars in a variety of three-dimensional wedges.
They considered the effect of f on the exponent yI(f ) if
the star is attached to the apex of the wedge by its central
vertex. Noting that for a half-space (semi-infinite system)
both the conformal covariance results in two dimensions
(Duplantier and Saleur, 1986) and the epsilon expansion
results to O(e) (Ohno and Binder, 1988) for y&(f) are
quadratic in f, Gaunt and Colby (1990) fitted their results
to a quadratic function. The numerical results were well
fitted by
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ate from this and do not obey a linear relation in (1/a).
A similar analysis of lattice trees con6ned to the surface
of a cone has recently been performed by Miller and
De'Bell (1991), who have also discussed the constraints
on a conformal theory for lattice trees and concluded
that a linear relation in 1/n is a necessary feature of such
a theory. Unfortunately, the analysis of the data for
small values of a is difficult, as the numerical estimates
are in general less well behaved than for larger angles.
Nonetheless, the numerical results appear to be strong
evidence against conformal covariance of the lattice tree
generating functions.

C. The adsorption transition

A numerical analysis of the adsorbtion transition is in-
herently a two-variable problem. In particular, we ex-
pect the generating function to have the scaling form

p) =d 1 pp=— (218)

y,d =93/64, (219)

It is, perhaps, noteworthy that (t has its random-walk
value in two dimensions. It is not clear if this is fortui-
tous or if it is connected to the one-dimensional nature of
the surface. Numerical results for P in three dimensions
(Table V) indicate that it is a little higher than the
random-walk value.

Recently, Janssen and Lyssy (1992) have used the su-
persymmetric connection between lattice animals and the
Yang-Lee edge singularity to obtain an exact value for
the crossover exponent in three dimensions. They con-
clude that

The exponent P is then the ratio of p', and p, = I /v. This
leads to the predicted exact results for SAWs in two di-
mensions,

n, m

As p, is known to a high precision from analysis of the
corresponding bulk problem, the analysis of the ad-
sorbtion transition reduces to a determination of y', , P,
and p &, . Estimates of these values are given in Table V.

In two dimensions, Guim and Burkhardt (1989) used
transfer-matrix techniques to determine these quantities.
They were able to identify the values of the surface scal-
ing dimensions in the corresponding conformal covari-
ance analysis (see also Burkhardt, Eisenriegler, and
Guim, 1989). They conjectured that the appropriate
identification for the adsorption transition is

I

Pf ~f+1,3 (217)

The crossover exponent P is not dependent on f but is
obtained by noting that the surface thermal (or energy)
scaling index is

(220)

Lookman, Zhao, and De'Bell (1991)have also attempt-
ed to analyze the adsorption transition in lattice trees by
studying exact enumeration data for the square, triangu-
lar, and simple cubic lattices. Unfortunately, the results
obtained by a partial differential approximant analysis of
the data are not well converged, and only tentative esti-
mates ofp&, were obtained.

Vl. OTHER PROBLEMS

A. Adsorption of directed polymers

The problem of a directed polymer interacting with a
surface has been far more tractable by analytic means
than the undirected case (Privman and Svaric, 1989).
The standard approach used is to write the generating

TABLE V. Critical-point and exponent estimates for the adsorption transition in the square (SQ), tri-
angular (T), and simple cubic (SC) lattices. Site and bond refer to the counting of surface contacts by
the number of surface sites and number of surface bonds the walk is embedded on, respectively.

Lattice

SQ
(bond)

SQ
(site)
T
(bond)
SC
(bond)

0.379 05'

0.379 05'

0.240 92'

0.213 5'

y, /x, =exp(co, )

2.06+0.10
2.041+0.002'

2.01
1.82+0.03
1.80+0.02
2.85+0.07

1.47+0.02
1.45g

1.45+0.05
1.454+0.004'

1.40+0.05

1.4+0. 1

1.55+0. 15
1.44g

0.50+0 09
0.501+0.003'
0.55+0.01'
0.52+0.03

0.50+0.01

0.54+0.07
0.59g

'Guttmann, 1987.
Zhao, Lookman, and De'Bell, 1990.

'Guim and Burkhardt, 1989.
Ishinabe, 1982.

'Kremer, 1983.
Hammersley, Torrie, and Whittington, 1982.
gEisenreigler, 1982.
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function in terms of a transfer matrix such that the singu-
larity in the generating function corresponding to the
critical fugacity occurs when the largest eigenvalue of the
transfer matrix is unity. Hence the approach is not
rigorous in the sense of the results of Sec. II.B for SAWs.

Consider a directed polymer on a strip of width N (Fig.
7). The polymer is directed in that steps in the negative x
direction are forbidden. The position of the polymer is
given by specifying the numbers i, n;. Attraction to the
substrate can be modeled by assigning an energy K to
each column in which n; =1 or X. Nearest-neighbor in-
teractions between monomers are introduced through an
attractive energy J between bonds that occupy the same
row in adjacent columns. The generating function can be
written as

G —$ co K 'r

wa1ks

—EC/k~ T
where co is the monomer fugacity, ~=e—J/k~ Tr=e, L counts the total number of monomers, l
the number of monomers lying in the surface, and n the
number of nearest-neighbor interactions.

G can be written in terms of a transfer matrix and the
critical fugacity m' is calculated through finite size ap-
proximations for a strip of width X. For the case in
which there are no monomer-monomer interactions,
i= 1, Privman, Forgacs, and Frisch (1988) found an ad-
sorption transition at co"=+2—1, ~'=1+1/&2. Veal,
Yeomans, and Jug (1990) calculated the phase diagram
on a semi-infinite square lattice with monomer-monomer
interactions included. They found evidence suggesting
that the adsorption transition is second order when the
unbound polymer is extended but first order when col-
lapsed. Recently, Binder, Owczarek, Veal, and Yeomans
(1990) and Foster (1990) have obtained additional analyt-
ic results for the phase diagram. Bouchaud and Van-
nimenus (1989) have found agreement with the phase dia-

gram based on a real-space renormalization-group calcu-
lation for the three-dimensional Sierpi'nski gasket. For-
gacs and Semak (1991) have studied the adsorption using
a restricted solid-on-solid (RSOS) model in two dimen-
sions. They found that the system does not exhibit a col-
lapse or chain-folding transition. Although the RSOS
model gives the same results as the solid-on-solid (SOS)
model for universal properties, imposing the restriction
on the SOS model appears to wash out the collapse tran-
sition

B. Semidilute regime

CN, f 0
lim

'

f —(r/g) f .
rt'r„ o(C~)

(221)

So far we have considered only the limit of dilute sys-
tems in which the individual polymer molecules may be
treated as isolated. In the semidilute and dense regimes
the interactions between different polymer molecules can
no longer be neglected.

In the semidilute regime the polymer molecules in-
teract via the excluded volume effect; however, the con-
centration of monomers remains small (i.e., the fraction
of lattice sites occupied by the polymers ~0). The de-
gree to which this excluded volume effect changes the
configurational properties of the polymers can be seen by
studying C&f, the number of configurations for f struc-
tures when their centers are brought within distance r of
each other. The use of scaling theory follows from the
introduction of proximity exponents (des Cloizeaux,
1980). We shall illustrate this for linear polymers only,
as the extension to other structures is straightforward
(Duplantier, 1988).

We define the proximity exponent 0f for f chains, each
of X edges, such that the initial vertex of each is within
distance r of the initial vertices of the other chains by

i —
~ i i+1 X

FJQ. 7. A po/ymer directed in the positive x direction on a strip of width N. Nearest-neighbor interactions between monomers are

represented by + +.
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CN ~r~f~ ~+fr+f g(f ~ fr—+rtf~) ~~

(c„)f (222)

Of =tfy y—(f) f—+ I)/v . (223)

Similarly, if we consider f chains each attached to the
surface by its initial vertex and such that the initial ver-
tices are within distance r, we may define the correspond-
ing surface proximity exponent (for the ordinary transi-
tion) by

CN, f 0
lim

' -(r/g) f
ryg o (c~)f

with

~j =fyi+ I —yi(f) —f .

The theory of adsorbed polymers in the proximal re-
gion (Sec. III.E) may be extended to the semidilute re-
gime (de Gennes and Pincus, 1983). In the proximal re-
gion the monomer concentration profile is assumed to be

c(z)=c,(a/z) V(z/D),

and in the central region we have

g'/a -c

(226)

(227)

with

However, following the previous scaling arguments of
Sec. III.B, in this limit the f initial vertices may be treat-
ed as a single renormalized vertex and we obtain

gb /(2 —b)

5
(235)

The above analysis is valid for the attractive regime—5)0, D ((gb, where gb is the bulk end-to-end distance
of the polymer. Eisenriegler (1983) has used the mapping
of the polymer model onto a spin model in both the di-
lute and semidilute cases to examine the behavior in the
various possible limits (e.g. , gb )&D). A theoretical dis-
cussion of a number of possible ways of observing the ad-
sorption transition has been given by Eisenriegler (1984).
Using the mapping to a spin system, Eisenriegler was
able to calculate the universal amplitude ratios to order e
( =4—d) for surface-tension experiments.

Since surface tension may be measured directly (di Me-
gilo et al. , 1983; Ober et al. , 1983), this provides a means
of experimentally investigating surface adsorption in di-
lute solutions. An initial experimental investigation of
the adsorption transition using surface-tension measure-
ments has been reported by di Meglio and Taupin (1989).
They studied polydimethylsiloxane (PDMS) in three
different solvents (hexane, heptane, and octane). Pre-
cision is difficult to obtain since the results involve taking
the di6'er ence of two surface-tension measurements.
However, di Meglio and Taupin (1989) were able to ob-
tain approximate values of the temperature at which the
adsorption transition occurs for each of the
PDMS/solvent systems considered.

The de Gennes scaling theory has also been extended
to nonequilibrium systems (nonsaturation coverage of the
surface) by Rossi and Pincus (1989).

co=v/(dv —1) . (228)

V (z/D) —~D /z~ (229)

For large z we have

c, -(a/D) (230)

and

(231)

Using the available three-dimensional values of m and co

in the single-chain case, one obtains

b=l . (232)

The change in the free energy/unit area is

I —I 0= —kT6c, a +AI

where AI is the change in the free energy due to the dis-
tortion of the concentration profile. Following de
Gennes (1979b), this is written as a change in the osmotic
pressure over a region of thickness D, that is,

hF =kT f (g'(c)) dz ~ kT/D . (234)
0

After minimizing the change in the free energy, we ob-
tain

To ensure a smooth crossover from the proximal to the
central region, we assume

C. The theta point

In a poor solvent the monomer-solvent repulsion (or,
equivalently, monomer-monomer attraction) leads to the
collapse of the monomer into an object that is compact
compared with the swollen molecules which occur in a
good solvent. While there is an extensive literature on
the collapse transition at the theta point, which separates
the swollen and compact regimes, we review here only
the results for linear polymers attached to a surface.

Seno and Stella (1988a) have numerically estimated the
exponents y „and y», [corresponding to y, and y» for
the ordinary (swollen) SAWs] for SAWs at the theta
point, attached to the surface of a square lattice, as well
as the corresponding bulk exponents (Seno and Stella,
1988b). Chang, Meirovitch, and Shapir (1990) have nu-

merically estimated the corresponding values of yi, and

y», for lattice trails (walks in which a site may be visited
more than once but a lattice edge may be used as a step
only once at most). These numerical values are summa-
rized in Table VI.

Duplantier and Saleur (1987a) previously used confor-
mal covariance arguments to predict the exact exponent
values for this problem in two dimensions. Alternative
values were obtained by Vanderzande (1988). However,
the values predicted by Duplantier and Saleur are valid
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TABLE VI. Exponents for the theta point in tvvo dimensions.

(a) Bulk

-=1.143

—,", =1.07
1.10+0.04

1.133+0.024

-" =0.571

7
=0.571

0.570+0.015
0.569+0.008

3 0.43

—=0.43
0.52+0.07

=0.71

7
—1.143

=0.53

7 =0.571
0.57+0.08

0.634+0.025
0.573+0.002

(1) Ordinary transition

711s

-„=0.571

——= —0.577

——= —0.5717—0.53+0.10
—0.44+0.02
—0.55+0.05

~
=1.143

1.14+0.02
1.11+0.04

(c) Adsorption transition
~ad

7
=0.571

0.57+0.03
2, =0.381
0.4+0.05
0.41+0.03

'Duplantier and Saleur, 1987 (0' point).
Vanderzande, 1988.

'Seno and Stella, 1988a, 1988b.
H. Meirovitch and H. A. Lim, 1989; Chang, Meirovitch, and Shapir, 1990 (Lattice trails).

'Vanderzande, Stella, and Seno, 1991 (exact 0' point).
Foster, Orlandini, and Tesi, 1992.

IVanderzande, Stella, and Seno, 1991 (series expansion 0' point).

for the 0' model. In this problem, only a subset of the
walks that occur in the 0-point problem are considered.
Values predicted by the theories of Duplantier and Saleur
(1987a) and Vanderzande (1988) for the bulk exponent y,
are numerically quite close, and the numerical value ob-
tained by Seno and Stella (1988b) cannot distinguish
them. However, the surface exponents are quite
different, and the numerical results are consistent with
the Vanderzande values but not with the Duplantier and
Saleur values (see Table VI). The difFerences between the
numerical values obtained for the theta-point polymer at
the ordinary transition and the predictions of Duplantier
and Saleur has led to controversy concerning the univer-
sality of the 8- and 8'-point systems (Duplantier and
Saleur, 1989, Seno, Stella, and Vanderzande, 1989). This
controversy seems to have been resolved by recent work.
Vanderzande, Stella, and Seno (1991) have used the rela-
tionship between the walks considered in the 8' problem
and walks on the hull of a percolation cluster (on the
honeycomb lattice) to argue that the 8' system with zero
(explicit} surface interaction is, in fact, at the special
transition point due to an effective surface-monomer in-
teraction generated by the construction of the model.
Consequently the values of the exponents given by Du-
plantier and Saleur apply to the theta-point system at the
special transition. Further numerical work (Vander-

zande, Stella and Seno, 1991;Foster, Ordanini, and Tesi,
1992) is consistent with this explanation and with the
universality of the 8- and 8'-point models (see Table VI).
The universality class of lattice trails at the theta point
appears to be an open question (see Chang, Meirovitch,
and Shapir, 1990 and Vanderzande, Stella, and Seno,
1991}.

In the language of critical phenomena, a polymer at
the theta point is a system at a tricritical point (Stephen,
1975; DeGennes, 1979), which may be studied experi-
mentally by light scattering techniques (Perynski, Adam,
and Delsanti, 1982; Duplantier, Jan nink, and Des
Cloizeaux, 1986). Thus surface-attached polymers at the
theta point offer an opportunity to study tricritical be-
havior in the presence of a surface. Renormalization-
group theory (Wang, 1987; Eisenriegler and Diehl, 1988)
predicts that such a system in three dimensions will ex-
hibit random-walk critical exponents and that logarith-
mic corrections to the leading exponents will be present.
(In the language of the renormalization group, the upper
critical dimension of a tricritical system is d =3). Van
Dieren and Kremer (1987) have performed a Monte Car-
lo study of a polymer at the theta point near an attract-
ing surface. They And that consistent values of the ad-
sorption transition temperature and the crossover ex-
ponent P are obtained only if the predicted logarithmic
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corrections (Wang, 1987) are included in the analysis.
The model considered by van Dieren and Kremer (1987)
and Wang (1987) approximates the surface-attached po-
lymer at the theta point by a nonreversing random walk
which is self-avoiding only in the immediate vicinity of
the surface. A more general discussion, including the
role played by various parameters of the model, has been
given by Eisenriegler and Diehl (1988).

D. Poor solvents

For polymers in a 8 (poor) solvent, the polymer may be
treated within a "mean-field" approximation due to the
compact nature of the polymers. A formalism built on
this approach (see, for example, Hong and Noolandi,
1983) allows the details of the interactions (monomer-
monomer, solvent-monomer) specific to a particular
polymer/solvent system to be built into the model. For
example, Whitmore and Noolandi (1990) have modeled
block copolymers, near the theta transition, in which one
block has a surface affinity and so adsorbs onto the sur-
face while the other block has no surface affinity and so
tends to dangle into the solution. Their results for
specific polymer systems may be compared directly with
experiments such as surface force experiments on poly-
mer brushes (e.g. , Hu and Granick, 1990; Taunton et al. ,
1990).

The rich structure of the surface-adsorbed phases of
triblock copolymers due to self assembly has been investi-
gated by Balazs and Lewandowski (1990) by computer
simulation.

E. Percolation

x-(p, —p) ',
xi-(p, —p)

x»-(p, —p) (239)

The percolation problem is of interest in the study of
polymers as it provides a model of gelation (for a com-
parison of experimental results on gels and the predic-
tions of percolation theory see Patton et aI. , 1989; for a
review of percolation theory see Essam, 1980).

We may describe the problem of percolation at a sur-
face in terms of a lattice occupying the half space z ~0.
Bonds in the lattice are open with probability p (and
closed with probability 1 —p) except in the surface, where
the probability that a bond is open is p, . Two lattice
sites i and j are said to be connected if there exists a walk
from i to j involving nearest-neighbor steps on open
bonds. A mutually connected set of sites forms a cluster.
The generating function for clusters with s sites of which
s

&
are embedded in the surface is

g C, , (p,p, )exp( —hs —h, s, ) .
N, m

There exists a critical value of p at which the mean clus-
ter size diverges, and we define the critical exponents y,
y„and y» by

where y is the mean cluster size in the bulk, y& is the
mean cluster size for clusters attached to the surface, and

y» is the mean number of surface sites in a cluster at-
tached to the surface.

The problem of percolation at a surface has been stud-
ied by mean-field theory (Theumann, 1979; De'Bell and
Essam, 1981), which predicts the existence of ordinary,
adsorption, and surface transitions. However, real-space
renormalization-group (De'Bell, 1979, 1980b) and series-
expansion analysis (De'Bell and Essam, 1980) results in-
dicate that the adsorption and surface transitions do not
occur in two dimensions but do occur in three dimen-
sions. The scaling relations derived for SAWs at the or-
dinary transition are also expected to be valid for per-
colation theory (De'Bell, 1980b), in particular,

p+ v=2/i (240)

where v is the exponent describing the divergence of the
connectedness length g (i.e. , the root-mean-square dis-
tance between connected sites).

An interesting aspect of the percolation problem is
that the critical exponents may be related to the fractal
dimension of the infinite cluster that occurs at p, (Leath,
1976; Stanley, 1977). The bulk fractal dimension df is

defined by

M(b)~b f, (241)

where M& is the number of sites belonging to the infinite
cluster and contained within a box of side b centered on
the cluster. The surface fractal dimension d, is defined

by

M, (b) ~b ', (242)

where M, (b) is the number of surface sites belonging to
the infinite cluster, contained in a surface area of side b.

For a Euclidean object,

(df —1)—d, =0 . (243)

[Christou and Stinchcombe (1986) have given an
equivalent relation in terms of the bulk and surface per-
colation probability exponents. ]

The significance of this result is that it gives a direct
geometrical interpretation to the difference between the
exponent y &, which characterizes the divergence of sur-
face clusters, and its bulk counterpart. Since
(df —1)—d, & 0 for percolation, the surface of a polymer
gel may be expected to be a relatively open structure. To
visualize this, consider a percolating cluster (or the
equivalent polymer gel) grown in the bulk. Now cut
through the percolation cluster with a surface so that
parts of the cluster below the surface fall away. The
above relation implies that sufficient parts of the cluster

However, for the percolation problem this difference is,
in general, not zero and can be related to the critical ex-
ponents (De'Bell and Lookman, 1986), that is,

(df —1)—d, =(y —y, )/v .
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above the surface will become disconnected from the
main cluster and fall away to significantly alter the struc-
ture of the cluster (gel) near the surface.

Estimates of (df —1)—d, have been obtained in two
and three dimensions by estimating the exponents on the
right-hand side of Eq. (244) from an analysis of exact
enumeration data (De'Bell and Lookman, 1986) and by
direct estimates of the differences in the surface and bulk
fractal dimensions from Monte Carlo simulations (Look-
man and De'Bell, 1992). In two dimensions, when con-
formal covariance theory was applied to the n~0 limit
of a Potts model the prediction (Cardy, 1984) was

(df —1)—d, —11/48, d =2 . (245)

The numerical results are completely consistent with this
value. In three dimensions, the numerical analyses give

(df —1)—d, =0.52+0.09, Series, d =3,
(df —1)—d, =0.34+0.04 Monte Carlo, d =3 .

(246)

(247)

The series result is based on a relatively small number of
terms and, as such, the error estimate represents only the
apparent convergence in the analysis. Therefore we con-
sider the Monte Carlo estimate to be more reliable.

Vll. SUMMARY

The general principles of polymers attached to surfaces
in dilute good solution and related surface critical phe-
nomena are well understood as a result of rigorous
methods and scaling and conformal theories, supplement-
ed by numerical work, as described above. However,
several problems remain outstanding. These include a
thorough verification, by numerical methods, of the scal-
ing theory for general topologies. Verifying that com-
binations of exponents such as y&(Q) —y»(Q) are indeed
independent of the topology 9 would provide an exhaus-
tive test of the theory. In practice, this is dificult be-
cause each chain must contain O(X) vertices. Further
work on nonuniform networks is needed to explore
whether the combinations of exponents are also indepen-
dent of topology. There is an outstanding need for exper-
imental results for dilute systems in areas such as the ad-
sorption transition, perhaps using the methods described
by di Meglio and Taupin (1989). The incorporation of
system-specific features, such as monomer-monomer and
monomer-solvent interactions in copolymers, into models
of dilute good solvent systems remains an area in which
there is much work to be done. Finally, we have not dis-
cussed in this review the dynamics of polymer adsorp-
tion. Relatively few results are available for this prob-
lem. However, some computer studies have been per-
formed (Balazs and Lewandowski, 1990; Frantz and
Granich, 1991) and we refer the interested reader to
these.

Tote added. After submission of this article, the au-
thors received a preprint of the article by E. Orlandini,
A. L. Stella, M. C. Tesi, and F. Sullivan (1992, "Vesicle

adsorption on a plane: new scaling regimes and cross-
over phenomena"). In this work the value of the cross-
over exponent at the adsorption transition for self-
avoiding surfaces with spherical topology is found to be

P =0.70+0.06 .

This problem is expected to be in the same universality
class as that of lattice trees (branded polymers). Howev-
er, the value of P obtained is not compatible with the
value obtained by Janssen and Lyssy (1992).

Rote added in proof. Recently I. Chang and H. Meiro-
vitch [Phys. Rev. Lett. 69, 2232 (1992)] studied the sur-
face adsorption transition of both SAWs and lattice trails
at the theta point. Their results are consistent with the
universality of SAWs and lattice trails at the theta point
but inconsistent with the universality of 0 and 0' models.
This di6'ers significantly with other recent work on these
problems (see Sec. VI.C).
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